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Logics, Structures and Presentations

In this chapter we review the standard notions of first-order and monadic
second-order logic. We introduce linear orders and trees and state a few ele-
mentary properties of these structures. We recall the correspondence between
monadic second-order logic and automata on infinite words together with ba-
sic facts from automata theory . We introduce automatic structures using
presentations by automata and characterize them both by first-order and by
monadic second-order to first-order interpretations. Finally, we discuss the
composition method for monadic second-order logic over linear orders and
trees.

As most of these notions are standard, we assume that the reader is already
familiar with them and thus we do not discuss them in detail, but concen-
trate instead on fixing the notation. More thorough introductions to logic and
automata can be found in many textbooks and surveys, e.g. in [27, 82, 84].

1.1 First-Order and Monadic Second-Order Logic

A structure A = (A,R1, . . . , Rn, f1, . . . , fm) is given by a set A, called the
domain of A, a number of relations Ri and a number of functions fj . If we
denote the arity of Ri by ri and the arity of fj by sj then Ri ⊆ Ari and
fj : Asj → A. We say that A is a relational structure if it contains no func-
tions, only relations. Every structure can be coded as a relational structure
by replacing each function fj by its graph Gfj , which is a relation of arity
sj + 1 such that Gfj (x, y) ⇐⇒ fj(x) = y. The signature of the structure A

is denoted by σ(A) = {R(ri)
i }∪{f (sj)

j }, where Ri and fj are now just symbols
with appropriate arities. Note that we only consider structures with finite
signatures in this thesis, even though some of the results do not rely on this
assumption.

Both first-order and monadic second-order logic formulas over a signature
τ are built from atomic formulas using Boolean connectives and quantifiers.
Atomic formulas in first-order logic (FO) have either the form t1 = t2 or
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Ri(t1, . . . , tri), where tk are terms, i.e. either first-order variables, denoted
x, y, x1, y1, . . ., or expressions of the form fj(t1, . . . , tsj ). In monadic second-
order logic (MSO) there are additional atomic formulas of the form t ∈ X ,
where t is again a term and X is a second-order variable. We use the standard
Boolean connectives ∧,∨,¬ to denote conjunction, disjunction and negation
and we write ϕ → ψ for (¬ϕ) ∨ ψ and ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ). In
first-order logic it is possible to quantify over first-order variables using either
existential or universal quantifiers, i.e. to write ∃xϕ or ∀xϕ. In second-order
logic there is the additional possibility to quantify over second-order variables,
i.e. to write ∃Xϕ or ∀Xϕ. When writing formulas we use the convention that
negation and quantifiers bind stronger than ∧ and ∨, which in turn bind
stronger than → and ↔, so that ∀xRx ∧ ¬Ry → Rz is to be understood as
((∀xRx) ∧ (¬Ry)) → Rz. We say that a variable in a formula ϕ that appears
in scope of a quantifier is bound and in the other case it is free. When writing
ϕ(x1, . . . , xn) (or sometimes shorter ϕ(x)) we mean that all free variables of
ϕ are contained in {x1, . . . , xn}.

Whether a formula ϕ(x,X) holds in a structure A, given an assignment θ :
x→ A for first-order variables and an assignment Θ : X → P(A) for second-
order ones, denoted A, θ, Θ |= ϕ, is defined inductively. First, we extend the
assignment θ to all terms by putting θ(fj(t1, . . . , tsj )) = fj(θ(t1), . . . , θ(tsj )).
Note that fj on the left side of the equation is only a symbol, while on the
right side it is a function of A. We will often abuse the notation in this way and
we sometimes write fA

i to point out that we have the function (or relation)
in the structure in mind, rather than the symbol. Moreover, we extend this
notation to formulas, so given a formula ϕ(x) we write ϕA for the relation
defined by ϕA(a) ⇐⇒ A, x ← a |= ϕ. In the inductive definition of the
semantics below we write θ[x ← a] (or analogous for Θ) for the assignment
θ′ : x ∪ {x} → A that maps x to a and every other variable x′ to θ(x′).

– A, θ, Θ |= t1 = t2 whenever θ(t1) = θ(t2),
– A, θ, Θ |= Ri(t1, . . . , tri) whenever RA

i (θ(t1), . . . , θ(tri)) holds,
– A, θ, Θ |= t ∈ X whenever θ(t) ∈ Θ(X),
– A, θ, Θ |= ¬ϕ whenever it is not the case that A, θ, Θ |= ϕ,
– A, θ, Θ |= ϕ ∧ ψ whenever A, θ, Θ |= ϕ and A, θ, Θ |= ψ,
– A, θ, Θ |= ϕ ∨ ψ whenever A, θ, Θ |= ϕ or A, θ, Θ |= ψ,
– A, θ, Θ |= ∃xϕ whenever A, θ[x← a], Θ |= ϕ for some a ∈ A,
– A, θ, Θ |= ∀xϕ whenever A, θ[x← a], Θ |= ϕ for all a ∈ A,
– A, θ, Θ |= ∃Xϕ whenever A, θ, Θ[X ← B] |= ϕ for some B ⊆ A,
– A, θ, Θ |= ∀Xϕ whenever A, θ, Θ[X ← B] |= ϕ for all B ⊆ A.

Sometimes we evaluate MSO formulas in the weak semantics and in such case
only finite sets are substituted for second-order variables. In this setting the
last two items above must be replaced by the following:

– A, θ, Θ |= ∃Xϕ in the weak semantics if A, θ, Θ[X ← B] |= ϕ for some
finite B ⊆ A,
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– A, θ, Θ |= ∀Xϕ in the weak semantics if A, θ, Θ[X ← B] |= ϕ for all finite
B ⊆ A.

We often call formulas that we evaluate using the weak semantics weak
monadic second-order logic (WMSO) formulas.

1.2 Linear Orders, Words and Trees

1.2.1 Linear Orders

Linear orders are a prominent example of structures that appear throughout
this thesis. The standard ordering of natural numbers is denoted (ω,<) or
(N, <), the orderings of integers and rational numbers are denoted (Z, <) and
(Q, <), respectively. Recall that (Q, <) is dense, meaning that between any
two elements x < y there is another element z such that x < z < y. On the
other hand, we say that a linear order (L,<) is scattered if it does not embed
any dense order, or equivalently if it does not embed (Q, <). Given a linear
order (I,<) and orders (Li, <i) for every i ∈ I, the sum

∑
I Li is defined as

the linear ordering of
⋃
i∈I Li × {i} such that

(l, i) < (l′, i′) ⇐⇒ i < i′ or i = i′ and l <i l′.

We write (L0, <0)+(L1, <1) for the sum over ({0, 1}, <). For example (Z, <) is
isomorphic to ω∗ +ω, where ω∗ is the standard ordering of negative integers,
({−1,−2,−3, . . .}, <). Note that sometimes we use the same name for the
structure and its universe when the meaning is clear from the context, as
in the case of ω above. Linear orders with additional unary predicates are
called chains. For a linear order L and a, b ∈ L we use the standard notation
for intervals, so for example [a, b) is a left-closed and right-open interval.
Moreover, we write L|[a,b) for the order L ∩ [a, b), and for X ⊆ L we use
analogous notation, i.e. X |[a,b] for X ∩ [a, b].

One can classify countable linear orders using the sum operation defined
above in the following way. Every countable linear order can be written as
a dense sum of scattered linear orders, i.e. as

∑
Q Li where each (Li, <i)

is a scattered linear order. Moreover, Hausdorff classified countable scattered
linear orders in classes VDα defined inductively as follows. VD0 = {1} consists
of the linear order having one element (we leave out the empty linear order).
For each ordinal α > 0, VDα consists of those linear orders that can be written
as a sum

∑
Z Li with each Li ∈ VDβ for some β < α. Let VD be the union of

all the VDα. Hausdorff has shown that VD contains every countable scattered
linear order, and the Hausdorff-rank of a linear order L ∈ VD is defined as
the smallest α such that L ∈ VDα.

A linear order is complete if every one of its subsets has a least upper bound.
Given a linearly ordered set (L,<) its Dedekind cuts are subsets C ⊆ L that
are downward closed. The completion of (L,<) is the set DC(L) of Dedekind
cuts of L ordered by inclusion, containing ∅ if there is no least element in L
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and excluding ∅ in the other case. Note that the completion of L, which we
denote by L and consider only up to isomorphism, is a complete linear order
with both endpoints, i.e. a least and a greatest element.

Every linear order is naturally equipped with the order topology generated
by open intervals. This allows us to speak of neighborhoods, open sets, limit
(alternatively condensation or accumulation) points, and all other topological
notions on every linear order.

1.2.2 Words

For a given set A we denote by A∗ the set of all finite sequences of elements
of A, by Aω the set of all infinite sequences of elements of A (i.e. functions
ω → A), and A≤ω = A∗∪Aω . Elements of A∗ are often called finite words and
elements of Aω are infinite words over A. For any sequence s = s0s1s2 . . . ∈
A≤ω we denote by |s| the length of s (either a natural number or ω) and by
s|n = s0 . . . sn−1 the finite sequence composed of the first n elements of s,
with s|0 = ε, the empty sequence. We write s[n] for the (n + 1)st element of
s (as we start counting from 0), so s[n] = sn for n ∈ N. Similarly, s[n,m] is
the factor s[n]s[n+ 1] · · · s[m] and s[n,m) is defined as s[n,m− 1], therefore
in our notation s|n = s[0, n).

Given a finite sequence s and a sequence r ∈ A≤ω we denote by s ·r (or just
sr) the concatenation of s and r. For the n-times concatenation s · · · s we use
the symbol sn. Moreover, we write s � t if s is a prefix of t, i.e. if there exists
a sequence r such that t = sr, and in such case we denote the difference by
t− s = r. A subset B of A≤ω is said to be prefix-closed if for every t ∈ B and
s � t it holds that s ∈ B. For an infinite sequence s ∈ Aω the set of elements
that appear infinitely often in this sequence is denoted by Inf(s).

We sometimes extend all notations introduced above to vectors of se-
quences, so for example if s is a vector then s[n] or equivalently s[n] is the
vector consisting of the (n + 1)st element of each sequence in s. Moreover,
given a function f : A → B and u ∈ A≤ω we denote by f(u) the sequence
f(u[0]) f(u[1]) f(u[2]) . . . ∈ B≤ω.

1.2.3 Trees

A tree is a structure T = (T,<, P1, . . . , Pn) where Pi’s are unary predicates
and < is an irreflexive and transitive binary ancestor relation with a least
element called the root of T and such that for every v ∈ T the set {u ∈ T |
u < v} of ancestors of v is finite and linearly ordered by <. We consider only
finitely branching trees, i.e. we assume that in every tree T the number of
v ∈ T with at most n ancestors is finite for every n.

Elements of a tree are referred to as nodes, maximal linearly ordered sets of
nodes are called branches, ancestor-closed and linearly ordered sets of nodes
are called paths, whereas chains are arbitrary linearly ordered subsets. An
antichain is a set of pairwise incomparable nodes. Given a node v, the subtree
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of T rooted in v is obtained by restricting the structure to the domain Tv =
{u ∈ T | u ≥ v} and is denoted Tv. Similarly, we use this notation for every
set X ⊆ T , i.e. Xv = X ∩ Tv.

Given a finite set A we denote by T(A) the complete tree over A, which
is a structure with the universe A∗ and < interpreted as the standard prefix
ordering. The tree T(A) also includes successor labels, i.e. for each a ∈ A
there is a predicate Pa in the structure T(A) such that Pa(u) holds exactly
when u = va, which allows to distinguish all immediate successors of any
node v ∈ T . An important example of such a tree is the complete binary tree,
T({0, 1}) = ({0, 1}∗, <, S0, S1) where S0(u) holds if u = v0 and S1(u) if u =
v1. In the case of complete k-ary trees we may write T(k) for T({0, . . . , k−1}),
so the complete binary tree is designated T(2).

Given an indexed family of trees and an order on the index which also
satisfies the requirements of a tree, we define the sum of this family. Intuitively,
the sum can be understood as replacing each node in the index tree by the
corresponding tree in the family, and is formally defined as follows.

Definition 1.1 (Tree sum). Let I = (I,<I) be an unlabeled tree and for
each i ∈ I let Ti = (Ti, <i, P i1, . . . , P

i
n) be a tree. The tree sum of (Ti)i∈I,

denoted
∑

i∈I Ti, is the tree

T =
( ⋃

i∈I
{i} × Ti , <

T,
⋃

i∈I
{i} × P1

i, . . . ,
⋃

i∈I
{i} × Pn

i
)
,

where (i, a) <T (j, b) for i, j ∈ I, a ∈ Ti, b ∈ Tj iff:

i <I j and a is the root of Ti, or i = j and a <i b .

Unless explicitly noted, we will not distinguish between Ti and the isomorphic
subtree {i} × Ti of T.

A particular special case of the sum we will be using is when the index struc-
ture I consists of a single branch. Let (I,<) be a linear order, which is finite
or isomorphic to ω, and let (Ti)i∈I be an I-indexed sequence of trees. Then
the sum T =

∑
i∈I Ti is well defined, and (I,<) forms a path (not necessarily

maximal) in T.
In addition to the trees defined above, we also study trees over infinite

words, called ω-trees. A complete ω-tree over a finite set A is defined in an
analogous way to T(A) as Tω(A) = (A≤ω , <, {Sa}a∈A), where < is again
the prefix relation and Sa are successor labels, i.e. Sa(u) holds only for finite
words u = va. Moreover, we sometimes extend the trees with the equal-length
relation el, defined by el(u,w) ⇐⇒ |u| = |w|. We denote a tree T extended
with this binary relation Tel, so for example Tωel({0, 1}) is the complete binary
ω-tree extended with the equal-length relation, i.e. ({0, 1}≤ω, <, S0, S1, el).
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1.3 Automata on ω-Words

The order (ω,<) and the binary tree T(2) play an important role in computer
science and logic because the monadic second-order theory of both of these
structures is decidable, as proved by Büchi [17] and Rabin [74] respectively.
These proofs use the notion of an automaton, either a word automaton for
(ω,<) or a tree automaton for T(2), and establish a one-to-one correspondence
between relations recognized by automata and the ones definable in monadic
second-order logic.

An ω-word automaton A over a finite alphabet Σ is a tuple (Q,Δ, q0,F)
where Q is a finite set of states, Δ is a transition relation Δ ⊆ Q × Σ × Q,
q0 ∈ Q is an initial state and F is an acceptance condition. An automaton
is deterministic if Δ is a function Q × Σ → Q. In the case of the standard
finite-word automata, the acceptance condition consists only of a set of final
states and a word is accepted if some run ends in a final state. For ω-word
automata the acceptance condition F is a set of runs, i.e. infinite sequences
of states, which are considered accepting for the automaton, so F ⊆ Qω. In
practice F is described in a finite way and there are a few representations
that are often used for this purpose.

– The Büchi condition is represented by a set F ⊆ Q and
F = {s ∈ Qω | Inf(s) ∩ F �= ∅}.

– The parity condition is defined using a mapping Ω : Q→ {0, . . . , d}
and F = {s ∈ Qω | min(Inf(Ω(s))) is even}.

– The Rabin condition is given by a set of pairs {(E1, F1), . . . , (Ek, Fk)}
and F = {s ∈ Qω | Inf(s) ∩ Fi �= ∅ and Inf(s) ∩ Ei = ∅ for some i}.

– The Streett condition, dual to the Rabin condition, is again represented by
a set of pairs {(E1, F1), . . . , (Ek, Fk)}, but in this case
F = {s ∈ Qω | Inf(s) ∩ Fi �= ∅ or Inf(s) ∩ Ei = ∅ for every i}.

– The Muller condition is defined by listing F ⊆ P(Q) and
F = {s ∈ Qω | Inf(s) ∈ F}.

A run of an automaton A on a word w ∈ Σω is defined as any sequence of
states q0q1 . . . ∈ Qω in which Δ(qi, w[i], qi+1) holds for all i. The word w is
accepted by A if there is a run ρ of A on w that is accepting, i.e. ρ ∈ F , and
we denote by L(A) the set of all words accepted by an automaton A.

It is well-known that non-deterministic Büchi, parity, Rabin, Streett and
Muller automata all recognize the same class of languages, the ω-regular lan-
guages. The deterministic variants have the same expressive power for all the
representations of acceptance conditions introduced above except for the case
of Büchi condition, as deterministic Büchi automata are strictly weaker than
non-deterministic ones. Moreover, the class of ω-regular languages is closed
under union, intersection and complementation.
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1.3.1 Alternating Automata

In addition to the standard notion of automata, we use alternating automata
as a tool in our proofs. The intuition behind alternating automata is that,
unlike in the deterministic case where only one run on a given word is possible,
there are more possibilities of transitions from each state for a given letter.
But unlike non-deterministic automata, an alternating automaton does not
only accept a word if there exists an accepting run among all possible ones,
or if all possible runs are accepting (as in universal automata), but it allows
to alternate such conditions with respect to states of the automaton and has
both existential and universal branching choices.

To define alternating automata we have to consider, for a given set of states
Q, the set B+(Q) of all positive Boolean formulas over Q. By definition B+(Q)
is the set of all Boolean formulas built using elements of Q, the Boolean
connectives ∧ and ∨ and the constants � (true) and ⊥ (false). Note that
negation is not allowed. We say that a subset X ⊆ Q satisfies a formula
ϕ ∈ B+(Q) if ϕ is satisfied by the assignment that assigns true to all elements
of X and false to Q \X .

An alternating automaton A over an alphabet Σ is a tuple (Q, δ, q0,F),
where Q is the set of states, q0 is the initial state, F is the acceptance con-
dition, but this time δ does not point to a single next state but specifies a
positive Boolean formula as transition condition, δ : Q × Σ → B+(Q). In-
tuitively, a correct run of A on a word w is a tree labeled with Q where the
successors of each node form a satisfying set for the Boolean condition related
to the state in this node and to the corresponding letter in w.

To capture this intuition formally and simplify notation, we define runs as
sets of infinite sequences of states, so a run ρ is a subset of Qω. When one
thinks of runs as trees, our definition corresponds to defining runs directly as
the set of branches of the run-tree. For a run ρ represented in this way we
write sρ(u) for the set of all states appearing in ρ that prolong u ∈ Q∗, i.e.
the successors of u when thinking of a run as a tree,

sρ(u) = {q ∈ Q : ∃v u · q · v ∈ ρ}.
We define that ρ is a correct run of A on the word w if for each infinite
branch u ∈ ρ and each prefix u|i the successors after that prefix satisfy the
corresponding Boolean constraint, i.e. if sρ(u|i) satisfies δ(u[i], w[i]) for all i
and u ∈ ρ. We say that A accepts a word w if there is a correct, non-empty
run ρ on w starting from q0 such that each branch u ∈ ρ is accepted, i.e.
u ∈ F , and again we write L(A) for the language recognized by A.

Alternating automata may seem more powerful than deterministic ones and
it is often much easier to express problems in terms of alternating automata
than in terms of deterministic ones, but they are in fact equal in expressiveness
to the standard automata.

Theorem 1.2. Every language recognized by an alternating Büchi, parity, Ra-
bin, Streett or Muller automaton is ω-regular.
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The above theorem can be proved by expressing acceptance of alternating
automata in monadic second-order logic on infinite words and then going
back from the logic to automata [17]. Alternatively, one can give an explicit
construction which shows that (for all acceptance conditions except the Büchi
condition) the size of the deterministic automaton constructed for a language
recognized by an alternating one is at most doubly exponential in the size of
the original automaton, as first shown in [66].

1.3.2 ω-Semigroups

There is a fundamental correspondence between recognizability of sets by
finite-word automata and by finite semigroups. It has been extended to rec-
ognizability of ω-regular sets, first using Wilke algebras [87] and later based
on the notion of ω-semigroups. The theory of ω-semigroups was first well pre-
sented in [71] and is thoroughly discussed in [72], we only mention what is
most necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·)
is a semigroup, ∗ : Sf × Sω �→ Sω is the mixed product satisfying for every
s, t ∈ Sf and every α ∈ Sω the equality

s ∗ (t ∗ α) = (s · t) ∗ α
and where π : Sωf �→ Sω is the infinite product satisfying

s0 ∗ π(s1, s2, . . .) = π(s0, s1, s2, . . .)

as well as the associativity rule

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1 , sk1+1sk1+2 · · · sk2 , . . .)
for every sequence (si)i≥0 of elements of Sf and every strictly increasing
sequence (ki)i≥0 of indices. For s ∈ Sf we denote sω = π(s, s, . . .).

Morphisms of ω-semigroups are defined to preserve all three products as
expected. There is a natural way to extend finite semigroups and their mor-
phisms to ω-semigroups. As in semigroup theory, idempotents play a central
role in this extension. An idempotent is a semigroup element e ∈ S satisfying
ee = e. For every element s in a finite semigroup the sub-semigroup generated
by s contains a unique idempotent sk. The least k > 0 such that sk is idem-
potent for every s ∈ Sf is called the exponent of the semigroup Sf . Another
useful notion is absorption of semigroup elements: we say that s absorbs t (on
the right) if st = s.

There is a natural extension of the free semigroup Σ+ to the free ω-
semigroup (Σ+, Σω) with ∗ and π determined by concatenation. An ω-
semigroup S = (Sf , Sω) recognizes a language L ⊆ Σω via a morphism
φ : (Σ+, Σω) → (Sf , Sω) if φ−1(φ(L)) = L. This notion of recognizability
coincides, as for finite words, with recognizability by non-deterministic Büchi
automata and translations from Büchi automata to ω-semigroups and back
can be done effectively.
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Theorem 1.3 ([71]). A language L ⊆ Σω is ω-regular if and only if it is
recognized by a finite ω-semigroup.

This correspondence allows one to engage in an algebraic study of varieties
of ω-regular languages, and also has the advantage of hiding complications of
cutting apart and stitching together runs of Büchi automata. This is precisely
the reason for which we use this algebraic framework. Most remarkably, one
does not need to understand the exact relationship between automata and
ω-semigroups and the technical details of the constructions behind Theorem
1.3 to use ω-semigroups to simplify calculations on ω-regular sets.

1.4 Automatic Structures

Before we define automatic presentations and automatic structures, let us
introduce relations on finite and ω-words recognized by ω-word automata
operating in a synchronized letter-to-letter fashion. Formally,R is an ω-regular
relation of arity r over the domain Σω if there exists an ω-automaton A over
the alphabet Σr accepting the convolution ⊗w of ω-words w1, . . . , wr exactly
when R(w1, . . . , wr) holds. The convolution is defined as

⊗w[i] = (w1[i], . . . , wr [i]) for all i.

For pairs of words w,w′ we sometimes write w ⊗ w′ or
(
w
w′
)

for ⊗(w,w′).

Example 1.4. Words u, v ∈ Σω have equal ends, written u ∼e v, if u[n] = v[n]
for all but a finitely many natural numbers n. This is an important example
of an ω-regular equivalence relation. For S, T ⊆ N we extend the notation
and write S ∼e T if for all but finitely many n ∈ N, n ∈ S ⇐⇒ n ∈ T .
The non-deterministic Büchi automaton depicted in Figure 1.1 accepts the
equal-ends relation over {0, 1}.

q0 q1 F = {q1}
(00),(11)

(00),(01),(10),(11) (00),(11)

Fig. 1.1. An automaton for the equal ends relation

To define ω-regular relations over finite words one needs to add a padding
end-of-word symbol � �∈ Σ to formally define the convolution of words of dif-
ferent length. For simplicity, we will sometimes identify a finite word w ∈ Σ∗

with its infinite padding w� = w�ω ∈ Σω
� where Σ� = Σ ∪ {�}. A lan-

guage L ⊆ Σ∗ is regular, i.e. recognized by a standard finite-word automaton,
exactly if the language L� = {w� | w ∈ L} is ω-regular over Σ�. Thus, we
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say that an r-ary relation R ⊆ (Σ∗)r is regular whenever its extension with
padding is ω-regular over Σ�. This is equivalent to defining a convolution for
finite words by padding each word with � to be as long as the longest one.

Definition 1.5 (Automatic Presentation)
For any relational structure A = (A,R1, . . . , Rk), a tuple of ω-automata d =
(A,A≈,A1, . . . ,Ak) together with a surjective naming function f : L(A) → A
constitutes an (ω-)automatic presentation of A over Σ if the following criteria
are met:

(i) the equivalence relation denoted ≈ and defined as

{(u,w) ∈ L(A)2 | f(u) = f(w)}
is recognized by A≈,

(ii) every automaton Ai recognizes a relation Ri ⊆ (Σω)ri with the same
arity ri as the relation Ri,

(iii) f is an isomorphism between Ad = (L(A),R1, . . . ,Rk)/≈ and A.

The presentation is said to be injective whenever f is, in which case A≈ can be
omitted. Observe that the relation ≈ needs to be a congruence of the structure
(L(A),R1, . . . ,Rk) for item (iii) to hold.

In case L(A) only consists of words of the form w� where w ∈ Σ∗, we say that
the presentation is (finite-word) automatic. We call a structure (ω-)automatic
if it has an (ω-)automatic presentation.

There may exist different automatic presentations of a single structure,
and different relations might be regular in each of these presentations. For
example, for every number p > 1 there is a presentation of Presburger arith-
metic (N,+) where numbers are coded in base p. The relation |2 defined as
x|2y ⇐⇒ x|y and x = 2n is a regular relation when numbers are coded in
binary, but it is not regular in the presentation that uses ternary coding. Rela-
tions that are regular in each automatic presentation of a structure are called
intrinsically regular and were first studied in [54, 55]. Every FO-definable re-
lation is intrinsically regular, but on some structures there are intrinsically
regular relations that are not definable in FO. Remarkably, this is not the
case for Presburger arithmetic, where all relations that are intrinsically reg-
ular are definable in FO. An accessible survey of results on presentations of
Presburger arithmetic is given in [16], and the general problem of different
automatic presentations of a structure is studied in [5, 6].

The basic advantage of having an (ω-)automatic presentation of a structure
lies in the fact that first-order formulas can be effectively evaluated using clas-
sical automata constructions. This is expressed by the following fundamental
theorem.

Theorem 1.6 (Cf. [45, 53, 14]). There is an effective procedure that given
an (ω-)automatic presentation d, f of a structure A, and given a FO-formula
ϕ(x) constructs an (ω-)automaton recognizing f−1(ϕA). The FO-theory of
every (ω-)automatic structure is decidable.
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1.5 Interpretations and Complete Structures

In this section, instead of explicitly representing a structure by a finite ob-
ject, as done above using automata, we consider operations for transform-
ing structures. More precisely, we fix an underlying family of structures and
a class of operations that transform structures, and investigate the class of
structures obtained by applying the transformations to structures in the un-
derlying family. When the operations preserve decidability of first-order or
monadic second-order logic, and structures in the underlying family have de-
cidable first-order or monadic second-order theory, then we obtain a class of
structures on which the corresponding logic is again decidable.

An important and well studied way of transforming structures is the model-
theoretic interpretation, where one structure is interpreted in another one
using formulas of either first-order or monadic second-order logic. Interpreta-
tions preserve decidability of the corresponding logics, or transform structures
with decidable monadic second-order theory to structures with decidable first-
order theory. We will show a few ways in which automatic structures can be
characterized and extended by means of interpretations in trees and linear
orders.

Definition 1.7. Let A = (A,R1, . . . , Rk) and B be relational structures and
let ri be the arity of Ri. A tuple of first-order formulas over σ(B),

I = (δ(x), ε(x1, x2), ϕ1(x1, . . . , xr1), . . . , ϕk(x1, . . . , xrk
)),

where each vector x, xi is of the same length n is an n-dimensional FO inter-
pretation of A in B if I(B) = (δB, ϕB

1 , . . . , ϕ
B
k )/εB is isomorphic to A.

In an analogous way, a tuple of MSO or WMSO formulas over σ(B),

J = (δ(X), ε(X1, X2), ϕ1(X1, . . . , Xr1), . . . , ϕk(X1, . . . , Xrk
)),

where X and Xi are single second-order variables, is an MSO-to-FO or a
WMSO-to-FO interpretation if J (B) = (δB, ϕB

1 , . . . , ϕ
B
k )/εB is isomorphic

to A, with the formulas evaluated using the standard or the weak semantics
respectively. If there exists an FO, MSO-to-FO or WMSO-to-FO interpretation
of A in B we denote this by A ≤FO B, A ≤MSO→FO B or A ≤WMSO→FO B,
respectively.

Let ψ be a first-order formula over σ(A) and I an interpretation of A in B.
We construct the formula ψI by replacing every relation symbol Ri in ψ by
the corresponding formula ϕi of I, replacing every equality t1 = t2 in ψ by
ε(t1, t2) and relativizing the quantifiers in the following way. In the case of FO
interpretations we replace ∃xϕ by ∃x(δ(x)∧ϕ) and ∀xϕ by ∀x(δ(x) → ϕ), and
in the second-order case we use second-order variables and thus ∃X(δ(X)∧ϕ)
and ∀X(δ(X) → ϕ), respectively. The standard interpretation lemma states
that A |= ψ exactly if B |= ψI . This allows us to deduce decidability of the



12 1 Logics, Structures and Presentations

FO-theory of A from decidability of the FO, MSO or WMSO theory of B, given
an FO, MSO-to-FO or WMSO-to-FO interpretation of A in B, respectively.

A class K of structures is closed under FO-interpretations if for all B ∈ K
whenever A ≤FO B then A ∈ K as well. For such a class K we say that
a structure B is complete for K if all A ∈ K are FO-interpretable in B. It
follows from Theorem 1.6 that the class of (ω-)automatic structures is closed
under FO-interpretations, because every relation defined in FO using only (ω-
)regular relations is again (ω-)regular.

One way to characterize automatic structures by means of interpretations
is to find complete automatic structures, and such structures were presented
in [11, 14]. It was shown there that for any finite alphabet Σ with at least
two letters, the complete tree over Σ extended with the equal-length relation,
Tel(Σ), is complete for the class of automatic structures. Analogously, the
complete ω-tree with the equal-length relation, Tωel(Σ), is complete for the
class of ω-automatic structures.

It is natural to ask whether Presburger arithmetic is a complete automatic
structure. The answer is negative, but there are extensions of Presburger
arithmetic that are complete. Let us define the following structures: Np =
(N,+, |p) where x|py ⇐⇒ x|y and x = pn for some n ∈ N, and Rp =
(R,+,≤, |p, 1) where x|py ⇐⇒ y = kx and x = pl for some k, l ∈ Z. It
was shown in [11, 14] that for all integers p ≥ 2 the extensions Np and Rp

of Presburger arithmetic and the real arithmetic are indeed complete, for the
class of automatic and ω-automatic structures respectively.

Another way to characterize automatic structures, where WMSO-to-FO and
MSO-to-FO interpretations are used, was first mentioned in [78] and more
systematically introduced in [22]. This characterization extends the intimate
connection between ω-automata over words and MSO over (ω,<), as well
as between finite-word automata and WMSO over (ω,<), to (ω-)automatic
structures. A structure A is finite-word automatic if there is a WMSO-to-FO
interpretation of A in (ω,<), and a structure B is ω-automatic if there is an
MSO-to-FO interpretation of B in (ω,<). Let us summarize the characteri-
zations of automatic structures by means of interpretations in the following
theorems.

Theorem 1.8 (Cf. [11, 14, 78, 22]). For any relational structure A the
following statements are equivalent:

– A is finite-word automatic,
– A ≤FO Tel(2),
– A ≤FO N2,
– A ≤WMSO→FO (ω,<).

Theorem 1.9 (Cf. [11, 14, 78, 22]). For any relational structure A the
following statements are equivalent:
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– A is ω-automatic,
– A ≤FO Tωel(2),
– A ≤FO R2,
– A ≤MSO→FO (ω,<).

The characterization of automatic structures by MSO-to-FO interpretations
was used in [22] to define generalized-automatic structures. We say that A is
an (ω-)generalized-automatic structure if there is a WMSO-to-FO (or MSO-
to-FO) interpretation of A in some tree T. In particular, we say that the
structure is (ω-)tree-automatic if this is the case for T(2), the complete binary
tree. By the result of Rabin and the interpretation lemma, (ω-)tree-automatic
structures have a decidable first-order theory. Moreover, in chapter 7 we show
that certain extensions of first-order logic collapse to FO on all ω-generalized-
automatic structures.

1.6 Composition in Monadic Second-Order Logic

To study logic on linear orders and trees with arbitrary additional predicates
it is convenient to depart from automata and use related methods from math-
ematical logic, especially the composition method. The history of the compo-
sition method starts with the introduction of Ehrenfeucht games [29], which
are an intuitive formulation of Fraïssé’s characterization of elementary equiv-
alence, i.e. indistinguishability of relational structures by first-order formu-
las. These games were first defined for first-order logic and extended to weak
monadic second-order logic [29]. Later, other logical systems were covered, such
as modal, temporal and infinitary logics that we discuss in chapter 2. Here we fo-
cus on the extension of this method, now usually called the Ehrenfeucht-Fraïssé
method, to full monadic second-order logic over linear orders and trees.

While Ehrenfeucht proved decidability of the first-order theory of count-
able ordinals using logical methods [28, 29], decidability of the full monadic
second-order theory of these orderings was first shown by Büchi using au-
tomata [17, 18, 19]. Only later Shelah gave, in his celebrated and difficult
paper [80], alternative proofs of Büchi’s results (and many more) using an
extension of the Ehrenfeucht-Fraïssé method to full monadic second-order
logic, which he called the composition of monadic theories. This method was
subsequently used by Gurevich and Shelah to obtain even more results, for
example in [37, 41] and with Magidor in [40]. Theoretical computer scientists
long preferred the automata theoretic approach, even after the composition
method was well presented in Gurevich’s survey [38]. It was only after the more
accessible survey by Wolfgang Thomas [83] that the merits of the composi-
tion method started to be appreciated in theoretical computer science, which
resulted in numerous papers. One example is the characterization of all exten-
sions of (ω,<) by unary predicates that have a decidable monadic second-order
theory [75].
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The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth
of nesting of quantifiers in ϕ. For fixed n and l (and a fixed signature) we
denote by Formn,m the set of formulas of quantifier depth ≤ n and with free
variables among X1, . . . , Xm.

For a structure A and a tuple U of m subsets of A, the monadic n-theory
of U , Thn(A, U), is the set of all MSO formulas ϕ(X) ∈ Formn,m, having no
more than n nested quantifiers in any subformula and no free variables other
than X1, . . . , Xm, for which A |= ϕ(U), i.e.

Thn(A, U) = {ϕ(X) ∈ Formn,m | A |= ϕ(U ) }.

For any n,m > 0, the set Formn,m is infinite, but it only contains finitely
many semantically distinct formulas, i.e. there are only finitely many n-
theories in m variables. Moreover, every n-theory Thn(A, U) is definable by
a single MSO formula τ(X) having m free variables and quantifier depth at
most n. Hintikka formulas are canonical formulas defining n-theories.

Lemma 1.10 (Hintikka Lemma [42]). For every n,m ∈ N (and a fixed
signature), we can compute a finite set Hn,m ⊆ Formn,m such that:

– For every structure A and U ⊆ A there is a unique τ ∈ Hn,m such that
A |= τ(U ).

– If τ1, τ2 ∈ Hn,m and τ1 �= τ2 then τ1 ∧ τ2 is unsatisfiable.
– If τ ∈ Hn,m and ϕ ∈ Formn,m, then either τ |= ϕ or τ |= ¬ϕ. Furthermore,

there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

Elements of Hn,m are called (n,m)-Hintikka formulas.

We say that a structure A with labels (unary predicates) U has type τ ∈ Hn,m,
denoted Tpn(A, U) = τ , if A |= τ(U ), i.e. if τ and Thn(A, U) are equivalent.
We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of
a given structure A which already contains labels U = U1, . . . , Ul. This is
synonymous with the n-type τ ∈ Hn,l+m of the structure (A, V ) obtained by
expansion of A with the predicates interpreted as V .

The essence of the composition method is that certain operations on struc-
tures, such as disjoint union and ordered sums of linear orders, can be
projected to n-theories, i.e. there are corresponding operations mapping n-
theories of constituent structures to the n-theory of the resulting structure.
In other words, n-theories can be composed.

Here we state a very simple form of the composition method on linear
orders and on trees, which can be proven directly using Ehrenfeucht-Fraïssé
games. As mentioned before, there are more powerful theorems also known as
the composition method, e.g. the effective ones presented later in chapters 6
and 7 and other, c.f. [80, 37, 41, 40].
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Theorem 1.11 (Composition on linear orders)
Let (I,<) be a linear order, and {Li | i ∈ I} and {L′

i | i ∈ I} two I-
indexed sequences of chains such that Tpn(Li) = Tpn(L′

i) for all i ∈ I. Then
Thn

(∑
i∈I Li

)
= Thn

(∑
i∈I L′

i

)
.

Theorem 1.12 (Composition on tree sums)
Let I = (I,<I) be a fixed unlabeled tree. For every family {Ti | i ∈ I} of trees,
the theory Thn(

∑
i∈I Ti) is uniquely determined by the theories Thn(Ti).
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