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Foreword

Since 2002, FoLLI, the Association for Logic, Language, and Information
(www.folli.org), has awarded an annual prize for an outstanding dissertation
in the fields of logic, language, and information.

The prize is named after the well-known Dutch logician Evert Willem Beth,
whose interdisciplinary interests are in many ways exemplary of the aims of
FoLLI. It is sponsored by the E.W. Beth Foundation. Dissertations submit-
ted for the prize are judged on technical depth and strength, originality, and
impact made in at least two of the three fields of logic, language, and computa-
tion. Every year the competition is strong and the interdisciplinary character
of the award stimulates lively debate in the Beth Prize Committee.

Recipients of the award are offered the opportunity to prepare a book
version of their thesis for publication in the FoLLI Publications on Logic,
Language and Information.

This volume is based on the PhD thesis of Łukasz Kaiser, who was a joint
winner of the E.W. Beth dissertation award in 2009.

We wish to quote here the Committee’s motivation for co-awarding the
prize to him.

“Łukasz Kaiser’s thesis on ‘Logic and Games on Automatic Structures’ is
a very rich, technically highly involved, and innovative study in the area of
algorithmic model theory, demonstrating the deep interplay between logic and
computability in automatic structures.

In his thesis Dr. Kaiser solves several open problems, some of them in a
surprising way and with very original ideas. In particular, he shows that first-
order logic extended with regular game quantifiers is decidable in automatic
structures and develops model-checking games for automatic structures. He
also characterizes completely the unary generalized Lindström quantifiers that
preserve regularity of relations in all omega-automatic structures, inter alia
showing that all countable omega-automatic structures are in fact finite-word
automatic.
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Further, he proves the definability of the infinity and uncountability set
quantifiers in MSO over countable linear orders and over labelled binary trees.

The thesis of Łukasz Kaiser displays very high technical and presentational
quality, depth, originality, and rigor. It advances significantly the field of al-
gorithmic model theory and raises interesting new questions, thus emerging
as a fruitful and inspiring source for future research.”

Valentin Goranko
(Chair of the Beth Prize Committee in 2009)

Michael Moortgat
(President of the Association for Logic, Language, and Information)



Preface

An important connection between logic and games is based on the correspon-
dence between the evaluation of a logical formula and a game played by two
opponents, one trying to show that the formula is true and the other trying
to prove it false. This relationship has been implicitly known for a long time,
even before mathematical logic and game theory were formalized. It was for-
mally established in the 1950s by Paul Lorenzen [61, 62, 63] in the form of
dialogue games and later developed in another form by Jaakko Hintikka [43].
Since then, it has inspired numerous research directions, leading both to new
logics and interesting insights about the classical ones.

In computer science, there are two main approaches to algorithmically ex-
ploiting the correspondence between logic and games. On the one hand, games
played on syntactic objects such as formulas, programs, or language expres-
sions were studied. Such games, derived from the dialogue games of Lorenzen
and their extensions, were used to build theorem provers for classical and in-
tuitionistic first-order logic [30], to give semantics to programming languages
and to verify programs [1], and in various other contexts in linguistics and
artificial intelligence (see [65] for an overview). On the other hand, games
can be played in a more semantic setting, where players choose elements of
a mathematical structure. In this way, following the ideas of Hintikka, games
are used to evaluate formulas of both first-order and second-order logic on
finite structures and to verify temporal properties on Kripke structures.

The algorithmic utility of such semantic games is apparent in the verifi-
cation of μ-calculus formulas on finite structures. While there is no known
polynomial-time algorithm for this problem, parity and mean-payoff games
were used to narrow its complexity class [47], to obtain algorithms that are
among the most efficient ones in practice [48, 86], and recently to find the first
sub-exponential algorithm for the verification of μ-calculus [49].

Extending the game-based algorithmic approach to first-order logic on in-
finite structures that arise in computer science is the main motivation for this
thesis. In structures that are to be stored and manipulated by a computer,
even infinite ones, elements and relations must be represented in a finite way.
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For example, elements can be defined in an inductive way using algebraic
datatypes, and relations can be given by programs that compute them. To
avoid the problems inherent in theorem-proving with mathematical induction
[20], we focus on the semantic setting where games are played using repre-
sentations of elements of the structure. Since we are interested in algorithmic
results, we additionally restrict our consideration to one prominent class of
finitely presentable structures that has a decidable first-order theory, namely,
to automatic structures.

Automatic structures, introduced first in [45] and later in [53] and [13], con-
tain elements represented by words over a finite alphabet. Relations in these
structures are represented by synchronous automata that perform step-by-
step transitions on tuples of symbols from the alphabet. A prominent example
of an automatic structure is Presburger arithmetic (N,+), for which the nat-
ural way of writing numbers as sequences of digits and the standard column
addition method constitute an automatic presentation. In this thesis we allow
words that represent elements of an automatic structure to be infinite; such
structures are sometimes called ω-automatic.

The basic fact that first-order logic is decidable on automatic structures
follows from the closure properties of automata, both the ones working on
finite and those on infinite words [17]. To develop a correspondence between
games and logic on automatic structures, we first look for suitable extensions
of first-order logic that remain decidable on this class of structures. We study
the notion of game quantification and extend the open and closed game quan-
tifiers, known in model theory of infinitary logics, to a regular game quantifier
defined on automatic presentations.

This quantifier corresponds to a construction of the words representing
elements of a structure by means of a game played step-by-step with the letters
from the alphabet. In this way the game quantifier intuitively captures games
played by two players during the construction of elements of an automatic
structure. We show that this quantifier effectively preserves regularity, which
is closely related to the fact that alternating ω-automata can be determinized.

We study the expressive power of the regular game quantifier. We identify
classes of structures on which logic extended with this quantifier collapses to
pure first-order logic and distinguish these from those on which it has larger
expressive power. We prove that quite basic structures, for example, the binary
tree, are already complete for first-order logic extended with the game quan-
tifier. To get a better understanding of the expressive power of this extended
logic on weaker structures, we identify a class of inductive automorphisms and
show that these preserve relations defined using the game quantifier.

Model-checking games for the extension of first-order logic with the game
quantifier on automatic presentations can be defined in a more natural way
than for pure first-order logic. To introduce them, we first recall the classical
two-player parity games, which arise as the model-checking games for modal
μ-calculus. We extend parity games to the multiplayer setting where two
coalitions play against each other with a special kind of hierarchical imperfect
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information about actions of the players. This extension allows us to define
the appropriate model-checking games for first-order logic with the regular
game quantifier.

We look closely at the definition of hierarchical games to identify the in-
fluence of various factors on algorithmic properties of these games. On the
one hand, it is essential to assume that the information is hidden in a hier-
archical way and that players take moves in a prescribed alternating order.
We show that allowing non-alternating moves of players makes the problem
of determining the winners of these games undecidable. On the other hand,
hierarchical games are robust under manipulations of the kind of winning
condition in the game. The winning condition can be represented by a list
of sets of positions which must appear infinitely often for one coalition to
win (the Muller winning condition), by assigning priorities to positions and
requiring that the minimal priority that appears infinitely often is even (the
parity condition), or in other forms (e.g., the Streett and Rabin conditions).
The complexity of establishing the winner in hierarchical games is not signif-
icantly affected by the kind of winning condition, as far as it is an ω-regular
set of paths through the game graph.

One reason for the robustness of these games under changes of the winning
condition is that adding a finite memory to strategies suffices to reduce games
with complex winning conditions to games with easier ones. For example,
it is a well-known result that games with Muller winning condition can be
reduced to games with parity winning condition using finite memory. Gurevich
and Harrington proved this in [39] using a special kind of memory structure
called the latest appearance record, which follows the idea of order vectors
introduced by McNaughton. Later, Zielonka introduced split trees [88], which
form another memory structure that allows one to reduce Muller games to
parity games and gives more insight into the amount of memory that is needed
for the reduction when the Muller condition is fixed.

While these results are well-known for games over finitely many priorities,
it has not been known how to extend these memory structures to games on
infinite arenas with infinitely many priorities. We generalize the latest appear-
ance record to a memory structure that can store a finite number of priorities
that appeared in the play. Memory structures of this kind are sufficient for
winning Muller games with a finite or co-finite number of sets in the Muller
condition, and additionally for a few other classes of games with infinitely
many priorities. Zielonka trees can be extended to certain classes of games
with infinitely many priorities as well. We investigate these memory structures
and show that the reductions known for the case of finitely many priorities
can be generalized to games with infinitely many priorities, assuming certain
constraints on the structure of the Zielonka tree for the winning condition.

Another common direction in which first-order logic can be extended is by
adding generalized Lindström quantifiers [60]. This extension has been widely
studied both in logic and in descriptive complexity theory, where it is used
to describe complexity classes for machines with oracles [33]. We address the
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following question: which generalized unary quantifiers can be added to first-
order logic without introducing non-regular relations on automatic structures?
We answer this question with a complete characterization of such quantifiers.
These are the cardinality and modulo counting quantifiers, i.e., “there exist
infinitely many,” “there exist uncountably many,” and “there exist k mod m
many.” We show that these quantifiers indeed preserve regularity on all au-
tomatic structures, including the non-injective ω-automatic ones. As a corol-
lary, we answer a question of Blumensath [11] and prove that all countable
ω-automatic structures are in fact finite-word automatic.

A natural and often considered question is which other classes of structures
still have decidable first-order logic with extensions. To investigate it, we study
a large class of structures introduced by Colcombet and Löding [22], called
generalized-automatic structures. These structures are given by interpreta-
tions transforming their first-order theory to monadic second-order theory of
a tree or of a linear order with additional labels. Because of these arbitrary
labellings, the methods from the previous chapters cannot be directly gen-
eralized. Instead, we use the composition method for monadic second-order
theory over linear orders and trees.

Using the composition method we show that the second-order cardinality
quantifiers, both the infinity and the uncountability quantifier on the num-
ber of sets X satisfying a formula ϕ(X), can be effectively eliminated from
monadic second-order logic. We devote one chapter to proving the elimination
result over various linear orders, including all countable ones, and in the next
chapter we prove the result for trees. This elimination procedure can be trans-
ferred to first-order logic only on injectively presented generalized-automatic
structures and is thus a partial generalization of the results from previous
chapters. It also illustrates how techniques from logic can be applied directly
to automatic structures. We discuss the outlook on further extensions and
applications of our work in the final chapter.
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1

Logics, Structures and Presentations

In this chapter we review the standard notions of first-order and monadic
second-order logic. We introduce linear orders and trees and state a few ele-
mentary properties of these structures. We recall the correspondence between
monadic second-order logic and automata on infinite words together with ba-
sic facts from automata theory . We introduce automatic structures using
presentations by automata and characterize them both by first-order and by
monadic second-order to first-order interpretations. Finally, we discuss the
composition method for monadic second-order logic over linear orders and
trees.

As most of these notions are standard, we assume that the reader is already
familiar with them and thus we do not discuss them in detail, but concen-
trate instead on fixing the notation. More thorough introductions to logic and
automata can be found in many textbooks and surveys, e.g. in [27, 82, 84].

1.1 First-Order and Monadic Second-Order Logic

A structure A = (A,R1, . . . , Rn, f1, . . . , fm) is given by a set A, called the
domain of A, a number of relations Ri and a number of functions fj . If we
denote the arity of Ri by ri and the arity of fj by sj then Ri ⊆ Ari and
fj : Asj → A. We say that A is a relational structure if it contains no func-
tions, only relations. Every structure can be coded as a relational structure
by replacing each function fj by its graph Gfj , which is a relation of arity
sj + 1 such that Gfj (x, y) ⇐⇒ fj(x) = y. The signature of the structure A

is denoted by σ(A) = {R(ri)
i }∪{f (sj)

j }, where Ri and fj are now just symbols
with appropriate arities. Note that we only consider structures with finite
signatures in this thesis, even though some of the results do not rely on this
assumption.

Both first-order and monadic second-order logic formulas over a signature
τ are built from atomic formulas using Boolean connectives and quantifiers.
Atomic formulas in first-order logic (FO) have either the form t1 = t2 or

Ł. Kaiser: Logic and Games on Automatic Structures, LNAI 6810, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 1 Logics, Structures and Presentations

Ri(t1, . . . , tri), where tk are terms, i.e. either first-order variables, denoted
x, y, x1, y1, . . ., or expressions of the form fj(t1, . . . , tsj ). In monadic second-
order logic (MSO) there are additional atomic formulas of the form t ∈ X ,
where t is again a term and X is a second-order variable. We use the standard
Boolean connectives ∧,∨,¬ to denote conjunction, disjunction and negation
and we write ϕ → ψ for (¬ϕ) ∨ ψ and ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ). In
first-order logic it is possible to quantify over first-order variables using either
existential or universal quantifiers, i.e. to write ∃xϕ or ∀xϕ. In second-order
logic there is the additional possibility to quantify over second-order variables,
i.e. to write ∃Xϕ or ∀Xϕ. When writing formulas we use the convention that
negation and quantifiers bind stronger than ∧ and ∨, which in turn bind
stronger than → and ↔, so that ∀xRx ∧ ¬Ry → Rz is to be understood as
((∀xRx) ∧ (¬Ry)) → Rz. We say that a variable in a formula ϕ that appears
in scope of a quantifier is bound and in the other case it is free. When writing
ϕ(x1, . . . , xn) (or sometimes shorter ϕ(x)) we mean that all free variables of
ϕ are contained in {x1, . . . , xn}.

Whether a formula ϕ(x,X) holds in a structure A, given an assignment θ :
x→ A for first-order variables and an assignment Θ : X → P(A) for second-
order ones, denoted A, θ, Θ |= ϕ, is defined inductively. First, we extend the
assignment θ to all terms by putting θ(fj(t1, . . . , tsj )) = fj(θ(t1), . . . , θ(tsj )).
Note that fj on the left side of the equation is only a symbol, while on the
right side it is a function of A. We will often abuse the notation in this way and
we sometimes write fA

i to point out that we have the function (or relation)
in the structure in mind, rather than the symbol. Moreover, we extend this
notation to formulas, so given a formula ϕ(x) we write ϕA for the relation
defined by ϕA(a) ⇐⇒ A, x ← a |= ϕ. In the inductive definition of the
semantics below we write θ[x ← a] (or analogous for Θ) for the assignment
θ′ : x ∪ {x} → A that maps x to a and every other variable x′ to θ(x′).

– A, θ, Θ |= t1 = t2 whenever θ(t1) = θ(t2),
– A, θ, Θ |= Ri(t1, . . . , tri) whenever RA

i (θ(t1), . . . , θ(tri)) holds,
– A, θ, Θ |= t ∈ X whenever θ(t) ∈ Θ(X),
– A, θ, Θ |= ¬ϕ whenever it is not the case that A, θ, Θ |= ϕ,
– A, θ, Θ |= ϕ ∧ ψ whenever A, θ, Θ |= ϕ and A, θ, Θ |= ψ,
– A, θ, Θ |= ϕ ∨ ψ whenever A, θ, Θ |= ϕ or A, θ, Θ |= ψ,
– A, θ, Θ |= ∃xϕ whenever A, θ[x← a], Θ |= ϕ for some a ∈ A,
– A, θ, Θ |= ∀xϕ whenever A, θ[x← a], Θ |= ϕ for all a ∈ A,
– A, θ, Θ |= ∃Xϕ whenever A, θ, Θ[X ← B] |= ϕ for some B ⊆ A,
– A, θ, Θ |= ∀Xϕ whenever A, θ, Θ[X ← B] |= ϕ for all B ⊆ A.

Sometimes we evaluate MSO formulas in the weak semantics and in such case
only finite sets are substituted for second-order variables. In this setting the
last two items above must be replaced by the following:

– A, θ, Θ |= ∃Xϕ in the weak semantics if A, θ, Θ[X ← B] |= ϕ for some
finite B ⊆ A,
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– A, θ, Θ |= ∀Xϕ in the weak semantics if A, θ, Θ[X ← B] |= ϕ for all finite
B ⊆ A.

We often call formulas that we evaluate using the weak semantics weak
monadic second-order logic (WMSO) formulas.

1.2 Linear Orders, Words and Trees

1.2.1 Linear Orders

Linear orders are a prominent example of structures that appear throughout
this thesis. The standard ordering of natural numbers is denoted (ω,<) or
(N, <), the orderings of integers and rational numbers are denoted (Z, <) and
(Q, <), respectively. Recall that (Q, <) is dense, meaning that between any
two elements x < y there is another element z such that x < z < y. On the
other hand, we say that a linear order (L,<) is scattered if it does not embed
any dense order, or equivalently if it does not embed (Q, <). Given a linear
order (I,<) and orders (Li, <i) for every i ∈ I, the sum

∑
I Li is defined as

the linear ordering of
⋃
i∈I Li × {i} such that

(l, i) < (l′, i′) ⇐⇒ i < i′ or i = i′ and l <i l′.

We write (L0, <0)+(L1, <1) for the sum over ({0, 1}, <). For example (Z, <) is
isomorphic to ω∗ +ω, where ω∗ is the standard ordering of negative integers,
({−1,−2,−3, . . .}, <). Note that sometimes we use the same name for the
structure and its universe when the meaning is clear from the context, as
in the case of ω above. Linear orders with additional unary predicates are
called chains. For a linear order L and a, b ∈ L we use the standard notation
for intervals, so for example [a, b) is a left-closed and right-open interval.
Moreover, we write L|[a,b) for the order L ∩ [a, b), and for X ⊆ L we use
analogous notation, i.e. X |[a,b] for X ∩ [a, b].

One can classify countable linear orders using the sum operation defined
above in the following way. Every countable linear order can be written as
a dense sum of scattered linear orders, i.e. as

∑
Q Li where each (Li, <i)

is a scattered linear order. Moreover, Hausdorff classified countable scattered
linear orders in classes VDα defined inductively as follows. VD0 = {1} consists
of the linear order having one element (we leave out the empty linear order).
For each ordinal α > 0, VDα consists of those linear orders that can be written
as a sum

∑
Z Li with each Li ∈ VDβ for some β < α. Let VD be the union of

all the VDα. Hausdorff has shown that VD contains every countable scattered
linear order, and the Hausdorff-rank of a linear order L ∈ VD is defined as
the smallest α such that L ∈ VDα.

A linear order is complete if every one of its subsets has a least upper bound.
Given a linearly ordered set (L,<) its Dedekind cuts are subsets C ⊆ L that
are downward closed. The completion of (L,<) is the set DC(L) of Dedekind
cuts of L ordered by inclusion, containing ∅ if there is no least element in L
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and excluding ∅ in the other case. Note that the completion of L, which we
denote by L and consider only up to isomorphism, is a complete linear order
with both endpoints, i.e. a least and a greatest element.

Every linear order is naturally equipped with the order topology generated
by open intervals. This allows us to speak of neighborhoods, open sets, limit
(alternatively condensation or accumulation) points, and all other topological
notions on every linear order.

1.2.2 Words

For a given set A we denote by A∗ the set of all finite sequences of elements
of A, by Aω the set of all infinite sequences of elements of A (i.e. functions
ω → A), and A≤ω = A∗∪Aω . Elements of A∗ are often called finite words and
elements of Aω are infinite words over A. For any sequence s = s0s1s2 . . . ∈
A≤ω we denote by |s| the length of s (either a natural number or ω) and by
s|n = s0 . . . sn−1 the finite sequence composed of the first n elements of s,
with s|0 = ε, the empty sequence. We write s[n] for the (n + 1)st element of
s (as we start counting from 0), so s[n] = sn for n ∈ N. Similarly, s[n,m] is
the factor s[n]s[n+ 1] · · · s[m] and s[n,m) is defined as s[n,m− 1], therefore
in our notation s|n = s[0, n).

Given a finite sequence s and a sequence r ∈ A≤ω we denote by s ·r (or just
sr) the concatenation of s and r. For the n-times concatenation s · · · s we use
the symbol sn. Moreover, we write s � t if s is a prefix of t, i.e. if there exists
a sequence r such that t = sr, and in such case we denote the difference by
t− s = r. A subset B of A≤ω is said to be prefix-closed if for every t ∈ B and
s � t it holds that s ∈ B. For an infinite sequence s ∈ Aω the set of elements
that appear infinitely often in this sequence is denoted by Inf(s).

We sometimes extend all notations introduced above to vectors of se-
quences, so for example if s is a vector then s[n] or equivalently s[n] is the
vector consisting of the (n + 1)st element of each sequence in s. Moreover,
given a function f : A → B and u ∈ A≤ω we denote by f(u) the sequence
f(u[0]) f(u[1]) f(u[2]) . . . ∈ B≤ω.

1.2.3 Trees

A tree is a structure T = (T,<, P1, . . . , Pn) where Pi’s are unary predicates
and < is an irreflexive and transitive binary ancestor relation with a least
element called the root of T and such that for every v ∈ T the set {u ∈ T |
u < v} of ancestors of v is finite and linearly ordered by <. We consider only
finitely branching trees, i.e. we assume that in every tree T the number of
v ∈ T with at most n ancestors is finite for every n.

Elements of a tree are referred to as nodes, maximal linearly ordered sets of
nodes are called branches, ancestor-closed and linearly ordered sets of nodes
are called paths, whereas chains are arbitrary linearly ordered subsets. An
antichain is a set of pairwise incomparable nodes. Given a node v, the subtree
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of T rooted in v is obtained by restricting the structure to the domain Tv =
{u ∈ T | u ≥ v} and is denoted Tv. Similarly, we use this notation for every
set X ⊆ T , i.e. Xv = X ∩ Tv.

Given a finite set A we denote by T(A) the complete tree over A, which
is a structure with the universe A∗ and < interpreted as the standard prefix
ordering. The tree T(A) also includes successor labels, i.e. for each a ∈ A
there is a predicate Pa in the structure T(A) such that Pa(u) holds exactly
when u = va, which allows to distinguish all immediate successors of any
node v ∈ T . An important example of such a tree is the complete binary tree,
T({0, 1}) = ({0, 1}∗, <, S0, S1) where S0(u) holds if u = v0 and S1(u) if u =
v1. In the case of complete k-ary trees we may write T(k) for T({0, . . . , k−1}),
so the complete binary tree is designated T(2).

Given an indexed family of trees and an order on the index which also
satisfies the requirements of a tree, we define the sum of this family. Intuitively,
the sum can be understood as replacing each node in the index tree by the
corresponding tree in the family, and is formally defined as follows.

Definition 1.1 (Tree sum). Let I = (I,<I) be an unlabeled tree and for
each i ∈ I let Ti = (Ti, <i, P i1, . . . , P

i
n) be a tree. The tree sum of (Ti)i∈I,

denoted
∑

i∈I Ti, is the tree

T =
( ⋃

i∈I
{i} × Ti , <

T,
⋃

i∈I
{i} × P1

i, . . . ,
⋃

i∈I
{i} × Pn

i
)
,

where (i, a) <T (j, b) for i, j ∈ I, a ∈ Ti, b ∈ Tj iff:

i <I j and a is the root of Ti, or i = j and a <i b .

Unless explicitly noted, we will not distinguish between Ti and the isomorphic
subtree {i} × Ti of T.

A particular special case of the sum we will be using is when the index struc-
ture I consists of a single branch. Let (I,<) be a linear order, which is finite
or isomorphic to ω, and let (Ti)i∈I be an I-indexed sequence of trees. Then
the sum T =

∑
i∈I Ti is well defined, and (I,<) forms a path (not necessarily

maximal) in T.
In addition to the trees defined above, we also study trees over infinite

words, called ω-trees. A complete ω-tree over a finite set A is defined in an
analogous way to T(A) as Tω(A) = (A≤ω , <, {Sa}a∈A), where < is again
the prefix relation and Sa are successor labels, i.e. Sa(u) holds only for finite
words u = va. Moreover, we sometimes extend the trees with the equal-length
relation el, defined by el(u,w) ⇐⇒ |u| = |w|. We denote a tree T extended
with this binary relation Tel, so for example Tωel({0, 1}) is the complete binary
ω-tree extended with the equal-length relation, i.e. ({0, 1}≤ω, <, S0, S1, el).
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1.3 Automata on ω-Words

The order (ω,<) and the binary tree T(2) play an important role in computer
science and logic because the monadic second-order theory of both of these
structures is decidable, as proved by Büchi [17] and Rabin [74] respectively.
These proofs use the notion of an automaton, either a word automaton for
(ω,<) or a tree automaton for T(2), and establish a one-to-one correspondence
between relations recognized by automata and the ones definable in monadic
second-order logic.

An ω-word automaton A over a finite alphabet Σ is a tuple (Q,Δ, q0,F)
where Q is a finite set of states, Δ is a transition relation Δ ⊆ Q × Σ × Q,
q0 ∈ Q is an initial state and F is an acceptance condition. An automaton
is deterministic if Δ is a function Q × Σ → Q. In the case of the standard
finite-word automata, the acceptance condition consists only of a set of final
states and a word is accepted if some run ends in a final state. For ω-word
automata the acceptance condition F is a set of runs, i.e. infinite sequences
of states, which are considered accepting for the automaton, so F ⊆ Qω. In
practice F is described in a finite way and there are a few representations
that are often used for this purpose.

– The Büchi condition is represented by a set F ⊆ Q and
F = {s ∈ Qω | Inf(s) ∩ F �= ∅}.

– The parity condition is defined using a mapping Ω : Q→ {0, . . . , d}
and F = {s ∈ Qω | min(Inf(Ω(s))) is even}.

– The Rabin condition is given by a set of pairs {(E1, F1), . . . , (Ek, Fk)}
and F = {s ∈ Qω | Inf(s) ∩ Fi �= ∅ and Inf(s) ∩ Ei = ∅ for some i}.

– The Streett condition, dual to the Rabin condition, is again represented by
a set of pairs {(E1, F1), . . . , (Ek, Fk)}, but in this case
F = {s ∈ Qω | Inf(s) ∩ Fi �= ∅ or Inf(s) ∩ Ei = ∅ for every i}.

– The Muller condition is defined by listing F ⊆ P(Q) and
F = {s ∈ Qω | Inf(s) ∈ F}.

A run of an automaton A on a word w ∈ Σω is defined as any sequence of
states q0q1 . . . ∈ Qω in which Δ(qi, w[i], qi+1) holds for all i. The word w is
accepted by A if there is a run ρ of A on w that is accepting, i.e. ρ ∈ F , and
we denote by L(A) the set of all words accepted by an automaton A.

It is well-known that non-deterministic Büchi, parity, Rabin, Streett and
Muller automata all recognize the same class of languages, the ω-regular lan-
guages. The deterministic variants have the same expressive power for all the
representations of acceptance conditions introduced above except for the case
of Büchi condition, as deterministic Büchi automata are strictly weaker than
non-deterministic ones. Moreover, the class of ω-regular languages is closed
under union, intersection and complementation.
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1.3.1 Alternating Automata

In addition to the standard notion of automata, we use alternating automata
as a tool in our proofs. The intuition behind alternating automata is that,
unlike in the deterministic case where only one run on a given word is possible,
there are more possibilities of transitions from each state for a given letter.
But unlike non-deterministic automata, an alternating automaton does not
only accept a word if there exists an accepting run among all possible ones,
or if all possible runs are accepting (as in universal automata), but it allows
to alternate such conditions with respect to states of the automaton and has
both existential and universal branching choices.

To define alternating automata we have to consider, for a given set of states
Q, the set B+(Q) of all positive Boolean formulas over Q. By definition B+(Q)
is the set of all Boolean formulas built using elements of Q, the Boolean
connectives ∧ and ∨ and the constants � (true) and ⊥ (false). Note that
negation is not allowed. We say that a subset X ⊆ Q satisfies a formula
ϕ ∈ B+(Q) if ϕ is satisfied by the assignment that assigns true to all elements
of X and false to Q \X .

An alternating automaton A over an alphabet Σ is a tuple (Q, δ, q0,F),
where Q is the set of states, q0 is the initial state, F is the acceptance con-
dition, but this time δ does not point to a single next state but specifies a
positive Boolean formula as transition condition, δ : Q × Σ → B+(Q). In-
tuitively, a correct run of A on a word w is a tree labeled with Q where the
successors of each node form a satisfying set for the Boolean condition related
to the state in this node and to the corresponding letter in w.

To capture this intuition formally and simplify notation, we define runs as
sets of infinite sequences of states, so a run ρ is a subset of Qω. When one
thinks of runs as trees, our definition corresponds to defining runs directly as
the set of branches of the run-tree. For a run ρ represented in this way we
write sρ(u) for the set of all states appearing in ρ that prolong u ∈ Q∗, i.e.
the successors of u when thinking of a run as a tree,

sρ(u) = {q ∈ Q : ∃v u · q · v ∈ ρ}.
We define that ρ is a correct run of A on the word w if for each infinite
branch u ∈ ρ and each prefix u|i the successors after that prefix satisfy the
corresponding Boolean constraint, i.e. if sρ(u|i) satisfies δ(u[i], w[i]) for all i
and u ∈ ρ. We say that A accepts a word w if there is a correct, non-empty
run ρ on w starting from q0 such that each branch u ∈ ρ is accepted, i.e.
u ∈ F , and again we write L(A) for the language recognized by A.

Alternating automata may seem more powerful than deterministic ones and
it is often much easier to express problems in terms of alternating automata
than in terms of deterministic ones, but they are in fact equal in expressiveness
to the standard automata.

Theorem 1.2. Every language recognized by an alternating Büchi, parity, Ra-
bin, Streett or Muller automaton is ω-regular.
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The above theorem can be proved by expressing acceptance of alternating
automata in monadic second-order logic on infinite words and then going
back from the logic to automata [17]. Alternatively, one can give an explicit
construction which shows that (for all acceptance conditions except the Büchi
condition) the size of the deterministic automaton constructed for a language
recognized by an alternating one is at most doubly exponential in the size of
the original automaton, as first shown in [66].

1.3.2 ω-Semigroups

There is a fundamental correspondence between recognizability of sets by
finite-word automata and by finite semigroups. It has been extended to rec-
ognizability of ω-regular sets, first using Wilke algebras [87] and later based
on the notion of ω-semigroups. The theory of ω-semigroups was first well pre-
sented in [71] and is thoroughly discussed in [72], we only mention what is
most necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·)
is a semigroup, ∗ : Sf × Sω �→ Sω is the mixed product satisfying for every
s, t ∈ Sf and every α ∈ Sω the equality

s ∗ (t ∗ α) = (s · t) ∗ α
and where π : Sωf �→ Sω is the infinite product satisfying

s0 ∗ π(s1, s2, . . .) = π(s0, s1, s2, . . .)

as well as the associativity rule

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1 , sk1+1sk1+2 · · · sk2 , . . .)
for every sequence (si)i≥0 of elements of Sf and every strictly increasing
sequence (ki)i≥0 of indices. For s ∈ Sf we denote sω = π(s, s, . . .).

Morphisms of ω-semigroups are defined to preserve all three products as
expected. There is a natural way to extend finite semigroups and their mor-
phisms to ω-semigroups. As in semigroup theory, idempotents play a central
role in this extension. An idempotent is a semigroup element e ∈ S satisfying
ee = e. For every element s in a finite semigroup the sub-semigroup generated
by s contains a unique idempotent sk. The least k > 0 such that sk is idem-
potent for every s ∈ Sf is called the exponent of the semigroup Sf . Another
useful notion is absorption of semigroup elements: we say that s absorbs t (on
the right) if st = s.

There is a natural extension of the free semigroup Σ+ to the free ω-
semigroup (Σ+, Σω) with ∗ and π determined by concatenation. An ω-
semigroup S = (Sf , Sω) recognizes a language L ⊆ Σω via a morphism
φ : (Σ+, Σω) → (Sf , Sω) if φ−1(φ(L)) = L. This notion of recognizability
coincides, as for finite words, with recognizability by non-deterministic Büchi
automata and translations from Büchi automata to ω-semigroups and back
can be done effectively.
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Theorem 1.3 ([71]). A language L ⊆ Σω is ω-regular if and only if it is
recognized by a finite ω-semigroup.

This correspondence allows one to engage in an algebraic study of varieties
of ω-regular languages, and also has the advantage of hiding complications of
cutting apart and stitching together runs of Büchi automata. This is precisely
the reason for which we use this algebraic framework. Most remarkably, one
does not need to understand the exact relationship between automata and
ω-semigroups and the technical details of the constructions behind Theorem
1.3 to use ω-semigroups to simplify calculations on ω-regular sets.

1.4 Automatic Structures

Before we define automatic presentations and automatic structures, let us
introduce relations on finite and ω-words recognized by ω-word automata
operating in a synchronized letter-to-letter fashion. Formally,R is an ω-regular
relation of arity r over the domain Σω if there exists an ω-automaton A over
the alphabet Σr accepting the convolution ⊗w of ω-words w1, . . . , wr exactly
when R(w1, . . . , wr) holds. The convolution is defined as

⊗w[i] = (w1[i], . . . , wr [i]) for all i.

For pairs of words w,w′ we sometimes write w ⊗ w′ or
(
w
w′
)

for ⊗(w,w′).

Example 1.4. Words u, v ∈ Σω have equal ends, written u ∼e v, if u[n] = v[n]
for all but a finitely many natural numbers n. This is an important example
of an ω-regular equivalence relation. For S, T ⊆ N we extend the notation
and write S ∼e T if for all but finitely many n ∈ N, n ∈ S ⇐⇒ n ∈ T .
The non-deterministic Büchi automaton depicted in Figure 1.1 accepts the
equal-ends relation over {0, 1}.

q0 q1 F = {q1}
(00),(11)

(00),(01),(10),(11) (00),(11)

Fig. 1.1. An automaton for the equal ends relation

To define ω-regular relations over finite words one needs to add a padding
end-of-word symbol � �∈ Σ to formally define the convolution of words of dif-
ferent length. For simplicity, we will sometimes identify a finite word w ∈ Σ∗

with its infinite padding w� = w�ω ∈ Σω
� where Σ� = Σ ∪ {�}. A lan-

guage L ⊆ Σ∗ is regular, i.e. recognized by a standard finite-word automaton,
exactly if the language L� = {w� | w ∈ L} is ω-regular over Σ�. Thus, we
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say that an r-ary relation R ⊆ (Σ∗)r is regular whenever its extension with
padding is ω-regular over Σ�. This is equivalent to defining a convolution for
finite words by padding each word with � to be as long as the longest one.

Definition 1.5 (Automatic Presentation)
For any relational structure A = (A,R1, . . . , Rk), a tuple of ω-automata d =
(A,A≈,A1, . . . ,Ak) together with a surjective naming function f : L(A) → A
constitutes an (ω-)automatic presentation of A over Σ if the following criteria
are met:

(i) the equivalence relation denoted ≈ and defined as

{(u,w) ∈ L(A)2 | f(u) = f(w)}
is recognized by A≈,

(ii) every automaton Ai recognizes a relation Ri ⊆ (Σω)ri with the same
arity ri as the relation Ri,

(iii) f is an isomorphism between Ad = (L(A),R1, . . . ,Rk)/≈ and A.

The presentation is said to be injective whenever f is, in which case A≈ can be
omitted. Observe that the relation ≈ needs to be a congruence of the structure
(L(A),R1, . . . ,Rk) for item (iii) to hold.

In case L(A) only consists of words of the form w� where w ∈ Σ∗, we say that
the presentation is (finite-word) automatic. We call a structure (ω-)automatic
if it has an (ω-)automatic presentation.

There may exist different automatic presentations of a single structure,
and different relations might be regular in each of these presentations. For
example, for every number p > 1 there is a presentation of Presburger arith-
metic (N,+) where numbers are coded in base p. The relation |2 defined as
x|2y ⇐⇒ x|y and x = 2n is a regular relation when numbers are coded in
binary, but it is not regular in the presentation that uses ternary coding. Rela-
tions that are regular in each automatic presentation of a structure are called
intrinsically regular and were first studied in [54, 55]. Every FO-definable re-
lation is intrinsically regular, but on some structures there are intrinsically
regular relations that are not definable in FO. Remarkably, this is not the
case for Presburger arithmetic, where all relations that are intrinsically reg-
ular are definable in FO. An accessible survey of results on presentations of
Presburger arithmetic is given in [16], and the general problem of different
automatic presentations of a structure is studied in [5, 6].

The basic advantage of having an (ω-)automatic presentation of a structure
lies in the fact that first-order formulas can be effectively evaluated using clas-
sical automata constructions. This is expressed by the following fundamental
theorem.

Theorem 1.6 (Cf. [45, 53, 14]). There is an effective procedure that given
an (ω-)automatic presentation d, f of a structure A, and given a FO-formula
ϕ(x) constructs an (ω-)automaton recognizing f−1(ϕA). The FO-theory of
every (ω-)automatic structure is decidable.
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1.5 Interpretations and Complete Structures

In this section, instead of explicitly representing a structure by a finite ob-
ject, as done above using automata, we consider operations for transform-
ing structures. More precisely, we fix an underlying family of structures and
a class of operations that transform structures, and investigate the class of
structures obtained by applying the transformations to structures in the un-
derlying family. When the operations preserve decidability of first-order or
monadic second-order logic, and structures in the underlying family have de-
cidable first-order or monadic second-order theory, then we obtain a class of
structures on which the corresponding logic is again decidable.

An important and well studied way of transforming structures is the model-
theoretic interpretation, where one structure is interpreted in another one
using formulas of either first-order or monadic second-order logic. Interpreta-
tions preserve decidability of the corresponding logics, or transform structures
with decidable monadic second-order theory to structures with decidable first-
order theory. We will show a few ways in which automatic structures can be
characterized and extended by means of interpretations in trees and linear
orders.

Definition 1.7. Let A = (A,R1, . . . , Rk) and B be relational structures and
let ri be the arity of Ri. A tuple of first-order formulas over σ(B),

I = (δ(x), ε(x1, x2), ϕ1(x1, . . . , xr1), . . . , ϕk(x1, . . . , xrk
)),

where each vector x, xi is of the same length n is an n-dimensional FO inter-
pretation of A in B if I(B) = (δB, ϕB

1 , . . . , ϕ
B
k )/εB is isomorphic to A.

In an analogous way, a tuple of MSO or WMSO formulas over σ(B),

J = (δ(X), ε(X1, X2), ϕ1(X1, . . . , Xr1), . . . , ϕk(X1, . . . , Xrk
)),

where X and Xi are single second-order variables, is an MSO-to-FO or a
WMSO-to-FO interpretation if J (B) = (δB, ϕB

1 , . . . , ϕ
B
k )/εB is isomorphic

to A, with the formulas evaluated using the standard or the weak semantics
respectively. If there exists an FO, MSO-to-FO or WMSO-to-FO interpretation
of A in B we denote this by A ≤FO B, A ≤MSO→FO B or A ≤WMSO→FO B,
respectively.

Let ψ be a first-order formula over σ(A) and I an interpretation of A in B.
We construct the formula ψI by replacing every relation symbol Ri in ψ by
the corresponding formula ϕi of I, replacing every equality t1 = t2 in ψ by
ε(t1, t2) and relativizing the quantifiers in the following way. In the case of FO
interpretations we replace ∃xϕ by ∃x(δ(x)∧ϕ) and ∀xϕ by ∀x(δ(x) → ϕ), and
in the second-order case we use second-order variables and thus ∃X(δ(X)∧ϕ)
and ∀X(δ(X) → ϕ), respectively. The standard interpretation lemma states
that A |= ψ exactly if B |= ψI . This allows us to deduce decidability of the
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FO-theory of A from decidability of the FO, MSO or WMSO theory of B, given
an FO, MSO-to-FO or WMSO-to-FO interpretation of A in B, respectively.

A class K of structures is closed under FO-interpretations if for all B ∈ K
whenever A ≤FO B then A ∈ K as well. For such a class K we say that
a structure B is complete for K if all A ∈ K are FO-interpretable in B. It
follows from Theorem 1.6 that the class of (ω-)automatic structures is closed
under FO-interpretations, because every relation defined in FO using only (ω-
)regular relations is again (ω-)regular.

One way to characterize automatic structures by means of interpretations
is to find complete automatic structures, and such structures were presented
in [11, 14]. It was shown there that for any finite alphabet Σ with at least
two letters, the complete tree over Σ extended with the equal-length relation,
Tel(Σ), is complete for the class of automatic structures. Analogously, the
complete ω-tree with the equal-length relation, Tωel(Σ), is complete for the
class of ω-automatic structures.

It is natural to ask whether Presburger arithmetic is a complete automatic
structure. The answer is negative, but there are extensions of Presburger
arithmetic that are complete. Let us define the following structures: Np =
(N,+, |p) where x|py ⇐⇒ x|y and x = pn for some n ∈ N, and Rp =
(R,+,≤, |p, 1) where x|py ⇐⇒ y = kx and x = pl for some k, l ∈ Z. It
was shown in [11, 14] that for all integers p ≥ 2 the extensions Np and Rp

of Presburger arithmetic and the real arithmetic are indeed complete, for the
class of automatic and ω-automatic structures respectively.

Another way to characterize automatic structures, where WMSO-to-FO and
MSO-to-FO interpretations are used, was first mentioned in [78] and more
systematically introduced in [22]. This characterization extends the intimate
connection between ω-automata over words and MSO over (ω,<), as well
as between finite-word automata and WMSO over (ω,<), to (ω-)automatic
structures. A structure A is finite-word automatic if there is a WMSO-to-FO
interpretation of A in (ω,<), and a structure B is ω-automatic if there is an
MSO-to-FO interpretation of B in (ω,<). Let us summarize the characteri-
zations of automatic structures by means of interpretations in the following
theorems.

Theorem 1.8 (Cf. [11, 14, 78, 22]). For any relational structure A the
following statements are equivalent:

– A is finite-word automatic,
– A ≤FO Tel(2),
– A ≤FO N2,
– A ≤WMSO→FO (ω,<).

Theorem 1.9 (Cf. [11, 14, 78, 22]). For any relational structure A the
following statements are equivalent:
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– A is ω-automatic,
– A ≤FO Tωel(2),
– A ≤FO R2,
– A ≤MSO→FO (ω,<).

The characterization of automatic structures by MSO-to-FO interpretations
was used in [22] to define generalized-automatic structures. We say that A is
an (ω-)generalized-automatic structure if there is a WMSO-to-FO (or MSO-
to-FO) interpretation of A in some tree T. In particular, we say that the
structure is (ω-)tree-automatic if this is the case for T(2), the complete binary
tree. By the result of Rabin and the interpretation lemma, (ω-)tree-automatic
structures have a decidable first-order theory. Moreover, in chapter 7 we show
that certain extensions of first-order logic collapse to FO on all ω-generalized-
automatic structures.

1.6 Composition in Monadic Second-Order Logic

To study logic on linear orders and trees with arbitrary additional predicates
it is convenient to depart from automata and use related methods from math-
ematical logic, especially the composition method. The history of the compo-
sition method starts with the introduction of Ehrenfeucht games [29], which
are an intuitive formulation of Fraïssé’s characterization of elementary equiv-
alence, i.e. indistinguishability of relational structures by first-order formu-
las. These games were first defined for first-order logic and extended to weak
monadic second-order logic [29]. Later, other logical systems were covered, such
as modal, temporal and infinitary logics that we discuss in chapter 2. Here we fo-
cus on the extension of this method, now usually called the Ehrenfeucht-Fraïssé
method, to full monadic second-order logic over linear orders and trees.

While Ehrenfeucht proved decidability of the first-order theory of count-
able ordinals using logical methods [28, 29], decidability of the full monadic
second-order theory of these orderings was first shown by Büchi using au-
tomata [17, 18, 19]. Only later Shelah gave, in his celebrated and difficult
paper [80], alternative proofs of Büchi’s results (and many more) using an
extension of the Ehrenfeucht-Fraïssé method to full monadic second-order
logic, which he called the composition of monadic theories. This method was
subsequently used by Gurevich and Shelah to obtain even more results, for
example in [37, 41] and with Magidor in [40]. Theoretical computer scientists
long preferred the automata theoretic approach, even after the composition
method was well presented in Gurevich’s survey [38]. It was only after the more
accessible survey by Wolfgang Thomas [83] that the merits of the composi-
tion method started to be appreciated in theoretical computer science, which
resulted in numerous papers. One example is the characterization of all exten-
sions of (ω,<) by unary predicates that have a decidable monadic second-order
theory [75].
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The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth
of nesting of quantifiers in ϕ. For fixed n and l (and a fixed signature) we
denote by Formn,m the set of formulas of quantifier depth ≤ n and with free
variables among X1, . . . , Xm.

For a structure A and a tuple U of m subsets of A, the monadic n-theory
of U , Thn(A, U), is the set of all MSO formulas ϕ(X) ∈ Formn,m, having no
more than n nested quantifiers in any subformula and no free variables other
than X1, . . . , Xm, for which A |= ϕ(U), i.e.

Thn(A, U) = {ϕ(X) ∈ Formn,m | A |= ϕ(U ) }.

For any n,m > 0, the set Formn,m is infinite, but it only contains finitely
many semantically distinct formulas, i.e. there are only finitely many n-
theories in m variables. Moreover, every n-theory Thn(A, U) is definable by
a single MSO formula τ(X) having m free variables and quantifier depth at
most n. Hintikka formulas are canonical formulas defining n-theories.

Lemma 1.10 (Hintikka Lemma [42]). For every n,m ∈ N (and a fixed
signature), we can compute a finite set Hn,m ⊆ Formn,m such that:

– For every structure A and U ⊆ A there is a unique τ ∈ Hn,m such that
A |= τ(U ).

– If τ1, τ2 ∈ Hn,m and τ1 �= τ2 then τ1 ∧ τ2 is unsatisfiable.
– If τ ∈ Hn,m and ϕ ∈ Formn,m, then either τ |= ϕ or τ |= ¬ϕ. Furthermore,

there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

Elements of Hn,m are called (n,m)-Hintikka formulas.

We say that a structure A with labels (unary predicates) U has type τ ∈ Hn,m,
denoted Tpn(A, U) = τ , if A |= τ(U ), i.e. if τ and Thn(A, U) are equivalent.
We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of
a given structure A which already contains labels U = U1, . . . , Ul. This is
synonymous with the n-type τ ∈ Hn,l+m of the structure (A, V ) obtained by
expansion of A with the predicates interpreted as V .

The essence of the composition method is that certain operations on struc-
tures, such as disjoint union and ordered sums of linear orders, can be
projected to n-theories, i.e. there are corresponding operations mapping n-
theories of constituent structures to the n-theory of the resulting structure.
In other words, n-theories can be composed.

Here we state a very simple form of the composition method on linear
orders and on trees, which can be proven directly using Ehrenfeucht-Fraïssé
games. As mentioned before, there are more powerful theorems also known as
the composition method, e.g. the effective ones presented later in chapters 6
and 7 and other, c.f. [80, 37, 41, 40].
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Theorem 1.11 (Composition on linear orders)
Let (I,<) be a linear order, and {Li | i ∈ I} and {L′

i | i ∈ I} two I-
indexed sequences of chains such that Tpn(Li) = Tpn(L′

i) for all i ∈ I. Then
Thn

(∑
i∈I Li

)
= Thn

(∑
i∈I L′

i

)
.

Theorem 1.12 (Composition on tree sums)
Let I = (I,<I) be a fixed unlabeled tree. For every family {Ti | i ∈ I} of trees,
the theory Thn(

∑
i∈I Ti) is uniquely determined by the theories Thn(Ti).



2

Game Quantifiers on Automatic Presentations

This chapter is devoted to the study of game quantification on automatic
presentations. We start with a historic survey on game quantification in the
context of infinitary logics, based on [56]. Then, we define a new game quan-
tifier on automatic presentations, the regular game quantifier. We show that
the basic advantage of first-order logic on automatic structures, namely decid-
ability and regularity of definable relations, still holds for the logic extended
with the game quantifier.

Further, we investigate the expressive power of game quantification on au-
tomatic presentations. We show that the prefix and equal-length relations on
a presentation are definable using only equality and the regular game quan-
tifier. It follows that much simpler structures are complete for the extended
first-order logic than for the standard one. In contrast to the binary ω-tree
with equal-length Tωel(2) needed for pure first-order logic, already the binary
ω-tree Tω(2), even without the prefix relation, is complete for first-order logic
extended with the game quantifier.

To understand which relations are not definable using the game quanti-
fier, we study the automorphisms of structures that preserve formulas of the
extended logic. For this reason we introduce the notion of inductive automor-
phisms and show that all relations definable in first-order logic extended with
the regular game quantifier are preserved under such automorphisms. In ad-
dition to the explicit definition, we characterize inductive automorphisms as
exactly those automorphisms that preserve the prefix relation on an automatic
presentation.

2.1 Open and Closed Game Quantifiers

It is natural to ask how first-order logic can be extended without allowing
second-order quantification. Two possible extensions are well studied: one
where new unary quantifiers are allowed in addition to ∃ and ∀, which is
discussed in more detail in section 5.1, and another where infinitely long
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formulas can be written, either by allowing infinite conjunctions and disjunc-
tions or by allowing infinite strings of quantifiers.

The extension of first-order logic where conjunctions and disjunctions of size
less than κ and homogeneous strings of quantifiers of length less than λ are
allowed is denoted Lκλ for any cardinals κ and λ. For example FO = Lωω, and
the extension where only countable conjunctions and disjunctions are allowed
is Lω1ω. Allowing countable Boolean operations means that the syntax of Lω1ω

allows to build formulas of the form
∧
i∈N ϕi and

∨
i∈N ϕi in addition to what

is allowed by the standard FO syntax. The definition of semantics for Lω1ω

contains two new rules in addition to the ones presented in section 1.1 for FO,
namely

– A, θ |= ∧i∈N ϕi whenever A, θ |= ϕi for all i ∈ N,
– A, θ |= ∨i∈N ϕi whenever A, θ |= ϕi for some i ∈ N.

The definition of semantics for conjunctions and disjunctions of greater length
and homogeneous strings of quantifiers is similar. In addition to allowing in-
finite first-order formulas one can also allow second-order quantification and
mix it with infinitary formulas. One interesting possibility is to allow one
existential second-order quantifier over a countable set of second-order re-
lations followed by an infinite conjunction of FO formulas. Such formulas,
∃{Ri}i∈N

∧
j∈N ϕj , where ϕj are FO formulas over the extended alphabet

τ ∪ {Ri}i∈N, are called PCΔ formulas and are intimately related to game
quantification, as will be explained later.

One interesting extension of FO that is not directly included in Lκλ is the
case of an infinite string of alternating quantifiers, i.e. formulas of the form
∃x0∀x1∃x2∀x3 . . . R(x0, x1, . . .), where R ⊆ Aω is a relation on sequences of
elements of A. The semantics of such formulas is given using two-person games
known as Gale-Stewart games. The intuition behind the game is that the first
player, sometimes called the Verifier, starts by choosing x0 ∈ A. Then the
second player, called the Falsifier, answers with x1 ∈ A. After this the Verifier
chooses x2, the Falsifier answers and so on. Finally, the winner is determined
depending on whether the infinite sequence that was chosen belongs to R
or not. Formally, given a strategy for one player, defined as a function f :⋃
n∈N A

2n → A, and one for the other player defined as g :
⋃
n∈NA

2n+1 → A,
we construct the sequence π = π(f, g) = x0x1x2 . . . given by x2n = f(π|2n)
and x2n+1 = g(π|2n+1) for all n ∈ N. This allows us to define the semantics
to a formula ϕ = ∃x0∀x1 . . . R(x) by saying that ϕ holds in A whenever there
exists a strategy f for the first player such that for all counter-strategies g of
the second player the play π(f, g) ∈ R.

In the paragraph above we did not specify the relation R, so we did not
give a precise extension of FO. For this purpose, we are going to use infinitary
conjunctions and disjunctions, as presented before in the context of Lω1ω.
Therefore we define that ϕ(z) is an open game formula if

ϕ(z) = ∃x0∀y0∃x1∀y1 . . .
∨

i∈N

ϕi(z, x0, y0, . . . , xi−1, yi−1),
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and ψ(z) is a closed game formula if

ψ(z) = ∀x0∃y0∀x1∃y1 . . .
∧

i∈N

ψi(z, x0, y0, . . . , xi−1, yi−1),

where ϕi, ψi are standard FO formulas. A structure A with a mapping θ : z →
a is a model of ϕ(z) if there exists a strategy f :

⋃
n∈N A

2n → A such that for
all strategies g :

⋃
n∈N A

2n+1 → A there exists i ∈ N for which

ϕA
i (a, π(f, g)[0], π(f, g)[1], . . . , π(f, g)[2i− 1])

holds. Similarly, ψ(z) holds if there exists a strategy g :
⋃
n∈N A

2n+1 → A
such that for all strategies f :

⋃
n∈N A

2n → A and for all i ∈ N the relation

ψA
i (a, π(f, g)[0], π(f, g)[1], . . . , π(f, g)[2i− 1])

holds in A.
Observe that the definition above does not imply that a negation of an

open game formula is a closed game formula, as for each of them to be true
there must exist a strategy for one player that is winning against all counter-
strategies. For the negation of such a formula to be true it suffices that a
player can counter all strategies of the opponent with a winning strategy.
The property of a two-player game that either one or the other player has a
winning strategy is called determinacy.

It is an important result of Gale and Stewart [32] that all Gale-Stewart
games with open and closed winning conditions, i.e. for relations R denoting
open or closed sets in the product topology on Aω, are determined. Since
relations defined by infinite disjunctions of FO formulas are indeed open in
the product topology and the ones defined by infinite conjunctions are closed,
this result implies that the negation of a closed game formula is indeed an
open game formula, and vice versa. This determinacy theorem, later extended
by Martin [64] to all Borel winning conditions, gives a foundation for the study
of game quantification.

As mentioned before, there is an intimate relationship between closed game
formulas and PCΔ formulas, which was first shown by Svenonius. For any
formula ϕ(z) ∈ PCΔ there exists a closed game formula ψ(z) such that for all
structures A it holds that A |= ϕ(z) → ψ(z) and for all countable structures
A it holds that A |= ϕ(z) ↔ ψ(z).

The above result was extended by Vaught to an analogous relationship
between formulas of the form ∃{Ri}i∈Nϕ where ϕ ∈ Lω1ω is written using a
signature extended with {Ri}i∈N, and closed Vaught formulas. These formu-
las are extensions of closed game formulas where countable conjunctions are
allowed after each ∀ quantifier and countable disjunction after each ∃ quan-
tifier. Their semantics is again given using a Gale-Stewart game, where the
strategies additionally pick a branch of the infinite conjunction or disjunction
in each step.
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For any closed Vaught formula ϕ one can consider a finite part of the
infinite sequence of alternating quantifiers in the prefix, which is an Lω1ω

formula. We say that these formulas approximate ϕ and Vaught proved that
on countable structures the conjunction of all these approximating formulas
is equivalent to ϕ. This is a strong result and combined with the Svenonius-
Vaught theorem mentioned before it allows to approximate existential second-
order quantification added to Lω1ω using only pure Lω1ω formulas. This has
interesting applications to the model theory of Lω1ω, for example allowing to
prove compactness and interpolation theorems for this logic. A more thorough
introduction to game quantification and its applications in logic is given in [56].

2.2 Game Quantification over Infinite Words

In the closed or open game formulas ∃x0∀x1 . . . R(x) the relation R is either an
open or a closed set over Aω because it is expressed by an infinite conjunction
or disjunction of FO formulas. As we are interested in automatic presentations,
i.e. structures over Σ≤ω where all relations are ω-regular, it is natural to
consider ω-regular relations R instead of open or closed ones.

To extend the notion of game quantification to an automatic presentation
A = (Σ≤ω, R1, . . . , Rk), we make explicit use of the fact that elements of the
universe are words and so already have an inductive structure to play the
game on, and we introduce FO[�], first-order logic extended with the regular
game quantifier �. We define the meaning of the formula �xy ϕ(x, y) by saying
that �xy ϕ(x, y) holds if ϕ can be satisfied by two arguments x and y which
are words constructed stepwise by two opposing players. The first letter of x
is given by the first player, then the first letter of y is given by the second
player, then another letter of x by the first player, and so on. Formally, to
capture both finite and infinite words over Σ we again define Σ� = Σ ∪ {�}
and set

�xy ϕ(x, y) ⇐⇒ (∃ well-formed f : Σ∗
� ×Σ∗

� → Σ�)
(∀ well-formed g : Σ∗

� ×Σ∗
� → Σ�)

ϕ(xfg , yfg),

where xfg and yfg are the Σ-words constructed inductively using f and g up
to the first appearance of �,

xfg[n] = f(xfg|n, yfg|n),

yfg[n] = g(xfg|n+1, yfg|n),
and well-formedness means that if any of the functions f or g outputs � then
the word xfg resp. yfg is considered to be finite and the function must then
continue to output � infinitely. Formally, we say that h is well-formed when

h(w, u) = � =⇒ (∀w′ � w) (∀u′ � u) h(w′, u′) = �.
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This definition coincides with the traditional one for an infinite string of
alternating quantifiers over letters and a regular relation in scope of all the
quantifiers,

�xy ϕ(x, y) ⇐⇒ (∃a0∀b0∃a1∀b1 . . .) ϕ(a0a1 . . . , b0b1 . . .).

Moreover, using our notation �xy ϕ(x) is equivalent to ∃x ϕ(x) as we can
always forget opponent moves and play letters from x or conversely use any
g to obtain the witness x. Similarly, �xy ϕ(y) is equivalent to ∀y ϕ(y). Thus,
we do not need to consider the standard quantifiers when the regular game
quantifier is present.

On some structures it is possible to encode a pair of words into a single
one, but that is not always the case. Therefore we might sometimes need to
use the game quantifier with more variables:

�x1 . . . xky1 . . . ym ϕ(x, y) ⇐⇒
(∃f : (Σ∗

�)k × (Σ∗
�)m → Σk

�)

(∀g : (Σ∗
�)k × (Σ∗

�)m → Σm
� )

ϕ(xfg , yfg),

where again the functions must be well–formed in each column and

xfg[n] = f(xfg|n, yfg|n), yfg[n] = g(xfg|n+1, yfg|n).

Example 2.1. To illustrate the use of game quantifier let us consider the fol-
lowing relation

R(u,w, s, t) defined by �xy (y = u→ x = s) ∧ (y = w → x = t).

We claim that R means that the common prefix of s and t is longer than the
common prefix of u and w. Denoting by v � r the common prefix of v and r
and by |v| the length of v we can say that

R(u,w, s, t) ≡ |u � w| < |s � t|,

with the additional necessary assumption that u �= w and s �= t.
The intuitive way to evaluate such a formula is by means of a game played

by two players – the Verifier choosing letters of x and the Falsifier choosing
letters of y. To see the above equivalence, let us assume that indeed the
common prefix of s and t is longer than the common prefix of u and w. In
this case, the Falsifier will have to choose whether y = u or y = w before
the Verifier chooses if x = s or if x = t, and therefore the Verifier is going to
win. In the other case, the Falsifier can win and prove the formula false as he
knows if the prefix of x can be prolonged to s or to t before choosing whether
y = u or y = w.
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2.3 Decidability and Determinacy for FO[�]

The two basic properties of FO[�] that interest us are decidability of the
model-checking problem for this logic on ω-automatic presentations and the
existence of a negation normal form, which semantically corresponds to the
determinacy of the underlying games.

To be able to state the existence of a negation normal form, let us introduce
another variation of the regular game quantifier, namely one where it is the
Falsifier who makes the moves first. Formally, let

�
∀xy ϕ(x, y) ⇐⇒ (∃f : Σ∗

� ×Σ∗
� → Σ�)

(∀g : Σ∗
� ×Σ∗

� → Σ�) ϕ(x∀fg , y
∀
fg),

where again the functions must be well-formed, but this time the words are
constructed in reverse order,

y∀fg[n] = g(x∀fg|n, y∀fg|n), x∀fg[n] = f(x∀fg|n, y∀fg|n+1).

If we denote the game quantifier introduced before by �
∃ then the intended

relation that leads to negation normal form can be stated in the following way
(note that the variables are reversed after �

∀ below):

�
∃xy ϕ(x, y) ≡ ¬�

∀yx ¬ϕ(x, y).

When the relation of prefixing a word with a letter, written y = ax for a
letter a ∈ Σ, is present, the quantifier �

∀ is superfluous and can be eliminated
by adding one letter,

�
∀xy ϕ(x, y) ⇐⇒ �

∃zy ∃x z = ax ∧ ϕ(x, y).

To verify this equivalence, observe that on the right side the Verifier must
start with an a and later play a strategy that ensures that ϕ is satisfied, so
the same strategy without the first a can be used on the left side. Conversely,
if Verifier’s strategy on the left side is given then playing an a and later the
same strategy is winning for the right side.

The observation that we use to prove both decidability and the existence
of negation normal is that if one starts with ω-regular relations then anything
defined in the FO[�] logic remains ω-regular. The proof relies on the fact that,
when applied to an automaton, the game quantifier indeed constructs a game
and changes the automaton to an alternating one.

Lemma 2.2. If the relation R(x, y, z) is ω-regular over x ⊗ y ⊗ z then the
relation S(z) ⇐⇒ �xy R(x, y, z) is ω-regular over ⊗z.
Proof. Let us take the deterministic automaton AR for R over x⊗ y⊗ z and
construct an alternating automaton AS for S over ⊗z in the following way.
The set of states, acceptance condition and initial state remain the same and
the new transition relation is defined by
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δS(q, c) =
∨

a∈Σk
�

∧

b∈Σl
�

δR(q, a⊗ b⊗ c),

where k is the length of x and l is the length of y.
By definition, the semantics of the relation S is

S(z) ⇐⇒ (∃f : (Σ∗
�)k × (Σ∗

�)l → Σk
�)

(∀g : (Σ∗
�)k × (Σ∗

�)l → Σl
�) ϕ(xfg, yfg, z).

Assuming for a tuple of words w that S(w) holds, we construct an accepting
run ρ of the automaton AS on w. The run ρ is constructed inductively starting
from q0, and in parallel we construct the tuples of words x and y, starting
from empty words. Assuming that we are on level n in the run-tree ρ on the
branch q0 . . . qn−1 and that the prefixes x|n and y|n were constructed, we let
x[n] = f(x|n, y|n) and for each a ∈ Σl

� we add a branch in ρ from qn−1 to
qn = δR(qn−1, x[n]⊗a⊗w[n]). Finally, we progress to one of these qn and store
y[n] = a. You can see that the function f in this definition of S(z) corresponds
to the choice of a branch to satisfy in the disjunction over the letters for x in
the Boolean formula when selecting the run of the alternating automaton, and
that the function g corresponds to the choice of the branch of the run, as all
branches must be accepted. The converse direction, constructing a function f
from the run ρ is analogous, the run-tree is in fact a representation of such a
function. ��
From this lemma, together with Theorem 1.2, the decidability of FO[�] on
automatic presentations follows. The doubly exponential bound on the size
of the deterministic automaton constructed from an alternating one gives a
bound on the complexity of model-checking FO[�] when the quantifier depth
of a formula is fixed. It is necessary to bound the quantifier depth to get ele-
mentary complexity, as the model-checking problem on automatic structures
in general is non-elementary even for FO. As regular relations on ω-words
are Borel, we can derive from the previous lemma and the result of Martin
[64] that the games corresponding to regular game quantifier are determined,
which proves game quantifier inversion as stated below.

Corollary 2.3. FO[�] is decidable on ω-automatic presentations, all relations
definable in it are ω-automatic and model-checking formulas with a fixed quan-
tifier depth k is in 2kEXPTIME.

Corollary 2.4. For each FO[�] formula ϕ, each automatic presentation A
and each valuation θ

A, θ |= �
∃xy ϕ(x, y, z) ⇐⇒ A, θ |= ¬�

∀yx ¬ϕ(x, y, z).

2.4 Expressive Power of FO[�]

As mentioned in the introduction, the binary ω-tree with the equal-length
relation Tωel(2) is a complete ω-automatic structure. In particular, every
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ω-automatic relation over {0, 1}ω can be defined by an FO formula over this
structure. Since FO[�] preserves regularity by Lemma 2.2, it follows that FO[�]
is equally expressive as just FO on Tωel(2).

The situation changes when the equal-length relation is not included, as
already Tω(2) is not a complete automatic structure for FO. It turns out that
we can even leave out the prefix relation and still define all regular relations
in FO[�] using only the successor predicates.

Theorem 2.5. On the structure ({0, 1}≤ω, S0, S1) where Si(v) holds exactly
when v = ui, all regular relations can be defined in FO[�].

Proof. First let us recall a few basic formulas that we are going to use. As we
have already shown in Example 2.1, we can use the game quantifier to talk
about the length of common prefix of words, i.e. for u �= w, s �= t we can say
|s � t| < |u � w| and the other variants with ≤,=,≥ and > can be expressed
using Boolean combinations and argument permutations of the above.

To say that x is a prefix of y we are going to say that no word z �= x has a
longer common prefix with x than y,

x � y ≡ (x = y) ∨ ∀z �= x |x � z| ≤ |x � y|.
To define equal length we again use the |s � t| < |u � w| relation to define

that |x| ≤ |y|. Note that so far we expressed |s � t| < |u � w| only for s �= t
and u �= w, so we can not just write |x� x| ≤ |y � y|. Instead, we say that for
any x′ �= x there is an y′ �= y that has common prefix with y not shorter that
the common prefix of x′ and x:

|x| ≤ |y| ≡ ∀x′ �= x ∃y′ �= y |x � x′| ≤ |y � y′|.
Now we can use a Boolean combination to define |x| = |y|, and in this way

we obtain both � and el. As all ω-regular relations over Tωel(2) can be defined in
FO, this completes the proof. ��
Note that the above formulas for � and el did not involve the successor pred-
icates. Definability of these two relations on any automatic presentation in
FO[�] just with equality is an important property which will be used subse-
quently.

One interesting example of an automatic presentation is the binary coding
of natural numbers where the least significant digit comes first. We look at
the expressive power of FO[�] on such presentations over {0, 1}≤ω. To speak
meaningfully about numbers, as opposed to words representing them, there
must be a relation eq in such presentation that defines the equality between
numbers as opposed to equality over words with redundant zeros, eq(x, y) ≡
(x = n0k and y = n0l) for some k, l ∈ N. Using eq and � it is possible to
define S0 and S1 over {0, 1}≤ω as words ending with one are exactly those
without redundant zeros. Thus in any such presentation with eq it is again
possible to define all regular relations in FO[�]. This can as well be used to
define + and thus adding other strong non-regular relations to the structure,
for example multiplication, makes model-checking undecidable.
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Corollary 2.6. On the binary (lower-endian) presentation of (N,=) the re-
lations + and |2 (and all relations regular in this presentation) are definable
in FO[�]. On the binary presentation of Skolem arithmetic (N,=, ·) the logic
FO[�] is undecidable.

2.5 Inductive Automorphisms

After analyzing what can be expressed in FO[�], we want to look for meth-
ods of establishing which relations can not be expressed in this logic. For
example, one could ask whether aω can be expressed in FO[�] without any
relations other than equality of words on {a, b}≤ω. We are going to develop a
general method to answer such questions by showing that there is a class of
automorphisms of a structure that extend to all relations definable in FO[�].

First of all, observe that not all automorphisms of an automatic presenta-
tion, when considered just as a first-order structure (Σ≤ω, R1, . . . , Rk), extend
to relations definable in FO[�]. For example, on a presentation with no rela-
tions, the bijection of Σ≤ω that swaps aω with bω and leaves other elements
untouched is an automorphism. On the other hand, the relation |s�t| < |u�w|
is definable in FO[�] just with equality, but the bijection described above is
not an automorphism of the structure extended with this relation, since

|bω � abω| < |aω � abω| but |aω � abω| > |bω � abω|.
The example above is not surprising since we proved that the prefix relation

is definable in FO[�] on any presentation, so any automorphism that preserves
FO[�]-definable relations on (Σ≤ω, R1, . . . , Rk) must be an automorphism of
(Σ≤ω, R1, . . . , Rk,�). We are going to explicitly define the class of inductive
automorphisms that do extend to relations definable in FO[�] by restricting
the bijections of Σ≤ω to a special form. It turns out that this class is precisely
the class of all automorphisms of (Σ≤ω,�), so extending the presentation
with the prefix relation assures that all FO[�]-definable relations are preserved
under automorphism.

Definition 2.7. The bijection φ : Σ≤ω → Σ≤ω is inductive whenever it
does not change the length of the words, i.e. |φ(u)| = |u| for every word u,
and additionally there exists a family of permutations

{πw}w∈Σ∗ πw : Σ → Σ,

such that for each word u with at least n letters the nth letter of π(u) is given
by the appropriate permutation,

φ(u)[n] = πu|n−1(u[n]).

Observe that the inverse bijection φ−1 of any inductive bijection φ is again
inductive as inverse permutations {π−1

w } can be used.
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If we restrict our attention to an automorphism φ that is an inductive
bijection then the structure can be extended with any FO[�] definable relation
and φ will still be an automorphism of the extended structure, as formulated
below.

Theorem 2.8. Let φ be an inductive automorphism of a structure A =
(Σ≤ω, R1, . . . , Rk) and R(x) a relation defined by an FO[�] formula ϕ(x).
Then φ is an automorphism of the extended structure (Σ≤ω, R1, . . . , Rk, R).

Proof. We proceed by induction on the structure of formulas and it is enough
to consider the inductive step for the game quantifier. Let ϕ(x, y, z) be a
formula such that

ϕA(a, b, c) ⇐⇒ ϕA(φ(a), φ(b), φ(c)).

We show that for ψ(z) = �xy ϕ(x, y, z) it holds ψA(c) ⇐⇒ ψA(φ(c)).
To prove it let us define for any strategies f of the Verifier and g of the

Falsifier used in �xy ϕ(x, y, z) the transposed strategies fφ, gφ in the following
way:

fφ(u,w) = πφ−1(u)f(φ−1(u), φ−1(w)),

gφ(u,w) = πφ−1(w)g(φ−1(u), φ−1(w)),

where πw is the permutation for word w associated with φ and πw applied
to a tuple v of the same length means applying πwi to each element vi. You
should observe that when the players play with strategies fφ, gφ then the
resulting words are exactly images of the words that result from using f and g
under φ,

xfφgφ
= φ(xfg), yfφgφ

= φ(yfg).

In this way we can use the winning strategy f for the first player in ψ(z) and
play with fφ in ψ(φ(z)). If the opponent chooses to play g then in the end the
formula ϕ(xfφg, yfφg, φ(z)) will be evaluated, but

ϕ(xfφg, yfφg, φ(z)) ≡ ϕ(φ(xfg
φ−1 ), φ(yfg

φ−1 ), φ(z))

≡ ϕ(xfgφ−1 , yfgφ−1 , z),

which holds as f is winning against any strategy, in particular against
gφ−1 . ��
While the explicit definition of inductive automorphisms given above was
useful for the proof, we can characterize these automorphisms in another
way, namely as automorphisms of (Σ≤ω,�). On the one hand, any inductive
automorphism preserves � because this is an FO[�]-definable relation. On
the other hand, it can be shown by induction on the prefix order that any
automorphism of (Σ≤ω,�) is inductive. First, the empty word is preserved
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by any automorphism that preserves the prefix relation as it is the minimal
element of �. Secondly, if a word w is mapped to w′ by an automorphism
preserving �, then all �-successors ofw must be mapped to �-successors ofw′,
which defines the permutation πw. Thus, all automorphisms of an automatic
presentation (Σ≤ω,�, R1, . . . , Rk) preserve FO[�]-definable relations.

The standard way to show that a relation is not definable in a logic using
automorphisms is to find an automorphism the relation is not invariant under.
Theorem 2.8 makes it possible to use this standard method for FO[�] on
automatic presentations, as shown in the following example, where we answer
the question asked at the beginning of this section.

Example 2.9. Let us consider the automorphism φ of {a, b}≤ω that just swaps
the first letter of all words, i.e. φ(au) = bu, φ(bv) = av, φ(ε) = ε. The
mapping φ is an inductive bijection; the appropriate permutations πw are
identities for all w �= ε, and πε is given by πε(a) = b and πε(b) = a. This
automorphism maps aω to baω and thus the set {aω} is not preserved under
φ. By Theorem 2.8 we conclude that aω is not definable in FO[�] just with
equality.



3

Games for Model Checking on Automatic
Structures

In the previous chapter we used games as a tool to define the semantics of
game quantification and to investigate questions in logic. In this chapter we
focus on games in their own right.

We start by defining games played on graphs by two players with perfect in-
formation. The connection between such games and logic is illustrated on two
well-known examples: the game-theoretical semantics of first-order logic where
games of finite duration are used, and model-checking ofmodalμ-calculuswhere
parity games are appropriate. These two examples show that studying the re-
lation to games can both lead to better insight into the expressive power of a
logic and also have an algorithmic utility for model checking. This motivates us
to look for games for model-checking on automatic structures.

To find an appropriate game model for first-order logic on an automatic
structure, we fix a presentation of the structure and investigate the extended
logic FO[�]. For this setting, we introduce multiplayer games played by two
coalitions with opposing objectives and with imperfect information exchanged
according to a hierarchical constraint [50]. On the one hand, this constraint is
suitable for defining model-checking games for the extended first-order logic,
and it is necessary for the problem of establishing the winning coalition to
be decidable. On the other hand, this constraint alone is not sufficient for
establishing the winners to be decidable.

To identify the properties needed to make hierarchical games decidable, we
study a restricted version of these games where players are forced to alternate.
We show that this constraint is required both for determinacy of hierarchical
games and for decidability of the problem of establishing the winning coalition.
Finally, we prove that hierarchical games where players alternate are indeed
model-checking games for FO[�] on automatic presentations.

3.1 Games on Graphs and Logic

In the previous chapter we discussed game quantification and used Gale-
Stewart games to provide semantics for game formulas. Since we were only
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interested in the existence of winning strategies, we did not give a formal def-
inition of what a game is in that context. In this section we want to take a
step back and define games, more precisely games played on graphs. We also
give an overview of the well-known connection between two-player zero-sum
games with complete information and fixed-point logics.

The intuition behind a two-player zero-sum turn-based game played on a
graph is very natural. Two players, let us call them Player 0 and Player 1, play
by moving a token around a graph of positions. There is a position singled out
in which the game starts and every position is assigned to one of the players.
When the token is in a position that belongs to one of the players, this player is
required to move by choosing an edge going out from this position. If there are
no outgoing edges, the player who can not move loses. If the players manage
to keep playing infinitely long, then the winner is decided based on a winning
condition that specifies which infinite plays are winning for Player 0 and which
for Player 1.

Definition 3.1. A Büchi, parity, Streett, Rabin or Muller game is given by a
tuple G = (V0, V1, E,F) where V0 is the set of positions of Player 0 and V1,
disjoint from V0, contains the positions of Player 1. E ⊆ V × V is the edge
relation denoting possible moves between positions V = V0 ∪ V1, and F ⊆ V ω

is a winning condition, represented in the same way as Büchi, parity, Streett,
Rabin and Muller acceptance conditions for automata described in section 1.3.

To avoid tedious case distinctions, we often assume that all plays are infinite,
i.e. that vE �= ∅ for all v ∈ V .

You can see that the Gale-Stewart game for a structure A can be viewed
as a graph game, either as a game on the tree T(A) with players alternating
their moves or as a game on the complete bipartite graph A×A with one side
belonging to Player 0 and the other to Player 1.

A strategy for player i ∈ {0, 1} in the game G is a function σ : V ∗Vi → V
with (v, σ(hv)) ∈ E for all h ∈ V ∗ and v ∈ Vi. A play π = v0v1 . . . is
consistent with a strategy σ for player i if vn+1 = σ(v0 . . . vn) for every n such
that vn ∈ Vi. Given strategies σ, ρ for Player 0 and Player 1, respectively, we
denote by πσ,ρ(v0) the unique play starting in position v0 which is consistent
with both σ and ρ.

We say that a strategy σ is winning for Player 0 from v0 if for all strategies
ρ of the opponent πσ,ρ(v0) ∈ F . Analogously, a strategy ρ is winning for
Player 1 from v0 if for all strategies σ of the opponent πσ,ρ(v0) �∈ F . The
set of all positions from which player i has a winning strategy is called the
winning region of player i. A game G is determined if from every position
either Player 0 or Player 1 has a winning strategy. Thus, in a determined
game, the game graph can be partitioned into winning regions of Player 0
and Player 1.

In many cases one is interested not only in arbitrary winning strategies, but
in strategies of a special kind. One prominent example are positional strate-
gies, where the strategy depends only on the current position and not on the
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previous positions of the play, i.e. σ(hv) = σ(v) for any history h. In a stronger
version of determinacy one requires the winning strategies to belong to a cer-
tain class. For example, games with parity winning conditions are determined
in positional strategies [31, 68], i.e. from every position either Player 0 or
Player 1 has a positional strategy that is winning against all strategies of the
opponent. For games with Muller winning conditions on finitely many priori-
ties a larger class of strategies is needed, namely such where a finite number
of memory states is allowed. We investigate various kinds of determinacy and
memory for strategies in chapter 4.

There is an intimate connection between zero-sum games and logic. The
idea to give semantics to logics using games was mentioned already in the
last decade of the 19th century by C.S. Pierce, and about sixty years later
Paul Lorenzen gave a game-theoretical semantics for first-order logic. Giving
a game-theoretical semantics to a logic means that for the evaluation of a
formula ϕ on a structure A one constructs a model-checking game MC(A, ϕ)
such that Player 0 has a winning strategy in MC(A, ϕ) from an initial position
exactly if A |= ϕ.

The model-checking game for an FO formula ϕ on A is constructed in a very
intuitive way. The positions of the game consist of subformulas of ϕ together
with a valuation of all free variables in the subformula. If the position is
of the form (ϕ1 ∨ ϕ2, θ) then Player 0 moves either to (ϕ1, θ) or to (ϕ2, θ).
Analogously, from (ϕ1 ∧ ϕ2, θ) Player 1 moves to one of the subformulas.
In a position of the form (∃xϕ, θ), Player 0 moves by choosing an element
a ∈ A. The next position is then (ϕ, θ[x← a]). For (∀xϕ, θ), the other player
can make analogous moves. When the game reaches a position (ϕ, θ) for an
atomic formula ϕ, the winner is determined depending on whether or not
A, θ |= ϕ.

On finite structures first-order logic is often too weak to express properties
of interest. Before we proceed to show model-checking games for first-order
logic on infinite structures, let us recall how a more expressive logic, the modal
fixed-point logic, can be model-checked on finite structures using parity games.

In computer science, real-world systems are often modeled using finite
Kripke structures, which are directed graphs labeled by a set of predicates.
Formally, a Kripke structure is a tuple K = (V,E, P1, . . . , Pk) with E ⊆ V ×V
and Pi ⊆ V . Important properties that often need to be checked on such sys-
tems include reachability, i.e. the question whether a node where a predicate
Pi holds can be reached from an initial node, and safety, i.e. the question
whether nodes where a predicate Pj holds can be avoided on all possible
paths from an initial node. These properties are not definable in FO, but
there are well-known temporal logics, like the linear time logic LTL and the
branching-time logic CTL, which can express these properties. There is an
elegant modal logic that subsumes all these temporal logics and can express
many interesting properties, the modal μ-calculus Lμ. Formulas ϕ of Lμ are
formed according to the following syntax,

ϕ = Pi | ¬Pi | X | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | μXϕ | νXϕ,
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and evaluated on a Kripke structure K using the following semantics.

– K, v |= Pi whenever Pi(v) holds and K, v |= ¬Pi in the other case,
– K, v |= ϕ ∧ ψ (ϕ ∨ ψ) whenever K, v |= ϕ and (or) K, v |= ψ,
– K, v |= ♦ϕ whenever there is a w ∈ vE for which K, w |= ϕ holds,
– K, v |= �ϕ whenever K, w |= ϕ for all w ∈ vE,
– K, v |= μXϕ whenever (K, X), v |= ϕ, where X is the smallest subset of V

for which the equation X = {w : (K, X), w |= ϕ} holds,
– K, v |= νXϕ whenever (K, X), v |= ϕ, where X is the biggest subset of V

for which the equation X = {w : (K, X), w |= ϕ} holds.

Note that in the syntax we use X to denote a set variable, while in the
definition of semantics we write (K, X) for the Kripke structure K extended
with the predicate X . The semantics above is well defined only if the smallest
and biggest solutions to the fixed-point equation exist, but this is indeed the
case due to the monotonicity of all the operators of Lμ.

The modal μ-calculus is a very expressive logic, in fact it can express all
MSO-definable properties that are invariant under bisimulation [46], and most
properties of practical interest belong to this class. To define a model-checking
game MC(K, ϕ) for an Lμ formula ϕ on a Kripke structure K one proceeds
in an analogous way to first-order logic. Player 0 chooses a successor for ♦
and ∨, while Player 1 moves for � and ∧. Additionally, to handle fixed-
point operators, from any set variable X a new edge is added back to the
formula μXϕ or νXϕ where the variable X was introduced. These back-
edges make infinite plays possible and it turns out that the winner of such
an infinite play is decided depending on whether the outermost fixed-point
variable occurring infinitely often in the play is introduced in a μ or in a ν
formula. This corresponds exactly to the parity condition and indeed, not only
are parity games powerful enough for model-checking Lμ, the converse holds
as well, i.e. winning in any parity game (with a fixed number of priorities) can
be expressed in the μ-calculus.

The correspondence between Lμ and parity games is not only an interesting
extension of the analogous relation between first-order logic and games of
finite duration, it also has interesting algorithmic consequences. While it is
still open whether there exists a polynomial-time algorithm for model-checking
Lμ, all of the most efficient algorithms known so far [47, 48, 86, 49] rely on
the representation of the problem as a game. In particular, one very efficient
algorithm [86] heavily exploits the structure of the game. This algorithm does
not compute the fixed-points in an iterative way, as suggested by the structure
of the Lμ formula. Instead, it starts by guessing a positional strategy in the
parity game and then it improves this strategy, which often takes fewer steps
than the iterative fixed-point evaluation. The fact that the structure of the
game can be of algorithmic use is an additional motivation to look for model-
checking games for FO[�] on automatic structures.
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3.2 Games with Hierarchical Imperfect Information

Our goal in this section is to describe a class of games that will later be used for
model-checking first-order logic with the game quantifier on presentations of
automatic structures. To define such games we go beyond two-player perfect
information games and use multiplayer games with imperfect information.
Even though there are multiple players, in the games we define they form two
coalitions with strictly opposing objectives. For this reason one could use a
different metaphor with just two players for the same class of games. We use
the multiplayer setting in this chapter and discuss the other possibilities in
the final chapter.

While imperfect information is a standard element of classical game the-
ory, especially for games in extensive form, in computer science games with
imperfect information played on graphs have first been studied in the con-
text of alternating Turing machines with private states [76, 77]. At that time
only the reachability condition was considered. Algorithmic solutions for im-
perfect information games with ω-regular winning conditions were presented
only recently [21], however only for the case of observable winning conditions.

The standard way to represent imperfect information in games is by means
of information sets, equivalence relations describing which states can not be
distinguished by a given player. We find it more convenient to use a different
representation, in which players see some of the actions of their opponents
and other actions are hidden. It is possible to transform between these two
representations, but the transformation may increase the size of the game.

Definition 3.2. A hierarchical Büchi, parity, Rabin, Streett or Muller game
with actions in a finite set Σ is given by a tuple

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, μ, F).

The game is played by two coalitions, I and II, each consisting of N players,
with the set of players denoted

Π = (1, I), (2, I), . . . , (N, I), (1, II), (2, II), . . . , (N, II)

and the arena of the game given by the pairwise disjoint sets of positions of
each player, V1,I, . . . , VN,I, V1,II, . . . , VN,II. Positions of coalition I are denoted
by VI = V1,I ∪ . . .∪VN,I and the ones of coalition II by VII = V1,II ∪ . . .∪VN,II,
with all positions denoted V = VI ∪ VII. The function μ : V × Σ → V
defines the possible moves, so that when a player chooses an action a ∈ Σ
in his position v then the token is moved and the play proceeds to position
μ(v, a). The objective of coalition I is given by the winning condition F ⊆ V ω,
represented in a finite way as a parity, Streett, Rabin or Muller condition,
depending on the type of the game.

When a hierarchical game is played infinitely long, an infinite sequence of
actions is taken by the players during the play, which we call the play actions



34 3 Games for Model Checking on Automatic Structures

sequence and denote by α ∈ Σω. Conversely, with every play actions sequence
α and a starting position v0, we associate the unique play πα(v0). It is the
infinite sequence of positions that results from making the moves according
to α,

πα(v0) = v0v1 . . . ⇐⇒ vi+1 = μ(vi, α[i]) for all i ∈ N.

During the play πα(v0) we encounter a sequence of players that take the moves
in each step, defined by Πα(v0)[i] = p ⇔ πα(v0)[i] ∈ Vp.

In a hierarchical game each player p has to decide on a strategy σp :
Σ∗ → Σ. In a game with perfect information one says that play actions α are
consistent with a strategy σp in a play starting in v0 if for each move i taken
by player p the action taken is given by the strategy acting on the history of
actions, α[i] = σp(α|i).

Since the players do not have perfect information, we additionally assume
that for each player p there is a view function νp that extracts the information
visible for this player from the history of play actions. More precisely, let
νp : (Σ ×Π)∗ → Σ∗ be the function that extracts the information visible
to player p from the history of play actions labeled by players who took these
actions. We say that a sequence of play actions α is consistent with a strategy
σp of player p in a play starting in v0 if, for each i for which πα[i] ∈ Vp, it
holds that

α[i+ 1] = σp(νp((α[0], Πα[0]) . . . (α[i], Πα[i]))).

The above definition of views of play history is very general, but we will only
use a concrete special case of hierarchical view functions. These hierarchical
views allow player k in each coalition to see the moves of players 1, . . . , k in
both coalitions, but do not allow him to see the moves of players with numbers
j > k. Formally, for a player p = (k, c), i.e. player number k in coalition c,

νp((a0, p0)(a1, p1) . . . (an, pn)) = ai1ai2 . . . ail

if for all i ∈ {i1, . . . , il} the player pi = (l, d) has number l ≤ k, and for all
other j �∈ {i1, . . . , il} the player pj = (m, e) has number m > k.

There is a good reason to use hierarchical view functions, namely that
for most other kinds of information flow, determining the winner, even in a
reachability game with three players, is undecidable [4, 2].

To define when coalition I wins a hierarchical game we can not require from
all players in this coalition to put forth their winning strategies before players
in coalition II do, as it is often done in games with perfect information. Intu-
itively, in that case players with higher numbers would lose their advantage
of information as their strategies would be disclosed too early. Therefore, we
use the following definition that requires that strategies are given stepwise,
level by level in the information hierarchy.
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Definition 3.3. Coalition I wins the hierarchical game

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, μ, F)

starting from position v0 if the following condition holds. There exists a strat-
egy σ1,I for player 1, I, such that for each strategy σ1,II of player 1, II, there
exists a strategy σ2,I, such that for each strategy σ2,II, . . . , there exists a strat-
egy σN,I, such that for each strategy σN,II, the play actions sequence α that
starts from v0 and is consistent with all strategies σ1,I, σ1,II, . . . , σN,I, σN,II
results in a play winning for I, i.e. πα(v0) ∈ F .

The definition for coalition II is analogous, i.e. there exists a σ1,II, such that
for all σ1,I, . . . , the play is winning for II, i.e. πα(v0) �∈ F .

Example 3.4. To get an intuition about the kind of interactions that appear in
hierarchical games, let us consider the simple game depicted in Figure 3.1 in
two variants. The positions of coalition I are round, the positions of coalition
II are square, there are two levels of information, and the positions on the
upper level are dotted.

A

A B

A B

L F

LL F

A

A B

A B

L F

LL F

Fig. 3.1. Example of a hierarchical game in two variants

You can think of this game as played using a coin with two sides, A and
B. Each of the players can choose to either flip the coin (F ) or leave it as it is
(L). Formally, there are four players in this game, two in each coalition. The
top position belongs to 2, II and the two bottom positions belong to 1, II. The
game proceeds as follows: first the second player of coalition II chooses either
to flip the coin or to leave it intact. Afterward, only the other two players
play by either flipping the coin or leaving it as it is. Coalition I wins if the A
side of the coin is seen infinitely often in positions where players in coalition
I move, as marked in Figure 3.1.

To illustrate the importance of hierarchical information levelswe consider two
variants of this game. In the first one (left), the bottom strongly connected com-
ponent belongs to players on the same information level, i.e. to 1, II and 1, I. In
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this scenario, coalition II can win, because first player 2, II can flip the coin toB
and later player 1, II can always repeat the last move of player 1, I.

In the other variant (right), the player in coalition I has more information,
i.e. the bottom strongly connected component belongs to 1, II and 2, I, with
V1,I = ∅. In this case coalition I can win, because the strategy of player 2, I
is given after the strategy of 1, II is set. Therefore, player 2, I can assure that
the coin will be flipped after each two moves, which guarantees that I holds
the coin on the A side infinitely often, independent of the first move of 2, II.

3.3 Alternation of Moves in Hierarchical Games

In games with perfect information it is not necessary to assume that the
players move in any fixed order. Moreover, the assumption that players move
in an alternating way can be made without loss of generality. We show that
this is not the case for hierarchical games. Thus, we define an alternating
hierarchical game as a hierarchical game, where for each letter a ∈ Σ and
each level i = 1, . . . , N the following alternation conditions hold:

vi ∈ Vi,I =⇒ μ(vi, a) ∈ Vi,II,

vi ∈ Vi,II =⇒ μ(vi, a) ∈ V(i mod N)+1,I.

To see that non-alternating hierarchical games can not be reduced to alter-
nating ones, let us consider the game depicted in Figure 3.2. The leftmost and
the rightmost bottom position is winning for coalition I, while in the other
two bottom positions coalition I loses. This simple hierarchical game is not
alternating and we show that it is not determined. To win this game, the
player on the lower level of information, i.e. 1, I or 1, II, has to predict the
move of the opponent, i.e. 1, II or 1, I. In particular, his strategy has to start
with an a exactly if the opponent starts with an a. As this holds for players in
both coalitions, it leads to a non-determined game as each player can counter
the strategy of the opponent, once it is known.

a b

a b a b

a

b a

b a

b a

b

Fig. 3.2. Non-determined hierarchical game
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a b

a

b a

b

a,b a,b

a

b a

b a

b a

b

Fig. 3.3. Alternation makes hierarchical games determined

Introducing alternation of moves, even in the simplest possible way, changes
this situation. The game depicted in Figure 3.3 is identical to the one in
Figure 3.2 except for two additional positions of player 1, I. These positions
may seem useless as there is no choice to be made there, but the new game is
determined. To convince yourself that, in the extended game, coalition II can
indeed win, take the following strategy of player 1, II: let him always play the
opposite move to the one that was taken before by player 1, I. For player 2, II
take the following strategy: if player 1, I declared that he will play a first, then
play b, and else play a first. You can check that these strategies are indeed
winning for coalition II, but this is possible only because when constructing
the strategy for 1, II the first letter played by 1, I was already known.

Another important difference between alternating and non-alternating hier-
archical games is decidability of the problem of establishing whether coalition
I wins the game. We show in the next section that this problem is decid-
able for alternating hierarchical games, and here we prove that in the general
non-alternating case it is undecidable. The differences between alternating
and non-alternating hierarchical games can be explained on the level of logic
and model-checking, as alternating hierarchical games correspond to model-
checking on automatic presentations, while non-alternating games correspond
to model-checking on presentations that use asynchronous automata, known
as rational structures, which have undecidable first-order theory. It is also
interesting to observe that the proof of undecidability uses the fact that all
players in hierarchical games as we defined them choose actions from the same
alphabet Σ. If we assume that in a hierarchical game every player chooses ac-
tions from his own alphabet, which does not overlap with the alphabet of
any other player, then establishing which coalition wins is decidable even for
non-alternating games, cf. [73].

Theorem 3.5. The question whether coalition I wins in a hierarchical Büchi
game is undecidable.
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Proof. We reduce the Post correspondence problem for u = u1, . . . , uK and
v = v1, . . . , vK , where ui, vi ∈ {a, b}∗, to the problem whether coalition I
wins in the hierarchical game Gu,v. The possible actions in Gu,v are Σ =
{a, b,�, 1, 2, . . . ,K} and they intuitively correspond to the players choosing
letters of the words ui, vi, a special delimiter �, and choosing which word to
play next.

In constructing Gu,v, we are going to use subgames such that, for a given
word u, the subgame enforces that u is played, or else the player that moves
loses. Such a subgame has one more position than the length of u, and if the
wrong letter is chosen then the move leads to a position where the player
loses. There is only one outgoing edge in such a subgame, the one taken when
the last letter of u is played. In Figure 3.4 we depicted an example subgame
for u = aba and player 1, I, who loses in the rightmost position.

a

b

a

b,�
,1,...,K

a,�,1,...,K

b,�,1,...,K

Fig. 3.4. Example subgame for u = aba

We start the construction of the game Gu,v with a position belonging to
player 3, II with two possible (non-losing) moves. In this position, coalition II
can decide if the test will be done for the words u or for the words v. All other
positions will be on lower levels of information and we construct them in such
a way that coalition I will never be able to deduce in which component the
play is taking place.

Each of the two components, for u and for v, starts with a position of player
2, I where this player chooses if he wants to play a word with index 1, . . . ,K or
the special symbol �. If the special symbol is chosen, player 1, I must play the
same symbol � and the play returns back to the position, where 2, I chooses
a word. When an index L is chosen, then in each of the components first the
word vL and then the word uL is played. The difference is that, in the first
component (for u), it is player 2, II who must play vL and player 1, I must play
uL, while in the other component (for v), it is player 1, I who must play vL
and player 2, II who must play uL. After the two words were played, the play
returns to the position where 2, I chooses the index of a word to be played.
The complete game is depicted in Figure 3.5, using subgames for ui and vi.

The winning condition is defined as follows: the special symbol � must be
chosen by 2, I infinitely often and additionally there must be another action
L, different from �, that is played infinitely often. While this is not directly a
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� �

v1 vK

u1 uK

· · ·

1 K

v1 vK

u1 uK

· · ·

1 K

Fig. 3.5. Complete game Gu,v

Büchi condition, the game can be transformed into a game with Büchi winning
condition. In the modified game, one more position for player 2, I is added in
each component, with the same moves as in the original one except for the
possibility of choosing �. In the transformed game, when 1, I chooses � in the
only position where he is allowed to do so, the play proceeds from the new
position of 2, I where � is not allowed, thus ensuring that a non-� action is
taken.

Let us first show that if there is a solution for the Post correspondence
problem for u and v then coalition I has winning strategies for Gu,v. Indeed,
let i1, i2, . . . , iM be the indices for the solution of the correspondence problem,
so that ui1ui2 . . . uiM = vi1vi2 . . . viM . Let player 2, I choose i1 in his first
move, then i2, i3, and so on up to iM , then the special symbol �, and then
again i1, i2, and so on. Player 1, I is going to play the letters from the word
ui1ui2 . . . uiM in turn, and then �, and then again the letters ui1ui2 . . . uiM ,
and �, and so on. Clearly, player 2, I chooses � and non-� infinitely often, so
to show that coalition I wins we only need to prove that player 1, I will never
play the wrong letter in a subgame for some word w. If the play is taking
place in the u component this is clear from the definition of the strategies
given above, as player 1, I plays exactly the words indices of which player 2, I
chooses. When the play takes place in the v component, the indices chosen
by player 2, I force player 1, I to play the words vi1 , vi2 , . . . , viM . But since
ui1ui2 . . . uiM = vi1vi2 . . . viM , this is equivalent to playing the ui words with
the same indices, which is exactly the strategy that player 1, I uses.

To prove the converse, namely that if there is a winning strategy for coali-
tion I then the correspondence problem has a solution, observe two intuitive
facts. First, 2, I can never deduce in which component the play is taking place,
because what he can see after each of his moves is the same in both compo-
nents. Secondly, � can be played by 2, I only if the words played up to that
point have the same length in both components. Otherwise, coalition I would
lose as � can not be played in a subgame for any word.

Formally, let us first fix the only rational strategy for 2, II, namely that if
a number L was the most recent action in the play, then 2, II plays vL, and if
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there were other actions from {a, b}∗ taken after the last time a number L was
played, then he plays uL. Note that the above construction implies that player
2, II knows in which component the play takes place, even if the move of 3, II
is not visible for him. With this strategy fixed, the condition that coalition
I has a winning strategy for Gu,v means that there exists a strategy σ1 for
player 1, I and a strategy σ2 for player 2, I such that the play corresponding
to these two strategies and the one fixed for 2, II is winning for coalition I,
independent of the component chosen by 3, II.

Let us first concentrate on the strategy σ2. Since, according to the winning
condition, � can not be the only action played infinitely often, and in each
component the only possible answer to � is again �, let us assume without
loss of generality that the first move taken by σ2 is not � and let it be L1.
After choosing L1 the play goes through vL1 and uL1 and does not stop, since
player 2, II uses a fixed strategy that prevents him from losing in a subgame
and player 1, I plays a winning strategy. Let us denote by L2 the next move
of 2, I, i.e. L1 = σ2(ε), L2 = σ2(L1vL1uL1), and continue the play denoting
the subsequent moves of 2, I by L2, . . . , LM , up to the point where he plays
�. Formally,

L1 = σ2(ε), Li+1 = σ2(L1vL1uL1 . . . LivLiuLi), LM+1 = �.

After extracting the sequence L1, . . . , LM of moves of 2, I from his winning
strategy σ2, let us look at player 1, I. This is the only player on information
level 1 so he only sees his own previous moves. In this case, the strategy σ1 is
in fact completely described by the word t ∈ {a, b,�}ω such that

t[i] = σ1(t|i) for all i ∈ N.

Due to the structure of the game, no � can be played by 1, I before 2, I decides
to play �, and then � must be played. Therefore, if w is the prefix of t up to the
first occurrence of �, then w is exactly the word played by 1, I while 2, I played
the moves L1, . . . , LM . But due to the structure of the game Gu,v, coalition
II can decide if w = uL1 . . . uLM or if w = vL1 . . . vLM . Since we extracted
both L1, . . . , LM and w independent of this choice, w has to be good for both
cases. Therefore it is the solution for the Post correspondence problem as
requested. ��

3.4 Model Checking with Hierarchical Games

We observed that non-alternating hierarchical games are neither determined
nor decidable, so we concentrate on the alternating version. Indeed, we prove
that alternating hierarchical games are exactly the games needed for model-
checking FO[�] on presentations of automatic structures.

To start with, observe that in an alternating game every infinite sequence
of play actions can be divided into blocks of 2N actions, each taken by a
different player,
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α = a1,I
0 a1,II

0 a2,I
0 a2,II

0 . . . aN,I0 aN,II0 a1,I
1 . . . aN,II1 a1,I

2 . . . .

Let the 2N -split of these play actions be the tuple of 2N words of actions
played by each of the players,

split2N (α) = (a1,I
0 a1,I

1 . . . , {a1,II
i }i∈N, . . . , {aN,Ii }i∈N, {aN,IIi }i∈N).

Observe that since the set of plays winning for coalition I and starting from
a fixed v0 is ω-regular, also the set of corresponding 2N -splits of play actions
is ω-regular. This is a known property of ω-regular languages, and it can be
proved by taking each 2Nth state of the automaton recognizing the plays
and making a product with Σ2N to store the states that were omitted from
the original automaton. For an alternating hierarchical game G with winning
condition F let us denote the 2Nary relation recognizing the 2N -split of plays
winning for coalition I by WG,v0

I (β1, . . . , β2N ), formally defined by

WG,v0
I (β) ⇐⇒ ∀α ( split2N (α) = β ⇒ πα(v0) ∈ F ).

The definition for coalition II is analogous with πα(v0)) �∈ F .
Using the relation WG,v0

I we can express in FO[�] that coalition I wins in
the alternating hierarchical game G, which results in the following theorem.

Theorem 3.6. For any alternating hierarchical game G and the relation
WG,v0

I defined as above, coalition I wins the game G starting from v0 if and
only if the following formula ϕI holds in (Σω,WG,v0

I ):

ϕI = �x1y1 . . .�xNyN WG,v0
I (x1, y1, . . . , xN , yN ).

Proof. Let us recapitulate the definition of coalition I winning a hierarchical
game and the semantics of the formula ϕI. Coalition I wins G if there is a
strategy σ1 for player on level 1 of coalition I, so that for any counter-strategy
ρ1, there exists a strategy σ2, and so on up to σN , such that for all ρN the
resulting play must be won by coalition I. On the other hand, the formula ϕI,
according to the definition of �, says that there is a function f1, so that for
all functions g1, there is a function f2, and so on up to a function fN , such
that for all gN , if we construct the words according to f and g then they form
a 2N -split of a play that is won by coalition I.

As the structure and the final condition in both definitions are equivalent,
due to the definition of WG,v0

I , the only remaining task is to show how the
functions fi, gi and the strategies σi, ρi are related. It is intuitively clear that
the functions and the strategies are closely related, the only difference is that
the functions fi, gi operate on prefixes of xi, yi while the strategies σi, ρi take
all actions of all players j ≤ i as arguments, which corresponds to prefixes
of all words xj , yj with j ≤ i. Intuitively, this makes no difference since the
words xj , yj are completely fixed before the function fi is constructed, and
we are going to prove it formally.
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Let us construct, given the function fi, a strategy σfi

i . The strategy σfi

i

applied to a view h of the history of play actions extracts from h the se-
quences hiI and hiII of actions of players i, I and i, II, respectively, and chooses
fi(hiI, h

i
II) as the next action. It is possible to extract hiI and hiII from h

due to the alternation condition, because we know that h is of the form
a1,I
0 a1,II

0 a2,I
0 a2,II

0 . . . ai,I0 a
i,II
0 a1,I

1 . . . and the sequences hiI = ai,I0 a
i,I
1 . . . and hiII

can be computed by taking every 2ith position in h starting from 2i− 1 and
2i, respectively. Note that extracting these sequences would not be possible if
it was not clear which player made which move, which we used in the previous
proof of undecidability.

Let us now do the converse and construct, given the strategy σi, the func-
tion fσi

i . For this construction we need to have all the fj, gj with j < i already
constructed, thus we write f{σj ,ρj}j≤i

i . Using the constructed functions fj , gj,
we can assume that the words xj , yj are already fixed. The result of

f
{σj ,ρj}j≤i

i (xi[0] . . . xi[n], yi[0], . . . yi[n])

is given by

σi(x1[0]y1[0] . . . xi[0]yi[0]x1[1]y1[1] . . . xi[1]yi[1] . . . xi[n]yi[n]).

The constructions relating gi and ρi are analogous. Observe that if

WG,v0
I (xf1g1yf1g1 , . . . , xfNgN yfNgN )

holds for some functions f, g then, by the above definition, we have that the
play π(v0, σ

f1
1 , ρ

g1
1 , . . . , σ

fN

N , ρgN

N ) is in F . Moreover, the converse holds as well,
i.e. if for some strategies σ, ρ we have

π(v0, σ1, ρ1, . . . , σN , ρN ) ∈ F ,

then WG,v0
I (xf1g1yf1g1 , . . . , xfNgN yfNgN ) holds, where fi = f

{σj ,ρj}j≤i

i and
gi = g

{σj ,ρj}j≤i

i are the functions constructed above.
This correspondence allows to exploit the similarity of the structure of the

definition of the FO[�] formula ϕI and the definition of coalition I winning in
G. Intuitively, it is enough to insert the transformed functions and strategies
into the definition to arrive at a contradiction and finish this proof. To avoid
cluttered notation, we formally present only one direction in the case of two
levels, the other direction and the proof for more levels is analogous.

Let us assume that ϕI holds and coalition I does not win G, formally

(1) ∃f1 ∀g1∃f2 ∀g2 WG,v0
I (xf1g1 , yf1g1 , xf2g2 , yf2g2),

(2) ∀σ1∃ρ1∀σ2∃ρ2 π(σ1, ρ1, σ2, ρ2) �∈ F .

Let us fix f1 that exists by our first assumption, set σ1 = σf11 and fix ρ1 that
exists by the second assumption for this σ1. Let us now set g1 = gρ11 and fix
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f2 that exists by the first assumption. Finally, let us set σ2 = σf22 and fix ρ2

that exists by the second assumption. By the previous observation

WG,v0
I (xf1g1 , yf1g1 , xf2g2 , yf2g2) ⇐⇒ π(σ1, ρ1, σ2, ρ2) ∈ F ,

but this contradicts the two assumptions above. ��
Observe that the same proof works for the other coalition and an analogous
relation WG,v0

II . Thus, the negation normal form of FO[�] corresponds to de-
terminacy of alternating hierarchical games.

Corollary 3.7. Alternating hierarchical games are determined.

After we captured winning in alternating games in FO[�] let us do the converse
and construct the model-checking game for a given FO[�] formula on an auto-
matic presentation A. At first, we restrict ourselves to formulas of the form

ϕ = �x1y1�x2y2 . . .�xNyN R(x1, y1, . . . , xN , yN)

and construct a game so that the split of the winning plays will allow us to
use the previous theorem.

Intuitively, the construction can be understood as prefixing each variable
with all possible letters in the order of information hierarchy and making a
step of the automaton when all the variables are prefixed. To define these
games precisely, let us take the deterministic automaton for R, denoted AR =
(Q, q0, δ,FR), and construct the model-checking game Gϕ for ϕ in the following
way.

For each tuple of letters c1, d1, c2, d2, . . . , cM , dM of even length, with 0 ≤
M < N , and for every state q ∈ Q, we have in Gϕ the position

Rq(c1x1, d1y1, . . . , cMxM , dMyM , xM+1, . . . , yN ). (3.1)

Moreover, for each tuple c1, d1, c2, d2, . . . , cM , dM , cM+1 of odd length, we have
the position

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ). (3.2)

In each of these positions, the next move is made by the player correspond-
ing to the next variable that is not yet prefixed by a letter, e.g. in position
3.1 it is the player M + 1 of coalition I who makes the move for xM+1 and in
position 3.2 it is the playerM+1 of coalition II. We can formally define the set
of positions of players on each level i as Vi,I = Q×Σ2(i−1), Vi,II = Q×Σ2i−1.

The moves in Gϕ intuitively correspond to the player choosing a letter to
prefix his variable with, so for 0 ≤M < N

μ(Rq(c1x1, . . . , dMyM , xM+1, . . . , yN), cM+1) =

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN ),
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and for 0 ≤M < N − 1

μ(Rq(c1x1, . . . , cM+1xM+1, yM+1, . . . , yN), dM+1) =

Rq(c1x1, . . . , cM+1xM+1, dM+1yM+1, xM+2, . . . , yN ).

The only special case is the final position Rq(c1x1, d1y1, . . . , cNxN , yN). When
player N, II chooses the final letter dN , it will not be appended, but instead
all prefixing letters will be removed and the state of the automaton will be
changed as follows, with α = c1d1 . . . cNdN :

μ(Rq(c1x1, d1y1, . . . , cNxN , yN ), dN ) = Rδ(q,α)(x1, . . . , yN ).

We derive the winning condition F of the game Gϕ from the acceptance
condition FR of the automaton for R in the following way. Only the state
component of each position in the game is taken into account, i.e. a sequence
π of positions of Gϕ is in F if and only if π projected to the state component
is in FR.

To see that the game Gϕ is indeed the model-checking game for ϕ, we use
Theorem 3.6 and observe that the 2N -split of the winning paths in Gϕ is
exactly the relation R, WGϕ,R

q0 (x1,y1,...,xN ,yN )
I = R.

In this way, the model-checking game for formulas in the considered form
is constructed. As we proved, any formula in FO[�] can be written in nega-
tion normal form and additionally, by renaming variables, it can be trans-
formed into prenex normal form. Let us therefore consider a general formula
in the form ϕ = �x1y1 . . .�xNyN ψ(x1, y1, . . . , xN , yN), where ψ is in nega-
tion normal form and does not contain quantifiers. We construct the game Gϕ
inductively with respect to ψ.

In the case of ψ(x) = R(x) or ψ(x) = ¬R(x) the solution was already
presented, when considering ¬R we just have to complement the acceptance
condition of the automaton for R. Let us show how to construct the game for
Boolean connectives, i.e. for ψ1 ∧ ψ2 and for ψ1 ∨ ψ2. We want to adhere to
the usual convention of model-checking games and to have only one additional
position for any Boolean connective. The game for ψ1 ◦ ψ2, where ◦ = ∧,∨,
is therefore constructed as follows: we take the two games for ψ1 and ψ2 and
we add one more position on higher level of information that has two possible
moves — to the starting position of ψ1 and to the starting position of ψ2.
The new position belongs to coalition I when ◦ = ∨ and to coalition II when
◦ = ∧ and in both cases the other coalition does not play on that information
level. With the construction described above we face a problem, as the game
is not strictly alternating any more, but this time it can be made alternating
by adding dummy positions, as presented in Example 3.8.

To formally prove that the resulting games are indeed model-checking
games for formulas with Boolean connectives, we replace the connectives with
a new variable and the formula with a relation where only the first letter of the
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new variable corresponding to the Boolean connective is considered. Then the
automaton for such a relation corresponds to the defined game and Theorem
3.6 can be used again.

Example 3.8. To illustrate the construction of model-checking games and the
method to overcome the technical problem with non-alternating games men-
tioned above, let us consider the simple formula ∃x (R1(x) ∧ R2(x)) over
{a, b}ω with R1 = {aω} and R2 = {a, b}ω\{aω}. Both the automaton for R1

and the one for R2 has two states and the transition functions are identical.
On any b the automata go from q0 to q1 and stay there forever. Only the
Büchi acceptance conditions differ, with F1 = {q0} and F2 = {q1}.

In Figure 3.6, the game for this formula is depicted. We show dummy
moves for the second player, as formally ∃xϕ(x) ≡ �xyϕ(x). Note that this is
actually a four-player game and the top position belongs to player 2, II. Since
the formula is false, coalition II wins this game. Indeed, for coalition I to win,
player 1, I would have to present a strategy to visit both of the double-circled
vertices infinitely often without knowing in which branch he is, and that is
impossible.

Rq0
1 (x) ∧ Rq0

2 (x)

Rq0
1 (x) Rq0

2 (x)

Rq1
1 (x) Rq1

2 (x)

a

a,b

b

a,b

a,b

a,b

a

a,b

b

a,b

a,b

a,b

Fig. 3.6. Model-checking game for ∃x(R1(x) ∧ R2(x))

To fix the problem with alternation, let us add positions where there is no
choice for the player. The alternating game for ψ1 ◦ψ2 is depicted in Figure 3.7.
In this game, dummy positions are added there, where it is necessary to make
the game alternating. It is clear that winning strategies in these two games can
be transferred, as in each move on each level of visibility the players know how
many moves on the other levels were made, both in the original game depicted
in Figure 3.6 and in the modified one in Figure 3.7.

The tight correspondence between alternating hierarchical games and FO[�]
makes it possible to use our knowledge about this logic to reason about the
games. In particular, we can transfer the results about complexity, including
the non-elementary lower bound on deciding FO[�] on automatic presenta-
tions, which allows us to conclude with the following corollary.
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Rq0
1 (x) ∧ Rq0

2 (x)

a,b

a,b

a,b

Rq0
1 (x) Rq0

2 (x)

Rq1
1 (x) Rq1

2 (x)

a

a,b

a,b a,b

b

a,b

a,b

a,b

a,ba,b

a,b
a,b

a

a,b

a,ba,b

b

a,b

a,b

a,b

a,b a,b

a,b
a,b

Fig. 3.7. Alternating game for ∃x(R1(x) ∧ R2(x))

Corollary 3.9. The question whether coalition I wins in an alternating hier-
archical game on a finite arena is decidable and has non-elementary complexity
when the number of levels is not fixed. It can be decided in 2kEXPTIME for
games with at most k levels.
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Memory Structures for Infinitary Games

In the previous chapters, we explored the connections between logic and games
in a generic way, without relating to a specific representation of winning con-
ditions in games. In this chapter, we investigate explicitly given winning con-
ditions in terms of the complexity of strategies that are needed to win games
with a fixed condition.

This question has been answered to a large extent for winning conditions
defined over finite sets of priorities. We look at games with winning condi-
tions defined over infinite sets of priorities and construct memory structures
for different types of conditions in this case. Inspired by the notion of latest
appearance record [39] used for games with finitely many priorities, we de-
fine the finite appearance record [34] and investigate which types of winning
conditions are determined with such memory. The class of these conditions
includes:

– downward cones,
– singleton conditions,
– finite unions of upwards cones,
– Muller conditions with finitely many winning sets,
– max-parity condition on graphs with bounded moves.

It remains open whether arbitrary max-parity games are determined via finite
appearance records and a complete classification of Muller conditions over an
infinite set of priorities with this property is not obtained. Still, the reduction
for Muller conditions containing finitely many (possibly infinite) sets is a
strong generalization of the classical case over finitely many priorities.

In addition to finite appearance records, we investigate winning conditions
for which a certain representation, called the Zielonka tree [88], exists. These
include all conditions over a finite set of priorities, for which the connection
between the Zielonka tree and the memory needed for strategies is well un-
derstood [88]. We show that under certain assumptions this classical result
can be transferred to infinite number of priorities as well.

Ł. Kaiser: Logic and Games on Automatic Structures, LNAI 6810, pp. 47–66, 2011.
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4.1 Memory Structures and Determinacy

The most general representation of ω-regular acceptance conditions (for au-
tomata) and winning conditions (for games) that we considered so far was
the Muller condition, which we defined as a class of subsets of states of the
automaton or positions of the game. In this chapter, we study these conditions
more thoroughly, and for this reason we give a slightly more general definition
and extend the notation.

To start with, we assume that every game we consider has an arena la-
beled by priorities from a set C. Formally, a game is now not only the tu-
ple (V0, V1, E,F) but it consists of the game graph G = (V, V0, V1, E) (with
V = V0 ∪ V1) which, together with a labeling function Ω : V → C, forms
the game arena (G,Ω). A game is defined as a game arena together with a
winning condition, G = (G,Ω,F), and we focus on a Muller winning condition
F over C defined as follows.

Definition 4.1. A Muller condition over a finite set C of priorities is written
in the form (F0,F1) where F0 ⊆ P(C) and F1 = P(C) − F0. A play π in a
game with Muller winning condition (F0,F1) is won by Player σ if, and only
if, Inf(π), the set of priorities occurring infinitely often in π, belongs to Fσ.
A Streett-Rabin condition is now defined as a Muller condition (F0,F1) such
that F0 is closed under union.

Definition 4.2. A memory structure for a game G with positions in V
is a triple M = (M, update, init), where M is a set of memory states,
update : M × V → M is a memory update function and init : V → M
is a memory initialization function. The size of the memory is the cardinality
of the set M . A strategy with memory M for Player σ is given by a next-move
function F : Vσ ×M → V such that F (v,m) ∈ vE for all v ∈ Vσ,m ∈ M .
If a play, from starting position v0, has gone through positions v0v1 . . . vn
the memory state is m(v0 . . . vn), defined inductively by m(v0) = init(v0),
and m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1). In case vn ∈ Vσ, the next
move from v1 . . . vn, according to the strategy, leads to F (vn,m(v0 . . . , vn)).
In case |M | = 1, the strategy is positional; it can be described by a function
F : Vσ → V .

We will say that a game is determined via memory M if it is determined
and both players have winning strategies with memory M on their winning
regions. A game is positionally determined if it is determined via positional
winning strategies.

Given a game graph G = (V, V0, V1, E) and a memory structure M =
(M, update, init) we obtain a new game graph G×M = (V ×M,V0×M,V1×
M,Eupdate) where

Eupdate = {(v,m)(v′,m′) : (v, v′) ∈ E and m′ = update(m, v′)}.



4.2 Latest Appearance Record for Muller Games 49

Obviously, every play (v0,m0)(v1,m1) . . . in G×M has a unique projection
to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in G has a unique
extension to a play (v0,m0)(v1,m1) . . . in G × M with m0 = init(v0) and
mi+1 = update(mi, vi+1).

Consider two games G = (G,Ω,W ) and G′ = (G′, Ω′,W ′). We say that G
reduces via memory M to G′, (in short G ≤M G′) if G′ = G × M and every
play in G′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M′ for
G × M we obtain a memory structure M∗ = M × M′ for G. The set of
memory locations is M ×M ′ and we have memory initialization init∗(v) =
(init(v), init′(v, init(v)) and the update function

update∗((m,m′), v) =
= (update(m, v), update′(m′, (v, update(m, v))).

Proposition 4.3. Suppose that a game G reduces to G′ via memory M
and that Player σ has a winning strategy for G′ with memory M′ from
(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M × M′ from position v0.

Proof. Given a strategy F ′ : (Vσ ×M) ×M ′ → (V ×M) for Player σ on G′

we have to construct a strategy F : (Vσ × (M ×M ′)) → V × (M ×M ′).
For a pair (v,m) ∈ Vσ ×M , we have that F ′(v,m) = (w, update(m,w))

where w ∈ vE. We now put F (v,mm′) = w. If a play in G that is consistent
with F proceeds from position v, with current memory location (m,m′), to a
new position w, then the memory is updated to (n, n′) with n = update(m,w)
and n′ = update′(m′, (w, n)). In the extended play in G′ we have an associ-
ated move from position (v,m) to (w, n) with memory update from m′ to
n′. Thus, every play in G from initial position v0 that is consistent with F is
the projection of a play in G′ from (v0, init(v0)) that is consistent with F ′.
Therefore, if F ′ is a winning strategy from (v0, init(v0)), then F is a winning
strategy from v0. ��
Corollary 4.4. Every game that reduces via memory M to a positionally de-
termined game, is determined via memory M.

Obviously, memory reductions between games compose. If G reduces to G′

with memory M and G′ reduces to G′′ with memory M′ then G reduces to G′′

with the memory M∗ = M × M′ defined above.

4.2 Latest Appearance Record for Muller Games

One of the reasons for the interest in parity games is the fact that parity
games over a finite set of priorities C = {0, . . . , d} are positionally determined
[31, 68]. The classical example of a game reduction with finite memory on
the other hand is the reduction of Muller games to parity games via latest
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appearance records [39]. Intuitively, a latest appearance record (LAR) is a list
of priorities ordered by their latest occurrence.

More formally, for a finite set C of priorities, LAR(C) is the set of sequences
c1 . . . ck�ck+1 . . . c� of elements from C ∪ {�} in which each priority c ∈ C
occurs at most once, and � occurs precisely once. At a position v, the LAR
c1 . . . ck�ck+1 . . . c� is updated by moving the priority Ω(v) to the end, and
moving � to the previous position of Ω(v) in the sequence. For instance, at a
position with priority c2, the LAR c1c2c3�c4c5 is updated to c1�c3c4c5c2. (If
Ω(v) did not occur in the LAR, we simply append Ω(v) at the end). Thus,
the LAR-memory for an arena with priority labeling Ω : V → C is the triple
(LAR(C), init, update) with init(v) = �Ω(v) and

update(c1 . . . ck�ck+1 . . . c�, v) = c1 . . . ck�ck+1 . . . c�Ω(v)

in case Ω(v) �∈ {c1 . . . c�}, and

update(c1 . . . ck�ck+1 . . . c�, v) = c1 . . . cm−1�cm+1 . . . c�cm

if Ω(v) = cm.
The hit-set of a LAR c1 . . . ck�ck+1 . . . c� is the set {ck+1 . . . c�} of priorities

occurring after the symbol �. Observe that if in a play π = v0v1 . . . , the LAR at
position vn is c1 . . . ck�ck+1 . . . c� then Ω(vn) = c� and the hit-set {ck+1 . . . c�}
is the set of priorities that have been seen since the latest previous occurrence
of c� in the play.

Lemma 4.5. Let π be a play of a Muller game G, and let Inf(π) be the set
of priorities occurring infinitely often in π. On π the hit-set of the latest
appearance record is, from some point onwards, always a subset of Inf(π) and
infinitely often coincides with Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that Ω(vn) ∈
Inf(π) for all n ≥ m. Since no priority outside Inf(π) is seen anymore after
position vm, the hit-set will from that point onwards always be contained in
Inf(π), and the LAR will always have the form c1 . . . cj−1cj . . . ck�ck+1 . . . c�
where c1, . . . cj−1 remain fixed and the set {cj , . . . , ck, ck+1, . . . c�} = Inf(π).
Since all priorities in Inf(π) are seen again and again, it happens infinitely
often that, among these, the one occurring leftmost in the LAR is hit. At such
positions, the LAR is updated to c1, . . . , cj−1�cj+1 . . . c�cj and the hit-set then
coincides with Inf(π). ��
Theorem 4.6. Every Muller game with finitely many priorities reduces via
LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labeling Ω : V →
C and winning condition (F0,F1). We have to prove that G ≤LAR G′ for a
parity game G′ with game graph G × LAR(C) and an appropriate priority
labeling Ω′ on V × LAR(C) which is defined as follows.



4.3 Games with Infinitely Many Priorities 51

Ω′(v, c1c2 . . . ck�ck+1 . . . c�) =
{

2k if {ck+1, . . . , c�} ∈ F0,
2k + 1 if {ck+1, . . . , c�} ∈ F1.

Let π = v0v1v2 . . . be a play on G and fix a number m such that, for
all numbers n ≥ m and Ω(vn) ∈ Inf(π), the LAR at position vn has the
form c1 . . . cjcj+1 . . . ck�ck+1 . . . c� where Inf(π) = {cj+1, . . . c�} and the prefix
c1 . . . cj remains fixed. In the extended play π′ = (v0r0)(v1, r1) . . . all nodes
(vn, rn) for n ≥ will therefore have a priority 2k+ρ with k ≥ j and ρ ∈ {0, 1}.
Assume that the play π is won by Player σ, i.e. Inf(π) ∈ Fσ. Since infinitely
often the hit-set of the LAR coincides with Inf(π), the minimal priority seen
infinitely often on the extended play is 2j+ σ. Thus the extended play in the
parity game G′ is won by the same player as the original play in the Muller
game G. ��
Observe that for a Muller game on n priorities, an LAR-memory has n! mem-
ory states. Dziembowski, Jurdziński, and Walukiewicz [26] have shown that
with this respect LAR-strategies are essentially optimal for Muller games.

Theorem 4.7. There exists a sequence (Gn)n∈ω of Muller games such that the
game graph of Gn is of size O(n) and every winning strategy for Gn requires
a memory of size at least n!

4.3 Games with Infinitely Many Priorities

The definition of the Muller condition (Definition 4.1) directly generalizes to
countable sets C of priorities. Note that with minor modifications it can also
be generalized to uncountable sets C, see [35] for a discussion of this. But
some properties that hold for a finite set of priorities C do not generalize
even to countable sets. One of them is the possibility to represent any Muller
condition by a Zielonka tree, which we discuss in section 4.6.

For finitely many priorities, the condition that F0 and F1 are both closed
under finite unions is sufficient for positional determinacy of any game with
this Muller condition. To see that this is not the case for infinite sets C, let
us discuss the possible generalizations of parity games to the case of priority
assignments Ω : V → ω. For parity games with finitely many priorities it is of
course purely a matter of taste whether we let the winner be determined by
the least priority seen infinitely often or by the greatest one. Here this is no
longer the case. Based on priority assignments Ω : V → ω, we consider the
following classes of games.

Infinity games are games where Player 0 wins those infinite plays in which
no priority at all appears infinitely often, i.e.

F0 = {∅},
F1 = P(ω) \ {∅}.
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Parity games are games where Player 0 wins the plays in which the least
priority seen infinitely often is even, or where no priority appears infinitely
often. Thus,

F0 = {X ⊆ ω : min(X) is even} ∪ {∅},
F1 = {X ⊆ ω : min(X) is odd}.

Max-parity games are games where Player 0 wins if the maximal priority
occurring infinitely often is even, or does not exist, i.e.

F0 = {X ⊆ ω : if X �= ∅ and X is finite then max(X) is even},
F1 = {X ⊆ ω : X is finite, non-empty, and max(X) is odd}.

It is easy to see that infinity games are a special case of parity games, via a
simple reassignment of priorities. Further, we note that for both parity games
and max-parity games, F0 and F1 are closed under finite unions. Nevertheless
the conditions behave quite differently.

Proposition 4.8. Max-parity games with infinitely many priorities in general
do not admit finite memory winning strategies.

Proof. Consider the max-parity game with positions V0 = {0} and V1 =
{2n+ 1 : n ∈ N} (where the name of a position is also its priority), such that
Player 0 can move from 0 to any position 2n+ 1 and Player 1 can move back
from 2n+1 to 0. Clearly Player 0 has a winning strategy from each position but
no winning strategy with finite memory. ��
On the other hand it has been shown in [35] that infinity games and parity
games with priorities in ω do admit positional winning strategies for both
players on all game graphs. In fact, parity games over ω turn out to be the
only Muller games with this property.

Theorem 4.9. [35] Let (F0,F1) be a Muller winning condition over a count-
able set C of priorities. Then the following are equivalent.

– Every game with winning condition (F0,F1) is positionally determined.
– Both F0 and F1 are closed under finite unions, unions of chains, and

non-empty intersections of chains.
– The Zielonka tree of (F0,F1) exists, and is a path of co-finite sets (and

possibly the empty set at the end).
– (F0,F1) reduces to a parity condition over n ≤ ω priorities.

4.4 Finite Appearance Records

Although over an infinite set of priorities one can easily define Muller games
that do not admit finite memory strategies, these games are often solvable
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by strategies with very simple infinite memory structures. For instance, for
the max-parity game described in the proof of Proposition 4.8, it suffices for
Player 0 to store the maximal priority seen so far, in order to determine
the next move in her winning strategy. One can readily come up with other
games where the memory required by a winning strategies is essentially a
finite collection of previously seen priorities.

This motivates the definition of an infinite memory structure that we call
finite appearance records (FAR) which generalizes the LAR-memory for games
with finitely many priorities. In a FAR we store tuples of previously encountered
priorities or some other symbols from a finite set. Additionally the update func-
tion in the appearance record is restricted, so that new values of the memory
can be equal only to the values stored before or to the currently seen priority.

Definition 4.10. A d-dimensional FAR-memory for a game G with priorities
in C is a memory structure (M, update, init) for G with M = (C ∪ N)d for
some finite set N such that whenever

update(m1, . . . ,md, v) = (m′
1, . . . ,m

′
d)

then m′
i ∈ {m1, . . . ,md} ∪N ∪ {Ω(v)}.

Observe that an LAR-memory over a finite set C is a special case of an FAR-
memory, with d = |C| + 1 and N = {�, B}, where B is a blank symbol used
to pad latest appearance records in which some priorities are missing. Here
the dimension of the FAR depends on the size of C. Hence, the question arises
whether there is a fixed dimension d and a fixed additional set N such that
every Muller game over finitely many priorities reduces to a parity game via
d-dimensional FAR-memory. From Theorem 4.7 it follows that his is not the
case. Indeed, since n! grows faster than nd for any constant d, we infer that
for any dimension d there is a Muller game Gd that can not be reduced to a
parity game via d-dimensional FAR-memory. From this we obtain the following
conclusion.

Proposition 4.11. There exists a Muller game G that does not reduce to a
parity game with any FAR-memory.

Proof. Take G to be the disjoint sum of the games Gd, assuming that all these
games have disjoint sets of priorities. Suppose that G reduces to a parity game
via some FAR-memory of dimension d. Since game extensions preserve con-
nectivity it follows that the extension of the connected component Gd of G will
also be a parity game. But this contradicts the fact that Gd does not reduce to
a parity game via d-dimensional FAR-memory. ��

4.5 FAR Reductions for Infinitary Muller Games

In this section we consider some cases of Muller games with priorities in ω
that admit FAR-reductions to positionally determined games.
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To illustrate the idea consider any downwards cone F0 = {X : X ⊆ A} for
a fixed set A ⊆ ω. Again it is easy to see that such games may require infinite-
memory strategies. To reduce such a game to a parity game G′ it suffices to
store the maximal priority m seen so far, and to define priorities in G′ by

Ω′(v,m) =

{
2m+ 2 if Ω(v) ∈ A,

2Ω(v) + 1 otherwise.

If Inf(π) ⊆ A then Player 0 wins π′ since no odd priority is seen infinitely
often in π′. If there is some a ∈ Inf(π) \A, then 2a+ 1 occurs infinitely often
in π′, and since a ≤ m from some point onwards, no smaller even priority can
have this property, so Player 1 wins π′.

Hence any Muller game such that F0 (or F1) is a downwards cone is deter-
mined via one-dimensional FAR-memory.

4.5.1 Visiting Sequences and Singleton Muller Conditions

Our next example for winning conditions that are amenable for an approach
via FAR-reductions are Muller games where the winning condition of Player 0
is a singleton, i.e. F0 = {A}, F1 = P(ω) \ {A}.

We first observe that such games may require infinite memory.

Theorem 4.12. For any A �= ∅, there exists a (solitaire) Muller game with
F0 = {A} whose winning strategies all require infinite memory.

Proof. If A = {a1, a2, . . . } is infinite, take the game with set of positions
V = V0 = A (where the name of a position indicates also its priority), and
moves (a1, an) and (an, a1) for all n ≥ 2. If A = {a1, . . . , an} is finite, let
ω\A = {b1, b2, . . . }. We consider instead the game with V = V0 = A∪(ω\A),
and set of moves

E ={(ai, ai+1) : 1 ≤ i < n} ∪
{(an, b) : b ∈ (ω \A)} ∪ {(b, a1) : b ∈ (ω \A)}.

In both cases, Player 0 wins, but requires infinite memory to do so. ��
We will prove that singleton Muller games can be reduced via FAR-memory
to parity games with priorities in ω which, as shown in [35], are positionally
determined. The FAR-memory that we use for this reduction is based on a
particular order in which the elements of the winning sets have to be seen
infinitely often, which is specified by a visiting sequence.

Definition 4.13. Let A = {a1 < a2 < . . . } be an infinite subset of ω. For
each n ∈ ω, let p(an) := a1a2 . . . an be the prefix of an. The visiting sequence
of A is the concatenation of the prefixes of all elements of A

visit(A) = p(a1)p(a2)p(a3) . . .

For a finite set {a1 < a2 < · · · < an} ⊆ ω we define visit(A) = p(an)ω.

Let G be a Muller game over ω.
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Lemma 4.14. For any play π = v1v2 . . . of G the set Inf(π) is the unique set
A with the following two properties:

(1) There exists a sequence of indices i1 < i2 < . . . such that the priorities
Ω(vi1 )Ω(vi2 ) . . . form the visiting sequence of A.

(2) If Ω(vk) ∈ ω \ A then there is only a finite number of indices i > k such
that Ω(vi) ∈ {0, . . . , Ω(vk)} ∩ ω \A.

Proof. First we notice that A = Inf(π) indeed fulfills these two properties.
The visiting sequence can be chosen from the play as all elements of Inf(π)
appear infinitely often. Since all elements of ω\Inf(π) occur only finitely often
in the play, the second property must also hold.

Conversely, if a set A satisfies property (1), then all elements of A appear
infinitely often in π, so A ⊆ Inf(π). If there were an element a ∈ Inf(π) \ A,
then for any k with Ω(vk) = a, there were infinitely many indices i > k, with
Ω(vi) = a which contradicts property (2). Thus if A satisfies properties (1)
and (2), then A = Inf(π). ��
Let A ⊆ ω be infinite. Any initial segment of the visiting sequence of A can be
written in the form p(a1)p(a2) . . . p(ai)a1a2 . . . aj where 1 ≤ j ≤ i+ 1. It can
be represented by a pair (p, c) where c = aj indicates the position of the last
letter in the current prefix p(ai+1), and p = ai indicates the last previously
completed prefix (or ε if we are at the first element). For instance, the initial
segment a1 a1a2 a1a2a3 a1a2a3 of the visiting sequence of A is encoded by
(a3, a3), the initial segment a1 is encoded by (ε, a1), and the empty initial
segment by (ε, ε). We write visitn(A) for the initial segment of length A of
visit(A).

Given a (finite or infinite) winning set A, we want to use a three-dimensional
FAR-memory to check whether Inf(π) = A. For infinite A, the memory state
after an initial segment of a play is a triple (p, c, q) where (p, c) encode the
initial segment of the visiting sequence of A that has been seen so far, and q
is the maximal priority that has occurred.

Definition 4.15. For any infinite set A ⊆ ω, we define a three-dimensional
FAR-memory FAR(A) = (M, init, update) with M = {(p, c, q) : p, c ∈ ω ∪
{ε}, q ∈ ω}. The initialization function is defined by

init(v) =

{
(ε,Ω(v), Ω(v)) if Ω(v) = a1

(ε, ε,Ω(v)) if Ω(v) �= a1

The update function is defined by

update(p, c, q, v) = (p′, c′, q′),

where q′ = max(q,Ω(v)), and where (p, c) and (p′, c′) encode, for some
n, the initial segments visitn(A) and visitn+1(A), respectively, of the vis-
iting sequence of A such that visitn+1(A) = visitn(A)Ω(v), or otherwise,
(p′, c′) = (p, c).
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For a more formal description, let

up(p, c, v) =

⎧
⎪⎨

⎪⎩

2 if, for some i, p = ai, c = ai+1, Ω(v) = a1

1 if, for some j ≤ i, p = ai, c = aj , Ω(v) = aj+1

0 otherwise

(where, to simplify notation, we identify ε with a0). Note that up(p, c, v) = 2
if, at node v, the visiting sequence is updated with an a1 (i.e. a prefix p(ai) has
been completed and a new one is started), that up(p, c, v) = 1 if the visiting
sequence is updated by another value, and that up(p, c, v) = 0 if no update of
the visiting sequence happens at v. Then we can define update(p, c, q, v) :=
(p′, c′, q′) by

(p′, c′) =

⎧
⎪⎨

⎪⎩

(c,Ω(v)) if up(p, c, v) = 2
(p,Ω(v)) if up(p, c, v) = 1
(p, c) if up(p, c, v) = 0

q′ = max(q,Ω(v))

For finite A = {a1 < a2 < · · · < an} this has to be modified since once
cannot really encode the part of the visiting sequence that one has seen with
priorities in A. In this case the value (p, c, q) is so that c is the last element
of the visiting sequence, q is the maximal priority that has occurred so far,
and p is the maximal priority that had occurred up to the last time when, in
the visiting sequence of A, a prefix p(an) had been completed and c had been
updated from an to a1. Thus we set

up(p, c, v) =

⎧
⎪⎨

⎪⎩

2 if c = an, Ω(v) = a1

1 if, for some i < n, c = ai, Ω(v) = ai+1

0 otherwise

and update(p, c, q, v) := (p′, c′, q′) with

(p′, c′) =

⎧
⎪⎨

⎪⎩

(q,Ω(v)) if up(p, c, v) = 2
(p,Ω(v)) if up(p, c, v) = 1
(p, c) if up(p, c, v) = 0

q′ = max(q,Ω(v)).

Theorem 4.16. Any singleton Muller game with F0 = {A} can be reduced,
via memory FAR(A), to a parity game.

Proof. The given Muller game G with arena (G,Ω) and Muller condition
such that F0 = {A} is reduced via memory FAR(A) to a parity game G′ with
priority function Ω′ : V × FAR(A) → ω defined as follows.

Ω′(v, p, c, q) =

⎧
⎪⎨

⎪⎩

2p+ 2 if Ω(v) ∈ A, up(p, c, v) ∈ {1, 2}
2p+ 3 if Ω(v) ∈ A, up(p, c, v) = 0
min(2p+ 3, 2Ω(v) + 1) if Ω(v) �∈ A
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We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play π′ = (v0, p0, c0, q0)(v1, p1, c1, q1) . . . of G′.

We first assume that Inf(π) = A and prove that either no priority at all
occurs infinitely often in π′ or the minimal such is even. If A is infinite, then
the sequence of the values pn diverges and therefore no priority will be seen
infinitely often in π′. If A is finite then it may be the case that the sequence
(pn)n∈ω converges, i.e. pn = p from some point onwards. But since the visiting
sequence will be updated again and again this means that infinitely often the
priority 2p+2 occurs in π′, and the only other priority that may occur infinitely
often is 2p+ 3. Hence Player 0 wins π′.

For the converse, we assume that Player 1 wins π. We distinguish several
cases. If there exist some a ∈ A \ Inf(π) then from some point onwards,
the visiting sequence cannot be updated anymore, so the sequence (pn)n∈ω
stabilizes at some value p. Then the minimal priority seen infinitely often is
either 2p+ 3, or 2Ω(v) + 1 for some Ω(v) ∈ ω \A and Player 1 also wins π′.
If no such element a exists, then A � Inf(π) and there is a minimal element
b ∈ Inf(π) \A. If the sequence (pn)n∈ω diverges (which is always the case for
infinite winning sets A) then the minimal priority seen infinitely often in π′

is 2b + 1. If A is finite then the sequence pn may stabilize at some value p
which coincides with the largest priority ever occurring in π. Hence b ≤ p and
therefore 2b+ 1 < 2p+ 2, so the minimal priority seen infinitely often in π′ is
2b+ 1. Again Player 1 wins the associated play in the parity game. ��
Corollary 4.17. Singleton Muller games are determined with FAR memory.

4.5.2 Finite Unions of Upwards Cones

Visiting sequences can also be used for the case where F0 is a finite union of
upwards cones, i.e.

F0 =
k⋃

i=1

{X : Ai ⊆ X ⊆ ω}

for some finite collection of sets A1, . . . , Ak.
The FAR-memory stores the pairs (pi, ci) encoding the visiting sequences of

A1, . . . , Ak. All that has to checked is whether Ai ⊆ Inf(π) for some i, which
is the case if, and only if, one of the visiting sequences is updated infinitely
often. Thus we can define priorities by

Ω′(v, p1, c1, . . . , pk, ck) =

{
0 if up(pi, ci, v) = 2 for some i
1 otherwise.

Theorem 4.18. Any Muller game such that Fσ is a finite union of upwards
cones is determined via FAR-memory.
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4.5.3 Muller Conditions with Finitely Many Winning Sets

We now consider the case of Muller games whose winning conditions are de-
fined by a finite collection of (possibly infinite) sets, F0 = {A1, . . . , Ak}. To
extend the idea presented above to this case we are going to use the memory
FAR(Ai) for each set Ai and additionally we have to remember when the set
Ai is active, as is described below. The property of being active is stored in a
value ai ∈ {0, 1, 2}.
Definition 4.19. For a finite collection {A1, . . . , Ak} of sets Ai ⊆ ω, we
define a 4k-dimensional FAR-memory FAR(A1, . . . , Ak) = (M, init, update).
We denote the FAR-memory of Ai by FAR(Ai) = (Mi, initi, updatei). Then
M = M1 ×M2 × . . .×Mk × {0, 1, 2}k. The initialization function is defined
by

init(v) = (init1(v), . . . , initk(v), 0̄).

The update function is defined by

update(m1, . . . ,mk, a1, . . . , ak, v) =
(update1(m1, v), . . . ,updatek(mk, v), a′1, . . . , a

′
k),

where a′i is the new activation value for sequence i defined by

a′i =

⎧
⎪⎨

⎪⎩

0 if v �∈ Ai and for some j ≤ k upj(mj , v) > 0
min(2, ai + 1) if upi(mi, v) = 2
ai otherwise.

Theorem 4.20. Any Muller game with F0 = {A1, . . . , Ak} can be reduced,
via memory FAR(A1, . . . , Ak), to a parity game.

Proof. The given Muller game G with arena (G,Ω) and Muller condition such
that F0 = {A1, . . . , Ak} is reduced to a parity game G′ with priority function
Ω′ defined by

Ω′(v,m, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxAct(v,a)(2kpi + 2ri + 2) if exists j such that
Ω(v) ∈ Aj , aj = 2,
upj(mj , v) ∈ {1, 2}

maxAct(v,a)(2kpi + 2ri + 3) if exists j such that
Ω(v) ∈ Aj , aj = 2,
and upj(mj , v) = 0
for all such j

min(2kpmax + 3, 2Ω(v) + 1) otherwise

where Act(v, a) = {i : Ω(v) ∈ Ai ∧ ai = 2} are the indices of active sets to
which v belongs, pi is the first component of the i-th memory mi = (pi, ci, qi),
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pmax = max{p1 . . . pk} and for each Ai ∈ F0 we have ri = |{Aj ∈ F0 : Ai ⊆
Aj}|.

We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play

π′ = (v0,m10, . . . ,mk0, a10, . . . ak0)(v1,m11, . . . ,mk1, a11, . . . ak1) . . . .

For a given play π of G, we divide the sets A1, . . . , Ak ∈ F0 into three
classes.

The good: Ai is a good set if Ai is active (ai = 2) only finitely often in π.
The bad: Ai is a bad set, if Ai ⊆ Inf(π) and Ai is not a good set.
The ugly: Ai is an ugly set if there is a priority c ∈ Ai \ Inf(π) and Ai is not

a good set.

Lemma 4.21. If Ai is bad and Aj is ugly, then Ai ⊆ Aj.

Proof. Assume that there is a b ∈ Ai \ Aj . Since Ai ⊆ Inf(π) the visiting
sequence for Ai is updated infinitely often, hence infinitely often with b, and
whenever this happens then aj is reset to 0. By definition there is a c ∈ Aj
that is seen only finitely many times in π. Therefore aj = 0 from some point
onwards. But this contradicts the assumption that Aj is not good. ��
We first assume that Inf(π) = Ai and prove that either no priority at all
occurs infinitely often in π′ or the minimal such priority is even.

Since from some point on there is no priority d �∈ Ai that occurs infinitely
often, then for all sets Aj that are not subsets of Ai the visiting sequence will
not be updated any more, and so the sequence (pjn)n∈ω stabilizes at some
value pj . Since the visiting sequence of Ai is updated infinitely often, we get
that from some point on ai = 2. Hence Ai is a bad set. We can now argue as
in the proof of Theorem 4.16: if infinitely many priorities appear in π, then
the sequence (pin)n∈ω diverges and no priority at all will be seen infinitely
often in π′. It remains to consider the case where only finitely many priorities
occur in π. Then the sequence (pin)n∈ω stabilizes at some value p, which is
the maximal priority appearing in π. For any Aj � Ai, the sequence (pjn)n∈ω
will then also stabilize at the same value p, and rj > ri. It follows that some
priority of form 2kp+ 2r� + 2 occurs infinitely often in π′, where r� ≥ ri.

Suppose now that some smaller odd priority occurs infinitely often in π′.
Then it would have to be of the form 2kp+2rj+3 with rj < r� such that aj = 2
infinitely often. However, only finitely many priorities appear in π. Hence if
there are infinitely many positions v such that Ω(v) ∈ Aj and aj = 2, then
from some point onwards all these positions v satisfy that Ω(v) ∈ Aj ∩Ai and
ai = 2. On infinitely many such positions an update happens, and therefore,
also the priority 2kp+2rj+2 appears infinitely often. Hence Player 0 wins π′.

For the converse, we now assume that Player 1 wins π.

Lemma 4.22. Suppose that some even priority 2kq+ 2r+ 2 is seen infinitely
often in π′. Then q is the maximal priority that occurs in π and r = r� for
some bad set A�.
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Proof. If there are infinitely many occurrences of 2kq+ 2r+ 2 in π′, then q is
the maximal priority that occurs in π and some Ai is updated infinitely often
(i.e. Ai ⊆ Inf(π)) and active infinitely often. Obviously Ai is bad and r ≥ ri.
If r �= r� for all bad set A�, then r = rj for some other Aj that is active
infinitely often. Thus Aj has to be ugly. But then by Lemma 4.21 Ai ⊆ Aj
and thus ri > rj = r. But r ≥ ri. ��
Let r = min{r� : A� is bad}. To show that Player 1 wins π′ it suffices to
prove that there is an odd priority occurring infinitely often in π′ which, in
case there exists a bound q on all priorities appearing in π, is smaller than
2kq + 2r + 2.

Notice that for any ugly set Ai, the sequence (pin)n∈ω stabilizes at some
value pi. Let p = max{pi : Ai is ugly}.

We distinguish two cases. First we assume that there exists some priority

b ∈ Inf(π) \
⋃

{Ai : Ai is bad}.
Fix n0 such that, for all n > n0, pin = pi for all ugly sets Ai and ain �= 2 for

all good sets Ai. Since b ∈ Inf(π) there exist infinitely many vn with n > n0

and Ω(vn) = b. For such vn we have Ω′(vn, m̄n, ān) = 2kp+2ri + 3 if there is
a set Ai (which has to be ugly) such that b ∈ Ai and ai = 2.

Otherwise Ω′(vn, m̄n, ān) is odd and ≤ 2b + 1. Since Ai is ugly and A� is
bad it follows that A� ⊆ Ai. Thus, ri < r. Further p ≤ q. It follows that there
exists some odd priority s ≤ max(2kp + 2ri + 3, 2b + 1) < 2kq + r + 2 that
appears in π′ infinitely often.

Now we consider the other case: every b ∈ Inf(π) is contained in some bad
set Ai(b). Let A1, . . . , A� be the bad sets. Without loss of generality, we assume
that A1 is a maximal bad set, i.e. A1 �⊆ Ai for i = 2, . . . , �. Since A1 is a strict
subset of Inf(π), we can fix a priority d ∈ Inf(π) \ A1. Since any priority
d ∈ Inf(π) is contained in some bad set, we can assume that d ∈ A2. Further,
by the maximality of A1, we can fix priorities e2, . . . , e� where ei ∈ A1 \Ai.

We consider a suffix of π that starts at a position where

– all sequences (pin)n∈ω that stabilize at some value pi have already reached
that value,

– all good sets Ai have become inactive for good (i.e. ai �= 2),
– in the visiting sequence for A1 the prefixes p(e1), . . . p(e�) have already

been completed.

Note that A1 is updated infinitely often, and between any two consecutive
points in this suffix at which up1 = 2 all priorities e2, . . . , e� are seen at
least once. Since the priority d appears infinitely often in π and A2 is updated
infinitely often, we are going to see infinitely many points vn0 in the considered
suffix of π for which Ω(vn0 ) = d and a1 = 0 (since a1 is reset with an update
of A2). Since a1 increases to 2 infinitely often, there are infinitely many tuples
n0 < n1 < n2 such that a1 = i at all positions vn with ni ≤ n < ni+1 and
a1 = 2 at vn2 .
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By definition up1 = 2 at vn1 and vn2 and there cannot be any updates on
priority d between vn1 and vn2 , as then a1 would be reset to 0. By our choice
of the considered suffix of π, there are updates on all e2, . . . , e� between vn1

and vn2 . Therefore, for any bad set Aj that contains d, we have that aj < 2
between position vn2 and the first position vn with Ω(vn) = d that comes after
vn2 . This is the case because between vn1 and vn2 the value aj was reset to 0
by the update of the visiting sequence for A1 by priority ej , and since then it
has not increased by more than 1 since there was no update on priority d.

Let us now consider the new priority at vn. Since all bad sets Aj containing
d are inactive, we have the same situation as in the first case: Ω′(vn, m̄n, ān) =
2kp+ 2ri + 3 if there is a set Ai (which has to be ugly) such that d ∈ Ai and
ai = 2. Otherwise Ω′(vn, m̄n, ān) is odd and ≤ 2d + 1. Since Ai is ugly and
A� is bad it follows that A� ⊆ Ai and thus ri < r� = r. Further p ≤ q.

There are infinitely many such positions vn. Thus there must exist some odd
priority s ≤ max(2kp+2ri+3, 2d+1) < 2kq+r+2 that appears in π′ infinitely
often. ��
Of course, the same arguments apply to the case where F1 is finite.

Corollary 4.23. Let (F0,F1) be a Muller winning condition such that either
F0 or F1 is finite. Then every Muller game with this winning condition is
determined via FAR memory.

4.5.4 Max-parity Games with Bounded Moves

We say that a an arena (G,Ω) has bounded moves if there is a natural number
d such that |Ω(v) −Ω(w)| ≤ d for all moves (v, w) of G.

We have shown in Proposition 4.8 that, in general, winning strategies for
max-parity games require infinite memory, but we do not know whether max-
parity games are determined via FAR-memory.

For max-parity games with bounded moves, it is still the case that winning
strategies may require infinite memory, but now we can prove determinacy
via FAR-memory.

Proposition 4.24. There exist max-parity games with bounded moves whose
winning strategies require infinite memory.

Proof. Consider a (solitaire) max-parity game with a single node v0 of pri-
ority 0 from which Player 0 has, for every odd number 2n + 1, the option
to go through a cycle Cn consisting of nodes with priorities 2, 4, . . . , 2n, 2n+
1, 2n, 2n− 2, . . . , 4, 2 and back to the node v0. All these cycles intersect only
at v0. Clearly Player 0 has a winning strategy, namely to go successively
through cycles C1, C2, . . . with the result that there is no maximal priority
occurring infinitely often. However, if Player 0 moves according to a finite-
memory strategy then only finitely many cycles will be visited and there is
a maximal n such that the cycle Cn will be visited infinitely often. Thus the
maximal priority seen infinitely often will be 2n+ 1 and Player 0 loses. ��
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Lemma 4.25. Let π be a play of a max-parity game G with bounded moves
such that infinitely many different priorities occur in π. Then max(Inf(π))
does not exist, so π is won by Player 0.

Proof. Assume that moves of G are bounded by d and Inf(π) �= ∅ and let q
be any priority occurring infinitely often on π. Since infinitely many different
priorities occur on π it must happen infinitely often that from a position with
priority q the play eventually reaches a priority larger than q+d. Since moves
are bounded by d, this means that on the way the play has to go through at
least one of the priorities q+1, . . . , q+d. Hence at least one of these priorities
also occurs infinitely often, so q cannot be maximal in Inf(π). ��
Theorem 4.26. Every max-parity game with bounded moves can be reduced
via a one-dimensional FAR-memory to a parity game. Hence max-parity games
are determined via strategies with one-dimensional FAR-memory.

Proof. The FAR-memory simply stores the maximal priority m that has been
seen so far. To reduce a max-parity game G with bounded moves, via this
memory, to a parity game G′ we define the priorities of G′ by

Ω′(v,m) = 2m−Ω(v).

Let π be a play of G and let π′ be the extended play in G′. We distinguish
two cases. First, we assume that on π the sequence of values for m is un-
bounded. This means that infinitely many different priorities occur on π, so
by Lemma 4.25, Player 0 wins π. But since m ≤ Ω′(v,m) and m never stabi-
lizes there is no priority that occurs infinitely often on π, so π′ is also won by
Player 0.

In the second case there exists a suffix of π on which m remains fixed on the
maximal priority of π. In that case Inf(π) is a non-empty subset of {0, . . . ,m}
and Inf(π′) is a non-empty subset of {m, . . . , 2m}. Further, Ω′(v,m) is even
if, and only if Ω(v) is even, and Ω′(v1,m) < Ω′(v2,m) if, and only if, Ω(v1) >
Ω(v2). Thus, min(Inf(π′)) is even if, and only if, max(Inf(π)) is even. Hence
π is won by the same Player as π′. ��

4.6 Infinitary Zielonka-Tree Memory

In this section we stop investigating finite appearance records and study
Muller conditions represented by Zielonka trees. These trees, with nodes la-
beled by sets of priorities, were introduced by Zielonka in [88] under the name
of split trees to establish how much memory is needed for strategies in games
with a fixed Muller condition.

Definition 4.27 (Cf. [88]). The Zielonka tree for a Muller condition (F0,F1)
over a set C of priorities is a tree Z(F0,F1) whose nodes are labeled with pairs
(X,σ) such that X ∈ Fσ. We define Z(F0,F1) inductively as follows. Let
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C ∈ Fσ and C0, . . . , Ck be the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then
Z(F0,F1) consists of a root, labeled by (C, σ), to which we attach as subtrees
the Zielonka trees Z(F0∩P(Ci),F1∩P(Ci)) for i = 0, . . . , k. Moreover, if the
intersection of all sets on an infinite branch of a Zielonka tree is not empty,
then the intersection is added as the final point on the branch (so a Zielonka
tree may be an ω-tree).

Every Muller condition over a finite set of priorities can be represented using a
Zielonka tree, but this is not always possible for infinite sets C. This happens
because there may be sets D ∈ Fσ that have subsets in F1−σ but no maximal
ones.

We will analyze Muller conditions (F0,F1) over ω for which the tree
Z(F0,F1) exists, is finitely branching, and all internal nodes of the tree are
labeled with co-finite sets. Slightly abusing notation, we will identify a node
(X,σ) in the Zielonka tree with X , if the Muller condition is clear in the con-
text. For such a node X , we denote its successors by X0, X1, . . . , Xk and, as
all internal sets are co-finite, we know that X \X i is finite for all i. Please note
that with this notation we have implicitly fixed an ordering of the successors
of each vertex.

We define the height of a node X in a Zielonka tree, denoted h(X), as its
distance to the root, starting with 0 if ω ∈ F0 or with 1 if ω ∈ F1. In this way
the height of a node (X,σ) is even for σ = 0 and odd for σ = 1.

Example 4.28. The parity condition has a very simple Zielonka tree, namely
just a Zielonka path

ω → ω \ {0} → ω \ {0, 1} → ω \ {0, 1, 2} → · · ·
and h(X) = min(X). There is no Zielonka tree for the max-parity condition
since ω ∈ F0 has no maximal subset in F1 as F1 is not closed under unions
of chains.

To define a memory structure for Muller conditions that have Zielonka trees
with the properties described above we slightly deviate from the previous
definition of a memory structure. In the rest of this chapter we use memory
structures with move update functions. We define this memory in the same
way as in Definition 4.2, with the only exception that this time the memory
update function, update : M×V ×V → M , depends on both the start and on
the end position of a move, not only on the final position as in the previous
definition. The inductive definition of the memory state is thus changed to
m(v0) = init(v0) and

m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi, vi+1).

The notion of a reduction presented before generalizes to memory structures
with move update functions in the following way. For a game graph G =
(V, V0, V1, E) and a memory structure M = (M, update, init), we again define
G× M = (V ×M,V0 ×M,V1 ×M,Eupdate), but
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Eupdate = {(v,m)(v′,m′) : (v, v′) ∈ E and m′ = update(m, v, v′)}.

While this is a natural generalization and it preserves all the properties
of memory reductions described previously, it does not allow to fully operate
on moves because the priority function Ω is still defined on positions. For
this reason, we define games with move labeling as games where the labeling
function Ω : E → C assigns priorities to moves instead of positions.

The notion of memory reduction applies to games with move labellings in
the same way as to games with labellings of positions. Moreover, parity games
with move labellings are again positionally determined. Remarkably, in the
setting where multiple moves with different priorities are allowed between any
two positions, even a stronger relationship between parity winning conditions
and positional determinacy can be established. Not only are parity winning
conditions in this setting the only positionally determined Muller winning
conditions, in the same sense as in Theorem 4.9, but this statement holds
for all prefix-independent winning conditions, even if these are not Muller
conditions and over arbitrary sets of priorities [23]. This motivates us to define
a Zielonka tree memory with move update function.

Definition 4.29. For a Muller condition (F0,F1) over ω with finitely branch-
ing Zielonka tree Z = Z(F0,F1) we define the infinitary Zielonka-tree memory
as any memory structure

ZTM(Z(F0,F1)) = (Z, update, init)

where Z are the nodes of Z, init(v) = ω and the move update function satisfies
the following constraint. If update(X, v, w) = X ′ then the following conditions
hold:

(1) Ω(w) ∈ X ′ and X ′ is a minimal node with this property, i.e. there is no
successor Y of X ′ in Z for which Ω(w) ∈ Y ,

(2) if Ω(w) ∈ X then X ′ lies in the subtree Z|X ,
(3) if Ω(w) �∈ X then let Y be the minimal predecessor of X for which Ω(w) ∈

Y and let Y i be the successor of Y for which X ∈ Z|Yi ;
in this case if Y has k successors then

X ′ ∈ Z|Y i+1 mod k .

Intuitively, a Zielonka tree memory assigns to every play a corresponding
walk on the Zielonka tree. At each step of this walk (except for the first one)
if the play is in a position v then the walk is in a node X ! Ω(v) that has
no successors containing Ω(v), as guaranteed by Condition (1) above. If the
play moves from v to w and the priority Ω(w) is already contained in the
current position X then the walk moves down in Z|X to any minimal position
containing Ω(w), as guaranteed by Condition (2). If Ω(w) is not contained in
the current position X then the walk first goes up to the minimal predecessor
Y containing Ω(w) and then chooses the next successor of Y and moves down



4.6 Infinitary Zielonka-Tree Memory 65

to any minimal position containing Ω(w) in the subtree corresponding to that
next successor. This structure of the walk can be exploited to reduce games
with winning conditions that have Zielonka trees with certain properties to
parity games with move labeling as follows.

Theorem 4.30. Every game G with a Muller winning condition (F0,F1) over
ω such that Z(F0,F1) is finitely branching, all its internal nodes are co-finite,
and the intersection of sets on every infinite branch belongs to F0, reduces via
ZTM memory to a parity game with move labeling.

Proof. The given Muller game G is reduced to a parity game G′ with the move
labeling function defined by

Ω′((v,X), (w,X ′)) = h(Y ),

where Y is again the minimal common ancestor of X and X ′, the same as in
the definition above.

We prove that any play π = v0v1 . . . of G is won by the same player as the
extended play π′ = (v0, X0)(v1, X1) . . . in G′. Let us denote by Yi the lowest
common ancestor of Xi and Xi+1. This notation allows us to imagine the
ZTM memory corresponding to π as a walk through the Zielonka tree,

X0 → Y0 → X1 → Y1 → X2 → . . . .

We consider two cases.
Case 1 : Inf(Ω′(π′)) = ∅. In this case the walk through the Zielonka tree

progresses downwards and there exists a unique infinite branch of Z(F0,F1)
to which infinitely many Yi belong. The set of priorities seen infinitely often
in π is then the intersection of the sets on this branch. Thus, by assumption,
Player 0 wins π, and by definition the same player wins π′.

Case 2 : there exists a minimal priority m = min InfΩ′(π′).
First, we claim that there is exactly one node Y of the Zielonka tree with
h(Y ) = m that appears infinitely often in the sequence of nodes Y0Y1 . . ..
Indeed, let YiYi+1 . . . be the suffix of this sequence such that in π′ there are
no positions with priority smaller than m after step i. Let us assume that Yk
and Yk+l are two different nodes with priority m that appear consecutively in
YiYi+1 . . .. Since

Yk → Xk+1 → . . .→ Xk+l → Yk+l

is a walk in the Zielonka tree connecting two different nodes with equal heights,
there must be a node Ym in this walk that is both an ancestor of Yk and Yk+l,
but then h(Ym) < h(Yk) = m, which contradicts the way the suffix YiYi+1 . . .
was chosen.

Let us now look at the suffix YiYi+1 . . . where Yi = Y and the only node
with priority m in this suffix is Y . By definition of the update function this
means that all priorities in Ω(vivi+1 . . .) are contained in Y and therefore
inf(π) ⊆ Y .
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Moreover, again by Condition (3) of Definition 4.29, when visiting Y the
update function always chooses the next successor and then the first successor
again. Since the tree Z(F0,F1) is finitely branching, each successor Y i is
chosen infinitely often, and the subtree rooted at Y i is left infinitely many
times during the walk through the Zielonka tree that corresponds to π. By
definition of the update function, this means that for each Y i we infinitely
often encounter priorities in Y \ Y i during the play π. As Y \Y i is finite, this
means that there is a priority c ∈ Y \Y i encountered infinitely often and thus
Inf(π) �⊆ Y i. Therefore the play π is won by the player σ for which Y ∈ Fσ,
which, by the definition of height for the Zielonka tree, is the same player who
wins π′ with priority m. ��
Note that in the theorem above we reduce a Muller game with labels on posi-
tions to a parity games with labels on moves. Since parity games with labels
on moves are positionally determined, one can use the positional strategy from
the parity game to obtain a strategy σ for the original Muller game that is
a function depending only on the current position in the game v and on the
node of the Zielonka tree X .

Since in a ZTM memory it holds that X is the minimal node with Ω(v) ∈ X
(except for the first step which is irrelevant), we can encode the position X
using only v and the current branch of the Zielonka tree. If we denote by
[Z] the set of all branches, i.e. maximal paths through the Zielonka tree Z,
then we can modify the strategy σ to get a strategy σ′ that depends only on
the branches, instead of the positions in the tree. The following consequence
follows for Zielonka trees where [Z(F0,F1)] is finite.

Corollary 4.31. Every game G with a Muller winning condition (F0,F1) over
ω such that Z(F0,F1) has finitely many (possibly infinite) branches, all its in-
ternal nodes are co-finite, and the intersection of sets on every infinite branch
belongs to F0, is determined with a finite memory of size |[Z(F0,F1)]|.
Please note that this is both a generalization of positional determinacy for
parity games with countably many priorities and of the classical result [88]
that Muller games over a finite set of priorities are determined with finite
memory equal in size to the number of leafs of Z(F0,F1), which is of course
the same as |[Z(F0,F1)]| for finite trees.
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Counting Quantifiers on Automatic Structures

In chapter 2 we asked how first-order logic can be extended and analyzed
using infinitary logic, which lead us to the regular game quantifier and to
clarifying the connection to games.

In this chapter we consider extensions of first-order logic in another direc-
tion, by generalized unary quantifiers. As usual, we require these extensions
to preserve regularity on automatic structures. It turns out that the only
generalized unary quantifiers with this property are the counting quantifiers:

– the modulo counting quantifiers “there exist k mod m many”,
– the infinity quantifier “there exist infinitely many”, and
– the uncountability quantifier “there exist uncountably many”.

While it is known that all counting quantifiers indeed preserve regularity
over finite-word automatic structures, and even over injectively presented ω-
automatic structures, this was open for general ω-automatic structures. Our
proof [10] uses ω-semigroups and leads to an additional corollary that all
countable ω-automatic structures have injective presentations. It follows that
countable ω-automatic structures have automatic presentations over finite
words, which answers a question of Blumensath [11].

5.1 Generalized Quantifiers Preserving Regularity

To extend first-order logic with additional quantifiers it is useful to have an
abstract definition of a generalized quantifier. We borrow the definition given
by Lindström [60].

Definition 5.1. A generalized quantifier Q over a relational signature τ =
{R1, . . . , Rk} is a class of structures with signature τ that is closed under
isomorphism. Let A be a structure and ϕ1(x1, z), . . . , ϕk(xk, z) formulas over
the signature σ(A) possibly different from τ , such that |xi| = ri, i.e. the length
of the vector xi is the same as the arity of Ri. In first-order logic extended with
the quantifier Q we allow to write formulas of the form Qx1 . . . xk(ϕ1, . . . , ϕk)
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and define their semantics in the following way. If θ maps z to the tuple a of
elements of A then

A, θ |= Qx1 . . . xk(ϕ1, . . . , ϕk) ⇔ (A,ϕA
1 (−, a), . . . , ϕA

k (−, a)) ∈ Q,

where by ϕA
i (−, a) we denote the relation satisfied by exactly those tuples b

for which ϕA
i (b, a) holds. The arity of the quantifier Q is the maximum of the

lengths |xi|, so a unary quantifier is one where each of the vectors xi is just
a single variable.

To illustrate this definition observe that the classical quantifier ∃ is given by
{(A,X) : X �= ∅} and ∀ is given by {(A,X) : X = A}. The quantifiers
“there exist infinitely many” or “there exist k modmmany” can be represented
in a similar way, but we give the standard definition.

The extension of first-order logic with counting quantifiers, denoted FO[C],
allows to write all quantifiers of the following form:

– ∃(rmodm)x ϕ meaning that the number of x satisfying ϕ is finite and is
congruent to r mod m,

– ∃∞x ϕ meaning that there are infinitely many x satisfying ϕ,
– ∃≤ℵ0x ϕ and ∃>ℵ0x ϕ meaning that the cardinality of the set of all x

satisfying ϕ is countable, or uncountable, respectively.

The logic FO[C] has intimate relation to quantifiers that preserve regularity.
To define this relation we first need to say that a generalized quantifier Q pre-
serves (ω-)regularity if for every (ω-)automatic presentation d, f of a structure
A every formula

ψ(z) = Qx1 . . . xk
(
ϕ1(x1, z) . . . ϕk(x1, z)

)

defines a relation ψA that is (ω-)regular in the presentation d, f , i.e. such that
f−1(ψA) is (ω-)regular.

Moreover, we say that a quantifier Q over a signature τ is definable in
FO[C] (or any other extension of FO) if there exists a formula ϕQ ∈ FO[C]
over the same signature τ such that Q = {A : A |= ϕ}. We can now state the
result that shows the relationship between FO[C] and regularity-preserving
quantifiers: every unary quantifier that preserves (ω-)regularity is definable in
FO[C]. This result is proved in [79] for regularity preserving quantifiers and
the proof extends to ω-regularity preserving ones.

The remaining question is whether every quantifier in FO[C] preserves reg-
ularity, and whether it does so in an effective way. For finite-word automatic
structures the basic Theorem 1.6 can be extended to FO[C] as follows.

Theorem 5.2 (Cf. [45, 53, 14]).

– There is an effective procedure that given an automatic presentation d, f of
a structure A, and given an FO[C] formula ϕ(x) defining a k-ary relation
R over A, constructs a k-tape synchronous automaton recognizing f−1(R).
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– The FO[C]-theory of every automatic structure is decidable.
– The class of automatic structures is closed under FO[C]-interpretations.

It has been observed that Theorem 5.2 can be extended to injective ω-
automatic presentations [55, 58]. Moreover, Kuske and Lohrey show that the
cardinality of any set definable in FO[C] is either countable or equal to that
of the continuum. In the next section we work to extend this result to all, not
necessarily injective automatic structures.

5.2 Defining Uncountability Using Equal Ends

We characterize when there exist countably many words x satisfying a given
formula with parameters ϕ(x, z) in some ω-automatic structure A. The char-
acterization is first-order expressible in an ω-automatic extension of A by the
equal ends relation ∼e and the quantifier rank of the resulting formula depends
on a constant C, which itself depends on ϕ and on the given presentation of A.

Let us fix an ω-automatic presentation d of a structure A with congru-
ence ≈, and a first-order formula ϕ(x, z) in the language of A with x and z
as free variables.

Proposition 5.3. There is a constant C, computable from the presentation
d, so that for all tuples z of infinite words the following are equivalent:

(i) ϕ(−, z) is satisfiable and ≈ restricted to the domain ϕ(−, z) has countably
many equivalence classes,

(ii) there exist C-many words x1, . . . , xC , each satisfying ϕ(−, z), so that
every x satisfying ϕ(−, z) is ≈-equivalent to some y ∼e xi; formally, the
structure (A,≈,∼e) models the sentence

∀z
(

∃≤ℵ0w ϕ(w, z) ←→

∃x1 . . . xC

(∧

i

ϕ(xi, z) ∧

∀x
(
ϕ(x, z) → ∃y (y ≈ x ∧

∨

i

y ∼e xi)
))
)

.

Proof. Suppose d, A, and ϕ are given. Define C to be c2, where c is the size
of the largest ω-semigroup corresponding to any of the given automata from
the presentation d or corresponding to ϕ. We fix the parameters z and let ≈
denote the equivalence relation ≈ restricted to the domain of ϕ(−, z).

(ii) ⇒ (i): Condition (ii) and the fact that every ∼e-class is countable
imply that all words satisfying ϕ(−, z) are contained in a countable number
of ≈-classes.
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(i) ⇒ (ii): The negation of Condition (ii) says that given D < C many
words x1, . . . , xD, each satisfying ϕ(−, z), there exists a word xD+1 also sat-
isfying ϕ(−, z) whose ≈-class does not meet any of the ∼e-classes of the xi
for i ≤ D.

Thus we can inductively define words x1, . . . , xC , each satisfying the for-
mula ϕ(−, z), and such that for 1 ≤ i < j ≤ C the ≈-class of xj does not
meet the ∼e-class of xi. In particular, the xis are pairwise non-equivalent with
respect to ∼e.

The plan is to produce uncountably many pairwise non-≈ words that satisfy
ϕ(−, z). In the first ‘Ramsey step’, similar to what is done in [58], we find two
words from the given C many, say x1, x2 ∈ Σ∗, and a factorization H ⊂
N so that both words behave the same way along the factored sub-words
with respect to the ≈- and ϕ-semigroups. In the second ‘Coarsening step’
we identify a technical property of finite semigroups recognizing transitive
relations. This allows us to produce an altered factorization G and new, well-
behaving words y1, y2. In the final step, the new words are ‘shuffled along G’
to produce continuum many pairwise non-≈ words, each satisfying ϕ(−, z).

5.2.1 Ramsey Step

This step effectively allows us to discard the parameters z. Before we use Ram-
sey’s theorem, we introduce a convenient notation to talk about factorizations
of words.

Definition 5.4. Let A = a1 < a2 < . . . be any infinite subset of N and
h : Σ∗ → S be a morphism into a finite semigroup S. For an ω-word α ∈ Σω,
and element e ∈ S, say that A is an h, e-homogeneous factorization of α if for
all n ∈ N

+, h
(
α[an, an+1)

)
= e.

Observe the following facts.

– If A is an h, s-homogeneous factorization of α and k ∈ N
+ then the set

{ak·i}i∈N+ is an h, sk-homogeneous factorization of α.
– If A is an h, e-homogeneous factorization of α and e is idempotent, then

every infinite B ⊂ A is also an h, e-homogeneous factorization of α.

In the following we write wϕ and w≈ to denote the image of w under the
semigroup morphism into the finite semigroup associated to ϕ and ≈, respec-
tively, as determined by the presentation. Accordingly, we will speak of e.g.
ϕ, si-homogeneous factorizations.

Let us now color every {n,m} ∈ [N]2 with n < m by the tuple of ω-
semigroup elements
( (⊗ (xi, z)[n,m)ϕ

)
0≤i≤C ,

(⊗ (xi, xj)[n,m)≈
)
0≤i≤j≤C

)
.

By Ramsey’s theorem there exists an infinite H ⊂ N and a tuple of ω-
semigroup elements
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(
(si)1≤i≤C , (t(i,j))1≤i≤j≤C

)

so that for all 0 ≤ i ≤ j ≤ C,

– H is a ϕ, si-homogeneous factorization of the word ⊗(xi, z),
– H is a ≈, t(i,j)-homogeneous factorization of the word ⊗(xi, xj).

Note that by virtue of additivity of our coloring and Ramsey’s theorem each
of the si and t(i,j) above are idempotents. Since there are at most c-many
sis and c-many t(i,i)s, there are at most c2 many pairs (si, t(i,i)) and so there
must be two indices, we may suppose 1 and 2, with s1 = s2 and t(1,1) = t(2,2).

5.2.2 Coarsening Step

For technical reasons we now refine H and alter x1, x2 so that the semigroup
elements have certain additional properties.

To start with, using the fact that x1 �∼ex2 and the facts we observed on
homogeneous factorizations, we assume without loss of generality that H is
coarse enough so that x1[hn, hn+1) �= x2[hn, hn+1) for all n ∈ N.

Lemma 5.5. There exists a subset G ⊂ H, listed as g1 < g2 < . . ., and
ω-words y1, y2 with the following properties:

(1) The words y1 and y2 are neither ≈-equivalent nor ∼e-equivalent, and each
satisfies ϕ(−, z).

(2) There exists an idempotent ϕ-semigroup element s such that G is a ϕ, s-
homogeneous factorization for each of ⊗(y1, z) and ⊗(y2, z).

(3) There exist idempotent ≈-semigroup elements t, t↑, t↓ so that for yj ∈
{y1, y2}
– both t↑ and t↓ absorb t
– ⊗(yj, yj)[0, g1)≈ absorbs t
– G is an ≈, t-homogeneous factorization of ⊗(yj , yj)
– G is an ≈, t↑-homogeneous factorization of ⊗(y1, y2)
– G is an ≈, t↓-homogeneous factorization of ⊗(y2, y1).

Proof. Define ω-words y1 := x2[0, h2)x1[h2,∞), and y2 by

y2[0, h2) := x2[0, h2) and
y2[h2n, h2n+2) := x2[h2n, h2n+1)x1[h2n+1, h2n+2) for n > 0.

Item 1. Clearly, y1 �∼ey2 and each yj ∈ {y1, y2} satisfies ϕ(yj , z) since by
homogeneity and s1 = s2

⊗(y1, z)ϕ = ⊗(x2, z)[0, h2)ϕsω1
= ⊗(x2, z)[0, h2)ϕsω2
= ⊗(x2, z)ϕ,

and similarly
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⊗(y2, z)ϕ = ⊗(x2, z)[0, h2)ϕ(s2s1)ω

= ⊗(x2, z)[0, h2)ϕsω2
= ⊗(x2, z)ϕ.

Next we check that y1 �≈ y2.

⊗(y1, y2)≈ = π≈
(
⊗ (x2, x2)[0, h2)≈,
(⊗ (x1, x2)[h2n, h2n+1)≈,

⊗ (x1, x1)[h2n+1, h2n+2)≈
)
n∈N+

)

= ⊗(x2, x2)[0, h1)≈ t(2,2) (t(1,2)t(1,1))ω

= ⊗(x2, x2)[0, h1)≈ t(2,2)t(2,2) (t(1,2)t(1,1))ω

= ⊗(x2, x2)[0, h1)≈ t(2,2)t(2,2) (t(1,2)t(2,2))ω

= ⊗(x2, x2)[0, h1)≈ t(2,2) (t(2,2)t(1,2))ω

= π≈
(
⊗ (x2, x2)[0, h2)≈,
(⊗ (x2, x2)[h2n, h2n+1)≈,

⊗ (x1, x2)[h2n+1, h2n+2)≈
)
n∈N+

)

= ⊗(y2, x2)≈

Thus, if y1 ≈ y2 then also y2 ≈ x2 and so by transitivity y1 ≈ x2. But since
y1 ∼e x1, the ≈-class of x2 meets the ∼e-class of x1, contradicting the initial
choice of the xis.

Items 2 and 3. Define intermediate semigroup elements q := s1, r := t(1,1),
r↑ := t(1,2)t(1,1) and r↓ := t(2,1)t(1,1). Then

1. both r↑ and r↓ absorb r, since t(1,1) is idempotent,
2. ⊗(yj , yj)[0, h2)≈ = ⊗(yj , yj)[0, h1)≈t(2,2) and thus absorbs r (for yj ∈

{y1, y2}).
In this notation, for all i ∈ N

+ and yj ∈ {y1, y2},
– ⊗(yj, z)[h2i, h2i+2)ϕ is qq = q,
– ⊗(yj, yj)[h2i, h2i+2)≈ is rr = r,
– ⊗(y1, y2)[h2i, h2i+2)≈ is t(1,2)t(1,1) = r↑,
– ⊗(y2, y1)[h2i, h2i+2)≈ is t(2,1)t(1,1) = r↓.

Finally, define the set G := {h2ki}i>1, i.e. gi = h2k(i+1), and the semigroup
elements t := rk, t↑ := (r↑)k, t↓ := (r↓)k and s := qk. The extra multiple of
k (defined as the product of the exponents of the semigroups for ∼e and ≈)
ensures all these semigroup elements (in particular t↑ and t↓) are idempotent.
We now verify the absorption properties:

t↑t = r↑krk = r↑k = t↑ because r↑ absorbs r.



5.2 Defining Uncountability Using Equal Ends 73

Similarly, t↓t absorbs t. Further, since g1 = h4k, we have

⊗(yj , yj)[0, g1)≈ = ⊗(yj, yj)[0, h2)≈ ⊗ (yj , yj)[h2, h4k)≈

= ⊗(yj, yj)[0, h2)≈r4k−2

= ⊗(yj, yj)[0, h2)≈r3k−2t

and thus absorbs t.
Finally, we verify the homogeneity properties. Observe that G is an ≈, t↓-

homogeneous factorization of ⊗(y2, y1) since for i ∈ N
+

⊗(y2, y1)[gi, gi+1)≈ = ⊗(y2, y1)[h2k(i+1), h2k(i+2))≈

= (r↓)k = t↓.

The other cases are similar. ��

5.2.3 Shuffling Step

We continue the proof of Proposition 5.3 by shuffling the words y1 and y2 along
G resulting in continuum many pairwise distinct words that are pairwise not
≈-equivalent, each satisfying ϕ(−, z). To this end, we define for S ⊂ N

+ the
characteristic word χS by

χS [0, g1) := y2[0, g1) , and

χS [gn, gn+1) :=

{
y2[gn, gn+1) if n ∈ S

y1[gn, gn+1) otherwise

First observe that A |= ϕ(χS , z). Indeed, by item (2) of Lemma 5.5

⊗(χS , z)ϕ = ⊗(y2, z)[0, g1)ϕsω

= ⊗(y2, z)ϕ

and A |= ϕ(y2, z) by item (1) of Lemma 5.5. Moreover, for S �∼eT the con-
struction gives that χS �∼eχT . This is due to our initial choice of x1 �∼ex2

and the assumption that the factorization (hn)n∈N is coarse enough so that
x1[hn, hn+1) �= x2[hn, hn+1) and thus also y1[gn, gn+1) �= y2[gn, gn+1) for
all n.

The following two lemmas establish that if both S \T and T \S are infinite
then χS �≈ χT . We denote by x◦• the word χ2N+ and by x•◦ the word χ2N+−1,
and we write p for ⊗(y2, y2)[0, g1)≈.

Lemma 5.6. For all S, T such that both S \ T and T \ S are infinite

⊗(χS , χT )≈ =

{
⊗(x◦•, x•◦)≈ or
⊗(x•◦, x◦•)≈
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Proof. Define semigroup-elements pn for n ∈ N by

pn :=

⎧
⎪⎨

⎪⎩

t↓ if n ∈ S \ T
t↑ if n ∈ T \ S
t otherwise

Let m be the smallest number in S$T . Suppose that m ∈ S \ T . Because both
t↑ and t↓ are idempotent and since t is absorbed by both p, t↑ and t↓, and both
t↑ and t↓ appear infinitely often (as both S \ T and T \ S are infinite), we have

⊗(χS , χT )≈ = π≈ (p, (pn)n∈N) = p(t↓t↑)ω

= ⊗(x•◦, x◦•)≈.

The case that m ∈ T \ S similarly results in ⊗(x◦•, x•◦)≈. ��
Lemma 5.7. x◦• �≈ x•◦.

Proof. Define an intermediate word x◦•◦◦ := χ4N+−2. By computations similar
to the above we find that

⊗(x•◦, x◦•◦◦)≈ = p(t↓t↑t↓t)ω = p(t↓t↑t↓)ω = p(t↓t↑)ω

= ⊗(x•◦, x◦•)≈

and

⊗(x◦•, x◦•◦◦)≈ = p(tttt↓)ω = p(t↓)ω

= ⊗(y2, y1)≈.

Therefore, if x•◦ ≈ x◦• then also x•◦ ≈ x◦•◦◦ and so by symmetry and by
transitivity x◦• ≈ x◦•◦◦. But in this case also y2 ≈ y1, contradicting item (1) of
Lemma 5.5. ��
We are now able to complete the proof of Proposition 5.3. There are continuum
many classes in P(N)/ ∼e, thus there is a continuum of pairwise non-∼e-
equivalent sets S. To construct sets with pairwise infinite differences, we define
for a set S ⊆ N the swap set

Ŝ = {2n+ 1 : n ∈ S} ∪ {2n+ 2 : n �∈ S}.

Observe that if S �∼eT then both Ŝ \ T̂ and T̂ \ Ŝ are infinite. Therefore taking
the words χŜ for the continuum of pairwise non-∼e-equivalent sets S yields a
continuum of non-≈-equivalent words, each satisfying ϕ(−, z). ��

5.3 FO[C] over ω-Automatic Structures

Using the results about countability of the previous section, we are finally
able to extend Theorem 5.2 to ω-automatic structures.
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Theorem 5.8. The statements of Theorem 5.2 hold true for FO[C] over all
(not necessarily injective) ω-automatic presentations.

Proof. We prove the first item, i.e. give the procedure for constructing au-
tomata for formulas, from which the rest of the theorem follows immediately.
We inductively eliminate occurrences of cardinality and modulo quantifiers in
the following way.

The countability quantifier ∃≤ℵ0 and uncountability quantifier ∃>ℵ0 can be
eliminated (in an extension of the presentation by ∼e) by the formula given
in Proposition 5.3.

For the remaining quantifiers we further expand the presentation with the
ω-regular relations

– π(a, b, c) saying that a ∼e b ∼e c and the last position where a differs from
c is no larger than the last position where b differs from c, and

– λ(a, b, c) saying that π(a, b, c) and π(b, a, c) and that the word a[0, k] is
lexicographically smaller than the word b[0, k], where k is the common
last position where a and b differ from c.

Now ∃<∞x ϕ(x, z) is equivalent to

∃x1 . . . xC Ψ(x1, . . . , xC , z)

where Ψ expresses that x1, . . . xC satisfy ϕ(−, z) and there exists a position,
say k ∈ N, so that every ≈-class contains a word satisfying ϕ(−, z) that
coincides with one of the xi from position k onwards. This additional condition
can be expressed by

∃y1 . . . yC∀x∃y
(

ϕ(x, z) → x ≈ y ∧
∨

i

π(y, yi, xi)

)

.

Consequently, ∃(rmodm)x . ϕ(x, z) can be eliminated since we can pick out
unique representatives of the ≈-classes. We write i(w) for the smallest index
i for which w ∼e xi. The representatives are those x that satisfy the following
properties for every y �= x in the same ≈-class as x.

– Either the index i(x) < i(y), or
– the index i(x) = i(y) and λ(x, y, xi(x)) holds.

Now we can apply the construction of [58] or [55] for elimination of the
∃(rmodm) quantifier. ��

5.4 Presentations of Countable ω-Automatic Structures

As a corollary of Proposition 5.3 we obtain that for every ω-regular equiva-
lence relation with countably many classes a set of unique representatives is
definable.
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Corollary 5.9. Let ≈ be an ω-automatic equivalence relation on Σω. There
is a constant C, depending on the presentation, so that the following are equiv-
alent:

(1) ≈ has countably many equivalence classes,
(2) there exist C many ∼e-classes so that every ≈-class has a non-empty

intersection with at least one of these ∼e-classes.

If one of these conditions holds, then there exists an ω-regular set of represen-
tatives of ≈. Moreover, an automaton for this set can be effectively constructed
given an automaton for ≈.

Proof. The first two items are simply a specialization of Proposition 5.3. We
construct the ω-regular set of representatives as follows.

Write A for the domain of ≈ and consider the formula ψ(x1, . . . , xC) with
free variables x1, . . . , xC :
∧

i

xi ∈ A ∧ ∀x ∈ A ∃y (y ≈ x ∧
∨

i

y ∼e xi)

The relation defined by ψ is ω-regular since it is a first order formula over
ω-regular relations. By assumption it is non-empty, and therefore it contains
an ultimately periodic word of the form ⊗(a1, . . . , aC). Each of these ais is
thus ultimately periodic, and we write ai = vi(ui)ω .

By definition of ψ, every word has now an ≈-representative in B =⋃
iΣ

∗(ui)ω. It remains to prune B to select unique representatives for each
≈-class.

It is easy to construct an ω-regular well-founded linear order on B. For every
w ∈ B, let p(w) ∈ Σ∗ be the length-lexicographically smallest word such that
w has period p(w). Also let t(w) ∈ Σ∗ be the length-lexicographically smallest
word so that w = t(w) · p(w)ω . Define an order ≺ on B by w ≺ w′ if p(w) is
length-lexicographically smaller than p(w′), or otherwise if p(w) = p(w′) and
t(w) is length-lexicographically smaller than t(w′). The ordering ≺ is ω-regular
since it is FO-definable in terms of ω-regular relations. Finally, the required set
of representatives may be defined as the set of ≺-minimal elements of every ≈-
class. An automaton for this set can be constructed from an automaton for ≈
as all the steps we made used definable relations. ��
Corollary 5.9 immediately yields an injective ω-automatic presentation from
a given ω-automatic presentation. This is especially interesting together with
the following proposition by which countable injective ω-automatic presenta-
tions can be transformed to automatic ones.

Proposition 5.10. ([11, Theorem 5.32]) Let d be an injective ω-automatic
presentation of a countable structure A. Then, an (injective) automatic pre-
sentation d′ of A can be effectively constructed.
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Combining Proposition 5.10 and Corollary 5.9 we are able to answer affir-
matively a question of Blumensath [11] and conclude that every countable
ω-automatic structure is already automatic.

Corollary 5.11. A countable structure is ω-automatic if and only if it is au-
tomatic. Transforming a presentation of one type into the other can be done
effectively.

The techniques used in this chapter not only give insight into the cardinality
of the ω-automatic equivalence relations, but can also be used to study cliques
built from an arbitrary binary ω-automatic relation. This was exploited re-
cently in [57] to investigate which Ramsey-like theorems hold for ω-automatic
structures.

Remarkably, the existence of injective presentations can not be extended
from countable to arbitrary ω-automatic structures. Consider a disjoint sum
of the Boolean algebra of sets of natural numbers B = (P(N),∪,∩,C ) and
the uncountable atomless Boolean algebra B/ ∼e, where sets with finite sym-
metric difference are identified. Let us define the structure A = (B � (B/ ∼e
), B1, B2, f) which extends the disjoint sum B� (B/ ∼e) with two predicates
denoting the universes of the two components of the sum and a function that
takes elements of B to their corresponding classes in the other component of
the disjoint sum, i.e. f(B) = [B]∼e for B ∈ B.

Observe that there is an ω-automatic presentation of A. Elements of A are
represented as ω-words over {0, 1} with the first bit indicating whether the
word represents an element of B or of B/ ∼e and the other bits listing which
numbers belong to the represented subset. Equality is defined as equality of
words for words staring with 1, i.e. representing elements of B, and as ∼e for
words starting with 0. Boolean operations can be represented by automata in
the standard way and the function f must only check that the ∼e-classes of
the components coincide, which can be done by the ∼e automaton ignoring
the first bit.

The fact that there is no injective ω-automatic presentation of the structure
A was recently shown by Hjörth, Khoussainov, Montalban and Nies [44]. The
proof is based on the topological observation that certain morphism between
B/ ∼e and B can not be Borel, which would be contradicted by an injective
presentation of A. It follows that decidability of FO[C] on the structure A,
which is a consequence of Theorem 5.8, can not be deduced from the previous
Theorem 5.2, and so it shows that Theorem 5.8 is a strong generalization of
the previous result.



6

Cardinality Quantifiers in MSO on Linear
Orders

The intimate connection between first-order logic on automatic structures and
MSO on (ω,<) can be used to define generalized-automatic structures, which we
introduced in section 1.5 as the ones that are MSO-to-FO interpretable in a tree.
It is therefore a natural extension of the previous work to ask whether counting
quantifiers preserve regularity on such generalized-automatic structures.

In this and the next chapter we give a partial positive answer to this
problem, as we investigate the cardinality quantifiers on injectively presented
generalized-automatic structures. The restriction to injective presentations
allows us to work directly with MSO and therefore, instead of extending first-
order logic, we study the extension of MSO with the following quantifiers:

– the second-order infinity quantifier
“there exist infinitely many sets X for which ϕ(X) holds”,

– and the second-order uncountability quantifier
“there exist uncountably many sets X for which ϕ(X) holds”.

When working directly with MSO we do not use automata or semigroups as
previously, but rely on the composition method instead, which allows us to
consider linear orders and trees labeled with arbitrary predicates. First, we
prove that on arbitrary countable structures the second-order infinity quanti-
fier can be eliminated from MSO using the predicate that expresses infinite-
ness of a set, which is definable in MSO on finitely branching trees and linear
orders. Further, we show that on arbitrary countable linear orders (this chap-
ter) and trees (next chapter) the second-order uncountability quantifier can
be eliminated as well, i.e. it can be expressed using pure MSO formulas. These
results were obtained together with Vince Bárány and Alexander Rabinovich
[7, 8, 9].

The main results of this chapter can be summarized as follows. Let us
denote by Unc(X) the predicate meaning that the set X is uncountable, and
let us say that a linear order is almost complete if its completion adds at most
countably many points. We consider the extension of MSO with cardinality
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quantifiers ∃κ, so that the meaning of a formula ∃κX ϕ is that there are at
least κ many sets X satisfying ϕ, for each cardinal κ ∈ {ℵ0,ℵ1, 2ℵ0}. We
sometimes write ∃∞ instead of ∃ℵ0 .

Theorem 6.1. For every MSO formula ϕ(X,Y ) there exists an MSO(Unc)
formula ψ(Y ) that is equivalent to ∃ℵ1X ϕ(X,Y ) over the class of almost
complete linear orders.

Theorem 6.1 immediately yields complete elimination of the uncountability
quantifier over countable scattered chains. Next we will prove this for chains
of order type of the rationals, which ultimately enables the extension to all
countable chains, as summarized below.

Theorem 6.2 (Elimination of the uncountability quantifier)

(1) For every MSO(∃ℵ1) formula ϕ(Y ) there exists an MSO formula ψ(Y )
that is equivalent to ϕ(Y ) over the class of all ordinals.

(2) For every MSO(∃ℵ1) formula ϕ(Y ) there exists an MSO formula ψ(Y )
that is equivalent to ϕ(Y ) over the class of all countable linear orders.

Furthermore, in all these cases ψ is computable from ϕ.

In addition to the above, the reduction will show that over countable linear
orders the quantifiers ∃ℵ1X and ∃2ℵ0

X are equivalent, i.e. that the continuum
hypothesis holds for MSO-definable families of sets.

Theorem 6.3. Let ϕ(X,Y ) be an arbitrary MSO formula. Then ∃ℵ1X ϕ(X,Y )
is equivalent to ∃2ℵ0

X ϕ(X,Y ) over all countable chains.

All of the above trivially extend to cardinality quantifiers ∃ℵ0X, ∃ℵ1X and
∃2ℵ0

X counting finite tuples of sets given that for any cardinal κ ≥ ℵ0

∃κ(X0, X1)ϕ ≡ ∃κX0 ∃X1 ϕ ∨ ∃κX1 ∃X0 ϕ .

6.1 Infinity Quantifier

To start with, let us show how to eliminate the infinity quantifier ∃∞ from
monadic second-order formulas over any structure where infiniteness of a set
is expressible in MSO. This yields a uniform elimination of the infinity quan-
tifier from MSO formulas over the binary tree and countable linear orders, as
finiteness of a set is expressible over these structures. Over the binary tree,
infiniteness of a set X is, by König’s Lemma, equivalent to the existence of
an infinite path every element of which is a prefix of some node in X . Over
a countable linear order, by Ramsey’s theorem, infiniteness of X is equiv-
alent to the existence of a subset Y ⊆ X of type ω or ω∗, i.e. a set with
every element having a direct successor (or predecessor) and with at most one
limit point.
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Proposition 6.4. Over all structures, the infinity quantifier ∃∞ can be ef-
fectively eliminated from monadic second-order formulas using the “set X is
finite” predicate.

To prove this proposition, we show how occurrences of the infinity quantifier
can be eliminated from formulas inductively, according to the following claim.

Claim. An MSO formula ϕ(X,Y ) is satisfied on a structure A for fixed pa-
rameters Y by finitely many sets X if and only if there is a finite set Z such
that any two distinct sets both satisfying ϕ differ on Z, i.e.

∃ finite Z ∀X1X2

(
(ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 �= X2) →

∃z ∈ Z((z ∈ X1 ∧ z �∈ X2) ∨ (z ∈ X2 ∧ z �∈ X1))
)
.

Proof.
(⇒) Let X1, . . . , Xk be the sets that satisfy ϕ(Xi, Y ). For every pair of

distinct sets Xi, Xj choose an element zi,j which belongs to Xi but not to Xj.
Define Z as the set of all chosen elements.

(⇐) We show by induction that if the cardinality of Z is k then there are at
most 2k sets X which satisfy ϕ(X,Y ). If k = 0 then there are no two distinct
sets, thus at most one set satisfies ϕ. For the induction step, assume that
the cardinality of Z is k + 1 and pick any element z ∈ Z. Observe that each
pair of sets satisfying ϕ and including z has to differ on Z \ {z}, thus by the
inductive assumption there are at most 2k such sets. Analogously, any pair of
sets satisfying ϕ and not including z has to differ on Z \ {z}, so there are at
most 2k such sets. In total there are at most 2·2k = 2k+1 sets that satisfy ϕ and
differ on Z. ��
Observe that the following converse of Proposition 6.4 holds as well. The
predicate “the set X is infinite” can be defined using the ∃∞ quantifier, e.g.
by saying that there exist infinitely many singletons in X . Moreover, if we
have only the quantifier ∃2ℵ0 we can define “X is infinite” by ∃2ℵ0

Y Y ⊆ X
and thus we can define ∃∞ as well.

6.2 Unique and Doubling Intervals

To eliminate a single occurrence of the uncountability quantifier from a for-
mula ∃ℵ1X ϕ(X,Y ) we will make extensive use of the following notions for
intervals.

Definition 6.5. Let L be a labeled chain, X, Y subsets of L such that L |=
ϕ(X,Y ), and I an interval of L.

(1) We say that I is a U-interval for ϕ,X, Y whenever X ∩ I is the unique
subset of its type on L|I . More precisely, if L|I |= ∀Z τ(Z, Y ) → Z = X,
where τ = Tpn(L|I , X, Y ) with n equal to the quantifier rank of ϕ.
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(2) I is a D-interval for ϕ, X, Y if it is not a U-interval.
(3) I is an unsplittable D-interval for ϕ, X, Y if it cannot be split into disjoint

D-intervals.

The name “U-interval” attests to the fact that the set X in question is uniquely
determined by its type on a given interval, as opposed to “D-intervals” offering
two (or more) distinct choices for X with the same type on the interval, thus
(at least) doubling the total number of choices for X over the entire domain.
Whenever ϕ,X, Y are clear from the context we will take the liberty of saying
“I is an U-interval” instead of “I is U-interval for ϕ,X, Y ”, and similarly for
D-intervals and unsplittable D-intervals.

Note that all of these notions can be formalized in MSO. For example,
there is an MSO formula DINTϕ(X,Y , I) expressing that I is a D-interval for
ϕ,X, Y and a formula UNSPϕ(X,Y , I) such that L |= UNSPϕ(X,Y , I) if and
only if I is an unsplittable D-interval for ϕ,X, Y .

Lemma 6.6. If there is an infinite set of pairwise disjoint D-intervals for
some X satisfying ϕ(X,Y ) then there are at least continuum many such X.

Proof. If there are infinitely many disjoint D-intervals for some X satisfying
ϕ(X,Y ) then there is an increasing or decreasing ω-sequence of disjoint D-
intervals among them. The two cases being symmetric, assume we have an
increasing ω-sequence of D-intervals. The chain (L, X, Y ) can then be written
as a sum

∑
i≤ω(L|Li , X, Y ) such that for all i < ω the interval Li contains a

D-interval, hence Li is itself a D-interval for X , and allowing Lω to be empty.
This means that for all i ∈ ω, there is a subset X ′

i ⊆ Li such that X ′
i �= Xi∩Li

and Tpn(L|Li , X, Y ) = Tpn(L|Li , X
′
i, Y ), where n is the quantifier rank of

ϕ. We associate to every H ⊆ ω the distinct set

XH =
⋃

{X ′
i | i ∈ H} ∪

⋃
{X ∩ Li | i �∈ H} .

From Theorem 1.11 it follows that Tpn(L, XH , Y ) = Tpn(L, X, Y ) for every
H ⊆ ω. In particular, each of the continuum many XH satisfies ϕ(XH , Y )
in L. ��
This observation motivates the introduction of the following key notion.

Definition 6.7 (Finite U-U cover). Let (L,<,X, Y ) be a labeled chain such
that L |= ϕ(X,Y ) and I an interval of L. Intervals I1 . . . Ik constitute a finite
U-U cover of I for ϕ,X, Y if I =

⋃
j Ij and each Ij is either a U-interval or

an unsplittable D-interval for ϕ,X, Y .

Again, we will most often take no mention of either ϕ, X , or Y when these
are understood, or can be arbitrary. Let us start with an example illustrating
the notions introduced above.

Example 6.8. Consider the formula ϕ(X) = ∀xy (x < y ∧ y ∈ X → x ∈ X)
defining downwards-closed sets, i.e. cuts, on L = (Q, <). Observe that Q
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is itself an unsplittable D-interval constituting a trivial finite U-U cover for
every cut X . For every proper cut X there is a unique finite U-U cover of Q

consisting of two U-intervals, namely (−∞, supX) and (supX,∞). Let Xπ be
the set of all rationals smaller than π. Note that [3, 4] is a D-interval for Xπ

because for any r ∈ [3, 4] \ Q, the set {x ∈ Q | x < r} has the same type
as Xπ on [3, 4]. In [3, 4] we can find a left and a right point, say l = 3.1 and
r = 3.5, such that both [l, 4] and [3, r] are D-intervals for Xπ – for this reason
we will later say that the interval [3, 4] is unbalanced. In fact, every interval
containing π in its interior is a D-interval for Xπ – a property, which we later
formalize by defining essential points for Xπ.

Lemma 6.9. If I has no finite U-U cover, then I can be split into two D-
intervals such that one of them has no finite U-U cover.

Proof. Because I has no finite U-U cover, it is necessarily a D-interval, but
not an unsplittable D-interval. It can thus be split into D-intervals I1, I2 with
I1∩I2 = ∅ and I1∪I2 = I. Now if both I1 and I2 had a finite U-U cover, then
this would yield a finite U-U cover of I. Therefore I1 or I2 has no finite U-U
cover. ��
As a conclusion we obtain the following lemma.

Lemma 6.10. The following dichotomy holds for each X:

(1) either I contains infinitely many disjoint D-intervals for X, or
(2) I has a finite U-U cover for X.

Proof. Assume that I has a finite U-U cover. Then it has a finite U-U cover
I1, . . . , Ik such that Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ k. As each Ij is either
a U-interval or an unsplittable D-interval it cannot contain two disjoint D-
intervals. This gives an upper bound k + (k − 1) on the size of any collection
of pairwise disjoint D-intervals inside I: at most k D-intervals each contained
properly in separate Ij ’s and at most k − 1 D-intervals intersecting two or
more of the Ij ’s.

Conversely, if I0 = I has no finite U-U cover then, by Lemma 6.9, it can be
split into disjoint D-intervals I1 and J0, with I1 having no finite U-U cover.
By induction we obtain D-intervals In and Jn for X such that In+1 = In \ Jn
has no finite U-U cover for X . Then, for m < n, we have Jm ∩ Jn ⊆ Jm ∩
In = ∅. Hence we have found infinitely many pairwise disjoint D-intervals
Jn for X . ��
Next we refine the notion of finite U-U covers as follows.

Definition 6.11 (Balanced cover)

(1) An unsplittable D-interval I is left balanced if I<v = {w ∈ I | w < v} is
a U -interval for every v ∈ I.

(2) Similarly, an unsplittable D-interval I is right balanced if for every v ∈ I
the interval I>v = {w ∈ I | w > v} is a U -interval.
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(3) An unsplittable D-interval I is balanced if it is either left-balanced or
right-balanced.

(4) A finite U-U cover I1, . . . , Ik is balanced if for each 1 ≤ j ≤ k, Ij is either
a U-interval or a balanced unsplittable interval.

Lemma 6.12. An interval I has a finite U-U cover for X if and only if I has
a balanced U-U cover for X.

Proof. We show that every non-balanced unsplittable D-interval I for X can
be split into two intervals L and R constituting a balanced U-U cover of
I for X . (It is important to point out that the split depends on X .) This
immediately implies the conclusion of the lemma.

Let I be a non-balanced unsplittable D-interval for X . Because I is not
right-balanced, there is a point v ∈ I such that I>v is a D-interval, conse-
quently, I<v must be a U-interval, since I cannot be split into two D-intervals.
The following set is therefore not empty.

L = {v ∈ I | I<v is a U-interval for X}
By definition, L is a downward-closed subinterval of I, and it is either a U-
interval or a left-balanced unsplittable D-interval.

Let R = I \ L. Because I is not left-balanced, R cannot be empty. Then
one of R or L is a U-interval. We have seen that if L is a D-interval then it
is left-balanced. Similarly, we need to show that if R is a D-interval then it is
right-balanced. Notice that I<v is a D-interval forX for every v ∈ R, otherwise
v would be in L. Therefore, since I cannot be split into disjoint D-intervals
for X , I>v is a U-interval for X for every v ∈ R. Which means precisely that
R is right-balanced. ��
Lemma 6.13. There is a function N(k, l, ϕ) such that for every chain L =
(L,<, Y ) if {I1, . . . , Ik} is a balanced U-U cover of an interval I of L for each
of X1, . . . , Xn then n ≤ N(k, l, ϕ) or Xi ∩ I = Xj ∩ I for some i �= j.

Proof. Let K be the number of qr(ϕ)-types in l + 1 variables. Then, if J is
a U-interval for K + 1 sets then two of these must realize the same type on
J and hence have to coincide on J . Assume now that J is left-balanced for
2K + 1 sets X1, . . . , X2K+1, so for each v ∈ J the interval J<v is a U-interval
for each of these sets Xi. If for each pair Xi, Xj with i �= j there is a point
pi,j ∈ J on which these two sets differ, then all the 2K + 1 sets differ on the
interval J≤p with p = max{pi,j | i, j ≤ 2K + 1}. Therefore there are at least
K + 1 among them which are pairwise different on J<p, which contradicts
the fact that J<p is a U-interval for all of these. The case of right-balanced
intervals is treated symmetrically.

Classify the sets Xi into 2k classes according to which of the I1, . . . , Ik
are left- or right-balanced for each Xi (considering U-intervals, say, as left-
balanced). By the above, no class can contain more than (2K)k sets pairwise
different on I. ThereforeN(k, l, ϕ) = (4K)k satisfies the claim. ��
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Combining Lemmas 6.6, 6.10, 6.12 and 6.13 we obtain the following
criterion.

Proposition 6.14. Let L = (L,<, Y ) be an chain and ϕ(X,Y ) an MSO-
formula and ℵ1 ≤ κ ≤ 2ℵ0 . Then

L |= ¬∃κX ϕ(X,Y )

if and only if there exists a subset U of the completion of L such that |U | < κ,
and for every X satisfying ϕ(X,Y ) there is a finite balanced U-U cover of L
the end-points of which lie in U .

Every point of the completion of L can be represented by a cut – a subset
of L. Hence a direct formalization of this criterion referring to the cardinal-
ity of a set of cuts would require a third-order predicate. So what have we
gained? For one, from Proposition 6.14 it is immediate that over countable
scattered linear orders, where the restriction on U becomes vacuous, ∃ℵ1 and
∃2ℵ0 are equivalent and can be effectively eliminated, cf. Corollary 6.15. In [59]
Kuske and Lohrey obtained similar results for ω using more intricate automata
techniques.

More generally, we observe that over almost complete linear orders the con-
dition stated in Proposition 6.14 for κ = ℵ1 can be formulated in MSO(Unc).
This yields further elimination results for ∃ℵ1 , in particular, over ordinal
chains.

Later in Section 6.4 we will show that in general U can be replaced by a
subset of L and a definable set of cuts. This will allow us to reduce cardinality
quantifiers over arbitrary sets to the weaker first-order cardinality quantifiers
and the ostensibly simpler use of cardinality quantifiers applied solely to defin-
able sets of cuts. Of course, the latter subsumes also the first-order cardinality
quantifiers.

6.3 Almost Complete Linear Orders

After the preparations of the previous section we are ready to prove the first
item of Theorem 6.2 concerning the collapse of MSO(∃ℵ1) to MSO over the
class of all ordinals. This will be a corollary of the elimination step embodied
in Theorem 6.1 and valid uniformly over all almost complete linear orders.
Recall that these have at most countably many proper cuts, i.e. cuts without
a maximal element.

Theorem 6.1. To every MSO-formula ϕ(X,Y ) one can effectively associate
an MSO(Unc)-formula ψ(Y ) that is equivalent to ∃ℵ1X ϕ(X,Y ) over the class
of almost complete linear orders.

Proof. We are going to show that over almost complete linear orders the
condition stated in Proposition 6.14 can be formulated in MSO(Unc). First, let
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U be as in Proposition 6.14 and let V = U∩L. Note that V ∪(L\L) is an over-
approximation of U , which also fulfills the condition stated in Proposition 6.14.

Let M be a subset of L. Define an equivalence relation ∼M as follows:
x ∼M y if [x, y] ⊆ M or [x, y] is disjoint from M . Note that for every M ,
the equivalence classes of ∼M are intervals of L and the following can be
formalized in MSO:

(i) The number of ∼M classes is finite.
(ii) Each ∼M class is a U-interval or a balanced unsplittable D-interval.
(iii) Whenever an end-point of a ∼M -class lies in L then it is contained in V .

Note also, that if I0, . . . Ik are disjoint intervals that partition L, then there
is an M such that the Ii are ∼M -equivalence classes. Indeed if for i < j the
interval Ii precedes Ij then we can take as M the set I0 ∪ I2 ∪ · · · ∪ I2�k/2�.

Over almost complete linear orders the conditions of Proposition 6.14 can
thus be formalized by an MSO(Unc) formula expressing that there is a count-
able set V such that for all X satisfying ϕ(X,Y ) there is a set M such that the
∼M classes constitute a finite balanced U-U cover for X and all end-points of
∼M classes fall in V ∪(L\L). ��
In cases where the uncountability predicate, equivalently, the first-order un-
countability quantifier is MSO-definable the above technique can be used in-
ductively to completely reduce MSO(∃ℵ1) to MSO.

Corollary 6.15

(1) For every MSO(∃ℵ1) formula ϕ(Y ) there exists an MSO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of countable scattered linear orders.

(2) For every MSO(∃ℵ1) formula ϕ(Y ) there exists an MSO formula ψ′(Y )
that is equivalent to ϕ(Y ) over the class of all ordinals.

(3) (Under CH) For every MSO(∃ℵ1) formula ϕ(Y ) there exists an MSO for-
mula ψ′′(Y ) that is equivalent to ϕ(Y ) over the reals.

Proof. In all three cases one eliminates successively all uncountability quan-
tifiers from ψ from the inside out by an application of Theorem 6.1 followed
by the elimination of the predicate Unc(X).

Over countable linear orders the predicate Unc is vacuously always false,
hence the first claim.

Gurevich [36] proved (assuming the continuum hypothesis) that the pred-
icate “the set X is uncountable” is expressible in MSO over the reals, which
proves the third claim.

It is well-known that “the set X is uncountable” is expressible in MSO over
the class of all ordinals. Recall that a subset X of an ordinal α is uncountable
if the order type of (X,<) is greater than or equal to ω1, i.e. if there is a
subset Y ⊆ X such that the cofinality of the order-type of (Y,<) is strictly
greater than ω. This is the case precisely if every subset Z ⊆ Y such that the
order-type of (Z,<) is ω is bounded in Y . Formally, “the set X is uncountable”
is equivalent over ordinals to
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∃Y ⊆ X ∀Z ⊆ Y ω(Z) → ∃y ∈ Y ∀z ∈ Z z < y

where ω(Z) expresses that the order type of (Z,<) is ω, for instance by saying
that Z is infinite and [0, z)∩Z is finite for every z ∈ Z. Finiteness can be ex-
pressed e.g. as shown in Proposition 6.4. ��
Let us stress again that, by Proposition 6.14, ∃ℵ1 and ∃2ℵ0 are equivalent over
all countable scattered linear orders.

6.4 Reduction to Counting Cuts

In this section we show that the existence of κ many sets satisfying an MSO
formula can be reduced to the existence of κ many cuts (downward closed
sets) satisfying some MSO formula effectively obtainable from the prior one.
Cuts are of course just representations of points of the completion of the
underlying linear order. Hence we show that a single use of the second-order
cardinality quantifier ∃κX over a linear order L reduces to a single use of the
corresponding first-order cardinality quantifier ∃κx over its completion L.

We say that a point of L is a splitting point of a given finite U-U cover if it
is an end-point of an interval in this cover. When convenient, we may blur the
distinction between a cut C of a linear order L and the corresponding point
supC of the completion L.

Definition 6.16. A cut C is an essential cut for X, equivalently, supC ∈ L
is an essential point for X, if every interval I such that I intersects both C
and its complement is a D-interval for X.

Lemma 6.17

(1) If supC is an essential point for X then it is a splitting point of every
finite balanced U-U cover for X.

(2) If there is a finite balanced U-U cover for some X then there is also one
whose non-essential splitting points belong to L.

Proof

(1) Assume indirectly that there is an interval I of some balanced U-U cover
for X and points v, w ∈ I such that v ∈ C and w �∈ C. Then (v, w) must
be a U-interval for X because either {x ∈ I | x < w} or {x ∈ I | v < x}
is a U-interval and (v, w) is contained in both.

(2) Consider wlog. a finite balanced U-U cover consisting of disjoint intervals
bounded by consecutive elements σ1 < σ2 < . . . < σt of the completion L.
If some σj ∈ L\L is not an essential cut for X then, by definition, there is
a U-interval I such that infI < σj < supI. Hence there are points v, w ∈ L
such that [v, w] ⊂ I is a U-interval for X , and wlog. σj−1 < v < σj <
w < σj+1. The sequence σ1 < . . . < σj−1 < v < w < σj+1 < . . . < σt of
splitting points thus gives rise to a new balanced U-U cover for X with
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fewer non-essential cut-points in L \ L. Continuing this way in a finite
number of refinement steps we arrive at a finite balanced U-U cover for X
all of whose non-essential splitting points belong to L. ��

Now we can refine Proposition 6.14 as follows.

Theorem 6.18. Let L = (L,<, Y ) be a chain, ϕ(X,Y ) an MSO formula and
ℵ1 ≤ κ ≤ 2ℵ0 . Then

L |= ¬∃κX ϕ(X,Y )

holds if and only if

(i) there exists a set V ⊆ L such that |V | < κ and every X satisfying ϕ(X,Y )
has a finite balanced U-U cover with non-essential splitting points in V ,
and

(ii)the total number of essential cuts for all X satisfying ϕ(X,Y ) is strictly
less than κ.

Note the slight advantage of the above over Proposition 6.14. Condition (i)
can be formalized using the first-order cardinality quantifier and (ii), unlike
the condition of Proposition 6.14, refers to the cardinality of a definable set
of cuts, i.e., a definable subset of the completion of L.

Proposition 6.19. To every MSO-formula ϕ(X,Y ) one can effectively asso-
ciate MSO-formulas α(V, Y ) and β(C, V, Y ) such that for all ℵ0 ≤ κ ≤ 2ℵ0

over all linear orders ∃κX ϕ is equivalent to ∀V (α→ ∃κC(cut(C) ∧ β)).

Note that, in particular, each of the above formulas makes use of only a single
occurrence of the respective ∃κ, and only restricted to cuts.

Proof. It is straightforward to give an MSO formula ECUTϕ(C,X, Y ) ex-
pressing that C is an essential cut for X . Thus, much as in the proof of
Theorem 6.1, we can construct the formula α(V, Y ) to express that “every X
satisfying ϕ(X,Y ) has a finite balanced U-U cover with non-essential split-
ting points in V ”. This amounts to condition (i) of Theorem 6.18 without the
cardinality constraint. Let further

β(C, V, Y ) = “maxC ∈ V ” ∨ ∃X (ϕ(X,Y ) ∧ ECUTϕ(C,X, Y )
)
,

where maxC ∈ V is a shorthand for ∃x ∈ V ∀y(y ∈ C ↔ y ≤ x). Then there
are at least κ many cuts C satisfying β(C, V, Y ) precisely if |V | ≥ κ or if condi-
tion (ii) of Theorem 6.18 fails. ��

6.5 Rationals

In this section we show how the uncountability quantifier can be eliminated
in monadic second-order logic over the rationals. It will also be apparent that
over the rationals ∃ℵ1X ϕ and ∃2ℵ0

X ϕ are equivalent for any MSO formula
ϕ. Our argument makes use of a Ramsey-like theorem for additive colorings
of dense chains due to Shelah.
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Definition 6.20

(1) A coloring of a chain C is a function col : [C]2 → T where [C]2 is the set
of unordered pairs of distinct elements of C and T is a finite set – the set
of colors.

(2) The coloring f is additive if, for every x1 < y1 < z1 and x2 < y2 < z2
in C, it holds that col (x1, y1) = col(x2, y2) and col(y1, z1) = col(y2, z2)
implies col(x1, z1) = col(x2, z2). In this case a partial operation + is well
defined on T : t1 + t2 = t if there are x < y < z such that col(x, y) = t1,
col(y, z) = t2 and col(x, z) = t.

(3) A sub-chain D ⊆ C is homogeneous for col if there exists some t0 ∈ T
such that for every x, y ∈ D, col (x, y) = t0.

Shelah [80, Theorem 1.3] proved the following remarkable theorem.

Theorem 6.21 (Ramsey theorem for additive colorings). Let col :
[C]2 → T be an additive coloring of a dense chain C using a finite set of
colors T . Then there exists a homogeneous sub-chain D ⊆ C for col that is
everywhere dense in some open interval I of C.

Recall that a proper cut is a cut having no supremum in the underlying linear
order. A cut is non-trivial if neither it nor its complement is empty.

Lemma 6.22. Let ψ(C, Y1, . . . , YM ) be an MSO formula and V1, . . . , VM ⊆ Q.
Then there are uncountably many — and in fact continuum many — Dedekind
cuts C of Q satisfying (Q, <) |= ψ(C, V ) if and only if there is a subset D ⊆ Q

such that (D,<) is dense and for every non-trivial proper cut C of (D,<) the
Dedekind cut C′ = {q ∈ Q | ∃p ∈ C : q < p} of rationals satisfies ψ(C′, V ).

Proof. Only the necessity of the above condition requires consideration. To
that end assume that there are uncountably many cuts satisfying ψ and say
that two rationals q and q′ are close, q ' q′, if [min(q, q′),max(q, q′)] con-
tains only countably many cuts satisfying ψ; and far otherwise. This defines
an equivalence relation, each equivalence class of which is an interval of the
rationals. These intervals are naturally linearly ordered and form a dense or-
dering. Indeed, by assumption there are at least two classes and by definition
no two classes can form adjacent intervals, for otherwise their union would
have to be part of a single class. In other words between any two points far
apart there must be a third, which is far form both of these.

We assign to every pair [q]� < [q′]� of '-classes as its color the n-theory of
the interval L[q,q′) =

⋃{[p]� | [q]� ≤ [p]� < [q′]�}, where n is the quantifier
rank of ψ:

ν([q]�, [q′]�) = Tpn(L[q,q′), <, Y1 ∩ L[q,q′), . . . , YM ∩ L[q,q′)).

By composition, ν defines an additive binary coloring on Q/�. Thus, Theo-
rem 6.21 asserts that there is an open interval I of Q/� and a subset O ⊂ I,
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which is dense in I and is ν-homogeneous. In other words there exists an n-
theory τ such that ν([q]�, [q′]�) = τ for all [q]� < [q′]� in O. LetD be an arbi-
trary complete set of representatives of the '-classes in I. In particular (D,<)
is dense, countable and without endpoints. Let D0 = {q ∈ D | [q]� ∈ O} and
let I =

⋃ I.
Consider now a non-trivial proper cut C of D and let C′ = {q ∈ Q | ∃p ∈

C : q < p} as in the statement of this lemma. Because D0 is dense in D there
exist Z-chains . . . < p−2 < p−1 < p0 < p1 < . . . in D0 ∩ C and . . . < q−2 <
q−1 < q0 < q1 < . . . in D0 \ C such that C = {d ∈ D | ∃z pz ≤ d < pz+1}
and, similarly, D \ C = {d ∈ D | ∃z qz ≤ d < qz+1}. In particular, there is
no d ∈ D such that pz < d < qz for all z ∈ Z, which also means that there
is in fact no q ∈ Q such that pz < q < qz for all z ∈ Z. Therefore we have
I ∩C′ = {q ∈ Q | ∃z pz ≤ q < pz+1} and I \C = {q ∈ Q | ∃z qz ≤ q < qz+1}.

By composition and homogeneity of O, the n-types

Tpn(I ∩ C′, <, Y1 ∩ I ∩ C′, . . . , YM ∩ I ∩ C′)

and

Tpn(I \ C′, <, Y1 ∩ I \C′, . . . , YM ∩ I \ C′)

are obtained as the Z-fold product of τ with itself and as such are independent
of the choice of C. By the composition theorem again it follows that either
every C′ as above satisfies ψ(C′, Y1, . . . , YM ) or none does. The latter possi-
bility can be immediately ruled out on the grounds that any two points of
D are by definition far apart meaning that there must be uncountably many
Dedekind cuts between them satisfying ψ of which at most countably many
do not induce, equivalently, are not induced by a proper cut of D. ��
The “only if” condition of Lemma 6.22 is clearly MSO expressible. Combined
with Proposition 6.19 it yields full and effective elimination of ∃ℵ1 over (Q, <).

Proposition 6.23 (Elimination of ∃ℵ1 over the rationals). For every
MSO-formula ϕ(X,Y ) one can compute an MSO-formula ψ(Y ) which is equiv-
alent over the standard ordering of the rationals to both ∃ℵ1X ϕ(X,Y ) and
∃2ℵ0

X ϕ(X,Y ).

Proof. The proof is by induction on the structure of the formula. To eliminate
an inner-most occurrence of the uncountability quantifier one applies first
Proposition 6.19, followed by an application of Lemma 6.22. ��

6.6 Sums of Linear Orders

In the following we will make use of a more informative statement on compo-
sition of types on sums of linear orders as formulated by Shelah. Recall that
we denote by Hn,k the set of Hintikka formulas of quantifier depth n having
k free variables (see Lemma 1.10).
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Theorem 6.24 (Composition on linear orders II, [80])
Let ϕ(X) be an MSO-formula in the signature of chains with l predicates, m
free variables and quantifier rank n. Given the enumeration τ1(X), . . . , τk(X)
of Hn,l+m, there exists an MSO-formula θ(Q1, . . . , Qk), computable from the
above, such that for every linear order I = (I,<I) and family {Li | i ∈ I} of
chains and subsets V1, . . . , Vm of

∑
i∈I Li,

∑

i∈I

Li |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where the predicates Q form a partition of I induced by V as follows:

Qr = {i ∈ I | Tpn(Li, V ) = τr} for each r ∈ {1, . . . , k}.
Using this theorem we can formulate some general conditions allowing to re-
duce the problem of eliminating the uncountability quantifier ∃ℵ1 over sums of
linear orders to eliminating ∃ℵ1 over the index structure as well as eliminating
it uniformly over the summands.

Lemma 6.25. Let ϕ(X,Y ) be an MSO formula of quantifier rank n, L =∑
i∈I Li an ordered sum of chains, and V subsets of L. Let the enumeration of

n-types be given by τ1(X,Y ), . . . , τk(X,Y ) and let θ(T ) be as in Theorem 6.24.
Then there are uncountably many U ⊆ L satisfying L |= ϕ(U, V ) if and only
if one of the following conditions holds:

(a) there is one such U having infinitely many disjoint D-intervals, or
(b) there is one such U and an index i ∈ I so that Li |= ∃ℵ1Z τr(Z, V |Li)

where τr is the n-type of (U |Li , V |Li) on Li, or
(c) the set of those partitions P of I that are induced by V and some U

satisfying ϕ(U, V ) is uncountable. This can be expressed by an MSO(∃ℵ1)-
formula over the index structure:

(I,<) |= ∃ℵ1P : Part(P ) ∧
k∧

r=1

Pr ⊆ Qr ∧ θ(P )

where Part(P ) states that P partition I and for each r = 1 . . . k the set
Qr = {i ∈ I | Li |= ∃X ′ τr(X ′, V |Li)}.

If moreover ∃ℵ1 is equivalent to ∃2ℵ0 both over the index structure and on each
of the summands then these two quantifiers are also equivalent over the sum.

Proof. Each of the three conditions is sufficient to yield uncountably many
sets U satisfying ϕ. For (a) this was proven in Lemma 6.6 by the weaker
form of the composition theorem. Similarly, for (b) this also follows directly
already from the weaker composition theorem. Finally, for condition (c) this
follows from the fact that, for every one of the uncountably many tuples P
accounted for, there is a distinct set U inducing the type-predicates P and
fulfilling ϕ(U, V ).
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Conversely, if condition (c) fails then there are only countably many col-
orings of I with type predicates P induced by some U satisfying ϕ(U, V ).
By failure of (a) for each of these type predicates we have for all but finitely
many indices i that i ∈ Pr implies that τr uniquely defines U ∩Li from V |Li .
Finally, if condition (b) fails too, then on each of the finitely many remaining
intervals Li there are also only countably many choices for U ∩ Li.

To see that the formalization of condition (c) provided above is sound note
that by Theorem 6.24 every U satisfying ϕ(U, V ) induces, together with V , a
partition P satisfying the given formula. Conversely, each tuple P satisfying
it fulfills all the following: It forms a partition, it is induced by some set U to-
gether with V as ensured by

∧k
r=1 Pr ⊆ Qr, and every U inducing it must sat-

isfy ϕ(U, V ) thanks to θ(P ). ��
A crucial point as to the applicability of the above claim is that it assumes
a given factorization of a linear order as a sum. We introduce the notion of
definable splitting to facilitate the use of the above technique on classes of
linear orders over which an appropriate factorization is uniformly definable.

Definition 6.26 (Splitting). Let L = (L,<, . . .) be a chain and θ(x, y) a
formula with first-order variables x and y.

(1) We call θ a splitting of L if {(a, b) ∈ L2 | L |= θ(a, b)} is an equivalence
relation every class of which is an interval.

(2) For a splitting θ of L let ∼L
θ denote the equivalence relation defined by θ in

L, IL/θ the set of ∼L
θ -classes and IndL/θ = (IL/θ, <) the natural ordering

of IL/θ according to representatives. We call IndL/θ the indexing order of
L and SL/θ = {L|I | I ∈ IL/θ} the summand structures of L w.r.t. θ.

(3) Let C be a class of labeled chains. We call θ a splitting of C if θ splits
every L ∈ C. Let IndC/θ = {IndL/θ | L ∈ C} and SC/θ =

⋃
L∈C SL/θ.

We call IndC/θ and SC/θ the class of indexing chains of C and the class of
summand structures of C w.r.t. θ, respectively.

Theorem 6.27. Let C be a class of labeled chains and θ a splitting of C. If

(1) MSO(∃ℵ1) collapses effectively to MSO over the class of indexing chains
of C w.r.t. θ, and

(2) MSO(∃ℵ1) collapses effectively to MSO over the class of summand struc-
tures of C w.r.t. θ,

then MSO(∃ℵ1 ) collapses effectively to MSO over C.

Proof. Consider a formula ϕ(X,Y ) of MSO. We give a formula α ∨ β ∨ γ
expressing in MSO the disjunction of the three conditions of Lemma 6.25
equivalent to ∃ℵ1Xϕ(X,Y ) uniformly over each L ∈ C with the factorization
as defined by θ. Let τ1, . . . , τk be an enumeration of Tp(n, 1 +m) where n is
the quantifier rank of ϕ and m the length of Y .

Condition (a) can be expressed in MSO uniformly over all chains of a given
signature, for instance by requiring the existence of an X satisfying ϕ(X,Y )
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and an infinite set D such that every interval containing at least two points
of D is a D-interval for X :

α = ∃X ∃D Inf(D) ∧ ∀ interval I (∃d �= d′ ∈ D ∩ I) → DINTϕ(X,Y , I).

The use of Inf(D) above, meaning that the set D is infinite, is of course just
a shorthand. It can be eliminated as in Proposition 6.4.

Condition (b) can be expressed in MSO relying on the elimination procedure
for SC/θ. By the latter, one obtains for each n-type τr(X,Y ) an MSO formula
νr(Y ) equivalent to ∃ℵ1Z τr(Z, Y ) over SC/θ. Using these, condition (b) can
be written as

β = ∃X ϕ(X,Y ) ∧ ∃I ∃x CLASSθ(x, I) ∧
∨

r

(τIr (X,Y ) ∧ νIr (Y )),

where CLASSθ(x, I) = ∀y(y ∈ I ↔ θ(x, y)) defines I as the equivalence
class of x with respect to θ, and where for a formula ψ we denote by ψI the
relativization of ψ to I.

Finally, to express condition (c) of Lemma 6.25 one needs to

– choose a set I of representatives of all the equivalence classes defined by
θ,

– relativize to I the MSO formula ρ(Q) equivalent to ∃ℵ1P . . . of condition
(c) over IndC/θ as delivered by the elimination procedure for this class,

– and substitute into ρI the sets Q defined as

Ω(Q) =
k∧

r=1

∀x(x ∈ Qr ↔ ∃X ′, L
(
CLASSθ(x, L) ∧X ′ ⊆ L ∧ τLr (X ′, Y )

))
.

With the customary shorthand “∃! y” meaning “there is a unique y such that”
this formula takes the form

γ = ∃I (∀x ∃! y ∈ I θ(x, y))∧∃Q1, . . . , Qk Ω(Q)∧ρI(Q) . ��

6.7 All Countable Linear Orders

At last we are in a position to conclude that the quantifiers ∃ℵ1 and ∃2ℵ0 are
equivalent and can be effectively eliminated from MSO(∃ℵ1 , ∃2ℵ0 ) uniformly
over all countable chains. Indeed, as recalled in the first chapter, every count-
able linear order arises as a dense sum of scattered linear orders, i.e. in the
form

∑
q∈D Lq where each Lq is a countable scattered linear order and D is

either a singleton or is isomorphic to the standard ordering of the rationals
with or without an additional minimal or maximal element.

Let θ(x, y) be the MSO-formula expressing that for no subset A of L[x,y]

the order (A,<) is dense, i.e. that L[x,y] is a scattered linear order. Over any
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countable chain, θ defines an equivalence relation partitioning it into intervals
coinciding with the summands Lq as above. Thus, θ is a splitting of the class
of all countable linear orders.

Taking advantage of Theorem 6.27 and using the previously proven collapse
results over the class of countable scattered linear orders (Corollary 6.15) and
over the rationals (Proposition 6.23), — which trivially extends to the ratio-
nals with either one or both endpoints added — we obtain uniform effective
elimination of ∃ℵ1 over the class of all countable chains. This completes the
proof of Theorem 6.2(2) and similarly Theorem 6.3.
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Cardinality Quantifiers in MSO on Trees

In this chapter, we extend the results on second-order cardinality quantifiers,
shown for linear orders in the previous chapter, to trees. Our main result,
obtained together with Vince Bárány and Alexander Rabinovich [8, 9], is that
the uncountability quantifier can be eliminated from MSO over trees.

Theorem 7.1. For every MSO(∃ℵ0 , ∃ℵ1 , ∃2ℵ0 ) formula ϕ(Y ) there exists an
MSO formula ψ(Y ), computable from ϕ, that is equivalent to ϕ(Y ) over trees.

In addition to the above, the reduction will show that over trees the quantifiers
∃ℵ1X and ∃2ℵ0

X are equivalent, i.e. that the continuum hypothesis holds for
MSO-definable families of sets. Though not surprising, this is not obvious for
it is known that in MSO one can define non-analytic classes of sets [70] and
that the continuum hypothesis is independent of ZFC already for co-analytic
sets [67].

Theorem 7.2. On trees ∃ℵ1X ϕ(X,Y ) is equivalent to ∃2ℵ0
X ϕ(X,Y ) for ev-

ery MSO formula ϕ(X,Y ).

Our theorems translate to generalized-automatic structures, as formulated in
the corollary below. They also supersede the previously mentioned results
from [59] and generalize the theorem of Niwiński [69], which states that over
the full binary tree the validity of ∃ℵ1X ϕ(X) is decidable and equivalent to
that of ∃2ℵ0

X ϕ(X) for every MSO-formula ϕ(X).

Corollary 7.3. Every expansion of an injectively generalized-automatic struc-
ture by a relation definable in first-order logic with (first-order) cardinality
quantifiers is also an injectively generalized-automatic structure.

7.1 D-Nodes versus U-Nodes and Relevant Branches

To eliminate the uncountability quantifier over trees, we will again define suit-
able notions of U-nodes and D-nodes, similar to U-intervals and D-intervals
Ł. Kaiser: Logic and Games on Automatic Structures, LNAI 6810, pp. 95–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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used in the previous chapter. As our main tool, we will again use the compo-
sition method, in the form of the following theorem.

Theorem 7.4 (Composition Theorem for Trees II)
Let ϕ(X) be an MSO-formula in the signature of trees with l predicates, having
m free variables and quantifier rank n. Given the enumeration τ1(X), . . . , τk(X)
of Hn,l+m, there exists an MSO-formula θ(Q1, . . . , Qk) computable from ϕ
such that for every tree I = (I,<I) and family {Ti | i ∈ I} of trees and
subsets V1, . . . , Vm of

∑
i∈I Ti,

∑

i∈I

Ti |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where Qr = {i ∈ I | Tpn(Ti, V ) = τr} for each r ∈ {1, . . . , k}.
A tree segment, or interval, of a tree is a connected and convex set I of nodes,
i.e. such that for every u,w ∈ I if u and w are incomparable, then their
greatest common ancestor is in I, and if u < w then for every u < v < w also
v ∈ I. Every tree segment has a minimal element and every subtree Tz of a
tree T is a tree segment. More generally, the summands Ti of any tree sum
T =

∑
i∈I Ti are tree segments of T. The terms ‘interval’ and ‘tree segment’

are used interchangeably.
We denote by T|I the restriction of a tree T to the interval I. Alternatively,

given a node z and a set Z of nodes of T we use the notation Tz\Z for the
restriction of T to the tree segment Tz \ (

⋃
w∈Z,z<w Tw). Any interval I with

a minimal element z can be written in the form Tz\Z , where Z = {u | u ≥
z ∧ u �∈ I}. In particular, if B is a branch, v, w ∈ B such that w is the
immediate successor of v on B, then Tv\B = Tv \ Tw. These notations are
schematically depicted in Figure 7.1.

T
v•

Tv

T
v•

w
•u

•Tv\{u,w}

T
v•

w
•

Tv\B B

Fig. 7.1. A subtree Tv and tree segments Tv\{u,w} and Tv\B

Consider an MSO formula ϕ(X,Y ) over trees. To eliminate a single occur-
rence of the uncountability quantifier from ∃ℵ1X ϕ(X,Y ) over a tree T we
will make extensive use of the following notions for intervals. For the rest of
this section we fix an MSO formula ϕ(X,Y ) over trees with l predicates and
with 1 +m free variables — of which Y = (Y1, . . . , Ym) will often be regarded
as parameters — and of quantifier rank n.

Definition 7.5. Let T be a tree, X,Y subsets of T such that T |= ϕ(X,Y ),
and I an interval of T.
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(1) We say that I is a U-interval for ϕ, X, Y whenever X ∩ I is the unique
subset of its type on T|I. More precisely, if T|I |= ∀Z τ(Z, Y ) → Z = X,
where τ(X,Y ) is the n-type of (T, X, Y )|I .

(2) I is a D-interval for ϕ, X, Y if it is not a U-interval.
(3) In the special case of I = {u | u ≥ z} we say that the subtree Tz is a U-

tree or D-tree, respectively, and further say that z is a U-node or D-node
for ϕ,X, Y .

(4) The set of D-nodes for ϕ,X, Y is denoted D(X).
(5) An infinite path P is called a D-path for ϕ,X, Y if every v ∈ P is a

D-node for ϕ,X, Y , i.e. if P ⊆ D(X).

Again, the name “U-interval” attests to the fact that the set X in question
is uniquely determined by its type on a given interval, as opposed to “D-
intervals” offering two (or more) distinct choices for X with the same type on
the interval, thus (at least) doubling the total number of choices for X over
the entire domain. Whenever ϕ and Y are clear from the context we will write
e.g. “D-interval for X” instead of “D-interval for ϕ,X, Y ”, and similarly for the
other notions above.

It is worth noting that each set D(X) is prefix-closed since whenever Tv is
a D-tree and u < v, then Tv is a subtree of Tu and hence, by composition,
Tu is a D-tree as well. Thus D(X) induces a tree whose infinite paths are
precisely the D-paths for X .

Each of the notions introduced in Definition 7.5 can be formalized in MSO.
Let us start by constructing the formula DINTϕ(I,X, Y ), expressing that I
is a D-interval for ϕ,X, Y . By Lemma 1.10, the set of n-types Hn,l+m+1 is
finite and can be computed. Take the formula

ψeqtp(X,Z, Y ) =
∧

τ∈Hn,l+m+1

τ(X,Y ) ↔ τ(Z, Y )

expressing that X and Z have the same n-type (on the tree at large), and let
ψrel

eqtp(X,Z, Y , I) be the relativization of ψeqtp(X,Z, Y ) to an interval I, thus
asserting that X and Z have the same n-type on I. DINTϕ(I,X, Y ) can now
be written as

ϕ(X,Y ) ∧ ∃Z(ψrel
eqtp(X,Z, Y , I) ∧ X ∩ I �= Z ∩ I) .

Using DINTϕ(I,X, Y ) one can build the formula DNODEϕ(v,X, Y ) and
the formula DPATHϕ(P,X, Y ) expressing, respectively, that v is a D-node
and that P is a D-path for ϕ,X, Y . One can also construct a formula
DSETϕ(D,X, Y ) which holds if and only if D = D(X).

The following lemma is the first step in eliminating the ∃ℵ1 quantifier from
MSO over trees. The three cases are depicted in Figure 7.2.

Lemma 7.6. Let T be a tree and ϕ(X,Y ) an MSO-formula. Then, for every
tuple of subsets V of T,
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(A)

. . .
(B) (C)

Fig. 7.2. The three conditions

T |= ∃ℵ1X ϕ(X,V )

if and only if one of the following conditions is satisfied.

A. There is a set U satisfying T |= ϕ(U, V ) and there is an infinite antichain
A of D-nodes for ϕ,U, V .

B. There is an infinite branch B, which is a D-path for uncountably many U
satisfying T |= ϕ(U, V ).

C. There are uncountably many branches B in T, each of which is a D-path
for some U satisfying T |= ϕ(U, V ).

Proof. Note that over finitely branching trees, where König’s Lemma applies,
Condition A implies Condition B and is enlisted here for deductive reasons
only.

On the one hand, A is arguably the most natural and easily expressible
condition sufficient for the existence of continuum many sets U satisfying T |=
ϕ(U, V ). To see that, let U and A be as in A and let I = {w ∈ T | ¬∃v (v ∈
A ∧ v < w) } be the set of all nodes which are not below any of the nodes of A.
Then T can be decomposed with (I,<) as index structure as T =

∑
w∈I\A[w]+

∑
w∈A Tw. Here [w] denotes a tree consisting of a single node bearing the

same labels as w in T. We apply Theorem 7.4 to this decomposition. Given
that T |= ϕ(U, V ), we can ascertain that T |= ϕ(U ′, V ) for every U ′ such
that U ′ ∩ (I \ A) = U ∩ (I \ A) and Tpn(Tw, U ′, V ) = Tpn(Tw, U, V ) for all
w ∈ A. By the choice of A, such a U ′ can be independently chosen either to
coincide or not to coincide with U on each subtree Tw with w ∈ A without
changing its type. Hence there are continuum many different such U ′ and A is
an antichain of D-nodes for every such U ′. In a (finitely branching) tree with
U and A fulfilling Condition A there is also, by König’s Lemma, an infinite
branch B such that Tv∩A is infinite for all v ∈ B. In particular, B is a D-path
for each U ′ obtained from U as above, implying Condition B.

On the other hand, ¬A amounts to saying that for each U satisfying ϕ(U, V )
the set D(U) induces a tree comprised of only finitely many branches. In
particular, that there are only finitely many infinite D-paths for each such U .

Condition B explicitly requires the existence of uncountably many sets
satisfying ϕ(X,V ), so it too is sufficient for ∃ℵ1X ϕ(X,V ) to hold. Hence it
remains to be shown that when B fails then C is both sufficient and necessary.

Assuming B does not hold in some T then, as we have seen, A fails too and
therefore there are only finitely many infinite D-paths for each U satisfying
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T |= ϕ(U, V ). Also by the failure of B, every branch is a D-path for at most
countably many U satisfying T |= ϕ(U, V ). It follows that for every such set
U the collection {U ′ | D(U ′) = D(U) , T |= ϕ(U ′, V )} is finite or countable.
Indeed, this is clear from the above whenever D(U) contains an infinite D-
path. If on the other hand D(U) is finite then U is fully determined by U ∩
D(U) and the n-types of all those U-nodes that are successors of some D-
node,which only allows for a finite number of choices of U given that T is
finitely branching.

Thus, we have established that whenever B fails in some T then: there are
uncountably many U satisfying T |= ϕ(U, V ) if and only if there are uncount-
ably many sets D(U) with T |= ϕ(U, V ) if and only if Condition C holds.
(The last “only if” holds because in that case each relevant D(U) contains
only finitely many branches.) ��
We remark that Lemma 7.6 fails for infinitely branching trees. Consider a
tree of depth one with the root r having countably many successor nodes
and the formula ϕ(X,Y ) = X ⊆ Y and fix a set V of successor nodes. Then
D(X) ⊆ {r} for every X satisfying ϕ(X,V ), hence conditions A, B and C
all fail. Note that over infinitely branching trees even the predicate Inf(X),
meaning that the set X is infinite, cannot be expressed in pure MSO.

Let us note again that if Condition A holds then there are in fact continuum
many sets X satisfying the formula ϕ(X,Y ). Condition A can be directly
formalized in MSO(Inf), hence, over (finitely branching) trees, also in MSO
as follows:

ψA(Y ) = ∃U ∃A (ϕ(U, Y ) ∧ Inf(A) ∧ antichain(A)∧
( ∀w ∈ A DNODEϕ(w,U, Y )

) )
,

where antichain(A) = ∀x, y ∈ A ¬(x < y ∨ y < x).

7.2 Structure of D-Paths for Uncountably Many Sets

In this section, we show that a branch B is a witness for Condition B if and
only if this branch satisfies a disjunction of three sub-conditions: Ba, Bb and
Bc. Moreover, if both Condition A and Condition C fail, then already the
sub-conditions Ba and Bc are sufficient. Finally, we express both Ba and Bc in
MSO and show, that in fact both these sub-conditions guarantee the existence
of continuum many sets X satisfying the formula ϕ(X,Y ) in consideration.
As in the previous section, we fix an MSO formula ϕ(X,Y ) with 1 + m free
variables and of quantifier rank n.

Consider the formula ψ(X,Y , P ) stating that P is an infinite D-path for X
and that ϕ(X,Y ) holds.

ψ(X,Y , P ) = DPATHϕ(P,X, Y ) ∧ Inf(P ) ∧ ϕ(X,Y )
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Note that a branch B witnesses Condition B in a tree T if and only if T |=
∃ℵ1U ψ(U, Y ,B). To break up Condition B for a given branch B we therefore
apply the Composition Theorem for the formula ψ with the decomposition
T =

∑
w∈B Tw\B along that branch. To that end, assuming that l labels occur

in T (and ϕ), we fix r as the number of qr(ψ)-types in l + m + 2 variables,
which we enumerate as τ1, . . . , τr. Then Theorem 7.4 yields a formula θ such
that

T |= ψ(X,Y ,B) ⇐⇒ (B,<) |= θ(P1, . . . , Pr) (7.1)

with Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi} for each i ∈ {1, . . . , r}. Note
that we use the expansion of Tw\B by {w} as w is the only element of Tw\B
that belongs to B.

With this reformulation it is clear that a branch B witnesses Condition B
in a tree T if and only if there are uncountably many different P satisfying θ,
or some P satisfying θ has uncountably many X corresponding to it. Taking
advantage of the fact that, by virtue of the Composition Theorem, θ merely
depends on ψ but not on T nor the chosen branch B, we obtain the following
breakdown of Condition B.

Lemma 7.7. Let T be a tree and B an infinite branch in T. There are un-
countably many X ⊆ T satisfying the formula ψ(X,Y ,B) in T if and only if
one of the following sub-conditions holds.

Ba.There exists a set X such that Tw\B is a D-interval for ϕ,X, Y for in-
finitely many w ∈ B.

Bb.There exists a set X satisfying ψ and a w ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X ′, Y ∩ Tw\B, {w}),

where τi = Tpqr(ψ)(Tw\B, X, Y , {w}) for all i ∈ {1, . . . , r}.
Bc.It holds that

(B,<) |= ∃ℵ1P

(

θ(P ) ∧
r∧

i=1

Pi ⊆ Qi ∧ ∀x
r∨

i=1

(

x ∈ Pi ∧
∧

j �=i
x �∈ Pj

))

where for each i ∈ {1, . . . , r}, Qi is the set of nodes on the branch B in
which the type τi is satisfied by some set X, i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w})}.

Proof. Recall that by (7.1) we have T |= ψ(X,Y ,B) if and only if (B,<) |=
θ(P1, . . . , Pr). We consider two cases.

Case 1: There exists a tuple P such that (B,<) |= θ(P ) and there are
uncountably many sets X for which Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi}
for each i ∈ {1, . . . , r}.
In this case the branch B witnesses Condition B, so we only need to show that
one of the sub-conditions holds. Consider a set X0 satisfying ψ(X0, Y , B) and



7.2 Structure of D-Paths for Uncountably Many Sets 101

having qr(ψ)-types on Tw\B for all w ∈ B as described by P . Assume that
sub-condition (Ba) does not hold. Then the segment Tw\B is a U-interval
for ϕ,X0, Y for all but finitely many w ∈ B. Observe that qr(ψ) ≥ qr(ϕ).
Therefore all of the uncountably many sets X that induce P , i.e. have the
same qr(ψ)-type as X0 on each segment Tw\B, must be equal to X0 on all
but finitely many Tw\B. Therefore there is a w ∈ B for which there are
uncountably many different X having the same qr(ψ)-type as X0 on Tw\B,
and thus Condition (Bb) is satisfied.

Case 2: For each tuple P such that (B,<) |= θ(P ) there are only countably
many sets X for which Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi}.
In this case, we show that Condition (Bc) is both necessary and sufficient for
the existence of uncountably many sets X satisfying ψ.

Necessity of Condition (Bc).
As a direct consequence of (7.1) and the condition of this case, if there are
uncountably many setsX satisfying ψ then there are uncountably many corre-
sponding tuples P for which (B,<) |= θ(P ). Each Pi induced by some X as in
(7.1) is, by definition, the set of w’s for which (Tw\B, X, Y , {w}) |= τi. So for
every w ∈ Pi we have, in particular, that Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w}).
Thus Pi ⊆ Qi for every i. Since Hintikka formulas are mutually exclusive,
the Pi’s are pairwise disjoint. This guarantees that the remaining conjunct
∀x(∨ri=1(x ∈ Pi ∧

∧
s�=r x �∈ Ps

)
of Condition (Bc) is also satisfied, and there-

fore Condition (Bc) holds.
Sufficiency of Condition (Bc).
By definition of the sets Qi, for each w ∈ Qi there is a subset Xw,i ⊆ Tw\B

such that Tw\B |= τi(Xw,i, Y , {w}). Assuming that Condition (Bc) holds, let
P be the uncountable set of tuples P that witness this condition. For each such
tuple P and each w ∈ B the last conjunct of Condition (Bc) guarantees that
there is a unique i = i(w,P ) for which w ∈ Pi. Let XP =

⋃
w∈BXw,i(w,P).

Since Pi ⊆ Qi, the tuple P describes indeed the types of the set XP on the
tree segments Tw\B. According to (7.1) from (B,<) |= θ(P ) we can infer that
T |= ψ(XP , Y , B). Clearly, for distinct tuples P 1 and P 2 the setsXP1

and XP2

are also distinct. Therefore {XP | P ∈ P} constitutes an uncountable family
of sets satisfying ψ. ��
Observe that (Ba) already subsumes A in the sense that if Condition A holds
then there is a branch satisfying (Ba). Also observe that Condition (Bb) is
itself just another instance of our initial problem. It is important to note,
however, that the above cases classify conditions under which an individual
branch may satisfy B. At closer inspection we find that if no branch satisfies
either (Bc) or (Ba) (so that in particular A fails) and moreover Condition C
fails too, then (Bb) cannot hold either.

Lemma 7.8. If over a tree T both Conditions A and C fail, then Condition
B implies that some branch of T satisfies Condition (Ba) or Condition (Bc).
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One intuitive way to see this is that if all the conditions A, (Ba), (Bc) and
C fail on a tree, and thereby also on every tree segment of that tree, then
for (Bb) to hold for a proper tree segment that tree segment would have to
contain a proper tree segment on which (Bb) holds, and so on indefinitely.
This would ultimately trace an infinite branch witnessing (Ba), contrary to
the initial assumption.

Proof. It is easy to see that if conditions A and C fail then D = {D(X) | T |=
ϕ(X,Y )} is countable. Indeed, in the proof of Lemma 7.6 we have already
remarked that the failure of A implies that each D ∈ D is a union of finitely
many paths and, by definition, C holds unless there are only countably many
potential D-paths in total.

If Condition B holds then there are uncountably many sets X satisfying
ϕ(X,Y ) and thus, as D is countable, there is a set D such that D = D(X)
for uncountably many X satisfying ϕ. Fix such a D and consider the set of
labelings L = {λX : D → Hn,l+m+1 | D(X) = D, T |= ϕ(X,Y )}, where
λX(w) = Tpn(Tw\D, X, Y ) for all w ∈ D. We distinguish two cases.

Case 1: L is uncountable. Then, given that D contains only finitely
many infinite paths and finitely many additional nodes, there is an infi-
nite branch B in D such that {λ|B | λ ∈ L} is uncountable. Observe that
λX(w) = Tpn(Tw\B, X, Y ) for all but finitely many nodes w ∈ B. Also ob-
serve that, since qr(ψ) ≥ n, each qr(ψ)-type on the variables X,Y ,B induces
a unique n-type on the variables X,Y . So there are necessarily uncountably
many different partitions P

X
= 〈PX1 , . . . PXr 〉 of B

PXj = {w ∈ B | Tpqr(ψ)(Tw\B, X, Y , {w}) = τj} for j ∈ {1, . . . , r},

with D(X) = D and X satisfying ϕ. Using (7.1) we can check that Condition
(Bc) is met for the branch B.

Case 2: L is countable. Then there is a type labeling λ : D → Hn,l+m+1 such
that λ = λX for uncountably many X satisfying ϕ and having D(X) = D.
Suppose that Condition (Ba) is not satisfied for any infinite branch B in D.
Then λ(w) uniquely determines X ∩ Tw\D for all but finitely many w ∈ D
and all X satisfying ϕ and D(X) = D. Thus, there exists a w ∈ D such that
there are uncountably many X as above pairwise differing on the tree segment
Tw\D. However, by definition, every subtree of Tw\D is a U-tree relative to
each of these X , because D(X) = D. Because T is finitely branching, i.e.
Tw\D \ {w} is a finite union of such U-trees, there can be only finitely many
X as above and pairwise differing on Tw\D, which is a contradiction. Therefore
Condition (Ba) must hold. ��
Next we will construct MSO formulas ψBa(B, Y ) and ψBc(B, Y ) formalizing
sub-conditions (Ba) and (Bc), respectively. By the above, we can then use
the formula ψB(Y ) = ∃B(ψBa(B, Y ) ∨ ψBc(B, Y )) in place of Condition B in
Lemma 7.6.
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7.2.1 Formalization of Condition Ba

Much like Condition A, (Ba) is naturally expressible in MSO(Inf) and thus,
over trees, in pure MSO as well by the formula

ψBa(B, Y ) = ∃X ∃ℵ0w DINT(Tw\B, X, Y ),

where Tw\B is just a notation for the set defined by

x ∈ Tw\B ⇐⇒ w ≤ x ∧ ¬∃b ∈ B (b > w ∧ b ≤ x).

The fact that Condition (Ba) is sufficient for the existence of continuum
many sets U satisfying ϕ(U, V ) can be arrived at by appealing to the Com-
position Theorem in the same manner as for Condition A in the proof of
Lemma 7.6, because the set X can be left intact or changed to another one
with the same type on any of the infinitely many trees Tw\B which are D-
intervals for X .

7.2.2 Formalization of Condition Bc

In order to eliminate the explicit use of the uncountability quantifier in Con-
dition (Bc) over (B,<) ∼= (ω,<), we make use of Proposition 2.5 from [59],
more directly proven in the previous chapter, which states that cardinality
quantifiers can be eliminated over (ω,<).

Proposition 7.9. For every MSO formula ϕ(X,Y ) there exists an effectively
constructable formula ψ(Y ) such that over (ω,<) the following equivalence
holds:

ψ(Y ) ≡ ∃ℵ1X ϕ(X,Y ) ≡ ∃2ℵ0
X ϕ(X,Y ).

Applying this result to the formula on the right hand side of Condition (Bc),
with Q as parameters, we obtain a formula ϑ(Q) such that Condition (Bc)
holds if and only if (B,<) |= ϑ(Q), with Q as specified there.

By Proposition 7.9, if ϑ(Q) holds, then there are even continuum many sets
P satisfying Condition (Bc). This in turn ensures the existence of continuum
many sets X satisfying ϕ(X,Y ), because for each P accounted for in ϑ(Q) a
corresponding X satisfying ψ(X,Y ,B) can be found and this association is
necessarily injective.

To formalize Condition (Bc) in MSO over the tree T, we first define the sets
Qi on T. As the set of types is computable, we can compute each τi and thus
effectively construct the formula αi(w,B, Y ) expressing that w is a node on
the branch B such that Tw\B |= ∃X τi(X,Y ∩Tw\B, {w}), i.e. w ∈ Qi. Using
this formula we can express Condition (Bc) as

ψBc(B, Y ) = ∃Q
(

r∧

i=1

(
w ∈ Qi ↔ αi(w,B, Y )

) ∧ ϑB(Q)

)

where ϑB is a relativization of ϑ to the branch B.
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7.3 The Full Binary Tree and the Cantor Space

In order to formalize Condition C in MSO over trees, we first analyze the
problem only on the full binary tree and identify and prove the following
key topological property that distinguishes counting branches from counting
arbitrary sets.

On the full binary tree T(2) = ({0, 1}∗,≺, S0, S1) where ≺ is the prefix-
order and Si = {0, 1}∗i, we show that the set of branches satisfying any given
MSO formula is a Borel set in the Cantor topology and hence it has the
perfect set property: it is uncountable iff it contains a perfect subset iff it has
the cardinality of the continuum. A perfect set is a closed set without isolated
points.

7.3.1 Overview of Topological Notions

The argument we present is based on basic results of descriptive set theory and
the theory of finite automata on infinite words in connection with monadic
second-order logic and the Borel hierarchy of the Cantor space. Let us recall
a few basic notions from descriptive set theory. A thorough introduction to
descriptive set theory can be found in [67], we only mention a few basic facts.

The Cantor space is the topological space with the product topology on
{0, 1}ω. It is a Polish space with the topology generated by basic neighbor-
hoods w{0, 1}ω with the prefix w ∈ {0, 1}∗. Alternatively, it can be defined
by the metric d(α, β) = 2−min{n : α[n] �=β[n]}.

The hierarchy of Borel sets is generated starting from open sets, i.e. unions
of basic neighborhoods, denoted Σ0

1, and closed sets, which are complements
of open sets and denoted Π0

1. Further on by transfinite induction for any
countable ordinal α, Σ0

α is defined as {⋃i∈ω Ai | ∀i ∃βi < α Ai ∈ Π0
βi
}

and the Π0
α-sets are the complements of Σ0

α-sets. Each class Σ0
α and Π0

α is
closed under taking inverse images by continuous functions. In fact there are
complete languages in each class with respect to continuous reductions.

The projective hierarchy is built on top of the Borel hierarchy, starting
with Σ1

0 = Π1
0 as the class of Borel sets. On the first level one has the class

Σ1
1 of analytic sets, which are projections of Borel sets, and the class Π1

1 of
co-analytic sets, whose complements are analytic. The hierarchy is built in
this manner with sets in Σ1

α+1 being projections of Π1
α-sets, and Π1

α+1 sets
being complements of Σ1

α sets.
The connection between the topological complexity of MSO-definable tree

languages and the complexity of tree-automata recognizing them is well un-
derstood [85, 70]. By Rabin’s complementation theorem, all MSO-definable
tree languages are in Σ1

2 ∩Π1
2. There are Σ1

1-complete as well as Π1
1-complete

regular tree languages. For instance, the set of {a, b}-labeled binary trees,
which have on every path only finitely many a’s, is Π1

1-complete [3, 70]. There
are regular tree languages on arbitrary finite levels of the Borel hierarchy [81].
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There also exist regular tree languages not contained in Σ1
1 ∪ Π1

1, however,
languages accepted by deterministic tree automata do belong to Π1

1.
This is in stark contrast to the situation of ω-regular languages, i.e. MSO-

definable sets of ω-words, which are, by McNaughton’s theorem, Boolean com-
binations of Π0

2 sets [85].
The Cantor-Bendixson Theorem states that closed subsets of a Polish space

have the perfect set property: they are either countable or contain a perfect
subset and thus have cardinality continuum. A set P is perfect if it is closed
and if it has no isolated points, i.e. if every open neighborhood of every point
p ∈ P contains another point of P . We shall rely on the following fundamental
result on Borel sets.

Proposition 7.10 ([52, Theorem 13.6]). Every uncountable Borel subset
of a Polish space contains a perfect subset.

In fact, Souslin has proved that all analytic sets have the perfect set property
[67]. It is, however, independent of ZFC whether all co-analytic sets, or all sets
on higher levels of the projective hierarchy, satisfy the continuum hypothesis
[67]. A key observation that our formalization will exploit is that, even though
there are non-analytic sets of trees definable in MSO, sets of definable paths
are Borel.

7.3.2 Definable Sets of Branches are Borel

For a sequence π ∈ {0, 1}ω, we denote by Pref(π) the path through the full
binary tree T(2) that corresponds to this sequence, which formally can be
identified with the set of prefixes of π. The following theorem was recently
strengthened in [15].

Theorem 7.11 (MSO definable sets of branches are Borel)
Let U1, . . . , Um be subsets of T(2) and let ψ(X,Y ) be an MSO formula over
T(2). Then the set

X = { π ∈ {0, 1}ω | T(2) |= ψ(Pref(π), U ) }
of branches of the binary tree satisfying ψ(X,U) is on the third level of the
Borel hierarchy, in particular, it has the perfect set property.

Proof. Given a path π ∈ {0, 1}ω let B = Pref(π) be the corresponding infinite
branch and consider the labeled tree Tπ = (T(2),Pref(π), U), and its decom-
position as a tree sum along π : Tπ =

∑
v∈B Tπv\B. Applying the Composition

Theorem to Tπ and ϕ we find θ such that

T(2) |= ϕ(Pref(π), U ) ⇐⇒
∑

v∈B
Tπv\B |= ϕ ⇐⇒ (B,<) |= θ(Qπ1 , . . . , Q

π
k)

where Qπr = {v ∈ B | Tpn(Tπv\B) = τr} for each r ∈ {1, . . . , k} in the
enumeration of appropriate types. Note that θ does not depend on π and
(B,<) ∼= (ω,<).
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By the well-known correspondence of MSO and finite automata there is
an ω-regular language Lθ ⊆ ({0, 1}k)ω consisting of precisely those ω-words
representing the characteristic sequences of predicates Q on ω for which holds
(ω,<) |= θ(Q). In particular, by McNaughton’s theorem, Lθ ∈ Σ0

3 [85].
Consider now the mapping f assigning to each π ∈ {0, 1}ω the sequence ρ ∈

({0, 1}k)ω with ρ[n] = 〈Qπr (π|n) | r ∈ {1, . . . , k}〉. Note that if π|n+1 = π′|n+1

then Qπr (π|n) ↔ Qπ
′
r (π′|n) for all r ∈ {1, . . . , k}, in other words, ρ|n = ρ′|n.

Therefore f is continuous with respect to the Cantor topology. By the above,
X = f−1(Lθ) and therefore also X ∈ Σ0

3 as claimed. ��

7.4 Formalizing Existence of Uncountably Many
Branches

The perfect set property established in Theorem 7.11 provides an MSO-
definable characterization of Condition C of Lemma 7.6 over the full binary
tree with arbitrary labeling. Via interpretations, this can be extended to all
(finitely branching) trees to yield the following characterization.

Proposition 7.12 (Eliminating uncountably-many-branches quanti-
fier). For every MSO formula ϕ(X,Y ) the assertion “ ∃ℵ1B branch(B) ∧
ϕ(B, Y )” is equivalent over all trees to the existence of a perfect set of branches
B, each satisfying ϕ(B, Y ). The latter ensures that there are in fact continuum
many such branches.

Proof. Perfect sets of branches are of continuum cardinality, hence the con-
dition is clearly sufficient. Conversely, Theorem 7.11 shows that over the full
binary tree with arbitrary additional unary predicates this condition is also
necessary. We can transfer this result to all trees as follows.

Every tree T is isomorphic to some (T,≺, P1, . . . , Pl) where T ⊆ N
∗ is a

prefix-closed subset of finite sequences of natural numbers and ≺ is the prefix
relation. Consider the following encoding μ : N

∗ → {0, 1}∗

(n0, n1, . . . , ns) �→ 0n010n11 . . . 0ns1,

and set S = μ(T ) and Qi = μ(Pi) for each i = 1 . . . l.
Given that v ≺ w in T if and only if μ(v) ≺ μ(w) in T(2), this defines an

interpretation of T inside (T(2), S,Q1, . . . , Ql). In particular, for every MSO-
formula ϑ(X) over trees with l predicates,

T |= ϑ(U) ⇐⇒ (T(2), S,Q1, . . . , Ql) |= ϑ∗(μ(U )),

where ϑ∗ is obtained from ϑ by interpreting each Pi with Qi and relativizing
all quantifiers to subsets or elements of S.

The embedding μ induces an injective mapping μ∗ of the set of infinite
branches of T to infinite branches of T(2). It is easy to check that μ∗ is
continuous.
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Consider the formula ϕ(B, Y ) defining an uncountable set D of branches B
of T with parameters V . Then D∗ = {μ∗(B) | B ∈ D} is an uncountable set of
branches of T(2), which is defined by the formula “branch(B)∧∃ infinite P ⊆
B ϕ∗(P, μ(V ))” over (T(2), S,Q1, . . . , Ql). Hence, by Theorem 7.11, D∗ con-
tains a perfect set of branches. The inverse image of this set under the contin-
uous mapping μ∗ is a perfect set of branches in D. ��
Towards an MSO formulation, note that the collection of nodes of a perfect
set of branches induces a perfect tree, and vice versa. Let perfect(P ) be a
formula that expresses that P is a perfect subset, i.e. that P is prefix closed
and for every u ∈ P there are incomparable v, w > u such that v ∈ P and
w ∈ P .

Corollary 7.13. Over trees, Condition C is expressible in MSO as

ψC(Y ) = ∃P perfect(P ) ∧ ∀B ⊂ P
(
branch(B) → ∃X ϕ(X,Y ) ∧ DPATHϕ(B,X, Y )

)
.

In particular, Condition C entails the existence of continuum many D-paths
of sets X satisfying ϕ(X,Y ).

As we have shown above, each of the conditions of Lemma 7.6 can be formal-
ized in MSO over trees. Thus we can again state the conclusion of this lemma:
T |= ∃ℵ1X ϕ(X,Y ) holds if and only if

T |= ψA(Y ) ∨ ∃B (ψBa(B, Y ) ∨ ψBc(B, Y ) ) ∨ ψC(Y ).

Using the above, we can reduce any formula of MSO(∃ℵ1) to an MSO formula
equivalent over the class of trees by inductively eliminating the inner-most
occurrence of a cardinality quantifier. Theorem 7.1 follows. Moreover, as we
have shown in the corresponding sections, each of the conditions of Lemma 7.6
implies the existence of continuum many sets X satisfying ϕ(X,Y ), thus
Theorem 7.2 follows as well.



8

Outlook

We considered the connection between logic and games underlying model-
checking procedures on finite structures and extended it to the class of au-
tomatic structures. To this end we defined a new class of hierarchical games
suitable for model-checking first-order logic over automatic structures. These
games can be used not only for first-order logic, but also for formulas with
the regular game quantifier. Moreover, cardinality and counting quantifiers
can be reduced to first-order logic on automatic structures. Thus, hierarchical
games provide a way to model-check first-order logic extended with cardinal-
ity, counting and game quantification on automatic presentations.

In our basic model of hierarchical games, two coalitions with strictly op-
posing objectives play a game with a particular kind of imperfect informa-
tion. In general multiplayer games, strictly opposing objectives of players are
uncommon. Moreover, the hierarchical constraint is a technical limitation in-
troduced to keep the problem of establishing the winners decidable. Therefore
we ask which other classes or representations of games can be used for model-
checking first-order logic on automatic structures. One natural way to define
such games is by departing from the standard abstraction of a token moved
on a state graph and allowing the players to play with more complex objects.

For example, we imagine games where players build a new graph during the
game by choosing moves labeled by some simple graph rewriting rules. One
promising candidate for such rules are separated hypergraph rewriting rules
introduced in [24], which were recently proven to be applicable for games as
well [51]. Graphs constructed using these rules are MSO-interpretable in the
binary tree, and thus have a decidable MSO theory (see [12] for an overview).
Following this approach, a model-checking game for a formula ∃x∀y R(x, y),
with x and y represented by finite words, would start with the Verifier building
an arbitrary large graph that represents the game ∀y R(u, y) for some word
u that he chooses. Then, the Falsifier continues the construction for some
word w of his choice. Finally, a regular condition is checked on the graph
constructed for R(u,w) to determine the winner.

Ł. Kaiser: Logic and Games on Automatic Structures, LNAI 6810, pp. 109–110, 2011.
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Such a description seems more intuitive than the definition of hierarchical
games as it involves only two players with perfect information. On the other
hand, it is not clear what kind of construction rules should be allowed and
how to define a natural class of such games where establishing the winner is
decidable. Still, it is an interesting subject for future work to find other classes
of games for model-checking first-order logic on automatic, or other finitely
presented structures.

Another direction is to extend hierarchical games and to use them for
model-checking on larger classes of structures. One question is whether we
can obtain model-checking games for tree-automatic structures in this way.
We conjecture that the answer is positive and that the necessary extension is
to add two new players that transcend information levels. More precisely, the
moves of the new players would be visible to all other players in the game and
conversely, the new players would be able to see moves of all other players
as well. The intuition is that the moves of the new players correspond to the
choice of a branch in the tree when an alternating tree automaton is running.
This conjecture leads to another question, namely how can such games be
further extended to larger classes of structures, for example to generalized-
automatic ones.

Aiming at model-checking games for larger classes of structures, we see two
main directions to follow. On the one hand, games on certain infinite graphs,
for example on pushdown graphs, can still be solved algorithmically. Thus,
one can try to use such games for model-checking. On the other hand, one
may combine the games played in the syntactic setting, like dialogue games,
with model-checking games played on graphs. In this way, one views a winning
strategy of the Verifier in a hierarchical game for a formula ϕ as a description
of the choices needed to build a proof of ϕ by induction on the structure of
words used in the presentation. The game itself is then a compact description
of possible choices in the proofs for both ϕ and ¬ϕ.

For these considerations to be useful, it is necessary to find efficient algo-
rithms for establishing the winner in the particular class of games. This is a
difficult task and the procedures used to prove decidability of the games are
often not efficient enough for practical applications. For example, it is unclear
how to solve alternating hierarchical parity games without the complex step
of determinizing alternating parity automata. Still, there are reasons to hope
that it is feasible to solve even complex games and that representing problems
as games helps to find efficient solutions. For example, the antichain method
introduced in [21] for games with imperfect information turned out to be suc-
cessful in improving model-checking algorithms based on automata [25]. We
believe that further work in this direction will confirm that games can both
give us better understanding of the expressive power of various logics and lead
to efficient algorithms with practical applications.
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