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Preface

During ACCV 2010 in Queenstown, New Zealand, a series of eight high-quality
workshops were hold that reflect the full range of recent research topics in com-
puter vision. The workshop themes ranged from established research areas like
visual surveillance (the 10th edition) and subspace methods (third edition) to
innovative vehicle technology (From Earth to Mars), from vision technology for
world e-heritage preservation and mixed and augmented reality to aesthetic fea-
tures in computational photograpy and human computer interaction.

From a total of 167 submissions, 89 presentations were selected by the in-
dividual workshop committees, yielding an overall acceptance rate of 53%. The
reported attendence was quite attractive, between 40 and 60 participants in each
of the workshops, sometimes over 70.

The two-volume proceedings contain a short introduction to each workshop,
followed by all workshop contributions arranged according to the workshops.

We hope that you will enjoy reading the contributions which may inspire you
to further research.

November 2010 Reinhard Koch
Fay Huang



Introduction to the 10th International

Workshop on Visual Surveillance

Visual surveillance remains a challenging application area for computer vision.
The large number of high-quality submissions is a testament to the continu-
ing attention it attracts from research groups around the world. Within this
area, the segmentation of the foreground (moving objects) from the background
(residual scene) remains a core problem. Approximately half of the papers ac-
cepted for publication propose innovative segmentation processes. These include
the modeling of photometric variations using local polynomials, the exploitation
of geometric and temporal constraints, and the explicit modeling of foreground
properties. The segmentation of foregrounds consisting of slowly moving objects
is explored and there are two investigations into the improvements in segmenta-
tion that can be obtained using feedback from a subsequent tracking process.

Nonetheless, there is also an increasing interest in the detection of pedestri-
ans, faces and vehicles using methods that do not rely on foreground–background
segmentation. Several enhancements to the histogram of gradients method for
pedestrian detection are proposed, leading to an improved efficiency and in-
variance of the results under rotations of the image. A method to improve the
efficiency of the boosted cascade classifier is also proposed. A key problem for vi-
sual surveillance scene understanding is the tracking of pedestrians in arbitrarily
crowded scenes across multiple cameras: there are several papers that offer con-
tributions to the solution of this problem, including the modeling of pedestrian
appearance as observed from multiple cameras in a network.

In the 12 years in which the Visual Surveillance workshops have been run-
ning, algorithms have become more sophisticated and more effective, more data
sets have become available and experimental techniques and the reporting of
results have improved. In spite of these advances, many of the classic problems
in computer vision, such as optic flow estimation, object detection and object
recognition, are still as relevant to the visual surveillance community as they
have ever been.

The Workshop Chairs would like to thank the Program Committee for their
valuable input into the reviewing process, and Reinhard Koch and Fay Huang
for providing efficient liaison on behalf of the ACCV. The Chairs would also like
to thank Graeme Jones, who dealt with many of the organizational aspects of
this workshop.

November 2010 James Orwell
Steve Maybank

Tieniu Tan
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VIII Preface
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Introduction to the Second International

Workshop on Video Event Categorization,
Tagging and Retrieval (VECTaR)

One of the remarkable capabilities of the human visual perception system is to
interpret and recognize thousands of events in videos, despite a high level of
video object clutter, different types of scene context, variability of motion scales,
appearance changes, occlusions and object interactions. As an ultimate goal of
computer vision systems, the interpretation and recognition of visual events is
one of the most challenging problems and has increasingly become very popular
in the last few decades. This task remains exceedingly difficult because of several
reasons:

1. There still remain large ambiguities in the definition of different levels of
events.

2. A computer model should be capable of capturing a meaningful structure
for a specific event. At the same time, the representation (or recognition
process) must be robust under challenging video conditions.

3. A computer model should be able to understand the context of video scenes
to have meaningful interpretation of a video event. Despite these difficulties,
in recent years steady progress has been made toward better models for
video event categorization and recognition, e.g., from modeling events with a
bag of spatial temporal features to discovering event context, from detecting
events using a single camera to inferring events through a distributed camera
network, and from low-level event feature extraction and description to high-
level semantic event classification and recognition.

This workshop served to provide a forum for recent research advances in the
area of video event categorization, tagging and retrieval. A total of 11 papers
were selected for publication, dealing with theories, applications and databases
of visual event recognition.

November 2010 Ling Shao
Jianguo Zhang

Tieniu Tan
Thomas S. Huang
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Introduction to the Workshop on

Gaze Sensing and Interactions

The goal of this workshop is to bring researchers from academia and industry in
the field of computer vision and other closely related fields such as robotics and
human – computer interaction together to share recent advances and discuss fu-
ture research directions and opportunities for gaze sensing technologies and their
applications to human – computer interactions and human – robot interactions.
The workshop included two keynote speeches by Ian Reid at the University of
Oxford, UK, and Chen Yu at Indiana University, USA, who are world-leading
experts on gaze – sensing technologies and their applications for interactions, and
seven oral presentations selected from submitted papers by blind review. This
workshop was supported by the Japan Science and Technology Agency (JST)
and CREST. We would like to thank Yusuke Sugano, Yoshihiko Mochizuki and
Sakie Suzuki for their support in organizing this event.

November 2010 Yoichi Sato
Akihiro Sugimoto
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Introduction to the Workshop on

Application of Computer Vision for Mixed and
Augmented Reality

The computer vision community has already provided numerous technical break-
throughs in the field of mixed reality and augmented reality (MR/AR), partic-
ularly in camera tracking, human behavior understanding, object recognition,
etc. The way of designing an MR/AR system based on computer vision research
is still a difficult research and development issue. This workshop focuses on the
recent trends in applications of computer vision to MR/AR systems.

We were proud to organize the exciting and stimulating technical program
consisting of ten oral presentations and five poster presentations. We were very
happy to have a distinguished invited speaker, Hideyuki Tamura, who has led
the MR/AR research field since the 1990s. Finally, we would like to thank all
of the authors who kindly submitted their research achievements to ACVMAR
2010 and all members of the Program Committee for their voluntarily efforts.

ACVMAR 2010 organized in collaboration with SIG-MR(VRSJ) and the
GCOE Program at Keio University.

November 2010 Hideo Saito
Masayuki Kanbara

Itaru Kitahara
Yuko Uematsu
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Introduction to the Workshop on

Computational Photography and Aesthetics

Computational photography is now well-established as a field of research that
examines what lies beyond the conventional boundaries of digital photography.
The newer field of computational aesthetics has seen much interest within the
realm of computer graphics, art history and cultural studies. This workshop
is intended to provide an opportunity for researchers working in both areas,
photography as well as aesthetics, to meet and discuss their ideas in a collegial
and interactive format.

The papers contained in these workshop proceedings make important con-
tributions to our understanding of computational aspects of photography and
aesthetics. The first paper, by Valente and Klette, describes a technique for
blending artistic filters together. Their method allows users to define their own
painting style, by choosing any point within the area of a triangle whose vertices
represent pointillism, curved strokes, and glass patterns. The second paper, by
Sachs, Kakarala, Castleman, and Rajan, describes a study of photographic skill
whose purpose is to establish whether that skill can be identified in a double-blind
manner. They show that human judges who are themselves expert photographers
are able to identify up to four skill levels with statistical significance. The third
paper, by Rigau, Feixas, and Sbert, applies the information theory of Shannon to
model the channel between luminosity and composition. They show how changes
in depth-of-field and exposure are reflected in the information channel, and for-
mulate measures for saliency and“entanglement” in an image. The fourth paper,
by Lo, Shih, Liu, and Hong, describes how computer vision may be applied to
detect a classic error in photographic composition: objects which appear to pro-
trude from a subject’s head. Their method is able to reliably detect protruding
objects in a variety of lighting conditions and backgrounds, with a detection rate
of 87% and false alarm rate of 12%. The fifth paper, by Constable, shows how
traditional drawing methods such as incomplete perimeters, lines that suggest
colors, and lines that suggest form, can inform and improve non-photorealistic
rendering (NPR). This paper provides a valuable artistic perspective to illustrate
how engineering and art work collaboratively in NPR.

The workshop was fortunate to have a keynote presentation by Alfred Bruck-
stein. He described the problem of emulating classic engraving using
non-photorealistic image rendering, and proposed to used level-set-based shape
from shading techniques. The problem contains interesting mathematical chal-
lenges in connecting essential contours in natural, flowing ways, which Professor
Bruckstein described.

November 2010 Ramakrishna Kakarala
Martin Constable
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Introduction to the Workshop on

Computer Vision in Vehicle Technology:
From Earth to Mars

Vision-based autonomous navigation of vehicles has a long history which goes
back to the success story of Dickmanns in Munich and the Mechanical Engineer-
ing Laboratory of MITI in Japan in the 1980th. At the time, DARPA had asked
us to compete with autonomous land vehicles in their GRAND Challenges. To-
day, computer vision techniques provide methodologies to assist in long-distance
exploration projects using visual sensing systems such those with the Mars rover
project. Modern cars are now driven with the assistance of various sensor data.
These assisted driving systems are developed as intelligent transportation sys-
tems. Among the various types of data used for driving assistance and navigation,
we find visual information as the interface between human drivers and vehicles.

Today, data captured by visual sensors mounted on vehicles provide essential
information used in intelligent driving systems. For applications of computer
vision methodologies in exploration, evaluation, and quality-control techniques
in the absence of ground truth information, it is essential to design robust and
reliable algorithms.

In this workshop, we focus on exchanging new ideas on applications of com-
puter vision theory to vehicle technology. In computer vision for driving as-
sistance, tracking, reconstruction, and prediction become important concepts.
Furthermore, real-time and on-board processes for these problems are required.

We received 21 papers and selected 11 papers for publication based on the
reviews by the Program Committee and by the additional reviewer Ali Al-Sarraf.

November 2010 Steven Beauchemin
Atsushi Imiya
Tomas Pajdla
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Introduction to the Workshop on e-Heritage

Digitally archived world heritage sites are broadening their value for preservation
and access. Many valuable objects have been decayed by time due to weathering,
natural disasters, even man-made disasters such as the Taliban destruction of
the great Buddhas in Afghanistan, or the recent destruction by fire of a 600-
year-old South Gate in Seoul. Cultural heritage also includes music, language,
dance, and customs that are fast becoming extinct as the world moves toward a
global village. Furthermore, most of the sites still face a problem of accessibility.
Digital access projects are necessary to overcome those problems.

Computer vision research and practices have, and will continue, to play a
central role in such cultural heritage preservation efforts. The proposed Work-
shop on e-Heritage and Digital Art Preservation aims to bring together computer
vision researchers as well as interdisciplinary researchers that are related to com-
puter vision, in particular computer graphics, image and audio research, image
and haptic (touch) research, as well as presentation of visual content over the
Web and education.

In this workshop, seven contributions to the field of e-heritage were presented,
covering the areas of on-site augmented-reality applications, three-dimensional
modeling and reconstruction, shape and image analysis, and interactive haptic
systems. All submissions were double-blind reviewed by at least two experts. We
thank all the authors who submitted their work. It was a special honor to have
In So Kweon (KASIT, Korea), Hongbin Zha (Peking University, China) and
Yasuyuki Matsushita (Microsoft Research Asia) as the invited speakers at the
workshop. We are especially grateful to the members of the Program Committee
for their remarkable efforts and the quality of the reviews.

November 2010 Katsushi Lkevchi
Takeshi Oishi
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Introduction to the Third International

Workshop on Subspace Methods

We welcome you to the proceedings of the Third International Workshop of
Subspace 2010 held in conjunction with ACCV 2010.

Subspace 2010 was held in Queenstown, New Zealand, on November 9, 2010.
For the technical program of Subspace 2010, a total of 30 full-paper submissions
underwent a rigorous review process. Each of these submissions was evaluated
in a double-blind manner by a minimum of two reviewers. In the end, ten papers
were accepted and included in this volume of proceedings.

The goal of the workshop is to share the potential of subspace-based methods,
such as the subspace methods, with researchers working on various problems in
computer vision; and to encourage interactions which could lead to further devel-
opments of the subspace-based methods. The fundamental theories of subspace-
based methods and their applications in computer vision were discussed at the
workshop.

Subspace-based methods are important for solving many theoretical prob-
lems in pattern recognition and computer vision. Also they have been widely
used as a practical methodology in a large variety of real applications. During
the last three decades, the area has become one of the most successful underpin-
nings of diverse applications such as classification, recognition, pose estimation,
motion estimation. At the same time, there are many new and evolving research
topics: nonlinear methods including kernel methods, manifold learning, subspace
update and tracking. In addition to regular presentations, to overview these de-
velopments, we provided a historical survey talk of the subspace methods.

Prior to this workshop, we successfully organized two international workshops
on subspace-based methods: Subspace 2007 in conjunction with ACCV 2007 and
Subspace 2009 in conjunction with ICCV 2009. We believe that Subspace 2010
stimulated fruitful discussions among the participants and provided novel ideas
for future research in computer vision.

November 2010 David Suter
Kazuhiro Fukui
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Abstract. In this talk, we introduce the outline of gThe MR-PreViz
Projecth performed in Japan. In the pre-production process of filmmak-
ing, PreViz, pre-visualizing the desired scene by CGI, is used as a new
technique. In its advanced approach, we propose MR-PreViz to utilize
mixed reality technology as in current PreViz. MR-PreViz makes it pos-
sible to merge the real background and the computer-generated humans
and creatures in an open set or at an outdoor location. Computer vision
technologies are required for many aspects of MR-PreViz. For capturing
an actor’s action, we applied 3D Video, which is a technology that al-
lows one to reconstruct an image seen from any viewpoint in real time
from video images taken by multiple cameras. As the other application of
CV, we developed a vision based camera tracking method. The method
collects environmental information required for tracking efficiently using
a structure-from-motion technique before the shooting. Additionally, we
developed a relighting technique for lighting design of MR-PreViz movie.

1 Introduction

Mixed reality (MR) which merges real and virtual worlds in real-time, is an
advanced form of virtual reality (VR) [1]. The word ”augmented reality” (AR)
has the same meaning as MR. In AR space, the real world is dominant, and it
is electronically daugmented and enhanced. On the other hand, MR is based on
the concept of fusing the real world and virtual world by almost treating them
equally. In terms of visual expression, VR deals with completely Computer-
Generated Images (CGI). By contrast, AR/MR superimposes the CGI onto real
scenes. Therefore, capturing the elements and analyzing and understanding at-
tributes of the real world are necessary for AR/MR. Consequently, VR requires
computer graphics technology; computer vision (CV) plays an important role
for AR/MR.

AR/MR has a variety of applications. it already has been applied to medicine
and welfare, architecture and urban planning, industrial design and manufac-
turing, art and entertainment, etc. This paper describes an application of MR
technology for filmmaking, particularly the pre-visualization process. In the post-
production stage of feature films, visual effects, or composing the CGIs with

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 1–10, 2011.
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Fig. 1. Conceptual image of MR-PreViz

live action images, is used routinely. Since this is operated as an off-line pro-
cedure, redoing and time-consuming processes are allowed. On the other hand,
pre-visualization using MR technology in the pre-production stage requires real-
time interactive merging of live actions and CGIs. This is a very difficult and
challenging topic. In hopes of obtaining many fruits from this challenging theme,
we are promoting the ”CREST/MR-PreViz Research Project” [2][3]. Fig.1 shows
the conceptual image of the MR-PreViz project.

AR/MR is a newly emerged attractive application field for CV technology. At
the same time, filmmaking is a worthwhile application field to tackle. The theme
”MR-based Pre-visualization in Filmmaking” makes stages for CV technology,
we will introduce examples of 3 of these stages in this paper.

2 Overview of the CREST/MR-PreViz Project

2.1 Significance of MR Technology for PreViz

Recently, pre-visualization (PreViz, also described as ”PreVis” or ”pre-vis”) has
been used to further develop a storyboard. PreViz is a technique based on
computer-generated images for visualizing action scenes, camera angles, cam-
era blockings, lighting conditions, and other situations and conditions before the
actual shoot. Compared with the conventional PreViz, which previsualizes the
desired movie scene with only CGI, our MR-PreViz has significant differences:

1. MR-PreViz utilizes real backgrounds, such as sound stages, open sets, and
location sites. CG objects imitate actors or creatures such as dinosaurs and
aliens, which are superimposed onto the background. In terms of VR, this is
an MR composite from a camera view point. In terms of filmmaking, this is
on-site real-time 3D match moving.

2. Compared with virtual studios used in TV productions, MR-PreViz is a
generic form which can be used in outdoor environment.

3. MR-PreViz can be used in multiple stages of PreViz from Pitch-Vis to Post-
Vis, and it is especially suitable for camera rehearsals and set simulations.
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Fig. 2. Workflow of MR-PreViz

2.2 Workflow of Filmmaking with MR-PreViz

The workflow of filmmaking with MR-PreViz is as follows (Fig.2).

Phase 1: Selecting scenes suitable for MR-PreViz; Scenes that should be checked
using MR-PreViz, are selected.

Phase 2: Arrangement of action and layout data; We collect CG character data,
animation setting data, and action data before making MR-PreViz movies.

Phase 3: MR-PreViz shooting; MR-PreViz movies are shot at the shooting
site using Camera-Work Authoring Tools with a professional digital cinema
camera.

Phase 3.5: Editing and Adjusting MR-PreViz movie; A high definition version
of the MR-PreViz movie can be obtained by off-line rendering. Additionally,
illumination on the MR-PreViz movie can be changed by relighting.

Phase 4: Application to actual shooting; The results of MR-PreViz shooting
are applied to the actual shooting. Actors and staff can share ideas and
images by using a MRP browser.

Recently, the processes in Phase 3.5 become more important, because the func-
tion of editing and adjusting after the MR-PreViz shooting were appreciated in
experimental shootings.

3 CV Technologies in MR-PreViz (1)—3D Video

This section describes 3D video technology [4], which is used in Phase 2. While
wearing a special suit has been necessary for capturing action in the past, 3D
video has an advantage that the actor’s actions can be captured while wearing
a normal costume for the real shooting. We describe some technical highlights
of our 3D video technology as computer vision research and then discuss its
advantage against other possible approaches as a data source of MR-PreViz.
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3.1 Introduction of 3D Video

The 3D video is media which records visual dynamic events as is. It records the
actor’s 3D shape, texture and motion without attaching any extra devices or
markers to the object. Unlike 3D-TV, which only gives 2D stereo appearances of
the scene to the human brain, 3D video explicitly estimates full 3D geometry and
texture. It first captures 2D multi-view videos of the object and then estimates
its 3D information purely from acquired 2D videos. Once 3D shapes are obtained
from 2D videos, the original 2D images are mapped onto the 3D surface as its
texture. Since this produces a conventional g3D surface geometry + textureh
style output, we can render it from an arbitrary viewpoint even with other
virtual objects.

3.2 Technical Highlights of 3D Video as a Computer Vision
Research

3D video technology consists of lots of challenging computer vision research
topics including (1) object tracking and calibration and (2) 3D kinematic motion
estimation for further editing.

(1) Object tracking and calibration: The fundamental criteria for the
3D video capture are twofold. All regions of the object surface must be observed
from at least two cameras, and the intrinsic and extrinsic parameters of the cam-
eras must be calibrated accurately. As long as we can satisfy these requirements,
we can choose any combinations of cameras and their arrangement, which con-
trols the resolution and captures area size of the system. To achieve the best
combination of the resolution and capture area with a fixed image resolution,
we have developed an active (pan-tilt-zoom) camera system named gcell-based
3D video captureh (Fig.3) which tracks and captures the object on a cell-to-cell
basis [5]. In this approach, we can reformulate the original online tracking and
calibration problem as a cell arrangement and tracking problem.

(2) 3D kinematic motion estimation: 3D video consists of a time-series
of 3D surface geometry and texture information and does not have any informa-
tion on the kinematic structure of the object. The goal here is to estimate the
kinematic structure and posture of the object by observing its surfaces. Fig.4
shows a result for a complex posture. The key point here is explicit management
of the 3D surface areas invisible from any cameras which have less accuracy on
the surface geometry [6].

3.3 3D Video for MR-PreViz

The key point of 3D video technology for MR-PreViz is its geometry-based
representation of the scene. This property brings (1) seamless integration with
other 3D virtual objects, and (2) free-viewpoint rendering for pre-visualization.
In addition, once we obtain the posture information of the captured object, we
can edit them with conventional CG techniques.
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Fig. 3. Cell-based 3D video capture. The
cameras cooperatively track the object on
a cell-to-cell

Fig. 4. Complex posture estimation

4 Camera Tracking Using Landmark Database

This section describes a camera tracking method used in Phase 3. The proposed
method has a significant role to play in composing CGI onto real background in
out-door environments as an on-site real-time 3D matchmove.

4.1 Registration Method Using Landmark Database

In order to overlay CG actors at geometrically correct positions in captured
images, position and posture parameters of a video camera are necessary. High-
accurate measurements of these parameters has been achieved by using combi-
nations of sensors attached to the video camera and emitters arranged in the
target environment, such as ultrasonic, magnetic or optical sensors/emitters. Al-
though these methods work well in a small environment like a TV studio, it is
not a realistic scenario to use them in a large outdoor environment due to the
difficulty in arranging and calibrating those emitters. A combination of GPS and
other sensors is one of possibilities for an outdoor environment but its accuracy
has not reached the practical level of geometric registration in MR.

On the other hand, vision-based methods can estimate camera parameters
without external sensors. The PTAM [7] is one of the famous methods that
estimates camera parameters in real-time by tracking feature points on input
images. This method obtains relative camera motion and 3-D positions of feature
points simultaneously without prior knowledge. One problem in the PTAM for
MR-PreViz is that absolute position and posture information have never been
recovered. This limitation makes pre-arrangement of CG objects difficult.

Landmark database (LMDB) [8] is one of the promising approaches to this
problem. In this method, as an offline stage, the target environment is captured
by using an omnidirectional camera, and feature points tracked in this video
sequence are registered to the database as landmarks. 3-D coordinate of feature
points are estimated by using a structure-from-motion technique for omnidirec-
tional video that simultaneously estimates 3-D positions of feature points and
camera motion [9].
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Fig. 5. Detected feature points in omnidirectional image (left) and their 3-D positions
estimated by structure from motion (right)

Detected landmarks
in real image

CG of actors

CG actors overlaid on real image

Fig. 6. Geometric registration between CG object and real scene using LMDB

Fig.5 shows detected positions of feature points on the omnidirectional video
sequence and estimated 3-D positions of feature points. Absolute 3-D positions
of landmarks are recovered by using several reference points whose absolute 3-D
positions are manually measured. Visual information of each landmark is also
stored to the database from the omnidirectional video.

In the online stage, pre-registered landmarks are searched for from each image
of the input video using its visual information. After finding corresponding pairs
of landmarks and feature points, absolute position and posture of the video
camera are estimated by minimizing re-projection errors of these pairs. By using
estimated camera parameters, CG characters are rendered from the appropriate
viewpoint and they are finally merged into the input image as shown in Fig.6.
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4.2 Rehearsal Path Method: Refinement of the Registration
Method Using LMDB

The registration method using LMDB was originally developed for a general
scenario of MR. We can utilize constraints of the usage in filmmaking for re-
finement [10]. In particular, it is assumed that a rough camera path is known in
filmmaking. We have develop a method called ”Rehearsal Path Method; RPM”
which refines efficiency and accuracy of the registration method by restricting
the moving range of camera to the camera path during construction of LMDB.
The RPM automatically gathers information of the shooting site by pre-shooting
and constructs a landmark database (LMDB). The RPM consists of two phases
as shown in Fig.7.

Rehearsal Phase: In this phase, RPM utilizes a video sequence with a fidu-
cial marker captured during the rehearsal as a learning sequence. The geometry
of the site is estimated using a structure-from-motion technique. In particular,
the positions of feature points in 3D space are first estimated by using epipolar
geometry on several frames in the video sequence. Secondly, 6DOF parameters
of the camera and positions of new feature points are simultaneously calculated
by tracking the feature points. Finally, the coordinates of the 3D points are
transformed into real world coordinates by recognizing the marker. SIFT, a lo-
cal invariant, of each landmark is calculated and entered into our LMDB with
3D positions.

Shooting Phase: In this phase, the fiducial marker is removed for MR-
PreViz shooting. The registration of virtual world and real world is realized by
correlating the 2D feature points in the images with the 3D points in the LMDB.
The RPM is possible to automatically obtain an initial position and recover from
tracking failure by using SIFT matching between a present frame and keyframes
on the camera path of the LMDB prepared in advance. @The RPM successfully
refined efficiency and accuracy of the registration method by using the knowledge
of camera path. Besides PreViz, The RPM is also applicable to other purposes
which have the same constraint.

Estimate the camera path 

with fiducial markers

FAFAFAFFAFAFAFAF

Estimate the relative 

position of the markers 

in coordinate system of 

the reference marker

Real-time camera tracking 

using feature points (LMDB)

Rehearsal Phase Shooting Phase

Fig. 7. Rehearsal Path Method (RPM)
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5 CV Technologies in MR-PreViz (3) - IBL and
Relighting

This section describes the method assumed to be used in Phase 3.5, which is
the additional process after the MR-PreViz shooting. In addition improving the
speed for processing, this method also can be used for the MR-PreViz shooting
in Phase 3. Photometric consistency between virtual objects and a real scene is
one of the most important issues in the CG research area. ”Virtual Cinematog-
raphy” [11], developed by Debevec et. al., is a famous example which applied
illumination technology researched in an academic field to film making. This
work is based on image based lighting (IBL). IBL enables the lighting condi-
tion in the desired scene to be reconstructed by utilizing a series of images or
omnidirectional images stored in advance.

Light Stage is the dedicated equipment for translating the IBL concept into
reality as shown in Figure 6. Light Stage enables illumination onto actors to be
changed freely by systematically illuminating structured lights. Previously, sev-
eral versions of light stage have been developed. One group received the Academy
Award in 2010 for their technical contributions to ”Spiderman 2” and ”Avatar”.
Light Stage was originally used in the postproduction process for keeping pho-
tometric consistency. By contrast, we are developing a visualization method for
”Look”, which refers to the feeling of an image provided by illumination and color
tone. For visualizing the look that directors and cinematographers imagine, we
developed relighting technology for MR-PreViz movies. Light Stage realizes re-
lighting for the actor who appears on the stage. On the other hand, the target of
our relighting for MR-PreViz is the background of the indoor-outdoor location.
Therefore the approach using structured lights can not be used in our case.

In the MR research area, there are many works for photometric consistency
between virtual objects and real objects. Lighting conditions are estimated for
illumining the virtual objects on the same condition of the real scene. Our re-
search takes a lateral approach. As a next step, we will focus on challenging
trials to Look-Change of MR space. In this section, we introduce a relighting
method for the Look-Change [12]. The proposed method allows an MR space to
have additional virtual illumination for the Look-Change. The effects of virtual
illumination are applied to both real objects and virtual objects while keeping
photometric consistency. There is a trade-off between the quality of the lighting
effect and the processing time. Therefore, the challenge is to create an efficient
model of the lighting condition of real scenes. Our method adopts a simple and
approximate approach to realize indoor-outdoor relighting as shown in Fig.8.

Step 1: Preparing images without distinct shadows
If a distinct shadow, exists in the background images, it may cause a para-
dox between real and virtual shadows in the relighting process. We should
prepare background images without shadows. We can use physical lighting
equipment or image processing methods for removing shadows in the images.

Step 2: Adjusting color tone This process approximates environmental light.
The color tone is adjusted by multiplying arbitrary values with respect to
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Step 1: Inputting images Step 2: Adjusting color tone  Step 3: Relighting

Fig. 8. Flow of our relighting method

each color channel. As a result of this process, we can change an image of
daylight into an image of a night scene.

Step 3: Adding lighting effects to MR-PreViz images
After color correction, real and virtual objects in the MR-PreViz images are
illuminated by virtual lighting. To optically correct illuminate objects, we es-
timate reflectance properties and geometry of the real objects. A relationship
between pixel value and illuminance is obtained as a reflecting property. Illu-
minance is automatically calculated under several lighting conditions by us-
ing a reference marker where the reflecting property of the marker is known.
Geometry of the site is estimated using a structure-from-motion technique.

The final MR-PreViz images of relighting are shown in Step 3 of Figure 8. Nev-
ertheless the proposed method is developed for changing Look in a MR-PreViz
movie. It is also applicable for lighting effects in MR attractions.

6 Conclusions

In this paper, we picked mixed reality as a useful target application of CV
technology, and introduced mixed reality based pre-visualization in filmmaking
with 3 elemental CV technologies.

These elemental technologies, as outlined below, have been steadily improved
by being used many times in the actual workflow of filmmaking during the
projects 5 years (since Oct 2005).

(i) The 3D video has verified its utility for the purpose of PreViz, though it
does not have enough quality as a final sequence.

(ii) The camera tracking method has steadily improved its practicality by utiliz-
ing constraints of PreViz in filmmaking. Specifically, we refined the method
under the assumption that a rough camera-path is decided before the shoot-
ing. We called this method ”Rehearsal Path Method.” The method is not
omnipotent because it depends on the target scene and weather. We can
improve efficiency and reliability of the method by gathering experience and
setting modes based on the situations.

(iii) At first the relighting method had been used only after the MR-PreViz
shooting in Phase 3.5 as an off-line process. It also can be used in Phase 3
as a real-time process.
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Even conventional PreViz composed of only CG was not popular 5 years ago.
However, the number of the use of PreViz in feature films was rapidly increased
since then. Today, there are PreViz studios which specialize in PreViz, and ”The
Pre-visualization Society” has been established [13]. Although PreViz is not
able to contribute to the quality of the final movie, it enables filmmakers to
inspire their creativity by facilitating the process of trial-and-error in the pre-
production or production stages of filmmaking. Additionally, PreViz is able to
contribute to reducing the total production costs. The processes of the PreViz
are subdivided into pitch-vis, tech-vis, post-vis, etc. Accordingly, MR-PreViz
continues to receive much attention and makes progress for CV technology.
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Abstract. Estimation of a camera pose (position and orientation) from
an image, given a 3d model of the world, is a topic of great interest in
many current fields of research. When aiming for a model based pose
estimation approach, several questions arise: What is the model? How
do we acquire a model? How is the image linked to the model? How
is a pose computed and verified using the latter information? In this
paper we present a new approach towards model based pose estimation
based solely on SURF features. We give a formal definition of our model,
show how to build such a model from image data automatically, how to
integrate two partial models, and how pose estimation for new images
works.

1 Introduction

Computing the pose of a camera given an image and a model of the world is an
important task in computer vision. There are many different approaches using all
kind of different models and matching techinques. Most are feature based, some
use features which provide a descriptor for easier matching. SURF[1] is popular
because of its invariance properties and high distinctiveness of the descriptor, as
well as its speed. We present an approach towards model based pose estimation
based solely on SURF features.

The rest of the paper is organized as follows: In the next section we give an
overview of related work. We define our model in section 3 and show how to
generate such a model automatically from images in section 4. In section 5, we
demonstrate how a camera pose is computed from the model and a query image.
Section 6 describes an algorithm to integrate two models which partially overlap
into a single model. Evaluation takes place in section 7. Section 8 concludes the
paper.

2 Related Work

Zhang and Kosecka discuss pose estimation in urban environments [2]. They
store a number of GPS localized images and extracted SIFT features. Then the
images most similar to a query image are identified and possible motion models

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 11–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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are computed. For a final pose triangulation the two best fitting views are taken
into account. Schindler et. al. focus on large scale databases and present an
approach which is able to handle over 100 million SIFT features using vocabulary
trees [3]. More recently, Wu et. al. introduced a new method of matching so called
VIP features, which greatly increased the number of correct matches from query
images [4]. The system described by Snavely et al. [5] covers much more aspects
than pose estimation of images alone. Not only do they show how to compute
structure and camera position from a large number of unstructured, uncalibrated
images, but they also cover means of how to visualize and navigate the result.
Irschara et al. introduce the idea of synthetic views to handle images taken from
new viewpoints [6].

In our approach, we reconstruct 3d data directly from the images using SURF,
thus skipping the search for the best fitting image as for example in [2]. We
establish a connection between the features from a query image and the model
directly, thus enabling direct pose estimation.

3 Model Definition

A model M is defined as a tuple

M = (P ,F ,S, g, h) . (1)

It consists of a set of world points P , frames F , SURF features S and the
relations g ⊆ P × S as well as h ⊆ S × F . A world point pw is a simple point
in three dimensional Euclidian space: pw ∈ IR3. A frame f represents a three
dimensional Euclidian transformation. It describes the position of a camera by
the rotation and translation applied to a world point before projection to the
image plane, thus f ∈ SE(3). A surf feature s = (x, y, σ, θ, d) consists of its
location (x, y) in the image, detection scale σ, orientation θ and a 64 dimensional
descriptor d, as described in [1]. The relation g holds information, which SURF
feature s is connected to which world point pw. h connects the surf features to
the frames from which they originate. For easier notation, we define the set of
features Sfi extracted from frame fi ∈ F as

Sfi :={sj ∈ S | (sj , fi) ∈ h} . (2)

The set of all world points Pfi visible in frame fi ∈ F is defined using both
relations g and h:

Pfi:={pw
j ∈ P | ∃s ∈ S : (pw

j , s) ∈ g ∧ s ∈ Sfi} . (3)

With these relations a number of queries to the model are possible, e.g.

– In which frames has world point pw been recognized?
– Which surf descriptors are connected to a given world point pw?
– Is there already a world point associated with feature s?

These are important during the model building process.
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4 Automatic Model Generation from Images

Automatic model generation from images is split into two phases. The first phase
initializes the model using stereo geometry, while the second phase iteratively
expands and improves the model. We assume the images to be in an order
in which the first two images have a sufficient overlap for stereo processing. All
further images have to be taken roughly from a direction of any preceding image,
so they show a detail of the world which has already been covered to some extent.

We assume a geometrically calibrated camera with known intrinsic parame-
ters. All images are undistorted beforehand. This allows us to use image coordi-
nates directly, which simplifies the structre from motion process.

4.1 Initialization

For the two initial frames, we extract SURF features and compute possible
correspondences using nearest neighbour matching of the descriptors along with
a distance ratio threshold as proposed by Lowe [7]. RANSAC [8] with an adaptive
termination criterion [9] is used to estimate the best fitting epipolar geometry
using Nistér’s five-point algorithm [10]. We then extract the camera movement
from the essential matrix to get the pose of the second camera [9]. Next, all
inlier to the epipolar constraint are triangulated and tested for their reprojection
error in both images (which can in fact differ). For triangulation, we used the
sum of the squared reprojection errors as minimization criterion. We also found
it neccessary to test if the triangulated point is in front of both cameras, since
with very many extracted SURF features it eventually happens, that outlier
correspondences are inlier to the epipolar geometry by chance but reconstruct a
point behind the cameras. This is also known as the cheirality constraint [10].
Fig. 1 shows an initial stereo pair and the reconstructed world points.

Fig. 1. Initialization of the model with a stero image pair
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4.2 Incremental Expansion of the Model

The model is expanded frame by frame. First, the pose of the new frame fn+1

with respect to the models coordinate system is computed as will be shown in
section 5. The new frame is added to F , features extracted in the frame are
added to S. The inlier correspondences from existing world points to features
are then added to g.

(a) Visualization of a model. (b) A new frame to be added.

(c) Connections from world points
to features in the new frame.

(d) The new frame was integrated
at the computed position.

Fig. 2. Integration of a new frame. Features are extracted and correspondences to
descriptors connected to world points of the model are computed. From these 2d/3d
correspondences, the pose of the new frame is computed.

After adding a frame, we apply global bundle adjustment to all estimated
world points and frames. We do so by optimizing these with respect to the
reprojection error using the sparse bundle adjustment software [11] based on
a Levenberg Marquard implementation [12], which both are publicly available.
We parametrize our world points as pw ∈ IR3 and the camera location as the
vector of three parameters representing translation and another three parameters
representing the rotation axis. The length of the rotation axis defines the amount
of rotation. Jacobians are computed using finite differences.

After global structure and motion optimization, new world points are created
by computing the epipolar geometry between fn+1 and any other frame we want
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to consider. It makes sense to restrict the choice of these frames using constraints
concerning their relative pose to each other, thus ommiting frames which are too
far away from each other or have too different viewing directions.

Assuming Ri and ti to be the rotation and translation of frame i from its
projection matrix, an essential matrix between two frames f i and f j can be
computed by

Eij = [Rj(Ri
T(−ti) − Rj

T(−tj))]×RjRi
T . (4)

Inlier matches to the epipolar geometry between these frames can create new
world points, if they also satisfy geometric and reprojection constraints as in
section 4.1. These are added to P , their connections are added to g. If an inlier
contains a feature from the model which is already connected to a world point, no
new world point is created. Instead, the new feature is connected to the existing
world point by adding the relation to g, thus increasing the number of SURF
features describing the particular world point.

5 Model Based Pose Estimation

We can compute a camera pose given the model and SURF features extracted
from a new frame directly.

5.1 Matching

First, the descriptors from the new image are matched against all descriptors
from the model which are connected to world points. For each feature we consider
the two best matches. If they pass the distance ratio threshold as in [7] or they are
connected to the same world point, we create a 2d/3d correspondence. Passing
the distance ratio threshold means, that the first match is destinct enough from
the second best. If both matches are connected to the same world point it means,
that the feature from the new image describes this particular world point very
well. There is still the possibility that several descriptors connected to the same
world point are matched to different features in the query image. In that case
we would create contradicting 2d/3d correspondences, where a world point is
projected to different points in the image - we therefore consider these matches
unstable and drop them all.

For faster nearest neighbour queries on the descriptors, we use the Fast Library
for Approximate Nearest Neighbors FLANN [13], which is publicly available.

5.2 Pose Estimation

The resulting 2d/3d correspondences are passed to a RANSAC procedure en-
capsulating Fiore’s linear pose estimation algorithm [14]. Since we work in image
coordinates at this point, the result is an Euclidian transformation in IR3, de-
scribing the pose of the new frame with respect to the model’s world coordinate
system.
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6 Model Integration

We developed a method to integrate a model Mn into an existing model Me.
The models need to have some overlapping areas to do so. We do not need an
initial guess of the position or correspondences. The result is a model Mê, which
includes world points, frames, features, and connection information from both
models.

First, we need to identify the set of features in each model which are con-
nected to a world point: Spw

n
and Spw

e
. These sets are matched against each

other, again taking into account the distance ratio and discarding contradicting
correspondences as in section 5.1. The result is a set of 3d/3d correspondences.
These correspondences are passed to a RANSAC procedure encapsulating an
absolute orientation estimation, which estimates the Euclidian transformation
T ∈ SE(3) between the points of the models, as well as an overall scale σT

between the models. We use the algorithm proposed by Umeyama [15] to do
so. After the transformation T and scale σT between the models have been de-
termined, all frames from Mn are transformed into the coordinate system of
Me:

Fê′ = FnT−1

Ft
ê = Ft

ê′σT

FR
ê = FR

ê′ ,

(5)

where Ft denotes the translation part of the frame’s transformation, FR the
rotation. Feature positions do not need to be transformed, they stay in the
coordinate system of the according frame. he is joined with hn:

hê = he∪hn . (6)

(a) Model Mn

(24486 world points),
to be integrated into
Me.

(b) Existing model
Me (33954 world
points).

(c) Resulting model
Mê after the integra-
tion step. 664 world
points were unified.

Fig. 3. Model integration. We built two models from frames 1− 10 (Mn) and 21− 30
(Me) of the Deutsches Eck sequence and automatically integrated them to a single
model (Mê) afterwards.
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World points pw and the relation g need to be treated differently, depending on
whether a world point was an inlier to the result of RANSAC or not. If it was
an outlier, it is transformed and added to the model:

pw
ê = σT (Tpw

n ) . (7)

If it was an inlier, it needs to be unified with its corresponding world point. The
unification of two world points pw

e and pw
n creates a new world point pw

ê at the
position of pw

e . All connections in gn and ge from the specific world point are
then inserted into gê, with pw

ê substituting pw
e or pw

n .
Fig. 3 shows two models and the result of the integration. A run of the global

bundle adjustment should always follow the model integration step to minimize
possible errors resulting from unified world points.

7 Evaluation

In this section we evaluate our model generation and pose estimation approach.
We first show some exemplary models, before we take a look at model accuracy
and the robustness of the pose estimation algorithm. All images presented here
were taken with a 10 megapixel consumer camera.

7.1 Exemplary Models

We considered three different image sequence:

Deutsches Eck: An image series of the Deutsches Eck monument. Images are
taken in regular intervalls while circeling the monument, focusing the same
point approximately.

ATM: An image series of the ATM building. Images are taken in regular inter-
valls while circeling the building, focusing the same point approximately.

Herz Jesu: An image series of the Herz Jesu church. Images are taken in ir-
regular intervalls while approaching the church, focusing on different parts
of the building.

Fig. 4. Examples from the Deutsches Eck, ATM and Herz Jesu image sequences and
the resulting models.
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Table 1. Number of frames, world points and the mean reprojection error for all
models

model ‖F‖ ‖P‖ μ(Δpp)

Deutsches Eck 31 41403 1.51057

ATM 18 53367 1.19294

Herz Jesu 20 62886 1.76852

7.2 Model Accuracy

To analyze the accuracy of our models, we consider the reprojection error Δpp of
world points, that is the error between the feature location and the corresponding
world point reprojected to the image plane. Table 1 lists the mean reprojection
errors μ(Δpp) of all world points and their corresponding features, measured in
pixels. Note that a 2 pixel error is less then 0.05% of the image’s diagonal.

7.3 Robustness of the Pose Estimation

To test the robustness of our approach towards changes in the environment, we
took a second sequence of images from the Deutsches Eck. The second sequence
includes another 31 images, taken from very different positions and viewing
angles than the first sequence. They were taken several weeks later, when the
scaffolding was removed from the monument and the weather condition was very
different. The main challenges are a difficult lighting situation with backlighting,
the missing scaffolding which contributed many features to the model, as well
as the very wide baseline of several images towards the first sequence. Fig. 5
shows two exemplary images from the second sequence, for the first sequence see
Fig. 4.

The results of our pose estimation applied to the images of the second sequence
is visible in Fig. 6a. Note that the images of the second sequence were not used
to enhance the model iteratively.

Since there was no ground truth of the image sequences, we had to determine
manually if the computed pose was correct or not. From the 31 images, 23 times
the pose was computed correctly, in 3 cases there was only a small error and
for 5 images the pose estimation produced erroneous results. In most cases, this

Fig. 5. Examples from the second image sequence of the Deutsches Eck
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(a) Green cameras mark the posi-
tions of frames from the second se-
quence, red cameras mark the po-
sitions of frames from the first se-
quence which was used to build the
model.

(b) An example of a wrong esti-
mated pose due to degenerate data
and a single outlier.

Fig. 6. Pose estimation applied to the second Deutsches Eck sequence

was due to some degenerate point configuration which we do not detect and
handle correctly yet, as in Fig. 6b. There, a degenerate set of points allows the
pose estimation to include a single outlier (at the bottom of the image) and still
appear valid.

8 Conclusion

In this paper we presented a formalism for a model suitable for image based pose
estimation. The model uses SURF features solely. We showed how to create a
model from images automatically, and how pose estimation on a model works.
We also formulated an algorithm to integrate two models which partially overlap
into a single model.

Our evaluation revealed a high accuracy of the automatically generated mod-
els, with a mean reprojection error of world points less than 0.05% of the image’s
diagonal. We showed that the proposed model can be used for pose estimation
even for images taken under different, more difficult lighting situations with
large changes in viewpoint and a partially changed world. It is therefore suitable
for initialization of pose tracking or similar applications in changing outdoor
environments.

In future work we would like to address the scaleability of our approach and
refine the detection of degenerate configurations to make pose estimation even
more robust. We would also like to test our model building and pose estimation
on images with ground truth information.

This work was supported by the DFG under grant PA 599/7 and PR 161/12.
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Abstract. Real-time camera tracking in previously unknown scene is
attractive to a wide spectrum of computer vision applications. In Recent
years, Simultaneous Localization and Mapping (SLAM) system and its
varieties have shown extraordinary camera tracking performance. How-
ever, the robustness of these systems to rapid and erratic camera motion
is still limited because of the typically used Local Localization scheme.
To overcome this limitation, we present an efficient online camera track-
ing algorithm using a Global Localization scheme which matches features
in a global way through two steps: First, coarse matches are obtained
through nearest feature descriptor search. Afterwards, a Game Theoretic
approach is exploited to eliminate the incorrect matches and the left cor-
rect matches can be used to estimate the camera pose. Result shows our
camera tracking algorithm has significantly improved the robustness of
camera tracking system to rapid and erratic camera motion.

1 Introduction

Vision-based camera tracking aims to estimate the pose (6-DOF parameters)
of a camera relative to its surroundings based on the input image sequence or
live video. This is attractive for many computer vision applications, e.g., 3D
reconstruction, video registration and enhancement. Traditionally, this problem
is solved by the offline Structure from Motion (SfM) methods [1,2,3]. However, in
some practical applications, such as Augmented Reality (AR) and Autonomous
Navigation, the urgent camera pose is of great necessity. In such cases, the offline
method could not satisfy the efficiency requirements, and therefore online real-
time camera tracking has drawn more attentions in recent years.

A camera tracking system called Simultaneously Localization and Mapping
(SLAM) and its varieties [4,5,6,7,8,9] have shown extraordinary camera tracking
performance. With little or even no prior knowledge of the scene, the SLAM
systems can estimate the immediate camera pose accurately and efficiently. This
extends the applicable field of the camera tracking technique. However, with
less prior knowledge, it also leads to the weakness of the agility and robustness
of the camera tracking systems. Here, we use [9]’s definition of the agility: the
robustness of the camera tracking system to rapid camera motion.

We observed that a key factor which constrains the robustness and agility of
the prevalent SLAM varieties is the local localization (LL) scheme which matches
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the map and the keypoints extracted from input image in a local way. In most
SLAM varieties, a motion model is used to predict the current camera pose,
and afterwards the optimization in LL scheme will converge near the prediction.
Consequently, the final result highly depends on the initial state (the predicted
camera pose). Once the prediction is not reliable, the local optimization tends to
converge to an incorrect state, and subsequently leads to the failure of tracking.
In fact, this unreliable case is common for many reasons, e.g. sudden camera
move, error accumulation. As a result, using a LL scheme, the robustness and
agility of the camera tracking system is limited.

In contrast to the local localization scheme, the global localization (GL)
scheme [10,11] which matches the map points and features in a global way can
overcome this limitation. However, as [10] point out, there are two common
problems in prior GL scheme works. First, it is difficult to achieve real-time per-
formance due to expensive feature extraction and matching, even in a relatively
small working space. Second, these methods rely excessively on the feature dis-
tinctiveness, which cannot be guaranteed when the scale of the scene is large
or the scene contains repeated structures. [10] proposed a camera tracking algo-
rithm using a GL scheme, which involves an offline process for space abstraction
using features and an online step for feature matching. On the one hand, this
strategy transfers the expensive computation of the map building to the offline
process, and therefore makes the global feature matching possible to be achieved
in the online step. On the other hand, however, the practical workspace of this
camera tracking algorithm is consequently constrained to the area where map
has been built in the offline step and could not be extended online.

In this paper, we propose a completely online real-time camera tracking al-
gorithm using a GL scheme to achieve robust and efficient camera tracking per-
formance without any prior knowledge of the scene. To overcome the efficiency
problem in GL scheme, we exploit a signature feature descriptor which is de-
signed to be fast enough to train and match online based on statistical learning
techniques. To reduce the dependence of the feature distinctiveness, we adopt
a novel map maintenance and selection strategy and a game-theoretic based
global matching approach in which the global geometry information of the scene
is brought into the matching process to eliminate mismatches. Our GL scheme
retains the correct matches that are compatible to a rigid transformation and
uses these matches to calculate the camera pose.

2 SLAM and Its Varieties

Monocular SLAM [4], the first successful application of the SLAM methodology
in real-time camera tracking field, was demonstrated by Davison in 2003. Since
then, there have been attempts to improve the scalability, robustness and agility
of monocular SLAM. [5,6] attach descriptors to map points either to reduce data
association error or to relocalize the camera in case of failure. Eade and Drum-
mond [7] employ a different statistical framework which allows denser maps to
improve tracking quality. However, because of the low time efficiency of these
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descriptors and the LL scheme, these improvements did not ameliorate the cam-
era tracking agility and robustness either directly or significantly. Georg Klein
[8] et.al proposed a new PTAM system which split the tracking and mapping
into two separate tasks. This allows the use of computationally expensive batch
optimization technologies in mapping and thus leads to extraordinary accurate
tracking result. However, this system still suffers from the problem caused by the
LL scheme that when camera moves to a new scene, the agility is limited until
the new map has been established. This leads to the failure in many practical
applications in which cameras exploring new scene is a common task.

Different from the SLAM systems, Dong et.al [10] proposed a keyframe-based
camera tracking algorithm using a two step strategy. The first offline step is to
extract sparse invariant features (using SIFT [12] in the implementation) from
the captured reference images and the successive online step matches them with
the features extracted from the captured live video frame. For the reason that
the offline step has built the whole map of the scene, the online step has less
computation burden and thus could employ the high accuracy but low efficiency
SIFT descriptor to obtain high tracking agility. Though this algorithm leads to
a robust and accurate camera tracking performance, it would be preferable if
the camera tracking can be completely online, especially when the offline step is
complex and time-consuming.

3 Global Localization Scheme

In this section, we describe our global localization scheme. Its purpose is to im-
prove the robustness of the feature matching procedure which is a key step of
most camera tracking systems. It includes two steps: First, a coarse matching
procedure is adopted to form a preliminary match set; Afterwards, a game the-
oretic approach is used to eliminate the incorrect matches in this set. The core
of the first step is a signature feature descriptor which could be trained and
matched efficiently. The formulation and evolution of a game theoretic frame-
work is the focus of the second step.

3.1 Signature Descriptor

Though many feature descriptors, e.g. SIFT in [5], Random list in [6], have
been employed in SLAM varieties, few of them is used directly in the matching
procedure because of their low efficiency. To ensure real-time performance, the
efficiency of the matching between the map points in the built map and the
keypoints extracted from the input image is extremely important. Thus, many
efforts have been made in recent years to speed up the matching procedure of
feature descriptors. Among these, a group of statistical learning technique based
descriptors [13,14,15,16,17] have attracted our attention because they are de-
signed to achieve fast matching whereas preserve high recognition rate. Though
these feature descriptors are much more efficient than the traditional feature
descriptor [12,18], they still hardly achieve real-time performance. Take advan-
tage of the multi-cores in modern computers, we exploit the parallel computing
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Fig. 1. LEFT: the response of Randomized Tree classifiers to a keypoint in the base
set. There is only one spike that represent the keypoint is recognized as a keypoint in
the base set. RIGHT: the response of Randomized Tree classifiers to a keypoint not in
the base set. There is no especially high response of classifiers and this is the signature
of this keypoint.

technique to speed up the feature training and matching to satisfy the real-time
requirement.

In our algorithm, we use the signature descriptor proposed by Michael Calon-
der et.al [13] to match the keypoints because its training phase is also effi-
cient. The signature descriptor relies on the fact that if we train a Randomized
Tree classifier [14] to recognize a number of keypoints extracted from an image
database, all other keypoints can be characterized in terms of their response to
these classification trees. Given a few training images, a set of keypoints could
be extracted and organized as a base set. Then a Randomized Tree classifier [14]
can be trained to recognize the keypoint in the base set under arbitrary perspec-
tive, scale and light condition. Given a new keypoint that is not in the base set,
we show below that the classifier responds to it in a way that is also stable to
changes in scale, perspective, and lighting. We therefore take this response to be
the compact and fast-to-compute signature we are looking for.

Each keypoint ui ∈ R2 in the base set is related to exactly one point ki in
3D. Given a set of N points K = k1, ...kN , ki ∈ R3 , N is the base size, we then
build a classifier based on Randomized Trees that is able to recognize the ki

under varying conditions. Let pi be the patch centered on ui. Then the classifier
provides a function C(pi) mapping a patch pi to a vector in RN . Using the
notation C(j)(pi) to refer the j-th element of the vector C(pi), 1 ≤ j ≤ N , we
can state a special property of C:

C(j)(pi) is

{
large if j = i
small otherwise (1)

This is shown in Fig.1 for i = 177 and N = 350.
Furthermore, let T (p, Θ) be a transformation of an image patch p under view-

ing condition change Θ. Θ typically encodes changes in illumination, viewpoint,
or scale. If the classifier has been trained well, we can assume that
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∀Θ : C(p) ≈ C(T (p, Θ)) (2)

When we consider a new 3D-point k that does not belong to K and center a
patch q on the keypoint corresponding to k, we can define the signature of the
patch q simply as

Signature(q) = C(q) (3)

A patch q′ centered on the keypoint of k in another image can be written as
T (q, Θ) , for some Θ. Under the assumption of Equ. (2), the signature of q′ is
equal to the signature of q because

Signature(q′) = C(q′) = C(T (q, Θ)) = C(q) = Signature(q) (4)

In other words, the signature is stable under changes in viewing conditions.
Thus, we can exploit the signature descriptor to formulate the preliminary match
set. In detail,the map is projected into the image plane using the pose of the
last input frame and a map point selection strategy is adopted to select those
map points which are most probably appears in the input frame. These selected
map points are organized as a base set and a feature tree is trained to facilitate
the afterwards nearest feature search of the keypoint extracted from the input
frame. Then for each keypoint, there is a corresponding map point. We organize
these correspondence as the preliminary match set.

3.2 Game Theoretic Approach

It is illustrated in Fig.2 that there exist mismatches that will lead to the accuracy
of the estimate of the camera pose degenerate significantly. In many computer
vision applications, RANSAC [19] has been used to eliminate outliers. However,
it is not suitable to our case. RANSAC can only estimate one model for a partic-
ular dataset, and therefore can hardly address the problem with more than 50%
outliers. Due to the real-time requirement of a camera tracking algorithm, out-
liers in the preliminary match set are frequently more than 50% of total matches.
This leads to the useless of exploiting RANSAC in our GL scheme, and on the
other hand validates the effectiveness of our game theoretic approach which is
demonstrated below.

Fig. 2. Matches before and after Game Theoretic Approach
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We exploit a Game Theoretic approach which brings the global geometry in-
formation into the matching procedure to eliminate the mismatches. In the cam-
era tracking applications, a general accepted assumption is that the scene must
remain static. Under this assumption, the transformation between the points
observed in two different frames is a rigid transformation. Since all rigid trans-
formation preserves Euclidean distances, we take advantage of this property to
eliminate the mismatches and ensure the accuracy of the estimated camera pose.
This Game Theoretic approach is proposed by [20] to solve the surface registra-
tion problem. We first introduce the underlying idea of this approach and then
show how it works in our algorithm.

The key idea of the approach is selecting the sets of point-correspondences
that are mutually compatible with a single rigid transformation. Fundamental
to this approach is the fact that requiring the compatibility to a single transfor-
mation is equivalent to requiring that there exists a compatible transformation
for each pair of mates. Following [20], we model the mismatch elimination pro-
cedure in a Game Theoretic framework, where two players extracted from a
large population select a pair of corresponding points from the base set and the
extracted keypoints. If there exists a rigid transformation that moves both his
point and the other player’s point close to the corresponding mates, then both
players receive a high payoff, otherwise the payoff will be low. In general, as
the game is repeated, players will adapt their behavior to prefer matings that
yield larger payoffs, driving all inconsistent hypotheses to extinction, and set-
tling for an equilibrium where the pool of mates from which the players are still
actively selecting their associations forms a cohesive set with high mutual sup-
port. Within this formulation, the solutions of the matching problem correspond
to evolutionary stable states (ESS’s), a robust population-based generalization
of the notion of a Nash equilibrium. An illustration of the elimination procedure
is shown in Fig.3.

Fig. 3. An example of the evolutionary process. 6 point correspondences have been
matched by the feature finding step, and 6 mating strategy are selected for initial
hypothesis. The matrix shows the compatibilities between pairs of mating strate-
gies according to a one-to-one rigidity enforcing payoff function. Initially (at T=0)
the population is set to the barycenter of the simplex. After just one iteration, (d1,
d2) and (e1, e2) have lost a significant amount of support. After eight iterations
(T=18), the evolution has converged, the matches that are more coherent to rigid-
ity ((a1,a2),(b1,b2),(c1,c2),(f1,f2)) have high weights while the weights of the matches
that do not coherent to rigidity ((d1,d2),(e1,e2)) evolve to 0.
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In practice, for each extracted keypoint in the input frame, we use all the
correspondences in the preliminary match set as mating strategies. On the other
hand, to enforce the rigid constraint of the correctly matched pairs, we need to
assign a rigidity-enforcing payoff function. Typically there are two candidates:
the negative exponentiation of the difference between the distances of the model
and data points and the ratio between the min and the max distance. We ob-
served that the first one is too steep that some correct matches will also been
eliminated while the second one is too shallow. Thus, we choose a compromise
which is the N times power of the ratio between the min and the max distance.

Then we could start the non-cooperative mating game in which the search
for a stable state is performed by simulating the evolution of a natural selection
process. The evolution procedure is described in [20]. Once the population has
reached a local maximum, all the non-extincted mating strategies can be used
to calculate the estimate camera pose of the input frame. However, to improve
the accuracy of estimated camera pose, we set a threshold to select the matches
with a higher weight. With the selected 3D to 2D matches, we could estimate
the camera pose of the input frame.

4 Experiments and Results

All the results in this section are produced on a computer with a Intel Core2
Quad 2.66GHZ CPU. The reference images are captured by a Microsoft VX-6000
web camera with 71◦ wide-angle.

We compare our camera tracking performance with a landmark of SLAM
varieties, the publicly accessible code PTAM [8] with a real indoor data sequence.
Our comparison includes the three following aspects: matching performance,
time efficiency and tracking result.

4.1 Matching Performance

First we compare the matching procedure of our algorithm with the PTAM
implementation. The PTAM implementation produces a relatively dense map
which contains thousands of features at most, and the accuracy of estimated
camera pose relies on large amount of features. On the contrary, for the reason
that we exploit the Game-Theoretic approach, we do not try to find a good
estimate of camera pose by means of a vote of large number of matches; instead
we take advantage of the internal coherence between the feature points and
therefore fewer matches are needed to estimate a more accurate camera pose.
Thus our map contains fewer map points than the PTAM implementation and
this benefits the efficiency of the map expansion procedure.

Fig.4 shows the evolution of the map in these two systems. As the correct
matches in the PTAM implementation varies sharply, the correct matches in
our algorithm is much more stable. This leads to a more robust estimate of the
camera pose. Furthermore, less map points speed up the Bundle Adjustment
(BA) used in the mapping thread and more keyframes could be handled by the
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Fig. 4. The map comparision of our algorithm with the PTAM implementation. As
the camera explores in the scene, the map points and keyframes both increase. The
increase of keyframes in our algorithm is much faster than that in PTAM while the
increase of map points is on a opposite way. In the right figure, we can observe that
the matches in our algorithm are more stable than PTAM.

system. Since the keyframe is the representation of known scene, more keyframes
in the map means more area of the scene is covered by the map and further leads
to a low possibility of tracking failure.

4.2 Timing

Time efficiency is a preliminary requirement of real-time camera tracking sys-
tems. Table 1 shows the average time spent in each step of our algorithm and
the PTAM implementation. We note that the average overall time spent in
each input frame is 56.1ms in our algorithm. That means the frame rate is
near 18 frames per second. Comparing to the PTAM implementation, the ef-
ficiency of our algorithm is slightly lower. However, this does not significantly
affect the applicability of our algorithm because they both satisfy the real-time
requirement.

Table 1 Time efficiency of our algorithm and PTAM implementation. The left
table shows the time spent with a single thread and multi-threads. The right
one shows that of the PTAM implementation.

Table 1. Time Efficiency

Our Algorithm Single Multi-
thread threads

Image Retrieve 12.2ms 12.1ms

Base Set Selection 2.6ms 2.3ms

Nearest Feature Searching 35.1ms 10.2ms

Game Theoretic Approach 84.2ms 30.5ms

Pose Estimate 1.0ms 1.0ms

Overall 135.1ms 56.1ms

PTAM Time
Spent

Image Retrieve 12.1ms

Keyframe preparation 2.2ms

Feature projection 3.5ms

Patch search 9.8ms

Iterative pose update 3.7ms

Overall 31.3ms
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4.3 Tracking Result

Tracking agility is one of the most important factors that evaluate the per-
formance of a camera tracking system. Since our algorithm exploits the global
localization scheme, it could be used in applications in which the camera moves
more erratically or suddenly. It is hard to convey the behavior of a real-time
tracking system on paper, so we encourage the reader to refer to the attached
results video which demonstrates the operation of the system. Subjectively, we
note that an obvious change in our algorithm is the improvement of the tolerance
to elastic camera motion, especially those motions that do not obey the predic-
tion of motion model. In addition, we observed that when the camera explore
to an unknown scene, our algorithm extends the map much more quickly than
the PTAM. This property makes our algorithm more suitable in applications in
which the camera needs to explore new scene frequently and therefore extends
the applicable field of real-time camera tracking technique.

5 Conclusion

In this paper, we proposed a real-time camera tracking algorithm using an ef-
ficient global localization scheme. This GL scheme significantly ameliorates the
dependence of the prediction of camera pose in prior SLAM varieties and leads
to a camera tracking algorithm that is more robust to erratic and fast motion in
the previous unknown scene of a camera. Of course, there still exist limitations
in our algorithm. Though the efficiency of the signature descriptor is high, its
distinctiveness is relatively low, at least in our implementation. This leads to
the decrease of correct matches when the base set is large. As many new effi-
cient feature descriptors are proposed recently, the signature descriptor can be
replaced to improve the performance of feature matching.
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Abstract. This paper presents an Augmented Reality system that com-
bines a range of localisation technologies that include GPS, UWB, user
input and Visual SLAM to enable both retrieval and creation of anno-
tations in most places. The system works for multiple users and enables
sharing and visualizations of annotations with a control centre. The pro-
cess is divided into two main steps i) global localisation and ii) 6D local
mapping. For the case of visual relocalisation we develop and evaluate
a method to rank local maps which improves performance over previous
art. We demonstrate the system working over a wide area and for a range
of environments.

1 Anywhere Authoring

Most Augmented Reality (AR) systems to date can be categorized by either
having high levels of accuracy in small scale spaces, as provided by 3D visual
simultaneous localisation and mapping (SLAM), or systems covering larger areas
but resorting to approximate location, as offered by GPS. The former systems are
capable of delivering accurate 3D object registration in unprepared environments
and the latter well suited to deliver, for example, audio AR outdoors.

The vast majority of systems have also concentrated on the retrieval rather
than the input of content, and therefore an AR application is often described
solely as a system where annotations are visualized when the user is at the
right location. To differentiate an AR system’s ability to both retrieve and input
content in any area, we use the term anywhere authoring. This is an ability
needed in applications that aim to take AR to the next level of impact e.g. a
fine-grained city maintenance system, worldwide AR encyclopedias or wide area
forensics.

To combine GPS and local visual mapping may appear to be sufficient for
anywhere authoring. Unfortunately this is not the case, in part because users
spend most of the time indoors where GPS positioning is unreliable at best.
This seriously hampers AR for most of the places that can be annotated and
places high requirements on the visual mapping that can work indoors. In order
to offer truly wide and robust anywhere authoring it appears likely that a range
of localisation technologies from GPS to indoor positioning systems jointly with
visual mapping have to operate seamlessly as the user moves in and out of
areas. This, combined with an adequate framework for the propagation of both
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existing and newly created content, are crucial for enabling fluid AR interactions
anywhere.

To our knowledge, a system that seamlessly combines these many levels and
modalities of localisation accuracies and the ability to enable users to retrieve
and input AR content anywhere has not been presented before.

2 Related Work

The combination of global and local sensing has been explored in the related field
of ubiquitous computing for some time. As an example using computer vision, the
works in [1,2] use visual feature descriptors to provide accurate object detection
while GPS helps in the gating of the objects’ database based on location. In
both examples, the objects of interest are buildings whose facades are usually
distinctive, relatively large, and less prone to perspective and occlusion problems.
To extend the area of operation for AR outdoors, GPS was also the natural
choice and this was the case for early systems e.g. [3]. The further addition
of inertial sensors, markerless visual tracking and aerial photographs to GPS
in [4] has achieved higher accuracy annotation of large, outdoor scenes. More
recently, in [5] GPS combined with inertial sensors is shown to be able to deliver
relatively good visualization of underground pipes outdoors despite not using
visual methods.

For wide area indoor AR, systems have used localisation methods that include
ultrasonic positioning [6] or odometry recovered from the user’s steps [7], as well
as visual tags from the ARToolkit or similar to provide well localized annotations
[8,9,10]. Another recent alternative indoors is Ultra Wide Band (UWB) which
in [11] has been combined with fiducial markers to provide extended indoor
operation. The combination of inertial sensors and visual markers has been used
in [12]. In the case of [13] ultrasound and GPS are combined with visual SLAM
and demonstrated in a small scale environment.

The use of a global reference provided by any of the above methods helps to
improve the localisation results and prepares the scene for integration of tech-
nologies with different accuracy granularities. When the global frame of reference
is not built-in, the extreme alternative is to use the visual appearance of each
area of interest as the way to position the user. This is the case in [14] where
a visual SLAM system creates small submaps that are kept disjointed and that
are compared against an input image to detect that the user is in the same
area once again. Assuming that no area looks exactly the same, this is a vi-
able possibility, however the scalability of a system based on purely visual (even
when combined with geometric) appearance, and disregarding any global refer-
ence, appears unrealistic. Furthermore, a system that can deliver true anywhere
authoring is likely to encounter areas where no global reference either from in-
door positioning or GPS is available and this demands an alternative referencing
method.

While some of the above systems combine a few localisation techniques, none
seems to have the seamless interaction over the different areas that we are af-
ter. Importantly, none of them appear to be built with a multi-user and robust
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Fig. 1. System overview showing multiple users authoring a scene with AR annotations
and using different localisation methods. See text for detailed explanation.

communications infrastructure for the input of annotations, as needed for any-
where authoring.

3 Operational Overview

Figure 1 shows an overview of the overall system in operation featuring three
different modes of localisation: A) GPS, B) floor plan maps and C) UWB. The
insertion and retrieval of annotations is made locally accurate by using visual
SLAM. Figure 1 shows the SLAM features represented by yellow circles which
serve as anchor points for the annotations. A communications infrastructure (in
our case using WiFi and TETRA [15]), links users and allows visualization in a
global map at a control centre. Local SLAM maps (green circles in global map)
are positioned in the global reference with different accuracies depending on
the positioning method at the time of authoring. However, visible annotations
will always be displayed with local accuracy relative to the camera thanks to
the automatic SLAM relocalisation, even if the location of the annotation in
the global map is metrically inaccurate. The global map is used primarily as a
topological representation for gating and rough navigational guidance.

4 Multi-modal Positioning

In this paper we divide the overall operation of the system into two main steps:
i) locate the user in 3D space and ii) use a 6D referencing method to position
accurately local AR annotations. The positioning of the user helps to establish
a frame of reference that can later be used to provide only the relevant infor-
mation for the immediate environment. This is the idea of location-based gating
mentioned before. User positioning needs to be achieved on indoor and outdoor
areas before we can combine it with an accurate local frame of reference.

GPS and UWB. As with other systems, we employ GPS, when available, to
provide an accepted alignment with an absolute frame of reference. Our GPS
uses a Teseo GPS chipset to provide 3D positioning accurate to 2m with a 50%
confidence limit. For the indoors case we employ a UWB positioning system
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composed of multiple transponders [16]. These can be located indoors or out-
doors and self-calibrate once they are active. In a typical indoor environment,
the UWB system provides 3D positioning to at least metre-level accuracy, en-
abling the visualization of paths and places that users have visited. Accuracy
varies according to the coverage of the UWB base units, which is affected by
obstructions in the lines of sight between units and reflective surfaces in the
environment that add multipath effects.

A rigid transformation can be found to align the UWB transponders with a
reference from GPS, however when a global map is not required this alignment is
not necessary. This is because even if these two references (GPS and UWB) are
kept separate, the system can still determine at any instance if there is coverage
by one or the other system and a decision can be made as to which reference will
be used with priority (in our case it is UWB). Recall that an external reference
is sought only for the task of gating which annotations should be near the user.
This does not require an absolute or aligned set of frames of reference. In our
system, switching between the UWB and GPS is transparent to users.

Interactive input. In contrast to previous systems for wide-area AR, we em-
ploy user interactivity as a bridge to operate between the areas covered by GPS
and UWB. For the case of a system designed for people, user input is a sensible
alternative for positioning almost anywhere. When the user wishes to create an
annotation, and when neither UWB nor GPS are available, the system prompts
the user to refine location on a 2D map shown centered on the last trusted po-
sition fix. The user can then simply select an approximate location in this map.
Our system uses street maps showing only the outlines of buildings (Fig. 7), but
nothing prevents the use of more detailed map representations. The maps can
also potentially be extended to include architectural floor plans if available.

By combining automatic referencing with the interactive user input we are
able in principle to perform authoring anywhere.

5 Visual Mapping and Relocalisation

The requirement for working in unprepared, untagged environments has favoured
the use of visual SLAM methods. Indeed, it was the construction of a local map
for an AR scenario that was the first application of real-time visual SLAM.
That system was based around an EKF process [17]. The PTAM system [18], a
more recent take on the problem, uses bundle adjustment and splits the tasks
of mapping and tracking to make gains from parallelization while delivering
impressive results.

While the framework for mapping is important to the achievable accuracy, it
is the way in which the system will re-localise in a previously visited area which
is more critical for the application we are considering in this paper. Anywhere
authoring demands a method that is able to work with efficiency over many local
submaps while providing unambiguous camera pose recovery. This is important
because although location-based gating helps to reduce ambiguity, a truly robust
system should be able to work when there is large uncertainty in the location
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on the computation of three appearance coefficients per saliency point to approximate
a nearest neighbor search using a quantization table

of the user, perhaps when entering an area annotated using interactive input as
described above, or if one of the other positioning systems fail.

In [19] a method is presented for visual SLAM relocalisation that uses random-
ized trees for re-detecting features, combined with a RANSAC verification step
for pose estimation. Randomized trees are generated offline and use relatively
large storage space — about 1.3MB per map point [14]. The PTAM system [18]
uses a relocalisation method based on low resolution keyframes which has been
used in the work of [14] for localisation over multiple maps. This approach is bet-
ter from the point of view of data storage, however, in our experience, keyframe
based localisation is prone to false positives, in particular when operating in
roughly similar areas.

Another popular alternative is to use visual codebooks as used in [20] to match
image frames. Visual codebooks are usually found after an optimization process
of clustering and are therefore not easily updated on the fly, something which is
corrected in [21].

In this paper we use the method for relocalisation and mapping described
in [22]. This method uses robust visual descriptors and geometry consistency
checks. The relocalisation is based on a quantization table which is small in
comparison to other description approaches (e.g. using randomized trees) and
can be updated on the fly. The method described in [22] was designed to work on
a single map but in this work we extend that approach to work more efficiently
with multiple maps as needed here and as described in Sec. 5.2. Furthermore,
our method differs from the previous multiple map relocalisation work in [21]
both in the smaller size of the descriptors used and in our use of a relatively
small quantization table created only from the 3D features in our SLAM maps.

5.1 Single Map Relocalisation

Relocalisation assumes that a map Mi of features has been built previously and
the 3D geometry of features together with their visual descriptors is available.
To attempt to relocalize, a saliency detector is run on the input image. Around
all image areas above a saliency threshold, a fixed-size window is used to obtain
a rough estimate of local orientation. This local orientation allows extraction
of a fixed-size patch from which three Haar coefficients are computed. These
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coefficients encode the rough appearance of that patch in x, y, and xy. These
numbers are used to index a quantization table Qi where descriptors of other
similar patches have been stored jointly with their 3D position, i.e. a cell cij

in Qi contains a list of features F = {fk, . . . , fm} generated by visual SLAM
at the time Mi was created. In relocalisation, only the descriptors in cij and
neighboring cells are compared with the input patch’s descriptor. The process is
illustrated in Fig. 2. The use of a fixed size patch here does not prevent working
at different scales since the system builds a multi-scale stack of descriptors for
every feature in a background process [22], and these are indexed too via Qi.

After candidate matches are found with this procedure, a RANSAC method
attempts to compute a consistent camera pose. If successful, and if an annotation
linked to Mi is visible in the current frame, it will be displayed as an AR object.

In our tests, this approach uses only about 3% of the comparisions needed by
an exhaustive search. The whole process is also fast, usually relocalizing within
50 − 300ms.

5.2 Multiple Maps Relocalisation

When considering many local maps, the naive approach would be to run the
above process in every Mi individually, perhaps gated by location. When the
number of maps in a vicinity is small, that process may be sufficient but in
general we would need to be prepared to run relocalisation on many maps to
ensure robustness. To this end, we developed a system of map ranking based on
the single map method described in Sec. 5.1 by combining the information of
the individual Qis as follows.

We create a master quantization table QM based on all the quantization tables
Qi from the local maps. This QM uses the same input as needed in the single map
relocalisation. The process therefore starts with three Haar coefficients extracted
around every salient point in the input image but in this case the coefficients
are first used to index cells in QM . Every cell in QM keeps a list of the index
i of all the maps M that have features in that cell. Therefore if a cell in QM is
activated by an input patch, a list of all possible Mis that have to be searched
is obtained. In addition, each cell is weighted by the tf-idf measure in a similar
way as introduced in [20] to reflect the uniqueness of a cell. In this way cells
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Fig. 3. When multiple maps have to be searched to attempt relocalisation, a master
quantization table QM assists in the ranking of the maps to speed up the process
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Fig. 4. Hardware components and multiple users exploring and annotating an area

that activate for every map will have a lower weight than those that activate
for fewer maps. By combining the weighted lists generated for every patch on
the image it is possible to rank all maps according to the cosine similarity score
between the tf-idf vectors for each map and the current image.

The process is illustrated in Fig. 3 and is very fast as we only need to look
at the weighted frequency of i indices and rank them. The rank establishes the
order in which relocalisation in the individual maps is to be attempted as per
Sec. 5.1. When the first relocalisation is successful the process stops and switches
to AR visualization, since in our experience the method does not produce false
positives in real applications.

6 Experiments with Multiple Maps Relocalisation

Each hardware unit integrates components around a dual core Centrino laptop
worn on a backpack as shown in Fig. 4. The interface with the user is displayed
on a handheld touchscreen which has a firewire camera with a horizontal FOV of
80◦ rigidly attached to a 3D orientation sensor (which is not used in this work).
The touchscreen also has the UWB antenna attached to it so that the most
accurate sensors are close together. The GPS antenna is worn on the backpack’s
shoulder strap to enhance reception strength.

We performed experiments on the performance of the relocalisation in multiple
maps. For this we assume the worst case where no location based gating is
available. Experiments were conducted for an indoor scenario with 20 maps and
an outdoor scenario with 5 maps, as shown in Figs. 5 and 6 respectively. We do
not need to consider more maps than this, since the location based gating in the
real system will always place a relatively low bound on the number of maps that
need to be checked.

The performance of the map ranking was evaluated using camera tracking
and exhaustive single-map relocalisation to provide a ground-truth estimate of
the correct map for each frame. This was matched against the multiple map
relocalisation ranking computed at each frame and used to plot the cumulative
distribution function of the ranking. The results of the ranking method were
then compared against the baseline case of a randomized sort of the maps.

Five different cell sizes for QM were tested. Although average performance
was better than the baseline in all cases, the results showed that no single cell size
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Fig. 5. Twenty maps were generated over a large indoor space incorporating many
similar areas (several tables with red chairs). The cumulative distribution function of
the ranking shows the improvement in performance achieved by the proposed method.
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Fig. 6. Five maps were generated over a local outdoor area within a 10m radius
representative of GPS accuracy. The cumulative distribution function of the ranking
shows the improvement in performance achieved by the proposed method

gave good results for all maps. Sorting the maps by their mean rank over the five
different cell sizes improved the average performance and reduced the number
of individual maps that performed worse than than the baseline. Alternative
methods of combining the ranks from the different cell sizes, such as the median,
minimum or maximum rank, were also considered but provided less performance
improvement than the mean rank method.

In all cases, exhaustive relocalisation over all maps provided just a single
positive match to the correct submap. This is despite the fact that the test
sequences contain several instances of maps with very similar appearance. This
supports the claim that the single map relocalisation method produces very low
false positive rates in real scenes.

7 Demonstration

The performance of the system was demonstrated by building multiple maps over
a 0.1km2 area containing a mixture of indoor and outdoor locations. The scenario
mimics a maintenance task where users label multiple objects to be revisited by
other users at a later time. In some indoor locations a UWB positioning system
was available to provide absolute position. The full set of 16 maps is shown in
Fig. 7.
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Fig. 7. Sixteen maps were created over an area containing a mixture of indoor and
outdoor locations and with a mixture of GPS, UWB and User Input positioning. The
20m search radius reflects that the user is currently in an area using the interactive
input positioning.

In areas with UWB coverage, a 2m distance threshold was used and the sep-
aration of the constructed maps was such that a maximum of one candidate
map was returned for relocalisation. In one of the maps (map 3), the UWB
accuracy was degraded by the surrounding furniture, producing position mea-
surements outside the expected distance threshold and preventing automatic
relocalisation. However, single map relocalisation was successful when the map
was selected manually from the user interface.

Areas with GPS coverage used a 10m distance threshold and returned a max-
imum of two candidate maps for relocalisation. In areas requiring interactive
input to define absolute position, the 20m distance threshold returned between
two and six candidate maps. The multiple map relocalisation method found the
correct map within the first two maps tested on each of the six occasions it was
used.

8 Conclusions

This paper has presented a novel system that combines a range of position-
ing technologies with local visual SLAM to enable the retrieval and creation
of AR annotations. We have developed and evaluated a method for the effi-
cient ranking of visual maps to improve performance and demonstrated the
system operating over various areas in a maintenance-like scenario where multi-
ple users cover an area finding and labelling objects practically anywhere in the
environment.
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Abstract. This paper presents a novel augmented reality system which
allows a user to visualize 3-D region of interest to share with other users
in a real environment. To allocate the region, user specifies a point on the
target object through a mobile display. The most remarkable difference
from the existing works is that semantic information of the environment
is not given. This kind of augmented reality application is still few though
vision tracking techniques without prior knowledge about environment
are coming into practical use. By realizing minimum set of our concept,
we could found several concrete future works, most of which are computer
vision problems.

1 Introduction

Building an information society can be rephrased as digitizing everything possi-
ble in our real world. In such society, everything must have ID number related
to the semantic information: what it is, and additionally where it is or how it
is. In general, it is thought that most of useful augmented reality (AR) applica-
tions except for games and art also require this semantic information. However,
even though our environment is exhaustively digitized, there certainly will re-
main essentially difficult things to be digitized such as collapsed structures and
new objects in the making. Since proceeding digitization increases a kind of
gaps between digitized and non-digitized environments, research on AR tech-
niques dealing with interactions between human and non-digitized environment
becomes more important rather than digitized one.

In order to simplify the explanation, an example scenario about interactions
between human and non-digitized environment is introduced. Imagine a scene
that a leader of a rescue corps is briefing to other members and pointing out a
target part of a mudslide area. In many cases, since the viewpoint of the leader
is close to the members’ ones, they can recognize the indicated target without
moving to the leader’s back if they are well-trained members. However, this
communication task becomes extremely difficult if the members are standing far
from the leader’s position. Transmitting each other’s views taken from head-
mounted cameras, the member can understand the target from leader’s view or

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 42–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) Touching a target part (b) Estimated surface (c) Visualized 3-D region

Fig. 1. Visualizing 3-D regions of interest

the leader can directly indicate the target in the members’ views [1]. In this
method, however, users must find correspondences between their own view and
transmitted view. Only computer instead of the members can both observe and
visually inform the target at the respective viewpoints by using wireless network.

To clarify problems in this scenario, we should consider from what kinds
of information the members recognize the region indicated by the leader. The
leader provides direction and trajectory of the end of a finger and context of the
leader’s explanation. The members can have prior knowledge about the target.
The target itself provides them with information about shape and texture of the
target [2]. These kinds of information depend on position of the viewpoint to
the target. However, it is difficult to consider all of such information in design
of a communication tool supporting the rescue corps,

This paper presents a novel AR application system which supports users’
activities in unknown environments not digitized with semantic information.
Information used in this system is three kinds: target’s surface shape, a indicated
direction and a user’s view point as at least necessary information. This system
allows a user to visualize 3-D region of interest (ROI) to share with other users
in a real environment, as shown in Fig. 1. The system estimates target’s surface
and segments it into distinct parts. To allocate the region, user specifies a point
on the target object through a mobile display. Once the 3-D ROI is determined,
this can presented to other users standing at different positions.

Our current prototype system consists of quite simple algorithms of computer
vision and has many ad-hoc parameters. Furthermore,there are many problems
described in Section 5 for practical use. Despite of these faultsCthe reason why we
publish this work is because it is worth enough to discuss one of the applications
treating few remarked but important research field described in the next section.

2 Relation to Other Works

One of common problems in AR is geometric consistency between real and digi-
tized worlds [3]D For solving the geometric consistency problem in various situ-
ationsC many researchers might have thought that vision tracking without any
sensors, markers or prior knowledge is the most fundamental technique, and this
kind of tracker is ideal in the sense that it is similar to human vision. PTAM [4],
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Fig. 2. Problems on augmented reality. In the left figure, left and right circles represent
information sources in real and digitized worlds, respectively. In the right figure, user
and environment are separated as different sources.

which is a neat implementation of SLAM or vision tracker and does not require
other information, clearly gave us a prospect of practical use of vision tracking
for a static surrounding though many similar techniques [5,6,7,8] already had
been published. However, there are still few applications effectively using this
kind of vision tracker [9] except for art and games.

What we have to consider is what we can do with this kind of vision tracking.
For that purpose, we consider again position of geometric consistency prob-
lem in ARD AR is a technique enabling us to seamlessly treat information in
both real and digitized worlds. In this sense, many researchers have thought two
things1: real and digitized worlds, as shown in the left of Fig. 2. The real world
includes user and other objects, namely the environment. The digitized world
is whole information in the computer memory such as 3-D models, annotation
data and other semantic information. Computer supports us by detecting inter-
actions among these things. Detecting interaction between CG model and real
environment is consistency problem. Detecting interaction between information
in user’s head and information in computer is human-computer interactionD

In contrast to the left figure, we consider user and environment are essentially
different sources, as shown in the right of Fig. 2. We can inevitably find out
there is another problem: human-environment interactionD This is interaction
between user and non-digitized world (real environment). SLAM is compatible
with this third problem because it does not require any pre-digitized seman-
tic informationD The application described in this paper is one of applications

1 The reason why we consider many researchers imagine the left figure is because
the recent survey paper [9] on AR focuses on three technical problems: tracking,
interaction and display as important topics. Each of them is one of consistency
problems or human-computer interaction problems.
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[10] mainly treating this third problem. The main contribution of this paper is
to show feasibility of the proposed application system and to confirm concrete
future works.

3 Prototype System Visualizing 3-D Region of Interest

3.1 System Overview

The prototype system consists of a computer (Toshiba, Qosmio G30 97A) and a
touch panel display (Hanwa-Japan, HM-TL7T) attached with a camera (Point
Grey Research, DragonFly), as shown in Fig. 3. The system performs in parallel
two kinds of processes: recognition of unknown environment and recognition of
user’s action, both of which are implemented based on a free SLAM software
PTAM [4].

Our first approach to environment recognition is to perform a structure-from-
motion method. To acquire images taken from different viewpoints, a user must
move with the see-through display. This action corresponds to a preliminary
survey in our scenario.

As recognition of user’s action, in the current system, direction of the end
of user’s finger is calculated from user’s viewpoint and the clicked position on
the display. Given the user’s clicked position and 3-D surface mesh, we can
simply determine a surface point as a intersection between the surface and the
line of sight corresponding to the clicked pixel. Each surface point is labeled
by the surface labeling method described in the next section. Then, the system
emphasizes the selected region [11] as a set of the same-labeled points.

3.2 Detail of Surface Labeling

(1) Eliminate outliers: The surface reconstruction method described in Step
(3) is sensitive to outliers of surface points. Before reconstructing a surface,
outliers are eliminated by the following two criteria. The first one is related
to confidence of each point. If a point has not been observed in many frames,
the point is eliminated as a mis-tracked one. More concretely, if ratio of the
number of observations to the total number of frames is less than a threshold
(= 0.25), the point is eliminated. The second one is whether the point is
isolated or not. If distance between the target point and the nearest one is
less than a threshold, the point is also eliminated.

(2) Estimate initial surface normals: In the surface reconstruction of the
next step, a set of points on the target surface and their surface normals are
required. Surface normal nj of each point j is estimated from positions of
cameras which observed its point.

nj =
∑

i(ci − pj)
|∑i(ci − pj)| , (1)

where pi and ci represent positions of surface point j and camera at the
frame i, respectively. The above method does not work well when distribution
of camera positions is lopsided.
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Fig. 3. Prototype system and target diorama

(3) Reconstruct surface: From the oriented points, surface mesh is esti-
mated simply by a Poisson surface reconstruction method [12]. Since this
method assumes the target can be represented as a closed surface, a closed
surface mesh is generated even if a set of observed points of the target are not
distributed like a closed surface. In our case, the target is environment, not a
small object or a closed surface. In our method, such unwanted parts of the
surface are removed. More concretely, each vertex of the mesh is eliminated
if there are no feature points in a constant distance from the vertex.

(4) Estimate surface normal: Given a surface mesh, we can estimate cur-
vature of each vertex directly by fitting a general quadratic surface. In our
prototype, however, in order to decrease parameters of a fitting function, a
surface normal of each vertex is calculated as a normalized vector of the third
principal component of a set of its neighbors in a constant radius centered
at the vertex. The sign of the normal can be given from the initial surface
normal.

(5) Fit a quadratic surface: A quadratic surface represented as the follow-
ing function z of variables (x, y) is fitted to the set of neighbors of each
vertex.

z(x, y) = ax2 + by2 + cxy + dx + ey. (2)

z axis is first determined as the surface normal of the reference point. x
and y axes are determined as the first and second principal components,
respectively. The signs of x and y are determined so that x − y − z is the
right-hand system.
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(6) Calculate curvature: Surface curvature is calculated as mean curvature
of the function z(x, y) at the point (0, 0) by the following equation.

H =
b(1 + d2) + a(1 + e2) − cde

(1 + d2 + e2)
3
2

. (3)

(7) Segmentation: For general mesh segmentation, as summarized in [13],
we can chose a segmentation cue from various features such as curvature
[14,15] and difference in normals of vertices [16] as local feature, geodesic
distances [17] as global feature. Global features cannot be applied to envi-
ronments because environment cannot be represented as a closed surface. We
selected mean curvature [18] based on the idea that arbitrary objects can be
represented by logical disjunction of multiple convex hulls [19]. A watershed
segmentation [18] using this feature is performed to the obtained mesh.

4 Experiment

We have tested the prototype system using a diorama, shown in Fig. 3, where
there are three rocks on a mudslide slope. Fig. 4-7 show parts of results of the
steps described in the previous section.

Fig. 4 shows the surface points and their initial normals reconstructed by
the structure-from-motion. We can confirm the reconstructed surface points dis-
tributing on the object surface. However, directions of their normals are irregular
even though the surface is smooth.

Fig. 5 and Fig. 6 show the generated surface mesh and curvature map, re-
spectively. From these figures, we can confirm the generated mesh roughly fitted
on the target surface. However, the generated mesh does not represent several
edges such as contact borders between the ground and a rock.

Fig. 7 shows the visualized 3-D ROI. The system could emphasize the part in-
cluding the surface point corresponding to the clicked position. However, border
of the part is unnaturally jagged because of roughness of the mesh. Problems
about density of reconstructed points will be described in the next section.

Fig. 4. Reconstructed surface points and initial normals. The surface points are repre-
sented by white dots. The normals are represented by line segments colored from green
to purple.



48 S. Ikeda, Y. Manabe, and K. Chihara

Fig. 5. Generated surface mesh

Fig. 6. Mean curvature map. Relative curvature value to curvature distribution is
represented by color. Color graduation from green to red represents a range of m ± σ,
where m and σ are average and standard deviation of the distribution, respectively.

Fig. 7. Selected 3-D ROI. The selected region is visualized by a set of yellow polygons,
superimposed on the interested object.

5 Steps toward the Practical Use

5.1 System Initialization

To acquire multiple images for structure-from-motion, user must intentionally
move the viewpoint. Though this action can be considered as a preliminary
surveyC there exist situations in which users can not widely move so as to cover
the target. Furthermore, since PTAM is used as SLAM in the current system,
user must specify two frames for a simple stereo method to calculate initial value
of position of feature points.

Both initializations should be made unnecessary since they require intentional
operations by user who knows about structure-from-motion well. For this pur-
poseCwe can apply structure-from-motion among multiple users standing at dif-
ferent positions (leader and other members in our scenario) via wireless network.
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5.2 Density of Reconstructed Points

Density of reconstructed feature points must be high enough in order to generate
exact surface. However, it is lower than density of feature points detected in a
single image because a bare minimum number of highly confident points are
required to estimate exact camera pose and unconfident points are eliminated
in general SLAM. Moreover, density of detected feature points is not uniform
because it depends on lighting and texture of the target surfaceD

One of measures against to both problems is to reconstruct other surface
points than tracked ones in order to cover low density parts. For this purpose,
the mesh can be refined by a multi-baseline stereo method [20] using key-frame
images.

5.3 Scale-Dependency of Coefficients

In the prototype system, there are coefficients dependent of environment scale.
This is a problem because in structure-from-motion, scale cannot be determined
only from images without prior knowledge. In this system, the scale is tentatively
determined with an unmeaningful value in initialization of PTAM.

One of methods solving this problem is to determine the scale a meaning-
ful value. We can use other information independent of environment such as
accelerometer outputs and prior knowledge about user’s motion.

The other method is to make those coefficients scale-independent. This is
important future work to exclude dependency of environment from the system.
However, it is not always effective because calculating statistics value of the
target environment needs often high cos.

5.4 Mesh Segmentation Cue

The current system uses surface curvature as a geometric segmentation cue.
However, human may recognize objects from their shadow and texture as pho-
tometric cues. Photometric cue can be also introduced and combined with the
geometric one in the same framework. The simplest one of this kind of photo-
metric cues is edge intensity.

5.5 ROI Recognition Cue

The current system simply calculate line of sight from clicked position and view-
point in order to decide 3-D ROI. As mentioned above, trajectory of the end of
a finger, context of the leader’s explanation and member’s common knowledge
can be also ROI recognition cues. Trajectory of finger is easy to be integrated in
the same framework. If a user touches the display carefully, finger’s motion may
be static or slow. Then, visually small part must be selected by this system. In
contrast, if the same user touches the display roughly, the finger’s motion may
become fast. Then, visually large part must be selected.
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6 Conclusion

This paper presents a novel augmented reality application system which allows
a user to visualize 3-D region of interest to share with other users in an unknown
environment. This kind of application is classified into a research field on user-
environment interaction, which has hardly been addressed in augmented reality.
SLAM without prior knowledge is a suitable technique for understanding user
and environment. By prototyping a minimum set of our concept, we have found
several concrete future works, most of which are computer vision problems.
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Abstract. The problem of accurate video layer decomposition is of vital
importance in computer vision. Previous methods mainly focus on the
foreground extraction. In this paper, we present a user-assisted frame-
work to decompose videos and extract all layers, which is built on the
depth information and over-segmented patches. The task is split into two
stages: i) the clustering of over-segmented patches; ii) the propagation
of layers along the video. Correspondingly, this paper has two contribu-
tions: i) a video decomposition method based on greedy over-segmented
patches merging; ii) a layer propagation method via iteratively updating
color Gaussian Mixture Models(GMM). We test this algorithm on real
videos and verify that it outperforms state-of-the-art methods.

1 Introduction

Video decomposition is one of the most fundamental vision tasks. It extracts
multiple layers from videos, which can be further used for kinds of Augmented
Reality applications. Generally, it solves two problems: layer clustering and layer
segmentation. The first problem, which has been extensively studied in the space
clustering field, is to estimate the number of layers in every frame. The second
problem is to assign each pixel to the corresponding layer.

For the last decades, researchers have presented various approaches for this
task, which lie in the fields of motion segmentation and figure-ground separa-
tion. However, most motion segmentation methods fail to accurately separate
layers, mainly due to an improper energy formulation and the unreliable optical
flow fields, while most figure-ground separation approaches only focus on the
foreground object extraction, they seldom consider the multi-layer separation.

In this paper, we provide an interactive framework to decompose videos. It
combines the merits of motion segmentation and figure-ground separation. With
only several clicks, the user can accurately decompose the video into multiple
layers. Comparing with motion segmentation methods, our algorithm can seg-
ment more “meaningful” layers, and the fine information is preserved well. Com-
pared to figure-ground separation methods, our algorithm is less labor-intensive
and can soft-segment every layer. Fig. 1 provides a high level overview of the
algorithm pipeline. Our algorithm is based on the depth information and over-
segmented patches. In Stage I, we utilize a greedy bottom-to-up scheme to merge

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 52–61, 2011.
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Fig. 1. The framework of decomposing static scene videos

patches into layers, and provide a User Interface(UI) for users to refine layers. In
Stage II, a layer propagation method is employed to extract the layer sequence
along the entire video. We will explain the details in following sections.

The remainder of the paper is organized as follows: Section 2 reviews related
work; Section 3 explains the video decomposition scheme; Section 4 describes the
User Interface; Section 5 gives a description of the layer propagation method;
Section 6 demonstrates the experimental results; Finally, Section 7 discusses our
algorithm’s limitations and further works.

2 Related Work

The idea of video decompostion was introduced by Darrell et al.[1]. Wang et al.[2]
present the first precise mathematical formulation for this problem. Since then,
researchers have developed various models for effective motion segmentation,
such as Linear Subspace[3]. Although the clustering number can be successively
decided, the pixel assignments are unsatisfactory in most cases.

In parallel, the accurate figure-ground separation is being extensively stud-
ied. Y. Boykov et al.[4] formulate the problem as a global energy function in
Markov Random Fields(MRF) and solve it with Graph Cuts[5]. C. Rother et
al.[6] extend the graph-cut approach[4] by developing a more powerful, iterative
version-“GrabCut”. These segmentation approaches are both based on uniform
color information. There are some other methods using texture cue[7], or sym-
metry cue[8]. More recently, S. Bagon et al.[9] present an approach which unifies
those cues into a framework. It is based on the concept of “Segmentation by
Composition”. By developing a description for a segment and maximizing the
difference in description lengths, they extract good figures.

Although the above figure-ground separation methods can be extended to
videos and obtain more accurate results, it is hard to optimize boundaries of
some objects, such as hairs, as they mix the background and foreground colors.
Therefore, image matting[10], as a soft segmentation technique, evolves to accu-
rately extract foreground objects. It is extensively used to recover the foreground
per-pixel opacity from the background.

However, neither figure-ground separation methods nor image matting focuses
on multi-layer extraction, thus their extension to video object extraction mainly
lies in foreground separation, including the moving object extraction and the
static foreground layer separation. The former such as [11][12] extracts objects
by tracking and optimizing the boundaries, when applied to the occluded back-
ground layer, it fails as some boundaries disappear in subsequence frames; The
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latter such as [13] utilizes scene depth as a cue and can automatically extracted
the foreground layer, but they are constrained to bi-view separation.

The most similar works to us are J. Xiao et al.[14] and G. Zhang et al.[15]. J.
Xiao et al.[14] present an algorithm of motion layer extraction and matting for
short video clips. They first establish a novel MRF framework to solve the motion
segmentation problem, and then the Poisson matting[16] is employed to refine the
foreground segmentation. However, it is impossible to separate several objects
in the same background layer. G. Zhang et al.[15] present a general re-filming
system, in which foreground layer matting is extracted by an interactive tool
and the cut out information is propagated from key frames to the other frames
automatically. They improve the optical-flow-based Bayesian video matting[17]
by geometry projection of depth information. Just as the authors stated, the
limitation of their system lies on depth ambiguity in extremely textureless regions
(such as the clear blue sky). We overcome these problems by combining the color
and depth information.

What’s more, video matting approaches such as[12] are cumbersome, even in
the process of initial key frame matting. While the easy-to-use GrabCut[6] often
fails to construct a satisfactory result when the foreground colors are similar to
the background colors. Here we developed a more robust and easy-manipulated
framework for layer extraction.

3 Video Decomposition

The dense correspondence we established is initialized by a quasi-dense corre-
spondence method[18], also called point propagation. Although lots of pixels are
matched after point propagation, there are still some unmatched pixels. To ob-
tain a total dense correspondence, we take the problem as a global cost function
in Markov Random Fields, formulate a MAR-MRF model which is same to [19]
and solve it by the max-flow algorithm[5].

The Pedro’s method[20] is adopted for over-segmentation. Based on the depth
map and over-segmentation patches, we employ a graph-based scheme to merge
patches into layers. Taking each patch νi as a vertex, we construct an undirected
weighed graph G = 〈V, E〉 . The edge (νi, νj) ∈ E connects two adjacent patches,
its weight is defined as:

ω(i, j) = γ1ωc(i, j) + γ2ωd(i, j) + γ3ωs(i, j) (1)

ωc(i, j) measures the similarity of color information, which is defined as:

ωc(i, j) = exp(−min(‖μc(i) − μc(j)‖2, Tc)
σc

) (2)

ωd(i, j) measures the similarity of depth information, which is defined as:

ωd(i, j) = exp(−min(|μd(i) − μd(j)|, Td)
σd

) (3)
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ωs(i, j) measures the minimum size of the two regions, it is defined as:

ωs(i, j) = 1 − min(

√
μs(i)

S
,

√
μs(j)

S
) (4)

where γ1, γ2, γ3 are weighting values, they are all in the range of [0, 1] and
γ1 +γ2 +γ3 = 1.0; μc(·), μd(·) are the mean color and depth values of the region;
Tc, Td are truncation values(empirically set to 15 and 1.7); σc = 255, σd is taken
as the maximum disparity value; S is the image size, S = width ∗ height , and
μs(·) is the region size.

It is obvious that the edge weight formulation defined above encourages to
priorly join two adjacent regions with similar color information, or/and with
similar depth information, or/and with smaller size.

We use a greedy scheme to merge patches one by one. Each time, we select
the edge with the maximum weight value and unite its two patches. And then
the weight of the edges which connect either of the two newly united patches are
recomputed. This step repeats until all patches are merged into one. We record
the clustering process, so that the user can rebroadcast the process and select a
satisfactory clustering result by a granular value. The maximum granular value
is just the number of over-segmented patches.

4 User-Assisted Layer Refinement

Although plenty of over-segmented patches are clustered into compact compo-
nents under a granularity, components of the same object may still be isolated,
e.g. the two sides of an occluded wall, while further adjusting the granularity
may lead to under-segmentation. Therefore, an interactive User Interface (UI)
is necessary to increase the diversity of “meaningful” segmentation.

The user interactions in our system involve two stages. The first stage is to
merge components into a complete layer. And the second one is to refine the
layer. In the first stage, the user needs to choose a granularity with a slider first,
and then click several components to acquire a complete layer. In the second
stage, the user should refine the layer by clicking a button first, and then draw
scribbles to refine boundaries if needed.

Here, we employ the approach of Lazy Snapping[21] to refine the layer. To
apply to our task, we make some adjustments. Lazy Snapping solves the problem
by formulating a global “Gibbs” energy function in patch level, while we built
a similar model in pixel level. The input of Lazy Snapping is a rectangle, while
our input is a layer mask with arbitrary shape. The layer mask is created by
enlarging the contour of the original layer mask outwards with 3 pixels size.
What’s more, we use the depth information in our model, which is unavailable
in Lazy Snapping.

The “Gibbs” energy function is formulated as follows:

E =
∑
i∈V

E1(l(xi)) + λ
∑

(i,j)∈Neigh

E2(l(xi), l(xj)) (5)
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It consists of a data term E1 and a smooth term E2, λ is the weighting value.
The data term E1 is defined as:

E1(l(x)) =

⎧⎪⎪⎨⎪⎪⎩
df (x)

df (x) + db(x)
, l(x) = 0

db(x)
df (x) + db(x)

, l(x) = 1
(6)

where l(x) = 1 indicates x locates in the foreground layer, while l(x) =
2 indicates x locates in the background layer; df (x) = maxk ‖I(x) − CF

k ‖2,
db(x) = maxk ‖I(x) − CB

k ‖2, k = 1 . . . 5; {CB
k } and {CF

k } are the centroids of
GMM(Gaussian Mixed Models) of the background and foreground colors, which
are obtained by the K-Means method. If the user draws some scribbles, the data
term of the marked pixels is taken as following:{

E1(0) = 0 E1(1) = ∞, if(x ∈ “foreground scribbles”)
E1(0) = ∞ E1(1) = 0, if(x ∈ “background scribbles”)

(7)

The smooth term E2 is defined as:

E2(l(x), l(y)) =

⎧⎪⎪⎨⎪⎪⎩
‖I(x) − I(y)‖2

ε + 1
|l(x) − l(y)| if ((D(x) = D(y))

‖I(x) − I(y)‖2

ε + 1
(1 − |l(x) − l(y)|) if ((D(x)! = D(y))

(8)

where D(·) stands for the depth value. The above function E is a two-labels
“Gibbs” function. The max-flow algorithm[5] is invoked to minimize it. Now we
obtain a refined layer mask. A trimap is generated by automatically dilating
the layer boundaries with 5 pixels. Then Bayesian matting[22] is applied to soft
segment the layer using the trimap.

The above stages are all repeatable. The user manually clicks the slider to
control the clustering granularity, clicks components to merge or separate them,
adds some strokes on the layer to refine boundaries, and clicks a button to
examine the matte until satisfied.

5 Spatial-Temporal Layer Propagation

To extract layers along the entire video, we require a trimap in every frame. Con-
structing the trimaps manually is a tedious and time-consuming work. Moreover,
layer matting applied frame-by-frame produces temporally incoherency as the
small errors are stochastic in each individual frame. In Section 3, we have built
dense correspondences for pairwise frames. Based on the spatial-temporal depth
maps, we propagate the trimaps from the key frames to the rest of the frames.

For a video clip Î = {Ii, i = 1 . . . n} with a depth map sequence D̂ = {Di, i =
1 . . . n}, we assume the key frames are sampled and soft segmented. We denote
the trimap sequence by T̂ = {Ti, i = 1 . . . n} and successively propagate the
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trimaps based on the depth maps. Suppose the trimap Ti of the frame Ii is
available, we first create a tri-labeling mask Li+1 for the frame Ii+1:

Li+1(x) =

⎧⎪⎨⎪⎩
‘F’, if x′ + Di(x′) = x and Ti(x′) = ‘F’ for at most one x′ ∈ Ii

‘B’, if x′ + Di(x′) = x and Ti(x′) = ‘B’ for at most one x′ ∈ Ii

‘U’, otherwise

Then we build a foreground GMM(Gaussian Mixture Model) and a back-
ground GMM. The foreground GMM is built with pixels whose Li+1 = ‘F’
and the background GMM is built with pixels whose Li+1 = ‘B’. The GMM
components {CB

k } and {CF
k } are individually computed by the K-Means clus-

tering, where k = 1 . . . 5. By optimizing a global “Gibbs” energy function which
is the same to formula (8) for pixels whose Li+1 = ‘U’, we obtain a fore-
ground/background mask Mi+1 for the layer. Note that the layer refinement
in formula (5) is only applied for the layer mask, while it is applied for the whole
image here. The data terms of definite labeled pixels, i.e, Li+1(x) = ‘F’ or ‘B’,
are taken as formula (7). Finally, the boundaries of the mask Mi+1 are dilated
with 5 pixels size to generate the trimap. Bayesian matting is further applied to
soft-segment the layer.

Generally speaking, this scheme takes advantage of spatial-temporal depth
information and involves one stage of optimization. The depth map is used to
preserve the intra-frame trimap coherence and the optimization process is used
for inner-frame refinement.

6 Experimental Results

We apply our interactive layer decomposition algorithm to a number of video
clips, involving of indoor and outdoor scenes. For the outdoor scenes, we demon-
strate our result on the standard flower garden sequence. For the indoor scenes,
we test several video clips from the multi-view stereo dataset[23]. Fig. 2 shows
four clustering results for a still frame of the flower garden sequence. The results
in video form are available in supplementary material. The granularity is defined
as the number of components here. Just as Fig. 2 shows, the components always
keep semantically consistent when they are merged, mainly due to our method
taking account of both the color and depth information.

(a) (b)

Fig. 2. The clustering results under different granularity. (a) Original frame. (b)Four
clustering results, consisting of 203, 89, 16 and 10 components individually.
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(a) (b) (c) (d) (e)

Fig. 3. Previous results for the flower garden sequence. (a) Result of S. Khan et al.[24].
(b) Result of Q. Ke et al.[3]. (c)Result of J. Xiao et al.[25]. (d) Result of R. Dupont et
al.[26]. (e) Result of T. Schoenemann et al.[27].

(a) (b) (c) (d)

Fig. 4. Results using GrabCut. (a) The initial input is a red rectangle. (b) Result after
drawing the rectangle. (c) The additional inputs are some scribbles, in which the yellow
scribbles indicate the foreground and the blue scribbles indicate the background. (d)
Result after applying those scribbles.

We compare the result with five motion segmentation methods[24][3][25][26]
[27]. As showed in Fig. 3, methods of [3][25][27](shown in Fig. 3(b)(c)(e)) all
fail to extract the red house, and they do not separate some tree trunks from
the sky. [24]’s method presents too many noises in the whole image, while [26]’s
method under-segments several components, e.g., the tree is extracted without
the bottom root, and portions of the red house are merged into the flower bed.

Compared to their results, ours preserves the layer integrity well. As demon-
strated in Fig. 2 (or the videos in supplementary material), the red house is
always isolated from the sky until the number of components is lower than 10,
and the thin tree trunks are always preserved until the granularity is lower than
4. Taking an edge value defined in formula(1) as a threshold, our method will
automatically generate a clustering result too. The drawback of our method is
that it fails to merge two sides of the same occluded layer, such as the flower
bed of the flower garden sequence. This is because we only merge two adjacent
components each time.

We verify the UI efficiency of our algorithm by comparing with GrabCut[6].
To extract the tree layer in the flower garden scene through GrabCut, we first
draw a bounding rectangle covering the tree, and then draw scribbles to refine the
foreground layer. Fig. 4(b) is the layer extraction result after we draw a rectangle
(Fig. 4(a)). Fig. 4(d) is the refined layer result after we draw several scribbles
(Fig. 4(c)). It is obviously cumbersome to fulfill this task through GrabCut.
In contrast, our method extracts a more satisfactory layer using only several
clicks(Fig. 5).
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(a) (b) (c) (d)

Fig. 5. Layer decomposition and matting for a flower garden frame. (a)The inputs are
several clicks. (b)Refined results of the tree layer, in which some boundaries artifacts
are removed after applying the layer refinement. (c)The generated trimap. (d)Mattes
of the layer.

Fig. 6. Results of layer propagation on the teddy sequence. The teddy sequence consists
of 9 frames, we only show the 1st, 2nd, 5th, 8th and 9th frame. The first row shows
the original frames. The second row displays the composition results of two extracted
toys on the flower garden clips.

Table 1. Timings for each stage of the algorithm

Sequence Over- Stereo Layer Layer Layer Total
(352*240) Segmentation Matching Clustering Refining Matting Time

Flower Garden
(20 frames) 2.67sec 73.60sec 3.32sec 12.80sec 45.40sec 137.79sec

Cone
(9 frames) 1.19sec 44.58sec 0.48sec 3.52sec 14.84sec 64.61sec

Teddy
(9 frames) 1.22sec 42.74sec 0.50sec 6.80sec 10.32sec 61.58sec

Fig. 6 demonstrates the layer propagation results on the teddy sequence. The
two toys are extracted manually in the first frame, and the layer results propagate
to the rest frames automatically. Even if there are some newly appeared regions,
including the image borders and the previous occluded regions, our method can
still extract the whole layer in the rest frames.

The running time is shown in Table 1, which is tested on an Intel 3.0GHz CPU
with 2.0G RAM. All frames are reduced to 352*240. The key frames are sampled
at every 8 frames. Other interactions all give real-time feedbacks. Obviously, the
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bottlenecks are the stereo matching and layer matting. It is well known that the
Bayesian matting[22] in layer matting and the max-flow solution[5] in the stereo
matching are both time-consuming. In the pre-processing of our framework(as
shown in Fig. 1), we compare our stereo matching method with the method[19],
reporting that the method[19] costs 88.39sec, 53.56sec and 54.53sec for three
sequences respectively, and our method can find stronger local minima.

7 Conclusion

In this paper, we proposed an interactive algorithm for decomposing and soft-
segmenting various complicated videos. The major contribution of our algorithm
is the easy-manipulated framework to fulfill the task, which is built on the depth
information and over-segmented patches. We also speed up the global bi-view
stereo solution via point propagation. By dynamically updating the foreground
and background color models in a global energy formulation, our algorithm can
handle the occluded layer matting problem well. The limitation of our algorithm
is that it is constrained to stabilized videos. In the future, we will incorporate the
multi-view stereo into our framework for applying to various hand-hold videos.
We will also exploit multi-layer matting solutions in order to simultaneously
soft-segment multiple layers of videos.
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Abstract. This paper proposes a method for removing image incon-
sistencies which occur by an existence of moving objects or a change of
illumination condition when an omnidirectional image database is gener-
ated. The database is used for archiving an outdoor scene in wide areas or
generating novel view images with an image-based rendering approach.
In related work, it is difficult to remove moving objects in an outdoor
environment where illumination condition drastically changes, and to
remove inconsistencies of color tone of images which included moving
objects. The proposed method iterates the two processes which are the
estimation of candidate region of moving objects and the achievement
of color consistency to split regions. The color consistency is achieved
by estimating linear color transformation parameters which change a
histogram of an input image to that of the standard image.

1 Introduction

In a panoramic image view system such as Google Street View, a user can see
images from a street using omnidirectional images. Some studies [1,2] which
use omnidirectional images can also generate a novel view with an image-based
rendering (IBR) approach in an outdoor environment. These studies use an im-
age database which consists of many images captured with an omnidirectional
camera. When the image database is generated from many images which are
captured at different position and time, these images have inconsistencies which
occur by an existence of moving objects or a change of illumination condition.

As a method for removing moving objects in images, a technique of compensa-
tion using images which is captured at different time is used usually. A color tone
differs only in the complemented regions when a simple compensation approach
is applied using an image whose color tone is different from the original image.
Shadow in an image is also treated as a region of moving object. A technique
of removing shadows corresponding to change of illumination [3] is proposed by
estimating a light source condition. However, it is difficult to detect an object
whose color is similar to the color of background.

On the other hand, as one of the methods for removing an inconsistency in
color tone of images, a technique which handles an image whose color tone is
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different locally [4] is proposed. In this technique, color consistency in images is
achieved by splitting the input image to small regions. However, the method is
difficult to be applied when moving objects exist in an image, because a static
environment is assumed in this method. The work [5] which removes moving
objects after correcting a color tone detects moving objects with a slight change
of illumination condition. This study cannot be applied to the case that an
illumination condition changes drastically such as an outdoor scene.

If the conventional approaches are applied to the images captured in an out-
door environment, there are many problems such as the existence of moving
objects and the change of illumination conditions. Furthermore, in order to cap-
ture in an outdoor environment efficiently, when omnidirectional camera is used,
moving objects are easy to be captured and change of illumination condition is
large. This paper proposes a method for removing inconsistencies among omni-
directional images captured at different positions and times. This research as-
sumes an outdoor environment is a target of an omnidirectional image database.
We use omnidirectional images which are captured several times along similar
paths with a car-mounted omnidirectional camera. We assume that these im-
ages add position and posture information, and are captured densely. To remove
inconsistencies of omnidirectional images, the proposed method iterates the two
processes which are removal of moving objects and achievement of color con-
sistency of images. The iteration of two processes can narrow down a region of
moving objects and omnidirectional images with consistency of color tone are
generated.

2 Removal of Moving Object and Inconsistencies in Color
Tone for Omnidirectional Image Database

2.1 Outline of the Proposed Method

This section describes a method for generating an omnidirectional image database
with consistency of images. Fig. 1 shows the flow diagram of the proposed
method. The proposed method consists of three principal processes.

First, omnidirectional image sequences with camera positions and postures
are acquired in an outdoor environment. As the pre-processing, we remove the
regions which cannot be corrected by linear color transformation in phase (A). In
the iteration processing (phase (B)-(D)), two processes which are estimation of
linear color transformation parameters in phase (B) and estimation of candidate
region of moving object in phase (C) are iterated by splitting regions in phase
(D). Finally, as the post-processing, candidate regions of moving objects are
compensated in phase (E). Details of each phase are given below.

2.2 Pre-processing: Removal of Exceptive Regions for Iteration
Process

When inconsistencies in color tone are removed, we assume that color tone of
images can be changed by linear color transformation except in a region where
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Omnidirectional images

(A) Removal of exceptive regions

for iteration process

Candidate region of moving objects is below certain size or

Iteration times is over certain times

(E) Compensation of moving objects

(D) Split of object region

Omnidirectional image database

which consists of many consistent images

Yes

No

(B) Estimation of linear color transformation parameters

(C) Estimation of candidate region of moving objects

Pre-processing:

Post-processing:

Iteration processing: 

Fig. 1. Flow diagram of proposed method

moving object is observed. It cannot assume that color of the sky region is trans-
formed to the color of standard image by linear transformation since intensity
of the pixel in the region is often saturated or background image cannot be de-
fined due to cloud. In this study, the sky region in the omnidirectional images is
detected and removed in advance. These can be realized by using the previous
methods [6,7].

2.3 Iteration Processing: Estimation of Candidate Region of
Moving Object and Linear Color Transformation Parameters

This section explains the method to realize a consistency of omnidirectional
images with the following iteration processes.

Estimation of linear color transformation parameters for color correc-
tion. A color tone of input omnidirectional images is corrected with a standard
image. The standard image which is suitable for an IBR approach is selected
manually. Since input images have a few disparities when they are captured
with a moving vehicle, the color transformation parameters cannot be estimated
for every pixel. In this research, to reduce the influence of the disparities, his-
tograms of the standard image and the input image are used for estimating color
transformation parameters.

We assume that it is possible to correct the color tone of an image with a linear
color transformation if a different appearance depends on changes in illuminate
conditions. An equation which changes intensity in image is shown in Eq.(1).
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I ′(x, y) = paI(x, y) + pb, (1)

where linear color transformation parameters are pa, pb, I(x, y) is intensity at
(x, y) of input image and I ′(x, y) is intensity at (x, y) after correcting color. The
color transformation parameters are estimated in such way that the similarity
value of histogram between the input image and the standard image becomes
the highest. In this method, Bhattacharyya coefficient(2) is used as a similarity
of histogramsγ. Bhattacharyya coefficient has the advantage of robustness for
outlier by using inner product.

γ =
∑

i

√
hA(i)hB(i), (2)

where hA(i) shows a frequency of intensity i in image A, and hB(i) shows that
in image B. Histograms are generated in each spectrum.

Color correction based on robust estimation. Color of moving objects can
not be corrected with the linear color transformation. Then, after removing mov-
ing objects, to correct a color tone is desired. The region of the moving objects
is difficult to extract from one image or some images which have a different color
tone. In this research, we try to estimate color transformation parameters by
eliminating the moving objects with a LMeds [8] approach as a robust estima-
tion. In order to estimate color transformation parameters based on the LMedS
method, the candidate region of moving objects needs to be less than half of an
object region. If regions of moving objects are less than half of an object region,
the color transformation parameters can be estimated by iterating a random
sampling.

The color transformation parameters in every region which is extracted by
a random sampling are estimated with an evaluation function based on a his-
togram’s similarity. If there are no moving objects in the region, the same color
transformation parameters should be estimated in each region. Then, color trans-
formation parameters which are estimated in each region are applied to other
regions. If there are no moving objects in the applied regions, the similarity value
of histograms between the color corrected image and the standard image becomes
higher. On the contrary, if there is the region which includes moving objects, the
similarity value of histograms becomes lower. If an area where moving objects
do not exist is more than half of the region, similarity value of histograms is cal-
culated without the effect of moving objects by extracting a median of similarity
values. Finally, color transformation parameters pa, pb when a similarity value is
the highest in all regions are applied for the input image which is pre-processed
in section 2.2. As a result, consistency of color tone is possible by removing the
moving object. However, if an occupied rate of moving objects is more than half
of the region, iteration process which is explained below is needed.

Estimation of candidate region of moving object. Regions of moving ob-
jects are estimated by calculating a difference of intensity between the corrected
image and the standard image. Since the omnidirectional images are captured
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Split

End

Candidate regions

of moving object

End EndEnd

End

Split

Input image

Fig. 2. Split of object region

with a motion omnidirectional camera, a few disparities are existed between in-
put images. Therefore, when the difference of an intensity value is calculated,
a template matching approach is performed for every region and a candidate
region of moving objects is estimated in consideration of the disparities between
omnidirectional images. Here, an image which is masked to the region of moving
objects is generated and is used for the region split in the following paragraph.

Split of object region. In each region for processing, when an occupied rate
of moving objects is more than a fixed rate, the object region is split and color
transformation parameters are estimated. This is based on an idea that areas
with different transformation parameters are existing in one region for process-
ing. Appearance of re-splitting the input image is shown in Fig.2. The color
transformation parameters of a major object in the region can be estimated
with this approach.

By iterating these processes, color consistency of images except in a region
where the moving object is observed is achieved. Estimation of color transfor-
mation parameters which are robust to the influence of disparity is possible by
maintaining a certain size of the split region.

2.4 Post-processing: Compensation of Moving Objects

Even if the calculated transformation parameters are applied for the input im-
age, the moving objects which exist in the image can not be removed only by
iterating the color consistency processing. In our work, the candidate object re-
gions are compensated using other corrected omnidirectional images which are
captured at near positions. Here, there is an assumption that a background of
the moving object exists in the corrected input images. When the regions of
moving objects are compensated, to consider the disparities between input im-
ages, the corresponded region with the area of moving objects are searched from
the input images.
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(a) standard color image (b) image A

(c) image B (d) image C

Fig. 3. Examples of input images which are captured at different times in nearby
positions

(a) result of color consistency without
splitting regions

(b) estimation of candidate of moving ob-
ject (Red areas are estimated regions of
moving object.)

(c) result of color consistency with itera-
tion processes

(d) estimation of candidate of moving ob-
ject after iteration processes (Red areas
are estimated regions of moving object.)

Fig. 4. Result of color consistency with iteration processes to image A in Fig.3

3 Experiments

3.1 Experimental Environment

In the experiment, we used omnidirectional images which are captured with a
car-mounted omnidirectional camera as input images and removed inconsisten-
cies among them. We used an omnidirectional multi-camera system (Ladybug2,
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Point Grey Research) for capturing in an outdoor environment. 5 omnidirectional
images which were captured at near positions were used for input images. Since
each image is captured at different time, color tones differ respectively. In this
research, we assume that camera positions and postures can be acquired with
some sensors [1] or by a vision-based approach [9]. Fig.3 shows examples of input
images. There are some moving objects in each image and it turns out that color
tones are different due to a change of illumination condition. Each image has
disparities due to a difference of captured positions.

3.2 Experimental Results

The standard image which has no moving object and are suitable for an input
of an IBR approach are selected as shown in Fig.3(a). The regions which are
not necessary for color consistency, like sky region and equipment of capturing
system were removed in advance from the input images.

Fig.4 shows the intermediate results of color consistency using LMeds method
to image A. The result of color consistency without splitting regions is shown
in Fig.4(a). Here, since a set of transformation parameters were estimated to
whole image and were applied to the input image, it turns out that some regions
has a different color tone between the input image and the standard image. The
difference of intensity value between the color corrected image and the standard
image was computed as shown in Fig.4(b), In this figure, regions which have
large difference of intensity are masked red. This result shows that it is difficult
to correct color tone only with a set of transformation parameters. Input image
should be split into small regions and color transformation parameters should be
estimated in each region. Next, the region which is estimated to be a moving ob-
ject is split and the color transformation parameters based on robust estimation
are estimated recursively. The result of color consistency with iteration processes
is shown in Fig.4(c). The comparison of the results as shown in Fig.4(d) shows
that iteration processes are effective for removing inconsistencies among omni-
directional images. Fig.5 shows the results of compensation of moving objects
using the corrected images. In each image, it turn out that moving objects are
removed by the compensation.

Table 1. Similarity value of histogram with color standard image (1 is the highest
similarity value.)
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(a) standard color image

(b) image A

(c) image B

(d) image C

Fig. 5. Result for removing moving object and inconsistencies of color tone to input
images in Fig.3

To verify the validity of the proposed method, we conducted a quantitative
evaluation. Similarity of histogram between the standard image and the color
corrected image was used for evaluation. Bhattacharyya coefficient was used as
a similarity of histograms. Table.1 shows the similarity value of histogram with
the standard image. It turned out that the similarity of the histogram with the
standard image was improved for every result.
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(a) Generation result from origi-
nal omnidirectional images.

(b) Generation result from
proposed omnidirectional image
database.

Fig. 6. Novel view images which are generated from omnidirectional images with the
IBR approach.

Finally, as an application, novel view images were generated with the IBR
approach[1] using the generated omnidirectional image database. Fig.6 shows
the novel view images which are generated by using omnidirectional images.
The result as shown in Fig.6(a) has inconsistencies which occur by a change
of illumination condition. Fig.6(b) shows good result by using the proposed
omnidirectional image database.

4 Conclusion

In this paper, we have proposed the method for removing inconsistencies which
occur by an existence of moving objects or a change of illumination condition
when an omnidirectional image database is generated. Our approach has real-
ized consistency of images with the iteration processes which are the estimation
of candidate region of moving objects and the achievement of color consistency
to split regions. Consistency of color tone is realized by estimating linear color
transformation parameters which change histogram of the input image to that
of the standard image. In experiments, we have confirmed that the proposed
method can remove inconsistencies among omnidirectional images for an image
database. As a future work, we have to make a large-scale omnidirectional image
database.
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Abstract. Image segmentation is able to provides elements for enhanc-
ing a physical real-world environment. Although many existing segmen-
tation methods have achieved impressive performances, they face
problems where multiple similar objects are in close proximity to one
another. We improve geodesic distance transform and define a symmet-
ric morphology filter for segmentation. We embed shape prior knowledge
into this geodesic distance transform filter. The proposed geodesic dis-
tance transform filter considers three factors simultaneously: the geomet-
ric distance, weighted gradients, and the distance to the boundary of the
shape priors. As a result, it provides segmentation in line with the real
shape of a particular kind of object. Positive results are demonstrated
for several images and video sequences.

1 Introduction

Augmented reality enhances a physical real-world environment using virtual
computer generated imagery. Image segmentation is helpful in creating an aug-
mented environment since it can separate images into meaningful elements. Al-
though image segmentation finds applications in augmented reality, it is a rather
challenging problem in real images. We wish to provide a partial solution to this
problem.

Image segmentation algorithms can be classified into two categories, namely,
fully automatic segmentation and interactive segmentation. The algorithms in
the former category are prone to failure in many cases as there are often am-
biguities in the low-level intensity or color information of a given image. It is
therefore advantageous to exploit the guidance obtained from user interaction or
high-level knowledge about the expected objects in an attempt to disambiguate
the low-level information. In this work, we incorporate shape priors into geodesic
distance transform segmentation. The guidance of shape priors can be helpful
to obtain a target labeling for a particular task that is too difficult to achieve
using other methods. The algorithm proposed here can be applied in interactive
segmentation, or automatic segmentation where shape priors are provided by
a preprocessor. Whereas semi-automatic segmentation can provide elements for
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augmented reality, the automatic segmentation can be applied into augmented
reality more appropriately.

We employ a geodesic distance transform in our algorithm. The distance trans-
form is a general fundamental operator that is widely applicable in computer
vision and graphics. It maps each image pixel to the smallest distance to a re-
gion of interest. Two efficient distance transform methods have been proposed
to speed up the computation: ordered propagation and raster scanning. The first
method computes the smallest-distance information starting from the seeds and
progressively propagating the information to other pixels in order of increasing
distance. The second method, raster scanning, uses kernels to guide the process-
ing of pixels from left to right, top to bottom and then from right to left, bottom
to top.

An ordered propagation-based distance transform has been applied in col-
orization [1]. The idea has been extended to interactive image segmentation [2]
based on roughly placed user scribbles. Image segmentation and matting is im-
proved by computing weighted geodesic distances to the user-provided scribbles
using spatial and/or temporal gradients [3].

Criminisi et al. [4] proposed geodesic segmentation in which image gradients
are included in the distance transform to encourage spatial regularization and
contrast-sensitivity. Their idea is similar to the algorithm in [3], except that they
use raster scanning for the distance transform. Furthermore, the geodesic filter
acts only on the energy unaries, and not on the user scribbles.

Although these segmentation approaches [3,4] have achieved impressive per-
formance in many examples, the filter may fail in images in which the quality
of the likelihood images is not satisfactory, or where multiple similar objects
are located close to one another. Optimization relying solely on low level im-
age data is subject to many local optima representing irregular segmentations.
One possible solution to this problem it to incorporate prior knowledge into the
segmentation. In this work, we embed shape priors in an image segmentation al-
gorithm based on a geodesic distance transform. In contrast to other works, we
consider geometric distance, image gradients, and shape priors simultaneously in
the computation of the geodesic transform, which is especially important when
likelihood images are not satisfactory. Shape prior knowledge is incorporated in
a distance transform-based morphology, and hence, the segmentation achieves
good performance by adding appropriate regularization terms to the functions.
Our approach is applicable to both interactive segmentation and automatic seg-
mentation, where a tracking algorithm [5,6] provides likelihood images and shape
priors.

This paper is structured as follows. The remainder of this section gives a brief
review of prior works. In Section 2, we introduce geodesic distance transforms
in an integrated framework. We also describes image segmentation that makes
use of a geodesic distance transform in this section. We develop a geodesic dis-
tance transform by embedding shape priors in the transform in Section 3. The
performance of the proposed method is evaluated in Section 4. We conclude the
paper in Section 5.
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1.1 Related Work

There is a great deal of literature on image segmentation. Level sets methods
evolve user placed contours to the boundary at local energy minima. The imple-
mentation is difficult due to the specification of the many free parameters and
the difficulty in proving progressive user guidance. Shape statistics have been
integrated into a Mumford-Shah based segmentation process [7]. The segmen-
tation can incorporate shape prior knowledge, making the segmentation process
robust, however, it inherits the disadvantages of level set algorithms.

The graph cuts technique [8] has achieved impressive success thanks to the
efficient computation of max-flow/min-cut. In this technique, an image is viewed
as a graph, weighted to reflect intensity changes. The segmentation problem is
transformed into an energy minimization in a conditional random field. The
technique returns the smallest cut separating the seeds provided by the user.
Unfortunately, perceptual grouping in certain areas may not correspond to the
global minimum because Markov random fields (MRFs) provide a poor prior for
specific shapes [9].

Image segmentation has been augmented by using shape priors in the min-
cut [9,10,11,12,13], level-set methods [14,15], watershed segmentation [16],
random walk segmentation [17], and the Mumford-Shah [18] based process for
segmentation [19,7,20]. Freedman and Zhang [9] added shape priors into energy
minimization using min-cut. Shape priors can be incorporated into level sets
methods, which evolve user placed contours to the boundary at local energy
minima. However, the implementation of such methods is difficult due to the
specification of the many free parameters and the difficulty in proving progressive
user guidance. Cremers et al. integrated shape statistics into a Mumford-Shah
based segmentation process [7]. The segmentation can incorporate shape prior
knowledge, making the segmentation process robust. They estimate the trans-
lation, scaling and rotation of the shape before applying their density estimate
using a method similar to [21]. In their method, the correspondences between
two point sets are assumed known before the segmentation. Recently, the prob-
lem of registration of two point sets is solved by using a polynomial transform
under an affine transformation [22]. In [22], the correspondences are not known
on the point-level. Nevertheless, it is still necessary to know the correspondences
on the moment-level.

2 Distance Transform

In image processing applications, a distance transform is usually performed on
a regular grid, G. Based on a set of points P (P ⊂ G) (The point set usually
contains certain structuring information.) on the grid, the distance transform is
defined as

DP (x) = min
y∈G

(d(x, y) + 1(y)), (1)

where d(x, y) is a particular measure of the distance between x and y, 1(y) = 0
if y ∈ P and ∞ otherwise. The distance transform finds a point y that is nearest
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to x. In other words, the distance transform computes the shortest path in all
possible paths in G between x and y.

2.1 Generalized Distance Transform

Substituting a function f(y) into Eq. 1, the distance transform is generalized:

Df (x) = min
y∈G

(d(x, y) + f(y)). (2)

Df (x) depends the specific definition of the function f(y). For each point x, it
finds a point y that is close to x, and for which f(y) is small.

The generalized distance transform has many variations according to the def-
inition of the distance measure d(x, y) and the definition of f(y).

2.2 Geodesic Distance Transform Using Image Gradients

The essence of the geodesic distance transform lies in encoding the knowledge
of image gradients or other information available.

Each path between two points x and y on image lattices is composed of many
discrete steps. In Geodesic distance transform, we compute a weight factor for
each step according to image gradients ∇I.

The distance in Eq. 2 is now defined as an accumulation of weighted step
distances

dG(x, y) =
∑

x−→y

√
(1 + ρ2(∇I · ũ)Δu, (3)

where Δu is the step distance, ũ is the unit vector that is tangential to the
direction of a step in one of the possible paths from x to y, and the factor ρ
weights the contribution of the image gradient versus the spatial distance.

Based on the user input in the image, we compute probabilities that a pixel
belongs to the background (p(I(y)|BK)) and foreground (p(I(y)|FG)). After
that, we compute likelihood ratio l(y) = log p(I(y)|BK)

p(I(y)|FG) . Then, we compute a
sigmoid function

fL(y) =
1

1 + exp(−l(y)/μl)
, (4)

where μl is coefficient and set to 5 experimentally. fl(y) gives structuring infor-
mation in a probabilistic form.

Considering the weighted distance dG(x, y) and the probabilistic structuring
information fl(y), we can apply geodesic distance transform

DGL(x) = min
y∈G

(dG(x, y) + pLfL(y)), (5)

where pL is the confidence on the likelihood ratios. pL is set interactively [4].
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3 Shape Prior Embedded Geodesic Segmentation

3.1 Shape Prior Embedded Geodesic Distance Transform

Each shape prior is defined by a region zR and a contour zS (zS = ∂zR).
Given a shape prior, we apply a Euclidean distance transform to the contour
zS based on Eq. 1. We get distance transform result TS(y) = DS(y). Then, we
assign TS,R(y) = −TS(y) if y is in the foreground region defined by zR; and
TS,R(y) = TS(y) if y is in the background region. To encode the structuring
information in the shape prior, we compute another sigmoid function

fS(y) =
1

1 + exp(−TS,R(y)/μT )
, (6)

where μT determines the confidence of the shape priors.
Integrating the geodesic distance in Eq. 3 and the structuring information

defined in Eq. 4 and Eq. 6, we compute shape prior embedded geodesic distance
transform

DGLS(x) = min
y∈G

(dG(x, y) + pLfL(y) + pSfS(y)), (7)

where pL and pS indicate our confidence on the likelihood ratios and shape
priors, respectively. pS is set to the probability of the selected shape prior.

In the shape prior embedded geodesic distance transform, we considers the
gradients, the likelihood ratios and the shape prior knowledge simultaneously.
This strategy improves the performance of our geodesic segmentation, as con-
firmed by the experimental results presented in our experimental results.

3.2 Geodesic Morphology Operators

It is well known that distance form results can be used for image morphology [23].
Based on the distance transform in Eq. 7, we define a signed distance

Ds(x;∇I, fL, fS) = DGLS(x;∇I, fL, fS) − DGLS(x;∇I, fL, fS), (8)

where fL = 1−fL and fS = 1−fS. Different from [4], we consider the geometric
distance, weighted gradients, and distance to the boundary of shape priors in
the signed distance.

We extract structuring information using erode and dilate morphology tech-
niques. Thresholding the signed distance in Eq.(8), we get structuring informa-
tion

Pe = δx(Ds(x;∇I, fL, fS) > −θe, (9)

and
Pd = δx(Ds(x;∇I, fL, fS) > θd, (10)

where δ(·) is a delta function, δ(·) = 1 when the function inside is true; otherwise
δ(·) = 0; Pe is the structuring information by erode and Pd by dilate; θe and θd

control the smoothness in erode and dilate operations, respectively (θd > 0 and
θe > 0.). The setting of θe and θd will be discussed in Section 3.3.
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Based on Eq. (9) and Eq. (10), we compute structuring information Po and
Pc by applying open and close operations,

Po = δx(Ds(x; Pe) > θd), (11)

and
Pc = δx(Ds(x; Pd) < θe), (12)

where Pd = 1 − Pd.
We get another signed distance Ds

s for segmentation using structuring infor-
mation Pe and Pd,

Ds
s(x) = Ds(x; Pe) − Ds(x; P d) + Δθ, (13)

where Δθ = θd − θe.
For image segmentation, we define a symmetric morphology operator

Ps(x) = δx(Ds
s(x) > 0), (14)

where Ps is the structuring information.

3.3 Segmentation

Segmentation can be achieved by minimizing the energy in the Markov random
field formulated by an image [4,8]. However, energy minimization by searching
for a solution over a restricted parameterized 2D manifold is computationally
expensive, especially when we consider all of the possible parameters.

We segment an object based on the result of Eq. (14). Different segmentation
results can be computated by varying the smoothness parameters θe and θd.
Since we are designing an interactive image segmentation, θe and θd can be set
interactively. We do not need to try all the parameters and evaluate the results
based on the energy of MRF. The user can evaluated segmentation results. In
practice, θe and θd are set according to the size of an input image. Assuming
w and h are the width and height of the image, default values of θe and θd are
calculate using θd = min(w,h)

80 and θd = min(w,h)
80 .

The segmentation are found directly from the filtering results. Although it
seems that this approach is not as theoretically sound as the energy minimization
framework, it works well in practice.

4 Results

We have implemented the proposed algorithm and tested it on many images and
video sequences. The prior can also be provided by the users, although this is
tedious and time consuming. We advocate computing shape priors automatically,
as this leads to less work on the part of the user.
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Fig. 1. Examples for image segmentation. (a) The input images. (b) Segmentation
results using the grabcut method. (c) Segmentation results using the proposed method.



Geodesic Distance Transform for Image Segmentation 79

4.1 Interactive Image Segmentation

We segment images based on scribbles provided by the user. In our application,
we compute the likelihood images using these scribbles. The regions in the scrib-
bles are assumed to targets for segmentation. We are particularly interested in
segmenting objects in difficult images which contain objects with a similar ap-
pearance exist. The segmentation results are shown in Fig. 1. We compare our
method with the grab-cut method in [24]. We initialize the segmentation by
providing a bounding box for each object, which is same to the initialization
approach in [24]. We believe such initialization is less cumbersome than other
manual interactions. We compute likelihood ratios based on the input using ker-
nel estimation method. Then, we search for a shape prior in a specific prior
set. We provide priors by collecting well-segmented objects. The distributions
of the priors are learned using a method similar to [25]. The first example in-
volves segmenting a horse. Segmentation using the approach in [24] labels the
shadow regions under the horse as foreground. To get the result shown in the
first example in Fig. 1, we run 5 iterations of their algorithm on the first ex-
ample (In fact, the segmentation does not have much improvement after the
second iteration). This problem is dealt with by using our method using the
shape embedded geodesic distance transform. The proposed segmentation algo-
rithm correctly segment the horse out by using the shape prior computed from
the prior set. In the third example, we try to segment a girl. The lower body of
the girl has similar appearance with the background. The algorithm from [24]
can not give good results even after 7 iterations. The proposed method segments
the girl well, thanks to the shape prior embedded distance transform. In other
examples (but the last example) in Fig. 1, our segmentation results are better
than those using the approach in [24]. The advantage of our algorithm is evident
in the first five examples. However, in the last example in Fig. 1, we can not find
a appropriate prior from the prior set. Therefore, we stop using shape priors in
our segmentation. The segmentation result of our approach is even a little worse
than the method in [24].

Table 1. Quantitative comparisons of image segmentation results

Images 1 2 3 4 5 6 All

Our method 7.2 6.6 10.7 7.9 11.3 15.1 9.7
Grab-cut [24] 13.4 12.3 38.5 11.6 24.5 14.6 13.5

For quantitative comparison, we compute the error rates as the percentage of
mislabeled pixels inside the bounding boxes. Table 1 shows segmentation errors
with respect to ground truth for the test images in Fig. 1. We observed that
the segmentation errors of our method are apparently lower than the results
by the grab-cut in the first five examples. However, the error rates of the two
methods are similar in the 6th example because the foreground objects do not
have appropriate shape prior in the prior set. This is one of the limitations of
our method.
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Besides the examples shown in Fig. 1, we compare the performance on 50
images, the average performance comparison of all the 56 examples is shown in
the last column in Table 1.

5 Conclusions

We presented a novel geodesic segmentation algorithm that incorporates shape
priors. This shape prior knowledge is helpful for computing a correct labeling
with realistic shapes. The proposed method exhibits the desired properties of im-
age segmentation. We also extended it for video segmentation. It can be applied
in interactive image segmentation or semi-automatic video segmentation.

Prior knowledge is important to improve the performance of segmentation.
This work learns shape priors in a batch mode. We are interested in developing
a system that incrementally learns prior knowledge online. We believe such a
system has a similar mechanism that may be at work with human-beings.
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Abstract. Separating a foreground layer from stereo video in real-time
is used in many applications such as live background substitution. Con-
ventional separating models using stereo, contrast or color alone are usu-
ally not accurate enough to be satisfactory. Furthermore, the powerful
tool of graph cut which is well suited for segmentation is known to be
not efficient enough especially for high resolution images. In this paper,
we conquer these difficulties by fusing stereo with color and contrast to
model the segmentation problem as an minimum cut problem of a pla-
nar graph and solving it by a specialized algorithm, parametric shortest
paths [8] with a dynamic tree structure, in O(nlogn) time. Experimental
results demonstrate the high accuracy and efficiency of the algorithm.

1 Introduction

Separating a foreground layer from stereo video is widely used in many appli-
cations, such as live background substitution, medical imaging, machine vision,
and face recognition. The challenge is that both high quality and efficiency of
the segmentation are required.

Many researches on obtaining a high quality segmentation have been con-
ducted [3,10,19]. Stereo algorithms [7,9,12] that compute depth or occlusion can
be used to get good results of layer extraction by the fact that the foreground
and background should have different depths. However, most stereo algorithms
can not do well in textureless regions. Researches on color and contrast based
segmentation techniques [4,14] have been very active recently, which are very
effective, even on low-texture images. But these are usually over segmentation
and interactive methods, which are semiautomatic.

One of the most powerful techniques for making binary classification decisions
is the graph cut method. Segmentation is one application of these types of deci-
sions. Most implementations solve the equivalent problem of maximum flow, but
traditional maximum flow algorithms, which are designed for general graphs, are
too slow for live background substitution, especially in the cases that the images
are of high resolution.
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In [11], the authors presented two models for fusion of stereo with color and
contrast, one of which solved the segmentation problem by ternary graph cut,
that is, α-expansion algorithm [6] with three labels. But this graph cut technique
for general graphs is also not suitable for high resolution images in real-time
applications, since as the scale of the graph increases, the running time of the
graph cut procedure increases rapidly. Hence, one way to solve the segmentation
problem for high resolution images in real-time is to slow down the increase rate
of the running time of graph cut.

In this paper, we propose a novel solution, which fuses stereo with color,
contrast, and a prior for intra-layer spatial coherence. Fusion of a variety of cues
can improve the accuracy of the segmentation evidently compared to contrast,
color, or stereo alone methods. Furthermore, in the consideration of efficiency,
we model the segmentation problem with a variety of cues as a minimum cut
problem in a planar graph, which can be solved much faster than the classical
graph cuts by taking the advantage of the planar nature of the graph. The
high efficiency is obtained by reformulating the maximum flow problem in the
original graph as a parametric shortest path problem in the dual graph [8] and
using standard dynamic tree data structures, which makes it possible to solve
the minimum cut problem in O(nlogn) time. Experimental results imply that
our algorithm is much faster than the classical graph cut methods, and the fusion
of variety cues indeed works that the segmentation quality is better than using
each of the cues alone.

This paper is organized as follows: In section 2, we model the segmentation
problem as a planar graph and construct the energy function on it with a vari-
ety of cues. In section 3, we present our shortest path based planar graph cut
algorithm in detail, which has a running time of O(nlogn), by using dynamic
tree structures. Experimental results measuring the accuracy and efficiency of
the algorithm are given in section 4. Finally, section 5 provides conclusions and
future work.

2 Construct Energy Function on Planar Graph

Separation of layers using color/contrast information or stereo information alone
is known to be error-prone. Hence we fuse color, contrast and stereo matching
information to infer layers accurately. The basic idea of our model is to minimize
an energy function that consists of three items:

E = αcL + αcC + αsS (1)

where α is a vector of weights, L, C, S are the contrast, color and stereo item
respectively.

The energy function E is defined on a set of edges between the pixels in the
image. Different sets give different values of E. Given some pixels as the source
and some other pixels as the sink, our aim is to search the sets Ω whose edges
can separate the source and the sink completely for an optimal one that has
minimum energy value, which is
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min
Ω

E(Ω) = αcL(Ω) + αcC(Ω) + αsS(Ω) (2)

Thus, we could convert the energy minimization problem into an equivalent
minimum cut problem of the graph, whose vertices are the pixels and edges are
the edges between the pixels, with some objective pixels as the source and some
background pixels as the sink. The source and sink pixels are learned from the
previous frames. The graph we have constructed is a planar graph.

2.1 Contrast Energy on Planar Graph

The contrast energy consists of three edge features: the Laplacian zero-crossing,
gradient magnitude, and gradient direction as in Mortensen and Barrett’s [13].
Thus we can obtain the cost of the edge between pixel p and its neighbor q as:

l(p, q) = ωZ · fZ(q) + ωG · fG(q) + ωD · fD(p, q) (3)

where ω is a vector of weights.
fZ represents the Laplacian feature, which is an approximation to the second

derivative of the image. This feature is zero when the gradient of the intensity
arrives a maximizer. Let IL(p) be the Laplacian of pixel p in image I, then fZ

is given by:

fZ(p) =
{

0 if IL(p) = 0
1 if IL(p) �= 0 (4)

The gradient magnitude feature is computed by

G =
√

I2
x + I2

y (5)

where Ix, Iy denote the discrete horizontal and vertical derivatives respectively.
This value is then scaled and inverted, such that high gradient values between
pixels yield low cost edges, and vice versa:

fG(p) = 1 − G

max(G)
(6)

Finally, the gradient direction feature is computed by:

fD(p, q) =
2
3π

{arcos[dp(p, q)] + arcos[dq(p, q)]} (7)

dp(p, q) = D(p) · T (p, q) (8)

dq(p, q) = T (p, q) · D(q) (9)

T (p, q) =
{

q − p if D(p) · (q − p) ≥ 0
p − q if D(p) · (q − p) < 0 (10)

where D(p) is often given by:
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D(p) = (Iy(p),−Ix(p)) (11)

In essence, fD assigns a high cost to edges between pixels whose gradient di-
rections are similar but perpendicular to the link direction and a low cost to
edges between pixels whose gradient directions are similar and parallel to the
link direction.

Thus, we have:

L(Ω) =
∑

(p,q)∈Ω

l(p, q) (12)

2.2 Color-Likelihood Energy on Planar Graph

Like [4,14], we use Gaussian mixtures learned from the previous image frames
that have been labeled by our algorithm to model the color likelihoods for fore-
ground and background. Let PF , PB denote the Gaussian mixtures of foreground
and background respectively, and P denotes the Gaussian density, learned by
pixelwise background maintenance [15,17], for each of the background pixels.
PB and P are combined when the stability flag sk ∈ {0, 1} takes value 1, which
indicates that there has been stasis over a sufficient number of previous frames.
The color feature of an edge is then given by:

c∗(p, q) =
√

(U(p, F ) − U(q, F ))2 + (U(p, B) − U(q, B))2 (13)

which is some kind of gradient in the probability space. U(p, F ) and U(p, B) are
defined as:

U(p, F ) = −logPF (p) (14)

U(p, B) = −log[(1 − sk

2
)PB(p) +

sk

2
P (p)] (15)

c∗ is then scaled and inverted, such that high gradient values between pixels
yield low cost edges:

c(p, q) = 1 − c∗(p, q)
max(c∗(p, q))

(16)

Therefore, the color item is specified as:

C(Ω) =
∑

(p,q)∈Ω

c(p, q) (17)

2.3 Stereo Coherence Energy on Planar Graph

We use Gaussian mixtures PSF and PSB, which are learned from earlier image
frames to model the likelihoods for disparity of the foreground and the back-
ground respectively.
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Then we introduce SSD (sum-squared difference), which is L2-norm of dif-
ference between image patches L(p), R(r) surrounding hypothetically matching
pixels p and r. In the consideration of robustness, we use normalized SSD as
follows:

N(L(p), R(r)) =
1
2

||L(p) − R(r)||2
||L(p) − L(p)||2 + ||R(r) − R(r)||2 ∈ [0, 1] (18)

We can give the stereo feature of an edge as:

s∗(p, q) =
√

(M(p, F ) − M(q, F ))2 + (M(p, B) − M(q, B))2 (19)

where M(p, F ), M(p, B) are defined as:

M(p, F ) = −log[
∑

d

PSF (d)exp(−λN(L(p), R(p + d)))] (20)

M(p, B) = −log[
∑

d

PSB(d)exp(−λN(L(p), R(p + d)))] (21)

s∗ can be viewed as some kind of gradient, which should be scaled and inverted,
such that high gradient values between pixels yield low cost edges:

s(p, q) = 1 − s∗(p, q)
max(s∗(p, q))

(22)

Then our stereo item can be formulated as:

S(Ω) =
∑

(p,q)∈Ω

s(p, q) (23)

3 Shortest Path Based Planar Graph Cuts

As mentioned in the above section, we have modeled segmentation as a minimum
cut problem on a planar graph. In this section, we adopt parametric shortest
paths graph cut with dynamic tree to minimize energy in O(nlogn) time.

3.1 Parametric Shortest Paths

We solve the equivalent maximum flow problem of the graph to get minimum
cut. The maximum flow problem of a planar graph can be reformulated as a
parametric shortest path problem in the dual graph. For any value of the pa-
rameter λ, the shortest path distances in the dual graph define a flow with value
λ in the original network, which builds up a connection between the problems
in the original and dual graphs. Using dynamic tree data structure and special
structure of parameterization, the algorithm runs in O(nlogn) time. However,
when implementing the algorithm, we do not need to maintain the parameter λ
explicitly.
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3.2 Shortest Path Based Planar Graph Cuts

The detailed algorithm is as follows:
Shortest Path Based Planar Graph Cuts (SPPGC):
1. Initialization:

Fix an arbitrary dual vertex o (called the origin) in the dual graph. Compute
the shortest path form the origin to each vertex p, let dist(p) denote the shortest
path distance in the dual graph from o to p, c(e) denote the weight of edge e in
the original graph. Then we can define the slack of each dual edge e∗ as follows:

slack(e∗) := dist(tail(e∗)) − dist(head(e∗)) + c(e) (24)

Let T denote the single-source shortest path tree in the dual graph rooted at
o. The edges in T are directed away from o. Thus, every dual vertex p �= o has
exactly one incoming edge in T , from its parent vertex, which we denote pred(p).
A dual edge e∗ is called tense if slack(e∗) = 0 and a primal edge e is called loose
if neither its dual e∗ nor its reversed dual rev(e∗) is tense. Let L be the subgraph
of all loose edges, then L is a spanning tree.
2. Iterate:

While the source s and the sink t are in the same component of L:
LP ← the path in L from s to t
p → q ← the edge in P ∗ with minimum slack
Δ ← slack(p → q)
for every edge e in LP

slack(e∗) ← slack(e∗) − Δ
slack(rev(e∗)) ← slack(rev(e∗)) + Δ

delete (p → q)∗ from L
if q �= o

insert (pred(q) → q)∗ into L
pred(q) ← p

3. Output:
For each edge e

φ(e) ← c(e) − slack(e∗)
Return φ

3.3 Dynamic Tree

To implement the above algorithm in O(nlogn) time, we need a special data
structure, which is called a dynamic tree structure [1,2,16,18] to maintain the
spanning tree L and the dual slacks.This data structure can support the following
operations in O(logn) amortized time: determine whether two nodes are in the
same component, expose a path between two specified nodes, find the edge on
the exposed path with minimum value, add some amount to all values on the
exposed path, remove an edge, and insert an edge.
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Fig. 1. Comparison of accuracy using different models

4 Experiments

We measure the shortest path based planar graph cut algorithm (SPPGC) in
two aspects: accuracy and efficiency.

The parameters we used in this paper are selected manually now and we will
search for a proper adaptive way to set the values of the parameters in the future.

4.1 Measure Accuracy of Segmentation

The accuracy of segmentation is evaluated by running the algorithm SPPGC
on a stereo sequence of 20 frames, the ground truth of which is labeled manu-
ally. The pixels in the ground truth data is labeled by foreground, background
and unknown. Error is measured as percentage of misclassified pixels, ignoring
unknown pixels, which is used to mark the pixels along the boundary. For com-
parison, contrast, color and stereo alone algorithms are tested as well. These
algorithms are simply obtained from SPPGC by keeping the contrast, color and
stereo item alone in the cost function. The algorithm LGC described in [11] is
also implemented and compared. As we can see in (Fig. 1), SPPGC and LGC
have the similar performances, which are better than contrast, color and stereo
alone algorithms in accuracy of segmentation. Thus, modeling the segmentation
problem as a minimum cut problem of a planar graph with the weights of the
edges given by a combination of contrast, color and stereo is reasonable. An
example is given in (Fig. 2)-(Fig. 5).

Fig. 2. Original left and right images
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a b c d

Fig. 3. Probability graphs for: (a) color of the foreground, (b) color of the background,
(c) stereo of the foreground and (d) stereo of the background

a b c d e

Fig. 4. (a) and (b) are color energies of the foreground and background calculated by
(16), (c) and (d) are stereo energies of the foreground and background calculated by
(22), (e) is contrast energy calculated by (3)

a b c d

Fig. 5. (a), (b) and (c) are the segmentation results obtained by using color, stereo and
contrast alone, with (a) calculated by Fig. 4a and Fig. 4b; (b) by Fig. 4c and Fig. 4d,
(c) by Fig. 4e; (d) is the result of SPPGC

4.2 Measure Efficiency of Segmentation

The algorithm SPPGC has been proved to have a running time of O(nlogn),
which is much faster than the general graph cut methods in the worst case
theoretically. We now test SPPGC and the method of Boykov and Kolmogorovon
[5] (BK) with the same cost function on a set of images that have different
resolutions to see the numerical performance of SPPGC. We use an image that
consists of approximately 3 Megapixels and scale it down to different resolution
images, which are used as the testing data with lower resolution. We can observe
from (Fig. 6) that, two algorithms have performed similar on smaller images,
while SPPGC has outperformed BK on larger images. As the resolution increases,
the running times of the two methods increase at different rates, and the speed-
up factor of SPPGC to BK becomes larger, which means that the spread of
runtime of SPPGC is slower. This result shows that SPPGC is more suitable for
handling high resolution images.
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Fig. 6. Comparison of efficiency between BK and SPPGC

5 Conclusions

In this paper, we have modeled the segmentation problem as an energy mini-
mization problem fusing stereo with contrast and color. Considering variety cues
can enhance the quality of segmentation compared to stereo, contrast and color
alone models. The energy minimization problem can then be converted into an
equivalent maximum flow problem of a planar graph, which can be solved in
O(nlogn) time using our SPPGC algorithm. SPPGC outperforms BK in terms
of worst-case complexity, in terms of actual runtime in our experiment, and in
terms of the observed spread of the runtime. The advantage of our solution
makes it able to do an excellent job in the applications which require high ac-
curacy and efficiency, especially in live background substitution. It is also well
suited for applications with high resolution. In the near future, we will replace
the current energy function with more complex and reasonable form and do
more experiments to further improve the accuracy, efficiency and robustness of
the algorithm.
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Color Information Presentation for Color Vision

Defective by Using a Projector Camera System
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Abstract. There are individual differences in color vision. It is difficult
for a person with defective cones in the retina to recognize the difference
of specific colors. We propose a presentation method of color information
by using a projector camera system. The system projects border lines
or color names on real object surfaces when they have specific color
combinations. Effectiveness of the proposed method is verified through
experiments.

1 Introduction

In this paper, we propose a color information presentation system for color vision
defective by using a projector camera system.

There are individual differences in the color vision. Human eye has cone cells
that can sense colors. Cone cells are divided into three types by a difference
of the spectral sensitivity; the long-wavelength-sensitive (L) cone, the middle-
wavelength-sensitive (M) cone, and the short-wavelength-sensitive (S) cone. The
individual difference in color vision comes from the lack or low sensitivity of three
cone cells. The condition of the cone of all types without loss is called normal,
the condition with a loss of the L cone is called protanopia, the condition with a
loss of the M cone is called deuteranopia, the condition with a loss of the S cone
is called tritanopia, and the condition of the cone of two kinds with loss is called
cone monochromatism, respectively. It is difficult for a person with defective
cones in the retina to recognize the difference of specific colors. For example, a
person who lacks L cone has low sensitivity in red color. In this case, he or she
may feel inconvenience in everyday life.

Figure 1 shows a route map in which the difference of colors indicates different
routes. Figures 1(a) and (b) show a normal color vision and a color simulation
result that a color vision defective (deuteranopia) senses1, respectively. In Fig.
1(b), green and orange routes are difficult to distinguish with each other. There-
fore, support system for visually impaired people is very significant.

In color universal design and color barrier-free approaches, color combinations
that any color vision person is easy to distinguish should be used. However,
such concepts do not spread in present day. Barriers are also left in several
environments and situations such as route maps, signboards, posters and so on.
1 In this paper, color simulation results are generated by using “UDing simulator”

(Toyo Ink Mgf. Co., Ltd.).
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(a) Normal color vision (b) Deuteranope simulation

Fig. 1. Example of individual difference in color vision

Therefore, there are studies of the use of image processing for supporting
the visually impaired people [1, 2, 3], and especially for the color vision defec-
tive [4, 5, 6]. The main purpose of these studies for the color vision defective is
constructing color conversion algorithms, and there are few studies that deal
with real applications such as web page browsing [7] and a head mount display
(HMD) [8]. A color modification method for web pages [7] does not treat with
real objects. An HMD system [8] detects colors that are difficult to distinguish
in acquired images by using a camera, and then displays boundary lines of color
edges for users by using the HMD. However, registration between real objects
and images that are displayed in HMD is not considered. In other words, color
information is only in computer in these studies.

As to the presentation of color information, one of the most fruitful merits
of augmented reality (AR) and mixed reality (MR) technologies is that we can
recognize displayed color information in the same manner as real objects.

In some situation, an HMD is enough for a user to get visual information with
using AR technology like AR tool kit [9]. The advantage of an HMD is that it
is unaffected by environment light and does not prevent multi-user situations
because it does not change environment [10]. However, an HMD is not suitable
for a long time use because it gives a user a feeling of constraint. On the other
hand, the method using not an HMD but a projector is also proposed [11]. A
projector can easily add information over real objects. A projector is suitable for
a long time use compared with an HMD. Therefore, we consider that the place
that the system can use is not limited for living environments.

2 Purpose and Outline of Color Information Presentation

In this paper, we propose a presentation method of color information by using
a projector camera system. The proposed system is adaptive to the individual
and the place that the system works is not limited. The camera acquires color
information and the projector presents color information (Fig. 2).

The system projects not only border lines [8], but also draws color names or
overlays (paints) alternate colors on real object surfaces when they have specific
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Fig. 2. Proposed projector camera system

(a) Normal color vision (b) Deuteranope simulation

(c) Borderline (d) Color name (e) Painting

Fig. 3. Color combination difficult to distinguish and color information presentation

color combinations. This is a practical AR/MR application trying to improve a
user’s color perception.

In our system, the three dimensional (3D) relationship between the projector
and the camera is fixed. However, in mobile applications, the 3D relationship be-
tween the projector camera system and objects changes. Therefore, registration
of projected images and real objects is realized by using projected markers.

In Fig. 3(a), a red picture is drawn on a green background. A deuteranope can
hardly distinguish the difference of colors because the difference between green
and red is not recognized like Fig. 3(b). Therefore, a color camera detects image
regions that may appear ambiguous to a viewer. Then the projector overlays
color information with three modes; by displaying boundary lines (Fig. 3(c)), by
displaying color names (Fig. 3(d)), and by painting in another color (Fig. 3(e)).

The processing flow is shown in Fig. 4. At first, the system projects markers
on real objects by using the projector. The camera acquires image and detect
color(s) or color combination(s) that are difficult to distinguish. If there are
color(s) or color combination(s) that are difficult to distinguish, the system gen-
erates an image that is projected on real objects. In this step, a projected image
is registrated with real objects by using projected markers. The system repeats
the above procedure. If the 3D relationship between the system and real objects
changes, the system detects motion and reprojects a new image.
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Fig. 4. Processing flow

3 Color Image Processing

The system examines color combinations that are difficult for the user to dis-
tinguish. At first, the system judges whether the acquired image has colors of
difficult distinction.

In our system, color combination that the normal color vision feels similar is
not extracted as difficult distinction color. For example, dark green and green are
not a color combination of difficult distinction in Fig. 5(a), because the normal
color vision people feels they are similar. On the other hand, dark green and red
in Fig. 5(b) is judged as difficult distinction, because the color vision defective
cannot judge them although they are different color.

In order to examine colors of difficult distinction, color confusion lines are
used [12,13]. A color confusion line is a straight line radiated from the center of
confusion (copunctal point) on the CIE1931 x-y chromaticity diagram (Fig. 6).
The center of confusion is given by the type of the color vision [12]. Colors on
a color confusion line are difficult to distinguish. Our method calculates a color
confusion line that is linked from the center of confusion to a color of a pixel in
an acquired image.

When the angle which two colors of color confusion lines make is small and two
color points are away on the x-y chromaticity diagram, the system determines
that two colors are colors of difficult distinction.
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(a) Normal color vision (b) Deuteranope simulation

Fig. 5. Example of color combination

(a) CIE1931 color space (b) Colors of difficult distinction

Fig. 6. Color confusion line

Fig. 7. Projection color

For example, when the color of the pixel in the acquired image is given as
point A (dark green) of Fig. 6(b), the color confusion line becomes line L1. In
the same way, color confusion lines of B (blue), C (dark red), and D (green)
are L2, L3, and L4, respectively. The combination of color A and color B is not
judged as difficult distinction color, because the angle between line L1 and line
L2 is large. The angle between line L1 and line L3 is small, and the distance
between point A and point D is small. Therefore, the combination of color A
and color D is not difficult distinction color. On the other hand, the distance
between point A and point C is large. Therefore, the combination of color A and
color C is difficult distinction colors.

The color that is projected is decided by considering the user’s color vision
characteristics2 (Fig. 7).

2 The characteristics of the scene are not considered. The color of the surface affects
the color of projected lights. In future work, the color for painting should be decided
more carefully to show the information with appropriate color to the user.
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Fig. 8. Marker detection by subtraction

The system provides three ways of color information presentation.
(1) boundary line presentation: the system projects boundary lines on the
place of the real object corresponding to pixels judged to be adjacent.
(2) color names presentation: the system detects the area of each color and
determines the presentation point of color names. The system projects color
names on the presentation point of the real object.
(3) painting presentation: the system projects colors on places of the real
object corresponding to detected areas.

4 Registration of Projected Image and Real Object

In our proposed method, objects are assumed to be planar such as a signboard
and a bulletin board. The system performs registration of a projected image and
real objects by using projected markers.

First, the system projects markers on real objects. Next, the system takes an
image of real objects with using a camera and detects markers in an acquired
image. The system calculates a projective transformation matrix from detected
markers. Finally, the system transforms a projection image by using calculated
projective transformation matrix.

Our proposed method assumes that a user holds the system and uses it. Rel-
ative position and posture between the system and objects may always change.
Therefore, the system projects and detects markers to make the registration of
the projected image and the real objects every time at the image acquisition.

Markers are detected by using subtraction (Fig. 8). The system subtracts an
acquired image without projecting markers from that with projecting markers,
and detects marker positions. This processing is repeated and the marker posi-
tions are updated.

The system calculates the homography matrix H from relations between mea-
sured marker positions in the acquired image and marker positions in the pro-
jected image. The projection image is transformed by using H for registration
of projected images and real objects.

Our system detects whether there is a movement between the system and real
objects by using optical flow. If there is a movement, H is recalculated.

5 Experiment

The experimental device consists of a projector, a camera (logitech web camera),
and a computer (CPU: Intel Core 2 Duo 3.0GHz, Memory: 4GB) (Fig. 9). The
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Fig. 9. Experimental equipment

(a) Symbol mark (b) Legend (c) Route map

Fig. 10. Objects in experiment

experiment was performed in a room. The resolutions of acquired images were
640×480pixel. A threshold of an angle between two color confusion lines was
decided in advance by trial and error.

Figure 10 shows planar objects to use for experiment. Figure 10(a) shows
printed emblems. In Fig. 10(a) from the left, the dark red emblem is drawn
on a dark green background, the orange emblem is drawn on a yellow green
background, and the red emblem is drawn on a white background. Figure 10(b)
shows a legend of a map. In Fig. 10(b) from the top, a dark red quadrangle is
drawn, a light blue quadrangle is drawn, and a dark green quadrangle is drawn.
Figure 10(c) shows printed a route map. In Fig. 10(c), a red and a green route
are drawn. Those objects were used for presentation experiment of boundary
lines, color names, and painting, respectively.

Figure 11 shows a registration result of a projection image and a real object. In
these figures, blue lines are projected boundary lines, and black dotted lines are
boundaries of green and red regions (ground truth of boundary lines). Without
registration (Fig. 11(a)), blue and dotted lines do not coincide with each other.
On the other hand, they coincide with each other with registration (Fig. 11(b)).

Figure 12 shows the border projection result while the position of the pro-
jector camera system was changing. The computation time was about 4fps on
an average. The system and the object were not moving between Fig. 12(a) and
Fig. 12(c), while the relationship between the system and the object changes
between Fig. 12(c) and Fig. 12(e) because the system moved. The movement
was not detected from Fig. 12(a) to Fig. 12(c), and the system continued to
project the same image and stable projection of color information was realized
in Figs. 12(b) and (c). On the other hand, the movement was detected between
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(a) Without registration (b) With registration

Fig. 11. Registration of projection image and real object

(a) t = t0 (b) t = t0 + 0.5 (c) t = t0 + 1.0

(d) t = t0 + 1.5 (e) t = t0 + 2.0.

Fig. 12. Result of continuous border projection

Fig. 12(c) and Fig. 12(d), the system executed registration from the informa-
tion of Fig. 12(d), and projected another image in Fig. 12(e). In Fig. 12(e), gap
between the projected image and the real object was resolved. In this way, the
system could successfully detect the motion of the system, and the projected
images that coincided with the targets.

Figure 13 shows a result of the boundary line presentation, the color name
presentation, and the painting presentation, respectively.

In Fig. 13(a), the angle between the dark red of color confusion line and
the dark green of color confusion line is small with less than 1 degree. The
distance between two colors is small. Therefore, boundary lines are projected on
the border between the dark red and the dark green. Similarly, boundary lines
are projected on the border between the orange and the yellow green. On the
other hand, the angle between the dark green of color confusion line and the
yellow green of color confusion line is as small as 2 degree. However, the distance
between the two colors is not small. Therefore, boundary lines are not projected
on the border between dark green and the yellow green.

In Fig. 13(d), boundary lines are projected on the border between the dark
red and the dark green, and between the orange and the yellow green. Therefore,
the method makes it easy to see emblems that are hard to see in Fig. 13(a).
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(a) Symbol mark (b) Legend (c) Route map

(d) Borderline (e) Color name (f) Painting

Fig. 13. Results of projection

In Fig. 13(e), letters of “Red” are projected on a red part and letters of
“Green” are projected on a green part. Whereas it is hard to distinguish the top
quadrangle and the bottom quadrangle in Fig. 13(b), the method makes it easy
to distinguish the top quadrangle and the bottom quadrangle in Fig. 13(e).

In Fig. 13(f), green line is painted with blue. Whereas it is hard to distin-
guish the red line and the green line in Fig. 13(c), the method makes it easy to
distinguish the red line and the green line in Fig. 13(f).

The effectiveness of the method is shown by these results of boundary lines,
color names, and painting presentation.

6 Conclusion

We propose a presentation method of color information with a projector camera
system based on registration of projection image and real object using projected
markers. We confirmed the effectiveness of the method by experimental results.
The solution in this paper is simple yet effective. A color camera detects image
regions that may appear ambiguous to a viewer. The projector then overlays
lines, regions, and text to assist the viewer.

In future work, color calibration of the camera should be done in adapting
to lighting condition change. Color information presentation must be considered
when an object has a color gradation.

This system can be developed for tourists visiting other countries. Reading a
subway map in Tokyo (Japan) is very difficult for non Japanese speaking/reading
individuals, because the subway map in Tokyo is very complicated. There is a
potential in our work for such applications, e.g. character translation which
deserves to be explored.
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Simulating Artworks through Filter Blending

Crystal Valente and Reinhard Klette

.enpeda.. Group, The University of Auckland, New Zealand

Abstract. This paper looks at a method of blending different artistic
filters together to create a range of artistic effects. Instead of using a
single painterly rendering technique, the methods used in three different
filters can be blended together in a user defined way. The filters are
arranged in a triangular structure where the user defines their chosen
painting style by choosing a point in the triangle. This allows users to
effectively create their own painting style and experiment with a range
of different artistic effects.

The field of painterly rendering looks at methods of creating a simulated artwork
from a source photograph. Artistic filters are inspired by methods used by real
artists. Most of these filters look at a particular aspect of a real painting process
and design an algorithm to simulate this process. Our contribution takes inspi-
ration, not from one aspect of a painting process, but from the variety that is
found in painting methods. We look at ways to blend aspects of different filters
together to create a unique artistic effect that is chosen by the user.

We use three different artistic filters in this paper. The first is Aaron Hertz-
mann’s painting algorithm described in [2]; it uses layers of curved brush strokes.
Next is a pointillistic filter roughly based on [5] that attempts to simulate the
works of Georges Seurat. The last is Papari and Petkov’s method for creating
impressionist paintings using Glass patterns as described in [3].

Sections 1, 2 and 3 look at the methods used in each of the different artistic fil-
ters. Section 4 described our methods for blending these filters together. Section 5
shows the results of this blending technique and Section 6 discusses our conclu-
sions and ideas for future work.

1 Curved Brush Strokes

This section describes an algorithm presented by Aaron Hertzmann that simu-
lates a layered painting style with brush strokes of varying sizes. Hertzmann’s
algorithm uses a layered approach; it starts with a rough approximation of the
image and builds up more detail at each layer with steadily smaller brush strokes.
These are curved strokes that follow object contours, as favored by many artists.
The results of this process can be seen in Fig. 1.

Layering of Strokes. We start with a blank canvas and a reference image.
The algorithm takes an array of difference brush sizes as a parameter. Each
brush size defines a layer in the painting; starting with the largest brush and
working down to smallest, defined by a minimum brush size bmin and maximum
size bmax and equidistant values in-between.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 102–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Left: Scene from Fiji. Original photograph by Marian Arnold. Right: The results
of the curved strokes algorithm.

For each brush size we divide the image into a grid where the size of each
cell is proportional to the current brush size. At each grid point we determine
the total error of each pixel contained in this grid area by comparing the color
of the canvas at this point to the color of the reference image. If the total error
is above a threshold T , we add a new stroke to the canvas at the point in the
neighborhood with the maximum error. Threshold T determines how closely the
finished painting approximates the reference image and therefore how loose our
painting style will be. We do not want the grid structure to make our strokes
look too uniform, so strokes need to be painted in a random order. This layering
process can be applied to strokes of any shape and orientation.

Curved Brush Strokes. We describe the creation of the curved brush
strokes. Hertzmann’s algorithm for placing strokes is as follows. The process
takes as input a brush radius R, a starting point (x0, y0), and a maximum length
L. We start at the point (x0, y0) and find the color value C at this point in the
reference image. C gives us the color of the stroke that remains constant. We
paint a circle of radius R and color C at point (x0, y0) to the image canvas. The
next point in the stroke is computed by finding the normal to gradient at this
point. We find the direction of the gradient θ by determining the convolution
of the Sobel operator with the luminance of the reference image in the x and y
directions. The next point in our spline (x1, y1) is placed distance R from point
(x0, y0) in direction θ + π

2 . This point is also a circle with radius R and color
C. This process is repeated until all the control points in the stroke have been
painted to the canvas. The process terminates when (a) the user defined maxi-
mum stroke length L is reached, or (b) the color of the stroke differs from the
color of the reference image at the last control point more than it differs from
the image canvas at that point.

2 Pointillism

The next filter used in our application implements a pointillistic style based on
the works of Georges Seurat. Seurat was greatly influenced by the color theories
of M. E. Chevreul and this is reflected in his work. Our filter incorporate several
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Fig. 2. Left: Scene from Wharariki Beach, Golden Bay, NZ. Original photograph by
Jenna Bowden. Right: The results of the pointillistic filter.

color distortions that attempt to emulate the color effects used by Seurat. This
filter is roughly based on the work done by Yang and Yang in [5].

The problem of emulating Seurat’s pointillistic painting style is broken up
into three layers. Each layer distributes points in a different way and has its own
color distortions. A result of this process can be seen in Fig. 2.

Color. We implement three different color distortions based on our observa-
tions of Seurat’s colors. We refer to these as color restriction, saturation distor-
tion, and divisionism. Color restriction restricts the image to a specific palette of
colors. This palette is chosen to reflect the colors that Seurat is thought to have
used. Chevreul’s color theory is based on hue, so this is the component that we
pay the most attention to. When a color is initially chosen at each layer, the hue
is set to closest color in the palette.

Saturation distortion implements Seurat’s bias toward bright colors by in-
creasing the saturation when certain conditions are met. If a color has low
brightness and low saturation, then its saturation is increased. This is done by
breaking the colors up into sections depending on their brightness value. Each
pixel has a probability of having its saturation changed that is determined by a
random value. Many points still retain their original saturation no matter what
the color value is at this point. For each point to be distorted, we determine
which section the color c falls within based on its brightness value and change
the saturation to S(c) as follows:

S(c) =
{

s : s ≥ Mi(c)
Mi(c) : s < Mi(c)

(1)

where Mi(c) = 10(bi − v)(bi − bi−1)(mi−1 − mi) + mi defines the minimum
saturation required for color c, where c falls into section i based on its brightness
value v. The boundary of section i is defined by bi, where c falls into section i
if bi−1 < v ≤ bi. The basic minimum saturation for the section is mi. This
value is altered depending on how close v is to the boundary; the base case
is M1(c) = m1. This method enhances the saturation of muddy colors while
preserving the saturation of colors that are close to white or already have a high
saturation value. This gives smooth transitions across section boundaries.
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Finally, to include Seurat’s concept of divisionism, once the values for a pixel
are set, the hue can be changed based on a random variable to one of its nearest
neighbors in the color wheel. This random paint method has a 0.5 chance of
picking the color itself, and a 0.25 chance of picking the closest neighbor on each
side of this color in the color wheel.

Layering. The first layer is the background layer; it is designed to fill up
the image and set up our base colors. To fully color our canvas, the canvas is
initially set to the original image. This is to avoid having white bits of canvas
show through in the final image, what is acceptable in lighter areas but visually
distracting in darker parts of the image. Once the original image has been copied
to the canvas, we determine the placement of the points that are painted on this
canvas. The distribution of dots is achieved using Poisson disks ; for a point
radius R1, the minimum distance between sampled points is set to d = 2 · R1.

For each point chosen by the Poisson algorithm, a circle of radius R1 is painted
with its center at this location. The color of this circle is the color of the original
image at this point which is then color restricted. No further color distortion is
performed for this layer.

For the middle layer, stroke placement is roughly based on the algorithm as
described in Section 1 but instead of basing our error measure on color difference,
we base our stroke placement on the difference in color intensity. The color of each
point is again determined by the color of the original image at this point. For this
layer however, we use color restriction, saturation distortion, and divisionism.

If only these first two layers are used, the filter has a tendency to swamp
smaller details with points from the background, so we can also use a final layer
to perform some edge detection to bring these details back into the picture.

3 Impressionism

Glass patterns emulate impressionism; they are based on a geometric trans-
formation. First we create a vector field and a randomized image. Once these
two components have been generated, the actual Glass pattern is created. The
transformation for creating the Glass pattern is applied to the original image,
see Papari and Petkov in [3] and Fig. 3 for a result.

Vector field. The vector field determines what kind of movement the brush
strokes have. The impressionist paintings we are attempting to mimic contain
swirling patterns based around the contours of the objects within in the scene.
We create a vector field v(r) that approximates this type of movement where
r = (x, y). We start by computing the convolution Iσ = I�Δx,yGσ of the original
image with the gradient of the Gauss function, where I is the original image after
smoothing and Gσ is the Gauss function with standard deviation σ. For image
smoothing we used a simple median filter.

The area sampled over needs to be quite large in order to take into account
some image data irregularity which might be ”far away” from the current pixel.
We have used a kernel size of 31×31 for the convolution but have only sampled
every 5th pixel within this area. This covers a fairly large area of the image
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Fig. 3. Left: Scene from Oslo, Norway. Original photograph by Angela Palmer.
Right: The results of the Glass patterns filter.

at each pixel without increasing the processing time too much. This gives us
Iσ = [Iσx, Iσy ]T which is the gradient of each color channel in x and y direction.

The next step is to compute θσ(x, y), the angle of the ”color gradient of the
nearest edge”. Let k be the number of color channels. At a pixel, calculate

E =

(
k∑

i=1

I(i)
σx

)2

, F =
k∑

i=1

I(i)
σx

k∑
i=0

I(i)
σy , G =

(
k∑

i=1

I(i)
σy

)2

(2)

Angle θσ(x, y) is defined by the direction of the eigenvector associated with the
maximum eigenvalue of the matrix

Kσ(x, y) =
[

E F
F G

]
(3)

There are two possible values of θσ(x, y):

θ+ =
1
2

arctan
(

2F

E − G

)
, θ− = θ+ ± π

2
(4)

We choose that value for θσ where

M(θσ) =
1
2

(E + G + cos 2θσ (E − G) + 2F sin 2θσ) (5)

is maximum. This value expresses the ”strength” of the gradient in direction θσ.
The vectors in the vector field v(x, y) are of a fixed length a, which can be set
by the user, and make a constant angle θ0 with the color gradient θσ. The vector
field is defined as follows:

v(x, y) = a [cos(θσ(x, y) + θ0), sin(θσ(x, y) + θ0)]
ᵀ (6)

If the eigenvalues of Kσ(x,y) are equal then the value of θσ are undefined; in this
case we set v(x, y) = 0.

Random Image. Our random image z(x, y) is created by generating white
Gaussian noise which is then smoothed using a simple Gaussian filter. The white
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noise is generated based on the Central Limit Theorem (i.e., the noise generated
is not true white Gaussian noise if the random number generator used is not
completely random).

Continuous Glass Pattern. Next we look at how to create a continuous
Glass pattern given a random image z(r) and a vector field v(r) where r = (x, y).
For brevity’s sake we focus on the most important formulas here. For a full
mathematical discussion refer to [3]. As in [3] we first consider the differential
equation

dr
dt

= v(r) (7)

The solution, the trajectory Φv, is a map from R2 to R2 with Φv(r, 0) = r.
In other words, Φv(r, t) describes an arc from the current pixel r to some new
location. Each location along the arc is defined by the value of t.

For a continuous Glass pattern, instead of a point set we use the random image
z(r). This extension means that instead of taking the maximum over the binary
case, we take the maximum of the gray values at each location. A continuous
Glass pattern is a new image and defined as follows:

Gv(r) = max
t∈[0,1]

{z[Φv(r, t)]} (8)

At each point in this image, we take the pixel value at r to be the maximum
of the pixel values in z(r) that lie over the arc defined by Φv(r, t) for every
t ∈ [0, 1]. The first step in computing this is to integrate Eq. (7). This is done
numerically using the Euler method; it gives a discrete approximation of the arc
Φv(r, t). We then take the point p in this arc where z(r) is at its maximum. The
final result is a point set p(r) which defines our continuous Glass pattern.

Translating to the Image. At this stage, for each point r in the image we
have an associated point p. This describes a geometric transformation between
the two points. Papari and Petkov describe two different ways that the structure
of this continuous Glass pattern can be translated to the original image. We use
their method of using the Glass pattern to translate the pixels of the original
image. We have the original image I and the transformed image T . At each point
r ∈ I we find the point p that is mapped to by the Glass pattern at r. We record
the pixel value of I(p) and set this to be the pixel value of T (p). This process
transfers the geometric structure of the continuous Glass pattern to the image
itself. Areas with flat color remain the same. We can get around this by adding
some noise to the original image before we process it.

4 Filter Blending

Our contribution to the field of painterly rendering is to combine the filters that
we have examined (and partially modified) together to create a range of artistic
effects. The filters that are used to create an image and the strength of these
filters can be tailored to suite the subject of the image and the artistic intention
of the user. For each filter combination, the strength of each of the filters f1 and
f2 is determined by user defined influence parameters I(f1) and I(f2) where
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Fig. 4. Screenshot of the user interface of the filter blending application. Scene from
Mineral de Pozos, Mexico. Original photograph by Reinhard Klette.

I(f1) = 1−I(f2) and I(f1), I(f2) ∈ [0, 1]. The method used to produce the filter
combination C(f1, f2) is different depending on the filters f1 and f2.

User Interface. Our application has a triangular interface where each corner
of the triangle represents a different filter and the center of the triangle represents
the original image; for a screenshot of this concept see Fig. 4. The style we want
to apply to our image is chosen by clicking somewhere within this triangle. Points
along the edges of the triangle have the strongest filters.

Curved Brush Strokes and Pointillism. The curved brush strokes and
pointillistic filters go for quite a different look but a lot of their underlying
concepts are the same. The differences are the way that a new stroke position is
determined and the color and shape of the stroke.

Our combined filter uses a three-layered approach. For our stroke radius, we
take a stroke size between the strokes sizes of the two filters at each layer.
To give this value a random appearance, we determine this size by getting a
normally distributed random number z where the mean and standard deviation
vary according to the influence parameter. For brush sizes bp and bc at the
current layer where z is generated using mean m and standard deviation σ, we
determine our final stroke radius bfinal by bfinal = bp + z(bc − bp).

For determining the position of the brush strokes at each layer, the image is
divided into a grid of size bfinal. At each grid point we determine two positions
pp = (xp, yp) and pc = (xc, yc) which approximate the points chosen by the
pointillistic and curved strokes filter respectively. Our final point pfinal is a
point between pp and pc where the influence parameters determine how close
pfinal is to each of the points.

The maximum stroke length lfinal is determined in a similar way to the stroke
radius. Given a user defined stroke length lmax, lfinal equals lfinal = 1 + z
(lmax −1) where z is again a normally distributed random number. The amount
of color distortion also varies according to the influence parameters.

Curved Brush Strokes and Glass Patterns. Those two filters have quite
different approaches to the way they alter the image so there is no obvious scale
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between them like with the curved brush strokes and pointillism. Instead we find
a way to mix the concepts of the two filters together.

For the point halfway between the two filters we follow the usual method of
the curved brush strokes filter, but instead of strokes following the normal of the
image gradient, our brush strokes follow the vector field v as defined in Section 3.
As the image gets closer to curved strokes the filter gradually stops following this
vector field and instead reverts to following the normal of the image gradient. We
calculate the results of both methods for determining a new stroke control point
and take the appropriate point between them based on the influence parameters.
For a normal of the image gradient g = (xg, yg) and a value of the vector field
v = (xv, yv), the next control point is placed at p = (x, y) where the distance
of p from each point is determined by the influence parameters. We also alter
the maximum length l of the brush strokes based on the Glass patterns length
parameter a. As the filter gets closer to impressionism, l tends toward a.

As the filter gets closer to impressionism, we start to decrease the influence
of the curved brush strokes filter. This is done by gradually reducing the strokes
radius parameters Rmax and Rmin, and the threshold T in proportion to the
influence parameters. We also add noise to the reference image as the influence
of impressionism increases to make the impressionist whirls more visible. We
generate a small random number c as detailed in Section 3. In this case however
we alter c in proportion to the impressionist influence parameter. When Rmin ≤
1 we discard the curved strokes algorithm and simply run the Glass patterns
algorithm with the noise level set as above.

Pointillism and Glass Patterns. Our filter combination follows the basic
method of the pointillistic filter. The background layer paints points as usual,
but the other two layers mix their point placement with the Glass patterns
method. For each point that is placed by the pointillistic part of the filter, we
take the color of this point and use the Euler algorithm to paint more points of
this color along the arc of a streamline defined by the vector field v as defined
in Section 3. We want the combined filter to retain the look of being made up of
points, so these extra points that are generated have a probability of not being
painted to the canvas to prevent the filter having the look of smooth strokes.
This probability is proportional to the influences parameters so there are less
points as the filter tends toward pointillism.

As the filter gets closer to impressionism we need to take a slightly different
approach. We decrease the radius of the points so that we tend toward manip-
ulating pixels rather than larger areas. We also gradually get rid of the color
distortion of the pointillistic filter after a point.

5 Results

Since we are trying to approximate art, any evaluation is of course very subjec-
tive. Each combination creates a nice artistic effect that looks inspired by but
distinct from the filters it is made up of. We look at each filter combination
separately to give a more thorough evaluation. Figure 5 shows a combination
of the curved strokes and pointillistic filters. This gives us an interesting effect
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Fig. 5. Left: Scene from Gilleleje, Denmark. Original photograph by Angela Palmer.
Right: The results of the curved strokes and pointillism combination.

Fig. 6. Left: Scene from Amantani Island, Lake Titicaca, Peru. Original photograph
by Xnena Vitali Jaensch. Right: The results of the pointillism and Glass patterns
combination.

with a variety of brush shapes and sizes. With the influence parameter at this
level, less of the smaller points can be seen, but pointillism’s interesting color
distortions prove to be very effective when used with larger strokes as well as
small points. The variety of stroke sizes and color distortions makes for an effect
that is much more ’artistic’, and for many images more visually pleasing.

Figure 6 shows a combination of the pointillistic and Glass patterns filters.
The effect of color distortion is particularly striking in images like this where
the saturation distortion brings out colors that are not normally noticeable in
the scene. The color distortion mixes well with the geometric distortion as both
implement different ideas of impressionism, departing from realism to give a nice
’impression’ of the scene.

Figure 7 shows a combination of the curved strokes and Glass pattern filters.
This combination creates a nice artistic effect that uses aspects of both filters to
create an image that is perhaps more analogous to the painting process than any
of the standalone filters. It incorporates the layers of the curved strokes filters,
and develops a painting out of distinct strokes. It also uses the vector field from
the Glass pattern filter however, which adds the idea of motion to the image.
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Fig. 7. Left: Scene with a flower in Bangkok. Original photograph by Marian Arnold.
Right: The results of the curved strokes and Glass patterns combination.

The result is an image with a variety of stroke sizes and nice layered effect but
with strokes that have a nice flowing movement around object contours.

6 Conclusions and Future Work

We developed methods of blending filters together to create artistic effects that
simulate a mixture of artistic styles, and our results illustrate this filter blend-
ing process (see also [4]). There are improvements that could be made to the
individual filters but the blending process itself is extremely effective.

A possible extension of the work done here would be to combine the applica-
tion with a camera and printer in order to create ’instant’ portraits. Portraits
are more difficult to render artistically than some other scenes as users can be
sensitive about the amount of abstraction that is applied to faces, but exten-
sions could be added using other fields such as face detection to tailor the results
toward producing pleasing portraits. There is room here for further study into
what features would best tailor the algorithm toward effects that users want to
see in a portrait piece.
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Abstract. Photography requires not only equipment but also skill to
reliably produce aesthetically-pleasing results. It can be argued that,
for photography, skill is apparent even without sophisticated equipment.
However, no scientific tests have been carried out to confirm that suppo-
sition. For that matter, there has been little scientific study on whether
skill is apparent, whether it can be discerned by judges in blind tests.
We report results of an experiment in which 33 subjects were asked to
use identical cameras to photograph each of 7 pre-determined scenes,
including a portrait, landscapes, and several man-made objects. Each
photograph was then rated in a double-blind manner by 8 judges. Of
those judges, 3 are professional photographic experts, and 5 are imag-
ing researchers. The results show that expert judges are able to discern
photographic skill to a statistically significant level, but that the enthu-
siasts, who are more akin to the general public, are not. We also analyse
the photos using computer vision methods published in the literature,
and find that there is no correlation between human judgements and the
previously-published machine learning methods.

1 Introduction

Photography, like cooking, can be carried out by just about anyone with a
minimum of equipment. However, in order to reliably produce aesthetically-
pleasing results, skill is also required. While certain aspects of photography de-
pend strongly on equipment, such as colour, focus, and exposure, there is at least
one aspect that is a matter of skill: composition. Composition is taught in Arts
faculties and is the subject of many books and papers, but few have analysed
it from a scientific perspective. That may be because of the difficulty in fram-
ing scientific or engineering problems in studying composition. However, there is
reason to believe that photographic composition is amenable to both scientific
and engineering inquiry, since it depends on spatial arrangments of features and
objects.

This paper is devoted to studying skill in photographic composition using
a data-driven approach. We report results of an experiment when a group of
� Corresponding author.
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photographers, ranging in skill from novices to experts, took photographs of a
set of predefined scenes using identical point-and-shoot cameras using identical
settings (in full “auto” mode). The photographs were then rated numerically in
terms of composition strength by an independent group of judges. We show that
a subset of the judges, who are themselves professional photographers, are able
to discern skill in a statistically-significant manner.

In order to put our work in context, we review relevant research in the field
of photograph aesthetics. It is important to distinguish photographic quality
from photographic appeal. As Savakis, Etz & Loui [1] point out, photo qual-
ity (sharpness, noise level, dynamic range) has been studied scientifically for
decades but, in contrast, photo appeal has been studied very little from a sci-
entific perspective. In [1], the authors experimentally determined the attributes
that observers feel are important to deciding which pictures deserve emphasis in
a photo album, and found that the most important is composition. In particular,
Savakis et al found that composition was much more important (by at least a
factor of 3) than either colourfulness or sharpness, two traditional measures of
image quality. The photos used in [1] are from ordinary consumers, i.e., there
was no segregation into those from professional photographers and amateurs. In
contrast, Tong et al [2] explore the distinction of skill, and attempt to classify
photographs into those taken by professionals and amateurs using computer vi-
sion techniques. Their methods rely on features extracted from the images such
as sharpness, colourfulness, contrast, and saliency. The classifier that they de-
velop correlates well (coefficient of 0.85) with rankings given by a group of 16
human observers. However, they do not consider composition as an attribute, nor
possible equipment differences between professionals and amateurs. Ke, Tang, &
Jing [3] also examine the choice of attributes that distinguish between experts
and amateurs, and argue that the “bag of low-level features” approach taken
by [2] is not as effective as using high level semantic features. Specifically, Ke
et al propose that expert photos are distinguished from amateur shots by the
attributes of “simplicity”, which they measure by spatial distribution of edges,
“colourfuless” measured by color histograms and hue count, “sharpness” mea-
sured from the spatial frequency content, and two low-level features measuring
contrast and brightness. Ke et al test their classifier on photos obtained from
the website dpchallenge.net, and find that the sharpness attribute is the most
discriminative in distinguishing between the top 10% most highly-rated pho-
tographs from the bottom 10% in their test set. However, their study does not
consider composition as an attribute.

Datta, Joshi, Li, and Wang [4] propose a machine learning approach to rating
aesthetic appeal of photographs. Like the previously-mentioned studies, Datta
et al use the attributes of colourfulness, sharpness (depth of field), but, in a
novel step, include consideration for composition by using the “rule of thirds”1,
texture, and familiarity (measured by similarity to a group of standard images).

1 A well-known maxim in photographic composition is that objects should be placed
not in the center of the image, but at one-third or two-third the height or width to
draw the user’s attention into the scene.
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Their system is perhaps the first to explicitly consider composition in the colour
and texture distribution measures. Datta et al compare their system with ratings
obtained for photographs on photo.net, and show good correspondence. More
importantly for our paper, Datta & Wang [5] make their rating method, named
ACQUINE (Aesthetic Quality Inference Engine) available online on the site
acquine.alipr.com.

Composition as an attribute is also considered by Luo & Tang [6], who, like
previous researchers, develop methods for classifying expert and amateur pho-
tographs, but provide the novel step of extracting subjects from the background
using sharpness as a cue. Specifically, they measure composition geometry by
distance of the subject centroid to the rule-of-thirds points. Their method out-
performs that of Ke et al [3] on the same data set obtained from dpchallenge.net.

It is interesting that the computer vision literature shows considerable inter-
est in using sharpness and colourfulness as attributes of photograph aesthetics,
whereas the study of Savakis et al shows that composition is far more important.
Obviously, an image can be appealing even without being sharp or colourful; for
example, the black-and-white photographs of Henri Cartier-Bresson are often
slightly defocused and lack contrast, but are nevertheless powerful due to their
composition [7].

No previous study that we are aware of has considered whether composition
skill is measurable, the subject of our paper.

2 Experimental Methods

Our experiment is designed to test whether skill in photographic composition
can be identified in a double-blind study. We recruited 33 unpaid volunteers to
take part in the experiment. The group consisted of university students, staff,
as well as professional photographers. Several of the students are undergraduate
majors in photography, a point we return to below. The subjects were asked to
identify their own skill level by answering a questionnaire, in which they were
asked to estimate how many pictures they took each year (10, 100, 1000, or too
many to count), whether they shared those pictures with others through photo
sharing sites such as Flickr c© or Picasaweb c©, whether they received any formal
training in photography or in other arts, and whether they have published or
exhibited photographs. Through their answers, we assigned each photographer
to one of four categories, in increasing level of skill: Novices, who rarely take
photographs or use a camera; Amateurs, who frequently take photographs, may
share them with friends and family, but do not have formal training in photogra-
phy nor invest in equipment such as a SLR; Enthusiasts, who invest much time
and resources in photographic aesthetics, possibly have formal training in pho-
tography (including the photo majors mentioned above); and Experts, who are
professional photographers with published or exhibited work. The line between
Amateur and Enthusiast is admittedly hard to draw; we expect some of our
amateurs are better classified as enthusiasts and vice versa. Table 1 shows the
number in each group. As could have been predicted from the nature of such an
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Table 1. Distribution of the 33 photographers by skill level

Novices Amateurs Enthusiasts Experts

4 15 12 2

experiment, few novices volunteered. The number of true Experts is admittedly
few, but within the Enthusiast class there are 3 photography majors each with
at least 3 years of formal training. The photo majors are arguably a group with
skill somewhere in between the formally untrained Enthusiasts and the Experts,
a point we explore quantitatively below. The subjects were asked to submit one
photograph of each of 7 scenes. The scenes, which were chosen by two profes-
sional photographers, are as follows: (1) a still life of manmade objects; (2) a
portrait of a person seated in a chair, whom the subjects were not allowed to
ask to pose; (3) a two-story long indoor staircase; (4) an outdoor fountain; (5)
a striped road crossing with traffic; (6) a covered walkway; and (7) a corner of
a building with reflecting glass on both sides. The subjects were allowed to take
as many photos as they liked of each scene, but then were required to select
and give us their best one. Figure 1 shows examples of each of the 7 shots for
illustrative purposes.

Fig. 1. Example photos of the seven scenes are shown. From left to right, top to
bottom: still life; portrait; staircase; fountain; road; walkway; glass corner. Each photo
was taken by a different photographer.

To make sure that the choice of equipment did not affect image quality, the
subjects were given the same model of consumer point-and-shoot camera with
7 megapixel resolution. The cameras were set in full automatic mode, to ensure
that picture quality was not affected by the mode chosen. For each of the 7 scenes,
the subjects were allowed to move around within a demarcated area. The area
was marked off by two professional photographers, with the objectives of allowing
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Table 2. Guide given to judges for scoring

Score Criterion

0 − 2 poor composition

3 − 4 some consideration and use of composition

5 − 6 average/ acceptable composition

7 − 8 some skill and use of composition

9 − 10 wonderful composition/ nice image

Fig. 2. Two screenshots of the web-based rating process used by the judges for col-
lecting ratings from the panel. The left hand image shows a thumbnail view of some
of the photos taken of the “still life”, and the right hand side shows the 10-star rating
system.

both freedom of composition and also comparable photos. The movement area
was marked on the ground by masking tape. Due to the freedom already provided
by the movement area, we disabled the zoom on the cameras by taping over the
zoom button. The combination of both zoom and movement area would lead to
incomparable photos. The experiment was carried out over two separate days,
between the hours of 11am-2pm to ensure similar light conditions outdoors.
Of the 33 × 7 = 231 photographs that were submitted, we eliminated 10 from
consideration for violation of announced rules. For example, photos were removed
if the subjects used zoom (despite the zoom button being taped over), or asked
the portrait model to pose, or focused on bystanders rather the assigned scenes.

The remaining 221 photos were then judged in a double-blind manner by a
panel of 8 judges, who were a separate group from the photographers. The panel
included 3 professional photographers, and 5 imaging science and technology
researchers from a leading digital image sensor company. The researchers can be
considered to have similar characteristics to the Enthusiasts in the subject group.
The judging was done online by selecting a rating based on 10 stars. Figure 2
illustrates the rating process. The judges were allowed to save their ratings, login
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and out in order to break up the rating process according to their convenience,
and also to revise their ratings if necessary. The judges were instructed to rate
the photograph only on the composition, rather than on focus, lighting or colour.
They viewed images of resolution 600×450. They were given the following guide
for scoring

For comparison, we obtained the ACQUINE rating [5] by uploading all 221
images in our collection to acquine.alipr.com.

3 Results

In this section, we compare the ratings between the two types of judges (pro-
fessionals and researchers), the ACQUINE rating, and the identified skill of the
photographers from the questionnaire. As a simple measure of statistical re-
lationship, we use the Spearman rank correlation [8, pg 206]. The Spearman
coefficient is computed by converting raw scores Xi, Yi, into ranks xi, yi, and,
in the event of tied ranks, using the standard Pearson correlation on ranks

ρ =

∑
i(xi − x)

∑
j(yj − y)√∑

i(xi − x)2
∑

j(yj − y)2
. (1)

For example, raw scores 1.0, 1.1, 3.4, 10.0 are converted to ranks 1, 2, 3, and 4.
Unlike the Pearson correlation, the Spearman coefficient ρ is nonparametric and
indicates the degree to which one variable is a monotonic (not necessarily linear)
function of another. We found no significant difference in our results between
the Spearman and the Kendall τ correlation, another widely used nonparametric
measure.

We evaluated the consistency between all 9 judges: the 8 human judges and
ACQUINE as follows. A 9×9 Spearman rank coefficient matrix shows that none
of the correlations are significantly negative, which indicates that no pair of
judges have opposite views on what constitutes strength of composition. Table 3
summarizes the results, and shows that each group is consistent to the same
degree among themselves, but there is less consistency between groups. None of
the correlations are strong (i.e., ρ > 0.7), indicating that the judges are fairly
independent. In fact, the correlations between the human judges and ACQUINE
are weak (not more than 0.27). To demonstrate that visually, Figure 3 shows
scatter plots of the mean rating of the human judges against the rating from
ACQUINE. It is worth noting that ACQUINE takes into account many factors in
assessing photo aesthetics, including but not limited to composition, whereas the
human judges were instructed to pay attention only to composition. Therefore,
there is no reason to expect good correlation between our human judges and
ACQUINE; the point of the Figure 3 is to illustrate quantitatively that our
judges are indeed rating images independently from the methods of ACQUINE.

Although the groups had little correlation with each other, remarkably they
found similar results for best images. Figure 4 shows that, for each group, the
symmetry of the building corner was appealing. Interestingly, each group chose
a slightly different picture of the corner as their best one.

a
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Table 3. Minimum \ Maximum Spearman correlation in judge groups

Professionals (P) Researchers (R) Mixed (P vs R) P vs Acquine (A) R vs A

0.25\0.43 0.21\0.46 0.02\0.38 0.01\0.22 0.02\0.27

Fig. 3. The leftmost scatter plot compares all human judges (sum of scores) to AC-
QUINE (A), the middle plot compares professionals (P) to A, and the rightmost plot
compares researchers (R) to A. The scatter plots confirm visually that there is low cor-
relation between human judges and the automated rating system used by ACQUINE.

Fig. 4. From left to right, the top row are respectively the worst (lowest rated) pictures
as selected by the professionals (P), researchers (R), and ACQUINE (A). The bottom
row is the best (highest rated) for the respective groups. Remarkably, all three groups
chose the building corner with its inherent symmetry as the best.
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Table 4. Spearman rank correlation between photographer skill level and group rating.
The top row uses skill rating 1-4, and the bottom row uses the modified 5-point skill
rating discussed below, where photo majors are placed in between Enthusiasts and
Experts.

Professionals (P) Researchers (R) P+R ACQUINE (A)

0.59 0.05 0.25 0.09

0.60 0.03 0.21 0.08

Fig. 5. From left to right, the three graphs show ratings assigned to each of the skill
levels by professional judges (P), camera researchers (R), and ACQUINE (A). An
upward trend is apparent in the P graph, though not in the other graphs.

Next, we assessed whether any of the groups are able to determine photo-
graphic skill in their ratings. We measured the correlation between the skill level
(on a scale of 1-4, with 1 for Novices, 2 for Amateurs, 3 for Enthusiasts, 4 for
Experts) determined from the questionnaire, and the sum of ratings given to
each photographer by each group. The results are summarized in the top row
of Table 4. We see that the professional (P) ratings are consistent with skill to
a much higher degree than either the researchers, or ACQUINE. Moreover, the
correlation between P ratings and skill is statistically significant (p < 0.001).

To illustrate visually the correlation numbers, Figure 5 shows a scatter plot
of ratings assigned to each skill level. It is apparent that the left most graph,
representing the professional judges, has an upward trend with skill, unlike the
other graphs.

Since there were only 2 members of our Experts group, we next considered
the scores given to the 3 photo majors with 3 years of formal training in pho-
tography. The majors were included in the Enthusiasts group for purposes of
compiling the top row of Table 4. However, it is reasonable to place their skill
somewhere between the untrained (formally) Enthusiasts and the accomplished
Experts. Therefore, we created a new skill rating, with values of 1 and 2 as before
for Novices and Amateurs, 3 for the untrained Enthusiasts, 4 for the photo ma-
jors, and 5 for the Experts. For this new skill rating, the correlations are shown in
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the bottom row Table 4. We see little change in the results, indicating that it
makes little difference whether we place the majors in between the Enthusiast
and Expert groups.

4 Discussion

Our results show little correlation between human judges and ACQUINE. That
may be expected given that the judges were instructed to rate only on composi-
tion, whereas ACQUINE considers other factors in addition to composition. But
then how important is composition in ACQUINE’s internal weighting? From
our results, we can conclude that either the weighting is low, or that the simple
measure used by ACQUINE based on the rule of thirds is not a good predictor
of the evaluation given by humans, or both.

The fact that all three groups (P, R, and A) found as their highest-rated
images a shot of the building corner is interesting, and is likely to be connected
with the ease of composing that shot. The subjects were restricted to stay in a
relatively small box when composing, and within that box it is not difficult to
find the symmetry of the building corner. The data also show that of the seven
shots, the building corner received the highest mean score, 4.8, from the human
judges, whereas the portrait received the lowest mean score, 3.6.

The computer-vision based aesthetic systems [3][4][6] aim to match ratings on
popular photo-sharing sites. One can argue that they tend to rate “safe” tech-
niques that do not challenge the viewer more highly, i.e., they favour colourful,
sharp, and simple images. In contrast, the professional (P) judges in our study
are aware of a greater variety of techniques, including those used by the Ex-
pert photographers to be distinctive. Therefore it is not surprising that our P
group rates Experts highest, and also shows reasonably good correlation with
skill level. Interestingly, the ratings given by our researcher (R) group have little
correlation with skill. There may be at least two factors at work behind that
result. First, the judges were instructed to rate a photo on composition only,
but that is not easy to do in general. Second, the techniques that Experts (and
photo majors) use may not be appreciated without formal training, as is the
case with other art forms such as painting or music.

5 Conclusions and Future Work

This paper shows that skill in photographic composition is detectable to human
judges from a collection of photographs. It shows that there are clear difference
between ratings given by professional photographers, and those given by imaging
researchers who are clearly interested in photography, but are not practicing
photographers. We also see, as might be expected from the criteria used to rate
the photographs, that there are clear differences between human judges and
computer vision systems.

One interesting aspect of our database, that we have not explored fully, is
the vantage point used for taking the photo. Experts are likely to use unusual
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vantage points to make their photos stand out. Software tools such as Photo
Tourism [9] and Photo Synth (photosynth.net) allow users to combine shots of
a common subject, and to explore vantage points. We plan to investigate how
vantage point varies with skill in future work.
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Abstract. Image formation is the process of computing or refining an
image from both raw sensor data and prior information. A basic task
of image formation is the extraction of the information contained in the
sensor data. The information theory provides a mathematical framework
to develop measures and algorithms in that process. Based on an infor-
mation channel between the luminosity and composition of an image,
we present three measures to quantify the saliency, specific information,
and entanglement of this image associated with its luminance values and
regions. The evaluation of these measures could be potentially used as a
criterion to achieve more aesthetic or enhanced images.

1 Introduction

The human visual system is able to reduce the amount of incoming visual data
to a small but relevant amount of information for higher-level cognitive process-
ing. Different computational models, most of them based on information theory,
have been proposed to interpret the selective visual attention [8,13,2,6,7]. The
biologically-inspired model of bottom-up attention of Itti et al. [8] permits us to
understand our ability to interpret complex scenes in real time. The selection of
a subset of available sensory information before further processing appears to be
implemented in the form of a spatially circumscribed region of the visual field,
called focus of attention, while some information outside the focus of attention
is suppressed. This selection process is controlled by a saliency map which is a
topographic representation of the instantaneous saliency of the visual scene and
shows what humans find interesting in visual scenes.

On the other hand, image formation is the process of computing or refining
an image from both raw sensor data and prior information about that image [9].
The main task of image formation is to extract the information contained in the
raw sensor data to estimate the image. Information theory plays a basic role in
this process: providing a theoretic framework, defining measures of optimality,
developing algorithms, quantifying statistical quality, etc. It can be considered
that image formation corresponds to our common concept of photography.

Instead of analyzing image information from a biologic perspective [8,13,2,6,7],
in this paper we propose a mathematical approach based on an information
channel between the luminosity and composition of that image — two basic
features in photography. From this channel, saliency, specific information, and
entanglement can be computed using different information-theoretic measures
defined in the field of neural systems [5,3,1].

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 122–131, 2011.
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This paper is organized as follows. In Section 2, we review some basic infor-
mation-theoretic measures. In Section 3, we present the information channel and
the splitting algorithm used to analyze the information of an image. In Section 4,
we describe three different measures of information associated to the luminance
values and regions of an image. In Section 5, we show and discuss the obtained
results. Finally, we present the conclusions.

2 Information-Theoretic Concepts

Information theory [4] deals with the transmission, storage and processing of
information, and is used in fields such as physics, computer science, statistics,
biology, image processing, learning, etc.

Let X be a finite set, let X be a random variable taking values x in X with dis-
tribution p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values
y in Y. An information channel X → Y between two random variables (input
X and output Y ) is characterized by a probability transition matrix (composed
of conditional probabilities) which determines the output distribution given the
input.

The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (1)

It measures the average uncertainty of a random variable X . All logarithms are
base 2 and entropy is expressed in bits. The convention that 0 log 0 = 0 is used.
The conditional entropy is defined by

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) =
∑
x∈X

p(x)H(Y |x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability and H(Y |x) =
−∑

y∈Y p(y|x) log p(y|x) is the entropy of Y given x. The conditional entropy
H(Y |X) measures the average uncertainty associated with Y if we know the
outcome of X . H(X) ≥ H(X |Y ) ≥ 0 and, in general, H(Y |X) �= H(X |Y ).

The mutual information (MI) between X and Y is defined by

I(X ; Y ) = H(X) − H(X |Y ) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)
p(y)

. (3)

It is a measure of the shared information between X and Y . It can be seen that
I(X ; Y ) = I(Y ; X) ≥ 0.

The relative entropy or Kullback-Leibler distance between two probability dis-
tributions p = {p(x)} and q = {q(x)} defined over X is given by

KL(p|q) =
∑
x∈X

p(x) log
p(x)
q(x)

, (4)
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where, from continuity, we use the convention that 0 log 0 = 0, p(x) log p(x)
0 = ∞

if p(x) > 0, and 0 log 0
0 = 0. The relative entropy KL(p|q) is a divergence

measure between the true probability distribution p and the target probability
distribution q. It can be proved that KL(p|q) ≥ 0.

3 Compositional Information Channel

Two of the most basic elements of a photograph are composition and luminosity.
In order to analyze their correlation, we use an information channel between the
luminance histogram and the regions of the image. This channel permits us
to investigate, from an information theory perspective, the shared information
between them and, more particularly, the saliency, the specific information, and
the entanglement associated to each luminance value and region (see Sec. 4).

In this section, we review the information channel between the color (in our
case, luminance) histogram and the regions of an image, introduced by Rigau
et al. [10], and then we describe the partitioning algorithm which progressively
splits the image by extracting the maximum information at each step. The infor-
mation channel C → R is defined between the random variables C (input) and R
(output), which represent respectively the set of bins (C) of the color histogram
and the set of regions (R) of the image. Given an image I of N pixels, where
Nc is the frequency of bin c (N =

∑
c∈C Nc) and Nr is the number of pixels of

region r (N =
∑

r∈R Nr), the three basic elements of this channel are:

– The conditional probability matrix p(R|C), which represents the transition
probabilities from each bin of the histogram to the different regions of the
image, is defined by p(r|c) = Nc,r

Nc
, where Nc,r is the frequency of bin c into

the region r. Conditional probabilities fulfill ∀c ∈ C.
∑

r∈R p(r|c) = 1.
– The input distribution p(C), which represents the probability of selecting

each intensity bin c, is defined by p(c) = Nc

N .
– The output distribution p(R), which represents the normalized area of each

region r, is given by p(r) = Nr

N =
∑

c∈C p(c)p(r|c).
According to (3), the MI between C and R is given by

I(C; R) =
∑
c∈C

p(c)
∑
r∈R

p(r|c) log
p(r|c)
p(r)

(5)

and represents the shared information or correlation between C and R.
We now describe a greedy mutual-information-based algorithm [10] which

splits the image in quasi-homogeneous regions. This procedure takes the full
image as the unique initial partition and progressively subdivides it in a bi-
nary space partition according to the maximum MI gain for each partitioning
step. The algorithm generates a partitioning tree for a given ratio of MI gain
I(C; R)/H(C), or a predefined number of regions.

This partitioning process can also be visualized from

H(C) = I(C; R) + H(C|R), (6)
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where R is the random variable which represents the set of regions of the image
that varies after each new partition. The acquisition of information increases
I(C; R) and decreases H(C|R), producing a reduction of uncertainty due to the
equalization of the regions. The maximum MI that can be achieved is H(C). The
more complex the image the further down the regions we have to go to achieve a
given level of information. The rate of the information extraction will depend on
the degree of order in the image. Fig. 1.b.i and Fig. 2.b.i show decompositions
obtained using a MI ratio of 1/3. Observe that the number of regions is much
bigger in the second image because this contains more detailed and contrasted
areas.

4 Image Information Measures

In this section, we study how information is distributed in the image by comput-
ing three different information measures associated with each luminance value
and region. As we have seen in Sec. 3, the MI between C and R expresses the de-
gree of correlation or the information transfer between the set of luminance bins
and the regions of the image. This interpretation can be extended to consider
the information associated to a single luminance value, that is, the information
gained on R by the observation of a intensity value c, and vice versa. To obtain
this information, MI can be decomposed in different alternative ways [5,3,1]. Al-
though many definitions of information are plausible, we present here the three
most “natural” decompositions of I(C; R).

4.1 Saliency

From (3), the MI between color and regions can be expressed as

I(C; R) =
∑
c∈C

p(c)
∑
r∈R

p(r|c) log
p(r|c)
p(r)

=
∑
c∈C

p(c)I1(c; R), (7)

where we define

I1(c; R) =
∑
r∈R

p(r|c) log
p(r|c)
p(r)

(8)

as the surprise associated with the color c and can be interpreted as a measure
of its saliency. Itti and Baldi [7] provide experimental evidence that Bayesian
surprise best characterizes what attracts human gaze. According to Bruce and
Tsotsos [2], certain visual events such as a bright flash of light will almost result
in an observer’s gaze being redirected.

High values of I1(c; R) express a high surprise and identify the most salient
colors. It is important to observe that (8) is as a Kullback-Leibler distance,
I1(c, R) = KL(p(R|c)|p(R)), where p(R|c) is the conditional probability distri-
bution between c and the image regions, and p(R) corresponds to the distribution
of region areas. It can be shown that I1 is the only positive decomposition of
MI [5].
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Similarly, the surprise associated with a region can be defined from the re-
versed channel R → C, so that R is the input and C the output. From the Bayes’
theorem, p(c, r) = p(c)p(r|c) = p(r)p(c|r), the MI (7) can be rewritten as

I(R; C) =
∑
r∈R

p(r)
∑
c∈C

p(c|r) log
p(c|r)
p(c)

=
∑
r∈R

p(r)I(r; C), (9)

where we define

I1(r; C) =
∑
c∈C

p(c|r) log
p(c|r)
p(c)

(10)

as the surprise associated with region r and can be interpreted as its saliency.
Analogous to I1(c; R), high values of I1(r; C) correspond to the most salient
regions.Measures I1 have been previously used to quantify the color and re-
gion information in Van Gogh’s paintings [11]. The measure I1(r; C) has been
also used to evaluate the saliency of a painting, comparing well with Itti-Koch
model [12].

4.2 Specific Information

The definition of specific information I2 was proposed by DeWeese and Meis-
ter [5]. From (5), mutual information can be expressed as

I(C; R) = H(R)−H(R|C) =
∑
c∈C

p(c)[H(R)−H(R|c)] =
∑
c∈C

p(c)I2(c; R), (11)

where

I2(c; R) = H(R) − H(R|c) = −
∑
r∈R

p(r) log p(r) +
∑
r∈R

p(r|c) log p(r|c) (12)

is the specific information of c and expresses the change in uncertainty about R
when c is observed. A large value of I2(c; R) means that we can easily predict a
region given the color c.

Following a similar process for the reversed channel R → C, the specific
information associated with region r is given by

I2(r; C) = H(C) − H(C|r) = −
∑
c∈C

p(c) log p(c) +
∑
c∈C

p(c|r) log p(c|r) (13)

and expresses the predictability of a color known the region. Note that I2(c; R)
and I2(r; C) can take negative values [5].

4.3 Entanglement

Butts [3] proposed another decomposition of MI based on the stimulus specific
information I3. In our framework, this measure, which we call entanglement, is
defined by

I3(c; R) =
∑
r∈R

p(r|c)I2(r; C). (14)
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

Fig. 1. (a.i) Banyoles Lake, Spain [f/16, 1/80, ISO200]. (b.i) Image decomposition
(328 regions, H(C) = 7.890, I = 2.623) of (a.i). (a.ii-iv) I1, I2, and I3 maps from the
channel R → C. (b.ii-iv) I1, I2, and I3 maps from the channel C → R.

A large value of I3(c; R) means that the specific information I2(r; C) of the
regions that contain the color c are very informative.

Following a similar process for the reversed channel R → C, the entanglement
associated with each region is given by

I3(r; C) =
∑
c∈C

p(c|r)I2(c; R). (15)

Similarly to I3(c; R), a large value of I3(r; C) means that the specific information
I2(c; R) of the colors contained in a region r are very informative.

These measures emphasize a univocal relationship between color and regions,
and can be interpreted as the correlation between specific regions and colors.
For instance, a particular color can have a high value because is identified by a
characteristic region. In the same way, a region with a single color that doesn’t
appear in other regions will show a high I3 value. An example could be the
background of an image.

In conclusion, I1, I2, and I3 represent three different ways of quantifying the
information associated to a luminance value c and to a region r. While I1 is
always positive and non-additive, I2 can take negative values but is additive,
and I3 can take negative values and is non additive [5,3,1].

5 Results and Discussion

In this section we analyze the behavior of the I1, I2, and I3 measures, with the
following considerations for each image:

– The color RGB is filtered by the luminance function Y709 = 0.2126R +
0.7152G + 0.0722B.

– The luminance histogram has 256 bins.
– The information channel is based on a MI ratio of 1

3 .
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

Fig. 2. (a.i) Cadaqués’ man [f/8, 1/15, ISO400]. (b.i) Image decomposition (854 re-
gions, H(C) = 7.839, I = 2.613) of (a.i). (a.ii-iv) I1, I2, and I3 maps from the channel
R → C. (b.ii-iv) I1, I2, and I3 maps from the channel C → R.

– The color and region information maps are shown using a thermic-scale
(i.e., the lowest intensity corresponds to the blue and the highest

to the red).
– The outliers are defined outside μ ± 3σ (i.e., three-sigma rule: for a normal

distribution, nearly all values, 99.7%, lie within 3 standard deviations of the
mean).

We can observe the behaviour of our measures in Fig. 1. The channel R → C is
shown in the first row with (a.ii) saliency I1, (a.iii) specific information I2, and
(a.iv) entanglement I3. In the second row we have the channel C → R with the
same measures. In the region saliency map (a.ii), regions with a higher measure
value are the ones with an average color far away from the average color in the
image. These are regions with a low color probability, and hence a high saliency.
More salient parts in the color saliency map (b.ii) are, by order, the clouds,
sky, illuminated water, and foreground tree trunk. The border is clearly defined
between illuminated and non-illuminated water. The region specific information
map (a.iii) represents the predictability of a color given a region. Thus, sky
colors are the most predictive ones, followed by illuminated water colors. The
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

(c.i) (c.ii) (c.iii) (c.iv)

Fig. 3. Chess. (a.i) Image decomposition (489 regions, H(C) = 7.674, I = 2.558) [f/2.8,
1/160, ISO400]. (b.i) Image decomposition (657 regions, H(C) = 7.638, I = 2.546) [f/8,
1/20]. (c.i) Image decomposition (830 regions, H(C) = 7.683, I = 2.560) [f/16, 1/5].
(a-c.ii-iv) I1, I2, and I3 maps from the channel C → R in (a-c.i), respectively.

color specific information map (b.iii) gives us a detailed account of the image
showing a more balanced range of values than the corresponding saliency map.
Finally, observe that the behaviour of the entanglement is similar for regions and
color (a-b.iv) showing a high correlation in the sky and the illuminated water
with their corresponding colors, and a medium correlation in the tree trunk
(most difference is caused by mapping the range to termic scale). In Fig. 2, we
show another set of maps illustrating the behavior of the measures in a portrait.

We use Fig. 3 to comment the relationship of depth of field (DOF) with the
information channel. In general, with high values of DOF, we need a higher num-
ber of regions to extract the same level of information because the image becomes
more clear and sharper, i.e., it contains more information. On the contrary, with
low values of DOF, the image is more blurred, and in general the number of region
decreases due to the fact that there is less information to extract. This results in
more defined and contrasted information maps for a higher DOF.

The interaction of exposure with our three measures is illustrated in Fig. 4.
By overexposing a dark zone, we can uncover hidden information and the num-
ber of regions of the MI decomposition would increase. Otherwise, underexposing
a burned zone, new information might appear and the number of regions would
also increase. In an ideal case of exposure, under or overexposure might hide de-
tails and the number of regions would decrease. In all the cases, our measures re-
flect the changes in the exposure. We show in (a-c.ii) the color saliency maps for
C → R where the salient areas for different exposures can be compared. The color
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

(c.i) (c.ii) (c.iii) (c.iv)

Fig. 4. Queuing in Dali’s Museum, Figueres, Spain. (a.i) Image decomposition (1,543
regions, H(C) = 7.594, I = 2.531) [f/8, 1/400, ISO200]. (b.i) Image decomposition
(1,262 regions, H(C) = 7.060, I = 2.353) [underexposure 1/800]. (c.i) Image decom-
position (1,880 regions, H(C) = 7.752, I = 2.584) [overexposure 1/200]. (a-c.ii-iv) I1,
I2, and I3 maps from the channel C → R in (a-c.i), respectively.

specific information (a-c.iii) and entanglement maps (a-c.iv) are also depicted.
Note for example how a lot of details appear in the left-bottom (people) and right-
top (window) of the image when we overexpose the image (c.ii-iii), while the
details of these areas disappear when we underexpose them (b.ii-iv). In the en-
tanglement map, high correlations are shown in the case of overexposure (c.iv).

6 Conclusions

We have presented here three information-theoretic measures for saliency, spe-
cific information, and entanglement of luminance values and regions in an image.
These measures extend previous work done on the study of artistic style in paint-
ings, and are based on the information channel between colors and regions in
the image, quantifying the correlation between color and compositional charac-
teristics of the image. We have also shown how the information channel reflects
changes in DOF and exposure. At this stage, we have only evaluated qualita-
tive visual 2D results in order to show the behavior of these new measures and
specially the informativeness associated to each color of the image. We believe
that our measures represent an improvement in the understanding of the infor-
mation contained in an image, and can have potential applications in several
areas, as artistic style classification and image enhancement. Future work will
be addressed to statistically analyze the results for a wide range of images and
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different levels of image decomposition. Further work will be done to identify
which approach (I1, I2, or I3) is the most appropriate in any particular case or
how the different results might be combined.
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Abstract. This study proposes techniques for detecting unintentional protruding 
objects from a subject’s head in environmental portraits. The protruding objects 
are determined based on the color and edge information of the background 
regions adjacent to the head regions in an image sequence. The proposed 
algorithm consists of watershed segmentation and KLT feature tracking model 
for extracting foreground regions, a ROI (Region of Interest) extracting model 
based on face detection results, and a protruding object detection model based 
on the color clusters and edges of the background regions inside the ROI. 
Experimental evaluations using four test videos with different backgrounds, 
lighting conditions, and head ornaments show that the average detection rate 
and false detection rate of the proposed algorithm are 87.40% and 12.11% 
respectively.  

Keywords: Photo Composition, Protruding Object, Computational 
Photography. 

1   Introduction 

Beyond the lighting and chromatic aspects, it is well known that the composition, i.e., 
the arrangement of visual elements in the image frame, is also an essential aspect in 
the creation of quality photos. Although there are no absolute rules exist that ensure 
good composition in every context, there are various heuristic rules-of-thumb, such as 
‘‘rule of third”, that help to achieve an aesthetic appealing photo composition when 
applied properly. Such rules are routinely applied as guidelines likely to increase the 
aesthetic appreciation of photographs.  

Aiming to develop advanced intelligent digital cameras, there have been 
commercial interests these years to develop digital still camera with ‘‘composition 
advising” functions (e.g., [2][3]). A number of research studies have also devoted 
towards this goal. For example, [14] developed an intelligent system that positions the 
features of interest in an automatic robot camera using the rule of thirds. [1] 
developed computational models of photographic aesthetics and a system that aids the 
user to select the optimal composition of a given scene. [13] developed computational 
models for visual balance/symmetry for photos overlaid with texts. Overall speaking, 
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incorporating composition advising functions in a digital camera often require 
sophisticated visual object recognition and aesthetic computing techniques.  

Beyond those widely-applied photo composition rules, there are also certain 
common photographic “mistakes” that may degrade the aesthetic appeal of photos, 
including tilted horizon, unintentional dissection lines, unintentional amputation, 
protruding objects from a subject’s head, unwanted distracting objects in a scene, etc. 
Avoiding these mistakes is particularly critical when taking environmental portraits, 
which often focus both on the main subject and on their surroundings backgrounds 
that provide more character to the subject. A protruding object in an environmental 
portrait usually refers to objects such as trees, street lights, windows frames or 
steeples which protrude abruptly from the head regions. Examples of environmental 
portraits with unintentional protruding objects are shown in Fig. 1. Certainly, it is 
preferred if the camera can automatically cut down the harshness of the protruding 
objects by using a smaller depth of field to lessen its impact, or simply provide 
warning messages to advice the photographer to eliminate the object by moving 
around the camera.  

 

Fig. 1. Examples of an unintentional protruding object in an environmental portrait 

In line with [4], aiming to develop intelligent composition-advising functions to 
avoid common photography compositional mistakes, this study aims to develop 
algorithm for the detection of protruding objects in environmental portraits. This study 
focuses on applications where the camera is mounted a tripod and the vibration of 
human hand is not concerned. The rest of this paper is organized as follows. Section 2 
describes algorithms for automatically detecting protruding objects. Section 3 describes 
experimental results conducted to evaluate the performance of the proposed algorithms. 
Conclusions are given in Section 4. 

2   Algorithm for Protruding Object Detection 

From a single image frame, it is difficult to develop algorithms to distinguish between 
a protruding object which always stays in the background and head ornaments 
moving along with the subject’s head (e.g., the hat shown in Fig. 1(b)). Therefore, it is 
favorable to develop such algorithms based on sequence of images. This study 
assumed that the photographer previews and records an image sequence using a video 
camera when taking photos. The camera is assumed to be stationary (as is hold in a 

 
(a) 

 
(b)
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tripod) such that the background region changes merely slightly and slowly as 
compared to the subject’s motions in the scene. In this way, information of the 
subject’s motion can be conveniently applied to segment the foreground regions 
which refer to the subject together any objects, such as hat or adornments, moving 
alongside with the subject’s head. After the foreground regions and the ROI (Region 
of Interest) is extracted, the protruding objects can be determined based on the color 
and edge information of the background regions inside the ROI. 
 

 

Fig. 2. Flowchart of the protruding object detection algorithm 

The proposed protruding object detection system consists of three major modules: 

1) Foreground region detection module: for extracting candidate foreground 
regions in the images.  
2) Face detection module: for extracting ROI based on the face region detected by 
face recognition techniques.  
3) Protruding object classification module: for classifying protruding objects based 
on the edge numbers and color clusters of the background regions inside the ROI. 

The flowchart of the algorithm is shown in Fig. 2 and will be elaborated in the 
following subsections. 

2.1   Foreground Region Extraction  

Overall, an intra-frame and an inter-frame foreground region detection processes are 
developed and integrated for reliably detecting foreground regions. Assuming a 
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stationary camera setting, the Watershed segmentation algorithm [6][7] and KLT 
(Kanade-Lucas-Tomasi) feature tracking algorithm [8][9] can be applied to detect 
moving image blocks and thereby determine the background regions and the intra-
frame foreground regions. In addition, an adaptive background subtraction method 
[10] is incorporated to further improve the detection rate. The background subtraction 
method can automatically develop a self-update reference background model to 
determine the inter-frame foreground regions. Since the background subtraction uses 
more than one image frames to determine the foreground regions, it is referred to as 
the “inter-frame” foreground detection process. Details of these detection procedures 
are elaborated in the following. 

2.1.1   Intra-frame Foreground Region Detection 
The intra-frame foreground detection process consists of the following three 
procedures. 
 

1) Watershed algorithm is first applied to segment images. A pre-processing 
Gaussian filter is used to smooth images in order to avoid over-segmentation 
caused by watershed algorithm.  In addition, a mathematical morphology filter is 
applied for post-processing segmented images to deal with cluttered scenes. The 
segmented regions with the same watershed label are drawn in the same color as 
shown in Fig. 3(a).  
2) KLT feature tracking algorithm is applied to detect favorable feature points at 
corners or edges of objects in the image. Motions of features in an image stream are 
calculated based on these feature points. We extract pixels with 5×5 masks 
centering the feature points with the same watershed label as the candidate 
foreground regions. Examples of KLT features and the candidate foreground 
regions are shown in Fig. 3(b) and 3(c) respectively. 
3) The foreground colors are modeled using a Gaussian Mixture Model (GMM) 
with five Gaussian components. The mean and the standard deviation parameters 

]     [ i
gb

i
gg

i
gr

i
gb

i
gg

i
gr σσσμμμ

 
of the foreground colors in Gaussian component i for 

each R, G and B channel are estimated. The foreground color model is constantly 
updated in real time by using simple recursive updates [10]. In practice, since 
computing the GMM probability of every pixel in the image is rather time 
consuming, a simplified method is adopted in this work to speed the foreground 
detection process. In the simplified method, the foreground color model is used to 
segment the intra-frame foreground regions based on the following criterion. 

{ }, ,, ),,min(3 if ,1)( bgrcxxF cam
i
gc

i
gccraint ∈⋅<−= σσμ    (1)

 

where x is the current pixel to be compared to the model, i is the index of a 

component of the GMM, and camσ  is the variance of the camera noise. If any 

color channel of a pixel fits either one of the components of the GMM, it is 
regarded as a foreground pixel. In practice, for a stationary camera setting, it is not 
necessary to train GMMs frame by frame because typically there is no significant 
change between adjacent image frames when taking environmental portraits. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Watershed segmentation result; (b) KLT feature points; (c) extracted foreground 
regions following watershed segmentation and KLT feature point extraction 

2.1.2   Inter-frame Foreground Region Detection 
Since the above intra-frame foreground detection algorithm may often falsely include 
various static pixels in the background regions, an adaptive background subtraction 
method [10] is applied in this study to further improve the detection accuracy. The 
adaptive background subtraction model applies both RGB color model and 
chromaticity model. Given the means and variances of the RGB model denoted by 

]     [ bgrbgr σσσμμμ , and means and standard deviations of the chromaticity model 

denoted by ]   [
cccc grgr σσμμ , the adaptive background subtraction model is calculated 

according to the following: 

{ }bgrcxxF camcccrgb ,, ),,max(3 if  ,1)( ∈⋅>−= σσμ
 
, (2) 

{ }cccamcccchroma grcxxF  , ),,max(3 if ,1)( ∈⋅>−= σσμ
 
, (3) 

 

where the chromatic values are computed as 
bgr

r
rc ++

=  and 
bgr

g
gc ++

= , 

respectively.  
Using Frgb and Fchroma to remove falsely detected static pixels in Fintra and patch 

pixels with obvious chromaticity change, the final fused foreground region F is 
calculated by ( )chromargbraint FFFF ∪∩= . Results of the proposed foreground 

detection algorithm to drive complex silhouettes are shown in Fig. 4. Notably, a 
sudden change of environmental illumination may lead to false detections as shown in 
the second column of Fig. 4. However, integrating the intra-frame and inter-frame 
foreground detection results can reduce the false detections. 
  

Fig. 4. First row: original images. Second row: foreground detection results. 
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2.2   Estimating the Region of Interest (ROI) 

In principle, the ROI for detecting objects protruding across the head region of the 
subject can be approximated based on the subject’s face region. Viola-Jones  
face detector [11] is applied in this study to estimate the face region. The output of the 
face detector is a list of rectangular regions circumscribing the detected potential face 
regions. The ROI for protruding objects is specified as a rectangular region slightly 
larger than the face region (as shown in Fig. 5a). As such, potential protruding objects 
adjacent to both top and side regions around the head are properly attended to. An 
example of the face detection result and the corresponding ROI are shown in Fig. 5.  
 

   
(a) (b) (c) 

Fig. 5. (a) ROI template; (b) the face detection result is circumscribed by a green rectangular; 
(c) the corresponding ROI for protruding object detection is circumscribed by a yellow 
rectangle 

2.3   Estimating the Protruding Objects 

In general, a ROI of an image frame with protruding objects should have more edges 
and color clusters than ROIs of adjacent frames without any protruding objects. 
Therefore, after the foreground regions and the ROI are extracted, whether there is a 
protruding object is determined based on the color and edge information of the 
background regions inside the ROI. To get the background regions inside the ROI, the 
foreground region is first masked on the ROI. Further, mimicking the typical shape of 
a face, an elliptic mask which is centered on the detected face region is used to 
compensate possible fragile foregrounds computed.  

For obtaining the edge features, Canny edge detector [12] is applied to detect the 
edges inside the ROI. Define Epixs as the number of edge pixels in the current frame t, 
and Epre_pixs as the number of edge pixels in the previous frame (t-1). For each image 
frame, an adaptive base value of the number of edge pixels, denote by Ebase , is used 
for estimating the likelihood of existence of a protruding object. Heuristically, Ebase is 
constantly updated every 5 frames as follows: 
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The value of Ebase represents an estimate of the number of edge pixels inside the 
face region. When the number of edge pixels inside the ROI increased, it signifies that 
the face region of the subject may be approaching a protruding object.  Therefore, an 
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overestimate of Ebase will increase the protruding object detection rate.  At the 
beginning, Ebase is initialized as zero so that it will be updated as Epixs of the first 
image frame according to equation (4). When the number of edge pixels is increasing 
(i.e., Epixs - Epre_pixs > 0) and Ebase is greater than Epixs, it means that the number of edge 
pixels in the ROI is overestimated and should be reduced.  Likewise, when Epixs is 
decreasing and Ebase is greater than Epixs, Ebase has to be reduced too.  However, if 
Epixs is decreasing and Ebase is smaller than Epixs, then it may indicate an underestimate 
of Ebase. Therefore, when Epixs is decreasing, update equation is defined as shown in 
equation (4). 

For obtaining the color features, the color ROI image is quantized into 16 bins to 
be able to effectively compute the number of colors in subsequent processes. Given 
the number of ROI pixels other than the foreground and elliptic mask as colorall, and 
the number of pixels in each bin as colori, [ ]16 ,1∈i , we increase the number of color 

clusters cluster by one if (colori /colorall > 0.2) is true.  
The system then determines whether the object is a protruding object or not 

according to the number of edge pixels and color clusters based on the following 
criterion: 
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pixs∩2 if true,object protruding . 
(5) 

 

The heuristic threshold value th was set to 1.2 with which the obtained average 
detection rates in our initial evaluation experiments appeared to be satisfactory. 
Example frames with detected protruding objects are shown in Fig. 6. 

 

  
(a) (b) 

Fig. 6. Two example video frames showing detected protruding objects. The face region is 
circumscribed by a rectangular. 

3   System Evaluations and Analysis 

The proposed protruding object detection algorithm was tested on four video 
sequences shot with cameras mounted on a tripod. The background in each video 
changes slowly relative to the motions of the main subject in the scene. Section 3.1 
describes the testing data set. Evaluation experiments and effectiveness analysis are 
presented in Section 3.2 and Section 3.3 respectively. 
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3.1   Data Set 

We recorded four video sequences in a variety of scenes as shown in Fig. 7. The 
videos are designed to evaluate the performance of the proposed algorithm in scenes 
with different backgrounds, lighting conditions, and large-size head ornaments. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Four different test scenes: (a) indoor; (b) outdoor with a pure background; (c) outdoor 
with a cluttered background; (d) subject with afro hair. 

3.2   Evaluations 

The performance of the proposed protruding object detection algorithm was evaluated 
by comparing the system outputs with the ground-truth data using the four 
performance measurements listed in Table 1.  

Table 1. Four performance measurements applied in the system evaluation experiments 

 
Image Frames with Protruding 

objects 
Image Frames w/o Protruding 

objects 
Detected True Positive (TP) False Positive (FP) 

Non-detected False Negative (FN) True Negative (TN) 

 
The detection rate (DR) and the false detection rate (FDR) are calculated 

respectively based on the following formulas: 
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+
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Since the protruding object detection is based on the face detection results, (TP+TN) 
is the number of frames with face detected in the video sequence. The average 
detection rate and false detection rate of these four different test scenes are denoted as 
DRall and FDRall. Evaluation results are presented in Table 2. The results show that, 
the detection rate and false detection rate for the four test video ranges from 74.00% 
to 95.24% and from 0% to 27.59%, respectively.   
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Table 2. Evaluation results for different videos 

 Indoor scene 
Outdoor scene with  
simple background 

Outdoor scene with  
cluttered background 

Subject with  
Afro hair 

DR 90.91% 74.00% 95.24% 89.47% 
FDR 17.95% 0.00% 2.90% 27.59% 
DRall 87.40% 

FDRall 12.11% 

4   Conclusions and Future Works 

This study applies computer vision and image processing techniques to develop an 
intelligent composition-advising function for automatic detection of protruding 
objects when shooting environmental portraits. The protruding object detection 
system consists of a foreground region detection module, a face detection module and 
a protruding object classifier. Experimental evaluations show that the detection rate 
and false detection rate of protruding objects in the test videos are around 88% and 
12%, respectively. Ongoing works are currently underway to improve the current 
techniques with further concerns on the vibrations of hand-held cameras. 
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Artist-Led Suggestions towards an Approach in

Content Aware 3D Non-photorealistic Rendering

Martin Constable

School of Art Design and Media, Nanyang Technological University, Singapore

Abstract. Referencing practice in traditional drawing, the author at-
tempts to expand upon the knowledge landscape informing current ap-
proaches in 3D NPR rendering and thereby to indicate possible areas
for fruitful enquiry. The author presents three examples of drawing prac-
tice: incomplete perimeters, lines that suggest form and lines that suggest
color. Each case is accompanied by examples of drawings from modern
or pre-modern artists. A need for a content-aware approach to rendering
is indicated. Informing this enquiry is the fact that the author taught
drawing for 20 years before working with computer engineers on 3D NPR
rendering.

1 Introduction

In his ongoing collaboration with the computer graphics engineers of Nanyang
Technological University the author has been fascinated and humbled by their
examination of drawing from a fundamental point of view.

Drawings are objects that have been left behind by the process of their man-
ufacture and they do not lend themselves easily to being reverse engineered.
Learning the rules of drawing by examining these artifacts is a bit like learning
chess by staring at a chess board.

Artists can help with this investigation. They can illuminate a drawing with
insights into the process behind its manufacture. Some aspects of drawing prac-
tice are natural such that even a child could grasp them. Others are entirely
unnatural in that they can only be known if they have been taught. The biggest
thing that an artist who has been trained in the western classical manner has to
learn is how to move the form of the drawing from the flat of the paper into the
illusional volume of the picture space.

In this paper some of these formal aspects are examined: incomplete perime-
ters, lines that suggest form and lines that suggest color are examined. These
three aspects of drawing practice have been chosen because they all require an
understanding of drawing informed by a 3D spatial context.

2 Lines That Describe Incomplete Perimeters

The profile or ’outline’ of an object is a formal attribute that we first encounter as
children when we are moving from what G. H. Luquet describes as the scribbling

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 142–151, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. From the Scribbling stage to the Schematic stage: the development of an aware-
ness of perimeter in children’s drawings as outlined by the work of G H Luquet

Fig. 2. 3D rendering of a head showing an invisible edge where the foreground and
background are of the same lightness value

stage of drawing to the schematic (Fig. 1). Having discovered the perimeter as
children, novice artists are very reluctant to let go of it and will draw it even
when it is clearly not there.

Consider the model of the head in Fig. 2: because the forehead and cheek areas
of the head are the same lightness value as the wall against which they are situ-
ated, their profile is invisible. However, the author has yet to encounter a drawing
student who does not complete the profile whether it is apparent or not.

An experienced artist will often break or soften a profile to the point where it is
very faint or altogether invisible. In Fig. 3: the far side of the sitter’s face is barely
discernable. Besides being (perhaps) a true response to the light conditions at the
time of the portrait sitting, this strategy also serves an aesthetic purpose. Broken
lines within a drawing’s perimeter can create a sense of air flowing through the
drawing and avoid the impression of flatness that a drawing with a complete
perimeter often has.
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Fig. 3. ’Portrait of the Fox Madox Brown’ (detail), Rossetti Dante, 1860 (showing
barely discernible perimeter line of far side of face)

Another case is presented in Fig. 4 where the artist has drawn into the back-
ground that immediately borders the face. He has done this so that the relative
lightness of the face to the background is apparent. Though this drawing looks
very different from Fig. 3, we can see the same loss of perimeter where the dark-
ness under the nose meets the darkness of the background. This loss of perimeter
forces the volume of the head into the background and thereby increasing the
sense of form. As a comparison Fig. 5 present what that portion of the drawing
would look like were the perimeter complete.

2.1 Proposal: A Light Aware NPR

A 3D NPR rendering algorithm draws a perimeter line round an object that is
invariably derived from a straightforward relationship between the camera and
the geometry of the object. However, as has been demonstrated, this perimeter
is not sacrosanct to drawing and its loss can be advantageous to a spatial reading
of the form.

In the paper ’Coherent Stylized Silhouettes’ [1] Robert D. Kalnins and Philip
L. Davidson et. al. describe a way to render stylized silhouettes. Using this
approach broken perimeter lines are possible.

However, unlike the broken perimeters shown in figures Fig. 3 and Fig. 4,
their result does not derive from the position of the light, nor the light value
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Fig. 4. Detail of ’The Architect
Andr?-Marie Chatillon, Jean-Auguste-
Dominique Ingres, 1860

Fig. 5. Fig. 4 with the perimeter of the
nose completed by the author

relationship between the background and the foreground. The lines that they
produce are a stylistic veneer placed on top of the form geometry, though no less
interesting for it.

The author proposes a 3D NPR rendering algorithm that take a lead from
the artist’s awareness of relative lightness values between the foreground and the
background. A prime need of such a shader is that it must be aware of where the
light is. In their paper ’An Effective Illustrative Visualization Framework Based
on Photic Extremum Lines (PELs)’[2] Xuexiang Xie, Ying He et. al. have done
productive work on this subject (Fig. 6). However, their rendering algorithm is
still done in ignorance of the relative light value relationships between the object
and its environment.

Fig. 6. Showing lines rendered in response to the lighting conditions using the proce-
dure outlined by Xuexiang Xie, Ying He et. al. in ’An Effective Illustrative Visualiza-
tion Framework Based on Photic Extremum Lines (PELs)’. Notice how the lines are
following the form of the shadows, not just the geometry.
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2.2 Lines That Suggest Form

In their study ’Where Do People Draw Lines?’[3] Forrester Cole et. al. showed
that there was a reasonably straightforward correspondence between the lines
that a person draws when depicting a piece of regular, hard-edged geometry and
the exterior and interior occluding contours of that geometry (Fig. 7).

However, this linear relationship is not sustained when the geometry is less
regular and more organic. In such instances some of the lines were suggestive
of the form rather than descriptive (Fig. 8). In drawing and painting practice
suggestion is usually used when the detail of a form is too complex to depict.
In ’Programmable Rendering of Line Drawing from 3D Scenes’ by Stephane
Grabli and Emmanuel Turquin this quality is called indication and is described
as resulting from a pruning of detail.

Fig. 7. Drawing (left) and 3D model
geometric style source shape (right)
from Where Do People Draw Lines?,
Forrester Cole et. al.

Fig. 8. Drawing (left) and 3D model
organic style source shape (right) from
Where Do People Draw Lines?, For-
rester Cole et. al. showing depiction in
line (A) and suggestion in line (B).

In the drawing ’The Rocks’ (detail Fig. 9) by Van Gogh the profile of the fore-
ground against the sky is clearly visible. As a descriptor of the form it functions
efficiently. However, the marks within the drawing that represent rocky ground
(Fig. 10) have a more suggestive relationship with form and look almost abstract
up close.

Proposal: A Suggestive Line Multi-Object NPR. Suggestive lines are not
new in NPRs. In ’Suggestive Contours for Conveying Shape’[4] M. A. Kowalski
et. al. describe a way to combine contours and suggestive contours to enable an
NPR render to draw complex undulations in form.

However, its success is limited to the rendering of single objects. It would
therefore only work if the many rocks and plants depicted in the Van Gogh
drawing detailed in Fig. 10 were a single object.

The author proposes a 3D NPR rendering algorithm that can be applied to
many objects yet react as a single thing.

In the case of a small drawing of a large crowd of people where each person is
a separate piece of geometry (Fig. 11), the figures are small enough in relation
to the size of the drawing and are numerous enough to appear as a single mass.
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Fig. 9. Detail of ’The Rocks’, Vincent
Van Gogh, 1888. Note the clear perime-
ter lines.

Fig. 10. Detail of ’The Rocks’, Vincent
Van Gogh, 1888. Note the suggestive
lines.

Fig. 11. Simulated result from a Suggestive Line Multi-Object NPR showing complete
perimeter round general mass of figures and suggestive lines within the perimeter. Also
showing complete perimeter around an isolated figure.

The proposed algorithm would draw a collection of lines inside of this mass that
suggest the people without depicting them individually. However, the perimeter
of the mass would be drawn as a complete line. If a single figure walked away
from the crowd, then the algorithm would change strategy to draw the entirety
of this particular figure’s perimeter.

2.3 Lines That Suggest Color

The texture of a line can be varied in many ways depending on the medium
involved. The lines left behind by a pencil can be changed by dragging the pencil
sideways, using it fast, using it slow, pressing it down hard, using it blunt, using
it sharp etc. However, the lines of novice artists are usually simple and ’binary’
in their nature (i.e. line/not line) and do not vary much in their lightness or
texture.
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To address this issue the author would set his students the task of drawing
from imagination the difference between two objects that are identical in every
way except their hue.

In order to successfully complete this exercise the lines must be able to convey
values of difference other than just lightness.

To help them he would show them the drawings of great colorists like Bonnard
or Delacroix whose drawings both display a clear correspondence between line
and color. In the study (Fig. 12) for the mural ’Attila, Followed by the Barbarian
Hordes, Trample on Italy and the Arts’ Delacroix has varied the lines around
the back of the horse. This variation is more than just tonal. They vary in the
following ways:

– Pen pressing down on the paper hard and vertically1 to produce a wide mass,
with a wet and heavily pigmented ink load

– Sharp, diagonal masses of lines with a quite dry and very heavily pigmented
ink load

– Diagonal lines2 with a faint watery ink load
– Single marks, wet load and low pigmentation

Fig. 12. Study for Attila, Followed by
the Barbarian Hordes, Trample on Italy
and the Arts, Eugene Delacroix, 1843-
1847.

Fig. 13. Annotated detail of Attila,
Followed by the Barbarian Hordes,
Trample on Italy and the Arts, Eugene
Delacroix, 1843-1847: with A being a
warm area of color and B being a cool
area.

If we examine a detail of the painting (Fig. 13) we can see that the warm,
burned umber of flank area A has been contrasted with the cold, raw umber of
flank area B. This instituting of a contrast along the warm/cool axis of a painting
1 A vertical pen line produces a wide mark.
2 A diagonal pen line produces a thin mark.
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Fig. 14. The red stripes in images A and B are identical in HSL value yet they register
differently in the relative hierarchies of the images. The drawings C and D clearly
preserves this difference.

is a classic ploy to that has been used by artists for hundreds of years. There is
a clear correspondence between these areas in the painting and the line masses
A and B in the preparatory drawing. In both the drawing and the painting
these areas are approximately the same lightness value and hold their difference
through a value other than lightness. In the drawing it is the sharpness of the
lines that distinguish them from each other, in the painting it is the temperature
of the color.

Proposal: Lines for Colors. In ’Programmable Rendering of Line Drawing
from 3D Scenes’ a [5] technique is described that enables the automatic calcu-
lation of lines that are the same color as that of the material. However, this is a
literal ’like for like’ approach that does not take advantage of drawing’s strength
as a vehicle of symbolic signification.

At its simplest a color aware 3D NPR rendering algorithm might render lines
as simple linear equivalents for color (e.g. red = sharp and thin line). However,
a more complex approach would be for it to be ’aware’ about color within a
drawing as a set of relative relationships that express the three values: hue,
saturation and lightness in a triangular and dynamic relationship to each other.
Such a 3D NPR render would not depict an absolute relationship between a
color and a drawing mark but a relative one. In Fig. 14 the red stripes in A
and B are identical. However, their relative position in the color hierarchies of
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Fig. 15. The relative white of the piece
of paper A against the piece of paper
B.

Fig. 16. The sheets of paper from Fig.
15 isolated against black.

the drawings are different. This difference is preserved in the drawings C and D,
where the two reds are drawn in different ways.

3 Conclusion

Though light, detail and color have been covered separately in this paper, the
one thing that unites them all is that artists consider these values not as relative
but absolute. This relativity is often a complex and nested thing as illustrated
in Fig. 15:

– The sheet of paper A is lighter than the tabletop B (local relation)
– The sheet of paper C is lighter than the floor D (local relation)
– The area beneath the table is darker than the area on top of the table (global

relation)

A consequence of this last fact is that the sheet of paper C is darker than the
sheet of paper A. This can be seen more clearly if the papers are separated as
in Fig. 16. However, a novice is almost certain to depict both sheets of paper as
pure white.

A notable point needs to be made to the novice student at this point: that all
the values in a painting or a drawing exist relative to each other and that this
relationship is complex. Furthermore, everything to which a value can be affixed
is subject to this simple principle including, hue, texture, depth, detail, appar-
ent movement, narrative elements etc. When teaching drawing, this primacy of
considering all values relatively is an important enough principle to bring up on
the first day of teaching, and to be re-iterating on the last.

A consideration of relative values can not be made without a consideration
of the scene. In fact, a scene can be defined as being a set of interconnected
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relative values and the 3D NPR strategies proposed in this paper all need to be
aware of these interconnected values in order to function. It is proposed that for
its similarity to the way that artists formulate their drawings, a content-aware
approach presents an avenue for fruitful future realms of enquiry into 3D NPR
rendering.
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Ground Truth Evaluation of Stereo Algorithms

for Real World Applications

Sandino Morales and Reinhard Klette

.enpeda.. group, Dept. Computer Science, University of Auckland, New Zealand

Abstract. Current stereo algorithms are capable to calculate accurate
(as defined, e.g., by needs in vision-based driver assistance) dense dispar-
ity maps in real time. They have become the source of three-dimensional
data for several indoor and outdoor applications. However, ground truth-
based evaluation of such algorithms has been typically limited to data
sets generated indoors in laboratories. In this paper we present a new ap-
proach to evaluate stereo algorithms using ground-truth over real world
data sets. Ground truth is generated using range measurements acquired
with a high-end laser range-finder. For evaluating as many points as pos-
sible in a given disparity map, we use two evaluation approaches: A direct
comparison for those pixels with available range data, and a confidence
measure for the remaining pixels.

Keywords: Performance evaluation, stereo algorithms, laser range finder.

1 Introduction

Vision-based stereo algorithms are designed to generate three-dimensional (3D)
information from two-dimensional (2D) data recorded with two or more video
cameras. State-of-the-art stereo algorithms are capable to perform in real-time
“accurate” disparities for almost all the points visible in the input images. Cur-
rent applications for stereo algorithms, among many others, are vehicle naviga-
tion (robots [17], forklifts [21], wheelchairs [20], and so forth) or industrial safety
equipment.1

We are interested in the evaluation of stereo algorithms in the context of
vision-based Driver Assistance Systems (DAS) [11] for improving those tech-
niques. DAS requires that the detection of depth is accurate on every road,
under all kinds of weather conditions, and in any traffic context. Therefore,
stereo algorithms need to be evaluated in the real-world, and not only on data
representing a few seconds of recording but hours or days.

The evaluation of stereo algorithms is either based on ground truth data,
allowing direct comparisons between true disparity values and those obtained
with the algorithms; or it is performed in the absence of ground truth using
various ideas for still ensuring some kind of objective testing. For real-world
video data it is the ultimate goal to provide ground truth as well. Synthetic
1 http://www.pilz.com/products/sensors/camera/f/safetyeye/
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(i.e., computer generated stereo pairs) or engineered (i.e., images captured under
highly controlled conditions, using structured light for generating ground truth)
data do have their own characteristics [8], and do not cover the “challenges” as
occurring in real-world data.

Real-world data do not come (typically) with ground truth. Therefore, di-
verse methods have been proposed to evaluate the algorithms even in absence of
ground truth. In [1], the evaluation was done by measuring the number of suc-
cessfully matched pixels using a left-right consistency check [9]. Some authors
used an extra image (e.g., prediction error in [23]) or a third video sequence
(see the third view in [15]) as ground truth. Confidence measures are another
example of evaluation in the absence of ground truth [6,16]. The idea is to mea-
sure the reliability of the calculated disparity value for each pixel. Techniques,
specifically designed for DAS, were proposed in [14,22]; these evaluation schemes
can only be applied if some conditions are satisfied in the recorded scenes.

We generate ground truth using precise depth measurements acquired with
a laser range-finder (LRF). The generation of ground truth (or of accurate 3D
models) using LRF’s has been investigated before [2,10,17]. However, those pub-
lications do not report about the evaluation of stereo algorithms using laser
range data. Stereo algorithms are discussed together with laser range data in
[19] at selected feature areas.

The evaluation scheme in this paper analyzes stereo algorithms on recorded
video sequences based on available ‘sparse’ (but uniformly distributed) ground
truth and also applying a confidence measure for dealing with the ‘gaps’. We use
Velodyne’s HDL-64E S2 range-finder [24]. For the distance interval of interest
(about 5 to 120 m), the available accuracy is defined by possible errors of less
than 10 cm (the producer even sees the error at 1.5 cm at most in 5 to 120 m).

The obtained range data are insufficient for evaluating an entire dense dis-
parity map, e.g. a VGA image has 640 × 480 = 307, 200 pixels, and the used
LRF generates up to 24,000 points in the field of view of the reference camera
in our stereo set up; see Fig. 1. Thus, we combine two approaches for the evalu-
ation. If ground truth data are available at a specific pixel, we perform a direct

Fig. 1. Sample image showing combined laser range-finder and image data. Ground
truth points (i.e., points acquired with the laser range-finder) are color encoded from
red (for close) to green (for further away).
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comparison between the calculated disparity value and the ground truth. For the
remaining points, we use a geometrical approach using “close” range readings
to generate a confidence measure. This approach allows us to evaluate stereo
algorithms for outdoor real-world data based on true measurements. Data sets
can be recorded in all kinds of weather where the LRF will work in, or road
conditions.

The main contributions of this paper are the measures proposed to evaluate
dense algorithms against sparse (less than 10%) ground truth. The data provided
contain sub-pixel accurate ground truth for real-world scenes, and this was not
available prior to the use of a laser range-finder. This data set has been made
publicly available for future research considerations, see [4].

The structure of this paper is as follows. In Section 2 we present the pro-
posed approach. We continue with experiments in Section 3, and finalize with
conclusions in Section 4.

2 Approach

We generate sparse ground truth disparity maps with the LRF, and perform the
evaluation by fusing a direct comparison approach (where true values from the
LRF were available) and a confidence measure (for the remaining points). See
Fig. 2 for a flow chart of the proposed approach.

Ground Truth Disparity Map Generation. We record range data of the
surrounding environment of the ego-vehicle (i.e. the vehicle carrying the stereo
camera and the LRF) using a high-end LRF [24]. The provided accuracy data
(precision of 1.5 centimeters within a range from one to 120 metres) needs to be
slightly corrected, and 10 cm can be used as an upper bound in our experiments.

The rotational architecture of the LRF allows us to obtain readings from 64
lasers in a full 360◦ rotation. Its optimum resolution (depending on the rotational
speed) is of 0.09◦ (horizontal) times 0.4◦ (vertical). The vertical field of view of
26.8◦ provides sufficient information for modeling the road and the objects that
would be of interest in a driving scene.

Fig. 2. Flow chart of the used approach

Assume for now that the coordinate systems of the LRF and the stereo camera
have been calibrated and aligned. Then, we are able to project the output of the
LRF (a set of 3D points) onto a 2D image G using the (internal) parameters of
the stereo camera. The ground truth disparity value G(x) of a pixel x ∈ G is
defined by
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G(x) =
f · b
Z(x)

(1)

where f denotes the focal length of the stereo camera, Z the distance from the
camera (at pixel x) in the depth direction, and b is the distance between the
optical centers of the cameras (the length of the baseline). For pixels where
there is no distance measure available, a distinctive negative value is assigned
(as disparity values are strictly positive). For the images that we use for our
experiments (i.e., 1024 × 334 ≈ 342, 000 pixels), we are able to obtain ground
truth values for almost 7% (about 24,000) of the pixels. These are the only points
we are able to perform a direct comparison.

In the context of DAS, the final goal is to analyze the performance of stereo
(or any) algorithms in outdoor dynamic environments. Thus, it does not make
sense to scan the same scene multiple times to get more range readings. Instead,
we use the available measurements to generate a confidence measure to evaluate
the remaining points.

Direct Comparison. Where range data is available we use the percentage
of badly calculated pixels (BCP) as quality metric. Let D be a disparity map
obtained with a given stereo algorithm, and G the generated ground truth image.
Let Ω denote the set of pixels in G and D such that G(x) > 0 (i.e., pixels with
a valid measurement from the LRF) and D(x) > 0 (i.e. pixels with invalid
disparities were also identified with a negative value). Let T be a predefined
tolerance threshold, and

δ(x) =

{
1, if |G(x) − D(x)| ≥ T

0, otherwise
(2)

Then, the BCP of D is as follows:

B =
100%
|Ω|

∑
x∈Ω

δ(x) (3)

where | · | denotes the cardinality of a set.
Confidence Measure. To complement the direct comparison (i.e., to eval-

uate also points where no range data are available), we use a simplified version
of the approach presented in [3]. In that paper, the authors used a probabilistic
scheme to deal with non organized point clouds generated by a LRF of small
objects under controlled conditions (i.e., indoor scenes).

Given three “close” pixels in the ground truth image G, we define a patch
PG ⊂ G and its 3D version PG by back projecting the three pixels into the 3D
space. Using the corresponding pixels in the disparity map D, we generate the
respective patches PD and PD. The evaluation is then made by comparing the
geometric properties of the 3D patches.

The selection of the three “close” pixels is as follows. Given a pixel x ∈ G∩Ω,
its closest neighbors are the points generated by the same laser beam Lx (recall
that the horizontal resolution of the LRF is 0.09◦) in the previous or in the
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next shot, followed by the points generated by one laser beam below or above
Lx (there are 64 lasers in the LRF). Thus, we choose to generate the patches
PG using two pixels from the same laser and one either from the laser above or
below (creating a triangle). A patch is only be defined if the disparity value of
all the selected pixels is within a predefined range. If the selected pixels are also
elements of Ω ∩ D, we generate the corresponding patch PD. This patch also
contains the pixels in D within the triangle defined by the three selected pixels.
Once both patches have been defined, we analyze the geometric properties of
their respective back projections (i.e 3D sets), PG and PD.

Let P ⊂ R3 be one of this patches, the centroid

c
(
P
)

=
1∣∣P ∣∣ ∑

x∈P

x (4)

is calculated, as well as the deviation of the points in P with respect to c(P ):

Dev
(
P
)

=

√√√√ 1∣∣P ∣∣− 1

∑
x∈P

(
x − c

(
P
))2

(5)

Note that x ∈ R3. Now, let PG and PD be corresponding patches in G and D,
respectively. The confidence measure is calculated based in the distance between
the centroid of the back projected patches, PG and PD, and the ratio of their
respective deviations. Let ΔP be the Euclidean distance between c

(
PG

)
and

c
(
PD

)
, and

ρ =
Dev

(
PG

)
Dev

(
PD

) (6)

Then, the confidence measure index for PD is calculated as

CM(PD) =
2ρ

ρ2 + 1

(
1 − ΔP

Δmax

)
(7)

where Δmax is the maximum possible Euclidean distance between the centroids.
The range of CM is [0, 1] ⊂ R; where a value close to one indicates that both

patches are geometrically alike, and thus that the disparity results are reliable.
Low values imply a low confidence in the calculated disparity values. To obtain a
high confidence value (i.e., a value close to one), it is necessary that the centroids
of both patches are close to each other and the ratio ρ of the variances is close
to one.

The first factor in Eq. (7) penalizes the index more if ρ < 1, as it is expected
that PG would be a more homogeneous set than PD. See Fig. 3 for an example
of two pairs of analyzed patches in a sample 3D scene as viewed from above.

3 Experiments

Our experimental data set was captured using the LRF and two grey-scale (12
bits per pixel) cameras, all mounted in the same ego-vehicle. The cameras were
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Fig. 3. A 3D test scene from the containers sequence (see Section 3) as viewed from
above. Left: The red dots are the points returned with the LRF within the field of view
of the reference camera. The grey points are the back projected points from a sample
disparity map. Right: The gray points in here represent the LRF points. The projection
of the highlighted blue points define two patches in the ground truth image; while the
green and purple dots are the back projection of the two corresponding patches in the
sample disparity map.

placed behind the windshield, while the LRF was attached to a rack on the roof.
The coordinate system from the LRF was calibrated according to the external
parameters of the reference camera (the left camera) of the stereo set up using
the method proposed in [13], where a closed-form solution of the Perspective-
n-Point problem was presented. We use the internal parameters of the stereo
camera to project the 3D points from the LRF to generate the ground truth
image.

For defining the patches, we use a disparity threshold of one, so that they
were generated with points that are really close to each other. The threshold for
the BCP quality metric was set to one.

Data Set. We illustrate the presented approach by using three sequences
recorded in “simple” environments. The objective of using these sequences is to
“grow” a first experience using this approach and to validate if there is a good
correlation between the direct comparison and the confidence measure’s indexes.

The size of the images is of 1024 × 334 pixels, reduced to 930×289 due to
the rectification procedure for stereo analysis. Range data were recorded using
the five revolutions per second configuration of the LRF, in order to obtain the
maximum number of measurements (around 24,000 pixels with positive value
in the ground truth image). All the sequences are stop-and-go ones, in order
to minimize synchronization issues between the camera (set to 20 frames per
second) and the LRF. Developing and approach to generate ground truth in
dynamic scenes is out of the scope of this paper. Sample frames of each sequence
are shown in Fig. 1 and 4.

Wall sequence. Recorded while driving towards a wall that covers the entire
field of view of the cameras. In the lower right corner of the images there is a
small car and a trailer. Both objects are only present in the first part of the
sequence.
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Wall-trailer sequence. Recorded while driving towards the same wall as in
the wall sequence. In this case there is a trailer that covers almost half of the
reference and match image. This sequence turned out to be a good example for
miscalculated disparities, as the trailer’s cover has areas with no texture at all.
There are also two areas below the trailer where it is possible to see the road
behind the trailer.

Container sequence. In this scene two different kinds of containers are present,
one with a square base and two with a circular one. There is also a small part of
a building with an intensity that it is very similar to the intensity of the curved
containers so we are expecting “not so good” results from the stereo algorithms
for this sequence. There are also two staircases with thin handrails that even the
LRF had problems to detect.

Results. The stereo algorithms used in this work are briefly identified below.
We use a local standard dynamic programming (DP) stereo algorithm [18]. Two
global algorithms: belief propagation stereo (BP), with a coarse-to-fine approach
[5] and a quadratic cost function [7], and a graph cut (GC) [12] algorithm.
Finally, a semi-global matching (SGM) approach with mutual information as the
cost function [9] was also used.

The algorithms are tested with respect to pixel accuracy. But, the approach
presented here, as well as the data set, are well suited to test sub-pixel accuracy
disparities. We are not aware of an existing real-world data set that can evaluate
the performance of sub pixel accurate algorithms. See Table 1 for a summary of
the results for all algorithms and both sequences.

Wall sequence. For this sequence, we expect the disparity values to get better
as the ego-vehicle approaches the wall. This is due to the inverse proportionality
of distance to disparity, thus small errors in disparity have a large effect at large
distances. The algorithms behave as expected with respect to the BCP index;
the percentage of badly calculated pixels decreases as the ego-vehicle gets closer
to the wall. SGM had a high peak among the last five frames, where it has a
poor performance on the road area. For CM, an average of 14,500 patches were
analyzed (so above 50% of of the points in the disparity maps were considered for
the evaluation). For GC and SGM, the CM index showed a consistent behavior
with BCP, even the same peak for SGM in the last five frames can be identified
here. The DP algorithm showed a relatively constant CM index. But, there is a
low peak in the last five frames (the same set of frames that made SGM have
a high BCP peak). In these frames the disparities obtained for the wall are not
as homogeneous as it is expected, this can be barley detected with the BCP

Fig. 4. Sample images of the wall (left) and container (right) sequences. For a sample
image of the wall-trailer sequence see Fig. 1.
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Table 1. Summarized results for the three sequences with both quality metrics. The
results for the confidence measure (CM) are presented as the average over the entire
sequence (first column), and the percentage of the number of patches with an index
below 0.5 (second respective column), again over the entire sequence. For BCP is only
shown the average percentage over each one of the sequences.

Wall Wall-Trailer Containers

CM
BCP

CM
BCP

CM
BCP

Alg. Avg. “> 0.9” “< 0.5” Avg. “> 0.9” “< 0.5” Avg. “> 0.9” “< 0.5”

BP 0.43 4.2 64.6 28.5 0.43 6.0 63.2 33.5 0.44 4.8 64.1 29.5
DP 0.49 7.1 56.8 14.8 0.47 10.1 56.5 22.1 0.51 13.9 54.1 16.3
GC 0.29 0.5 85.8 35.1 0.34 0.6 82.2 38.7 0.28 0.7 88.2 42.6

SGM 0.37 3.2 67.9 35.3 0.38 2.5 75.9 50.2 0.36 2.4 76.6 59.5

index. For BP, the CM index decreases over the sequence, in contrast with the
behavior of the BCP index, an this indicates that there are less miscalculated
points (according to the low BCP score) but the miscalculations are larger.

Wall-trailer sequence. As expected, most of the algorithms have problems
with the trailer’s cover, as it is almost textureless. With respect to BCP, the
algorithms had a similar performance, showing the worst results at the end of
the sequence, when the trailer occupied almost the half of the stereo images. The
exception was SGM. SGM handles this area better than the other algorithms.
Its BCP index showed an improvement on its performance in the last part of
the sequence. However, this algorithm had a poor performance in the road area
making it the worst performing algorithm.

The results for CM show a good correlation with BCP. The confidence index
decreases for DP and BP as the trailer is getting closer to the cameras, but
increases for SGM. The GC algorithms did not follow the same pattern as with
BCP; the last frames are the ones with highest CM value (but still very low). This
can be explained as in the first half of the sequence, where the two areas below
the trailer are visible; as this sequence goes forward, one of these zones goes out of
the field of view of the cameras. The GC algorithms had more trouble detecting
those background zones than the other algorithms. This can be detected with
the CM index. However, the BCP index keeps going higher indicating that the
disparity maps are still affected by the trailer’s cover, but that the accuracy of
the disparity values are better. The average number of patches calculated for
this sequence was 14,300 (almost 50% of the points).

Container sequence: While both staircases and the building on the right side
are present in the stereo images, the results for all the metrics for DP, GC and
SGM show a failure. They all have problems detecting the thin structures from
the staircases and the almost equal intensities of the circular containers on the
right and the building next to it.

The BP algorithm behaved differently, but consistently for the two metrics.
Its best performance is on the first part of the sequence, and starts decreasing
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Fig. 5. Results for the wall-trailer sequence. Left: Results for CM, a value close to one
indicates a high confidence in the disparity map. Right: Plot for the BCP, larger values
implies a larger number in the miscalculated points.

from frame five. It looks like it had more trouble than the others with an almost
saturated background area that grows as the sequence goes forward.

The GC and SGM algorithms swap their ranking under different metrics, see
Table 1. For BCP and SGM, the GC algorithm had a better performance than
SGM. This does not represent a drawback for our approach as one metric counts
the number of pixels that were miscalculated (BCP) while the other one focuses
on how accurate the disparity values are (CM). The average number of analyzed
patches for this sequence was 14,600 implying that there were evaluated more
than 50% of the pixels in the disparity map.

4 Conclusions and Future Work

In this work we present a ground truth-based approach to evaluate stereo al-
gorithms over real-world sequences. We evaluate the algorithms by comparing
the calculated disparity maps against ground truth images generated using a
high-end LRF. As the ground truth images are not dense enough to evaluate
all the pixels in the disparity maps, we follow two evaluation criteria: Where
ground-truth data are available, we use a well-known quality metric to evaluate
the corresponding disparity values. For the remaining points, we use a confidence
measure that compares the geometric properties of corresponding point sets in
the ground truth images and in the disparity maps. We also include a few exper-
iments to show the effectiveness of the presented approach. In the experiments
we noticed a good correlation between the measures used.

Using the direct comparison approach, we were capable to evaluate around
7% of the pixels in a disparity image. However, when we also use the confi-
dence measure, we could evaluate the majority of the points. The exact number
depends on the scene.

The obtained evaluation results need to be addressed in work aiming at im-
provements of stereo matching algorithms. We have a lot more experimental
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data, and those accumulated data will help further to identify weakness and
strength of particular matching strategies, cost functions, or further algorithmic
“ingredients” of stereo matching.
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Abstract. Obtaining an accurate vehicle position is important for intel-
ligent vehicles in supporting driver safety and comfort. This paper pro-
poses an accurate ego-localization method by matching in-vehicle camera
images to an aerial image. There are two major problems in performing
an accurate matching: (1) image difference between the aerial image and
the in-vehicle camera image due to view-point and illumination condi-
tions, and (2) occlusions in the in-vehicle camera image. To solve the
first problem, we use the SURF image descriptor, which achieves robust
feature-point matching for the various image differences. Additionally,
we extract appropriate feature-points from each road-marking region on
the road plane in both images. For the second problem, we utilize se-
quential multiple in-vehicle camera frames in the matching. The exper-
imental results demonstrate that the proposed method improves both
ego-localization accuracy and stability.

1 Introduction

The vehicle ego-localization task is one of the most important technologies for In-
telligent Transport Systems (ITS). Obtaining an accurate vehicle position is the
first-step to supporting driver safety and comfort. In particular, ego-localization
near intersections is important for avoiding traffic accidents. Recently, in-vehicle
cameras for the ego-localization have been put to practical use. Meanwhile, aerial
images have become readily available, for example from Google Maps [1]. In light
of the above, we propose a method for accurate ego-localization by matching the
shared region taken in in-vehicle camera images to an aerial image.

A global positioning system (GPS) is generally used to estimate a global
vehicle position. However, standard GPSs for a vehicle navigation system have
an estimation error within about 30–100 meters in an urban area. Therefore,
a relatively accurate position is estimated by matching information, such as a
geo-location and an image taken from a vehicle, to a map. Among them, map-
matching [2] is one of the most prevalent methods. This method estimates a
� Corresponding author.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 163–173, 2011.
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Fig. 1. Vehicle ego-localization by matching in-vehicle camera image to an aerial image:
Shaded regions in both images correspond

vehicle position by matching a vehicle’s driving trajectory calculated from rough
estimations using GPS to a topological road map. Recently, in-vehicle cameras
have been widely used; therefore, vehicle ego-localization using cameras has been
proposed [3,4,5]. This camera-based vehicle ego-localization matches in-vehicle
camera images to a map, which is also constructed from in-vehicle camera images.
In many cases, the map is constructed by averaging in-vehicle camera images
with less-accurate geo-locations. Therefore, it is difficult to construct a globally
consistent map.

In contrast, aerial images that covers a wide region and with a highly accurate
geo-location have also become easily available, and we can collect them at low-
cost. There are some methods that ego-localize an aircraft by matching aerial
images [6,7]. However, the proposed method estimates a vehicle position. The
proposed method matching the shared road-region of in-vehicle camera images
and an aerial image is shown in Figure 1. Pink et al. [8] have also proposed an
ego-localization method based on this idea. They estimate a vehicle position by
matching feature-points extracted from an aerial image and an in-vehicle camera
image. An Iterative Closest Point (ICP) method is used for this matching. As
feature-points, the centroids of road markings, which are traffic symbols printed
on roads, are used. This method, however, has a weakness in that a matching
error occurs in the case where the images differ due to illumination conditions
and/or occlusion. This decreases ego-localization accuracy.

There are two main problems to be solved to achieve accurate ego-localization
using in-vehicle camera images and an aerial image. We describe these problems
and our approaches to solve them.

1) Image difference between the aerial image and the in-vehicle cam-
era image: The aerial image and the in-vehicle camera image have large
difference due to viewpoints, illumination conditions and so on. This causes
difficulty in feature-point matching. Therefore, we use the Speed Up Robust
Feature (SURF) image descriptor [9]. The SURF image descriptor is robust
for such differences of view and illumination. Additionally, since the road-
plane region in the images has a simple texture, the feature-points extracted
by a general method tend to be too few and inappropriate for the matching.
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Fig. 2. Feature-point map: White dots represent feature-points

Therefore, we extract feature-points appropriate for the matching from each
road-marking region.

2) Occlusion in the in-vehicle camera image: In a real traffic environment,
forward vehicles often exist. They occlude the road-markings in the in-vehicle
camera image, and thus matching to an aerial image fails. However, even if
the feature-points are occluded in some frames, they may be visible in other
frames. Therefore, we integrate multiple in-vehicle camera frames to extract
feature-points, including even those occluded in specific frames.

Based on the above approaches,we propose a method for vehicle ego-localization
by matching in-vehicle camera images to an aerial image. The proposed method
consists of two stages. The first stage constructs a map by extracting feature-
points from an aerial image, which is performed offline. The second stage ego-
localizes by matching in-vehicle camera images to the map.

This paper is organized as follows: Section 2 proposes a method of map
construction from an aerial image, and Section 3 proposes a method of ego-
localization by matching in-vehicle camera images to the map, in real time.
Experimental results are presented in Section 4, and discussed in Section 5.
Section 6 summarizes this paper.

2 Construction of Feature-Points Map for
Ego-Localization

A feature-points map is constructed from an aerial image for the ego-localization.
To adequately extract the applicable feature-points, we first extract road-marking
regions and then extract the unique feature-points from each region. We then
construct a map for the ego-localization using SURF descriptors [9], which are
robust against the image difference between the aerial image and the in-vehicle
camera image. Figure 2 shows a feature-point map constructed from the aerial
image. In this paper, the road region of the intended sequences is manually
extracted in advance to evaluate the proposed method. We will automatically
extract the region by a segmentation method in future work.

The map construction process is divided into the following steps:

1. Emphasize road markings by binarizing an aerial image, then split it into
multiple regions by a labeling method.
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(a) (b) (c)

Fig. 3. Overview of the proposed method: (a) Correspondence of a projected image
and the region in aerial image. (b) Estimation of the current corresponding region. (c)
Estimation of an accurate corresponding region.

2. Eliminate the regions considering appropriate road-marking size.
3. Extract feature-points xn(n = 1, . . . , N) from the road-marking regions in

the binary image by Harris corner detector.
4. Calculate the SURF descriptor fn around xn from the aerial image.

The feature-point map is represented as the pairs of the position and the SURF
descriptor {(x1, f1), . . . , (xN , fN )}. In this paper, we treat objects on the road
such as vehicles and trees as well as road markings, though the detection of these
objects is required in a fully developed system.

3 Ego-Localization by Matching the In-Vehicle Camera
Images to the Map

3.1 Overview

Vehicle ego-localization is achieved by sequentially matching in-vehicle camera
images to a map constructed from an aerial image. The proposed method ego-
localizes a vehicle at time step t (frame) by the following steps:

1. Transformation of an in-vehicle camera image to a projected image
2. Sequential matching between projected images
3. Matching of the projected image to the map using multiple frames
4. Estimation of the vehicle position

The proposed method first transforms the in-vehicle camera image to a projected
image to simplify the matching process. Then, the proposed method finds a
region Rt in the map that corresponds to the in-vehicle camera image as shown
in Figure 3(a). The homography matrix At in this figure transforms the projected
image on Rt. Then, we estimate the vehicle position pt as

pt = Atq, (1)

where q is the vehicle position in the projected image, as shown in Figure 4(b)
and Figure 3(a), obtained from the in-vehicle camera parameters.
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(a) In-vehicle camera image. (b) Projected image.

Fig. 4. Transformation of an in-vehicle camera image to a projected image: the shaded
region in (a) is transformed to the projected image (b)

The proposed method updates At by the two-step estimation shown in
Figure 3(b) and Figure 3(c). At is then updated as

At = ΣtAt−1Mt. (2)

Mt and Σ are the homography matrices. Mt transforms the projected image
to the estimated corresponding region R̂t from the previous frame as shown in
Figure 3(b). Then, Mt is estimated by the sequential matching between projected
images. The estimated region, however, contains some error due to the matching
error Σt, which transforms the estimated region to an accurate corresponding
region Rt as shown in Figure 3(c). Therefore, Σt is estimated by the matching
of the projected image to the map. In this matching, multiple in-vehicle camera
frames are used to improve the matching accuracy. This aims to increase the
number of feature-points and to perform accurate matching in a situation where
part of the road markings are occluded in the in-vehicle camera images. We
detail the ego-localization process below.

3.2 Transformation of an In-Vehicle Camera Image to a Projected
Image

An in-vehicle camera image is transformed to a projected image as shown in
Figure 4. To transform the projected image, a 3× 3 homography matrix is used.
The matrix is calculated in advance from the in-vehicle camera parameters:
installed position, depression angle and focal length. The vehicle position q in a
projected image is also obtained using the matrix.

3.3 Sequential Matching between Projected Images

To estimate R̂t, the proposed method performs the matching between sequential
projected images. The projected image at t is represented as It. Mt, shown in
Figure 3(b), is obtained by matching between the feature-points in It−1 and It.
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(a) Sequential matching be-
tween projected images.

(b) Matching the projected im-
age to the feature-points map.

Fig. 5. Two step matching (Corresponding feature-point pairs in the projected images:
The dots represent the feature-point in each image and the lines show their correspon-
dence)

The feature-points are extracted by Harris corner detector, then matched by
Lucas-Kanade’s method. Figure 5(a) shows the initial correspondence between
the feature-points. Mt is calculated by minimizing the LMedS criterion by se-
lecting the correspondences. R̂t is calculated from Mt and At−1.

3.4 Matching of the Projected Image to the Feature-Points Map
Using Multiple Frames

R̂t contains some error, which is represented as a homography matrix Σt shown
in Figure 3(c). We calculate Σt by matching the projected image to the map
to obtain the accurate corresponding region Rt. In this matching, in order to
improve the accuracy and stability in a situation where occlusions occur in the
in-vehicle camera image, multiple in-vehicle camera frames are used. We first
explain a matching method the only uses a single frame, and then how to extend
it to that uses multiple frames.

Matching using a Single Frame. We extract the feature-points from the pro-
jected images in the same manner as described in Section 2. The position of a
feature-point extracted from It is represented asyt,lt(lt = {1, . . . , Lt}), where Lt is
the number of feature-points. The SURF descriptor of yt,lt is represented as gt,lt .
Thus, the feature-points could be represented as {(yt,1,gt,1), . . . , (yt,Lt ,gt,Lt)}.

For the matching, each feature-point position yt,lt is transformed to y′
t,lt

in
the map as

y′
t,lt = At−1Mtyt,lt . (3)

Feature-point pairs are chosen so that they meet the following conditions:{ ||y′
t,lt

− xn|| < r

min
lt

||gt,lt − fn|| , (4)
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Table 1. Dataset

Aerial image In-vehicle camera image

Set No. Length (m) Occlusion Occlusion Time

1 85 small small day
2 100 small large night
3 100 large small day
4 75 large large day

where r is the detection radius. Figure 5(b) shows the feature-point pairs. Then,
Σt is obtained by minimizing the LMedS criterion by selecting the correspon-
dences.

Matching using Multiple Frames. To achieve accurate matching in a sit-
uation where occlusions occur in some in-vehicle camera images, we integrate
the feature-points in the multiple in-vehicle camera frames. The feature-points
at t′ are represented as Yt′ = {yt′,1, . . . ,yt′,Lt′}. They are transformed to Y ′

t′ =
{y′

t′,1, . . . ,y
′
t′,Lt′

} in the map coordinate. y′
t′,1 is transformed as

y′
t′,lt′ =

{
At′−1Mt′yt′,lt′ t′ is current frame
At′yt′,lt′ otherwise . (5)

Then, the feature-points in the F multiple frames including the current frame
are used for the matching. Then, we obtain Σt in the same manner as in the
case of a single frame.

3.5 Estimation of the Vehicle Position

Finally, At is calculated by Equation 2, and the vehicle position pt is estimated
by Equation 1. As for the matrix A0 at the initial frame, it is obtained by a
global matching method in the map without the estimation of R̂0

4 Experiment

4.1 Setup

We mounted a camera, a standard GPS and a high accurate positioning system
(Applanix, POSLV) [10] on a vehicle. The standard GPS contains an error of
about 5–30 meters, which was used for the initial frame matching. The high-
accuracy positioning system was used to obtain the reference values of vehicle
positions. We used four sets of an aerial image and an in-vehicle camera image
sequence with different capturing conditions. Table 1 shows the specification of
the datasets and Figure 6 shows examples. The resolution of the aerial image
was 0.15 meters per pixel. The resolution of the in-vehicle camera image was
640 × 480 pixels, and its frame-rate was 10 fps. Occlusions in the aerial image
occurred due to vehicles, trees and so on. Occlusions in the road regions in an
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Fig. 6. Datasets: Four sets of an aerial image and an in-vehicle camera image sequences

aerial image occurred due to vehicles, trees and so on. We defined a road segment
in an aerial image which was occluded less than 10% as a small occlusion, and
that occluded more than 50% as a large occlusion by visual judgment. Occlusions
in the in-vehicle camera images were due to forward vehicles.

4.2 Evaluation

We evaluated the ego-localization accuracy by the Estimation Error and the
Possible Ratio defined by the following equations:

Estimation error =
The sum of estimation errors in available frames

The number of available frames
, (6)

Possible ratio =
The number of available frames

The number of all frames
. (7)

The Estimation Error is the average error between the estimated vehicle position
and the reference value. On the other hand, the Possible Ratio represents the
stability of the estimation. So, we use available frames in which the estimation
was achieved successfully to calculate the Estimation Error. The available frames
were checked by the size and twisting of the corresponding region, which was
transformed from the projected image to the aerial image. When the Possible
Ratio was less than 0.50, we did not calculate the Estimation Error.

In this experiment, we compared the ego-localization accuracy between the
proposed method and a method based on [8]. The comparative method used
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Table 2. Experimental result

Proposed Compared

Set No. Error (m) Possible Ratio Error (m) Possible Ratio

1 0.60 1.00 0.72 0.83
2 0.70 1.00 0.75 0.90
3 0.98 0.73 N/A 0.30
4 N/A 0.12 N/A 0.04

only the center position of road markings as the feature-point, then performed
the matching of these feature-points to the map using the ICP method. In this
matching, the comparative method used only a single in-vehicle camera frame.
On the other hand, the proposed method used five frames selected from frames
for the previous five seconds with the same interval.

4.3 Initial Estimation

For the initial estimation, we performed matching between a projected image
and a circular region in an aerial image with the radius of 30 meters around the
location measured by a standard GPS. In cases where the estimation failed in
the frame, we also performed this initial estimation in the next frame.

4.4 Experimental Result

Table 2 shows the ego-localization accuracy. Each row shows the Estimation
Error and the Possible Ratio of each dataset. We confirmed from this result that
the proposed method improved the accuracy for all datasets compared with the
comparative method. In the case of Dataset 1 with small occlusion in both the
in-vehicle camera image sequence and the aerial image, the Estimation Error
was 0.60 meters by the proposed method. Furthermore, the Possible Ratio 1.00
was achieved by the proposed method, compared to 0.83 by the comparative
method. Thus, we also confirmed the high stability of the proposed method. In
the case of Dataset 2 with the in-vehicle camera image sequence taken at night,
the Estimation Error and the Possible Ratio also improved.

In the case of Dataset 3 with a large occlusion in the in-vehicle camera image
sequence, an Estimation Error of 0.98 and Possible Ratio of 0.73 were achieved
by the proposed method. In contrast, a Possible Ratio of only 0.30 was achieved
by the comparative method, and the Estimation Error was not available because
the possible rate was less than 0.50. Finally, in the case of Dataset 4, there was
a large occlusion in the aerial image, and ego-localization by both methods was
not available in most frames due to mismatching of the feature-points.

The estimation of the proposed method consumed about 0.6 (sec) per frame
when we used a computer whose CPU was Intel(R) Core(TM) i7 860 2.80GHz.
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5 Discussion

1) Image Difference between the Aerial Image and the In-vehicle
Camera Image: For matching the in-vehicle camera image to the aerial
image, we extracted unique feature-points from road markings, and used
the SURF descriptor. From the results of Datasets 1 and 2, the proposed
method improved the Estimation Error and the Possible Ratio. The results
demonstrated that the proposed method could make the matching robust
for the image difference between the images.

2) Occlusion in the In-vehicle Camera Image: The feature-points ex-
tracted from the in-vehicle camera image were occluded in some frames. How-
ever, they were not occluded in other frames. From the result of Dataset 3,
we confirmed that the matching using the multiple frames in the proposed
method worked well in such situations. In this experiment, we fixed the num-
ber of frames used for the matching. We consider that adapting the number
to the changes of occlusions could further improve the performance.

3) Limitation of the Proposed Method: From the result of Dataset 4, the
proposed method could not estimate accurately the vehicle position when a
large occlusion existed in the aerial image. To solve this problem, we need
to construct a map without occlusions. In future work, we will detect the
occluded regions and interpolate them by using in-vehicle camera images.

6 Conclusion

We proposed a vehicle ego-localization method using in-vehicle camera images
and an aerial image. There are two major problems in performing accurate
matching: the image difference between the aerial image and the in-vehicle cam-
era image due to view-points and illumination conditions; and occlusions in
the in-vehicle camera image. To solve these problems, we improved the feature-
point detector and the image descriptor. Additionally, we extracted appropri-
ate feature-points from each road marking region on the road plane in both
images, and utilized sequential multiple in-vehicle camera frames in the match-
ing. The experimental results demonstrated that the proposed method improves
both the ego-localization accuracy and the stability. Future work includes con-
struction of a feature-points map without occlusions by using in-vehicle camera
images.
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A Comparative Study of Two Vertical Road

Modelling Techniques
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Abstract. Binocular vision combined with stereo matching algorithms
can be used in vehicles to gather data of the spatial proximity. To utilize
this data we propose a new method for modeling the vertical road profile
from a disparity map. This method is based on a region-growing tech-
nique, which iteratively performs a least-squares fit of a B-spline curve to
a region of selected points. We compare this technique to two variants of
the v-disparity method using either an envelope function or a planarity
assumption. Our findings are that the proposed road-modeling technique
outperforms both variants of the v-disparity technique, for which the pla-
narity assumption is slightly better than the envelope version.

1 Introduction

Vehicles have become more and more intelligent over the past few years. Nowa-
days, drivers are supported by a range of helpful driver assistant systems (DAS).
Some DAS, such as advanced automatic cruise control or parking assistants, only
work well if information about the spatial environment is available. This data is
gathered, for example, by using radar sensors. The problem with radar is that it
only provides a measurement in the vehicle surroundings along a given direction.

It can be expected that future DAS will be more intelligent and thus require
a more detailed model of the spatial proximity. This data can be gathered in
principle using binocular vision (the human visual system may be cited as a
proof). Top-performing stereo matching algorithms provide a dense measure for
the disparity of most visible pixels. From the resulting disparity map we can
reconstruct the 3D origin of each pixel and thus receive a detailed representation
of the vehicle environment. An intelligent car not only has to gather this data but
is also required to “understand” it. In particular, it is important that it recognizes
properties of the road such as its geometry in 3D space, surface properties, speed
bumps, obstacles on the road, and so forth. Our study is focussing on the road
profile, modeled by a geometric manifold.

An accurate road profile helps to identify other vehicles and objects on the
road by comparing the height of matched points with the road model: Points
that are significantly above the road must belong to obstacles; of course, a road
may also be elevated with visible objects next to the road that are below road
level, but those objects would not be on the road.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 174–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Different manifold models may be selected to be fitted to the disparity data
obtained for the road profile. Ideally, a road model should precisely match the
vertical road profile. The common planarity assumption does not support that.

In this paper we present a new technique for creating a vertical road model,
which is based on B-spline curves and a region-growing process. We evaluate
the performance of this method and compare it to the widely used v-disparity
approach. We use a common belief propagation stereo algorithm for the stereo
matching part, but this is not crucial for the processing pipeline or the compar-
ison (because we use it uniformly for both techniques), and it could be replaced
by another stereo algorithm.

2 Related Work

The simplest way to model the vertical road profile is to assume that the road is
planar and its normal perpendicular to the horizon, as done by Weber et al. [1].
This assumption is known to be inaccurate, and more advanced methods haven
been proposed.

The method introduced by Labayrade et al. [2] is based on v-disparity im-
ages . In this method, the disparity map is first transformed into a new virtual
image, by counting the occurrences of each disparity value in each image row
and plotting the result. The disparities corresponding to the road surface are
likely to be incident with a curve. In [2] this curve is modeled as a a piecewise
linear curve, and its segments are detected through a standard Hough transform,
which delivers a set of best matching straight lines. Those lines are mapped into
one polygonal chain by either calculating the upper or lower envelope.

The approach proposed in [3] is based on approximating the road by a three-
dimensional quadratic model. The first step in this procedure is to convert the
disparity map into a digital elevation map. The quadratic model is then fitted
using a region-growing method. First, a small region close to the ego-vehicle
(i.e., the car where the system is operating in) is selected and used for fitting the
first version of the model. This region is then iteratively extended by including
matching adjacent pixels; the model is continuously refitted.

In [4], Nedevschi et al. perform an approximation of the road surface by fitting
a clothoid, which is a polynomial of degree three. The approximation process
works by first reconstructing a lateral view of the scene from the disparity map.
In a next step, a polar histogram is created that counts the number of points near
a range of selected polar lines. The angle of the polar line with the maximum
of surrounding points will be selected as being the pitch angle for the clothoid
curve. The curvature of the clothoid is then detected using a similar histogram.

Wedel et al. introduce an approximation of the road surface in [5] that uses
a B-spline curve with equidistant nodes. The control points of this curve are
found with a least-squares method, which is not solved directly but embedded
into a special Kalman filter. The curve is fitted to a region that is believed to
match the road and was detected before with a free-space estimation algorithm.
To improve accuracy, constraints are introduced which require that the height
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and the gradient of the curve equals zero at the camera position. Furthermore,
solutions with high gradients and curvatures are penalized.

3 V -Disparity Images

The previously mentioned v-disparity method appears to be the most popular
approach within the set of introduced vertical road-modeling techniques. This
might be due to its simplicity. However, [3] criticizes the v-disparity approach
by stating that it requires the road to occupy most of the image, and that it is
sensitive to changes in roll-angle. Furthermore, the usage of v-disparity images
for performing a piecewise linear approximation of the road surface, as done in
[2], is not as accurate as other modeling approaches that rely on higher order
curves [5].

Nevertheless, the v-disparity method can provide good results on predomi-
nantly straight roads without large curvatures [2,5]. We therefore chose to im-
plement it as a reference system for evaluating our own technique.

Figure 1b shows the v-disparity image we obtained with our implementation
for an example of a stereo pair; one image of the pair is shown in Fig. 1a. The
v-disparity image has the same height as the input image and its width is equal
to the number of possible disparity values. The intensity of a pixel (u, v) in this
image represents how often the disparity u occurs in image row v.

Figure 1c shows the best matching lines (red) found with the Hough transform,
and their upper envelope (green). We clipped the image to avoid false matches
from sections above the road. The decision on whether to use the upper or lower
envelope is done with the same method as in [2], which is by comparing the
intensity sum of all pixels along both possible envelopes. In Fig. 1d a perspective
projection of the resulting envelope function has been overlaid on one image of
the input stereo pair.

(a) (b) (c) (d)

Fig. 1. (a) Image of a stereo pair. (b) Corresponding v-disparity image. (c) Lines found
by the Hough transform. (d) Perspective projection of the road profile.
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4 B-Spline Road-Modeling

Using B-spline curves to model the vertical road profile, as done in [5], allows
to model road profiles whose curvature changes its sign. None of the other ap-
proaches we discussed is capable of doing this. Thus, if we encounter such a road,
those techniques will become largely inaccurate. We have developed a system for
approximating the road by a B-spline curve, which uses a different approach from
the one presented in [5].

A B-spline curve is fitted in [5] to a set of points extracted by a free-space
estimation algorithm. This means that the accuracy of the created road model
strongly depends on the used free-space algorithm; its results may be inaccurate
if there are difficulties in detecting road boundaries. We propose an alternative
approach that is based on a region-growing technique. In general, our method
may potentially be more accurate if clear road boundaries are missing.

4.1 Region-Growing

Our method works on the set of 3D-points we obtain, when we reconstruct the
3D-location for all pixels of the disparity map. For initializing the region growing
process, we select a small region of points close to the ego-vehicle, for which we
have a high confidence that they are part of the road. We increase our confidence
by only selecting points that do not deviate much from the model of the previous
frame. A B-spline curve is then fitted to those points and used for finding further
road points. This will increase the set of points we “understand” to be part of
the road, and we use the enlarged set to fit a new and presumably more accurate
curve. The selection of points and fitting of a new curve is repeated, either for a
predefined number of iterations, or until a termination criterion is met.

Our region-growing method differs from the one proposed in [3], in that we
do not require an elevation map. Furthermore, we allow the selection of new
points that are not adjacent to already selected ones in the disparity map. This
drastically reduces the number of iterations required, as more points can be
selected in a single step compared to [3]. For the tested stereo sequences, less
than twenty iterations were necessary for all stereo pairs.

4.2 Least-Squares Fitting

Once a region of identified road points has been selected, we use these points
for fitting a uniform B-spline curve. For this task we use the method of least-
squares, which has also been used in [3,5] for model fitting. This means that we
try to minimize the error

E =
m∑

k=0

(B(z) − Pk)2 =
m∑

k=0

⎛⎝ n∑
j=0

Nj(tk)Qj − Pk

⎞⎠2

(1)

where Pk is in the set of selected road points, B(z) is the wanted B-spline curve,
Nj a B-spline basis function, and Qj is in the set of B-spline control points.
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In [5], a solution is found by feeding the least-square equations as a mea-
surement into a special Kalman filter. We cannot use this method because we
develop our solution by an iterative process. Applying a Kalman filter to inac-
curate intermediate estimates would disrupt the filter state.

We thus determine our solution the ordinary way, using the method of linear
least-squares. The subject of fitting B-spline curves is discussed in [6]. To find a
solution, we need to formulate our problem as a system of linear equations. In
the ideal case, all measurement points lie exactly on the B-spline curve and can
thus be expressed in terms of the control points and a matrix A, containing the
B-spline basis functions, with

P = AQ and A =

⎡⎢⎢⎢⎣
N0(t0) N1(t0) · · · Nn(t0)
N0(t1) N1(t1) · · · Nn(t1)

...
...

. . .
...

N0(tm) N1(tm) · · · Nn(tm)

⎤⎥⎥⎥⎦ (2)

In the case of linear least-squares, we can transpose the above equation to obtain
the normal equation

AT AQ = AT P (3)

of our linear system. The above linear system is invertible and can thus be solved
by matrix inversion; we have the solution

Q = (AT A)−1AT P (4)

4.3 Error Model

Whether a point should be included in the enlarged region or not, is decided by
its vertical distance to the previously fitted curve. For evaluating a new candidate
point we need an error model that tells us the maximum distance that is still
acceptable. In [3], the error in z- and y-direction is calculated by the formulas1

zerr =
∣∣∣∣ z2 · derr

b · f − z · derr

∣∣∣∣ and yerr =
∣∣∣y · zerr

z

∣∣∣ (5)

where derr is the disparity error, b is the baseline and f is the focal length.
With those two equations we can determine the maximum error from trian-

gulation in y-direction. Experiments with this error model showed that it is not
sufficient for our region-growing approach. It is missing the error introduced by
the curve fitting, which can cause a displacement of the curve along the z-axis.
This displacement can be as large as the the error in z-direction zerr.

We have to take this error into account when we decide whether a given point
with the z-coordinate z should be considered to be part of the road or not. To
do this, we not only examine the curve at position z but also at z + zerr and
z − zerr. If the vertical distance of a candidate point to any of the three selected
curve points is less than yerr plus a tolerance threshold s, then the point will be
considered to be part of the road and added to the selected region.
1 The original equations contain the camera height, as the origin is assumed to be on

the road. We use the camera position as origin and thus do not require this variable.
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4.4 Region-Reduction

Because we allow a large number of pixels to be selected in one iteration, it is
“very likely” that pixels outside the road are falsely selected; then those pixel
distort the region-growing process. To cope with this problem we exclude some
particular pixels from the selected region, even though they meet the criteria
of our error model. We call this step region-reduction as it counteracts to the
region-growing step. For performing region-reduction, we use a set of indepen-
dent techniques:

Z-Distance Limit. The fitted B-spline curve is accurate for points that are
not far from the selected region. The accuracy greatly declines the farther
the curve is extrapolated. We thus limit the evaluation of a curve to be not
continued beyond a distance d to the farthest point in the current region.
This also limits the disconnectivity in z-direction: The distance between a
new point and its closest selected neighbor can never exceed d.

Connectivity Constraint. We enforce connectivity in the xy-plane by treat-
ing our selection masks as a binary image, and use a flood-fill algorithm to
extract a connected subset. The seed is selected as any point from the initial
region. Points that are not in the extracted subset will be removed.

Density Constraint. The flood-fill algorithm does not remove erroneous re-
gions if they share just a single pixel with the current road region. Therefore,
we eliminate such connecting pixels by evaluating the number of selected
pixels in the neighborhood of a pivot pixel. Pixels that have less than the
required number of neighbors, will be removed. A rectangular neighborhood
is evaluated in constant time based on the use of integral images [7].

SSR Threshold. If some erroneous points are selected, those points will have
a small disruptive impact on the curve fitting. This may cause a selection of
more and more erroneous points in subsequent iterations. In such cases we
need to stop the iteration earlier. We perform this decision by calculating
the sum of squared residuals (SSR). If the SSR per selected pixel exceeds a
given threshold value, the iteration will be discontinued.

5 Smoothness Constraint

A smoothness constraint is used in [5] that penalizes high gradients and curva-
tures because we expect the road to be never extremely steep or curved. For this
purpose, two penalizing quantities are introduced in [5], which are based on the
squared first and second order derivative of the B-spline curve. The penalizing
quantities are embedded in the update equation of the employed Kalman filter.

As we do not make use of a Kalman filter, we cannot apply the same method.
We therefore suggest an alternative approach, which embeds the constraint equa-
tions into the least-squares linear system. To achieve this, we have to introduce
two different penalizing quantities based on the absolute derivatives

w1

∫
|B′(z)|dz and w2

∫
|B′′(z)|dz (6)

where w1 and w2 are two factors controlling the influence of the constraint.
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If we insert the B-spline equation into those quantities we obtain

w1

∫
|B′(z)|dz = w1

∫ n∑
j=0

|N ′
j(tk) · Qj |dtk = w1

n∑
j=0

|Qj |
∫
|N ′

j(tk)|dtk︸ ︷︷ ︸
I1

(7)

w2

∫
|B′′(z)|dz = w2

∫ n∑
j=0

|N ′′
j (tk) · Qj|dtk = w2

n∑
j=0

|Qj |
∫
|N ′′

j (tk)|dtk︸ ︷︷ ︸
I2

(8)

Because we are using uniform B-splines, all basis functions Nj are shifted
copies of each other. This means that the integrals over their absolute gradient
and curvature I1 and I2 will both be constant. If we replace the products of the
integrals and weighting factors I1w1 and I2w2 with a new weighting factor ws,
we can unify both equations in one single formula. Further, we can eliminate
taking the absolute values if we shift the curve along the positive y-axis, such
that all points are positive. We thus receive a simplified penalizer

ws

n∑
j=0

Qj (9)

We want to find a solution where this sum becomes a small value. This is equiv-
alent to finding a small value for the squared entity⎛⎝ n∑

j=0

wsQj − 0

⎞⎠2

(10)

If we compare this expression with Eq. (1), we realize that it has the same
structure as the inner term. This inner term calculates the contribution of one
control point to the overall error. If we interpret Eq. (10) in this context then 0
would be a measurement point and ws the value of all B-spline basis functions.
We can thus incorporate the smoothness constraint into the least-squares system
by using a new matrix Â and point vector P̂ , which both contain one additional
row, where

Âm+1 =
[
ws ws · · · ws

]
and P̂m+1 = 0

6 Gradient Constraint

We introduce another constraint, which corresponds to the gradient constraint
used in [5], and penalizes solutions for which the first derivative at the origin is
nonzero. As the ego-vehicle is standing flat on the road surface, we assume that
the gradient of the road equals 0 at the camera position.

The derivative of a B-spline curve can be calculated by replacing the individual
basis functions with their derivatives. We can thus implement the new constraint
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by adding another row to the system matrix Â that contains the value of the
derived basis functions at position 0, multiplied with a weighting factor wg to
control the influence of the constraint. Furthermore, we need to add a new point
with a value of 0 (the desired gradient) to the point vector. The new row of the
resulting matrix Ã, and the new point of the point vector P̃ , are thus as follows:

Ãm+2 =
[
wgN

′
0(0) wgN

′
1(0) · · · wgN ′

n(0)
]

and P̃m+2 = 0 (11)

7 Results

To judge the performance of our new road-modeling algorithm we performed a
comparative evaluation with two versions of the v-disparity method. The first
version matches the method discussed in [2] and creates a polygonal chain,
while the second one only selects the best matching line and thus creates a
planar model. We tested both variants and our algorithm on the second syn-
thetic driving sequence in Set 2 of EISATS [8]. The used disparities are the
provided ground-truth values rounded to the nearest integer, which is the best
result we could expect from a stereo matching algorithm which is not aiming at
subpixel precision.

We were able to extract the road pixels from the provided ground-truth for the
first 150 frames, which gives us a precise measure of the road profile at each image
row. For a quantitative evaluation we calculate the sum of absolute differences
(SAD) per image row between estimated and ground-truth road profile. We
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Fig. 2. Quantitative comparison of B-spline and v-disparity road-modeling
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(a) Model created for synthetic sequence. (b) Model created for real sequence

Fig. 3. Examples for created B-spline road model curves

perform this evaluation only up to the last image row selected by our region-
growing algorithm. This is in favor of the v-disparity approach, which does not
set a distance boundary and is more inaccurate with increase in distance.

Figure 2a shows the results we receive for the three cases on a logarithmic
scale. Our approach clearly outperforms both variants of the v-disparity method.
The envelope-based v-disparity version does not perform any better than the
simpler planar version. Figure 2b compares the fitted distance to the maximal
distance at which the road is still observable with a minimum disparity. The
sudden jump in visible distance is caused by driving over a hill that occludes the
road in the beginning of the sequence. This is in favor of the v-disparity approach,
which does not set a distance boundary and would otherwise be evaluated until
the maximum visible distance.

In a second evaluation we compared the performance of all methods on a
real world sequence. The used stereo sequence has been recorded on a hilly and
windy road without prominent road boundaries, and should thus present a diffi-
cult challenge for any algorithm. We manually extracted the road from 30 frames
and used the median disparity for the road pixels in each image row to obtain
an estimate of the road profile. Figure 2c shows the comparison of this road
profile to the results of the tested road-modeling techniques. Our approach still
performs predominantly better than both v-disparity variants, but with a much
smaller margin and not for all frames. It appears that the planar v-disparity
variant performs better than the envelope version for most of the tested frames.
The sudden increase in the modeling error at the end of the sequence can be
explained by the much worse performance of the used stereo matching algorithm
during this section. Figure 2d compares the visible and fitted distances for the
tested sequence.
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8 Conclusions

In this research we have proposed a new method for modeling the vertical road
profile using B-spline curves. The method does not require a free-space estima-
tion and has proven to work on scenes where the road is not constrained by any
prominent boundaries. Examples for the performance of this method on a syn-
thetic and real world scene are shown in Figs. 3a and 3b. In our experiments, the
new method performed better than both tested versions of the popular v-disparity
technique. The advance was major on the tested synthetic sequence but minor on
the real world sequence. We suspect that this gap is caused by the lower accuracy
of the disparity map for the real world sequence. Using better stereo matching
algorithms could thus improve the results of our road-modeling technique.

Furthermore, we have found that using the envelope of best matching straight
lines for the v-disparity method does not produce any better results. On the
real world sequence, the performance of the envelope based v-disparity imple-
mentation produced the worst results for most of the frames, while performing
roughly equal to the planar v-disparity version on the synthetic sequence. Our
road-modeling method has proven to be competitive to both tested v-disparity
approaches. Nevertheless, more research is required to further improve the accu-
racy. The method could particularly benefit from taking features of the intensity
image into account and introducing a temporal filter. This could, however, dis-
tort the comparison if the v-disparity results are not filtered as well.
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Abstract. This paper presents an algorithm for estimating camera focal length
from tentative matches in a pair of images, which works robustly in practical
situations such as automatic computation of structure and camera motion from
unknown photographs, e.g. from the web or from various instruments mounted
on a vehicle. We extend the standard 6-pt algorithm based on the observations:
(i) the quality of the estimation of this algorithm is strongly correlated with the
ratio of the singular values of the essential matrix computed from inliers, which
is calibrated by using the estimated focal length, returned by RANSAC and (ii)
the reprojection error of the affine camera model, fit to the inliers, predicts the
uncertainty in the estimated focal length. Furthermore, for scenes with dominant
plane we propose a novel algorithm calculating relative orientation and unknown
focal length given a plane homography and a single off the plane point corre-
spondence. The performance of the proposed algorithm is demonstrated on a set
of real images having different focal lengths.

1 Introduction

Several systems for automatic structure from motion computation have been recently
published, developed and made available [1,3,4,6] . All these systems need to know
internal camera calibration to recover camera poses. Without exception, they all use the
5-pt algorithm [7,8,9] to compute the relative camera poses from 5 image matches by
RANSACing [10] tentative image matches [11,12,13,14].

It turns out that with modern digital cameras, two out of the five internal calibration
parameters [16, p.157], the skew and the pixel aspect ratio, can always be safely set to
0 and 1, respectively. The remaining three parameters, the principal point and the focal
length would, however, need to be autocalibrated [16] in order to allow working with
images from completely unknown sources, e.g. web, or allowing free image scaling
and cropping. Despite the vast body of literature on the autocalibration, all the above
mentioned systems avoid it since it is an ill conditioned process in general. Instead, they
adopt more practical approach by assuming that the principal point is in the center of
the image and the focal length is correctly stored in image EXIF.

Somewhat surprisingly, the above systems do not even autocalbrate the focal length
which would be very practical since zooming is one of the most common camera con-
trol. The generalization of the calibrated 5-pt algorithm for cameras with unknown (but

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 184–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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same) focal length, the 6-pt algorithm, is well known since [17] and has been further
simplified and enhanced [9]. So, why is it not used?

The main problem with the 6-pt algorithm is that it fails or returns rather imprecise
results in many real situations due to presence of critical motions [19]. Critical motions
for a camera pair with unknown focal length are quite common since they appear, e.g.,
for camera pure translation or revolute motions which keep camera optical axes inter-
secting. It can be shown that setting focal lengths incorrectly skews the reconstruction
which means that it is necessary to initialize f ’s sufficiently close to correct values,
which is in all mentioned situations impossible. The importance of calibration priors
has been made clear in [20].

The bundler [1] can often reconstruct the scene sufficiently well even if there are
some images without calibration priors. This is true especially when the scene is cap-
tured by a large number of images and therefore there is a high chance of finding an
initial seed reconstruction from some image pair with focal length close to the prior ex-
pected. Then, other focal lengths can be estimated by a direct linear transfer method and
further improved by bundle adjustment on top of the good initial seed reconstruction.
In contrast, focal length autocalibration becomes really necessary when reconstructing
a scene from a small number of images captured by very different instruments.

In this paper we analyze limits of the 6-pt algorithm performance and develop its
robust version for RANSAC “which works”. We demonstrate that (i) the quality of the
estimation of this algorithm is strongly correlated with the ratio of the singular values
of the fundamental matrix computed from inliers returned by RANSAC and (ii) the
reprojection error of the affine camera model, fit to the inliers, predicts the uncertainty
in the estimated focal length. Based on our observations we develop several criteria
and extend the existing 6-pt algorithm. Furthermore, for scenes with dominant plane
we propose an algorithm calculating relative orientation and focal length given a plane
homography and a single off the plane point correspondence. The performance of our
algorithm is demonstrated on a set of real images having three different focal lengths.

2 Limits of the 6-pt Algorithm

It is known that the 6-pt algorithm [17] is rarely used in structure from motion pipelines
due to the several problems it has. These problems can be divided into the following
categories: 1. Problems with critical motions e.g. when optical axes of the cameras
are parallel or intersecting [19]. 2. Planar scenes. 3. Camera pairs with different focal
lengths. 4. Cameras with large focal lengths.

In the first two situations it is not possible to estimate reasonable epipolar geometry
(EG) and focal length because there exist several Euclidean interpretations of the given
structure. The third situation can’t be handled using standard 6-pt algorithm, since this
algorithm is dedicated to cameras with unknown but same focal length. The last situ-
ation is close to the critical configuration with planar scene resp. to the affine camera
case. In practice, any camera configuration that is close to the critical one can cause
problems and give inaccurate results. Unfortunately, most of these configurations are
common in real situations e.g. when taking photos from a moving car or moving around
an object.
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3 Selection Criteria

Singular value ratio. We have found that the quality of the estimation of the 6-pt al-
gorithm is strongly correlated with the ratio of the two largest singular values of the
fundamental matrix computed from inliers returned by RANSAC. This singular value
ratio is close to one for “good” image pairs, like the pairs with the same or closely the
same focal lengths in a general configuration. On the other hand this value is usually
rather small for “bad” image pairs, like image pairs with large focal lengths, pairs with
different focals, or critical configurations.

Figure 1(a) shows the cumulative graph of singular value ratios computed between
pairs with the same and different focal lengths. The cumulative graph is generated by
counting the number of image pairs having the singular value ratio greater than the value
on x-axis. A general 3D scene consisting of 100 points uniformly distributed in a sphere
of 500 mm radius has been generated. Two images were simulated as if taken by one
camera with fixed f = 35 mm lens and the others variated f = 25, 35, 70, and 200 mm.
Gaussian noise are used as image noise with standard deviation σ = half a pixel in 1000
resolution. The camera centers are approximately 1700 mm away from the scene. The
relative camera motions were created by 1000 random motions with motion size 500
mm. The cyan line which corresponds to the singular value ratio computed from pair
of images with the same focal lengths is clearly distinct from the singular value ratios
computed by pair of different focal lengths images.

Affine residual. When objects in a scene are distant from an observer and images are
taken by a standard perspective camera with a very large focal length, the image pro-
jection model is adequately expressed by the orthographic projection. This is because
all rays incident to the image plane are nearly parallel and then the perspective effects
induced by the central projection become weak. In such a case, the relative camera mo-
tion will be better fit by affine epipolar geometry [16] and therefore it makes difficult
to estimate correct EG and focal length. Although the estimation of EG cannot be im-
proved, it is still possible to detect such pair of images with a large focal length by
computing affine epipolar geometry from all supports of the EG and by evaluating the
residuals.

Figure 1(b) shows boxplot of the median residuals w.r.t. affine epipolar geometry
computed from a pair of images with focal lengths 10 to 300 mm. The geometric con-
figurations of scene and cameras are exactly same as the setting used in the singular
value ratio. The graph clearly shows that the larger the focal lengths are, the smaller the
median residuals w.r.t. the affine epipolar geometry.

Planarity test. Using six point correspondences the fundamental matrix F can be pa-
rameterized as a linear combination of a basis F1, F2, F3 of the space of all compatible
fundamental matrices. We can write F = xF1 + yF2 + F3. It is known [21] that for six
points on the plane, all matrices F1, F2, F3 in this space have rank 2. Therefore, we can
detect planarity by testing whether arbitrary linear combination of F1, F2, F3 has rank 2.
In case of planarity detected, the fundamental matrix and the focal length can be esti-
mated by using the plane+parallax algorithm, if there exists at least one point out of the
plane, as proposed in the following section.
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Fig. 1. Criteria of selecting focal lengths. (a) Cumulative graph of showing singular value ratios
computed between pairs of 35-35, 35-25, 35-70, 35-200 mm focal length images. The magenta
dashed line indicates the threshold which we used in real experiment in Section 6. (b) Median
residuals of the affine fundamental matrix fit between a pair of perspective images with focal
length 10 to 300 mm.

4 Plane+Parallax for Cameras with Unknown Focal Length

4.1 Problem Formulation

In this section we formulate the problem of estimating epipolar geometry i.e. the essen-
tial matrix E and the unknown focal length from images of five points, four of which
are coplanar and one is off the plane.

The images of four coplanar points define the homography H. For all 3D points X
lying on the plane defined by these four points holds x′ = Hx, where x′ and x are
projections of point X in the first and second view. The important property holds for
points off this plane. The image x′ of some off the plane 3D point X in the second view
and the point x̃′ = Hx, mapped by the homography H, lie on the epipolar line of x, since
both are images of points on the ray through x. Therefore l′x = x′ × Hx is an epipolar
line in the second view. Thus we can write

e′ = x′ + sv, (1)

where v is the normalized vector of the epipolar line l′x and s is an unknown parameter.
Another possibility which holds also for epipoles at infinity is to write

e′T (x′ × Hx) = 0, (2)

which means that the epipole e′ lies on the epipolar line x′×Hx. The epipoles at infinity
appear in the case of special motion, where the translation is parallel to the image plane,
and the rotation axis is perpendicular to the image plane. Since this motion is critical
for the 6-pt algorithm in the following we will use the parameterization 1.

It is known [16] that for the fundamental matrix F holds

F = [e′]× H. (3)

Therefore once the epipole e′ end the homographyH induced by any plane are estimated,
the fundamental matrix can be computed uniquely. Note that this fundamental matrix is
already singular.



188 A. Torii et al.

25 35 70 200
0

50

100

150

200

250

300

f 
ou

tp
ut

 (
m

m
)

f input (mm)
0 10 20 30 40 50 60 70 80 90

0

100

200

300

400

500

600

700

800

900

1000

Translation error (deg)

 

 

25mm
35mm
70mm
200mm

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

1000

Rotation error (deg)

 

 

25mm
35mm
70mm
200mm

Fig. 2. Performance evaluation of the 4 + 1 plane+parallax algorithm. (a) is the boxplot of esti-
mated focal lengths. (b) is the translation error ∠(testimate, ttrue). (c) is rotation error computed
from the angle of the rotation of ∠(R−1

estimateRtrue).

The well known algorithm [16] for computing F given the homography induced
by a plane uses images of six points, four of which are coplanar and two are off the
plane. The images of four coplanar points define the homography, and the remain-
ing two points off the plane define two epipolar lines which intersect at the epipole
e′. A focal length can be computed from a given fundamental matrix [16] but it is
known as a complicated problem because the estimated focal lengths often become
complex. In contrast, this is not a problem for our algorithm since the focal length is
calculated together with the essential matrix. In our case we have only one point off
the plane. Therefore we can only parameterize e′ with one unknown parameter s using
Equation 1.

We assume that both cameras are calibrated up to an unknown common focal length
f . Then for the essential matrix E holds

E = KTFK, (4)

where K � diag([f f 1]) is a diagonal calibration matrix. It is known [16] that two
singular values of the essential matrix E are equal and the third is zero. This can be
written as

2 E E�E− trace(E E�) E = 0. (5)

Matrix equation 5 gives nine equations in elements of E from which three are alge-
braically independent. If we express E using equations 1, 3 and 4 we obtain nine fifth
degree equations in two unknowns s and f or in w = 1/f2, from which six are linearly
independent. From these equations only two are algebraically independent since E is
already singular. Therefore we have six equations in two unknowns which result in five
solutions for f and s. Next we show how these equations can be solved.

4.2 The 4 + 1 Plane+Parallax Solver

The problem formulation from Section 4.1 can be easily solved using Gröbner basis
method for solving systems of polynomial equations. This method was recently suc-
cessfully used to solve many minimal problems in computer vision [17,22,8,23,24,25].

The Gröbner basis method is an algebraic method based on polynomial ideal theory
which generates special bases of ideals, called Gröbner bases [27]. Gröbner bases have
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the same solutions as the initial system of polynomial equations but are often easier
to solve. Using these bases, special matrices, also called action matrices can be con-
structed. These matrices have a nice property, that solutions to a system of polynomial
equations can be easily obtained from their eigenvalues and eigenvectors. Therefore
these matrices can be viewed as a generalization of well known companion matrices
used for solving one polynomial equation in one unknown. More details of the Gröbner
basis method and its applications in computer vision can be found in [26,27,23,28].
Also, automatic generator of polynomial equation solvers based on this Gröbner basis
method is proposed and demonstrated in [29]

For our problem formulation with two unknowns results this method to the solver
which consists of one Gauss-Jordan (G-J) elimination of the 10 × 15 matrix and com-
putation of eigenvectors of the 5 × 5 action matrix. The 10 × 15 is obtained by adding
monomial multiples of initial six fifth degree polynomial equations up to total degree
six and then removing unnecessary polynomials using method from [24]. Eigenvectors
of the 5 × 5 action matrix give us up to five real solutions for f and s, from which we
compute e′ and the essential matrix E.

Figure 2 demonstrates performance of the 4 + 1 plane+parallax algorithm. 1000
samples of 5 coplanar points + one out of the plane are generated in a 3D scene. A
homography is computed from 5 tuple and focal length and EG is estimated by the P+P
algorithm. Two images were simulated as if taken by a pair of camera with f = 25, 35,
70, and 200 mm lens. For each focal length, 1000 pairs of images are generated with
randomly generated camera motion but keeping the baseline 500 mm. Gaussian noise
is used as image noise with standard deviation σ = half a pixel in 1000 resolution. Fig-
ure 2(a) shows the estimated focal lengths. Figures 2(b) and (c) show the cumulative
histogram of translation error ∠(testimate, ttrue) evaluated as the angle between the
estimated and the true translation direction and rotation error computed from the angle
of the rotation of ∠(R−1

estimateRtrue), which is ideally zero [16]. The translation tends
to be estimated less accurately compared to the focal length and rotation. The precision
of translation direction is strongly correlated with the precision of homography estima-
tion so that translation is less accurately estimated in the plane+parallax. We strongly
recommend to refine EG by using the 5pt algorithm using points calibrated by the focal
length estimated by the plane+parallax.

5 The Pipeline of Finding Focal Length

For the robust estimation of focal length estimation from a pair of images, we use DE-
GENSAC [21] which checks the degeneracy of samples and refines the hypothesis by
using the plane-and-parallax algorithm when there exists homography supported by
many matches. The main modification of using DEGENSAC in our 6 point case is the
H-degeneracy detection, which is the detection of coplanar samples, and the plane-and-
parallax algorithm. For the H-degeneracy detection of 6pt case, it is sufficient to check
if there exists any 5 tuple consistent to a plane homography. Figure 3 shows an example
of epipolar geometry and focal length estimation by using DEGENSAC with the 4 + 1
plane+parallax solver.

For the selection of pairs of images having the same focal length, we first generate
the image similarity matrix using the visual vocabulary technique [30] and select 10
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Fig. 3. Example of epipolar geometry and focal length estimation. The estimated focal length is
30.1 mm and the EXIF focal is 27.5mm. The best model is found by the plane+parallax algorithm
in DEGENSAC . Blue dots are the supports of H. Red dots are new supports of Fcomputed by the
plane+parallax algorithm starting from H. Yellow dots are the tentative matches generated by
matching SURF image features [14].
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Fig. 4. Performance evaluation of focal length selection. The red ◦ is the focal length estimated
and selected by our pipeline. The blue � is the focal length computed by classic RANSAC . The
filled markers indicate the focal length are computed by a pair of images with different focal
lengths (false selection).

most similar images for every target image. The camera motion E, the focal length f ,
the matches m supporting E and f , and matches mH supporting homography H are
computed by running DEGENSAC for each pair of images. Then, the ratio s of singular
values of E8 computed by 8-pt algorithm (least squares) and the median r of reprojection
errors w.r.t. the affine fundamental matrix are computed. We reject such a pair of images
if it satisfies any one of criteria that the singular value ratio s < 0.98, the median affine
reprojection error r < 0.5 pixel, and the number of supports |m| of E is less than
|mH| of H. These criteria reject pairs of images likely degenerated or computed from
image pairs having different focal lengths. Then, the best pair of images are selected by
computing the confidence of the estimated model such that q = (q1 + q2 + q3)/3 where
q1 = 1 − (1 − s)/(1 − 0.98), q2 = |m|/500, q3 = 1 − |mH|/|m|. In this experiment,
the focal lengths for all pairs of images are computed but in practice it is possible to test
only similar pairs using the image similarity matrix as already described.

6 Experiments

We demonstrate our pipeline on real images of a city scene. The dataset involves three
different focal lengths images: 14 images of 27.5 mm, 15 images of 68.8 mm, and 17
images of 196.5 mm focal length of a unit in standard film size.
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(a) DEGENSAC + geometric quality
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(f) RANSAC

(g) Image 26 (h) Image 27
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Fig. 5. Qualitie scores for (c) ’Image 9’, (g) ’Image 26’ and (k) ’Image 38’ having the focal
lengths 27.5 mm, 68.8 mm and 196.5 mm, respectively. (a) and (b) show the quality scores com-
puted between Image 9 and the other 10 images selected using the image similarity. Orange ’◦’ is
the quality score computed from red ’+’, blue ’∗’, and magenta ’�’ defined in Section. Cyan ’∇’
shows the median affine residual. Black ’�’ is the estimated focal length. The horizontal black
dashed line is the ground truth value of focal length and the vertical green dashed line indicates
the pair has the same focal length. (c) is the image 9. (d) is the selected image 10 as the best pair
by our pipeline. The yellow and red dots are the tentative matches and the supports of EG, resp.
In the same manner, the quality scores for ’Image 26’ and ’Image 38’ are shown in (e)-(f), and
(i)-(j). (h) and (l) are again the pairs selected by our method.

Figure 5 shows results of the quality scores computed by our pipline and the cor-
responding images giving the best focal length estimate. The quality scores computed
w.r.t.’Image 9’, which has 27.5 mm focal length, are shown in Figure 5(a). The total
quality q is in orange ’◦’ and the components q1, q2, and q3 are shown in red ’+’, blue
’∗’, and magenta ’�’. All scores are normalized to fit in the graph and especially q1

is divided by a certain constant to enhance the differences. The median affine residual
r used for rejecting likely degenerated image pairs is in cyan ’∇’. The estimated focal
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length w.r.t. each pair is in black ’�’. The horizontal black dashed line is the ground
truth value of focal length and the vertical green dashed line indicates the pair has the
same focal length. (c) is the reference image 9 and (d) is the selected image 10 as the
best pair. The yellow and red dots are the tentative matches and the supports of EG in
(c) and (d). In Figure 4, the red ◦ is the focal length estimated by our pipeline. The blue
� is the focal length computed by classic RANSAC . The pair having the largest num-
ber of support is simply selected as the best pair. The filled markers indicate the focal
length are computed by a pair of images with different focal lengths (false selection).
The red ◦ is not printed if all images to the target image are rejected by our criteria.
Our proposed pipeline successfully recovers all except only one 27.5 mm and 68.8 mm
focal lengths selecting correct pair of images. It is very difficult to estimate large focal
length 196.5 mm but two of them are correctly estimated. Note that most of inaccurate
estimates are rejected by our criteria so that there are fewer red ◦ markers in 196.5 mm
images.

7 Conclusions

An algorithm for robustly estimating camera focal length in a pair of images is presented
based on the geometric analysis of limits on the standard 6-pt algorithm. Through the
experiments on synthetic and real data, we showed the quality of the estimation of
epipolar geometry and focal length is strongly correlated with the ratio of the singular
values of the essential matrix computed from inliers returned by RANSAC. Also, the
reprojection error of the affine camera model, fit to the inliers, predicts the uncertainty
in the estimated focal length. The extension of the existing 6-pt algorithm with the 4+1
plane+parallax solver improved the quality of the estimation.

Acknowledgements

This research was supported by EC project FP7-SPACE 218814 PRoVisG and by Czech
Government under the research program MSM6840770038.

References

1. Snavely, N., Seitz, S.M., Szeliski, R.S.: Photo Tourism: Exploring im-
age collections in 3D. In: SIGGRAPH, pp. 835–846. Implementation at,
http://phototour.cs.washington.edu/bundler/

2. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for commu-
nity photo collections. In: ICCV (2007)

3. Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In:
CVPR (2008)

4. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of landmark
image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)

5. Photosynth, http://photosynth.net

http://phototour.cs.washington.edu/bundler/
http://photosynth.net


The Six Point Algorithm Revisited 193

6. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In:
ICCV (2009)

7. Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770
(2004)

8. Stewénius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation.
ISPRS J. of Photogrammetry and Remote Sensing 60, 284–294 (2006)

9. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt
relative pose problems. In: BMVC 2008 (2008)

10. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395
(1981)

11. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110
(2004)

12. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally
stable extremal regions. In: BMVC 2002, pp. 384–393 (2002)

13. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1),
63–86 (2004)

14. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
CVIU 110(3), 346–359 (2008)

15. Hartley, R.: In defence of the 8-point algorithm. In: CVPR 1995, pp. 1064–1070 (1995)
16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press, Cambridge (2003)
17. Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose

with unknown focal length. In: CVPR 2005, pp. 789–794 (2005)
18. Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A.,

Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidel-
berg (2006)

19. Kahl, F., Triggs, B.: Critical motions in Euclidean structure from motion. In: CVPR 1999,
pp. 366–372 (1999)

20. Fitzgibbon, A., Robertson, D., Criminisi, A., Ramalingam, S., Blake, A.: Learning priors for
calibrating families of stereo cameras. In: ICCV 2007 (2007)

21. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant
plane. In: CVPR 2005, pp. 772–779 (2005)

22. Stewenius, H., Nister, D., Oskarsson, M., Astrom, K.: Solutions to minimal generalized rel-
ative pose problems. In: OMNIVIS 2005 (2005)

23. Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In:
CVPR 2007 (2007)

24. Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with
unknown focal length. In: CVPR 2008 (2008)

25. Byröd, M., Kukelova, Z., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical
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Multi-body Segmentation and Motion Number

Estimation via Over-Segmentation Detection
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Abstract. This paper studies the problem of multi-body segmentation
and motion number estimation. It is well known that motion number
plays a critical role in the success of multi-body segmentation. Most of
the existing methods exploit only motion affinity to segment and deter-
mine the number of motions. Motion number estimated in this way is
often seriously affected by noise. In this paper, we recast the problem of
multi-body segmentation and motion number estimation into an over-
segmentation detection problem, and introduce three measures, namely
loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD),
for over-segmentation detection. A hierarchical clustering method based
on motion affinity is applied to split the motion clusters recursively until
over-segmentation occurs. Over-segmentation is detected by Kernel Sup-
port Vector Machines trained under supervised learning using the above
three measures. We leverage on Hopkins155 database to test our method
and, with the same motion affinity measure, our method outperforms an-
other state-of-the-art method. To the best of our knowledge, this paper
is the first to tackle the problem of multi-body segmentation and motion
number estimation from the perspective of over-segmentation detection.

1 Introduction

To reconstruct or understand a dynamic scene consisting of multiple moving
objects observed by a static or moving camera, the trajectories of image features
are often segmented using their motion affinity. Estimation of the motion number
is critical to such a multi-body segmentation, and its failure often leads to a high
error rate in the motion segmentation. In this paper, we refer to motion number
as the number of independently moving objects in a scene.

Most of the existing works, if not all, exploit only motion affinity to segment
and determine the number of motions. In the factorization method presented
by Costeira and Kanade [1], the motion number was determined by sorting
the shape interaction matrix and detecting blocks via minimizing the Frobenius
norm of the shape interaction matrix subject to some physical constraints. This
detection method suffers a lot from noisy data, especially when the noise level
is high. Gear [2] converted the data matrix into an echelon form, and features
of the same motion shared the same zero positions in the synthetic case. The
motion number was then given by the number of different configurations. He also
provided a bipartite graph model for real data with noise, and tried to explain
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it with probabilistic models. Nevertheless, he admitted that real data was too
complex to be explained by this model. Vidal et al. [3] presented the concept of
multi-body fundamental matrix for the segmentation problem, and retrieved the
motion number from the rank of the matrix of Veronese mapping of trajectories.
It is a non-trivial problem to estimate the rank of a matrix with noise. This
method also requires a minimum number of trajectories for each motion, which
may not be practical. In [4], trajectories were clustered based on the distance
of subspace using spectral clustering. In [5], the authors introduced the ordered
residual metric, and clustered the trajectories also by spectral clustering. For
the spectral clustering method in [6], the motion number was equivalent to the
multiplicity of the zero eigenvalue of graph Laplacian, and the affinity matrix
of trajectories was usually generated in such a manner as Normalized Cut [7].
The parameters of this model are quite influential, but are difficult to adjust
for different applications. From the perspective of information theory, Ma et
al. [8] modelled the problem via lossy data coding and compression, with the
assumption that the mixed data were drawn from a mixture of Gaussian dis-
tributions. Given data to be compressed and a distortion criterion, the motion
number and segmentation were obtained by minimizing the coding length. This
method generalizes the problem but only considers data with mixtures of Gaus-
sian distributions. [9] and [10] tackled the motion number estimation problem
with a sampling method based on Torr’s extension of Schwarz’ BIC approxi-
mation [11]. Recent work [12] applied the Dirichlet Process Mixture Models to
the motion hypotheses, and obtained the motion number when the process con-
verged. However, with a median scale of disturbance and noise, the converged
state was unsteady. [13] focused on the change of motion number in video and
proposed a method based on an outlier detection approach. Most of the methods
above determine the motion number only from the motion information, except
[9] and [10] which used a local sampling scheme [14].

There is no doubt that motion affinity is a key factor for motion number esti-
mation. However, this is by no means the only factor that matters. In this paper,
we recast the problem of multi-body segmentation and motion number estima-
tion into an over-segmentation detection problem, and introduce three measures,
namely loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD),
to detect the occurrence of over-segmentation. A hierarchical clustering method
based on an improved ordered residual metric is applied to split the motion clus-
ters recursively until over-segmentation occurs. Supervised learning is employed
to train Kernel Support Vector Machines using the above three measures mo-
tion affinity measure, our method outperforms another state-of-the-art method.
To the best of our knowledge, this paper is the first to tackle the problem of
multi-body segmentation and motion number estimation from the perspective
of over-segmentation detection.

The rest of paper is organized as follows. Section 2 states our problem state-
ment. Section 3 introduces the proposed measures for over-segmentation detec-
tion. The hierarchical clustering method and classifiers for over-segmentation
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detection are described in Section 4. In Section 5, experiments and comparisons
are presented. Finally conclusion and future work are discussed in the Section 6.

2 Problem Statement

Suppose several rigid objects are moving independently in a scene with different
3D motions, and a video camera is used to observe them. Feature points of
the objects and the background are tracked through the video sequence. The
problem of multi-body segmentation is to find the number of rigid motions and
group the trajectories according to their motion affinity. Motion affinity refers to
the degree to which motions share similar rotation and translation in 3D space.
In this paper, we focus on objects in rigid motions and only consider the case
when different moving objects have different 3D motions. We assume that all
features are visible and tracked throughout the video sequence.

3 Measures for Over-Segmentation Detection

In this paper, the motion number is estimated by a recursive splitting approach.
An initial motion cluster containing all the trajectories is recursively split into
smaller clusters until over-segmentation occurs. When the recursion stops, the
number of the resulting motion clusters simply gives the motion number. In the
following subsections, we will introduce three measures for over-segmentation
detection.

3.1 Loss of Spatial Locality

Assume that the moving objects are not transparent. Feature points of the same
motion often scatter locally unless occlusion exists. Without occlusion, if two
sets of features segmented into two different motions overlap, these features are
likely being over-segmented. An example is shown in Fig. 1, where plus and
circle marks denote features segmented into two different motions. The segmen-
tation in Fig. 1(b) is more reasonable than that in Fig. 1(a) because there is
no overlapping of the features, and hence shape integrity is not violated. Obvi-
ously, the overlapping of features in different motion clusters is a strong cue for
over-segmentation.

Based on the above observation, we introduce a measure, namely loss of spatial
locality (LSL), for over-segmentation detection. Given a motion affinity measure,
a dataset can be divided into a number of motion clusters. For each element in
a cluster, the number of its neighbors belonging to a different cluster is counted.
LSL is defined as the total sum of such a number for all elements in all clusters,
and it provides a measure for the degree of overlapping. If a feature set of the
same motion is segmented into two motion clusters with a perfect motion affinity
measure, every feature will have a probability of 0.5 to be selected into either
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(a) (b)

Fig. 1. Plus and circle marks denote features segmented into two different motions.
(a) Overlapping of features segmented into different motions suggests the occurrence
of over-segmentation. (b) There is no overlapping of the features and hence shape
integrity is not violated.

cluster. A high LSL score would therefore mean the clusters are highly overlapped
and vice verse. For simplicity, K-Nearest Neighbor is used in determining the
neighbors of a feature, and LSL is formulated as

LSL =
1

FN

F∑
f=1

N∑
i=1

G(xi,f , k), (1)

where F is the number of frames in the sequence, N is the number of feature
points, xi,f is the i-th feature point in the f -th frame, G(x, k) is the number of
neighbor points belonging to a different cluster within the k-nearest point set of
xi,f in term of image distance.

3.2 Split Ratio and Cluster Distance

Over-segmentation can also occur when there is no overlapping of feature sets.
This can happen when the motion affinity measure is too sensitive which seg-
ments features on a rigid object into non-overlapping but adjacent motion clus-
ters (see Fig. 2). For example, consider a car translating and rotating at a road
junction. Motion affinity between features in the front (at the back) of the car
would often score higher than those between the front and the back of the car.
Consequently, features in the front of the car would often be segmented into one
motion, and those at the back would be segmented into another motion. Ob-
viously, LSL cannot detect this type of over-segmentation. Nonetheless, human
can perceive such features sharing one single motion because (1) these non-
overlapping clusters are relatively close to each other, and (2) they share similar
motions. Based on these observations, two further measures, namely split ratio
(SR) and cluster distance (CD), are introduced. SR is defined as the ratio of
the smallest image distance between features in separate clusters to the largest
one. It provides a measure for the distance between two non-overlapping clusters
with respect to their sizes. Over-segmentation would produce a low SR score.
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Fig. 2. Over-segmentation can also occur when there is no overlapping of feature sets.
This can happen when the motion affinity measure is too sensitive which segments
features on a rigid object into two non-overlapping but adjacent motion clusters.

CD is defined as the distance between two cluster centers in the motion space.
It measures how similar the motions of the two clusters are. Over-segmentation
would produce a low CD score.

4 Hierarchical Clustering with Supervised Classifiers for
Over-Segmentation Detection

As mentioned before, the problem of multi-body segmentation is recast into
an over-segmentation detection problem. A hierarchical clustering approach is
adopted to recursively split the motion clusters until over-segmentation occurs.
Initially, all trajectories are considered as one single motion cluster. An improved
Ordered Residual metric is employed to split each motion cluster in two smaller
clusters. This corresponds to building a binary tree in which the root node con-
tains all the trajectories. Each split will produce two child nodes, the union of
which is their parent node. After each split, classifiers trained under supervised
learning are used to detect the occurrence of over-segmentation based on the
previously introduced measures, namely loss of spatiality locality (LSL), split
ratio (SR) and cluster distance (CD). If over-segmentation is detected in the
split at a particular motion cluster, its child nodes will be removed from the
binary tree and further splitting of its child clusters will be prohibited. Alg. 1
summarizes the algorithm of the proposed hierarchical clustering method. The
improved Ordered Residual metric used for clustering and the classifiers used
for over-segmentation detection will be described in detail in the following sub-
sections.

4.1 Dual Pass Ordered Residual Method

Several motion affinity measures have been mentioned in Section 1, such as
shape interaction matrix [1], Local Subspace Affinity [4], and Ordered Residual
[5]. Among these measures, the Ordered Residual method strongly interests us
since it provides a more robust statistic estimation of motion affinity. In this
paper, we propose an improved version of this method called Dual Pass Ordered
Residual method, which is computational more efficient than the original method
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Algorithm 1. Algorithm of the hierarchical clustering method.
Track image features to produce the trajectory data W ;
Estimate the motion affinity K between each trajectory using Dual Pass Ordered
Residual method;
Dimension reduction: Project K onto the 4-D subspace corresponding to the 4 largest
singular values and get a 4-D point set D;
Create an empty queue Q and add a node R containing D to it;
Create an empty binary tree T and add R as the root node;
while Q not empty do

Retrieve a node N from Q;
Split the point set in N into two clusters by K-means;
Compute LSL, SR and CD for the two child clusters;
Assign the values of LSL, SR and CD to N ;
Use classifiers to decide if over-segmentation occurs;
if over-segmentation not occurs then

Add two new nodes containing the new clusters into Q;
Add the two new nodes as child nodes of N in T ;

end if
end while
The number of clusters (motions) is given by the number of leaf nodes in T .

proposed in [5]. As its name suggests, the proposed method consists of two passes.
In the first pass, we follow [5] in the way that a sufficient number of trajectory
sets are randomly drawn to generate a hypothesis set, and the affinity matrix
is computed. In the second pass, we fully exploit the information retrieved from
the first pass by decomposition of the affinity matrix to obtain the nearest k
neighbor of each trajectory in the motion space. For each trajectory, we obtain
a refined hypothesis of the subspace by decomposition of the trajectories in the
k neighbors instead of those selected randomly in the whole trajectory space.
The number of hypotheses is independent of the size of the sampling, and we
can obtain a satisfactory motion affinity matrix within two passes.

4.2 Classifiers for Over-Segmentation Detection

Although three measures for over-segmentation detection have been introduced
in Section 3, it is still difficult to find a simple function relating them to make a
decision on the occurrence of over-segmentation. Furthermore, over-segmentation
is more or less a subjective perception, with different people giving different opin-
ions. Hence, a machine learning approach is adopted in this paper to learn the
decision function.

Each cluster node in the binary tree is associated with three features, namely
loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD), computed
from its child nodes. A single-node structure and a triple-node structure are
designed for classifying the split of a root node and a non-root node respectively.
The single-node structure contains only one single node (see Fig. 3(a)), and is
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(a) (b)

Fig. 3. A single-node structure for the root node and a triple-node structure for the
non-root node

used for determining whether to split the root node or not based its associated
features (i.e., LSL, SR and CD). The triple-node structure contains three nodes,
including the node under consideration, its parent node, and its sibling node (see
Fig. 3(b)), and is used for determining whether to split a non-root node or not
based on the features of all three nodes (i.e., nine values in total). A classifier is
trained for each type of structures respectively.

In the training stage, Kernel Support Vector Machines (SVM) with radial
basis function [15] are trained under supervision. Observations are the features of
the structures associated with each node, and labels are the decisions of whether
to split or not. Observation collection includes two stages: dataset selection from
the database as a training set and feature extraction. For dataset selection, we
exploit two methods of cross-validation, namely K-fold cross validation and Hold-
out cross validation, to evaluate the performance as the volume of the training
set decreases. K-fold cross validation partitions the database into k folds, and
uses k−1 portions as the training set and the rest for testing. For Hold-out cross
validation, a portion of data will be hold out for testing and the rest will be used
as training data. Both methods are applied because we want to find out the least
portion of data needed to train the classifiers while keeping the performance. For
each validation method, we train several SVMs and select the classifier giving the
best performance. Feature extraction is carried out by the hierarchical clustering
method introduced in the previous subsection, but without over-segmentation
detection. A decision is labelled when a new structure appears.

5 Experiments

We leveraged on the benchmark of Hopkins155 [16] for experiments. Our method
was applied to various real dynamic scenes with two to five motions, with both
rigid and articulated motions. There are 119 two-motion examples, 35 three-
motion examples and 1 five-motion example. To demonstrate the effectiveness
of the proposed measures for over-segmentation detection, we compared our
method with the spectral clustering method presented in [5]. To ensure a fair
comparison, both methods used the same motion affinity metric as described
in [5]. We have not compared our method with some other methods such as
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[9] and [10] because the performance of such methods heavily depends on the
implementations.

To cluster the motions, we first computed the motion affinity as described in
[5], centered the kernel matrix K and obtained its projection points P4 in the 4-

D subspace by eigen-value decomposition K = RDRT and P4 = D
1
2
4 R(:, 1 : 4)T ,

where D4 is the 4×4 diagonal block of D associated with the largest 4 eigenvalues,
and R(:, 1 : 4) consists of the 4 columns of R associated with the largest 4
eigenvalues. K-Means method was then used to cluster P4 into two groups. This
was done once in the testing stage but repeated eight times for the training
stage to find the correct clustering. We computed LSL, SR and CD from the
two groups for over-segmentation detection. The neighbor number for LSL was
chosen to be 1 since we found any number within the range [1, . . . , 5] would give
similar performance. For K-fold method, we trained k SVMs and selected the
one with the best performance as our classifier. With Hold-out cross validation
method, for each fixed portion, we repeated 1/portion times, each time trained
one SVM and selected the one with best performance.

Table 1. Error rates for K-fold cross-validation

FoldNumber 2 3 4 5 6 7 8

Overall 18.7% 16.1% 14.2% 17.4% 14.8% 15.5% 15.5%

TwoMotion 0% 0.8% 0% 0% 0% 0% 0%

ThreeMotion 77.1% 68.6% 60.0% 74.3% 62.3% 65.7% 65.7%

FiveMotion 100% 100% 100% 100% 100% 100% 100%

Table 2. Error rates for Hold-out cross-validation

PortionForTest 95% 90% 85% 80% 75% 70% 65% 60% 55%

Overall 21.3% 21.9% 21.3% 21.3% 21.3% 19.4% 18.1% 18.1% 15.5%

TwoMotion 0% 0% 0% 0.8% 0% 0% 0% 0% 0%

ThreeMotion 91.4% 94.3% 91.4% 88.6% 91.4% 82.9% 77.1% 77.1% 65.7%

FiveMotion 100% 100% 100% 100% 100% 100% 100% 100% 100%

The error rate with K-fold is listed in Table 1. Overall error rate is defined by
the ratio of the number of erroneously estimated examples to the total number
in the database. Error rate of each motion number is also listed for analysis.
We summarize the results of Hold-out in Table 2. From the tables, we can see
our method did well in two-motion case but was not satisfactory for the three-
motion and five-motion cases for both cross-validation methods. We also notice
that the error rate of two-motion case in Hold-out was not very sensitive to the
number of training samples. For example, the error rate associated with the case
using 5% of data for training is the same with those using more training data.
However, the error rate of three-motion case decreases as training data increase
from 5% to 45%, which may indicates that there may be an insufficient number
of three-motion and five-motion samples in the training set.
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Table 3 below copies the results shown in Table 2 of [5] for ease of reference.

Table 3. Error Rates for [5]

Database Hopkins 155

Overall 36.63%

TwoMotions 32.63%

ThreeMotions 50.34%

With benefit from the features for over-segmentation detection, our method
outperforms [5] in most cases. For two-motion case, our method can virtually
achieve an error rate of 0%. For three-motion case, the result of [5] is a little
better than ours. One possible reason for the poor performance of our method
is that the number of SVM parameter for three-motion and five-motions case
is larger than that of the two-motion case, while the number of samples for the
former in the database is much less that that of the later. The database hence
provides an insufficient training set for the more-motion case.

6 Conclusion and Future Work

In this paper, we recast the problem of multi-body segmentation and motion
number estimation into an over-segmentation detection problem. The main con-
tributions of our work are (1) the introduction of three measures, namely loss
of spatial locality, split ratio and cluster distance, for over-segmentation detec-
tion; (2) the introduction of the Dual Pass Order Residual method for computing
motion affinity; (3) the introduction of a hierarchical clustering method for multi-
body segmentation with a supervised learning approach for over-segmentation
detection. We leverage on Hopkins155 database to test our method and, with
the same motion affinity metric, our method outperforms another state-of-the-art
method. To the best of our knowledge, this paper is the first to tackle the prob-
lem of multi-body segmentation and motion number estimation from the per-
spective of over-segmentation detection. In the future, more exploration should
be focused on the structures and features of over-segmentation that determine
complex decision trees, such as a classifier structure for more than two motions.
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Abstract. This paper proposes a method for constructing an accurate
traffic sign detector by retrospectively obtaining training samples from
in-vehicle camera image sequences. To detect distant traffic signs from
in-vehicle camera images, training samples of distant traffic signs are
needed. However, since their sizes are too small, it is difficult to obtain
them either automatically or manually. When driving a vehicle in a real
environment, the distance between a traffic sign and the vehicle shortens
gradually, and proportionally, the size of the traffic sign becomes larger. A
large traffic sign is comparatively easy to detect automatically. Therefore,
the proposed method automatically detects a large traffic sign, and then
small traffic signs (distant traffic signs) are obtained by retrospectively
tracking it back in the image sequence. By also using the retrospectively
obtained traffic sign images as training samples, the proposed method
constructs an accurate traffic sign detector automatically. From experi-
ments using in-vehicle camera images, we confirmed that the proposed
method could construct an accurate traffic sign detector.

1 Introduction

In recent years, ITS (Intelligent Transport Systems) technologies have become
widely available in our driving environment. In particular, understanding of the
road environment in ITS is one of the most important technologies for a safe
driving assistance system. Since traffic sign detection and recognition are key
components for understanding the road environment, several methods have been
proposed [1,2,3,4]. Bahlmann et al. proposed a method for detecting traffic signs
from in-vehicle camera images [3]. They employed a cascaded AdaBoost classi-
fier [5] for rapid detection, and color Haar-like feature is used for improving the
accuracy of the detection. Although their method is accurate and fast enough, it
requires a tremendous number of traffic sign images for training the AdaBoost
classifier. Doman et al. solved this problem by generating training samples ac-
cording to image degradation models [4]. Although this method can generate
numerous training samples, it is still difficult to generate various appearances
actually observed in the real environment as shown in Fig. 1. For constructing
a traffic sign detector easily and accurately, it is necessary to obtain a large
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number of training samples from real environment without manual intervention.
Also, if a traffic sign detector is constructed before applying it to an unknown
environment, it is required to reconstruct the detector by using new training
samples obtained in the environment. Wöhler tried to solve these problems by
constructing a pedestrian detector by obtaining training samples automatically
from in-vehicle camera images [6]. In this method, pedestrians were detected
by using a previously constructed detector, and training samples were obtained
by tracking them forward in the time space. However, to exclude false positives
from training samples, this method requires that an initial detector should be
relatively accurate. Therefore, it still requires a large number of training samples
for constructing the initial detector. To solve this problem, this paper introduces
knowledge about appearance changes of traffic signs when driving a vehicle.

Training samples of distant traffic signs are required for constructing an ac-
curate traffic sign detector that can detect distant traffic signs from in-vehicle
camera images. However, since their sizes are too small in in-vehicle camera
images, it is difficult to obtain them either automatically or manually. When
driving a vehicle in a real environment, the distance between a traffic sign and
the vehicle shortens gradually, and proportionally, the size of the traffic sign
becomes larger. Therefore, if we can know the position of the large traffic sign,
small traffic signs (distant traffic signs) can be obtained by tracking it back in
the image sequence. Based on this idea, the proposed method greatly reduces
the number of initial training samples, and then constructs an accurate traffic
sign detector by gathering training samples retrospectively from in-vehicle cam-
era image sequences. To use the traffic sign detector in a real environment, not
only precision but also recall of the detector should be high. Therefore, the aim
of the work presented in this paper is to construct a traffic sign detector having
a high F-measure.

Section 2 describes the details of the proposed method. Then, experiments
using in-vehicle camera images are shown in section 3. We discuss the results in
section 4. Finally, we will conclude this paper in section 5.

2 Method

This paper proposes a method for constructing an accurate traffic sign detector
by gathering training samples retrospectively from in-vehicle camera images. To
construct an accurate traffic sign detector, traffic sign images for training should
be gathered in various sizes from small (low resolution) through to large (high
resolution). However, as shown in Fig. 2(a), it is difficult and time consuming
to obtain numerous small traffic sign images (distant traffic signs) segmented
accurately, since their sizes are small. On the other hand, large traffic sign images
(close traffic signs) shown in Fig. 2(c) can be segmented accurately, and it is
comparatively easy to recognize them automatically. Also, if the position of
a large traffic sign is obtained, it is easy to track small traffic signs from it.
Therefore, based on these ideas, the proposed method employs two strategies for
gathering various traffic sign images: (1) find large traffic signs (high resolution),
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Fig. 1. Examples of various appearances of traffic signs

(a) Distant traffic signs (b) Middle traffic signs (c) Close traffic signs

Fig. 2. Appearances observed at distant, middle and close traffic signs from a vehicle

and (2) retrospective tracking from a large traffic sign to a small one. Then, the
proposed method constructs a traffic sign detector by using samples obtained
automatically. Figure 3 shows very common and important traffic signs when
driving a vehicle in Japan. Therefore, we consider these traffic signs as our targets
in this paper.

The proposed method consists of two parts: (1) retrospective gathering of
traffic sign images from in-vehicle camera images, and (2) construction of a
traffic sign detector by using them. The following sections describe details of
these two parts.

2.1 Retrospective Gathering of Traffic Sign Images

Figure 4 shows a flowchart of our proposed method. The proposed method em-
ploys a nested cascade of a Real AdaBoost classifier for the detection of large
traffic signs [11,12]. Then, retrospective tracking is used for gathering small traf-
fic sign images automatically. The following sections describe details of these
steps.
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Fig. 3. Target traffic signs
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by detector
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Fig. 4. Flowchart of the proposed method
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Detection of a large traffic sign. First, the proposed method searches traffic
sign candidates from in-vehicle camera images by using a traffic sign detector H
based on a nested cascade of a Real AdaBoost classifier. The process of traffic
sign detection is performed in the same manner as in [5]. Since this search process
is performed by placing a detection window over the entire region of an image, in
general, many candidates are obtained around a traffic sign. By using this char-
acteristic, the proposed method merges the detected candidates according to the
distance between them. Mean shift clustering [7] is used for this merge process.
This step reduces the number of candidates by merging candidates detecting a
same traffic sign. Then, false positives are removed by evaluating the number of
the merged candidates. Finally, the positions of the detected candidates are used
as the initial position of retrospective tracking described in the next section.

Retrospective tracking of traffic signs. This step extracts small (low resolu-
tion) traffic signs by tracking them back in the image sequence from a detection
result of the previous step. This is formulated as a process that iteratively com-
putes the center and the size of the (t − 1)-th traffic sign by using those of the
t-th one.

First, the red component of an input image (each traffic sign has a red edge)
is normalized by its intensity, and then an image F is obtained by applying a
Gaussian filter. The edge of a traffic sign is computed by evaluating

∇Ft(xt+1 + lΔx) · Δx < 0, (1)

where ∇Ft(x) is a gradient of an intensity at x, and “·” is an inner product of
vectors. In this process, the proposed method searches the edge pixel along the
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(a) Original (b)Gray (c) Red (d) Green (e) Blue (f) Eq.(2) (g) Eq.(3)

(h) Eq.(4) (i) Eq.(5) (j) Eq.(6) (k) Eq.(7) (l) Eq.(8) (m) Eq.(9)

Fig. 6. Examples of color feature images for computing LRP features

direction Δx from the center of previously detected traffic signs by increasing l,
as shown in Fig. 5. Finally, the center and the size of a traffic sign are calculated
by fitting a circle to the edge [8]. In this fitting process, we use RANSAC ap-
proach to avoid the effect of inappropriate edge detection results. The proposed
method tracks traffic signs back in the image sequence by repeating this process
by t ← t − 1.

2.2 Construction of a Traffic Sign Detector

Our traffic sign detector H is constructed based on a nested cascade of a Real
AdaBoost classifier [11,12]. The weak classifier for the Real AdaBoost classifier
uses LRP (Local Rank Pattern) features [10], and these features are calculated
from twelve types of color values. Color values used in this step consist of gray
scale value (f1), RGB values (f2 ∼ f4), normalized RGB values (f5 ∼ f7), and
opponent color values (f8 ∼ f12) [9]. Here, f5 ∼ f12 are calculated as

f5(x) =
r(x)

r(x) + g(x) + b(x)
, (2)

f6(x) =
g(x)

r(x) + g(x) + b(x)
, (3)

f7(x) =
b(x)

r(x) + g(x) + b(x)
, (4)

f8(x) = 0.06 r(x) + 0.63 g(x) + 0.27 b(x), (5)
f9(x) = 0.30 r(x) + 0.04 g(x) − 0.35 b(x), (6)

f10(x) = 0.34 r(x) − 0.60 g(x) + 0.17 b(x), (7)

f11(x) =
f9(x)
f8(x)

, (8)

f12(x) =
f10(x)
f8(x)

, (9)
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Table 1. Detection rate of the constructed detectors H0,H1, . . . ,H4

Detector Precision Recall F-measure

H0 0.982 0.636 0.772
H1 0.978 0.878 0.925
H2 0.968 0.940 0.954
H3 0.956 0.955 0.955
H4 0.945 0.960 0.953

where r(x), g(x) and b(x) represent red, green and blue values at a pixel
x, respectively. Figure 6 shows examples of color values calculated by these
equations.

In the training of the nested cascade of a Real AdaBoost classifier, traffic
sign images gathered in the previous section are used as positive samples for
training the classifier. Then, the trained classifier is used for gathering new traffic
sign images in the next loop as shown in Fig. 4. By iterating these processes,
the proposed method gathers training samples automatically, and constructs an
accurate traffic sign detector iteratively.

3 Experiment

Experiments using in-vehicle camera images were conducted for evaluating the
effectiveness of the proposed method. We used SANYO Xacti DMX-HD2 as an
in-vehicle camera, and the size of the captured images was 640 × 480 pixels
(30 fps). We prepared five image sequences (A0, A1, A2, A3, and A4) containing
3,907 images in total for training. We also prepared 2,967 images for evaluation.
Here, each image contains at least one traffic sign with a size between 15 × 15
pixels and 45 × 45 pixels. Negative samples were randomly selected from 180
in-vehicle camera images containing no traffic sign, and 2,500 negative samples
were used for training in each stage of the cascade.

In this experiment, we constructed five traffic sign detectors by the following
steps: At first, we manually selected thirteen large traffic signs from dataset A0,
and 500 traffic sign images were generated by changing their clipping positions.
Then, we constructed an initial detector H0 by using these 500 images. Second,
by applying the processes described in section 2.1, the proposed method gathers
traffic sign images from dataset A1 by using detector H0. Then, traffic sign
images used in H0 and traffic sign images gathered in the above step are used
for constructing a second detector H1. Similarly, H2, H3, and H4 are constructed
by applying the same steps.

To evaluate the effectiveness of the retrospective gathering of training samples
proposed in this paper, we compared the following three methods:

Proposed method (LRP). This method uses LRP features in section 2.2.
Traffic sign detectors H0,H1, . . . ,H4 are constructed using training samples ob-
tained by the proposed method.



210 D. Deguchi et al.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Proposed method (LRP)

Proposed method 
(HAAR)

P
re

ci
si

on
Conventional method

(a) Precision

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l

Proposed method (LRP)

Proposed method 
(HAAR)

Conventional 
method

(b) Recall

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F-
m

ea
su

re

Proposed method 
(LRP)

Proposed method 
(HAAR)

Conventional 
method

(c) F-measure

Fig. 7. Results of detectors H0 ‘ H4 constructed by the proposed method and the
conventional method in precision, recall and F-measure

Proposed method (HAAR). This method uses Haar-like features instead of
LRP features in section 2.2. Here, Haar-like features [5] are features based on
intensity difference, and widely used for object detection methods, especially
face detection. Other processes are same as the Proposed Method (LRP).

Conventional method. This method uses training samples generated from
thirteen large traffic images by changing their clipping positions (X and Y coordi-
nates of the top-left of the clipped image). These training images are same as ones
used for training H0 for the proposed method. In this method, H0,H1, . . . ,H4

are constructed by changing the number of images generated from the large
traffic sign images.

Table 1 shows the results of the constructed detectors H0,H1, . . . ,H4 of the
proposed method (LRP) in precision and recall rates with corresponding F-
measures. Figure 7 shows the results of detectors H0 ‘ H4 constructed by the
proposed method (LRP), the proposed method (HAAR), and the conventional
method in precision, recall and F-measure. Examples of the detection results by
the proposed method (LRP) are shown in Fig. 8.
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(a) (b)

Fig. 8. Examples of detection results by the proposed method (LRP). (a) there is
an object similar to the target traffic signs, which is located above the traffic signs
but correctly not detected, and (b) although a traffic sign is occluded by a pole, the
proposed method succeeded to detect it.

When using Intel Xeon W5590 3.33GHz× 2, the finally constructed detector
required 0.122 sec. (8.2 fps) in average for detecting traffic signs from an image.
This means that the proposed method can detect traffic signs every 2 meters
when the vehicle moves at 60 km/h.

4 Discussions

As mentioned earlier, both precision and recall of a constructed traffic sign de-
tector should be high. That is, it is required that the constructed detector should
have high F-measure reflecting both precision and recall. From this point of view,
as can be seen from Table 1, the proposed method could construct an accurate
traffic sign detector (0.955 in F-measure) automatically by obtaining various
traffic sign images from only thirteen large traffic sign images inputted manu-
ally. The accuracy of the constructed detector gradually improved by applying
the proposed method iteratively. Also, as shown in Fig. 7, this can be observed
from the comparison of the proposed method and the conventional method. Al-
though the precision of the proposed method slightly degrades compared to that
of the conventional method, the proposed method could obtain much higher re-
call rate. Therefore, F-measure was greatly improved by the proposed method.
From these results, since only a small number of training samples is required
as an input for the proposed method, this can greatly reduce the cost for con-
structing a detector. Therefore, the proposed method will be quite useful for
improving the accuracy of a traffic sign detector without manual intervention.

To evaluate the effectiveness of the LRP features, we compared LRP features
and Haar-like features in precision, recall, and F-measure, shown in Fig. 7. To
construct an accurate traffic sign detector, training samples obtained by the
method must be labeled correctly. In the case of the method using Haar-like
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Tracking direction

(a) a contrast of the traffic sign is relatively high

Tracking direction

(b) a part of traffic sign is occluded by leaves

Fig. 9. Results of retrospective tracking of a traffic sign. Relative frame number is
shown at the top right of each image.

features, some false positives are included in the training samples obtained au-
tomatically by the proposed method. Therefore, the precision of the constructed
detector gradually decreased. On the other hand, in the case of using LRP fea-
tures, since few false positives are included in the obtained training samples,
the precision of the proposed method (LRP) is much higher than the proposed
method (HAAR). However, the proposed method (LRP) still gathered a small
number of false positives for training samples. We intend to improve the perfor-
mance of automatic gathering of training samples in our future work.

Figure 9 shows examples of retrospective tracking of traffic signs proposed
in this paper. As shown in Fig. 9(a), it can be confirmed that the proposed
method could obtain traffic sign images in various resolutions from low to high.
Although a part of a traffic sign in Fig. 9(b) is occluded by leaves, some edges
of the traffic sign can still be observed. Since these edges were extracted, the
proposed method was able to track it correctly. However, the method failed to
track traffic signs when their resolution was too poor. We intend to deal with
this problem in our future work.

5 Conclusions

This paper proposed a method for constructing an accurate traffic sign detec-
tor by automatic gathering of various traffic sign images based on retrospective
tracking. First, the proposed method detects large (high resolution) traffic signs
from in-vehicle camera images. Then, retrospective tracking is applied for ob-
taining small traffic sign images. By applying these steps, the proposed method
allows us to automatically gather real traffic sign images in various sizes from a
small one to a large one. Finally, a traffic sign detector is constructed by using
the gathered traffic sign images. We evaluated the accuracy and the effectiveness
of the proposed method by applying it to actual in-vehicle camera images. Ex-
perimental results showed that the proposed method could improve the accuracy
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of the traffic sign detector satisfactorily. Future works include: (i) improvement
of the tracking of small traffic signs, (ii) evaluation by applying the method to
many more cases.
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Abstract. An intrinsic problem of visual odometry is its drift in long-
range navigation. The drift is caused by error accumulation, as visual
odometry is based on relative measurements. The paper reviews algo-
rithms that adopt various methods to minimize this drift. However, as
far as we know, no work has been done to statistically model and analyze
the intrinsic properties of this drift. Moreover, the quantification of drift
using offset ratio has its drawbacks. This paper models the drift as a
combination of wide-band noise and a first-order Gauss-Markov process,
and analyzes it using Allan variance. The model’s parameters are iden-
tified by a statistical method. A novel drift quantification method using
Monte Carlo simulation is also provided.

1 Introduction

Visual odometry uses camera(s) to incrementally calculate a robot’s motion be-
tween frames and to position the robot in all six degrees of freedom in a 3D
world. Compared with other positioning sensors (e.g., odometry, GPS, IMU and
so forth), visual odometry has its own characteristics. Classical odometry, in-
stalled on a robot’s wheel axis, is usually deceived by wheel slippage, especially
in an outdoor environment. GPS is not always available for navigation, due to
signals being missing or jammed. A typical example is the successful application
of visual odometry for NASA’s MER missions [4]. Also, compared to GPS and
IMU, cameras in visual odometry are relatively cheap.

Visual odometry has been widely applied in many fields, such as driver as-
sistance or autonomous driving [11], simultaneous localization and mapping
(SLAM), helicopter navigation [10], and underwater navigation [6]. Many al-
gorithms have been tested to implement visual odometry using monocular [13]
or stereo [10,14], perspective or omnidirectional [13] cameras. A popular frame-
work for visual odometry is based on feature matching and tracking [11,14].
While considering that a feature-based method is sensitive to systematic errors
due to intrinsic and extrinsic camera parameters, appearance-based visual odom-
etry uses the appearance of the world to extract motion information (e.g., [13]).
Recently, a direct method was also tested for visual odometry with very accurate
results [5].

Among all these algorithms, one intrinsic problem of visual odometry is its
drift in long-range navigation. The drift is caused by error accumulation, as
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visual odometry is based on relative measurements. Relative motion matrices
between frames are concatenated to produce the final position. Small errors in
these matrices accumulate during this process to a large amount, and the dis-
tance measurement drifts from its real trajectory after some long-time naviga-
tion. For feature-based algorithms, the sources for these small errors are mainly
uncertainties of feature localization and triangulation.

Section 2 reviews algorithms that adopted various methods to minimize this
drift. Section 3 models the drift as a combination of wide-band noise and first-order
Gauss-Markov process, and analyzes it using Allan variance, named after David
W. Allan [1]. The identification of model parameters using statistical methods is
also introduced. Experiments and discussions are provided in Sections 4 and 5.

2 State of the Art

Before proceeding to drift-minimization algorithms, we discuss at first a method
to quantify drift. Currently, the offset ratio (OR), ratio of the final drift value to
the traveled distance, is the common choice to measure the drift when running a
visual odometry algorithm over some distance, from tens or hundreds of meters
to several kilometers. (Drawbacks of OR, and a better quantification method are
discussed later in this paper.)

Note that the following review of algorithms is not for visual odometry, but
for drift-minimizing methods adopted in these algorithms. It has been proved
that integrating visual odometry with other positioning sensors, such as gyro or
GPS, minimizes the drift. But this is not the problem to be discussed in this
paper. As visual odometry alone has its practical and theoretical meaning, the
paper analyzes drift without any help from other sensors.

A “fire wall” was inserted into sequences by Nistér [11] to act against error
propagation. With fire walls, relative poses, estimated before the application of
the fire wall, only affect the choice of the coordinate system for subsequent poses,
and relative poses after the fire wall are estimated as if the system was starting
again. It is supposed that fire walls suppress the propagation of gross errors and
slow down the error buildup. From the provided experimental results, visual
odometry had an accuracy [compared to the ground truth from a Differential
Global Positioning System (DGPS)] of 1.07%, 4.86% and 1.63% for three outdoor
runs with traveled distances of 185.88, 266.16, and 365.96 meters, respectively.

Bundle adjustment is another scheme that can be adopted to suppress er-
ror accumulation. It is widely used for solving the off-line structure and motion
problem, and the SLAM problem. Full bundle adjustment is almost impossi-
ble for on-line long range navigation, as there is a huge number of poses and
features to be optimized. A sliding-window sparse bundle adjustment was ap-
plied by Sünderhauf [14] for visual odometry. A subset of several images (the
number is fixed, or adaptive to the motion vector) is continuously selected to
perform bundle adjustment. Experiments on simulation show that sparse bundle
adjustment slows down the drift.

Though many papers on visual odometry use various methods to suppress
the drift, no work has been done to explicitly model the drift. Clark et al. [12]
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Fig. 1. Position drifts after running a visual odometry algorithm (using ABSOLUTE
algorithm, see the experiment section), with the same simulated motion vectors for the
same time steps. Note that with the simulated motion vectors as the ground truth,
camera’s pose can be estimated using visual odometry algorithm. It can be seen that
drift values can be quite different. This results into incapability of the offset ratio.

analyze the contribution of position and orientation errors to the overall drift,
and observed that the drift does not grow linearly in the distance traveled, but
super-linearly. The growth was regarded as O(dist

3
2 ), but no specific models and

parameters were provided.
As a new and promising sensor, visual odometry needs a methodology for

systematic and comparative analysis of its drift, in order to quantify the per-
formance of various algorithms. For this purpose, OR has its drawbacks. First,
drift does not increase linearly with the distance traveled, as stated by Clark et
al. [12] and further proved in this paper. Thus, OR, when running algorithms on
some distance, changes with the travele different distances. Moreover, running
the same algorithms on the same dataset repeatedly produces quite different
ORs. The reason is that drift is a random process, and it does not always in-
crease, but sometimes also decrease at some places, as errors in different motion
vectors compensate to some extent. Thus, using end-point values (the final drift
value, and the final traveled distance) is inappropriate to model the whole ran-
dom process. An example is shown in Fig. 1. Considering these findings, a more
accurate quantification method is introduced later.

3 Drift Model, Analysis and Quantification

In this paper, coordinate frame transformations are used to represent both poses
and motions. Using general notations, a pose E is the transformation from the
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world coordinate frame into that of the camera, and a motion M is a transforma-
tion of the coordinate frame of the camera at time t into that at time t+1. Drift
in orientation is limited to the range [−π, π], and it contributes to the drift in
position; this paper only considers positional drift. We consider positional drift
in world coordinates along x−, y−, and z−axes separately, and use the x−axis
as an example in the following modeling and analysis.

The concatenated camera pose at time t is Et, and the estimated motion from
time t to t + 1 is Mt. Then Et+1 = Et · Mt. Note that the right multiplication
with Mt is because the motion Mt is relative to the camera coordinate frame at
t. The general structure of E and M is of the form [R3×3 T3×1; 0 0 0 1]4×4, where
R3×3 is a rotational matrix, and T3×1 = [x, y, z]T is a translational vector. Then
the translational drift dxt+1 in x− direction is equal to

dxt+1 = xt+1 − x̄t+1 (1)

where xt+1 and x̄t+1 are the estimated and the true position in x−direction at
time t + 1, respectively.

Drift Model. As drift increases unboundedly for an assumed unlimited time,
modeling and analysis of drift is confined within a limited time region. This
matches the analysis of drift for inertial sensors. For a limited number of time
steps, the drift {dxi, i = 1, 2, . . . , N}, as established in Eq. (1), is modeled in
discrete form as

dxi = ωni + bi (2)

where ωn is zero-mean wide-band noise with variance σ2
n, and b is a first-order

Gauss-Markov process. This process is given by

bi = (1 − 1
τ
)bi−1 + ωa (3)

where τ is a constant called correlation time, and ωa is the driving noise modeled
as zero-mean wide-band noise with variance σ2

a. The variance of the Gauss-
Markov process σ2

b equals

σ2
b = σ2

a/(
2
τ

+
1
τ2

) (4)

The model of Eq. (2) has been widely used as a static stochastic error model in
drift analysis for inertial sensors [15]. In this paper we show that this model can
easily also be introduced into drift analysis for visual odometry; we reveal some
important findings.

Identification of Drift Model Parameters. The parameters for the drift
model of Eq. (2) are σ2

n, τ and σ2
b , and they can be estimated from experimental

data using various identification techniques.
Parameter σ2

n can be specified as the value of the Allan variance corresponding
to 1 second averaging time [15]. Parameter σ2

b is the variance of experiment data
after removing the high frequency components.
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The time constant τ can be estimated from experimental autocorrelation data.
This is because the first-order Markov process has an autocorrelation known as

Rb(T ) = σ2
be−T/τ (5)

For the normalized autocorrelation R̄b(T ) (normalization means R̄b(0) = 1), we
have that τ = T when R̄b(T ) = e−1. In this way, the time constant τ can be
estimated as being the value of T corresponding to the normalized autocorrela-
tion value 0.368 (i.e., e−1). For an example of parameter identification, see the
experimental section.

Drift Quantification by τ and σ2
b Using Monte Carlo Simulation. As

σn is usually small and stable, the time constant τ and the variance of the
Gauss-Markov process σ2

b , from the drift model as established by Eq. (2), are
characterizing parameters of drift. Parameters τ and σ2

b of a drift sequence can
be estimated as specified above. However, it can be expected that drift sequences,
while running the same visual odometry algorithm, produce different τ and σ2

b

values. In order to model drift properties of a specific visual odometry algorithm,
Monte Carlo simulation is used.

Monte Carlo simulation is a technique that propagates uncertainties in input
variables of a model into the output, depending on the given probability distribu-
tions. The procedure for parameter identification for a specific visual odometry
algorithm is as follows:

1. Generate a random motion vector for every frame in visual odometry. Pos-
sible motion vectors are restricted by real situations.

2. Use the generated motion to simulate feature registration.
3. Estimate motion and concatenate for N frames.
4. Calculate τ and σ2

b .
5. Run Step 1 to 4 repeatedly (say, n times).

This procedure provides n possible τ and σ2
b values. An analysis of these values,

using some statistical methods (e.g., histograms, accumulated statistics, confi-
dence intervals, and so forth), finally illustrates the distribution of τ and σ2

b for
a specific visual odometry algorithm.

Drift Analysis Using Allan Variance. The Allan variance is a method of
analyzing a time sequence to pull out the intrinsic noise in the system as a func-
tion of the averaging time. It was originally developed to analysis the stability
of clocks, but can also be adapted for any other type of outputs. Full details of
the construction of Allan variance can be found here [15]. A typical application
of Allan variance is the analysis of navigation errors for inertial sensors [15].
Here, we use Allan variance to analysis the drift and validate the drift model as
established above.

A special capability of the Allan variance is that noise types can be identified
by matching different curve slopes in an Allan variance chart. The different
slopes on the plot indicate the unique time regions dominated by the sensor’s
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specific noise. As only wide-band noise and a first-order Gauss-Markov process
are considered, the specific curve slopes for time regions dominated by these two
kinds of noise are -1/2 and 1/2 respectively. For the correspondence of other
kinds of noise with some slope values, we refer to [15].

4 Experiments

Experiments are conducted to illustrate the validation of the established drift
model, as well as the stability and robustness of the new drift quantification
method. Moreover, some important facts of the drift in visual odometry are also
revealed from the experimental results.

Simulated data is more preferable than real data for drift analysis, as simu-
lation controls the source of error (e.g., feature location uncertainty for feature-
based visual odometry) and removes outliers, which are common for real data.
We simulate a sequence of stereo pairs. Only feature-based visual odometry algo-
rithms are considered, as they are more general compared to appearance-based
and direct visual odometry, and they are also easy to be controlled by the errors
in the estimated motion matrix. No feature matching and tracking failures are
considered in the simulation; thus, robust regression is not adopted to remove
the outliers. We apply a similar scheme as used by Badino [2] for generating
matched and tracked features.

Two typical feature-based visual odometry algorithms were implemented, to
illustrate the behavior of drift. The first one, named ABSOLUTE here, estimates
the motion matrix between frames as an absolute orientation problem. Motion
matrices are directly concatenated to estimate camera poses. Thus, drift is not
suppressed, and is expected to be large. The second algorithm, named SBA here,
uses a sliding window sparse bundle adjustment to optimize the motion matrices
as estimated by the ABSOLUTE method. The whole implementation is similar
to the one reported by Sünderhauf [14]. The number of features, tracked for both
algorithms, is set to be 200, and the feature localization uncertainty is 0.5 pixel.
For SBA, the number of stereo frames for bundle adjustment equals five. We
assume that the stereo frames are taken one second apart in the following.

Drift Analysis Using Allan Variance. This experiment illustrates the use
of Allan variance for visual odometry drift analysis. Some facts can be observed
from the Allan variance.

Both cameras move the same way. For every simulation instance of running
the algorithms, different drift curves are obtained. Results for ABSOLUTE and
SBA algorithms are shown in Figs. 2 and 3.

Though every running of ABSOLUTE algorithm gives a sequence of different
drift, it produces a similar Allan variance chart. The main curve slope in Allan
variance chart (Fig. 2, right) produced from ABSOLUTE algorithm is 1/2, which
means that the noise modeled as first-order Gauss-Markov process dominates the
whole time region. In other words, the estimated camera trajectory will obviously
drift from its real one since the first step.
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For SBA there is an important point (see Fig. 3, circled point on the right),
which separates the curve with slope -1/2 from the curve with slope 1/2. It
means that the dominating noise in the first ten seconds (the x−coordinate
of the point) is wide-band noise, while for the time after ten seconds, noise
modeled as a first-order Gauss-Markov process will take over. In our situation
(a one second image sampling interval, five frames bundle adjustment), it states
that among ten frames, the drift behaves as wide-band white noise, while for
more then ten frames, first-order Gauss-Markov noise dominates.

Fig. 2. Drift analysis using Allan variance. Left: Five drift instances from running the
ABSOLUTE algorithm for 500 time steps. Right: Allan variance of these five drift
instances. Note that the vertical bar is for the uncertainties.

Fig. 3. Drift analysis using Allan variance. Left: A drift instance from running the
SBA algorithm for 500 time steps. Right: Allan variance of the drift instance. The
point circled by red is the point where the Allan variance curve changes slope from
-1/2 to 1/2. The coordinate of this point is (10, 0.005908).

Drift with Static Camera. In this experiment we illustrate the behavior of
visual odometry with cameras being static. The drift values (along the x−axis)
from both the ABSOLUTE and SBA algorithm are shown in Figs. 4 and 5.
It can be seen from Fig. 4 that ABSOLUTE has a large drift value, which is
similar to the situation when the stereo pair is under motion. Also the drift error
dominates the whole time region, which is illustrated by the Allan variance chart
with a dominating slope of 1/2. The SBA suppresses the drift to a small value
even after a long time. The Allan variance in Fig. 5 reveals that the main error
source in the drift value is random noise, with no obvious drift.
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Fig. 4. Drift with static camera using ABSOLUTE visual odometry. Left: Drift value
along x−axis for 500 time steps. Right: Allan variance of the drift value.

Fig. 5. Drift with static camera using SBA visual odometry. Left: Drift value along
x−axis for 5,000 time steps. Right: Allan variance of the drift value. Note that the
number of time steps here is larger than that in Fig. 4, to illustrate the behavior of
drift for long time.

Drift Model Parameter Identification. Here we discuss a real example
to illustrate the identification of drift model parameters σ2

n, τ and σ2
b . A drift

sequence from the ABSOLUTE algorithm is used, as shown on the upper left of
Fig. 6. The whole procedure is similar for drift value estimations for other visual
odometry algorithms.

Parameter σ2
n can be estimated from the Allan variance calculated from raw

drift values. As shown in the lower left of Fig. 6, the Allan deviation σy, corre-
sponding to one second, equals 0.139. Thus, σ2

n = 0.1392 ≈ 0.019.
After filtering the raw drift with a low-pass filter to remove the high frequency

components caused by wide-band noise, σ2
b can be estimated as the variance of

the filtered drift. In this example, the filtered drift is shown on the upper right
of Fig. 6, and σ2

b = 18.8.
The time constant τ is the time value corresponding to the normalized auto-

correlation value 0.368. In this example, the autocorrelation curve using filtered
drift is shown in blue; see lower left of Fig. 6. The model fitted curve by the
expected autocorrelation function as Eq. (5) is shown in red; see also lower left
of Fig. 6. Only the first 150 time steps are used to fit the model. As the time
value for normalized autocorrelation 0.368 is 92 (the marked point; lower left of
Fig. 6).
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Fig. 6. An example of drift model parameter identification. Upper left: The raw drift
value for 500 time steps. Upper right: Drift values after low-pass filter. Lower left:
Allan variance. Lower right: Autocorrelation values. Note that the blue curve is the
raw autocorrelation value using the drift values as shown in the upper right, while the
red curve is the model-fitted autocorrelation for the first-order Gauss-Markov process.

Drift Quantification Using Monte Carlo Simulation. This experiment
calculates the parameters τ and σ2

b for the ABSOLUTE algorithm. The number n
of Monte Carlo iterations equals 1 000. The Monte Carlo simulation results are
shown in Fig. 7.

The analysis of the Monte Carlo simulation results can be conducted using
histogram, summary statistics, and so on. For the results in Fig. 7, the mean of τ
is about 94.8, while the mean of σb equals 27.6. It can be seen from this example
that the parameters (τ and σb) to quantify the drift for a specific algorithm
take much more factors into account than offset ratio. Moreover, offset ratio is
only for running of a visual odometry algorithm once on a trajectory, which
means it will always change for different trajectory with various length. While,
the new quantification method using Monte Carlo simulation provides an overall
evaluation of the algorithm.

Fig. 7. Monte Carlo simulation results for ABSOLUTE algorithm. (Left: τ . Right: σb).
Note that the horizontal axis is the simulation number.
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5 Discussion and Conclusions

Modeling and analyzing long-range drift in visual odometry is of practical and
theoretical significance. This paper models drift as a random process, combining
wide-band noise and a first-order Gauss-Markov process. Model parameters can
be identified from experimental data. The Allan variance, offering the possibility
to separate between these two sources of error, is adopted to analysis the drift.
Experimental results reveal several important facts:

1. Modeling drift as a combination of wide-band noise and a first-order Gauss-
Markov process is validated. This can be seen from the Allan variance of the
drift.

2. Analyzing drift from various visual odometry algorithms using Allan variance
is a feasible way to tell where drift, and not white noise, becomes dominating.

3. Quantifying drift from a specific algorithm by τ and σ2
b is a more accurate

way than the usual offset ratio method.
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Abstract. The use of sensor data for observing the surrounding envi-
ronment of a vehicle is becoming increasingly popular. Especially for de-
tecting dangerous situations, which occur too fast for the human senses,
sensor systems are needed. In the following paper such a sensor system
consisting of a stereo camera and a multilayer laser scanner mounted in
front of a test vehicle is introduced. Both sensors are used to detect and
track obstacles and other traffic objects independent from each other for
future data fusion. An overview of the complete process for the object
discrimination including a novel approach for a sensor cross calibration
and a new method for the object refinement and the object tracking
is given. The effectiveness of the algorithms are tested with real road
reference data, obtained through highly precise GPS data.

Keywords: stereo vision, laser scanner, segmentation, object discrimi-
nation, tracking, competitive data fusion.

1 Introduction

High accident rates still force the automobile industry and science to develop new
methods to assist the human driver in dangerous situations. For this purpose,
different sensors are tested or already in use. Sensor systems working with only
one measurement method like mono or stereo camera systems ([9], [10]), radar
or laser scanner [6] are commonly used.

Among the advantages every measurement method has a specific drawback
resulting in false or missing alarms. To overcome these problems it is obvious
to combine different sensor types and to fuse their data. So far, attempts were
made to combine stereo vision with radar [4] or a laser scanner with a mono
camera [3] or a stereo camera system ([12], [11]). All of these fusion systems
define one main sensor and a second support sensor for weighting the object
hypotheses. But in this constellation, not detected objects from the main sensor
remain undiscovered or correct object hypotheses could be negated through false
information from the second sensor. To avoid this loss of information, the stereo
camera and the laser scanner used in this work are considered as equal sensors,
able to work as competitive stand-alone systems.
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The paper focuses on the process of object discrimination for both sensors.
In section 2 the sensor setup, a new cross calibration procedure and a short
summary of stereo vision are introduced. The segmentation of the raw data for
the sensors and the object shaping is described more detailed in section 3. After
the discussion of the object tracking including a smart approach for the object
association in section 4 the algorithms are finally tested against ground truth
data in section 5.

2 Sensor Setup

The setup consists of two monochrome PicSight P141M Smart cameras by Leu-
tron Vision and a 4-layer laser scanner by IBEO. The devices are mounted on a
profile for usage as a stand-alone system (Fig. 1(a)) or in front of the test vehicle
(Fig. 1(b)).

(a) (b)

Fig. 1. Sensor setup. (a) Stand alone setup in labor. (b) Setup mounted on test vehicle.

The cameras are able to acquire up to 20 images per second running with a
maximum resolution of 1392 by 1040 pixel over a GigE connection. The laser
scanner covers a region of 3.2 vertically and 110 horizontally with four beams
and a maximum scan rate of 50Hz.

Both cameras are triggered simultaneously over a TTL pulse. Tests with an
optical binary clock have shown that the latency is significantly below 100μs.
For the synchronization between the stereo system and the laser scanner the
synchronization out signal from the the laser, which is emitted in the middle of
the scan, is used to trigger the cameras at a frequency of 12.5Hz.

The embedded processing units of the cameras are used to synchronize the
internal clock to a sntp network. That provides the possibility to append every
acquired image a highly accurate ntp time stamp.

2.1 Calibration

Stereo System. Three successive steps are needed to calibrate the stereo cam-
era system.
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At first the interior orientation including the principle point, the principle
distance and the correction for the lens distortion for both cameras have to be
determined. For the modeling of the lens distortion a 7-parameter model by
Brown [2] is used. The calibration process is performed with an optical target
wall (see Fig. 1(a)).

The relative orientation is needed for the following rectification step of the
stereo image pair and to obtain the absolute orientation. Through a set of cor-
responding image coordinates of a normalized stereo image pair the relative
orientation can be calculated.

The absolute orientation describes the point transformation from a model co-
ordinate system to a superordinate world coordinate system [8]. For the trans-
lation and rotation six parameters are needed and one parameter is used to
scale the system. Only the scaling factor is needed which equals the length of
the base vector between booth optical centers. Additionally, the deviation of
the transformed model coordinates from the corresponding world coordinates
is a measurement for the quality of all three consecutive calibration steps. The
deviation is typically less than 1mm.

Cross Calibration Laser Scanner. There are well engineered calibration pro-
cedures for different kinds of laser scanner like terrestrial laser scanner [14] or
profiler [15]. But these strategies cannot be applied to a multilayer laser scanner.
The terrestrial scanner can be calibrated over perfectly scanned geometrical ele-
ments or the intensity information which are turning the scanner into a camera.
Compared to that, the multilayer scanner has only four scan lines which are
insufficient for that kind of calibration. In addition, the laser beams cannot be
detected by a visual camera.

So a new approach was developed trying to determine the systematic measur-
ing errors and the orientation to the stereo system in one step. To achieve this,
the stereo system is used to deliver reference data in the form of planes. Over
a spatial intersection, object points on a plane are collected and used to calcu-
late the plane parameters, the normal vector N and a plane point P . The laser
points are fitted onto their matching reference planes through an adjustment (see
Fig. 2). To ensure that the stereo based reference planes are sufficiently accurate
this process is executed under laboratory conditions with a specific range limit.

The functional model of the adjustment consists of an orientation part with
a rotation RL and a translation TL and a fault model to cover the systematic
error of the scanning device. The deviation between the measured dM and the
true point distance d is linearly described with a constant factor a and an offset
value b. As the laser scanner generates polar coordinates a stretching factor s
for the measured vertical angle ΦM is introduced. For simplicity the vertical
measurement angle ΘM remains unaffected:

d = adM + b (1)
Φ = sΦM (2)
Θ = ΘM (3)
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(a) (b) (c)

Fig. 2. Laser calibration process. (a) Determining object points on plane through image
point triangulation. (b) Determining object points on plane by the laser scanner. (c)
Repeating step (a) and (b) for several spatially well distributed planes.

Trough a conversion from a polar to Cartesian coordinate L it is possible to put
all together into the plane equation to set up the functional model solved for the
measured distance:

dM =
1
a

(
NP − NT

NRW

)
− b, with L = dW , and W =

⎛⎝ cosΘ cosΦ
sin Θ cosΦ
sin Φ

⎞⎠ (4)

Each measured laser point lying on a reference plane is used as an observa-
tion for the overdetermined system of nonlinear equations which is solved by a
general least squares adjustment (for more details see [7]). As a result we get the
correction of the laser raw data which is simultaneously transformed into the
stereo coordinate system for further processing. After the calibration the RMS
of the laser points referring to the reference planes is less than 2cm.

2.2 Stereo Processing

The process of obtaining 3D world coordinates out of corresponding 2D image
points from two images observing the same scene is known as stereo vision. To
do so, the interior parameters of the cameras, the relative orientation of the
normalized images and the length of the base vector must be known. To simplify
the correspondence search on both images called stereo matching it is helpful to
project both images in one plane. In addition, the epipolar lines mapping the
same world point must lie on the same image height and parallel to the base
vector (stereo rectification). In this stereo normal configuration the world point
can be determined trough the horizontal disparity of the corresponding image
points and and the principle distance of the camera.

For illustration of this process, Fig. 3 shows the evolution from the image data
trough the disparity image to the world points on a typical traffic scene (here-
inafter referred to as scene 1 ). Here the semi-global block matching algorithm by
OpenCV is used. The stereo points in the results are generated through a faster
block matching algorithm.
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(a) (b) (c)

Fig. 3. Stereo processing on scene 1. (a) Left stereo image. (b) Disparity image. (c)
Resulting 3D world coordinates.

3 Object Segmentation

3.1 Stereo Camera

The object information like obstacles or traffic vehicles has to be extracted from
the stereo raw data. To achieve this, the disparity image or the derived 3D points
are used for the clustering. In [12] camera fronto-parallel objects are detected
trough their representation as vertical straight lines in a v-disparity image. In
addition to the v-disparity [10] uses the u-disparity image and a region growing
algorithm to find segments in the disparity image. Another way for the object
grouping is to reduce the 3D information to a 2D occupancy grid as done in [11].

In this work the stereo segmentation is based on an approach by [9] which com-
bines the whole informational content from mono image processing and stereo
vision. In order to simplify and accelerate the process the segmentation is divided
into two main steps.

At first the obtained and filtered 3D points are mapped on the horizontal
plane in a predefined depth map which divides the ground in cells of constant
size. In contrast to [9], here the depth map uses the disparity values as the
ordinates and the lateral ranges as the abscissa. The disparity was chosen for
the longitudinal range to avoid the scattering of the stereo data in the depth.
Each cell has a constant width and a height of one disparity. The grey level of the
cells corresponds to the accumulated mapped world points. After the creation
of the depth map a binary depth map is derived by thresholding the grey levels
of the cells. Regarding to the decreasing point density with the distance, this
threshold depends on the distance, too. The binary map is used to extract the
point clusters from the bird’s-eye view with a region growing algorithm. As
a result we get a set of 2D segments with a depth and a width description
(Fig. 4(a)).

In the second step the depth and width information from the previously ex-
tracted 2D segments is used to define a region of interest on the original image
enclosing the specific object. Those region of interest images called layers are
used to refine the object size and to further segment the object. With the canny
edge detector the object contour is extracted from the layer image and the com-
plete 3D object bounding box can be established (Fig. 4(b)).
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(a) (b)

Fig. 4. Steps of stereo segmentation on scene 1. (a) Segmented binary depth map in
bird’s-eye view. (b) Complete stereo segmentation after step 2.

3.2 Laser Scanner

The clear arrangement and high accuracy of the laser point data allows a more
straightforward segmentation solution compared to the stereo data. The eu-
clidean distance of two points is taken into account to check if they belong to
one segment. For each direction a constant distance threshold o is used to build
an segmentation ellipsoid around every point. Considering the radial measuring
principle of the scanner, a distance dlp dependent value s is added to the con-
stant distance threshold. Every Point P ′ is then connected to a Point P ′′ if the
following inequality holds true:

(P ′
x − P ′′

x )2

(ox + sx ∗ dlp)2
+

(P ′
y − P ′′

y )2

(oy + sy ∗ dlp)2
+

(P ′
z − P ′′

z )2

(oz + sz ∗ dlp)2
≤ 1 (5)

Fig. 5 shows the results of the laser segmentation on scene 1.

(a) (b)

Fig. 5. (a) Segmentation of laser points in scene 1. (b) Overlapping object information
from both sensors.
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Fig. 6. The ellipse shaped box (right) approximates the real vehicle box more exactly
than the unshaped bounding box (left)

3.3 Object Shaping

To achieve an accurate object tracking it is important to have an precise reference
point for the tracking object. A simple but inaccurate way is to determine the
center of gravity over all object points [6]. A better solution seems to be to use the
center point of the bounding box as the reference point. For that, the bounding
rectangular box with the minimal volume has to be shaped. For simple object
shapes as received from a laser scanner a usual object box fitting [16] is suitable.
But for large unstructured object point sets coming from a stereo system this
fitting could be expensive.

A nice way to avoid this, is to fit an ellipse over the object points to get the
optimal bounding box. For this purpose, the points are mapped on the horizontal
plane into 2D space. An ellipse fitting approach by Fitzgibbon et al. [5] is used
which allows a ellipse specific fitting of scattered data computationally efficient
(Fig. 6). Ellipse specific fitting means that the algorithm returns always an ellipse
solution independently of the input data.

The shaping is linked with a merging process where overlapping objects or
objects which are lying too close to each other according to a proper threshold
are grouped.

To obtain an even better approximation of the real object shape and the
center point, the real object size is estimated and adapted during the tracking.
In contrast to the two line approach [6] where only the length and the width of
the object is tracked, here all three dimensions are updated.

4 Object Tracking

In order to derive a more comprehensive description of the surrounding traffic
situation the extracted objects need to be tracked. Here, a multi object tracking
approach for each sensor is used. The process of moving traffic objects is covered
through a five parameter state model (6) also described in [1]. To describe the
complete behavior of those moving objects like acceleration or cornering the
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observation of the yaw angle (ψ) and the yaw rate (ω) are needed in addition to
the common parameters direction (x, y) and velocity (v). This leads to a non-
linear process model which is linearized for the usage in an extended Kalman
filter.

x̂k = (xk yk ψk vk ωk )T (6)

Besides the usual measurement of the position coordinates, the measurement
value for the yaw rate is extracted from the shaped object. Through this addi-
tional information the filter becomes more stable and reliable.

For the tracking innovation step an association between the set of predicted
objects and the set of measured objects is needed. A sophisticated approach
for the association was inspired by a work about image feature correspondences
achieved through singular value decomposition (SVD) [13]. Feature points com-
ing from two images are mapped under the constraint of proximity and similarity
in a single SVD operation. In the case of associating objects the proximity prop-
erty describes the euclidean distance of the object box centers. For a stereo based
object the similarity property is determined by the average intensity of the in-
cluding object points. In contrast, the average echo width of the including points
from a laser object are used as the similarity description.

5 Results

To obtain reference data for testing the object discrimination with real data a
second test vehicle equipped with two GPS receivers was used. The two GPS
receivers (Trimble 5700 ) together with a base station (Trimble 750 ) are able
to work in the Real Time Kinematic mode. This enables a point measurement
with an accuracy below 2cm with a frequency of 10Hz under normal conditions
for receiving. The alignment of the two GPS antennas and the dimensions of
the test vehicle were determined in advance to calculate the object box of the
vehicle through the GPS positions.

During the measurement the first test vehicle equipped with the sensors stays
in a fixed position to avoid additional errors. To transform the GPS positions
into the coordinate system of the left camera, the exterior orientation of the left
camera with respect to the GPS coordinate system has to be known. In order to
achieve this, an arrangement of several optical targets in the measurement scene
was used, which were measured by GPS (see Fig. 7).

Different routes were driven to cover the performance of the object discrimi-
nation as completely as possible. The results have shown that the center points
of the tracked object boxes, which are derived from shaping are lying closer to
the ground truth data than the center points of the tracked unshaped object
boxes. The shaping process is especially effective during cornering where the
additional angle information improves the tracking performance. In the follow-
ing representative example the test vehicle turns right in front of the sensors.
Figure 8 illustrates the distance from the calculated object box center to its
reference center.
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Fig. 7. Arrangement for exterior orientation of the camera (left) and gps setup (right)

Fig. 8. Accuracy of the tracked unshaped and shaped object boxes, derived from laser
point data (left) and stereo data (right)

As you can see, after an initial phase for the tracking both measurements
stabilize with a better accuracy for the shaped objects. In this example the
center deviation for the stereo objects is partially smaller compared to the laser
scanner objects. This could be caused by different starting conditions for the
tracking or the speed of the object size adaption. In this example, the object
tracking by the laser scanner performs better, indicated by a smaller RMS value.

6 Conclusion

The capability of extracting object hypotheses for a stereo and laser scanner
system without interdependency was shown. Besides, a novel cross calibration
procedure and a smart approach for refining the object shape over ellipse fitting
were introduced and successfully tested. Up to a certain distance both sensors are
able to deliver equivalent results. Otherwise the laser scanner performs better. In
the next step the sensor data will be fused on different processing levels to verify
the effects on object discrimination quality and the amount of false detections.
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Realistic Modeling of Water Droplets for Monocular
Adherent Raindrop Recognition Using Bézier Curves

Martin Roser, Julian Kurz, and Andreas Geiger

Department of Measurement and Control
Karlsruhe Institute of Technology (KIT)

D-76131 Karlsruhe, Germany

Abstract. In this paper, we propose a novel raindrop shape model for the detec-
tion of view-disturbing, adherent raindrops on inclined surfaces. Whereas state-
of-the-art techniques do not consider inclined surfaces because they assume the
droplets as sphere sections with equal contact angles, our model incorporates cu-
bic Bézier curves that provide a low dimensional and physically interpretable rep-
resentation of a raindrop surface. The parameters are empirically deduced from
numerous observations of different raindrop sizes and surface inclination angles.
It can be easily integrated into a probabilistic framework for raindrop recognition,
using geometrical optics to simulate the visual raindrop appearance. In compar-
ison to a sphere section model, the proposed model yields an improved droplet
surface accuracy up to three orders of magnitude.

1 Introduction

Outdoor navigation and surveillance demand for reliable and robust computer vision
algorithms. They have to meet stringent conditions concerning disturbances caused by
arbitrary weather conditions. In fact, there are various atmospheric influences which re-
strict the usability of these systems such as fog, rain or snow. Especially in rainy weather
it is often the case that adherent waterdrops on the lens-protecting glass disturb the view
of a camera. Although a lot of research has been pursued in robotics [16], computer
vision [5,7,11] and for driver assistance [9,12,19], raindrop detection still remains a
challenging task. This might be for several reasons: Water droplets on a glass surface
exhibit a large variety in shape and size. Transparency makes their appearance highly
dependent on the image background. Moreover, water droplets on the protecting glass
of a camera are subject to severe out-of-focus blur which lowers their distinguishability
from the scene background.

Recent work on raindrop detection [8,12] assumes a simple sphere section for mod-
eling the droplet boundary. Especially on tilted planes where gravity causes an unidirec-
tional droplet deformation, this assumption does not hold. While high-orderpolynomials
are more adequate, a physical interpretation of the fitted parameters is hard.

In this paper we propose a novel raindrop shape model, that provides a physically
interpretable parameter set of low dimensionality. Our main contribution is a model
based on cubic Bézier curves. We provide a broad validation of the model parameters
and show, that the shape deviation between fitted model and real droplet will be sig-
nificantly decreased compared to state-of-the-art sphere section models. The proposed
shape model can be easily integrated into existing raindrop recognition frameworks.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 235–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

The visual effects of rain are manifold and complex. Water droplets in the atmosphere
lead to contrast attenuation in the far-field of the camera, whereas falling raindrops
produce sharp intensity changes in image sequences. Adherent raindrops in front of
the camera lens disturb the view from the camera and light reflections on the droplet
surfaces additionally deteriorate computer vision algorithms.

Related work on dynamic weather effects like the appearance of falling raindrops
in image sequences has been performed by [5,7]. They studied the influence of falling
raindrops on the image acquisition process and introduced a photometric model for
spherical raindrops in the atmosphere that is used for enhanced video processing like
removing rain from image sequences [4] or rain streak rendering [6].

In the targeted context of outdoor navigation and surveillance, falling raindrops
and rain streaks can be considered as atmospheric noise and are not the dominant
disturbing effect. Stronger limitations are imposed by adherent water droplets on the
glass surface covering the camera lens. Kurihata et al. [9] used a machine learning ap-
proach with raindrop templates to detect raindrops on windshields from inside a mov-
ing vehicle. Results within the sky area were promising, whereas the proposed method
produced a large number of false positives within the non-sky regions of the image
where raindrop appearance modeling becomes more challenging. In this work, in con-
trast, we aim to accurately exploit the physical relationship between droplets shape
and their appearance. Zhang et al. [19] combined a wavelet transform for image blur
detection with motion analysis using cumulative differences to recognize optical con-
taminations close to the camera. Their approach works well for rigid, opaque contami-
nations but fails in the presence of raindrops because their appearance strongly depends
on the scene background. Yamashita et al. exploited hardware constraints like multiple
cameras [13,18] or pan-tilt surveillance cameras [16,17] with known yaw rates in order
to bypass the challenge of modeling the complex optical behavior of raindrops. Roser
et al. [8,12] simulated spherical droplets on a glass surface using geometrical optics and
out-of-focus blur for the task of raindrop detection. However, they lack a realistic shape
parametrization of droplets that in practice are subject to gravity.

The remainder of this paper is structured as follows: Section 3 discusses the propaga-
tion of light rays through a droplet and shows how it can be used for raindrop detection.
In Section 4 we proposes a raindrop shape model based on a Bézier curve representa-
tion. Validation results on real data and a comparison to a sphere section model [8] are
given in Section 5.

3 Raindrop Recognition

Given a set of n artificial raindrop hypotheses D1, . . . ,Dn for different image positions
and presumed drop radii, the raindrop recognition task can be formulated as computing
the MAP estimate of the conditional probability

p(d|z) ∝ p(d)p(z|d) (1)

with respect to the pattern d ∈ {�,D1, . . . ,Dn}. Here � is a background pattern that
models the case where the image region is not disturbed by a raindrop and z(u, v, r)
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Fig. 1. Droplet refraction model. (a) depicts the image formation process in the presence of
raindrops on a protecting glass in front of the camera, using geometrical optics. In (b) an artificial
raindrop pattern D is rendered by tracing the light rays through the raindrop to the background
and composing all found background pixels. For demonstration purposes, an additional out-of-
focus blur is applied and the blurred pattern Dblurred is added to the original image.
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(b) Proposed shape model

Fig. 2. Raindrop surface models. (a) shows the droplet surface and its surface normals for a
sphere section model. In (b) a 3D model is created by superposing two orthogonal Bézier curves.

denotes the observation at position u, v with radius r in form of local image statistics.
It can be achieved densely as wells as from preselected points of interest, like CenSurE
[1] or SURF [2]. Fairly standard cost measures such as the Sum-of-Absolute Differ-
ences (SAD) or the Sum-of-Squared Differences (SSD) are applied for modeling the
observation likelihood p(z|d). The prior may model the occurrence probability for dif-
ferent raindrop sizes in various adverse weather conditions in an empirical Bayesian
perspective according to [15].

Raindrop hypotheses for any circular region x = (u, v, r)T are achieved from ob-
served points in the environment, using geometrical optics. As depicted in Fig. 1(a), a
light ray emanating from a point in the environment will be refracted by the raindrop
and the protecting glass surface multiple times and reaches the camera sensor at point
P1. Unless the raindrop does not occlude this environment point, it will be sensed a
second time at point P2. Note, that the droplet acts as a convex lens with a small focal
length. Hence, for typical application in navigation and surveillance it is ensured that
only a minor part of the environment points are occluded by the raindrop (see Fig. 1(a)).
An accurate geometric relationship between P1 and P2 can be derived using Snell’s
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law of refraction as shown in Fig. 1(b). Note, that the refraction on the protecting glass
occurs with respect to the (constant) plane normal np of the protecting glass, whereas
a general drop surface S exhibits a normal field NS that can be deduced from the cho-
sen drop parametrization. Whereas [8,12] use simple sphere sections that are in general
3D surfaces of constant curvature as depicted in Fig. 2(a), this model approximates the
raindrop shape only insufficiently and results in a high model deviation especially when
dealing with tilted glass surfaces. For this reason, we derive a raindrop shape model re-
garding numerous tilt angles and drop sizes by using two orthogonal oriented Bézier
curves as illustrated in Fig. 2(b).

4 Raindrop Shape Model

4.1 Bézier Representation

Droplets on a horizontally aligned surface are symmetrical and have equal contact
angles. When neglecting any gravity, they can be characterized adequately, using the
sphere section model as described in [8,12]. However, gravity leads to a flattened rain-
drop surface shape which results in an inaccurate droplet modelling when assuming
sphere sections. On tilted surfaces the sphere section model assumption is violated even
more, because the unsymmetrically applied gravity force will shift the droplet centroid
towards the declining direction, which yields different contact angles and a distinctly
bellied shape as illustrated in Fig. 5.

The shape of a raindrop can be described by parametric functions, like polynomials
of arbitrary order, Taylor polynomials or Bézier curves [3]. Here we employ Bézier
curves, since they describe real water droplets accurately and they provide an intuitive,
low-dimensional parameter set with a credible physical interpretation. This makes the
verification of the model and an approximation for different angles and drop volumes
more transparent than interpreting the coefficients of a polynomial fit.

A Bézier curve of the degree n is characterized by a control polygon consisting of
n + 1 Bézier points (Pi)

n
i=0 ,P ∈ R2. It is defined in an interval t ∈ [0 . . . 1] as

C(t) =
n∑

i=0

Bi,n(t)Pi, (2)

whereas

Bi,n(t) =
(

n
i

)
ti(1 − t)n−i (3)

indicates the Bernstein polynomial i of degree n [3].
A cubic Bézier curve (n = 3) has sufficient degrees of freedom to describe the rain-

drop shape well. As depicted in Fig. 3, a capable interpretation of the Bézier points
(Pi)

3
i=0 can be achieved by transforming them to the contact angles α1, α2 of the

droplet that are originated from physics of boundaries and the weight factors w1, w2

that are related to the centroid shift due to gravity.
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mean Bézier curve
control polygon
Bézier points

Fig. 3. Cubic Bézier curve representation. The Bézier points are transformed physically inter-
pretable: α1, α2 represent the droplets contact angles and the weight factors w1, w2 are related
to the influence of gravity for inclined surfaces.

(d)(a) (b) (c)

Fig. 4. Image processing for drop shape extraction. (a) shows the original image taken in the
experimental setup. A distinction between surface plane and raindrop points is performed by
RANSAC line fitting in the Canny image (b). In order to remove further outliers, two second
order polynomials are fitted robustly to the left (red) and right (green) side of the raindrop (c).
Finally, least squares Bézier curve fitting is performed on all inlier points (d).

α1 =∠(P0P1,P0P3) (4)

α2 =∠(P2P3,P0P3) (5)

w1 =P0P1 (6)

w2 =P2P3 (7)

Finally, the curvature normals of two orthogonal, cubic Bézier curves form a 3D
droplet surface S as illustrated in Fig. 2(b)

nS =
1

|| (nx, 0, 1)T + (0, ny, 1)T ||

⎛⎝⎛⎝nx

0
1

⎞⎠+

⎛⎝ 0
ny

1

⎞⎠⎞⎠ , (8)

where one curvature represents the side view with the inclination angle of the lens-
protecting glass and the other representing the top view with θ = 0◦.

4.2 Bézier Curve Fitting

In order to characterize and describe the drop shape in terms of cubic Bézier curves,
we performed an image pre-processing as described briefly in the following paragraph.
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An overview of the image processing and curve fitting methods can be found in Fig. 4.
The first step of extracting the drop shape is to take raw observations from the canny
edge image (Fig. 4(b)). A robust RANSAC line fitting approach estimates the remain-
ing glass surface direction and hence compensates small errors due to inaccuracies in
the angular arrangement of glass plate and camera. In order to further remove outliers
from the measurements, two parabolas were fitted through the remaining points, us-
ing RANSAC: one from the maximum to the left side (red line in Fig. 4(c)) and one
to the right side (green line in Fig. 4(c)). Note, that we do not use the parameters of
the parabola fits directly because the shape is neither described consistently nor inter-
pretable in a physical way. Instead, a combination of all inliers gives a set of points that
is used for the subsequent Bézier curve fitting as shown in Fig. 4(d). The Bézier curve
fitting is performed in a least squares sense [14] by splitting (2) into two independent
equations for the x and y coordinates

x = axt3 + bxt2 + cxt + dx (9)

y = ayt3 + byt2 + cyt + dy, (10)

and computing the Bézier points (Pi)
3
i=0 by comparing coefficients to (2). The factor

t ∈ [0 . . . 1] corresponds to the normalized curvature length. For a curve described by
N points t is approximated by

t(n) =

n∑
k=1

√
Δx(k)2 + Δy(k)2

N∑
l=1

√
Δx(l)2 + Δy(l)2

, (11)

where Δx and Δy are the differences between two neighboring points.
Repeating the experiments M times for each drop volume and inclination angle con-

figuration, we receive M different Bézier curve parameterizations. A mean Bézier curve
is finally achieved by computing the mean of each Bézier point (Pi)

3
i=0:

Pi =
M∑

k=1

Pi
k

M
. (12)

5 Results

For all experiments, a digital camera was mounted next to a tiltable glass plate to capture
the shape of water droplets of different sizes under multiple inclination angles. We used
an Eppendorf Research Plus pipette for all experiments in order to guarantee a precise
but adjustable drop volume size. In the experimental setup all drops are illuminated by
a lamp in front of a dark background to achieve a good contrast and ensure reliable
shape extraction. As input for finding an empirical description of water droplets on a
flat surface, multiple images with different drop sizes and surface inclination angles
were taken. The chosen drop volumes for our test series were 5, 10, 15 and 20μl and
the inclination angles of the glass plate were 0◦, 25◦, 30◦, 35◦ and 40◦. The chosen
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Fig. 5. Experiments. Sample imagery for manifold drop volumes and surface inclination angles.
For model estimation the mean fit of 20 images for each drop volume and inclination angle setting
is used.

drop volumes in μl correspond to 1.06, 1.34, 1.53 and 1.7 mm drop radii of falling
raindrops, which was motivated by [7] who proposes probable raindrop radii between
0.5 − 2.5 mm. The experiments were repeated 20 times for each drop volume and
inclination angle configuration. Hence, 400 raindrop shape images were acquired in
total. An overview of the different setup properties and their effects on the droplet shape
is depicted in Fig. 5.

The results section is divided into two parts: First, we discuss the estimated rain-
drop parameters. Then we present a comparison of the proposed model with the sphere
section model of [8].

5.1 Model Parameters

A model capable of generating realistic droplet surfaces demands for a low dimensional
parametrization to avoid overfitting. In this section, we discuss the obtained dependen-
cies of the Bézier curve based model with respect to the design parameters (drop volume
and inclination angle).

Assuming the raindrop diameter d = |P0P3|, the upper row in Fig. 6 shows the ex-
pected behavior that the drop radius increases with its volume. A tendency of increasing
drop diameters for larger inclination angles exists, although it may not be the predom-
inant effect. This phenomenon can be explained from the droplet area that looses its
circular shape and develops a predominant direction with increasing inclination angles.
Hence, even if the drop volume is not a-priori known like it is the case in image-based
raindrop detection tasks, for a given surface inclination angle the volume can be esti-
mated from the observed drop diameter. In principle, the scale of standard multi-scale
interest point detectors like SURF [2] would provide sufficient information for that task.
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Fig. 6. Model parameter. The first row shows the averaged droplet diameter d as a function of
the inclination angle θ for different raindrop volumes (columns). The second and the third row
depict the mean contact angles α1, α2 and the mean Bézier weights w1, w2, respectively.

Tilting the glass surface leads to a deformation of the drop due to changed gravity
influences. For this reason, we expect an increasing difference Δ = |α2 − α1| between
both contact angles. The middle row in Fig. 6 shows the expected behavior, although not
all contact angles could be extracted accurately, throughout the experiments. However,
α1 tends to decrease with increasing inclination angle. α2 shows a slight ascent but
decreases for θ = 40◦. This can be explained by having a deeper look at the performed
experiments. We are only interested in stationary droplets. For θ ≈ 40◦, the drop begins
rinsing down and hence we could not acquire representative imagery data.

The Bézier weight w1 remains constant for varying inclination angle and ascends
with increasing drop volume. For the right side w2 increases with inclination angle and
drop volume while for angles θ ≈ 40◦ the drop begins to move, again. As discussed
above, for these inclination angles, no reliable conclusion can be drawn.

In conclusion, a physically correct droplet shape can be derived, as soon as the in-
clination angle and the drop volume are given. The drop volume can be deduced from
the observed raindrop diameter, whereas the surface inclination angle is given by the
defined camera mounting. This makes the proposed droplet shape model applicable for
an image-based raindrop detection approach.
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Fig. 7. Model accuracy. (a)-(d) show the SSD error of a sphere section model and the proposed
model, using cubic Bézier curves.

5.2 Comparison

For comparing the accuracy of the proposed method to state-of-the art, a 2D cut of a
sphere section was fitted to the extracted raindrop surface measurements using nonlin-
ear Levenberg-Marquardt optimization [10]. The error measure is defined in terms of
Sum-of-Squared Differences (SSD).

Fig. 7 shows the error generated using the sphere section model in comparison to the
new Bézier curve based model. Even for flat surfaces (θ ≈ 0◦) and small drop volumes,
the proposed model has an SSD error which is three order of magnitude smaller. This
illustrates the importance to take into account the gravity force which flattens the drop
surface. An increasing drop volume and inclination angle lead to unsymmetrical droplet
deformation, which emphasizes the advantage of the proposed shape model with respect
to the sphere section model.

6 Conclusion

In this paper we proposed a novel raindrop shape model based on cubic Bézier curves
and showed its potential for its integration in image-based raindrop detection approaches.
The model was deduced from numerous experiments on water drops of various vol-
umes on a flat surface with different inclination angles. A physically correct droplet
shape could be computed if just the inclination angle and the drop volume were given.
The drop volume was deduced from the observed raindrop diameter. This makes the
proposed droplet shape model applicable for an image-based raindrop detection ap-
proach. Finally, we showed that the shape deviation between the estimated Bézier curve
based model and the real droplet was significantly decreased compared to state-of-the-
art sphere section models.
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Abstract. The paper evaluates three categories of similarity measures:
ordering-based (census), gradient-based, and illumination-based cost
functions. The performance of those functions is evaluated especially
with respect to illumination changes using two different sets of data,
also including real world driving sequences of hundreds of stereo frames
with strong illumination differences. The overall result is that there are
cost functions in all three categories that can perform well on a quanti-
tative and qualitative level. This leads to the assumption that those cost
functions are in fact closely related at a qualitative level, and we provide
our explanation.

Keywords: cost functions, stereo matching, illumination invariance.

1 Introduction and Related Literature

Stereo algorithms typically solve the correspondence problem by using some cost
function (usually called the data cost) to determine a good match between pixels,
and a discontinuity condition (usually called the smoothness cost) to handle
outliers and homogeneous areas of the data. The combined cost is then minimized
using an optimisation strategy that yields either scan-line or global consistency.
At the moment, state-of-the-art optimisation strategies can be split into four
major groups: belief propagation [7], graph-cuts [3], dynamic programming [17]
which has been extended to a semi-global-matching technique (SGM) [10], and
variational techniques [4,23].

One major problem in stereo matching that affects, primarily, the data cost
are illumination differences (between stereo images). This effect can have a major
influence on the image data and therefore on the quality of the matching cost
itself. This is especially prominent when it comes to real world image sequences
[5]. One approach [1,20,21] to handle illumination changes is to decompose the
input images into a structure and a texture component. The texture component
tends to be robust against illumination changes.

Recent studies [11,12] evaluated the performance of cost functions under il-
lumination changes and found the census [22] cost function to be very robust
against lighting differences. However, a gradient-based measure was unfortu-
nately not part of those evaluations. In [13] the gradient was employed as a
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similarity measure that was additively incorporated into the sum of absolute
difference (SAD) cost function (accumulated over a 3 × 3 window). Another
study used the same two cost functions (SAD and gradient) when creating a
similarity measure, but used a multiplicative contribution along with the nor-
malized cross correlation cost function [6]. The contribution of the gradient was
shown to provide a more reliable cost function when analysed under different
lighting conditions. However, none of those studies were using or analysing the
gradient concept isolated from other cost functions to determine the performance
contribution of the gradient.

In this paper, the performances of three cost functions are compared: SAD ap-
plied to residual images (RSAD), the census cost function (both were previously
identified as being robust against illumination differences) and a gradient-based
measure, each being a representative of different categories of cost functions.
Census belongs to the non-parametric ordering-based cost functions. Distances
of central differences as approximation of image derivatives define a gradient-
based similarity measure. RSAD is used as an example of illumination-based
cost functions. We also use the regular version, the SAD cost function, to eval-
uate a metric that purely relies on the assumption of intensity consistency. In
the methodology presented below, the four cost functions are evaluated under
differing illumination and exposure settings on data sets where ground truth is
available. The performance comparison is done using SGM [10] as the optimiza-
tion technique. This method has proven to be computationally efficient [8] and
of high quality [14].

The main goal of the presented research is to improve the robustness of stereo
algorithms when used in real-world applications. Therefore, a comparison of
the performance of the selected cost functions using two real-world sequences
is performed. The sequences were recorded using three synchronized (trinocu-
lar) cameras, so evaluation is possible using the prediction error technique as
described in [15].

The following two sections introduce the matching costs, as well as the semi-
global matching technique with implementation details used in the experiments.
This is followed by the methodology, data sets, and testing measures used for
evaluation. This leads onto a discussion of the experimental results, which is
then finalised by conclusions.

2 Cost Functions

In a rectified stereo image pair we consider a base and a match image. The
base image is assumed to be the left image L. The match image R is usually
the right image. The images are of same size within the image domain Ω. We
only consider intensity images (ignoring colour) in this paper with values in the
range [0, Imax] ⊂ N. Any cost function Γ defines a global mapping Γ (L, R) = C
that takes rectified stereo images L and R as input, and outputs a 3D cost
matrix C with elements C(i, j, d). The cost matrix represents the cost when
matching a pixel (i, j) in L with a pixel (i− d, j) in R, for any relevant disparity
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d in the range [1, dmax] ⊂ N (zero is used for an “invalid” disparity, such as an
occlusion). The ranges for i and j are [0, n] ⊂ N and [0, m] ⊂ N, respectively.
We simplify notation as we are working with rectified images (epipolar lines are
aligned horizontally), and we consider a fixed image row j in both the base and
match image. Let pi denote a pixel location in L at column i. Let Li be the value
at this location in the base image; qi−d denotes the pixel location (i − d, j) in
the match image R with intensity Ri−d. The cost can be abbreviated to omit
the row C(i, d).

We identify three different categories of cost functions: ordering-based, gra-
dient-based, and intensity-based. We now introduce one representative of each
function category that we evaluate in this paper.

Non parametric or ordering-based cost function. The census [22] cost
function was identified to be a very robust measure when it comes to illumination
changes [12]. Its performance serves as a reference when compared to the other
two cost functions. We use it based on the following definition:

Ccensus(i, d) =
∑

(x,y)∈N+{pi}
ρ(x, y, d) with (1)

ρ(x, y, d) =

⎧⎪⎨⎪⎩
0 if Lx,y > Li and Rx−d,y > Ri−d

0 if Lx,y < Li and Rx−d,y < Ri−d

1 otherwise
(2)

where N denotes the set of all nine pixel locations of the used 3 × 3 window
when centred at reference point (0, 0).

Gradient-based cost function. This cost function employs the spatial dis-
tance of the end points of the gradient vectors as the similarity measure. It is
defined as:

CGRAD(i, d) = |∇Li −∇Ri−d|1 (3)

where ∇ is estimated using central differences1 and | ∗ |1 is the L1-norm. Using
central differences also keeps the neighbourhood influence within a 3×3 window.

Intensity-based cost function. The absolute difference (AD) of the base
and match pixel is the simplest and cheapest (in terms of computational cost)
intensity-based measure:

CAD(i, d) = |Li − Ri−d| (4)

In order to make a comparison more fair to census and the gradient, which use
information from a 3×3 neighborhood, we choose to sum the absolute difference
over a 3×3 window. This extension is known to be the sum of absolute differences
(SAD) cost function. We define this intensity-based representative as:

1 Our experiments use central differences. However, other gradient operators may pos-
sibly provide even better results depending on given image data.
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CSAD =
1

|N |
∑

(x,y)∈N+{pi}
|Lx,y − Rx−d,y| (5)

with cardinality |N | = 9. However, since SAD is known to perform bad when
it comes to illumination differences, we also apply this cost function on the
texture component of the input images. We calculate the residual image (texture
component) T of an image I as

T (I) = I − S(I) (6)

where S(I) denotes the smoothed image (in this case, a 3× 3 mean image) of I.
We refer to this version as RSAD.

3 Semi-Global Matching

This paper uses the semi-global matching technique (SGM) [10]. The SGM al-
gorithm approximates the minimum of a 2D energy function by minimizing
multiple 1D energies, and employing a dynamic programming scheme. The en-
ergy function consists of a data term and a smoothness term. The smoothness
term penalizes small disparity changes of neighbouring pixels with a rather low
penalty c1 to allow slanted surfaces. A second penalty is applied for larger dis-
parity changes with a higher penalty c2. This second penalty is independent of
the actual disparity change in order to preserve depth discontinuities. The pre-
viously mentioned 1D energies are defined as minimum cost paths La that start
at each border pixel of the image and are traversed in direction a.

A direction is basically a digitized line, and all digital lines of identical slopes
are considered to be equivalent. Usually eight directions (up, down, left, right,
and the in-between angles) are sufficient in SGM to obtain high-quality results.
For a digital line in direction a, processed between image border and pixel p,
we only consider the segment p0, p1, . . . , pn of that digital line, with p0 on the
image border, and pn = p. The cost at pixel position p (for a disparity d) on the
path La is recursively defined as follows (for i = 1, 2, . . . , n):

La(pi, d) =C(pi, d) + min

⎧⎪⎪⎨⎪⎪⎩
La(pi−1, d)

La(pi−1, d − 1) + c1

La(pi−1, d + 1) + c1

minΔ La(pi−1, Δ) + c2

⎫⎪⎪⎬⎪⎪⎭− min
Δ

La(pi−1, Δ) (7)

where C(p, d) corresponds to the data cost term and is the similarity cost of
pixel p for disparity d. The costs of paths La, for all (say, eight) directions a,
are accumulated at a pixel p, for all disparities d in the range [1, dmax] ⊂ N, and
the disparity dopt with the lowest cost is finally selected. To adjust the second
penalty, the magnitude of the forward difference is calculated at each pixel pi in
direction a. The magnitude of the forward difference scales the penalty for each
pi with

c2(pi) =
c2

|I(pi−1) − I(pi)| (8)
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To enforce the uniqueness of a disparity map (for a given stereo pair), roles
of base and match images are swapped, which allows the calculation of a second
disparity image. In a final consistency check, a pixel is labelled valid only if the
corresponding disparities are identical; otherwise the pixel is labelled invalid.
This is often referred to as a left-right consistency check.

The implementation used in this paper follows the SGM description from the
original paper, as outlined above. However, it deviates in the following three
points. To achieve sub-pixel accuracy the original paper proposes the standard
procedure to fit a quadratic curve through costs of disparities dopt − 1, dopt, and
dopt + 1, and to take the disparity position of the minimum. Since a comparison
of cost functions is the objective of this paper, generating disparities with sub-
pixel accuracy is omitted, as results may differ depending on the nature of the
cost function.

The second difference is omitting the use of median filtering to remove outliers,
because this is considered a post processing technique to improve performance,
and raw performance of the cost functions are of interest in this paper.

The third difference is that costs are not scaled to 11-bit. The intention of
this scaling is to have similar settings of penalties when cost functions are ex-
changed. However, simple scaling may not be descriptive enough to have a fair
parameter setting between cost functions. For example, consider the census func-
tion that produces discrete costs in the range of [0, 8] ⊂ N. There are basically
no outliers possible, because of the nature of this function, while one outlier in
SAD may result in an unfortunate scaling. However, this is an interesting topic
and with a deeper understanding of the characteristics of cost functions w.r.t.
the data, it should be possible to derive parameter settings for the optimization
techniques. This will be discussion for future work. – Our implementation uses
eight accumulation paths with c1 = 30 and c2 = 150.

4 Methodologies and Datasets

Illumination issues have been proven to cause major issues when it comes to
stereo matching and may, in fact, be the worst type of noise for stereo matching
[16]. The first methodology uses a data set where ground truth is available. It
tests the presented cost functions under normal lighting conditions, as well as
with different exposures and illuminations between the left and right camera.
The calculated costs are then evaluated when applied to the SGM optimisation
approach. The second methodology examines the behaviour of the analyzed cost
functions in combination with SGM using real-world image sequences. To over-
come the lack of ground truth correspondence, we evaluate the output of the
stereo algorithm using a prediction error technique [15]; which is similar to the
approach reported in [19] to evaluate optical flow techniques.

Synthetic or engineered test data. Such stereo images provide a way to
obtain ground truth, but come with their specifica [9]. Stereo images may be
recorded under different lighting and exposure settings, to provide test data
where illumination/exposure could cause issues. Figure 1 shows an example from
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Fig. 1. Illumination and exposure differences for the Art [14] input pair. Left to
right: left (base) reference image, and right (match) image with identical illumina-
tion/exposure, right image with illumination change, right image with exposure change.

the data set [14] used in this paper; the cost functions are tested against the
following images from this dataset: Art, Books, Dolls, Laundry, Moebius, and
Reindeer. For each image pair used, the base image is using the exposure setting
of 1 and illumination setting of 2, as defined on [14]. The left image is kept at this
setting, but both illumination and exposure are varied in the right hand image.
For each measure (outlined below) three tests are performed using different right
hand images:

1. Reference: Identical lighting conditions (exp. 1, illum. 2)
2. Illumination Illumination difference (exp. 1, illum. 1)
3. Exposure: Exposure difference (exp. 0, illum. 2)

We calculate the good pixel percentage (GPP) for all datasets. The GPP is defined
as follows. Let G be the ground truth image of the corresponding data set where
Gi encodes the true disparity at pixel pi. The good pixel percentage is defined
below:

GPP = 100% × 1
|Ω|

∑
(i,j)∈Ω

{
1, if |dopt − Gi| ≤ 1
0 otherwise

(9)

where Ω is the set of all pixels where Gi �= 0, as 0 is used to identify occlusions.
In other words, if the optimal disparity dopt is within one disparity distance

of the ground truth, it is a good pixel. We take the mean GPP over all data sets
for each illumination setting as quality measure for the cost functions. Results
are shown in Figure 3 and discussed in Section 5.

Fig. 2. Sample stereo pairs from a real world data set on [5]. The first two images
from the left are a stereo pair form the bird sequence. The last to images from the left
are a sample stereo pair from the driving straight sequence.
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Real world test data. We analysed two sequences (400 trinocular frames
each) as available on [5], recorded within an urban scenario; both sequences,
were recorded the same day with only a few minutes of difference. See Figure 2
for sample frames of both sequences. The first sequence, bird, was chosen due to
the strong brightness difference between the stereo pairs and varies throughout
the sequence. The second sequence, driving straight, was recording while driving
on a straight road. It is a traffic sequence in which the brightness in both input
images varies only slightly.
Trinocular stereo evaluation. The prediction error technique of [15] for stereo
sequences requires at least three different images of the same scene (from different
perspectives at the same time instance). The objective is to generate a virtual
image V from the output of a stereo matching algorithm, and to compare this
with an image recorded by an additional control camera, that was not used to
generate the disparity map. We generate the virtual image by mapping (warping)
each pixel of the reference image into the position in which it would be located
in the control image N (image recorded with the control camera). Then, N and
V are compared by calculating the normalized cross correlation (NCC) index
between them as follows:

NCC(N, V ) =
1
|Ω|

∑
(i,j)∈Ω

[N(i, j) − μN ][V (i, j) − μV ]
σNσV

(10)

where μN and μV denote the means, and σN and σV the standard deviations
of the control and virtual images, respectively. The domain Ω is only for non-
occluded pixels (i.e., pixels visible in the three images).

5 Results and Discussion

Figure 3 shows the mean GPP over the evaluated engineered test data for differ-
ent illumination settings applied to SGM. From this evaluation, all cost functions
seem to perform equally well, except for the pure SAD function, which is not
surprising because the intensity consistency assumption is violated. It appears
though that census is slightly more robust especially when looking at exposure
changes, as the mean GPP does not change significantly when looking at dif-
ferent illumination settings. Conversely, RSAD and gradient both seem to be
robust to illumination change, but not as much to exposure change.

Figure 4 shows the NCC percentage for all 400 frames of both real-world
driving sequences. The overall performance on the driving straight (left) sequence
is better than in the bird sequence (right). This may be explained because of the
higher illumination variance between stereo frames in the bird sequence. We see
that the overall quality of all cost functions is lower when illumination differences
are strong; this is seen when we compare the driving straight (low changes) with
the bird (high changes) sequence.

The gradient seems to outperform the census cost function for all but a few
frames when looking at the driving straight scene (left). This may be due because
illumination differences are not that strong. Otherwise performance appears to
be almost identical.
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Fig. 3. Results for ground truth evaluation on engineered test data. The GPP is a
mean value over all six datasets evaluated.

Fig. 4. Trinocular prediction error NCC analysis plots for the real-world data set.
Left: Bird sequence. Right: Driving straight sequence.

However, all curves roughly seem to follow the same pattern (this is discussed
later in this section), except for the pure SAD cost function.

The major difference is the RSAD cost function. While performance is consis-
tently lower than for the gradient and the census function in the driving straight
scene (left), it seem to respond slightly differently to the data in the bird sequence
(right).

However, all cost functions seem to perform equally well (again except for
the standard SAD). This may not be surprising because all of them respond to
relative intensity jumps in the underlying image data. The left 3 × 3 window in
Figure 5 shows a sample of a grey scale intensity image. The next window to the
right shows the census transform when we choose 1 if the intensity increases from
the centre pixel, and 0 otherwise. We gain from this transformation the signature
vector (1, 0, 1, 1, 1, 0, 1) when starting from the top left corner, and cycling clock-
wise. However, if we compute forward differences in all eight directions of the
8-neighbourhood of the central pixel (look at the window labelled gradient) and
write down the results in a vector (starting top left and cycling clock-wise), we
get (23,−41, 60, 47, 35,−10, 12,−31). If we just look at the signs and represent
a positive value as a 1 and a negative value as 0, the resulting signature vector
is identical to the census signature vector. This makes a close relation between



Illumination Invariant Cost Functions in Semi-Global Matching 253

113 214

201154123

166 144 189

177 12 -52

36

49

24-211

-42

1 0 1

1

101

0 X X X

23 -41 60

-31 47

12 -10 35

Intensity Census Gradient Residual

Fig. 5. From left to right: A 3× 3 window of a intensity image. Followed by the corre-
sponding census transformation. This is followed by forward differences when computed
in all directions of a 8-neighbourhood. Finally the zero-mean calculation.

derivative-based (or gradient-based) and the census-based data descriptors which
are employed for cost functions.

We can also compute the mean of this window (which is 165) and subtract it
from the intensity of each neighbour we perform the zero-mean transformation.
This is closely related to the residual computation we applied for the SAD cost
function used in this paper. The resulting vector is the vector from the gradient
shifted by an offset of 11 and would be identical if the mean happened to be 154.

This analysis shows that all three cost functions are related. All fit into a first
order data term category, as each of those functions represent a relative intensity
change in the image. But this is nothing else than the derivative in a distinctive
direction; and this is closely related to edge detection.

6 Conclusions

This paper shows that the performance of a gradient based cost function com-
petes with the performance of cost functions already identified as being robust
to illumination changes. A potential relation between the categories of those cost
functions is established. One conclusion of this analysis could be that finding a
good and robust cost function for real world applications reduces to the problem
of finding a cost function that describes intensity changes appropriately w.r.t the
underlying data. All of the illumination robust cost functions seem, in effect, to
be related to the gradient. The census function describes the gradient in a rough
sense, which makes it robust to noise. The gradient and RSAD function adds
intensity information on a relative scale to the cost, which adds more descriptive
information to the cost. However, this makes those functions more affected by
noise than the census. This may explain the better performance of census on the
engineered data as noise has a bigger influence when exposure is changed.
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Abstract. The paper is about the estimation of the relative position of
a spacecraft, during the Entry Descent Landing (EDL) phase, by means
of computer vision. A camera installed on board of the vehicle acquires
images that are used for estimating the relative position of the camera
between two consecutive images. A crucial point of the analysis, and
the main objective of this work, is the estimation of the fundamental
matrix F , considering the fact that in most cases we deal with a quasi-
degenerate configuration. Indeed, the distance between the spacecraft
(and the camera) and the planet surface, together with the morphology
of the ground, make the problem difficult since most of the points will
be extracted from a dominating plane. We discuss two different ways of
addressing such degeneracy, while keeping the computational cost low,
and present very promising results on synthetic as well as real image
sequences.

1 Introduction

A common request for the future scientific missions is the exploitation of a precise
landing approach. The Viking lander (1976), Mars PathFinder (1997), Mars
Polar Lander(1999) and Mars Exploration Rovers(2003) landing ellipse was of
the order of 100-300 km long. The main aim today is to improve this precision in
order to achieve, within few years, ellipse landing of hundreds of meters. Because
of long distance between the Lander and the Earth is not possible to teleoperate
the Lander during the Entry Descent Landing (EDL) phase. Hence the Lander
shall be in charge to choose autonomously the final point of landing avoiding
any hazardous landing areas. Another further requirement is the acquisition of
images during the mission landing phase and their transmission to the Earth
Ground Station. On the basis of above consideration is quite clear that a vision
system could constitute a new approach in charge to satisfy the above mentioned
requirements. In particular the EDL vision based approaches are different from
mission to mission because they are strictly depending on the environmental
features of the mission. For instance the main environmental constraints are
given by:

– Mars atmosphere: this problem is mainly due to the Martian wind and the
dusty atmosphere in the low altitude to guide the Lander during the final
approach.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 255–264, 2011.
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– Moon illumination: the main problem is relevant to the different light con-
ditions.

– Asteroid shape: the unknown terrain morphology constitutes the most crit-
ical problems during the landing

A historical milestone in the EDL vision based approach is constituted by the
success of Mars Exploration Rovers (MER) landings based on the Descent Image
Motion Estimation System (DIMES) by NASA [2]. DIMES constitutes the first
use of computer vision approach to control a spacecraft during the planetary
landing. DIMES was based on a space qualified camera, an IMU and a radar
altimeter to evaluate the distance between Lander and terrain[2,3]. On the basis
of this first positive feedback many studies have been carried out from NASA.
In particular [9,4] define a better approach with respect to DIMES in terms of
slope estimation and hazard detection. In Europe some studies have been carried
out financed by ESA contracts: the Autonomous On Board Navigation for Inter-
planetary Missions (AutoNav) and then the Navigation for Planetary Approach
and Landing (NPAL) [6]. In particular Thales Alenia Space (henceforth TAS-I)
is involved as prime contractor in two studies: the Vision Aided Inertial Naviga-
tion (VISNAV) and n particular two recent studies have been commissioned by
ESA: the Vision Aided Inertial Navigation (VISNAV) and Scalable EDL GNC &
Avionics System Demonstrator (SAGE) study where a Scalable EDL is realized.

In the literature two different conceptual approaches on EDL Vision based
are pursued: the first one is based on feature tracking integrated into the GNC
Extended Kalman filtering; the second one is based on a separate Guide Nav-
igation Control (GNC) where the camera instrumentation furnishes the inputs
on the basis of image processing. The work presented here falls in the second
approach, which is more appealing from industrial point of view because relies
on well consolidate approach of GNC based on Inertial Mass Unit (IMU) and
star sensors instrument. In this way the camera can be considered as further
instrument in the GNC chain.

Following this approach at each time instant we process current video frame
and compute sparse correspondences with a previous frame. Such correspon-
dences are used to estimate the relative geometry between the two views. In
this paper we discuss how to compute the camera 3D motion by estimating the
fundamental matrix F of the epipolar system relating two consecutive frames
acquired with the same camera. From the computer vision stand point the prob-
lem under analysis is rather standard. At the same time the specific applications
setting poses many challenges, that will be addressed throughout the paper. As
a first thing, considering the harsh environmental conditions data will be noisy
and rich of outliers; also, given the relative distance between the camera and
the observed scenario, the latter will always appear as a quasi-planar surface.
This leads to a well-known degenerate configuration. Finally, in space applica-
tions, relying on hard radiation tolerant computers, the available computational
power is very low with respect to todays PCs. Thus a reduced computational
complexity is another crucial issue.
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To deal with such problems the computer vision literature proposes many
different approaches: for what concerns how to limit the effect of outliers most
algorithms are variations of the popular RANSAC [7]. It is worth mentioning
projection based M-estimators (PBM) [1] and MAPSAC [12]. A specific reference
to degenerate configurations is done in QDegSac, a method designed to deal
with degeneracy in a wide class of geometric problems [10]. All these methods
are known to be accurate but are computationally expensive.

Our work is based on exploring simple techniques well known in the computer
vision community [8] while exploiting at best all prior information available from
the application under consideration. The first method (henceforth referred to as
translational model) we analyse breaks the degeneracy of the quasi-planar case
by adding a constraint on the camera motion, assuming that it is translational.
This hypothesis is reasonable in our case, since the rotation component between
consecutive views is usually very small. The second method, instead, is a plane
plus parallax model and exploits the fact that most (but not all) observed points
lie on a planar surface. From the numerical standpoint, both methods are very
simple and thus computationally efficient. We present a detailed experimental
analysis that shows how the two proposed methods outperform the MAPSAC
approach. The experiments are based on two sets of data, a real set acquired
by means of the EDL laboratory installed on TAS-I premises, and a synthetic
set generated by the Pangu ESA software [11]. Different trajectory types have
been taken into consideration, following the experiments described in [14]. The
results show the translational model is very efficient, but the price we pay for the
additional constraint is that we cannot estimate the spacecraft attitude. Instead
the plane plus parallax model appears to be a very good compromise between
effectiveness and efficiency.

2 Fundamental Matrix Computation for Quasi-Planar
Surfaces

In this section we briefly review the degenerate configuration for the estimation
of the epipolar geometry caused by a planar scene [8] and then describe the two
models evaluated for the specific application setting.

2.1 The Degeneracy of Planar Surfaces

Let us first set the notation and consider a calibrated stereo system whose origin
corresponds to the first camera. The projection matrices are

M = K[I|0]
M ′ = K ′[R|t]

where K and K ′ are the intrinsic parameters of the two cameras and R and t are
the rotation matrix and the translation vector relating the two views. A point
P of the 3-D world is projected into p = MP and p′ = M ′P respectively. The
fundamental matrix F carrying information on the geometry of the two views
satisfies the following equation
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p′�Fp = 0. (1)

In this general case it can be seen that the fundamental matrix F may be
written as

F = [e′]×K ′RK−1 (2)

where e′ is the epipole of the second camera.
If the 3-D scene is a plane we have a degenerate configuration of the epipolar

geometry. Indeed, the two views are related by a homography, that is, for all
pairs (p,p′)

p′ = Hp (3)

Putting (3) and (1) together we obtain p′�FH−1p′ = 0 that it is true for all
skew-symmetric matrices FH−1 and does not depends on the points set. Thus
the solution for F is any matrix F = SH where S is skew-symmetric. Since S
has 2 degrees of freedom, considering the scaling factor of the projective trans-
formation, the solution we obtain is a two parameters family of homogeneous
matrices.

This degeneracy holds if all points are exactly on a planar surface and the
camera is undergoing a general motion. In the remainder of the section we will see
how to deal with such degeneracy and recover the geometry of two consecutive
views in the application environment we are considering.

2.2 Pure Translation Model

A pure translational motion seems to be appropriate for the application under
analysis since the rotation component is usually very small and could be modeled
as noise of the system. In this section we discuss the fact that, if the camera
motion is a pure translation, a planar scene does not cause any degeneracy.

Let us start by observing that, with a pure translation motion and assuming
that intrinsic parameters do not change, Eq. (2) can be written as F = [e′]×.
This shows immediately that in this case F is always skew-symmetric and a
minimal solution to the problem can be obtained by 2 points correspondences.
Considering that two 3-D points are always on a plane, it is clear that with this
particular type of motion a planar surface does not represent any special case.
Algorithm 1 reports a way to address this special case, based on setting explicitly
the skew-symmetry of matrix F .

Algorithm 1. Pure translation model
1: input: n point correspondences n ≥ 2
2: Construct the system pFp′ = 0 with F a skew-symmetric matrix. Let A be the

n × 3 coefficients matrix, then each point correspondence i sets a row of A:

[(p3)
i(p′

2)
i − (p2)

i(p′
3)

i, (p1)
i(p′

3)
i − (p3)

i(p′
1)

i, (p2)
i(p′

1)
i − (p1)

i(p′
2)

i]

3: Use RANSAC or MSAC[13] to solve of a homogeneous system Af = 0
4: output: Matrix F built from f - rank 2 is imposed by construction.
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Data normalization, useful to deal with numerical instabilities, should be per-
formed with care in this case. Usually it is performed by centering and scaling
points with respect to each image plane: p̂ = Tp and p̂′ = T ′p′ respectively.
The fundamental matrix F̂ is computed with respect to the normalized data and
then denormalized F = T ′�F̂ T . This transformation breaks the skew-symmetric
structure of the matrix that is responsible of the unicity of the solution. Thus we
suggest to normalize w.r.t. a global transformation T computed over all points
from both image planes. In this case both F and F̂ = T−�F̂ T−1 are skew-
symmetric.

2.3 Plane Plus Parallax Model

An alternative way to exploit the prior information available on the application
environment is to base our estimation on the assumption that most (but not all)
points in the scene lie on a planar surface. This assumption holds in our setting,
considering the high distance between camera and planetary surface. This allows
us to use the virtual parallax induced by the plane to estimate F . The method
we rely on was originally proposed by [5] (see also [8]).

Fig. 1. The plane plus parallax geometry

The geometry we consider is depicted in Fig 1. Point P (that does not lie on
plane Π) is projected on points p and p′ prespectively. pπ = Hp is the mapping
of point p with respect to the homography on the second camera image plane.
p′ and Hp lie on the same epipolar line, l′.

From a simple reasoning we may derive the relationship between F and the
homography H induced by a plane. We consider the epipolar line of the second
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camera and recall that it can be written as l′ = Fp. Also, since this line passes
through the epipole e′, pπ and p′ we may also write it as

l′ = e′ × pπ = [e′]×pπ = [e′]×Hp,

thus
F = [e′]×H. (4)

Thus, since two 3-D points outside plane Π are enough to compute the po-
sition of the epipole e′ while with at least 4 coplanar points one may estimate
H , we obtain a simple algorithm for the estimation of the fundamental matrix
from 6 points only. Algorithm 2 summarizes the procedure.

Algorithm 2. Plane plus parallax model
1: input: n ≥ 6 points correspondences most on a plane – at least 4 on a plane and

2 outside the plane
2: Construct the system from eq. p′

i = Hpi, i = 1, . . . , n.
3: Use RANSAC or MSAC to solve the homogeneous system Ah = 0 - the entries of

h form H
4: Compute the set of inliers ({p}in, {p′}in) and outliers ({p}out, {p′}out) w.r.t. H

5: Construct the system p′�[e′]×Hp = 0 where p ∈ {p}out. Let B be the nout × 3
coefficients matrix

6: Use RANSAC or MSAC so solve the system Be′ = 0.
7: output: the matrix F computed as [e′]×H

We conclude by observing this algorithm can be seen as a particular case
of QDegSAC [10] (or, otherwise, the latter is a generalization of the approach)
but, since we are dealing directly with a specific case, the procedure we adopt is
simpler and with a lower computational cost.

3 Comparative Analysis and Discussion

A preliminary comparative analysis among various methods from the literature
(including 8 points with least squares estimation, with RANSAC [8], MSAC,
Mlesac [13], MAPSAC [12], projection based M-estimators [1] ) showed that
MAPSAC (with a final non linear optimization) gave the best results, although
its computational cost is not appropriate for the application under analysis. Thus
this section aims at comparing its performance with the two methods proposed
in Section 21.

3.1 The Data

The experiments have been carried out on different image sequences. We have
examined three different types of trajectories: vertical, polynomial of 4th order
1 To the purpose of these experiments we use the implementation of MAPSAC avail-

able for download at CVonline http://homepages.inf.ed.ac.uk/rbf/CVonline/

LOCAL_COPIES/TORR1/torrsam.zip

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TORR1/torrsam.zip
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TORR1/torrsam.zip
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Fig. 2. TAS-I EDL laboratory. It is possible to see the Mars relief terrain, the Kuka
robotic arm in the center and on the right the led illumination system.

with a limited curvature, polynomial of 4th order with enlarged curvature. These
trajectories have been based on consideration and results presented in [14] and
they have been thought and optimized on Mars landing approach. We consider
two types of image sequences:

– Real image sequences acquired in EDL Laboratory, described below.
– Synthetic image sequences produced by means of Pangu ESA software [11].

The EDL laboratory on TAS-I premises (see Figure 2) is equipped with a Kuka
robotic arm and a Mars relief terrain and led illumination equipment. The cam-
era, a Marlin F-131 is mounted on the top of robotic arm. The arm moves with
a precision lower than 1 mm along the three axes. The relief map has been built
with a 3D printer and is made of nine panels of 300 x 300 mm each with a max
height of 150 mm. Its precision is lower than 0.1 mm. The Pangu ESA software
[11] processes Digital Elevation Map inputs, to visualize the terrain from dif-
ferent points of viewsand also to add boulders or craters realized by means of
particular fractals functions. The reported experiments are based on two scenar-
ios: a Crater Victoria DEM for Mars scenario and a South Pole DEM for the
Moon scenario (sample frames are shown in Figure 3). Overall 20784 pairs of
images have been tested for camera pose estimation which correspond to 7 real
image sequences and 9 synthetic sequences by means of Pangu.

The validation process includes a feature extraction phase (for current exper-
iments we adopt SURF features, a feature matching phase, and a postprocessing
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Fig. 3. Sample images generated with Pangu ESA software. On the left Victoria Crater
(Mars) on the right South Pole (Moon). Both scenarios are characterized by a sidelight
illumination of 5 deg along the horizon.

that deletes spurious matches. Then for each image pair the fundamental matrix
may be estimated. The latter constitutes the core of the experiments reported
in the reminder of the section.

3.2 Results

For each video sequence we consider consecutive frames and estimate their geom-
etry. In Figure 4 we get a visual impression on how the three methods perform
in the case of a vertical trajectory (top) and of a polynomial trajectory (bot-
tom). The true trajectory is displayed in dark gray, and the computed steps
are visualized as green circles overlaid to the trajectory. Each circle’s radius is
the computed step magnitude, while its normal vector is the computed camera’s
optical axis. By interpolating all the circles we obtain a ”tube” inside which the
estimated trajectory lies. The two proposed methods compare favorably with
respect to MAPSAC.

A quantitative analysis is based on the relative error computed against the
available ground truth:

Errori =
||TrueStepi − ComputedStepi||2

||TrueStepi||2 .

Fig. 5 shows box plots of the three methods for each trajectory type. On the left
are shown the results obtained with the EDL lab real video sequences; on the
right the ones of the PANGU sequences. The plots clearly show that the plane
plus parallax model consistently achieves a lower error and its solutions tend
to be more stable. The translational model is also appropriate in almost all the
cases.

We conclude by recalling that computer used for space missions must be
hard radiation tolerant, therefore their computational performances are low with
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Fig. 4. Estimated trajectories with respect to the ground truth (see text). Top: vertical
trajectory; bottom: polynomial trajectory.
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Fig. 5. Box plots showing the distribution of relative errors for the EDL lab real se-
quences (left) and the Pangu sequences (right). See text.

respect to commercial PCs. Thus it is very appreciated to control computational
complexity avoiding any dynamic memory structure to increase the reliability of
the software.

The computational advantage of employing one of the two proposed ap-
proaches is remarkable: an average estimate of the number of instructions ex-
ecuted by the three methods highlighted that, compared with the number of
instructions executed by MAPSAC (without the final optimization step):

– the pure translation method executes less than 1 % instructions,
– the plane plus parallax less than 6.2 % instructions.
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Thus, both methods are very appropriate for the task also from the compu-
tational standpoint. The plane plus parallax approach is preferred since it has a
slightly superior performance and it also returns information on the spacecraft
attitude, useful to the purpose of the mission.
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Abstract. This paper describes an application of augmented reality
(AR) techniques to virtual cultural heritage reconstruction on the real
sites of defunct constructs. To realize AR-based cultural heritage
reconstruction, extrinsic camera parameter estimation is required for
geometric registration of real and virtual worlds. To estimate extrinsic
camera parameters, we use a pre-constructed feature landmark database
of the target environment. Conventionally, a feature landmark database
has been constructed in a large-scale environment using a structure
-from-motion technique for omnidirectional image sequences. However,
the accuracy of estimated camera parameters is insufficient for specific
applications like AR-based cultural heritage reconstruction, which needs
to overlay CG objects at the position close to the user’s viewpoint. This
is due to the difficulty in compensation of the appearance change of close
landmarks only from the sparse 3-D information obtained by structure-
from-motion. In this paper, visual patterns of landmarks are compen-
sated for by considering local shapes obtained by omnidirectional range
finder to find corresponding landmarks existing close to the user. By us-
ing these landmarks with local shapes, accurate geometric registration is
achieved for AR sightseeing in historic sites.

1 Introduction

AR is a technique that enhances the real world by overlaying CG objects. In this
study, AR techniques are used for virtual cultural heritage reconstruction on the
real site of the defunct temple in ancient Japanese capital Asuka. By using our
method, visitors can see virtually reconstructed buildings by CG at the original
place as shown in Figure 1. To realize AR-based cultural heritage reconstruc-
tion, geometric registration of real and virtual worlds is required; that is, real
and virtual world coordinates should be aligned. In the literatures, vision-based
registration methods, which result in estimating extrinsic camera parameters,
are extensively investigated [1,2,3,4,5,6] because they can achieve pixel-level ge-
ometric registration. These methods can be classified into the following two
groups.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 265–275, 2011.
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Fig. 1. AR sightseeing in historic site

One is a visual-SLAM based method [1,2] that estimates camera parameters
without pre-knowledge of target environments. In this method, database con-
struction and camera parameter estimation are carried out simultaneously. The
problem of visual-SLAMs is that they only estimate relative camera motion.
Thus, this approach cannot be used for position-dependent AR applications like
navigation and landscape simulation.

The other uses some kinds of pre-knowledge of target environments such as
3-D models [3,4,5] and feature landmarks [6]. In this approach, camera parame-
ters are estimated in the global coordinate system. However, a 3-D model based
approach usually requires large human costs to construct 3-D models for large-
scale environments. On the other hand, a feature landmark-based camera param-
eter estimation method [6] has been proposed. The method constructs a feature
landmark database automatically by using structure-from-motion (SFM) in a
large-scale environment. However, the accuracy of estimated camera parameters
is insufficient for some kinds of AR applications like AR sightseeing where CG
objects may be placed at the position close to the user’s viewpoint as shown in
Figure 1. This is due to the difficulty of matching feature landmarks that exist
close to the user’s position (close landmarks). In order to successfully compensate
for the appearance change caused by the viewpoint change for close landmarks,
sparse 3-D information by obtained the SFM process is not sufficient.

In this study, in order to improve the accuracy of vision-based geometric
registration at the spot where CG objects of cultural heritage must be placed
at the position close to the user, we newly compensate for visual patterns of
landmarks using a dense depth map obtained by an omnidirectional laser range
sensor. Figure 2 shows the flow diagram of the proposed vision-based registration
method. The feature landmark-based geometric registration method is composed
of two stages: the database construction stage in an offline process and the
geometric registration stage in an online process. Although the framework of
geometric registration method is basically the same as the method proposed
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(A-1) Acquisition of depth map and surface texture

（A）Database construction（Offline)

(B-1) Initial camera parameter estimation

(B-3) Geometric registration by camera parameter estimation

（B） Geometric registraion（Online)

(B-2) Search for corresponding pairs

of landmarks and image features

(A-2) Acquisition of landmark information

Fig. 2. Flow diagram of proposed vision-based registration

by Taketomi et al. [6], in our method, image templates of close landmarks are
compensated by considering local 3-D structure around the landmark.

2 Landmark Database Construction Considering Local
3-D Structure

This section describes a feature landmark database construction process in the
offline stage (A) in Figure 2. The feature landmark database must be constructed
for the target environment before the online camera parameter estimation (B)
is started for geometric registration. In this study, to compensate for image
templates of landmarks, we use dense depth information obtained by the omni-
directional laser range sensor.

2.1 Acquisition of Depth Map and Surface Texture

Range data and texture are acquired using the omnidirectional laser range sensor
and the omnidirectional camera in the target environment. In this scanning
process, the geometrical relationship between these sensors is calibrated and fixed
in advance. In the obtained depth map, some parts including the sky area cannot
be measured by the laser range sensor. If we simply mask these unmeasurable
areas in the pattern matching process, the aperture problem will easily be caused,
especially for landmarks that exist at the boundary of the sky and landscape. It
should be noted that such landmarks often become the key points for estimating
the camera posture. To avoid the aperture problem, in the proposed method,
infinite depth values are set to the sky area. Concretely, the largest region where
depth values are not available in the omnidirectional image is determined as the
sky area.
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Landmark 2 Landmark 1 

Landmark Database

Landmark N 
・・・

（a） 3-D coordinate of landmark

（b） Viewpoint dependent information

（b-1）Multi-scale image template

（b-2）3-D position of viewpoint

Fig. 3. Elements of landmark database

(a) Using constant depth

(b) Using dense depth

Fig. 4. Example of warped image patterns for some landmarks

2.2 Acquisition of Landmark Information

The feature landmark database consists of a number of landmarks as shown
in Figure 3. Each landmark retains (a) a 3-D coordinate and (b) viewpoint
dependent information.

(a) 3-D Coordinate of Landmark: 3-D positions of landmarks are used
to estimate extrinsic camera parameters in the online stage (B). For all the
feature points detected by using a Harris corner detector [7] from omnidirectional
images, 3-D positions of feature points (a) are determined from the depth map
obtained by the omnidirectional laser range sensor. These Harris corners are
then registered as landmarks.

(b) Viewpoint Dependent Information: In this process, view dependent
information is generated for every grid point that is placed on the ground plane
around the sensor position. Figure 4(a) shows warped image patterns of close
landmark that is stored in the database as image templates by using the SFM-
based method [6]. In this figure, the second column shows the generated image
pattern from the original viewpoint (position of the sensor). The first column
and third column show warped image patterns where the viewpoints are set five
meters to the right and forward from the original viewpoint, respectively. As can
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3D Position of landmark

Projection center of camera

Image template

Image plane

Normal vector of

image template
Depth d

Fig. 5. Generation of image template by conventional method

be seen in Figure 4(a), in the SFM-based database construction, warped images
of landmarks that exist close to the user’s position are largely distorted because
image patterns are compensated with constant depth values d acquired for the
landmark by SFM as shown in Figure 5.

In the proposed method, dense 3-D data obtained by the omnidirectional laser
range sensor is used to correctly compensate for image templates of landmarks.
Concretely, first, depth values di for each pixel i on the image template are ob-
tained from range data. Next, pixel i values on the image template is determined
by projecting an omnidirectional image using these depth values di. In this pat-
tern generation, occluded areas in the image template are set as masked areas in
order to ignore them in the pattern matching process. Figure 4(b) shows warped
images obtained by using the proposed method. It can be observed that warped
images are generated without large distortion by using dense 3-D information.

3 Geometric Registration: Extrinsic Camera Parameter
Estimation Using Landmark Database

This section describes the camera parameter estimation stage in the online pro-
cess (B) in Figure 2 for AR geometric registration. In this process, first, initial
camera position and posture are estimated. Initial camera position and posture
for the first frame of the input are assumed to be given by the landmark-based
camera parameter estimation method for a still image input [8] (B-1). Next,
search for corresponding pairs (B-2) and geometric registration (B-3) are re-
peated.

Search for Corresponding Pairs: In this process, corresponding pairs of
landmarks and image features are searched for in the current frame. First, land-
marks used to estimate camera parameters in the previous frame are selected
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and tracked to the current frame. In the successive frames, visual aspects of
landmarks hardly change. Thus, tracking of landmarks can be realized by a sim-
ple SSD (Sum of Squared Differences) based tracker. After landmark tracking,
tentative camera parameters are determined using tracked landmarks. Image
templates from the nearest viewpoint from the current camera position are then
selected from the database. Finally, corresponding pairs between landmarks and
image features are searched for using NCC (Normalized Cross-Correlation) with
ignoring masked pixels.

Geometric Registration by Camera Parameter Estimation: After de-
termining the corresponding pairs of landmarks and image features, extrinsic
camera parameters are determined in the world coordinate system by solving
the PnP problem [9] using these pairs. In order to remove outliers, the LMedS
estimator [10] is employed in this process. After estimating extrinsic camera
parameters, CG objects that are placed in the world coordinate system in ad-
vance are overlaid on the input image by using projection matrix computed by
estimated camera parameters.

4 Experiments

To demonstrate the usefulness of the proposed method, first, the effectiveness
of pattern compensation by considering local 3-D structure of the landmark is
evaluated. Next, estimated camera parameters are compared with those by the
SFM-based method [6].

In this experiment, the landmark database is constructed for an outdoor
environment using an omnidirectional multi-camera system (Point Grey Re-
search Ladybug2) and an omnidirectional laser rangefinder (Riegl LMS-Z360).
Figure 6 shows a panoramic image and corresponding depth map used for
database construction. In this experiment, the ground plane of the target en-
vironment is divided into 10 × 10 grid points at 1 meter intervals. To compare
the accuracy of estimated camera parameters, the SFM-based feature landmark
database is also constructed in the same place. For both methods, the same video
image sequence (720× 480 pixels, progressive scan, 15fps, 250 frames) captured
in the target environment is used as the input video for the online camera pa-
rameter estimation. In this experiment, camera position and posture for the first
frame are given manually.

4.1 Quantitative Evaluation of Pattern Compensation

Generated image templates of landmarks by the proposed and the previous meth-
ods are quantitatively evaluated by comparing to ground truth. To show the
effectiveness of pattern compensation, compensated image templates of land-
marks exampled in Figure 4 are compared with image patterns of landmarks in
input images. In this experiment, viewpoints for pattern compensation are given
by estimating camera parameters with manually specified correspondences of
landmarks in input images.
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(a) Panoramic image taken by omnidirectional multi-camera system

(b) Depth map taken by omnidirectional laser range sensor

Fig. 6. Acquired omnidirectional data

Table 1. Comparison of normalized cross-correlation value

Proposed method Previous method [6]

Average 0.63 0.47

Standard deviation 0.039 0.052

Table 1 shows average and standard deviation of normalized cross-
correlation values between compensated image templates and image patterns
of landmarks in input images for 30 image templates of landmarks. In the pro-
posed method which considers dense depth information, the average normalized
cross-correlation value (0.63) is higher than that of the previous method (0.47)
which does not consider the local 3-D structure around the landmark. From this
result, we can confirm that compensated image templates are more similar to
image patterns of landmarks in input images than that of the previous method.

4.2 Quantitative Evaluation of Estimated Camera Parameters

In the second experiment, the accuracy of estimated camera parameters is quan-
titatively evaluated and compared with the previous method [6]. Figure 7 shows
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(a)By the previous method [6]

(b)By the proposed method

Fig. 7. Corresponded landmarks

Table 2. Comparison of the accuracy

Proposed method Previous method [6]

Average of position error (mm) 231 342

Standard deviation of position error (mm) 107 164

Average of posture error (degree) 1.11 1.41

Standard deviation of posture error (degree) 0.52 0.46

landmarks in exampled frames that are used for camera parameter estimation.
As shown in this figure, corresponding pairs of landmarks and feature points are
successfully found for the ground part in the proposed method, while the previ-
ous method could not find any corresponding landmarks at the ground part of
the images. This is regarded as the effect of appropriate pattern compensation
using dense 3-D information.

Table 2 shows the accuracy of each method. To evaluate the accuracy of
estimated camera parameters, we create the ground truth by estimating camera
parameters with manually specified correspondences of landmarks. Note that
we have removed several frames in which the reprojection error of the obtained
ground truth is over 1.5 pixels. From this result, the accuracy of the proposed
method has been proven to be improved than that of the previous method.
Figures 8 and 9 illustrate errors in position and posture, respectively. In most
frames, errors of the proposed method are the same or smaller than that of the
previous method.
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Figure 10 shows examples of generated images using the proposed method for
AR sightseeing in Asuka, Japan. Virtual objects are overlaid on the site of the
old temple. We have confirmed that CG objects placed at the position close to
the user’s viewpoint are correctly registered.

5 Conclusion

In this paper, we have proposed a method to use dense depth information for
landmark-based geometric registration for realizing AR sightseeing in the his-
toric site. In this method, unlike other methods, the landmarks close to the user’s
viewpoint that effect the accuracy of geometric registration are aggressively used
by compensating its visual patterns based on dense depth information acquired
by using omni-directional range finder. Importance of close landmarks are vali-
dated quantitatively through the experiment. It should be noted that the pro-
posed method is not for large-scale environments but for selected places where
the accuracy of geometric registration largely depends on close landmarks. In
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Fig. 10. User’s views in AR sightseeing

future work, we will develop a method that uses both dense and sparse 3-D
structures for efficiently constructing the database in large-scale outdoor envi-
ronments.
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Abstract. This paper presents an on-site tour guide using augmented
reality in which past life is virtually reproduced and visualized at cultural
heritage sites. In the tour guide, animated 3-D virtual characters are
superimposed on the cultural heritage sites by visually tracking simple
geometric primitives of the sites such as rectangles and estimating camera
poses (positions and orientations) that can be considered as a tourist’s
viewpoints. Contextual information, such as a tourist’s locations and
profiles, is used to support personalized tour guides. In particular, the
tourist’s locations are obtained by visually recognizing wooden tablets of
the cultural heritage sites. The prototype of the augmented reality tour
guide was tested at Gangnyeongjeon and Gyotaejeon in Gyeongbokgung,
which is a symbolic cultural heritage site in Korea and its user evaluation
is discussed.

1 Introduction

Various types of tour guides have been provided to tourists in cultural heritage
sites. Booklets or tour maps are the most common and familiar type. Local tour
guides who guide tour routes and orally explain historical information or give the
background of cultural heritage sites are also popular. Multimedia tour guides
have recently become attractive because they help tourists easily understand
cultural heritage sites through audio or video contents.

Augmented reality (AR), which superimposes virtual information on real
scenes, has provided good solutions for on-site tour guides. In contrast to the
conventional types of tour guides, AR-based tour guides enable tourists to have
intuitive and realistic experiences by overlaying virtual contents on cultural her-
itages sites. Many studies and research projects have been recently presented AR-
based tour guides for cultural tourism [1]. For example, Papagiannakis et al. [2]
developed an AR framework to revive life in ancient fresco paintings in ancient
Pompeii and create narrative space. The revival was realized by superimposing
3-D virtual characters with body, speech, facial expression, and cloth simula-
tion on the real environment. Augmented reality-based cultural heritage on-site
guide (Archeoguide) [3], which is a system developed by its research project,

� Corresponding author.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 276–285, 2011.
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presented new ways to access information at cultural heritage sites. Archeoguide
helps tourists navigate sites, visualizes AR reconstruction of ancient life, and
offers user-friendly multimodal interaction. Moreover, Vlahakis et al. [4] showed
various potentials for mobile AR tour guides by implementing it on different
mobile units such as laptop, pen-tablet, and palmtop, and demonstrating it at
Greece’s Olympia archaeological site. Intelligent tourism and cultural informa-
tion through ubiquitous services (iTacitus) [5] is another good example of AR-
based tour guides. iTacitus overlays 3-D virtual models and multimedia contents,
such as video and audio, on real scenes. Additionally, it offers context-awareness
services based on a tourist’s locations and interests, and supports an interactive
itinerary planning tool to explore cultural heritage sites. The prototype of iTac-
itus was implemented on Ultra Mobile PCs and recently, smartphones. It was
demonstrated at Reggia Venaria Reale in Italy and Winchester Castle’s Great
Hall in the UK [5,6]. The Ename 974 research project developed a spatially in-
stalled on-site AR system, called TimeScope 1 [7]. TimeScope 1 has operated
at the archaeological park since 1997. It offers tourists a picture of ancient life
at Ename by superimposing a 3-D model of the abbey church on its original
site. Recently, Portalés et al. [8] applied an AR application to recreate former
states of two features—a Baroque vault and a Renaissance reredos—above the
high altar of Valencia Cathedral and reported its practical experiences with user
tests.

In this paper, we present an on-site tour guide using AR in Gyeongbokgung,
which is a representative cultural heritage site in Korea. Gyeongbokgung has
already provided several tour guide services such as booklets, local guides, and
portable audio devices. However, these services have mainly been used to offer
and explain historical information of cultural heritage sites. In the proposed AR
tour guide, intuitive and realistic experiences are provided to tourists by aug-
menting animated 3-D virtual characters, which reproduce past life on real sites.
Historical information is also offered by narration synchronized with the 3-D
virtual characters. Such on-site augmentation is performed by visually track-
ing simple geometric primitives such as rectangles, which are the bases of most
man-made structures, without positional sensors or compasses. Contextual in-
formation such as a tourist’s locations and profiles is used to support personal-
ized tour guides. To obtain the tourist’s locations, wooden tablets are visually
recognized and it is accompanied by tourist’s participation such as capturing
the wooden tablets to get historical information. Finally, the prototype of the
AR tour guide was tested and evaluated at Gangnyeongjeon and Gyotaejeon in
Gyeongbokgung.

2 Methodology

2.1 Framework

The framework of the proposed AR tour guide consists of four parts: context-
awareness, augmentation, and input/output agent. In the input agent, snapshot
or live video images of target scenes are captured by a camera which is attached
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on the AR tour guide. A tourist’s profiles are obtained by simply selecting graphic
user interface (GUI) menus with a stylus pen or finger.

In the context-awareness part, a tourist’s locations are recognized by match-
ing snapshot images of wooden tablets to their predefined reference images of a
database. These are then sent to management agents: context management agent
and map management agent. The context management agent organizes contex-
tual information such as the tourist’s locations and profiles (age and language),
and links to their corresponding information and content of each database. The
map management agent defines location-related information, e.g. tourist’s loca-
tions, AR service zones, and tour paths, to display on the tour map of the AR
tour guide.

Using live video images obtained by the input agent, in the augmentation part,
natural scene information of cultural heritage sites is visually tracked and camera
poses are estimated in real-time. Animated 3-D virtual characters are rendered
on the real sites based on the estimated camera poses. The output agent displays
information, contents, and a tour map on GUI windows of the AR tour guide.
It also provides prerecorded narration synchronized to the rendered 3-D virtual
characters through a speaker. The framework and dataflow of the AR tour guide
are shown in Fig. 1. More details of the context-awareness and augmentation
part are explained through the following subsections.
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2.2 Context-Awareness

A variety of contextual information can be used for personalized tour guides on
cultural heritage sites. The AR tour guide defines a tourist’s location (where) and
profile (who) as entities of the primary context. The tourist’s location provides
simple information, e.g., “Where am I?”, and its relevant context, e.g., “What
information or content is provided here?” or ”Where are other AR service zones
near here?” The tourist’s profile significantly affects personal preference of the
tour guide. In our approach, age and language are obtained for the tourist’s
profile and in particular, age plays an important role to decide the level or
type of information and contents because most young people may require easily
understood descriptions or contents to amuse them or stimulate their interests.

A tourist’s profiles are obtained by simply selecting GUI menus in which short
questions, e.g., “I am under 13” or “I prefer English language” are written. How-
ever, it is not easy to obtain the tourist’s locations without sensor devices such
as positional sensors and compasses. In the proposed AR tour guide, wooden
tablets of cultural heritage sites are used as visual context cues. The tourist is
guided to capture the wooden tablets using a camera. In Gyeongbokgung, all
entrance doors and palaces or court buildings have wooden tablets on which
their names are written. The wooden tablet’s name identifies the heritage site
and provides historical information, such as its meaning, history, or style of
handwriting. For example, Gangnyeongjeon was a building used for the king’s
main sleeping and living quarters. Its wooden tablet was named “Gangnyeong”,
meaning health among five blessings: longevity, wealth, health, love of virtue,
and peaceful death, and “Jeon”, meaning a hall. Geunjeongjeon was the throne
hall of Gyeongbokgung where the king granted audiences to his officials, and
it was named “Geunjeong”, meaning diligence helps governance. Therefore, the
captured images of the wooden tablets are recognized by matching to their pre-
defined reference images of a database, while the tourist participates in the tour
by capturing the wooden tablets to obtain such historical information. After the
tourist’s locations are obtained by recognizing the wooden tablets, predefined
AR service zones (target scene) are indicated on the GUI window of the AR
tour guide and guided to the tourists with narration.

The recognition of wooden tablets is performed as follows. To match a snap-
shot image of a wooden tablet to its corresponding image, robust feature points
are detected in the snapshot image. Then, their descriptors are computed using
SIFT, which is a well-known descriptor [9] (see Fig. 2(b)). Finally, the descriptors
are matched to descriptors of predefined reference images of a database using
the k-nearest neighbor (KNN) algorithm. Here, the descriptors of the reference
images are computed in the same way off-line in advance. Figure 2(c–e) show the
matching results of feature points. Given three reference images (REF1, REF2,
and REF3 in the upper side of each figure), each snapshot image (SN1, SN2, and
SN3 in the bottom side of each figure) was correctly matched to its correspond-
ing reference image. As some characters of the wooden tablets were the same, a
few feature points of wrong reference images could be matched to the snapshot
image (blue line in Fig. 2(c)) even though their shapes were slightly different.
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Fig. 2. Recognition of wooden tablets: (a) snapshot image (SN) and reference image
(REF), (b) descriptor computed from (a), (c–e) matching results against each snapshot
image (REF1/SN1: Gangnyeongjeon, REF2/SN2: Gyotaejeon, REF3/SN3: Geunjeong-
jeon).

However, the number of correct matching was dominant (green line in Fig. 2(c));
thus, recognition was reliable.

Table 1 shows the number of matching when reference images were matched to
different snapshot images. In the experiment, the snapshot images were captured
by video sequences (resolution 640 by 480, 450 frames) where each reference
image continuously appeared at different viewpoints, and matched to the three
reference images. As shown in Table 1, the number of matching was much higher
when each corresponding image was matched.

Table 1. Number of matching between reference images and snapshot images

Number of Matching Reference Image†

(Std. Dev.) REF1 REF2 REF3

Snapshot Image‡
SN1 25.771(4.583) 0.329(0.553) 0.400(0.593)
SN2 0.971(0.613) 35.567(6.127) 0.269(0.527)
SN3 0.753(0.900) 0.638(0.812) 23.640(7.080)

†Each reference image is resolution 125 by 40.
‡Each snapshot image is resolution 640 by 480, 450 frames.
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2.3 Augmentation

The augmentation part is divided into a tracking module and a rendering module.
As a principal one, the tracking module localizes the camera relative to target
scenes using the planar-based visual tracking method that is simple and robust.
In this subsection, we explain how the tracking works in detail.

To achieve our goal, 3-D virtual models should be precisely superimposed
and rendered on real scenes according to user’s viewpoints. Generally, a camera
pose (position and orientation) can be considered the user’s viewpoints; it can
be measured from positional sensors and compasses, or estimated by tracking
visual information from real scenes. In our approach, the camera pose is esti-
mated by visually tracking simple geometric primitives of target scenes without
additional sensor devices. Gyeongbokgung has many palace and court buildings,
and these buildings mainly consist of geometric primitives such as rectangles and
line segments. Therefore, in the target sites—Gangnyeongjeon, which served as
the king’s living quarters and Gyotaejeon, which served as the queen’s main res-
idence, we track rectangles of their doorframes to estimate the camera pose in
real-time. The details of the procedure are as follows:

1. Detect edges of a target scene using the Canny operator.

2. Find contours that can be candidates for a rectangle of a doorframe in the
edges. Note that the edges are linked to minimize their discontinuity and
find the contours reliably.

3. Extract the rectangle of the doorframe by searching the contours with some
constraints: convexity, four corners, and the area of the rectangle. When this
fails (the rectangle is not extracted), the four corners on the current image
can be approximated from the previous ones if the camera’s motion is not
fast. Thus, we find the correspondences of the corners obtained from the
previous image using optical flow analysis [10].

4. Estimate a camera pose using planar-based pose estimation [11] with the four
corners of the extracted rectangle. Here, we assume that the four corners are
coplanar.

With the estimated camera pose, 3-D virtual models are correctly augmented
on the target scenes. Note that texture information inside the target scene is
predefined in the reference database, and the doorframe of the target scene is
distinguished from similar ones in adjacent scenes by the same process as the
recognition of wooden tablets.

Figure 3(b,c) show x and y positions of the right-bottom corner (P point
in Fig. 3(a)) of the extracted rectangle which were estimated during rectangle
tracking (resolution 640 by 480, 200 frames). When the extraction of the rect-
angle failed, its corners were not found (x and y positions are zero in Fig. 3(b)),
and it caused the augmented 3-D virtual characters to flicker. However, in
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Fig. 3. Estimation of the camera pose (a) using the extracted rectangle of the door-
frame. Comparison of (b) the rectangle tracking with (c) the rectangle tracking with
optical flow analysis.

the tracking with optical flow analysis, both positions of the corners were ap-
proximated from previous ones and the tracking was good without discontinuity
as shown in Fig. 3(c).

3 Demonstrations

The prototype of the AR tour guide was tested at Gangnyeongjeon and Gyotae-
jeon in Gyeongbokgung. As shown in Fig. 4, the prototype was implemented
on a laptop (LG X-NOTE C1, Intel Core2 1.20 GHz) with a USB camera (MS
LifeCam NX-6000, resolution 640 by 480, 15 fps). The GUI had four display win-
dows: augmentation window, displaying cultural heritage sites and animated 3-D
virtual characters that are superimposed on them; recognition window, display-
ing captured snapshot images of wooden tablets; tour map window, displaying
a tourist’s locations and service zones; and information window, displaying ex-
planation of cultural heritage sites. Additionally, there were several menus for
executing its functions. They were easily activated by touching with a stylus or
finger.

Figure 5 shows our demonstrations at Gangnyeongjeon and Gyotaejeon in
Gyeongbokgung. As mentioned briefly above, Gangnyeongjeon and Gyotaejeon
offer a glimpse into everyday life in the royal household. During summer, in
particular, the palace buildings open for tourists so that they can enter the
buildings and see exhibitions in the rooms. In both sites, our AR tour guide
precisely tracked the doorframes of the rooms and successfully augmented the
animated 3-D virtual characters (the king and the queen) on the real rooms.
Historical information of the sites was also provided by narration synchronized
to the characters.
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Fig. 4. Prototype of the AR tour guide

(a) (b)

Fig. 5. Demonstrations of the proposed AR tour guide at (a) Gangnyeongjeon and (b)
Gyotaejeon

4 Discussion

The proposed AR tour guide was tested and evaluated by seven tourist groups
at Gangnyeongjeon. Each tourist group consisted of one or more tourists and in
each group, randomly chosen tourists (8 males and 14 females, under 10 to over
50 years old, Korean and foreigner) answered five questions with a range of 1–5
points (higher score means good evaluation). The questionnaires and average
scores are shown in Table 2. The results of the evaluations can be summarized
in the following aspects of the proposed AR tour guide.

Performance: The performance of the AR tour guide mainly depends on the
reliability of the tracking method. The participants gave above average ratings
for question 1: “Did the AR tour guide work reliably?” (the average score was
3.28). Even though the tracking worked quite well, a few participants felt the
augmented 3-D content was unstable when the device motion was fast or the
lighting conditions of the target sites were changed (both sites were partially
outdoor environments).
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Fig. 6. Tests and evaluations by tourist groups

Table 2. Questionnaires and evaluations

Questionnaire Ave. Score
(Std. Dev.)

Q1. Did the AR tour guide work reliably? (1–5)† 3.28 (1.11)
Q2. Were the animated 3-D virtual characters realistic? (1–5) 2.71 (0.76)
Q3. Was the AR tour guide useful and helpful for your tour? (1–5) 4.57 (0.53)
Q4. Was the current prototype device convenient? (1–5) 2.71 (0.75)
Q5. Would it be better if the AR tour guide were served on mobile
phones? (1–5)

4.14 (1.07)

†Score—1: very bad, 2: bad, 3: normal, 4: good, 5: very good.

Usefulness: The answers to question 3: “Was the AR tour guide useful and
helpful for your tour?” were very positive (the average score was 4.57). Most
participants said that it made their experiences interesting and helped them
easily understand the cultural heritage sites. On the other hand, they said the
animated 3-D virtual characters were insufficient to allow them to have a fully
immersive experience (the average score for question 2 was 2.71). It means the
quality and variety of the 3-D contents significantly affected users’ satisfaction
as much as the performance of the AR tour guide did.

Device compatibility: Our prototype used a portable laptop with a wide
screen so that users could easily look at the augmented 3-D contents. It also
supported a pen-tablet-based GUI so that users could conveniently use the AR
tour guide. However, the evaluations showed that several participants felt the
prototype was heavy and uncomfortable, particularly for women and children
(the average score for question 4 was 2.71). This aspect was also shown in ques-
tion 5. The majority answered that they would like to experience the AR tour
guide services on their mobile phones (the average score for question 5 was 4.14)
because mobile phones tend to be light and compact.

Consequently, the tourists responded that the proposed AR tour guide was a
well-suited framework for on-site tour guides, but they highly recommended 3-D
contents to be more realistic and varying. They also commented that device types
should be carefully considered based on service information or contents because
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screen sizes of portable and light device types are relatively small to provide
fully immersive experiences, even though the device types would be better for
mobile tour guide services.

5 Conclusion

In this paper, we presented an AR tour guide that provides intuitive and real-
istic experiences at cultural heritage sites—Gangnyeongjeon and Gyotaejeon in
Gyeongbokgung. The proposed AR tour guide correctly estimated camera poses
by tracking simple geometric primitives of the sites (the rectangles of the door-
frame), and successfully augmented the animated 3-D virtual characters on the
real cultural heritage sites. Moreover, the AR tour guide supported personalized
tour guides on the sites by utilizing contextual information such as a tourist’s
location and profile. Finally, the lessons learned from the tests and evaluations
of tourist groups were briefly discussed.

Currently, we are improving the vision-based methods (tracking and recogni-
tion) and implementing the next version of our AR tour guide on smartphones.
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Abstract. This paper deals with the challenge of city-scale 3D recon-
struction using computer vision techniques. Our method combines the
photogrammetric map created from aerial photographs with photographs
taken by the general public. The former gives the surface, while the latter
gives the texture, and we make a 3D model step-by-step based on a semi-
automatic process. We applied this method to the 3D reconstruction of
the citadel of Bam, which is a collapsed historical site by the earthquake.
Available photographs are limited because new images cannot be cap-
tured after the collapse, but we successfully produced a 3D model of the
site with texture taken from the photograph. Our system is based on 3ds
Max software with several MAXScript tools, such as automatic tools for
generating mesh surface from wireframe by assuming walls, slopes and
grounds, and assistance tools for a semi-automatic process of estimating
camera parameters and transformation matrix.

1 Introduction

This paper deals with the challenge of city-scale 3D reconstruction using com-
puter vision techniques. The uniqueness of this paper is that we deal with a city
fully collapsed by the earthquake. The old city of Bam in Iran was famous for
the largest mud brick structure in the world, but it was completely collapsed by
the earthquake occurred in December 2003 (Fig. 1). After the earthquake, the
city was declared as a UNESCO world heritage site in danger, but it was too
late to make the complete documentation of the city. To reconstruct the city as
it was before the earthquake, we need to take advantage of the resources left
after the earthquake. This is the purpose of our project ”Historical city of Bam”
[1,2,3].

City-scale 3D reconstruction is a hot research topic in many fields such as
e-heritage, but most research is based on the assumption that we can take a
privilege of capturing massive amount of data “from now.” This is not the case
in Bam; the city was gone, and new data cannot be captured. This excludes the
application of some state-of-the-art computer vision approaches such as laser
scanning [4,5]. We need to take advantage of available resources such as a pho-
togrammetric map created from aerial photographs, architectural document such
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Fig. 1. Citadel of Bam : a view form the first city wall toward the bazaar, governor’s
district and main tower (a) before the earthquake (b) after the earthquake

as plans, and tourist photographs we collected after the earthquake, and finally
the memory of experts who worked in the city.

Our approach is similar to image-based modeling approaches [6,7,8], but is
different due to the availability of the data. Many image-based modeling ap-
proaches aim at reconstructing 3D structures from multiple images, or namely
structure from motion (SFM). For example, Agarwal et.al. [9] applied structure
from motion algorithms for photographs collected from Flickr and realized a city-
scale 3D reconstruction. This approach is especially effective for a place where
many tourist photographs are uploaded to photo-sharing websites. In contrast,
Bam city was a popular place for only a limited number of tourists, and it was
collapsed in 2003, when digital camera and photo sharing was emerging. For this
reason, digital resources available on the Internet are much less than Rome or
other popular touristic sites.

Our approach can be compared with other image-based modeling approaches
where limited number of photographs are effectively used to reconstruct the 3D
model [10,11,12]. In fact we also tested these approaches and found out that our
photograph collection has fatal problems as follows. Firstly, many photographs
are taken by analog cameras with unknown parameters, and later digitized, so the
situation is much harder than using photographs from digital cameras. Secondly,
because photographs had been taken for a few decades, they are affected by the
physical reconstruction of the site which had been going on until just before the
earthquake. Even if multiple photographs capture the same frame, architecture
inside the frame may take a different shape due to the renovation. This effect is
significant when the number of photographs is limited, and we finally discarded
this approach.

In our case, however, structure does not have to be estimated only from im-
ages. We have a photogrammetric map created from aerial photographs, and it
can be used as a ”2.5-D” model with contours of the surface. By taking advan-
tage of this map, we can overlay the photographs on the photogrammetric map
to create a city-scale 3D model with texture mapping. Hence we propose a semi-
automatic approach to a city-scale 3D modeling of Bam, which is illustrated in
Fig. 2. The main concept of the framework can be described as follows. Firstly
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Fig. 2. Framework of the system. Photographs and the photogrammetric map is input
to the system from top left, and the final result is shown at bottom right.

the system automatically interprets the photogrammetric map into the 3D mesh
with solid value. Secondly, a user maps the texture using system tools that help
the developer finding the camera position and registering photos automatically
into the scene.

2 History of the Project

Citadel of Bam was almost completely collapsed by the earthquake occurred in
December 2003. Just after the earthquake, we decided to start “Bam Project”
which tries to keep the memory of Bam and collect accurate data for the physical
reconstruction of the city in the future. Five days after the earthquake, the last
day of 2003, we started a website “Bam, Heritage in Danger”1 and asked for the
general public in the world to send us photographs and videos taken before the
earthquake. We received tens of responses from people who visited our website
and agreed to donate their photographs taken at Bam. Our photograph collection
has grown to more than 200 photographs and one video.

At the same time, we also started to collect remaining documentation that
is useful for the reconstruction. One of the most important documentation is
the photogrammetric map. The map is developed by Micro Station tool and
1 http://dsr.nii.ac.jp/bam/.

http://dsr.nii.ac.jp/bam/.
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imported as an AutoCAD file. Some parts were modified manually in ”The Irano-
French 3-D Cartographic Agreement on Bam (IFCA) between CNRS (Centre
National de la Recherche Scientifique) and the Iranian National Cartographic
Centre (NCC)”. Modification are mostly done in important parts e.g. Citadel
and main gate. The map is a wireframe which does not have surface nor solid
volumes. Hence we need to add surface to the wireframe to use it as a 3D model.
This process is explained in Section 3.

Because of the complexity and scale of the city, we divided the city into regions
with three levels of architectural importance, and applied different approaches of
modeling. For the most important regions, we used a completely manual model-
ing approach [1,2,3]. This is because, for these important regions, the accuracy of
the 3D model is our most important focus, while the automation of the process
is out of concern. This in fact involves large amount of manual process, such as
interview and discussion with experts about the parts without accurate data.
In contrast, for the least important regions, the automation of the process is
important because the cost of manual modeling is prohibitive. Hence computer
vision techniques are applied to those regions to create a model that may be less
accurate but with less cost. In the future, we are planning to merge those three
model types to create a unified model of the city. We believe that this is a good
combination of accuracy and cost.

3 Creating 3D Models from Photographs and the
Photogrammetric Map

Our method is based a semi-automatic process due to the limited availability
of data. We start with the automatic process of making 3D models from the
photogrammetric map by building mesh from the contour map. Then we move on
to manual steps of matching photographs with 3D models with a few assistance
tools developed by us. Then we refine the 3D models with a few steps. Although
manual steps, our assistance tool helps improve the efficiency and accuracy of
the task which may otherwise be a tedious and laborious task. Hence we call it
a semi-automatic process of creating 3D models.

Assistance tools are developed using Autodesk 3ds Max software2. Most of
the steps is performed on 3ds Max framework.

3.1 Optimizing Splines

The 3D photogrammetric map is composed of splines in 3D space. Splines are
generated using the photogrammetric techniques from aerial photographs, but
they are not optimized for making 3D models from them. We hence reduce the
complexity of splines while maintaining the shape of the map by a procedure for
rearranging data into a closed shape structure. The procedure works as follows.
2 Autodesk 3ds Max, formerly 3D Studio MAX, is a modeling, animation and render-

ing package developed by Autodesk Media and Entertainment.
http://usa.autodesk.com/

http://usa.autodesk.com/
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First, all the vertexes staying in the middle of a straight line are removed. Second,
if distance between the starting and the ending vertex of a spline is less than
a threshold, the spline is marked as a close spline. Lastly, the starting and the
ending vertex are connected together with a short line.

3.2 Building Mesh from Splines

Splines should be converted into a mesh with surfaces for mapping texture. Since
each spline represents the highest point of the geometry, reasonable surface can
be obtained by sweeping splines downward with the following steps.

1. Apply extrude modifier : Extrude modifier is a modifier provided by 3ds
Max. This modifier sweeps splines downward. Distance of sweeping is set to
a high value in order to make sure all the splines are lower than the ground
plane.

2. Slice mesh at ground plane : Extruded mesh is sliced by slicer modifier.
Slicer plane is set at the ground plane. This cuts the mesh that exceeds the
ground plane. Note that this process does not reduce the number of faces or
vertexes.

3. Apply normal modifier : Mesh produced by extrude modifier contains normal
vector with arbitrary direction. Many of them are incorrect. This error is
obvious when light is applied to the scene, and the color of adjacent faces is
not continuous. Therefore, unify normal and smoothing normal vector filter
is applied to solve this problem, but some errors still remain.

4. Face optimization : Number of faces can be further reduced by applying
mesh optimization. Mesh optimization modifier merge nearby faces into a
single face while maintaining the shape of the mesh.

5. Making the ground and hill : Due to the sparseness of the map, ground
surface cannot be generated automatically, hence all the hills and grounds
are generated manually. A hill is made by using the ground photogrammetric
map as a guide line. Some part of the map is missing, however, and missing
parts are filled by observing the surrounding line. The ground of the city can
be made from a single plane, but this made the ground plane unrealistically
flat, so further modifications is required in the post-processing stage.

3.3 Estimating Camera Parameters

Camera parameters of each photograph are estimated manually in our approach.
Automatic registration of the photograph may be possible in theory using ap-
proaches proposed in the literature such as [13], but this is difficult in our case
because the 3D model created from the photogrammetric map has lower res-
olution than photographs. Matching feature points in 3D models with feature
points of photographs and identify the viewpoint should deal with matching fea-
tures across different scales. Instead, we estimate the camera transformation in
3D visual world, by moving a virtual camera around the virtual city and try
to find the viewpoint where the virtual scene and the scene of the photograph
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Fig. 3. Camera parameters estimated by the matching tool. (a) A snap shot before
adjusting camera parameters (b) A snap shot after matching camera parameters.

makes a good matching. From the caption of photographs, we can move directly
to a neighbor of the true viewpoint, and we then search the best viewpoint in
the neighborhood. This process is a crucial step because it affects directly to
the overall result. This step is not easy, however, because of the large degree
of freedom in choosing camera parameters. We therefore developed a matching
tool for this task.

This matching tool helps to determine four main parameters of the camera.
That is, camera position, camera target position, lens size of the field of view,
and camera rotation. The tool provides a graphical interface to render the result
of camera motion in real-time. Then a user can match the edge of the model
with the edge of the photograph. Fig. 3 shows a snap shot of the matching tool.
The edge of the model is shown as wireframe with different colors. The matching
tool was developed using MAXScript3.

3.4 Estimating Transformation Matrix

In order to deal with the distortion of camera, we developed a tool for adjusting
transformation of photographs. Transformation is computed using control points
on the photograph and 3D scene from the virtual camera. The photograph is used
as the base coordinate and scene from the virtual camera is used as the target
coordinate. Control points are manually assigned on both images so that they
correspond across both images. At least six control points are required. Warping
coordinate from the base image coordinate (x, y) into the target coordinate (u, v)
can be represented by the second order polynomial equation.

[u v] = [1 x y xy x2 y2] × Tinv (1)

where Tinv is a 6-by-2 unknown coefficient matrix. All six control points is used
to derive Tinv. Using this transformation matrix, the photograph is matched with
the scene on a virtual camera, so it can be projected in the scene to server as a
texture map.

3 MAXScript is a built-in scripting language for 3ds Max.
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3.5 Photograph Registration

We finally obtained both camera parameters and a transformation matrix for
each photograph. The next step is the registration of a photograph, but it is
straightforward using camera parameters and the transformation matrix. For
this task, we used two of 3ds Max features, namely composite mapping and
camera map per pixel.

1. Composite mapping : This mapping allows a user to map multiple texture
into a single material. We need to map multiple photographs on a single
material, so composite mapping is required.

2. Camera map per pixel : This map is used for projecting a map from the
direction of a particular camera. This map requires a camera object, a depth
map and a bitmap texture. Here the bitmap texture is the photograph trans-
formed and the depth map can be obtained by rendering the scene of the
virtual camera. Note that texture tiling must not be used in this case.

3.6 Post Processing

In the post processing stage, we apply additional modifiers to improve the visi-
bility and reality of rendering,

1. Filling occluded texture : Some parts of the city are not visible in the avail-
able photographs, so mud-like texture is filled for those parts. This texture is
based on the noise map filter. Base color is the average color of the structure
in photographs. Noise color is also the average color of the darker places in
photographs. The application of this modifier makes the surface of occluded
parts look more natural without increasing memory usage.

2. Modifier ground surface : As mentioned before, ground surface cannot be
generated automatically from the photogrammetric map. We need to modify
some parts of the ground in order to match the photogrammetric map with
photographs. We define that the base ground is at plane z = 0, and we
manually move some parts of the ground by increasing z until the ground
look natural. Finally noise modifier is applied.

3. Lighting system : A fundamental problem of image-based modeling is the
problem of illumination. Estimating illumination condition from a photo-
graph and removing the effect of illumination is a difficult problem. This
is especially important in our work, because we try to combine many pho-
tographs taken in different illumination conditions, namely different time of
the day, different camera aperture setting, and so on. Ideally, illumination
conditions should be calibrated so that all photographs are combined with
the same illumination condition, but we take a simpler approach of reduc-
ing the effect of different illumination conditions. The technique is to remove
photograph’s light and add a new lighting system into the scene. In 3ds Max,
this can be performed by setting self-illumination to a small value (approx-
imately the value of illumination coming from scattering light). After that,
we add a lighting system object called ”Sky light,” which is a standard 3ds
Max object. This includes both scattering and direct lights.
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4 Result and Discussion

We applied the proposed algorithm to the 3D reconstruction of Bam. The pho-
tographs were selected from the collection of tourist photographs gathered from
the world. We have more than 200 photographs, but we found out that use-
ful photographs are limited. Many tourist photographs were taken from similar
viewpoints with similar frames, which is typical for tourist photographs. For ef-
ficient mapping of photographs, we selected photographs so that it covers the
wide area of the city with fewer photographs. Close-up photographs were also
discarded because they are sometimes difficult to determine camera parameters.
As a result, we can use only 22 photographs for our experiment. 4 shows some
of the photographs used.

Fig. 5 shows the final result of city-scale 3D modeling and rendering for
the citadel of Bam. We generated a realistic scene with texture maps extracted
from real architecture in photographs. Our approach provides a solution for the
reconstruction of a large scene with limited resources such as tourist photographs
and the photogrammetric map.

This method gives a simple solution for a quick 3D modeling and rendering of
a large scene. Firstly, we make a photogrammetric map from aerial photographs.
The photogrammetric map has information on the height of place, and it may
contain texture information of the top surface. However, it does not have in-
formation of horizontal view of the building (such as facade). We then overlay
photographs on the photogrammetric map as texture mapping to give more re-
alistic view of buildings. This method is applicable to a collapsed historical site
such as the citadel of Bam, where only a limited amount of data is available.
This is in contrast to massive-scale image-based modeling that requires intensive
image capturing activity.

Future work includes the improvement of surface and texture. First, surface
can be more intelligently generated. Due to the structure of buildings in Bam,
many buildings do not have top surface or roof, and this makes a view from above
look poor. We need an algorithm to search for closed surface and interpret as a
roof, thus generating mesh on the surface. Second, texture should be improved
for occluded parts or parts without reference photographs. In our current im-
plementation, as addressed in Section 3.6, those parts are filled with mud-like
texture, but obviously this is not a sophisticated solution, and may be improved

Fig. 4. Selected photographs. (a) Main gate toward the citadel (b) Citadel taken from
a helicopter (c) Main gate toward the east side (d) Citadel from under.
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Fig. 5. Final result of the framework

by a context-aware texture generation or instance-based texture generation re-
ferring to the database of texture. Another challenge in terms of texture is to
remove the effect of illumination from each photograph and merge them without
artifacts due to illumination differences.

Our future goal of Bam project is to integrate 3D models created by many
types of methods, such as manual, semi-automatic and automatic methods. The
choice of methods is related to required accuracy, availability of data, and the
size of the model. The combination of various methods may lead to cost-effective
3D model generation with importance-based accuracy. 3DCG08

Acknowledgments

The supporting research project, 3D CG reconstruction of the Citadel of Bam
is a collaborative project between Digital Silk Road Project of NII and Iranian
Cultural Heritage, Handicraft and Tourism Organization (ICHHTO). The 3D
photogrammetric material is provided to NII by Professor Chahryar ADLE from
CNRS and ICHHTO.

References

1. Ono, K., Andaroodi, E., Einifar, A., Abe, N., Matini, M.R., Bouet, O., Chopin, F.,
Kawai, T., Kitamoto, A., Ito, A., Mokhtari, E., Eomofar, S., Beheshti, S.M., Adle,
C.: 3DCG reconstitution and virtual reality of UNESCO world heritage in danger.
Journal of Progress in Informatics 5 (2008)

2. Matini, M.R., Andaroodi, E., Kitamoto, A., Ono, K.: Development of CAD-based
3D drawing as a basic resource for digital reconstruction of Bam’s Citadel (UN-
ESCO world heritage in danger). In: Conference on Virtual Systems and Multime-
dia (VSMM 2008) Volume Full Papers, pp. 51–58 (2008)



3D Reconstruction of a Collapsed Historical Site 295

3. Matini, M.R., Andaroodi, E., Kitamoto, A., Ono, K.: Digital 3D reconstruction
based on analytic interpretation of relics; case study: Bam Citadel. In: 22nd Inter-
national Symposium on Digital Documentation, Interpretation and Presentation
of Cultural Heritage, CIPA 2009 (2009)

4. Gruen, A.F., Zhang, L.: Image-based reconstuction and modeling of the great bud-
dha statue in Bamiyan, Afghanistan. Remote Sensing and Spattial Information
Sciences (XXXIV-5/W10)

5. Ikeuchi, K., Nakazawa, A., Hasegawa, K., Ohishi, T.: The Great Buddha Project:
Modeling cultural heritage for VR systems through observation. In: ISMAR 2003:
Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Aug-
mented Reality, vol. 7. IEEE Computer Society, Washington, DC, USA (2003)

6. Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. In: SIGGRAPH
2005: ACM SIGGRAPH 2005 Papers, pp. 577–584. ACM, New York (2005)

7. Saxena, A., Chung, S.H., Ng, A.Y.: 3-D depth reconstruction from a single still
image. Int. J. Comput. Vision 76, 53–69 (2008)

8. Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city
modeling. In: SIGGRAPH Asia 2009: ACM SIGGRAPH Asia 2009 Papers, pp.
1–12. ACM, New York (2009)

9. Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day.
In: 12th International Conference on Computer vision, pp. 72–79 (2009)

10. Thormählen, T., Seidel, H.P.: 3D-modeling by ortho-image generation from image
sequences. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Papers, pp. 1–5. ACM,
New York (2008)

11. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based approach. In: SIGGRAPH 1996:
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, pp. 11–20. ACM, New York (1996)

12. van den Hengel, A., Dick, A., Thormählen, T., Ward, B., Torr, P.H.S.: Video-
trace: rapid interactive scene modelling from video. In: SIGGRAPH 2007: ACM
SIGGRAPH 2007 Papers, vol. 86. ACM, New York (2007)

13. Stamos, I., Liu, L., Chen, C., Wolberg, G., Yu, G., Zokai, S.: Integrating automated
range registration with multiview geometry for the photorealistic modeling of large-
scale scenes. Int. J. Comput. Vision 78, 237–260 (2008)



Recognition and Analysis of Objects in

Medieval Images

Pradeep Yarlagadda, Antonio Monroy, Bernd Carque, and Björn Ommer

Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
{pyarlaga,amonroy,bcarque,bommer}@iwr.uni-heidelberg.de

Abstract. Rapid and cost effective digitization techniques have lead to
the creation of large volumes of visual data in recent times. For providing
convenient access to such databases, it is crucial to develop approaches
and systems which search the database based on the representational
content of images rather than the textual annotations associated with
the images. The success of such systems depends on one key component:
category level object detection in images.

In this contribution, we study the problem of object detection in
the application context of digitized versions of ancient manuscripts. To
this end, we present a benchmark image dataset of medieval images
with groundtruth information for objects such as ‘crowns’ in the image
dataset. Such a benchmark dataset allows for a quantitative compari-
son of object detection algorithms in the domain of cultural heritage,
as illustrated by our experiments. We describe a detection system that
accurately localizes objects in the database. We utilize shape informa-
tion of the objects to analyze the type-variability of the category and
to manually identify various sub-categories. Finally, we report a quan-
titative evaluation of the automatic classification of object into various
sub-categories.

1 Introduction

Large scale digitization efforts in the field of cultural heritage have lead to the
accumulation of vast amounts of visual data in recent times. For a systematic
access to such collections, it is necessary to develop algorithms that search the
database based on the representational content of the images. For this, it is nec-
essary to go beyond a mere analysis of individual image pixels onto a stage where
the semantics of images can be modeled and analyzed. In contrast to this seman-
tics based indexing, the current retrieval systems depend almost exclusively on
queries which are directed at the textual metadata. Textual annotations provide
only limited search options because of the infeasibility of comprehensive manual
indexing. To make image databases accessible in a quicker, more reliable and
detailed way, semantics based indexing is indeed necessary. The key for such
algorithms is category level object detection.

In this contribution, we explore the question of category level object detec-
tion in the context of a benchmark dataset for cultural heritage studies.This
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Fig. 1. Text based vs image based retrieval

dataset is highly significant because of its completeness of late medieval work-
shop production and also it is the first of its kind to enable benchmarking of
object detection and retrieval in pre-modern tinted drawings. We also present
a statistical analysis of the variability and relations within object categories i.e
medieval crowns. The analysis yields a single 2-d visualization of the diversity
found among large numbers of instances of a category. Such a visualization can
be augmented to the search results of a semantics based query system and the
amount of insight it provides into the database cannot be matched by a text
based query system.

2 Related Work

Image databases in the field of cultural heritage are normally made accessible
via textual annotations referring to the representational content of the images
[1]. Therefore, content-based image retrieval depends on either the controlled
vocabularies of the used classification systems or the textual content of free de-
scriptions. In both cases only that can be found what has been considered in
the process of manual indexing; and it can only be found in the specific form
in which it has been verbalized. The inevitability of textual descriptions gener-
ates numerous problems, for example concerning the scope and detailedness of
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the taxonomies, their compatibility beyond linguistic [2], professional or cultural
boundaries, their focus on specific aspects of the content according to specific
scientific interests or not least the qualification and training of the cataloguer.
One of the most sophisticated classification systems is ICONCLASS [3]. Yet,
despite its high level of differentiation it has severe limits in a global perspective
because it was developed only to cover Western art and iconography. There-
fore its ability to index for instance transcultural image resources such as the
database of the Cluster of Excellence Asia and Europe in a Global Context at the
University of Heidelberg [4] is limited. Furthermore, object definition schemes
are featuring a very limited differentiation. In our showcase ‘crown’ the hierar-
chy of objects ends with this general notion and does not offer varying types
of crowns. To focus the object retrieval on subtypes is, in contrast, possible
in the case of REALonline, the most important image database in the field of
medieval and early modern material culture [5]. Here, the controlled vocabulary
contains a few compounds like ‘Buegelkrone’ or ‘Kronhut’. But whereas the main
division ‘Kleidung–Amtstracht’ is searchable in German and in English, these
subdivisions are available only in German, thus raising difficulties of translation.
Problems such as the lack of detail and connectivity are even greater in the
case of heterogeneous databases, which are –like HeidICON [6], Prometheus [7]
or ARTstore [8] –generated by the input from different institutional and aca-
demic contexts. In such cases, the cataloguing of the image content is almost
arbitrary due to the uncontrolled textual descriptions. Finally, a basic problem
of all these databases is the fact that –due to the serious efforts of manual in-
dexing in terms of cost and time –the fast-growing number of images that are
available in a digital format can hardly be itemized in detail and thus cannot
be used efficiently in the long term. To overcome these restrictions, we present
a system that directly searches the visual data thereby circumventing the need
for detailed textual annotations.

Compared to standard benchmark datasets used in computer vision (e.g.
[9,10]), we present a database with a high degree of background clutter, scale
variation, and within-class variability. Being close to the needs in the field of
cultural heritage, this image collection is highly challenging for categorization
algorithms, e.g. [9], voting methods for detection such as [11,10,12], and sliding
window based classifiers [13].

3 Benchmarking, Analysis, and Recognition

3.1 Database and Benchmarking

We have assembled a novel, annotated benchmark image dataset for cultural her-
itage from a corpus of 27 late medieval paper manuscripts, held by Heidelberg
University Library [14]. Produced between 1417 and 1477 in three important
Upper German workshops, this corpus is rare in its magnitude and, in addition,
offers an exceptional homogeneity concerning its date of origin, its provenance
and its technical execution. More than 2,000 half- or full-page tinted drawings
illustrate religious and devotional texts, chronicles and courtly epics. Their con-
tent has been itemized by means of ICONCLASS, so that we are able to evaluate
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Fig. 2. Sample images from the late medieval manuscripts

the capability of the classification system and to detect its desiderata. For this
purpose we built a unique dataset of annotations, which covers object categories
in a more detailed way than any existing taxonomy, e.g. more than 15 different
subtypes of crowns. Thus, the demands on our object retrieval system can be
defined precisely. Although our approach is quite generic which can be applied to
different object categories, we start from the category which has a high semantic
validity since it belongs to the realm of medieval symbols of power [15]. This
ensures that our analysis has the highest possible connectivity to research in the
humanities, e.g to art history and history with a focus on ritual practices [16] or
on material culture.

Breakthroughs entailed by a novel benchmark dataset: Our motivation for in-
troducing a novel benchmark dataset is spurred by the influence the Berkeley
Segmentation Dataset (BSDS) [17] has had on the development and evaluation
of segmentation algorithms. Before BSDS, measuring segmentation performance
was mostly subjective and algorithms were difficult to compare. The new BSDS
dataset with its groundtruth annotation has, for the first time, provided an ob-
jective performance measure for segmentation. This has stimulated algorithm
development which lead to previously unexpected breakthroughs in segmenta-
tion performance. The F-measure, which is a suitable metric for comparing the
performance of segmentation algorithms, has only seen a slight increase in the
years before BSDS. Early segmentation algorithms such as Roberts (1965) [18]
and Canny (1986) [19] achieved F-measures of 0.47 and 0.53, respectively. In the
short time since the introduction of BSDS in 2001, contributions such as [20]
have increased the performance to 0.7 while human performance stands at 0.79.

Annotating the data: In order to generate groundtruth localizations for ob-
jects in the images, we developed an interactive annotation system. Using the
expertise of an art historian we have gathered groundtruth annotations. Cubic
splines are used to fit a bounding region to the principal curvature of an object.
This helps excluding more background from the bounding boxes compared to
rectangular bounding boxes.
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3.2 Object Analysis

The most basic component for object analysis and object recognition is choosing
an appropriate mathematical representation for objects which lays the founda-
tion for recognition and further analysis. We utilize a shape based representation
of objects since shape is an important cue in these medieval manuscripts.

Extracting artistic drawings to represent shape: We have discovered from ex-
periments that the images when represented in HSV color space, particularly
the saturation component, provide a good starting point for object boundary
extraction. Object boundaries are essentially ridges in an image with few pixels
thickness. To detect such ridges, we apply a filter which smoothes the image
along the direction orthogonal to the ridge and sharpens the image along the
direction of the ridge,called the ridge detection filter [21]. It is defined by the
following formula.

G(x, y, σx, σy) =
1

π ∗ σ2
x

∗
(
1 − x2

2 ∗ σ2
x

)
∗ exp

(
− x2

σx
2
− y2

σy
2

)
(1)

Coordinates x,y denote image location, σx, σy determine the support of the
ridge filter along the x and y directions. Equation 1 defines the ridge filter assum-
ing that the ridge is oriented along the x-axis. This formula is easily extended
for detecting ridges at an orientation θ.

At each point in the image, optimization over the parameters σx, σy and θ
yields the maximal filter response. Images marked 1 and 2 in fig. 1 shows an
input image and the result of applying the ridge filter to the input.

Shape representation: Ridges are rerpresented using orientation histograms.
We compute these Histograms of Oriented Gradients (HoG) [22] on a dense grid
of uniformly spaced cells in the image. We combine histograms from 4 different
scales and 9 orientations into a 765 dimensional feature vector.

Automatic discovery of intra-category structure: We capture the relationship
between various object instances in the database in a single plot by embed-
ding high dimensional HoG feature vectors into a low dimensional space. Such a
plot makes it convenient for researchers from cultural heritage to discover rela-
tionships without having to study thousands of images. In a first step pairwise
clustering based on HoG descriptors is employed to discover the hierarchical
substructure of crowns. Then we compute the pairwise distances for samples
in the vicinity of the cluster prototypes. Thereafter, a distance preserving low-
dimensional embedding is computed to project the 765 dimensional feature vec-
tors onto a 2-d subspace that is visualized in fig. 4. This procedure has extracted
relationships, variations and substructure of an object category out of hundreds
of images and makes these directly apparent.

The plot displays two central findings of our recognition system and thus re-
veal the potential of the approach: i) the high type-variability within a category
and ii) the different principles of artistic design. In particular, our clusters for
the category ‘crown’ show that to the simple crown circlet (A) varied elements
like arches (B1), lined arches (B2), torus-shaped brims (B3), hats, or helmets
are added. Thus, objects provide advanced semantic information concerning e.g.



Recognition and Analysis of Objects in Medieval Images 301

Fig. 3. Hierarchy of substructure in object category ‘crown’

Fig. 4. Visualization of Intra-category variability and substructure of crowns. Group A
shows the Swabian workshop of Ludwig Henfflin. Group B shows the Hagenau workshop
of Diebold Lauber with the subgroups of crowns with arches (B1), crowns with lined
arches (B2) and crowns with torus-shaped brims (B3). Group C shows the Alsatian
workshop of 1418

social hierarchies, which is not displayed by the common taxonomies. Since an
automated image-based search does not suffer from the desiderata of annota-
tion taxonomies, it becomes a crucial instrument to assist with the detailed
differentiation of such subtypes, combining data from large numbers of images
and organizing the compositional complexity of objects into a hierarchy of for-
mal variants. Moreover, the clustering and visualization in a MDS-plot (fig. 4)
features different principles of artistic design, which are characteristic for differ-
ent workshops engaged with the illustrations. Group (B) indicates the concise
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and accurate style, mainly based on definite contours, of the Hagenau workshop
of Diebold Lauber [23], group (A) the more delicate and sketchy style of the
Swabian workshop of Ludwig Henfflin, and group (C) the particular summary
style of the so-called ‘Alsatian Workshop of 1418’. This detection of specific draw-
ing styles is a highly relevant starting point to differentiate large-scale datasets
by workshops, single teams within a workshop, or even by individual draftsmen.

3.3 Object Recognition

Objects are detected by classifying image regions as object or background using
a support vector machine with intersection kernel [24]. This detection algorithm
scans the image on multiple scales and orientations. Image regions are repre-
sented using the shape representation from subsection 3.2 and a color histogram.
The necessary codebook of representative colors is obtained by first quantizing
training image using minimum variance quantization into a set of 100 prototyp-
ical clusters per image. The bias towards large, homogenous regions is resolved
by clustering all these prototypes into an overall set of 30 prototypical colors.
We count an object hypothesis as correct if Ah∩Ag

Ah∪Ag
>= 0.4 where Ah and Ag

is the area of the predicted and the groundtruth bounding box, respectively.
The precision-recall curve in part a) of fig. 5 shows the detection performance
achieved by the presented approach.

The precision recall curves in fig. 5 show scope for improvement as the curves
are far from reaching the saturation stage. A closer look at the detection re-
sults revealed a lot of false positives in the images which were not sufficiently
represented during the training stage of the SVM. To deal with this issue, we
have incorporated a bootstrap training procedure to focus on difficult negative
samples as is motivated by [25,26]. Training starts as before by learning an SVM
model on all positive training samples and an equally sized, random set of nega-
tive samples, i.e. bounding boxes drawn from the background. In the next round,
negative samples which are either incorrectly classified by the model or fall inside
the margin (defined by the SVM classifier) are added to the training set. Also,
positive samples which are classified correctly and fall outside the margin are

(a) (b) (c)

Fig. 5. a) Precision recall curve for crowns obtained from HoG and HoG plus color
features. b) Crowns detected in a test image. c) Response of our object detector at
each image location.
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(a) (b) (c)

Fig. 6. a) Precision recall curve for crowns obtained by using a bootstrapping training
procedure. b) and c) Crowns detected in test images along with the SVM scores.

Table 1. Classification results on the crowns from workshops corresponding to groups
A, B and C in fig. 4. Columns are the predicted workshop labels and rows are the correct
labels. A: Swabian workshop of Ludwig Henfflin, B: Hagenau workshop of Diebold
Lauber and C: Alsatian workshop of 1418. The average classification accuracy is 97.67
± 1.7 %.

Workshops pred.: A B C
correct:

A 0.9836 0.0163 0

B 0.0365 0.9634 0

C 0.0083 0.0083 0.9833

removed from the training set. This process is repeated iteratively until there
are no new hard negative samples that can be added to the training set. This
iterative training procedure resulted in a significant improvement in the detec-
tion performance and the resulting PR curves are presented in fig. 6 along with
two examples of detections in test images.

Accurate localization of objects within the images as shown in fig. 5, makes
complex representations like battle scenes or coronations with several symbols
of power more easily readable. Textual annotations do not provide localization
information so that object detection and reasoning about the spatial relationship
between objects or about their performative context [27] remains impossible.

In section 3.2, we have presented an unsupervised approach to identify cate-
gory substructure which has then lead to a visualization (fig. 4) of the different
artistic workshops that have contributed to the Upper German manuscripts.
Based on this visualization, art historians have provided us with groundtruth
information so that we can conduct a quantitative evaluation: they have labeled
all crowns in the dataset with the workshop that they come from based on for-
mal criteria [23]. There are 137 crowns in our dataset that belong to group A
(the workshop of Ludwig Henfflin), 106 crowns belong to group B (the workshop
of Diebold Lauber) and 23 crowns belong to group C (the Alsatian workshop).
We then incorporate a discriminative approach for predicting the workshop that
a crown belongs to. This multi-class classification problem is tackled using the
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features from before and incorporating SVM in a one-versus-all manner. For
evaluation, we apply 10-fold cross-validation: In each round, 50 % of the crowns
from each group have been used for training and the remaining 50 % of the
crowns are used for testing by holding back their labels. The classification re-
sults of the crowns according to the workshops are presented in table 1 in the
form of a confusion matrix.

4 Discussion and Conclusions

The present case study on the Upper German manuscripts of Heidelberg Univer-
sity Library shows the detection results that can be obtained by state-of-the-art
category level object recognition techniques in the context of cultural heritage.
It is now possible to automatically discover the substructure of object categories
which is, for instance, caused by different subtypes or principles of artistic de-
sign. In order to refine our method, we will apply it in a second step to the entire
corpus of the Upper German manuscripts and, in a third step, to the remaining
c. 5,000 images of the Codices Palatini germanici ([28]), which have, for the most
part, not previously been labeled.
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Abstract. Cultural relics are often damaged and incomplete due to var-
ious reasons. For the purpose of helping archaeological studies, we present
a novel method for simultaneously restoring the original shapes of a group
of similar objects. Based on the assumption that similar shapes are ap-
proximately linearly correlated, we use a matrix recovery technique to
achieve the restoration. In order to represent input shapes in a matrix
form, vectorization of each aligned sample is carried out by stacking co-
ordinates of dense corresponding points that are generated by a surface
matching scheme using non-rigid deformation. An experiment using 3D
scans of facial sculptures from Bayon is conducted, and the result verifies
the feasibility and effectiveness of our method.

1 Introduction

Three-dimensional digital replicas play an increasingly important role in cultural
heritage preservation. With current 3D data acquisition technology, such as laser
rangefinders, the geometric information of real-world objects can be accurately
and reliably digitized. These 3D digital models can then be used for various
archaeological studies. For example, a 3D shape comparison technique was used
to help archaeologists understand the meaning of four-faced towers in the temple
Bayon at Angkor [1].

Due to natural and human factors, e.g., weathering and vandalism, historic
cultural relics are often partially damaged (as an example see Figure 2b). Even
for complete objects, sometimes it is difficult to acquire all the shape informa-
tion, because of self-occlusion or some special physical properties of the surface.
Therefore, 3D shape completion or restoration becomes a problem of practical
significance.

Several approaches have been proposed for 3D shape restoration. For instance,
one may focus on the smoothness of the underlying surface, using localized ge-
ometric constraints to achieve a smooth continuation [2,3,4]. This kind of com-
pletion methods is suitable for filling holes, but when the missing part contains
a lot of details and structural information, it will become ineffective. An alter-
native approach is to use a copy and paste scheme. Patches with similar surface
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Fig. 1. An overview of our shape restoration pipeline. For the input shapes, we first
generate dense correspondences among them; then, by stacking coordinates of these
corresponding points, input samples are represented as fixed-length vectors; in the
end, the restoration process is accomplished by a matrix recovery procedure.

characteristics could be selected from either the incomplete object itself [5,6], or
analogous candidate models [7,8].

In this paper, we focus on a specific instance of the shape recovery problem:
given a group of similar objects, where many of them are partially damaged and
incomplete, we aim to restore all these objects simultaneously, using the common
shape structures. Notice that this specific problem setting is not so unusual in
heritage conservation. For example, there are usually many similar god statues
excavated from the same place, keeping a unified style.

We present a new shape restoration method based on a matrix recovery
method [9]. We formulate the shape restoration task as a low-rank matrix re-
covery problem, that we solve using convex optimization. A simple but ef-
fective dense correspondence scheme for shape vectorization is also proposed,
where a deformation-based surface matching method is used. Figure 1 depicts an
overview of our proposed method. Given a group of similar shapes, we first gen-
erate dense correspondences among all samples. Then each sample is represented
as a fixed-length vector, using coordinates of corresponding points. Finally, input
samples are restored to their original shapes using matrix recovery.

The remainder of this paper is organized as follows: Section 2 first gives a brief
introduction of matrix recovery theory, and then formulates the task of restoring
a group of similar shapes as a low-rank matrix recovery problem; Section 3
introduces the procedure of acquiring dense correspondences among all input
samples, which is a crucial step for shape vectorization; Section 4 presents results
of an experiment using real world relics, demonstrating the effectiveness of the
proposed method; and Section 5 concludes with a discussion of the limitations
and promising directions of our method.
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2 Low-Rank Matrix Recovery

Matrix recovery, also known as robust principal component analysis (Robust
PCA), was first introduced in [9]. The essential idea of this theory is to re-
cover corrupted entries of a matrix using structural information of the matrix
itself. Compared to ordinary principal component analysis, this method is more
robust to outlying and corrupted observations, and it can handle such complex
problems as background modeling [10] and batch image alignment [11]. In this
section, we first give a brief introduction of matrix recovery theory, and then we
explain how this method is used to solve our shape restoration problem.

2.1 Problem Statement

Given the observed data matrix D ∈ R
m×n, generated by corrupting some of the

entries of an unknown low-rank matrix A ∈ Rm×n, let an error matrix E ∈ Rm×n

represent the corruption. E is also unknown but supposed to be sparse. The goal
is to recover A.

Robust principal component analysis [9] solves this problem by seeking the
lowest rank A that could have generated the observation D, while subjecting
the error matrix E to a sparseness constraint: ‖E‖0 � k. Here the L0 norm is
employed to measure the matrix sparseness. Thus the initial problem becomes
an optimization:

min
A,E

rank(A) + γ‖E‖0, s.t. A + E = D, (1)

where γ is the weighting parameter that trades off the rank of the solution and
the sparseness of the error.

As detailed in [9], the optimization problem (1) is highly non-convex, and
currently with no efficient solution. A tractable optimization, however, can be
obtained by relaxing the original problem. By replacing the L0 norm with the
L1 norm, and by measuring the rank with the nuclear norm ‖A‖∗, problem (1)
can be converted to a tractable convex optimization:

min
A,E

‖A‖∗ + λ‖E‖1. s.t. A + E = D. (2)

Here the nuclear norm of a matrix is defined as the sum of its singular values:
‖A‖∗ .=

∑
i σi(A). And the weighting parameter λ is in the form c/

√
m, where

c is a constant, and typically set to be around 1. Notice that the new objective
function in problem (2) is continuous and convex, so it can be solved efficiently
[9,12].

2.2 Applying to the Shape Restoration Problem

Now let us describe how we formulate our shape restoration problem as ma-
trix recovery. Given an object category C, in which many samples are partially
damaged and incomplete, let {si}n

i=1 denote a group of observed 3D shape and
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{s0
i }n

i=1 denote the corresponding original shapes without corruption. As we as-
sume that all these samples are of similar shapes and structures, i.e. they are
drawn from the same category, we may assume that they belong to a same linear
subspace S. In other words, as long as n is sufficiently large, an arbitrary sample
s0 from the same category C will approximately lie in the linear span of the
samples {s0

i }n
i=1:

s0 ≈
n∑

i=1

αis0
i , (3)

where {αi}n
i=1 ∈ R are coefficients. In our method, this assumption of linear cor-

relation is the only prior knowledge we rely on to restore the corrupted samples.
As in [11], we define an operator vec : C → Rm that extracts an m-dimensional

feature vector from a 3D model si. In our shape restoration case, this operation
can be accomplished by simply stacking the (x, y, z) coordinates of the points
of interest. We will discuss how to achieve this via non-rigid registration in
Section 3. This results in a matrix A that represents all the observed samples:

A
.= [vec(s0

1)| · · · |vec(s0
n)] ∈ R

m×n. (4)

According to the linear correlation assumption (Eq. (3)), matrix A should be
approximately low-rank.

For an observation sample si, let ei denote the corrupted or missing com-
ponent from the original shape s0

i , so si = s0
i + ei. Using the operator vec we

defined above, the corrupted observation can then be written as

D
.= [vec(s1)| · · · |vec(sn)] = A + E, (5)

where matrix A is a low-rank matrix defined in Eq. (4), revealing the common
shape information of this category, and E

.= [vec(e1)| · · · |vec(en)] ∈ Rm×n is
the error matrix, representing the shape corruption. As we assume that the
corruption is partial and localized, the error matrix E should be sparse, which
means most of its entries are zero. Thus, the task of restoring the shape of similar
objects in the same category becomes a matrix recovery problem as defined in
Section 2.1.

3 Shape Correspondence and Vectorization

In the whole process of shape restoration via matrix recovery, a crucial step is to
properly represent the shape of each sample using a fixed-length vector, so that
accurate correspondences are established among all input objects. Recall that in
Section 2.2, we introduced an operator vec to extract an m-dimensional feature
vector from a 3D shape. In this section, we describe this procedure in detail.

3.1 Sparse Correspondences

First, let us consider establishing a group of sparse corresponding points. Obvi-
ously, a trivial solution is to manually specify the corresponding points. Although
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there are several automatic methods [13,14,15,16], using human assistance is still
the most reliable approach for finding correspondences, especially when data cor-
ruption and high scanning noise exist, which is common for historical objects
in the outdoors. If the output correspondence is acceptable, automatic shape
registration methods could be chosen as well. Notice that the methods in [15,16]
can also be used to generate dense correspondences.

In our work, we chose to leverage manual intervention. Among all input
shapes, a relatively complete sample is chosen as a template (Figure 2a). We
predetermine a group of feature points (Figure 2c) and manually select these
points on each sample (Figure 2d). If certain points are missing due to shape
corruption, we simply mark them as null points.

Then we adopt a rigid registration process for all samples (Figure 2f). The
posture of the template is fixed, and all other samples are aligned to the template
using Iterative closest point (ICP) [17] algorithm. Note that the initial posture
estimation could be calculated from the sparse corresponding points.

3.2 Dense Correspondences and Vectorization

Based on the sparse correspondences, a sampling strategy while keeping the
correct correspondence could be carried out to obtain dense correspondences
among all input samples. The uniform remeshing method in [18] is a workable
choice, but here we use a surface matching scheme based on shape deformation:

1. Adopt a uniform sampling on the template sample to create a final template
with an adequate number of points (Figure 2g).

2. Deform the final template to fit each sample using the sparse correspondences
we manually selected before as control handles for the non-rigid surface de-
formation process.

3. Search the closest point on the destination sample for each point of the
final template, and label the result as the approximate corresponding point.
Here we set a distance threshold: if there is no point within this threshold,
correspondence is marked as a null point.

For the shape deformation phase, a moving least squares (MLS) deformation
similar to [19] is employed:

Given a set of N control points (in our case the corresponding points),
let {pi}N

i=1 ∈ R3 be the original positions on source model S0, and
{qi}N

i=1 ∈ R3 be the corresponding deformed positions on destination
shape Sd. Consider an arbitrary point x ∈ R3 on the source model S0,
let Fx denote the transformation that gives the corresponding position
of point x on Sd after the deformation. According to the MLS theory,
Fx could be determined by solving an optimization:

min
Fx

N∑
i=1

1
d(x,pi)2α

‖Fx(pi) − qi‖2, (6)

where d(x,pi) is the distance between x and pi, α is a system parameter.
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(a) template sample (b) a damaged sample (c) selected point set (d) manual labeling

(e) cropped template (f) rigid registration (g) points on template (h)corresponding points

Fig. 2. Establishing dense correspondences. (a) and (b) are two illustrations of input
shapes, where (a) is relatively complete and selected as the template, while (b) is a
heavily damaged sample; (c) shows the point set chosen for sparse correspondences and
(d) is an example of manually labeled points; (e) is a cropped template sample that
keeps the region of interest only; (f) shows the rigid registration procedure between
the template and other samples before shape vectorization; (g) shows selected points
on the template via uniform sampling, and (h) is the corresponding points on example
(b).

In order to get better deformation results, geodesic distances are used in the
weight function. Given one 3D shape represented by a triangle mesh, the geodesic
distance between two points on its surface can be approximated with the length
of the shortest path from one to the other, which can be calculated by Dijkstra’s
algorithm. Moreover, the mapping Fx is assumed to be an affine transformation,
consisting of a linear transformation M followed by a translation T : Fx(x) =
Mx + T .

So far, we have obtained a set of dense sampling points with correct corre-
spondences for all input samples. As for the vectorization of each sample, the
(x, y, z) coordinates of all selected points are stacked to form a vector that rep-
resents the 3D shape. Obviously, all these vectors are of the same length as the
number of sampling points are fixed. Notice that points corresponding to dam-
aged parts may be marked as null points in our scheme. These null points could
be substituted with nearby points on the object’s convex hull or bounding box
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Fig. 3. Some example 3D shapes from the 3D database of facial sculptures in Bayon

for actual calculation. Figure 2h shows an example where points corresponding
to the missing right side of face are chosen from the bounding box instead.

4 Experimental Results

We conducted experiments to restore the 3D shapes of real-world cultural relics
to validate the proposed method. A group of 151 scanned models of facial sculp-
tures in the temple Bayon (Figure 3) were used. Due to weathering, vandalism,
and some other reasons, many sculptures are incomplete, and some of them are
damaged so heavily that only a small part is preserved (e.g. Figure 2b).

Each sample contains around 500,000 points and 1,000,000 triangles in aver-
age. A relatively complete sample, No. 15N (Figure 2a), is chosen as the template
and 13 feature points (apex of nose, corners of eyes and mouth, etc.) for sparse
correspondences were chosen (Figure 2c). These feature points were manually
localized on each sample.

Compared to the outer part of a facial sculpture, such as the ears and the
headwear, the inner part (the face) contains more information we are interested
in. Taking this into consideration, before generating dense correspondences, the
outer part of the template is masked out (Figure 2e).

In the dense correspondence phase, all samples were downsampled to 10,000
points, which makes the observation matrix D 30,000 rows and 151 columns.
The Augmented Lagrange Multiplier (ALM) method [12] is employed to solve
the convex optimization problem (2). On a common PC platform, the processing
time for solving Eq. (2) was within a few minutes.

Figure 4 shows two restoration examples. Sample No. 4E is so severely dam-
aged that it is difficult to identify facial features, while the situation of sample
No. 24S is even worse: several parts, including the whole forehead and half the
nose, are missing. In spite of that, our restoration method still gives satisfactory
restoration results.

In the convex optimization process (Eq. (2)), there is a weighting parameter
λ that trades off the rank of the solution versus the sparseness of the error. As
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(a) sample No. 4E (b) sample No. 24S

Fig. 4. Two restoration results with parameter c set to 1. In each group, the picture
on the left side shows the observed geometry, and the other one shows the restored
output. Parameter c is a scaled version of parameter λ in Eq. (2): λ = c/

√
m, where

m is the length of the input vectors.

(a) No. 19E (b) No. 20E (c) No. 22E (d) No. 22N (e) No. 24E

Fig. 5. Five different restoration results, with three different values of parameter c.
Each column belongs to the same sample, and the first row shows the original inputs.
The remaining rows demonstrate the outputs under different values of parameter c, 2,
1.6 and 1, respectively, from top to bottom.
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we mentioned, parameter λ is in the form c/
√

m, where c is a constant, typically
set to 1. m is the length of the input vectors, fixed to three times the number of
corresponding points in our experiment. Therefore the constant c could be used
as a scaled version of the parameter λ. Notice that for our shape restoration
problem, this parameter c trades off the similarities of all input models versus the
characteristics of each sample: the larger c is, the more individual characteristics,
as well as the error caused by shape incompletion, will be kept and vice versa.
Figure 5 illustrates the effect of changing the value of parameter c. The result
shows that the typical value 1 seems to be a good trade-off for parameter c in
our shape restoration task.

5 Conclusion and Discussion

We have proposed a novel method for 3D shape restoration. We focused on a
group of similar shapes, aiming to restore them simultaneously. The key idea is to
make use of shape similarities, which is handled by a matrix recovery procedure.
Experimental results on facial sculptures from Bayon verify the effectiveness of
our method. Although it is difficult to evaluate the accuracy of our restoration
output, as there is no ground truth available, we believe the method is of signif-
icant importance for meaningful and feasible archaeological studies, especially
when the shapes of a group of similar relics are needed to be restored.

The method, as it currently stands, has a few limitations. First, the scheme for
acquiring dense shape correspondences is inefficient. Currently we use the closest
point after shape deformation as an approximation of the correspondence, which
is not guaranteed to be accurate and reliable, especially when significant non-
rigid deformation exists. The choice of the template sample may also affect the
result. Second, some shape details are lost after restoration. This is caused by
the downsampling process and the parameter selection in matrix recovery. As an
immediate future work, we plan to investigate methods to distinguish corrupted
and missing data so that different strategies can be employed to restore each.
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14. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. In: ACM
SIGGRAPH 2009 (2009)

15. Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3D non-rigid surface
matching and registration based on holomorphic differentials. In: Forsyth, D., Torr,
P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 1–14. Springer,
Heidelberg (2008)

16. Zeng, Y., Gu, X., Samaras, D., Wang, C., Wang, Y., Paragios, N.: Dense non-
rigid surface registration using high-order graph matching. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, CVPR (2010)

17. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

18. Li, X., Jia, T., Zhang, H.: Expression-insensitive 3D face recognition using sparse
representation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
CVPR (2009)

19. Alvaro, C., Claudio, E., Antonio, O., Paulo, R.C.: 3D as-rigid-as-possible deforma-
tions using MLS. In: The 25th Computer Graphics International Conference, CGI
2007 (2007)



A Development of a 3D Haptic Rendering

System with the String-Based Haptic Interface
Device and Vibration Speakers

Kazuyoshi Nomura1, Wataru Wakita2, and Hiromi T. Tanaka2

1 Graduate School of Science and Engineering, Ritsumeikan University,
Kusatsu, Japan

2 Department of Human and Computer Intelligence, College of Information Science
and Engineering, Ritsumeikan University, Kusatsu, Japan

{nomura,wakita,hiromi}@cv.ci.ritsumei.ac.jp

Abstract. We propose a haptic rendering system for a 3D noh-cloth
model based on the measurement with the string-based haptic inter-
face device and vibration speakers. In the field of digital archives, high-
definition measurement, modeling and rendering of the cultural heritages
are very important elements. However, it is not allowed to touch valued
cultural heritages in general and it is impossible to measure parameter
of these cultural heritages by contiguous measure method.Therefore, we
propose a novel system to display both of tactile and kinematic sense
for 3D model based on parameters of actual model by noncontact mea-
surement method. This paper describes a measurement and modeling of
the noh-cloth with OGM(Optical Gyro Measuring Machine) and a ren-
dering system for a 3D noh-cloth model based on the measurement with
the string-based haptic interface device and vibration speakers.

1 Introduction

In recent years, it is getting possible to present visually high-definition digital
archives of tangible cultural heritages by Computer Vision(CV) and Computer
Graphics(CG) technologies [1]. Moreover, the concept of ”Digital Museum” has
been generated. In this concept, it is expected that visitors can see information
about the exhibited object using Augmented Reality(AR) and Virtual Real-
ity(VR) techniques, and can experience interactively touch and feel the exhibited
objects by not only vision sense but also haptic sense and audio sense [2].

In the field of digital archive, high-definition measurement, modeling and ren-
dering of the cultural heritages are very important elements. To preserve and
reproduct the high-definition model of cultural heritages, it is necessary to dis-
play not only based on vision but also haptic sense and it is necessary to create
more real and interactive exhibition system. However, it is not allowed to touch
valued cultural heritages in general and it is impossible to measure parameter
of these cultural heritages by contact-type measure method.

Also in the haptic field, the standard device such as audio speaker and graph-
ical display in the field of acoustic sense and visual sense is required for display
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of the tactile and kinematics sense. In the previous work, we proposed the tech-
nique for displaying the roughness of textures by using vibration generated by
normal of the texture[3]. However, our system was applied the technique to only
2D texture and user can only feel tactile feeling. Therefore, we developed the
novel system to display both of tactile and kinematic sense based on noncontact
parameters of actual model by noncontact method.

We firstly capture information of surface structure with OGM(Optical Gyro
Measuring Machine) and generate the normal map [4] which has asperity infor-
mation. Secondly, we model tactile sense by vibration signals based on normal
map. For display tactile sense of roughness vibration for users, we use vibration
speaker which is reasonable and small. Finally, we propose a haptic rendering
system for a 3D noh-cloth model based on the measurement with the string-
based haptic interface device and vibration speakers.

2 Noncontact Method of Measuring and Modeling of
Asperity Information

The technique to estimate the normal vector of the surface by analyzing multi-
illuminated images has been established in computer vision research [5]. More-
over, it is possible to estimate meso-structures of fabric from high-definition
images captured using lens of high power [4].

2.1 Environment of Noncontact Measuring

We used OGM (see Fig. 1) and capture the asperity information. The OGM can
capture images in any position of incidence and view using totally 4 axis degree
of rotational freedom (a two-axis light, a one-axis camera and one-axis stage).
Images were captured in a darkened room and metal halide lamp(LS-M180FB)
which is close to natural light was used as a light source.

We used a digital camera which has 3888x2592 resolution (Cannon EOS Kiss
Digital X), EF100mm F2.8 Macro USM lens and Kenko digital tereplus Teleplus
PRO300 for Cannon. Finally getting the camera close up to the object by min-
imum focal length of macro lens by 0.31m, we captured high-definition image(1
pixel = 0.005mm).

2.2 Estimation of Asperity Information

It is known that the half vector between eye vector and light incidence vector
is identical to the surface normal vector of the surface. The normal vector n is
determined by the light position vector l(maximum value of reflectance ratio in
obtained reflection data) and the camera position vector v.

n =
(l + v)
|l + v| (1)

The obtained normal vectors of the each pixel n = [nx, ny, nz] are normalized
to [0, 255] and outputted to the two dimension image called normal map.
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Fig. 1. Optical Gyro Measuring Machine(OGM)

3 Displaying Tactile and Haptic Sense Based on
Measuring

In this study, we used texture based method[6][7][8]. The algorithm of display
haptic sense was shown in Fig. 2.

Fig. 2. Haptic Process

3.1 Preprocessing

To touch virtual objects naturally with a haptic device, the tip position of the
grip of the haptic device in the device space is required to match the camera
position and direction in virtual space. Therefore, the tip position of the grip in
device space is transferred to suit the camera space in the virtual space.
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3.2 Somatosensory Rendering

To display the shape of 3-D virtual object, the collision detection between the
tip position of the grip p and the object surface is required. We use Möller et
al.’s method for the intersection detection [9]. Detecting if the segment from
tip position of the grip p to the face normal vector of each polygon of virtual
object, the polygon(active polygon) which is nearest position from tip position
of the grip are exited. If the tip of the grip touches a polygon, the pixel value
is taken to use for tactile rendering according to normal map. In our system,
the collision detection is done from around the active polygon and calculate the
reaction force based on Constraint-based God-object Method [10]. The reaction
force for expression of shapes is calculated by the Equ. 2.

Vj = njSdj + njD
dj − dj−1

Δt
(2)

Where, j is the update counter of haptic process, n is the pixel value of the nor-
mal map, S is given hardness, d is the penetration depth, D is dumper invariable,
Δt is update counter of haptic process.

3.3 Tactile Rendering

It is said that there are four types of mechanoreceptors in the human skin.
These receptors are stimulated by mechanical stimulation which is caused by
the deformation of the skin and human feel a variety of tactile feeling according
to the frequency of the stimulus [11]. This means that human’s tactile receptors
respond to the changing and human recognize roughness by rather the tiny
vibration caused by tracing surface of objects than the 3D shapes itself. It is
also said that coetaneous sensory function properly works when it is actively
touched to object and human need to trace the object’s surface to recognize the
texture properly [12]. When the finger traces the object’s surface, the normal
force is changed according to the surface structure (see Fig. 3).

Fig. 3. The Finger Tracing Direction and Normal Force

Therefore, in this study, we generate the vibration signal from the surface
normal vector in the direction of finger tracing and display it to the human
finger and excite the mechanoreceptors in the skin to display the roughness
texture feeling.



320 K. Nomura, W. Wakita, and H.T. Tanaka

In our system, we display the vibration signal transform to voltage and input
to vibration speaker. The signal s is calculated by the inner product finger tracing
direction m and the normal vector in the contact point of normal map n in
Equ. 3.

s = nj · mj (3)

Where, j is the update counter of haptic process.

4 Multisensory Display System

The overall view of our system is shown in Fig. 4. Our system is composed
of a haptic display, a graphical display, an application and a DA converter.
Haptic display is composed of two vibration speaker and two kinematic displays
SPIDAR-4 [13]. We used TDA-770PCI (Mirco Science Corporation) for Digital
Analog conversion. The resolution of output voltage is 12bit, the range of output
is -10 to +10V and the maximum update rate is 450kHz.

Users attach the vibration speakers on their index finger and thumb, also
attach the cap in the tip of SPIDAR on their fingers.

Users can feel kinematic sense and tactile sense moving the 3D cursor and
tracing the 3D virtual objects surface in the graphical display. In the application,
user’s finger positions and move directions are calculated. The output signal
is calculated with the finger’s move direction vector and the normal vector of
collision detected point in normal map. The calculated signal is converted to

Fig. 4. Multisensory Display System
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voltage by DA converter and output from vibration speakers to human skin of
fingers as coetaneous sense. Moreover, the reaction force is output to user’s finger
as somesthetic sense calculating the value of normal and amount of infiltration
at the collision point.

5 Multisensory Display for Digital Archive Model

We applied our system to a 3D digital archive of tangible cultural heritage.

5.1 Modeling of Noh-cloth Based on Measuring

We obtained the surface normal map from a piece of actual noh-cloth by ana-
lyzing images captured by OGM. The diffuse map and normal map of several
fabric structures are shown in Fig. 5.

Fig. 6 shows a 3D noh-cloth model based on the measurement data and our
system overview. Users can feel 3D shapes by thumb and index finger with
SPIDAR and feel difference of texture by thumb and index finger with vibration
speaker.

(a) Measured imagery of AYA-ori

(b) Measured imagery of Hira-ori

(c) Measured imagery of Syusu-ori

(d) Measured imagery of Kinran

Fig. 5. Measured Imagery of Noh-cloth
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Fig. 6. Multi-sense Display for Digital Archive Model

This system displays the vibration signal generated from only one point where
the cursor contacts.

When users slide their fingers on the texture, vibration is generated according
to the normal vector of contact point. However, when they stop their fingers,
they feel noting. That is because only one-point information of the texture is
used for generating signal. In the real world we contact the surface of objects by
the face of finger.

Also in this system, user can feel same feeling at the begging and end of sliding.
But in the real world, it is known that the frictional force become altered by
velocity of the objects.

Therefore, using the normal information of neighborhood to generate vibra-
tion signal and display the change of friction force according to user’s finger
velocity are future works.

6 Conclusion

We proposed the novel method to measure parameters of actual model by non-
contact method and we developed a system to display both of tactile and kine-
matic sense based on measurement. Specifically, we firstly captured information
of surface structure with OGM and generate the normal map which has asper-
ity information. Secondly, we modeled tactile sense by vibration signals based
on normal map. Moreover, we used the vibration speaker which is reasonable
and small to display roughness to the finger of human. Finally, we developed a
haptic rendering system for a 3D noh-cloth model based on the measurement
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with the string-based haptic interface device and vibration speakers. Our system
enabled users to feel 3D shapes by thumb and index finger with SPIDAR and
feel difference of texture by thumb and index finger with vibration speaker.

As future works, we consider how to render the sense of face-contact, how to
capture and display the friction and elasticity by noncontact method and apply
this system for various textures.
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Abstract. We propose a texture-based direct-touch interaction system
for 3D woven cultural property exhibition of the “Tenmizuhiki” tapestries
“Hirashaji Houou Monyou Shishu” of “Fune-hoko” of “Gion Festival in
Kyoto”. In the field of digital archive, it is important to archive and rep-
resent the cultural property at the high-definition. To archive the shape,
color and texture of the cultural property, it is important to archive and
represent not only visual effect but haptic impression. Recently, in the
field of haptics, various haptic rendering devices have been developed,
and various haptic rendering techniques to touch the virtual object have
been proposed. In haptic rendering for the high-definition virtual ob-
ject, it is difficult to render the haptic impression smoothly and calcu-
late the reaction force at realtime. Therefore, it is require the realtime
and high-definition haptic rendering techniques. In our previous work,
we proposed a texture-based haptic modeling and rendering techniques
at realtime and with high-definition. However, our techniques are not
based on the measurement. Moreover, in the field of digital archive, it is
necessary to represent the digital archived cultural property intuitively
and interactively. Therefore, we applied our texture-based haptic mod-
eling and rendering techniques for the digital archive, and we developed
a realtime and direct-touch interaction system for 3D cultural property
exhibition.

1 Introduction

In the field of digital archive, it is important to archive and represent the cul-
tural property at the high-definition. To archive the shape, color and texture of
the cultural property, it is important to archive and represent not only visual ef-
fect but haptic impression. Recently, various haptic rendering devices have been
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developed, and various haptic rendering techniques to touch the virtual object
have been proposed.

Penalty-based haptic rendering technique [1][2] is a basic approaches to rep-
resent the polygon wall, has several problems such as passing through, discon-
tinuous force and vibration. To solve these problems, Zilles et al. proposed a
constraints-based God-object method [3]. However, their method has the same
problems such as passing through, discontinuous force and vibration in haptic
rendering for the high-definition virtual object. In haptic rendering for the high
definition virtual object, it is difficult to render the haptic impression smoothly
and calculate the reaction force at realtime. On the other hand, several texture-
based haptic rendering techniques have proposed to represent the asperity of
the interior of the polygon according to the 2D image. Stanney proposed a force
mapping technique [4] which enables representation of the gradient of the object
surface according to the force map. In his approach, the direction of the reaction
force is dynamically perturbed according to the pixel value of the interior of the
polygon which mapped the force map. Theoktisto et al. proposed a height field
mapping technique [5] which enables representation of the height of the object
surface according to the height field map. In their approach, the surface height
is dynamically changed according to the pixel value of the interior of the poly-
gon which mapped the height field map. We proposed a texture-based haptic
rendering technique for the pseudo-roughness on the surface of the low-polygon
virtual object using height map and normal map [6], and we developed a material
system under haptic rendering for pseudo-roughness on the low-polygon object
surface [7]. In this system, difference of the haptic impression is represented by
changing magnitude and/or direction of the reaction force dynamically accord-
ing to the pixel value of the object surface which mapped the special texture
images which converted asperity, stiffness and friction into the 2D image. More-
over, we have proposed a realtime haptic rendering technique for representation
of the shape of the high-definition virtual object using the low-definition virtual
object, distance map and normal map [8]. In this approach, the reaction force is
calculated according to the pixel value of the low polygon object surface which
mapped the special texture image which converted the geometric difference of
the high polygon model and the low polygon model into the 2D image.

However, these techniques are not based on the measurement. To represent
the high-definition virtual object, it is necessary to model the virtual object
based on the measurement. The same can be said for digital archive. Moreover,
in the field of digital archive, it is necessary to represent the digital archived
cultural property intuitively and interactively.

Therefore, we applied our texture-based haptic modeling and rendering tech-
niques for the digital archive, and we developed a realtime and direct-touch
interaction system for 3D cultural property exhibition. Specifically, firstly we
measured and modeled the woven cultural property “Hirashaji Houou Monyou
Shishu” of “Fune-hoko” of “Gion Festival in Kyoto” [9]. Secondly, we developed
an exhibition system with the stereoscopic projector and string-based haptic
interface device “SPIDAR” based on our texture-based techniques.
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2 Digital Archiving and Modeling

We used the laser range scanner “VIVID” [10] for the measurement of the shape,
and we used a high-resolution multiband imaging camera for measurement of
the color and spectral reflectance. The measured range data have 1193×512
vertices, and measured color image data have 13650×5370 pixels. We converted
the measurement range data to a height map. Fig. 1 shows measurement data of
the woven cultural property “Hirashaji Houou Monyou Shishu”. Fig. 1(a) shows
a height image data (height map) that was generated from measured range data
by the laser range scanner, and Fig. 1(b) shows a color image data (color map)
by the multiband camera.

(a) measured height image data

(b) measured color image data

Fig. 1. Measured 2D Image Data of the “Hirashaji Houou Monyou Shishu”

2.1 3D Graphic Modeling

We created a graphic model based on measurement data. Firstly, we converted
a 2D height map to a 3D polygon model which have 612,522 vertices and
1,221,632 triangles (see Fig. 2(a)). Secondly, to reduce the graphic rendering
cost, we reduced a 3D polygon model to 132,554 vertices and 263,484 trian-
gles (see Fig. 2(b)). Finally, we mapped a measured 2D color map to a reduced
3D polygon model. Fig. 2(c) shows a 3D graphic model of the “Hirashaji Houou
Monyou Shishu”.
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(a) measured polygon data (b) reduced polygon data

(c) 3D graphic model

Fig. 2. 3D Graphic Model of the “Hirashaji Houou Monyou Shishu”

2.2 3D Haptic Modeling

To reduce the haptic rendering cost, we used our texture-based haptic modeling
and rendering technique [11].

Firstly, we created a surface gradient image data (normal map) (see Fig. 3)
from height map (see Fig. 1(a)).

Fig. 3. Normal map

This normal map is used to represent the surface gradient, where the RGB
values correspond to the XYZ coordinates of the normal vector. The height
map is used to represent the surface height, where the surface height is changed
according to the grayscale value (white is high and black is low elevation).

Secondly, we created a friction map (see Fig. 4) with a polarization plate,
camera, and multiple light source.
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Fig. 4. Friction map

Fig. 5. Stiffness map

(a) height mapping (b) normal mapping

(c) friction mapping (d) stiffness mapping

Fig. 6. 3D Haptic Model of the “Hirashaji Houou Monyou Shishu”

This friction map is used to represent the surface friction, where the surface
friction is changed according to the grayscale value (white is rough and black is
smooth). Generally, the tangible haptic sensor is used for the friction measure-
ment. However, it is difficult to touch the valuable cultural properties. Therefore,
noncontact measurement method is necessary. Currently, we estimate the fric-
tion parameter based on the reflection component of the cultural property by
the noncontact measurement. For example, easily reflectable(high specular re-
flection) area is flat and smoothly touchable, and low specular reflection area is
rough.



A Texture-Based Direct-Touch Interaction System 329

Thirdly, we created a stiffness map (see Fig. 5) based on the height map (see
Fig. 1(a)).

This stiffness map is used to represent the surface stiffness, where the surface
stiffness is changed according to the grayscale value (white is hard and black is
soft). Currently, we have not measured stiffness parameter by the noncontact
method. “Hirashaji Houou Monyou Shishu” is wadded with cotton and eye part
is made of glass. Therefore, we assume that the woven cultural property is placed
on the floor, and we currently estimate that higher area (cotton) is soft and lower
area (floor) and eye part are hard.

We mapped these maps to 2 polygons square model (see Fig. 6). This square
model is used for the haptic rendering, and is not used for the graphic rendering.

3 Realtime and Direct-Touch Interaction System for 3D
Woven Cultural Property Exhibition

3.1 System Architecture

We developed a direct-touch interaction system for the digital archived 3D woven
cultural property “Hirashaji Houou Monyou Shishu” exhibition (see Fig. 7).

Fig. 7. Direct-touch Interaction System for 3D Woven Cultural Property “Hirashaji
Houou Monyou Shishu” exhibition

Our system is composed of a display system and an 3D application. A display
system consists of a graphic part and haptic part. In graphic part, we used a
rear projector screen (1000mm×750mm) and the stereoscopic projector “DepthQ
HD”. The stereoscopic vision is projected to the bottom projector screen with a
mirror.

A haptic part is on top of a projector screen, and at one with a graphic part.
In haptic part, we used the string-based interface device “SPIDAR-4” [12]. The
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(a) grip part (b) motor part

Fig. 8. Haptic Part with the String-based Haptic Interface Device “SPIDAR-4”

SPIDAR-4 has ability to control the 3DOF position and to present the 3DOF
forces. We used a finger cap to grip part. A tip of the cap is attached to 4 strings
from 4 motors with an encoder (see Fig.8). The strings length got from each
encoder’s data is used to measure the grip’s position. The strings tension from
each motor is displayed the feedback forces.

In 3D application, we used the OpenGL and OpenCV library for the graphic
API, and we used the AHS library for the haptic API. SPIDAR is controlled via
the AHS library.

3.2 Direct-Touch and Texture-Based Haptic Rendering

To direct-touch the virtual objects naturally with the SPIDAR, the finger tip
in the device space is required to match the camera space (camera position and
direction) in virtual space. Therefore, the finger tip position in device space is
converted to the camera space in the virtual space.

In haptic rendering, the reaction force is calculated by using a 2 polygons
square model which mapped haptic textures. Our haptic rendering technique is
based on a constraint-based God-object method [3].

Firstly, the intersection is detected between the finger tip and an invisible 2
polygons square model on the screen (see Fig. 9(a)). We used Möller et al.’s
method [13] for the intersection detection. Secondly, if they are crossed in the
intersection detection and have the possibility of contact (d < T ), the polygon
height is changed according to the pixel value of the height map in relation
to intersection point and the polygon is replicated (see Fig. 9(b)). Finally, the
intersection is detected again between the finger tip and a copy polygon, and
the reaction force is calculated according to the penetration depth and the pixel
value of the friction map and stiffness map. The direction of the reaction force
is perturbed according to the pixel value of the normal map (see Fig. 9(c)).
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(a) intersection detection

(b) copy polygon generation according to the height map

(c) reaction force calculation

Fig. 9. Direct-touch and Texture-based Haptic Rendering Technique

If (rj ≤ pj), the reaction force F is calculated as follows:

Nj = njsjdj + njC
dj − dj−1

Δt
(1)

Sj = mrrj + mjC
rj − rj−1

Δt
(2)

Fj = Nj − Sj (3)

else,
Fj = Nj (4)

where, Nj is the normal force for the shape rendering, Sj is the friction force, j
is the update counter in the haptic process, r is the horizontal penetration depth
in static point, p is the pixel value of the friction map, n is the pixel value of the
normal map, s is the pixel value of the stiffness map, d is the penetration depth,
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C is the constant of damper, Δt is the update rate of haptic process, and m is
the slip direction.

4 Results

Fig. 10 shows our realtime and direct-touch interaction system for the 3D woven
property “Hirashaji Houou Monyou Shishu” exhibition based on our texture-
based haptic modeling and rendering technique. In our system, we used two
2.33 GHz Intel(R) Xeon(R) CPU E5410, NVIDIA Quadro FX 580 graphics card
with 512MB video memory, 16GB RAM, Windows VISTA 64bit, and NVIDIA
3D Vision. The graphic process is 120Hz update rate, and haptic process is 1kHz
update rate. Our system enabled a realtime and direct-touch for the stereoscopic
vision comes to the surface on the screen with SPIDAR.

Fig. 10. Realtime and Direct-touch Interaction System for 3D Woven Cultural Prop-
erty “Hirashaji Houou Monyou Shishu”.

5 Conclusion and Future Work

We proposed a texture-based direct-touch interaction system for the 3D woven
cultural property exhibition. Specifically, firstly we archived the cultural prop-
erty “Tenmizuhiki” tapestries “Hirashaji Houou Monyou Shishu” of “Fune-hoko”
of “Gion Festival in Kyoto”. Secondly, we developed a exhibition system with the
stereoscopic projector and string-based haptic interface device “SPIDAR” based
on our texture-based technique. However, in our system, the stiffness properties
are not based on the measurement data. Therefore, we plan to measure various
materials such as cloth, plastic, soil, and etc. of the stiffness properties.
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Abstract. We discuss the utility of dimensionality reduction algorithms
to put data points in high dimensional spaces into correspondence by
learning a transformation between assigned data points on a lower di-
mensional structure. We assume that similar high dimensional feature
spaces are characterized by a similar underlying low dimensional struc-
ture. To enable the determination of an affine transformation between
two data sets we make use of well-known dimensional reduction al-
gorithms. We demonstrate this procedure for applications like classifi-
cation and assignments between two given data sets and evaluate six
well-known algorithms during several experiments with different objec-
tives. We show that with these algorithms and our transformation ap-
proach high dimensional data sets can be related to each other. We also
show that linear methods turn out to be more suitable for assignment
tasks, whereas graph-based methods appear to be superior for classifica-
tion tasks.

1 Introduction

Applications of methods for dimensionality reduction are widely spread in the
field of computer vision, namely concerning problems of detection, tracking,
recognition, segmentation and reconstruction [1,2,3,4]. Establishing the corre-
spondence between two sets of data points in high dimensional spaces can ef-
ficiently be achieved by dimensionality reduction of both sets and establishing
the correspondence in the subspaces using a transformation between these sub-
spaces. A suitable transformation is a hyper-plane-preserving mapping between
the subspaces, e. g. an affine mapping. The goal of this paper is to compare the
quality of six well known algorithms for dimensionality reduction based on an
affine transformation between the corresponding subspaces. Only a small subset
of the two sets is assumed to be known, however the dimensionality reduction
schemes make use of all data points in a subset.

Our problem shown schematically in Fig. 1 can be stated as follows: We have
given a set S1 containing N unlabeled data points {1φn}, n = 1, . . . , N and L

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 334–343, 2011.
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1φn ∈ R
D

1φl ∈ R
D

2ψl ∈ R
D

2ψm ∈ R
D

Dim.
reduction

Dim.
reduction

1xn ∈ R
d

1xl ∈ R
d

2ym ∈ R
d

2yl ∈ R
d

T

2xn = T1xn

Nearest
Neighbor

2x′
n

Unlabeled

Correspondences

Fig. 1. Schematic overview for putting data points in high dimensional spaces into
correspondence by learning an affine transformation between correspondences on a
lower dimensional structure
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Fig. 2. We apply dimensionality reduction on two similar data sets living in two
different high dimensional spaces, exploiting the structure of all available data. We
estimate an unique, affine transformation between both reduced spaces using only few
correspondences. The transformation is illustrated by the affine-distorted polygon. This
way a unlabeled test point from one data set can be assigned to its nearest neighbor
within the other set without labeling all data.

labeled correspondences {1φl}, l = 1, . . . , L in RD and a set S2 containing M un-
labeled data points {2ψm}, m = 1, . . . , M and L labeled correspondences {2ψl},
l = 1, . . . , L in RD. We want to find lower dimensional data points {1xn, 1xl}
from S1 and {2ym, 2yl} from S2 in Rd with d � D so that {1xn, 1xl} is an
appropriate representation of {1φn, 1φl} and {2ym, 2yl} of {2ψm, 2ψl}.

Having points {1xl}, {2yl} from two similar data sets, a unique hyper-plane
preserving transformation � from one space into another is to be determined.
Therefore, a small amount of labeled correspondences {2yl,

1xl} can be used.
Fig. 2 shows how both data sets can be related via the low dimensional space.
The unlabeled, transformed points {2xn} from set S1 can be assigned to its
nearest neighbor within S2 yielding {2x′

n}.
We investigate and evaluate six popular, linear and graph-based methods for

dimensionality reduction in an extensive test framework. Assuming to have only
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few correspondences with geometric information, yet a large number of unlabeled
data, we consider only unsupervised dimensionality reduction algorithms.

We relate both reduced data sets to each other with a linear, affine transfor-
mation matrix. This matrix can be determined in case at least d(d+1) common
data points are available. More complex transformations can also be considered,
but this is not scope of this work.

Using the dimensional reduction followed by an affine transformation we can
relate every new test point to its nearest neighbor within the other data set
using Euclidean distances, without the need of a complete set of labels and a full
D × D transformation matrix. We investigate the quality of these assignments
depending on the dimensionality reduction algorithm and several parameters.

Our contribution is to show that using such algorithms and the presented
transformation approach we can relate high dimensional data sets to each other
with a minimal amount of correspondences. This can be used for the assignment
of data points from different spaces as well as for the classification of images.
The approach is independent of the used dimensionality reduction algorithm and
can be used with affine as well as more complex transformations. Our further
contribution is to show empirical investigations on the standard dimensionality
reduction algorithms.

In Section 2 we give an overview of the related work with special focus on
spectral methods. Section 3 briefly illustrates representative linear and graph-
based state-of-the-art spectral methods, which we analyze in our experiments.
In Section 4 we explain how to relate two data sets using an affine transforma-
tion. Section 5 compares six spectral methods in order to find preferably robust
and low dimensional structures in a semi-supervised manner. We evaluate the
algorithms on handwritten and computer digits and on cartoon images with and
without glasses. In the last section we discuss our results and provide an outlook
to future work.

2 Related Work

The field of computer vision offers numerous feature selection algorithms and
extraction methods. Spectral methods constitute a group specialized in reduc-
ing the dimensionality of data. We distinguish between two major types of
algorithms:

1. Linear methods including Principal Component Analysis (PCA) [5] and Mul-
tidimensional Scaling (MDS) [6] and

2. Nonlinear methods including graph-based methods (e. g. [7,8,9,10,11]), and
kernel methods (e. g. [12,13]). In contrast to linear methods the nonlinear
methods perform better on complex nonlinear data structures as they occur
in real world data sets.

In the last years further algorithms closely related to the latter have been de-
veloped focusing on acceleration (e. g. [14,15]) and qualitative improvement
(e. g. [16,17,18]).
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Typical data sets used in the aforementioned methods are pictures of an object
subject to changing illumination, angle, translation or other varying character-
istics. The data points defined by the vectorized pixel intensities of each image
vary smoothly so that they define a manifold in a high dimensional space.

For example, Roweis and Saul [19] demonstrate the Isomap algorithm employ-
ing it on face images with varying illumination conditions and angles, on hand
images with natural hand movements and also on handwritten digits.

A preliminary work on learning high dimensional correspondences from low
dimensional manifolds has been done by Ham et al. [20], who extends Locally
Linear Embedding to handle constraints introduced by correspondences. They
show on several datasets that the constrained Locally Linear Embedding gives
better reconstruction errors than supervised algorithms, factor analysis and a
model similar to the bilinear model proposed by Tenenbaum and Freeman to
separate style form content [21]. Also De la Torre and Black [22] proposed a
method to find a common manifold for learning asymmetrically coupled linear
models. We follow the approach of Wang and Mahadevan [23], which uses Lapla-
cian Eigenmaps to determine the low dimensional points for each data set and
Procrustes analysis to align these to each other. We extend this approach using
an affine transformation, which preserves hyper-planes and compare well-known
dimensionality reduction algorithms regarding accuracy in two experiments.

3 Spectral Methods for Dimensionality Reduction

Spectral methods are a class of techniques used for dimensionality reduction.
The reduction is done by detecting a low dimensional structure in a higher-
dimensional space by decomposing a specially constructed matrix, which is
mostly a weighted graph of the initial data. Spectral methods are convex and
therefore optimize an objective function globally.

In contrast to manifold learning, where some representation for the underlying
manifold f : f(φ) = 0 is estimated, dimensionality reduction only considers the
estimation of lower-dimensional data points {xn} from the input data points
{φn}. Consequently a transformation back into high dimensional space is non-
trivial but not necessary in our context. We stay with the output points and
assign nearest neighbors after transforming one set of points into the other lower
dimensional space.

3.1 Linear Methods

Generally, linear methods retrieve a structure of the lower dimensional data
points {xn} lying close to an linear affine subspace of the high dimensional
space. The methods yield data points xn = r∗

1φn,1 + r∗
2φn,2 + . . . + r∗

Mφn,M =
�

∗φn, which are d-dimensional linear combinations of the original D-dimensional
data points φn with �

∗ being the (d × D)-dimensional matrix for the linear
transformation. The star indicates the reduced dimensionality in contrast to �
being a square matrix. For the combined point matrices we obtain X = �

∗Φ.
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We consider two state-of-the-art subspace methods: Principal Component
Analysis (PCA) [5], and Metric Multidimensional Scaling (MDS) [6]. Since many
years they are used widely in the field of pattern recognition.

PCA reduces the dimensionality while preserving the global covariance structure
of all data points. We can compute the lower dimensional data points xn by
mapping them onto the M basis vectors r with the largest eigenvalues s: �∗ =
[r1, r2, . . . , rM ]T. The latter are derived from the eigen decomposition of the
covariance matrix Σφ,φ = ��

2
�

T.

MDS reduces the dimensionality while preserving the inner products between
the data points by decomposing the Gram matrix : �nm = φn · φm, having
the same eigenvalues as the covariance matrix of the PCA up to a constant in
the classical setup. Therefore, the output of classical MDS is identical to that
of the PCA. Modern MDS algorithms use iterative methods, so that the points
are better arranged.

The main drawback of both methods is that they retain large distances, which
may not reflect the correct metric or even maybe outliers, and do not consider the
local distribution of the neighborhood around data points. Therefore important
structures can be lost like in the Swiss roll data set [7].

3.2 Graph-Based Methods

If the structure underlying the data is not affine, linear methods can fail. Graph-
based methods can find this structure even if the data is lying within or close
to a low dimensional manifold. The key aspect of these algorithms is to preserve
local topological and geometrical properties.

These methods can by divided into three parts:

1. Construct a graph G with nodes representing the data points Φ and edges
defining relations between them. Each node is connected to all data points
within a local ε-neighborhood or to its k-nearest neighbors.

2. A matrix � is derived from the graph G by choosing weights, e. g. wnm = 0
if there is no connection between points n and m and wnm = 1 or some
distance measure wnm = d(φn, φm) if there is one.

3. In the last step a matrix including the weights � is decomposed. The way
of how to use � mainly makes up the difference between the algorithms.

We consider four representative state-of-the-art graph-based methods: Isomet-
ric Mapping (Isomap) [7], Locally Linear Embedding (LLE) [8,19], Laplacian
Eigenmaps [9] and Local Tangent Space Alignment (LTSA) [17].

Isomap preserves pairwise distances between data points {φn} along an esti-
mated manifold. In principle the Isomap algorithm equals MDS, whereby the
Euclidean distances are replaced by geodesic distances. Isomap may suffer from
holes within the data structure and so called short-circuiting, e. g. misleading
connections to topologically separated points.
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LLE preserves local linear structure of nearby data points. After decomposing
the matrix � = (� −� )T(� −� ) with � being the identity matrix the largest
eigenvector is discarded and the remaining ones yield the lower-dimensional data
points. The neighborhood of every point is assumed to be planar. Despite of its
good performance in a wide variety of applications LLE tends to cluster dense
regions of the data and can hardly handle holes.

Laplacian Eigenmaps preserves so called proximity relations: Nearby input data
points {φn} are projected to nearby output data points {xn}. They minimize
the gradient norm in a least squares sense by decomposing the matrix � =
� − �

− 1
2��

− 1
2 , which is also called Graph Laplacian. Using the d + 1 largest

eigenvectors of the matrix yield the M -dimensional data points, whereby the
largest eigenvector is discarded. The diagonal matrix � has elements �nn =∑

m� nm. The algorithm suffers from similar drawbacks like LLE.

LTSA preserves the geometry within the tangent space at each data point. The
method approximates the local tangent space of each neighborhood of a point.
The local tangent space is aligned and embedded in a global coordinate system.
As we can conclude from our experiments described in Section 5 LTSA as well
as LLE cause high computational costs due to their complexity.

4 Transformations between Different Subspaces

Given two sets of data points written with homogeneous coordinate vectors
1xT

l = [1xT
l , 1], 2yT

l = [2yT
l , 1], l = 1, . . . , L an linear, affine transformation

� : 2yl = �
1xl is to be determined. In terms of the combined coordinate matrices

1
� and 2

� the homogeneous representation is 2
� = �

1
�.

Since the transformation is affine, we need at least corresponding d(d + 1)
points. We can multiply with the pseudo inverse of 2

� to obtain � = 1
�

2
�

+.

5 Experiments

In our experiments we compare six well-known subspace methods in our test
framework described in Fig. 2: PCA, MDS, Isomap, LLE, Laplacian Eigenmaps
and LTSA. We analyze the influence of changing parameters like the number
of labeled points, the number of used neighbors k and the target dimension d.
The implementations of all graph-based algorithms are kindly provided by the
authors. For the PCA we use a fast implementation from Mark Tygert1 and the
MDS implementation is an iterative version written by Michael Lee [24].

As depicted in Fig. 3 we use two pairwise similar data sets in out experiments.

Glasses concerns the problem of occlusions containing 1626 semi-automatically
created Simpsons avatars2, each pair containing one face with and without

1 http://www.mathworks.de/matlabcentral/fileexchange/

21524-principal-component-analysis
2 http://www.simpsonsmovie.com/

http://www.mathworks.de/matlabcentral/fileexchange/21524-principal-component-analysis
http://www.mathworks.de/matlabcentral/fileexchange/21524-principal-component-analysis
http://www.simpsonsmovie.com/
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Fig. 3. Example images for both data sets used in this paper: faces with/without
glasses (left) and handwritten/digital digits (right)

glasses. By searching for the nearest neighbor in the space of non-glass images
we remove glasses from these cartoon faces.

Digits are 1900 handwritten digits [25] and 2940 digital ones. We use dimen-
sionality reduction methods and the estimated transformation to classify hand-
written images by finding corresponding digital versions.

We reduce the dimensionality of both data sets to the same target dimension
and compute the transformation between both subsets.

After determining the transformation between both low dimensional spaces
the unlabeled test images from one subspace are transformed into the other
subspace. There they are assigned to their nearest neighbors to yield an approx-
imate relative position to other images within the high dimensional space. The
labels, i. e. the unique ID, of each paired test images are compared to compute
an accuracy measure between 0 and 100 %. In case of a classification task like
the classification of handwritten digits only the classes of a test image pair are
compared, since the specific image ID is not relevant.

5.1 Assignment Accuracy of Cartoon Faces with and without
Glasses

In our first experiment we choose two data sets with the same image content and
feature dimension concerning the problem of occlusions. We create 1626 pairs of
randomly assembled Simpsons avatars with and without glasses. The occlusion
caused by the glasses is about 5 to 10 % of the image. We run all experiments
with an image size of 60× 40 pixels, different target dimensions d = {2, . . . , 80},
different neighborhood sizes k = {5, . . . , 1600} and a varying number of labeled
points L.

Fig. 4 shows that the accuracy for all methods increases with the number
of labeled data points. With the highest number of given correspondences L =
100, LTSA and PCA outperform all other methods. In a further experiment we
observed that for all methods the correct correspondence was within the five
nearest neighbors.

We observed that Isomap yields better results at a large number of neighbors k
and the accuracy increases with increasing number of neighbors.

5.2 Classification Accuracy of Handwritten and Digital Digits

In this experiment we use 1900 handwritten digits [25] and 2940 digitally gen-
erated digits for a classification task. Both data sets include gray-valued images
of size 16 × 16 pixels. Some of the handwritten and all of the digital digits are
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Fig. 4. Number of labeled points L versus assignment accuracy of cartoon faces with
and without glasses. For each algorithm the lowest error rate out of different neighbor-
hood sizes k and dimensionalities d is plotted. Above each bar there is the number of
neighbors k (top) and the dimensionality d (below).

Fig. 5. Results for the handwritten and digital digits in analogy to Fig. 4

Fig. 6. Example results for the assignment of handwritten and digital digits: correct
assignments (left) and false assignments (right)

labeled with the number shown in the image. Given unlabeled test images of
handwritten digits can be assigned to labeled digital digits and classified. The
advantage of the classification procedure over others is that the data sets can be
easily extended to capture more variability of the classes.

Fig. 5 shows that the Laplacian Eigenmaps outperform all other algorithms
in all cases. For comparison a discriminative linear classifier achieves an average
accuracy of {37%, 40%, 43%, 71%} for {25, 50, 100, 500} correspondences. Again,
Isomap needs much more neighbors than other graph-based algorithms.

It can be seen that at a certain number of labeled points L the classification
accuracy does not improve significantly anymore.

In this experiment, LTSA and LLE show long running times. We quit their
calculations with more than 100 neighbors after several hours.

As Fig. 6 illustrates most erroneous classifications arise from similarities be-
tween specific numbers, e. g. 3, 8, 0.
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6 Discussion and Outlook

We propose a method to learn high dimensional correspondences from low dimen-
sional manifolds by determining an affine transformation between a few labeled
correspondences. We tested well-known dimensionality reduction algorithms re-
garding the accuracy in both an assignment and a classification task.

We showed that in an assignment task concerning occlusions the linear meth-
ods are more robust and have a higher accuracy. The Isomap algorithm only
performs well using a number of neighbors in order of the size of used data
points, which is intractable for large data sets.

In the classification task nearly all nonlinear methods perform better if the
number of correspondences is low. If the number of correspondences is high, the
linear methods perform comparably to the most nonlinear methods. But the
Laplacian Eigenmaps, which perform worst for the assignment task, outperform
all other methods for all given number of correspondences.

The nonlinear methods suffer from the aspect that unknown parameters like
the number of neighbors have to be chosen carefully to achieve good results. We
show that in our application especially Isomap tends to achieve better results
with a very high number of neighbors. For the digit data set we observed LTSA
and LLE not being practicable regarding the computational time if the size of
the dataset is high.

The proposed framework can be applied to further fields of machine learning
dealing with high dimensional data. The part of the dimensionality reduction and
the transformation can be replaced by other methods depending on the given
task. In future work we will address the reduction to one common manifold
with different reduction algorithms, which is an alternative way to learn high
dimensional correspondences from low dimensional manifolds.

References

1. Bach, F.R., Jordan, M.I.: Spectral Clustering for Speech Separation. Wiley, Chich-
ester (2009)

2. Mittal, A., Monnet, A., Paragios, N.: Scene Modeling and Change Detection in
Dynamic Scenes: A Subspace Approach. In: CVUI, vol. 113 (2009)

3. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace
separation in the presence of outlying, incomplete, or corrupted trajectories. In:
CVPR, vol. 37, p. 18 (2008)

4. Murase, H.: Moving Object Recognition in Eigenspace Representation: Gait Anal-
ysis and Lip Reading. Pattern Recognition Letters 17, 155–162 (1996)

5. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

6. Cox, T.F., Cox, M.A.: Multidimensional Scaling, vol. 30. Chapman & Hall, Sydney
(1994)

7. Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 290, 2319 (2000)

8. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear
Embedding. Science (2000)



High Dimensional Correspondences from Low Dimensional Manifolds 343

9. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation. Neural Computation 15, 1373–1396 (2003)

10. Nadler, B., Lafon, S., Coifman, R.R.: Diffusion Maps, Spectral Clustering and Re-
action Coordinates of Dynamical Systems. Applied and Computational Harmonic
Analysis 21, 113–127 (2006)

11. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by
Semidefinite Programming. IJCV 70, 77–90 (2006)

12. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel View of the Dimensionality
Reduction of Manifolds. In: ICML, vol. 47 (2004)

13. Schölkopf, B., Smola, A., Müller, K.: Kernel Principal Component Analysis. MIT
Press, Cambridge (1999)

14. De Silva, V., Tenenbaum, J.B.: Global versus Local Methods in Nonlinear Dimen-
sionality Reduction. In: NIPS (2003)

15. Weinberger, K.Q., Packer, B.D., Saul, L.K.: Nonlinear Dimensionality Reduction
by Semidefinite Programming and Kernel Matrix Factorization. In: International
Workshop on Artificial Intelligence and Statistics, pp. 381–388 (2005)

16. Chang, H., Yeung, D.Y.: Robust Locally Linear Embedding. Pattern Recogni-
tion 39, 1053–1065 (2006)

17. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimension Reduction via
Local Tangent Space Alignment. SIAM Journal of Scientific Computing (2004)

18. Donoho, D.L., Grimes, C.: Hessian Eigenmaps: Locally Linear Embedding Tech-
niques for High-Dimensional Data. National Academy of Sciences 100 (2003)

19. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of
Low Dimensional Manifolds. JMLR 4, 119–155 (2003)

20. Ham, J., Lee, D., Saul, L.: Learning High Dimensional Correspondences from Low
Dimensional Manifolds. In: ICML (2003)

21. Tenenbaum, J., Freeman, W.: Separating Style and Content with Bilinear Models.
Neural Computation 12 (2000)

22. De la Torre, F., Black, M.: Dynamic coupled component analysis. In: CVPR (2005)
23. Wang, C., Mahadevan, S.: Manifold Alignment Using Procrustes Analysis. In:

ICML (2008)
24. Lee, M.: Algorithms for Representing Similarity Data (1999)
25. Seewald, A.K.: Digits–A dataset for Handwritten Digit Recognition. TR (2005)



Multi-label Classification for Image Annotation

via Sparse Similarity Voting

Tomoya Sakai1, Hayato Itoh2, and Atsushi Imiya3

1 Faculty of Engineering, Nagasaki University, Japan
tsakai@ieee.org

2 Graduate School of Science and Technology, Chiba University, Japan
hayato-itoh@graduate.chiba-u.jp

3 Institute of Media and Information Technology, Chiba University, Japan
imiya@faculty.chiba-u.jp

Abstract. We present a supervised multi-label classification method for
automatic image annotation. Our method estimates the annotation la-
bels for a test image by accumulating similarities between the test image
and labeled training images. The similarities are measured on the ba-
sis of sparse representation of the test image by the training images,
which avoids similarity votes for irrelevant classes. Besides, our sparse
representation-based multi-label classification can estimate a suitable
combination of labels even if the combination is unlearned. Experimen-
tal results using the PASCAL dataset suggest effectiveness for image an-
notation compared to the existing SVM-based multi-labeling methods.
Nonlinear mapping of the image representation using the kernel trick is
also shown to enhance the annotation performance.

1 Introduction

This paper addresses multi-label classification for annotating images of multiple
objects. Multi-labeling is a fundamental functionality of a multi-class classifier
for the automatic image annotation. The classifier is required to assign multiple
labels of objects to an image of those objects.

Prior Work on Multi-class Classification and Multi-Labeling. A popular ap-
proach to the image-based object recognition and annotation is to employ a
discriminative model using bag-of-features image representation [1] in learning
and labeling phases. One-vs-rest SVM [2,3] and one-vs-one SVM [4] consist of
two-class SVM classifiers, each of which learns a margin between object classes.
A test image to be annotated, however, has mixture of features of multiple ob-
jects in it. The two-class classifiers have to be able to discriminate the individual
objects by the mixture. Multi-label ranking (MLR) [5] fixes this problem by si-
multaneously learning from multi-label data so as to minimize the classification
error for all classes in total. MLR is shown to outperform the state-of-the-art
multi-labeling SVM algorithms in the bag-of-features image classification task,
but its performance for test images with unlearned combinations of labels is not
guaranteed.
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The image annotation based on multi-label classification is essentially a prob-
lem of finding a combination of learned objects whose features can synthesize the
mixture of features of a test image. An important fact is that among the learned
classes a few of them are relevant to a test image. Sparse representation-based
classification (SRC) [6] takes advantage of this fact by representing a test im-
age as a sparse linear combination of training images. The SRC achieves robust
single-labeling for face recognition. For the image annotation task, Wang et al.
[7] proposed multi-label sparse coding (MSC) in the same manner as the SRC to-
gether with linear embedding into a discriminative space learned from the train-
ing images and their sparse labels. Hsu et al. [8] have exploited the sparsity of the
classifier output by the compressed sensing technique [9,10,11,12,13] for reducing
computational expense of multi-label classification with linear regression.

Our Method. In this paper, we propose a substantial method of multi-labeling
on the basis of the sparse representation and accumulation of similarities. Our
method consists of the following steps:

Sparse representation: explain concisely the test image by the training im-
ages, i.e., find sparse coefficients α̂j such that

φ(test image) ≈ ∑
j α̂jφ(j-th training image)

where φ indicates a high dimensional representation of the input image, e.g.,
a histogram of visual words.

Similarity measurement: compute similarities

wj ∼ α̂j κ (j-th training image, test image)

where κ calculates an inner product.
Voting: classes indicated by the labels of the j-th training image receive the

votes of wj .

Preliminary details of the sparse representation are provided in Section 2. Differ-
ing from the existing multi-label methods exploiting sparsity, our method does
not use the labels of training images for the computation of the sparse coefficients
α̂j . While the use of the labels in the training phase would refine the classifica-
tion performance for a test image to give a learned combination of labels, it could
degrade the generalization capabilities of the sparse representation for most of
the label combinations unlearned in practice. After the sparse representation,
our method measures the similarities because we must not assemble the output
labels by directly using the coefficients α̂j as done in the MSC. We also intro-
duce the kernel trick to improve the classification performance. Our algorithms
and the kernelization are described in Section 3. We experimentally show the
ability to find unlearned label combinations as well as the outperformance of our
method in Section 4.
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2 Sparse Representation for Multi-labeling

2.1 Multi-class Classification and Multi-labeling

Multi-label classification is a task of assigning a suitable number of class labels
to unlabeled test data. A training dataset S ⊂ Rd with a collection of labels
Y ⊂ {0, 1}l is available for the classification. The labels of a training data sj ∈ S
are represented as a binary vector yj = [y1, . . . , yl]� where yi ∈ {0, 1}.

The binary classification is the case of l = 1, and the case of l > 1 is known as
the multi-class classification. In the prediction of a label ŷ ∈ {0, 1}l for a given
test data x ∈ Rd, the multi-class classification under the constraint ||ŷ||0 ≤ 1
is called the single-labeling. Here, || · ||0 denotes the l0 norm, which counts the
nonzero components. The multi-class classification without the constraint is the
multi-labeling. There are possibly 2l combinations of labels.

2.2 Sparse Representation of Test Data

Let S ∈ Rd×n be a matrix of d-dimensional n column vectors of training data sj ,
and let Y ∈ {0, 1}l×n be the matrix with corresponding label vectors yj in its
columns. Supposing the linear vector space model and given an enough number
of training data, one can represent a test data x ∈ Rd as a linear combination
of the vectors of training data.

x =
n∑

j=1

αjsj = Sα (1)

Here, α ∈ Rn is the vector of n combination coefficients αj to be estimated.
The solution α to Equ. (1) exists if the test data x lies in spanS, i.e., the

subspace spanned by the training data. We would like to assign labels to the
test data according to the solution to Equ. (1). If no solution exists, one should
not assign any label, i.e., ŷ = 0. This is the case where the training dataset is
insufficient for representing the test data. If a sufficient number of training data
are given, Equation (1) has non-unique solutions. We require regularization to
select a unique solution. From the viewpoint of classification, a test data should
be concisely explained by relevant training data. A sparse solution whose nonzero
components indicate a few relevant classes to the test data would be preferable.

Finding a sparse solution is formulated as a l0-minimization problem:

min ||α||0 subject to x = Sα. (2)

The l0-minimization is a NP-hard problem, which is often relaxed to a convex
problem:

min ||α||1 subject to x = Sα. (3)

One can find literature on the uniqueness of the sparse solution and on the equiv-
alence between the l0- and l1-minimization problems [12,14,15]. The uniqueness
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of the solution, for example, is guaranteed under the condition called the re-
stricted isometry property (RIP). The RIP condition with parameters (m, δ) for
a matrix Θ is described as

(1 − δ)||β||2 ≤ ||Θβ||2 ≤ (1 + δ)||β||2 ∀β ∈ {
b
∣∣ ||b||0 ≤ m

}
.

A vector b is called m-sparse if ||b||0 ≤ m. It is known that the l0-minimization
problem (2) has a unique m-sparse solution if the matrix S satisfies the RIP con-
dition with (2m, δ < 1). The m-sparse solution is equivalent to the l1-minimizer
for (3) if S satisfies the RIP condition with (2m, δ <

√
2 − 1) [12].

2.3 Dimensionality Reduction

One can reduce the computational cost of dealing with high-dimensional training
and test data by linear projection. The compressed sensing methodology shows
that a small number of projections of a high-dimensional vector can contain
salient information about its sparse representation enough to recover it with
regularization that promotes sparsity [9,11,16]. Random projection is known to
be a universal way of dimensionality reduction.

Let R be a dc × d random matrix. A training dataset S and a test data x are
compressed by random projection as xc = Rx ∈ Rdc and Sc = RS ∈ Rdc×n.
Equation (1) is rewritten as xc = Scα. It is known that the m-sparse vector
α can be reconstructed from xc with probability 1 − e−O(dc) by the sparse
regularization if dc ≥ d0 = O(m log(d/m)) [17,18].

2.4 Multi-label Estimation by Similarity Voting

We describe how to assign labels to a test data via sparse representation. Let
x̂ be a reconstructed test data using the training data matrix S and a sparse
solution α = α̂.

x̂ = Sα̂

We measure the similarity between the test data x and its reconstruction x̂ as

cos θ =
x�x̂

||x||2||x̂||2 =
x�Sα̂

||x||2||x̂||2 =
n∑

j=1

wj .

Here,

wj =
α̂js

�
j x

||x||2||x̂||2 (4)

is the similarity between the test data and the j-th component of the recon-
structed test data on the basis of training data. Note that w = [w1, . . . , wn]�

is as sparse as α̂. Regarding wj as the partial membership value for a combina-
tion of classes labeled as yj , we estimate the multi-label ŷ for the test data by
accumulating the labels as

ŷ =
n∑

j=1

wjyj = Yw.
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This accumulation is interpreted as label voting with the weight wj . One can
determine the labels for the test data by thresholding or ranking the magnitudes
of the vector components of ŷ.

3 Algorithms

3.1 Multi-label Classification

Our multi-labeling algorithm is summarized in Algorithm 1.

Algorithm 1. Multi-label classification (main algorithm in linear case)
Input: x ∈ R

d: test data, S ∈ R
d×n: matrix of training data, Y ∈ {0, 1}l×n: matrix

of labels;
1 normalize the columns of S to have unit l2 norm;
2 perform dimensionality reduction of S and x if the dimensionality d is intractably

high;
3 decompose x with respect to S under sparse regularization to obtain the sparse

solution α̂;
4 compute the similarities w = [w1, . . . , wn]�;
Output: ŷ ← Yw: label estimates.

The classification does not involve any expensive computation for training.
We do not have to solve a quadratic programming problem like support vec-
tor machines or an eigenvalue problem for subspace methods. Algorithm 1 can
start testing soon after loading the training data. It is therefore easy to append
and remove the data before testing if necessary. We would also remark that
Algorithm 1 can answer unlearned combinations of labels when the relevant
training data can sparsely represent the test data.

3.2 Sparse Decomposition

There are basically two types of algorithms for solving the minimization problem
(2). One is called the basis pursuit (BP) [19], which relaxes the l0 to l1 minimiza-
tion problem. Linear programming can solve the l1 minimization problem in (3).
One can find some algorithms [20,21,22,23] for the related convex problems

min ||x − Sα||2 subject to ||x||1 ≤ τ (5)
min ||α||1 subject to ||x − Sα||2 ≤ ε (6)

to obtain robust solution against noise.
The other type is the greedy algorithms [24,25,26,27], which greedily seek

for the nonzero components. Matching pursuit (MP) [28] selects a column vec-
tor sj in S which is most coherent to the residual of x, and removes from the
residual the component in the direction of sj , iteratively. Orthogonal matching
pursuit (OMP) [24] instead removes the component in the subspace spanned
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by previously selected column vectors. Regularized orthogonal matching pursuit
(ROMP) [26] is guaranteed to recover any m-sparse solution for a matrix sat-
isfying the RIP condition with (2m, 0.03/

√
log m). The greedy algorithms are

very simple to implement and faster than BP. In this paper, we employ ROMP.

3.3 Kernelization

The above formulation assumes the linear relationship as in Equ. (1). Although
Algorithm 1 can benefit from the sparsity of the linear representation, we would
like to translate our framework into a nonlinear version hoping to improve the
classification performance. We map the data in the nonlinear input space Rd to
an Affine space using a nonlinear function φ, assuming the linear relationship
between training data and test data as

φ(x) =
n∑

j=1

αjφ(sj). (7)

We apply the kernel trick using a kernel function κ(x, y) = φ(x)�φ(y) and
kernel matrix K(X1,X2) ∈ Rn1×n2 whose ij-th entry is the inner product of
the i-th and j-th column vectors of the matrices X1 ∈ Rd×n1 and X2 ∈ Rd×n2 ,
respectively.

Algorithm 2. Kernelized ROMP
Input: x ∈ R

d: test data, S ∈ R
d×n: matrix of training data, m0: sparsity level, ε0:

tolerance;
1 initialize I ← ∅ and α̂ ← 0;
2 repeat
3 u ← K(S, x) − K(S, SI)α̂I ;
4 γ ← [|u1|, . . . , |un|]�;
5 let J be a set of indices of the m0 biggest components of γ, or all of its nonzero

components, whichever set is smaller;
6 sort J in descending order of the components γ;
7 among all subsets J0 ⊂ J such that γi ≤ 2γj for all i < j ∈ J0, choose J0 with

the maximal energy ||γJ0 ||22 =
∑

k∈J0

γ2
k;

8 I ← I ∪ J0;
9 α̂I ← arg min

αI
||r(αI)||22;

10 until ||r(α̂I)||2/||x||2 ≤ ε0 or card I ≥ 2m0;
Output: α̂: sparse solution.

We present a kernelized version of ROMP for nonlinear structure of the in-
put space. The kernelized ROMP is described as Algorithm 2. The vector αI
indicates a vector with the components of α specified by I. At Step 9, one can
easily obtain α̂I by solving least squares problem without explicitly computing
the residual vector r, since the squared norm is a quadratic form

||r(αI)||22 = κ(x, x) − 2α�
I K(SI , x) + α�

I K(SI ,SI)αI . (8)
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As the ROMP works in linear time with respect to n and d [26], our kernelized
ROMP also works in linear time.

After running the kernelized ROMP, the similarities are measured as

wj =
α̂jκ(sj , x)√

κ(x, x)α̂�
I K(SI ,SI)α̂I

. (9)

Equation (9) coincides with Equ. (4) if one utilizes the linear kernel κ(x, x) =
x�x and K(X1,X2) = X�

1 X2. Algorithm 2 with the linear kernel is also equiv-
alent to the original ROMP.

4 Experiment

Data We apply our multi-label method to image annotation. We used PASCAL
VOC 2009 dataset [29]. The VOC 2009 dataset has 3,473 training images and
3,581 validation images of twenty object classes. Each image is annotated by one
or more object class labels. We chose the 2,236 training images with single labels
as the training data in order to assess the ability to find suitable combinations
of labels without using multi-label training data. We randomly selected half of
the validation images for tuning the classifier parameters and the other half for
testing. A standard bag-of-features model [1] was used to represent the images in
this experiment. We extracted SIFT descriptors [30] from every training image
in grayscale, and clustered these features into 1,000 clusters by the k-means
clustering. Each image was represented as a tf-idf vector.

Evaluation and Procedure. We characterize the performance of multi-label clas-
sification as receiver operating characteristic (ROC) curve and the area under
the curve (AUC). Our ROC evaluates the ranking performance: how high the
correct labels are ranked. We calculate the true positive ratio (TPR) and false
positive ratio (FPR) by changing the number of top labels indicated by the label
estimates ŷ. The same evaluation metric is used for MLR [5]. We did not invoke
the dimensionality reduction in Algorithm 1. The input parameters of Algorithm
2 were tuned and set as m0 = 35 and ε0 = 10−2.

Results. Table 1 shows the AUC of rank ROC. Our method provides a com-
parative AUC to MLR with the linear kernel. The AUC is improved by the
kernelization in both methods. Our method with a Gaussian kernel achieves
slightly better performance than MLR. MLR has been shown to outperform the
existing multi-label SVMs [5]. We deduce from these results that our method is
highly effective for the image annotation tasks.

Figure 1 shows some examples of multiply annotated images and annotations
by our method with the Gaussian kernel. Note that we used only single-label
images for training. We could observe that the relevant object labels are ranked
high. Algorithm 1 with MATLAB implementation took about 0.1 (linear) and
0.5 (kernelized) seconds per test image using a CPU single core.
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Table 1. AUC of rank ROC for PASCAL VOC 2009

Kernel Proposed MLR

Linear 74.0% 74.1%
Nonlinear 78.1% 76.3%

aeroplane, car bird, boat dog, person, sofa bus, car, person
chair, person,

sofa, tvmonitor

aeroplane, car bird, boat person, cat, sofa
bus, car,

train, person

person,

tvmonitor, chair

Fig. 1. Multi-labeling results. First row: test images, second row: ground-truth labels,
third row: labels by our method. The true positive labels are in bold.

5 Concluding Remarks

Assigning multiple labels of objects to an unlabeled test image is a problem
of finding a combination of learned objects which can synthesize the mixture
of features of objects in the test image. We casted this problem as a sparse
decomposition of image representation. Our method decomposes the bag-of-
features representation of a test image into those of labeled training images
as concisely as possible via sparse regularization. This enables us to detect the
relevant training images even if all the combinations of objects are not learned
from the training images. As suggested in Section 3.1, our method does not
have any intensive computation in training. Of course the sparse decomposition
for testing requires considerable time, but we have many advantages: easy up-
date of training data, capability to answer unlearned label combinations, and
robustness against noise or clutter. We should investigate the performance of
our method on large-scale dataset. The performance would be further improved
by incorporating co-occurrence statistics of objects and features.
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Abstract. Kernel PCA has been applied to image processing, even
though, it is known to have high computational complexity. We intro-
duce centered Subset KPCA for image denoising problems. Subset KPCA
has been proposed for reduction of computational complexity of KPCA,
however, it does not consider a pre-centering that is often important for
image processing. Indeed, pre-centering of Subset KPCA is not straight-
forward because Subset KPCA utilizes two sets of samples. We propose
an efficient algorithm for pre-centering, and provide an algorithm for pre-
image. Experimental results show that our method is comparable with a
state-of-the-art image denoising method.

1 Introduction

Principal component analysis (PCA) and related statistical approaches have
been widely used for image analysis (e.g., image compression, restoration, anal-
ysis, understanding and denoising). PCA is a very fundamental and simple linear
approach, however, its performance is limited due to its linearity. Kernel trick is
one of the methods that extend from a linear approach to a non-linear approach,
and it has been used widely in machine learning area such as support vector ma-
chines (SVM). Kernel trick implicitly utilizes a non-linear pre-mapping Φ that
maps from d-dimensional input space Rd to higher dimensional Hilbert space F
that is called feature space. Actual computation is done by using kernel function
k(·, ·) that satisfies k(x1, x2) = 〈Φ(x1)|Φ(x2)〉 for all x1, x2 ∈ Rd, where 〈·|·〉 is
the inner product [1].

PCA has also been extended by the kernel trick, it is called Kernel PCA
(KPCA) [2]. KPCA has also been applied to image analysis, and showed higher
performance [3,4]. However, KPCA is known to have high computational com-
plexity, that is the eigenvalue decomposition of which size equals to the number
of samples N . In image analysis, we often divide one image to many small blocks
that are called patches. In case that we use 5x5 pixel patches from 512x512 pixel
image, the number of patches is N = (512− 5 + 1)2 � 2.5× 105. If we use four-
bytes floating-point system, KPCA requires at least 4×N(N +1)/2 � 1.3× 102

Giga bytes memory for the kernel Gram matrix, and we have to obtain eigen-
values/eigenvectors of the matrix. This is infeasible to obtain in a current com-
putational environment.

Recently, Subset KPCA (SubKPCA) that reduces computational complexity
of KPCA, has been proposed [5]. SubKPCA utilizes subset of samples for basis,
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and all samples for estimation. By using all samples for estimation, SubKPCA
always shows higher approximation error than KPCA that only uses subset of
samples. In this paper, we apply SubKPCA to image denoising.

When we apply PCA or related statistical approach to image analysis, we often
remove DC components (averages of training vectors) before applying PCA. This
pre-centering enhances its performance in many cases. However, in kernel PCA
this pre-processing is sometimes skipped (e.g., [3]). In SubKPCA, since a set of
basis is given as a subset of training samples, the definition of mean vector is
not straightforward. In this paper, we introduce an efficient definition of mean
vector by using linear combination of the samples in the subset.

Experimental results show denoising by centered SubKPCA is comparable
with state-of-art image de-nosing technique, especially, SubKPCA show better
performance in texture area.

2 KPCA and Subset KPCA

We here review KPCA and SubKPCA briefly. Let x1, . . . , xN be samples. KPCA
obtains eigenvalues and eigenvectors of the correlation matrix (operator), RΦ in
the feature space F ,

RΦ =
N∑

i=1

Φ(xi)Φ(xi)�, (1)

If the dimension of the feature space is infinite, the outer product should be ex-
pressed by ket-bra |Φ(xi)〉〈Φ(xi)|, or Neumann-Shatten product Φ(xi) ⊗ Φ(xi),
however, in the interest of brevity, we use notations of the finite dimensional space.
Since it is difficult to obtain the eigenvalue decomposition (EVD) of RΦ directly,
we calculate EVD of the kernel Gram matrix K ∈ RN×N , (K)ij = k(xi, xj). We
let a matrix S = [Φ(x1) . . . Φ(xN )], K = S�S. Suppose that the ith eigenvalue
and eigenvector of K are vi and λi, then the ith eigenvalue of RΦ is λi and the ith
eigenvector of RΦ is given by ui = 1√

λi
Svi. Let V = [v1 . . . vr], U = [u1 . . .ur],

Λ = diag[λ1, . . . , λr], the projection onto the subspace is given by

PKPCA = UU� = SV Λ−1V �S�. (2)

One of the problems of KPCA is computational complexity because EVD
has high computation cost that increases with N3. Moreover when we obtain
projection of an input vector x, we have to evaluate values of the kernel function
of the input vector and all training samples x1, . . .xN , and therefore we have
to store all training samples. SubKPCA approximates KPCA and reduces these
computational complexities.

PCA and KPCA are characterized by minimization of mean squared error
between samples and transformed samples under the rank constraint,

min
X

1
N

N∑
i=1

‖Φ(xi) − XΦ(xi)‖2

Subject to rank(X) ≤ r, N (X) ⊃ R(S)⊥,

(3)
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where R(·) and N (·) denote the range and the null space respectively. The cost
function is minimized by a projection that is obtained by KPCA [5]. The problem
is in the higher dimensional Hilbert space F , however, the dimension of the space
spanned by samples is at most N . Therefore the problem can be transformed
to the dual problem in RN , and the problem is reduced to EVD of an N ×
N matrix. SubKPCA minimizes the same cost function in smaller dimensional
subspace. Supporse that M is the dimension of the smaller subspace (M <
N). Let y1, . . . , yM be a subset of samples that spans the smaller dimensional
subspace, i.e., Φ(y1), . . . , Φ(yM ) are basis of the space. The subset is selected by
a clustering or a forward search. Let T = [Φ(y1), . . . , Φ(yM )], then the problem
of SubKPCA is

min
X

1
N

N∑
i=1

‖Φ(xi) − XΦ(xi)‖2

Subject to rank(X) ≤ r,
N (X) ⊃ R(T )⊥, R(X) ⊂ R(T ).

(4)

Let matrices Ky = T�T ∈ RN×N and Kxy = S�T ∈ RN×M be (Ky)ij =
k(yi, yj), (Kxy)ij = k(xi, yj), and let zi be the ith eigenvector of the gen-
eralized eigenvalue problem, K�

xyKxyz = λKyz. Suppose that the norm of zi

is normalized by zi ← zi/
√〈zi|Kyzi〉 that satisfies 〈zi|Kyzi〉 = 1. Let Z =

[z1 . . .zr] ∈ R
M×r , then the cost function of (4) is minimized by PSubKPCA =

T (
∑r

i=1 ziz
�
i )T� = TZZ�T�.

Let PSubKPCA = UU�, U = TZ, then the transform of an input vector x is
given by

U�Φ(x) = [〈z1|hx〉 〈z2|hx〉 . . . 〈zr|hx〉]� ∈ R
r, (5)

where hx = T ∗Φ(x) = [k(y1, x), . . . , k(yM , x)]�.
For the sample selection, [5] proposed i) Clustering, such as K-means, ii) Ran-

dom sample consensus (RANSAC) approach, iii) forward (incremental) search.
In this paper, we employ i) K-means clustering approach.

In SubKPCA, the size of the generalized eigenvalue problem is M × M , and
when we evaluate an input vector, the kernel function is evaluated M times.
The computational complexity that depends on the number of basis, M , and
the accuracy of SubKPCA are trade-off. If M = N , SubKPCA is equivalent
with KPCA. If we use smaller M , the value of the cost function (4) becomes
larger.

3 Centered Subset KPCA

We often remove mean component of samples before we apply PCA. In other
words, we use x1 − x̄, . . . , xN − x̄, (x̄ = 1

N

∑N
i=1 xi) instead of x1, . . . , xN .

Suppose that f is an original image, n is a noise vector, and g = f + n is
an observed image. Let E[·] be the ensemble mean. If the noise has zero mean,
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E[n] = 0, we have E[g] = E[f ]. Let us consider two restorations f̂1 = A1g

and f̂2 = A2(g − E[g]) + E[g]. In PCA, we impose the rank constraint on A1

and A2. Therefore, f̂1 is in R(A1) that is limited subspace. On the other hand,
since E[g] is noise free (E[g] = E[f ]), E[g] is not needed to be removed noise
components. A2 only removes noise in g − E[g], but not in E[g]. Thus f̂2 is
expected to be better performance than f̂1.

In Kernel PCA, this preprocessing is sometimes ignored (e.g., [3] assumes the
mean vector is zero). Although the centroid of mapped samples cannot be calcu-
lated explicitly on RAM of PC, this preprocessing can be built into its algorithm.
However, in SubKPCA, the definition of mean vector is not straightforward. Let
1N be a N -dimensional vector that has an element ‘1’ in each dimension. We
here consider three kinds of centroids vector,

1. mean of all training samples Φ̄1 = 1
N

∑N
i=1 Φ(xi) = 1

N S1N .
2. mean of the subset of samples Φ̄2 = y1, . . . , yM = 1

M T1M .
3. Φ̄3 = minv∈R(T ) ‖v − 1

N

∑N
i=1 Φ(xi)‖.

The first one is the simple mean of the all training samples. This is a natural
definition for the centroid, however, if N is very huge, computational complexity
is very large. Φ̄2 is the simple mean of the subset. Φ̄3 is the best approximation
of Φ̄1 in the space spanned by the mapped subset Φ(y1), . . . , Φ(yM ) in the sense
of Euclidean distance. Since SubKPCA is constrained to the space spanned by
the mapped subset Φ(y1), . . . , Φ(yM ), Φ̄1 and Φ̄3 are equivalent in SubKPCA.
However, for example, in the pre-imaging stage, as we described in the next
section, we use the other cost function e.g., (15). In this case, the problem is not
limited in the space, and Φ̄1 and Φ̄3 are not equivalent.

Let us consider the case of Φ̄3. The linear combination of Φ(y1), . . . , Φ(yM ) is

M∑
i=1

αiΦ(yi) = Tα, (6)

where α1, . . . , αM and α are coefficients and coefficient vector respectively. We
obtain the optimum α that minimizes the distance between Tα and the centroid
of all training samples, 1

N

∑N
i=1 Φ(xi) in the feature space,

min
α

‖Tα− 1
N

N∑
i=1

Φ(xi)‖2. (7)

This is a simple least square problem, and the solution can be calculated easily.
If Ky is not singular, the cost function is minimized by

α∗ =
1
N

K−1
y K�

xy1N . (8)

Consequently, we have the approximated mean vector,

Φ̄ = Tα∗ =
1
N

TK−1
y K�

xy1N . (9)
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Suppose that centered samples are Φ̄(xi) = Φ(xi)−Φ̄, and let S̄ = [Φ̄(x1) . . . Φ̄
(xN )]. Then we have only to replace Φ(xi) by Φ̄(xi) in the cost function of (4),
i.e., we have only to replace S by S̄.

K̄xy = S̄�T,

K̄�
xyK̄xy = K�

xyKxy − 1
N

(K�
xy1N )(1�

NKxy).

Therefore, the solution of centered SubKPCA is given by eigenvectors of the
generalized eigenvalue problem,(

K�
xyKxy − 1

N
(K�

xy1N )(1�
NKxy)

)
z = λKyz. (10)

Let z̃1, . . . , z̃r be the sorted eigenvectors, and Z2 = [z̃1 . . . z̃r] ∈ RM×r, then the
transform and the projection of centered SubKPCA are

U2 = TZ2 (11)

P2 = U2U
�
2 = T

r∑
i=1

z̃iz̃
�
i T� = TZ2Z

�
2 T�. (12)

4 Pre-image of Centered SubKPCA

A projection of an input pattern in the feature space is also in the feature space.
Indeed, we can investigate its properties such as norm, inner product with the
other samples, and so forth. However, in many applications such as denoising,
we have to pull back the projection to the d-dimensional input space, Rd. In
[3], pre-image of the projection of an input vector x, is obtained by following
criterion,

min
z∈Rd

ρ(z) = ‖PKPCAΦ(x) − Φ(z)‖2. (13)

The criterion seeks a vector z such that Φ(z) is the closest to PKPCAΦ(x).
If we use the Gaussian kernel function, k(x1, x2) = exp(−c‖x1 − x2‖2), we
have k(z, z) = 1. In such a case, if we let γ = V Λ−1V �S�Φ(x), we have
ρ(z) = −2

∑N
i=1 γik(xi, z) + cost., and an iterative procedure

zt+1 =
∑N

i=1 γi exp(−c‖zt − xi‖2)xi∑N
j=1 γj exp(−c‖zt − xj‖2)

. (14)

This iteration minimizes ρ(z) [3].
On the other hand, when we use the centered KPCA or the centered Sub-

KPCA, the criterion should be [4],

min
z∈Rd

ρ2(z) = ‖P (Φ(x) − Φ̄) − (Φ(z) − Φ̄)‖2. (15)
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We here provide its solution for the centered SubKPCA, and Φ̄ is given by eq. (9).
From P2 = TZ2Z

�
2 T�, and Φ̄ = 1

N TK−1
y K�

xy1N , ρ2(z) yields

ρ2(z) =〈(−2Z2Z
�
2 T�Φ(x) +

2
N

Z2Z
�
2 K�

xy1N

− 2
N

K−1
y K�

xy1N )|T�Φ(z)〉 + const. (16)

If we let γ̃ = −2Z2Z
�
2 T�Φ(x) + 2

N Z2Z
�
2 K�

xy1N − 2
N K−1

y K�
xy1N ), we have

ρ2(z) =
∑M

i=1 γ̃ik(yi, z) + const., and iterative procedure by replacing γi by
γ̃i in eq. (14).

5 Experiment

5.1 Preliminary Experiment I – Centered vs. Non-Centered

Before we demonstrate the proposed method, we here compare denoising results
of centered KPCA and non-centered KPCA.

We used the standard images “Lena” and “Barbara.” The procedure of the
experiment is as follows;

1. Add Gaussian distributed noise.
2. Make 5x5 pixel patches from the noisy images.
3. Obtain representative K samples by K-means clustering.
4. Obtain projector of standard KPCA using the representative samples.
5. Obtain pre-image of all noisy patches.
6. Reconstruct images from obtained patches.

The parameters we used were as follows; 1) the number of representative samples,
K = 500; 2) the number of principal components, r = 50; 3) the parameter of
the Gaussian kernel function, c = 100.

Table 1 shows the results of the experiment. We tried four different standard
deviations (SD), the values in the table are PSNR (peak signal to noise ratio)
in dB. “Noisy” is the PSNR of each noisy image. From Table 1, centered KPCA
always shows higher PSNR than non-centered KPCA. The pre-processing that
removes mean vector enhances denoising performance.

Table 1. PSNR [dB] of preliminary experiment I, centered vs. non-centered. (L) stands
for “Lena,” and (B) stands for Barbara.

SD of Noise 10 15 20 25

Noisy (L) 28.13 24.60 22.10 20.17
Non-centered (L) 28.87 29.00 30.32 29.54

Centered (L) 32.61 31.93 31.49 29.87

Noisy (B) 28.13 24.60 22.10 20.17
Non-centered (B) 28.51 27.12 27.62 27.40

Centered (B) 30.18 29.65 29.29 28.37
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Fig. 1. Result of preliminary experiment II, relation between the number of samples
and performance

5.2 Preliminary Experiment II – Relation between the Number of
Samples and Performance

Next, we investigate the relation between the number of representative samples
and the denoising performance. Settings of the experiment are the same as the
previous experiment. Figure 1 shows the result of the experiment. It can be seen
that the more samples gives the better performance expect the case Lena, SD=
25. It is expected that if we use more samples, the denoising performance will be
increased. However, as we described, KPCA has high computational complexity
that depends on the number of samples N , and it increases with N3 order.

The exception, Lena SD= 25, is due to too large noise. Since K-means extracts
the representative patches that are centroids of several samples. Therefore, the
representative samples have less noise than original patches, if the number of
centroids, K is sufficiently small. K-means itself works for denoising in this case,
however, this efficiency is limited, and in many cases, the performance is better
if we use larger number of the representative samples.

5.3 Centered Subset KPCA

From previous two preliminary experiments, we found that 1) pre-centering en-
hances the performance of denoising with KPCA; 2) the more number of sam-
ples shows that better denoising performance in many cases. However, KPCA
has large computational complexity. The proposed method, centered SubKPCA
solves this problem.
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Table 2. Result of Denoising performance, PSNR in dB, Lena, “nc” stands for non-
centered

SD of Noise 10 15 20 25

SubKPCA 32.84 32.00 30.57 30.06

SubKPCA(nc) 29.96 28.89 29.76 28.65

FoE [6] 35.04 33.27 31.92 30.82

Table 3. Result of Denoising performance, PSNR in dB, Barbara, “nc” stands for
non-centered

SD of noise 10 15 20 25

SubKPCA 31.31 30.53 28.52 27.86

SubKPCA(nc) 24.67 25.30 26.56 26.29

FoE [6] 32.83 30.22 28.32 27.04

Fig. 2. Denoising results: Barbara SD of noise=20, Top-left:Noisy im-
age, Top-right: Proposed, Bottom-left: FoE (http://www.gris.informatik.tu-
darmstadt.de/˜sroth/research/foe/denoising results.html), Bottom-right: Wiener
filter (PSNR: 27.12 [dB])
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Fig. 3. Enlarges of denoising images, Barbara, SD of noise=20: left: proposed, right:
FoE

It should be noted that the number of patches is N = 2.5×105 since the images
are 512x512 pixels, and if we use all patches, the kernel Gram matrix requires
about N(N + 1)/2 × 4 � 130 Giga bytes in four-bytes floating point system.
It is almost impossible to store and obtain EVD of such matrix. Even though
when N = 2.5×105, we can obtain the matrix K�

xyKxy ∈ RM×M and the vector
K�

xy1N by the segmentation technique. The dominant calculation times of our
method are 1) K-means: 1.0× 104 seconds; 2) Ky: 1.2× 100 seconds; 3) K�

xy1N :
1.7× 102 seconds; 4) K�

xyKxy: 3.7× 102 seconds; 5) EVD: 1.6× 101 seconds; 6)
Pre-image: 2.9×102 seconds, on quad-core 2.66GHz Intel CPU. K-means has the
highest computational complexity, however, this may be reduced by speeding up
techniques such as early stopping. Other KPCA based approaches [4,3] use noise
free database. On the other hand, our algorithm makes and select patches only
from the noisy image.

Tables 2 and 3 show denoising results in PSNR [dB] of Lena and Barbara. Al-
though we just apply simple Subset KPCA, the proposed method is comparable
with the Fields of Experts (FoE) [6] for denoising of Barbara. From the tables,
it can be seen that the pre-centering enhances the denoising performance, and
proposed approximation of centroids works well.

Figure 2 compares denoising images of Barbara and Lenna, respectively when
(SD of noise)=20. From the figure, comparing to FoE, the proposed method
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restores texture areas well, but not for flat area. We show enlarged images in
Figure 3. The stripe pattern of Barbara is restored by our method well, while
we can see remaining noise in the flat wall part. Since Lena has less texture
part and the larger flat part, our method does not show good result. However,
this problem may be solved by using sub-band decomposition techniques e.g.,
wavelet decomposition. Then it is expected that the performance of the proposed
centered SubKPCA will be improved.

6 Conclusion

We proposed the centered Subset KPCA in this paper. In order to apply pre-
centering to the Subset KPCA, we have to obtain centroid of the patterns. When
the number of samples N is also very large, its computational complexity will
be very large when we use a centroid of all samples. We introduced efficient
approximation technique for this problem.

Experimental results showed that even simple applications of Subset KPCA
for denoising is comparable with state-of-art denoising method, Field of Experts
(FoE). It is expected that the performance of the proposed centered SubKPCA
will be enhanced by sub-band decomposition techniques such as wavelet decom-
position.
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Abstract. Optimizing the parameters of kernel methods is an unsolved prob-
lem. We report an experimental evaluation and a consideration of the parameter
dependences of kernel mutual subspace method (KMS). The following KMS pa-
rameters are considered: Gaussian kernel parameters, the dimensionalities of dic-
tionary and input subspaces, and the number of canonical angles. We evaluate the
recognition accuracies of KMS through experiments performed using the ETH-
80 animal database. By searching exhaustively for optimal parameters, we obtain
100% recognition accuracy, and some experimental results suggest relationships
between the dimensionality of subspaces and the degrees of freedom for the mo-
tion of objects. Such results imply that KMS achieves a high recognition rate for
object recognition with optimized parameters.

1 Introduction

In recent decades, various types of mutual subspace method (MSM) [1,2] have been
proposed for object recognition. These methods classify a set of test samples using
the angles between subspaces spanned by test and training samples. Such approaches
may improve recognition accuracy but their accuracies deteriorate when we apply them
to samples that are difficult to classify linearly. To overcome this difficulty, one of the
present authors has proposed a simple extension of MSM called kernel mutual subspace
method (KMS) [3,4,5]. Owing to the high accuracy of KMS method, it is widely applied
to real-life problems such as object recognition with large pose variation, lip movement
recognition [6], the surveillance of vehicles and walking humans [7], speaker recogni-
tion [8], and space craft anomaly detection [9].

Because in many cases KMS can achieve a higher accuracy than the original MSM,
some types of KMS [10] have been studied experimentally. However, one question
arises, namely have the KMS parameters really been optimized in previous research?
Because KMS has many parameters, parameter exploration a combinatorial explosion,
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i.e., we should search for the optimum combination of parameters in a direct product
space spanned by a kernel parameter, the dimensionalities of test and training sub-
spaces, and the number of canonical angles. Moreover, nobody has yet verified the
relationship between the kernel parameters and the other parameters.

To confirm the relationship between KMS parameters, we evaluate the recognition
accuracies of KMS through experiments employing the ETH-80 [11] animal database.
By searching exhaustively for the optimum parameters, we obtain 100% recognition
accuracy, and certain experimental results indicate the relationships between the di-
mensionality of subspaces and the degrees of freedom for the motions of objects. Such
results suggest that KMS achieves a high recognition rate for object recognition with
optimized parameters. This paper is organized as follows. First, KMS is introduced in
section 2. Next, we report and discuss experimental results obtained with the ETH-80
dataset in section 3. Finally we conclude and summarize this paper.

2 Kernel Mutual Subspace Method

Before introducing KMS, we summarize MSM to provide some background. Let c be
the numbers of classes denoted as {ω1, ...,ωc}. Suppose that the ith training object has a
single class label yi ∈ {ω1, ...,ωc}. In our study, several images (samples) are observed
of a single object. We represent one of them as a d-dimensional vector x = (x1, ...,xd)�.
As a result, our aim is to classify a test (unknown) object appropriately class using sets
of samples.

2.1 Mutual Subspace Method (MSM)

In MSM, we first represent sets of test and training samples as linear subspaces. For
this, principal component analysis (PCA) is applied to training samples belonging to
the same class (training phase), and it is also adopted for test samples obtained from
an unknown object. Note that the mean vector of the training samples is zero. Let
U = {u1|u2| · · · |ur} ∈ Rd×r and V j = {v1|v2| · · · |vm} ∈ Rd×m be the transform matrices
obtained by applying PCA to test samples and training samples belonging to class j,
respectively. The ith components of U and V j (i.e., ui and vi) are the d-dimensional
eigenvectors corresponding to the ith largest eigenvalues of their covariance matrices.
Note that we assume r ≤ m in all cases for simplicity, where r and m are the dimension-
alities of the test and training subspaces, respectively.

MSM classifies an unknown object based on a similarity defined as the angles be-
tween U and V. To measure this similarity, we construct the following r × r matrix:

Z j = U�V jV�
j U, Zi j =

m

∑
l=1

(u�i vl) · (v�l u j). (1)

In linear algebra, the eigenvalues of Z j indicate cosθ 2
j s between U and V j, i.e., the

largest eigenvalue is equal to the maximum cosθ 2
j (1), and the second largest eigenvalue

is the second largest cos j θ 2(2) etc. These cosθ 2(·)s are called canonical angles[12].
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In the original MSM, the following classification rule is introduced: The class of the
unknown object (denoted by ω) is determined as

max
j=1,...,c

{cosθ 2
j (1)} = cosθ 2

j∗(1) ⇒ ω = ω j∗ . (2)

As previously reported [1,2], the number of canonical angles and how they are used
have an effect on recognition accuracy. For example, we can improve the accuracy in
some cases by using the mean values of the canonical angles (∑r

i=1 cosθ 2
j (i)/r) instead

of using the largest one only. On the other hand, Kim has proposed a canonical angle
fusion method using Adaboost [13] to improve accuracy. Maeda tried to clarify the role
of canonical angles for object recognition, i.e., the second canonical angle related to the
direction of motion. The hypothesis may not yet be definitely confirmed [14] but some
experimental results suggest that the second or later canonical angles are important.

2.2 Kernel Mutual Subspace Method (KMS)

Before deriving KMS, a summary of kernel principal component analysis (KPCA) [15]
may help us to understand KMS. KPCA is performed by carrying out singular value
decomposition in a functional space F for a given set of samples xi, i = 1, ...,m in a
d-dimensional feature space Rd . We can define a functional space F , which is related
to the feature space, possibly by non-linear mapping:

Ψ : R
d → F , x → X . (3)

Note that there is a possibility that the functional space F will have infinite dimension-
ality. In the functional space F , a covariance matrix can be written as follows:

C =
1
m

m

∑
i=1

(Ψ (xi)Ψ (xi)�). (4)

Its eigenvectors may be given by diagonalization but the matrix is too large (sometimes
infinitely) to solve it with practical computation cost. To overcome this difficulty, we
use an m×m kernel matrix defined as follows:

Ki j = Ψ(xi)�Ψ(x j), (5)

For computing desired eigenvectors, we first solve the following eigenvalue problem:

mλ α = αK, (6)

where α = (α1, ...,αm)� is a column vector whose components are coefficients for
corresponding samples x1, ...,xm.

To extract the principal components, we have to compute the orthogonal projection
onto eigenvectors V j in F . Let Ψ(x) be a sample in F . The orthogonal projection of
Ψ(x) onto V j can be calculated by

V�
j Ψ(x) =

1
λ

m

∑
i=1

αiΨ(xi)�Ψ(x). (7)
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This vector is called a nonlinear principal component corresponding to Ψ . As men-
tioned above, the computation cost extremely large (or infinite), so Schölkopf has in-
troduced the Mercer kernel that satisfies

k(x,y) = Ψ(x)�Ψ(y). (8)

By using this trick, the computation of a dot product Ψ (x)�Ψ(y) can be replaced with
k(x,y), i.e.,

V�
j Ψ (x) =

1
λ

m

∑
i=1

αik(xi,x). (9)

This result shows that we can calculate a projection for the nonlinear principal compo-
nents in finite time without an explicit form of V ∈ F .

Now we can derive KMS as combination of MSM and KPCA, i.e., we can define
a similarity measure for KMS in a functional space F . Practical applications demand
lower computational costs, so we have to prove that KMS takes a finite time to compute
angles in a functional space F .

Let U and V j be matrices formed by eigenvectors obtained from r test samples
Ψ(x1),...,Ψ(xr) and m training samples belonging to class j, i.e., {Ψ(x1),...,Ψ(xm)} ∈
ω j. They can be represented as

U =
r

∑
l=1

αlΨ(xl), V j =
m

∑
i=1

αiΨ(xi). (10)

The similarity between them can be computed using the dot product U�V j:

U�V j =

(
r

∑
l=1

αlΨ(xl)

)�( m

∑
i=1

αiΨ(xi)

)
=

r

∑
l=1

m

∑
i=1

αlαiΨ (xl)�Ψ (xi) =
r

∑
l=1

m

∑
i=1

αlαik(xl ,xi).

(11)

Since the numbers of r and m are limited, this dot product of two subspaces takes a
finite time to compute. To obtain the angles between two subspaces, substitute (11) into
(1).

3 Experiment on ETH80 Animal Database

3.1 Experimental Setup

We used the open database ETH-80 [11], and selected 30 classes from it namely dogs,
cows, and horses consisting of 10 classes each. They all have very similar forms (Fig. 1).
Each class consists of images of three-dimensional models from 41 view-points (Fig. 2).
The viewpoints are the same for all the classes. We separated 41 images of each class
into 21 training images with odd numbers, and 20 validation images with even numbers
(Fig. 2). Therefore, the viewpoints of the training images were different from those of
the validation images. On the other hand, the validation data consisted of 10 images
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Fig. 1. Examples of animal images from ETH-80[11]

whose frame numbers were from i to i + 9. We prepared creating validation data 10
times by varying i from 1 to 10. Consequently, the number of validations was 300
(= 10×30). This setup was the same as that reported in [16].

We used MATLAB7.6 and an image processing toolbox corresponding to this ver-
sion on a standard PC that had a 3.2GHz CPU and 12Gb RAM.

3.2 KMS Parameters

KMS has four parameters: the dimensionalities of subspaces r and m, the number of
canonical angles (denoted as nca), and a kernel parameter. As the kernel function, we
used the RBF kernel: k(x,y) = exp(−s×a×‖x− y‖2), where s is scale parameter (de-
scribed later). The kernel parameter of KMS is related to the complexity of the distri-
bution of objects in a feature space, hence we should adjust parameter a empirically
according to the sample distribution complexity. In the following experiments, we de-
termined a using a heuristic search based on the mean of the average Euclidean dis-
tances between all the training samples in individual classes [18] with a scale factor
s. In subspace methods, the dimensionality of a subspace spanned by samples domi-
nates the representation capacity of variations of an object and the approximation error
of an object in a feature space. Therefore, high dimensional subspaces may represent
large object variations but their recognition accuracies will deteriorate because the in-
tersection of subspaces of different classes will be considerable. However, this problem
hardly ever occurs on a kernel-based subspace method. In contrast, the physical mean-
ing of the number of canonical angles is not clear. There have been few experimental
results implying that the canonical angles have physical meanings, and the optimum
combination of canonical angles for recognition remains an open issue. In the following
experiments, we investigated all combinations of r, m, and nca for every scale parame-
ters s = 1.0 ∼ 10.0. Consequently, the number of combinations were 924.

3.3 Experimental Results

First, we analyzed the dependence of the scale parameter s on KMS. Figure 3 is a plot
in which each point indicates the recognition rate with respect to s, i.e., the horizontal
axis indicates the value of the scale parameter s. As shown in the figure, the recognition
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Fig. 2. All samples of dog1. Training samples are enclosed by dotted lines.
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Fig. 3. Kernel parameter dependence on recognition rates

rates around s = 1.0 to 2.0 were higher than the others. To obtain more detail, we plotted
the frequency of parameters whose recognition rates were high in Fig. 4. The red, green
and blue lines show the number of parameters that achieved recognition rates of over
98%, 99%, and 100%, respectively. These results were obtained by varying s from 1.1
to 2.0. As shown in this figure, the recognition rates of half of the parameters in this
area at least than 98%. These results were much better than those previously reported
in [16,17]. On the basis of these results, we investigated other parameters limited to
only these areas in further experiments.

Figure 5 shows the properties of dependence with respect to r and m on recognition
rates with s = 1.1. This indicates that KMS has asymmetric dimensionalities: There
were some cases where the recognition rates r = 1 were higher than others, however,
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Fig. 4. Kernel parameter dependence on recognition rates (frequency)
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Fig. 5. Dimensionality dependence on recognition rates

recognition rates m = 1 were never higher than others. This result supports the hy-
pothesis described in [3] namely that the optimum dimensionality corresponds to the
degrees of freedom of objects. In other words, the above result implies that the degree
of freedom of motion on an unknown object that consist of few motions can be approx-
imated by a 1-dimensional subspace. In contrast, those of training objects that consist
of various motions cannot be approximated solely by a 1-dimensional subspace.

Figure 6 shows the relation between the number of canonical angles and the recog-
nition rates. As shown in this figure, larger numbers of canonical angles achieved better
recognition rates. This fact cannot be confirmed solely from only result because the di-
mensionalities of the test and training subspaces are large when the number of canonical
angles is large. Note that there were no cases that achieved 100% recognition accuracy
with nca = 1.

Finally, we analyzed those cases that achieved 100% recognition rates. Figure 7
shows the three parameters r, m, and nca that achieved 100% recognition rates with
scale parameters 1.1, 1.2, 2.0, 3.0, and 4.0. As shown in this figure, the largest number
of parameters that achieved 100% accuracy were 177 (s = 2.0). In addition, the number
of such parameters decreased as the scale factor increased.
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Fig. 6. Recognition rates with respect to number of canonical angles
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Fig. 7. Parameters that achieved 100% recognition rates

4 Conclusions

This paper reported an experimental evaluation of the parameters variation of KMS,
i.e., Gaussian kernel parameters, dimensionalities of dictionary and input subspaces,
and the number of canonical angles. After an exhaustive search for the optimum param-
eters, we obtained 100% recognition accuracy with the ETH-80 animal database. Some
of our experimental results suggested a relationship between the dimensionalities of
subspaces and the degrees of freedom of object motions. Such results implied that KMS
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will achieve high recognition rates for object recognition with optimized parameters.
We will now attempt to evaluate the effectiveness of feature extraction for parameters
and verify the recognition accuracy using other datasets.
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Compound Mutual Subspace Method for 3D

Object Recognition: A Theoretical Extension of
Mutual Subspace Method

Naoki Akihiro and Kazuhiro Fukui
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University of Tsukuba, Japan

Abstract. In this paper, we propose the Compound Mutual Subspace
Method (CPMSM) as a theoretical extension of the Mutual Subspace
Method, which can efficiently handle multiple sets of patterns by repre-
senting them as subspaces. The proposed method is based on the obser-
vation that there are two types of subspace perturbations. One type is
due to variations within a class and is therefore defined as “within-class
subspace”. The other type, named “between-class subspace”, is charac-
terized by differences between two classes. Our key idea for CPMSM
is to suppress within-class subspace perturbations while emphasizing
between-class subspace perturbations in measuring the similarity be-
tween two subspaces. The validity of CPMSM is demonstrated through
an evaluation experiment using face images from the public database
VidTIMIT.

1 Introduction

In this paper, we propose the Compound Mutual Subspace Method (CPMSM),
which has the ability to classify similar sets of patterns accurately. Then we
apply it in a face recognition experiment based on multiple images.

Subspace-based methods have recently attracted attention from many re-
searchers who are interested in recognition of 3D objects, such as faces. The
mutual subspace method (MSM)[1] is one of the most effective and efficient meth-
ods for object recognition, as it can efficiently handle multiple images[2][3][4].
In subspace-based methods, including MSM, a pattern composed of n×n pixels
is usually regarded as a vector x in n2-dimensional space. MSM represents a
set of patterns {x} from each class through a low-dimensional linear subspace
generated from the set by using the Karhunen-Loève (KL) expansion, which is
also known as principal component analysis (PCA). Finally, the similarity be-
tween two sets of patterns can be readily measured by using canonical angles θi

between two subspaces, as shown in Fig.1.
Even though MSM is capable of absorbing differences in appearance caused

by changes in view point or illumination, compared with conventional methods
using a single input image, such as the subspace method[5], the classification
performance of MSM is still not sufficiently high. One reason for this is that a
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Fig. 1. Concept of Mutual Subspace Method

subspace which provides a satisfactory representation of the distribution of the
training patterns in terms of a least-mean-square approximation is not always op-
timal in terms of classification performance. Many extended methods have been
proposed[6][7][8] for improving the classification performance of MSM, including
the nonlinear extensions[9][10][11][12] using a kernel trick. In this paper, we fo-
cus on the Constrained MSM (CMSM) and the Orthogonal MSM (OMSM)[13]
since they have been used in the development of the recognition engine of the
state-of-the-art face recognition system “FacePass” and have achieved extremely
high scores in the Face Recognition Vendor Test (FRVT) 2006[14].

The essence of these methods is to apply MSM to sets of class subspaces which
have been orthogonalized with respect to each other in advance. The implemen-
tation of orthogonalization is different in the two methods. In OMSM, all the
class subspaces are orthogonalized by using the Fukunaga-Koontz framework[15].
The kernel OMSM executes this operation in extremely high-dimensional feature
space in order to ensure complete orthogonalization. CMSM achieves approxi-
mate orthogonalization of all the class subspaces by projecting them onto the
generalized difference subspace D. The kernel CMSM executes the projection in
a high-dimensional feature space.

In this paper, we also aim to improve the performance of MSM by introduc-
ing the concept of “difference subspace” between two subspaces. This approach
is notably different from the orthogonalization operation used in CMSM and
OMSM. Our approach is based on the observation that there are two types of
subspace perturbations. One type occurs due to differences within a class, while
the other is due to differences between separate classes. In this paper, we refer
to the former as “within-class subspace DW ” and the latter as “between-class
subspace DB”.

It should be noted that MSM does not distinguish within-class subspace per-
turbations from between-class subspace perturbations. Thus, MSM cannot dis-
tinguish an input subspace between a subspace of a rival class and a subspace of
the same class when they have the same canonical angles as a similarity to the
input subspace.

This leads us to develop a proper strategy for suppressing within-class sub-
space perturbations while emphasizing between-class subspace perturbations.
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Fig. 2. Two types of difference subspaces

To realize such a strategy, we introduce the concept of “difference subspace”
between two subspaces. The concept of difference subspace is a natural extension
of the difference vector between two vectors. We can obtain a within-class sub-
space DW as the difference subspace between two subspaces of the same class,
as shown in Fig.2. On the other hand, we can obtain a between-class subspace
DB as the difference subspace between subspaces belonging to different classes.

The essence of the proposed method is to classify a difference subspace DI

between an unknown input subspace I and a class-t subspace Pt into one of
two types of subspaces DW and DB by using canonical angles. The similar-
ity obtained through this classification is used to correct the similarity ob-
tained with MSM. We refer to the MSM which takes into account DW and
DB utilizing difference subspaces as the “Compound Mutual Subspace Method”
(CPMSM).

The advantage of the proposed method is that it can be applied only to limited
pairs of class subspaces which are too close and can be easily misclassified. This
restriction can reduce the computation time as compared to both CMSM, which
projects all class subspaces onto the constraint subspace, and OMSM, which per-
forms orthogonalization of all class subspaces. In addition, the proposed method
can be used as post-processing for existing methods, such as MSM, CMSM, and
OMSM. Here, we evaluate CPMSM by applying it to a face recognition exper-
iment using a public database containing face images (VidTIMIT audio-video
database) [17].

This paper is organized as follows. In Section 2, we explain the concept be-
hind the proposed method and describe the algorithm of CPMSM. In Section 3,
the effectiveness of our method is demonstrated through evaluation experiments
using a public database containing face images. Finally, Section 4 concludes the
paper.



Compound Mutual Subspace Method for 3D Object Recognition 377

(a)Two components of SCPMSM (I,Pt)
(b)Two components of SCPMSM (I,Ps)

Fig. 3. Similarity of the input subspace I to each class subspace. This figure shows the
case that the input subspace belongs to class t, (a) the terms of the similarity to Pt,
(b) the terms of the similarity to Ps.

2 Compound Mutual Subspace Method (CPMSM)

In this section, we first explain the basic principle of CPMSM. Then, we define
a new similarity for CPMSM based on the concept of difference subspace.

2.1 The Basic Principle of CPMSM

The basic principle of CPMSM can be explained as follows. When the difference
subspace DI between I and the class-t subspace Pt is similar to the between-class
subspace DB and dissimilar to the within-class subspace DW , the input subspace
I should be classified into class t. On the other hand, when DI is similar to
the within-class subspace DW and dissimilar to DB, the input subspace I can
be considered to belong to some similar rival class rather than to the class-t
subspace Pt. The similarity between difference subspaces can be measured by
using canonical angles since a difference subspace is a linear subspace, as will be
mentioned later.

In practical calculation of the similarity, it is only necessary to measure the
similarity between the subspaces DI and DB since DI is projected onto an orthog-
onal complement of Pt in such a way that the projected DI has no components
belonging to the within-class subspace DW .

2.2 Calculation of Similarity in CPMSM

The similarity SCPMSM consists of two terms, as follows:

SCPMSM (I,Pt) = (1 − μ)S(I,Pt) − μS(DIt,Dst) , (1)

where μ is a weighting parameter which should be determined experimentally.
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In the above equation, the first term S(I,Pt) indicates the similarity between
the input subspace I and the class-t subspace Pt. This similarity is obtained by
using MSM. The second term S(DIt,Dst) is the regulation term, which can be
obtained as the similarity between two difference subspaces DIt and Dst, where
Dst is the difference subspace between the subspace of class t and that of its
similar rival class s.

In the following paragraphs, we will explain how to apply the above similarity
to the task of classifying an input subspace into one of two similar classes,
subspace Pt and Ps, by using Fig. 3. In this case, we can obtain the following
two similarities for the input subspace.

SCPMSM (I,Pt) = (1 − μ)S(I,Pt) − μS(DIt,Dst) , (2)
SCPMSM (I,Ps) = (1 − μ)S(I,Ps) − μS(DIs,Dst) , (3)

where the former is the similarity for class t and the latter is that for class s.
The input subspace is classified into the class with higher similarity.

The proposed idea of similarity shares common features with the method used
in Bayesian face recognition[18] in that it is based on the analysis of image differ-
ences, that is, a difference vector between two image pattern vectors. However,
that method can not handle complex situations, such as the relation between
two sets of image pattern vectors. In addition, a single image is used as an input
in the Bayesian method.

2.3 Measure of Similarity between Two Subspaces

The measure of similarity between two subspaces is defined through canonical an-
gles. Assume that we have an N -dimensional subspace Pt and an M -dimensional
subspace Ps (assume N ≤ M for convenience). In this case, we can obtain N
canonical angles θi, (i = 1∼N) between Pt and Ps by solving the eigenvalue
equation of the following matrix S [1]:

Sa = λa . (4)

Sij =
N∑

l=1

(Φi · Ψl)(Ψl · Φj) , (5)

where Φi and Ψi are the i-th orthonormal basis vectors that span subspace Pt

and Ps, respectively. The value of cos2θi for the i-th smallest canonical angle θi

is obtained as the i-th largest eigenvalue of the matrix S. Finally, the measure
of similarity between two subspaces is defined with n canonical angles as the
following equation (this measure of similarity is used for MSM):

S[n] =
1
n

n∑
i=1

cos2θi . (6)
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2.4 Definition of Difference Subspace

The difference subspace is considered a natural generalization of the difference
vector between two vectors[16]. A difference subspace is spanned by a set of
difference vectors di between canonical vectors, ui and vi, which form the i-th
canonical angle. The canonical vectors are calculated from the following equa-
tions:

ui =
N∑

l=1

aklΨl . (7)

vi =
N∑

l=1

a′klΦl . (8)

In the above equations, the coefficient akl is the l-th element of the k-th eigen-
vector ak, corresponding to the k-th smallest eigenvalue of matrix S in Eq.(4).
Furthermore, the coefficient a

′
kl is the l-th element of the k-th eigenvector a

′
k of

matrix S
′
, where S

′
ij =

∑M
l=1(Ψi · Φl)(Φl · Ψj).

2.5 Flow of the Classification Process Using Similarity in CPMSM

The process of classifying an input image set by using CPMSM is given as follows.

– Learning
• Apply KL expansion on classes s and t of training image sets to obtain

the reference subspaces Pt and Ps.
• Obtain the difference subspace Dst by using Eqs. 7 and 8.

– Testing
step 1

• Apply KL expansion on input image set to obtain the input subspace
I.

• Calculate the similarities S(I,Pt) and S(I,Ps) by using Eq. 6.
step 2

• Obtain the difference subspaces DIs and DIt by using Eqs. 7 and 8.
step 3

• Calculate the similarities S(DIs,Dst) and S(DIt,Dst) by using Eq.
6.

step 4
• Combine S(I,Pt) with S(DIt,Dst) to obtain SCPMSM (I,Pt) in Eq.

2.
• Combine S(I,Ps) with S(DIs,Dst) to obtain SCPMSM (I,Ps) in Eq.

3.
– Identification

• Compare the obtained similarity SCPMSM (I,Pt) with SCPMSM (I,Pt).
The input subspace is classified into the class which has higher similarity.
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3 Validation of the Proposed Method by Using a
Database Containing Face Images

The proposed method was designed to distinguish classes that are difficult to
distinguish with MSM. To demonstrate the validity of the proposed method, it
is necessary to find such pairs in the data set in advance. For this purpose, we
carried out a face recognition experiment using MSM and selected pairs that
were frequently misclassified, after which we applied the proposed method to
those pairs.

3.1 Setup of Experiment for Face Recognition

We used face images from the VidTIMIT audio-video database [17]. This database
contains face data for 43 subjects. Three sequences of images are available for
each subject. In order to conduct a face recognition experiment, the face region
was extracted from each of these images by using the face detection function
distributed with OpenCV ver. 1.0. We carefully removed false positives and ob-
tained 140 images for each sequence of images. These cropped face images were
converted into 15 × 15 pixels grayscale images, and 225 dimensional vectors were
obtained.

For the classification experiment in this paper, one sequence of images was
used to prepare test data sets, and the others were used to prepare training data
sets. Every third frame of the image sequence was used as a starting image of
the test data set.

The parameters for the experiments of one class were set as follows. Num-
ber of training images used to generate reference subspace is 280. Number of
testing images used to generate testing subspace is 30. Dimension of the refer-
ence subspace is 20. Dimension of the testing subspace is 7. Dimension of the
between-class subspace is 20. Dimension of the difference subspace between the
input subspace and either reference subspace is 7. Number of trials is 90.

3.2 Extraction of Frequently Misclassified Pairs

We conducted a classification experiment for all subjects contained in the
database. To examine which input data is classified into which class, we con-
structed a confusion matrix. The confusion matrix is a table with a horizontal
axis representing the results from the classifier and a vertical axis representing
the labeled class. The classification frequency was plotted on this table.

The results from this experiment are plotted in Fig. 5. The color codes for
the frequency are given in the legend on the right. From this confusion matrix,
we can see that misclassification occurs only in certain specific similar pairs,
namely, the six pairs that involve subjects No.11, No.15, No.20 and No.42, as
shown in Fig.5. The total recognition rate for all 43 subjects was 97.2%, as shown
in Fig.4. By contrast, the recognition rate of all subjects except the mentioned
four subjects was 100%.
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Fig. 4. Summary of classification with Mutual Subspace Method for 43 subjects

Fig. 5. Frequently misclassified pairs

3.3 Classification Results for Frequently Misclassified Pairs

To evaluate the validity of CPMSM, we compared the performance of CPMSM
with that of MSM and CMSM. These methods were applied in distinguishing
between pairs as obtained in the previous section. To compare the performance
of these methods, we used recognition rate and EER. EER is the error rate at
the threshold value where the false accept rate (FAR) is equal to the false reject
rate (FRR).

The performance of CPMSM depends on the weighting parameter μ in Eq.(3).
We select the optimal value experimentally for each pair, as shown in Fig. 6. Note
that when the weighting parameter μ is 0, CPMSM is equivalent to MSM.

From Tables 1 and 2, it can be seen that the recognition rate and EER in
CPMSM have been improved in comparison to those in MSM for all pairs. The
average recognition rate for all pairs increased from 0.950 to 0.959, and the
average EER decreased from 0.218 to 0.096. From these results, we can confirm
the validity of CPMSM and its ability to improve the performance of MSM.
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Fig. 6. Relation between recognition rate and μ. In the case of μ = 0, CPMSM is
equivalent to MSM.

Table 1. Recognition rate

Confused Pairs CPMSM CMSM MSM

Pair A 1.0 0.961 1.0

Pair B 0.856 0.850 0.839

Pair C 1.0 0.961 1.0

Pair D 0.911 0.911 0.894

Pair E 0.994 0.989 0.994

Pair F 0.994 0.961 0.978

Average 0.959 0.939 0.950

Table 2. Equal Error Rate

Confused Pairs CPMSM CMSM MSM

Pair A 0.078 0.103 0.217

Pair B 0.150 0.217 0.286

Pair C 0.006 0.067 0.156

Pair D 0.094 0.139 0.222

Pair E 0.106 0.072 0.211

Pair F 0.144 0.139 0.217

Average 0.096 0.123 0.218

4 Conclusions

In this paper, we have proposed the Compound Mutual Subspace Method
(CPMSM) for face recognition. The advantage of CPMSM is its strong abil-
ity to distinguish between specific highly similar pairs among a large number of
combinations of subjects. This characteristics can reduce the computation time
and can improve the overall recognition rate by improving the performance with
respect to a small number of pairs. The strong ability to distinguish between
similar pairs was achieved by introducing a regulation term into the measure of
similarity in MSM. The validity of the proposed method has been demonstrated
through evaluation experiments with face images taken from the VidTIMIT pub-
lic database.
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Dynamic Subspace Update with Incremental

Nyström Approximation

Hongyu Li and Lin Zhang

School of Software Engineering, Tongji University, Shanghai, China

Abstract. Low rank approximation methods, e.g. the Nyström method,
are often used to speed up eigen-decomposition of kernel matrices. How-
ever, it cannot effectively update the extracted subspaces when datasets
dynamically increase with time. In this paper, we propose an incremen-
tal Nyström method for dynamic learning. Experimental results demon-
strate the feasibility and effectiveness of the proposed method.

1 Introduction

Kernel methods are attracting in the fields of machine learning and pattern
recognition due to their advantages in modeling the highly complex, non-linear
structures of objects. Such methods generally require the eigen-decomposition
of a kernel matrix during computation. The eigen-decomposition, however, is
actually the bottleneck of computation in practical applications as its time com-
plexity of O(n3) is very high. In the cases where only several bottom (top)
eigenvectors are needed and the spectra of kernel matrices rapidly decay, low-
rank approximation methods, like sampling-based methods, are often used to
speed up the eigen-decomposition.

The Nyström method [1–4] is one of the popular sampling-based methods for
handling batch data. When datasets increase dynamically, the original Nyström
method must compute and decompose the kernel matrix of all data once again
while discarding the previous result of eigen-decomposition, which is thus called
the batch Nyström (B-Nyström). In such long observation applications as ob-
ject tracking, the direct application of B-Nyström is obviously in low efficiency.
Therefore, the Nyström method needs to be modified for the dynamic cases.
To do this, this paper proposes an incremental version of the Nyström method,
called the incremental Nyström. In the proposed approach, the B-Nyström is
first used to approximate the eigen-decomposition of the kernel matrix con-
structed with initial data. For newly coming data, the eigenvectors are updated
through keeping the old part and merely approximating the new part, which
avoids repetitive computation when pooling all data. In addition, to improve
the approximation accuracy, the orthogonal iteration algorithm [5] is adopted
after the initial approximation. To maintain non-increasing memory usage and
update duration, the reduced set (RS) expansions [6] is brought in I-Nyström.

In sum, the contribution of this study mainly includes three aspects:

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 384–393, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1. The incremental Nyström method is proposed for dynamic subspace update,
which has the high efficiency of Nyström in approximating eign-decomposition
and the good flexibility in practical applications.

2. The drift caused by the incremental data is successfully avoided with the
Orthogonal-Iteration algorithm.

3. The memory usage and update duration maintain stable and non-increasing
in the incremental Nyström method.

2 Nyström Approximation

The Nyström method is originated from the numerical treatment of the following
integral equation [7], ∫

p(y)k(x, y)φi(y)dy = λiφi(x), (1)

where p is the probability density function, k the positive semi-definite kernel
function, λ and φ the eigenvalue and eigenfunction respectively. Given a set of
samples {x1, x2, · · · , xn} generated from function p, to approximately estimate
λ and φ, Eq.(1) is changed with the empirical average:

1
n

n∑
k=1

k(x, xk)φi(xk) � λiφi(x). (2)

This actually is a standard eigen-decomposition problem KU � UΛ if replacing
x with samples {x1, x2, · · · , xn}. Here K is a positive semi-definite kernel matrix,
U is with orthogonal columns, and Λ is a diagonal matrix.

The basic idea of the Nyström method is to approximate the eigenvectors of
a kernel matrix with few samples. The following explains the implementation
procedure of this method in detail. To decompose a kernel matrix K ∈ Rn×n

constructed with n data points, we first divide the matrix in four parts,

K =
(

A B
BT C

)
, (3)

where A ∈ Rm×m, B ∈ Rm×k and C ∈ Rk×k. The numbers m, n, k satisfy the
condition, m+k = n, and to construct matrix A, m samples is first chosen from
the initial n points. Since m is generally quite small, the eigen-decomposition of
A is efficient and fast,

A = UΛUT .

Based on the eigen-decomposition of A, matrix K can be approximately decom-
posed as follows,

K � Ũ Λ̃ŨT , (4)

where

Ũ =
(

U
BT UΛ−1

)
, Λ̃ = Λ. (5)
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Obviously, the approximation K̃ of matrix K takes the following form,

K̃ = Ũ Λ̃ŨT =
(

A B
BT BT A−1B

)
. (6)

It is easy to find from Eqs.(3) and (6) that C is approximately equal to BT A−1B.
As a result, the approximation error of decomposing the kernel matrix K can
be quantified as Schur complement,

e = ‖C − BT A−1B‖F ,

where ‖ · ‖F denotes the Frobenius norm.
The eigenvectors in expression (5) may not be orthonormal, therefore, we

should orthoganalize them. One way to solve this problem [3] is stated below:
Let Z = ŨΛ− 1

2 , F
∑

FT denotes the diagonalization of ZT Z and V = ZF
∑ 1

2 .
Consequently, the matrix V are the leading orthogonal eigenvectors of K̃ and
satisfies the condition V V T = I. This orthogonalization method will suffer a time
cost of O(n×m2 +m3), where m � n always holds for low-rank approximation.
Therefore, the orthogonalization method is efficient for small m.

3 Incremental Subspace Update

Although the Nyström method can work well in the batch mode for eigen-
decomposition, it cannot dynamically update the learned subspace with the
change of datasets. This section extends the batch Nyström method and proposes
an incremental Nyström method to handle dynamic data.

Given an initial data set S={x1, x2, · · · , xn}, we can construct the kernel
matrix K and approximate the eigenvectors and eigenvalues of of K with batch
Nyström. When new data D = {d1, d2, · · · , dr} come, the kernel matrix K ′ will
be updated as follows,

K ′ =
(

K P
PT Q

)
, (7)

where P is a n×r matrix constructed with S and D, Q a r×r matrix constructed
with D. Since the eigen-decomposition of matrix K has been already approxi-
mately computed at this moments, the simple and straight way of decomposing
K ′ is to repeat the computing procedure described in Section 2. That is, since
it is known that K � ŨΛŨT , we can easily get

K ′ � U ′Λ′U ′T , (8)

where

U ′ =

(
Ũ

PT ŨΛ−1

)
, Λ′ = Λ. (9)

The orthogonalization method of U ′ is as above. As a consequence, the sub-
space spanned with leading eigenvectors is easily updated with U ′. Since the
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approximation error is accumulated at each incremental step, the extracted sub-
space will become more and more inaccurate along with the increase of new data.
The total approximation error can be evaluated with the following expression,

E =
t∑

i=1

ei, (10)

where ei denotes as the approximation error at the i-th step,

ei = ‖Q − PT K̃−1P‖F . (11)

4 Refinement Strategies

To reduce the approximation error, this study proposes to adopt the orthogonal
iteration algorithm to refine the eigenvectors at each step. In addition, to com-
press storage and maintain constant speed, we bring the idea of reduced set in
this work.

4.1 Error Reduction

As discussed above, the potential problem of the incremental Nyström method is
that the accumulate error gets larger at each incremental step, causing large drift
in approximation. This problem has a strong impact on applications that require
long observation and update. To control the accumulate error and improve the
quality of the proposed method, this section proposes a strategy based on the
orthogonal iteration algorithm [5].

Algorithm 1. Orthogonal Iteration
U0 = U ′ //the obtained eigenvectors at some incremental step
for t = 1 to · · · do

Q̂tRt = Ut−1 //compute reduced QR factorization

Ut = KQ̂t

end for

For the p-rank decomposition of a n × n kernel matrix K, the procedure of
orthogonal iteration is outlined in Algorithm 1, where Q̂tRt is the reduced QR
factorization of Ut−1 and t denotes the iteration step. Q̂t is an n × p matrix
having orthonormal columns and Rt is a p × p upper triangular matrix. After
several iterations, the matrix Ut converges to an n× p matrix Û whose columns
correspond to the p largest eigenvectors of K and form the basis of an invariant
subspace .

Although the orthogonal iteration algorithm is effective in approximating the
eigen-decomposition, it generally converges slowly. More specifically, the conver-
gence speed depends on the initial guess U0. That is, the better the initial guess
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U0, the faster this algorithm converges. As incremental Nyström approximates
the eigen-decomposition of kernel matrices, the initial guess U0 in the orthogonal
iteration algorithm can be assigned the obtained eigenvectors at some incremen-
tal step U ′. After several iterations, the spectra of kernel matrices can be more
accurate.

The time complexity in orthogonal iteration is O(t × (p3 + n2p)). With the
proper choice of the number t of iterations, the computation time will be com-
pletely determined by the size n of datasets. If n is very large, it remains ex-
pensive for orthogonal iteration. However, if we can find a proper measure to
compress the dataset, which can reduce n, the performance will definitely get
better. The compression strategy is from the idea of reduced set, which is dis-
cussed in the next subsection.

4.2 Compression Strategy

With the increase of new data, the kernel matrix will get larger and the data
storage cost will become higher, which cause difficulties in real applications. For
example, old and new data are respectively denoted as S and D, the eigen-
decomposition of S has been completed, and we want to incrementally update
the eigen-decomposition of the kernel matrix [S D] according to Eqs. 7 and 9.
It is clearly unavoidable to save all the old and new data for update, which will
ultimately influence the update speed.

To solve this problem, we employ an effective compression strategy by con-
structing the reduced set (RS) expansions. Due to the space limitation, please
refer to [6] for more details about the construction of reduced set.

5 Experimental Results

This section evaluates the performance of the proposed method: the incremental
Nyström method (I-Nyström) with orthogonal iteration (I-Nyström-Iter) and
reduced set (I-Nyström-Iter-RS). The parameters involved in the experiments
are listed below:

– p: the number of principal components of kernel matrices.
– τ : the number of pre-images in compression for each feature vector.
– Nupd: the number of data updates in the incremental procedure.
– Niter : the number of iterations during orthogonal iteration.

5.1 Accuracy and Efficiency

This part examines the performance of I-Nyström, I-Nyström-Iter through com-
paring them with I-KSVD, B-Nyström-Iter. Considering the subspace generated
by batch KSVD (B-KSVD) as the baseline, we compute the distance of two sub-
spaces extracted from each method to B-KSVD. The distance measure is based
on kernel principle angles [8] between two subspaces:

d(span(ζ1), span(ζ2)) =

√√√√ p∑
i=1

θ2
i (12)
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Table 1. Datasets used in our experiments

Dataset n d

cpusmall 3000 12
letter 3000 16
EYFDB 2000 10304

where span(ζ1) means a p-dimensional subspace spanned by ζ1 and θi denotes
as the i-th principal angle between two subspaces.

In this experiment, the Gaussian kernel with σ = 1 is used and parameter
p = 30 for all tested methods. The parameter Nupd is set 40 for all the datasets,
which means that each dataset is divided into 40 parts. The other parameter
Niter involved in I-Nyström-Iter is set 4.

The used datasets are listed in Table 1, where d represents the number of
used features. Among the datasets, cpusmall and letter are from the bench-
mark datasets of LibSVM1; EYFDB means the dataset of Extended Yale Face
Database B [9, 10]. Only a part of data in each dataset are used here and the
size n of each dataset also lists in Table 1.

The subspace distance and time at each incremental step are plotted in
Fig. 1. As shown in Fig. 1, the time cost of I-Nyström is the least in the dynamic
case, however, the extracted subspace is with the biggest subspace distance. As
Nupd increases, the performance of I-Nyström gets better. For those online ap-
plications that involve long-term update and care more about running speed,
I-Nyström is a good choice. Compared to other methods, I-Nyström-Iter is the
most accurate and the time cost is between I-KSVD and B-Nyström-Iter at each
incremental step. Although the subspace extracted with I-Nyström-Iter is insta-
ble at each incremental step, where the subspace distance fluctuates in the range
[0, 2.0] in letter dataset, [0, 1.5] in cpusmall dataset, the overall quality of the
extracted subspace is reliable. The possible factor that results in the instability
of I-Nyström-Iter is the convergence speed of orthogonal iteration algorithm. An
alternative strategy of accelerating the convergence will be more helpful.

In addition, it is also worth noting that the computation costs of all methods
obviously increase as Nupd becomes large. One of the feasible solutions is the
reduced set, which is demonstrated in the next experiment.

5.2 Visual Tracking

This section presents an application of I-Nyström-Iter-RS to visual tracking.
Such application was also examined in [11], where the authors proposed a track-
ing method based on incremental PCA to incrementally learn the representation
of a low-dimensional subspace. In this experiment, we use the I-Nyström-Iter-
RS to replace incremental PCA, and do the update at every 10 frames. For each
update, only the first p = 5 principal eigenvectors of kernel matrix are kept, and
τ is set 3 to compress the eigenvectors. The first 10 frames are tracked according
1 http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~{ }cjlin/libsvmtools/datasets/
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Fig. 1. Comparison of performance of each method on different datasets
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(a) Car11

(b) Dudek

(c) Sylv

Fig. 2. Tracking results on three video clips
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(b) IVT

Fig. 3. the RMS error at tracking feature points on the ”Dudek” clip

to the distance to the first frame in the input space. The number of particles
generated at each frame is 100. The tracking results on three video clips2 are
shown in Fig. 2.

Fig. 2 shows that I-Nyström-Iter-RS can effectively update the appearance
model to accommodate the conditions of low resolution and contrast (Fig. 2(a)),
severe expression variation and temporary occlusion (Fig. 2(b)), and pose change
(Fig. 2(c)).

In order to evaluate the tracking results quantitatively, the root mean square
(RMS) error is adopted, which represents the difference between the manually-
labeled facial feature points and tracking feature points. The RMS errors with
I-Nyström-Iter-RS for each frame in the Dudek clip are compared with the IVT
method stated in [11], as displayed in Fig. 3. From the figure, it is clear that
most frames are tracked well with low RMS error by I-Nyström-Iter-RS, and the
result is basically comparable to the IVT method except some abrupt changes
due to the temporary occlusion or motion blur. In addition, it is worth noting
that the RMS errors of IVT in frames 300 to 350 when appearance changes a
lot is bigger than ours.

With regard to the time efficiency, the IVT method can achieve the speed
of 24 fps, while the I-Nyström-Iter-RS only has the speed of 3 fps. However,
the reason of being slow is not the update speed of I-Nyström-Iter-RS, but the
high cost in evaluating the kernel matrix of particles of every frame. Therefore,
I-Nyström-Iter-RS still is highly efficient in practical applications.

6 Conclusions

In this paper, we propose the incremental Nyström approximation method for
the dynamic learning problem and employ orthogonal iteration and reduce set

2 http://www.cs.toronto.edu/dross/ivt/

http://www.cs.toronto.edu/dross/ivt/
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to refine the approximation results of the incremental Nyström method. Exper-
imental results demonstrate that the proposed method can effectively preserve
the whole structure of the extracted subspace and has good potential in such
real applications as visual tracking.
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Background Modeling via Incremental

Maximum Margin Criterion

Cristina Marghes and Thierry Bouwmans

Laboratoire MIA, University of La Rochelle, 17000 La Rochelle, France

Abstract. Subspace learning methods are widely used in background
modeling to tackle illumination changes. Their main advantage is that
it doesn’t need to label data during the training and running phase. Re-
cently, White et al. [1] have shown that a supervised approach can im-
proved significantly the robustness in background modeling. Following
this idea, we propose to model the background via a supervised sub-
space learning called Incremental Maximum Margin Criterion (IMMC).
The proposed scheme enables to initialize robustly the background and
to update incrementally the eigenvectors and eigenvalues. Experimen-
tal results made on the Wallflower datasets show the pertinence of the
proposed approach.

1 Introduction

Many background subtraction methods have been developed in video-surveillance
to detect moving objects [2][3][4]. These methods have different common steps:
background modeling, background initialization, background maintenance and
foreground detection. The background modeling describes the kind of model
used to represents the background. Once the model has been chosen, the back-
ground model is initialized during a learning step by using N frames. Then, a
first foreground detection is made and consists in the classification of the pixel
as a background or as a foreground pixel. Thus, the foreground mask is applied
on the current frame to obtain the moving objects. After this, the background is
adapted over time following the changes which have occurred in the scene and
so on. The last decade witnessed very significant contributions in background
modeling via unsupervised subspace learning [5] due to their robustness to illu-
mination changes. The first approach developed by Oliver et al. [6] consists in
applying Principal Component Analysis (PCA) on N images to construct a back-
ground model, which is represented by the mean image and the projection matrix
comprising the first p significant eigenvectors of PCA. In this way, foreground
segmentation is accomplished by computing the difference between the input
image and its reconstruction. The main limitation of this method appears for
the background maintenance because it is computationally intensive to perform
model updating using the batch mode PCA. Moreover without a mechanism
of robust analysis, the outliers or foreground objects may be absorbed into the
background model. In this context, some authors proposed different algorithms

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 394–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of incremental PCA. The incremental PCA proposed by Rymel et al. [7] need
less computation but the background image is contamined by the foreground
object. To solve this, Li et al. [8] proposed an incremental PCA which is robust
in presence of outliers. However, when keeping the background model updated
incrementally, it assigned the same weights to the different frames. Thus, clean
frames and frames which contain foreground objects have the same contribution.
The consequence is a relative pollution of the background model. To solve this,
Skocaj et al. [9] used a weighted incremental and robust. The weights are different
following the frame and this method achieved a better background model. How-
ever, the weights were applied to the whole frame without considering the con-
tribution of different image parts to building the background model. To achieve
a pixel-wise precision for the weights, Zhang and Zhuang [10] proposed an adap-
tive weighted selection for an incremental PCA. This method performs a better
model by assigning a weight to each pixel at each new frame during the update.
Wang et al. [11] used a similar approach using the sequential Karhunen-Loeve
algorithm. Recently, Zhang et al. [12] improved this approach with an adaptive
scheme. All these incremental methods avoid the eigen-decomposition of the high
dimensional covariance matrix using approximation of it and so a low decompo-
sition is allowed at the maintenance step with less computational load. However,
these incremental methods maintain the whole eigenstructure including both the
eigenvalues and the exact matrix. To solve it, Li et al. [13] proposed a fast re-
cursive and robust eigenbackground maintenance avoiding eigen-decomposition.
This method achieves similar results than the incremental PCA [8] at better
frames rates. In another way, Yamazaki et al. [14] and Tsai et al. [15] proposed
to use the Independent Component Analysis (ICA) which is a variant of PCA
in which the components are assumed to be mutually statistically independent
instead of merely uncorrelated. This stronger condition allows remove the rota-
tional invariance of PCA, i.e. ICA provides a meaningful unique bilinear decom-
position of two-way data that can be considered as a linear mixture of a number
of independent source signals. The ICA model was tested on traffic scenes [14]
and show robustness in changing background like illumination changes. Recently,
Chu et al. [16] used a Non-negative Matrix Factorization algorithm to model dy-
namic backgrounds and Bucak et al. [17] preferred an Incremental version of
the Non-negative Matrix Factorization (INMF) which presents similar perfor-
mance than the incremental PCA [8]. In order to take into account the spatial
information, Li et al. [18] used an Incremntal Rank-(R1,R2,R3) Tensor (IRT).
Results [18] show better robustness to noise. The Table 1 shows an overview of
the background modeling based on subspace learning.

However, these different approaches are unsupervised subspace learning meth-
ods. Indeed, it doesnt need to label data. Recently, White et al. [1] proved that
the Gaussian Mixture Model (GMM) [19] gives better results when some coeffi-
cients are determined in a supervised way. Following this idea, we propose to use
a supervised subspace learning for background modeling. Thus, the Maximum
Margin Criterion (MMC) offers a nice framework. It was proposed by Li et al.
[20] and it can outperform PCA and Linear Discriminant Analysis (LDA) on
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many classification tasks [21]. MMC search for the projection axes on which the
data points of different classes are far from each other meanwhile where data
points of the same class are close to each other. As the original PCA and LDA,
MMC is a batch algorithm and so it requires that the data must be known in
advance and be given once altogether. Recently, Yan et al. [22] have proposed
incremental version of MMC which is suitable to update online the background
model.

The rest of this paper is organized as follows: In the Section 2, we firstly remind
the Incremental Maximum Margin Criterion (IMMC). In the Section 3, we present
our method using subspace learning via IMMC for background modeling. Then,
a comparative evaluation is provided in the Section 4. Finally, the conclusion is
given in Section 5.

Table 1. Subpace Learning for background modeling: An Overview

Subspace Learning - Methods Authors - Dates

Principal Components Analysis
Batch PCA Oliver et al. (1999) [6]
Incremental PCA Rymel et al. (2004)[7]
Incremental and Robust PCA Li et al. (2003)[8]
Weighted Incremental and Robust PCA Skocaj et al. (2003)[9]
Adaptive Weighted Incremental and Robust PCA Zhang and Zhuang (2007)[10]

Independent Component Analysis
Batch ICA Yamazaki et al. (2006)[14]
Incremental ICA Tsai and Lai (2009) [15]

Independent Component Analysis
Batch NMF Chu et al. (2010)[16]
Incremental NMF Bucak et al. (2007)[17]

Independent Component Analysis
Incremental Rank-(R1,R2,R3) Tensor Li et al. (2008)[18]

2 Incremental Maximum Margin Criterion (IMMC)

This section reminds briefly the principle of IMMC developed in [22]. Suppose
the data sample points u(1), u(2), ..., u(N) are d-dimensional vectors, and U is
the sample matrix with u(i) as its ith column. MMC [20] projects the data onto
a lower-dimensional vector space such that the ratio of the inter-class distance
to the intra-class distance is maximized. The goal is to achieve maximum dis-
crimination and the new low-dimensional vector can be computed as y = WT u
where W ∈ Rd×p is the projection matrix from the original space of dimension
d to the low dimensional space of dimension p. So, MMC [20] aims to maximize
the criterion:

J(W ) = WT (Sb − Sw)W (1)

where

Sb =
c∑

i=1

pi(mi − m)(mi − m)T (2)
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Sw =
c∑

i=1

piE(ui − mi)(ui − mi)T (3)

are called respectively the inter-class scatter matrix and the intra-class scatter
matrix and c is the number of classes, m is the mean of all samples, mi is the
mean of the samples belonging to class i and pi is the prior probability for a
sample belonging to class i. The projection matrix W can be obtained by solving:

(Sb − Sw)w = λw (4)

To incrementally maximize the MMC criterion, Yan et al.[22] constraint W to
unit vectors, i.e. W = [w1, w2, ...wp] and wT

k wk = 1. Thus the optimization
problem of J(W ) is transformed to:

max

p∑
k=1

wT
k (Sb − Sw)wk (5)

subject to wt
kwk = 1 with k = 1, 2, ..., p. W is the first k leading eigenvectors of

the matrix Sb − Sw and the column vectors of W are orthogonal to each other.
Thus, the problem is learning the p leading eigenvector of Sb−Sw incrementally.

2.1 Updating Incrementally Leading Eigenvectors

Let C = Sb+Sw be the covariance matrix, then we have J(W ) = WT (2Sb−C)W ,
W ∈ Rd×p. Then maximizing J(W ) means to find the p leading eigenvectors of
2Sb − C.

The inter-class scatter matrix of step n after learning from the first n samples
can be written as below,

Sb(n) =
c∑

j=1

pj(n)(mj − m(n))(mj(n) − m(n))T (6)

and

Sb = lim
n→∞

1
n

n∑
i=1

Sb(i) (7)

On the other hand,

C = E(u(n) − m)(u(n) − m)T (8)

= lim
n→∞

1
n

n∑
i=1

(u(n) − m(n))(u(n) − m(n))T (9)

2Sb −C should have the same eigenvectors as 2Sb −C + θI where θ is a positive
real number and I ∈ Rd×d. From (7) and (9) we have the following equation:

2Sb − C + θI = lim
n→∞

1
n

n∑
i=1

A(i) = A (10)
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where A(i) = 2Sb(i) − (u(i) − m(i))(u(i) − m(i))T + θI, A = 2Sb − C + θI.
The general eigenvector form is Ax = λx, where x is the eigenvector of matrix

A corresponding to the eigenvalue λ. By replacing matrix A with the MMC
matrix at step n, an approximate iterative eigenvector computation formulation
is obtained with ν = λx.

ν(n) =
1
n

n∑
i=1

(2
c∑

j=1

pj(i)Φj(i)Φj(i)T (11)

− (u(i) − m(i))(u(i) − m(i))T + θI)x(i)

where Φj (i) = mj (i)−m (i), v (n) is the n step estimation of v and x (n) is the
n step estimation of x. Once the estimation of ν is obtained, eigenvector x can
be directly computed as x = ν/||ν||. Let x (i) = ν (i − 1) /||ν (i − 1) ||, then the
incremental formulation is the following:

ν(n) =
n − 1

n
ν(n − 1) (12)

+ 1
n (2

∑c
j=1 pj(n)αj(n)Φj(n)

− β(u(n) − m(n)) + θν(n − 1))/||ν(n − 1)||
where αj(n) = φj(n)T ν(n−1) and β(n) = (u(n)−m(n))T ν(n−1), j = 1, 2, ..., c.
For initialization, ν(0) is equal to the first data sample.

2.2 Updating Incrementally the Other Eigenvectors

To compute the (j + 1)th eigenvector, its projection is substracted on the esti-
mated jth eigenvector from the data,

uj+1
1n

(n) = uj
1n

(n) − (uj
1n

(n)T νj(n))νj(n) (13)

where u1
1n

(n) = u1n(n). The same method is used to update mj
i (n) and mj(n),

i = 1, 2, ..., c. Since mj
i (n) and mj(n) are linear combinations of xj

li
(i), where

i = 1, 2, ..., k, and li ∈ 1,2, ...,C. Φi are linear combination of mi and m, for
convenience, only Φ is updated at each iteration step by:

Φj+1
ln

(n) = Φj
ln

(n) − (Φj
ln

(n)T νj(n))νj(n) (14)

In this way, the time-consuming orthonormalization is avoided and the or-
thogonal is always enforced when the convergence is reached.

3 Application to Background Modeling

The Figure 1 shows an overview of the proposed approach. The background
modeling framework based on IMMC includes the following stages: (1) Back-
ground initialization via MMC using N frames (N = 30 pratically) (2) Fore-
ground detection (3) Background maintenance using IMMC. The steps (2) and
(3) are executed repeatedly as time progresses.
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Fig. 1. Overview of the proposed approach

Denote the training video sequences S =
{
I1, ...IN

}
where It is the frame at

time t. Let each pixel (x,y) be characterized by its intensity in the grey scale
and asssume that we have the ground truth corresponding to this training video
sequences, i.e we know for each pixel its class label which can be foreground or
background. Thus, we have:

Sb =
c∑

i=1

pi(mi − m)(mi − m)T (15)

Sw =
c∑

i=1

piE(ui − mi)(ui − mi)T (16)

where c = 2, m is the mean of the intensity of the pixel x,y over the training video
and mi is the mean of samples belonging to class i and pi is the prior probability
for a sample belonging to class i with i ∈ {Background, Foreground}. Then,
we can apply the batch MMC to obtain the first leading eigenvectors which
correspond to the background. The corresponding eigenvalues are contained in
the matrix LM and the leading eigenvectors in the matrix ΦM . Once the leading
eigenbackground images stored in the matrix ΦM are obtained and the mean
μB too, the input image It can be approximated by the mean background and
weighted sum of the leading eigenbackgrounds ΦM .

So, the coordinate in leading eigenbackground space of input image It can be
computed as follows:

wt = (It − μB)T ΦM (17)

When wt is back projected onto the image space, a reconstructed background
image is created as follows:

Bt = ΦMwT
t + μB (18)

Then, the foreground object detection is made as follows:

|It − Bt| > T (19)

where T is a constant threshold.
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Table 2. Performance Evaluation on Wallflower dataset[23]

Problem Type

Error MO TD LS WT C B FA Total

Algorithm Type Errors (TE)

SG False neg 0 949 1857 3110 4101 2215 3464

Wren et al.[24] False pos 0 535 15123 357 2040 92 1290 35133

MOG False neg 0 1008 1633 1323 398 1874 2442

Stauffer et al.[25] False pos 0 20 14169 341 3098 217 530 27053

KDE False neg 0 1298 760 170 238 1755 2413

Elgammal et al.[26] False pos 0 125 14153 589 3392 933 624 26450

PCA False neg 0 879 962 1027 350 304 2441

Oliver et al.[6] False pos 1065 16 362 2057 1548 6129 537 17677

INMF False neg 0 724 1593 3317 6626 1401 3412

Bucak et al.[17] False pos 0 481 303 652 234 190 165 19098

IRT False neg 0 1282 2822 4525 1491 1734 2438

Li et al.[18] False pos 0 159 389 7 114 2080 12 17053

IMMC False neg 0 1336 2707 4307 1169 2677 2640

Proposed method False pos 0 11 16 6 136 506 203 15714

Once the first foreground detection is made, we apply the IMMC to update
the background model using (12) and (14). The class label for each pixel is
obtained using the foreground mask.

Remark: Note that the IMMC can be applied directly at time t=1 but it
is less robust than to use firstly the batch algorithm on N frames and then to
apply the IMMC to update the background.

4 Experimental Results

For the performance evaluation, we have compared our supervised approach
with the unsupervised subspace learning methods PCA, INMF and IRT using
the Wallflower dataset provided by Toyama et al. [23]. This dataset consists
in a set of images sequences where each sequence presents a different type of
difficulty that a practical task may meet: Moved Object (MO), Time of Day
(TD), Light Switch (LS), Waving Trees (WT), Camouflage (C), Bootstrapping
(B) and Foreground Aperture (F). The performance is evaluated against hand-
segmented ground truth. Three terms are used in evaluation: False Positive (FP)
is the number of background pixels that are wrongly marked as foreground; False
Negative (FN) is the number of foreground pixels that are wrongly marked as
background; Total Error (TE) is the sum of FP and FN. The Table 2 shows the
performance in term of FP, FN and TE for each algorithm. The corresponding
results are shown in Table 3. As we can see, the IMMC gives the lowest TE
followed by the IRT, the INMF and the PCA. Secondly, we have compared
our supervised approach with the state of the art algorithms: SG[24], MOG[25]
and KDE[26]. As we can see on the Table 2 and Table 3, our algorithm gives
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Table 3. Results on Wallflower dataset[23]

Sequence MO TD LS WT C B FA

Frame Frame Frame Frame Frame Frame Frame Frame
985 1850 1865 247 251 299 449

Test Image

Ground Truth

SG [24]

MOG [25]

KDE [26]

PCA [6]

INMF [17]

IRT [18]

IMMC

better results particularly in the case of illumination changes. The results for
SG, MOG and PCA comes from [27]. The results for the INMF was provided
by their authors [17]. The KDE was implemented in Microsoft Visual C++ and
the IRT and IMMC was implemented in Matlab.

5 Conclusion

In this paper, we have proposed to model the background using a supervised
subspace learning called Incremental Maximum Criterion. This approach allows
to initialize robustly the background and to upate incrementally the eigenvectors
and eigenvalues. Experimental results made on the Wallflower datasets show the
pertinence of the proposed approach. Indeed, IMMC outperforms the supervised
PCA, INMF and IRT. For future investigations, supervised subspace learning
methods such as Linear Discriminant Analysis (LDA) and Canonical Correlation
Analysis (CCA) seem to be very interesting approaches. For example, LDA exists
in several incremental versions as incremental LDA using fixed point method
[28] or sufficient spanning set approximations [29]. In the same way, Partial
Least Squares (PLS) methods [30] give a nice perspective to model robustly the
background.
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method. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006.
LNCS, vol. 3971, pp. 1334–1339. Springer, Heidelberg (2006)

29. Kim, T., Wong, S., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discrim-
inant analysis using sufficient spanning set approximations. In: CVPR, pp. 1–8
(June 2007)
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Trace Norm Regularization and Application to

Tensor Based Feature Extraction

Yoshikazu Washizawa
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Abstract. The trace norm regularization has an interesting property
that is rank of a matrix is reduced according to its continuous regular-
ization parameter. We propose a new efficient algorithm for a kind of
trace norm regularization problems. Since the algorithm is not gradient-
based approach, its computational complexity does not depend on initial
states or learning rate. We also apply the proposed algorithm to a tensor
based feature extraction method, that is an extension of the trace norm
regularized feature extraction.

Computational simulations show that the proposed algorithm pro-
vides an accurate solution in less time than conventional methods. The
proposed trace based feature extraction method show almost that same
performance as Multilinear PCA.

1 Introduction

The regularization has been researched in mathematics and computer science,
especially machine learning and pattern recognition. The regularization is known
to help to avoid the over-fitting (over-learning) problems, e.g. the ridge regression
or the support vector machines (SVMs). Furthermore, the regularization itself
can be used for feature extraction [1], and the l1 norm regularization is known
to provide a sparse solution.

Recently, the trace norm (or nuclear norm) regularization has been utilized
for matrix optimization problems, and applied to several applications such as
multi-task learning or recommender systems [2,3,4,5,6,7],

minimize
X

f(X) + μ‖X‖T , (1)

where ‖X‖T = Trace[(X�X)1/2] is the trace norm, and μ ≥ 0 is the regular-
ization parameter. For a symmetric matrix B, B1/2 is a symmetric matrix that
satisfies B1/2B1/2 = B. The most advantage of using trace norm is that the
rank of the solution X∗ is usually reduced, and hence for input vector b, mul-
tiplication, X∗b, is in the subspace. The number of dimension of the subspace
(rank of X∗) depends on μ.

Let A be a given matrix. If f(X) has forms f(X) = 1
2‖A−X‖2

F or f(X) =
1
2‖A−XA‖2

F , the problem has closed form solutions [4,1], where ‖ · ‖F denotes
the Frobenius norm. If f(X) is a convex and Lipschitz continuous function,
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several gradient-based approaches and the semi-definite programming (SDP)
approaches have been proposed [5,6]. However, SDP is known to have high com-
putational cost [2], and gradient-based approaches depend on initial conditions
or learning rates.

In this paper, we study the case f(X) = 1
2‖A − XB‖2

F , where A and B
are given matrices. We propose an efficient and direct algorithm to the prob-
lem. Since our method is not gradient based approach, it does not depend on
initialization, and faster than the other methods. Actually the method does not
output the strict optimal solution, but a good approximation of the solution.
Therefore, if we want to have an accurate solution, we can use the output of the
proposed method as an initial value of gradient based approaches.

Furthermore, we apply the method to the tensor based feature extraction.
Tensor (multi-linear) approaches are accompanied by the appearance of powerful
computer environments. In vector or matrix analysis, data is often transformed
to a set of vectors or matrices, then vector/matrix based approaches are applied.
In tensor analysis, we can directly treat the structure of the data. For example,
bio-medical data has many indices such as subjects, time (date), trials, sensor
channels, etc. Multi-linear PCA (MPCA) is an extension of PCA [8]. In this
paper, we extend the trace constrained feature extraction method [1] to tensor
analysis using the proposed algorithm in a similar way with MPCA.

We summarize the problem and introduce a feature extraction using the trace
norm regularization in Section 2. In Section 3, we introduce an efficient algorithm
for the problem. Section 4 discusses the tensor feature extraction using the trace
norm regularization. We show the experimental results in Section 5, and conclude
in Section 6.

2 Properties of Trace Norm Regularization and Previous
Works

2.1 Why Trace Norm Induces Rank Reduction

Suppose that the singular value decomposition (SVD) of X be X =
∑rank(X)

i=1

σiuiv
�
i . Since there exists an ambiguity with respect to the sign, we usually

assume that the singular values σi are non-negative. We, here, do not assume
σi ≥ 0, then the trace norm of X is ‖X‖T =

∑rank(X)
i=1 |σ| = ‖σ‖1, where

σ = [σ1, σ2, . . . , σrank(X)]�, and ‖ · ‖1 is the l1 norm. It is well-known that the
l1 norm minimization induces the sparse solution, therefore the singular values
of the solution matrix X∗ is sparse, and the rank of X∗ is reduced. Recently
several approaches or analyses have been reported [1,2,3,4,5,6,7].

2.2 Trace Norm Regularization in Vector Approximation Problems

We, here, review the feature extraction method using the trace norm [1]. We
propose a tensor based feature extraction method based on this method in
Section 4.2.
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Let x1, . . . , xn be d-dimensional samples. Then approximation problem with
the trace norm regularization is given by

minimize
X

1
2n

n∑
i=1

‖xi − Xxi‖2 + μ‖X‖T =
1
2
‖A − XA‖2

F + μ‖X‖T , (2)

where A = 1√
n
[x1, . . . , xn]. The first term minimizes the averaged squared error

between xi and Xxi, and the second term minimizes the trace norm of X. This
problem has a form f(X) = 1

2‖A − XA‖2
F in eq. (1).

If μ = 0, X∗ = I (identity matrix) extracts all features of A. The regu-
larization term μ‖X‖T limits the degree of freedom of X. Thus X∗ extracts
intrinsic feature in the samples. The Frobenius norm could be useful too, how-
ever, Frobenius norm does not give lower rank solutions [1]. For classification
problems, we obtain X∗ for each class. Let X∗

c be the matrix of the class c. An
unknown input pattern x is classified to the class k that is argmink‖x−X∗

kx‖.
In subspace method, X∗

c is a projection onto the subspace of the class c. The
one advantage of the trace norm is that the parameter μ is a real number (con-
tinuous) whereas the parameter of the subspace methods, the dimension, is a
natural number which is smaller than original dimension.

3 Algorithm for the Case f(X) = 1
2
‖A − XB‖2

F

3.1 Minimization Algorithm

We here consider the case f(X) = 1
2‖A − XB‖2

F , then the problem is

minimize
X

J(X) =
1
2
‖A − XB‖2

F + μ‖X‖T , (3)

where A, B ∈ Rd×L are given matrix.
We provide an efficient and direct algorithm for the problem (3). Since the

derivation of the algorithm is rather complex, we put its details in the Appendix.
We, here, show only outline of the derivation and the procedure of the algorithm
in Algorithm 1.

Let RB = BB� and RAB = AB�. Assume that RB and RAB are full-rank.
If they are not full-rank, we can reduce the dimension using SVD [2]. Suppose
that SVD of X be X = P 1ΣP�

2 ((Σ)ii > 0). Since the trace norm ‖X‖T is
not differentiable, we use the sub-gradient of J(X) that is

δJ(X) =XRB − RAB + μP 1P
�
2 + μS, (4)

where S is a matrix that satisfies P�
1 S = 0, SP 2 = 0, and ‖S‖2 ≤ 1. ‖ · ‖2

denotes the spectral norm [7]. We attempt to find the solution that satisfies
δJ(X) = 0. From δJ(X) = 0, we have following propositions.

Proposition 1. Suppose that SVD of RAB is RAB =
∑d

i=1 λiuiv
�
i . If δJ(X) =

0, there exists C1 ⊂ {1, . . . d}, and i) P 1P
�
1 =

∑
i∈C1

uiu
�
i and ii) P 2P

�
2 =∑

i∈C1
viv

�
i are satisfied.
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Algorithm 1. Algorithm to minimize problem (3)
1: Input: A, B, μ
2: Output: X∗

3: Obtain SVD RAB = AB� =
∑d

i=1 λiuiv
�
i . Suppose that eigenvalues λi are sorted

in descending order.
4: Set l1 be the maximum index i that satisfy λi > μ, and set l2 = d.
5: repeat
6: Calculate l = 
(l1 + l2)/2�, V 1 = [v1, . . . , vl], K = V �

1 BB�V 1, Λ1 =
diag(λ1, . . . , λl), E = (K−1Λ2

1K
−1) − μK−1

7: if E is positive-definite then
8: l1 = 
(l1 + l2)/2�
9: else

10: l2 = 
(l1 + l2)/2�
11: end if
12: until l2 = 
(l1 + l2)/2�
13: Calculate V 1 = [v1, . . . , vl1 ], K = V �

1 BB�V 1, Λ1 = diag(λ1, . . . , λl), E =
(K−1Λ2

1K
−1) − μK−1

14: Calculate EVD E = V XΣV �
X .

15: Calculate UX = Λ−1
1 (V �

1 BB�V 1V XΣ + μV X), U 1 = [u1, . . . , ul1 ],
16: Output X∗ = U 1UXΣV �

XV �
1

Proposition 2. If λi > μ, the index i is in C1.

Therefore, the optimal P 1 and P 2 are limited to the space that is spanned by
{ui}i∈C1 and {vi}i∈C1 respectively. Suppose that U1 and V 1 be matrices whose
column vectors are {ui}i∈C1 and {vi}i∈C1 respectively. Then we only have to
find the set C1 and the unitary matrices UX ∈ R|C1|×|C1| and V X ∈ R|C1|×|C1|

that is P 1 = U1UX and P 2 = V 1V X . We also provide a method to obtain UX

and V X that is described in Appendix. Thus we only have to determine C1.
Strictly speaking, we have to seek all possibilities i ∈ C1 and i �∈ C1 for each i

such that λi ≤ μ. However, we found that if we only check positive-definiteness
of a matrix E (defined in Algorithm 1) according to the descending order of the
singular value λi, a good approximation of the solution can be found.

3.2 Comparison with Other Optimization Methods

We compared our method with gradient based approaches, the dual accelerated
gradient-projection (DAGP) [2], and [5]. [6] also treats the same problem (1),
however, they did not use μ directly but the other parameter t (in [6]). Actually
there exists corresponding t for every μ, however, we cannot obtain t from μ
directly. Therefore we cannot compare our method with [6].

We generated matrices A = A1A2 and B = B1A + B2, where A1, B1 ∈
R200×200 are random matrix whose elements follow the uniform distribution
[0, 1], and A2, B2 ∈ R200×10000 are also random matrix whose elements follow
the standard Gaussian distribution. We set μ = 50000. Each algorithm was
tested 10 times using different A2 and B2, and we obtain mean values of the
cost function and runtime. We corded in GNU Octave compiled with Intel Math
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Fig. 1. Cost and runtime, (a): Proposed method is a left-bottom cross. “DAGP” is the
dual accelerated gradient-projection [2]. “Ji” is a method in [5]. (b) is the case that the
output of our method is used for initial states.

Kernel Library, and conducted the simulation on PC with Intel i7 X980 3.33GHz
(we used only one core for the simulation). Since runtime depends on cording
skills, we open our source codes1.

We show the relation between runtime and value of the objective function
(cost) in Figure 1 (a). The left-bottom cross is the result of the proposed method.
The proposed method provides a good solution in less time. L is a learning
coefficient for DAGP. When L = 1e − 3, DAGP converges to almost the same
value as the proposed method. However, it takes more than two seconds whereas
our method achieves in 0.4 sec. Moreover the performance of DAGP highly
depends on the learning coefficient L. “Ji” stands for a method in [5], and “eye”
and “zeros” stand for the initial X , that are the identity matrix and the zero
matrix respectively. This method does not converge to the optimal solution, and
performance depends on the initial state.

Since the problem (3) is convex, gradient-based methods guarantee to con-
verge to the global solution. We also tried the case that the proposed method
is used for the initial state of the other methods (Figure 1 (b)). Both DAGP
and Ji achieve smaller cost than the proposed method, however, the difference is
smaller than 0.8%. The proposed method provides almost the optimal solution.

Although our algorithm does not guarantee the optimal solution, it outputs
very good approximation. We think the reason is that the optimal solution is
almost determined by the several largest singular values and vectors. Therefore,
even if we only evaluate larger singular values and vectors, the solution is close
to the optimal solution.

1 Due to the double-blind review, we will open source codes after the acceptance
decision.
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4 Application to Tensor Based Feature Extraction

In this section, we apply the proposed algorithm to the tensor based feature
extraction method that is an extension of the method in Section 2.2. Multilinear
PCA (MPCA) is an extension of PCA that treats tensors [8]. We extend the
trace regularization method in a similar way. We, first, describe tensor algebra
and MPCA, then introduce the proposed method.

4.1 Tensor Algebra and Multi-linear PCA

Due to the limitation of the space, we enumerate notations, terms and operations
of tensor briefly.

– Tensor - denoted by a calligraphic large letter e.g., A or A(i1, i2, . . . , iN)
(i1 = 1, 2, . . . , I1, . . . , iN = 1, 2, . . . , IN ), where N is the number of modes.
Suppose that each index of a mode if positive integer, and the maximum
number of the index is called the dimension of the mode.

– Fiber - an Ij -dimensional vector obtained by fixing all modes except the
jth mode, is called the fiber of the jth mode.

– Unfolding matrices - (Ij) by (
∏

k �=j Ik) matrix laying all possible fibers
of the jth mode is called the unfolding matrix of the jth mode. We denote
the unfolding matrix of the jth mode by A(j). The inverse operation of the
unfolding is called the folding. We denote the unfold and the fold operator
of the jth mode by Unfoldj(·) and Foldj(·) respectively (A(j) = Unfoldj(A),
A = Foldj(A(j))).

– Tensor-matrix multiplication - suppose a is a fiber of a tensor A. Given
m by Ij matrix B, the jth multiplication A ×j B is done by replacing all
possible fibers a by Ba. The dimension of the jth mode of (A ×j B) is m.
By using folding, A×j B = Foldj(BA(j)).

– We denote A×1 B1 ×2 B2 · · · ×N BN =
∏N

i=1 A×i Bi.
– Frobenius norm of a tensor A is defined by

‖A‖2
F =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

[A(i1, i2, . . . , iN )]2 = ‖Unfoldj(A)‖2
F for any j.

Let A1, . . . ,AL ∈ RI1×...timesIN are given tensors, and suppose that the mean
tensor is zero. MPCA is defined by an optimization problem

maximize
U1,...,UN

L∑
l=1

‖
N∏

i=1

Al ×i U i‖2
F , subject to U�

i U i = I, U i ∈ R
ri×Ii . (5)

r1, . . . , rN are the parameters that specify dimensions. Since there is no way
to obtain U1, . . . , UN directly, [8] adopts the alternating least square (ALS)
method. If we fix U i, (i ∈ Cj = {1, . . . , N}\{j}), and obtain U j , the problem is
reduced to the sub-problem,

max
Uj

L∑
l=1

‖U jUnfoldj(
∏

i∈Cj

Al ×i U i)‖2
F , subject to U�

j U j = I, U j ∈ R
rj×Ij .
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Since Unfoldj(
∏

i∈Cj
A×iU i) is a matrix, this problem can be solved by standard

PCA approach. For each j = 1, . . . , L, the sub-problem is solved in rotation. This
procedure monotonically decreases the cost function of the main problem (5).

4.2 Tensor Based Feature Extraction Using Trace Norm
Regularization

We extend the trace norm regularization technique (2).

minimize
U1,...,UN

L∑
l=1

‖Al − (
N∏

i=1

Al ×i U i)‖2
F +

N∑
i=1

μi‖U i‖T , (6)

where μ1, . . . , μN i are regularization parameters. This is natural extension of the
problem (2), replacing vectors xi to tensor Al.

Since this problem is also difficult to obtain U1, . . . , UN simultaneously, we
adopt the ALS strategy. If we fix U i, (i ∈ Cj = {1, . . . , N}\{j}), and obtain
U j , the problem is reduced to

minimize
Uj

L∑
l=1

‖Unfoldj(Al) − U jUnfoldj(
∏

i∈Cj

Al ×i U i)‖2
F + μj‖U j‖T ,

If we let A = [Unfoldj(A1) . . . Unfoldj(AL)], B = [Unfoldj(
∏

i∈Cj
A1 ×i U i) . . .

Unfoldj(
∏

i∈Cj
AL ×i U i)], the problem has the form (3), and can be solved by

the algorithm proposed in Section 3.1.
Let X be an input tensor. Then transformed tensor is given by

∏N
i=1 X×N UN ,

and dissimilarity d(X ) is given by d(X ) = ‖X −∏N
i=1 X ×i U i‖2

F .

5 Experimental Results

5.1 Eigenface vs. Traceface

We, here, show example of trace norm regularization. Although this example is
not adopt tensor approach, the result shows interesting property of the trace
norm regularization. Eigenface has been used for face feature extraction [9].
However, if the number of samples (faces) is not sufficient, the residual error
draws a discontinuous line because its parameter, the number of dimension, has
to be a natural number. Even if the number of samples is sufficient, sometimes
eigenvalues of the covariance matrix are discontinuous. Therefore, we sometimes
cannot tune optimal parameter that provides right approximation. On the other
hand, trace norm regularization draws a continuous line because the parameter
μ is a real number. Furthermore, the dimension is reduced according to μ.

We show an example using the first person of the Olivetti Research Labora-
tory (ORL) face database [10]. We obtained PCA and trace regularized feature
extractor from ten images, then we transformed the first one image x. The resid-
ual error was obtained by ‖x − Xx‖, where X is PCA or the trace regularized
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Fig. 2. Eigenface (left) and traceface (right): Residual error and the parameter

Fig. 3. Eigenface (top) and traceface (bottom)

feature extractor. We show the result in Figure 2. The residual error of eigenface
has discontinuous line whereas that of traceface is smooth. Moreover rank of the
traceface is reduced when μ is large. Figure 3 shows images of the methods. The
variation of traceface is more smooth than that of eigenface.

5.2 Handwritten Digit Recognition by Tensor Feature Extraction

We used USPS handwritten digit database. Each image is gray-scaled 16x16
pixel image, and has a label ‘0’-‘9’. The database has 7291 samples for training,
and 2007 samples for testing. Each image is described in 256-dimensional vector.
We added indices that are scaling, rotation, horizontal shift, and vertical shift.
We generated three images for each index, therefore, one sample is a five-mode
tensor in R256×3×3×3×3. Scaling and rotation were done by commends imreshape
and imrotate of GNU octave, respectively.

We used randomly selected 10% of the training samples (729 samples) for
training, and the remaining samples are used for validation. We obtained tensor
based feature extractor, U1, . . . , U5 (in Section 4.2) for each class, using the
training samples. Then we calculated the dissimilarity between validation sam-
ples X and the class c, and classify the sample to the class whose dissimilarity
is minimum.
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Table 1. Result of handwritten digit classification

Method Proposed MPCA CLAFIC TQC

Error rate [%] 4.23 ± 0.75 4.20 ± 0.63 5.28 ± 0.58 4.47 ± 0.30

Table 1 shows the experimental result, the mean values and standard deviation
of three trials. For the class feature information compression (CLAFIC) and
the trace constrained quadratic classifier (TQC) [1], original 256-dimensional
vectors are used. For MPCA and CLAFIC, all possible sets of parameters were
evaluated, and obtained the lowest error rate. For the proposed method and
TQC, we sought optimal parameter from several picks. The proposed method
shows slightly worse performance than MPCA. However, as TQC outperforms
CLAFIC, the trace norm approach is promising.

6 Conclusion

We proposed a new efficient algorithm for the trace regularized problem (3).
Although the proposed algorithm does not guarantee the optimal solution, it
provides a very good approximation or an initial point in very low computational
cost. Our simulation in Section 3.2 demonstrated our algorithm.

Furthermore, we applied the proposed algorithm to the tensor based feature
extraction using trace norm regularization. The sub-problem of the optimization
problem (6) can be solved by the proposed algorithm.

Experimental results of the traceface showed the advantage of the trace norm
regularization. In the handwritten digit classification problem, by introducing
tensor method, the proposed method shows almost the same performance as
MPCA.

As we mentioned, the proposed algorithm to minimize the trace regularization
problem does not guarantee the optimal solution, it has to be verified in various
problems. Moreover, estimated error from the optimal solution also should be
discussed in future research.
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Appendix – Derivation of the Algorithm

We attempt to find A that gives δJ(A) = 0. From P�
1 S = 0, SP 2 = 0, S can

be parameterized by using a matrix B, like S = (I − P 1P
�
1 )B(I − P 2P

�
2 ).

Substituting this to δJ(A), and multiplying (I −P 1P
�
1 ) and (I −P 2P

�
2 ) from

left and right hand side respectively, we have B = 1
μ(I−P 1P

�
1 )RX(I−P 2P

�
2 )+

P 1CP�
2 , where the second term will be vanished when we substitute. Then we

have ∂J(A) = P 1ΣP�
2 RB −RAB −μP 1P

�
2 +(I−P 1P

�
1 )RAB(I−P 2P

�
2 ).By

multiplying (I − P 1P
�
1 ) from left-hand side, P 2P

�
2 from right-hand side, we

obtain (I − P 1P
�
1 )RABP 2P

�
2 = 0. Hence, Proposition 1 is derived. Suppose

that a set C1 in Proposition 1 is known. Suppose that SVD of RAB is RAB =∑
i λiuiv

�
i . Let Λ1 be a diagonal matrix of {λi}i∈C1 , U1 and V 1 be matrices

whose column vectors are {ui}i∈C1 and {vi}i∈C1 . Then P 1 and P 2 can be
expressed by P 1 = U1UX , and P 2 = V 1V X , where UX and V X are unitary
matrices.

Then δJ(A) is given by δJ(A) = U1(UXΣV �
XV �

1 RB−Λ1V
�
1 +μUXV �

XV �
1 ).

Since U1 is the matrix above, δJ(A) = 0 when inside of the bracket is zero.
Then we have the relation, UX = Λ−1

1 V �
1 RBV 1V XΣ + μΛ−1

1 V X .Let K =
V �

1 RBV 1, K is positive-definite. From U�
XUX = I, we also have a rela-

tion, (V XΣV �
X + μK−1)KΛ−2

1 K(V XΣV �
X + μK−1) = I.Both (V XΣV �

X +
μK−1) and KΛ−2

1 K are symmetric, the equation hold when V XΣV �
X =

(KΛ−2
1 K)1/2 − μK−1. Since V X is an unitary matrix and Σ is a diagonal-

matrix, the left-hand side should be eigenvalue decomposition (EVD) of the
right-hand side. Consequently, if we obtain C1, matrices V X and UX are ob-
tained, and the solution X∗ is given.

Here, S is given by S = 1
μU2Λ2V

�
2 , where Λ2 is a diagonal matrix of

{λi}i�∈C1 , U2 and V 2 are matrices whose column vectors are {ui}i�∈C1 and
{vi}i�∈C1 . From ‖S‖2 ≤ 1, if λi/μ > 1, the index i should be in C1, hence
Proposition 2 is derived.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Abstract. This paper proposes fast and robust face recognition system
for incremental data, which come continuously into the system. Fast and
robust mean that the face recognition performs rapidly both of train-
ing and querying process and steadily recognize face images, which have
large lighting variations. The fast training and querying can be performed
by implementing compact face features as dimensional reduction of face
image and predictive LDA (PDLDA) as face classifier. The PDLDA per-
forms rapidly the features cluster process because the PDLDA does not
require to recalculate the between class scatter, Sb, when a new class data
is registered into the training data set. In order to get the robust face
recognition achievement, we develop the lighting compensation, which
works based on neighbor analysis and is integrated to the PDLDA based
face recognition.

1 Introduction

Face recognition is one to many matches which compare a query face features
against all training face features to determine the identity of a query face. It
remains hard to be done because variations in a single face can be very large,
while the variations between different faces can be quite small. In addition, face
variability also depends on ethnicity and registration technique (i.e., capture
method, lighting condition, and devices).

PCA[1], LDA[2], and their variations[3,4,5] based face recognition are most
popular approach because of their uncomplicated processing. However, the main
problem of them is that they have to retrain all of the samples to get the opti-
mum projection matrix (W ) when new data come continuously into the system
(as shown in Fig. 1 with Ti representing i-th incremental data). Recently, two
methods have been proposed to address to this problem, as described in Refs.
[6,7]. Ref. [6] algorithm redefined within class scatter (Sw) formulation and made
simplification of calculating the global mean. However, the between class scatter
(Sb) still depends on the global mean and the W has to be determined, as done
by the LDA algorithm which requires O(n3) computational complexity. In other

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 414–423, 2011.
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T0 T1 T2 Tn
...

T0+T1+T2+…+TnT0+T1+T2T0+T1

Fig. 1. The illustration incremental data

side, the Ref. [7] proposed another strategy to this problem called as generalized
singular value decomposition-incremental LDA (GSVD-ILDA) which determined
W of incremental data using SVD which has less time computation than that of
Ref. [6]. However, the GSVD-ILDA still has to recalculate the global mean for
constructing the Hb = [

√
p1μ1 − μa, ...,

√
pLμL − μa] and requires QR decompo-

sition, twice SVD, and twice inverse to obtain W for each incremental data. As
known, the inverse matrix needs (O(n3)) computational complexity, where n is
size of matrix.

This paper proposes fast and robust face recognition system for incremental
data. This system is another strategy to overcome retraining problem, which can
performs rapidly both of training and querying process and steadily recognize
face images with large lighting variations. It can be realized by: implementing
simple lighting compensation algorithm which provides better performance than
that of existed methods, redefining the Sb using predictive and constant global
means, and implementing compact face features as dimensional reduction of face
image. The redefined Sb has the same characteristic as the original one in terms
of its symmetrical and separable and has much less computational complexity
than that of the original one for incremental data. In addition, this paper is
much difference with the Ref. [10] in term of lighting compensation, the effect
of Sb on the recognition rate, and the incremental data processing.

2 The Proposed Algorithm

Our proposed algorithm mainly consists of three processes: pre-processing con-
sist of lighting compensation and data normalization; holistic features extraction
that is used to get the specifics and powerful information of face image; and fea-
tures classifier which is used to obtain most separable projected features cluster
and to determine the similarity score between the query projected features and
the training projected features set.

2.1 Pre-processing

Histogram equalization is commonly used to remove non-uniform lighting effect
when face image is captured. However, this method did not work at all when
input images have large lighting variations (outdoor and indoors), as shown in
Fig. 2(a). J. Ruiz-de-Solar et al. [8] has been performed a comparative study of
different pre-processing approach to illumination compensation. Based on this
project, the self-quotient image (SQI) and the modified linear binary pattern
(mLBP) approaches are the most suitable algorithm to achieve illumination
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Fig. 2. The example of lighting compensation
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Fig. 3. The output of our illumination compensation

compensation for Eigenface face recognition system. In addition, Kurita et al.
[9] proposed robust pre-processing for illumination compensation of face image
which is based on low pass filter with providing robust result over the SQI. How-
ever, its algorithm is much the same as the SQI algorithm (see Ref. [8]) and both
of them are not easy to know what kind of low pass filter that is suitable for this
process.

In this paper, we adopt the SQI and Ref. [9] based methods to develop sim-
ple illumination compensation algorithm which main goal is to provide better
achievement than that of recent best existed methods such as mLBP and Wi-
jaya et al. (Ref. [10]) methods. The developed algorithm consists of four steps,
as follows:

1. Color space transformation, which transforms the face image in RGB color
space to YCbCr because the RGB is not necessarily. Then, the compensation
just performs in the intensity (Y) component because the lighting just affects
the contrast and brightness of the image which is placed on the Y component.

2. Illuminance definition, which is determined by dividing the input image (i.e.
Y component) into N-by-N blocks, then computing the mean of each block,
and finally resizing the result into the input image size. This process will get
the non-uniform lighting effect on the face image. By using trial and error,
the best block size (N ) for this process is 4.

3. Dividing the original image (I(x,y)) that represents the input stimulus with
the result of brightness definition in point 2 (L(x,y)) that represent the
illuminance or perception usin g: R(x, y) = {I(x, y)/L(x, y)} .α, where α is
constant coefficient for making centering the image intensity.

4. Normalizing the output of the point 3 process using stretching algorithm to
get the uniform contrast and brightness of the input face image.
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The output of the lighting compensation can be seen in Fig. 3. It shows that
all of the images have almost the same brightness and contrast, which is shown
by almost identical histogram data (Fig. 3(b)) and remaining to provide good
local facial features such as clearer eyes, mouth, nose, and face outline (see Fig.
3(a)). It means the proposed lighting compensation tends to overcome the large
variations of face images due to the lighting variations. When the Fig. 3(a) is
compared with the compensated image of existed methods, as shown the Fig.
2(c and d), our method tends to provide better achievement which keeps the
most significant information such as local facial features after the compensation.
Consequently, it tends to give robust performance for large variation of the
illumination data, such as YaleB database.

2.2 Holistic Features Extraction

In this research, a compact holistic features (HF) of face image, which is a set
dominant frequency content and moment information of entire face, is imple-
mented as dimensional reduction instead of raw face image. This concept has
been reported effectively for dimensional reduction which compressed by about
99% of original size with providing the good enough achievement [10,11].

The compact HF is created using three steps: firstly, convert the DCT de-
composition coefficients of face image to a vector using row ordering technique;
secondly, sort the vector descending using quick sort algorithm, and finally trun-
cate m first vector elements (i.e., less then 100 elements). From the dominant
frequency content, if they are reconstructed into the face images, the recon-
structed face images are different. However, we can still understand that they
are the face images, as shown and described clearly in Refs. [10,11]. It means
that the dominant frequency content existing in low-frequency components is
sufficient for face image representation, which can be implemented as part of HF
of face image that has powerful discriminant information and small dimension.
In order to get robust HF of any face pose variations, the moment information
that provides invariant measure of face images shape is considered. The moment
information is obtained using invariant moment analysis, which is derived from
central moment analysis [12]. The invariant moment set is invariant to transla-
tion, scale change, and rotation, therefore this concept can be employed to get
the holistic information of any face pose variations. The strengths of the pro-
posed features are that it has higher discriminantion power (DP) and provides
better performances than that of without moment information, as reported by
Wijaya et al. [10].

2.3 Features Classifier

Suppose, we have the three-dimensional data cluster of two classes which is nor-
malized in the range [0-1], shown in Fig. 4(a). By expanding this illustration to
n-dimensional data which have L classes and each class (k -th) has Nk samples,
then the optimum projection matrix (W ), which has to satisfy the Fisher crite-
rion (Eq. 1), can be determined by eigen analysis of S−1

w Sb and then select m
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Fig. 4. The illustration PDLDA in three-dimensional data

orthonormal eigenvectors corresponding to the largest eigenvalues (i.e. m < n).
Where, the Sb = 1

L

∑L
k=1 P (xk)(μk −μa)(μk −μa)T is between-class scatter ma-

trix, Sw = 1
N

∑L
k=1

∑Nk

i=1(x
k
i − μk)(xk

i − μk)T is the within-class scatter matrix,
μk is mean features vector of k -th class, and μa is mean of all samples.

JLDA(W ) = arg max
W

| WT SbW |
| WT SwW | (1)

This LDA algorithm has been implemented successfully as face recognition with
providing good and stable performance in both small and large sample size data,
as explained in Ref. [2,10]. However, it has to retrain all data samples to obtain
optimum projection matrix when new data samples enter into the system. The
retraining has to be done because the Sb depends on the global means, which
has to recalculated when new data sample comes. In order to avoid this problem
and to decrease its computational load, we develop a predictive LDA (PDLDA),
which is derived by defining the global mean μa as a constant value for all
samples, as shown in Fig. 4(a and b).

From this illustration, if the global mean, μa, is set-up as a constant vector
(μp) by moving the μa to the origin point (see Fig. 4(b)) or to maximum value of
the range (see Fig. 4(c)), it will make Sb not only require much less computational
complexity but also have the same basic structure as the original one Sorg

b in
terms of separable scatter and symmetrical matrix. If a new data class, xnew ,
incrementally comes into the system, the predictive Sb can be updated using the
following equation.

Sp
b =

L∑
k=1

P (xk)(μk − μp)(μk − μp)T + P (xnew)(μnew − μp)(μnew − μp)T

= Sold
b + Snew

b (2)

Hereafter, By substituting the Sb with the Sp
b of LDA eigen analysis, we will get

the optimum projection matrix called as PDLDA projection matrix (WPDLDA).
As note, Sw is determined by the same way as done in the original one. By using
this WPDLDA, the projected features of the both training and querying data set
can be performed by the following equation:
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Y k
i = WT

PDLDAXk
i (3)

Finally, the Euclidean distance based on nearest neighbor rule is implemented
for face classification.

2.4 The Effect of Sp
b to the Discrimination

In order to prove that Sp
b has the same separability as the original one (Sb),

we calculate the discrimination power (DP) [2], which represents the ability of
features separation, using the following equation.

J(W ) = sep(W ) = trace(S−1
W Sb) (4)

In this case, we examine the DP of the PDLDA projected data using the
procedure below on two conditions: when the Sb is unconsidered and considered
for determining the optimum WPDLDA. The procedure consists of three steps:

1. Determine the projected data (Y k
i ) using the Eq. 3.

2. Determine the within and between class scatter of projected data (Y k
i ) called

as SPro
w and SPro

b as the same as done by LDA respectively.
3. Calculate the DP of the projected data that is done by substituting Sw and

Sb of Eq. 4 with SPro
w and SPro

b respectively.

In the first condition, we substitute the Sb with identity matrix (I ) of the eigen
analysis (S−1

w Sb) to obtain optimum WPDLDA. By using this optimum WPDLDA,
we examine the DP using the above procedures in well-known ORL database.
The examination result shows that the classification information of face image
is not placed in few top discriminant vectors but spreading to all over features
vector, as shown in Fig. 5(a). It means to get the better recognition rate the more
discriminant vectors have to be considered. Consequently, the more discriminant
vectors are, the larger the face features size will be, which affect to the memory
space requirements. While in the last condition, we perform the same process as
the first condition except on substituting Sb of the eigen analysis with the Sp

b .
The results of the last condition examination show that the PDLDA (see Fig.
5.b) have closely the same DP as that of the Direct LDA (DLDA[4]) algorithm
and have higher DP than that of the first condition (Fig. 5(a)). It means that the
PDLDA have the same characteristic as the original one in terms the ability of
features separation or in other word, the result prove that |WT Sp

b W | has much
the same value as the |WT Sorg

b W | which make the data cluster of the PDLDA be
the same separable as that of the original one. The higher DP tends to provide
the higher recognition rate which will be proven using experimental data in the
next section.

Regarding to time complexity of recalculating Sb using Eq. (2), it requires:
(n + n2) multiplication and n addition operations. However, the original one
requires (L + 1)(n + n2) multiplication and (L + 1)n addition operations, where
L + 1 is total class member of data training and n is the dimensional size of
features vector.



420 I.G. Pasek Suta Wijaya, K. Uchimura, and G. Koutaki

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19

20 top features 

D
is

cr
im

in
at

io
n

 P
o

w
er

(a) PDLDA without considering Sb

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19

20 top features

D
is

cr
im

in
at

io
n

 P
o

w
er

DLDA PDLDA

(b) DLDA and PDLDA

Fig. 5. The discrimination power of our proposed methods
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 Sub-Set 3  Sub-Set 4 

Fig. 6. Example of face with large lighting variations

3 Experimental Setup and Results

The experiments were carried out using several challenge face databases: YALEB
database (YAL) [14], ITS-Lab. Kumamoto University database (ITS) [10], and
FERET database (FER) [13]. Each database has special characteristics. The
tests were performed using PC with specification: Core-Duo Processor 1.7 GHz
and 2 GB RAM.

The first experiment, which was carried out on the YaleB database investi-
gated the robustness of our proposed lighting compensation to any variations
of lighting condition compared with the established method, such as histogram
equalization (HE), modified Linear Binary Pattern (mLBP[8]), method in Ref.
[10]. The example of face image with lighting variations of the YALEB database
is divided by four set, as shown in Fig. 6. In this case, the sub-set 1 was
chosen as training and the remaining sub-sets were selected as testing. From
the experimental results, our lighting compensation can improve the existed
methods significantly, such as mLBP and method of Ref. [10] by about 5.45%
and 4.88% respectively, as shown in Table 1. The significant improvement of
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Table 1. The comparison of the recognition rate of the proposed lighting compensation
to established algorithms.

No
Methods Recognition Rate (%)

1 vs 2 1 vs 3 1 vs 4 Average

1 HE 95.39 60.13 13.69 56.39
2 mLBP 100 100 78.71 92.90
3 Method in Ref. [10] 100 100 80.40 93.47
4 Our Method 100 100 95.06 98.35

(a) ITS. Lab.

fa fb ql qr 

fa fb ql qr 

(b) FERET

Fig. 7. Pose example of ITS and FERET face database

recognition rate is given by sub-set 4, because face images on this sub-set con-
tains large lighting variations. It can be achieved because our lighting compen-
sation provides better compensated face image with almost identical histogram
data than that of mLBP and method of Ref. [10], as shown in Fig. 3. It means
any lighting condition of face images are compensated into almost the same con-
trast and brightness face images by our proposed lighting compensation method.

The second experiment was carried out with ITS. Lab database (consisting of
100 classes) and FERET database (consisting of 508 classes) which represents
small and large size database respectively. This test investigated effectiveness
of the integration of our lighting compensation and PDLDA against to the es-
tablished methods. The example of face pose variation of the databases can
be shown in Fig. 7. From these data, half of the samples were selected as the
training sample and remaining as test samples. In addition, the recent exist-
ing GSVD-ILDA, which has been reported to provided better achievement than
GSVD-LDA and IDR/QR methods (in detail, see Ref. [7]), is used as compar-
ison. The experimental results (Table 2) show that the proposed method tends
to provide better achievement than those of the established methods and event
than that of GSVD-ILDA. It can be achieved because the PDLDA almost has
the same discrimination power as the DLDA, see Fig. 5 while the GSVD-ILDA
just working using the approximation projection matrix. This achievement also
proves that the Sb of PDLDA has the same structure and satisfy the same op-
timum criterion as that of the DLDA.

In order to show that our proposed method requires less time processing for
retraining, the next experiment was performed. It was done on FERET face
database with incremental data scenario: firstly, it was trained 208 face classes
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Table 2. The comparison of the recognition rate of the lighting compensation+PDLDA
to established methods

No
Methods Features Recognition Rate (%)

Dimension ITS. Lab. FERET Average

1 HF+2DLDA 8x8 93.69 91.66 92.68
2 HF+(2D)2LDA 8x8 95.56 91.24 93.40
3 HF+(2D)2PCALDA 8x8 93.16 89.99 91.58
4 HF+DLDA 24 98.76 96.94 97.85
5 HF+GSVD-ILDA[7] 24 95.47 95.79 95.63
6 HF+PDLDA 24 98.77 97.24 98.01

86

88

90

92

94

96

98

208 248 288 328 368 408 448 488

Incremental data (step by 20 data)

R
ec

og
ni

tio
n 

R
at

e 
(%

)

GSVD-ILDA

PDLDA

(a) Recognition rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

208 248 288 328 368 408 448 488

Incremental data (step by 20 data)

R
et

ra
in

in
g 

Ti
m

e 
 (S

ec
on

d)

GSVD-ILDA

PDLDA

(b) Retraining time Processing

Fig. 8. The performance of the incremental testing

and then added gradually 20 new face classes into the system until 508 face
classes. The experimental results were plotted in Fig. 8. It shows that the recog-
nition rate for incremental data is much robust (Fig. 8(a)) with less retraining
time (Fig. 8(b)) than those of GSVD-ILDA. It can be achieved because the
PDLDA is identical with the original direct LDA which is the best variation of
LDA while GSVD-ILDA is the approximation of the original one. These results
match with the result of GSVD-ILDA as reported in Ref. [7] which provided
less recognition rate than GSVD-LDA. In terms of retraining time, the PDLDA
takes less retraining time than that of GSVD-ILDA because the PDLDA has
simpler computation complexity than that of DLDA: n + n2 multiplication and
n addition for PDLDA and (L+1)(n+n2) multiplication and (L+1)n addition
for DLDA as described in section (4.c). In other side, the GSVD-ILDA required
QR decomposition, twice SVD, and twice inverse to obtain W for each incre-
mental data. As known, the inverse matrix need large computational cost by
about (O(n3)), where n size of matrix which make the GSVD-ILDA take longer
retraining time than our method.

4 Conclusion and Future Works

The proposed lighting compensation, which is employed as pre-processing of face
image, provides robust performance in terms of recognition rate compared to
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that of existed methods. In detail, by implementing the proposed illumination
compensation significant improvement can be achieved by more than 20% of
the mLBP and 15% of the method in Ref. [10], which does not effect much
time processing the PDLDA base face recognition. In terms of retraining for
incremental data our proposed method can achieve robust result for both small
and large database size with less time processing.

In order to get more precise verification result, we will consider more local
features analysis involving eyes, nose, mouth, and context information of the
face image. In addition, we will investigate false acceptance and rejection rate
in order to know real-time performances.
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Abstract. This paper proposes a new method to compare similarities of
candidate models that are fitted to different areas of a query image. This
method extracts the discriminant features that are changed due to the
varying pose/lighting condition of given query image, and the confidence
of each model-fitting is evaluated based on how much of the discriminant
features is captured in each foreground. The confidence is fused with the
similarity to enhance the face-identification performance. In an exper-
iment using 7,000 images of 200 subjects taken under largely varying
pose and lighting conditions, our proposed method reduced the recogni-
tion errors by more than 25% compared to the conventional method.

1 Introduction

Face recognition is now successfully used in some real applications such as gate
control and photo search. [1,10] Many conventional studies have shown that
pattern-recognition techniques are powerful tools for face recognition under con-
strained imaging conditions; namely, the query image is captured in a near-
frontal pose under moderate lighting variations. [5]

In applications such as video surveillance and non-interactive interfaces, how-
ever, the query image is captured under un-constrained conditions. Facial pose
and lighting conditions change to a huge extent. It is impossible to collect a com-
plete set of training data that covers their infinite variations. Furthermore, there
is no feature that is invariant across any conditions. [3] Useful features for face
identification are changed due to the conditions: some features are distinctive un-
der one condition but become invisible under a different condition. Consequently,
the recognition algorithms using the fixed features that are predetermined using
the training data works well only under limited conditions, and its recognition
performance tends to degrade significantly under severe conditions.

The subspace methods are widely-used and powerful tools for modeling the
infinite variations due to the lighting conditions. [2,11] If 3D shape and albedo
are acquired in the enrollment process, the parametric model is constructed that
can synthesize facial images under arbitrary pose and lighting conditions. Such
face recognition methods have been proposed that construct the 3D models
for each subject in the database and recognize 2D query image. [2,4,6,9] In
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those methods, the individual models are fitted to the query image, and the
images of the enrolled subjects under the same condition as the query image
are reconstructed. Then the similarities between the query and reconstructed
images are compared (Fig. 1). Since the pose/lighting conditions of all images are
compensated to be the same as the query, recognition is successfully conducted
without being affected by the variations.

Such model-based methods are commonly confronted with the following prob-
lem: which pixels of the query image belong to the foreground that the model
should be fitted to? As its pose and subject differs, the foreground significantly
changes for each query image. It is unpractical to assume that the accurate fore-
ground is given by the face detection process. Therefore, the model-fitting starts
with a rough estimation and adjusts the pose parameters so as to maximize the
similarity. Since the fitting is individually conducted for each model, each pose
(and the foreground determined by it) differs. Thus the methods have to compare
the similarities of facial images that have different foregrounds. In the conven-
tional methods, the similarity of each model is calculated as the reconstruction
error averaged over each foreground. [2,6]

The problem is that an incorrect model can be fit to an invalid foreground
and produce ’better’ similarity score than the correct model fitted to the valid
foreground. Such ”poor fitting” is inevitable because any model can perfectly
fit to such pixels covered with dark shadows or having no textures. An example
is illustrated in Fig. 2. The pose may be adjusted to make the foreground to
contain more such pixels that can be fitted with little error. Although several
methods using edge features to avoid the poor fitting have been proposed [8],
they cannot solve the problem perfectly because it is difficult to determine which
edges belong to the true foreground. A new method is required to evaluate the
confidence of model-fitting and to reject the poor fitting in the recognition.

The main contribution of this paper is to propose a new metric that evaluates
the confidence of model-fitting. The confidence is evaluated based on how much
of the discriminant features is captured in its foreground. The proposed method
determines the scene-dependent discriminant features, i.e. the pixels that are
important for face recognition under the particular pose/lighting condition of
given query. Since the discriminant features significantly differ depending on
the condition, our proposed method determines those features online. Another
contribution is to propose a method to reject ”poor fitting” by fusing the con-
fidence into the similarity score and to enhance face recognition performance.
The experiments using a large set of the images captured under hugely varying
pose/lighting conditions show the efficacy of our proposed method.

2 Proposed Algorithm

2.1 Problem: Matching Facial Images with Different Shapes

Face recognition based on fitting appearance models is illustrated in Fig. 1.
Numerous methods [2,4,6,9] for constructing the appearance model and con-
ducting face recognition using the model fitting have been proposed. [8,11] A
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Fig. 1. Example of face-recognition algorithm using 3D appearance models. In the
enrollment step, 3D appearance models of each subject are registered in the database.
In the recognition step, each model is fitted to a query image, and the similarities of
the reconstructed images are compared in order to identify the correct face.

typical method uses 3D shape and albedo to calculate the illumination bases
that can predict any variations in appearance due to lighting conditions. 3D
shape is also used to predict pose variations. The appearance model is fitted to
the query image by estimating pose and illumination parameters. The methods
proposed in [2,6] warp the illumination bases calculated on the texture space
into the query image frame. The method then reconstructs the lighting condi-
tion by least-squares fitting of a linear combination of the warped illumination
bases to the query image. Starting from a given rough estimate, the pose is up-
dated by detecting optical flow between the reconstructed image and the query
image. [7,8] The reconstruction and updating pose is repeated until the pose is
converged.

When the query image is taken under large variations in pose and lighting
conditions, it is quite difficult to determine the precise facial area to which the
appearance model should be fitted. That is because face detection and image seg-
mentation techniques often fail for images that are non-frontal and contain many
shadows. Even without specifying a precise facial area, the existing algorithms
can fit 3D face models to the query image. Only a rough estimation of facial
pose is required to initiate the model-fitting. Since the shapes of each subject’s
face differ, the reconstructed images have different face areas. Consequently, the
algorithm has to compare the similarities of the reconstructed images, which are
defined in different foreground areas.

The conventional methods simply calculate the average error per pixel over
each face area and identify the face by choosing the one having the smallest
error. It seems enough for the query images captured under moderate conditions;
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Fig. 2. Example of ”poor fitting result” that affect non-frontal face recognition under
severe condition. Although model B is incorrect subject, reconstruction error inside
its foreground (surrounded by dotted line) is smaller than that of model A (correct
subject, its foreground is surrounded by solid line).

however, it becomes problematic for severe conditions, an example of which is
shown in Fig. 2. The areas to which the two example models are fitted are slightly
different (surrounded by the solid line and the dotted line). Unfortunately in this
case, model B (incorrect subject) has less error than model A (correct subject).

In this example shown in Fig.2, any model exhibits little error in the cheek
and chin, because there is no discriminant feature due to shadows. Foreground of
model B (surrounded by the dotted line) seems less confident than that of model
A (surrounded by the solid line), because the foreground of model A captures
the left part of the face, which is considered to be more significant for face
recognition in this condition. Our problem is how to extract these discriminant
features in a given query image.

In the following sections, a new method is proposed to extract significant
features for face identification. Then the confidence of model-fitting is evalu-
ated, and it will be combined into matching score to enhance face recognition
performance.

2.2 Solution: Adaptive Extraction of Discriminant Features

In this section, a new method for extracting the discriminant feature that changes
due to the imaging condition of given query image is proposed. Our method
analyzes the reconstructed images by fitting the appearance model to extract
the discriminant features in accordance with given query image.

In the enrollment step of the conventional 2D-3D face-recognition methods
[2,4,6,9], 3D appearance models of each subject are acquired and registered in the
matching database. The appearance model describes the face images of subject
i under any pose p and lighting condition l by parametric model f(p, l). There
are numerous methods to construct such appearance models. They acquire 3D
shape and albedo by 3D scans [2,6] or estimation [4,9], and they calculate the
illumination bases by using spherical harmonics or applying PCA to images
synthesized by varying lighting conditions.
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In the recognition step, appearance model fi(p, l) of subject i is fitted to
the query image Q, thus the reconstructed image Ri is obtained. Pose pi and
lighting parameters li are estimated by minimizing the reconstruction errors over
the pixels inside foreground Fi, which is defined as the face area of model i in
the fitted pose.

(pi, li) = arg min
∑
x∈Fi

|Q(x) − f i(x; pi, li)| (1)

Reconstructed image Ri reproduces the estimated pose/lighting conditions that
optimally fit model i to the query image. Let us denote the mask image which
indicates Fi by δi(x). Note that Fi and δi(x) differ for each subject.

Ri(x) = f i(x; pi, li) (2)

δi(x) = 1 if x ∈ Fi, otherwise 0 (3)

Here, a new method for extracting the discriminant features adaptively to
the imaging condition of given query image is proposed. The image features (i.e.
pixel intensities) that have large variations across reconstructed images Ri are
considered to be discriminant features and useful for face identification. Oth-
erwise, those features can be fitted by any model with little error. With our
proposed method, the importance w(x) of the pixel x for face identification is
evaluated from the standard deviations of {Ri(x)} as follows:

w(x) = (
∑

i

{δi(x)|Ri(x) − Ravg(x)|2})1/2/
∑

i

δi(x), (4)

Ravg(x) =
∑

i

{δi(x)Ri(x)}/
∑

i

δi(x) (5)

Figure 3 presents a result obtained by our proposed method. First, the recon-
structed images Ri are obtained by fitting the enrolled models to the query
image Q. The discriminant feature w(x), which is extracted from these images
by equation (4), is shown on the lower left. This result shows that our proposed
method adaptively extracts the discriminant features in the condition of given
query image. Under this condition, the right half of the face is covered with
strong shadows; thus, those areas have no discriminant features and are fitted
by any model with little error. In contrast, the left half of the face has discrim-
inant features in the edges. Note that w(x) has large values in the right eyelid.
Although this area is shadowed in the query image, the area is not shadowed
for some subjects (see reconstructed image of model B) and has discriminant
features that appear in this particular lighting condition. Our proposed method
can also extract such features.

Figure 4 shows examples of applying our proposed method for a variety of test
images. The results in Fig. 4 show that our proposed method can extract the
discriminant features that change according to the pose and lighting condition.
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Fig. 3. Outline of our method for determining discriminant features of query image
online

2.3 Fusing Fitting Confidence with Similarity for Recognition

In this section, a new method is proposed to evaluate the confidence of the model-
fitting based on the discriminant features extracted by the method proposed in
the previous section. The confidence will be fused with the appearance similarity
to conduct face identification.

The conventional method calculates mean absolute differences of the image
features over each model’s foreground Fi, and its inverse is used as the similarity
score Si to identify the face. The query image is identified to person i if Si has
the largest value.

Si = 1 −
∑
x∈Fi

|Q(x) − Ri(x)| /
∑
x∈Fi

I (6)

where I indicates maximum value of pixel intensities. Si is normalized to have
a value from 0 to 1 so that Si represents the similarity.

Since each subject’s facial shape is different, foreground Fi differs for each
subject i. As discussed in the earlier sections, some sub-regions of the face are
easy to fit by any model, but discriminant areas are not. If Fi contains more of
the former and less of the latter, it becomes likely to have high similarity score.
However, the confidence of similarity Si becomes doubtful. Here, a method is
proposed for evaluating the confidence Ci of similarity score Si according to how
much of discriminant feature is captured by its foreground Fi:

Ci =
∑
x∈Fi

w(x)/
∑
x

w(x) (7)

Ci is normalized to have value from 0 to 1, then this criterion is fused with
similarity Si as follows:

S′
i = SiC

γ
i (8)
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Fig. 4. Examples of a query and its discriminant features extracted by our proposed
method

Fig. 5. Outline of our proposed method of evaluating confidence of model-fitting and
fusing appearance similarity with the confidence into matching score used for face
recognition.

The resultant fused score S′
i is used for face identification. Here, γ is a param-

eter that balances the weights on the appearance similarity and the matching
confidence.

Figure 5 illustrates the flow of our proposed method. Model A (correct sub-
ject) and B (incorrect subject) were fitted to areas FA (surrounded by a solid
line) and FB (dotted line), respectively. In this case, model B has comparably
high similarity scores (SB > SA). Although the shape of model B is not aligned
to right chin and mouth areas, it does not produce errors due to strong shadows.

Our method proposed in the previous section determines where discriminant
features appear under this particular pose and illumination condition (shown on
the lower left of Fig. 5). Many discriminant features are detected in the left half
of the face, but no feature in the right cheek and chin areas. Since FA covers the
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former area (i.e. much more discriminant features than FB), a higher confidence
score CA is given to model A. The query image is thereby successfully identified,
because S′

A > S′
B.

3 Experiments

In this section, the efficacy of our proposed method is evaluated by applying it to
face recognition under large variations in pose and illumination. Our proposed
method is combined with a conventional face recognition method of [3], which
is selected as an example of many existing methods that use 3D appearance
models [5,7]. The recognition performances of the original conventional method
and that combined with our method are compared experimentally.

As for the query images, 7,000 images of 200 subjects were collected by setting
up 30 conditions of drastically changed pose and lighting conditions (see Fig. 6).
The seven pose variations included a maximum of 95 degrees in total rotation in
depth, and the illumination direction was changed by up to 90 degrees from the
front. For the enrolled data, three-dimensional scans of 200 subjects were also
collected by using a 3D scanner.

In the experiments, it is assumed that the face-detection process provides the
rough estimate of the facial pose but that the precise facial area is not deter-
mined. To simulate the rough pose estimates, locations of 12 feature points (left
and right corners of eyes, nose and mouth, pupils, centers of nose and mouth)
were manually annotated to the test images and 3D shape data. The pose es-
timation algorithm calculates the facial pose using the point correspondences
between the feature points on the test image and the 3D shape. Since the loca-
tions contain some errors, the estimated pose becomes rough. The pose estimate
is used to initiate model-fitting.

The recognition performances of the conventional method and that combined
with our proposed method are compared. The conventional method uses only the
similarity scores between the reconstructed image and the query image, which
is calculated as mean absolute differences of pixel intensities in foreground. [2,6]
The model with the smallest error is chosen as the matched subject. Our pro-
posed method additionally calculates the confidence of model fitting, as described
in section 2, and the fused score is used for face identification. The parameter
γ in equation (8) is tuned to 0.01 by a preliminary experiment using a data set
different from the test data.

The performances of the face identification from the 200 enrolled subjects
were compared in the experiments. The error rates of the previous method and
our proposed method are shown in Table 1 and 2, respectively. Bold numbers
indicates the severe conditions for the previous method where error rates are
higher than the average. The error rate averaged over all conditions was reduced
from 1.5% to 1.1% against 7,000 test images. The recognition errors induced by
the conventional method were reduced more than 25% by using our proposed
method.
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Fig. 6. Pose and lighting conditions of test images used in face identification experi-
ments. 35 test images were taken for each of 200 subjects to be identified. 3D scans of
each subject were also collected and enrolled in matching database.

Table 1. Error rates of face identification
by conventional method using only similar-
ity (model-fitting errors)

Table 2. Error rates of face identification
by our proposed method using confidence
of model-fitting in addition to similarity

Note that our method is designed to enhance the performance under the
severe conditions. Performance was especially improved under severe conditions
containing large occlusions and strong cast shadows, namely, light E and poses
3, 6 and 7.
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4 Conclusions

In this paper, a new method for enhancing face-recognition performance by
evaluating the confidence of model-fitting was proposed. Our proposed method
extracts the discriminant features that are useful for face identification in a
particular condition of a given query image, and the confidence of the similarity
score is evaluated according to how much of the discriminant feature is captured
in the foreground. The similarity and confidence scores are fused into a matching
score that is used to identify the face. The experiments using a large set of the
images taken under drastically varying pose and lighting conditions showed the
efficacy of our proposed method. The errors induced by the previous method are
reduced more than 25% by using our method.

In this study, the naive image feature, i.e. pixel intensity, was used and the
discriminant features are detected as the weights for the pixels. This simply
showed the efficacy of our basic idea, and our method can be applied to more
sophisticated features extracted by various filters. Our future work is to extend
our proposed method for such features, and to construct larger database to test
the algorithms.
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Abstract

I hope to start from one question. “Is the eigenface[1] a subspace method?”
Answer is weakly YES and strongly NO. In wide meaning in Subspace method

of pattern recognition is that uses subspace. In this meaning the answer is YES.
However in narrow meaning the term “Subspace method” means pattern recog-
nition techniques that represent class featuring information with subspace of
original feature space[2]. The eigenface subspace represent common feature of
trained faces, that is differ from class information. Thus in this meaning the
answer is NO1.

For understanding the term of “Subspace method”, we shall trace back to a
Subspace method root. In this article I try to clarify the meaning of Subspace
method through the historical study. To this goal we trace histories of Subspace
methods from their birth at 1960s to 21c. We studied the history both side
of theory and applications, because sometimes new theory is inspired by new
application and new theory extend applicability of Subspace methods.

The history of Subspace method is classified in three epochs.
First epoch is the birth of Subspace methods, from ’60th to ’70th. Subspace

method was originated by two Japanese researcher Prof. Taizo Iijima and Prof.
Satoshi Watanabe independently. Prof. Iijima try to formulate an observation
theory of object that include scale space methods[4]. Prof. Watanabe started
from the information theory and the theory of probabilistic logics[5]. Interest-
ingly they reached same goal from other start points. Their results are “categories
or class information is represented by subspaces”.

Second epoch is the age of the application to character recognition and dis-
criminative Subspace methods. Main issue of pattern recognition research in this
age is character recognition[6]. Especially Japanese Kanji recognition problem
was very important industrial problem in Japan. For obtaining high recognition
accuracy, many discriminative Subspace methods were proposed[7]

Third epoch was starting from Yamaguch et. al [8]. They demonstrate the
effectiveness of mutual Subspace method for object recognition problem. From
their paper, Subspace method is defined important technology of object recogni-
tion problem, and many improvement and extension were proposing[9,10,11,12].
Many other applications were proposed[13] in this epoch.

1 The technology of eigenface is rediscovery of SELFIC[3].

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part II, LNCS 6469, pp. 434–435, 2011.
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From this historical study, we try to discuss current status and future issue
of Subspace method.
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