
3

Games for Model Checking on Automatic
Structures

In the previous chapter we used games as a tool to define the semantics of
game quantification and to investigate questions in logic. In this chapter we
focus on games in their own right.

We start by defining games played on graphs by two players with perfect in-
formation. The connection between such games and logic is illustrated on two
well-known examples: the game-theoretical semantics of first-order logic where
games of finite duration are used, and model-checking ofmodalμ-calculuswhere
parity games are appropriate. These two examples show that studying the re-
lation to games can both lead to better insight into the expressive power of a
logic and also have an algorithmic utility for model checking. This motivates us
to look for games for model-checking on automatic structures.

To find an appropriate game model for first-order logic on an automatic
structure, we fix a presentation of the structure and investigate the extended
logic FO[�]. For this setting, we introduce multiplayer games played by two
coalitions with opposing objectives and with imperfect information exchanged
according to a hierarchical constraint [50]. On the one hand, this constraint is
suitable for defining model-checking games for the extended first-order logic,
and it is necessary for the problem of establishing the winning coalition to
be decidable. On the other hand, this constraint alone is not sufficient for
establishing the winners to be decidable.

To identify the properties needed to make hierarchical games decidable, we
study a restricted version of these games where players are forced to alternate.
We show that this constraint is required both for determinacy of hierarchical
games and for decidability of the problem of establishing the winning coalition.
Finally, we prove that hierarchical games where players alternate are indeed
model-checking games for FO[�] on automatic presentations.

3.1 Games on Graphs and Logic

In the previous chapter we discussed game quantification and used Gale-
Stewart games to provide semantics for game formulas. Since we were only
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30 3 Games for Model Checking on Automatic Structures

interested in the existence of winning strategies, we did not give a formal def-
inition of what a game is in that context. In this section we want to take a
step back and define games, more precisely games played on graphs. We also
give an overview of the well-known connection between two-player zero-sum
games with complete information and fixed-point logics.

The intuition behind a two-player zero-sum turn-based game played on a
graph is very natural. Two players, let us call them Player 0 and Player 1, play
by moving a token around a graph of positions. There is a position singled out
in which the game starts and every position is assigned to one of the players.
When the token is in a position that belongs to one of the players, this player is
required to move by choosing an edge going out from this position. If there are
no outgoing edges, the player who can not move loses. If the players manage
to keep playing infinitely long, then the winner is decided based on a winning
condition that specifies which infinite plays are winning for Player 0 and which
for Player 1.

Definition 3.1. A Büchi, parity, Streett, Rabin or Muller game is given by a
tuple G = (V0, V1, E,F) where V0 is the set of positions of Player 0 and V1,
disjoint from V0, contains the positions of Player 1. E ⊆ V × V is the edge
relation denoting possible moves between positions V = V0 ∪ V1, and F ⊆ V ω

is a winning condition, represented in the same way as Büchi, parity, Streett,
Rabin and Muller acceptance conditions for automata described in section 1.3.

To avoid tedious case distinctions, we often assume that all plays are infinite,
i.e. that vE �= ∅ for all v ∈ V .

You can see that the Gale-Stewart game for a structure A can be viewed
as a graph game, either as a game on the tree T(A) with players alternating
their moves or as a game on the complete bipartite graph A×A with one side
belonging to Player 0 and the other to Player 1.

A strategy for player i ∈ {0, 1} in the game G is a function σ : V ∗Vi → V
with (v, σ(hv)) ∈ E for all h ∈ V ∗ and v ∈ Vi. A play π = v0v1 . . . is
consistent with a strategy σ for player i if vn+1 = σ(v0 . . . vn) for every n such
that vn ∈ Vi. Given strategies σ, ρ for Player 0 and Player 1, respectively, we
denote by πσ,ρ(v0) the unique play starting in position v0 which is consistent
with both σ and ρ.

We say that a strategy σ is winning for Player 0 from v0 if for all strategies
ρ of the opponent πσ,ρ(v0) ∈ F . Analogously, a strategy ρ is winning for
Player 1 from v0 if for all strategies σ of the opponent πσ,ρ(v0) �∈ F . The
set of all positions from which player i has a winning strategy is called the
winning region of player i. A game G is determined if from every position
either Player 0 or Player 1 has a winning strategy. Thus, in a determined
game, the game graph can be partitioned into winning regions of Player 0
and Player 1.

In many cases one is interested not only in arbitrary winning strategies, but
in strategies of a special kind. One prominent example are positional strate-
gies, where the strategy depends only on the current position and not on the



3.1 Games on Graphs and Logic 31

previous positions of the play, i.e. σ(hv) = σ(v) for any history h. In a stronger
version of determinacy one requires the winning strategies to belong to a cer-
tain class. For example, games with parity winning conditions are determined
in positional strategies [31, 68], i.e. from every position either Player 0 or
Player 1 has a positional strategy that is winning against all strategies of the
opponent. For games with Muller winning conditions on finitely many priori-
ties a larger class of strategies is needed, namely such where a finite number
of memory states is allowed. We investigate various kinds of determinacy and
memory for strategies in chapter 4.

There is an intimate connection between zero-sum games and logic. The
idea to give semantics to logics using games was mentioned already in the
last decade of the 19th century by C.S. Pierce, and about sixty years later
Paul Lorenzen gave a game-theoretical semantics for first-order logic. Giving
a game-theoretical semantics to a logic means that for the evaluation of a
formula ϕ on a structure A one constructs a model-checking game MC(A, ϕ)
such that Player 0 has a winning strategy in MC(A, ϕ) from an initial position
exactly if A |= ϕ.

The model-checking game for an FO formula ϕ on A is constructed in a very
intuitive way. The positions of the game consist of subformulas of ϕ together
with a valuation of all free variables in the subformula. If the position is
of the form (ϕ1 ∨ ϕ2, θ) then Player 0 moves either to (ϕ1, θ) or to (ϕ2, θ).
Analogously, from (ϕ1 ∧ ϕ2, θ) Player 1 moves to one of the subformulas.
In a position of the form (∃xϕ, θ), Player 0 moves by choosing an element
a ∈ A. The next position is then (ϕ, θ[x← a]). For (∀xϕ, θ), the other player
can make analogous moves. When the game reaches a position (ϕ, θ) for an
atomic formula ϕ, the winner is determined depending on whether or not
A, θ |= ϕ.

On finite structures first-order logic is often too weak to express properties
of interest. Before we proceed to show model-checking games for first-order
logic on infinite structures, let us recall how a more expressive logic, the modal
fixed-point logic, can be model-checked on finite structures using parity games.

In computer science, real-world systems are often modeled using finite
Kripke structures, which are directed graphs labeled by a set of predicates.
Formally, a Kripke structure is a tuple K = (V,E, P1, . . . , Pk) with E ⊆ V ×V
and Pi ⊆ V . Important properties that often need to be checked on such sys-
tems include reachability, i.e. the question whether a node where a predicate
Pi holds can be reached from an initial node, and safety, i.e. the question
whether nodes where a predicate Pj holds can be avoided on all possible
paths from an initial node. These properties are not definable in FO, but
there are well-known temporal logics, like the linear time logic LTL and the
branching-time logic CTL, which can express these properties. There is an
elegant modal logic that subsumes all these temporal logics and can express
many interesting properties, the modal μ-calculus Lμ. Formulas ϕ of Lμ are
formed according to the following syntax,

ϕ = Pi | ¬Pi | X | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | μXϕ | νXϕ,
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and evaluated on a Kripke structure K using the following semantics.

– K, v |= Pi whenever Pi(v) holds and K, v |= ¬Pi in the other case,
– K, v |= ϕ ∧ ψ (ϕ ∨ ψ) whenever K, v |= ϕ and (or) K, v |= ψ,
– K, v |= ♦ϕ whenever there is a w ∈ vE for which K, w |= ϕ holds,
– K, v |= �ϕ whenever K, w |= ϕ for all w ∈ vE,
– K, v |= μXϕ whenever (K, X), v |= ϕ, where X is the smallest subset of V

for which the equation X = {w : (K, X), w |= ϕ} holds,
– K, v |= νXϕ whenever (K, X), v |= ϕ, where X is the biggest subset of V

for which the equation X = {w : (K, X), w |= ϕ} holds.

Note that in the syntax we use X to denote a set variable, while in the
definition of semantics we write (K, X) for the Kripke structure K extended
with the predicate X . The semantics above is well defined only if the smallest
and biggest solutions to the fixed-point equation exist, but this is indeed the
case due to the monotonicity of all the operators of Lμ.

The modal μ-calculus is a very expressive logic, in fact it can express all
MSO-definable properties that are invariant under bisimulation [46], and most
properties of practical interest belong to this class. To define a model-checking
game MC(K, ϕ) for an Lμ formula ϕ on a Kripke structure K one proceeds
in an analogous way to first-order logic. Player 0 chooses a successor for ♦
and ∨, while Player 1 moves for � and ∧. Additionally, to handle fixed-
point operators, from any set variable X a new edge is added back to the
formula μXϕ or νXϕ where the variable X was introduced. These back-
edges make infinite plays possible and it turns out that the winner of such
an infinite play is decided depending on whether the outermost fixed-point
variable occurring infinitely often in the play is introduced in a μ or in a ν
formula. This corresponds exactly to the parity condition and indeed, not only
are parity games powerful enough for model-checking Lμ, the converse holds
as well, i.e. winning in any parity game (with a fixed number of priorities) can
be expressed in the μ-calculus.

The correspondence between Lμ and parity games is not only an interesting
extension of the analogous relation between first-order logic and games of
finite duration, it also has interesting algorithmic consequences. While it is
still open whether there exists a polynomial-time algorithm for model-checking
Lμ, all of the most efficient algorithms known so far [47, 48, 86, 49] rely on
the representation of the problem as a game. In particular, one very efficient
algorithm [86] heavily exploits the structure of the game. This algorithm does
not compute the fixed-points in an iterative way, as suggested by the structure
of the Lμ formula. Instead, it starts by guessing a positional strategy in the
parity game and then it improves this strategy, which often takes fewer steps
than the iterative fixed-point evaluation. The fact that the structure of the
game can be of algorithmic use is an additional motivation to look for model-
checking games for FO[�] on automatic structures.
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3.2 Games with Hierarchical Imperfect Information

Our goal in this section is to describe a class of games that will later be used for
model-checking first-order logic with the game quantifier on presentations of
automatic structures. To define such games we go beyond two-player perfect
information games and use multiplayer games with imperfect information.
Even though there are multiple players, in the games we define they form two
coalitions with strictly opposing objectives. For this reason one could use a
different metaphor with just two players for the same class of games. We use
the multiplayer setting in this chapter and discuss the other possibilities in
the final chapter.

While imperfect information is a standard element of classical game the-
ory, especially for games in extensive form, in computer science games with
imperfect information played on graphs have first been studied in the con-
text of alternating Turing machines with private states [76, 77]. At that time
only the reachability condition was considered. Algorithmic solutions for im-
perfect information games with ω-regular winning conditions were presented
only recently [21], however only for the case of observable winning conditions.

The standard way to represent imperfect information in games is by means
of information sets, equivalence relations describing which states can not be
distinguished by a given player. We find it more convenient to use a different
representation, in which players see some of the actions of their opponents
and other actions are hidden. It is possible to transform between these two
representations, but the transformation may increase the size of the game.

Definition 3.2. A hierarchical Büchi, parity, Rabin, Streett or Muller game
with actions in a finite set Σ is given by a tuple

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, μ, F).

The game is played by two coalitions, I and II, each consisting of N players,
with the set of players denoted

Π = (1, I), (2, I), . . . , (N, I), (1, II), (2, II), . . . , (N, II)

and the arena of the game given by the pairwise disjoint sets of positions of
each player, V1,I, . . . , VN,I, V1,II, . . . , VN,II. Positions of coalition I are denoted
by VI = V1,I ∪ . . .∪VN,I and the ones of coalition II by VII = V1,II ∪ . . .∪VN,II,
with all positions denoted V = VI ∪ VII. The function μ : V × Σ → V
defines the possible moves, so that when a player chooses an action a ∈ Σ
in his position v then the token is moved and the play proceeds to position
μ(v, a). The objective of coalition I is given by the winning condition F ⊆ V ω,
represented in a finite way as a parity, Streett, Rabin or Muller condition,
depending on the type of the game.

When a hierarchical game is played infinitely long, an infinite sequence of
actions is taken by the players during the play, which we call the play actions
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sequence and denote by α ∈ Σω. Conversely, with every play actions sequence
α and a starting position v0, we associate the unique play πα(v0). It is the
infinite sequence of positions that results from making the moves according
to α,

πα(v0) = v0v1 . . . ⇐⇒ vi+1 = μ(vi, α[i]) for all i ∈ N.

During the play πα(v0) we encounter a sequence of players that take the moves
in each step, defined by Πα(v0)[i] = p ⇔ πα(v0)[i] ∈ Vp.

In a hierarchical game each player p has to decide on a strategy σp :
Σ∗ → Σ. In a game with perfect information one says that play actions α are
consistent with a strategy σp in a play starting in v0 if for each move i taken
by player p the action taken is given by the strategy acting on the history of
actions, α[i] = σp(α|i).

Since the players do not have perfect information, we additionally assume
that for each player p there is a view function νp that extracts the information
visible for this player from the history of play actions. More precisely, let
νp : (Σ ×Π)∗ → Σ∗ be the function that extracts the information visible
to player p from the history of play actions labeled by players who took these
actions. We say that a sequence of play actions α is consistent with a strategy
σp of player p in a play starting in v0 if, for each i for which πα[i] ∈ Vp, it
holds that

α[i+ 1] = σp(νp((α[0], Πα[0]) . . . (α[i], Πα[i]))).

The above definition of views of play history is very general, but we will only
use a concrete special case of hierarchical view functions. These hierarchical
views allow player k in each coalition to see the moves of players 1, . . . , k in
both coalitions, but do not allow him to see the moves of players with numbers
j > k. Formally, for a player p = (k, c), i.e. player number k in coalition c,

νp((a0, p0)(a1, p1) . . . (an, pn)) = ai1ai2 . . . ail

if for all i ∈ {i1, . . . , il} the player pi = (l, d) has number l ≤ k, and for all
other j �∈ {i1, . . . , il} the player pj = (m, e) has number m > k.

There is a good reason to use hierarchical view functions, namely that
for most other kinds of information flow, determining the winner, even in a
reachability game with three players, is undecidable [4, 2].

To define when coalition I wins a hierarchical game we can not require from
all players in this coalition to put forth their winning strategies before players
in coalition II do, as it is often done in games with perfect information. Intu-
itively, in that case players with higher numbers would lose their advantage
of information as their strategies would be disclosed too early. Therefore, we
use the following definition that requires that strategies are given stepwise,
level by level in the information hierarchy.
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Definition 3.3. Coalition I wins the hierarchical game

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, μ, F)

starting from position v0 if the following condition holds. There exists a strat-
egy σ1,I for player 1, I, such that for each strategy σ1,II of player 1, II, there
exists a strategy σ2,I, such that for each strategy σ2,II, . . . , there exists a strat-
egy σN,I, such that for each strategy σN,II, the play actions sequence α that
starts from v0 and is consistent with all strategies σ1,I, σ1,II, . . . , σN,I, σN,II
results in a play winning for I, i.e. πα(v0) ∈ F .

The definition for coalition II is analogous, i.e. there exists a σ1,II, such that
for all σ1,I, . . . , the play is winning for II, i.e. πα(v0) �∈ F .

Example 3.4. To get an intuition about the kind of interactions that appear in
hierarchical games, let us consider the simple game depicted in Figure 3.1 in
two variants. The positions of coalition I are round, the positions of coalition
II are square, there are two levels of information, and the positions on the
upper level are dotted.

A

A B

A B

L F

LL F

A

A B

A B

L F

LL F

Fig. 3.1. Example of a hierarchical game in two variants

You can think of this game as played using a coin with two sides, A and
B. Each of the players can choose to either flip the coin (F ) or leave it as it is
(L). Formally, there are four players in this game, two in each coalition. The
top position belongs to 2, II and the two bottom positions belong to 1, II. The
game proceeds as follows: first the second player of coalition II chooses either
to flip the coin or to leave it intact. Afterward, only the other two players
play by either flipping the coin or leaving it as it is. Coalition I wins if the A
side of the coin is seen infinitely often in positions where players in coalition
I move, as marked in Figure 3.1.

To illustrate the importance of hierarchical information levelswe consider two
variants of this game. In the first one (left), the bottom strongly connected com-
ponent belongs to players on the same information level, i.e. to 1, II and 1, I. In
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this scenario, coalition II can win, because first player 2, II can flip the coin toB
and later player 1, II can always repeat the last move of player 1, I.

In the other variant (right), the player in coalition I has more information,
i.e. the bottom strongly connected component belongs to 1, II and 2, I, with
V1,I = ∅. In this case coalition I can win, because the strategy of player 2, I
is given after the strategy of 1, II is set. Therefore, player 2, I can assure that
the coin will be flipped after each two moves, which guarantees that I holds
the coin on the A side infinitely often, independent of the first move of 2, II.

3.3 Alternation of Moves in Hierarchical Games

In games with perfect information it is not necessary to assume that the
players move in any fixed order. Moreover, the assumption that players move
in an alternating way can be made without loss of generality. We show that
this is not the case for hierarchical games. Thus, we define an alternating
hierarchical game as a hierarchical game, where for each letter a ∈ Σ and
each level i = 1, . . . , N the following alternation conditions hold:

vi ∈ Vi,I =⇒ μ(vi, a) ∈ Vi,II,

vi ∈ Vi,II =⇒ μ(vi, a) ∈ V(i mod N)+1,I.

To see that non-alternating hierarchical games can not be reduced to alter-
nating ones, let us consider the game depicted in Figure 3.2. The leftmost and
the rightmost bottom position is winning for coalition I, while in the other
two bottom positions coalition I loses. This simple hierarchical game is not
alternating and we show that it is not determined. To win this game, the
player on the lower level of information, i.e. 1, I or 1, II, has to predict the
move of the opponent, i.e. 1, II or 1, I. In particular, his strategy has to start
with an a exactly if the opponent starts with an a. As this holds for players in
both coalitions, it leads to a non-determined game as each player can counter
the strategy of the opponent, once it is known.

a b

a b a b

a

b a

b a

b a

b

Fig. 3.2. Non-determined hierarchical game
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a b

a

b a

b

a,b a,b

a

b a

b a

b a

b

Fig. 3.3. Alternation makes hierarchical games determined

Introducing alternation of moves, even in the simplest possible way, changes
this situation. The game depicted in Figure 3.3 is identical to the one in
Figure 3.2 except for two additional positions of player 1, I. These positions
may seem useless as there is no choice to be made there, but the new game is
determined. To convince yourself that, in the extended game, coalition II can
indeed win, take the following strategy of player 1, II: let him always play the
opposite move to the one that was taken before by player 1, I. For player 2, II
take the following strategy: if player 1, I declared that he will play a first, then
play b, and else play a first. You can check that these strategies are indeed
winning for coalition II, but this is possible only because when constructing
the strategy for 1, II the first letter played by 1, I was already known.

Another important difference between alternating and non-alternating hier-
archical games is decidability of the problem of establishing whether coalition
I wins the game. We show in the next section that this problem is decid-
able for alternating hierarchical games, and here we prove that in the general
non-alternating case it is undecidable. The differences between alternating
and non-alternating hierarchical games can be explained on the level of logic
and model-checking, as alternating hierarchical games correspond to model-
checking on automatic presentations, while non-alternating games correspond
to model-checking on presentations that use asynchronous automata, known
as rational structures, which have undecidable first-order theory. It is also
interesting to observe that the proof of undecidability uses the fact that all
players in hierarchical games as we defined them choose actions from the same
alphabet Σ. If we assume that in a hierarchical game every player chooses ac-
tions from his own alphabet, which does not overlap with the alphabet of
any other player, then establishing which coalition wins is decidable even for
non-alternating games, cf. [73].

Theorem 3.5. The question whether coalition I wins in a hierarchical Büchi
game is undecidable.
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Proof. We reduce the Post correspondence problem for u = u1, . . . , uK and
v = v1, . . . , vK , where ui, vi ∈ {a, b}∗, to the problem whether coalition I
wins in the hierarchical game Gu,v. The possible actions in Gu,v are Σ =
{a, b,�, 1, 2, . . . ,K} and they intuitively correspond to the players choosing
letters of the words ui, vi, a special delimiter �, and choosing which word to
play next.

In constructing Gu,v, we are going to use subgames such that, for a given
word u, the subgame enforces that u is played, or else the player that moves
loses. Such a subgame has one more position than the length of u, and if the
wrong letter is chosen then the move leads to a position where the player
loses. There is only one outgoing edge in such a subgame, the one taken when
the last letter of u is played. In Figure 3.4 we depicted an example subgame
for u = aba and player 1, I, who loses in the rightmost position.

a

b

a

b,�
,1,...,K

a,�,1,...,K

b,�,1,...,K

Fig. 3.4. Example subgame for u = aba

We start the construction of the game Gu,v with a position belonging to
player 3, II with two possible (non-losing) moves. In this position, coalition II
can decide if the test will be done for the words u or for the words v. All other
positions will be on lower levels of information and we construct them in such
a way that coalition I will never be able to deduce in which component the
play is taking place.

Each of the two components, for u and for v, starts with a position of player
2, I where this player chooses if he wants to play a word with index 1, . . . ,K or
the special symbol �. If the special symbol is chosen, player 1, I must play the
same symbol � and the play returns back to the position, where 2, I chooses
a word. When an index L is chosen, then in each of the components first the
word vL and then the word uL is played. The difference is that, in the first
component (for u), it is player 2, II who must play vL and player 1, I must play
uL, while in the other component (for v), it is player 1, I who must play vL
and player 2, II who must play uL. After the two words were played, the play
returns to the position where 2, I chooses the index of a word to be played.
The complete game is depicted in Figure 3.5, using subgames for ui and vi.

The winning condition is defined as follows: the special symbol � must be
chosen by 2, I infinitely often and additionally there must be another action
L, different from �, that is played infinitely often. While this is not directly a
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� �

v1 vK

u1 uK

· · ·

1 K

v1 vK

u1 uK

· · ·

1 K

Fig. 3.5. Complete game Gu,v

Büchi condition, the game can be transformed into a game with Büchi winning
condition. In the modified game, one more position for player 2, I is added in
each component, with the same moves as in the original one except for the
possibility of choosing �. In the transformed game, when 1, I chooses � in the
only position where he is allowed to do so, the play proceeds from the new
position of 2, I where � is not allowed, thus ensuring that a non-� action is
taken.

Let us first show that if there is a solution for the Post correspondence
problem for u and v then coalition I has winning strategies for Gu,v. Indeed,
let i1, i2, . . . , iM be the indices for the solution of the correspondence problem,
so that ui1ui2 . . . uiM = vi1vi2 . . . viM . Let player 2, I choose i1 in his first
move, then i2, i3, and so on up to iM , then the special symbol �, and then
again i1, i2, and so on. Player 1, I is going to play the letters from the word
ui1ui2 . . . uiM in turn, and then �, and then again the letters ui1ui2 . . . uiM ,
and �, and so on. Clearly, player 2, I chooses � and non-� infinitely often, so
to show that coalition I wins we only need to prove that player 1, I will never
play the wrong letter in a subgame for some word w. If the play is taking
place in the u component this is clear from the definition of the strategies
given above, as player 1, I plays exactly the words indices of which player 2, I
chooses. When the play takes place in the v component, the indices chosen
by player 2, I force player 1, I to play the words vi1 , vi2 , . . . , viM . But since
ui1ui2 . . . uiM = vi1vi2 . . . viM , this is equivalent to playing the ui words with
the same indices, which is exactly the strategy that player 1, I uses.

To prove the converse, namely that if there is a winning strategy for coali-
tion I then the correspondence problem has a solution, observe two intuitive
facts. First, 2, I can never deduce in which component the play is taking place,
because what he can see after each of his moves is the same in both compo-
nents. Secondly, � can be played by 2, I only if the words played up to that
point have the same length in both components. Otherwise, coalition I would
lose as � can not be played in a subgame for any word.

Formally, let us first fix the only rational strategy for 2, II, namely that if
a number L was the most recent action in the play, then 2, II plays vL, and if
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there were other actions from {a, b}∗ taken after the last time a number L was
played, then he plays uL. Note that the above construction implies that player
2, II knows in which component the play takes place, even if the move of 3, II
is not visible for him. With this strategy fixed, the condition that coalition
I has a winning strategy for Gu,v means that there exists a strategy σ1 for
player 1, I and a strategy σ2 for player 2, I such that the play corresponding
to these two strategies and the one fixed for 2, II is winning for coalition I,
independent of the component chosen by 3, II.

Let us first concentrate on the strategy σ2. Since, according to the winning
condition, � can not be the only action played infinitely often, and in each
component the only possible answer to � is again �, let us assume without
loss of generality that the first move taken by σ2 is not � and let it be L1.
After choosing L1 the play goes through vL1 and uL1 and does not stop, since
player 2, II uses a fixed strategy that prevents him from losing in a subgame
and player 1, I plays a winning strategy. Let us denote by L2 the next move
of 2, I, i.e. L1 = σ2(ε), L2 = σ2(L1vL1uL1), and continue the play denoting
the subsequent moves of 2, I by L2, . . . , LM , up to the point where he plays
�. Formally,

L1 = σ2(ε), Li+1 = σ2(L1vL1uL1 . . . LivLiuLi), LM+1 = �.

After extracting the sequence L1, . . . , LM of moves of 2, I from his winning
strategy σ2, let us look at player 1, I. This is the only player on information
level 1 so he only sees his own previous moves. In this case, the strategy σ1 is
in fact completely described by the word t ∈ {a, b,�}ω such that

t[i] = σ1(t|i) for all i ∈ N.

Due to the structure of the game, no � can be played by 1, I before 2, I decides
to play �, and then � must be played. Therefore, if w is the prefix of t up to the
first occurrence of �, then w is exactly the word played by 1, I while 2, I played
the moves L1, . . . , LM . But due to the structure of the game Gu,v, coalition
II can decide if w = uL1 . . . uLM or if w = vL1 . . . vLM . Since we extracted
both L1, . . . , LM and w independent of this choice, w has to be good for both
cases. Therefore it is the solution for the Post correspondence problem as
requested. ��

3.4 Model Checking with Hierarchical Games

We observed that non-alternating hierarchical games are neither determined
nor decidable, so we concentrate on the alternating version. Indeed, we prove
that alternating hierarchical games are exactly the games needed for model-
checking FO[�] on presentations of automatic structures.

To start with, observe that in an alternating game every infinite sequence
of play actions can be divided into blocks of 2N actions, each taken by a
different player,
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α = a1,I
0 a1,II

0 a2,I
0 a2,II

0 . . . aN,I0 aN,II0 a1,I
1 . . . aN,II1 a1,I

2 . . . .

Let the 2N -split of these play actions be the tuple of 2N words of actions
played by each of the players,

split2N (α) = (a1,I
0 a1,I

1 . . . , {a1,II
i }i∈N, . . . , {aN,Ii }i∈N, {aN,IIi }i∈N).

Observe that since the set of plays winning for coalition I and starting from
a fixed v0 is ω-regular, also the set of corresponding 2N -splits of play actions
is ω-regular. This is a known property of ω-regular languages, and it can be
proved by taking each 2Nth state of the automaton recognizing the plays
and making a product with Σ2N to store the states that were omitted from
the original automaton. For an alternating hierarchical game G with winning
condition F let us denote the 2Nary relation recognizing the 2N -split of plays
winning for coalition I by WG,v0

I (β1, . . . , β2N ), formally defined by

WG,v0
I (β) ⇐⇒ ∀α ( split2N (α) = β ⇒ πα(v0) ∈ F ).

The definition for coalition II is analogous with πα(v0)) �∈ F .
Using the relation WG,v0

I we can express in FO[�] that coalition I wins in
the alternating hierarchical game G, which results in the following theorem.

Theorem 3.6. For any alternating hierarchical game G and the relation
WG,v0

I defined as above, coalition I wins the game G starting from v0 if and
only if the following formula ϕI holds in (Σω,WG,v0

I ):

ϕI = �x1y1 . . .�xNyN WG,v0
I (x1, y1, . . . , xN , yN ).

Proof. Let us recapitulate the definition of coalition I winning a hierarchical
game and the semantics of the formula ϕI. Coalition I wins G if there is a
strategy σ1 for player on level 1 of coalition I, so that for any counter-strategy
ρ1, there exists a strategy σ2, and so on up to σN , such that for all ρN the
resulting play must be won by coalition I. On the other hand, the formula ϕI,
according to the definition of �, says that there is a function f1, so that for
all functions g1, there is a function f2, and so on up to a function fN , such
that for all gN , if we construct the words according to f and g then they form
a 2N -split of a play that is won by coalition I.

As the structure and the final condition in both definitions are equivalent,
due to the definition of WG,v0

I , the only remaining task is to show how the
functions fi, gi and the strategies σi, ρi are related. It is intuitively clear that
the functions and the strategies are closely related, the only difference is that
the functions fi, gi operate on prefixes of xi, yi while the strategies σi, ρi take
all actions of all players j ≤ i as arguments, which corresponds to prefixes
of all words xj , yj with j ≤ i. Intuitively, this makes no difference since the
words xj , yj are completely fixed before the function fi is constructed, and
we are going to prove it formally.
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Let us construct, given the function fi, a strategy σfi

i . The strategy σfi

i

applied to a view h of the history of play actions extracts from h the se-
quences hiI and hiII of actions of players i, I and i, II, respectively, and chooses
fi(hiI, h

i
II) as the next action. It is possible to extract hiI and hiII from h

due to the alternation condition, because we know that h is of the form
a1,I
0 a1,II

0 a2,I
0 a2,II

0 . . . ai,I0 a
i,II
0 a1,I

1 . . . and the sequences hiI = ai,I0 a
i,I
1 . . . and hiII

can be computed by taking every 2ith position in h starting from 2i− 1 and
2i, respectively. Note that extracting these sequences would not be possible if
it was not clear which player made which move, which we used in the previous
proof of undecidability.

Let us now do the converse and construct, given the strategy σi, the func-
tion fσi

i . For this construction we need to have all the fj, gj with j < i already
constructed, thus we write f{σj ,ρj}j≤i

i . Using the constructed functions fj , gj,
we can assume that the words xj , yj are already fixed. The result of

f
{σj ,ρj}j≤i

i (xi[0] . . . xi[n], yi[0], . . . yi[n])

is given by

σi(x1[0]y1[0] . . . xi[0]yi[0]x1[1]y1[1] . . . xi[1]yi[1] . . . xi[n]yi[n]).

The constructions relating gi and ρi are analogous. Observe that if

WG,v0
I (xf1g1yf1g1 , . . . , xfNgN yfNgN )

holds for some functions f, g then, by the above definition, we have that the
play π(v0, σ

f1
1 , ρ

g1
1 , . . . , σ

fN

N , ρgN

N ) is in F . Moreover, the converse holds as well,
i.e. if for some strategies σ, ρ we have

π(v0, σ1, ρ1, . . . , σN , ρN ) ∈ F ,

then WG,v0
I (xf1g1yf1g1 , . . . , xfNgN yfNgN ) holds, where fi = f

{σj ,ρj}j≤i

i and
gi = g

{σj ,ρj}j≤i

i are the functions constructed above.
This correspondence allows to exploit the similarity of the structure of the

definition of the FO[�] formula ϕI and the definition of coalition I winning in
G. Intuitively, it is enough to insert the transformed functions and strategies
into the definition to arrive at a contradiction and finish this proof. To avoid
cluttered notation, we formally present only one direction in the case of two
levels, the other direction and the proof for more levels is analogous.

Let us assume that ϕI holds and coalition I does not win G, formally

(1) ∃f1 ∀g1∃f2 ∀g2 WG,v0
I (xf1g1 , yf1g1 , xf2g2 , yf2g2),

(2) ∀σ1∃ρ1∀σ2∃ρ2 π(σ1, ρ1, σ2, ρ2) �∈ F .

Let us fix f1 that exists by our first assumption, set σ1 = σf11 and fix ρ1 that
exists by the second assumption for this σ1. Let us now set g1 = gρ11 and fix
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f2 that exists by the first assumption. Finally, let us set σ2 = σf22 and fix ρ2

that exists by the second assumption. By the previous observation

WG,v0
I (xf1g1 , yf1g1 , xf2g2 , yf2g2) ⇐⇒ π(σ1, ρ1, σ2, ρ2) ∈ F ,

but this contradicts the two assumptions above. ��
Observe that the same proof works for the other coalition and an analogous
relation WG,v0

II . Thus, the negation normal form of FO[�] corresponds to de-
terminacy of alternating hierarchical games.

Corollary 3.7. Alternating hierarchical games are determined.

After we captured winning in alternating games in FO[�] let us do the converse
and construct the model-checking game for a given FO[�] formula on an auto-
matic presentation A. At first, we restrict ourselves to formulas of the form

ϕ = �x1y1�x2y2 . . .�xNyN R(x1, y1, . . . , xN , yN)

and construct a game so that the split of the winning plays will allow us to
use the previous theorem.

Intuitively, the construction can be understood as prefixing each variable
with all possible letters in the order of information hierarchy and making a
step of the automaton when all the variables are prefixed. To define these
games precisely, let us take the deterministic automaton for R, denoted AR =
(Q, q0, δ,FR), and construct the model-checking game Gϕ for ϕ in the following
way.

For each tuple of letters c1, d1, c2, d2, . . . , cM , dM of even length, with 0 ≤
M < N , and for every state q ∈ Q, we have in Gϕ the position

Rq(c1x1, d1y1, . . . , cMxM , dMyM , xM+1, . . . , yN ). (3.1)

Moreover, for each tuple c1, d1, c2, d2, . . . , cM , dM , cM+1 of odd length, we have
the position

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ). (3.2)

In each of these positions, the next move is made by the player correspond-
ing to the next variable that is not yet prefixed by a letter, e.g. in position
3.1 it is the player M + 1 of coalition I who makes the move for xM+1 and in
position 3.2 it is the playerM+1 of coalition II. We can formally define the set
of positions of players on each level i as Vi,I = Q×Σ2(i−1), Vi,II = Q×Σ2i−1.

The moves in Gϕ intuitively correspond to the player choosing a letter to
prefix his variable with, so for 0 ≤M < N

μ(Rq(c1x1, . . . , dMyM , xM+1, . . . , yN), cM+1) =

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ),
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and for 0 ≤M < N − 1

μ(Rq(c1x1, . . . , cM+1xM+1, yM+1, . . . , yN), dM+1) =

Rq(c1x1, . . . , cM+1xM+1, dM+1yM+1, xM+2, . . . , yN ).

The only special case is the final position Rq(c1x1, d1y1, . . . , cNxN , yN). When
player N, II chooses the final letter dN , it will not be appended, but instead
all prefixing letters will be removed and the state of the automaton will be
changed as follows, with α = c1d1 . . . cNdN :

μ(Rq(c1x1, d1y1, . . . , cNxN , yN ), dN ) = Rδ(q,α)(x1, . . . , yN ).

We derive the winning condition F of the game Gϕ from the acceptance
condition FR of the automaton for R in the following way. Only the state
component of each position in the game is taken into account, i.e. a sequence
π of positions of Gϕ is in F if and only if π projected to the state component
is in FR.

To see that the game Gϕ is indeed the model-checking game for ϕ, we use
Theorem 3.6 and observe that the 2N -split of the winning paths in Gϕ is
exactly the relation R, WGϕ,R

q0 (x1,y1,...,xN ,yN )
I = R.

In this way, the model-checking game for formulas in the considered form
is constructed. As we proved, any formula in FO[�] can be written in nega-
tion normal form and additionally, by renaming variables, it can be trans-
formed into prenex normal form. Let us therefore consider a general formula
in the form ϕ = �x1y1 . . .�xNyN ψ(x1, y1, . . . , xN , yN), where ψ is in nega-
tion normal form and does not contain quantifiers. We construct the game Gϕ
inductively with respect to ψ.

In the case of ψ(x) = R(x) or ψ(x) = ¬R(x) the solution was already
presented, when considering ¬R we just have to complement the acceptance
condition of the automaton for R. Let us show how to construct the game for
Boolean connectives, i.e. for ψ1 ∧ ψ2 and for ψ1 ∨ ψ2. We want to adhere to
the usual convention of model-checking games and to have only one additional
position for any Boolean connective. The game for ψ1 ◦ ψ2, where ◦ = ∧,∨,
is therefore constructed as follows: we take the two games for ψ1 and ψ2 and
we add one more position on higher level of information that has two possible
moves — to the starting position of ψ1 and to the starting position of ψ2.
The new position belongs to coalition I when ◦ = ∨ and to coalition II when
◦ = ∧ and in both cases the other coalition does not play on that information
level. With the construction described above we face a problem, as the game
is not strictly alternating any more, but this time it can be made alternating
by adding dummy positions, as presented in Example 3.8.

To formally prove that the resulting games are indeed model-checking
games for formulas with Boolean connectives, we replace the connectives with
a new variable and the formula with a relation where only the first letter of the
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new variable corresponding to the Boolean connective is considered. Then the
automaton for such a relation corresponds to the defined game and Theorem
3.6 can be used again.

Example 3.8. To illustrate the construction of model-checking games and the
method to overcome the technical problem with non-alternating games men-
tioned above, let us consider the simple formula ∃x (R1(x) ∧ R2(x)) over
{a, b}ω with R1 = {aω} and R2 = {a, b}ω\{aω}. Both the automaton for R1

and the one for R2 has two states and the transition functions are identical.
On any b the automata go from q0 to q1 and stay there forever. Only the
Büchi acceptance conditions differ, with F1 = {q0} and F2 = {q1}.

In Figure 3.6, the game for this formula is depicted. We show dummy
moves for the second player, as formally ∃xϕ(x) ≡ �xyϕ(x). Note that this is
actually a four-player game and the top position belongs to player 2, II. Since
the formula is false, coalition II wins this game. Indeed, for coalition I to win,
player 1, I would have to present a strategy to visit both of the double-circled
vertices infinitely often without knowing in which branch he is, and that is
impossible.

Rq0
1 (x) ∧ Rq0

2 (x)

Rq0
1 (x) Rq0

2 (x)

Rq1
1 (x) Rq1

2 (x)

a

a,b

b

a,b

a,b

a,b

a

a,b

b

a,b

a,b

a,b

Fig. 3.6. Model-checking game for ∃x(R1(x) ∧ R2(x))

To fix the problem with alternation, let us add positions where there is no
choice for the player. The alternating game for ψ1 ◦ψ2 is depicted in Figure 3.7.
In this game, dummy positions are added there, where it is necessary to make
the game alternating. It is clear that winning strategies in these two games can
be transferred, as in each move on each level of visibility the players know how
many moves on the other levels were made, both in the original game depicted
in Figure 3.6 and in the modified one in Figure 3.7.

The tight correspondence between alternating hierarchical games and FO[�]
makes it possible to use our knowledge about this logic to reason about the
games. In particular, we can transfer the results about complexity, including
the non-elementary lower bound on deciding FO[�] on automatic presenta-
tions, which allows us to conclude with the following corollary.
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Rq0
1 (x) ∧ Rq0

2 (x)

a,b

a,b

a,b

Rq0
1 (x) Rq0

2 (x)

Rq1
1 (x) Rq1

2 (x)

a

a,b

a,b a,b

b

a,b

a,b

a,b

a,ba,b

a,b
a,b

a

a,b

a,ba,b

b

a,b

a,b

a,b

a,b a,b

a,b
a,b

Fig. 3.7. Alternating game for ∃x(R1(x) ∧ R2(x))

Corollary 3.9. The question whether coalition I wins in an alternating hier-
archical game on a finite arena is decidable and has non-elementary complexity
when the number of levels is not fixed. It can be decided in 2kEXPTIME for
games with at most k levels.
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