

Lecture Notes in Computer Science 6841
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Phillip Rogaway (Ed.)

Advances in Cryptology –
CRYPTO 2011

31st Annual Cryptology Conference
Santa Barbara, CA, USA, August 14-18, 2011
Proceedings

13

Volume Editor

Phillip Rogaway
University of California
Department of Computer Science
Davis, CA 95616, USA
E-mail: rogaway@cs.ucdavis.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22791-2 e-ISBN 978-3-642-22792-9
DOI 10.1007/978-3-642-22792-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011932695

CR Subject Classification (1998): E.3, G.2.1, F.2.1-2, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

CRYPTO 2011, the 31st Annual International Cryptology Conference, was held
August 14–18 on the campus of the University of California, Santa Barbara. The
event was sponsored by the International Association for Cryptologic Research
(the IACR) in cooperation with the UCSB Computer Science Department and
the IEEE Computer Society’s Technical Committee on Security and Privacy.

We received 230 submissions, a new record, of which 43 were accepted for
publication. With one pair of papers merged, these proceedings contain the re-
vised versions of 42 papers.

There were also two invited talks. On Monday, Ron Rivest delivered the 2011
IACR Distinguished Lecture. On Wednesday, Roger Dingledine spoke about Tor,
a widely used system for online anonymous communication. For Tuesday after-
noon, traditionally left free, Shai Halevi graciously offered a three-hour tutorial
on Fully Homomorphic Encryption. That evening, Dan Bernstein and Tanja
Lange chaired the traditional rump session.

I have tried to assemble a technical program not only strong, but also bal-
anced. Efforts in this direction included selection of a particularly large and
broad Program Committee (PC), and a Call for Papers explicitly indicating re-
ceptiveness to cryptographic topics not routinely appearing at recent CRYPTOs.
I encouraged PC members to focus on the positive aspects of submissions. When
it came time to vote on second-round accepts, partitioning the papers into topical
categories may also have helped.

For the Best Paper Award, the PC overwhelmingly selected “Computer-
Aided Security Proofs for the Working Cryptographer,” by Gilles Barthe, Ben-
jamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. The Committee
praised the work for its broad appeal, its connections to programming language,
and its potential impact.

Papers were reviewed in the customary way, double-blind, with non-PC con-
tributions generally receiving three or more reviews, and PC contributions get-
ting four or more. I encouraged (anonymized) questions from PC members to
authors, and ended up relaying several tens of such messages. Throughout the
review process I tried to treat each submission as its authors’ well-loved child,
never as a three-digit number in need of categorization.

I would like to most sincerely thank the authors of submissions—both those
who did and who did not get their papers in. Contributing research from all
corners of the earth, it is the fine work of the authors that makes a conference
like ours possible and worthwhile.

My deepest appreciation goes out to the PC. I find something wonderful and
touching about so many busy and brilliant people putting in enormous amounts
of time to perform so thankless and difficult a service. I was repeatedly impressed

VI Preface

by the dedication, integrity, knowledge, and extraordinary technical skills of so
many on our PC. A list of PC members appears after this note.

The external reviewers play a key role in assessing the submissions, and are
heartily thanked for their contribution. A list of external reviewers likewise ap-
pears after this note. My apologies in advance for any errors or omissions.

I would like to thank Tom Shrimpton, the General Chair, for working closely
with me and handling the myriad of matters associated to putting on a great
conference. Rei Safavi-Naini served double duty as both PC member and Junior
Chair. I kept in close touch with John Benaloh, my IACR point of contact, who
could always be counted on for timely information and feedback. I repeatedly got
invaluable and frank advice from Tal Rabin, the CRYPTO 2010 Program Chair.
Shai Halevi wrote, explained, and maintained the superb websubrev software
on which we conducted our business. Alfred Hofmann and his colleagues at
Springer saw to the timely production of this volume. Finally, Bongkotrattana
Lailert afforded me the time and space needed to do this piece of work as well
as I possibly could, smilingly accepting her and Banlu’s exile to distant lands.

In closing, I would like to acknowledge something that all old-timers know,
but which, as authors, we may sometimes fail to internalize: that there’s an awful
lot of randomness in the paper-selection process. Wonderful papers sometimes
get rejected; mediocre papers sometimes get in. After serving as PC Chair I
am more convinced than ever that it is fundamentally wrong to feel much of
anything when any particular paper one submits does or doesn’t make the cut.
I hope that, over a period of years, important papers do get in, and do get
recognized as well.

Serving as a CRYPTO Program Chair is a big job, and it can be a stressful
one as well. Yet, somehow, I feel like I have grown more than gray hairs with
this job, and am happy to have taken it on.

June 2011 Phillip Rogaway

CRYPTO 2011

The 31st Annual International Cryptology Conference

Santa Barbara, California, USA
August 14–18, 2011

Sponsored by the
International Association of Cryptologic Research (IACR)

in cooperation with the
Computer Science Department of the University of California, Santa Barbara

and the
IEEE Computer Society’s Technical Committee on Security and Privacy

General Chair

Thomas Shrimpton Portland State University, USA

Program Chair

Phillip Rogaway University of California, Davis, USA

Program Committee

Masayuki Abe NTT, Japan
Michael Backes Saarland University and MPI-SWS, Germany
Paulo Barreto University of São Paulo, Brazil
Mihir Bellare UC San Diego, USA
Alex Biryukov University of Luxembourg
Dan Boneh Stanford, USA
Jung Hee Cheon Seoul National University, Korea
Jean-Sébastien Coron University of Luxembourg
Marten van Dijk RSA Labs and MIT/CSAIL, USA
Yevgeniy Dodis New York University, USA
Orr Dunkelman University of Haifa and Weizmann Institute, Israel
Serge Fehr CWI, The Netherlands
Steven Galbraith University of Auckland, New Zealand
Craig Gentry IBM Research, USA
Louis Goubin Université de Versailles, France
Vipul Goyal Microsoft Research, India
Aggelos Kiayias University of Connecticut, USA
Eike Kiltz Ruhr-Universität Bochum, Germany
Anja Lehmann IBM Zurich, Switzerland
Arjen Lenstra EPFL, Switzerland
Stefan Mangard Infineon Technologies, Germany

VIII CRYPTO 2011

Program Committee (Continued)

Daniele Micciancio UC San Diego, USA
Tal Moran Harvard, USA
Chanathip Namprempre Thammasat University, Thailand
Phong Nguyen INRIA and ENS, France
Jesper Buus Nielsen Aarhus University, Denmark
Rafael Pass Cornell University, USA
Kenny Paterson Royal Holloway, University of London, UK
Benny Pinkas Bar Ilan University, Israel
Bart Preneel Katholieke Universiteit Leuven, Belgium
Leonid Reyzin Boston University, USA
Vincent Rijmen Katholieke Universiteit Leuven, Belgium and

TU Graz, Austria
Rei Safavi-Naini University of Calgary, Canada
Andre Scedrov University of Pennsylvania, USA
Adam Smith Pennsylvania State University, USA
François-Xavier Standaert UCL, Belgium
Stefano Tessaro UC San Diego, USA
Bogdan Warinschi University of Bristol, UK
Hoeteck Wee Queens College, CUNY, USA

Advisory Members

Tal Rabin (CRYPTO 2010 Program Chair) IBM Research, USA
Rei Safavi-Naini (CRYPTO 2012 Program Chair) University of Calgary,

Canada

External Reviewers

Michel Abdalla
Divesh Aggarwal
Hadi Ahmad
Mohsen Alimomeni
Joel Alwen
Elena Andreeva
Kazumaro Aoki
Gilad Asharov
Maxime Augier
Paul Baecher
Kfir Barhum
Alexandre Berzati
Gaëtan Bisson
Bruno Blanchet
Andrey Bogdanov

Alexandra Boldyreva
Joppe Bos
Charles Bouillaguet
Niek Bouman
Colin Boyd
Christina Brzuska
Jan Camenisch
Sebastien Canard
Ran Canetti
David Cash
Nishanth Chandran
Melissa Chase
Hao Chen
Alessandro Chiesa
Sherman S.M. Chow

Kai-Min Chung
Iwen Coisel
Cas Cremers
Dana Dachman-Soled
Ivan Damg̊ard
Jean Paul Degabriele
Cécile Delerablée
Ante Derek
Claus Diem
Vivien Dubois
Maria Dubovitskaya
Léo Ducas
Andrej Dujella
Iwan Duursma
Stefan Dziembowski

CRYPTO 2011 IX

Pooya Farshim
Sebastian Faust
Matthieu Finiasz
Dario Fiore
Marc Fischlin
Pierre-Alain Fouque
David Freeman
Georg Fuchsbauer
Eiichiro Fujisaki
Jakob Funder
Martin Gagne
David Galindo
Sanjam Garg
Peter Gaži
Ran Gelles
Rosario Gennaro
Benedikt Gierlichs
Henri Gilbert
Michael Goodrich
Thomas Gross
Jeffrey Guarente
Kil-Chan Ha
Robbert de Haan
Iftach Haitner
Shai Halevi
Sean Hallgren
Mike Hamburg
Safuat Hamdy
Goichiro Hanaoka
Danny Harnik
Carmit Hazay
Jens Hermans
Mathias Herrmann
Florian Hess
Martin Hirt
Viet Tung Hoang
Dennis Hofheinz
Susan Hohenberger
Peter Hoyer
Pavel Hubacek
Andreas Hülsing
Sebastiaan Indesteege
Yuval Ishai
Tibor Jager
Abhishek Jain

Dimitar Jetchev
Shaoquan Jiang
Antoine Joux
Pascal Junod
Seny Kamara
Bhavana Kanukurthi
Alexandre Karlov
Shiva Kasiviswanathan
Jonathan Katz
Marcel Keller
Jihye Kim
Minkyu Kim
Myungsun Kim
Sungwook Kim
Thorsten Kleinjung
Robin Künzler
Ralf Küsters
Soonhak Kwon
Taekyoung Kwon
Mario Lamberger
Hyung Tae Lee
Younho Lee
Gaëtan Leurent
Allison Lewko
Benoit Libert
Changlu Lin
Huijia Lin
Yehuda Lindell
Satya Lokam
Adriana López-Alt
Carolin Lunemann
Anna Lysyanskaya
Vadim Lyubashevsky
Mohammad Mahmoody
Alexander May
Marcel Medwed
Sebastian Meiser
Florian Mendel
Bart Mennink
Alexander Meurer
Petros Mol
Hart Montogomery
Kirill Morozov
Elchanan Mossel
Serban Nacu

Tomislav Nad
Michael Naehrig
Arvind Narayanan
Gregory Neven
Ivica Nikolic
Ryo Nishimaki
Kobbi Nissim
Peter Sebastian Nordholt
Adam O’Neill
Miyako Ohkubo
Tatsuaki Okamoto
Elisabeth Oswald
Onur Ozen
Pascal Paillier
Paolo Palmieri
Omkant Pandey
Valerio Pastro
Jacques Patarin
Arpita Patra
Thomas Peeters
Serdar Pehlivanoglu
Chris Peikert
Robin Pemantle
Olivier Pereira
Edoardo Persichetti
Christophe Petit
Krzysztof Pietrzak
David Pointcheval
Manoj Prabhakaran
Ananth Raghunathan
Francesco Regazzoni
Oded Regev
Tzachy Reinman
Renato Renner
Thomas Ristenpart
Matthieu Rivain
Guy Rothblum
Yannis Rouselakis
Arnab Roy
Nashad Safa
Louis Salvail
Juraj Sarinay
Sumanta Sarkar
Yu Sasaki
Christian Schaffner

X CRYPTO 2011

Martin Schläffer
Thomas Schneider
Dominique Schröder
Gil Segev
Jae Hong Seo
Yannick Seurin
Siamak Shahandashi
Elaine Shi
Thomas Shrimpton
Marcos A. Simplicio Jr
Thomas Sirvent
William E. Skeith III
Arkadii Slinko
Nigel Smart
Fang Song
Martijn Stam

John Steinberger
Marc Stevens
Gabor Tardos
Aris Tentes
Enrico Thomae
Mehdi Tibouchi
Elmar Tischhauser
Tomas Toft
Nikos Triandopoulos
Tomasz Truderung
Wei-lung Tseng
Ashraful Tuhin
Yevgeniy Vahlis
Vinod Vaikuntanathan
Kerem Varıcı
Damien Vergnaud

Ivan Visconti
Huaxiong Wang
Meiqin Wang
Yongge Wang
Brent Waters
Gaven Watson
Benne de Weger
Ralf-Philipp Weinmann
Daniel Wichs
Steve Williams
Christopher Wolf
Jürg Wullschleger
Andy Yao
Sarah Zakarias
Hong-Sheng Zhou
Angela Zottarel

Table of Contents

Randomness and Its Use

Leftover Hash Lemma, Revisited . 1
Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira,
Krzysztof Pietrzak, François-Xavier Standaert, and Yu Yu

Random Oracle Reducibility . 21
Paul Baecher and Marc Fischlin

Time-Lock Puzzles in the Random Oracle Model . 39
Mohammad Mahmoody, Tal Moran, and Salil Vadhan

Physically Uncloneable Functions in the Universal Composition
Framework . 51

Christina Brzuska, Marc Fischlin, Heike Schröder, and
Stefan Katzenbeisser

Computer-Assisted Cryptographic Proofs

Computer-Aided Security Proofs for the Working Cryptographer 71
Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella Béguelin

Outsourcing and Delegating Computation

Optimal Verification of Operations on Dynamic Sets 91
Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos

Verifiable Delegation of Computation over Large Datasets 111
Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis

Secure Computation on the Web: Computing without Simultaneous
Interaction . 132

Shai Halevi, Yehuda Lindell, and Benny Pinkas

Memory Delegation . 151
Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz

XII Table of Contents

Symmetric Cryptanalysis and Constructions

Automatic Search of Attacks on Round-Reduced AES and
Applications . 169

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque

How to Improve Rebound Attacks . 188
Maŕıa Naya-Plasencia

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 206
Gregor Leander, Mohamed Ahmed Abdelraheem,
Hoda AlKhzaimi, and Erik Zenner

The PHOTON Family of Lightweight Hash Functions 222
Jian Guo, Thomas Peyrin, and Axel Poschmann

Secure Computation

Perfectly-Secure Multiplication for Any t < n/3 . 240
Gilad Asharov, Yehuda Lindell, and Tal Rabin

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 259
Yehuda Lindell, Eli Oxman, and Benny Pinkas

1/p-Secure Multiparty Computation without Honest Majority and the
Best of Both Worlds . 277

Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

Leakage and Side Channels

Leakage-Resilient Zero Knowledge . 297
Sanjam Garg, Abhishek Jain, and Amit Sahai

A Comprehensive Evaluation of Mutual Information Analysis Using a
Fair Evaluation Framework . 316

Carolyn Whitnall and Elisabeth Oswald

Key-Evolution Schemes Resilient to Space-Bounded Leakage 335
Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs

Generic Side-Channel Distinguishers: Improvements and Limitations . . . 354
Nicolas Veyrat-Charvillon and François-Xavier Standaert

Cryptography with Tamperable and Leaky Memory 373
Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai

Table of Contents XIII

Quantum Cryptography

Merkle Puzzles in a Quantum World . 391
Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan,
Sophie Laplante, and Louis Salvail

Classical Cryptographic Protocols in a Quantum World 411
Sean Hallgren, Adam Smith, and Fang Song

Position-Based Quantum Cryptography: Impossibility and
Constructions . 429

Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles,
Vipul Goyal, Rafail Ostrovsky, and Christian Schaffner

Lattices and Knapsacks

Analyzing Blockwise Lattice Algorithms Using Dynamical Systems 447
Guillaume Hanrot, Xavier Pujol, and Damien Stehlé

Pseudorandom Knapsacks and the Sample Complexity of LWE
Search-to-Decision Reductions . 465

Daniele Micciancio and Petros Mol

Invited Talk

Tor and Circumvention: Lessons Learned . 485
Roger Dingledine

Public-Key Encryption

Fully Homomorphic Encryption over the Integers with Shorter Public
Keys . 487

Jean-Sébastien Coron, Avradip Mandal, David Naccache, and
Mehdi Tibouchi

Fully Homomorphic Encryption from Ring-LWE and Security for Key
Dependent Messages . 505

Zvika Brakerski and Vinod Vaikuntanathan

Bi-Deniable Public-Key Encryption . 525
Adam O’Neill, Chris Peikert, and Brent Waters

Better Security for Deterministic Public-Key Encryption: The
Auxiliary-Input Setting . 543

Zvika Brakerski and Gil Segev

XIV Table of Contents

Symmetric Schemes

The Collision Security of Tandem-DM in the Ideal Cipher Model 561
Jooyoung Lee, Martijn Stam, and John Steinberger

Order-Preserving Encryption Revisited: Improved Security Analysis
and Alternative Solutions . 578

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill

A New Variant of PMAC: Beyond the Birthday Bound 596
Kan Yasuda

Authenticated and Misuse-Resistant Encryption of Key-Dependent
Data . 610

Mihir Bellare and Sriram Keelveedhi

Signatures

Round Optimal Blind Signatures . 630
Sanjam Garg, Vanishree Rao, Amit Sahai,
Dominique Schröder, and Dominique Unruh

Optimal Structure-Preserving Signatures in Asymmetric Bilinear
Groups . 649

Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo

Oblivious Transfer and Secret Sharing

Constant-Rate Oblivious Transfer from Noisy Channels 667
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and Jürg Wullschleger

The Torsion-Limit for Algebraic Function Fields and Its Application to
Arithmetic Secret Sharing . 685

Ignacio Cascudo, Ronald Cramer, and Chaoping Xing

Multivariate and Coding-Based Schemes

Public-Key Identification Schemes Based on Multivariate Quadratic
Polynomials . 706

Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari

Inverting HFE Systems Is Quasi-Polynomial for All Fields 724
Jintai Ding and Timothy J. Hodges

Table of Contents XV

Smaller Decoding Exponents: Ball-Collision Decoding 743
Daniel J. Bernstein, Tanja Lange, and Christiane Peters

McEliece and Niederreiter Cryptosystems That Resist Quantum
Fourier Sampling Attacks . 761

Hang Dinh, Cristopher Moore, and Alexander Russell

Author Index . 781

Leftover Hash Lemma, Revisited

Boaz Barak1, Yevgeniy Dodis2, Hugo Krawczyk3, Olivier Pereira4,
Krzysztof Pietrzak5, François-Xavier Standaert4, and Yu Yu6

1 Microsoft Research New England
boaz@microsoft.com

2 New York University
dodis@cs.nyu.edu
3 IBM Research

hugo@ee.technion.ac.il
4 Université Catholique de Louvain

{Olivier.Pereira,fstandae}@uclouvain.be
5 CWI Amsterdam
pietrzak@cwi.nl

6 East China Normal University
yuyu@yuyu.hk

Abstract. The famous Leftover Hash Lemma (LHL) states that (al-
most) universal hash functions are good randomness extractors. Despite
its numerous applications, LHL-based extractors suffer from the follow-
ing two limitations:

– Large Entropy Loss: to extract v bits from distribution X of min-
entropy m which are ε-close to uniform, one must set v ≤ m −
2 log (1/ε), meaning that the entropy loss L

def
= m − v ≥ 2 log (1/ε).

For many applications, such entropy loss is too large.
– Large Seed Length: the seed length n of (almost) universal hash

function required by the LHL must be at least n ≥ min(u − v, v +
2 log (1/ε)) − O(1), where u is the length of the source, and must
grow with the number of extracted bits.

Quite surprisingly, we show that both limitations of the LHL — large
entropy loss and large seed — can be overcome (or, at least, mitigated)
in various important scenarios. First, we show that entropy loss could be
reduced to L = log (1/ε) for the setting of deriving secret keys for a wide
range of cryptographic applications. Specifically, the security of these
schemes with an LHL-derived key gracefully degrades from ε to at most
ε+
√

ε2−L. (Notice that, unlike standard LHL, this bound is meaningful
even when one extracts more bits than the min-entropy we have!) Based
on these results we build a general computational extractor that enjoys
low entropy loss and can be used to instantiate a generic key derivation
function for any cryptographic application.

Second, we study the soundness of the natural expand-then-extract
approach, where one uses a pseudorandom generator (PRG) to expand
a short “input seed” S into a longer “output seed” S′, and then use
the resulting S′ as the seed required by the LHL (or, more generally,
by any randomness extractor). We show that, in general, the expand-
then-extract approach is not sound if the Decisional Diffie-Hellman as-
sumption is true. Despite that, we show that it is sound either: (1) when

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 1–20, 2011.
c© International Association for Cryptologic Research 2011

2 B. Barak et al.

extracting a “small” (logarithmic in the security of the PRG) number
of bits; or (2) in minicrypt. Implication (2) suggests that the expand-
then-extract approach is likely secure when used with “practical” PRGs,
despite lacking a reductionist proof of security!

1 Introduction

The famous Leftover Hash Lemma [18] (LHL; see also [18] for earlier formula-
tions) has found a huge number of applications in many areas of cryptography
and complexity theory. In its simplest form, it states that universal hash func-
tions [7] are good (strong) randomness extractors [31]. Specifically, if X is a
distribution of min-entropy m over some space X , H is a family of universal
functions (see Definition 2) from X to {0, 1}v, and H is a random member of
H, then, even conditioned on the “seed” H , the statistical distance between
H(X) and the uniform distribution Uv on {0, 1}v is bounded by

√
2−L, where

L
def= m − v. The parameter L is defined as the entropy loss and it measures

the amount of min-entropy “sacrificed” in order to achieve good randomness ex-
traction. Thus, no application can tell apart the “extracted” randomness H(X)
from uniform randomness Uv, with advantage greater than ε

def=
√

2−L, even if
the seed H is published (as long as H is independent of X).

The LHL is extremely attractive for many reasons. First, and foremost, it
leads to simple and efficient randomness extractors, and can be used in many
applications requiring good secret randomness. One such major setting is that
of cryptographic key derivation, which is needed in many situations, such as pri-
vacy amplification [4], Diffie-Hellman key exchange [14,25], biometrics [11,5] and
random number generators from physical sources of randomness [3,2]. Second,
many simple functions, such as the inner product or, more generally, matrix-
vector multiplication, are universal. Such elegant functions have nice algebraic
properties which can be used for other reasons beyond randomness extraction
(for a few examples, see [26,10,29]). Third, many simple and efficient construc-
tions of (almost) universal hash functions are known [7,37,30,24], making LHL-
based extractors the most efficient extractors to date. Finally, LHL achieves the
optimal value of the entropy loss L = m − v sufficient to achieve the desired
statistical distance ε. Specifically, LHL achieves L = 2 log (1/ε), which is known
to be the the smallest possible entropy loss for any extractor [34].

Despite these extremely attractive properties, LHL-based extractors are not
necessarily applicable or sufficient in various situations. This is primarily due to
the following two limitations of the LHL: large entropy loss and large seed.

Large Entropy Loss. In theory, the entropy loss of 2 log (1/ε) might appear
quite insignificant, especially in the asymptotic sense. However, in practical situa-
tions it often becomes a deal-breaker, especially when applied to the setting of key
derivation. In this case the main question is to determine the smallest min-entropy
value m sufficient to extract a v-bit key with security ε. Minimizing this value m,
which we call startup entropy, is often of critical importance, especially in entropy

Leftover Hash Lemma, Revisited 3

constrained scenarios, such as Diffie-Hellman key exchange (especially on ellip-
tic curves) or biometrics. For example, for the Diffie-Hellman key exchange, the
value m corresponds to the size of the elliptic curve group, which directly affects
efficiency. This is one of the reasons why statistical extractors are often replaced
in practice with heuristic constructions based on cryptographic hash functions.

Large Seed. Another significant hurdle in the use of LHL comes from the fact
that universal hash functions require long description, which means that LHL-
based extractors have long seeds. Indeed, Stinson [37] showed that (perfectly)
universal hash functions require the length of the seed to be linear in the length
of the source X . More generally, even “good-enough” almost universal hash
functions for LHL require seeds of length at least min(|X | − v, v + 2 log (1/ε))−
O(1) [37], and, thus, must grow with the number of extracted bits. This large seed
length makes it inconvenient in many applications of extractors (e.g., [6,35,25]),
including any use of extractors for derandomization, where one must be able to
enumerate over all the seeds efficiently.

Large (and variable-length) seeds are also inconvenient for standardized cryp-
tographic applications where fixed-size keys, independent of the size of inputs,
are favored (as in the case of block ciphers or cryptographic hash functions).
When extractors are used in cryptographic settings, seeds are viewed as keys
and hence fixed-size seeds are very desirable. In applications of extractors, where
the attacker is assumed to be sufficiently limited as to not make the source X
dependent on the seed (e.g., when extracting keys from biometrics, physical mea-
surements or in the Diffie-Hellman key exchange), one might consider fixing a
good public seed, and use it repeatedly with a fast provably secure extractor. As
said, this is not possible with universal hash functions as their seed length must
grow with the length of X .1

Our Results. Quite surprisingly, we show that both limitations of the LHL
— large entropy loss and large seed — can be overcome or, at least, mitigated
in various important scenarios. We describe these results below.

1.1 Reducing the Entropy Loss

At first, reducing the entropy loss L might seem impossible since we already men-
tioned that any extractor must have entropy loss L ≥ 2 log (1/ε) − O(1) [34].
However, the impossibility is for general applications of extractors, where we must
ensure that the extracted string R cannot be distinguished from random by any
statistical test D. In contrast, when extractors are used to derive cryptographic
keys, we only care about limited types of statistical tests D. Concretely, the tests
that correspond to the security game between the attacker A and the challenger C.
For example, when deriving the key for a signature scheme, the only tests we care
about correspond to the attacker seeing several signatures and then outputting a
1 In theory one can build (non-LHL-based) extractors where the length n of the seed H

is roughly logarithmic in the length of the source X (see [16,36] and many references
therein). However, the resulting constructions are mainly of theoretical value and
lose the extreme simplicity and efficiency of LHL-based extractors.

4 B. Barak et al.

new signature. Namely, we only care that the probability of a successful forgery
does not suddenly become non-negligible when the secret key is obtained using
an extractor instead of being random. And since the signature scheme is assumed
to be secure with a truly random key, we can restrict our attention to a very re-
stricted class of statistical tests which almost never output 1. Similar restrictions
on the distinguisher naturally arise for other cryptographic primitives, which gives
us hope that the lower bound of [34] might be overcome in such settings.

Generalized LHL and Applications. Indeed, we derive a tighter form of the
LHL, called generalized LHL (see Theorem 1), which non-trivially depends on the
type of distinguisher D we care about. Our improved bound contains a novel term
informally measuring the standard deviation of the distinguisher’s advantage (the
standard LHL is a particular case where this term is bounded by 1). Applying
this new bound to the analysis of cryptographic functions, we obtain much tighter
bounds for the security of a wide class cryptographic applications. These include
key derivation for all “unpredictability” applications, such as signatures, MACs,
one-way functions, identification schemes, etc. More surprisingly, they also include
key derivation for some prominent “indistinguishability” applications that include
all stateless encryption schemes, both CPA- and CCA-secure and in the public-
and symmetric-key settings, as well as weak pseudorandom functions. Specifically,
in each of these cases, denote by ε the security of the cryptographic primitive (i.e.,
the best success probability or advantage of an attacker with certain resources)
when keyed with a perfectly random v-bit key, and by ε′ the corresponding security
value when the key is derived from an imperfect m-bit entropy source via the LHL.
We show (recall that L = m− v represents the entropy loss):

ε′ ≤ ε +
√

ε2v−m = ε +
√

ε2−L (1)

Comparing with Standard LHL. Let us first compare this bound with the
regular ε+

√
2−L LHL bound. The latter required L ≥ 2 log (1/ε) to achieve the

same type of security O(ε) as with the ideal randomness. Using our improved
bound, we show that only half of that amount, L = log (1/ε), already suffices.
In fact, not only do we get improved bounds on the entropy loss L, but we
also get meaningful security bounds for arbitrary values of L, even negative
ones (when the entropy loss becomes “entropy gain”)! E.g., standard LHL does
not give anything for L ≤ 0, while we achieve significant ε′ ≈ √ε security for
L = 0 (no entropy loss!), and even start to “gracefully borrow” security from
our application when we extract more bits than the min-entropy of the source,
up to L = − log (1/ε) (i.e., v = m + log (1/ε)).

Computational Extractor with Improved Loss. Although our improved
bound, as stated, is not applicable to all cryptographic applications (the most im-
portant omission being pseudorandom functions and stream ciphers), in
Section 3.2 we use our results to build general-purpose key derivation function
for any (computationally-secure) cryptographic application, while providing the
full entropy benefits derived from Equation (1). The scheme combines any LHL-
based extractor with any (weak) pseudorandom function family.

Leftover Hash Lemma, Revisited 5

1.2 Reducing the Seed Length

Expand-then-Extract. A natural idea to reduce the seed length is to use a
pseudorandom generator (PRG) to expand a short “input seed” S into a longer
“output seed” S′, and then use the resulting S′ as the seed required by the
LHL, or, more generally, by any randomness extractor. Let us call this natural
approach expand-then-extract. Of course, as long as one hides the short S and
uses the long S′ as the public seed for the extractor, the extracted bits are pseu-
dorandom. But is it possible to ensure the pseudorandomness of the extractor’s
output if the actual short seed S is made public? Had this been the case, we
would obtain efficient LHL-based extractors with a short seed and, moreover, an
extractor whose seed length is independent of the length of the input, as desired
for the practical scenarios discussed earlier.

Counter-Example. In Section 4.1 we show that the expand-then-extract ap-
proach will not work in general. We construct a simple PRG (which is secure un-
der the Decisional Diffie-Hellman (DDH) assumption) and an extractor (which
is a natural, perfectly universal hash function), where the output of the extrac-
tor — on any (e.g., even uniform) distribution — can be efficiently distinguished
from random with probability close to 1, when given the short seed S used to
generate the pseudorandom long seed S′ for the extractor. Despite the above,
we also show two positive results which nicely complement our counter-example.

Extracting Few Bits. First, in Section 4.2 we show that the expand-then-
extract approach always works provided the number of extracted bits v is “small”.
Here “small” means logarithmic in the security level of the PRG, which could
range from O(log k) to Ω(k) (where k is the security parameter), depending
on whether PRG is assumed to be polynomially or exponentially hard. Quite
interestingly, in this case we do not even have to settle for pseudorandom bits:
our small number v of extracted bits is actually statistically random, as long as
the PRG is secure against circuits whose size is exponential in v. The intuition
for this result comes from the fact that we can test, in time exponential in v,
whether a given n-bit extractor seed s′ is “good” or “bad” for our source X .
We also know that most random long seeds s′ ← Un must be good. Hence,
by the PRG security, the same must be true for “most” pseudorandom seeds
s′ ← Prg(Uk), which is precisely what we need to show.

Security in minicrypt. Second, although our original counterexample is fairly
simple and natural, it involves an assumption (DDH) from the “public-key
world”. In Section 4.3, we show, somewhat surprisingly, that such “public-key”
type assumption is indeed necessary for any counter-example. We do this by
showing that the expand-then-extract approach is sound in minicrypt [22] (i.e.
in a hypothetical world where pseudorandom generators exist, but public-key
cryptography does not). In particular, we construct a simple 2-message pro-
tocol (built from a PRG and an extractor) which constitutes a secure key-
agreement protocol for any PRG/extractor combination for which the

6 B. Barak et al.

expand-then-extract approach is insecure. Since our protocol only has 2 mes-
sages, we even get semantically secure public-key encryption (PKE). Hence, since
no such protocol/PKE exist in minicrypt, expand-then-extract must be secure.

Practical Interpretation. This leads to the following practical interpreta-
tion of our results indicating that using the expand-then-extract approach with
common pseudorandom primitives, such as AES, is secure in spite of a lack of
direct (reductionist) proof of security. Indeed, consider the expand-then-extract
scheme implemented via AES (in some stream cipher mode). Our results show
that, if this extraction scheme fails, then we have found a public-key encryption
scheme that is provable secure based on the security of AES as a block cipher!
Moreover, the resulting PKE has a very restrictive form, where the secret key is
a PRG seed S, and the public-key is the PRG output S′ = Prg(S). (E.g., in the
case of AES, the public key is simply the evaluation of AES on several distinct
points.) As we argue in Section 4.3, the existence of such a PKE appears to
be extremely unlikely, and would be a major breakthrough given current state-
of-the-art. Thus, our results give strong evidence that the expand-then-extract
approach might be secure “in practice”, — when used with “fast” ciphers (like
AES), — despite being (generally) insecure “in theory”!

We also remark that all our results elegantly handle side information Z the at-
tacker might have about our source X (as advocated by [11], such “average-case”
extractors are very handy in cryptographic applications), and also generalize to
the case of almost universal hash functions.

1.3 Related Work

Hast [17] also observed that for certain cryptographic applications, the relevant
attackers correspond to restricted classes of distinguishers, which allowed him to
obtain improved security bounds when the Goldreich-Levin hardcore bit [15] is
used as a “computational” randomness extractor. This result is incomparable to
ours. On the one hand, we consider general (multi-bit) LHL-based extractors and
not just the single bit inner-product function (which is the form of the Goldreich-
Levin predicate). On the other hand, Hast was working in the computational
setting, and had to make an explicit reduction from the distinguisher to the
predictor of the source X , which is not required in our setting.

We also mentioned the notion of slice extractors defined by Radhakrishnan
and Ta-Shma [34], which limits the type of statistical tests to “rare distinguish-
ers”. To the best of our understanding, this definition was not motivated by
applications, but rather was a convenient “parametrization” on a road to other
results. Still, this notion roughly correspond to the setting of key derivation for
authentication applications, when the attacker rarely succeeds. Interestingly, [34]
showed a lower bound for the entropy loss of slice extractors (which was lower
than that of general extractors), and matched this lower bound by an existen-
tial construction. As it turns out, our improved LHL immediately gives a con-
structive way to match this lower bound, showing that LHL-based extractors are

Leftover Hash Lemma, Revisited 7

optimal slice extractors in terms of the entropy loss. This connection is outlined
in more detail in the full version of this paper [1].

In a very different (non-cryptographic) context of building hash tables, Mitzen-
macher and Vahdan [27] also observed that improved bounds on the “entropy
loss” could be obtained when the standard deviation of the “distinguisher” is
much less than 1. In their setting the entropy loss was the minimum entropy
required from the input stream to hash well, and the distinguisher was the char-
acteristic function of a set of occupied buckets.

We note that our “win-win” result for the expand-then-extract approach is
similar in spirit to several other “win-win” results [13,32,12,33], where a (hypo-
thetical) adversary for one task is turned into a “surprising useful” protocol for
a seemingly unrelated task. Among the above, the result most similar to ours is
[13], where a PRG is used to expand the key for “forward secure storage”, which
is a concept related to “locally computable” extractors.

On the more practical side of our results, particularly in what refers to key
derivation, it is worth mentioning the work of [9,25] that analyze constructions of
key derivation functions (KDFs) based on cryptographic hash functions. These
constructions do not use standard, generic assumptions, such as pseudorandom-
ness, but build on specific modes of operations on their compression function
f , and rely on dedicated, sometimes idealized, assumptions. Under such ideal-
ized assumptions, these schemes support situations where the KDF needs to be
modeled as a random oracle, or where the source only has “unpredictability en-
tropy” [21]. On the other hand, outside of the random oracle heuristics, much
of the analysis of [9,25] studied sufficient conditions on compression function f
and/or the source input distribution, under which cryptographic hash functions
are “universal enough” so as to apply the standard LHL. As such, these analy-
ses suffer the same drawbacks as any other LHL-based extractor. In particular,
our results regarding the improved entropy loss for LHL-based extractors should
carry over to improve the results of [9,25], while our results on the expand-then-
extract approach could be viewed as partial justification of the heuristic where
a fixed-description-length compression function is replaced by random in most
(but not all) of the analyses of [9,25].

2 Standard Leftover Hash Lemma

Notation. For a set S, we let US denote the uniform distribution over S. For
an integer v ∈ N, we let Uv denote the uniform distribution over {0, 1}v, the
bit-strings of length v. For a distribution or random variable X we write x← X
to denote the operation of sampling a random x according to X . For a set S, we
write s← S as shorthand for s← US .

Min-Entropy and Extractors. The min-entropy of a random variable X

is defined as H∞(X) def= − log(maxx Pr[X = x]). In cryptographic applications,
one often uses the average min-entropy of a random variable X conditioned on
another random variable Z. This is defined as

8 B. Barak et al.

H̃∞(X |Z) def= − log Ez←Z

[
max

x
Pr[X = x|Z = z]

]
= − log Ez←Z

[
2−H∞(X|Z=z)

]
where Ez←Z denotes the expected value over z ← Z, and measures the worst-
case predictability of X by an adversary that may observe a correlated variable
Z.

We denote with ΔD(X, Y) the advantage of a circuit D in distinguishing the
random variables X, Y : ΔD(X, Y) def= | Pr[D(X) = 1] − Pr[D(Y) = 1] |. The
statistical distance between two random variables X, Y is defined by

SD(X, Y) def=
1
2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
D

ΔD(X, Y)

where the maximum is taken over all (potentially computationally unbounded)
D. Given side information Z, we write ΔD(X, Y |Z) and SD(X, Y |Z) as short-
hands for ΔD((X, Z), (Y, Z)) and SD((X, Z), (Y, Z)), respectively.2

An extractor [31] can be used to extract uniform randomness out of a weakly-
random value which is only assumed to have sufficient min-entropy. Our defini-
tion follows that of [11], which is defined in terms of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : X × {0, 1}n → {0, 1}v
is an (average-case, strong) (m, ε)-extractor (for space X), if for all X, Z such
that X is distributed over X and H̃∞(X |Z) ≥ m, we get

SD(Ext(X ; S) , Uv | (S, Z)) ≤ ε

where S ≡ Un denotes the coins of Ext (called the seed). The value L = m − v
is called the entropy loss of Ext, and the value n is called the seed length of Ext.

Universal hashing and Leftover Hash lemma. We now recall the defi-
nition of universal-hashing [7,37] and the leftover-hash lemma [18], which states
that universal hash functions are also good extractors.

Definition 2 (ρ-Universal Hashing). A family H of (deterministic) func-
tions h : X → {0, 1}v is a called ρ-universal hash family (on space X), if for
any x1
= x2 ∈ X we have Prh←H[h(x1) = h(x2)] ≤ ρ. When ρ = 1/2v, we say
that H is universal.

We can finally state the Leftover Hash Lemma (LHL). (Multiple versions of this
lemma have appeared; we use the formulation of [38, Theorem 8.1], augmented
by [11, Lemma 2.4] for the conditional entropy case; see [18] and references
therein for earlier formulations.)

Lemma 1 (Leftover-Hash Lemma). Assume that the family H of functions
h : X → {0, 1}v is a 1+γ

2v -universal hash family. Then the extractor Ext(x; h) def=

h(x), where h is uniform over H, is an (m, ε)-extractor, where ε = 1
2 ·
√

γ + 2v

2m =

1
2 ·
√

γ + 1
2L (recall, L = m−v is the entropy loss). In particular, 1+3ε2

2v -universal
hash functions yield (v + 2 log (1/ε) , ε)-extractors.
2 Notice, ΔD(X, Y |Z) ≤ Ez←Z [ΔD(X|Z=z, Y |Z=z)], but SD(X, Y |Z) =

maxD Ez←Z [ΔD(X|Z=z, Y |Z=z)].

Leftover Hash Lemma, Revisited 9

3 Reducing the Entropy Loss

As we mentioned, the entropy loss of 2 log (1/ε) is optimal when one is concerned
with general distinguishers D [34]. As we show, in various cryptographic scenar-
ios we only care about a somewhat restrictive class of distinguishers, which will
allow us to reduce the entropy loss for such applications.

Below, we state a generalization of the LHL (Theorem 1), which will include
a novel term measuring the standard deviation of the distinguisher’s advantage,
and then derive some useful special cases (Theorem 2). In Section 3.1, we then
apply our tighter bound to derive improved entropy loss bounds for various
cryptographic applications, including bounds for all authentication applications
(Theorem 3) and some privacy applications,including chosen plaintext secure
encryption (Theorem 4) and weak PRFs. In Section 3.2 we further extend our
results to get a generic key derivation function with improved entropy loss for
any computationally secure application, including stream ciphers and PRFs.

Collision Probability and c-Variance. Given a distribution Y , its colli-
sion probability is Col(Y) def=

∑
y Pr[Y = y]2 ≤ 2−H∞(Y). Given a joint distri-

bution (Y, Z), we let Col(Y |Z) def= Ez[Col(Y |Z = z)] ≤ 2−H̃∞(Y |Z). We also use
the notation (UY , Z) to denote the probability distribution which first samples
(y, z)← (Y, Z), but then replaces y by an independent, uniform sample from UY .
Finally, given a random variable W and a constant c, we define its c-variance
as Varc[W] def= E[(W − c)2] and its c-standard deviation as σc[W] def=

√
Varc[W].

When c = E[W], we recover the standard notion of variance and standard devi-
ation, Var[W] and σ[W], and notice that these are the smallest possible values
for Varc[W] and σc[W]. Still, we will later find it easier to use (slightly weaker)
bounds obtained with specific values of c ∈ {0, 1

2}.
We start with an useful lemma of independent interest which generalizes

Lemma 4.5.1 of [27].

Lemma 2. Assume (Y, Z) is a pair of correlated random variables distribution
on a set Y×Z. Then for any (deterministic) real-valued function f : Y×Z → R
and any constant c, we have

| E[f(Y, Z)]− E[f(UY , Z)] | ≤ σc[f(UY , Z)] ·
√
|Y|Col(Y |Z)− 1 (2)

The proof of this lemma can be found in the full version of this paper [1]. The
useful feature of the bound given in Equation (2) comes from the fact that the
value σc[f(UY , Z)] does not depend on the actual distribution Y used to replace
the uniform distribution, while the value

√|Y|Col(Y |Z)− 1 does not depend on
the function f whose average we are trying to preserve (by using Y in place of
UY). In particular, we get the following corollary which will allow us to eventually
get all our improved bounds.

Theorem 1 (Generalized LHL). Let (X, Z) be some joint distribution over
X × Z, H = {h : X → {0, 1}v} be a family of 1+γ

2v -universal hash functions,
H be a random member of H, and let L

def= H̃∞(X |Z) − v be the entropy loss.

10 B. Barak et al.

Then, for any constant c ∈ [0, 1] and any (possibly probabilistic) distinguisher
D(r, h, z), we have

ΔD(H(X), Uv | (H, Z)) ≤ σc

[
Pr
D

[D(Uv, H, Z) = 1]
]
·
√

γ +
1
2L

(3)

The proof of the theorem can be found in the full version of this paper [1].
Equation (3) bounds the advantage of D in distinguishing real and extracted
randomness using two terms. The second term (under the square root) depends
on the universality of H and the entropy loss L (but not on D). The novel term
is the c-standard deviation σc[PrD[D(Uv, H, Z) = 1]] of D, which we will simply
call c-standard deviation of D and denote V (D, c). Intuitively, it measures how
“concentrated” the expected output of D is to some value c in the “ideal setting”
(when fed Uv rather than H(X)). We notice that for any D and any c ∈ [0, 1], the
c-standard deviation V (D, c) ≤ 1. Plugging this trivial bound in Equation (3)
removes the dependence on D, and (essentially)3 gives us the statement of the
standard LHL from Lemma 1. As mentioned, though, this forces the entropy loss
to be at least 2 log (1/ε) to achieve security ε. Below, we show several special
cases when we can upper bound V (D, c) by roughly

√
ε, which means that the

entropy loss L only needs to be roughly log (1/ε) (say, with perfectly universal
H) to achieve security ε.

Theorem 2. Let (X, Z) be some joint distribution over X × Z, H = {h : X →
{0, 1}v} be a family of 1+γ

2v -universal hash functions, H be a random member
of H, L

def= H̃∞(X |Z) − v be the entropy loss, and D(r, h, z) be some (possibly
probabilistic) distinguisher. Then, for each of the values ε defined in scenarios
(a)-(c) below it holds:

ΔD(H(X), Uv | (H, Z)) ≤
√

ε ·
(

γ +
1
2L

)
(4)

(a) Assume for some c, δ, τ ∈ [0, 1], ε = τ2 + δ and the following condition is
satisfied:4

Pr
r←Uv ,h←H,z←Z

[|Pr
D

[D(r, h, z) = 1]− c| ≥ τ] ≤ δ (5)

(b) Assume Pr[D(Uv, H, Z) = 1] ≤ ε (where probability is taken over Uv, H, Z
and the coins of D).

(c) For fixed r, h, and z, define the distinguisher D′(r, h, z) as follows. First,
make two independent samples d̃, d ← D(r, h, z). Then, if d̃ = 1, return d
else return (1− d). Assume further that Pr[D′(Uv, H, Z) = 1] ≤ 1

2 + 2ε.

The proof of this Theorem is given in the full version [1]. In the following section,
we demonstrate the use of Theorem 2 by concentrating on the important case
of key derivation using LHL, where the value ε will essentially correspond to the
“cryptographic security” of the application at hand.
3 The exact bound claimed in Lemma 1 follows when V (D, c) ≤ 1

2
, which is true for

c = 1/2.
4 Note that the condition below implies |Pr[D(Uv , H,Z) = 1]− c| ≤ τ + δ.

Leftover Hash Lemma, Revisited 11

3.1 Improved LHL for Key Derivation

Consider any cryptographic primitive P (e.g., signature, encryption, etc.), which
uses randomness R ∈ {0, 1}v to derive its secret (and, public, if needed) key(s).
Without loss of generality, we can assume that R itself is the secret key. In the
“ideal” setting, R = Uv is perfectly uniform and independent from whatever
side information Z available to the attacker. In the ”real setting”, the key owner
has a randomness source, represented by a random variable X and possibly
correlated with the attacker’s side information Z. It then samples a universal
hash function H using (fresh) public randomness and uses the extracted value
R = H(X) as its key. We would like to argue that if P is “ε-secure” in the ideal
setting (against attackers with resources5 less than T), then P is also “ε′-secure”
in the real setting (against attackers with resources less than T ′ ≈ T), where
ε′ is not much larger than ε. Of course, to have a hope of achieving this, H
must be “universal-enough” and L = H̃∞(X |Z) − v must “high-enough”. To
parameterize this, we will sometimes explicitly write (L, γ)-real model to denote
the real model above, where H is (1 + γ)2−v-universal and H̃∞(X |Z) ≥ v + L.
We formalize this general setting as follows.

Abstract Security Games. We assume that the security of P is defined via
an interactive game

between a probabilistic attacker A(h, z) and a probabilistic challenger C(r).
Here one should think of h and z as particular values of the hash function and the
side information, respectively, and r as a particular value used by the challenger
in the key generation algorithm of P . We note that C only uses the secret key r
and does not depend on h and z. In the ideal setting, where r← Uv, the attacker
A does not use the values h and z (and anyway the optimal values of h and z can
be hardwired into A in the non-uniform model), yet, for notation convenience,
we will still pass h and z to A even in the ideal setting.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that
the attacker “won the game”. Since C is fixed by the definition of P (e.g., C
runs the unforgeability game for signature or the semantic security game for
encryption, etc.), we denote by DA(r, h, z) the (abstract) distinguisher which
simulates the entire game between A(h, z) and C(r) and outputs the bit b, and
by WinA(r, h, z) = Pr[DA(r, h, z) = 1] the probability that A(h, z) wins the
game against C(r). With this notation, the probability of winning the game in
the “real setting” is given by the random variable WinA(H(X), H, Z), and the
same probability in the ideal setting becomes WinA(Uv, H, Z). Moreover, the
difference between these probabilities is simply the distinguishing advantage of
DA of telling apart real and extracted randomness when given H, Z:

|WinA(H(X), H, Z)−WinA(Uv, H, Z)| = ΔDA(H(X), Uv | (H, Z)) (6)

As we justify next, to argue the security of P in the real setting assuming
its security in the ideal setting, it is sufficient for us to argue that the above
5 We use the word “resource” to include all the efficiency measures we might care

about, such as running time, circuit size, number of oracle queries, etc.

12 B. Barak et al.

distinguishing advantage is “small” for all legal attackers A. And since the se-
curity of P will usually restrict the power of attackers A (hence, also the power
of abstract distinguishers DA), we may use the results of Theorem 2 to argue
better bounds on the entropy loss L = H̃∞(X |Z)− v.

Definition 3. Let c = 0 for unpredictability applications P (signature, MAC,
one-way function, etc.) and c = 1

2 for indistinguishability applications P (en-
cryption, pseudorandom function/permutation, etc.). Fix also the (1 + γ)2−v-
universal hash family H and the joint distribution (X, Z) satisfying H̃∞(X |Z) ≥
v + L, so that the real and the ideal model are well-defined.

We say that P is (T, ε)-secure in the ideal model if for all attackers A with
resources less than T , we have WinA(Uv, H, Z) ≤ c + ε.

Similarly, P is (T ′, ε′)-secure in the real model if for all attackers A have
resources less than T ′, we have WinA(H(X), H, Z) ≤ c + ε′.

Triangle inequality coupled with Equation (6) immediately yields the following
Corollary.

Lemma 3. Fix L and γ defining the real and the ideal models. Assume P is
(T, ε)-secure in the ideal model, and for all attackers A with resources less than
T ′ (where T ′ ≤ T) we have ΔDA(H(X), Uv | (H, Z)) ≤ δ. Then P is (T ′, ε + δ)-
secure in the (L, γ)-real model.

We are now ready to apply Lemma 3 and Theorem 2 to various cryptographic
primitives P . Below, we let c ∈ {0, 1

2} be the constant governing the security
of P (0 for unpredictability and 1/2 for indistinguishability applications). Due
to space constraint, we leave the application of part (a) of Theorem 2 to so
called “strongly secure” primitives, where (for some τ and δ) any attacker has
advantage more than τ on at most δ the fraction of keys r, to the full version [1]
of the paper, and move directly to other applications which use parts (b) and
(c) of Theorem 2. We also give several concrete examples in the full version [1].

Improved Bound for Unpredictability Applications. Recall, authentica-
tion applications correspond to c = 0, and include signature schemes, MACs,
one-way functions/permutations, etc. In this case (T, ε)-security in the ideal
model implies that for any T -bounded attacker A, E[WinA(Uv, H, Z)] ≤ ε.
Recalling the definition of the abstract distinguisher DA, this is the same as
Pr[DA(Uv, H, Z) = 1] ≤ ε, which is precisely the pre-condition for part (b) of
Theorem 2. Thus, combining Equation (4) with Lemma 3, we immediate get:

Theorem 3. Fix L and γ defining the real and the ideal models. Assume au-
thentication primitive P (corresponding to c = 0) is (T, ε)-secure in the ideal
model. Then P is (T, ε′)-secure in the (L, γ)-real model, where

ε′ ≤ ε +

√
ε

(
γ +

1
2L

)
(7)

Leftover Hash Lemma, Revisited 13

In particular, if γ = 0 and L = log (1/ε), then ε′ ≤ 2ε. Moreover, when γ = 0,
the security bound is meaningful even for negative entropy “loss” 0 ≥ L >
− log (1/ε), when one extracts more bits than the min-entropy H̃∞(X |Z) and
“borrows the security deficit” from the ideal security of P .

Intuitively, Theorem 3 uses the fact that for authentication applications one only
cares about distinguishers which almost never output 1, since the attacker almost
never forges successfully.

Improved Bound for Some Indistinguishability Applications. We now
move to the more difficult case of indistinguishability applications, where c =
1/2. In general, we do not expect to outperform the standard LHL, as illustrated
by the one-time pad example. Quite surprisingly, we show that the for a class
of applications, including chosen plaintext attack (CPA) secure encryption, one
can still get improved bounds as compared to the standard LHL. Specifically,
as long as the primitive P allows the attacker A to “test” its success before
playing the actual “challenge” from C, we still get significant savings. We start
by defining the general type of security games where our technique applies.

Bit-Guessing Games. As usual the game is played by the attacker A =
A(h, z) and the challenger C(r). The game can have an arbitrary structure,
except the winning condition is determined as follows. At some point A asks C
for a “challenge”. C flips a random bit b ∈ {0, 1}, and sends A a value e = e(b, r).
The game continues in an arbitrary way and ends with A making a guess b′. A
wins if b = b′.

So far, this still includes all standard indistinguishability games, including
the one-time pad. The extra assumption we make is the following. For any valid
attacker A having resources less than T ′ there exists another valid attacker A′

(having somewhat larger resources T ≥ T ′) such that:

(1) The execution between A′ and C(r) defines four bits b, b′, b̃, b̃′, such that the
joint distribution of (b, b′, b̃, b̃′) is the same as two independent tuples (b, b′)
obtained when A runs with C(r).

(2) The bits b and b′ are precisely the secret bit of C and the guess of A′, so
that A′ wins iff b = b′.

(3) A′ learns if b̃ = b̃′ before outputting b′.

We will call such indistinguishability games (T ′, T)-simulatable. In the full ver-
sion [1], we show a general result stating improved bounds on entropy loss for
any (T ′, T)-simulatable application, and also show that CPA-secure (public- or
symmetric-key) encryption schemes are simulatable, where, as expected, the “re-
sources” T are roughly doubled compared to T ′. (Intuitively, the attacker can
run the challenger in “his head” and see if it won.) In particular, we get the
following theorem as a corollary of this general result:

Theorem 4. Fix L and γ defining the real and the ideal models, and set ε′ =
ε +
√

ε(γ + 2−L).

14 B. Barak et al.

Assume P is public-key encryption scheme which is ε-secure, in the ideal
model, against attackers with running time 2t + tenc, where tenc is the runtime
of the encryption process. Then P is ε′-secure, in the (L, γ)-real model, against
attackers with running time t.

Similarly, assume P is a symmetric-key encryption scheme which is ε-secure,
in the ideal model, against attackers with running time 2t + O(1) and making
2q + 1 encryption queries. Then P is ε′-secure, in the (L, γ)-real model, against
attackers with running time t and making q encryption queries.

Limitations and Extensions. Unfortunately, several other indistinguishabil-
ity primitives, such as pseudorandom generators, functions or permutations, do
not appear to be simulatable. The problem seems to be in verifying the winning
condition (condition (3) of simulatability), since this has to be done with respect
to the actual secret key r not known to the attacker. For PRFs (or PRPs), it
is tempting to solve the problem by using an equivalent definition, where the
attacker can learn the value of PRF at any point, but then, as a challenge, must
distinguish the value of the PRF at an un-queried point from random. Although
this variant allows the attacker to check the winning condition during the first
“virtual” run, it now creates a different problem in that the challenge point
during the second “actual” run might have been queried during the first run,
making such an attacker A′ invalid.

Interestingly, the above “fix” works for a useful relaxation of PRFs, known
as weak PRFs (wPRFs). Here the attacker only gets to see the values of the
PRF at several random points, and has to distinguish a new value from random.
Assuming a large enough input domain, the probability of collision between the
PRF values revealed in the first first run and challenged in the second run, is
negligible, which allows to complete the (valid) simulation. Similarly, it works
for a slightly stronger relaxation of PRFs, known as random-challenge PRFs. As
with wPRFs, A gets as the challenge a real-or-random evaluations of the PRF at
a random point, but can additionally query the PRF at arbitrary points different
from the challenge point. In Section 3.2 we show that wPRFs are all we need to
apply our results to a generic key derivation function.

3.2 A Generic Key Derivation Function

So far we have discussed the applications of our generalized Leftover Hash
Lemma and Theorem 2 to the derivation of cryptographic keys in entropy-
constraint environments for specific applications. Although our analysis covers
many such applications, it does not cover all, including PRFs and stream ci-
phers. In this section we make a simple observation which allows us to overcome
this limitation and design a generic key derivation function (KDFs) which is
(computationally) secure for any cryptographic application while still enjoying
the same entropy loss savings. The idea is to compose universal hash functions a
weak PRF (wPRF), where the random input to the wPRF now becomes part of
the extractor seed, and use the fact that wPRFs fall under the class of simulatable
applications as defined in Section 3.1.

Leftover Hash Lemma, Revisited 15

Specifically, we define the KDF on the basis of a (1 + γ)/2v-universal hash
family H with v-bit outputs and a wPRF F taking a k-bit input w and a v-
bit key r, and outputting a v-bit output y = Fr(w), as follows. The public
seed s for the KDF Ext is a pair s = (h, w), where h is a random universal
function from H and w is a random element in the domain of F . We then define
Ext(x, (h, w)) def= Fh(x)(w); i.e., the initially extracted value h(x) is used as a
wPRF key, which is then used to evaluate F on w.

We also notice that if one needs to extract multiple keys for several applica-
tions, we can simply use the output of our computational KDF as a seed of a
regular PRG or PRF, since such applications are now “covered”.

Remark 1. For the case of deriving multiple keys, as above, we notice that the
wPRF step is not needed provided all the keys are for cryptographic applications
covered by our technique (i.e., strongly secure, unpredictable, or simulatable
primitives). Namely, in such a case we can directly use the initially extracted key
H(X) as a seed for the (regular) PRF/PRG to derive all the required keys. This
allows us to avoid increasing the seed length by k bits, and saves one application
of wPRF. The proof of this claim follows by a simple hybrid argument (which
we omit). In general, though, the wPRF-based solution is preferable, as it adds
considerable generality at a relatively moderate cost.

4 Reducing the Seed Length

In this section we study the soundness of the natural expand-then-extract ap-
proach described in the Introduction, showing our negative result in Section 4.1
and our two positive results in Section 4.2 and Section 4.3.

Negligible and Friends. We use k to denote a security parameter. A function
μ : N → [0, 1] is negligible if for any c > 0 there is a k0 such that μ(k) ≤ 1/kc

for all k ≥ k0. To the contrary, μ is non-negligible if for some c > 0 we have
μ(k) ≥ 1/kc for infinitely many k. Throughout, negl(k) denotes a negligible
function in k.

A function τ(·) : N→ [0, 1] is overwhelming if 1−τ(·) is negligible. A function
φ : N → [0, 1] is noticeable if for some c > 0 there is an k0 such that φ(k) ≥
1/kc for all k ≥ k0. Note that non-negligible is not the same as noticeable. For
example, μ(k) def= k mod 2 is non-negligible but not noticeable.

Computational Extractors and PRGs. Recall that with ΔD(X, Y) def=
| Pr[D(X) = 1] − Pr[D(Y) = 1] | we denote the advantage of a circuit D
in distinguishing the random variables X and Y . Let Dt denote the class of all
probabilistic circuits of size t. With CDt(X, Y) = maxD ΔD(X, Y) we denote the
computational distance of X and Y , here the maximum is over D ∈ Dt. When
t = ∞ in unbounded, we recover the notion of statistical distance SD(X, Y).
When X = Xk and Y = Yk are families of distributions indexed by the security
parameter k, we will say that X and Y are computationally indistinguishable,
denoted X ≈c Y , if for every polynomial t(.), CDt(k)(Xk, Yk) = negl(k).

16 B. Barak et al.

Definition 4 (Computational Extractor). We say that an efficient function
Ext : X × {0, 1}n → {0, 1}v is an (average-case, strong) computational m-
extractor (for space X), if for all efficiently samplable X, Z such that X is
distributed over X and H̃∞(X |Z) ≥ m (here X , n, v, m are all indexed by a
security parameter k)

(Ext(X ; S), S, Z) ≈c (Uv, S, Z)

Definition 5 (Pseudorandom Generator). A length increasing function
Prg : {0, 1}k → {0, 1}n is a pseudorandom generator (PRG) if 6 Prg(Uk) ≈c Un.
We also say that Prg is (T, δ)-secure if CDT (Prg(Uk), Un) ≤ δ.

Computational Extractors with Short Seeds? We are ready to formal-
ize our main question: Is it safe to expand an extractor seed using a PRG?
Hypothesis 1. [Expand-then-Extract] If Ext is an (m(k), ε(k))-extractor with
seed length n(k) where ε(.) is negligible and Prg : {0, 1}k → {0, 1}n(k) is a
pseudorandom generator, then Ext′ defined as

Ext′(x; s) = Ext(x; Prg(s))

is a computational m-extractor.

4.1 Counter-Example: Expanding Seeds Is Insecure in General

In this section we show that, unfortunately, Hypothesis 1 is wrong in general.

Theorem 5 (Hypothesis 1 wrong assuming DDH). Under the DDH as-
sumption, there exists a pseudorandom generator Prg(.) and a strong extractor
Ext(.; .) (which is a perfectly universal hash function) such that Ext′(x; s) def=
Ext(x; Prg(s)) can be efficiently distinguished from uniform on any input distri-
bution (i.e. Ext′ is not a computational extractor.)

Proof (of Theorem 5). Let G be a prime order p cyclic group with generator g
where the DDH problem is hard. Then Prg : Z3

p → G6 defined as

Prg(a, b, c) = (ga, gb, gab, gac, gbc, gabc)

is a a secure pseudorandom generator [28]. Let Ext : Z3
p × G6 → G2 be

Ext((x, y, z); (A, B, C, D, E, F)) = (AxByCz, DxEyF z)

It is easy to see that Ext is a perfectly universal hash function from Z3
p → G2

(and, by Lemma 1, strong (2 log p + 2 log (1/ε) , ε)-extractor). Now consider the
distribution

[Ext((x, y, z); Prg(a, b, c)) , (a, b, c)] = [(gaxgbygabz, gacxgbcygabcz) , (a, b, c)] (8)

The distribution (8) is not pseudorandom as any tuple (α, β), (a, b, c) ∈ G2 ×Z3
p

of the form (8) satisfies αc = β, which can be efficiently verified, while a random
distribution will satisfy this relation with probability 1/p.
6 In order to avoid an extra parameter, we simply assume wlog that the seed length

of our PRG is equal to the security parameter k.

Leftover Hash Lemma, Revisited 17

4.2 Expanding Seeds Is Safe When Extracting Few Bits

By the following theorem, the expand-then-extract Hypothesis does hold, if the
pseudorandom generator Prg used for expansion is sufficiently strong. The re-
quired hardness depends exponentially on the output length v of the extractor.
The proof of the following Theorem is given in the full version of this paper [1].

Theorem 6. Assume Ext : X ×{0, 1}n → {0, 1}v is a (m, ε)-extractor with run-
ning time tExt, and Prg : {0, 1}k → {0, 1}n is a (T,

√
ε)-pseudorandom generator,

for some
T ∈ O

(
22v(n + v)tExt/ε

)
(9)

Then Ext′(x; s) def= Ext(x; Prg(s)) is a (m, 4
√

ε)-extractor. In particular, if the
running time of Ext is polynomial in k, its error ε(k) = negl(k), its output size
v = O(log k), and Prg is secure against polynomial (in k) size distinguishers,
then Ext′ is an (m, ε′)-extractor for ε′(k) = negl(k).

4.3 Expanding Seeds Is Safe in Minicrypt

Before we can state the main result of this section, we need a few more definitions.

Bit-Agreement. Bit-agreement is a protocol between two efficient parties,
which we refer to as Alice and Bob. They get the security parameter k in unary
(denoted 1k) as a common input and can communicate over an authentic chan-
nel. Finally, Alice and Bob output a bit bA and bB, respectively. The protocol has
correlation ε = ε(k), if for all k, Pr[bA = bB] ≥ (1 + ε(k))/2. Furthermore, the
protocol has security δ = δ(k), if for every efficient adversary Eve, which can ob-
serve the whole communication C, and for all k, Pr[Eve(1k, C) = bB] ≤ 1−δ(k)/2.

Key-Agreement & PKE. If ε(·) and δ(·) are overwhelming then such a proto-
col achieves key-agreement. Using parallel repetition and privacy amplification,
it is known [20,19] that any protocol which achieves bit-agreement with no-
ticeable correlation ε(·) and overwhelming security δ(·) can be turned into a
key-agreement protocol, without increasing the number of rounds. A 2-message
key-agreement protocol is equivalent to public-key encryption (PKE). The proof
of the following Theorem is given in the full version of this paper [1].

Theorem 7 (Hypothesis 1 holds in minicrypt). If there exists a secure pseu-
dorandom generator Prg and a strong extractor Ext where Ext′(.; .)def= Ext(Prg(.); .)
is not a computational extractor, then the protocol from Figure 1 is a two-
message bit-agreement protocol with noticeable correlation and overwhelming se-
curity (and thus implies PKE).

Remark 2. In the above theorem not being a secure computational extractor
means that there exists an efficient uniform D that can distinguish Ext(Prg(.); .)
with noticeable advantage (in the security parameter k). If Ext(Prg(.); .) is only
insecure against non-uniform adversaries, then also the resulting protocol (which
uses D) will be non-uniform. If the distinguisher D only has non-negligible advan-
tage (i.e. only works for infinitely many, but not all, security parameters k), then

18 B. Barak et al.

Alice

s← Uk; s′ ← Prg(s)

bA ← D(r, s, z)

Bob

(x, z)←(X, Z)

bB←U1

if bB = 0 then r ← Ext(x; s′)

else if bB = 1 then r ← Uv

s′

r, z

Fig. 1. A bit agreement protocol from any Prg, Ext that constitute a counterexample
(via distinguisher D) to Hypothesis 1

also the protocol will work for infinitely many k. This issue is inherent in win-win
type results where an adversary is turned into a “useful” protocol [13,32,12,33].
It roots in the fact that in cryptography we usually put weak requirements for
adversaries to be considered efficient (can be non-uniform and only have non-
negligible advantage), whereas we usually require from practical algorithms to
be uniform and secure for all (sufficiently large) security parameters.

We obtain the following corollary whose proof is immediate from Figure 1.

Corollary 1. Assume Prg is a secure pseudorandom generator. Assume further
that there exists no public-key encryption scheme (with non-negligible gap be-
tween security and decryption correctness) with pseudorandom ciphertexts, whose
secret key is the seed of Prg and whose public key is the output of Prg. Then the
expand-then-extract hypothesis is true for Prg.

Discussion. Corollary 1 reduces the soundness of the expand-then-extract ap-
proach to the impossibility of constructing public-key encryption from the given
PRG in a very particular way, where the ciphertexts are pseudorandom and, more
importantly, the key-generation algorithm samples a random s and sets sk =
s, pk = Prg(s). To the best of our knowledge, this impossibility assumption seems
very likely for “practical” PRGs, such as AES. For example, not only there is no
black-box construction of PKE (or key agreement) from a PRG alone, as shown
by Impagliazzo and Rudich [23], but, in fact, it is entirely consistent with current
knowledge that these two tasks are separable, in the sense that there is some com-
putational model/complexity class (e.g., perhaps some extension of BQP or AM∩
coAM) that is powerful enough to break all public key schemes, but not powerful
enough to break AES. If this is the case, then the AES-bases expand and extract
scheme is secure with respect to all efficient input distributions and distingiuish-
ers (even those that are based on public key tools such as factoring, lattices etc.).
Moreover, we do not know any black-box construction of PKE from PRG and
any other “cryptomania” assumption (like non-interactive zero-knowledge proofs,
fully-homomorphic or identity-based encryption, etc.), where the public key of the
PKE is simply the output of the PRG. To summarize, our results give strong ev-
idence that the expand-then-extract approach is secure using any practical PRG
(like AES), despite being (generally) insecure in theory.

Leftover Hash Lemma, Revisited 19

Acknowledgements. We would like to thank Russell Impagliazzo and Ronen
Shaltiel for useful discussions.

References

1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert,
F.-X., Yu, Y.: Leftover hash lemma, revisited. Cryptology ePrint Archive, Report
2011/088 (2011), http://eprint.iacr.org/

2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: ACM CCS (2005)

3. Barak, B., Shaltiel, R., Tromer, E.: True Random Number Generators Secure in a
Changing Environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

4. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM Journal on Computing 17(2), 210–229 (1988)

5. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-
tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

6. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, p. 453. Springer, Heidelberg (2000)

7. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

8. Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal randomness
extraction from a diffie-hellman element. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, Springer, Heidelberg (2009)

9. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the cbc, cascade and hmac modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, Springer, Heidelberg (2006)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Comput-
ing 38(1), 97–139 (2008)

12. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
STOC (2006)

13. Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

14. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed diffie-hellman over non-
ddh groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, Springer, Heidelberg (2004)

15. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: STOC
(1989)

16. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from parvaresh–vardy codes. J. ACM 56(4) (2009)

17. Hast, G.: Nearly one-sided tests and the goldreich?levin predicate. J. Cryptol-
ogy 17(3), 209–229 (2004)

http://eprint.iacr.org/

20 B. Barak et al.

18. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseudorandom
generator from any one-way function. SIAM Journal on Computing 28(4), 1364–
1396 (1999)

19. Holenstein, T.: Key agreement from weak bit agreement. In: STOC (2005)
20. Holenstein, T.: Strengthening Key Agreement using Hard-Core Sets. PhD thesis,

ETH Zurich, Zurich, Switzerland (2006)
21. Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure

Hash Functions Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 92–105. Springer, Heidelberg (2004)

22. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134–147 (1995)

23. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC (1989)

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC (2008)

25. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (2010)

26. Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, Springer, Heidelberg (1997)

27. Mitzenmacher, M., Vadhan, S.P.: Why simple hash functions work: exploiting the
entropy in a data stream. In: SODA (2008)

28. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS (1997)

29. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, Springer, Heidelberg (2009)

30. Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 24. Springer, Heidelberg
(1999)

31. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43–53 (1996)

32. Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)

33. Pietrzak, K., Sjödin, J.: Weak pseudorandom functions in minicrypt. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 423–436. Springer, Heidelberg
(2008)

34. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Computing 13(1), 2–24 (2000)

35. Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrar-
ily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, Springer,
Heidelberg (2003)

36. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin
of the EATCS 77, 67–95 (2002)

37. Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes, and
Cryptography 4(4), 369–380 (1994)

38. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applica-
tions to cryptography and computing. Journal of Combinatorial Mathematics and
Combinatorial Computing 42, 3–31 (2002),
http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html

http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html

Random Oracle Reducibility

Paul Baecher and Marc Fischlin

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. We discuss a reduction notion relating the random oracles in
two cryptographic schemes A and B. Basically, the random oracle of
scheme B reduces to the one of scheme A if any hash function instanti-
ation of the random oracle (possibly still oracle based) which makes A se-
cure also makes B secure. In a sense, instantiating the random oracle in
scheme B is thus not more demanding than the one for scheme A. If, in ad-
dition, the standard cryptographic assumptions for scheme B are implied
by the ones for scheme A, we can conclude that scheme B actually relies on
weaker assumptions. Technically, such a conclusion cannot be made given
only individual proofs in the random oracle model for each scheme.

The notion of random oracle reducibility immediately allows to transfer
an uninstantiability result from an uninstantiable scheme B to a scheme
A to which the random oracle reduces. We are nonetheless mainly inter-
ested in the other direction as a mean to establish hierarchically ordered
random-oracle based schemes in terms of security assumptions. As a posi-
tive example, we consider the twin Diffie-Hellman (DH) encryption scheme
of Cash et al. (Journal of Cryptology, 2009), which has been shown to be
secure under the DH assumption in the random oracle scheme. It thus
appears to improve over the related hashed ElGamal encryption scheme
which relies on the random oracle model and the strong DH assumption
where the adversary also gets access to a decisional DH oracle. As ex-
plained above, we complement this believe by showing that the random
oracle in the twin DH scheme actually reduces to the one of the hashed
ElGamal encryption scheme. We finally discuss further random oracle re-
ductions between common signature schemes like GQ, PSS, and FDH.

Keywords: Random Oracle Model, Uninstantiability, Diffie Hellman,
Encryption.

1 Introduction

Suppose you have a cryptographic scheme A which can be shown to be secure in
the random oracle model [4] under some assumption A, say, the RSA assumption.
Assume furthermore that someone presents to you a scheme B for the same
purpose which is also secure in the random oracle, but now under the potentially
weaker assumption B like factoring. Clearly, if it was not for the random oracle,
and scheme B would also improve over A in other relevant aspects like efficiency,
then scheme B should be preferred. Unfortunately, the random oracle model
introduces some undesirable uncertainty when simply following the strategy of
picking the scheme with the weaker assumption.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 21–38, 2011.
c© International Association for Cryptologic Research 2011

22 P. Baecher and M. Fischlin

Formally, proofs in the random oracle model (ROM) all rely on equally pow-
erful random hash functions, but very often the exact requirements for the hash
functions to conduct a security proof for a scheme remain unclear. This is all
the more true since the random oracle in some schemes is uninstantiable in the
sense that no efficient hash function can securely replace the random oracle [9].
For our example of schemes A and B above this means that scheme B may rely
on a weaker assumption B, but the actual requirements on the hash function
may be much stronger than the ones for A. In the extreme, the hash function in
scheme B may be uninstantiable, whereas the hash function for A may rely on
a very mild cryptographic assumption like collision-resistance (albeit no proof
has been found for this so far).

A natural approach to overcome the problem would be to determine the ex-
act requirements on the hash function and to show that scheme B also relies
on weaker assumptions for the hash function than scheme A. However, pinning
down these properties of random oracles is often tedious and does not yield the
desired result, especially since one would also need to show that the properties
are necessary. One example are the hash function properties for OAEP, where
Boldyreva and Fischlin [6,7] and later Kiltz et al. [19] gave necessary and, for
much weaker security notions than IND-CCA, sufficient conditions on the hash
function (in combination with further assumption about the underlying trap-
door permutation). None of these results, however, shows the desired kind of
strong security. To complement these results, Kiltz and Pietrzak [20] claimed
that for arbitrary trapdoor permutations the hash function in OAEP cannot be
instantiated securely to derive IND-CCA security. The latter result is not known
to be applicable to specific trapdoor permutations like RSA, though.

Random Oracle Reducibility. The strategy we suggest here is based on the clas-
sical reductionist approach to relate cryptographic assumptions: Show that any
hash function H , ranging from efficient instantiations to random oracles, which
makes scheme A secure under assumptions A also makes scheme B secure under
assumptions B. Technically, this seems to be too optimistic because hash func-
tions in different schemes often cannot be used unchanged but rely on different
domains, ranges etc. We thus allow for a “structural” transformation T H of H
for scheme B, possibly depending on the specific hash function. There are three
possibilities to relate the hash functions in the schemes:

Definition 1 (Random Oracle Reducibility — Informally). Let A and B
be some sets of assumptions. A random oracle in scheme B strictly resp. strongly
resp. weakly reduces to the random oracle in scheme A if for every hash function
H there exists a transformation T such that

strictly: AH secure under A =⇒ scheme BT H

secure under B

strongly: AH secure under A =⇒
{

scheme BT H

secure under A ∪ B
and BT H′

secure under B for some H ′

weakly: AH secure under A =⇒ scheme BT H

secure under A ∪ B

Random Oracle Reducibility 23

Several details are hidden in this informal definition, of course, e.g., what a
“secure” scheme is, which properties the transformation must satisfy, or how
cryptographic assumptions of hash function instantiations are dealt with. We fill
in these details in the formal definition and keep it informally for now. We note,
however, that the formal definition covers any type of hash function, i.e., both
oracle-based ones, as well as keyed hash functions with succinct descriptions, or
mixtures thereof. In particular, the security of scheme B in the strong case may
only be known for a random oracle H ′.

For identical assumptions A = B, or even if A ⊆ B, all three notions coincide.
The difference can be best explained for the case B � A, i.e., that the assump-
tions A are strictly stronger than B. The strict notion can in this case be put
informally as saying “Scheme B is strictly superior to scheme A in regard of the
assumptions, even for the hash function.” The strong and presumably more ac-
cessible approach can be described as “Scheme B is at least as good as scheme A
in regard of the assumptions, but potentially superior.” The weak case says that
“Scheme B is at least as good as scheme A.” In terms of security assumptions
it seems that the strict and strong versions are the interesting ones (hence the
names); the weak version does not provide any potential improvement concern-
ing the assumption. We note that in the strong case often a security proof for
scheme B in the random oracle model can be given without assuming security of
A. We merely introduced the dependence via the prerequisite of the implication
to make the notions comparable.

As a first sanity check note howprevious uninstantiability results relate to either
kind of definition. If the hash function security of B can be (weakly, strongly, or
strictly) reduced to the hash function security of A and B turns out to be uninstan-
tiable, then this also follows for scheme A (else T H would be a valid instantiation
for B). In this regard the reduction approach also allows to extend uninstantiabil-
ity results without directly showing the ineffectiveness of efficient hash functions.
Vice versa, any new result about secure instantiations of A would immediately
transfer to B. Also, uninstantiability immediately implies that there are schemes
A (allowing efficient instantiations) and B (being uninstantiable) such that the
random oracle for B does not (even weakly) reduce to the one for scheme A.

Example: Hashed ElGamal Encryption. To show that the strong approach is
applicable and the definition non-trivial we discuss the case of Hashed ElGamal
encryption [1] and its chosen-ciphertext security proof under the strong Diffie-
Hellman (DH) assumption in the random oracle model [12]. Here the strong DH
assumption says that computing DH keys is infeasible even if given (restricted)
access to a decisional DH oracle. Cash et al. [10] present a variant which can
be shown to be CCA secure under the (regular) DH assumption in the random
oracle model. This is a clear example of two schemes where the variant seems to
improve over the original one in terms of assumption, but where this conclusion
is technically not known to be sound because of the random oracle model.

The original hashed ElGamal encryption scheme encrypts a message un-
der public key X = gx as (Y, c), where Y = gy and c = Enc(k, m) for the
hashed Diffie-Hellman key k = H(Y, Xy) and the symmetric encryption scheme

24 P. Baecher and M. Fischlin

Enc. The variant in [10] instead computes two related ephemeral Diffie-Hellman
keys from public keys X0 = gx0 and X1 = gx1 , and derives a ciphertext (Y, c) for
Y = gy and c = Enc(k, m) for k = H(Y, Xy

0 , Xy
1). We show (for a slight derivate

of the scheme in [10]) that the random oracles can be strongly reduced to the
one of hashed ElGamal. Ciphertexts in our variant are defined as

(Y, c, k1), where Y = gy, c = Enc(k0, m) for k0 = H(Y, Xy
0), k1 = H(Y, Xy

1),

i.e., we split the hashing into two evaluations, one for each public key part, and
use the second key as a kind of confirmation that the first key is computed
correctly. We can view this as the transformation

T H(Y, Z0, Z1) = H(Y, Z0)||H(Y, Z1)

and where we use a special symmetric encryption scheme where the key part k1

is output in clear.
We then prove that IND-CCA security for hashed ElGamal implies security

of (our variant) of the twin DH scheme for any hash function H for the same
assumptions that the hashed ElGamal is secure for. We also show that our variant
is secure in the random oracle model assuming only the assumptions given in
[10]. It follows that the random oracle in our scheme is strongly reducible to the
one of hashed ElGamal.

Note that yet another hashed ElGamal scheme, related to the original scheme,
has been shown to be uninstantiable [2]. The scheme differs in two important as-
pects from our scheme, though. First, their hashed ElGamal encryption does not
use randomness and is thus deterministic. Second, the security notion considered
in [2] is IND-CCA-preservation which gives the adversary simultaneously access
to the algorithms of the public-key scheme and the symmetric scheme involving
secret keys. In contrast, we use the standard notion of IND-CCA security for
the hybrid (public-key) scheme.

We note that the security reduction for our variant to the underlying prim-
itives like the Diffie-Hellman problem for random oracle H ′ is looser than the
one in [10] in terms of concrete bounds.1 At the same time our scheme relates
the random oracle to the one in the original scheme. Of course, concreteness of
security bounds is another important aspect, besides efficiency, when considering
random oracle reducibility. In principle, it could be incorporated as an explicit
requirement in the notion. We relinquish to do so because both aspects, tightness
and efficiency, depend to some extend on the individual willingness to pay for
the additional security guarantees through the random oracle reducibility.

Reductions for Signature Schemes. We give further examples of the applicability
of the notion of random oracle reducibility by considering common signature
schemes like Guillou-Quisquater [17] or PSS [5] and showing that the random
oracle of a probabilistic version of FDH [11] (Full-Domain Hash) reduces to
the random oracles in these schemes. However, note that FDH signatures are
1 Note that both proofs are in the random oracle model where concrete bounds must

be taken with a grain of salt anyway.

Random Oracle Reducibility 25

only known to be uninstantiable according to [14,13] for plain hash evaluations
over the message (i.e., no randomness). The first result only applies to random
trapdoor permutations (i.e., the result is not known to apply to RSA), and the
second more recent result holds when RSA is treated as a black-box group. Any
progress in terms of uninstantiability of FDH signatures to our probabilistic case
would thus immediately allow to conclude that the Guillou-Quisquater signature
scheme and the PSS scheme are uninstantiable. This would somehow extend
the uninstantiability result of Goldwasser and Kalai [16] about general (and
somewhat contrived) Fiat-Shamir schemes to the “more natural” species.

We discuss another random oracle reduction of (probabilistic) BLS signatures
[8] to the Schnorr signature scheme [25]. In this case, however, we need a non-
standard assumption to make the reduction work, namely, the knowledge of
exponent assumption KEA1 [18,3] which roughly says that when complementing
a value X to a Diffie-Hellman tuple (X, Y, DH(X, Y)) one must know the discrete
logarithm y of Y . For the random oracles this means that, if our version of the
BLS scheme is uninstantiable, then so is the Schnorr signature scheme, or the
KEA1 assumption is false.2

Some Words of Caution. Just as reductions between number-theoretic assump-
tions merely relate problems like factoring and RSA, but do not touch the ques-
tion if RSA is really hard, a reduction for random oracles does not mean that
scheme B, in and of itself, is secure (under assumptions B) or that the hash
function can be securely instantiated. The reduction only says that scheme B
can be made as secure as scheme A in regard of the hash function. Since we
do not put any formal prerequisite about the security of scheme A, which could
thus be insecure, the reduction could potentially be trivial.

However, as for relating number-theoretic assumptions, where the stronger
assumption is usually accompanied by some hardness analysis, scheme A typ-
ically comes with some form of security guarantee. Often, this is at least a
security proof in the random oracle model, or sometimes for a relaxation thereof
like non-programmable random oracles [24,15], traceable random oracles [23], or
leaky random oracles [26]. The advantage of our approach is that it follows im-
mediately that B can also be shown secure under the corresponding assumption
about the hash function.

One caveat is that the transformed hash function T H , unlike random oracles,
obeys some structure, as the “split” evaluation in our ElGamal example. Hence,
when instantiated with some efficient hash function h, scheme B could become
insecure for the transformed hash function T h, despite the reduction and a proof
that T H makes B secure for random oracle H . Noteworthy, at the same time
B could be secure when instantiated with h directly, instead of going through
the transformation T ! We observe, however, that this is an inherent limitation
of the random oracle model: It solely provides a heuristic which does not allow
to conclude security under concrete instantiations. Our approach at least gives

2 To be precise need the KEA1 assumption to hold even if one can get additional
Schnorr signatures under the key X.

26 P. Baecher and M. Fischlin

some confidence in the choice of the hash function in the sense that the security
is at least as good as the one of another, hopefully well-examined scheme.

2 Random Oracle Reducibility

Hash Functions. We consider families H of hash functions H where it is under-
stood that H is (not necessarily efficiently) sampleable from H according to a
security parameter λ. It is thus also clear that a hash function H may have a
restricted input or output length, depending on λ. We write H ← H(1λ) for the
sampling. For example, to model a random oracle we let H(1λ) be the family
of all functions with the specified domain and range and the sampling picks a
random function from this set. In the sequel we usually simply identify the hash
function H(·) with its description H itself. We assume that hash functions are
deterministic in the sense that, once a hash function has been sampled, its behav-
ior is fixed. A hash function family may rely on some cryptographic assumptions
H; in case of random oracles no assumption H is necessary as the sampling of a
random function already provides all desirable security properties.

Given a hash function H for a scheme A we write AH for the scheme where
each party or algorithm gets oracle access to H . Furthermore, the hash function
H may include a public description part which is then also given to all parties
and algorithms as additional input. This public part may be for example the full
description of H , or only parts thereof, e.g., if H is a hybrid between a random
oracle and a keyed hash function. A hash function family is efficient if it follows
the usual notion of an efficient keyed hash function, i.e., the sampling is efficient,
a sampled function H is efficiently computable and entirely described through a
public part.

Transformations. A hash function H used in a cryptographic scheme A may
not be immediately applicable to another scheme B for the mere fact that the
domain and range do not fit. We therefore “slot in” a transformation algorithm
T in, such that scheme B then uses the hash function T H (with the semantic
that any algorithm or party gets public descriptions of T H as additional input).
We write TH for the corresponding hash function family (described by sampling
H ← H(1λ) and evaluating T H). Ideally, the transformation should only make
structural modifications (like adapting the domain and range) and should be
deterministic.

There is, however, one technical subtlety concerning the statefulness of trans-
formations. Namely, we explicitly require that the transformation is stateless.
The reason is that if we would allow stateful transformations, it is possible to
construct particular contrived transformations that trivialize our notion, in the
sense that some scheme B always reduces to any scheme A. To get a sense of the
problem, consider arbitrary schemes A and B which are secure in the random
oracle model. Let T denote the stateful transformation which ignores its oracle
H and (efficiently) implements a random oracle via lazy sampling. Since BT H

is then clearly secure, scheme B is —as per Definition 1— reducible to scheme

Random Oracle Reducibility 27

A, despite the arbitrary choice of the two schemes. A similar issue arises with
instantiations: Suppose scheme B is now instantiable for some hash function
family H. Construct the transformation T which again ignores its oracle and
instead initially samples a function H ′ ← H and answers subsequent queries
according to H ′. Again, scheme B remains secure and reduces to any scheme
A. Both examples rely on a stateful transformation function —to answer con-
sistently and to remember the choice of the hash function, respectively. Thus,
in order to rule out such trivial cases, we ask that transformations are always
stateless. This may seem overly restrictive at first glance, but, in fact, is easily
justified because hash functions are inherently stateless entities.

One can nonetheless allow for rather general transformations, possibly even
considering transformations which themselves rely on assumptions T.

Security of Schemes. We consider security of schemes to be defined via a general
notion of games, albeit our games also allow to state simulation-based security
properties (by saying that the game returns 1 iff for any simulator there exists
a successful distinguisher). As we can subsume several games like the ones for
blindness and unforgeability for blind signature schemes into a single game, with
corresponding sub games for which the adversary initially decides to mount the
attack against, we consider a single game G only. We let Adv(A, G) denote the
advantage of adversary A playing game G, i.e., the adversary’s success prob-
ability of winning the game. This makes Adv an implicit part of G. Here, in
decisional games the advantage usually denotes the adversary’s success proba-
bility minus the trivial guessing probability of 1/2, and in computational games
the advantage is usually the adversary’s probability of computing a solution.

Analogously to hash functions, we write GH for a security game in which all
parties and algorithms get access to H in the same manner. It is understood
that the choice of H ← H(1λ) is part of the security game. We write GH for a
game for which a hash function is chosen from the family H.

We envision security assumptions A for a scheme A as a set of elementary
properties such as unforgeability of an underlying MAC or number-theoretic
assumptions like the hardness of factoring. We can then apply common set oper-
ations and relations to assumptions in a well-defined way, e.g., A ∪ B comprises
all assumptions stated in A and B, and B ⊆ A means that assumptions in B hold
if A holds. This approach is too applicable for the hash function assumptions H
and possibly the transformation assumptions T. We also assume that assump-
tions are “opt-in”, i.e., need to specified in the set, or else the assumption does
not hold. Formally we can define this by considering a universe U of assumptions
and say that any assumption in U \ A is false.

Note that we keep the formal specifications of games and assumptions at a
minimal level. This is possible as we later demand random oracle reducibility
with respect to specific games and assumptions. It is thus up to the reduction
statement to consider “reasonable” games and assumptions. We only need very
limited syntactical requirements here and can, for example, even allow conflicting
assumptions in A∪B (in which case, however, the claims usually become trivial).

28 P. Baecher and M. Fischlin

Definition 2 (Game-based Security). Let A denote a cryptographic scheme
and GH

A an associated security game for hash family H. Scheme A is called
GH

A -secure under assumptions A for hash family H relying on assumptions H if
for any efficient adversary A we have that Adv(A, GH

A) ≈ 0 is negligible in the
security parameter, where the probability is over all random choices of the game
(including the choice of the hash function), the algorithms, and the adversary.

As an example consider the IND-CCA security game for an encryption scheme
A (in the random oracle model), in which the game GH

A proceeds in stages where
A in the first phase receives a public key (in case of an asymmetric scheme) and
gets access to a decryption oracle plus the random oracle, then outputs a pair
of equal-length messages m0, m1 to receive a single challenge ciphertext of mb

for secret random bit b, and finally continues asking decryption queries except
for the challenge ciphertext. The adversary wins if correctly predicts b, and the
advantage of the adversary is the probability for a correct prediction minus 1/2.
In the notation above an IND-CCA secure encryption scheme relying on some
cryptographic assumption A is GH

A -secure under A for random oracle H.

Random Oracle Reducibility. As explained in the introduction we introduce a
weak, strong, and strict notion of random oracle reducibility:

Definition 3 (Random Oracle Reducibility). Let A be a cryptographic
scheme with security game GA and assumptions A, and let B be a cryptographic
scheme with game GB and assumptions B. Then the random oracle in scheme
B (strictly resp. strongly resp. weakly) reduces to the random oracle in scheme
A if for every hash function family H relying on assumptions H there exists a
stateless transformation T such that

strict: A is GH
A -secure under A⇒ B is GTH

B -secure under B

strong: A is GH
A -secure under A⇒

⎧⎨⎩B is GTH
B -secure under A ∪ B and

B is GTH′

B -secure under B for some H′

relying on H′

weak: A is GH
A -secure under A⇒ B is GTH

B -secure under A ∪ B

We say that (B, GH
B , B) is (weakly or strongly or strictly) random oracle re-

ducible to (A, GH
A , A). It is polynomial-time (weakly or strongly or strictly) ran-

dom oracle reducible if it is random oracle reducible via (deterministic) stateless
polynomial-time transformations T for any hash function family H.

We occasionally simply say that B is random oracle reducible (RO-reducible)
to A if the games and assumptions are clear from the context.

Some remarks about the definition and variations follow:

– The above does not rule out trivial examples where scheme B actually relies
on stronger assumptions B than scheme A, e.g., if A is a subset of B. As
explained in the introduction, the most interesting examples seem to be
the ones where assumptions B are weaker than A or at least incomparable.

Random Oracle Reducibility 29

Occasionally, however, one may be interested in a scheme B which requires
stronger assumptions B but which is more efficient (or has other desirable
properties).

– We can devise stronger notions concerning the order of quantification for
our reducibility notion. Above, the transformation can depend on the specific
hash function familyH, and thus possibly specific properties ofH. One could
alternatively demand that the transformation needs to be universal in the
sense that it works for any H.

– The above definition assumes that transformation T does not rely on ad-
ditional assumptions. More generally, one could specify assumptions T and
say that scheme B is secure under assumptions B′ = B ∪ T.

– According to our syntax the adversary B in game GB with the transformed
random oracle would get access to T H , but not H itself. This can be easily
patched by letting the transformation T give direct access to H through a
special query mode.

3 Basic Results

Relating the Reducibility Notions. We first show that strict reducibility implies
strong reducibility which implies weak reducibility. The proof is rather syntac-
tical and omitted for space reasons.

Proposition 1 (Strict ⇒ Strong ⇒ Weak Reducibility). Let A be a cryp-
tographic scheme with security game GA and assumptions A, and let B be a
cryptographic schemes with game GB and assumptions B. If the random oracle
in scheme B strictly reduces to the random oracle in scheme A, then it also
strongly reduces to it. If it strongly reduces to it, then it also weakly reduces to it.

We next discuss a scheme which supports a strong reduction, but not a strict
one. Note that for A ⊆ B this claim would be trivial because then the notions
coincide. Instead, our separation example even holds for B � A.

Proposition 2 (Strong
⇒ Strict Reducibility). There exists schemes A, B
for games GH

A and GH
B and assumptions A, B such that B � A, and the random

oracle of B strongly reduces to the one of scheme A, but not strictly.

Proof. Let scheme A run two copies of Lamport’s one-time signature scheme
[21], one based on an alleged one-way function f , and the other one by using the
given hash function (oracle). Verification checks if both signatures are valid. Let
GH

A be the standard unforgeability game for one-time signature schemes, and let
A be the assumption that an underlying function f is really one-way. Let B and
GH

B be the same scheme and game, but let B be the empty set.
Consider the hash function family H which samples trivial functions H :

{0, 1}∗ → {0} only and where H is empty. Then scheme A is still unforgeable
if f is one-way, independently of the H-part of the signature. In contrast, B
would be insecure under B and for the trivial hash function family, because, by
assumption about the “minimalistic” approach for the set B, the function f is

30 P. Baecher and M. Fischlin

not one-way then. Hence, the random oracle in B cannot be strictly reduced to
the one in A.

Finally, note that for a hash function familyH′ which is one-way the signature
scheme B becomes secure even under B, because any forger would need to forge
the one-time signature scheme for the hash function. At the same time, for any
hash function family scheme B is secure under A∪B. These two properties show
that the random oracle in B strongly reduces to the one in A. ��
For the next separation we further need to exclude contrived examples where the
hash function assumptions H “makes up” for assumptions in A\B to make scheme
B secure. We say that H is non-interfering with A and B iff H ∩ (A \ B) = ∅.
In this case we say that the random oracle in scheme B reduces to the one in
scheme A under non-interfering hash assumptions if reducibility holds for all
hash function families H with non-interfering assumption H.

Proposition 3 (Weak
⇒ Strong Reducibility). There exists schemes A, B
for games GH

A and GH
B and assumptions A, B such that B � A, and the random

oracle of B weakly reduces to the one of scheme A, but not strongly for non-
interfering hash functions.

Proof. Consider again Lamport’s one-time signature scheme as scheme A, relying
on a one-way function f (whose one-wayness is postulated in A). The scheme
ignores the hash function. Let GH

B be again the unforgeability game for one-time
signature schemes. Let B the same scheme with the same security game, but let
B be empty.

Any hash function makes both schemes secure under assumptions A∪B such
that the (irrelevant) random oracle of B weakly reduces to the one of A. Since
B cannot be secure assuming only B, because the hash function cannot include
the assumption about the one-wayness of f by the non-interference, the scheme
cannot strongly reduce the random oracle. ��

Uninstantiability Implications. In this section we briefly show fundamental re-
sults about (un)instantiable random oracles. We define uninstantiability with
respect to a very loose requirement on the assumptions, leaving it up to the
reduction statement to consider only “standard” cryptographic assumptions in
A and B.

Definition 4 (Uninstantiability). Let A be GH
A -secure under assumptions A

for random oracle H. Then the random oracle is uninstantiable for GH
A and A

if for any efficient hash function family H with assumption H the scheme A is
not GH

A -secure under assumptions A.

Proposition 4 (B uninstantiable ⇒ A uninstantiable). Assume that
scheme B with game GH

B and assumptions B is (strictly resp. strongly resp. weakly)
polynomial-time RO-reducible to scheme A for GH

A and (true) assumptions A.
If B is uninstantiable for GH

B under B (for strict reductions) resp. A ∪ B (for
strong or weak reduction), then so is A for GH

A and assumptions A.

Random Oracle Reducibility 31

The proof is again rather straightforward from the definitions. It is clear
that this, vice versa, implies that any instantiability result about A transfers
accordingly to B.

Given the uninstantiability notion we next note that there are schemes for
which the random oracles are not (even weakly) reducible to each other:

Proposition 5 (Impossibility of Reducibility). There exists schemes A, B
for games GH

A and GH
B and (true) assumptions A, B such that the random oracle

of B does not support a weak or strong or strict polynomial-time reduction to
the one of scheme A, even though B is secure in the random oracle model.

The proof appears in the full version of the paper.

4 Example: Hashed ElGamal

In this section we show that the hash function in (a variant) the Twin Diffie-
Hellman encryption scheme is RO-reducible to the hash function in hashed El-
Gamal. We remark that we are not aware if the original twin DH scheme allows
the same reduction.

Hashed ElGamal. We first review the classical hashed ElGamal-encryption
scheme as presented in [1]. This scheme, denoted by A = (KGenA, EncA, DecA)
is based on the Diffie-Hellman problem and uses a hash function H and a sym-
metric cipher (Enc, Dec). Specifically,

Construction 1 (Hashed ElGamal Encryption Scheme). The hashed El-
Gamal encryption scheme A = (KGenA, EncA, DecA) in the ROM is defined as
follows:

KGenA(λ)
pick (G, g, q)
x← Zq; X ← gx

sk← x; pk← (G, g, q, X)
Return (sk, pk)

EncA(pk, m)
y ← Zq; Y ← gy

Z ← Xy; k ← H(Y, Z)
c← Enck(m)
Return (Y, c)

DecA(sk, Y, c)
Z ← Y x

k← H(Y, Z)
m← Deck(c)
Return m

Assuming that the symmetric cipher is secure against chosen ciphertext at-
tacks3 and that the strong Diffie-Hellman assumption holds (where the adversary
has access to a restricted DH decisional oracle), it is proven in [12] that scheme
A is secure against chosen ciphertext attacks if H is modeled as a random ora-
cle. The milder ordinary DH assumption is not known to be sufficient to prove
CCA security, since the attacker obtains a decision oracle through the decryption
oracle here, such that some information about the key may be leaked.

Twin DH Scheme. Subsequently, Cash et al. [10] introduce the so-called strong
twin DH assumption which holds if and only if the regular DH assumption holds.
Their corresponding DH problems are equally hard but the twin case includes

3 We always refer to attacks involving a single challenge only throughout the paper.

32 P. Baecher and M. Fischlin

access to a decision oracle. This enables a clean security proof for a variant of
the hashed ElGamal scheme, because the decryption oracle is not more powerful
than the decision oracle in the strong twin DH case. Thus, the twin ElGamal
scheme allows for milder number-theoretic assumptions while preserving CCA
security.

However, the random oracle in the twin ElGamal scheme is used slightly
differently than in the original scheme: Its domain is the set of group element
triples, as opposed to tuples in the original scheme. While this is unproblematic in
the ROM for hash functions H : {0, 1}∗ → {0, 1}λ with arbitrary input length,
the implications for other security properties for instantiations are less clear.
For example, it may be that the twin Diffie-Hellman scheme demands stronger
properties from the hash function. We show via our notion of RO-reducibility
that this is not the case, at least for our slight variation:

Construction 2 (Twin Diffie-Hellman Encryption Scheme). The twin
DH encryption scheme B = (KGenB , EncB, DecB) in the ROM is defined as
follows:

KGenB(λ)
pick (G, g, q)
x0 ← Zq; X0 ← gx0

x1 ← Zq; X1 ← gx1

sk← (x0, x1)
pk← (G, g, q, X0, X1)
Return (sk, pk)

EncB(pk, m)
y ← Zq; Y ← gy

Z0 ← Xy
0 ; k0 ← H(Y, Z0)

Z1 ← Xy
1 ; k1 ← H(Y, Z1)

c← Enck0(m)
Return (Y, c, k1)

DecB(sk, Y, c, k1)
Z0 ← Y x0

Z1 ← Y x1

k0 ← H(Y, Z0)
m← Deck0(c)
if k1
= H(Y, Z1)

set m← ⊥
Return m

We can view the transformation T H : G3 → {0, 1}2λ of the hash function
H : G2 → {0, 1}λ as follows:

T H(Y, Z0, Z1) = H(Y, Z0)||H(Y, Z1).

Splitting the actual encryption of the message into an encryption for one key
half and where we output the other half in clear can then be seen as a special
encryption scheme (with double-length keys).

RO-Reducibility. We first show that our twin DH scheme weakly reduces the
random oracle to the one of the hashed ElGamal scheme for IND-CCA security,
i.e., assuming the strong DH assumption. We discuss afterward that the scheme
is also secure in the random oracle model assuming the regular DH assumption,
implying that the reducibility is also strong:

Theorem 3. Consider the hashed ElGamal encryption scheme for the IND-
CCA security game and the assumptions A that the symmetric encryption scheme
is IND-CCA secure and the strong DH assumption holds. Then the twin DH en-
cryption scheme B with the IND-CCA security game and the assumptions B that
the symmetric encryption scheme is IND-CCA secure and that the DH assump-
tion holds, is strongly RO-reducible to the hashed ElGamal encryption scheme
via T H(Y, Z0, Z1) = H(Y, Z0)||H(Y, Z1).

Random Oracle Reducibility 33

The proof follows from the following two propositions.

Proposition 6. Under the assumptions as in Theorem 3 the twin DH encryp-
tion scheme is weakly RO-reducible to the hashed ElGamal encryption scheme.

Proof. Assume towards contradiction that there exists an algorithm B that
breaks the CCA-security of B. We then describe an adversary A that breaks
the CCA-security of A. This adversary essentially simulates the “second key
half” of the scheme by itself.

Description. To initialize the simulation adversary A on input (G, g, q, X0) =
(G, g, q, gx0) chooses the other half of the secret key x1 ← Zq and calculates the
corresponding public key X1 ← gx1 . Adversary A next runs adversary B with
input (G, g, q, (X0, X1)) and answers B’s oracle queries as follows:

– First, A translates any hash query H(A, B, C) from B into two queries to
A’s own hash oracle. More precisely, A answers an (A, B, C) query with
(H(A, B), H(A, C)) = T H(A, B, C).

– In order to answer B’s challenge query (m0, m1), the adversary submits
(m0, m1) to his own challenge oracle and parses the corresponding cipher-
text answer as (Y, c). It remains to compute the extra value by re-using
the randomness Y obtained from the oracle. Adversary A thus computes
k1 = H(Y, Y x1) = H(Y, Xy

1) and finally returns the ciphertext (Y, c, k1) to
B.

– On a decryption query (Y, c, k1) of B adversary A first checks if (Y, c) corre-
sponds to the value in the challenge ciphertext, or if k1
= H(Y, Y x1). If so,
then A immediately returns ⊥. Else A asks its own decryption oracle for the
decryption m of (Y, c). To answer the query, it then returns m.

– Note also that we can grant B direct access to the H oracle. Adversary A
would simply forward this query and hand back the answer.

When B eventually outputs a guess b then A outputs the same bit.

Analysis. The simulation is perfect in the following sense: B cannot submit a
ciphertext (Y, c, k∗

1) to the decryption oracle (after receiving the challenge cipher-
text (Y, c, k1)) for k∗

1
= k1 which would decrypt correctly. Hence, A can reject
such ciphertexts immediately and therefore only submits “pruned” ciphertexts
to its decryption oracle which have never appeared before. Hence, A, too, repre-
sents a successful attacker on the hashed ElGamal scheme if B is one for the twin
DH scheme. Moreover, the advantages of both algorithms in their corresponding
IND-CCA game are identical. ��
To complete the proof for a strong reduction we finally show that our version is
secure in the random oracle model:

Proposition 7. The twin DH encryption scheme B with the assumptions B that
the symmetric encryption scheme is IND-CCA secure and that the DH assump-
tion holds, is IND-CCA-secure in the random oracle model.

34 P. Baecher and M. Fischlin

Proof. The proof is more involved that then one in [10], owned to the fact that
the random oracle H(X, Z0, Z1) in [10] ties together the twin DH tuples and that
this property is required for the twin DH oracle. In contrast, in our scheme the
pairs (X, Z0) and (X, Z1) are only loosely connected. We show that this loose
connection can be made a strong one with multiple simulations of the adversary.

In a first step we can “normalize” an adversary A against IND-CCA of our
twin DH scheme. First we may assume that A never makes a hash query twice.
Second, we can assume that A never submits a tuple (Yi, ci, ki) to the decryption
oracle before receiving the challenge ciphertext (Y, c, k) where Yi = Y . This
decreases the adversary’s success probability by a negligible amount D/q for
the polynomial number D of A’s decryption queries. Third, we can assume that
adversary A never submits a decryption request (Yi, ci, ki) such that, in case
Yi
= Y , it has not queried the hash function about (Yi, Y

x1
i) for Yi
= Y before.

The loss is at most D · 2−λ for this. Fourth, we assume that the adversary never
submits (Yi, ci, ki) to the decryption oracle where Yi = Y but ki
= k; such a
query cannot be valid. Fifth, we assume that X0
= X1 which happens with
probability 1− 1/q.

Taming Hash Queries. Consider a normalized adversary A against our twin DH
scheme. We assume thatA in addition to T H also has direct access to the random
oracle H : G2 → {0, 1}∗. In fact, we assume from now on that all algorithms,
including the adversary and the scheme’s algorithms, never call T H , but use H
to simulate T H with two queries. Define the following event HashQuery that,
during the IND-CCA attack, A at some point asks a query (Y, Z) to H such
that Y appears in the challenge ciphertext, and Z = Y x0 or Z = Y x1 for the
public key entries X0 = gx0 and X1 = gx1 .

We show that the probability ε(λ) of event HashQuery must be negligible.
Assume toward contradiction that this was not the case. We then show how to
break the the twin DH problem (and thus the DH problem) via algorithm B.
Algorithm B receives a group description (G, g, q) and values Y, X0, X1 as input.
It can also query a twin DH oracle about values (ga, B0, B1) which outputs 1 iff
B0 = Xa

0 and B1 = Xa
1 . The values X0, X1 serve as the public key presented to

A, and Y will be placed in the challenge ciphertext.
Algorithm B runs A’s attack by using the input data as the public key, and

simulating the random oracle and decryption queries as follows:

– B will maintain a list L of tuples of the form (A, B, k) or (dh, A, Xb, k) where
the former type corresponds to direct hash queries of A and the latter type to
implicit hash queries. Initially, B sets L := {(dh, Y, X0, k0), (dh, Y, X1, k1)}
for random values k0, k1 for the hash values to compute the challenge cipher-
text (note that Y is already known at the outset).

– Whenever A makes a hash query (A, B) algorithm B first searches for an
entry (A, C, k) in L such that (A, B, C) or (A, C, B) forms a correct twin
DH tuple (under X0, X1). Since X0
= X1 only one case can happen. If
found, and there exists an entry (dh, A, X0, k) in L for the case (A, B, C)
resp. (dh, A, X1, k) for the case (A, C, B), then replace this entry by (A, B, k)
in L. In any other case, pick k at random and store (A, B, k) in L. Return k.

Random Oracle Reducibility 35

– If A makes a decryption request (Yi, ci, ki) then check whether Yi = Y or
not. In case Yi = Y look up the entry (dh, Y, X0, k0) in L and use k0 to
decrypt ci. (Note that, by assumption, k1 must be correct.) Suppose Yi
= Y .
Then, since the adversary is normalized, there must be an entry (Yi, Z1, k1)
in L already, caused by a hash query, where Z1 = Y x1

i . (There cannot exist
another entry (Yi, Z1, k

′
1) for k′

1
= k1 as hash queries never repeat.) Given
(Yi, Z1, k1) check for an entry (Yi, Z0, k0) such that (Yi, Z0, Z1) forms a valid
twin DH tuple for X0, X1. If such an entry exist then use k0 to decrypt ci.
If no such entry exist, check for a tuple (dh, Yi, X0, k0) in L and use k0 to
decrypt. Else, pick a new value k0, store (dh, Yi, X0, k0) in L, and use k0 to
decrypt. Return the decrypted message.

To prepare the challenge ciphertext B uses the previously chosen values k0, k1

placed in L, also picks one of the two messages m0, m1 at random, and returns
(Y, Enc(k0, mb), k1).

If A finishes algorithm B records all entries (A, B) in L with A = Y and now
reruns the above procedure, with the same group but for re-randomized data
Y ′ = Y s, X ′

0 := Xsa
a , X ′

1 := X
s1−a

1−a for random s, s0, s1 ← Z∗
q and random bit a.

Every other random choice is based on fresh randomness. Any query (A, B, C) to
the twin DH oracle in this second run is first transformed into (A, B1/s0 , C1/s1)
for a = 0 resp. (A, C1/s0 , B1/s1) for a = 1. At the end, B transforms all pairs
(A′, B′) in the list L of the second run by computing ((A′)1/s, (B′)1/s0) and
((A′)1/s, (B′)1/s1), effectively doubling the number of pairs. Sieve to keep only
those with first element Y . Run on all combinations of the two (sieved) lists the
twin DH oracle to find a solution (Y, Z0, Z1) to the twin DH problem.

Analysis. The maintenance of the hash list L provides a more fine-grained im-
plementation of how a random oracle would behave: Since any decryption query
for Yi
= Y must already contain a corresponding entry (Yi, Y

x1
i , k1) by assump-

tion, we can check via the twin DH oracle if we already have a matching entry
(Yi, Z0, k0). If not, we generate a fresh random string and store the implicit rep-
resentation (dh, Yi, X0, k0) in L, and will later carefully check if a hash query for
Y x0

i is made (in which case we update the entry in L and re-use the value k0).
As for B’s success probability, we call a group (G, g, q) good if A’s success

probability conditioned on this group exceeds ε/2. By an averaging argument a
group is good with probability at least ε/2. Hence, given such a good group, and
the fact that B provides a perfect simulation, B obtains a valid entry (Y, Y x0)
or (Y, Y x1) with probability at least ε/2 in the first run. The same applies in
the second run where the re-randomization is correctly undone for each twin DH
oracle query. With probability 1/2 algorithm B then obtains matching values
(Y, Y x0) and (Y, Y x1) because the order bit a in the second run is information-
theoretically hidden from A. Overall, and neglecting the minor loss due to nor-
malization of A, algorithm B thus solves the twin DH problem with probability
at least ε3/16. By assumption this is still non-negligible.

36 P. Baecher and M. Fischlin

Conditioning on the adversary not making bad hash queries, it is now easy
to give a reduction to the IND-CCA security of the symmetric cipher (with the
attacker against the symmetric scheme providing all the public-key operations
itself). ��

5 Reductions among Signature Schemes

In this section we briefly outline a few more applications of our notion. Specif-
ically, we give three relations among signature schemes including the Guillou-
Quisquater (GQ) signature scheme [17] which we reduce to a probabilistic version
of FDH, the PSS signature scheme [5] which we also reduce to a probabilistic
FDH variation, and finally a reduction from Schnorr signatures [25] to a (prob-
abilistic version of) BLS signatures [8].

GQ ⇒ FDH. We first consider the RSA-based Guillou-Quisquater identification
scheme and its derived signature scheme via the Fiat-Shamir heuristic [17]. For
public key pk = (X, N, e) and secret key x with X = xe mod N the signer
computes a signature as (R, y) for random R = re mod N , and where y =
rcx mod N for c = H(pk, R, m). A probabilistic full-domain hash (FDH) RSA
signature scheme with signatures of the form (R, σ) for σ = (H(pk, R, m))d mod
N is (strictly) random oracle reducible to the aforementioned Guillou-Quisquater
scheme via the transformation T H(pk, R, m) = RH(pk,R,m)X mod N for any
type of forgery attack under the RSA assumption. The reason is that any Guillou-
Quisquater signature for H can be seen as a FDH signature for T H : {0, 1}∗ →
Z∗

N , and any successful forgery for the FDH scheme for T H is vice versa a valid
forgery for the Guillou-Quisquater scheme.

PSS ⇒ FDH. The reduction of another probabilistic version of FDH to the
PSS signature scheme is similar to the GQ case. Consider FDH signatures
(T H(r, m))d mod N for the PSS-encoding T H(r, m) = str2int(0||w||r∗||H2(w))
for w = H0(r, m) and r∗r⊕ = H1(w). Here, H0, H1, H2 are hash functions de-
rived from H as in the PSS scheme. Then any successful attack on FDH with
hash function T H easily yields a forgery against PSS with hash function H .
Hence, PSS allows a strict random oracle reduction to the probabilistic version
of FDH under the RSA assumption for any type of forgery attack.

Schnorr ⇒ BLS. Consider a probabilistic version of the BLS signature scheme
[8], where signatures are of the form σ = (R, H(R, X, m)x) for randomness
R, message m, private key x and public key X = gx. Verification is per-
formed analogously to the original scheme via a pairing computation. We ar-
gue that the Schnorr signature scheme (recall that a signature there is of the
form σ = (c, r + cx mod q) for public key x = gx, R = gr, and c = H(R, m))
is (strictly) random oracle reducible to the BLS version via the transformation
T H(R, X, m) = RXH(R,m). This holds assuming the discrete logarithm assump-
tion and under an augmented version of the KEA1 assumption [18,3] which states

Random Oracle Reducibility 37

that, for any adversary A which for input a description of the group, g, X , and
with access to a Schnorr signing oracle under key X and a hash function oracle,
outputs a pair (Y, Y x), there exists an adversary A′ which, on the same input
and with access to the same oracles, outputs y with Xy = Y x. The probability
that A succeeds, but A′ does not, must be negligible for all A.

Suppose now that there exists some successful adversary B against our version
of BLS. Construct adversaryA against the Schnorr scheme as follows. Whenever
B makes some query m, adversary A forwards this query to its own signing or-
acle. It uses the answer (c, y) to calculate h = Xy, computes R = gyX−c (such
that H(R, m) = c) and finally answers B’s query with (R, h). This simulates
a correct signature since B expects R and T H(R, X, m)x = (RXH(R,m))x =
(gy)x = Xy = h. It remains to construct a Schnorr forgery from B’s forgery,
denoted by (m∗, R∗, Z∗). To this end we note that, under the augmented KEA1
assumption, for A (running B as a subroutine) outputting Y ∗ = T H(R∗, X, m∗)
and Z∗ = (Y ∗)x for the valid forgery (m∗, R∗, Z∗), there must exist an adversary
A′ returning y∗ with Z∗ = Xy∗

. This must be true with non-negligible prob-
ability, because A succeeds with non-negligible probability, and otherwise the
augmented KEA1 assumption would be false. Hence, there exists an adversary
which creates a valid forgery (m∗, H(R∗, m∗), y∗) for the Schnorr scheme with
non-negligible probability.

Acknowledgments. We thank the anonymous reviewers for valuable com-
ments, especially Mihir Bellare. We also thank Anja Lehmann, Adam O’Neill,
and Tom Ristenpart for listening to this idea and providing feedback at an early
stage. Both authors are supported by grants Fi 940/2-1 and Fi 940/4-1 of the
German Research Foundation (DFG). This work was also supported by CASED
(www.cased.de).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

2. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

5. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

6. Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

38 P. Baecher and M. Fischlin

7. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006)

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218

10. Cash, D., Kiltz, E., Shoup, V.: The twin DiffieHellman problem and applications.
Journal of Cryptology 22(4), 470–504

11. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

12. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

13. Dodis, Y., Haitner, I., Tentes, A.: On the (in)security of rsa signatures. Cryptology
ePrint Archive, Report 2011/087 (2011), http://eprint.iacr.org/

14. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

15. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)

16. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press, Los Alamitos

17. Guillou,L.C.,Quisquater, J.-J.:Apractical zero-knowledgeprotocol fitted to security
microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

18. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998)

19. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

20. Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes – or
– why we cannot prove OAEP secure in the standard model. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)

21. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory

22. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

23. Naito, Y., Yoneyama, K., Wang, L., Ohta, K.: How to confirm cryptosystems secu-
rity: The original merkle-damg̊ard is still alive! In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 382–398. Springer, Heidelberg (2009)

24. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

25. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

26. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle (extended abstract).
In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
226–240. Springer, Heidelberg (2008)

http://eprint.iacr.org/

Time-Lock Puzzles in the Random Oracle Model

Mohammad Mahmoody1, Tal Moran2, and Salil Vadhan2��

1 Department of Computer Science, Cornell University
�����������	��
��	���

����������	��	��
��	��������������
2 School of Engineering and Applied Sciences and

Center for Research on Computation and Society, Harvard University
��������������	��
��
�	���

�����������	��
��
�	���������������

Abstract. A time-lock puzzle is a mechanism for sending messages “to the fu-
ture”. The sender publishes a puzzle whose solution is the message to be sent, thus
hiding it until enough time has elapsed for the puzzle to be solved. For time-lock
puzzles to be useful, generating a puzzle should take less time than solving it.
Since adversaries may have access to many more computers than honest solvers,
massively parallel solvers should not be able to produce a solution much faster
than serial ones.

To date, we know of only one mechanism that is believed to satisfy these prop-
erties: the one proposed by Rivest, Shamir and Wagner (1996), who originally
introduced the notion of time-lock puzzles. Their puzzle is based on the serial na-
ture of exponentiation and the hardness of factoring, and is therefore vulnerable
to advances in factoring techniques (as well as to quantum attacks).

In this work, we study the possibility of constructing time-lock puzzles in the
random-oracle model. Our main result is negative, ruling out time-lock puzzles
that require more parallel time to solve than the total work required to generate
a puzzle. In particular, this should rule out black-box constructions of such time-
lock puzzles from one-way permutations and collision-resistant hash-functions.
On the positive side, we construct a time-lock puzzle with a linear gap in parallel
time: a new puzzle can be generated with one round of n parallel queries to the
random oracle, but n rounds of serial queries are required to solve it (even for
massively parallel adversaries).

1 Introduction

In this paper we revisit the subject of “timed-release crypto” based on “time-lock puz-
zles”. The goal of timed-release crypto, introduced by May [22], is to encrypt a message
in such a way that it will be readable at some specified time in the future (even without
additional help from the sender), but not before then.

In addition to the basic use of “sending messages to the future”, there are many other
potential uses of timed-release crypto. Rivest, Shamir and Wagner [25] suggest, among
other uses, delayed digital cash payments, sealed-bid auctions and key escrow. Boneh
and Naor [9] define timed commitments and timed signatures and show that they can
be used for fair contract signing, honesty-preserving auctions and more.

� Supported by NSF grant CNS-0831289.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 39–50, 2011.
c� International Association for Cryptologic Research 2011

40 M. Mahmoody, T. Moran, and S. Vadhan

A natural approach to building a timed-release crypto scheme is the use of time-
lock puzzles: puzzles that take a prespecified amount of time to solve (which should be
significantly longer than the time to generate the puzzle). Intuitively, using the solution
of a time-lock puzzle as the key to an encryption scheme would force anyone wanting
to decrypt the message to perform the computation for the time required to solve the
puzzle. By tuning the diÆculty of the solution according to the time we would like the
message to remain secure, we can ensure that decryption will take at least that amount
of time.

Inverting a (suitably weak) one-way function seems like an obvious candidate for
a time-lock puzzle. However, as Rivest et al. observed, for many uses a generic one-
way function would not suÆce. This is because a potential adversary may have access
to much larger computational resources than an honest party. Even if the processors
available to the adversary are not be significantly faster than those available to the honest
parties, it is reasonable to assume that a well-funded adversary could have access to
many more processors (that could be used in parallel). Thus, we require that time-lock
puzzles be “essentially sequential” in nature: having many parallel processors should
not give a large advantage over a single processor in solving the puzzle.

The puzzles proposed in [25] are based on the conjecture that exponentiation (mod-
ulo an RSA integer) is such a task. In particular, if the factorization of the modulus is
not known, the best known method for exponentiation is repeated squaring (which is
conjectured to be essentially sequential). Given the factors of the modulus, however,
there is a shortcut that allows the exponentiation to be performed much faster (so that
the puzzles can be generated eÆciently). Thus, there seems to be a super-polynomial
gap between the work required to generate the puzzle and the parallel time required to
solve it (for a polynomial number of parallel processors).

To the best of our knowledge, this construction of time-lock puzzles is the only one
currently known that is resistant to parallel attack. The construction of Boneh and Naor
[9] uses essentially the same idea. This leads to the natural question of whether we can
construct time-lock puzzles based on other assumptions, preferably weaker and more
general ones.

Biham, Goren and Ishai [5] suggest an additional motivation as well: obtaining
(weak) key-agreement protocols based on one-way functions that resist quantum at-
tack. They show that in the classical world there do exist weak key-agreement protocols
based on one-way functions (of exponential strength) that force an adversary to work
in time quadratic in the time of the honest parties, based on a variant of Merkle puzzles
[23]. However, both their construction and the original Merkle puzzles are vulnerable
to quantum attack via Grover’s search algorithm [20]. Biham et al. note that Grover’s
speedup only applies to parallel search, and leave as an open problem whether such
puzzles exist that are resistant to parallel attack (and thus, potentially, to quantum at-
tack as well).

In this paper, we study time-lock puzzles in the random oracle model. In the random
oracle model, we assume all parties have access to an oracle, H, modeled as a random
function. In a real implementation, the random oracle is usually “instantiated” with a
cryptographic hash function. We assume the adversary in this model is computationally

Time-Lock Puzzles in the Random Oracle Model 41

unbounded, and measure the diÆculty of the time-lock puzzle by the number of queries
the adversary is required to make to the random oracle in order to solve it.

The random oracle model is interesting for several reasons. First, negative results in
this model rule out “black-box” constructions from one-way permutations and collision-
resistant hash functions (since a random function is collision-resistant and indistin-
guishable from a random permutation using only a small number of queries; see e.g.,
[21,19,3] for details). Second, most “natural” protocols that have been proven secure in
the random oracle model appear to be secure in practice as well (even though some “ar-
tificial” protocols are secure in this model but insecure for any explicit instantiation of
the random oracle [11]), and constructing a protocol in this model is sometimes a first
step towards constructing a provably-secure protocol in the plain model (e.g., the first
eÆcient IBE scheme was proven secure in the random oracle model [8], after which
constructions were found in the standard model as well [12,6,7]). Finally, the random
oracle model is much simpler to analyze than models that incorporate computational
complexity, and better understanding the problem in this setting may give insight into
the complexity-theoretic case.

We can think of a time-lock puzzle generator as a randomized oracle algorithm f .
The output of f H(rA) (where rA is the random input and H the random oracle) is a pair
(M��): the puzzle M and a solution validator �. The solver, given M, must output a
solution x such that �(x) � 1. When a time-lock puzzle has a single solution, such
as when it is used to hide an encrypted message, � just compares its input to that
constant value. In general, however,� may perform more complex verification and our
negative results hold even when � is not eÆcient (note that � does not have access
to the random oracle). For this to be a good time-lock puzzle, we would like f to
be easy to compute but moderately hard to solve, even for a parallel adversary. More
precisely, if we can compute (M��) � f H(rA) using n queries to H, we would like f
to satisfy:

Completeness

– There exists a (randomized) polynomial-time algorithm g (the honest solver) that
solves puzzles generated by f : with high probability (over the random coins of
f and g and the random oracle H), if we generate (M��) � f H(rA) and x �

gH(rB� M) then �(x) � 1. We use the shorthand notation [(M��) � f H(rA); x �
gH(rB� M);�(x) � 1] to denote the event that the puzzle was generated as described
above, the solver was run and its solution was valid. We denote by m � n the
number of queries g makes to H. m measures the diÆculty for the honest solver
and should be moderately larger than n, e.g., a large polynomial in n.

Soundness

– Any algorithm that solves f and makes up to q � m queries to H must use at
least m� � m levels of adaptivity. For example, we might take q � n�(1) and m�

�

m�2. The number of levels of adaptivity measures the complexity for a parallelized
adversary; this requirement means that unless the adversary makes a very large
number of queries, using parallelism won’t give it an advantage over the honest
solver.

42 M. Mahmoody, T. Moran, and S. Vadhan

1.1 Our Results

Time-lock puzzles with large diÆculty gap are impossible. Our main result is a negative
one. We show that for every time-lock puzzle there exists a parallel adversary that can
solve the puzzle in no more time than it takes to generate and makes only polynomially
more queries to the random oracle than the best honest (serial) solver. Thus, construct-
ing time-lock puzzles with a “gap” between the work of the puzzle generator and the
parallel time of the solver cannot be done in the random-oracle model.

Concretely, we prove two similar theorems but with incomparable parameters. The
first provides an adversary that makes an optimal number of parallel query rounds, but
may require super-polynomial time to run, even if the honest solver is eÆcient. Our
second theorem gives a much simpler adversary construction that runs in polynomial
time if the honest solver does, but has slightly worse adaptivity.

Formally, we prove the following two theorems:

Theorem 1 (Optimally Adaptive but IneÆcient Adversary). Let f be an oracle al-
gorithm that makes at most n queries to a random oracle H and g an oracle algorithm
that makes at most m � n queries to H. If

Pr
�
(M��) � f H(rA); x � gH(rB� M);�(x) � 1

�
� 1 � �

(i.e., when a puzzle is randomly generated after which the solver g is executed, its output
is a valid solution with probability at least 1�� over the random coins rA� rB and H) then
for all � � (0� 1) there exists an adversary, Ivy, that makes Õ(nm��) queries to H, uses
only n levels of adaptivity and satisfies Pr

�
(M��)� f H(rA); x � hH(rI � M);�(x)�1

�
�

1 � � � � (where rI is the variable denoting the random coins used by Ivy).

Theorem 2 (EÆcient but Non-Optimal Adversary). Let f be an oracle algorithm
that makes at most n queries to a random oracle H and g an oracle algorithm that makes
at most m � n queries to H. If Pr

�
(M��) � f H(rA); x � gH(rB� M);�(x) � 1

�
� 1 �

� then for all � � (0� 1) there exists a deterministic adversary Javier (denoted by J)
who makes at most nm�� queries to H, uses only n�� levels of adaptivity and satisfies
Pr

�
(M��) � f H(rA); x � JH(M);�(x) � 1

�
� 1 � � � �. Moreover, the running time

of J is O(n��) times the running time of g.

Some intuition for the proofs of both theorems, as well as the full proof of Theorem 2,
can be found in Section 2. Due to space considerations, the proof of Theorem 1 is
deferred to the full version.

By combining Theorem 1 with the result of [4], we partially resolve the open ques-
tion of Biham et al. [5] by showing that every key-agreement protocol in the random-
oracle model can be broken by a parallel attack that makes polynomially many queries
to the random-oracle: Biham et al. were interested in whether there exist key-agreement
protocols that resist quantum attack, but as a step towards this goal asked the question
of whether there exist such protocols secure against a parallel classical attacker, and
specifically whether such protocols could be based on random functions.

Corollary 1. Let � be a two-party protocol in the random oracle model such that when
executing� the two parties Alice and Bob make at most n queries each and their outputs

Time-Lock Puzzles in the Random Oracle Model 43

are identical with probability at least 1 � �. Then for every 0 � � � 1 there exists an
adversary that, given the public transcript of the protocol, outputs a value that agrees
with Bob’s output with probability 1 � � � � using 2n levels of adaptivity and making
Õ(n3��3) total queries to H.

Proof. Let f H(rA� rB) � (M��), where M is the complete public transcript of � when
Alice uses the random coins rA and Bob the random coins rB. Define the corresponding
solution validator to be

�(x) �

�������
1 if x is Bob’s output in the execution of � in f H(rA� rB)

0 otherwise
�

By the result of [4], there exists an adversary that makes at most O(n2��2) queries to
H and outputs a “correct” solution to this puzzle (i.e., an output that agrees with Bob)
with probability 1 � � � ��2. Think of this adversary as the solver, g. By Theorem 1,
this implies that there exists a solver that succeeds with probability 1 � � � �, makes
Õ((2n��) � n2��2) � Õ(n3��3) total queries to H and uses only 2n levels of adaptivity
(the 2n is because the total number of queries made by f is bounded by the total number
of queries made by both Alice and Bob).

A time-lock puzzle with a linear gap in parallel time. Although our negative results
rule out “strong” time-lock puzzles, they still leave open the possibility for a weaker
version: one that can be generated with n parallel queries to the oracle but requires n
rounds of adaptive queries to solve.

In a positive result, we show that such a puzzle can indeed be constructed. More
formally, we prove:

Theorem 3. Let k be a security parameter. There exist oracle functions f and g that
satisfy:

1. (EÆciency) (M��M) � f H(k� r) can be computed using n parallel (non-adaptive)
queries to H.

2. (Completeness) x � gH(k� M) can be computed using n serial (adaptive) queries
to H and the output of g always satisfies �M(x) � 1 (g is deterministic).

3. (Soundness) For every oracle function h that makes less than n serial rounds of
queries to H and poly(k) queries overall to H in total,
Pr

�
(M��M) � f H(k� r); x � hH(k� rJ� M);�M(x) � 1

�
� neg(k) (where neg is

some negligible function in k).

The idea behind the construction is to force the solver to make sequential queries by
“encrypting” each successive query with the result of an oracle call on its predecessor.
The full construction and a sketch of its security proof appear in Section 3.

1.2 Related Work

Timed-Release Crypto Constructions. The notion of timed-release crypto was intro-
duced by May [22]. May’s proposal was to publish an encrypted message and distribute
the decryption key between several trusted agents. The agents would be instructed to

44 M. Mahmoody, T. Moran, and S. Vadhan

publish their shares of the key at a specified future date. Rivest, Shamir and Wagner
[25] introduced the idea of using time-lock puzzles instead of requiring a sender to
trust an external entity and also developed May’s “trusted-agent” approach, suggesting
a scheme where the trusted agents’ storage does not grow with the number of timed-
release messages (as it does in May’s scheme).

These two approaches, one based on puzzles and the other on trusted agents, have
remained the basis of all new timed-release crypto schemes that we know of. There have
been many improvements in the agent-based approach, focusing on reducing interaction
between the agents and the users, achieving various verifiability and privacy properties
([8,13,14], among others). On the other hand, to the best of our knowledge, all existing
time-lock puzzle constructions (that are resistant to parallel attack) are based on the
problem originated by Rivest et al., namely that of exponentiation modulo an RSA
integer.

Puzzles. The term “puzzle” to describe a cryptographic construction that is “meant to
be broken” was first used by Merkle in the context of key agreement protocols [23].
Merkle’s key-exchange protocol allows two users to exchange a key by solving a single
puzzle, while forcing an adversary to solve multiple puzzles in order to discover it. The
protocol does not require much structure from the puzzles, and can be instantiated with
black-box use of one-way functions. The computation gap between the honest users and
the adversary is quadratic in Merkle’s scheme: if an honest user requires O(N) time to
recover the key, an adversary can recover it in O(N2) time.

Barak and Mahmoody showed that this is essentially optimal [4], improving a previ-
ous result by Impagliazzo and Rudich [21]. Both of these works give an upper bound for
the computation gap of arbitrary key-exchange protocols in the random oracle model
(including protocols that require multiple rounds of interaction between the two hon-
est parties). Our work considers only one-message protocols, but bounds the parallel
complexity of the adversary (in contrast to [21,4], who analyze the complexity of serial
adversaries).

Puzzles have also been proposed as proof-of-work mechanisms for controlling spam
and preventing denial-of-service-attacks. The idea was first introduced by Dwork and
Naor [17], and was developed in multiple subsequent works [1,2,16,18]. Rivest and
Shamir even suggest one variant for use as a micropayment system [24].

One major di�erence between these types of puzzles and those we consider in this
work is that resistance to parallel attack is not as critical: for example, an adversary
generating spam messages can always parallelize at the message level rather than by at-
tacking a specific puzzle. Proofs-of-work, on the other hand, must be resistant to amor-
tization (solving one puzzle should not help in solving others), whereas this is usually
not a concern for time-lock puzzles.

For both types of puzzles, it is still important to take into account the gap between the
computational capability of an honest user and that of the adversary. Abadi, Burrows,
Manasse and Wobbler suggest basing the diÆculty of a puzzle on memory access time
[1], under the assumption that this has less variance among users than CPU speed. In
a subsequent work, Dwork, Goldberg and Naor [16] construct such a function in the
random oracle model that uses “pointer-chasing” in a large random table. This has a
very similar flavor to our time-lock puzzle construction in Section 3, although the goal

Time-Lock Puzzles in the Random Oracle Model 45

is somewhat di�erent and the analysis focuses on bounding memory accesses (to the
table) rather than layers of adaptivity or queries to the random oracle.

2 Negative Results for Time-Lock Puzzles

In this section we give the intuition behind the proofs of our main results (Theorems 1
and 2) as well as the full proof of Theorem 2.

Following the seminal work of Impagliazzo and Rudich [21] on key agreement pro-
tocols in the random oracle model, our adversaries (for both theorems) attempt to find
all intersection queries between the puzzle-generator f (Alice) and the solver g (Bob)
— all queries made by both Alice and Bob. If successful, the adversary can then simu-
late an honest solver without asking additional queries. The novelty of our work is that
we care not just about the total number of queries made by the adversary, but about the
number of levels of adaptivity.

Both adversary constructions work in rounds, and query the random oracle only at
the end of a round. Our aim is to reduce the total number of rounds (this is the “adaptiv-
ity level” of the adversary). The constructions di�er in how they choose which queries
to ask in each round, and in the corresponding proofs that the adversary succeeds in
learning all of the intersection queries with high enough probability.

2.1 Intuition for Theorem 1

For the proof of Theorem 1, we use ideas (and a construction) of Impagliazzo and
Rudich [21] (and later improvements by Barak and Mahmoody [4]), but modified to
minimize the number of query rounds used by the adversary. Our attacker, Ivy, selects
her queries to the random oracle in n rounds (n is the number of queries made by Alice).
In round j, Ivy computes a set of heavy queries on which she will query the oracle at
the end of the round. Heavy queries are those that have a high probability (given Ivy’s
view) of having been made by Alice, where “high” is a parameter that depends on n,
m (the number of queries made by the honest solver) and � (the probability with which
Ivy is allowed to fail).

The intuition for why Ivy’s attack works is that, as long as Bob has not hit any of
Alice’s “private” queries (those not made by Ivy), Bob doesn’t know any more than Ivy
about Alice’s view. Thus, any private query must be “light” conditioned on his view. By
definition, the probability that Bob hits a light query is small. We can then take a union
bound over all of Bob’s queries, and conclude that the total probability that Bob hits a
private query is small.

Unfortunately, the intuition above isn’t entirely correct: even querying an index that
was not queried by Alice may give Bob information about Alice’s view: the fact that
Alice didn’t query a particular index. We observe, however, that this is the only infor-
mation about Alice’s view that Bob can gain from making a non-intersection query.
Thus, if we condition on Bob not having made any private intersection queries so far,
our intuition still holds.

The main technical diÆculty in the proof is making sure that Ivy can ask many
queries in parallel, in order to bound the number of rounds of adaptivity. Our solution
to this is to have Ivy condition her probability space after each query on the event that

46 M. Mahmoody, T. Moran, and S. Vadhan

this query was not an intersection query (rather than on the response to the query). Since
this event does not require Ivy to query the oracle in order to compute the new query
probabilities, she can ask multiple parallel queries in each round. Loosely speaking,
Ivy’s query strategy ensures that if there are any remaining heavy queries, then one of
her queries will be an intersection query with high probability. Since the number of
intersection queries can be at most n, within n rounds Ivy can ensure that there are no
remaining heavy queries.

Note that in order to find heavy queries, Ivy uses her unbounded computational
power (e.g., if Alice queries the oracle on an index i and sends Bob an encryption of i,
the index i is heavy conditioned on Ivy’s view, but Ivy may have to break the encryption
to find it).

2.2 Proof of Theorem 2

Javier, the adversary constructed in the proof of Theorem 2, works by running the hon-
est solver in each round, but replacing its queries to the random oracle with a simulated
oracle (so no queries to the real oracle are made during an execution). After the simu-
lation, Javier updates the simulated oracle by querying the real oracle (in parallel) on
every index that was queried during the simulated execution. The main idea in the proof
is that, since the puzzle generator asks only n queries, there can be at most n rounds in
which the simulated execution “hits” an intersection query that was not already known
to Javier. In the remaining rounds, Javier does know all the intersection queries, and
hence the simulated solver will behave just like the real honest solver (and output a
correct solution to the puzzle with the same probability). Formally:

Proof (of Theorem 2). The adversary Javier follows Alg. 1. In the algorithm description,
Qi(J) is the set of queries Javier made to H up to (but not including) round i, while Q(Bi)
is the set of queries the simulated Bob made to Hi in Javier’s ith round.

Algorithm 1. Javier’s query algorithm on message M and oracle H with parameter �
1: Randomly choose i� � [n��].
2: for i � �1� � � � � i�� do
3: Run Bob to get: xi � gHi (rB� M) where Hi is an oracle that answers any query x � Q(J)

the same as H does, and Hi answers any new query q � Q(J) uniformly at random. Note
that to run gHi (rB� M) we do not need to ask any new query to H because all the answers
to queries in Q(J) are already known and the rest are answered at random.

4: Query H on all indices in Q(Bi) � Qi(J) where Q(Bi) is the queries Bob made to Hi.
5: Output xi� .

The total number of queries made by Javier is at most nm�� and Javier’s running
time is O(n��) times the running time of Bob. It remains to show that the probability
that Javier’s output is accepted by the solution validator is at least 1 � � � �.

Denote the event that Javier’s output is accepted by the solution validator:

Success
de f
� (M��) � f H(rA) 	 xi� � gHi� (rB� M) 	�(xi�) � 1 �

Time-Lock Puzzles in the Random Oracle Model 47

Call a round i good if Javier did not ask any new intersection queries in round i (i.e.,
Q(Bi)
Q(A) � Qi(J)). Denote Goodi the event that round i was good. Since Alice asks
at most n queries, there can be at most n rounds that are not good. Thus, Pr [Goodi�] �
1� �. Note that if Goodi� holds, the tuple (f H(rA)� gHi� (rB� M)) is distributed identically
to (f H(rA)� gH(rB� M)), because as long as Bob’s queries in round i� were not queried by
Alice, H and Hi� both choose their answers at random and independently of all previous
queries and answers. Therefore, for an arbitrary event E defined over the joint view of
f H(rA) and that of Javier till the end of round i�, to know the quantity Pr [E 	 Goodi�] it
does not matter weather we use the oracle H or Hi� in round i�, and the probabilities will
remain the same. By misusing the notation, we also use Goodi� to refer to the similar
event when Javier uses the oracle H in his simulation of Bob in round i�. Thus, we
finally conclude:

Pr [Success] � Pr [Success 	 Goodi�]

� Pr
�
(M��) � f H(rA); xi� � gHi� (rB� M);�(xi�) � 1 	 Goodi�

�

� Pr
�
(M��) � f H(rA); x � gH(rB� M);�(x) � 1 	 Goodi�

�

� Pr
�
(M��) � f H(rA); x � gH(rB� M);�(x) � 1

�
� (1 � Pr [Goodi�])

� 1 � � � ��

3 A Time-Lock Puzzle with a Linear DiÆculty Gap

In this section we give the construction and proof for Theorem 3.
In the description below, we omit the security parameter k: the security parameter is

only used to determine the range of the random oracle — we assume w.l.o.g. that H(q)
returns k bits (if the random oracle returns fewer bits, we can interpret a query H(q)
as concatenation of multiple queries (e.g., H(kq) � H(kq � 1) � � � � � H(kq � k � 1)).
To further simplify notation, our definition of f only generates the message M. The
(implicit) solution validator �M checks whether its input is equal to f ’s input (our
soundness proof is slightly stronger — we show that no adversary making less than n
serial rounds of queries to H can find any valid preimage of M under f).

We define the puzzle-generating function f to be:

f H(x0� � � � � xn)
de f
� (x0� H(x0) x1� � � � � H(xn�1) xn)

(where the input is interpreted as n � 1 k-bit query indices).
The honest solver g inverts f by running Algorithm 2:

Proof (Sketch for Theorem 3). By inspection, f can be computed with n non-adaptive
queries: the values H(x1)� � � � � H(xn) can be obtained in parallel. The correctness of the
honest inverter (Alg. 2) and the fact that it uses n serial queries is also easy to see.

The main part of the proof is to show that every inverter making poly(k) queries
to H needs to use at least n rounds of adaptive queries. To prove this, we first claim
that any algorithm that outputs xi�1 with non-negligible probability must query H on

48 M. Mahmoody, T. Moran, and S. Vadhan

Algorithm 2. Honest solver g on input M � (M0� � � � � Mn) and oracle H
1: x0 � M0 �� x0 is not “encrypted”.
2: for i � �1� � � � � n� do
3: xi � H(xi�1) � Mi �� “decrypting” xi requires an oracle query on index xi�1.
4: Output (x0� � � � � xn)

xi. This is because, even taken together, the value of f H(x0� � � � � xn), the values of
�x0� � � � � xn� � �xi�1� and the responses of the random oracle on all queries except xi

give no information (in the information-theoretic sense) about xi�1. Thus, the probabil-
ity that an algorithm outputs xi�1 without querying H on xi is negligible in k (the output
size of H). Note that this remains true if we allow the algorithm to output a polynomial
number of guesses for xi�1.

Now, consider an algorithm h making multiple rounds of queries to the oracle H,
such that in each round the indices queried depend only on the responses from previous
rounds. We can think of h as also outputting the indices it queries in each round (and
the total number of indices output by h is polynomial in k). If h correctly inverts f on
input M � f H(x0� � � � � xn), it must output xn at some round (since f is injective). By
induction (and using the reasoning above), the probability that h first outputs (queries)
xi and xi�1 in the same round is negligible (since we showed it must query xi before
xi�1). Therefore, the algorithm must use at least n rounds of adaptivity.

3.1 Increasing the Computation�Communication Ratio

Note that while our positive construction of a time-lock puzzle in the random-oracle
model is optimal with respect to query complexity, the description of a puzzle that
requires n adaptive queries to solve is also linear in n. When the cost of communica-
tion is comparable to an oracle query, simply communicating the puzzle takes O(n)
time, negating the benefit of parallel queries. We improve this ratio arbitrarily by re-
placing each oracle call with d composed calls (i.e., each call querying the oracle on
the response to the previous call). This will increase both the (parallel) generation and
solution time by a factor of d without changing the size of the puzzle description. For-

mally, let H(1) de f
� H and for d � 1 let H(d)(q)

de f
� H(H(d�1)(q)). Then the function

f H(d)
(x0� � � � � xn) can be computed with d rounds of n non-adaptive queries, and the

soundness condition from Theorem 3 holds with the increased parameters:

Claim. For every oracle function h that makes less than dn serial rounds of queries to
H and poly(k) queries overall to H in total,

Pr
�
(M��M) � f H(d)

(k� r); x � hH(k� rJ� M);�M(x) � 1
�
� neg(k)

(where neg is some negligible function in k).

Proof (Sketch). The main idea is that any algorithm that outputs H(i)(x) with non-
negligible probability must query H on H(i�1)(x) (otherwise the algorithm has no in-
formation about H(i)(x)). By induction, it follows that an algorithm that makes only a

Time-Lock Puzzles in the Random Oracle Model 49

polynomial number (in k) of queries to H needs d adaptive rounds to compute H(d)(x).
Composing this idea with the induction in the proof of Theorem 3, we get the required
parameters.

4 Discussion and Open Questions

The most obvious open question relating to time-lock puzzles is finding constructions
based on assumptions other than the diÆculty of factoring. Although this work rules out
black-box constructions (with a super-constant gap) from one-way permutations and
collision-resistant hash functions, we have no reason to believe that time-lock puzzles
based on other concrete problems (e.g., lattice-based problems) do not exist. Extend-
ing our approach to other general assumptions (e.g., trapdoor permutations) is also an
interesting open problem.

One of the motivations for looking at time-lock puzzles in the random-oracle model
is the search for puzzles that are resistant to quantum attack. In this direction there
still remains work to be done: on the positive side, our construction may not be secure
against adversaries with quantum access to the random oracle (e.g., Dagdelen et al.
show protocols that are secure in the random oracle model but can be broken by attack-
ers with quantum access to the random oracle [15]). On the other hand, when the honest
parties are quantum, the lower bound question is still open as well (Brassard and Salvail
[10] and, independently, Biham et al [5], give a quantum version of Merkle puzzles that
require the adversary to make n3�2 queries in order to recover the shared key, but do not
prove optimality).

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions.

References

1. Abadi, M., Burrows, M., Manasse, M.S., Wobber, T.: Moderately hard, memory-bound func-
tions. ACM Trans. Internet Techn. 5(2), 299–327 (2005)

2. Back, A.: Hashcash — a denial of service counter-measure (2002),
����������	��������	�
������
����������	���

3. Barak, B., Mahmoody, M.: Lower bounds on signatures from symmetric primitives. In:
FOCS 2007, pp. 680–688. IEEE Computer Society, Los Alamitos (2007)

4. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query attack
on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

5. Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography on strong one-way
functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 55–72. Springer, Heidelberg
(2008)

6. Boneh, D., Boyen, X.: EÆcient selective-id secure identity-based encryption without random
oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
223–238. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

http://www.hashcash.org/papers/hashcash.pdf

50 M. Mahmoody, T. Moran, and S. Vadhan

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Com-
put. 32(3), 586–615 (2003)

9. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

10. Brassard, G., Salvail, L.: Quantum merkle puzzles. In: ICQNM, pp. 76–79. IEEE Computer
Society, Los Alamitos (2008)

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J.
ACM 51(4), 557–594 (2004)

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)

13. Cathalo, J., Libert, B., Quisquater, J.-J.: EÆcient and non-interactive timed-release encryp-
tion. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp.
291–303. Springer, Heidelberg (2005)

14. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-
release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89.
Springer, Heidelberg (1999)

15. Dagdelen, O., Fischlin, M., Lehmann, A., Scha�ner, C.: Random oracles in a quantum world.
Cryptology ePrint Archive, Report 2010�428 (2010),
���������
���	���
	�
����������	���

16. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Heidelberg (2003)

17. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

18. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

19. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the eÆciency of generic crypto-
graphic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC 1996, pp.
212–219. ACM, New York (1996)

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC 1989, pp. 44–61. ACM, New York (1989)

22. May, T.C.: Timed-release crypto (February 1993),
����������	���	����������������� ����!�	���

23. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM 21(4), 294–
299 (1978)

24. Rivest, R.L., Shamir, A.: Payword and micromint: Two simple micropayment schemes. In:
Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87. Springer, Heidelberg
(1997)

25. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech-
nical Report MIT�LCS�TR-684, MIT (February 1996)

http://eprint.iacr.org/2010/428.pdf
http://www.hks.net/cpunks/cpunks-0/1460.html

Physically Uncloneable Functions

in the Universal Composition Framework

Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser

Darmstadt University of Technology
Center for Advanced Security Research Darmstadt

Abstract. Recently, there have been numerous works about hardware-
assisted cryptographic protocols, either improving previous constructions
in terms of efficiency, or in terms of security. In particular, many sug-
gestions use Canetti’s universal composition (UC) framework to model
hardware tokens and to derive schemes with strong security guarantees
in the UC framework. In this paper, we augment this approach by con-
sidering Physically Uncloneable Functions (PUFs) in the UC framework.
Interestingly, when doing so, one encounters several peculiarities specific
to PUFs, such as the intrinsic non-programmability of such functions. Us-
ing our UC notion of PUFs, we then devise efficient UC-secure protocols
for basic tasks like oblivious transfer, commitments, and key exchange.
It turns out that designing PUF-based protocols is fundamentally dif-
ferent than for other hardware tokens. For one part this is because of
the non-programmability. But also, since the functional behavior is un-
predictable even for the creator of the PUF, this causes an asymmetric
situation in which only the party in possession of the PUF has full access
to the secrets.

1 Introduction

Cryptographic protocols which simultaneously satisfy high efficiency demands as
well as strong security requirements (like composable security), are scarce. One
recent trend in this regard is to use the potential of hardware components like
signature cards [20], one-time programs [14], standard smart cards [19], or even
more complex tokens [21]. Most of these hardware-assisted protocols actually
achieve security in Canetti’s universal composition (UC) framework [4] and thus
provide strong security guarantees.

1.1 Physically Uncloneable Functions

In this paper, we consider another type of hardware component which recently
gained a lot of attention because of the irresistible progress in their realization:
Physically Uncloneable Functions (PUFs) [27,26]. Basically, a PUF is a noisy
device derived through a complex physical manufacturing process such that the
behavior of the PUF is hard to clone. The PUF itself can be evaluated by a
physical stimulus (aka. challenge) on which it provides a noisy response.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 51–70, 2011.
c© International Association for Cryptologic Research 2011

52 C. Brzuska et al.

Modeling PUFs appropriately is a highly non-trivial task. Most importantly,
there are different types of PUFs with different (physical) properties. Further-
more, there does not seem to be a general agreement upon common security
properties of PUFs, even for a single type (e.g., whether a PUF is one-way or
not, or if the output is pseudorandom). See [29,23] for more information. We
thus consider a very minimalistic model which basically says that only the party
in possession of a PUF can evaluate it by sending some stimulus to the PUF
and observing the output, and where learning outputs for some stimuli does not
facilitate the task of predicting the function’s output for other stimuli.

There have been several approaches to define PUFs cryptographically, see
[27,17,12,2,29,11,30]. However, these definitions usually are either rather infor-
mal, or follow the more stringent game-based approach, but stipulate unclone-
ability and tamper-resistance as an external property “outside of the game”. A
recent exception is the work of Armknecht et al. [1] which provides a game-based
definition for uncloneability on a physical level. In the UC world, such features
are more handy to specify. We hence follow previous approaches for other token-
based protocols to model PUFs formally in the UC framework, exposing several
peculiarities for this kind of hardware.

1.2 PUFs and the UC Framework

The UC Framework. The UC framework supports an easy modeling of tamper-
proof hardware tokens via ideal functionalities. Roughly, the ideal functionality
captures the abstract security properties of the token, and one considers a hybrid
world in which real-world protocols and parties also have access to this ideal
functionality (and thus the token). This is the approach which has been used
extensively in the literature [21,19,24,16,15] and which we also use to model
PUFs in the UC framework, in particular, to model restricted access depending
on possession of the token or uncloneability.

In its original form the hybrid model supports the decomposition of crypto-
graphic tasks into basic building blocks and to conclude security of protocols
which are composed out of such building blocks. Loosely speaking, Canetti’s
composition theorem—or, actually a corollary of a more general statement—
says that, if a protocol πF UC-securely realizes some functionality G in the
hybrid world with efficient functionality F , and some protocol ρ UC-securely
realizes F , then the composed protocol πρ which invokes ρ whenever π would
call F , also UC-securely realizes G.

PUFs in the UC Framework. Our ideal functionality for PUFs only allows the
party in possession to stimulate it in order to retrieve a response, thus ensuring
restricted access. Uncloneability is enforced through unpredictability. Parties can
hand over the PUF to other parties. During transition, we allow the adversary
temporary access before the PUF reaches the recipient. This models the classical
example of PUF-augmented credit cards, sent via postal service, which are read
out before getting delivered. As in other works about hardware based tokens,
we assume some kind of tamper-evidence in the sense that the receiver can later

Physically Uncloneable Functions in the Universal Composition Framework 53

verify the authenticity and integrity of the PUF. We note that this need not be
ensured by the PUF technology itself. One may also consider reliable delivery (in
which case the adversary may have read-only access during the manufacturing
process).

Our ideal functionality covers different kinds of PUF technologies and com-
prises even PUFs with small input or output size (in which case unpredictability
should be understood relative to the small output size). We note that for design-
ing secure protocols, the intermediate access of the adversary also necessitates
that the challenge space of the PUF is super-polynomial; else the adversary could
clone the PUF easily. This domain requirement may currently not be true for all
kinds of PUF technology; we comment on this in the full version of the paper.

The usage of hardware components in the UC context, especially of PUFs,
causes several unpleasant side effects, though. At foremost, PUFs are not known
to be implementable by probabilistic polynomial-time (PPT) Turing machines;
the manufacturing process seems to be inherently based on physical properties.
Hence, while the claims in the hybrid model are technically sound, any real-
ization in practice through actual PUFs leaves a gap in the security claim of
the composed protocol, as, strictly speaking, the composition theorem only ap-
plies to probabilistic polynomial-time computable functionalities F . Fortunately,
Canetti [4] proves the composition theorem to hold for a broader class of inter-
active Turing machines, and we sketch in the full version of this paper that the
same holds for PUFs.

The uninstantiability of PUFs through efficient algorithms causes another
issue when it comes to complex cryptographic protocols. For any PUF-based
protocol relying on further cryptographic assumptions like the hardness of com-
puting discrete logarithms, the assumption would need to hold relative to the
additional computational power given through PUFs. That is, the underlying
problem must be hard to solve even for attackers with “more than probabilistic
polynomial-time power”. It is therefore advantageous to avoid additional crypto-
graphic assumptions in protocols and provide solutions with statistical security.

Non-Programmability. For PUFs, another aspect is the intrinsic non-programm-
ability of these tokens: Even the manufacturer usually has no control over the
functional behavior of the PUF. Hence, the ability of the ideal-world simulator
to adapt the outcome of a PUF measurement adaptively, as guaranteed when
modeling the PUF through an ideal functionality in the hybrid world, appears
to be exceedingly optimistic. A similar observation has been made by Nielsen
[25] about the (non-)programmability of random oracles in the UC framework.
Roughly, Nielsen takes away the ability of the simulator to program the random
oracle by giving the environment direct access to the random oracle. To support
the argument in favor of non-programmable PUFs we also note that for random
oracles it is straightforward to program consistently given a partial view of the
function for other values, namely, by providing independent random values; for
PUFs this is less clear since one would need to take the (not necessarily efficiently
computable) conditional distribution of the specific PUF type into account.

54 C. Brzuska et al.

We adopt Nielsen’s approach and augment the environment’s ability by giving
it also access to the concrete PUF instantiation used in a protocol. Unlike in the
case of the publicly available random oracle, though, the environment can only
access this PUF when it is in possession of the adversary, i.e., we assume that
a PUF, once in possession of the user, can only be accessed by this user. This
corresponds to an honest user who prevents further unauthorized access. In a
stronger version one could also allow further “uncontrolled” interaction between
the environment, i.e., other protocols, and the PUF even when in possession of
the honest user. This would somehow correspond to a permanently shared PUF
functionality in the GUC model [5]. However, many advantages of deploying
PUFs for designing efficient protocols would then disappear. With the restriction
on temporary access we can still devise efficient solutions, e.g., circumventing
impossibility results for UC commitment schemes in the plain model [6] and for
GUC commitment schemes in the common reference string model [5].

1.3 PUF-Based Protocols in the UC Framework

We finally exemplify the usability of our PUF modeling by presenting PUF-
based protocols for three classical areas: oblivious transfer (OT), commitments,
and key exchange. Our protocols are UC-secure in the hybrid world (where we
grant the environment access to the PUF instantiation as described above), and
typically require only a few operations besides PUF evaluations. In particular, all
protocols require only sending one party a token in the first step. The protocols
do not rely on additional cryptographic assumptions, except for authenticated
channels.

Designing PUF-based protocols is not just a matter of adopting other token-
based solutions. One reason is clearly the non-programmability property which
is usually not stipulated for other tokens (cf. [21,14]). In fact, most protocols
take advantage of the ability to adapt the token’s outputs on the fly. But more
importantly, the main difference between PUFs and other tokens is that PUFs
are by nature even unpredictable for the manufacturer. It follows that only the
party in possession of the PUF has full access to the secrets; other parties may
only draw from a small set of previously sampled values. In comparison, for the
wrapper tokens [21], for example, the creator still knows the program placed
inside the token, and the token holder can fully access this program in a black-
box way. Hence, both parties somehow share a complete view of the secret. For
PUFs the situation is rather “asymmetric”.

Our oblivious transfer protocol bears some similarity to a PUF-based protocol
of Rührmair [28]. His protocol, however, has a high round complexity due to an
interactive hashing step. Still, [28] points out that, using symmetry of oblivious
transfer [32] in the sense that one can change the roles of sender and receiver,
one obtains an oblivious transfer protocol in which the other party sends the
PUF. We confirm that this symmetry also holds in the UC setting.

Designing a UC-secure commitment scheme with the help of our PUFs turns
out to be quite challenging. The non-programmability of our PUFs inhibits
equivocality, a property which allows to adapt committed values appropriately,

Physically Uncloneable Functions in the Universal Composition Framework 55

and which is usually required for such commitments [6]. We therefore use our
PUF-based oblivious transfer protocol to derive a UC-secure bit commitment
scheme. Interestingly, while the standard construction of commitment schemes
out of OT [9] uses cut-and-choose techniques with a linear number of oblivi-
ous transfers, our transformation does not add any significant overhead. It only
needs a single execution of the OT protocol and one extra message. We were not
able to trace this idea back to any previous work.

A noteworthy aspect is that, while our OT protocol only withstands static
corruptions, our derived commitment scheme is secure in presence of adaptive
corruptions. The reason is that for commitments, in contrast to OT, the receiver
does not obtain any external input; the values used in the OT sub protocol are
chosen internally. This facilitates the simulation of the receiver’s side. Hence, if
we use our transformation we derive an adaptively secure commitment protocol
from a concrete statically secure OT protocol!

Finally, our key exchange protocol follows the folklore approach of using the
PUF to transport the key, only that our protocol is stated and formalized in
the UC framework. That is, the sender samples some challenge/response pairs,
sends the PUF, and later reveals a challenge to the receiver who recovers the
image with the help of the PUF. Both parties use the images as the key, after
applying a fuzzy extractor for error correction and smoothing the output. It is
clear that for a key exchange protocol where only one party sends a PUF, some
additional, one-sided authentication mechanism is required. Else the adversary
with temporary access to the PUF could impersonate the honest sender.

All our protocols allow to re-use the PUF for multiple executions. By the un-
predictable nature of PUFs, however, it is clear that the number of executions
must be fixed in advance and must be known to the parties: The sender, once
having sent the PUF, cannot access the PUF anymore and must thus challenge
the PUF before sufficiently often, unless the PUF is frequently exchanged or fur-
ther PUF tokens are sent. Note that in this case, attacks such as described in [31]
will also be covered by the security proof. An interesting feature of PUFs is that,
unlike other hardware tokens (e.g., [21]), protocols using PUFs are automatically
secure against reset attacks because they implement (noisy) functions.

2 Physically Uncloneable Functions

A Physically Uncloneable Function (PUF) is a source of randomness that is
implemented by a physical system. Roughly speaking, the randomness of PUFs
relies on uncontrollable manufacturing variations during their fabrication. For
PUF evaluation, the physical system is queried with a stimulus, usually called
challenge. The device then produces a physical output, which is usually referred
to as response. A pair of a stimulus and an output is called a challenge/response
pair (CRP). Furthermore, a PUF, being a physical system, might not necessarily
implement a mathematical function, i.e., querying the PUF twice on the same
challenge may yield distinct responses. However, we require such “noise” to be
bounded so that the two responses are closely related in terms of distance.

56 C. Brzuska et al.

2.1 Defining PUFs

A PUF-family P consists of two (not necessarily efficient) algorithms Sample and
Eval. The index sampling algorithm Sample which obtains as input the security
parameter and returns as output an index id of the PUF family corresponds
to the PUF fabrication process. The evaluation algorithm Eval takes as input a
challenge c, evaluates the PUF on c, and generates as output the corresponding
response r.

Note that we require the challenge space to be equal to a full set of strings of a
certain length. For some classes of PUFs, this is naturally satisfied, for example
arbiter PUFs and SRAM PUFs For others types this can be achieved through
appropriate encoding, as for angles in optical PUFs.

Definition 1 (Physically Uncloneable Functions). Let rg indicate the di-
mension of the range of the PUF responses of PUF-family, and let dnoise be a
bound on the PUF’s noise. A pair P = (Sample, Eval) is a family of (rg, dnoise)-
PUFs if it satisfies the following properties:

Index Sampling. Let Iλ be an index set. The sampling algorithm Sample out-
puts, on input the security parameter 1λ, an index id ∈ Iλ. We do not
require that the index sampling can be done efficiently. Each index id ∈ Iλ

corresponds to a set Did of distributions. For each challenge c ∈ {0, 1}λ, Did

contains a distribution Did(c) on {0, 1}rg(λ). We do not require that Did has
a short description or an efficient sampling algorithm.

Evaluation. The evaluation algorithm Eval gets as input a tuple (1λ, id, c),
where c ∈ {0, 1}λ. It outputs a response r ∈ {0, 1}rg(λ) according to dis-
tribution Did(c). It is not required that Eval is a PPT algorithm.

Bounded Noise. For all indices id ∈ I, for all challenges c ∈ {0, 1}λ, we have
that when running Eval(1λ, id, c) twice, then the Hamming distance of any
two outputs r1, r2 of the algorithm is smaller than dnoise(λ).

Instead of Did(c), we usually write PUFid(c). Moreover, if misunderstandings are
unlikely to occur, we write D(c) instead of Did(c) and PUF instead of PUFid.
Finally, we usually write rg instead of rg(λ) and I instead of Iλ.

2.2 Security of PUFs

Various security properties of PUFs have been introduced in the literature (see
[1,23,29] for overviews) such as unpredictability, uncloneability, bounded noise,
uncorrelated outputs, one-wayness, and tamper-evidence. We give a detailed
analysis of these properties in the full version of this paper as well as the relation
to our security notions. The main security properties of PUFs are uncloneability
and unpredictability. Unpredictability is covered via an entropy condition on
the PUF distribution. This condition also implies mild forms of uncloneability
as well as uncorrelated outputs. Moreover, one usually requires that tampering
with PUFs can be detected easily, the idea being that a user does not use the
PUF anymore after detecting it has been tampered with. Our UC-functionality

Physically Uncloneable Functions in the Universal Composition Framework 57

will cover this property implicitly, as we permit the adversary black-box access to
the PUF and the choice of delivering the PUF or not. Tampering with the PUF
is treated as not delivering it. For an explicit treatment of tamper-evidencen.

We will now turn to our main security definition of PUFs, namely the un-
predictability. The behavior of the PUF on input a challenge c should be un-
predictable, i.e., have some significant amount of intrinsic entropy, even if the
PUF has been measured before on several challenge values. Here, (conditional)
min-entropy is the main tool. It indicates the residual min-entropy on a response
value for a challenge c, when one has already measured the PUF on (not neces-
sarily different) challenges c1, ..., c� before. Since the random responses are not
under adversarial control we can look at the residual entropy for the answer to
r by taking the (weighted) average over all possible response values r1, ..., r�.
Demanding that a PUF has a certain average min-entropy [10] is weaker than
asking for all possible responses r1, ..., r�, that the residual entropy remains above
a certain level. This weaker requirement suffices for our purposes. However, as
the challenges c are chosen by the adversary, we ask the average min-entropy to
be high for all challenges and defined by the maximal probability of a possible
response r.

Definition 2 (Average Min-Entropy). The average min-entropy of PUF(c)
conditioned on the measurements of challenges C = (c1, . . . , c�) is defined by

H̃∞(PUF(c)|PUF(C))
:= − log

(
Eri←PUF(ci)

[
max

r
Pr[PUF(c) = r|r1 = PUF(c1), . . . , r� = PUF(c�)]

])
:= − log

(
Eri←PUF(ci)

[
2−H∞(PUF(c)|r1=PUF(c1),...,r�=PUF(c�))

])
,

where the probability is taken over the choice of id from I and the choice of
possible PUF responses on challenge c. The term PUF(C) denotes a sequence
of random variables PUF(c1), ..., PUF(c�) each corresponding to an evaluation of
the PUF on challenge ck.

We occasionally also write H̃∞(PUF(c)|C) as an abbreviation for H̃∞(PUF(c)|
PUF(C)). We now turn to our definition of unpredictability, which is derived
from the notion of unpredictability for random variables.

Definition 3 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,
Eval) for security parameter 1λ is (dmin(λ), m(λ))-unpredictable if for any c ∈
{0, 1}λ and any challenge list C = (c1, . . . , c�), one has that, if for all 1 ≤ k ≤ �
the Hamming distance satisfies disham(c, ck) ≥ dmin(λ), then the average min-
entropy satisfies H̃∞(PUF(c)|PUF(C)) ≥ m(λ). Such a PUF-family is called a
(rg, dnoise, dmin, m)-PUF family.

Note that one could also define a computational version of unpredictability via
computational min-entropy (aka. HILL entropy, named after [18]) where the en-
tropy is defined via the entropy of computationally indistinguishable random
variables. All proofs considered in this paper carry through when replacing sta-
tistical by computational min-entropy; we nonetheless use the statistical variant

58 C. Brzuska et al.

for sake of simplicity. As explained in the introduction, indistinguishability for
defining computational min-entropy then needs to be considered with respect to
distinguishers that have PUF power (see also full version), and not with respect
to mere PPT algorithms.

Also, one could define unpredictability in terms of a game where an effi-
cient adversary, after seeing some challenge/response pairs, tries to predict the
response for another challenge which is not within close distance to the previ-
ous queries (see full version); the success probability should then be negligible.
Clearly, the PUF would need super-logarithmic min-entropy in the above sense
to make it unpredictable according to this game, but the lower bound on the
entropy would vary with the adversary. We do not take this approach because
the fuzzy extractors, which are necessary to eliminate the noise of a PUF, usu-
ally need a fixed lower bound on the min-entropy in order to be applicable. Also,
while it is easy to incorporate a distributional property as above into the ideal
functionality, using game-based properties to specify abstract and ideal security
requirements appears to be very peculiar.

2.3 PUFs and Fuzzy Extractors

By nature, PUF evaluation is noisy, so that same stimuli results in closely related
but different outputs. We use fuzzy extractors of Dodis et al. [10] to convert noisy,
high-entropy measurements of PUFs into reproducible random values.

An (m, �, t, ε)-fuzzy extractor consists of a pair of algorithms (Gen, Rep). The
generation algorithm Gen takes as input a noisy measurement w and generates
as output an �-bit secret st together with helper data p. The helper data can
be stored publicly, since it does not reveal information about the secret: as long
as the measurement contains m bits of min-entropy the secret has statistical
distance ε to the uniform distribution, even if given p. The helper data is later
used to reproduce the same secret st from related measurements within a certain
distance t according to some metric space.

We now determine parameters to combine a PUF and the fuzzy extractor in
order to achieve almost uniformly random values. Let λ be the security param-
eter. We let the parameters of the fuzzy extractor depend on the parameters
of the PUF. Assume that we have a (rg(λ), dnoise(λ), dmin(λ), m(λ))-PUF family
with dmin being in the order of o(λ/ log λ). We now determine the corresponding
parameters for the fuzzy extractor as follows. Let �(λ) := λ be the length param-
eter for value st. Let ε(λ) be a negligible function and let t(λ) = dnoise(λ). For
each λ, let (Gen, Rep) be a (m(λ), �(λ), t(λ), ε(λ))-fuzzy extractor. The metric
spaceM is {0, 1}rg(λ) with Hamming distance disham.1

1 Note that such fuzzy extractors only exist if rg(λ) and m(λ) are sufficiently large.
In order to achieve this, several PUFs can be combined. When combining two PUFs
of the same family, rg gets doubled and so does m. Thus, if there are PUFs with
m(λ) being non-negligible they can be combined to a useful PUF-family — even
if a PUF-family has less than one bit entropy, it still can be combined to obtain a
good PUF-family with outputs which has high entropy of many bits. Thus, we may
assume that the PUF has corresponding parameters.

Physically Uncloneable Functions in the Universal Composition Framework 59

Definition 4. If a PUF and a fuzzy extractor (Gen, Rep) satisfy the above re-
quirements, then they are said to have matching parameters.

If a PUF and a fuzzy extractor have matching parameters, then the following
properties of a well-spread domain, extraction independence and response con-
sistency hold. A formal proof is given in the full version of this paper.

Well-Spread Domain: For all polynomials p(λ) and all sets of challenges c1, ...,
cp(λ), the probability of a random challenge to be within distance smaller
dmin of any of the ck is negligible.

Extraction Independence: For all challenges c1, ..., cp(λ), it holds that the
PUF evaluation on a challenge c with dis(ck, c) > dmin for all 1 ≤ k ≤ p(λ)
and subsequent application of Gen yields an almost uniform value st even
for those who observe p.

Response Consistency: The fuzzy extractor maps two evaluations of the same
PUF to the same random string, i.e., if PUF is measured on challenge c twice
and returns r and r′, then for (st, p)← Gen(r), one has st← Rep(r′, p).

3 Universally Composable Security and PUFs

We model PUFs in the universal composition framework introduced by Canetti
in [4]. Note that we use, among other things, well-studied UC basics, such as
authenticated message transmissions.

3.1 Modeling PUFs in UC

In the following we propose an ideal functionality FPUF that will model PUFs.
The functionality is presented in Figure 1 and handles the following operations:
(1) a party Pi is allocated a PUF; (2) Pi can query the PUF; (3) Pi gives the
PUF to another party Pj who can also query the device; (4) an adversary can
query the PUF during transition.

The functionality FPUF maintains a list L of tuples (sid, Pi, id, τ) where sid is
the (public) session identifier and id is the (internal) PUF-identifier, essentially
describing the output distribution. Note that the PUF itself does not use sid.
The element τ ∈ {trans(Pj), notrans} denotes whether the PUF is in transition
to Pj . For trans(Pj), indicating that the PUF is in transition to Pj , the adversary
is able to query the PUF. In turn, if it is set to notrans then only the possessing
party can query the PUF.

The PUF functionality FPUF is indexed by the PUF parameters (rg, dnoise,
dmin, m) and gets the security parameter λ in unary encoding as additional in-
put. It is required to satisfy the bounded noise property for dnoise(λ) and the un-
predictability property for (dmin(λ), m(λ)). This enforces that the outputs obey
the basic entropic requirements of PUFs (analogously to the requirement for the
random oracle functionality to produce random and independent outputs). We
write FPUF and FPUF(rg, dnoise, dmin, m) interchangeably.

60 C. Brzuska et al.

FPUF(rg, dnoise, dmin, m) receives as initial input a security parameter 1λ and runs with parties
P1, ..., Pn and adversary S .
• Whenever a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF then FPUF checks
whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):

� If this is the case then turn into the waiting state.

� Else, draw id← Sample(1λ) from the PUF-family. The functionality FPUF puts the follow-
ing tuple in L: (sid, id, Pi, ∗, notrans) and writes (initializedPUF, sid) on the communication
input tape of Pi.

• Whenever a party Pi writes (evalPUF, sid, Pi, c) on FPUF’s input tape then FPUF first checks,
if there exists a tuple (sid, id, Pi, notrans) in L:

� If this is not the case then turn into the waiting state.
� Else, run r ← Eval(1λ, id, c) and write (eval′edPUF, sid, c, r) on Pi’s communication input
tape.

• Whenever a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF then FPUF first checks, if there
exists a tuple (sid, ∗, Pi, notrans) in L:

� If this is not the case then turn into the waiting state.
� Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥, trans(Pj)).
Write invokePUF(sid, Pi, Pj) on S ’s communication input tape to indicate that a handoverPUF

occurs between Pi and Pj .
• Whenever the adversary writes (evalPUF, sid,S , c) on the input tape of FPUF then FPUF first
checks, if L contains a tuple (sid, id,⊥, trans(∗)):

� If this is not the case then turn into the waiting state.
� Else, run r ← Eval(1λ, id, c) and return (eval′edPUF, sid, c, r) to S .

• Whenever the adversary writes (readyPUF, sid,S) on FPUF’s input tape then FPUF searches
for a tuple (sid, id,⊥, trans(Pj)) in L:

� If such a tuple does not exist then turn into the waiting state.
� Else, modify the tuple (sid, id,⊥, trans(Pj)) to the updated tuple (sid, id, Pi, notrans).
Write the message (handoverPUF, sid, Pi) on Pj ’s communication input tape and store the
tuple (receivedPUF, sid, Pi).

• Whenever the adversary sends (receivedPUF, sid, Pi) to FPUF, FPUF checks if a tuple
(receivedPUF, sid, Pi) has been stored. If so, it writes this tuple to the communication input
tape of Pi. Else, FPUF turns into the waiting state.

Fig. 1. The ideal functionality FPUF for PUFs

Also note that our definition requires that a PUF is somehow certified. That
is, the adversary cannot replace a PUF sent to an honest party by a fake token
including some “software emulation”; the adversary can only measure the PUF
when in transition. The receiver can verify the constitution and authenticity of
the received hardware. Our functionality also implies that the sender knows when
the PUF has been delivered to the receiver. Relaxing this requirement is delicate
as the adversary could then still be in possession of the PUF. Formally, delivery
confirmation can be ensured by having the receiver send an acknowledgment
message (via an authenticated channel).

3.2 Non-programmability

As explained in the introduction we envision a non-programmable version of
PUFs. The functionality above, if used in the standard way within the hybrid
model, would be programmable, though, because the environment would not
have direct access (even if the PUF is in possession of the adversary). One way
to enforce non-programmability is to switch to the extended UC (EUC) model
[5] where all parties, including the environment, share the above functionality.

Physically Uncloneable Functions in the Universal Composition Framework 61

The PUF could then also be evaluated by the environment in which case the
simulator is informed about the challenge and response.

To simplify we linger within the basic UC framework and instead allow the
environment to dispatch special PUF queries to the adversary/simulator. This
query needs to be answered faithfully by forwarding it to a genuine PUF instance,
and the response is handed back to the environment. Put differently, we put some
restriction on the how the simulator behaves, formally giving a UC-security proof
which would transfer to the EUC model.

4 Oblivious Transfer with PUFs

In a 1-out-of-2 oblivious transfer (OT) protocol the sender possesses two secrets
s0, s1 and the receiver holds a selection bit b ∈ {0, 1}, thereby choosing one of
the two secrets. A 1-out-of-2 OT-protocol assures that at the end of the protocol
execution, the receiver learns the secret sb, but nothing about s1−b, and the
sender does not learn anything about the selection bit b.

Oblivious Transfer is a widely used cryptographic primitive for many crypto-
graphic applications [22,9,13]. However, in many of those applications a bottle-
neck of OT is the computational requirements since, for instance, several public
key operations are necessary. We here show how to avoid the number of public
key operations by adopting hardware. In the following, we recall the oblivious
transfer ideal functionality and then provide a PUF-based oblivious transfer pro-
tocol. As noted in the introduction, we envision a scenario in which the PUF
is used multiple times. In the plain UC model, however, a fresh PUF would
need be sent for each OT execution. An alternative would be to switch to the
joint-state theorem (JUC) [8] for the UC framework. However, JUC applies a
transformation to the original protocol, and if a single session of a PUF protocol
requires to hand over a PUF once, the JUC transformation would also require
a handover per session. Nothing would be gained. Thus, we define and analyze
multi-session protocols instead of the more common one-session protocols.

4.1 The Oblivious Transfer Ideal Functionality

1-out-of-2 oblivious transfer is an interaction between a sender Pi and a receiver
Pj where the environment Z provides Pi with two inputs s0, s1 and Pj with an
input bit b. As soon as both parties provided their inputs (and the simulator S
allows delivery), the ideal functionality returns the secret sb to the receiver. The
ideal functionality for oblivious transfer FOT is given in Figure 2. We stress that
this functionality only supports static corruption and can be used a bounded
number of times, and only by the parties which have exchanged the PUF. Each
execution will be accompanied by a unique sub session identifier ssid.

4.2 Oblivious Transfer Scheme

In Figure 3, we provide an oblivious transfer protocol. For simplicity of ex-
position, we use the following notation. For a possibly empty set C we let

62 C. Brzuska et al.

FOT is parameterized by an integer N and receives as input a security parameter 1λ, and runs
with parties P1, ..., Pn and adversary S . The functionality initially sets (n, S, R) = (1,⊥,⊥).
In the following, the functionality ignores any input if n > N , or if n > 1 and (S, R) �= (Pi, Pj)
for the parties’ identities (Pi, Pj) in the input. Else,

• Whenever Pi writes (sendOT, sid, ssid, Pi, Pj , (s0, s1)) with s0, s1 ∈ {0, 1}λ ∪ {⊥} on FOT’s
input tape, FOT stores (sendOT, sid, ssid, Pi, Pj , (s0, s1)) and writes (sendOT, sid, ssid, Pi, Pj)
to the communication input tape of S . The functionality increments n to n + 1 and stores
(S, R) = (Pi, Pj) if n = 2 now.
• Whenever Pj writes (choose-secretOT, sid, ssid, Pi, Pj , b) on the input tape of FOT, the
functionality FOT stores this tuple and writes (choose-secretOT, ssid, sid, Pi, Pj) on the input
tape of S .
• When S writes (deliverOT, sid, ssid, Pi, Pj) on FOT’s input communication tape then
FOT checks if tuples (sendOT, sid, ssid, Pi, Pj , (s0, s1)) and (choose-secretOT, sid, ssid, Pi, Pj , b)
have been stored. If so, write (deliverOT, sid, ssid, Pi, Pj , sb) on the input communication tape
of Pj .

Fig. 2. The ideal functionality for oblivious transfer adapted from [4]

Sender Pi session sid Receiver Pj

(initPUF, sid0, Pi, λ)

k = 1, ..., N : ck←{0, 1}λ
rk ← (evalPUF, sid0, Pi, ck)

C := ∅ (handoverPUF, sid0, Pi, Pj)←−−−−−−−−− L := (c1, r1, ..., c�, r�), C := ∅
Repeat at most N times with fresh ssid

Input: s0, s1 ∈ {0, 1}λ, sid Input: b ∈ {0, 1}, sid
x0, x1

$← {0, 1}λ (sendauth, sid, ssid, Pi, Pj , (x0, x1))−−−−−−−−−→ Draw (c, r)
$← L

v := c⊕ xb, c′ := c⊕ x0 ⊕ x1

dis(v ⊕ x0, C) > dmin ?
(sendauth, sid, ssid, Pi, Pj , v)←−−−−−−−−− dis(c, C) > dmin ?

dis(v ⊕ x1, C) > dmin ? dis(c′, C) > dmin ?

Add v ⊕ x0, v ⊕ x1 to C Add c, c′ to C
r′0 ← (evalPUF, sid0, Pi, v ⊕ x0) Delete (c, r) in L
r′1 ← (evalPUF, sid0, Pi, v ⊕ x1)

(st0, p0)← Gen(r′0)

(st1, p0)← Gen(r′1)

S0 := s0 ⊕ st0,
(sendauth, sid, ssid, Pi, Pj , (S0, p0, S1, p1))−−−−−−−−−→ st′b ← Rep(r, pb)

S1 := s1 ⊕ st1 sb = Sb ⊕ st′b

Fig. 3. Oblivious transfer scheme with PUFs

dis(c, C) > dmin denote the check that each element ci in C satisfies the bound
dis(c, ci) > dmin. If not, we assume that the corresponding party aborts. Also,
when interacting with the PUF (functionality), we simply write for example
r ← (evalPUF, sid0, Pi, c) to denote the fact that, for a call (evalPUF, sid0, Pi, c)
the functionality has replied with (eval′edPUF, sid0, c, r). Here, sid0 is the ses-
sion identifier for FPUF, as opposed to sid and ssid for the oblivious transfer
protocol.

We note that the protocol does not achieve perfect completeness in the sense
that executions between honest parties may fail. The probability for this is

Physically Uncloneable Functions in the Universal Composition Framework 63

negligible, though. This follows straightforwardly again from the fact that the
domain is well-spread: All (at most polynomial) challenges are independent ran-
dom values such that one is within small distance of the others with negligible
probability only. If all challenges are sufficiently far apart, the receiver always
obtains the correct value.

We now sketch the security arguments for the OT-protocol in Figure 3, i.e., at
the end of the OT protocol (1) a malicious sender learns nothing about the bit b
and (2) a malicious receiver learns only the secret sb and remains oblivious about
s1−b. For case (1), the receiver chooses the challenge c at random. Thus, v =
c⊕ xb hides xb information-theoretically and thus also b. We now consider case
(2). For simplicity, assume that b = 0. Then, the sender shall remain oblivious
about any information about s1. If st1 looks uniform to the sender, then s1
is information-theoretically hidden. If the fuzzy extractor and the PUF have
matching parameters (see Definition 4), then with overwhelming probability this
is the case, as — due to the well-spread domain property (see Subsection 2.3) —
the probability that the receiver queried the PUF on values ck with disham(ck, v⊕
x1) < dmin is negligible, and the checks on the sender side about list L provided
that the sender does not reveal PUF responses to critical challenges.

Theorem 1. Assuming that (Gen, Rep) is a (m, �, t, ε)-fuzzy generator and that
PUF = (Sample, Eval) is a PUF-family with matching parameters (see Definition
4), then protocol PUFOT securely realizes the functionality FOT in the FPUF-
hybrid model.

Security holds in a statistical sense, i.e., the environment’s views in the two
worlds are statistically close. This remains true for unbounded algorithms A,S,
and Z, as long as the number of PUF evaluations is polynomially bounded. The
proof is delegated to the full version of the paper.

4.3 Oblivious Transfer with Sender-PUF

Our OT-protocol requires the receiver to send a PUF to the sender. Sometimes
it may be desirable to have the sender prepare the PUF, though. This can be
achieved by switching the roles of the sender and the receiver via the protocol
by Wolf and Wullschleger [32], but at the expense of having to run linear many
OT executions for strings of length λ. This is unavoidable since the receiver in
an OT-protocol just enters a bit such that, when acting as a sender, it can only
transmit a single bit. In this protocol the sender of the outer OT-protocol acts
as a receiver in the inner OT-protocol, thus sending the PUF.

The protocol in [32] requires only a single round of additional communication.
It is UC-secure in the FOT-hybrid world and inherits the security properties
(statistical vs. computational security, and adaptive vs. static corruptions). With
a linear overhead [3] and another extra round of communication one can then
get an OT-protocol for strings, which is also UC-secure in the FOT-hybrid world
for bit-functionality FOT. The final protocol is now a UC-secure OT-protocol
for strings with linear many calls to FOT, a few extra rounds, and inheriting all
security characteristics from FOT.

64 C. Brzuska et al.

5 PUF-Based Commitment Scheme

A commitment scheme is a two-party protocol between a sender and a receiver
where the sender (also called committer) first sends a disguised version of the
value to the receiver such that, later, only this value can be revealed. More
precisely, a commitment scheme allows the committer to compute to a value
msg a pair (com, decom) such that com reveals nothing about the value msg but
using the pair (com, decom) one can open msg. Moreover it should be infeasible
to find a value decom′ such that (com, decom′) reveals msg′
= msg.

5.1 The Commitment Scheme Ideal Functionality

In the UC world, the commitment scheme is realized by the (bounded) func-
tionality Fcom as follows: Fcom receives an input (commit, sid, ssid, msg) from
some committer Pi where msg is the value committed to. After verifying the
validity of the session identifier sid, Fcom records the value msg. Subsequently,
the functionality lets both the receiver Pj and the adversary S know that the
committer has committed to some value by computing a public delayed output
(receipt, sid, ssid) and sending it to Pj (this phase is called the commitment
phase).

To initiate the decommitment phase, the committer Pi sends (open, sid, ssid)
to the functionality Fcom. Thereupon, Fcom checks if there exists a value msg;
if so, the functionality computes a public delayed output (open, sid, ssid, msg)
and sends it to Pj . When the adversary corrupts the committer by sending
(corrupt-committer, sid, ssid) to Fcom, the functionality reveals the recorded
value msg to the adversary S. Furthermore, if the receipt value was not yet
delivered to Pj , then Fcom allows the adversary to modify the committed value.
This is in order to deal with adaptive corruptions. The ideal functionality for
commitment schemes Fcom is given in Figure 4.

Fcom is parameterized by an integer N and runs with parties Pi, Pj , and adversary S . It initially
sets (n, S, R) = (1,⊥,⊥).
The functionality ignores any commit-input if n > N , or if n > 1 and (S,R) �= (Pi, Pj) for the
parties’ identities in the input. Else,
• Upon receiving input (commit, sid, ssid, Pi, Pj , msg) from party Pi, Fcom proceeds as follows:

� Records msg, generate a public delayed output (receipt, sid, ssid), and send the output
to Pj . Increment n to n + 1 and store (S, R) = (Pi, Pj) if now n = 2.

• Upon receiving input (open, sid, ssid) from party Pi, Fcom proceeds as follows:
� If a value msg is recorded, generate a public delayed output (open, sid, ssid, msg) and
send it to Pj .
� Otherwise, do nothing.

• Upon receiving the input (corrupt-committer, sid, ssid) from the adversary S , Fcom proceeds
as follows:

� Send the value msg to S .
� If S provides a value msg′ and the receipt output was not yet written on Pj ’s tape, then
S can change the recorded value to msg′.

Fig. 4. The ideal functionality for commitment schemes adapted from [4]

Physically Uncloneable Functions in the Universal Composition Framework 65

5.2 PUF-Based Commitment Scheme

We now provide a universal transformation from OT-protocols to bit commit-
ment schemes which—to our knowledge—has not been considered so far. Previ-
ous transformations [22,9] rely on cut-and-choose and require linear many exe-
cutions of the OT-protocol. Our transformation only requires a single additional
message to be sent after executing the OT-protocol. The main idea of the pro-
tocol in Figure 5 is to inverse the roles of the sender and the receiver. The
OT-protocol transfers two secrets, and the committer only learns one of them,
namely the one corresponding to its secret bit b. This secret is then used to open
the commitment.

The main idea is to inverse the roles of the sender and the receiver. The
commitment protocol uses the OT-protocol as a building block or, more precisely,
since we work in the UC framework, the corresponding ideal OT-functionality.
Consider a commitment scheme with OT-sender Pi and OT-receiver Pj . Then, Pj

is the committer and has a secret bit b which it submits to the OT-functionality.
The receiver Pi draws two sufficiently long random strings s0 and s1 which it
submits to the OT-functionality. The OT-functionality then provides Pj with the
secret sb. This terminates the commitment phase.

In the opening phase, the committer Pj sends the pair (b, sb). The receiver Pi

then checks whether sb matches the b-th secret. The protocol is binding, as the
OT-functionality does not allow to modify the secret bit b and the secret s1−b

is statistically hidden from Pi. Thus, Pi can determine s1−b only with negligi-
ble probability. The protocol is hiding, as the OT-functionality does not reveal
information about the bit b to Pi.

Sender Pi session sid Receiver Pj

Repeat at most N times with fresh ssid:

Input: b ∈ {0, 1} (choose-secretOT, b)−−−−−−−−−→
FOT

(sendOT, (s0, s1))←−−−−−−−−− Draw
s0, s1

$← {0, 1}λ

v := sb

(deliverOT, sb)←−−−−−−−−−

(sendauth, sid, ssid, b, v)−−−−−−−−−→
v = sb ?

Fig. 5. Commitment scheme with FOT

Theorem 2. The commitment protocol in Figure 5 securely UC-realizes the
functionality Fcom in the FOT-hybrid model.

If functionality FOT is replaced by some OT-protocol, then the derived commit-
ment protocol basically inherits the characteristics of the OT-protocol. That is,
it is secure against adaptive corruptions if OT is, and it is statistically secure
if OT is. Remarkably, we show in the next section that our PUF-based OT-
protocol, while being only statically secure, makes the commitment scheme even
adaptively secure.

66 C. Brzuska et al.

We merely provide a proof sketch for Theorem 2 here. Note that in the case
where both users are honest, only the modeling of the final message needs to
be taken into consideration. The simulator learns the secret bit b from the com-
mitment functionality Fcom. It then draws a random string v from {0, 1}λ and
sends (sendauth, sid, ssid, b, v). If the receiver is dishonest, then it provides FOT

with two secrets s0, s1. The simulator lets the sender provide a random bit b′

to the simulated FOT. It receives back the secret sb′ . In the opening phase, S
learns the (real) secret bit b from the commitment functionality and simulates
the final protocol message as (sendauth, sid, ssid, b, sb). If the sender is corrupt
then it provides the simulated FOT with a secret bit b. The simulator creates
two random strings s0, s1 and passes them to the simulated FOT which passes sb

to the receiver. The simulator commits to the sender’s bit b in the ideal world.
If the sender sends a message (sendauth, sid, ssid, b, v) then S checks if sb = v.
If so, it instructs Fcom to open the commitment. All simulations are perfect.

5.3 Adaptively Secure Commitments

Consider the concrete commitment protocol where we plug in our OT-protocol
from the previous section into the abstract scheme above (and work in the FPUF-
hybrid model instead of the FOT-hybrid model then), then we observe the fol-
lowing: In the commitment phase (i.e., the OT-phase), the message sent by the
OT-receiver (the commitment sender) is statistically independent from its secret
input: the OT-receiver merely sends a single uniformly random message.

For the OT-sender, this is not the case: When having access to the PUF, one
can extract both secrets from the mere transcript of the protocol. This enables
the simulator S to derive both secrets from the protocol, as it accesses the
PUF. It can thus provide the simulated committer with open messages for both
bit values. As the remaining part of the committer’s state merely consists in
challenge/response-pairs, the simulator can thus provide genuine internal state.

6 Key Exchange with PUFs

In a key exchange (ke) protocol two parties interact over an insecure network to
establish a common secret key κ. This common secret key can then be used to
build a secure channel or to ensure confidentiality of transmitted data.

6.1 The Key Exchange Ideal Functionality

The main idea of the key exchange ideal functionality Fke is the following: if
both parties are honest, the functionality provides them with a common random
value which is invisible to the adversary. If one of them is corrupted, though, the
adversary determines the session key entirely thus modeling the participation
of a corrupted party. The definition of the key exchange functionality Fke is
depicted in Figure 6, adapted from [7].

Physically Uncloneable Functions in the Universal Composition Framework 67

Fke is parameterized by an integer N and receives as input a security parameter 1λ, and runs
with parties P1, ..., Pn and adversary S . Fke obtains a list of corrupt parties. It initially sets
(n, S, R) = (1,⊥,⊥).
Ignore any establish-sessionke-input if n > N , or if n > 1 and (S, R) �= (Pi, Pj) for the parties’
identities in the input. Else,
• When a message (establish-sessionke, sid, ssid, Pi, Pj) is written on Fke’s input tape
by a party Pi. Then Fke stores the tuple (establish-sessionke, sid, ssid, Pi, Pj) (and
refuses if there already is a tuple (establish-sessionke, sid, ssid, Pj , Pi) or a tuple
(establish-sessionke, sid, ssid, Pi, Pj)). Fke outputs (establish-sessionke, sid, ssid, Pi, Pj) to the
adversary S . If both users are honest then draw a random value κ from {0, 1}λ and store the
messages (deliverke, sid, ssid, κ, Pi) and (deliverke, sid, ssid, κ, Pj). Increment n to n + 1.
• When S writes (choose-valueke, sid, ssid, Pi, Pj , κ) on Fke’s input tape then
check whether there is a message (establish-sessionke, sid, ssid, Pi, Pj) or a message
(establish-sessionke, sid, ssid, Pj , Pi) and whether at least one of the users Pi and Pj is
corrupt. If so, store the messages (deliverke, sid, ssid, κ, Pi) and (deliverke, sid, ssid, κ, Pj).
• S writes (deliverke, sid, ssid, Pi) on Fke’s input communication tape. Check if a tuple
(deliverke, sid, ssid, κ, Pi) is stored. If so, write (deliverke, sid, ssid, κ, Pi) to Pi’s input tape
and delete (deliverke, sid, ssid, κ, Pi). Else, do nothing.

Fig. 6. The key exchange ideal functionality adapted from [7]

6.2 Minimal Requirements

We present a key exchange protocol in Section 6.3 which sends a PUF in a setup
phase. Afterwards, a single message per protocol execution is sent via a unidirec-
tional authenticated channel. As mentioned in the introduction, it is desirable to
circumvent the use of complexity-theoretic assumptions. However, for practical
reasons, PUF transfers should also be minimized. If only a single PUF transfer
occurs, then the assumption of a unidirectional authenticated channel cannot
be dropped: The sender of the PUF measured the PUF several times and sent
it to the receiver. The adversary can query the PUF during its transition. If
the sender does not have any further secret information for authentication, then
the adversary can can carry out the same computations as the sender. Thus,
the protocol cannot be secure against impersonation attacks. In the following,
we use the standard bidirectional Fauth functionality. Deriving corresponding
unidirectional definitions is straightforward.

6.3 PUF-Based Key Exchange Scheme

Intuitively, our key exchange protocol proceeds as follows. In an enrollment
phase, a server issues a PUF, measures for a set of randomly chosen challenges
the corresponding responses, and finally ensures a noisy-free PUF measurement
by generating for each response r a fuzzy extractor secret st from a set of ran-
dom secrets as well as a corresponding helper data p. The server then sends the
PUF to the client. Upon finishing the enrollment phase the server broadcasts a
randomly chosen challenge c including its helper data p to the client and sets
κ = st to obtain the protocol key. The client evaluates the PUF on the challenge
c, computes the corresponding fuzzy secret st due to the helper data p, and
obtains the protocol key by setting κ = st. Consequently, both parties use the
fuzzy extractor secret st as their common protocol key κ. We again note that

68 C. Brzuska et al.

Server Pi Client Pj

(initPUF, sid, Pi, λ)

Repeat N times:

r ← (evalPUF, sid, Pi, c)

(st, p)← Gen(r)

add (c, r, st, p) to L (handoverPUF, sid, Pi, Pj)−−−−−−−−−→
Repeat at most N times

pick (c, r, st, p)←L
remove the entry from L (sendauth, sid, ssid, Pj , (c, p))−−−−−−−−−→ r′ ← (evalPUF, sid, Pj , c)

κ = st st← Rep(r′, p)

κ = st

Fig. 7. Key exchange scheme with PUFs

the sender is informed about the point in time when the receiver is in possession
of the PUF.

Theorem 3. Protocol PUFKE securely realizes functionality Fke in the FPUF-
hybrid model.

In the following we merely provide a proof sketch for Theorem 3. The idea is
that, for an honest sender, the simulator can easily emulate the setup phase by
simply querying the PUF honestly. The simulator simply reveals these samples
step by step. If the receiver is honest then, due to the well-spread domain, the
adversary will most likely not have queried the PUF about any of the sampled
values during the transition phase, such that all the derived keys are statistically
indistinguishable from random. It follows that the simulation is statistically close
to an actual protocol execution. Finally note that, if one of the parties in the
key exchange protocol is corrupt, then the simulator can easily set the key to
one of the obtained PUF measurements (after running the fuzzy extractor).

Acknowledgments. We thank the anonymous reviewers for valuable com-
ments. Marc Fischlin is supported by the Emmy Noether Program Fi 940/2-1 of
the German Research Foundation (DFG). This work was supported by CASED
(http://www.cased.de).

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., Wachsmann, C.: A
formal foundation for the security features of physical functions. To appear at
IEEE S&P (2011)

2. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory Leakage-
Resilient Encryption Based on Physically Unclonable Functions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg
(2009)

3. Brassard, G., Crépeau, C., Robert, J.-M.: Information theoretic reductions among
disclosure problems. In: FOCS, pp. 168–173. IEEE, Los Alamitos (1986)

Physically Uncloneable Functions in the Universal Composition Framework 69

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

5. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security
with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007)

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

8. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

9. Crépeau, C.: Equivalence between Two Flavours of Oblivious Transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139
(2008)

11. Frikken, K.B., Blanton, M., Atallah, M.J.: Robust Authentication Using Physically
Unclonable Functions. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 262–277. Springer, Heidelberg (2009)

12. Gassend, B., van Dijk, M., Clarke, D.E., Torlak, E., Devadas, S., Tuyls, P.: Con-
trolled physical random functions and applications. ACM Trans. Inf. Syst. Se-
cur. 10(4) (2008)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229.
ACM, New York (1987)

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

15. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive Locking, Zero-
Knowledge PCPs, and Unconditional Cryptography. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg (2010)

16. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding Cryptography
on Tamper-Proof Hardware Tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

17. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

18. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

19. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: ACM CCS, pp. 491–500. ACM, New York (2008)

20. Hofheinz, D., Unruh, D., Müller-Quade, J.: Universally composable zero-knowledge
arguments and commitments from signature cards. Tatra Mt. Math. Pub., 93–103
(2007)

21. Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof
Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

22. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

70 C. Brzuska et al.

23. Maes, R., Verbauwhede, I.: hysically Unclonable Functions: a Study on the State
of the Art and Future Research Directions, section 1. Towards Hardware-Intrinsic
Security. Springer, Heidelberg (2010)

24. Moran, T., Segev, G.: David and Goliath Commitments: UC Computation for
Asymmetric Parties Using Tamper-Proof Hardware. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

25. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

26. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297, 2026–2030 (2002)

27. Pappu, R.S.: Physical One-Way Functions. Phd thesis, Massachusetts Institut of
Technology (2001)

28. Rührmair, U.: Oblivious Transfer Based on Physical Unclonable Functions. In:
Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 430–440. Springer, Heidelberg (2010)

29. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable
functions. Cryptology ePrint Archive, Report 2009/277 (2009)

30. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Enhancing RFID Security and Pri-
vacy by Physically Unclonable Functions. Towards Hardware-Intrinsic Security.
Springer, Heidelberg (2010)

31. Rührmair, C.J.U., Algasinger, M.: An attack on puf-based session key exchange
and a hardware-based countermeasure: Erasable pufs. In: Proc. Financial Cryp-
toghraphy (2011)

32. Wolf, S., Wullschleger, J.: Oblivious Transfer Is Symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

Computer-Aided Security Proofs

for the Working Cryptographer�

Gilles Barthe1, Benjamin Grégoire2, Sylvain Heraud2,
and Santiago Zanella Béguelin1

1 IMDEA Software Institute, Madrid, Spain
2 INRIA Sophia Antipolis-Méditerranée, France

Abstract. We present EasyCrypt, an automated tool for elaborating
security proofs of cryptographic systems from proof sketches—compact,
formal representations of the essence of a proof as a sequence of games
and hints. Proof sketches are checked automatically using off-the-shelf
SMT solvers and automated theorem provers, and then compiled into
verifiable proofs in the CertiCrypt framework. The tool supports most
common reasoning patterns and is significantly easier to use than its pre-
decessors. We argue that EasyCrypt is a plausible candidate for adop-
tion by working cryptographers and illustrate its application to security
proofs of the Cramer-Shoup and Hashed ElGamal cryptosystems.

Keywords: Provable security, verifiable security, game-based proofs,
Cramer-Shoup cryptosystem, ElGamal encryption.

1 Introduction

The game-playing technique [8, 17, 20] is an established methodology for struc-
turing cryptographic proofs. Its essence lies in giving precise mathematical de-
scriptions, referred to as games, of the interaction between adversaries and oracle
systems. Proofs are organized as sequences of games, starting from a game that
represents a security goal (e.g. indistinguishability against chosen-ciphertext at-
tacks), and proceeding to games that represent security assumptions (e.g. Deci-
sion Diffie-Hellman) by successive transformations that can be shown to preserve,
or alter only slightly the overall security. In a typical step in a game-based proof
the goal is to relate the probability of an event A in a game G to the probability
of a possibly different event A′ in a game G′. For example, the goal may be
to establish an inequality of the form Pr [G : A] ≤ Pr [G′ : A′] + Δ, where Δ is
an arithmetic expression that depends on the number of oracle queries made
by an adversary. The prevailing practice for proving the validity of such proof
steps is to use standard mathematical tools, which interleave reasoning about
the semantics of games with information-theoretic or arithmetical arguments.

� Partially funded by European Project FP7-256980 NESSoS, French project ANR
SESUR-012 SCALP, Spanish project TIN2009-14599 DESAFIOS 10, and Madrid
Regional project S2009TIC-1465 PROMETIDOS.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 71–90, 2011.
c© International Association for Cryptologic Research 2011

72 G. Barthe et al.

In the code-based approach to the game-playing technique [8, 17] games are
cast as probabilistic algorithms. The adoption of programming idioms allows to
give precise definitions of games, and paves the way for applying programming
language methods to justify proof steps rigorously. As anticipated by their pro-
ponents, code-based game-playing proofs are amenable to formal verification,
and a number of tools provide support for building them. CryptoVerif [11] is a
tool for conducting security proofs in a game-based setting in which games are
modeled as processes and transitions are justified by means of process-algebraic
concepts such as bisimulations. One strength of CryptoVerif, apart from being
the first tool to have supported game-based proofs, is that it applies both to
protocols and primitives; it has been successfully applied to verify Kerberos [10]
and the Full-Domain Hash (FDH) signature scheme [12]. CertiCrypt [6] is another
framework that allows for the interactive construction of game-based proofs in
the Coq proof assistant [22]. One specificity of CertiCrypt is that proofs can
be verified independently and automatically by a small trustworthy checker; it
has been successfully applied to verify prominent cryptographic constructions,
including OAEP [5], FDH [24], and zero-knowledge protocols [7].

While the developments based on CryptoVerif and CertiCrypt make a convinc-
ing case that computer-aided cryptographic proofs are indeed plausible, neither
tool has reached a wide audience among cryptographers. In [5], we contrast the
high guarantees given by CertiCrypt with the effort and expertise required to
build machine-checked proofs, and conclude that cryptographers are unlikely to
adopt verifiable security in its current form. In this sense, it can be considered
that CryptoVerif and CertiCrypt only provide a partial realization of Halevi’s pro-
gramme of systematically building computer-aided cryptographic proofs [17].

The thesis of this article is that verifiable security can dramatically benefit
from automation using state-of-the-art verification technology, and that verifi-
able game-based proofs can be constructed with only a moderate effort. The the-
sis is realized with the presentation of EasyCrypt, an automated tool that builds
machine-checked proofs from proof sketches, which offer a machine-processable
representation of the essence of a security proof. We argue that EasyCrypt is
significantly easier to use than previous tools, making an important step to-
wards the adoption of computer-aided security proofs by working cryptographers
and hence towards fulfilling Halevi’s programme. To substantiate our claim, we
present computer-aided proofs of security of Hashed ElGamal encryption and
the Cramer-Shoup cryptosystem.

EasyCrypt adopts the principled approach mandated by CertiCrypt to conduct
game-based proofs and imposes a clear separation between program verification
and information-theoretic reasoning. Transitions between games are justified in
two steps: first, one proves logical relations between the games using probabilis-
tic Relational Hoare Logic (pRHL); second, one applies information-theoretic
reasoning to derive claims about the probability of events from pRHL judg-
ments. We provide for each step highly effective mechanisms that build upon
a combination of off-the-shelf and purpose-specific tools. Specifically, EasyCrypt
implements an automated procedure that computes for any pRHL judgment

Computer-Aided Security Proofs for the Working Cryptographer 73

a set of sufficient conditions for its validity, known as verification conditions.
The outstanding feature of this procedure, and the key to the effectiveness of
EasyCrypt, is that verification conditions are expressed in the language of first-
order logic, without any mention of probability, and can be discharged auto-
matically by state-of-the-art tools such as SMT solvers and theorem provers.
The verification condition generator is proof-producing, in the sense that it gen-
erates Coq files that can be machine-checked using the CertiCrypt framework.
Moreover, the connection to CertiCrypt makes it possible to benefit from the ex-
pressivity and flexibility of a general-purpose proof assistant for advanced ver-
ification goals that fall out of the scope of automated techniques. Additionally,
EasyCrypt implements an automated mechanism for proving claims about prob-
ability. The mechanism combines some elementary rules to compute (bounds
on) probabilities of events—e.g. the probability of a uniformly sampled element
to belong to a list—with rules to derive (in)equalities between probabilities of
events in games from judgments in pRHL. The combination of these tools with
other more mundane features such as a limited form of specification inference
for procedures provides substantial leverage towards making verifiable security
practical and makes EasyCrypt a plausible candidate for adoption by working
cryptographers.

2 Introductory Example: Hashed ElGamal Encryption

This section illustrates the application of EasyCrypt to a proof of IND-CPA secu-
rity of Hashed ElGamal encryption in the Random Oracle Model. The example
serves to introduce the notion of proof sketch and to give the reader an idea
of the input that the tool expects. It also allows for a preliminary comparison
between EasyCrypt and CertiCrypt. We refer the reader to [4] for a proof of the
same result in CertiCrypt.

Hashed ElGamal is a variant of ElGamal encryption that does not require
plaintexts to be elements of a group. Instead, plaintexts are bitstrings of a certain
length k and group elements are mapped into bitstrings using a hash function
H : G → {0, 1}k. Let G be a multiplicative cyclic group of order q with generator
g. Formally, the scheme is defined by the following triple of algorithms:

KG() def= x $← Zq; return (gx, x)
E(α, m) def= y $← Zq; h← H(αy); return (gy, h⊕m)
D(x, (β, ζ)) def= h← H(βx); return (ζ ⊕ h)

The security of Hashed ElGamal can be reduced to the Computational Diffie-
Hellman (CDH) assumption on the underlying group family. This is the assump-
tion that it is hard to compute gxy given gx and gy where x and y are uniformly
random elements in Zq. To match the existing proof in CertiCrypt, we exhibit a
reduction to the LCDH assumption, the set version of the CDH assumption—the
reduction from LCDH to CDH is immediate.

74 G. Barthe et al.

Figure 1 shows the sequence of games used to justify the security reduction.
This is an essential part of the proof sketch that is input to EasyCrypt, and which
is composed of five ingredients:1

1. Type, constant and operator declarations, which introduce the objects ma-
nipulated by the scheme. In this case, they include a type for elements of the
cyclic group G, constants representing the length of messages k, the order of
the group q and a generator g, and operators denoting the group law and
exponentiation, and exclusive or on bitstrings;

2. Axioms, which capture mathematical properties of these objects, and are
used by automated tools to check the validity of the proof sketch. We use
axioms to state properties of the group law and exponentiation, and the
exclusive or operator;

3. Game definitions, where adversaries are specified as abstract procedures with
access to oracles. In all games in the figure the hash function H is modeled as
a random oracle and the adversary is represented as two procedures A1 and
A2 that share state. The procedures representing the adversary are given
access to a wrapper HA for the hash oracle that just stores queries in a list
LA before forwarding them to H :

H(x) def= if x /∈ dom(L) then h $← {0, 1}k; L[x]← h end if; return L[x]
HA(x) def= LA ← x :: LA; m← H(x); return m

4. Judgments in pRHL. The general form of judgments is |= G1 ∼ G2 : Ψ ⇒ Φ,
where G1 and G2 are games, and the pre-condition Ψ and the post-condition
Φ are relations on program memories (memories map program variables to
values). Pre- and post-conditions are first-order formulae built from rela-
tional expressions, in which language expressions are tagged with 〈1〉 or 〈2〉
to denote their interpretation in the first or second game. We often consider
equivalence of memories on a set of variables X ; we use =X as a shorthand
for the formula ∀x ∈ X. x〈1〉 = x〈2〉;

5. Claims about probability, built from probability quantities (the probability
of an event in a game), arithmetic operators, and mathematical relations
(e.g. =, <,≤). The final statement that expresses the overall security guar-
antee brought by the proof sketch is usually a claim that upper bounds the
probability of adversary success in an initial attack game in terms of the
probabilities of one or more adversaries breaking security assumptions.

We briefly comment on the sequence of games in Figure 1. The first and last
games encode the IND-CPA and LCDH experiments, respectively. We obtain G1

by inlining the key generation and encryption procedures in the initial game and
rearranging instructions so that random choices are made upfront. We prove that
games IND-CPA and G1 yield identical distributions on the result of the game
(denoted by the keyword res). We deduce from this that the probability of the
event b = b′ is the same in both games.
1 The first two are omitted from the figure. We include an extract of the actual input

file for reference in Appendix A.

Computer-Aided Security Proofs for the Working Cryptographer 75

Game IND-CPA :
(α, x)← KG();
(m0, m1)← A1(α);
b $← {0, 1};
(β, γ)← E(α, mb);
b′ ← A2(β, γ);
return (b = b′)

Game G1 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb);
return (b = b′)

|= IND-CPA ∼ G1 : true⇒ ={res}
Pr [IND-CPA : b = b′] = Pr [G1 : b = b′]

Game G1 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb);
return (b = b′)

Game G2 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);
b $← {0, 1};
h $← {0, 1}k;
b′ ← A2(g

y, h⊕mb);
return (b = b′)

|= G1 ∼ G2 : true⇒ (ŷ ∈ LA)〈1〉 ↔ (ŷ ∈ LA)〈2〉 ∧
(
(ŷ /∈ LA)〈1〉 → ={res}

)
|Pr [G1 : b = b′]− Pr [G2 : b = b′] | ≤ Pr [G2 : ŷ ∈ LA]

Game G2 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);
b $← {0, 1};
h $← {0, 1}k;
b′ ← A2(g

y, h⊕mb);
return (b = b′)

Game G3 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);

γ $← {0, 1}k;
b′ ← A2(g

y, γ);
b $← {0, 1};
return (b = b′)

|= G2 ∼ G3 : true⇒ ={res,ŷ,LA}
Pr [G2 : b = b′] = Pr [G3 : b = b′] = 1/2 Pr [G2 : ŷ ∈ LA] = Pr [G3 : ŷ ∈ LA]

Game G3 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0, m1)← A1(α);

γ $← {0, 1}k;
b′ ← A2(g

y, γ);
b $← {0, 1};
return (b = b′)

Game LCDH :
x $← Zq; y $← Zq;
L← B(gx, gy);
return (gxy ∈ L)

Adversary B(α, β) :
(m0, m1)← A1(α);
γ $← {0, 1}k;
b′ ← A2(β, γ);
return LA

|= G3 ∼ LCDH : true⇒ (ŷ ∈ LA)〈1〉 ↔ res〈2〉
Pr [G3 : ŷ ∈ LA] = Pr [LCDH : gxy ∈ L]∣∣Pr [IND-CPA : b = b′]− 1

2

∣∣ ≤ Pr [LCDH : gxy ∈ L]

Fig. 1. Proof sketch of Hashed ElGamal security

76 G. Barthe et al.

In game G2 we substitute the value H(ŷ) used to compute the challenge ci-
phertext by a uniformly chosen value. This only makes a difference if A1 queries
ŷ to H , and this happens with the same probability in either game. Thus, the
difference in the probability of any event in these games is bounded by the
probability of ŷ ∈ LA in G2. This can be seen as a semantic variant of the Fun-
damental Lemma of Game-Playing; the logic allows to dispense with the code
instrumentation needed to apply the syntactic counterpart of the lemma.

The transition from G2 to G3 uses a code transformation known as optimistic
sampling: instead of sampling h and defining a value γ as h⊕mb, we sample γ
and define h = γ ⊕mb; we then remove the definition of h as dead code. This
transformation is proven admissible within the logic and removes the dependency
of the adversary’s output from the challenge bit b.

The final transition performs the reduction to LCDH by exhibiting an adver-
sary B that uses A as a sub-procedure and for which the semantics of games
LCDH and G3 coincide. Finally, from the preceding claims, the advantage of A
can be bounded by the probability of B in solving LCDH. The resulting proof
sketch is about 250 lines long, about 5 times shorter than the proof in CertiCrypt
reported in [4]—and arguably much simpler and close to a pen-and-paper proof.

3 An Overview of EasyCrypt

Programming Language. Games are modeled as programs in a typed, proba-
bilistic, procedural, imperative language. Types include Booleans, integers, bit-
strings, pairs, lists, maps, and user-defined types. Expressions are built from
variables and operators in the usual way; for instance, Boolean-valued operators
include the usual connectives, equality, list membership, arithmetic comparisons.
The commands of the language are defined by the following grammar:

I ::= V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| V ← P(E , . . . , E) procedure call

C ::= skip nop
| I; C sequence

where V is a set of variables, P is a set of procedures, and DE is a set of
distribution expressions. For the purpose of this article, distribution expressions
are restricted to uniform distributions over specific domains, for instance integers
in Zq or (non-neutral) elements of some group G. Adversaries are modeled as
abstract procedures with an interface that specifies the oracles they may query.

Games can be given a semantics as memory distribution transformers, in the
style of [6]. Formally, memories are well-typed mappings from variables to values,
and the semantics of a game G is a function, denoted �G�, that returns for an
initial memory m the (sub-)distribution on final memories resulting from execut-
ing G in m. Given an initial memory m and an event A (a Boolean expression),
we let Pr [G, m : A] denote the probability of A w.r.t. the distribution �G� m; we
simply write Pr [G : A] when the initial memory is not relevant.

Computer-Aided Security Proofs for the Working Cryptographer 77

Relational Judgments. Pre- and post-conditions in pRHL judgments are first-
order formulae built from relational expressions. Relational expressions are ar-
bitrary Boolean expressions over logical variables and program variables tagged
with 〈1〉, 〈2〉; the only restriction is that logical variables may only appear quanti-
fied. By abuse of notation, we write e〈i〉 for the expression e in which all variables
have been tagged with 〈i〉. Let b stand for an arbitrary Boolean expression over
tagged and logical variables, then logical formulae are defined by the following
grammar:

Ψ, Φ ::= b | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ → Φ | Ψ ↔ Φ | (Φ) | ∀x. Φ | ∃x. Φ

A logical formula is interpreted as a relation on program memories. For example,
the formula x〈1〉+ y〈2〉 ≤ z〈1〉 is interpreted as the relation

R = {(m1, m2) | m1(x) + m2(y) ≤ m1(z)}

A pRHL judgment |= G1 ∼ G2 : Ψ ⇒ Φ is valid iff for any pair of initial memories
m1, m2 satisfying the pre-condition Ψ , the distributions �G1� m1 and �G2� m2

satisfy the lifting of post-condition Φ, (�G1� m1)L(Φ) (�G2� m2). The lifting of
a relation to a distribution is defined as a max-cut min-flow problem, in the
style of [18]. Formally, let μ1 be a probability distribution on a set A and μ2 a
probability distribution on a set B. We define the lifting μ1 L(R)μ2 of a relation
R ⊆ A×B to μ1 and μ2 as follows:2

∃μ : D(A×B). π1(μ) = μ1 ∧ π2(μ) = μ2 ∧ ∀(a, b) : A×B. μ(a, b) > 0 =⇒ a R b

where the projections π1(μ) and π2(μ) of μ are defined as

π1(μ)(a) def=
∑
b∈B

μ(a, b) π2(μ)(b) def=
∑
a∈A

μ(a, b)

Claims about probability can be derived from valid relational judgments by
means of the following rules:

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 ↔ B〈2〉)
Pr [G1, m1 : A] = Pr [G2, m2 : B]

[PrEq]

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 → B〈2〉)
Pr [G1, m1 : A] ≤ Pr [G2, m2 : B]

[PrLe]

Automated Proofs of Relational Judgments Most practical verification tools
adopt a similar methodology: a weakest precondition (wp) calculus is used to
compute from a program and its specification a set of sufficient conditions, known
as verification conditions, and these conditions are discharged by automated
2 For the clarity of presentation, we assume that A and B are discrete and cast our

definitions using the usual representation of distributions. However, the tool builds
on a monadic representation of distributions, as in [6].

78 G. Barthe et al.

tools. Extending the methodology to the logic pRHL is a significant challenge,
for two reasons: first, generating verification conditions for a relational program
logic is an open topic of research, and second, there is no prior application of
the methodology to procedural nor probabilistic programs.

There are at least two natural strategies for defining a wp calculus in a rela-
tional setting. The calculus can either operate on both games in lockstep, or else
it can operate on each game separately, in the style of self-composition [2]. Both
strategies are incomplete: the lockstep wp calculus fails on programs that are not
structurally equivalent, whereas self-composition fails to handle random assign-
ments and adversary calls. In order to circumvent these limitations, EasyCrypt
implements an alternative approach that mixes both strategies:

1. Calls to non-adversary procedures are eliminated from the games by succes-
sive inlining their definitions. In the absence of recursion, the transformation
terminates successfully and only adversary calls remain;

2. Random assignments are moved upfront. The resulting code consists of a
sequence of random assignments followed by deterministic code, possibly
with adversary calls;

3. A relational weakest precondition calculus is applied to the deterministic
fragment of the game, using relational specifications to deal with adversary
calls. Each adversary specification induces a proof obligation, expressed as a
pRHL judgment, on the oracles in its interface. Self-composition is applied
to verify the code of oracles with respect to these pRHL judgments. This
results in a judgment of the form

|= x1
$← T1; . . . xl

$← Tl ∼ y1
$← U1; . . . yn

$← Un : Ψ ⇒ Φ

4. A mapping f : T1×· · ·×Tl → U1×· · ·×Un is selected, and used to generate
the verification condition Φ⇒f Ψ , defined as3

∀m1 m2 t1 . . . tl . m1 Ψ m2 =⇒ m1

{
�t/�x
}

Φ m2 {f(t1, . . . , tl)/�y}
Under specific conditions on f , see [23], the validity of Φ ⇒f Ψ entails the
validity of the corresponding pRHL judgment. In practice, it is generally
sufficient to require that f is a 1-1 mapping, and taking f as the identity
function works most of the time. However, in some cases other mappings
must be used. For example, to prove the equivalence between games G2 and
G3 in the proof of Hashed ElGamal described in the previous section, it is
necessary to prove a judgment like the following:

|= h $← {0, 1}k; γ ← h⊕mb ∼ γ $← {0, 1}k; h← γ ⊕mb : ={mb} ⇒ ={h,γ}

The wp will stop after computing the weakest precondition for the deter-
ministic fragment of the two programs, yielding

|= h $← {0, 1}k ∼ γ $← {0, 1}k : ={mb} ⇒ (h〈1〉 = γ〈2〉 ⊕mb〈2〉)
3 The memory m1

{
�t/�x
}

maps xi to ti for i = 1 . . . l and y to m1(z) for z �∈ {x1 . . . xl}.
Likewise, m2 {f(t1, . . . , tl)/�y} is the memory that maps yi to πi(f(t1, . . . , tl)) for
i = 1 . . . n and z to m2(z) for z �∈ {y1 . . . yn}.

Computer-Aided Security Proofs for the Working Cryptographer 79

This equivalence is proved in EasyCrypt by providing the bijective function
f(x) = x ⊕ mb as a witness. The fact that f is bijective is established
automatically since f is idempotent. In the general case this is proved by
providing also the inverse mapping.

5. Since Φ ⇒f Ψ is a first-order formula, its validity can be established by
off-the-shelf tools. In order to target multiple tools, EasyCrypt generates its
verification conditions in the intermediate format of the Why tool [16]. We
then use the Simplify prover [15] and the alt-ergo SMT solver [13] to discharge
the conditions (although many others provers are supported, including in-
teractive theorem provers such as Coq).

Verification condition generation is incomplete (in the logical sense), and would
fail on pRHL judgments where games perform calls to adversaries in a different
order. Pleasingly, the strategy is extremely effective in practice—so that we have
found no need to implement alternatives for dealing with programs not handled
by our approach.

A Mechanized Probabilistic Relational Hoare Logic. EasyCrypt implements a
simple tactic language to prove the validity of judgments using rules of the
logic and program transformations. The tactics allow the application of two-
sided rules, which require that the two commands of a judgment have the same
shape, and one-sided rules, which operate on only one of the games in a judg-
ment. All language constructs admit both one-sided and two-sided rules, ex-
cept for random assignments and adversary calls, for which only two-sided rules
exist.

The lack of one-sided rules for random assignments and adversary calls limits
the applicability of the logic: e.g., it cannot relate the programs x $← X ; y ← A(z)
and y ← A(z); x $← X , because instructions are executed in a different order.
To mitigate this limitation, EasyCrypt implements program transformations for
code motion, allowing to swap instructions that are independent. Moreover, Easy-
Crypt implements tactics for inlining procedure calls and eagerly/lazily sample
random values. Basic tactics can be combined using tacticals to increase au-
tomation. The tactic language provides the necessary infrastructure for making
most components of EasyCrypt proof-producing, as discussed below.

Reasoning about Failure Events. Game-based proofs often include steps in which
it is argued that two games G1 and G2 behave identically unless a designated fail-
ure event F occurs. Such transitions are justified using the so-called Fundamental
Lemma [20, 8], which allows to bound the difference between the probability of
an event A in game G1 and a possibly different event B in game G2 by the
probability of F in either game. Although a syntactical characterization of this
lemma is often used, in which the failure event is represented by a Boolean flag
in the code of the games, we state a more general version of the lemma using
relational logic.

80 G. Barthe et al.

Lemma 1 (Fundamental Lemma). Let G1, G2 be two games and A, B, and
F be events such that

|= G1 ∼ G2 : Ψ ⇒ (F 〈1〉 ↔ F 〈2〉) ∧ (¬F 〈1〉 → (A〈1〉 ↔ B〈2〉))
Then, if m1 Ψ m2,

1. Pr [G1, m1 : A ∧ ¬F] = Pr [G2, m2 : B ∧ ¬F],
2. |Pr [G1, m1 : A]− Pr [G2, m2 : B] | ≤ Pr [G1, m1 : F] = Pr [G2, m2 : F]

The hypothesis of the lemma can be checked using the pRHL prover. The key to
proving the validity of the judgment is finding an appropriate specification for
adversaries. EasyCrypt infers for each adversary call x← A(�e) a relation Θ and
checks the validity of the judgment

|= A ∼ A : (¬F 〈1〉 ∧ ¬F 〈2〉 ∧ =args(A) ∧ Θ)⇒
(F 〈1〉 ↔ F 〈2〉) ∧ (¬F 〈1〉 → ={res} ∧ Θ

)
where args(A) denotes the set of formal parameters of A. This in turn, requires
inferring and checking similar specifications for oracles. Although these heuris-
tically inferred specifications suffice in most cases, the user can choose to prove
their own specifications for one or more oracles or adversaries when needed,
leaving the tool to infer the rest.

Computing Probabilities. EasyCrypt can prove claims about the probability of
events in games using properties of probability (e.g. inclusion-exclusion princi-
ple), arithmetic laws, and the rules [PrEq] and [PrLe] above, which allow deriving
probability claims from valid relational judgments. We also implement a simple
mechanism for computing probability bounds. This mechanism can establish,
for instance, that the probability that a value uniformly chosen from a set T is
equal to an arbitrary expression is 1/|T |, or the probability it belongs to a list
of n values is at most n/|T |.
Generating Verifiable Evidence. EasyCrypt implements a compiler that turns
proof sketches into Coq files that are compatible with the CertiCrypt framework
and can be verified using the type checker of Coq. The compiler serves two
purposes: first, it significantly increases confidence in proof sketches by producing
independently verifiable proofs, and providing means of checking the consistency
of the set of axioms used in a proof sketch. Second, it opens the possibility to
conduct in a general-purpose proof assistant proof steps that fall out of the scope
of automated methods.

We briefly describe the workings of the compiler. The declarations, definitions
of games, and axioms of a proof sketch admit an immediate translation into
CertiCrypt. The recommended practice is to prove the axioms used by EasyCrypt
in CertiCrypt. In most cases, the axioms already exist in CertiCrypt, or are simple
consequences of proven facts. Then, using the proof-producing option of the
pRHL prover, all judgments of a proof sketch are compiled into pRHL derivations
in CertiCrypt. Finally, the compiler generates for each claim in a proof sketch a
Coq lemma that may need to be completed manually with justifications of the
probability reasoning performed by EasyCrypt.

Computer-Aided Security Proofs for the Working Cryptographer 81

4 Advanced Application: Cramer-Shoup Cryptosystem

The Cramer-Shoup cryptosystem is a public-key encryption scheme based on
ElGamal encryption that gained fame for being the first efficient asymmetric
encryption scheme to be proven secure against adaptive chosen-ciphertext at-
tacks under standard assumptions—the length of ciphertexts is just twice the
length of ElGamal ciphertexts. Given a cyclic group (family) G of order q and a
keyed hash function {Hk : G3 → Zq}k∈K mapping triples of group elements into
integers in Zq, key generation, encryption, and decryption are defined as follows:

KG() def=
g, ĝ $← G \ {1};
x1, x2, y1, y2, z1, z2

$← Zq; k $← K;
e← gx1 ĝx2 ;
f ← gy1 ĝy2 ;
h← gz1 ĝz2 ;
pk← (k, g, ĝ, e, f, h);
sk← (k, g, ĝ, x1, x2, y1, y2, z1, z2);
return (pk, sk)

E((k, g, ĝ, e, f, h), m) def=
u $← Zq; a← gu; â← ĝu; c← hu ·m;
v ← Hk(a, â, c); d← eu · fuv;
return (a, â, c, d)
D((k, g, ĝ, x1, x2, y1, y2, z1, z2), (a, â, c, d)) def=
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

We prove that the Cramer-Shoup cryptosystem is secure against adaptive chosen-
ciphertext attacks (IND-CCA secure) in the standard model assuming the DDH
problem is hard in the underlying group family and the hash function H is target
collision-resistant (i.e., universal one-way).

Definition 1 (Target Collision-Resistance). Let {Hk : A → B}k∈K be a
keyed family of hash functions. The advantage of an adversary C against the
target collision-resistance of H is defined as

AdvC
TCR

def= Pr [TCR : Hk(x) = Hk(y) ∧ x
= y]

where the experiment TCR is defined by means of the following game:

Game TCR : x← C1(); k $← K; y ← C2(k)

Definition 2 (CCA-advantage). Let (KG, E ,D) be an asymmetric encryption
scheme. The CCA-advantage of an adversary A limited to qD decryption queries
against the adaptive chosen-ciphertext security of the scheme is defined as

AdvA
CCA(qD) def=

∣∣∣∣Pr [IND-CCA : b = b′]− 1
2

∣∣∣∣
where the experiment IND-CCA is defined by means of the following game:

Game IND-CCA :
(pk, sk)← KG();
(m0, m1)← A1(pk);
b $← {0, 1};
γ∗ ← E(pk, mb); γ∗

def ← true;
b′ ← A2(γ

∗);
return (b = b′)

Oracle DA(γ) :
if |LD| < qD ∧ ¬(γ∗

def ∧ γ = γ∗) then
LD ← γ :: LD;
return D(sk, γ)

else return ⊥

82 G. Barthe et al.

Theorem 1 (Security of Cramer-Shoup). Let A be an adversary against
the IND-CCA security of Cramer-Shoup limited to qD decryption queries. Then,
there exists an algorithm B for solving the DDH problem in G and an adversary
C against the target collision-resistance of the hash function H such that

AdvA
CCA(qD) ≤ AdvB

DDH + AdvC
TCR +

q4
D

q4
+

qD + 2
q

Figures 2-4 show a proof sketch of the above theorem in EasyCrypt. The proof
follows closely the one presented in [17]; we give only a high-level description
here. Game G1 in the figure is obtained directly from the IND-CCA game instan-
tiated for Cramer-Shoup by inlining the definitions of the key generation and
encryption procedures, propagating assignments, and replacing expressions by
equivalent ones. We observe that all verification conditions that ensure the valid-
ity of this transformation can be discharged automatically using an SMT solver.
This surpasses Halevi’s expectations [17], who suggested this transformation be
split in three steps so that it could be handled by an automated tool.

We then build a DDH distinguisher B such that the output distribution on the
value of (b = b′) is identical in games DDH0 (where B receives valid DDH triples)
and G1, on the one hand, and in games DDH1 (where B receives random triples)
and G2, on the other. In addition, we instrument the decryption oracle in G2

to raise a flag bad whenever A queries for the decryption of a valid ciphertext
with loga â
= logg ĝ. We then show using our semantic characterization of the
Fundamental Lemma that the difference in the probability of (b = b′) in this
game and in game G3, where D rejects such ciphertexts, is bounded by the
probability of bad in the latter game. We also change the way e, f and h are
computed in a semantics-preserving way. Up to this point, by the triangular
inequality we have

|Pr [IND-CCA : b = b′]− Pr [G3 : b = b′]| ≤ AdvB
DDH + Pr [G3 : bad]

The next game in the sequence, G4, removes the dependency of the adversary’s
output from bit b by choosing uniformly r and setting c = gr. This requires to
be able to compute z2 from logg(c) = uz + (u − u′)wz2 + logg(mb), which is
not possible if u = u′, but this happens only with probability 1/q. We use again
the semantic formulation of the Fundamental Lemma to bound the difference
in the probability of (b = b′) between G3 and G4 by 1/q. After straightforward
information-theoretic reasoning we get

|Pr [IND-CPA : b = b′]− 1/2| ≤ AdvB
DDH + 2/q + Pr [G4 : bad ∧ u
= u′]

We can now move most of the code of the game before the call to A1. This in
turn allows to make d random by uniformly choosing r′ = logg(d) and defining
x2 in terms of it, rather than the other way around. Since now the game com-
putes the challenge ciphertext in advance, we can instrument D to raise a flag
bad1 when the challenge is queried during the first phase of the game. Note that
at this point the challenge ciphertext is a 4-tuple of uniformly random elements,

Computer-Aided Security Proofs for the Working Cryptographer 83

Game G1 :
g, ĝ $← G \ {1}; x1, x2, y1, y2, z1, z2

$← Zq;
k $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0, m1)← A1(k, g, ĝ, e, f, h); b $← {0, 1};
u $← Zq; a← gu; â← ĝu;
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD;
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

else return ⊥

|= G1 ∼ DDH0 : true⇒ ={res} Pr [G1 : b = b′] = Pr [DDH0 : b = b′]

Game DDH0 DDH1 :
g $← G \ {1}; x $← Z∗q ; y $← Zq;

z ← xy z $← Zq ;

return B(g, gx, gy, gz)

Adversary B(g, ĝ, a, â) :
x1, x2, y1, y2, z1, z2

$← Zq; k $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0, m1)← A1(k, g, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD;
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

else return ⊥

|= DDH1 ∼ G2 : true⇒ ={res} Pr [DDH1 : b = b′] = Pr [G2 : b = b′]

Game G2 :
g $← G \ {1}; w $← Z∗q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu′
;

x1, x2, y1, y2, z1, z2
$← Zq; k $← K;

e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0, m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗);
return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then ;

if d = ax1+vy1 · âx2+vy2 then
return c/(az1 · âz2)

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return c/(az1 · âz2)
else return ⊥

else return ⊥

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

therefore, the probability of bad1 is bounded by (qD/q)4—this is achieved by
means of an intermediate game, not shown in the figure, that stores the 4 compo-
nents of queried ciphertexts in different lists, and by independently bounding the
probability of each component of the challenge appearing in the corresponding
list. Hence, we have

Pr [G4 : bad ∧ u
= u′] ≤ Pr [G5 : bad ∧ u
= u′] + (qD/q)4

84 G. Barthe et al.

Game G3 :
g $← G \ {1}; w $← Z∗q ; ĝ ← gw; k $← K;
x, x2

$← Zq; x1 ← x− wx2; e← gx;
y, y2

$← Zq; y1 ← y − wy2; f ← gy;
z, z2

$← Zq; z1 ← z − wz2; h← gz;
(m0, m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};
u, u′ $← Zq; a← gu; â← ĝu′

;
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥
|= G3 ∼ G4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧

(
(u �= u′)〈1〉 →={res,bad}

)
Pr [G4 : b = b′] = 1/2 |Pr [G3 : b = b′]− Pr [G4 : b = b′]| ≤ Pr [G3 : u = u′] = 1/q

Game G4 :
g $← G \ {1}; w $← Z∗q ; ĝ ← gw; k $← K;
x, x2

$← Zq; x1 ← x− wx2; e← gx;
y, y2

$← Zq; y1 ← y − wy2; f ← gy;
z $← Zq; h← gz;

u, u′ $← Zq; a← gu; â← ĝu′
;

r $← Zq; c← gr;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
(m0, m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥
|= G4 ∼ G′4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧

(
(u �= u′)〈1〉 → ={bad}

)
|= G′4 ∼ G5 : true⇒ ={bad1} ∧

(
¬bad1〈1〉 → ={bad,u,u′}

)
Pr [G4 : bad ∧ u �= u′] ≤ Pr [G5 : bad ∧ u �= u′] + (qD/q)4

Fig. 3. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

The decryption oracle in game G5 also raises a flag bad2 when a valid ciphertext
with Hk(a, â, c) = Hk(gu, ĝu′

, gr) is queried. Since this leads to a collision, we
can build an adversary C against the TCR of H such that its success probability
is lower bounded by the probability of bad2 being raised in G5. Thus,

Pr [G5 : bad ∧ u
= u′] ≤ AdvC
TCR + Pr [G5 : bad ∧ u
= u′ ∧ ¬bad2]

The proof concludes by showing that the probability in G5 of bad being set while
bad2 is not is bounded by qD/q. This is done by reformulating the test under
which bad2 is set so that it does not depend on x1, x2, y1, y2. Therefore, the
probability of this test succeeding in any decryption query (under the condition
that u
= u′) is the probability of the adversary guessing a random value in
the group, at most qD/q summing over all queries. The bound in the statement
follows.

Computer-Aided Security Proofs for the Working Cryptographer 85

Game G′4 G5 :

g $← G \ {1}; w $← Z∗q ; ĝ ← gw; k $← K;

u, u′ $← Zq; a← gu; â← ĝu′
;

y, y2
$← Zq; y1 ← y − wy2; f ← gy;

x $← Zq ; e← gx; r′ $← Zq; d← gr′
;

x2 ← (r′ − u(x + vy))/(w(u′ − u))− vy2;
x1 ← x−wx2; z $← Zq; h← gz;
r $← Zq; c← gr;
v ← Hk(a, â, c); γ∗ ← (a, â, c, d);
(m0, m1)← A1(k, h, ĝ, e, f, h);
γ∗

def ← true; b′ ← A2(γ
∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬γ∗

def ∧ (a, â, c, d) = γ∗

then bad1 ← true;

if |LD| < qD ∧ (¬γ∗
def∨ (a, â, c, d) �= γ∗)

then LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true;

if v = Hk(gu, ĝu′
, gr) then

bad2 ← true
else return ⊥

else return ⊥
|= G5 ∼ TCR : true⇒ bad2〈1〉 → res〈2〉
Pr [G5 : bad ∧ u �= u′] ≤
Pr [TCR : Hk(m0) = Hk(m1) ∧m0 �= m1] + Pr [G5 : bad ∧ u �= u′ ∧ ¬bad2]

Game TCR :
m0 ← C1(); k $← K; m1 ← C2(k);
return (Hk(m0) = Hk(m1) ∧m0 �= m1)

Adversary C1() :
g $← G \ {1}; w $← Z∗q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu′
;

r $← Zq; c← gr; return (a, â, c)

Adversary C2(k) :
r′, x, y, z $← Zq;

d← gr′
; e← gx; f ← gy; h← gz;

y2
$← Zq; y1 ← y −wy2; k̂← k;

v ← Hk(a, â, c);
x2 ← (r′ − u(x + vy))/(w(u′ − u))− vy2;
x1 ← x−wx2;
(m0, m1)← A1(h, ĝ, e, f, h);
γ∗ ← (a, â, c, d); b′ ← A2(γ

∗); return m̂

Oracle D(a, â, c, d) :
if |LD| < qD ∧ (a, â, c, d) �= γ∗ then

LD ← γ :: LD;
v ← Hk̂(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

if v = Hk̂(gu, ĝu′
, gr) then

m̂← (a, â, c);
return ⊥

else return ⊥
else return ⊥

Fig. 4. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

5 Limitations and Extensions

EasyCrypt is in its early stages of development; we briefly comment on some of
its main limitations and possible extensions:

– Programming language: in comparison with CertiCrypt, the language of
EasyCrypt lacks loops, recursive procedures, and drawing from skewed dis-
tributions. We do not see the need for extending the current language with
recursive procedures. In contrast, we believe that more general forms for
sampling and bounded loops are useful and foresee no specific difficulty in

86 G. Barthe et al.

adding them to the language (note that annotating loops with invariants
may be required for verification condition generation);

– Verifiable evidence: EasyCrypt only generates partial verifiable evidence. As
there is currently no SMT solver that generates Coq proofs, the verification
conditions are admitted in order to make the output derivations checkable
by the Coq proof assistant. Making SMT solvers proof-producing is an ac-
tive subject of research [21], and advances towards this goal shall benefit
immediately to EasyCrypt;

– Computation of probability: EasyCrypt generates proof skeletons for claims
about probability rather than fully machine-checked proofs. While it is en-
tirely feasible to extend the compiler for justifying more reasonings, a more
principled solution would require a tool that can symbolically compute the
probability of an event in a distribution.

Further research into the theory of cryptographic proofs, in the line of [3], is
needed to broaden the scope of applications and effectiveness of EasyCrypt. Es-
sential goals include providing a formal account of useful reasoning principles,
such as rewinding arguments or coin-fixing, and notions, such as statistical dis-
tance, that have not yet been considered in our setting.

There remain ample opportunities to apply methods from programming
languages and formal verification to computer-aided cryptographic proofs. We
mention two exciting avenues for improving automation in EasyCrypt. The first
avenue is to improve our mechanism for inferring relational specifications of
adversaries: there is a large body of knowledge on inferring invariants, and it
would be beneficial to transpose them to our setting. More speculatively, pro-
gram synthesis could be used to discover part of the sequence of games needed
to conclude a proof, and to build adversaries that justify reductions to crypto-
graphic assumptions. Both specification inference and program synthesis rely on
verification condition generation and SMT solving, hence the basic blocks for
such an investigation are in place.

Finally, Halevi [17] stresses that “the usefulness of (a) tool will depend cru-
cially on the willingness of the customers (in this case the cryptographic commu-
nity) to use it”, and suggests on this account that an appropriate user interface
will be a crucial component of the tool. We fully adhere to his view, and see
building such an interface as an important objective for further work.

5.1 Comparison with CertiCrypt

Table 1 compares CertiCrypt and EasyCrypt on various security proofs formalized
in both systems. Times are measured on a 2.8GHz Intel Core 2 Duo processor
with 4GB of RAM under Mac OS X 10.6.7. For comparison, we show the size
and checking time of CertiCrypt proofs extracted from EasyCrypt proof sketches.
This is not an altogether fair comparison, because extracted proofs assume as
axioms proof obligations checked by automated provers. As an experiment, we
completed interactively the extracted proof of security of ElGamal encryption,

Computer-Aided Security Proofs for the Working Cryptographer 87

Table 1. Comparison of proof size and checking time between CertiCrypt and EasyCrypt

CertiCrypt EasyCrypt Extracted

Lines Time Lines Time Lines Time

ElGamal (IND-CPA) 565 45s 190 12s 1130 23s
Hashed ElGamal (IND-CPA) 1255 1m05s 243 33s 1772 41s
Full-Domain Hash (EF-CMA) 2035 5m46s 509 1m26s 2724 1m11s
Cramer-Shoup (IND-CCA) n/a n/a 1637 5m12s 5504 3m14s
OAEP (IND-CPA) 2451 3m27s n/a n/a n/a n/a
OAEP (IND-CCA) 11162 37m32s n/a n/a n/a n/a

thus obtaining a full proof verifiable under Coq. The resulting proof is 1173 long
(meaning that only 43 lines are needed to prove in Coq the proof obligations
checked by automated provers) and takes 25s to check.

6 Conclusion

Computer-aided verification of cryptographic protocols in the symbolic model is
an established field of research: robust tools are available and have been used suc-
cessfully to analyze realistic protocols (e.g. [1,9,14,19]). In contrast, there is little
prior work on computer-aided cryptographic proofs in the computational model.
The importance of such proofs was suggested independently by Bellare and Ro-
gaway [8] and, more explicitly, by Halevi [17], who convincingly argues that they
can be viewed as the “natural next step along the way of viewing cryptographic
proofs as a sequence of probabilistic games”. To date, there are two main tools for
computer-aided cryptographic proofs: CertiCrypt, which favors generality and ver-
ifiable proofs, and CryptoVerif, which favors automation. We have presented Easy-
Crypt, a new tool which provides the first flexible and automated framework for
building machine-checkable cryptographic proofs, and illustrated its use through
computer-aided security proofs of Hashed ElGamal encryption in the Random Or-
acle Model and the Cramer-Shoup cryptosystem in the standard model. These ex-
amples demonstrate that proofs in EasyCrypt are significantly easier and faster to
build than in any previous tool, while providing guarantees similar to CertiCrypt.
Overall, we believe that EasyCrypt makes an important step towards the adoption
of computer-aided proofs by working cryptographers.

Acknowledgments. We are grateful to Daniel Hedin and Anne Pacalet for their
participation in the initial phases of the project, to Yassine Lakhnech and David
Pointcheval for useful discussions, and to the anonymous reviewers for their
insightful comments.

References

1. Backes, M., Maffei, M., Unruh, D.: Computationally sound verification of source
code. In: 17th ACM Conference on Computer and Communications Security, CCS
2010, pp. 387–398. ACM, New York (2010)

88 G. Barthe et al.

2. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Workshop on Computer Security Foundations, CSFW 2004, pp.
100–114. IEEE Computer Society, Washington (2004)

3. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistin-
guishability logic. In: 17th ACM Conference on Computer and Communications
Security, CCS 2010, pp. 375–386. ACM, New York (2010)

4. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Formal certification
of ElGamal encryption. A gentle introduction to CertiCrypt. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 1–19. Springer,
Heidelberg (2009)

5. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond provable
security verifiable IND-CCA security of OAEP. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 180–196. Springer, Heidelberg (2011)

6. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)

7. Barthe, G., Hedin, D., Zanella Béguelin, S., Grégoire, B., Heraud, S.: A machine-
checked formalization of Sigma-protocols. In: 23rd IEEE Computer Security Foun-
dations Symposium, CSF 2010, pp. 246–260. IEEE Computer Society, Los Alamitos
(2010)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

9. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol
code by typing. In: 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, pp. 445–456. ACM, New York (2010)

10. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.K.: Computationally sound mech-
anized proofs for basic and public-key Kerberos. In: 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 87–99. ACM, New York
(2008)

11. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: 27th IEEE Symposium on Security and Privacy, S&P 2006, pp. 140–154. IEEE
Computer Society, Los Alamitos (2006)

12. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

13. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantic combina-
tion of congruence closure with solvable theories. Electronic Notes in Theoretical
Computer Science 198(2), 51–69 (2008)

14. Cremers, C.: The scyther tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Tech. Rep. HPL-2003-148, HP Laboratories Palo Alto (2003)

16. Filliâtre, J.C.: The WHY verification tool: Tutorial and Reference Manual Version
2.28 (2010), http://why.lri.fr

17. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

18. Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp.
685–710. Elsevier, Amsterdam (2001)

http://why.lri.fr

Computer-Aided Security Proofs for the Working Cryptographer 89

19. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. of
Comput. Secur. 6(1-2), 85–128 (1998)

20. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

21. Stump, A.: Proof checking technology for satisfiability modulo theories. Electr.
Notes Theor. Comput. Sci. 228, 121–133 (2009)

22. The Coq development team: The Coq Proof Assistant Reference Manual Version
8.3 (2010), http://coq.inria.fr

23. Zanella Béguelin, S.: Formal Certification of Game-Based Cryptographic Proofs.
Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris – Mines ParisTech
(2010)

24. Zanella Béguelin, S., Grégoire, B., Barthe, G., Olmedo, F.: Formally certifying the
security of digital signature schemes. In: 30th IEEE Symposium on Security and
Privacy, S&P 2009, pp. 237–250. IEEE Computer Society, Los Alamitos (2009)

A Input File for the Proof of Security of Hashed ElGamal

The following is an extract taken from the EasyCrypt input file corresponding to
the proof of IND-CPA security of Hashed ElGamal described in Section 2:
100 type group
101

102 cnst q : i n t
103 cnst g : group
104 cnst k : i n t
105 cnst ze ro : b i t s t r i n g {k}
106

107 type skey = in t
108 type pkey = group
109 type key = skey ∗ pkey
110 type message = b i t s t r i n g {k}
111 type c i phe r = group ∗ b i t s t r i n g {k}
112

113 op (∗) : group , group → group = mul
114 op (ˆ) : group , i n t → group = pow
115 op (ˆˆ) : b i t s t r i n g {k} , b i t s t r i n g {k} → b i t s t r i n g {k} = xor
116

117 axiom pow mul : ∀(x : in t , y : i n t) . { (gˆx)ˆy = gˆ(x∗y) }
118 axiom xor comm : ∀(x : b i t s t r i n g {k} , y : b i t s t r i n g {k }) . {(xˆˆy) = (yˆˆx)}
119

120 . . .
121

122 adversary A1(pk : pkey) : message ∗ message { group → message}
123 adversary A2(pk : pkey) : bool { group → message}
124

125 game INDCPA = {
126 var L : (group , b i t s t r i n g {k}) map
127 var LA : group l i s t
128

129 fun H(x : group) : message = {
130 var h : message = {0, 1}k;
131 i f (¬ i n dom (x , L)) { L [x] = h ; } ;
132 return L [x] ;
133 }
134

135 fun H A(x : group) : message = {
136 var m : message ;
137 LA = x : : LA;
138 m = H(x) ;
139 return m;

http://coq.inria.fr

90 G. Barthe et al.

140 }
141

142 . . .
143

144 abs A1 = A1 {H A}
145 abs A2 = A2 {H A}
146

147 fun Main () : bool = {
148 var sk : skey ;
149 var pk : pkey ;
150 var m0, m1 : message ;
151 var c : c i phe r ;
152 var b , b ’ : bool ;
153

154 L = empty map () ;
155 LA = [] ;
156 (sk , pk) = KG() ;
157 (m0,m1) = A1(pk) ;
158 b = {0 ,1} ;
159 c = Enc(pk , b ? m0 : m1) ;
160 b ’ = A2(c) ;
161 return (b = b ’) ;
162 }
163 }
164

165 game G1 = INDCPA
166 var y ’ : group
167 where Main = {
168 var m0, m1 : message ;
169 var c : c i phe r ;
170 var b , b ’ : bool ;
171 var x , y : i n t ;
172 var hy : message ;
173 var α : group ;
174

175 L = empty map () ;
176 LA = [] ;
177 x = [0 . . q−1] ; α = gˆx ;
178 y = [0 . . q−1] ; y ’ = αˆy ;
179 (m0,m1) = A1(α) ;
180 b = {0 ,1} ;
181 hy = H(y ’) ;
182 b ’ = A2((gˆy , hy ˆˆ (b ? m0 : m1))) ;
183 return (b = b ’) ;
184 }
185

186 equiv Fact1 : INDCPA. Main ∼ G1. Main : { t rue } =⇒ ={ r e s }
187 i n l i n e KG, Enc ; derandomize ;
188 auto inv ={L,LA} ;
189 pop〈2〉 1 ; repeat rnd ; t r i v i a l ; ;
190 save ; ;
191

192 claim Pr1 : INDCPA. Main [r e s] = G1 . Main [r e s] using Fact1
193 . . .

Optimal Verification of Operations on Dynamic Sets

Charalampos Papamanthou1, Roberto Tamassia1, and Nikos Triandopoulos2,3

1 Brown University, Providence RI, USA
2 RSA Laboratories, Cambridge MA, USA

3 Boston University, Boston MA, USA

Abstract. We study the design of protocols for set-operation verification, namely
the problem of cryptographically checking the correctness of outsourced set op-
erations performed by an untrusted server over a dynamic collection of sets that
are owned (and updated) by a trusted source. We present new authenticated data
structures that allow any entity to publicly verify a proof attesting the correctness
of primitive set operations such as intersection, union, subset and set difference.
Based on a novel extension of the security properties of bilinear-map accumu-
lators as well as on a primitive called accumulation tree, our protocols achieve
optimal verification and proof complexity (i.e., only proportional to the size of
the query parameters and the answer), as well as optimal update complexity (i.e.,
constant), while incurring no extra asymptotic space overhead. The proof con-
struction is also efficient, adding a logarithmic overhead to the computation of
the answer of a set-operation query. In contrast, existing schemes entail high com-
munication and verification costs or high storage costs. Applications of interest
include efficient verification of keyword search and database queries. The secu-
rity of our protocols is based on the bilinear q-strong Diffie-Hellman assumption.

1 Introduction

Providing integrity guarantees in third-party data management settings is an active area
of research, especially in view of the growth in usage of cloud computing. In such set-
tings, verifying the correctness of outsourced computations performed over remotely
stored data becomes a crucial property for the trustworthiness of cloud services. Such a
verification process should incur minimal overheads to the clients or otherwise the ben-
efits of computation outsourcing are dismissed; ideally, computations should be verified
without having to locally rerun them or to utilize too much extra cloud storage.

In this paper, we study the verification of outsourced operations on general sets
and consider the following problem. Assuming that a dynamic collection of m sets
S1, S2, . . . , Sm is remotely stored at an untrusted server, we wish to publicly verify ba-
sic operations on these sets, such as intersection, union and set difference. For example,
for an intersection query of t sets specified by indices 1 ≤ i1, i2, . . . , it ≤ m, we aim at
designing techniques that allow any client to cryptographically check the correctness of
the returned answer I = Si1 ∩Si2 ∩ . . .∩Sit . Moreover, we wish the verification of any
set operation to be operation-sensitive, meaning that the resulting complexity depends
only on the (description and outcome of the) operation, and not on the sizes of the in-
volved sets. That is, if δ = |I| is the answer size then we would like the verification cost

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 91–110, 2011.
c© International Association for Cryptologic Research 2011

92 C. Papamanthou, R. Tamassia, and N. Triandopoulos

to be proportional to t+δ, and independent of m or
∑

i |Si|; note that work at least pro-
portional to t + δ is needed to verify any such query’s answer. Applications of interest
include keyword search and database queries, which boil down to set operations.

Relation to verifiable computing. Recent works on verifiable computing [1,12,16]
achieve operation-sensitive verification of general functionalities, thus covering set op-
erations as a special case. Although such approaches clearly meet our goal with respect
to optimal verifiability, they are inherently inadequate to meet our other goals with
respect to public verifiability and dynamic updates, both important properties in the
context of outsourced data querying. Indeed, to outsource the computation as an en-
crypted circuit, the works in [1,12,16] make use of some secret information which is
also used by the verification algorithm, thus effectively supporting only one verifier;
instead, we seek for schemes that allow any client (knowing only a public key) to query
the set collection and verify the returned results. Also, the description of the circuit in
these works is fixed at the initialization of the scheme, thus effectively supporting no
updates in the outsourced data; instead, we seek for schemes that are dynamic. In other
scenarios, but still in the secret-key setting, protocols for general functionalities and
polynomial evaluation have recently been proposed in [11] and [6] respectively.

Aiming at both publicly verifiable and dynamic solutions, we study set-operation ver-
ification in the model of authenticated data structures (ADSs). A typical setting in this
model, usually referred to as the three-party model [36], involves protocols executed by
three participating entities. A trusted party, called source, owns a data structure (here,
a collection of sets) that is replicated along with some cryptographic information to
one or more untrusted parties, called servers. Accordingly, clients issue data-structure
queries to the servers and are able to verify the correctness of the returned answers,
based only on knowledge of public information which includes a public key and a di-
gest produced by the source (e.g., the root hash of a Merkle tree).1 Updates on the data
structure are performed by the source and appropriately propagated by the servers. Vari-
ations of this model include: (i) a two-party variant (e.g., [30]), where the source keeps
only a small state (i.e., only a digest) and performs both the updates/queries and the
verifications—this model is directly comparable to the model of verifiable computing;
(ii) the memory checking model [7], where read/write operations on an array of memory
cells is verified—however, the absence of the notion of proof computation in memory
checking (the server is just a storage device) as well as the feature of public verifiability
in authenticated data structures make the two models fundamentally different.2

Achieving operation-sensitive verification. In this work, we design authenticated data
structures for the verification of set operations in an operation-sensitive manner, where
the proof and verification complexity depends only on the description and outcome of
the operation and not on the size of the involved sets. Conceptually, this property is
similar to the property of super-efficient verification that has been studied in certifying
algorithms [21] and certification data structures [19,37], which is achieved as well as
in the context of verifiable computing [1,12,16], where an answer can be verified with
complexity asymptotically less than the complexity required to produce it. Whether the

1 Conveying the trust clients have in the source, the authentic digest is assumed to be publicly
available; in practice, a time-stamped and digitally signed digest is outsourced to the server.

2 Indeed, memory checking might require secret memory, e.g., as in the PRF construction in [7].

Optimal Verification of Operations on Dynamic Sets 93

above optimality property is achievable for set operations (while keeping storage linear)
was posed as an open problem in [23]. We close this problem in the affirmative.

All existing schemes for set-operation verification fall into the following two rather
straightforward and highly inefficient solutions. Either short proofs for the answer of
every possible set-operation query are precomputed allowing for optimal verification
at the client at the cost of exponential storage and update overheads at the source and
the server—an undesirable trade-off, as it is against storage outsourcing. Or integrity
proofs for all the elements of the sets involved in the query are given to the client who
locally verifies the query result: in this case the verification complexity can be linear in
the problem size—an undesirable feature, as it is against computation outsourcing.

We achieve optimal verification by departing from the above approaches as fol-
lows. We first reduce the problem of verifying set operations to the problem of veri-
fying the validity of some more primitive relations on sets, namely subset containment
and set disjointness. Then for each such primitive relation we employ a correspond-
ing cryptographic primitive to optimally verify its validity. In particular, we extend the
bilinear-map accumulator to optimally verify subset containment (Lemmas 1 and 4),
inspired by [32]. We then employ the extended Euclidean algorithm over polynomials
(Lemma 5) in combination with subset containment proofs to provide a novel optimal
verification test for set disjointness. The intuition behind our technique is that disjoint
sets can be represented by polynomials mutually indivisible, therefore there exist other
polynomials so that the sum of their pairwise products equals to one—this is the test
to be used in the proof. Still, transmitting (and processing) these polynomials is band-
width (and time) prohibitive and does not lead to operation-sensitive verification. Bilin-
earity properties, however, allow us to compress their coefficients in the exponent and,
yet, use them meaningfully, i.e., compute an internal product. This is why although a
conceptually simpler RSA accumulator [5] would yield a mathematically sound solu-
tion, a bilinear-map accumulator [28] is essential for achieving the desired complexity
goal.

We formally describe our protocols using an authenticated data structure scheme or
ADS scheme (Definition 1). An ADS scheme consists of algorithms {genkey, setup,
update, refresh, query, verify} such that: (i) genkey produces the secret and public
key of the system; (ii) on input a plain data structure D, setup initializes the authen-
ticated data structure auth(D); (iii) having access to the secret key, update computes
the updated digest of auth(D); (iv) without having access to the secret key, refresh up-
dates auth(D); (v) query computes cryptographic proofs Π(q) for answers α(q) to data
structure queries q; (vi) verify processes a proof Π and an answer α and either accepts
or rejects. Note that neither query nor verify have access to the secret key, thus modeling
computation outsourcing and public verifiability. An ADS scheme must satisfy certain
correctness and security properties (Definitions 2 and 3). We note that protocols in both
the three-party and the two-party models can be realized via an ADS scheme.

Our main result, Theorem 1, presents the first ADS scheme to achieve optimal ver-
ification of the set operations intersection, union, subset and set difference, as well as
optimal updates on the underlying collection of sets. Our scheme is proved secure under
the bilinear extension of the q-strong Diffie-Hellman assumption (see, e.g., [8]).

94 C. Papamanthou, R. Tamassia, and N. Triandopoulos

Table 1. Asymptotic access and group complexities of various ADS schemes for intersection
queries on t = O(1) sets in a collection of m sets with answer size δ. Here, M is the sum of
sizes of all the sets and 0 < ε < 1 is a constant. Also, all sizes of the intersected or updated sets
are Θ(n), |Π | denotes the size of the proof, and CR stands from “collision resistance”.

setup update, refresh query verify, |Π | assumption
[23,38] m + M log n + log m n + log m n + log m Generic CR

[26] m + M m + M n n Strong RSA

[29] mt + M mt 1 δ Discrete Log
this work m + M 1 n log3 n + mε log m δ Bilinear q-Strong DH

Complexity model. To explicitly measure complexity of various algorithms with
respect to number of primitive cryptographic operations, without considering the de-
pendency on the security parameter, we adopt the complexity model used in memory
checking [7,14], which has been only implicitly used in ADS literature. The access
complexity of an algorithm is defined as the number of memory accesses performed dur-
ing its execution on the authenticated data structure that is stored in an indexed memory
of n cells.3 E.g., a Merkle tree [24] has O(log n) update access complexity since the
update algorithm needs to read and write O(log n) memory cells of the authenticated
data structure, each cell storing exactly one hash value. The group complexity of a data
collection (e.g., proof or ADS group complexity) is defined as the number of elemen-
tary data objects (e.g., hash values or elements in Zp) contained in this collection. Note
that although the access and group complexities are respectively related to the time and
space complexities, the former are in principle smaller than the latter. This is because
time and space complexities are counting number of bits and are always functions of the
security parameter which, in turn, is always Ω(log n). Therefore time and space com-
plexities are always Ω(log n), whereas access and group complexities can be O(1).
Finally, whenever it is clear from the context, we omit the terms “access” and “group”.

Related work. The great majority of authenticated data structures involve the use of
cryptographic hashing [2,7,18,20,23,27,39] or other primitives [17,31,32] to hierarchi-
cally compute over the outsourced data one or more digests. Most of these schemes in-
cur verification costs that are proportional to the time spent to produce the query answer,
thus they are not operation sensitive. Some bandwidth-optimal and operation-sensitive
solutions for verification of various (e.g., range search) queries appear in [2,19].

Despite the fact that privacy-related problems for set operations have been exten-
sively studied in the cryptographic literature (e.g., [9,15]), existing work on the in-
tegrity dimension of set operations appears mostly in the database literature. In [23],
the importance of coming up with an operation-sensitive scheme is identified. In [26],
possibly the closest in context work to ours, set intersection, union and difference are
authenticated with linear costs. Similar bounds appear in [38]. In [29], a different ap-
proach is taken: In order to achieve operation-sensitivity, expensive pre-processing and

3 We use the term “access complexity” instead of the “query complexity” used in memory check-
ing [7,14] to avoid ambiguity when referring to algorithm query of the ADS scheme. We also
require that each memory cell can store up to O(poly(log n)) bits, a word size used in [7,14].

Optimal Verification of Operations on Dynamic Sets 95

exponential space are required (answers to all possible queries are signed). Finally,
related to our work are non-membership proofs, both for the RSA [22] and the bilinear-
map [3,13] accumulators. A comparison of our work with existing schemes appears in
Table 1.

2 Preliminaries

We denote with k the security parameter and with neg(k) a negligible function.4

The bilinear-map accumulator. Let G be a cyclic multiplicative group of prime order
p, generated by element g ∈ G. Let also G be a cyclic multiplicative group of the same
order p, such that there exists a pairing e : G × G → G with the following properties:
(i) Bilinearity: e(P a, Qb) = e(P, Q)ab for all P, Q ∈ G and a, b ∈ Zp; (ii) Non-
degeneracy: e(g, g)
= 1; (iii) Computability: For all P, Q ∈ G, e(P, Q) is efficiently
computable. We call (p, G,G, e, g) a tuple of bilinear pairing parameters, produced as
the output of a probabilistic polynomial-time algorithm that runs on input 1k.

In this setting, the bilinear-map accumulator [28] is an efficient way to provide short
proofs of membership for elements that belong to a set. Let s ∈ Z∗

p be a randomly
chosen value that constitutes the trapdoor in the scheme. The accumulator primitive
accumulates elements in Zp − {s}, outputting a value that is an element in G. For a set
of elements X in Zp − {s} the accumulation value acc(X) of X is defined as

acc(X) = g
∏

x∈X (x+s) .5

Value acc(X) can be constructed using X and g, gs, gs2
, . . . , gsq

(through polynomial
interpolation), where q ≥ |X |. Subject to acc(X) each element in X has a succinct
membership proof. More generally, the proof of subset containment of a set S ⊆ X—
for |S| = 1, this becomes a membership proof—is the witness (S, WS,X) where

WS,X = g
∏

x∈X−S (x+s) . (1)

Subset containment of S inX can be checked through relation e(WS,X , g
∏

x∈S(x+s)) ?=
e (acc(X), g) by any verifier with access only to public information. The security prop-
erty of the bilinear-map accumulator, namely that computing fake but verifiable subset
containment proofs is hard, can be proved using the bilinear q-strong Diffie-Hellman as-
sumption, which is slightly stronger than the q-strong Diffie-Hellman assumption [8].6

Assumption 1 (Bilinear q-strong Diffie-Hellman assumption). Let k be the security
parameter and (p, G,G, e, g) be a tuple of bilinear pairing parameters. Given the ele-
ments g, gs, . . . , gsq ∈ G for some s chosen at random from Z∗

p, where q = poly(k), no
probabilistic polynomial-time algorithm can output a pair (a, e(g, g)1/(a+s)) ∈ Zp×G,
except with negligible probability neg(k).

4 Function f : N → R is neg(k) if and only if for any nonzero polynomial p(k) there exits N
such that for all k > N it is f(k) < 1/p(k).

5 ∏
x∈Si

(x + s) is called characteristic polynomial of set Si in the literature (e.g., see [25]).
6 However, the plain q-strong Diffie-Hellman assumption [28] suffices to prove just the collision

resistance of the bilinear-map accumulator.

96 C. Papamanthou, R. Tamassia, and N. Triandopoulos

We next prove the security of subset witnesses by generalizing the proof in [28].
Subset witnesses also appeared (independent of our work but without a proof) in [10].

Lemma 1 (Subset containment). Let k be the security parameter and (p, G,G, e, g)
be a tuple of bilinear pairing parameters. Given the elements g, gs, . . . , gsq ∈ G for
some s chosen at random from Z∗

p and a set of elements X in Zp − {s} with q ≥
|X |, suppose there is a probabilistic polynomial-time algorithm that finds S and W
such that S � X and e(W, g

∏
x∈S(x+s)) = e(acc(X), g). Then there is a probabilistic

polynomial-time algorithm that breaks the bilinear q-strong Diffie-Hellman assumption.

Proof. Suppose there is a probabilistic polynomial-time algorithm that computes such a
set S = {y1, y2, . . . , y�} and a fake witness W. Let X = {x1, x2, . . . , xn} and yj /∈ X
for some 1 ≤ j ≤ �. This means that

e(W, g)
∏

y∈S (y+s) = e(g, g)(x1+s)(x2+s)...(xn+s) .

Note that (yj + s) does not divide (x1 + s)(x2 + s) . . . (xn + s). Therefore there exist
polynomial Q(s) (computable in polynomial time) of degree n− 1 and constant λ
= 0,
such that (x1 + s)(x2 + s) . . . (xn + s) = Q(s)(yj + s) + λ. Thus we have

e(W, g)(yj+s)
∏

1≤i�=j≤�(yi+s) = e(g, g)Q(s)(yj+s)+λ ⇒

e(g, g)
1

yj+s =
[
e(W, g)

∏
1≤i�=j≤�(yi+s)e(g, g)−Q(s)

]λ−1

.

Thus, this algorithm can break the bilinear q-strong Diffie-Hellman assumption. ��

Tools for polynomial arithmetic. Our solutions use (modulo p) polynomial arithmetic.
We next present two results that are extensively used in our techniques, contributing
to achieve the desired complexity goals. The first result on polynomial interpolation is
derived using an FFT algorithm (see Preparata and Sarwate [34]) that computes the DFT
in a finite field (e.g., Zp) for arbitrary n and performing O(n log n) field operations. We
note that an n-th root of unity is not required to exist in Zp for this algorithm to work.

Lemma 2 (Polynomial interpolation with FFT [34]). Let
∏n

i=1(xi +s) =
∑n

i=0 bis
i

be a degree-n polynomial. The coefficients bn
= 0, bn−1, . . . , b0 of the polynomial can
be computed with O(n log n) complexity, given x1, x2, . . . , xn.

Lemma 2 refers to an efficient process for computing the coefficients of a polyno-
mial, given its roots x1, x2, . . . , xn. In our construction, we make use of this process a
numbers of times, in particular, when, given some values x1, x2, . . . , xn to be accumu-
lated, an untrusted party needs to compute g(x1+s)(x2+s)...(xn+s) without having access
to s. However, access to g, gs, . . . , gsn

(part of the public key) is allowed, and therefore
computing the accumulation value boils down to a polynomial interpolation.

We next present a second result that will be used in our verification algorithms.
Related to certifying algorithms [21], this result states that if the vector of coeffi-
cients b = [bn, bn−1, . . . , b0] is claimed to be correct, then, given the vector of roots
x = [x1, x2, . . . , xn], with high probability, vector b can be certified to be correct with
complexity asymptotically less than O(n log n), i.e., without an FFT computation from
scratch. This is achieved with the following algorithm:

Optimal Verification of Operations on Dynamic Sets 97

Algorithm {accept, reject} ← certify(b, x, pk): The algorithm picks a random κ ∈
Z∗

p. If
∑n

i=0 biκ
i =
∏n

i=1(xi + κ), then the algorithm accepts, else it rejects.

Lemma 3 (Polynomial coefficients verification). Let b = [bn, bn−1, . . . , b0] and x =
[x1, x2, . . . , xn]. Algorithm certify(b, x, pk) has O(n) complexity. Also, if accept ←
certify(b, x, pk), then bn, bn−1, . . . , b0 are the coefficients of the polynomial

∏n
i=1(xi +

s) with probability Ω(1− neg(k)).

Authenticated data structure scheme. We now define our authenticated data structure
scheme (ADS scheme), as well as the correctness and security properties it must satisfy.

Definition 1 (ADS scheme). Let D be any data structure that supports queries q and
updates u. Let auth(D) denote the resulting authenticated data structure and d the
digest of the authenticated data structure, i.e., a constant-size description of D. An ADS
schemeA is a collection of the following six probabilistic polynomial-time algorithms:

1. {sk, pk} ← genkey(1k): On input the security parameter k, it outputs a secret key
sk and a public key pk;

2. {auth(D0), d0} ← setup(D0, sk, pk): On input a (plain) data structure D0 and
the secret and public keys, it computes the authenticated data structure auth(D0)
and the respective digest d0 of it;

3. {Dh+1, auth(Dh+1), dh+1, upd} ← update(u, Dh, auth(Dh), dh, sk, pk): On in-
put an update u on data structure Dh, the authenticated data structure auth(Dh),
the digest dh, and the secret and public keys, it outputs the updated data struc-
ture Dh+1 along with the updated authenticated data structure auth(Dh+1), the
updated digest dh+1 and some relative information upd;

4. {Dh+1, auth(Dh+1), dh+1} ← refresh(u, Dh, auth(Dh), dh, upd, pk): On input
an update u on data structure Dh, the authenticated data structure auth(Dh), the
digest dh, relative information upd (output by update), and the public key, it out-
puts the updated data structure Dh+1 along with the updated authenticated data
structure auth(Dh+1) and the updated digest dh+1;

5. {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk): On input a query q on data struc-
ture Dh, the authenticated data structure auth(Dh) and the public key, it returns
the answer α(q) to the query, along with a proof Π(q);

6. {accept, reject} ← verify(q, α, Π, dh, pk): On input a query q, an answer α, a
proof Π , a digest dh and the public key, it outputs either accept or reject.

Let {accept, reject} ← check(q, α, Dh) be an algorithm that decides whether α is
a correct answer for query q on data structure Dh (check is not part of the definition of
an ADS scheme). There are two properties that an ADS scheme should satisfy, namely
correctness and security (intuition follows from signature schemes definitions).

Definition 2 (Correctness). LetASC beanADSscheme{genkey,setup,update, refresh,
query, verify}. We say that the ADS scheme ASC is correct if, for all k ∈ N, for all
{sk, pk}outputbyalgorithmgenkey, forallDh, auth(Dh), dh outputbyone invocation of
setup followed by polynomially-many invocations of refresh, where h ≥ 0, for all queries
q and for all Π(q), α(q) output by query(q, Dh, auth(Dh), pk), with all but negligible
probability, whenever algorithm check(q, α(q), Dh) outputs accept, so does algorithm
verify(q, Π(q), α(q), dh, pk).

98 C. Papamanthou, R. Tamassia, and N. Triandopoulos

Definition 3 (Security). Let ASC be an ADS scheme {genkey, setup, update, refresh,
query, verify}, k be the security parameter, ν(k) be a negligible function and {sk, pk} ←
genkey(1k). Let also Adv be a probabilistic polynomial-time adversary that is only
given pk. The adversary has unlimited access to all algorithms of ASC, except for al-
gorithms setup and update to which he has only oracle access. The adversary picks
an initial state of the data structure D0 and computes D0, auth(D0), d0 through oracle
access to algorithm setup. Then, for i = 0, . . . , h = poly(k), Adv issues an update
ui in the data structure Di and computes Di+1, auth(Di+1) and di+1 through oracle
access to algorithm update. Finally the adversary picks an index 0 ≤ t ≤ h + 1, and
computes a query q, an answer α and a proof Π . We say that the ADS scheme ASC
is secure if for all k ∈ N, for all {sk, pk} output by algorithm genkey, and for any
probabilistic polynomial-time adversary Adv it holds that

Pr
[{q, Π, α, t} ← Adv(1k, pk); accept← verify(q, α, Π, dt, pk);

reject← check(q, α, Dt).

]
≤ ν(k) . (2)

3 Construction and Algorithms

In this section we present an ADS scheme for set-operation verification. The underlying
data structure for which we design our ADS scheme is called sets collection, and can
be viewed as a generalization of the inverted index [4] data structure.

Sets collection. The sets collection data structure consists of m sets, denoted with
S1, S2, . . . , Sm, each containing elements from a universe U . Without loss of gener-
ality we assume that the universe U is the set of nonnegative integers in the interval
[m +1, p− 1]−{s},7 where p is k-bit prime, m is the number of the sets in our collec-
tion that has bit size O(log k), k is the security parameter and s is the trapdoor of the
scheme (see algorithm genkey). A set Si does not contain duplicate elements, however
an element x ∈ U can appear in more than one set. Each set is sorted and the total space
needed is O(m + M), where M is the sum of the sizes of the sets.

In order to get some intuition, we can view the sets collection as an inverted index. In
this view, the elements are pointers to documents and each set Si corresponds to a term
wi in the dictionary, containing the pointers to documents where term wi appears. In
this case, m is the number of terms being indexed, which is typically in the hundreds of
thousands, while M , bounded from below by the number of documents being indexed,
is typically in the billions. Thus, the more general terms “elements” and “sets” in a sets
collection can be instantiated to the more specific “documents” and “terms”.

The operations supported by the sets collection data structure consist of updates and
queries. An update is either an insertion of an element into a set or a deletion of an
element from a set. An update on a set of size n takes O(log n) time. For simplicity,
we assume that the number m of sets does not change after updates. A query is one
of the following standard set operations: (i) Intersection: Given indices i1, i2, . . . , it,
return set I = Si1 ∩ Si2 ∩ . . . ∩ Sit ; (ii) Union: Given indices i1, i2, . . . , it, return set
U = Si1 ∪ Si2 ∪ . . . ∪ Sit ; (iii) Subset query: Given indices i and j, return true if

7 This choice simplifies the exposition; however, by using some collision-resistant hash function,
universe U can be set to Zp − {s}.

Optimal Verification of Operations on Dynamic Sets 99

Si ⊆ Sj and false otherwise; (iv) Set difference: Given indices i and j, return set
D = Si − Sj . For the rest of the paper, we denote with δ the size of the answer to a
query operation, i.e., δ is equal to the size of I, U, or D. For a subset query, δ is O(1).

We next detail the design of an ADS scheme ASC for the sets collection data struc-
ture. This scheme provides protocols for verifying the integrity of the answers to set
operations in a dynamic setting where sets evolve over time through updates. The goal
is to achieve optimality in the communication and verification complexity: a query with
t parameters and answer size δ should be verified with O(t + δ) complexity, and at the
same time query and update algorithms should be efficient as well.

3.1 Setup and Updates

We describe an ADS scheme ASC = {genkey, setup, update, refresh, query, verify}
for the sets collection data structure and we prove that its algorithms satisfy the com-
plexities of Table 1. We begin with the algorithms that are related to the setup and the
updates of the authenticated data structure.

Algorithm {sk, pk} ← genkey(1k): Bilinear pairing parameters (p, G,G, e, g) are
picked and an element s ∈ Z∗

p is chosen at random. Subsequently, an one-to-one func-
tion h(·) : G → Z∗

p is used. This function simply outputs the bit description of the
elements of G according to some canonical representation of G. Finally the algorithm
outputs sk = s and pk = {h(·), p, G,G, e, g,g}, where vector g contains values

g =
[
gs, gs2

, . . . , gsq
]

,

where q ≥ max{m, maxi=1,...,m{|Si|}}. The algorithm has O(1) access complexity.

Algorithm {D0, auth(D0), d0} ← setup(D0, sk, pk): Let D0 be our initial data struc-
ture, i.e., the one representing sets S1, S2, . . . , Sm. The authenticated data structure
auth(D0) is built as follows. First, for each set Si its accumulation value acc(Si) =
g
∏

x∈Si
(x+s) is computed (see Section 2). Subsequently, the algorithm picks a con-

stant 0 < ε < 1. Let T be a tree that has l = �1/ε� levels and m leaves, numbered
1, 2, . . . , m, where m is the number of the sets of our sets collection data structure.
Since T is a constant-height tree, the degree of any internal node of it is O(mε). We
call such a tree an accumulation tree, which was originally introduced (combined with
different cryptography) in [32]. For each node of the tree v, the algorithm recursively
computes the digest d(v) of v as follows. If v is a leaf corresponding to set Si, where
1 ≤ i ≤ m, the algorithm sets d(v) = acc(Si)(i+s); here, raising value acc(Si) to
exponent i + s, under the constraint that i ≤ m, is done to also accumulate the index i
of set Si (and thus prove that acc(Si) refers to Si). If node v is not a leaf, then

d(v) = g
∏

w∈N(v)(h(d(w)+s)) , (3)

where N (v) denotes the set of children of node v. The algorithm outputs all the sets
Si as the data structure D0, and all the accumulation values acc(Si) for 1 ≤ i ≤ m,
the tree T and all the digests d(v) for all v ∈ T as the authenticated data structure
auth(D0). Finally, the algorithm sets d0 = d(r) where r is the root of T , i.e., d0 is

100 C. Papamanthou, R. Tamassia, and N. Triandopoulos

the digest of the authenticated data structure (defined similarly as in a Merkle tree).8

The access complexity of the algorithm is O(m + M) (for postorder traversal of T and
computation of acc(Si)), where M =

∑m
i=1 |Si|. The group complexity of auth(D0)

is also O(m + M) since the algorithm stores one digest per node of T , T has O(m)
nodes and there are M elements contained in the sets, as part of auth(D0).
Algorithm {Dh+1, auth(Dh+1), dh+1, upd} ← update(u, Dh, auth(Dh), dh, sk, pk):
We consider the update “insert element x ∈ U into set Si” (note that the same algo-
rithm could be used for element deletions). Let v0 be the leaf node of T corresponding
to set Si. Let v0, v1, . . . , vl be the path in T from node v0 to the root of the tree, where
l = �1/ε�. The algorithm initially sets d′(v0) = acc(Si)(x+s), i.e., it updates the ac-
cumulation value that corresponds to the updated set (note that in the case where x is
deleted from Si, the algorithm sets d′(v0) = acc(Si)(x+s)−1

). Then the algorithm sets

d′(vj) = d(vj)(h(d′(vj−1))+s)(h(d(vj−1))+s)−1
for j = 1, . . . , l , (4)

where d(vj−1) is the current digest of vj−1 and d′(vj−1) is the updated digest of vj−1.9

All these newly computed values (i.e., the new digests) are stored by the algorithm.
The algorithm then outputs the new digests d′(vj−1), j = 1, . . . , l, along the path from
the updated set to the root of the tree, as part of information upd. Information upd
also includes x and d′(vl). The algorithm also sets dh+1 = d′(vl), i.e., the updated
digest is the newly computed digest of the root of T . Finally the new authenticated
data structure auth(Dh+1) is computed as follows: in the current authenticated data
structure auth(Dh) that is input of the algorithm, the values d(vj−1) are overwritten
with the new values d′(vj−1) (j = 1, . . . , l), and the resulting structure is included in
the output of the algorithm. The number of operations performed is proportional to 1/ε,
therefore the complexity of the algorithm is O(1).
Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u, Dh, auth(Dh), dh, upd, pk): We
consider the update “insert element x ∈ U into set Si”. Let v0 be the node of T corre-
sponding to set Si. Let v0, v1, . . . , vl be the path in T from node v0 to the root of the
tree. Using the information upd, the algorithm sets d(vj) = d′(vj) for j = 0, . . . , l, i.e.,
it updates the digests that correspond to the updated path. Finally, it outputs the updated
sets collection as Dh+1, the updated digests d(vj) (along with the ones that belong to
the nodes that are not updated) as auth(Dh+1) and d′(vl) (contained in upd) as dh+1.10

The algorithm has O(1) complexity as the number of performed operations is O(1/ε).

3.2 Authenticity of Accumulation Values

So far we have described the authenticated data structure auth(Dh) that our ADS
schemeASC will use for set-operation verifications. Overall, auth(Dh) comprises a set

8 Digest d(r) is a “secure” succinct description of the set collection data structure. Namely, the
accumulation tree protects the integrity of values acc(Si), 1 ≤ i ≤ m, and each accumulation
value acc(Si) protects the integrity of the elements contained in set Si.

9 Note that these update computations are efficient because update has access to secret key s.
10 Note that information upd is not required for the execution of refresh, but is rather used for

efficiency. Without access to upd, algorithm refresh could compute the updated values d(vj)
using polynomial interpolation, which would have O(mε log m) complexity (see Lemma 2).

Optimal Verification of Operations on Dynamic Sets 101

of m accumulation values acc(Si), one for each set Si, i = 1, . . . , m, and a set of O(m)
digests d(v), one for each internal node v of the accumulation tree T . Our proof con-
struction and verification protocols for set operations (described in Section 3.3) make
use of the accumulation values acc(Si) (subject to which subset-containment witnesses
can be defined), and therefore it is required that the authenticity of each such value can
be verified. Tree T serves this exact role by providing short correctness proofs for each
value acc(Si) stored at leaf i of T , this time subject to the (global) digest dh stored at
the root of T . We next provide the details related to proving the authenticity of acc(Si).

The correctness proof Πi of accumulation value acc(Si), 1 ≤ i ≤ m, is a collection
of O(1) bilinear-map accumulator witnesses (as defined in Section 2). In particular, Πi

is set to be the ordered sequence Π = (π1, π2, . . . , πl), where πj is the pair of the
digest of node vj−1 and a witness that authenticates vj−1, subject to node vj , in the
path v0, v1, . . . , vl defined by leaf v0 storing accumulation value acc(Si) and the root
vl of T . Conveniently, πj is defined as πj = (βj , γj), where

βj = d(vj−1) and γj = Wvj−1(vj) = g
∏

w∈N(vj)−{vj−1}(h(d(w))+s)
. (5)

Note that πj is the witness for a subset of one element, namely h(d(vj−1)) (recall,
d(v0) = acc(Si)(i+s)). Clearly, pair πj has group complexity O(1) and can be con-
structed using polynomial interpolation with O(mε log m) complexity, by Lemma 2
and since vj has degree O(mε). Since Πi consists of O(1) such pairs, we conclude that
the proof Πi for an accumulation value acc(Si) can be constructed with O(mε log m)
complexity and has O(1) group complexity. The following algorithms queryTree and
verifyTree are used to formally describe the construction and respectively the verifica-
tion of such correctness proofs. Similar methods have been described in [32].

Algorithm {Πi, αi} ← queryTree(i, Dh, auth(Dh), pk): Let v0, v1, . . . , vl be the path
of T from the node storing acc(Si) to the root of T . The algorithm computes Πi by
setting Πi = (π1, π2, . . . , πl), where πj = (d(vj−1), Wvj−1(vj)) and Wvj−1(vj) is given
in Equation 5 and computed by Lemma 2. Finally, the algorithm sets αi = acc(Si).
Algorithm {accept, reject} ← verifyTree(i, αi, Πi, dh, pk): Let the proof be Πi =
(π1, π2, . . . , πl), where πj = (βj , γj). The algorithm outputs reject if one of the
following is true: (i) e(β1, g)
= e(αi, g

igs); or (ii) e (βj , g)
= e
(
γj−1, g

h(βj−1)gs
)

for some 2 ≤ j ≤ l; or (iii) e(dh, g)
= e
(
γl, g

h(βl)gs
)
. Otherwise, it outputs accept.

We finally provide some complexity and security properties that hold for the correct-
ness proofs of the accumulated values. The following result is used as a building block
to derive the complexity of our scheme and prove its security (Theorem 1).

Lemma 4. Algorithm queryTree runs with O(mε log m) access complexity and outputs
a proof of O(1) group complexity. Moreover algorithm verifyTree has O(1) access
complexity. Finally, for any adversarially chosen proof Πi (1 ≤ i ≤ m), if accept←
verifyTree(i, αi, Πi, dh, pk), then αi = acc(Si) with probability Ω(1− neg(k)).

3.3 Queries and Verification

With the correctness proofs of accumulation values at hand, we complete the description
of our scheme ASC by presenting the algorithms that are related to the construction

102 C. Papamanthou, R. Tamassia, and N. Triandopoulos

and verification of proofs attesting the correctness of set operations. These proofs are
efficiently constructed using the authenticated data structure presented earlier, and they
have optimal size O(t + δ), where t and δ are the sizes of the query parameters and the
answer. In the rest of the section, we focus on the detailed description of the algorithms
for an intersection and a union query, but due to space limitations, we omit the details of
the subset and the set difference query. We note, however, that the treatment of the subset
and set difference queries is analogous to that of the intersection and union queries.

The parameters of an intersection or a union query are t indices i1, i2, . . . , it, with
1 ≤ t ≤ m. To simplify the notation, we assume without loss of generality that these
indices are 1, 2, . . . , t. Let ni denote the size of set Si (1 ≤ i ≤ t) and let N =

∑t
i=1 ni.

Note that the size δ of the intersection or union is always O(N) and that operations can
be performed with O(N) complexity, by using a generalized merge.

Intersection query. Let I = S1 ∩ S2 ∩ . . . ∩ St = {y1, y2, . . . , yδ}. We express the
correctness of the set intersection operation by means of the following two conditions:

Subset condition: I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ St ; (6)

Completeness condition: (S1 − I) ∩ (S2 − I) ∩ . . . ∩ (St − I) = Ø . (7)

The completeness condition in Equation 7 is necessary since set I must contain all
the common elements. Given an intersection I, and for every set Sj , 1 ≤ i ≤ t, we
define the degree-nj polynomial

Pj(s) =
∏

x∈Sj−I

(x + s) . (8)

The following result is based on the extended Euclidean algorithm over polynomials
and provides our core verification test for checking the correctness of set intersection.

Lemma 5. Set I is the intersection of sets S1, S2, . . . , St if and only if there exist poly-
nomials q1(s), q2(s), . . . , qt(s) such that q1(s)P1(s)+q2(s)P2(s)+ . . .+qt(s)Pt(s) =
1, where Pj(s), j = 1, . . . , t, are defined in Equation 8. Moreover, the polynomials
q1(s), q2(s), . . . , qt(s) can be computed with O(N log2 N log log N) complexity.

Using Lemmas 2 and 5 we next construct efficient proofs for both conditions in
Equations 6 and 7. In turn, the proofs are directly used to define the algorithms query
and verify of our ADS schemeASC for intersection queries.

Proof of subset condition. For each set Sj , 1 ≤ j ≤ t, the subset witnesses WI,j =
gPj(s) = g

∏
x∈Sj−I(x+s)

are computed, each with O(nj log nj) complexity, by Lemma 2.
(Recall, WI,j serves as a proof that I is a subset of set Sj .) Thus, the total complexity
for computing all t required subset witnesses is O(N log N), where N =

∑t
i=1 ni.11

Proof of completeness condition. For each qj(s), 1 ≤ j ≤ t, as in Lemma 5 satisfying
q1(s)P1(s) + q2(s)P2(s) + . . . + qt(s)Pt(s) = 1, the completeness witnesses FI,j =
gqj(s) are computed, by Lemma 5 with O(N log2 N log log N) complexity.

11 This is because
∑

nj log nj ≤ log N
∑

nj = N log N .

Optimal Verification of Operations on Dynamic Sets 103

Algorithm {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Intersection): Query q con-
sists of t indices {1, 2, . . . , t}, asking for the intersection I of S1, S2, . . . , St. Let I =
{y1, y2, . . . , yδ}. Then α(q) = I, and the proof Π(q) consists of the following parts.

1. Coefficients bδ, bδ−1, . . . , b0 of polynomial (y1 + s)(y2 + s) . . . (yδ + s) that is
associated with the intersection I = {y1, y2, . . . , yδ}. These are computed with
O(δ log δ) complexity (Lemma 2) and they have O(δ) group complexity.

2. Accumulation values acc(Sj), j = 1, . . . , t, which are associated with sets Sj ,
along with their respective correctness proofs Πj . These are computed by calling
algorithm queryTree(j, Dh, auth(Dh), pk), for j = 1, . . . , t, with O(tmε log m)
total complexity and they have O(t) total group complexity (Lemma 4).

3. Subset witnesses WI,j , j = 1, . . . , t, which are associated with sets Sj and inter-
section I (see proof of subset condition). These are computed with O(N log N)
complexity and have O(t) total group complexity (Lemma 2).

4. Completeness witnesses FI,j , j = 1, . . . , t, which are associated with polynomials
qj(s) of Lemma 5 (see proof of completeness condition). These are computed with
O(N log2 N log log N) complexity and have O(t) group complexity (Lemma 5).

Algorithm {accept, reject} ← verify(q, α, Π, dh, pk) (Intersection): Verifying the
result of an intersection query includes the following steps.

1. First, the algorithm uses the coefficients b = [bδ, bδ−1, . . . , b0] and the answer
α(q) = {y1, y2, . . . , yδ} as an input to algorithm certify(b, α(q), pk), in order to
certify the validity of bδ, bδ−1, . . . , b0. If certify outputs reject, the algorithm also
outputs reject.12 This step has O(δ) complexity (Lemma 3).

2. Subsequently, the algorithm uses the proof Πj to verify the correctness of acc(Sj),
by running algorithm verifyTree(j, acc(Sj), Πj , dh, pk) for j = 1, . . . , t. If, for
some j, verifyTree running on acc(Sj) outputs reject, the algorithm also outputs
reject. This step has O(t) complexity (Lemma 4).

3. Next, the algorithm checks the subset condition:13

e

(
δ∏

i=0

(
gsi
)bi

, WI,j

)
?= e (acc(Sj), g) , for j = 1, . . . , t. (9)

If, for some j, the above check on subset witness WI,j fails, the algorithm outputs
reject. This step has O(t + δ) complexity.

4. Finally, the algorithm checks the completeness condition:

t∏
j=1

e (WI,j , FI,j)
?= e(g, g) . (10)

If the above check on the completeness witnesses FI,j , 1 ≤ j ≤ t, fails, the algo-
rithm outputs reject. Or, if this relation holds, the algorithm outputs accept, i.e.,
it accepts α(q) as the correct intersection. This step has O(t) complexity.

12 Algorithm certify is used to achieve optimal verification and avoid an O(δ log δ) FFT compu-
tation from scratch.

13 Group element
∏δ

i=0 gsibi = g(y1+s)(y2+s)...(yδ+s) is computed once with O(δ) complexity.

104 C. Papamanthou, R. Tamassia, and N. Triandopoulos

Note that for Equation 10, it holds
∏t

j=1 e (WI,j , FI,j) = e(g, g)
∑ t

j=1 qj(s)Pj(s) =
e(g, g) when all the subset witnesses WI,j , all the completeness witnesses FI,j and all
the sets accumulation values acc(Sj) have been computed honestly, since q1(s)P1(s)+
q2(s)P2(s)+ . . .+ qt(s)Pt(s) = 1. This is a required condition for proving the correct-
ness of our ADS scheme, as defined in Definition 2. We continue with the description
of algorithms query and verify for the union query.

Union query. Let U = S1∪S2∪. . .∪St = {y1, y2, . . . , yδ}. We express the correctness
of the set union operation by means of the following two conditions:

Membership condition: ∀yi ∈ U ∃j ∈ {1, 2, . . . , t} : yi ∈ Sj ; (11)

Superset condition: (U ⊇ S1) ∧ (U ⊇ S2) ∧ . . . ∧ (U ⊇ St) . (12)

The superset condition in Equation 12 is necessary since set U must exclude none of
the elements in sets S1, S2, . . . , St. We formally describe algorithms query and verify
of our ADS scheme ASC for union queries.

Algorithm {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Union): Query q asks for
the union U of t sets S1, S2, . . . , St. Let U = {y1, y2, . . . , yδ}. Then α(q) = U
and the proof Π(q) consists of the following parts. (1) Coefficients bδ, bδ−1, . . . , b0

of polynomial (y1 + s)(y2 + s) . . . (yδ + s) that is associated with the union U =
{y1, y2, . . . , yδ}. (2) Accumulation values acc(Sj), j = 1, . . . , t, which are associated
with sets Sj , along with their respective correctness proofs Πj , both output of algorithm
queryTree(j, Dh, auth(Dh), pk). (3) Membership witnesses Wyi,Sk

of yi, i = 1, . . . , δ
(see Equation 1), which prove that yi belongs to some set Sk, 1 ≤ k ≤ t, and which
are computed with O(N log N) total complexity and have O(δ) total group complexity
(Lemma 2). (4) Subset witnesses WSj ,U, j = 1, . . . , t, which are associated with sets Si

and union U and prove that U is a superset of Sj , 1 ≤ k ≤ t, and which are computed
with O(N log N) total complexity and have O(t) total group complexity (Lemma 2).

Algorithm {accept, reject} ← verify(q, α, Π, dh, pk): (Union): Verifying the re-
sult of a union query includes the following steps. (1) First, the algorithm uses b =
[bδ, bδ−1, . . . , b0] and the answer U = α(q) = {y1, y2, . . . , yδ} as an input to algo-
rithm certify(b, α(q), pk), in order to certify the validity of bδ, bδ−1, . . . , b0. (2) Sub-
sequently, the algorithm uses the proofs Πj to verify the correctness of acc(Sj), by
using algorithm verifyTree(j, acc(Sj), Πj , dh, pk) for j = 1, . . . , t. If the verification
fails for at least one of acc(Sj), the algorithm outputs reject. (3) Next, the algorithm
verifies that each element yi, i = 1, . . . , δ, of the reported union belongs to some set
Sk, for some 1 ≤ k ≤ t (O(δ) complexity). This is done by checking that relation
e(Wyi,Sk

, gyigs) = e(acc(Sk), g) holds for all i = 1, . . . , δ; otherwise the algorithm
outputs reject. (4) Finally, the algorithm verifies that all sets specified by the query
are subsets of the union, by checking the following conditions:

e
(
WSj ,U, acc(Sj)

) ?= e

(
δ∏

i=0

(
gsi
)bi

, g

)
, for j = 1, . . . , t.

If any of the above checks fails, the algorithm outputs reject, otherwise, it outputs
accept, i.e., U is accepted as the correct union.

Optimal Verification of Operations on Dynamic Sets 105

Subset and set difference query. For a subset query (positive or negative), we use the
property Si ⊆ Sj ⇔ ∀y ∈ Si, y ∈ Sj . For a set difference query we use the property

D = Si − Sj ⇔ ∃F : F ∪ D = Si ∧ F = Si ∩ Sj .

The above conditions can both be checked in an operation-sensitive manner using the
techniques we have presented before. We now give the main result in our work.

Theorem 1. Consider a collection of m sets S1, . . . , Sm and let M =
∑m

i=1 |Si| and
0 < ε < 1. For a query operation involving t sets, let N be the sum of the sizes of
the involved sets, and δ be the answer size. Then there exists an ADS scheme ASC =
{genkey, setup, update, refresh, query, verify} for a sets collection data structure D
with the following properties: (1)ASC is correct and secure according to Definitions 2
and 3 and based on the bilinear q-strong Diffie-Hellman assumption; (2) The access
complexity of algorithm (i) genkey is O(1); (ii) setup is O(m + M); (iii) update
is O(1) outputting information upd of O(1) group complexity; (iv) refresh is O(1);
(3) For all queries q (intersection/union/subset/difference), constructing the proof with
algorithm query has O(N log2 N log log N + tmε log m) access complexity, algorithm
verify has O(t+δ) access complexity and the proof Π(q) has O(t+δ) group complexity;
(4) The group complexity of the authenticated data structure auth(D) is O(m + M).

4 Security, Protocols and Applications

In this section we give an overview of the security analysis of our ADS scheme, describe
how it can be employed to provide verification protocols in the three-party [36] and
two-party [30] authentication models, and finally discuss some concrete applications.

Security proof sketch. We provide some key elements of the security of our verifica-
tion protocols focusing on set intersection queries. The security proofs of the other set
operations share similar ideas. Let D0 be a sets collection data structure consisting of m
sets S1, S2, . . . , Sm,14 and consider our ADS scheme ASC = {genkey, setup, update,
refresh, query, verify}. Let k be the security parameter and let {sk, pk} ← genkey(1k).
The adversary is given the public key pk, namely {h(·), p, G,G, e, g, gs, . . . , gsq}, and
unlimited access to all the algorithms ofASC, except for setup and update to which he
only has oracle access. The adversary initially outputs the authenticated data structure
auth(D0) and the digest d0, through an oracle call to algorithm setup. Then the adver-
sary picks a polynomial number of updates ui (e.g., insertion of an element x into a
set Sr) and outputs the data structure Di, the authenticated data structure auth(Di)
and the digest di through oracle access to update. Then he picks a set of indices
q = {1, 2, . . . , t} (wlog), all between 1 and m and outputs a proof Π(q) and an an-
swer I
= I = S1 ∩ S2 ∩ . . . ∩ St which is rejected by check as incorrect. Suppose
the answer α(q) contains d elements. The proof Π(q) contains (i) Some coefficients

14 Note here that since the sets are picked by the adversary, we have to make sure that no element
in any set is equal to s, the trapdoor of the scheme (see definition of the bilinear-map accumu-
lator domain). However, this event occurs with negligible probability since the sizes of the sets
are polynomially-bounded and s is chosen at random from a domain of exponential size.

106 C. Papamanthou, R. Tamassia, and N. Triandopoulos

b0, b1, . . . , bd; (ii) Some accumulation values accj with some respective correctness
proofs Πj , for j = 1, . . . , t; (iii) Some subset witnesses Wj with some completeness
witnesses Fj , for j = 1, . . . , t (this is, what algorithm verify expects for input).

Suppose verify accepts. Then: (i) By Lemma 3, b0, b1, . . . , bd are indeed the coef-
ficients of the polynomial

∏
x∈I(x + s), except with negligible probability; (ii) By

Lemma 4, values accj are indeed the accumulation values of sets Sj , except with
negligible probability; (iii) By Lemma 1, values Wj are indeed the subset witnesses
for set I (with reference to Sj), i.e., Wj = gPj(s), except with negligible probabil-
ity; (iv) However, P1(s), P2(s), . . . , Pt(s) are not coprime since I is incorrect and
therefore I cannot contain all the elements of the intersection. Thus the polynomials
P1(s), P2(s), . . . , Pt(s) (Equation 8) have at least one common factor, say (r + s) and
it holds that Pj(s) = (r + s)Qj(s) for some polynomials Qj(s) (computable in poly-
nomial time), for all j = 1, . . . , t. By the verification of Equation 10 (completeness
condition), we have

e(g, g) =
t∏

j=1

e (Wj , Fj) =
t∏

j=1

e
(
gPj(s), Fj

)
=

t∏
j=1

e
(
g(r+s)Qj(s), Fj

)

=
t∏

j=1

e
(
gQj(s), Fj

)(r+s)

=

⎛⎝ t∏
j=1

e
(
gQj(s), Fj

)⎞⎠(r+s)

.

Therefore we can derive an (r + s)-th root of e(g, g) as

e(g, g)
1

r+s =
t∏

j=1

e
(
gQj(s), Fj

)
.

This means that if the intersection I is incorrect and all the verification tests are satis-
fied, we can derive a polynomial-time algorithm that outputs a bilinear q-strong Diffie-
Hellman challenge (r, e(g, g)1/(r+s)) for an element r that is a common factor of the
polynomials P1(s), P2(s), . . . , Pt(s), which by Assumption 1 happens with probability
neg(k). This concludes an ouline of the proof strategy for the case of intersection.

Protocols. As mentioned in the introduction, our ADS scheme ASC can be used by a
verification protocol in the three-party model [36]. Here, a trusted entity, called source,
owns a sets collection data structure Dh, but desires to outsource query answering, in
a trustworthy (verifiable) way. The source runs genkey and setup and outputs the au-
thenticated data structure auth(Dh) along with the digest dh. The source subsequently
signs the digest dh, and it outsources auth(Dh), Dh, the digest dh and its signature to
some untrusted entities, called servers. On input a data structure query q (e.g., an in-
tersection query) sent by clients, the servers use auth(Dh) and Dh to compute proofs
Π(q), by running algorithm query, and they return to the clients Π(q) and the signature
on dh along with the answer a(q) to q. Clients can verify these proofs Π(q) by running
algorithm verify (since they have access to the signature of dh, they can verify that dh

is authentic). When there is an update in the data structure (issued by the source), the
source uses algorithm update to produce the new digest d′h to be used in next verifica-
tions, while the servers update the authenticated data structure through refresh.

Optimal Verification of Operations on Dynamic Sets 107

Additionally, our ADS scheme ASC can also be used by a non-interactive verifica-
tion protocol in the two-party model [30]. In this case, the source and the client coincide,
i.e., the client issues both the updates and the queries, and it is required to keep only
constant state, i.e., the digest of the authenticated data structure. Whenever there is an
update by the client, the client retrieves a verifiable, constant-size portion of the authen-
ticated data structure that is used for locally performing the update and for computing
the new local state, i.e., the new digest. A non-interactive two-party protocol that uses
an ADS scheme for a data structure D is directly comparable with the recent protocols
for verifiable computing [1,12,16] for the functionalities offered by the data structure
D, e.g., computation of intersection, union, etc. Due to space limitations, we defer the
detailed description of these protocols to the full version of the paper.

Applications. First of all, our scheme can be used to verify keyword-search queries
implemented by the inverted index data structure [4]: Each term in the dictionary cor-
responds to a set in our sets collection data structure which contains all the documents
that include this term. A usual text query for terms m1 and m2 returns those documents
that are included in both the sets that are represented by m1 and m2, i.e., their inter-
section. Moreover, the derived authenticated inverted index can be efficiently updated
as well. However, sometimes in keyword searches (e.g., keyword searches in the email
inbox) it is desirable to introduce a “second” dimension: For example, a query could be
“return emails that contain terms m1 and m2 and which were received between time t1
and t2”, where t1 < t2. We call this variant a timestamped keyword-search. One solu-
tion for verifying such queries could be to embed a timestamp in the documents (e.g.,
each email message) and have the client do the filtering locally, after he has verified—
using our scheme—the intersection of the sets that correspond to terms m1 and m2.
However, this approach is not operation-sensitive: The intersection can be bigger than
the set output after the local filtering, making this solution inefficient. To overcome this
inefficiency, we can use a segment-tree data structure [35], verifying in this way times-
tamped keyword-search queries efficiently with O(t log r + δ) complexity, where r is
the total number of timestamps we are supporting. This involves building a binary tree
T on top of sets of messages sent at certain timestamps and requiring each internal node
of T be the union of messages stored in its children. Finally, our method can be used for
verifying equi-join queries over relational tables, which boil down to set intersections.

5 Conclusion

In this paper, we presented an authenticated data structure for the optimal verification
of set operations. The achieved efficiency is mainly due to new, extended security prop-
erties of accumulators based on pairing-based cryptography. Our solution provides two
important properties, namely public verifiability and dynamic updates, as opposed to ex-
isting protocols in the verifiable computing model that provide generality and secrecy,
but verifiability in a static, secret-key setting only.

A natural question to ask is whether outsourced verifiable computations with se-
crecy and efficient dynamic updates are feasible. Analogously, it is interesting to explore
whether other specific functionalities (beyond set operations) can be optimally and pub-
licly verified. Finally, according to a recently proposed definition of optimality [33], our

108 C. Papamanthou, R. Tamassia, and N. Triandopoulos

construction is nearly optimal: verification and updates are optimal, but not queries. It
is interesting to explore whether an optimal authenticated sets collection data structure
exists, i.e., one that asymptotically matches the bounds of the plain sets collection data
structure, reducing the query time from O(N log2 N) to O(N).

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation under grants CNS–1012060 and CNS–1012798 and by the Kanellakis Fel-
lowship and the Center for Geometric Computing at Brown University, the RISCS Cen-
ter at Boston University and NetApp. The authors thank Michael T. Goodrich for useful
discussions. The views in this paper do not necessarily reflect the views of the sponsors.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient verification
via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg
(2010)

2. Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environment of un-
trusted third-party distributors. In: Int. Conference on Data Engineering (ICDE), pp. 696–
704 (2008)

3. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups
and their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.)
CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer, Heidelberg (2009)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Pub-
lishing Company, Reading (1999)

5. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incrementality
at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192.
Springer, Heidelberg (1997)

6. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large
datasets. In: Int. Cryptology Conference, CRYPTO (2011)

7. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of
memories. Algorithmica 12(2/3), 225–244 (1994)

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in
bilinear groups. J. Cryptology 21(2), 149–177 (2008)

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

10. Canard, S., Gouget, A.: Multiple denominations in E-cash with compact transaction data.
In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer, Heidelberg (2010)

11. Chung, K.-M., Kalai, Y., Liu, F.-H., Raz, R.: Memory delegation. In: Int. Cryptology Con-
ference, CRYPTO (2011)

12. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully ho-
momorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501.
Springer, Heidelberg (2010)

13. Damgård, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map ac-
cumulators. Cryptology ePrint Archive, Report 2008/538 (2008),
http://eprint.iacr.org/

14. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can memory
checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–520. Springer,
Heidelberg (2009)

http://eprint.iacr.org/

Optimal Verification of Operations on Dynamic Sets 109

15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19.
Springer, Heidelberg (2004)

16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 465–482. Springer, Heidelberg (2010)

17. Goodrich, M.T., Tamassia, R., Hasic, J.: An efficient dynamic and distributed cryptographic
accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 372–388.
Springer, Heidelberg (2002)

18. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated dictionary
with skip lists and commutative hashing. In: DARPA Information Survivability Conference
and Exposition II (DISCEX II), pp. 68–82 (2001)

19. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-efficient verification of dynamic
outsourced databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 407–424.
Springer, Heidelberg (2008)

20. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data structures for
graph connectivity and geometric search problems. Algorithmica 60(3), 505–552 (2011)

21. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms for rec-
ognizing interval graphs and permutation graphs. In: Symposium on Discrete Algorithms
(SODA), pp. 158–167 (2003)

22. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In:
Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg
(2007)

23. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A general
model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

24. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 218–238. Springer, Heidelberg (1990)

25. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communi-
cation complexity. IEEE Transactions on Information Theory 49(9), 2213–2218 (2003)

26. Morselli, R., Bhattacharjee, S., Katz, J., Keleher, P.J.: Trust-preserving set operations. In:
Int. Conference on Computer Communications, INFOCOM (2004)

27. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX Security
Symposium, pp. 217–228 (1998)

28. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

29. Pang, H., Tan, K.-L.: Authenticating query results in edge computing. In: Int. Conference
on Data Engineering (ICDE), pp. 560–571 (2004)

30. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party authenti-
cated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861,
pp. 1–15. Springer, Heidelberg (2007)

31. Papamanthou, C., Tamassia, R.: Cryptography for efficiency: Authenticated data structures
based on lattices and parallel online memory checking. In: Cryptology ePrint Archive, Re-
port 2011/102 (2011), http://eprint.iacr.org/

32. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: Int. Con-
ference on Computer and Communications Security (CCS), pp. 437–448 (2008)

33. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal authenticated data structures
with multilinear forms. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 246–264. Springer, Heidelberg (2010)

34. Preparata, F.P., Sarwate, D.V.: Computational complexity of Fourier transforms over finite
fields. Mathematics of Computation 31(139), 740–751 (1977)

http://eprint.iacr.org/

110 C. Papamanthou, R. Tamassia, and N. Triandopoulos

35. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New
York (1985)

36. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

37. Tamassia, R., Triandopoulos, N.: Certification and authentication of data structures. In: Al-
berto Mendelzon Workshop on Foundations of Data Management (2010)

38. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in out-
sourced databases. In: Int. Conf. on Management of Data (SIGMOD), pp. 5–18 (2009)

39. Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via authen-
ticated hints. In: Int. Conference on Data Engineering (ICDE), pp. 237–248 (2010)

Verifiable Delegation of Computation over

Large Datasets�

Siavosh Benabbas1, Rosario Gennaro2, and Yevgeniy Vahlis3

1 University of Toronto
siavosh@cs.toronto.edu

2 IBM Research
rosario@us.ibm.com

3 Columbia University
evahlis@cs.columbia.edu

Abstract. We study the problem of computing on large datasets that
are stored on an untrusted server. We follow the approach of amor-
tized verifiable computation introduced by Gennaro, Gentry, and Parno
in CRYPTO 2010. We present the first practical verifiable computation
scheme for high degree polynomial functions. Such functions can be used,
for example, to make predictions based on polynomials fitted to a large
number of sample points in an experiment. In addition to the many non-
cryptographic applications of delegating high degree polynomials, we use
our verifiable computation scheme to obtain new solutions for verifiable
keyword search, and proofs of retrievability. Our constructions are based
on the DDH assumption and its variants, and achieve adaptive security,
which was left as an open problem by Gennaro et al (albeit for general
functionalities).

Our second result is a primitive which we call a verifiable database
(VDB). Here, a weak client outsources a large table to an untrusted
server, and makes retrieval and update queries. For each query, the
server provides a response and a proof that the response was computed
correctly. The goal is to minimize the resources required by the client.
This is made particularly challenging if the number of update queries
is unbounded. We present a VDB scheme based on the hardness of the
subgroup membership problem in composite order bilinear groups.

1 Introduction

This paper presents very efficient protocols that allow a computationally weak
client to securely outsource some computations over very large datasets to a pow-
erful server. Security in this context means that the client will receive an assurance
that the computation performed by the server is correct, with the optional prop-
erty that the client will be able to hide some of his data from the server.

The problem of securely outsourcing computation has received widespread
attention due to the rise of cloud computing: a paradigm where businesses lease
computing resources from a service (the cloud provider) rather than maintain

� A full version of this paper is available at http://eprint.iacr.org/2011/132

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 111–131, 2011.
c© International Association for Cryptologic Research 2011

http://eprint.iacr.org/2011/132

112 S. Benabbas, R. Gennaro, and Y. Vahlis

their own computing infrastructure [2,57]. A crucial component of secure cloud
computing is a mechanism that enforces the integrity and correctness of the
computations done by the provider.

Outsourced computations are also increasingly relevant due to the prolifer-
ation of mobile devices, such as smart phones and netbooks, computationally
weak devices which might off-load heavy computations, e.g., a cryptographic
operation or a photo manipulation, to a network server. Here too, a proof of the
correctness of the result might be desirable if not necessary.

A crucial requirement in all of these cases is that the computation invested
by the (weak) client in order to verify the result of the server’s work must be
substantially smaller than the amount of computation required to perform the
work to begin with. Indeed if that was not the case, the client could perform the
computation on its own without interacting with the server! It is also desirable to
keep the server’s overhead as small as possible: in other words the computation
of the server to provide both the result and a correctness proof to the client
should be as close as possible to the amount of work needed to simply compute
the original function (otherwise, the server, which might provide this service to
many clients, may become overwhelmed by the computational load).

This paper initiates a line of research about efficient protocols for verifiable
computation of specific functions, in our case the evaluation of polynomials de-
rived from very large datasets. Most of the prior work (reviewed below) has
focused on generic solutions for arbitrary functions. So while in ”general” the
problem we are considering has been solved, by focusing on specific computa-
tions we are able to obtain much more efficient protocols. This is similar to the
way research over secure multiparty computation has evolved: following generic
protocols for the evaluation of arbitrary functions [60,29,9,17], there has been a
twenty-plus year effort to come up with efficient distributed protocols for spe-
cific computations encountered in practical applications (e.g. the entire work on
threshold cryptography [21], or protocols on set intersection and pattern match-
ing such as [34]).
Our Results.This paper focuses on the evaluation of polynomials derived from
very large datasets. While the computations themselves are simple, it’s the mag-
nitude of data that prevents the client (who cannot even store the entire data) to
perform them by itself. In our protocols the client will initially store the data at the
server (with the option of encrypting it for confidentiality, if desired), with some
authenticating information. The client will only keep a short secret key. Later, ev-
ery time the client requests the value of a computation over the data, the server
will compute the result and return it together with an authentication code, which
the client will be able to quickly verify with the secret key. This description shows
that our problem naturally fits into the amortized model for outsourced computa-
tion introduced in [27]: the client performs a one-time computationally expensive
phase (in our case storing the data with its authentication information) and then
quickly verifies the results provided by the server.

Our protocols are very efficient. The computation of the authentication data
is comparable to encrypting the file using the ElGamal encryption scheme (i.e.

Verifiable Delegation of Computation over Large Datasets 113

roughly 2 exponentiations per data block). Verification takes at most a loga-
rithmic (in the number of blocks) number of exponentiations under the DDH
Assumption. Additionally, we present a faster protocol (which requires only a
single exponentiation to verify the result) which is secure under a decisional
variant of the Strong Diffie Hellman Assumption in single groups1.

An immediate application of our results is the ability to verifiably outsource
computations to make predictions based on polynomials fitted to a large number
of sample points in an experiment.

In the second part of our paper, we present an extension to our protocols,
which allows the client to efficiently update the data (and its associated authen-
tication information) stored at the server. We also present applications of our
protocols to the problems of verifiable keyword search (the client stores a large
database with the server and it queries if a specific keyword appears in it) and
secure proofs of retrievability (the client checks that the file stored with the server
is indeed retrievable) [50,36].

Verifiable delegation of polynomials. The basis of all our protocols is
verifiable delegation of polynomials. Assume the client has a polynomial P (·) of
large degree d, and it wants to compute the value P (x) for an arbitrary inputs
x. In our basic solution the client stores the polynomial in the clear with the
server as a vector c of coefficients in Zp. The client also stores with the server
a vector t of group elements of the form gaci+ri where a ∈R Zp and ri is the
ith-coefficient of a polynomial R(·) of the same degree as P (·). When queried on
input x the server returns y = P (x) and t = gaP (x)+R(x) and the client accepts
y iff t = gay+R(x).

If R(·) was a random polynomial, then we can prove that this is a secure del-
egation scheme in the sense of [27]. However checking that t = gay+R(x) would
require the client to perform computation polynomial in the degree of P (·) – the
exact work that we set out to avoid. The crucial point, therefore, is how to perform
this verification fast, in time which is independent, or at the very least sublinear in
the degree of P (·). We do that by defining ri = FK(i) where F is a pseudo-random
function (PRF in the following) with a special property which we call closed form
efficiency. The property is that given the polynomial R(·) defined by the ri coef-
ficients, the value R(x) (for any input x) can be computed very efficiently (sub-
linearly in d) by a party who knows the secret key K for the PRF. Since F is a
PRF, the security of the scheme is not compromised (as F is indistinguishable
from a random function), and the closed form efficiency of F will allow the client
to verify the result in time sub-linear in the degree of the polynomial.

We generalize our result for PRFs with other types of closed form efficiency,
which yield efficient and secure delegation protocols not only for single-variable
polynomials of degree d, but also for multivariate polynomials with total degree d
or of degree d in each variable. We have several different variations of PRFs: the
least efficient one is secure under the Decisional Diffie-Hellman assumption, while
more efficient ones require a decisional variant of the Strong DH assumption.

1 See e.g., [19] for a survey of the strong DH family of assumptions.

114 S. Benabbas, R. Gennaro, and Y. Vahlis

Adaptivity: One of the main questions to remain open after the work of GGP
[27] is whether we can achieve verifiable delegation even if the malicious server
knows whether the verifier accepted or rejected the correctness proof of the value
computed by the server. Indeed, the GPV scheme becomes insecure if the server
learns this single bit of information after each proof is sent to the verifier. Our
constructions are the first to achieve adaptive security in the amortized setting.

Privacy: Our solution allows the client to preserve the secrecy of the polyno-
mial stored with the server, by encrypting it with an additively homomorphic
encryption scheme. In this case the server returns an encrypted form of y which
the client will decrypt.

Keyword Search: The applications to keyword search without updates is al-
most immediate. Consider a text file F = {w1, . . . , w�} where wi are the words
contained in it. Encode F as the polynomial P (·) of degree � such that P (wi) = 0.
To make this basic solution efficiently updatable we use a variation of the polyno-
mial delegation scheme which uses bilinear maps. We also present a generic, but
less efficient way to make any static keyword search protocol updatable which
might be of independent interest.

Proof of Retrievability: Again the application of our technique is quite sim-
ple. The client encodes the file as a polynomial F (x) of degree d (each block
representing a coefficient), and delegates the computation of F (x) to the server.
The proof of retrievability consists of the client and the server engaging in our
verifiable delegation protocol over a random point r: the client sends r and the
server returns the value F (r) together with a proof of its correctness. The client
accepts if it accepts the proof that F (r) is the correct value.

Verifiable databases with efficient updates. In the second part of our
paper we study the problem of verifiable databases, where a resource constrained
client wishes to store an array DB on a server, and to be able to retrieve the
value at any cell DB[i], and to update the database by assigning DB[i] ← v
for a new value v. The goal is to achieve this functionality with an additional
guarantee that if a server attempts to tamper with the data, the tampering will
be detected when the client queries the database.

Simple solutions (based on Message Authentication Codes or Signature
Schemes) exist for the restricted case where the database is static – i.e. the
client only needs to retrieve data, but does not modify the database. One exam-
ple is to have the client sign each pair (index,value) that is sent to the server.
Clearly, if no updates are performed, the server has no choice but to return the
correct value for a given cell. However, the problem becomes significantly harder
when efficient updates are needed. One solution is for the client to just keep track
of all the changes locally, and apply them as needed, but this contradicts our
goal of keeping client state and workload as small as possible. On a high level,
the main technical difficulty stems from the fact that the client must revoke any
authenticating data that the server has for the previous value of the updated cell.
This issue has been addressed in the line of works on cryptographic accumulators
[16,47,53], and, using different techniques, in the authenticated datastructures
literature [48,41,52,59].

Verifiable Delegation of Computation over Large Datasets 115

We present a verifiable database delegation scheme based on the hardness
of the subgroup membership problem in composite order bilinear groups (this
assumption was originally introduced in [13]). Our solution allows the client
to query any location of the database, and verify the response in time that is
independent of the size of the database. The main advantage of our construction
is that it allows the client to insert and delete values, as well as update the value
at any cell by sending a single group element to the server after retrieving the
current value stored in the cell. Prior solutions either rely on non-constant size
assumptions (such as variants of the Strong Diffie-Hellman assumption [23,15]),
require expensive generation of primes for each operation (in the worst case), or
require expensive “re-shuffling” procedures to be performed once in a while on
the data. On the other hand, our construction works in the private key setting,
whereas some prior solutions allow public verification (e.g., [16,47]).

Roadmap. The rest of the paper is organized as follows. In Section 2 we define
the security assumptions used in the paper. Readers interested in the precise
definition of Verifiable Computation and its security can find them in Section 3.
In Section 4 we introduce our notation of Algebraic Pseudorandom Functions
which are the main building block of our constructions. In Section 5 we show how
to securely delegate polynomial evaluations to an untrusted server using Alge-
braic PRFs. In the full version of the paper [7] we show how to use delegation of
polynomials to implement verifiable databases, and to obtain new constructions
of Proofs of Retrievability.

1.1 Related Work

As mentioned above our work follows the paradigm introduced in [27] which is
also adopted in [20,3]. The protocols described in those papers allow a client
to outsource the computation of an arbitrary function (encoded as a Boolean
circuit) and use fully homomorphic encryption (i.e. [28]) resulting in protocols
of limited practical relevance. Our protocols on the other hand work for only a
very limited class of computations (mostly polynomial evaluations) but are very
efficient and easily implementable in practice.

The previous schemes based on fully homomorphic encryption also suffer from
the following drawback: if a malicious server tries to cheat and learns if the client
has accepted or rejected its answer, then the client must repeat the expensive
pre-processing stage. The only alternative way to deal with this problem pro-
posed in these papers is to protect this bit of information from the server (which
is a very strong assumption to make). Somewhat surprisingly our scheme re-
mains secure even if a cheating server learns the acceptance/rejection bit of the
client, without any need to repeat the pre-processing stage. This is not only
conceptually interesting, but also a very practical advantage.

There is a large body of literature, prior to [27], that investigates the problem
of verifiably outsourcing the computation of an arbitrary functions (we refer to
[27] for an exhaustive list of citations). This problem has attracted the attention
of the Theory community, starting from the work on Interactive Proofs [5,31],
efficient arguments based on probabilistically checkable proofs (PCP) [37,38], CS

116 S. Benabbas, R. Gennaro, and Y. Vahlis

Proofs [43] and the muggles proofs in [30]. However in PCP-based schemes, the
client must store the large data in order to verify the result and therefore these
solutions might not be applicable to our setting.

This problem has also been studied by the Applied Security community, with
solutions which are practical but whose security holds under some very strong
assumptions on the behavior of the adversary. For example, solutions based on
audit (e.g. [46,6]) which typically assume many clients, and require a fraction of
them to recompute some of the results provided by the server, but are secure only
under the assumption that bad clients do not collude. Another approach is to
use secure co-processors (e.g. [56,61]) which ”sign” the computation as correct,
under the assumption that the adversary cannot tamper with the processor.
Finally, other trust models have been considered. The area of authenticated
data structures [58,41,54] aims to provide delegation solutions when the owner
of the data is decoupled from the client. In this scenario, the owner maintains
a large state, and acts as a trusted third party, but delegates his data to an
untrusted server that can be queried by weak clients.

For the specific case of outsourcing expensive cryptographic operations,
Chaum and Pedersen in [18], describe protocols to allow a client to verify the be-
havior of a piece of hardware placed on the client’s device by a service provider
such as a bank. Hohenberger and Lysyanskaya formalize this model [35], and
present protocols for the computation of modular exponentiations (arguably the
most expensive step in public-key cryptography operations). Their protocol re-
quires the client to interact with two non-colluding servers. Other work targets
specific function classes, such as one-way function inversion [32].

The application of secure keyword search over a stored file can be handled
using zero-knowledge sets, [44] which however does not allow for an easy way
to update the file. Our protocol for keyword search combines ideas from our
polynomial delegation scheme with some machinery inspired by zero-knowledge
sets, to obtain a protocol that allows for efficient updates and other additional
desirable properties (see full version [7]).

The problem of proof of retrievability was first posed in [50,36], and subsequent
protocols include [4,55,22]. A proof of retrievability protocol usually goes like
this: after storing a (potentially large) file with the server, the client issues a query
to receive an assurance that the file is still correctly stored. The server computes
an answer based on the query and the file, and finally the client performs some
verification procedure on the answer. All of these protocols incur a substantial
storage overhead for the server (since the file is stored using an erasure code)
and, except for [22], require communication which is quadratic in the security
parameter. The protocol in [22] has linear communication complexity but it
requires both the server and the client to work in time proportional to the size of
the file. Our solution achieves linear communication complexity in the security
parameter and is very efficient for the client (as its work is sublinear in the size
of the file).

Our verifiable database construction is closely related to Memory Checkers
(see e.g. [10,26,1,24,50]). However, our setting differs from the memory check-

Verifiable Delegation of Computation over Large Datasets 117

ing setting in that we allow the server to be an arbitrary algorithm, whereas
a memory checker interacts with a RAM (an oracle that accepts store/retrieve
queries). In this context, our construction would yield a memory checker with
poor performance since it would require the checker to issue a number of queries
that is linear in the size of the memory. In contrast, we focus on optimizing the
communication and the work of the client when the server can perform arbi-
trary computation on its data. Our construction requires the server to perform
a linear amount of work to answer one type of queries (update/retrieve), while
the other type of queries requires only a constant amount of work. Finally, we
note that the work on accumulators [16,47,53] and authenticated data structures
[48,41,52,59] can be used to construct verifiable databases with similar efficiency
under different assumptions.

2 Assumptions

In this work we rely on the following assumptions about computational groups.

Decisional Diffie Hellman. The standard Decisional Diffie-Hellman As-
sumption (DDH) is defined as follows. For every PPT distinguisher A there
exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g, gx, gy, gxy) = 1]− Pr[A(1n, g, gx, gy, gz) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length
approximately n, and x, y, z ∈R Zp.

Strong Diffie Hellman. The strong Diffie-Hellman family of assumptions
allows an adversary to obtain group elements g, gx, gx2

, . . . , gxd

, and requires
the adversary to compute or distinguish a related group element from a random
one. Computational variants of the problem appeared as early as the work of
Mitsunari et al [45]. More recently, bilinear versions of the assumptions, starting
with the works of Boneh and Boyen [11,12], were used in several applications
(e.g. [23,15]). Boneh and Boyen gave a proof of the bilinear assumptions in the
generic group model. In one of our constructions, we achieve high efficiency by
relying on a decisional version of the strong DH assumption in single groups.

The d-SDDH assumption is stated as follows. For every PPT distinguisher A
there exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g, gx, gx2
, . . . , gxd

) = 1]− Pr[A(1n, g, gx1, gx2, . . . , gxd) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length
approximately n, and x, x1, . . . , xd ∈R Zp.

Subgroup membership assumption in composite order bilinear groups.

The subgroup membership assumption in composite order bilinear groups first
appeared in [13], and has seen many recent applications in the areas of Identity
Based Encryption (IBE), Hierarchical IBE, and others [25,13,8]. The assumption
we rely on (for our verifiable database delegation scheme) is the following.

118 S. Benabbas, R. Gennaro, and Y. Vahlis

For every PPT distinguisher A there exists a negligible function neg(·) such
that for all n,

|Pr[A(1n, g1g2, u2, (g1g2)x) = 1]− Pr[A(1n, g1g2, u2, u
x
2) = 1]| ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length
approximately n, G1 and G2 are subgroups of G of orders p1 and p2 respectively,
g1 ∈R G1, g2, u2 ∈R G2, and x ∈R ZN .

In addition, we require the existence of an efficiently computable pairing e :
G×G→ GT where GT is a group of order N . We shall make use of the following
property of pairings over composite order groups: for g1 ∈ G1 and g2 ∈ G2,
e(g1, g2) = 1GT . This property holds for every bilinear pairing over composite
order groups (as shown e.g. in [39]).

Bilinear sub-group projection assumption. In the analysis of our veri-
fiable database scheme we first show the security of the scheme based on the
following new assumption. We then apply Lemma 1 (given below) to obtain a
reduction to the subgroup membership problem. The Bilinear Sub-Group Pro-
jection Assumption (BSGP) is stated as follows: for every PPT adversary A,
there exists a negligible function neg(·) such that for all n,

Pr[A(1n, (g1g2), (h1h2), u2) = e(g1, h1)] ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length
approximately n, G1 and G2 are subgroups of G of orders p1 and p2 respectively,
g1, h1 ∈R G1, and g2, h2, u2 ∈R G2. The following lemma shows that the BSGP
assumption is implied by the standard sub-group membership assumption in
composite order bilinear groups.

Lemma 1. The subgroup membership assumption in composite order bilinear
groups reduces to the BSGP assumption.

The proof of the lemma, as well as its application to delegation of data structures,
is given in the full version of this paper [7].

3 Verifiable Computation

A verifiable computation scheme is a two-party protocol between a client and
a server. The client chooses a function and an input which he provides to the
server. The latter is expected to evaluate the function on the input and respond
with the output together with a proof that the result is correct. The client then
verifies that the output provided by the worker is indeed the output of the
function computed on the input provided.

The goal of a verifiable computation scheme is to make such verification very
efficient, and particularly much faster than the computation of the function itself.
We adopt the amortized model of Gennaro et al. [27]: for each function F , the
client is allowed to invest a one-time expensive computational effort (comparable

Verifiable Delegation of Computation over Large Datasets 119

to the effort to compute F itself) to produce a public/secret key pair, which he
will use to efficiently (e.g. in linear-time) verify the computation of F by the
server on many inputs.

We prove our results in a stronger version of the [27] definition of verifiable
computation scheme. As we discussed in the Introduction, the main difference
is that in our protocols the server is allowed to learn if the client accepts or
rejects the output of a particular computation (in [27] and following works in
the amortized model, leaking this bit of information to the server would help
him cheat in the following executions).

We refer the reader to the full version of this paper [7] for the precise definition
of a verifiable computation scheme.

4 Algebraic Pseudorandom Functions

Our main technical tool is a new way of viewing pseudo-random functions (PRF)
with algebraic properties to achieve efficient verification of server certificates in
the delegation setting. Intuitively, we rely on the fact that certain pseudo-random
functions (such as the Naor-Reingold PRF [49]) have outputs that are members
of an abelian group, and that certain algebraic operations on these outputs can
be computed significantly more efficiently if one possesses the key of the pseudo-
random function that was used to generate them. In this section we present an
abstraction of the said property, and several constructions achieving different
trade-offs between the types of functions that can be efficiently evaluated given
the key, and the assumption that is needed to guarantee pseudo-randomness.

An algebraic pseudorandom function (PRF) consists of algorithms PRF =
〈KeyGen, F, CFEval〉 where KeyGen takes as input a security parameter 1n and a
parameter m ∈ N that determines the domain size of the PRF, and outputs a
pair (K, param) ∈ Kn, where Kn is the key space for security parameter n. K is
the secret key of the PRF, and param encodes the public parameters. F takes
as input a key K, public parameters param, an input x ∈ {0, 1}m, and outputs
a value y ∈ Y , where Y is some set determined by param.

We require the following properties:

– (Algebraic) We say that PRF is algebraic if the range Y of FK(·) for every
n ∈ N and (K, param) ∈ Kn forms an abelian group. We require that the
group operation on Y be efficiently computable given param. We are going
to use the multiplicative notation for the group operation.

– (Pseudorandom) PRF is pseudorandom if for every PPT adversary A, and
every polynomial m(·), there exists a negligible function neg : N → N, such
that for all n ∈ N:

|Pr[AFK(·)(1n, param) = 1]− Pr[AR(·)(1n, param) = 1]| ≤ neg(n)

where (K, param) ←R KeyGen(1n, m(n)), and R : {0, 1}m → Y is a random
function.

120 S. Benabbas, R. Gennaro, and Y. Vahlis

– (Closed form efficiency) Let N be the order of the range sets of F for se-
curity parameter n. Let z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently
computable h : Zk

N → Zl
N with h(x) =< h1(x), . . . , hl(x) >. We say that

(h, z) is closed form efficient for PRF if there exists an algorithm CFEvalh,z

such that for every x ∈ Zk
N ,

CFEvalh,z(x, K) =
l∏

i=1

[FK(zi)]hi(x)

and the running time of CFEval is polynomial in n, m, k but sublinear in l.
When z = (0, . . . , l) we will omit it from the subscript, and write CFEvalh
(x, K) instead.

The last condition (which distinguishes our notion from traditional PRFs) allows
to compute a “weighted product” of l PRF values much more efficiently than
by computing the l values separately and then combining them. Indeed, given
param, h, x, and FK(z), one can always compute the value

∏l
i=1[FK(zi)]hi(x)

in time linear in l (this follows from the algebraic property of the PRF). The
purpose of the closed form efficiency requirement is therefore to capture the
existence of a more efficient way to compute the same value given the secret
key K.

Note that closed form efficiency can be defined for PRFs over arbitrary input
spaces. In particular, it is a non-trivial condition to attain even when the input
space is polynomial in the security parameter2. In the constructions needed for
our delegation scheme, this will be the case.

4.1 Small Domain Algebraic PRFs from Strong DDH

Construction 1. Let G be a computational group scheme. The following con-
struction PRF1 is an algebraic PRF with polynomial sized domains.

KeyGen(1n, m): Generate a group description (p, g, G)←RG(1n). Choose k0, k1∈R

Zp. Output param = (m, p, g, G), K = (k, k′).
FK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in

n. Compute and output gk0kx
1 .

Closed form efficiency for polynomials. We now show an efficient closed form
for PRF1 for polynomials of the form

p(x) = FK(0) + FK(1)x + · · ·+ FK(d)xd

2 When the input space is polynomial in the security parameter traditional PRFs exist
unconditionally: if the input space has � elements {x1, . . . , x�}, define the key as �
random values y1, . . . , y� and FK(xi) = yi. Notice however that this function does
not have closed-form efficiency.

Verifiable Delegation of Computation over Large Datasets 121

where d ≤ D. Let h : Zp → Zd+1
p , be defined as h(x) def= (1, x, . . . , xd). Then, we

can define

CFEvalh(x, K) def= g
k0(1−k

d+1
1 xd+1)

1−k1x

Let us now write the
∏d

i=0[FK(zi)]hi(x) where (z0, . . . , zd) = (0, . . . , d):

d∏
i=0

[FK(zi)]hi(x) =
d∏

i=0

[gk0ki
1]x

i

= gk0
∑d

i=0 ki
1xi

Applying the identity
∑d

i=0 k0k
i
1x

i = k0(1−(k1x)d+1)
1−k1x we obtain the correctness of

CFEvalh(x).

Theorem 1. Suppose that the D-Strong DDH assumption holds. Then, PRF1

is a pseudorandom function.

Proof. The input to the reduction is a description (p, g, G) of a group, and a
challenge t1, . . . , td where ti is either a random member of G, or gki

1 , and k1 ∈ Zp

is randomly chosen once for the entire challenge. The reduction then chooses
k0 ∈R Zp, and computes the function H(i) = tk0

i for 0 ≤ i ≤ d. Clearly, H is a
random function if the ti are random, and is equal to FK(·) for K = (k0, k1) if
the ti are determined by k1.

Construction 2. Let G be a computational group scheme. We define PRF2,d,
for d ∈ N, as follows:

KeyGen(1n, m): Generate a group description (p, g, G)←R G(1n). Choose k0, k1,
. . . , km ∈R Zp. Output param = (m, p, g, G), K = (k0, k1, . . . , km).

FK(x): Interpret x as a vector (x1, . . . , xm) ∈ {0, . . . , d}m. Compute and output
gk0k

x1
1 ···kxm

m .

Closed form for m-variate polynomials of total degree at most d. We describe an
efficient closed form for PRF2,d for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im

i1+···+im≤d

FK(i1, . . . , im)xi1
1 xi2

2 · · ·xim
m .

Let h : Zm
p → Zl

p, where l =
(
m+d

d

)
, be defined as

h(x1, . . . , xm) def=

⎛⎝(d

i1 . . . , im

) m∏
j=1

x
ij

j

⎞⎠
i1+···+im≤d

Let z = [z1, . . . , zl] = [(i1, . . . , im)]i1+···+im≤d ∈ Zm×l
d . We can now define

CFEvalh,z(x1, . . . , xm, K) def= gk0(1+k1x1+···+kmxm)d

Correctness follows by algebraic manipulation and is given in the full version of
this paper.

122 S. Benabbas, R. Gennaro, and Y. Vahlis

Theorem 2. Let d ∈ N, and suppose that the d-Strong DDH assumption holds.
Then, PRF2,d is a pseudorandom function.

We refer the reader to the full version of this paper [7] for the proof of Theorem 2.

Remark 1. It is interesting to note that the Naor-Reingold PRF is a special case
of Construction 2 obtained by setting d = 1. Therefore, our construction provides
a tradeoff between the security assumption and the size of the key of the PRF:
to operate on binary inputs of length n our construction requires n/ log2(d + 1)
elements of Zp in the key.

Remark 2. One can change the above construction so that it becomes slightly
less efficient but secure under the standard DDH assumption. We call this modi-
fied versionPRF4,d and refer the reader to the full version for its exact definition.
The reader can also get a glimpse of this PRF’s parameters in Table 1.

4.2 Small Domain Algebraic PRFs from DDH

Construction 3. Let G be a computational group scheme. We define PRF3 as
follows:

KeyGen(1n, m): Generate a group description (p, g, G) ←R G(1n). Choose k0,
k1,1, . . . , k1,s, . . . , km,1, . . . , km,s ∈R Zp. Output param = ((m, s), p, g, G),
K = (k0, k1,1, . . . , k1,s, . . . , km,1, . . . , km,s).

FK(x): Interpret x = (x1, . . . , xm) with each xi = [xi,1, . . . , xi,s] as an s-bit
string. Compute and output gk0k

x1,1
1,1 ···kx1,s

1,s ···kxm,1
m,1 k

xm,s
m,s .

Closed form for polynomials of degree d in each variable. We describe an efficient
closed form for PRF3 for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im≤d

FK(i1, . . . , im)xi1
1 · · ·xim

m

where the PRF F is initialized with m and s = �log d�. Let h : Zm
p → Zl

p,
where l = md, be defined as h(x1, . . . , xm) = (xi1

1 · · ·xim
m)i1,...,im≤d. Let z =

[z1, . . . , zl] = [(i1, . . . , im)]i1,...,im≤d then

CFEvalh,z(x1, . . . , xm, K) def= gk0
∏m

j=1(1+kj,1xj)(1+kj,2x2
j)···(1+kj,sx2s

j)

Correctness follows directly by expanding the expression in the exponent.

Remark 3. Note that for m = 1 we obtain an alternative construction for single-
variable polynomials of degree d. Below we prove that Construction 3 is a PRF
under the DDH Assumption. Therefore compared to Construction 1, this con-
struction relies on a weaker assumption (DDH vs. D-strong DDH). However the
efficiency of the closed form computation in Construction 1 is better: constant

Verifiable Delegation of Computation over Large Datasets 123

vs. O(log d) in Construction 3. Jumping ahead this will give us two alterna-
tive ways to delegate the computation of a single-variable polynomial of degree
d with the following tradeoff: either one assumes a weaker assumption (DDH)
but verification of the result will take O(log d) time, or one assumes a stronger
assumption to obtain constant verification time.

Closed form for 1-out-of-2 multivariate polynomials of degree 1. We now consider
polynomials of the form

p(x1, y1, . . . , xm, ym) =
∑

s∈{0,1}m

FK(s)xs1
1 y1−s1

1 · · ·xsm
m y1−sm

m

In such polynomials, each monomial contains exactly one of xi and yi for 1 ≤ i ≤
m. We initialize the PRF F with m and s = 1 (and for simplicity we drop the dou-
ble subscript and denote the key ki,1 as ki). Specifically, let h : Z2m

p → Zl
p, where

l = 2m, be defined as h(x1, y1, . . . , xm, ym) = (xs1
1 y1−s1

1 · · ·xsm
m y1−sm

m)s∈{0,1}m .
We can then define

CFEvalh(x1, y1, . . . , xm, ym) def= gk0(x1+k1y1)···(xm+kmym)

Correctness is straightforward by expanding the expression in the exponent. The
proof of the following theorem was given in [49];

Theorem 3. [49] Suppose that the DDH assumption holds for G. Then, PRF3

is a pseudorandom function.

5 Verifiable Delegation of Polynomials

The basic idea of our construction is the following. The client stores the polyno-
mial P (·) in the clear with the server as a vector c of coefficient in Zp. The client
also stores with the server a vector t of group elements of the form gaci+ri where
a ∈R Zp and ri is the ith-coefficient of a polynomial R(·) of the same degree as
P (·). When queried on input x the server returns y = P (x) and t = gaP (x)+R(x)

and the client accepts y iff t = gay+R(x).
If R(·) was a random polynomial, then our proof below shows that this is

a secure delegation scheme. However checking that t = gay+R(x) would require
the client to evaluate the random polynomial R(·), which is just as inefficient as
evaluating the original polynomial P (·). Moreover, the client would have to store
a long description of a random polynomial that is as long as the original polyno-
mial3 P (·). The crucial point, therefore, is how to make this computation fast.
We do that by defining ri = FK(i) for an algebraic PRF that has a closed form
efficient computation for polynomials, such as the ones described in the previous
3 Alternatively, the client could generate the coefficients of R using a standard PRF,

thereby avoiding storing a large polynomial. However, this would still require the
client to recompute all the coefficients of R each time a verification needs to be
performed.

124 S. Benabbas, R. Gennaro, and Y. Vahlis

Table 1. Parameters of different protocols for verifiable delegation of polynomials.
Numbers inside the parenthesis show the number of group operations. Columns starting
with “C.” are the client’s requirements and the ones starting with “S.” are the server’s.
In each case the server’s query runtime (resp. space requirements) is asymptotically
the same as evaluating (resp. storing) the polynomial. Note that (n+1√

d+1
)d ≤ (n+d

d

) ≤
(n + d)d, and in particular for constant d it is Θ(nd).

Polynomial Type Setup C. Query S. Query Assumption PRF
1-variable, degree d O(d) O(1) (1) O(d) d-Strong DDH PRF1

n-variable, variable degree d O((d+ 1)n) O(n log d) (1) O((d+ 1)n) DDH PRF3

n-variable, total degree d O(
(
n+d
d

)
) O(n log d) (1) O(

(
n+d
d

)
) d-Strong DDH PRF2,d

n-variable, total degree d O((n+ 1)d) O(nd) (1) O((n+ 1)d) DDH PRF4,d

4

section. Since F is a PRF, the security of the scheme is not compromised, and
the closed form efficiency of F will allow the client to verify the result in time
sub-linear in the degree of the polynomial.

The result is described in general form, using algebraic PRFs. It therefore
follows that we obtain efficient and secure delegation protocols not only for
single-variable polynomials of degree d, but also for multivariate polynomials
with total degree d or of degree d in each variable. The relevant parameters of
the resulting protocols for each of these cases can be seen in Table 1.

Finally at the end of the section we show how to protect the privacy of
the polynomial, by encrypting it with an homomorphically additive encryption
scheme.

5.1 Construction Based on Algebraic PRFs

We describe a verifiable delegation scheme for functions of the form fc,h(x) =
〈h(x), c〉, where c is a (long) vector of coefficients, x is a (short) vector of inputs,
and h expands x to a vector of the same length of c. Our construction is generic
based on any algebraic PRF that has closed form efficiency relative to h.

Protocol Delegate-Polynomial(c)
KeyGen(c, n): Generate (K, param)←R KeyGen(1n, �log d�). Parse c as a vec-

tor c = (c0, . . . , cd) ∈ Zd+1
p . Let G be the range group of FK , and let g be a

generator for that group. Compute gi ← FK(i) for 0 ≤ i ≤ d, choose a ∈R Zp,
and set t = [t0, . . . , td] ← (g0g

ac0, . . . , gdg
acd). Output PK ← (param, c, t),

and SK← (K, a).
ProbGen(SK, x): Output (σx, τx) = (x, x).
Compute(PK, σx): Parse PK as (param, c, t), c as c0, . . . , cd, and σx as x.

Compute w ← h(x) = [h0(x), . . . , hd(x)] ∈ Zd+1
p , y ← ∑d

i=0 cihi(x), and

t←∏d
i=0 t

hi(x)
i . Output νx = (y, t).

Verify(SK, τx, νx): Parse SK as (K, a), τx as x, and νx as (y, t) ∈ Zp × G.
Compute z ← CFEvalh(x, K), and accept if t

?= z · ga·y. Otherwise, reject.

4 The client needs to do two exponentiations.

Verifiable Delegation of Computation over Large Datasets 125

Correctness. The correctness of the above scheme follows straightforwardly
from the correctness of CFEval for the algebraic PRF F .

The security analysis of the above scheme, as well as an extension allowing
the client to preserve the privacy of the polynomial, are given in the full version
of the paper [7].

6 Verifiable Database Queries with Efficient Updates

We have shown a general framework that allows any resource constrained client
to verifiably delegate large polynomials to a server. As we have already mentioned
in the introduction, this immediately gives a verifiable delegation solution to
many natural practical applications (such as prediction using fitted polynomials).
In this Section we present an application of our techniques to the problem of
efficient verification of the result to queries posed to a dynamic database. In
other words the client stores a database with the server together with some
authentication informatiom. It then needs to be able to efficiently verify that
the results of its queries are correct, and also to efficiently update the database
and its associated authenticator. The techniques we developed for delegation of
polynomials are at the basis of the solution we present, which however requires
other novel and interesting technical ideas.

The protocol uses ideas borrowed from our polynomial verification scheme:
the authenticator for every database entry can be efficiently reconstructed by
the client using a PRF with closed form efficiency. However as we pointed out
in the Introduction the main challenge comes with the updates: the client must
revoke any authenticating data that the server has for the previous value of the
updated cell. We deal with this problem by ”masking” the authenticator with
another closed-form efficient PRF. This ”mask” can be efficiently removed by
the client to perform the authentication and can also be efficiently updated so
that old masked values cannot be reused. The technical details are somewhat
involved and are described below.

Handling large payloads. For simplicity we consider databases of the form
(i, vi) where i is the index and vi the payload data. The construction we describe
below allows data values to be only polynomially large (in the security parame-
ter). Before proceeding to describe our protocol, we show a simple transformation
that allows us to support databases with arbitrary payload sizes.

On a high level, we will use a small payload protocol, such as the one described
below, to store a database of the form (i, si) where si is a counter that counts
the number of times index i has been updated. The server will also store the
MAC of the tuple (i, si, vi) where vi is the (possibly large) payload.

When the client queries i, it will receive the value si through the verifiable
database protocol. The security of this protocol will guarantee to the client that si

is correct. Then the server will also answer with vi and the MAC on (i, si, vi) and
the client will accept vi if the MAC is correct. To update index i, the client will
first query i and retrieve the current tuple (i, si, vi). It will then update si on the
verifiable database by setting s′i = si + 1. This can be done since si is bounded

126 S. Benabbas, R. Gennaro, and Y. Vahlis

by the running time of the client and therefore polynomial. Finally it will store
the new v′i together with a MAC on (i, s′i, v

′
i). Since si will only ever increase, the

server will not be able to re-use old MACs once an index has been updated.
Therefore for now we will focus on databases with small (polynomial) pay-

loads. The protocol is described in detail below.

Relation to Merkle Trees. Merkles trees [42] are a standard technique
for efficient authentication of data. Each element is represented as a leaf of a
binary tree. The internal nodes contain hashes of their two children, and the
owner of the data keeps only the root, which is essentially a hash of the entire
tree. Retrieval queries can now be answered and verified in logarithmic time: the
server simply sends the hashes along the path from the root to the desired leaf
(along with any hashes within distance 1 of the path), and the client uses these
values to compute the hash at the root of the tree. The client then checks that
the stored hash value of the root is equal to the recomputed hash. Updating the
tree is also quite efficient – only the hashes along the path to the updated leaf
must be recomputed. In comparison, our scheme requires the client to perform
a constant amount of work both during retrieval and updates, while the server
must choose one of the two types of queries where he will do a linear amount
of work (the other type of queries requires a constant amount of work from the
server as well).

Our protocol. We give a fully detailed protocol in the full version [7]. Here,
we present a high level overview of the approach. The basic tools that we use
are computational bilinear groups of composite order. In this setting, a pair of
groups G, GT are generated, along with a pairing e : G × G → GT . Here each
of the groups are of some order N = p1p2 where p1 and p2 are large primes.
The cryptographic assumption is that it is infeasible to distinguish a random
member of G (or GT) from a random member of the subgroup of order p1 or p2.
Such groups have recently been used to solve several important open problems in
the areas of identity based encryption, leakage resilient cryptography, and other
related problems (see e.g. [13]).

The basic approach of our construction (leaving some details to the full de-
scription below) can be described as follows: each entry (i, vi) in the database
(where i is an index and vi is data) is encoded as a composite group element of
the form

ti = gri+avi
1 gwi

2 .

Here, g1 and g2 are generators of the subgroups G1 and G2 of G, and the values
ri, wi are generated using a pseudo-random function. To retrieve the value of the
database at index i, we will have the server compute (given keys that we shall
describe in a moment) the value

t = gri+avi
1 g

∑
i wi

2 .

Forgetting (for now) how the server should compute these values, the client can
easily strip off the G2 masking by keeping the single group element g

∑
wi

2 in

Verifiable Delegation of Computation over Large Datasets 127

his private key. It is now easy to see that if we replace the ri’s with random
values, then our scheme is secure before any updates are performed. This follows
from the fact that each entry in the database is MAC’ed with an information
theoretically secure MAC (the G2 part hasn’t played a role so far), and so the
server must return the correct value in the G1 part of each entry. The difficulty
is in allowing updates that do not require the client to change his keys for the
pseudo-random functions, which in turn would require the server to obtain new
MACs for all the entries in the database.

A naive solution to change the value of index i from vi to v′i can be for the
client to send to the server a new encoding gri+bvi

1 gwi
2 . However, the server can

then easily recover the MAC keys ri and a by dividing the new group element
that he receives during the update by the previous encoding that he already has.
Our solution is therefore to randomize the new encoding by having the client send

t′x = gri+aδ
1 g

w′
i

2 ,

where δ = v′i − vi, and w′
i is a new pseudorandom value (generated by using a

counter). Intuitively, this allows the client to send t′x as an update token that the
server can multiply into his existing group element ti to obtain g

ri+av′
i

1 g
wi+w′

i
2 .

Notice that the G1 part is a MAC of the value v′i using the same key that
was previously used to MAC vi. We show, relying on the subgroup membership
assumption, that the random mask g

wi+w′
i

2 effectively makes the MAC in the G1

of the token indistinguishable from a new MAC using fresh keys. We now arrive
at the problem of allowing the server to compute the value t, which requires
stripping the G1 part of all the tokens except the token that corresponds to
index i, without compromising security. We achieve this by issuing to the server
random group elements t̂1 from G, and t̂0 from G2. The server then computes
the response to query i as

t = e(ti, t̂1)
∏
j �=i

e(tj , t̂0).

A remaining technical issue is the fact the in the above discussion we haven’t
mentioned anything about how the client should remember the new masked value
w′

i after an update. Our solution is to compute it pseudo-randomly as Fk(i, si)
where si is a counter that is incremented with each update and is stored together
with the payload vi. This guarantees that a fresh pseudo-random value is used
after each update, which in turn allows us to substitute the pseudo-random wi’s
by random ones in the security analysis.

Acknowledgments. Rosario Gennaro’s research was sponsored by US Army Re-
search laboratory and the UK Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research Labora-
tory, the US Government, the UK Ministry of Defence, or the UK Government.

128 S. Benabbas, R. Gennaro, and Y. Vahlis

The US and UK Governments are authorized to reproduce and distribute reprints
of this work for Government purposes, notwithstanding any copyright notation
hereon.

References

1. Ajtai, M.: The invasiveness of off-line memory checking. In: STOC, pp. 504–513
(2002)

2. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient
Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: ACM CCS, pp. 598–609 (2007)

5. Babai, L.: Trading group theory for randomness. In: Proceedings of the ACM Sym-
posium on Theory of Computing (STOC), pp. 421–429. ACM, New York (1985)

6. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of the Workshop on Eco-
nomics of Networked Systems (NetEcon), pp. 85–90. ACM, New York (2008)

7. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computa-
tion over Large Datasets. Cryptology ePrint Archive, Report 2011/132 (2011),
http://eprint.iacr.org/

8. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

10. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: 32nd Annual IEEE Symposium of Foundations of Computer
Science (FOCS 1991), pp. 90–99 (1991)

11. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

12. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

14. Boneh, D., Montogomery, H., Raghunathan, A.: Algebraic pseudorandom functions
with improved efficiency from the augmented cascade. In: Proc. of ACM CCS 2010
(2010)

15. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

16. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

http://aws.amazon.com/ec2
http://eprint.iacr.org/

Verifiable Delegation of Computation over Large Datasets 129

17. Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19 (1988)

18. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

19. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

20. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

21. Desmedt, Y.: Threshold Cryptography. In: Encyclopedia of Cryptography and Se-
curity (2005)

22. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of Retrievability via Hardness Amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

23. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

24. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How Efficient Can
Memory Checking Be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 503–520. Springer, Heidelberg (2009)

25. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

26. Gemmell, P., Naor, M.: Codes for Interactive Authentication. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 355–367. Springer, Heidelberg (1994)

27. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

28. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the ACM Symposium on the Theory of Computing (STOC) (2009)

29. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC,
pp. 218–229 (1987)

30. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the ACM Symposium on the Theory of
Computing (STOC) (2008)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

32. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, p. 425. Springer, Heidelberg (2001)

33. Hall, W.E., Jutla, C.S.: Parallelizable authentication trees. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 95–109. Springer, Heidelberg (2006)

34. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching
with Security Against Malicious and Covert Adversaries. J. Cryptology 23(3), 422–
456 (2010)

35. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

36. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: ACM
Conference on Computer and Communications Security, pp. 584–597 (2007)

130 S. Benabbas, R. Gennaro, and Y. Vahlis

37. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC),
pp. 723–732. ACM, New York (1992)

38. Kilian, J.: Improved efficient arguments (preliminary version). In: Proceedings of
the International Cryptology Conference on Advances in Cryptology, pp. 311–324.
Springer, London (1995)

39. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

40. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional lin-
ear assumption and weaker variants. In: Proceedings of the 16th ACM Conference
On Computer and Communications Security, CCS 2009, pp. 112–120. ACM, New
York (2009)

41. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–31 (2004)

42. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

43. Micali, S.: CS proofs (extended abstract). In: Proceedings of the IEEE Symposium
on Foundations of Computer Science (1994)

44. Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: FOCS, pp. 80–91
(2003)

45. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 85(2),
481–484 (2002)

46. Monrose, F., Wyckoff, P., Rubin, A.: Distributed execution with remote audit. In:
Proceedings of ISOC Network and Distributed System Security Symposium, NDSS
(February 1999)

47. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

48. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX
Security, pp. 17–17 (1998)

49. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51, 231–262 (2004)

50. Naor, M., Rothblum, G.N.: The Complexity of Online Memory Checking. In:
FOCS, pp. 573–584 (2005)

51. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

52. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party
authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

53. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
CCS, pp. 437–448 (October 2008)

54. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Authentication of
Operations on Dynamic Sets. Cryptology ePrint Archive, Report 2010/455 (2010),
http://eprint.iacr.org/

55. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

http://eprint.iacr.org/

Verifiable Delegation of Computation over Large Datasets 131

56. Smith, S., Weingart, S.: Building a high-performance, programmable secure co-
processor. Computer Networks (Special Issue on Computer Network Security) 31,
831–960 (1999)

57. Sun Utility Computing, http://www.sun.com/service/sungrid/index.jsp
58. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)

ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)
59. Tamassia, R., Triandopoulos, N.: Certification and authentication of data struc-

tures. In: Proc. Alberto Mendelzon Workshop on Foundations of Data Manage-
ment, Cite-seer (2010)

60. Yao, A.: Protocols for secure computations. In: FOCS, p. 1982
61. Yee, B.S.: Using Secure Coprocessors. PhD thesis, Carnegie Mellon University

(1994)

http://www.sun.com/service/sungrid/index.jsp

Secure Computation on the Web:

Computing without Simultaneous Interaction

Shai Halevi1, Yehuda Lindell2,�, and Benny Pinkas2,�,��

1 IBM T.J. Watson Research Center
shaih@alum.mit.edu
2 Bar-Ilan University

lindell@biu.ac.il, benny@pinkas.net

Abstract. Secure computation enables mutually suspicious parties to
compute a joint function of their private inputs while providing strong
security guarantees. However, its use in practice seems limited. We argue
that one of the reasons for this is that the model of computation on the
web is not suited to the type of communication patterns needed for secure
computation. Specifically, in most web scenarios clients independently
connect to servers, interact with them and then leave. This rules out the
use of secure computation protocols that require that all participants
interact simultaneously.

We initiate a study of secure computation in a client-server model
where each client connects to the server once and interacts with it, with-
out any other client necessarily being connected at the same time. We
point out some inherent limitations in this model and present definitions
that capture what can be done. We also present a general feasibility re-
sult and several truly practical protocols for a number of functions of
interest. All our protocols are based on standard assumptions, and we
achieve security both in the semi-honest and malicious adversary models.

1 Introduction

Web-servers are a dominant communication medium in today’s society. Some
examples include users of social networks that communicate by sending mes-
sages to the web-servers of their network to “write on the wall” of their friends
(and these servers distribute the messages to the intended recipients), program
committees that use web-based systems to share their reviews and discussions,
readers that participate in on-line polls on newspaper web sites, bidders engag-
ing in on-line auctions, voters using web-based election systems, and so on. In
many cases, direct interaction between users is impossible simply because users
are off line most of the time. In almost all systems today, the web-server serves
not only as a communication medium but also as a trusted party. It receives
all the information from the users and does all the processing, and it is trusted
by the users to only use their information as needed for the application (or as
� Supported by the European Research Council as part of the ERC project LAST.

�� Supported in part by the Israel Science Foundation (grant No. 860/06).

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 132–150, 2011.
c© International Association for Cryptologic Research 2011

Secure Computation on the Web 133

specified in the “privacy policy” of the web site). This may be appropriate in
some cases, but there are many cases where there is no reason for users to trust
the server or each other, and indeed many cases where this trust was found to
be unjustified in retrospect. (For example see [1].)

A natural approach toward rectifying this problem is to use cryptographic
techniques for eliminating trusted parties. Indeed, the last three decades saw
a very significant body of work within the cryptography research community
(going under the general name of secure multi-party computation), devoted to
finding various ways of transforming systems that rely on trusted parties into
systems that do not need them (see, e.g., [2, Ch. 7] for an overview).

In fact, with client-side processing in Web 2.0 we now have a huge mass of
parties with serious computing platforms and conflicting interests, all wishing
to interact with each other to perform some joint tasks. This seems to offer the
perfect setting for mass deployment of secure multi-party computation, but in
reality such mass deployment has not happened. Some of the reasons are related
to practical issues with browser technology (e.g., clients cannot verify that they
run the right program), but here we focus on a more cryptographic reason; specif-
ically, the fact that our current multi-party protocols seem incompatible with the
communication patterns of today’s web applications. Much of the work on secure
multi-party computation assumes that all parties remain on-line throughout the
computation, and most solutions also rely on strong communication primitives
like broadcast. In contrast, clients on the web connect in an ad hoc manner via a
server at different times, and typically do not communicate with each other. We
thus ask whether one can eliminate the need for the web-server being a trusted
party, even in this setting of loosely connected parties that are off line most of
the time.

Beyond the practical interest that we discussed above, addressing multi-party
computation in this model is also of significant theoretical interest. It is not at
all clear that theoretically meaningful secure computation can be achieved in
a setting where each party carries out a single interaction with an untrusted
server at a different time (either in the semi-honest or the malicious settings).
The power of this model is therefore a natural theoretical question to consider.

We note at the outset that a naive approach using fully homomorphic en-
cryption [3,4] does not solve the problem of secure computation in our setting.
This is due to the fact that although each party can encrypt its input and the
computation can be done homomorphically, there is still the need to decrypt the
final ciphertexts while preventing decryption of the intermediate ciphertexts.

1.1 Our Contributions

We initiate a study of secure computation with loosely connected parties. We
define security, and observe that in this setting it is not always possible to achieve
the same level of security as in the standard setting of secure computation.
We formalize what can be achieved in this model, and then present theoretical
and practical constructions, for both the cases of semi-honest and malicious
adversaries. Our constructions all rely on standard assumptions (like the DDH

134 S. Halevi, Y. Lindell, and B. Pinkas

assumption) and are in the standard model. The only exception is that for our
practical construction in the case of malicious adversaries, we use random oracles
in order to obtain practical non-interactive zero-knowledge via the Fiat-Shamir
paradigm [5].

We begin by considering a very basic setting of a server and n parties, denoted
P1, P2, . . . , Pn. Each party Pi has an input xi, and the parties wish to jointly
evaluate a function f(x1, . . . , xn) (e.g., the sum of the inputs, or their maximum
value), such that the server learns the output value. To simplify the exposition,
consider the case where the parties talk to the server in order, first party P1,
then party P2, all the way up to party Pn, and if everyone cooperates then after
talking to them all the server should be able to learn the output value.

We stress that although our basic model assumes a pre-set order, many of
the protocols that we describe allow the parties to interact with the server in
an arbitrary order, which need not be set up in advance. However, all our pro-
tocols assume that the clients connect to the server sequentially, removing this
requirement is an interesting open problem.

Consider first the case of semi-honest parties. It is easy to see that even in this
model protocols cannot always provide the same privacy guarantees as standard
secure function evaluation protocols (SFE). For example, if the last n− i parties
collude with the server, then they can always evaluate the residual function
g�x

i (zi+1, . . . , zn) def= f(x1, . . . , xi, zi+1, . . . , zn) on as many inputs (zi+1, . . . , zn)
as they like. This is due to the fact that these last n − i parties must have the
capability of computing f(x1, . . . , xi, xi+1, . . . , xn) for every possible vector of
their inputs xi+1, . . . , xn. Furthermore, since the first i parties are no longer
involved, nothing prevents the last n− i parties from just rerunning the rest of
the protocol many times with different inputs zi+1, . . . , zn.

We formalize the inherent “leakage” in this model by introducing the concept
of a one-pass decomposition of a function: A decomposition of an n-input function
f(x1, x2, . . . , xn) is a vector of functions {fi(yi−1, xi) : i = 1, . . . , n}, such that for
all inputs x1, . . . , xn it holds that f(x1, x2, . . . , xn)=fn(· · · f2(f1(x1), x2) . . . , xn).
Here yi represents the intermediate result based on the inputs of parties P1

through Pi and y0 is defined as the empty string. One can see that every pro-
tocol for computing f in our model corresponds to some (possibly randomized)
decomposition of f , roughly because we can think of yi as the state of the server
after interacting with party Pi. However, as we will see, not all decompositions
are equal; some are better than others (and some are incomparable). We there-
fore break up the problem of secure computation in this model into (a) finding
a “good” decomposition of the given function f , and (b) devising a protocol to
securely compute a given decomposition.

Good decompositions. Although every function f can be decomposed as de-
scribed above, some decompositions are more “interesting” or “natural” than
others. A trivial example is that any function f can be decomposed by setting
the functions f1, . . . , fn−1 to all be the identity function and then setting fn = f .
A more interesting example is that the sum function, f(x1, . . . , xn) =

∑
i xi, can

be decomposed by letting the fi’s be the partial sums, fi(yi−1, xi) = yi−1 + xi.

Secure Computation on the Web 135

Clearly, the decomposition of the sum function using partial sums is much better
than its decomposition using the identity functions, since it reveals much less
information to the adversary (in the case of a corrupted server and corrupted
party Pn the adversary learns all the inputs when the identity function is used,
in contrast to a partial sum only).

We are particularly interested in “minimum-disclosure” decompositions of f ,
where yi = fi(· · ·) carries no more information about the inputs x1, . . . , xi than
the truth-table of the residual function g�x

i from above. For example, it is easy
to see that for the sum function, having the fi’s be the partial sums is indeed a
minimum-disclosure decomposition, because given xi+1, . . . , xn and the output
yn it is possible to compute the partial sum yi. In Section 2 we define this notion
of minimum-disclosure decompositions and describe many functions that have
efficient minimum-disclosure decompositions. Then in Section 4.1 we describe
practical protocols for securely computing some of these decompositions (in a
PKI model). The functions that we can handle in this fashion include all the
symmetric functions on small domains (and also some other functions). Thus,
for example, we construct a practical protocol for computing a referendum, as
privately as is possible in our model.

Securely computing any decomposition. Given a specific decomposition
of f (that codifies the “leakage” that we are willing to tolerate while comput-
ing f in our model), what does it mean for a protocol to securely compute this
decomposition? In keeping with the intuition that yi represents the partial result
up to party Pi, we set out to formalize the requirement that these partial results
are the only thing that can be learned by the bad parties.

First, observe that many of the intermediate results yi’s can be hidden from
the corrupted parties. For example, if parties P1, P2 and P3 are honest then we
expect the partial results y1 and y2 to remain hidden, even if a dishonest P4

learns y3. In fact our formal definition requires a little more: A protocol is said
to securely compute a given decomposition of f if the only partial result that
it leaks is the one after the last honest party. Namely, the view of any set of
adversarial parties can be simulated knowing only the value yi = fi(. . .), where
i is the index of the last honest party. Furthermore, if the server is honest, then
nothing but the output of f is revealed. (We remark that a weaker definition
where bad parties can learn all the yi’s for which party Pi+1 is dishonest, is
essentially equivalent to the notion of i-Hop homomorphic encryption from [6].)

In Section 5 we consider the task of devising a protocol to securely compute
a particular given decomposition of a function f . Using re-randomizable garbled
circuits similar to Gentry et al. [6] we show that under the DDH assumption
any efficient decomposition of f can be securely computed in our model (if a
PKI is available). Our treatment simplifies the techniques from [6], in that we
use re-randomizable garbled circuits only in conjunction with re-randomizable
encryption (whereas [6] needed also re-randomizable OT). We also strengthen
the construction from [6] slightly in order to deal with malicious parties. See
Section 5 for more details about these points.

136 S. Halevi, Y. Lindell, and B. Pinkas

1.2 Some Related Work

Some of the techniques that we use are similar to those used in the work of Harnik
et al. [7]. In that work they considered a multi-party computation settings where
the inputs of parties are incorporated one at a time, with the goal of minimizing
the number of OTs that are needed every time a new input is received. In
particular our protocols for symmetric functions are reminiscent of their tables
method.

Another related work is that of Choi et al. [8]. They considered a setting where
the parties can interact in a setup phase before receiving their inputs, and then
they want to minimize online communication while maintaining full security.
Their results are not applicable in our model, however, since, as we explained,
full security cannot be obtained in our model (and this remains true even given
an interactive setup phase).

2 One-Pass Decompositions

Throughout the text we denote the number of parties (not counting the server)
by n, and the security parameter by m. For an integer n we denote Zn =
{0, 1, . . . , n − 1} and [n] = {1, 2, . . . , n}. In the text we also refer to random-
ized functions which can be viewed as distributions over deterministic functions
all with the same domain and range.

Definition 1 (Decomposition). Let f : Dn → R be an n-variable function
(from domain D to range R). A deterministic one-pass decomposition of f is
a sequence of functions f1 : D → {0, 1}∗, fi : {0, 1}∗ × D → {0, 1}∗ for i =
2, 3, . . . , n − 1, and fn : {0, 1}∗ × D → R such that for all x1, . . . , xn ∈ D, it
holds that f(x1, x2, . . . , xn) = fn(· · · f2(f1(x1), x2) · · · , xn).

A randomized one-pass decomposition of f is a sequence of n randomized
functions with the same domains and ranges as above, such that the equality
above holds with overwhelming probability (in the implicit security parameter).

Below we will omit the “one-pass” qualifier and just call this sequence of func-
tions a decomposition. We often also omit the distinction between deterministic
and randomized decompositions. Given a decomposition f̄ = 〈f1, . . . , fn〉, we
denote by f̃i the concatenation of the first i functions,

f̃i(x1, x2, . . . , xi)
def= fi(· · · f2(f1(x1), x2) · · · , xi). (1)

2.1 Minimum-Disclosure Decompositions

As was mentioned above, some decompositions are better than others and some
functions have efficient decompositions that are “as good as possible” (in that
they do not leak anything beyond the ability to compute the residual func-
tions gi), while others do not. Fix an n-input function f and n particular inputs

Secure Computation on the Web 137

x1, . . . , xn. For all i = 0, . . . , n we denote by g�x
i the “residual function” with the

first i variables fixed. That is, for �x = 〈x1, . . . , xn〉, define

g�x
i (zi+1, . . . , zn) def= f(x1, . . . , xi, zi+1, . . . , zn). (2)

(In particular g�x
0 = f and g�x

n is the constant function g�x
n(·) = f(x1, . . . , xn).)

As we explained above, any decomposition of f must at least leak the ability
to compute g�x

i on all residual input vectors zi+1, . . . , zn. A minimum-disclosure
decomposition is one that does not leak anything else. Namely, for all i it is pos-
sible to compute the output of the composition of the first i functions f1, . . . , fi,
given only oracle access to the residual function g�x

i (·).
Definition 2 (Minimum-Disclosure). A decomposition f̄ is minimum disclo-
sure if there exists a probabilistic black box simulator S such that for every vector
of inputs �x = 〈x1, . . . , xn〉 of total length � and every i ∈ [n], Sg�x

i (·)(�, n, i) runs
in time polynomial in �+n, and the output of Sg�x

i (·)(�, n, i) equals f̃i(x1, . . . , xi),
except with negligible probability.1

We stress that not all functions have efficient minimum-disclosure decompo-
sitions,2 as is stated in the following theorem.

Theorem 1. If one-way functions exist, then there are functions that do not
have efficient minimum-disclosure decompositions.

The theorem is proved in the full version of the paper [9]. Roughly, a decompo-
sition is minimum-disclosure only when the residual functions gi are efficiently
learnable. Hence, a pseudorandom function f : Seeds× Inputs → Outputs (when
viewed as a two-input function f(s, x)) does not have an efficient minimum-
disclosure decomposition. In the full version we also include a discussion about
functions with incomparable decompositions.

2.2 Some Functions with Minimum-Disclosure Decompositions

The sum function. Perhaps the simplest example is the sum function over
a group: f(x1, . . . , xn) =

∑n
j=1 xj . In this case the decomposition into partial

sums fi(yi−1, xi) = yi−1 + xi is clearly minimum disclosure. Indeed, we have
f̃i(x1, . . . , xi) =

∑i
j=1 xj , and the simulator S can simply query g�x

i (0, . . . , 0) and
return the answer that it gets: g�x

i (0, . . . , 0) = f(x1, . . . , xi, 0, . . . , 0) =
∑i

j=1 xi.

Selection functions. Other illustrating examples of functions with minimum-
disclosure decompositions are selection functions. Consider first the selection
function with index at the end, f(x1, . . . , xn−1, j) = xj . Here we can see that
the trivial decomposition, where for i < n we have fi = identity and for i = n

1 For randomized functionalities we require that {Sg�x
i (·)(�, n, i)} c≡ {f̃i(x1, . . . , xi)}.

2 The residual truth table of a function is always minimum disclosure; however, it may
be exponentially large.

138 S. Halevi, Y. Lindell, and B. Pinkas

we have fn = f , is minimum disclosure. This is because given oracle access to g�x
i

for any i < n, the simulator can just query it with varying inputs of the selection
variable j, thus getting all the inputs x1, . . . , xi.

On the other hand, consider the selection function with index at the beginning,
f(j, x2, . . . , xn) = xj . Here a minimum disclosure decomposition would maintain
a value and a state bit (wait/done), such that when the state is wait then the
value is j, and when the state is done then the value is xj . To see that this is
indeed minimum disclosure, notice that given access to g�x

i the simulator can test
if the selection index j is larger than i, e.g., by testing if g�x

i gives different values
on 〈0, 0, . . . , 0〉 and 〈1, 1, . . . , 1〉. If j > i then the simulator can find j by testing
which is the input that g�x

i depends on, and if j < i the simulator can output xj

(which is the output of g�x
i on every input).

Binary symmetric functions. An n-input binary symmetric function takes n
bits as input, and the output depends only on the number of 1’s in the input
(i.e., the Hamming weight). Some examples include the AND, OR, PARITY,
and MAJORITY functions. We note that the truth table of a binary symmet-
ric function has an efficient representation: we just list for every 0 ≤ j ≤ n
the output of f on inputs with Hamming-weight j. Thus, the truth table is of
length n+ 1 rather than of length 2n. We also note that for a binary symmetric
function f and input �x, all the corresponding g�x

i ’s are also binary symmetric
functions, and moreover the truth table of g�x

i+1 can be computed from the value
of xi and the truth table of g�x

i . Specifically, for xi = 0 the truth table of g�x
i+1

is obtained from that of g�x
i by removing the last row, and for xi = 1 the truth

table of g�x
i+1 is obtained by removing the first row from that of g�x

i .
For a binary symmetric function f , consider the decomposition that outputs

at every step i the truth table of g�x
i . The above observations imply that this de-

composition is efficient, and it is minimum disclosure since it is easy to compute
the truth table of a symmetric function given oracle access to that function.

Symmetric functions over other domains. The observations from above can
be extended to symmetric functions over other domains. We assume without loss
of generality that the domain is Zc = {0, 1, . . . , c − 1} for some integer c. An
n-input symmetric function over Zc is one where permuting the inputs does not
affect the output. In other words, the output depends only on how many of the
inputs assume what value of the domain. This type of function is common for
statistical measurement, including functions like SUM, AVERAGE, MEDIAN,
MAJORITY, MAXIMUM and more.

The truth table for a symmetric function over Zc can be expressed using a
single row for all the inputs that have exactly j0 inputs of value 0, j1 inputs
of value 1, and so on up to jc−2 inputs of value c − 2 and jc−1 = n − ∑c−2

i=0 ji

inputs of value c − 1. That is, we have a row in the truth table for every c-
vector of non-negative integers 〈j0, j1, . . . , jc−1〉 that sum up to n, so we have a
total of

(
n+c−1

n

)
rows. Hence the truth table is of polynomial-size O(nc) for any

constant c. Moreover, in this case we again have the properties that all the g�x
i ’s

are symmetric, and the truth table of g�x
i+1 can be computed efficiently from the

value of xi and the truth table of g�x
i+1 (see the full version for more details).

Secure Computation on the Web 139

Also similarly to the binary case, when the truth table has polynomial size
then it can be constructed efficiently given only oracle access to the function,
hence the functions that output at every step i the truth table of g�x

i constitute
a minimum-disclosure decomposition of the original symmetric function f .

3 Server-Based One-Pass Protocols

All our protocols are staged in the PKI model. Namely, where each party knows
the public keys of all other parties, and each honest party knows the private key
corresponding to its own public key.

A server-based one-pass protocol for n clients and a server is a sequence of n
two-party protocols, π̄ = 〈π1, . . . , πn〉, which are carried out sequentially with πi

being a two-party protocol between the server and the ith client Pi. The output
of the protocol π̄ is defined as the output of the server after the last protocol πn.
Below we denote the clients by P1, P2, . . . , Pn and the server by Pn+1. We denote
the joint outputs of an adversary A and server Pn+1 after a real execution of
π̄ with inputs �x = (x1, . . . , xn), vector of public/private key-pairs �kp, auxiliary
input z to A, corrupted parties I ⊆ [n + 1], and security parameter m, by
REALπ̄,A(z),I(�x, �kp, 1m).

Securely computing a decomposition. We define security via the ideal/real
paradigm in the stand-alone setting with static corruptions. In the ideal world,
there is an additional trusted party that carries out the computation for the
parties. In our setting, the trusted party receives the input of all clients and the
identities of corrupted parties, and sends to the server the function output as
well as any information that is inherently learned in our model (based on who
is corrupted). Note that the ideal model is defined for a function decomposition
f̄ . (It is not necessary to include f since f̄ fully determines f .)

In the ideal world of the semi-honest model, the output that is given to the
server is always the value of the function f(x1, . . . , xn) on the given inputs of
all the clients. In addition, if the server is corrupted, then the trusted party
sends it the value f̃i(x1, . . . , xi) = fi(· · · , f2(f1(x1), x2) · · · , xi) where i is the
index of the last honest party. We denote the outputs of a semi-honest ideal-
world adversary S and server Pn+1 after an ideal execution with inputs �x =
(x1, . . . , xn), auxiliary input z to S, corrupted parties I ⊆ [n + 1], and security
parameter m, by IDEAL

sh

f̄ ,S(z),I(�x, z, 1
m).

The ideal-world of the malicious model is exactly the same, except that cor-
rupted clients may send any arbitrary inputs to the trusted party, not necessarily
the ones from their input. By convention, if a client sends input ⊥, then the out-
put of the function is defined to be ⊥ (representing an aborted execution). The
joint output here is denoted IDEAL

mal

f̄ ,S(z),I(�x, z, 1
m).

Definition 3 (Securely Computing a Decomposition). Let f be an n-input
function and let f̄ = 〈f1, . . . , fn〉 be a decomposition of f . A server-based one-
pass protocol π̄ securely computes the decomposition f̄ in the semi-honest (resp.

140 S. Halevi, Y. Lindell, and B. Pinkas

malicious) model, if for every non-uniform probabilistic polynomial-time semi-
honest (resp. malicious) adversary A in the real world, there exists a non-uniform
probabilistic polynomial-time adversary S for the semi-honest (resp. malicious)
ideal world, such that for all �x ∈ ({0, 1}∗)n and z ∈ {0, 1}∗{

IDEALf̄ ,S(z),I(�x, 1
m)
}

c≡
{
REALπ̄,A(z),I(�x, �kp, 1m)

}
where the key-pairs �kp are chosen as described above.

We stress that if the server is honest, then in all cases nothing is learned by the
adversary. When the function has a minimum-disclosure decomposition and a
protocol that realizes that decomposition, then that protocol is called optimally-
private.

Definition 4 (Optimally-Private). Let f be an n-input function. We say
that π̄ is an optimally-private server-based one-pass protocol for computing f if
there exists a minimum-disclosure decomposition f̄ of f such that π̄ securely
computes f̄ in the semi-honest (resp. malicious) model.

4 Practical Optimal Protocols

In Section 5 we show that any decomposition can be securely computed given a
public-key infrastructure, under the DDH assumption. As a corollary we obtain
that any function that has a minimum-disclosure decomposition can be com-
puted with optimal privacy. However, this construction is far from being practi-
cal; even for simple functions and semi-honest adversaries, it requires computing
hundreds of exponentiations per gate. In this section, we present highly efficient
protocols for specific examples from Section 2.2. These protocol are truly practi-
cal and could be implemented, for example, in a conference program committee
review site in order to carry out secure voting. (With only a few tens of users,
the solution that provides security in the presence of malicious adversaries would
only require a few seconds of computation by each client and the server.) In the
full version we describe protocols for the other functions from Section 2.2.

4.1 Protocols for Symmetric Functions

We begin by showing how to securely compute any binary symmetric function,
based on the truth-table decomposition described in Section 2.2.

The Semi-Honest Case. Recall that symmetric functions have a concise truth
table of size n + 1, that the minimum-disclosure decomposition for functions of
this class consists of the truth table of the g�x

i ’s, and that computing the next
truth table is carried out by removing the first or last row of the current truth
table. Intuitively, our protocol works by having the first client P1 encrypt each
entry of the truth table iteratively (in a layered, or onion like, structure) under
all parties’ public keys. Then, each party in turn removes the encryption under

Secure Computation on the Web 141

its public key, and removes the first row of the truth table if its input is 0, or
the last row of the truth table if its input is 1. After the last party, the table
contains just one row which is encrypted under the server’s key.

This solution is not quite enough, however. For example, a collusion of P1

and P3 can learn P2’s exact input (irrespective of whether or not the server is
corrupted). To see this, observe that P1 generates all the ciphertexts. In addi-
tion, it can see all the ciphertexts received by P3 after P2 decrypts its layer of
encryption. Hence, given P3’s view P1 can determine if P2 removed the first or
the last row of the table.

We solve this problem by using rerandomizable public-key encryption. Loosely
speaking, this means that given an encryption c = Epk(x) and the public key pk
it is possible to generate an equivalent encryption c′ = Epk(x) with independent
randomness. We stress that the rerandomization must work on all layers of the
(onion-type) encryption. The requirements here are therefore different from the
standard notion. Let Epk(x; r) denote an encryption of x using randomness r, and
let Epk1,...,pkn+1(x; r1, . . . , rn+1) = Epk1(· · ·Epkn+1(x; rn+1) · · · ; r1) denote a lay-
ered encryption starting with the encryption of x under pkn+1 with randomness
rn+1 and re-encrypting under each pki in turn, using randomness ri. For short-
hand, we write Ē�pk(x;�r) where �pk = (pk1, . . . , pkn+1) and �r = (r1, . . . , rn+1).3

We define:

Definition 5. A public-key scheme (G,E,D) is layer rerandomizable if there
exists a procedure R such that for every x ∈ {0, 1}∗ and every �r ∈ ({0, 1}∗)n,{

�pk , Ē�pk(x;�r), Ē�pk(x;�s)
}
≡
{
�pk, Ē�pk(x;�r), R(�pk, Ē�pk(x;�r))

}
where �pk = (pk1, . . . , pkn) is such that all the pki’s are in the range of G, and
�s ∈R ({0, 1}∗)n is a vector of uniformly distributed random strings.

We stress that the definition requires the rerandomization to work for all
randomness �r (even randomness that is “badly chosen”). However, it is assumed
that all the public keys are “legitimate” in that they are in the range of G. Layer
rerandomizability can be obtained from any additively homomorphic encryption
scheme. Namely, define an initial layered encryption of x by

Ē�pk(x;�r) def= 〈Epk1(x1; r1), . . . , Epkn(xn; rn)〉

where x1, . . . , xn are chosen at random under the constraint that ⊕n
j=1xj = x.

A jth step layered encryption of x is defined as

Ēj
�pk(x;�r) def=

〈
x1, . . . , xj , Epkj+1 (xj+1; rj+1), . . . , Epkn(xn; rn)

〉
Rerandomization works by adding to the xi’s random δi’s that sum up to zero,
and then rerandomizing each ciphertext separately, under the appropriate key.

3 Below we abuse these notations somewhat, denoting by Ē�pk(x;�r) a procedure that
encrypts x under all the public keys but not necessarily in an onion fashion.

142 S. Halevi, Y. Lindell, and B. Pinkas

In addition, it is possible to decrypt in layers by having each party decrypt its
ciphertext in turn and pass on the decrypted value along with the rest. Namely,
the jth party transforms a (j−1)th level layered encryption to a jth level layered
encryption.

A more efficient layer rerandomizable encryption scheme can be constructed
from El Gamal. Let G be a group of prime order q with generator G. Then, for
public-key h = Gα and Epk(x) = (Gr, hr ·x), define R(pk, 〈u, v〉)=〈u ·Gs, v · hs〉,
where s ∈R Zq. Observe that for u = Gr, v = hr · x it follows that R(pk, u, v) =
(Gr+s, hr+s · x), which is distributed identically to an encryption of x under an
independent random string r′ = r + s mod q.

In order to make this layer rerandomizable without increasing the size of
the ciphertext, we define layered encryption as follows. Each party Pi has an
El Gamal public-key hi = Gαi relative to the same group (G, q, g) as before.
However, an encryption of x under the public keys h1, . . . , hn is defined to be
(Gr, (H1,n)r ·x), where H1,n =

∏n
j=1 hj = G

∑ n
j=1 αj . In general, we define Hi,n =∏n

j=i hj = G
∑ n

j=i αj . It remains to show how Pi “decrypts” under its key hi and
rerandomizes the result. Given (u, v) where u = Gr and v = (Hi,n)r · x, party
Pi decrypts by computing u′ = u and v′ = v · u−αi . This works because taking
u = Gr and v = x · (Hi,n)r we have that

v · u−αi = x · (Hi,n)r · (Gr)−αi = x ·
(
G

∑ n
j=i αj

)r

· (G−αi
)r = x ·

(
G

∑ n
j=i+1 αj

)r

and so (u′, v′) is a valid encryption of x with randomness r, under public key
Hi+1,n. Rerandomization is then carried out as described above, using public-key
Hi+1,n. That is, we compute u′′ = u′ ·Gs and v′′ = v′ · (Hi+1,n)s.

Returning to symmetric functions, in our protocol we will now use layer reran-
domizable encryption to encrypt the lines of the truth table, and each party in
turn will decrypt its own layer, remove either the first or last row from the table,
rerandomize and then send back to the server.

Theorem 2. Let f be a binary symmetric function. If the encryption scheme
(G,E,D) is layer rerandomizable, and all honest parties’ public keys are gen-
erated honestly using G, then the protocol above is an optimally-private server-
based one-pass protocol for computing f , in the presence of semi-honest adver-
saries. Moreover, it is secure even if the semi-honest adversary can choose the
randomness for the protocol in an arbitrary manner.

Proof (sketch). We separately prove the case that Pn+1 is corrupted and the case
that it is not. If Pn+1 is not corrupted, then it suffices to prove that it obtains
correct output and that the adversary’s view can be simulated without any help
from the trusted party. Correctness is immediate from the construction. The view
of the adversary can be simulated since everything is encrypted under the key of
the honest server. Specifically, every time an honest party Pi is supposed to carry
out its interaction with the server, construct a brand new truth table Ci which
contains n − i + 1 encryptions of 0 under the public-keys pki+1, . . . , pkn+1, in
turn. The fact that this is indistinguishable from a real execution follows directly
from the hiding property of encryptions, and the rerandomizability property.

Secure Computation on the Web 143

Next, we consider the case that the server Pn+1 is corrupted, and 1 ≤ i ≤ n is
the index of the last honest party. In this case, the simulator S is given the value
yi = f̃i(x1, . . . , xn), which in this case is the appropriate partial truth table. The
simulation is the same as before for every iteration up to and including i− 1. In
the ith iteration, S simulates the message sent by the honest Pi by encrypting
under the public keys pki+1, . . . , pkn+1 the partial truth table that it received
from the trusted party. As before, the output distribution of the adversary is
indistinguishable from a real execution (note that the last simulated message is
actually identical to in a real execution; the difference comes from prior ones
which are all encryptions of 0 instead of the real partial truth table). ��

In the protocol above, using the El-Gamal-based rerandomizable encryption,
each party computes less than 3n exponentiations, so the total number of expo-
nentiations if at most 3n2. Hence this protocol could be practical for a large (but
not huge) number of parties, perhaps even for n in the thousands. We remark
however that the parties must work sequentially, and this may be a limitation if
n is too large. Also, in this concrete instantiation the parties can connect and in-
teract with the server in any order, which is an important property for practical
implementation and deployment.

The Malicious Case. Since the semi-honest protocol is secure for any random
coins used by the dishonest parties, it is enough to add signatures so that corrupt
parties and/or server cannot modify the messages sent by previous parties, and
(non-interactive) zero-knowledge proofs of good behavior to obtain security in
the malicious model. We describe the resulting protocol in the full version. For
our concrete El Gamal implementation, all these proofs can be made efficient
since they can all be reduced to compound statements about equality of dis-
crete logarithms, and these can be made non-interactive using the Fiat-Shamir
transformation in the random-oracle model. In particular, each party needs to
compute O(n2) exponentiations, we estimate that running the protocol with
n = 100 parties will take just a few minutes per party.

Symmetric Functions Over Larger Domains. In the full version we also
show that the protocols for binary symmetric functions extend to symmetric
functions over any domain Zc, where the complexity grows as nO(c). Hence we
get efficient protocols for any constant c.

4.2 Selection Functions

In this section, we construct an optimally-private protocol for the selection func-
tion f(j, x2, . . . , xn) = xj ; i.e., where the selector is first. As we have seen in
Section 2.2, the disclosure in this case is the least. Specifically, if the last honest
party is after the selected party, then the only thing learned by the server is the
selected value and not even its position. Otherwise, the position is learned, but
nothing else. (Note that hiding the position is really the only interesting issue
in this function, since otherwise it can be trivially solved by having the selector
first announce who is selected and next having the selected party send its value.)

144 S. Halevi, Y. Lindell, and B. Pinkas

The semi-honest case. Our protocol is similar to the following 1-out-of-N
(semi-honest) oblivious transfer protocol, using additively homomorphic encryp-
tion: The receiver, who wants to get the jth value, generates N ciphertexts, all
encrypting 1 except the jth that encrypts a 0. Using the additive-homomorphism,
the sender multiplies the ciphertexts by random scalars (a different random num-
ber for each ciphertext) and then adds its value xi to the ith ciphertext. When
the receiver decrypts, it gets the jth value intact and all other values are random.

Our setting is a little more complicated than the OT setting, since (a) the in-
puts are split between parties P2, . . . , Pn rather than all belonging to one sender,
and (b) the receiver in our case is the server Pn+1, while the selection index j
is known to the first party P1. The latter concern is handled by choosing an
encryption scheme with plaintext space much larger than the domain of inputs
to the parties. Now with high probability the jth entry will be the only one in
the domain of inputs, so the server can identify it. To handle the first concern we
will use a mix-net-like construction (using a layer-rerandomizable encryption),
with each party shuffling the ciphertexts so that the following parties cannot tell
which ciphertext came from what party. (Also, we use El Gamal which is mul-
tiplicative rather than additive-homomorphic, and so we modify the underlying
OT protocol accordingly.)

In more detail, P1 with selector input j prepares a vector of El Gamal ci-
phertexts, all encrypting the group generator G except for the jth entry that
encrypts the group element 1. The ith ciphertext in this vector is encrypted
under the compound El Gamal public key Hi,n+1 =

∏n+1
t=i ht. (When using a

generic layer-rerandomizable encryption, the ith ciphertext is encrypted onion-
style under the public keys of parties i though n + 1.) We call this vector the
“initial ciphertexts” and denote it by I. During the protocol the initial cipher-
texts will be passed unchanged, and the parties use them to process another
vector of ciphertexts that contain the actual values. We call that other vector of
ciphertexts the “work ciphertexts”, and denote it by W .

Each party Pi (i ≥ 2) receives the initial ciphertexts I and a vector Wi−1

of i − 2 ciphertexts. The ciphertexts in Wi−1 are all encrypted under Hi,n+1.
Pi takes the ith ciphertext from I (which is also encrypted under Hi,n+1), uses
the multiplicative homomorphism of El Gamal to raise the plaintext inside it
to a random power in Zq, then uses the homomorphism again to multiply the
plaintext by its input xi. It inserts the resulting ciphertext to Wi−1, thus getting
a vector of i− 1 ciphertexts which we denote by W ′

i. Pi then peels off its layer
of encryption (resulting in ciphertexts under Hi+1,n+1), randomly permutes the
ciphertexts and re-randomizes them, thus obtaining a new vector of ciphertexts
Wi, which Pi sends back to the server.

After all the parties have participated, the server has a vector of “work ci-
phertexts” Wn, encrypted under the public key of the server Hn+1 = hn+1.
The server decrypts this vector, and if the corresponding plaintext vector has
a single element from the input domain of the protocol then the server out-
puts that element. A pseudocode description of this protocol (described using a

Secure Computation on the Web 145

generic additively homomorphic encryption layer-rerandomizable) can be found
in Protocol 3.

PROTOCOL 3 (Semi-Honest Optimal Protocol for the Selection
Function)

– Inputs: Party P1 has an index j (2 ≤ j ≤ n), and each party Pi (2 ≤ i ≤
n) has a private input xi, its own private key ski, and a vector of public
keys (pk2, . . . , pkn, pkn+1).

– The protocol:
1. First party instructions:

(a) For every i = 2, . . . , n, i �= j, P1 computes ci = Ēpki,...,pkn+1(1).
For i = j, P1 computes cj = Ēpkj,...,pkn+1(0).

(b) P1 sends the vector of initial ciphertexts I = (c2, . . . , cn) to the
server Pn+1.

2. Interaction of clients P2, . . . , Pn with server. For i = 2, . . . , n:
(a) Pn+1 sends Pi the initial ciphertexts I, and a vectorWi−1 of i−2

ciphertexts, encrypted under �pki = (pki, . . . , pkn+1). (For i = 2,
W1 is empty.)

(b) Pi extracts the ith ciphertext from I, ci = I[i] (encrypting a

bit bi ∈ {0, 1} under �pki.) It chooses a random number ri from
the plaintext space and uses the additive-homomorphic property
of the encryption to compute an encryption of ri · bi + xi, using
ci = E�pki

(bi), ri and xi.

(c) Pi adds c′i to the vectors Wi−1 (thus receiving a vector of i − 1
ciphertexts under (pki, . . . , pkn+1)) and decrypts a layer of all of
these ciphertexts using its secret key ski; denote the result byW ′i .

(d) Pi permutes the ciphertexts in W ′i and rerandomizes all of them
using the public keys pki+1, . . . , pkn+1. Denoting the result by
Wi, Pi sends Wi back to the server.

3. Concluding the computation: Upon receiving the encrypted vectorWn

(of length n− 1) from Pn, the server Pn+1 decrypts all the ciphertext
using its secret key skn+1. If the corresponding plaintext vector in-
cludes a single element from the input space then the server outputs
that plaintext (otherwise it outputs ‘?’).

Using similar arguments as in the binary symmetric case, we have that Pro-
tocol 3 is optimally-private in the presence of semi-honest adversaries, if the
encryption schemes used is additively homomorphic and layer rerandomizable,
and has plaintext space which is super-polynomially larger than the input space
for the protocol.

The malicious case. As above, in this case we need to have the parties sign
on their messages and prove that they behaved honestly. This can be achieved
using similar techniques as those described above.

146 S. Halevi, Y. Lindell, and B. Pinkas

5 Securely Computing any Decomposition

In this section, we present a basic feasibility result regarding the possibility of
securely computing an arbitrary given decomposition in our model. For this we
use re-randomizable garbled circuits that were introduced by Gentry et al. for
the purpose of multi-Hop homomorphic encryption [6]. (Below we call this the
GHV construction.) Roughly, each party Pi receives from the server a garbled
circuit encoding f̃i−1(x1, . . . , xi−1), adds its input to generate a garbled circuit
for f̃i(x1, . . . , xi), then re-randomizes this garbled circuit (so as to hide xi from
colluding parties i− 1 and i + 1) and sends the result back to the server.

The main problem that arises is that in our setting we do not want the server
to be able to evaluate all the f̃i’s. More specifically, if i is the index of the last
honest party then we do not want the adversary to be able to evaluate f̃j for
any j < i. (In contrast, in the setting of multi-Hop homomorphic encryption if
party Pi+1 is dishonest then the adversary can evaluate f̃i.)

To solve this we again use layered re-randomizable encryption: instead of
giving the parties the input labels for the garbled circuit, we give them only
the encryption of these input labels, encrypted under all the keys of the parties
that did not participate yet. Each party peels of its layer of encryption and re-
randomizes the result, hence the server learns the input label only after all the
(honest) parties decrypted their layers, and it cannot evaluate the circuit earlier.

We note that the layered re-randomizable encryption is intertwined with the
garbled-circuit construction, since each party has to be able to transform the
encryption of the inputs of one garbled circuit into “freshly random” encryption
of the inputs to a re-randomized version of the garbled circuit. Recall that in the
GHV construction the labels on the wires are balanced bit-strings (with half 0s
and half 1s), and re-randomizing a circuit is done by bitwise permuting the labels.
Hence we use bit-wise encryption (to handle the permutation) where ciphertexts
can be re-randomized (to hide the correlation to the previous circuit).

We mention that the original construction from [6] is secure only in the semi-
honest model. In particular a malicious party can choose “bad labels” to wires
to foil re-randomization, by choosing the two labels on a wire with a very small
(or very large) Hamming distance. We thus modify the construction slightly and
require that the Hamming distance between the two labels be exactly half their
length. This turns the GHV construction into one that works for any adversarial
coins in the semi-honest model, so we can add (non-interactive) zero-knowledge
proofs and get resilience against malicious adversaries.

5.1 Our Construction, Semi-Honest Model

As described above, we obtain security in our model by augmenting the GHV
construction with encryption of the input labels. Differently from Gentry et al.,
we do not use oblivious transfer to encode the input of the first party but instead
have that party encrypt the labels corresponding to its input bits with El Gamal.
(We note that the same simplification could also be used in the context of multi-
Hop homomorphic encryption.)

Secure Computation on the Web 147

In more detail, our construction works in the PKI model, where each party Pi

has a secret key ski and a corresponding public key pki = pk(ski), and every party
knows the public keys of all other parties. In the description below we assume
that these are all keys for El Gamal encryption, namely we have ski = αi ∈ Zq

and pki = Gαi where G is a generator in an order-q group G in which DDH is
hard.

The protocol. Let 〈f1, . . . , fn〉 be a given decomposition that we want to imple-
ment. Namely, we want a protocol where the view of any set of cooperating semi-
honest parties can be simulated knowing only the value yi = f̃i(x1, . . . , xi) =
fi(. . . f1(x1), . . . , xi), where i is the index of the last honest party (i.e., the last
party not in the set of corrupted parties).

Throughout the computation, we maintain the invariant that before interact-
ing with party Pi the server has a garbled circuit of the function f̃i−1(x1, . . . , xi−1)
and an encryption of all the labels corresponding to the inputs bits in x1, . . . , xi−1,
where the encryption is with respect to the public keys of the remaining parties
pki, . . . , pkn, pkn+1 (pkn+1 is the key of the server.)

In more detail, let Λi−1 be a garbled circuit that the server has before talking
to party Pi (where Λ0 is the empty garbled circuit with no inputs). To slightly
simplify notations we assume that all the inputs xi are exactly t-bit long, and
let xij denote the jth bit of xi, i.e. xi = xi1xi2 . . . xit. Hence Λi−1 has (i − 1)t
input wires, and there are two �-bit labels associated with each input wire. We
denote the 0 and 1 labels associated with the jth input wire of the ith party by
L0ij, L1ij , respectively.

Below we also denote by σk
ij the kth bit of the label corresponding to the

input bit xij . That is, if xij = 0 then (σ1
ij . . . σ

�
ij) = L0ij and if xij = 1 then

(σ1
ij . . . σ

�
ij) = L1ij. Hence before talking to party Pi the server should have

encryptions of all the bits σk
i′j for i′ < i, j = 1, . . . , t and k = 1, . . . , �. Specifi-

cally, let Hi be the compounded public key of parties i through n + 1, namely
Hi

def=
∏n+1

j=i hi. Then for each bit σk
i′j with i′ < i, j ≤ t and k ≤ �, the server

has an El Gamal encryption of σk
i′j relative to public key Hi, i.e., a pair of the

form (Gr, Gσk
ij · H r

i). (Of course, the exponents r in all these ciphertexts are
chosen independently.)

The ith party. The ith party has its input xi = (xi1 . . . xit), its secret key αi

and the public keys of the parties after it, hi+1, . . . , hn, hn+1. It receives from
the server the garbled circuit Λi−1 corresponding to f̃i−1, and the encryption of
all the bits σk

ij relative to the compounded public key Hi. Recall that f̃i is an
extension of f̃i−1 via fi(yi−1, xi), namely

f̃i(x1, . . . , xi−1, xi) = fi(f̃i−1(x1, . . . , xi−1)︸ ︷︷ ︸
yi−1

, xi).

Hence party Pi can extend the garbled circuit Λi−1 corresponding to f̃i−1 into a
garbled circuit Λi corresponding to f̃i, using the output labels of Λi−1 as input
labels for the wires of yi−1 and choosing new input labels for the wires of xi.

148 S. Halevi, Y. Lindell, and B. Pinkas

That is, party Pi builds the Yao circuit for f̃i, choosing random labels for all
wires except for the input wires corresponding to the output of f̃i−1; the garbled
labels on the input wires are taken as the output labels for the wires of the
received circuit. Thus, the two circuits are composed into one.

Next, party Pi uses its secret key αi to convert all the El Gamal ciphertexts
relative to Hi into encryption of the same bits relative to Hi+1. Namely, given
a ciphertext (u = Gr, v = Gσ ·H r

i), Party Pi computes v′ = v/uαi and outputs
the ciphertexts (u, v′). This is indeed an encryption of the bit σ with respect to
Hi+1, since Hi+1 = Hi/hi = Hi/G

αi and therefore

v′ =
v

uαi
=

Gσ ·H r
i

Grαi
= Gσ ·

(
Hi

Gαi

)r

= Gσ ·H r
i+1 .

Party Pi also encrypts the bits σk
ij of the labels corresponding to all of its input

bits xij , relative to the compounded public key Hi+1.
At this point Party Pi holds the complete state as needed for the next step

of the computation, and it only remains to re-randomize this state (so as to
hide xi). To this end, Party Pi applies the re-randomization procedure to the
garbled circuit Λi to get a new garbled circuit Λ′

i. This includes in particular
choosing a random permutation πij for the wire of every input bit xij . Party Pi

permutes accordingly the vector of El Gamal ciphertexts for the bits on that wire
(σ1

ij . . . σ
�
ij), thus obtaining an encryption of the new input label for this wire.

(All these encryptions are relative to the compound public key Hi+1.) Finally it
re-randomizes these encryptions by choosing for each ciphertext a new exponent
r′ and replacing the pair

〈
u = Gr, v = Gσ ·Hr

i+1

〉
with u′ = u · Gr′

= Gr+r′

and v′ = v · Hr′
i+1 = Gσ · Hr+r′

i+1 . Party Pi sends Λ′
i and all the ciphertexts (in

order) to the server, and the server is now ready for party Pi+1.

The server. After the interaction with the last party n, the server has a garbled
circuit for the function f̃n = f , and encryption of the input labels corresponding
to all the input bits of all the parties, relative to the public key Hn+1 = hn+1.
Since the server knows the secret key αn+1 corresponding to hn+1, it can decrypt
all these ciphertexts and recover the label on each input wire. The server then
evaluates the garbled circuit and obtains the result f(x1, . . . , xn), as needed. The
proof of the following theorem can be found in the full version [9].

Theorem 3. For any decomposition f̄ = 〈f1, . . . , fn〉, the protocol from Sec-
tion 5.1 is a server-based one-pass protocol that securely computes f̄ in the semi-
honest model, even if the dishonest parties can choose arbitrary random coins
for the protocol.

5.2 The Malicious Model

As we saw in Theorem 3, the security of the semi-honest protocol holds even
if dishonest parties are allowed to choose their coins arbitrarily (rather than at
random). Thus, to achieve security in the presence of malicious adversaries, we
have each party prove that it followed the instructions of the protocol relative

Secure Computation on the Web 149

to some input and set of random coins. This proof must be non-interactive and
verified by all subsequent parties. This requires a common reference string (or
perhaps re-use of the available PKI). In order for us to extract the inputs used
in the ideal-model simulation, the proof also has to be a proof of knowledge.
One option for this is to use a universally composable non-interactive system of
zero-knowledge proofs of knowledge, using enhanced trapdoor permutations [10].

In addition, we need to ensure that if the server is corrupted, then it does
not modify any of the constructions carried out by the honest parties. This can
be achieved using digital signatures (and having the signing key be part of the
public-key infrastructure).

Theorem 4. Assume the existence of enhanced trapdoor permutations and that
DDH holds. Then, for any decomposition f̄ = 〈f1, . . . , fn〉, there exists a server-
based one-pass protocol that securely computes f̄ in the malicious model, with a
public-key infrastructure and in the common reference string model.

6 Extensions and Open Problems

In this work we considered a very simple setting of a server and n clients that
all know about each other (and in particular have each other’s public keys),
and where the order in which the clients connect to the server is pre-set. Our
practical solutions for symmetric functions extend also to the “first come first
serve” setting with no pre-set order, but still require all parties to know about
each other. In addition, all our solutions are sequential, they all rely heavily on
the fact that client i completes the interaction with the server before client i+1
begins. Allowing concurrency between clients is a very interesting open problem
and may be crucial for a large number of clients.

Another possible extension deals with functions that have natural “projec-
tions” on any subset of their variables. (For example, for the AVERAGE func-
tion, it is natural to talk about the average of any subset of the variables.) In
this case, it may be desirable that the server be able to compute the function
value as soon as at least t of the n clients connected to it.4 Although it may be
possible to replace the onion-like encryption in our protocols with encryption in
a t-out-of-n manner, it seems nontrivial to do it in such a way that will still not
allow a subset of t parties to decrypt the entire transcript of the protocol.

Another very interesting extension is when we have a large universe of clients
that do not have each other’s public keys, and we want to compute some function
as soon as n of them connect to the server (e.g., polling). In this case it may
be reasonable to assume that the clients all share some system parameters, and
maybe even that each client has some secret key for the system, so perhaps tools
from identity-based cryptography can be used here.

4 In general, if we have a decomposition of f then we can think of f̃t(x1, . . . , xt) as the
projection of f on the first t variables. Computing f̃i may or may not be desirable,
depending on the application.

150 S. Halevi, Y. Lindell, and B. Pinkas

Finally, we point out that if we can have each of the parties connect twice
to the server (rather than once), then our protocols can be used for achiev-
ing the standard notion of privacy for secure computation. Indeed, instead of
computing the original n-input function f(x1, . . . , xn), we set up a protocol for
computing the extended 2n-input function that depends only the first n inputs
f̂(x1, . . . , xn, xn+1, . . . , x2n) = f(x1, . . . , xn). We consider a decomposition of f̂
where the intermediate value after the nth input is f(x1, . . . , xn), design a pro-
tocol to realize it, and let party Pi play the role of both parties i and i + n
in this protocol. With this protocol, as soon as one of the parties is honest we
have that the intermediate result after “the last honest party” in the protocol is
f(x1, . . . , xn). Hence the view of the corrupted parties can be simulated knowing
only this value.

Acknowledgments. We thank the CRYPTO 2011 reviewers for their many
helpful comments.

References

1. A Face Is Exposed for AOL Searcher No. 4417749 (The New York Times) (August
9, 2006), http://www.nytimes.com/2006/08/09/technology/09aol.html

2. Goldreich, O.: Foundations of Cryptography, Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

3. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM Sym-
posium on Theory of Computing – STOC 2009, pp. 169–178. ACM, New York
(2009)

5. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

6. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010), Full version available online at
http://eprint.iacr.org/2010/145

7. Harnik, D., Ishai, Y., Kushilevitz, E.: How Many Oblivious Transfers Are Needed
for Secure Multiparty Computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 284–302. Springer, Heidelberg (2007)

8. Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure Multi-party Computation Min-
imizing Online Rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 268–286. Springer, Heidelberg (2009)

9. Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing
without Simultaneous Interaction, http://eprint.iacr.org/2011/157

10. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

http://www.nytimes.com/2006/08/09/technology/09aol.html
http://eprint.iacr.org/2010/145
http://eprint.iacr.org/2011/157

Memory Delegation�

Kai-Min Chung1,��, Yael Tauman Kalai2, Feng-Hao Liu3, and Ran Raz4

1 Department of Computer Science, Cornell University, Ithaca, NY, USA
chung@cs.cornell.edu

2 Microsoft Research New England, Cambridge MA, USA
yael@microsoft.com

3 Department of Computer Science, Brown University, Providence RI, USA
fenghao@cs.brown.edu

4 Department of Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel

ran.raz@weizmann.ac.il

Abstract. We consider the problem of delegating computation, where
the delegator doesn’t even know the input to the function being dele-
gated, and runs in time significantly smaller than the input length.

For example, consider the setting of memory delegation, where a del-
egator wishes to delegate her entire memory to the cloud. The delegator
may want the cloud to compute functions on this memory, and prove
that the functions were computed correctly. As another example, con-
sider the setting of streaming delegation, where a stream of data goes by,
and a delegator, who cannot store this data, delegates this task to the
cloud. Later the delegator may ask the cloud to compute statistics on
this streaming data, and prove the correctness of the computation. We
note that in both settings the delegator must keep a (short) certificate of
the data being delegated, in order to later verify the correctness of the
computations. Moreover, in the streaming setting, this certificate should
be computed in a streaming manner.

We construct both memory and streaming delegation schemes. We
present non-interactive constructions based on the (standard) delegation
scheme of Goldwasswer et. al. [GKR08]. These schemes allow the delega-
tion of any function computable by an L-uniform circuit of low depth (the
complexity of the delegator depends linearly on the depth). For memory
delegation, we rely on the existence of a polylog PIR scheme, and for
streaming, we rely on the existence of a fully homomorphic encryption
scheme.

We also present constructions based on the CS-proofs of Micali. These
schemes allow the delegation of any function in P. However, they are
interactive (i.e., consists of 4 messages), or are non-interactive in the
Random Oracle Model.

1 Introduction

The problem of delegating computation considers a scenario where one party,
the delegator, wishes to delegate the computation of a function f to another
� A full version of this paper can be found on [CKLR11].

�� Supported by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 151–168, 2011.
c© International Association for Cryptologic Research 2011

152 K.-M. Chung et al.

party, the worker. The challenge is that the delegator may not trust the worker,
and thus it is desirable to have the worker “prove” that the computation was
done correctly. Obviously, verifying this proof should be easier than doing the
computation.

This concept of “outsourcing” computation received a lot of attention in recent
years, partly due to the increasing interest in cloud computing, where the goal is
to outsource all the computational resources to a (possibly untrusted) “cloud”.
There are several reasons why the client (or delegator) may not trust the cloud,
and thus would like to receive proofs for the correctness of the computation.
For example, the cloud may have an incentive to return incorrect answers. Such
an incentive may be a financial one, if the real computation requires a lot of
work, whereas computing incorrect answers requires less work and is unlikely to
be detected by the client. Moreover, in some cases, the applications outsourced
to the cloud may be so critical that the delegator wishes to rule out accidental
errors during the computation.

In order to ensure that the worker (or the cloud) performed the computation
correctly, we would like the worker to prove this to the delegator. Of course,
it is essential that the time it takes to verify the proof is significantly smaller
than the time needed to actually run the computation. At the same time, the
running time of the worker carrying out the proof should also be reasonable —
comparable to the time it takes to do the computation.

The problem of delegating computation has been studied excessively (see Sec-
tion 1.2 for an overview on previous work). However, most previous work on
delegation allow the delegator to run in time polynomial in the input size, as
long as this runtime is significantly smaller than the time it takes to do the com-
putation. For example, when delegating the computation of a function f that
runs in time T and has inputs of size n, typically the desired runtime of the
delegator is poly(n, logT) and the desired runtime of the worker is poly(T).

In this work, we want the delegator to run in time that is even smaller than
the input size n. Namely, we don’t allow the delegator even to read the input!
At first, this requirement may seem unreasonable and unachievable. So, let us
start by motivating this requirement with two examples.

Memory delegation. Suppose that Alice would like to store all her memory in the
cloud. The size of her memory may be huge (for example, may include all the
emails she ever received). Moreover, suppose she doesn’t trust the cloud. Then,
every time she asks the cloud to carry out some computation (for example, com-
pute how many emails she has received from Bob during the last year), she would
like the answer to be accompanied by a proof that indeed the computation was
done correctly. Note that the input to these delegated functions may be her entire
memory, which can be huge. Therefore, it is highly undesirable that Alice runs in
time that is proportional to this input size. More importantly, Alice doesn’t even
hold on to this memory anymore, since she delegated it to the cloud.

Thus, in a memory delegation scheme, a delegator delegates her entire memory
to the cloud, and then may ask the could to compute functions of this memory,
and expects the answers to be accompanied by a proof. Note that in order to

Memory Delegation 153

verify the correctness of these proofs, the delegator must save some short certifi-
cate of her memory, say a certificate of size polylog(n), where n is the memory
size. The proofs should be verifiable very efficiently; say, in time polylog(n, T),
where T is the time it takes to compute the function. Moreover, Alice should be
able to update her memory efficiently.

Streaming delegation. Suppose that there is some large amount of data that is
streaming by, and suppose that a user, Alice, wishes to save this data, so that
later on she will be able to compute statistics on this data. However, Alice’s
memory is bounded and she cannot store this data. Instead, she wishes to dele-
gate this to the cloud. Namely, she asks the cloud to store this streaming data
for her, and then she asks the cloud to perform computation on this data. As in
the case of memory delegation, in order to later verify the correctness of these
computations, Alice must save some short certificate of this streaming data. As
opposed to the setting of memory delegation, here the certificate should be com-
puted (and updated) in a streaming manner.

The settings of memory delegation and streaming delegation are quite similar.
In both settings Alice asks the cloud to store a huge object (either her mem-
ory or the streaming data). There are two main differences between the two:
(1) In the setting of streaming delegation, the certificates and updates must be
computed in a streaming manner. Thus, in this sense, constructing streaming del-
egation schemes may be harder than constructing memory delegation schemes.
Indeed, our streaming delegation scheme is more complicated than our memory
delegation scheme, and proving soundness in the streaming setting is signifi-
cantly harder than proving soundness in the memory setting. (2) In the setting
of streaming delegation, the memory is updated by simply adding elements to
it. This is in contrast to the setting of memory delegation, where the memory
can be updated in arbitrary ways, depending on the user’s needs. However, in
the memory setting, we allow the delegator to use the help of the worker when
updating her certificate (or secret state), whereas in the streaming setting we
require that the delegator updates her certificate on her own. The reason for
this discrepancy, is that in the memory setting the delegator may not be able to
update her certificate on her own, since she may want to update her memory in
involved ways (such as, erase all emails from Bob). On the other hand, in the
streaming setting, it seems essential that the delegator updates her certificate
on her own, since in this setting the data may be streaming by very quickly, and
there may not be enough time for the delegator and worker to interact during
each update.

1.1 Our Results

We construct both memory delegation and streaming delegation schemes. The
memory delegation scheme consists of an offline phase, where the delegator D
delegates her memory x ∈ {0, 1}n to a worker W. This phase is non-interactive,
where the delegator sends a single message, which includes her memory content x
to the worker W. The runtime of both the delegator and the worker in the offline

154 K.-M. Chung et al.

phase is poly(n), where n is the memory size. At the end of this phase, the
delegator saves a short certificate σ of her memory, which she will later use
when verifying delegation proofs.

The streaming delegation scheme, on the other hand, doesn’t have such an
offline phase. In the streaming setting, we consider the scenario where at each
time unit t a bit xt is being streamed. The delegator starts with some secret
state (or certificate) σ0, and at time unit t + 1 she uses her secret state σt and
the current bit xt+1 being streamed, to efficiently update her secret state from
σt to σt+1.

In both settings, each time the delegator D wants the worker W to compute a
function f(x), they run a delegation protocol, which we denote by Compute(f).
The memory delegation scheme also has an Update protocol, where the dele-
gator D asks the worker W to update her memory and to help her update her
secret state σ. The latter can be thought of as a delegation request, and the
guarantees (in term of runtime and communication complexity) are similar to
the guarantees of the Compute protocol.

In the streaming setting, the delegator updates her secret state on her own
in time polylog(N), where N is an upper bound on the length of the stream.
Namely, the update function, that takes as input a certificate σt and a bit xt+1,
and outputs a new certificate σt+1, can be computed in time polylog(N).

We present two memory and streaming delegation protocols. The first are non-
interactive (i.e, Compute(f) consists of two messages, the first sent by the dele-
gator and the second sent by the worker). They are based on the non-interactive
version of the delegation protocol of Goldwasser et. al. [GKR08, KR09], denoted
by GKR (though are significantly more complicated than merely running GKR).
As in GKR, the efficiency of the delegator depends linearly on the depth of the
circuit being delegated. Our second memory and streaming delegation protocols
are interactive (i.e., Compute(f) consists of four messages). These schemes are
based on CS-proofs of Micali [Mic94], and allow for efficient delegation of all
functions in P.

In what follows, we state our theorems formally. However, due to the lack
of space, we refer the reader to the full version of this paper [CKLR11] for the
formal definition of a memory delegation scheme and a streaming delegation
scheme.

Theorem 1 (Memory Delegation). Assume the existence of a poly-log PIR
scheme, and assume the existence of a collision resistant hash family. Let F
be the class of all L-uniform poly-size boolean circuits. Then there exists a
non-interactive (2-message) memory delegation scheme mDel, for delegating any
function f ∈ F . The delegation scheme, mDel has the following properties, for
security parameter k.

– The scheme has perfect completeness and negligible (reusable) soundness
error.

– The delegator and worker are efficient in the offline stage; i.e., both the
delegator and the worker run in time poly(k, n).

Memory Delegation 155

– The worker is efficient in the online phase. More specifically, it runs in
time poly(k, S) during each Compute(f) and Update(f) operation, where S
is the size of the L-uniform circuit computing f . The delegator runs in time
poly(k, d) during each Compute(f) and Update(f) operation, where d is the
depth of the L-uniform circuit computing f .1

In particular, assuming the existence of a poly-logarithmic PIR scheme, and
assuming the existence of a collision resistent hash family, we obtain a memory
delegation scheme for L-uniform NC computations, where the delegator D runs
in time poly-logarithmic in the length of the memory.

Theorem 2 (Streaming Delegation). Let k be a security parameter, and
let N be a parameter (an upper bound on the length of the stream). Let F be
the class of all L-uniform poly-size boolean circuits. Assume the existence of a
fully-homomorphic encryption scheme secure against poly(N)-size adversaries.
Then there exists a streaming delegation scheme sDelF for F with the following
properties.

– sDelF has perfect completeness and negligible reusable soundness error.
– D updates her secret state in time polylog(N), per data item.
– In the delegation protocol, when delegating a function f ∈ F computable by

an L-uniform circuit of size S and depth d, the delegator D runs in time
poly(k, d, logN), and the worker W runs in time poly(k, logN,S).

In particular, assuming the existence of a fully-homomorphic encryption scheme
secure against adversaries of size poly(N), we obtain a streaming delegation
scheme for L-uniform NC computations, where the delegator D runs in time
poly-logarithmic in the length of data stream.

Remark. We note that the property we needed from the GKR protocol is that
the verifier does not need to read the entire input in order to verify, but rather
only needs to access a single random point in the low-degree extension of the
input. (We refer the reader to Section 2.1 for the definition and properties of
a low-degree extension.) We note that the CS-proof delegation scheme of Mi-
cali [Mic94], for delegating the computation of (uniform) Turing machines, also
has the property that verification can be done by only accessing a few random
points in the low-degree extension of the input, assuming the underlying PCP
is a PCP of Proximity [BSGH+05].

Indeed using this delegation scheme, we get a memory delegation scheme and
a streaming delegation scheme for all of P. Using this scheme, the Compute(f)
protocol is interactive (i.e., it is a 4-message protocol). The runtime of the del-
egator is polylog(T) and the runtime of the worker is poly(T), where T is the
runtime of the Turing machine computing the function f .2 Furthermore, the
memory delegation scheme relies only on the existence of a collision resistant
hash family, without the need of a poly-log PIR scheme.
1 Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then

the delegator is considered efficient.
2 We assume that T ≥ n.

156 K.-M. Chung et al.

Theorem 3 (Interactive Memory Delegation). Assume the existence of a
collision resistant hash family. Then there exists a memory delegation scheme
mDel, for delegating any function computable by a polynomial-time Turning ma-
chine. The delegation scheme, mDel has the following properties, for security
parameter k.

– The scheme has perfect completeness and negligible (reusable) soundness er-
ror.

– The delegator and worker are efficient in the offline stage; i.e., both the
delegator and the worker run in time poly(k, n).

– The worker is efficient in the online phase. More specifically, it runs in
time poly(k, T) during each Compute(f) and Update(f) operation, where T
is an upper-bound on the running time of f . The delegator runs in time
poly(k, logT) during each Compute(f) and Update(f) operation.

– Both Compute(f) and Update(f) operations consist of 4 message exchanges.

Theorem 4 (Interactive Streaming Delegation). Let k be a security pa-
rameter, and let N be a parameter (an upper bound on the length of the stream).
Let F be the class of all functions computable by a polynomial-time Turning
machine. Assume the existence of a fully-homomorphic encryption scheme se-
cure against poly(N)-size adversaries. Then there exists a streaming delegation
scheme sDelF for F with the following properties.

– sDelF has perfect completeness and negligible reusable soundness error.
– D updates her secret state in time polylog(N), per data item.
– In the delegation protocol, when delegating a function f ∈ F computable in

time T , the delegator D runs in time poly(k, logN, logT), and the worker W
runs in time poly(k, logN,T). The delegation protocol consists of 4 message
exchanges.

We note that in the Random Oracle Model (ROM) [BR97], the delegation scheme
of Micali is non-interactive. This yields a non-interactive memory delegation
scheme and a non-interactive streaming delegation scheme, for delegating all
functions in P, in the ROM.

Due to the lack of space, we focus on our results using the GKR delegation
protocol, and refer the reader to the full version of this paper [CKLR11] for the
details on our results using the CS-delegation protocol. However, we note that
the techniques and proofs are essentially the same in both cases.

1.2 Previous Work

Various delegation protocols have been proposed in the literature. Some provide
delegation protocols that are sound against any cheating worker, whereas oth-
ers provide delegation protocols that are secure only against computationally
bounded cheating worker (i.e., arguments as opposed to proofs). Some of these
protocols are interactive, whereas others are non-interactive. We survey some
of these results below, however, we emphasize that in all these solutions, the
delegator runs in time that is (at least) linear in the input size, and thus do not
apply to our settings of memory delegation or streaming delegation.

Memory Delegation 157

Interactive proofs. The celebrated IP=PSPACE Theorem [LFKN92, Sha92] yields
interactive proofs for any function f computable in polynomial space, with a ver-
ifier (delegator) running in polynomial time. Thus, the IP=PSPACE protocol
can be seen as a delegation protocol for languages in PSPACE \ P. However,
the complexity of the prover (worker) is only bounded by polynomial space (and
hence exponential time). This theorem was refined and scaled down in [FL93] to
give verifier complexity poly(n, s) and prover complexity 2poly(s) for functions f
computable in time T and space s, on inputs of length n. Note that the prover
complexity is still super-polynomial in T , even for computations that run in the
smallest possible space, namely s = O(log T).

The prover complexity was recently improved by Goldwasser et al. [GKR08] to
poly(T, 2s), which is poly(T) when s = O(log T). More generally, Goldwasser et
al. [GKR08] give interactive proofs for computations of small depth d (i.e. parallel
time). For these, they achieve prover complexity poly(T) and verifier complexity
poly(n, d, logT). (This implies the result for space-bounded computation because
an algorithm that runs in time T and space s can be converted into one that
runs in time poly(T, 2s) and depth d = O(s2).) However, if we do not restrict
to computations of small space or depth, then we cannot use interactive proofs.
Indeed, any language that has an interactive proof with verifier running time
(and hence communication) TV can be decided in space poly(n, TV).

Interactive arguments. Interactive arguments [BCC88] (aka computationally
sound proofs [Mic00]) relax the soundness condition to be computational. Namely,
instead of requiring that no prover strategy whatsoever can convince the ver-
ifier of a false statement, we instead require that no computationally feasible
prover strategy can convince the verifier of a false statement. In this model,
Kilian [Kil92] and Micali [Mic00] gave constant-round protocols with prover
complexity poly(T, k) and verifier complexity poly(n, k, logT) (where k is the
security parameter), assuming the existence of collision-resistant hash func-
tions [BG02].

Toward non-interactive Solutions. This possibility of efficient non-interactive ar-
guments was suggested by Micali [Mic00], who showed that non-interactive argu-
ments with prover complexity poly(T, k) and verifier complexity poly(n, k, logT)
are possible in the Random Oracle Model (the oracle is used to eliminate inter-
action a la Fiat–Shamir [FS86]). Heuristically, one might hope that by instanti-
ating the random oracle with an appropriate family of hash functions, we could
obtain a non-interactive solution to delegating computation: first the delegator
(or a trusted third party) chooses and publishes a random hash function from
the family, and then, the proofs are completely non-interactive (just one mes-
sage from the prover to the verifier). However, the Random Oracle Heuristic
is known to be unsound in general [CGH04] and even in the context of Fiat–
Shamir [Bar01, GK03]. Thus, despite extensive effort, the existence of efficient
non-interactive arguments remains a significant open problem in complexity and
cryptography.

158 K.-M. Chung et al.

There has been some recent progress in reducing the amount of interaction
needed. Using a transformation of Kalai and Raz [KR09], the GKR delegation
protocol [GKR08] can be converted into a 2-message argument (assuming the
existence of single-server private-information retrieval (PIR) schemes). However,
like the interactive proofs of [GKR08], this solution applies only to small-depth
computations, as the verifier’s complexity grows linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP10], and the followup work
of Chung, Kalai, and Vadhan [CKV10], gave a 2-message delegation scheme for
arbitrary functions. However, these constructions have an offline phase, where
the delegator invests time poly(T, k) and computes a secret state (T is the time
it takes to compute the function, and k is the security parameter). In the online
phase, the delegator’s running time is reduced to poly(n, k, logT) for an input of
length n, and the worker’s complexity is poly(T, k). Thus, the delegator’s large
investment in the offline phase can be amortized over many executions of the
online phase to delegate the computation of f on many inputs. Their online
phase is not completely non-interactive, but rather consists of two messages.
However, in many applications, two messages will be necessary anyway, as the
delegator may need to communicate the input x to the worker.

We remark that one main drawback of these works [GGP10, CKV10] is that
soundness is only guaranteed as long as the adversarial worker does not learn
whether the delegator accepted or rejected the proofs.

In another followup work, Applebaum, Ishai, and Kushilevitz [AIK10] also
consider the offline/online setting, but focus on efficient solutions for one-time
delegation (i.e., the online phase can only be executed one time). They also
consider the case when the delegation functions are represented as arithmetic
circuits.

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down ver-
sion by Babai et al. [BFLS91] yield multi-prover interactive proofs and proba-
bilistically checkable proofs for time T computations with a prover running in
time poly(T) and a verifier running in time poly(n, logT), exactly as we want.
However, using these for delegation require specialized communication models
— either 2 non-communicating provers, or a mechanism for the prover to give
the verifier random access to a long PCP (of length poly(T)) that cannot be
changed by the prover during the verification.

Streaming Interactive Proofs. Recently, Cormode, Thaler, and Yi [CTY10] con-
sidered streaming interactive proofs, which is a strengthening of interactive
proofs where the input is given to the verifier in a streaming manner and the
verifier is restricted to have sub-linear (ideally, poly-logarithmic) space. They
observed that both the GKR protocol [GKR08] and universal arguments [BG02]
can be modified to yield efficient streaming interactive proofs/arguments.

Streaming interactive proofs are closely related to streaming delegation. The
main difference is that streaming interactive proofs correspond to one-time
streaming delegation, whereas in our streaming delegation model, the delegator
is allowed to delegate as many computations to the worker as she want. Indeed,

Memory Delegation 159

the GKR protocol is also the starting point of our construction of streaming
delegation scheme, and the main effort is to make the scheme reusable.

2 Preliminaries

2.1 Low Degree Extension

Let H be an extension field of GF[2], and let F be an extension field of H (and
in particular, an extension field of GF[2]), where |F| = poly(|H|).3 We always
assume that field operations can be performed in time that is poly-logarithmic
in the field size. Fix an integer m ∈ N. In what follows, we define the low degree
extension of an n-element string (w0, w1, . . . , wn−1) ∈ Fn with respect to F,H,m,
where n ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |H|m − 1} to be any (efficiently computable) one-to-
one function. In this paper, we take α to be the lexicographic order of Hm. We
can view (w0, w1, . . . , wn−1) as a function W : Hm → F, where

W (z) =

{
wα(z) if α(z) < n,
0 otherwise.

(1)

A basic fact is that there exists a unique extension of W into a function
W̃ : Fm → F (which agrees with W on Hm; i.e., W̃ |Hm ≡ W), such that W̃ is an
m-variate polynomial of degree at most |H| − 1 in each variable. Moreover, as is
formally stated in the proposition below, the function W̃ can be expressed as

W̃ (t1, . . . , tm) =
n−1∑
i=0

β̃i(t1, . . . , tm) · wi,

where each β̃i : Fm → F is an m-variate polynomial, that depends only on the
parameters H,F, and m (and is independent of w), of size poly(H,m) and degree
|H| − 1 in each variable.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wn−1)
with respect to F,H,m, and is denoted by LDEF,H,m

w . We omit the index of
F,H,m when the context is clear. Also, sometimes we use W̃ for simplicity.

Proposition 1. There exists a Turing machine that takes as input an extension
field H of GF[2],4 an extension field F of H, and integer m. The machine runs in
time poly(|H|,m) and outputs the unique 2m-variate polynomial β̃ : Fm ×Fm →
3 Usually, when doing low degree extensions, F is taken to be an extension field of

GF[2], and H is simply a subset of F (not necessarily a subfield). In this work,
following the work of [GKR08], we take H to be a subfield. However, all that is
actually needed is that it is of size 2� for some � ∈ N.

4 Throughout this work, when we refer to a machine that takes as input a field, we
mean that the machine is given a short (poly-logarithmic in the field size) description
of the field, that permits field operations to be computed in time that is poly-
logarithmic in the field size.

160 K.-M. Chung et al.

F of degree |H|−1 in each variable (represented as an arithmetic circuit of degree
|H|−1 in each variable), such that for every w = (w0, w1, . . . , wn−1) ∈ Fn, where
n ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑

p∈Hm

β̃(z, p) ·W (p),

where W : Hm → F is the function corresponding to (w0, w − 1, . . . , wn−1) as
defined in Equation (1), and W̃ : Fm → F is its low degree extension (i.e., the
unique extension of W : Hm → F of degree at most H − 1 in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m). Namely, there exists a
Turing machine that runs in time poly(|H|,m) that takes as input parameters
H,F,m (as above), and a pair (z, p) ∈ Fm × Fm, and outputs β̃(z, p).

Corollary 1. There exists a Turing machine that takes as input an extension
field H of GF[2], an extension field F of H, an integer m, a sequence w =
(w0, w1, . . . , wn−1) ∈ Fn such that n ≤ |H|m, and a coordinate z ∈ Fm. It runs
in time n · poly(|H|,m), and outputs the value W̃ (z), where W̃ is the unique
low-degree extension of w (with respect to H,F,m).

2.2 Delegation Schemes

In recent years, as cloud computing is gaining popularity, there have been many
attempts to construct efficient delegation schemes. Loosely speaking, a delega-
tion scheme is a protocol between a delegator D and a worker W, where the
delegator asks the worker to do some computation, and prove that he indeed
did the computation correctly. Typically, a delegation scheme is with respect to
a class of functions F , and the requirement is that on input (f, x) where f ∈ F
and x is in the domain of f , the worker outputs f(x), along with a proof (which
may be interactive or non-interactive). The requirement is that the worker runs
in time that is polynomial in the size of f (when representing f as a circuit),
and the delegator runs in time that is significantly shorter than the size of f (as
otherwise, it would simply compute f(x) on its own). In this work, we use the
2-message delegation protocol of [GKR08], which in turn uses a round reduction
technique from [KR09]. The protocol has the following guarantees.

Theorem 5. [GKR08, KR09] Assume the existence of a poly-logarithmic PIR
scheme. Let k be the security parameter, and let F be the family of functions
computable by L-space uniform boolean circuits of size S(n) and depth d(n) ≥
logS(n). Then, there exists a delegation protocol for F with the following prop-
erties.

1. The worker runs in time poly(S, k) and the delegator runs in time n · poly
(k, d(n)).

2. The protocol has perfect completeness and soundness s ≤ 1
2 (can be made

arbitrarily small), where soundness is against any cheating worker of size
≤ 2k3

.

Memory Delegation 161

3. The protocol consists of two messages, with communication complexity d(n) ·
poly(k, logS). Moreover, the first message sent by the delegator depends only
on her random coin tosses, and is independent of the statement being proved.

4. If the delegator is given oracle access to the low-degree extension of x, rather
than being given the input x itself, then it runs in time poly(k, d(n)), and the
protocol still has all the properties described above, assuming the parameters
H,F,m of the low-degree extension satisfy the following:

|H| = θ(d · logn), m = θ

(
logn

log d

)
, |F| = poly(|H|)

where poly is a large enough polynomial.5 Moreover, the delegator queries
the low-degree extension of x at a single point, which is uniformly random
(over his coin tosses).

Throughout this paper, we denote this protocol by GKR.

2.3 Merkle Tree Commitments

Definition 1. Let h : {0, 1}k × {0, 1}k → {0, 1}k be a hash function. A Merkle
tree commitment of a sting x ∈ {0, 1}n w.r.t. h, denoted by Th(x), is a k-bit
string, computed as follows: The input x is partitioned into m = �n/k� blocks
x = (B1, . . . , Bm), each block of size k. These blocks are partitioned into pairs
(B2i−1, B2i), and the hash function h is applied to each pair, resulting in m/2
blocks. Then, again these m/2 blocks are partitioned into pairs, and the hash
function h is applied to each of these pairs, resulting with m/4 blocks. This is
repeated logm times, resulting in a binary tree of hash values, until one block
remains. This block is Th(x).

3 Overview of Our Constructions

In what follows we present a high-level overview of our memory and streaming
delegation schemes. In this extended abstract, we focus on our non-interactive
constructions, based on the GKR delegation schemes, and only present the high-
level overview of these constructions. We refer the reader to the full version of
this paper [CKLR11] for a formal presentation of our constructions and analysis.

3.1 Overview of Our Memory Delegation Scheme

The starting point of this work is the observation of Goldwasswer et. al. [GKR08],
that their delegation protocol can be verified very efficiently (in time sub-linear
in the input size), if the delegator has oracle access to the low-degree extension
of the input x. Moreover, as observed by [GKR08], the delegator needs to access
this low-degree extension LDEx at a single point z, which depends only on the
random coin tosses of the delegator.
5 The larger poly is, the smaller the soundness becomes.

162 K.-M. Chung et al.

This observation immediately gives rise to a memory delegation scheme with
one-time soundness: The delegator’s secret state will be (z,LDEx(z)). Then, she
will use this secret state in order to verify computation using the GKR protocol.
As was argued by Goldwasswer et. al., this indeed works if the delegator runs
the delegation protocol once. However, the soundness crucially relies on the fact
that the delegator’s secret state is indeed secret, and if the delegator uses this
state more than once, then soundness breaks completely.

One idea, following the idea of Gennaro et. al. [GGP10], is to use a fully ho-
momorphic encryption (FHE) scheme to encrypt all the communication, in order
to hide the secret state. This indeed works if the worker does not learn whether
the delegator accepts or rejects his proofs. However, if the worker does learn the
verdict of the delegator, then there are known attacks that break soundness.

In the streaming setting, we follow this approach, and we succeed in over-
coming this problem, and construct a scheme that is sound even if the worker
does learn the verdict of the delegator. We could follow this approach in the
memory delegation setting as well. However, for several reasons, we choose to
take a different approach. First, the approach above relies on the existence of an
FHE scheme, whereas our memory delegation scheme relies on the existence of a
poly-logarithmic PIR scheme, arguably a more reasonable assumption. Second,
the approach above results with the delegator having a secret state, whereas in
our memory delegation scheme, the state of the delegator is public. Finally, the
construction and proof of the memory delegation scheme is simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret
state, the delegator keeps a tree-commitment of the entire LDEx as her se-
cret state (see Section 2.3 for the definition of a tree-commitment). Namely, she
chooses a random hash function h from a collision-resistant hash family, and
keeps (h, Th(LDEx)) as her state. In addition to giving the worker her mem-
ory x, she also gives him the hash function h. We stress that her state is not
secret, which makes the proof of security significantly simpler than that in the
streaming setting (where the delegator’s state is secret).

Very roughly speaking, when the delegator wishes to delegate the computation
of a function f , they execute Compute(f) by simply running the (non-interactive)
delegation protocol GKR(f). Recall that at the end of the GKR protocol the
delegator needs to verify the value of LDEx(r) for a random r. However, she
doesn’t have x, since it was delegated to the prover, and all she has is the state
(h, Th(LDEx)). So, rather than computing the value of LDEx(r) on her own, the
worker will reveal this value, by sending the augmented path in the Merkle tree
corresponding to the leaf r.

Unfortunately the high-level description given above is a gross oversimplifica-
tion of our actual scheme, and there are several technical issues that complicate
matters. We elaborate on these in Section 3.3.

We mention that when the delegator wishes to update her memory from x to
g(x), she needs to update her secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))).6

6 Actually, for technical reasons she will need to choose a fresh hash function h′ ← H
during each Update. We discard this technical issue here.

Memory Delegation 163

However, she cannot perform this operation on her own, since she does not have x.
Instead she will delegate this computation to the worker, by requesting a
Compute(g′) operation, where g′(x) = Th(LDEg(x)).

3.2 Overview of Our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme
described above, and the main difference is in the way the certificate is generated
and updated, and in the way the worker reveals the value LDEx(r).

Generating and updating the certificate. Recall that in the memory delegation
scheme, the certificate of the delegator D consists of a tree-commitment to the
low-degree extension of her memory x. Namely, her certificate is (h, Th(LDEx)),
where h is a collision resistant hash function. Note that this certificate cannot be
updated in a streaming manner, since any change to x changes the low-degree
extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an “al-
gebraic commitment”, which has the property that it can be updated efficiently
when new data items arrive. The resulting certificate is a random point in the
low-degree extension of the stream x; i.e., (z,LDEx(z)) for a random point z.
This certificate is efficiently updatable, if we assume some upper-bound N on the
size of the stream, and we take parameters H,F,m of the low-degree extension,
such that

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|) (2)

(this follows from Proposition 1).
As in the memory delegation scheme, at the end of each delegation protocol,

the delegator needs to verify the value of LDEx(r) at a random point r. In the
memory delegation scheme this was done using a Reveal protocol where the
worker reveals the augmented path of the leaf r in the Merkle tree-commitment
of LDEx. In the streaming setting, the Reveal protocol is totally different, since
the delegator cannot compute the tree-commitment of LDEx. Unfortunately,
unlike in the memory delegation scheme, in the streaming setting constructing
a reusable and sound reveal protocol is highly non-trivial.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 de-
scribed in Figure 1. Note that the soundness of Reveal1 relies on the secrecy
of the certificate σ. Namely, assuming that W does not know the point z, it is
not hard to see, by the Schwartz-Zippel Lemma, that an adversarial worker can
cheat with probability at most d/|F|, where d is the (total) degree of LDEx.

However, note that the Reveal1 protocol is not reusable. Suppose that D uses
the above reveal protocol to learn the value of LDEx on two random points
s, s′ ∈ Fm. From the two executions, an adversarial worker W∗ receives two lines
�s,z and �s′,z, and can learn the secret point z by taking the intersection of the
two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial
p∗ that agrees with LDEx only on point z but disagrees on the remaining points.

164 K.-M. Chung et al.

Reveal1 protocol: D stores a secret state σ = (z, LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

– D sends to W the line �sz that passes through the points s and z. More specifically,
D chooses two random points α1, α2 ← F, and defines �s,z to be the line that
satisfies �s,z(α1) = z and �s,z(α2) = s.

– W returns a univariate polynomial p : F → F, which is the polynomial LDEx

restricted to the line �s,z (i.e., p = LDEx|�s,z).
– D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) = LDEx(s).

Otherwise, she rejects.

Fig. 1. Reveal1 protocol

As observed by Gennaro et. al. [GGP10], a natural way to protect the se-
cret point z, is to run the above Reveal protocol under a fully-homomorphic
encryption (FHE) scheme. Namely, D generates a pair of keys (pk, sk) for a FHE
(Gen,Enc,Dec,Eval), and sends pk and an encrypted line �̂s,z = Encpk(�s,z) to
W, who can compute the polynomial p = LDEx|� homomorphically under the
encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗

cannot learn any information from D’s message �̂s,z. This indeed makes the pro-
tocol reusable provided that W∗ does not learn the decision bits of D, as proved
in [GGP10, CKV10].

However, since the decision bit of D can potentially contain one bit information
about the secret point z, it is not clear that security holds if W∗ learns these
decision bits. In fact, for both of the delegation schemes of [GGP10, CKV10],
which use FHE to hide the delegator D’s secret state, there are known attacks
that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol de-
scribed in Figure 2 is reusable even if W∗ learns the decision bits of D. The main
difference between Reveal1 and Reveal2 is that in Reveal2, the delegator D uses
a random two-dimensional affine subspace instead of a line, and uses an FHE to
mask the entire protocol.

We prove that no efficient adversarial W∗ can learn useful information about
the secret point z from the Reveal2 protocol. We note that the proof of the above
statement is highly non-trivial, and is one of the main technical difficulties in
this work. Informally, we first prove a “leakage-resilient lemma”, which claims
that the ciphertext Ŝrz and the decision bit b of D (which depend on the strategy
of W ∗) do not give too much information about Srz to W∗. In other words, the
random subspace Ss,z still has high (pseudo-)entropy from the point of view
of W∗. Then we use an information-theoretic argument to argue that a random
point z in a sufficiently random (with high entropy) subspace Ss,z is statistically
close to a random point in Fm, which implies that W∗ does not learn useful
information about z.

The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker
can cheat with probability at most d/|F|, where d is the (total) degree of LDEx.

Memory Delegation 165

Reveal2 protocol: D stores a secret state σ = (z, LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

– D does the following.
1. Generate a pair of keys (pk, sk)← Gen(1k) for a fully homomorphic encryp-

tion scheme FHE.
2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains

the points s and z. More specifically, choose two random points α1, α2 ← F2

and let Ss,z ⊂ Fm be a random two-dimensional affine subspace that satisfies
Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.
– W homomorphically computes the two-variate polynomial p = LDEx|Ss,z under

the FHE (denote the resulting ciphertext p̂), and sends p̂ to D.
– D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value

p(α2) = LDEx(s).

Fig. 2. Protocol Reveal2

Recall that in our setting of parameters:

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat (and more importantly, obtain information
about the secret z) with probability d/|F| = O(1/polylog(N)), which is not low
enough.

The idea is to reduce the cheating probability to negligible by simply increas-
ing the field size to be super-polynomial. However, we cannot increase the field
size in the GKR protocol, since it will increase the complexity of the worker. In-
stead, we use an extension field F̃ of F, of super-polynomial size, only in the cer-
tificate and the Reveal protocol, but run the GKR protocols as before. Namely,
the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocol is
run exactly as before with the parameters (H,F,m).

3.3 Additional Technicalities

The high-level description given above (in Sections 3.1 and 3.2) is a gross over-
simplification of our actual schemes, and there are several technical issues that
complicate matters.

Recall that in the overview above, we claimed that Compute(f) merely runs
GKR, in addition to a Reveal protocol which helps the delegator verify the GKR
protocol.7 There are several technical reasons why this actually does not work. In
what follows, we explain what are the main technical problems with this simple
idea, and we give the highlevel idea of how to overcome these problems.
7 The Reveal protocol in the memory setting is totally different from the Reveal pro-

tocol in the streaming setting.

166 K.-M. Chung et al.

1. The first technicality (the easiest one to deal with), is that the GKR del-
egation scheme does not have a negligible soundness error. In our setting,
especially in the setting of memory delegation, it is very important to have
negligible soundness. The reason is that if the soundness is non-negligible,
then a cheating worker may cheat in the update procedure of the memory
delegation scheme (which is also being delegated). The problem is that if
a worker cheats even once in an update procedure, all soundness guaran-
tees are mute from that point on. So, we really need the soundness error to
be negligible. In order to reduce the soundness error, we will run the GKR
protocol in parallel u times (for any parameter u such that 1/2u = ngl(k),
where k is the security parameter). We denote the u-fold parallel repetition
of GKR by GKR(u). As a result the worker will need to reveal to u random
points in the low-degree extension: LDEx(r1), . . . ,LDEx(ru).

2. The second technical point is more subtle. In the offline stage, when the
delegator computes the tree commitment Th(LDEx), she needs to choose
the parameters H,F,m for the low-degree extension. The typical choice for
these parameters is:

|H| = polylog(n), |F| = poly(|H|), m = O

(
logn

log log n

)
,

where n = |x|. When delegating the computation of a function f , the worker
and delegator run GKR(u)(f) and need to verify LDEx(ri) = vi for random
points r1, . . . , ru. However, here the parameters of the low-degree extension
LDEx depend on the depth d of the circuit computing f . Namely, looking
at the parameters given in [GKR08] (see Theorem 5), the parameters of the
low-degree extension are

|H′| = θ(d · logn), m′ = θ

(
logn

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply execute the Reveal protocols of the
memory delegation or the streaming delegation. In the memory setting, the
tree commitment is w.r.t. parameters H,F,m whereas the delegator needs
to verify LDEF′,H′,m′

x (ri) = vi. In the streaming setting, the secret state of
the delegator is (z,LDEF,H,m

x (z)), as opposed to (z,LDEF′,H′,m′
x (z)), thus the

Reveal protocol described in Section 3.2 doesn’t work.
We get around this technical problem by delegating the functions gri(x) �
LDEH′,F′,m′

x (ri). Luckily, these functions can be computed by a poly-size
circuit of depth at most log2 n, assuming the delegated function f is of poly-
size (see Proposition 1). We delegate the computation of each of these gri

using GKR(u) to ensure negligible soundness. Thus, finally the worker will
need to reveal to u2 points in LDEx (u points for each gri).8

8 We note that there are several ways to improve efficiency, such as thinking of
(gr1 , . . . , gru) as one function. However, for the sake of simplicity of exposition, we
focus on the simplest (rather than most efficient) solution.

Memory Delegation 167

3. The final technical difficulty is that all these algorithms need to run in paral-
lel, since we want our final delegation schemes to be non-interactive (i.e., to
consist of only two messages). Typically, there is no problem in running sev-
eral two-message protocols in parallel [BIN97, CHS05]. However, in our case,
the delegator uses a common secret input in these protocols. Namely, the del-
egator uses secret randomness r1, . . . , ru ∈ (F′)m′

in the parallel repetition of
the delegation protocol GKR(f) which ends with her needing to verify that
LDEH′,F′,m′

x (ri) = vi for every i ∈ [u]. In addition she uses these same ri’s
in the delegation protocols GKR(gri). Moreover, at the end of each of the
GKR(gri) protocols, the delegator needs to verify that LDEH,F,m

x (zi,j) = wi,j

for random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal protocol
for each zi,j , denoted by Reveal(zi,j).
We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s
(resp. zi,j ’s) are a priori known to the worker. To ensure that soundness
still holds even if we run all these algorithms in parallel, we mask parts of
the delegator’s message using a PIR scheme or an FHE scheme, and then
we claim that the soundness error remains negligible. To this end, we use a
“parallel composition lemma”, which roughly states that if a set of protocols
Π1, . . . Πt are executed in parallel, and the verifiers use the same common
private randomness p in all these protocols, then the soundness remains if
the messages of the verifiers hide this common secret randomness p.

Acknowledgments. We are very grateful to Shai Halevi for collaborating with
us in the initial phase of this work, and to Salil Vadhan for several helpful
discussions.

References

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness:
Efficient verification via secure computation. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences 37(2), 156–189
(1988)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity 1, 3–40
(1991)

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: STOC, pp. 21–31 (1991)

[BG02] Barak, B., Goldreich, O.: Universal arguments and their applications.
In: Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, pp. 194–203 (2002)

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the
error in computationally sound protocols? In: FOCS, pp. 374–383 (1997)

168 K.-M. Chung et al.

[BR97] Bellare, M., Rogaway, P.: Minimizing the use of random oracles in au-
thenticated encryption schemes. In: ICICS, pp. 1–16 (1997)

[BSGH+05] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Short pcps verifiable in polylogarithmic time. In: IEEE Conference on
Computational Complexity, pp. 120–134 (2005)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. Journal of the ACM 51(4), 557–594 (2004)

[CHS05] Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly
verifiable puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 17–33. Springer, Heidelberg (2005)

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation.
Cryptology ePrint Archive, Report 2011/273 (2011),
http://eprint.iacr.org/

[CKV10] Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computa-
tion using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

[CTY10] Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming
interactive proofs. Technical Report TR10-159, ECCC Report (2010)

[FL93] Fortnow, L., Lund, C.: Interactive proof systems and alternating time-
space complexity. Theoretical Computer Science 113(1), 55–73 (1993)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg
(2010)

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir
paradigm, pp. 102–113 (2003)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: STOC, pp. 113–122 (2008)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: STOC, pp. 723–732 (1992)

[KR09] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg
(2009)

[LFKN92] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for
interactive proof systems. J. ACM 39(4), 859–868 (1992)

[Mic94] Micali, S.: Cs proofs (extended abstracts). In: FOCS, pp. 436–453 (1994)
[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4),

1253–1298 (2000)
[Sha92] Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)

http://eprint.iacr.org/

Automatic Search of Attacks on Round-Reduced
AES and Applications

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque

ENS, CNRS, INRIA, 45 rue d’Ulm, 75005 Paris, France
{charles.bouillaguet,patrick.derbez,pierre-alain.fouque}@ens.fr

Abstract. In this paper, we describe versatile and powerful algorithms
for searching guess-and-determine and meet-in-the-middle attacks on
byte-oriented symmetric primitives. To demonstrate the strengh of these
tool, we show that they allows to automatically discover new attacks
on round-reduced AES with very low data complexity, and to find im-
proved attacks on the AES-based MACs Alpha-MAC and Pelican-MAC,
and also on the AES-based stream cipher LEX. Finally, the tools can
be used in the context of fault attacks. These algorithms exploit the
algebraically simple byte-oriented structure of the AES. When the at-
tack found by the tool are practical, they have been implemented and
validated.

1 Introduction

Since the introduction of the AES in 2001, it has been questioned whether its
simple algebraic structure could be exploited by cryptanalysts. Soon after its
publication as a standard [30], Murphy and Robshaw showed in 2002 an inter-
esting algebraic property: the AES encryption process can be described only
with simple algebraic operations in GF (28) [29]. Such a result paved the way
for multivariate algebraic techniques [13,11] since the AES encryption function
can be described by a very sparse overdetermined multivariate quadratic system
over GF (2). However, so far this approach has not been so promising [28,12], and
the initial objective of this simple structure, providing good security protections
against differential and linear cryptanalysis, has been fulfilled.

Recently, much attention has been devoted to the AES block cipher as a by-
product of the NIST SHA-3 competition. The low diffusion property of the key
schedule has been used to mount several related-key attacks [6,5,3,27] and differ-
ential characteristic developed for hash functions have been used to also improve
single-key attacks [20]. In order to improve these attacks, new automatic tools
have been designed to automatically search either related-key attacks or collision
attacks on byte-oriented block ciphers [7] or AES-based hash functions [27].

In this paper, we look at the security of round-reduced versions of the AES
block cipher in a practical security model, in continuity with [8]. The adversary
knows a very small number of plaintext/ciphertext pairs, one or two, and his goal
is to recover the secret key. Studying reduced-round versions of AES is motivated
by the proliferation, these last years, of many AES-based primitives for hashing

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 169–187, 2011.
c© International Association for Cryptologic Research 2011

170 C. Bouillaguet, P. Derbez, and P.-A. Fouque

or authentication, such as the Grøstl, ECHO, Shavite, LANE hash functions, the
LEX [1] stream cipher, or the Alpha-MAC [14] and Pelican-MAC [15] message
authentication codes. A possible explanation of this fancy is that the AES en-
joys very interesting security properties against statistical attacks. Namely, two
rounds achieve full diffusion, and there exist very good differential and linear
lower bounds for the best differential on four rounds [26,25,24]. Consequently,
for some applications such as hashing and authentication where the adversary
has little or no access to the internal state, the full ten AES rounds may be
overkill, and some designers proposed to use less rounds for more efficiency. In
these applications, the adversary has less control over the AES than in the usual
block-cipher setting, and has access to a very few number of plaintext/ciphertext
pairs. For example, in the LEX stream cipher [2], only a quarter of the state
is leaked at each round and to generate the next 32 bits of keystream, only
one round of AES is performed. Furthermore, in some particular attacks, such
as side-channel attacks, only a small number of rounds of the cipher needs to
be studied [31,4]. In the latter scenario, the adversary does not know plain-
text/ciphertext pairs, but that some difference in intermediate states results in
two different ciphertexts. Finally, in symmetric cryptanalysis, statistical attacks
usually use distinguishers on a small number of rounds and then, extend these
distinguishers to more rounds. Consequently, it is important to search the best
attack in this model.

Related Work. In this security model, statistical attacks may be not the best
possible attacks, since they usually require many pairs with specific input differ-
ence and algebraic attacks seem to be more well-suited. However, such attacks
using either SAT solvers or Gröbner basis algorithms [29,10], have never been
able, so far, to endanger even very reduced versions of the AES even though its
structure exhibits some algebraic properties. These attacks encode the problem
into a system of equations, then feeds the equations to a generic, sometimes
off-the-shelf equation solver, such as a SAT-solver or a Gröbner basis algorithm.
The main obstacle in these approaches is the S-box, that only admits “bad”
representations (for instance, it is a high degree polynomial over the AES finite
field), and increases the complexity of the equations, even though low degree
implicit equations may also exist.

Our tools, instead of using pre-existing generic equations solvers, first run a
search for an ad hoc solver tailored for the equations to solve, build it, and then
run it to obtain the actual solutions. They can be applied to systems of linear
equations containing a non-linear permutation of the field, such as an S-box.
Our idea is to consider the S-box as a black box permutation. We only use few
properties of this function and our attacks works for any instantiation of the S-
box. This approach is reminiscent of the ideas used in [27] by Khovratovich et al.
where similar systems of linear equations are written to describe a hash function,
and where additional constraints enforce the message and chaining value to follow
a certain truncated differential characteristic inside the function. Solving the
equations would then yield a collision. The basic strategy for finding a message
pair conforming a differential characteristic consists in exhaustively trying values

Automatic Search of Attacks on Round-Reduced AES and Applications 171

for the variables and checking if the constraints are satisfied. In order to speed
up the collision search, they propose to look for a maximum-sized set of variables
that could take freely any values without violating the constraints. To this end,
they use linear algebra, and essentially consider x and S(x) to be independent
variables, to find such maximum set using a greedy strategy. During the search of
a conforming message pair, the free variables can take all the possible values while
the value of the other variables are deduced from the free ones. Consequently,
the search avoids trying bad values for the latter variables which improves the
probabilistic trial stage. The algorithm in [27] is however limited in that when
the greedy strategy aborts, no other solutions are explored.

Our Techniques and Results. Our tools try to find attacks automatically by
searching some classes of guess-and-determine and meet-in-the-middle attacks.
They take as input a system of equations that describes the cryptographic prim-
itive and some constraints on the plaintext and ciphertext variables for example.
Then, it solves the equations by first running a (potentially exponential) search
for a customized solver for the input system. Then, the solver is run, and the
solutions are computed.

We describe two tools.Our preliminary tool uses a depth-first branch-and-bound
search to find “good” guess-and-determine attacks. It has been (covertly) used to
generate some of the attacks found in [8], and outperformed human cryptanalyst in
several occasions.However, the class of attack searched for by this preliminary tool
is quite restricted, and it fails to take into account important differential proper-
ties of the S-box. Our second, more advanced tool, allows to find more powerful at-
tacks, such as Meet-in-the-Middle attacks. For instance, it automatically exploits
the useful fact that an input and output difference on the S-box determine almost
uniquely the actual input and output values. The algorithmic techniques used by
this tool are reminiscent of the Buchberger algorithm [9]. The results found by
these algorithms are summarized in tables 1 and 2.

We improve many existing attacks in the “very-low data complexity” league.
For instance, we find a certificational attack on 4 full AES rounds using just a
single known plaintext, and a practical attack on the same 4 full AES rounds
with 4 chosen plaintexts. We also look at AES-based primitives. We indepen-
dently discovered (along with [21]) the best known attack on Pelican-MAC, and
automatically rediscover the best attacks on Alpha-MAC and LEX. We also used
our tool to find a new, faster, attack on LEX. Lastly, we improve the efficiency of
the state-recovery part of the Piret-Quisquater fault attack against the full AES.
While it required 232 elementary operations, it now takes about one second on
a laptop.

Organization of the Paper. In section 2, we describe how the equations are
constructed given the AES description and how we represent them. Then, we
present our preliminary guess-and-determine attack finder in section 3 and then
a more advanced tool that finds meet-in-the-middle attacks in section 4. Finally,
in section 5, we show four different attacks that were automatically found by the
previous tool.

172 C. Bouillaguet, P. Derbez, and P.-A. Fouque

Table 1. Summary of our Proposed Attacks on AES-128

Attacks on round reduced version of the AES-128
This paper Previous Best Attacks

#Rounds Data Time Memory Time Memory Ref.
1 1 KP 232 216 248 1 [19]

1.5 1 KP 256 1
1.5 2 KP 224 216

2 1 KP 264 248 280 1 [8] �
2 2 KP 232 224 248 1 [8]
2 2 CP 28 28 228 1 [8]

2.5 1 KP 288 288

2.5 2 KP 280 280

2.5 2 CP 224 216

3 1 KP 296 296 2120 1 [8] �
3 2 CP 216 28 232 1 [8]
4 1 KP 2120 2120

4 2 CP 280 280 2104 1 [8]
4 4 CP 232 224

4.5 1 KP 2120 2120

KP — Known plaintext, CP — Chosen plaintext,
Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
� : previously published, but found with these tools
“r.5 rounds” — r full rounds and the final round

Table 2. Summary of our Proposed Attacks on Primitives based on AES

Attacks on Primitives based on AES
Primitive Complexity G & D Part References

Data Time Memory Time Memory
Pelican-MAC 285.5 queries 285.5 285.5 [32]
Pelican-MAC 264 queries 264 264 232 224 Sect. 5.2
Alpha-MAC 265 queries 264 264 232 216 [32] †
LEX 236.3 bytes 2112 236 [17]
LEX 240 bytes 2100 264 280 1 [18]
LEX 236.3 bytes 296 280 264 264 Full version
LEX 250 bytes 280 248 216 28 Full version
AES-128 1 fault 232 232 232 232 [31]
AES-128 1 fault 224 216 224 216 Sect. 5.3
Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
† : the tools can find automatically a comparable attack

Automatic Search of Attacks on Round-Reduced AES and Applications 173

2 Preliminaries

Let F256 denote the finite field with 256 elements used in the AES. We denote
the Sbox of the SubBytes transformation by S : F256 → F256. In this paper we
only consider the 128-bit version of the AES. Keys, plaintext, ciphertext and
internal states of the cipher are represented by 4 × 4 matrices over F256. In
such a matrix, we use the following numbering of bytes: byte zero is the top-left
corner, the first column is made of bytes 0-3, while the last column is made of
bytes 12-15, with byte 15 in the bottom-right corner. We also denote by M [•, j]
the j-th column of M . In r-round AES, a master key, K0 is expanded into r
round keys, K1, . . . ,Kr by a key-schedule algorithm1 which is described by the
following equations:

KSi :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ki[•, j] + Ki[•, j − 1] + Ki−1[•, j] = 0, j = 1, 2, 3

Ki[0] + Ki−1[0] + S (Ki−1[13]) + RCONi = 0
Ki[1] + Ki−1[1] + S (Ki−1[14]) = 0
Ki[2] + Ki−1[2] + S (Ki−1[15]) = 0
Ki[3] + Ki−1[3] + S (Ki−1[12]) = 0

An AES round performs the following sequence of operations: SubBytes,
ShiftRows, MixColumns, and a round subkey addition. We refer the reader to
the AES specification for more details [30]. We denote by Xi the internal state
entering round i (i.e., before SubBytes), while Yi and Wi denote the internal
state before and after the MixColumns operation, respectively. The master key
is XORed to the plaintext before entering the first round. The process is sum-
marized by these equations, where MC denote the MixColumns matrix:

Ri :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wi + MC ×

⎛⎜⎜⎝
S (Xi[0]) S (Xi[4]) S (Xi[8]) S (Xi[12])
S (Xi[5]) S (Xi[9]) S (Xi[13]) S (Xi[1])
S (Xi[10]) S (Xi[14]) S (Xi[2]) S (Xi[6])
S (Xi[15]) S (Xi[3]) S (Xi[7]) S (Xi[11])

⎞⎟⎟⎠ = 0

Xi+1 + Wi + K1+i = 0

It is straightforward to form the system of equations E describing the full en-
cryption process along with the key schedule: we just have to concatenate some
KSi’s and some Ri’s (without forgetting the initial key addition). Since the
right-hand-side of all these equations are zero, we stop representing them from
now on.

Let us denote by V (X) the vector space spanned by 1, x, S(x) for all x ∈ X ,
for any set of variables X . If we denote by X the set of all key and internal
state variables then the cipher equations can be seen as a subspace of V (X). We
also introduce the notation S(E) to denote the set of solutions of a system of
equations E.

1 Note that the AES-256 has a different key-schedule.

174 C. Bouillaguet, P. Derbez, and P.-A. Fouque

3 A preliminary Tool for Guess-And-Determine Attacks

Confronted with a system of equations in V (X) (possibly describing a crypto-
graphic problem), the most naive way to obtain its solutions consists in enumer-
ating all the variables and retaining only the combination that satisfy all the
equations. However, equations in V (X) are such that, in a given equation, once
all the terms but one are known then the last one can be found efficiently. This
enables more or less efficient guess-and-determine techniques to solve the equa-
tions. In a cryptographic setting, guess-and-determine attacks are often found
when data is very scarce, and statistic attacks are therefore impossible. Guess-
and-determine attacks can be more or less sophisticated, but the simplest ones
typically take the following form:

1: for all values of some part of the (unknown) internal state do
2: Compute the full internal state
3: Retrieve the secrets
4: Try to regenerate available data using secrets
5: if match available data then return secrets
6: end for

The difficulty in finding such an attack is to find which parts of the internal
state to enumerate, and to find how to recover the rest. In this section, we present
a Preliminary Tool that finds such attacks automatically. It takes as input a
system of equations in V (X) and a set K0 ⊂ X of initially known variables—these
are the variables corresponding to the available data, for instance the plaintext,
the ciphertext, the keystream, etc. The Preliminary Tool returns a C++ function
(the “solver”) that enumerates its solutions (using negligible memory), along with
the exact number of elementary operations it performs.

This Preliminary Tool has for instance been used to find one known plaintext
attacks against 1, 1.5, 2, 2.5 and 3 rounds of AES. Some of these attacks have
been published in [8]. While performing the research that lead to the publica-
tion [8], the Preliminary Tool (which was designed for the occasion) improved
on the best results found by well-known human cryptanalysts. For instance,
prior to the publication of [8], the best attack on one (full) round of AES was a
guess-and-determine attack with complexity 248 guessed described in [19]. This
preliminary tool found in less than a second an attack with 5 guesses and gen-
erated its implementation: the C++ file is available on the web page of the first
author.

Knowledge Propagation. The core idea of the Preliminary Tool is quite sim-
ple: if there is a linear combination of the equations in which the values of all
terms are known except one, then the value of this last term can be determined
efficiently.

When applied to the AES, this simple procedure automatically harnesses the
simple and clean algebraic structure of the cipher. It automatically exploits the
linear relations existing in the key-schedule, as well as the MixColumns property:

Automatic Search of Attacks on Round-Reduced AES and Applications 175

if y = MixColumns(x) then knowlege of any four bytes in (x, y) is sufficient to
recover the remaining four in a unique way.

An “algebraic” Point of View. The acquisition of further knowledge, ei-
ther by “guessing” or “determining” has an algebraic effect on the equations.
Let K ⊂ X be a set of variables whose value is known. If we substituted the
values of known variables into the original equations E, we would get a system
with less variables. In fact, this reduced system is essentially the quotient space
of E by V (K): starting from an equation f ∈ E, its equivalence class [f] in the
quotient contains a representative where all the variables in K have disappeared.
Alternatively, the variable x can be deduced from K if either [x] or [S(x)] belong
to the quotient. We will write x ∈ Propagate(K) when it is the case.

3.1 Automatic Search for a Minimal Number of Guesses

Given a set of “known” variables K = K0, we may propagate knowledge and
obtain the value of new variables, yielding a new set of known variables K1.
But it may turn out that new variables may again be obtained from K1. We
therefore define the function Propagate

∗(X) which returns the least fixed point
of Propagate containing X .

A guess-and-determine solver has been found as soon as we have found a set G
of “guesses” such that Propagate

∗(G) = X. In that case, we will say that G is
sufficient. The problem thus comes down to automatically find a sufficient set
of minimal size.

The process of exhaustively searching such a guess-and-determine attack can
be seen as the exploration of a DAG whose nodes are sets of variables. The
starting node is the set K0, and the terminal node is X. For any set of variables X ,
and any y /∈ X there is an edge X

y−→ X ∪ {y}, meaning that we may always
choose to enumerate y to gain knowledge. Finally, for any set of variables X , there
is an edge X → Propagate

∗(X), symbolizing the fact that we may propagate
knowledge.

In this setting, the objective of the Preliminary Tool is to find a path from K
to X traversing a small (if not the smallest) number of “guess” edges. Indeed,
the cost of the resulting attack is exponential in the number of traversed “guess
edges”. The problem is that the size of the DAG is exponential in the number of
variables.

The search works in a depth-first branch-and-bound fashion reminiscent of
the DPLL procedure implemented in many SAT-solvers. The pseudo-code of the
search procedure is shown in Figure 1. The function Explore(K,G,B) returns
a minimal set of variables to guess in order to be able to recover the entire
internal state. Here K denotes the set of currently known variables (i.e., the
current node of the DAG), G denotes the set of variables that have been guessed
so far, and B denotes the set of variables that have been guessed in the best
known solution. This implicit assumption is that |G| < |B|, and that the result
of explore has cardinality smaller than or equal to B. To find the best solution,
just run Explore(K0, ∅,X).

176 C. Bouillaguet, P. Derbez, and P.-A. Fouque

1: function Explore(K, G, B)
2: if K = X then return G
3: if K→ Propagate∗(K) then
4: return Explore(Propagate∗(K), G, B)
5: if |G| = |B| − 1 then return B
6: for all x ∈ FilterGuesses(K) do
7: recursive← Explore(K ∪ {x}, G ∪ {x}, B)
8: if |recursive| < B then B← recursive
9: if |G| = |B| − 1 then return B

10: end for
11: return B
12: end function

Fig. 1. Pseudo-code of the Preliminary Tool

In order to speed-up the search procedure, we used several pruning strategies
that remove “guess” edges from the DAG without modifying its reachability
properties.

Local Pruning. In simple words, if we need to guess a new variable, and if
guessing x allows to deduce y, then it is useless to guess y instead of x. More
formally, we see that if y ∈ Propagate

∗(K ∪ {x}), then:

Propagate
∗(K ∪ {y}) ⊆ Propagate

∗(K ∪ {x})
A reasonable pruning strategy is to consider only the candidate guesses that are
not “subsumed” by any other.

Global Pruning. A somewhat surprising consequence of the fact that
Propagate

∗ is monotonic brings in a powerful result, enabling us to further
discard some bad guesses.

Lemma 1. Let V � X be an insufficient set of variables, and let G ⊆ X be a
sufficient set of variables. Then:

G ∩ (X − Propagate
∗(V)) �= ∅

If G denotes a sufficient set of minimal size, then Lemma 1 gives us a priori
knowledge on G, and it enables to choose the first guess of the search procedure
in X − Propagate

∗(V) without risking to throw the best solution away. It is
also possible to use lemma 1 at any point of the search, but then V must be
chosen to be a superset of the currently known variables (otherwise we may not
learn anything).

The problem remains to find the biggest possible sets V of variables such
that Propagate

∗(V) �= X. At each step, there is a different tradeoff to make
between pruning and exploring the DAG. In any case, a simple greedy heuristic—
add to V the variable x that minimizes the size of Propagate

∗(V ∪ {x})—
already give interesting results.

Automatic Search of Attacks on Round-Reduced AES and Applications 177

3.2 Limitations

The main limitation of this approach is that it completely fails to take into
account the differential properties of the S-box. For instance, it cannot exploit the
fact that when the input and output differences of the S-box are fixed and non-
zero, then at most 4 possible input values are possible. Therefore, this approach
alone does not bring useful result when more than one plaintext is available.
However, it can be used as a sub-component in a more complex technique. We
now move on to describe a generalization of this technique that allows to find
more powerful attacks.

4 A Tool for Meet-In-The-Middle Attacks

The equations describing the AES enjoy an interesting and important property.
Let us consider a partition of the set of variables, X = X1 ∪ X2. Then any
equation f ∈ E can be written f = f1 + f2, with f1 ∈ V (X1) and f2 ∈ V (X2). In
some sense, these equations are separable. We will see that this allows a recursive
“meet-in-the-middle” approach.

4.1 Solving Subsystems Recursively

The simple algebraic structure of the equations allows us to efficiently extract
from a system E a subsystem containing only certain variables (say X1), by
simply computing the vector space intersection E∩V (X1). In the sequel we will
denote it by E (X1). We note that a solution of E is also a solution of E(X1), for
any X1 � X, but that the converse is not true in general.

Now let us be given a partition X = X1∪X2 and two black-box solvers A1 and
A2 that find all the solutions of E(X1) and E(X2). The two sub-solvers A1 and
A2 can be used to find the solutions S of the full problem E. An obvious way
would be to compute the solutions S1 of E(X1) and S2 of E(X2), and to test all
the solutions in the Cartesian product S1×S2. This would require about |S1|·|S2|
evaluations of the equations.

However, it is possible to do better. Firstly, we observe that the vectors
in S1 × S2 automatically satisfy the equations in E(X1) + E(X2). Therefore we
first compute a supplementary of E(X1) + E(X1) inside E (let us denote it by
M). The solutions of E are in fact the elements of S1 × S2 satisfying the equa-
tions of M. This already makes less constraints to check. Second, sieving the
elements satisfying these constraints can be done in roughly |S1| + |S2| opera-
tions, using variable separation and a table. Let (fi)1≤i≤n be a basis of E, and
fi = gi +hi with gi ∈ V (X1) and hi ∈ V (X2). If the values of all the variables in
X1 (resp. X2) are available, then the gi’s (resp. hi) may be evaluated. We denote
by G (resp. H) the function that evaluates all the gi on its input. We build two
tables:

L1 ←− {(G(x1), x1) | x1 solution of E(X1)}
L2 ←− {(H(x2), x2) | x2 solution of E(X2)}

178 C. Bouillaguet, P. Derbez, and P.-A. Fouque

Then, the solutions of E are the pairs (x, y) for which there exist a z such
that (z, x) ∈ L1 and (z, y) ∈ L2. They can be identified efficiently by various
methods (sorting the tables, using a hash index, etc.). We have just combined A1

and A2 to form a new solver, A = A1 � A2, that enumerates the solutions S
of E.

Note that the guess-and-determine attacks discussed in the previous section
form a particular case of this more general framework. They can be described
by a recursive combination where X2 always contain a single variable.

Complexity of the Combination. Given two sub-solvers A1 and A2, the
complexity and the properties of A1 � A2 are easy to determine. Let us denote
by T (A) the running time of A, by M(A) its memory consumption, by V (A) the
set of variables occurring in the corresponding equations, and by S(A) the set
of solutions it outputs. The number of operations performed by the combination
is the sum of the number of operations produced by the sub-solvers, plus the
number of solutions (the time required to scan the tables, namely |S1| + |S2|, is
in the worst case of the same order as the running time of the two sub-solvers).
However, we use the following approximation

T (A1 � A2) = max
(
T (A1), T (A2), |S(E(V (A1) ∪ V (A2)))|

)
It is possible to store only the smallest table, and to enumerate the content

of the other “on the fly”, while looking for a collision. This reduces the memory
complexity to the maximum of the memory complexity of the sub-solvers, and
the size of the smaller table. This yields:

M(A1 � A2) = max
{
M(A1),M(A2),min

(
|S(A1)| , |S(A2)|

)}
Heuristic Assumption on the Number of Solutions. Evaluating the com-
plexity of a given (possibly recursive) combination requires evaluating the num-
ber of solutions of various sub-systems. This is a difficult problem in general,
and in order to be able to quickly evaluate the properties of a combination,
we use the following heuristic assumption : if S1 are the solutions of E(X1),
then |S1| ≈ 28(|X1|−dim E(X1)). This heuristic assumption introduces a risk of fail-
ure, or of wrong estimation of the complexity. To protect ourselves against this
risk, we have tried, when possible, to implement the solvers and check if this
assumption holds.

4.2 Automatic Search for Recursive Combinations of Solvers

Given a system of equations, we would like to build an efficient solver by breaking
the problem down to smaller and smaller subsystems, recursively generating
efficient sub-solver for the sub-problems and combining them back.

Note that E({x}) cannot be further broken down, and is a “base case” of
the decomposition, which is dealt with by a “base solver”. We can safely assume
that E({x}) = 0, since otherwise, for a maximum cost of 28, one can determine x
uniquely (according to our hypothesis) and add it to the set of known variables.

Automatic Search of Attacks on Round-Reduced AES and Applications 179

Combining base solvers in various ways yields solving trees of various shapes.
It is often possible to construct several solving trees that solve the same problem
in different ways, and sometimes more or less efficiently.

Comparing Solvers. We therefore want to be able to compare solvers in a
meaningful way. We want A1 � A2 if A1 is overally more interesting (works
faster, finds solution of a bigger system). We also want the order relation to be
compatible with the combination operation (i.e., A1 � A2 implies A1 � A3 �
A2 � A3). We thus define:

A1 � A2 ⇐⇒ T (A1) ≤ T (A2) , V (A1) ⊇ V (A2) , |S (A1) | ≤ |S (A2) |

The equivalence relation induced by this order carries an interesting meaning:
if A1 � A2 and A2 � A1, then A1 and A2 offer essentially the same functionality.
The equivalence relation is also compatible with the combination operation. We
observe that given a set of variables X1, there can be only one maximal solver
(up to equivalence) for E(X1). Thus, our objective is now clearly identified: find
a maximal (i.e., the best) solver for E.

Exhaustive Search for the Best Recursive Solver. The procedure
ExhaustiveSearch on fig. 2 computes the set of all maximal solvers for all
sub-systems of a given system of equations E. In particular, it will construct a
maximal solver for E itself. The algorithm is reminiscent of (and inspired by)
the Buchberger algorithm for Gröbner bases [9]. The complexity of this algo-
rithm seems difficult to evaluate. It depends on the equations, and on the order
in which the combinations are performed. In any case, the size of its ouput is
upper bounded by 2|X| (because it will return only one maximal solver for each
subset of X). The parameter Tup allows the user to enforce an upper-bound
on the time complexity of the generated solvers (by discarding the others). For
small values of Tup, this may for instance allow to prove the non-existence of
recursive solvers with complexity lower than a threshold. The running time of
the exhaustive search also gets smaller with lower values of Tup.

In practice, what dominates the execution of this algorithm is the computa-
tion of the dimension of the combination C, and the bookkeeping required to
update G. A nice improvement is to use the Propagate

∗ function from section 3:
each time a new solver C is constructed, we check whether V (C) is stable by
Propagate

∗. If not, we combine it with the base solvers in Propagate
∗(V (C))−

V (C), thus improving it without increasing its running time. We also have the
following theorem which allows us to reduce the size of the search space and to
refine solvers :

Theorem 1. Let X be a set of variables, x ∈ X and A an optimal solver for
E (X − {x}). If dim E (X − {x}) = dim E (X) − 1 then A � {x} is an optimal
solver for E (X).

180 C. Bouillaguet, P. Derbez, and P.-A. Fouque

1: function Add-Reduce(G,A)
2: if there exist A′ ∈ G such that A′ � A then return G
3: return {A} ∪ {A′ ∈ G | A � A′}
4: end function

5: function ExhaustiveSearch(E, Tup)
6: G← Base Solvers for E (one for each variable)
7: repeat
8: G′ ← G
9: for all pairs (A1,A2) ∈ G′ do

10: C ← A1 � A2

11: if T (C) ≤ Tup then G← Add-Reduce(G, C)
12: end for
13: until G = G′

14: return G
15: end function

Fig. 2. Exhaustive Search for a good recursive solver

Randomized Search. The complexity of the exhaustive search is inherently
exponential, and exploring the whole space might not be feasible. In that case, a
non-exhaustive randomized search might find good results, without offering the
guarantee that they are the best possible. The procedure RandomizedSearch

on fig. 3 shows a possible randomized search that we have found to give good
results. The idea is again quite simple: at each step, we choose a random set
of variables Y , we build a solver for E(Y), and if it is not subsumed by any
previously known solver, we include it in the current solver list, and we try to
combine it with all the solvers we know. It would make sense to choose Y with
some care, for instance using the pruning strategies discussed in section 3.

There are many possible other ways to perform such a randomize search:
Choose the size of the random subsets of X according to some distribution,
periodically restart the procedure, periodically flush “bad” solvers from G, run
the exhaustive search for a while, fill G, then switch to randomized search, etc.

4.3 Usage

When an interesting solver for E is found by the search procedure, it is not
particularly complicated to recursively generate a C++ implementation thereof
(i.e., a function that takes as input the “known” variables, and returns the solu-
tions of the system of equations), or a text file that describes which variables to
enumerate, which tables to join, in a nearly human-readable language.

5 Applications

In this section, we show several attacks that were found by the tool of
section 4. The attacks were found completely automatically. The human inter-
vention consisted in writing down the right equations, which sometimes required

Automatic Search of Attacks on Round-Reduced AES and Applications 181

1: function RandomizedSearch(E, Tup)
2: G← ∅
3: loop
4: Y ← random subset of X, of size Tup

5: (Z1, Z2, . . .)← Propagate∗(Y)
6: B ← BaseSolver(Z1) � BaseSolver(Z2) � . . .
7: G← Add-Reduce(G, B)
8: for all A ∈ G do
9: C ← A � B

10: if T (C) > Tup then drop C
11: if V (C) = X then return C
12: L← Add-Reduce(G, C)
13: end for
14: end loop
15: end function

Fig. 3. Randomized Search for a good recursive solver

some knowledge of the primitive (for instance, to choose a sparse input difference
for Pelican-MAC, or to use a 3-collision for LEX). The tool re-discovered attacks
equivalent to the best published results on LEX and Alpha-MAC. We also used
it to find a better attack on LEX (which is not included in this paper due to
lack of space, but is present in the full version). This illustrates that the tool can
be a useful research assistant, allowing the cryptanalyst to quickly test a global
idea (“let’s use a 3-collision against LEX”), while the tool takes care of the te-
dious, nasty and delicate details. When possible, we implemented these attacks
(either manually or using code generated by the tools), and checked them using
a reference implementation of the AES.

These attacks that we improve upon are all relatively recent. We also improve
on the Piret-Quisquater fault attack against the AES, an older result that had
a suboptimal state recovery procedure. The tool automatically found a better
one.

5.1 Improved Attacks on Reduced-Round Rijndael

We present a new key-recovery attack with a negligible complexity about 28 en-
cryptions. This is a significant improvement of the best previous attack published
in [8] with a complexity about of 232 encryptions, demonstrating the power of
our tool. The adversary asks for the encryption of two plaintexts which differ
only in four bytes composing one column. The attack relies on Lemma 2 which
cleverly uses the linearity in the key-schedule of the AES.

Lemma 2. For all i, j ≥ 1 we have the following equation :

MC (Yi−1[•, j] + Yi[•, j − 1] + Yi[•, j])
= Xi[•, j] + Xi+1[•, j − 1] + Xi+1[•, j]

182 C. Bouillaguet, P. Derbez, and P.-A. Fouque

X0 Y0 W0

K1

SR + SB MC

ΔX0 ΔY0 ΔW0

MC

X1 Y1 W1

K2

SR + SB MC

ΔX1 ΔY1 ΔW1

MC

P X2

δ0

δ3

δ2

δ1

0

1

1

1

11 1

2

2

2

22 2

3

3

3333

4

4

4

K0

Fig. 4. Gray squares denote the presence of a difference. Black squares denote
a known difference.

We denote by δi the non-zero byte of column ΔY0[•, i]. We begin by constructing,
in table form, the inverse of the following functions:

– T1 : Y0[1, 3] �−→ δ3

– T2 : Y0[2, 2] �−→ δ2

– T3 : Y0[3, 1] �−→ δ1

– Tij : X1[i, j] �−→ δj , i + j �= 3

Then, for each possible value of X1[0, 3], we perform following steps :

1-a Get δ3 and, using T•3 and T1, get X1[•, 3] and Y0[1, 3].
1-b Compute X1[1, 2] by applying lemma 2.
2-a Get δ2 and, using T•2 and T2, get X1[•, 2] and Y0[2, 2].
2-b Compute X1[2, 1] by applying lemma 2.
3-a Get δ1 and, using T•1 and T3, get X1[•, 1] and Y0[3, 1].
3-b Compute X1[3, 0] by applying lemma 2.

4 Get δ0 and, using T•0, get X1[•, 0].
5 Compute K2 and check whether it is correct.

We have implemented and tested this attack. On average, there are 28.65

candidates for K2, which is very close to our hypothesis.
We can easily extend the attack to three rounds. The adversary simply asks

for the encryption of two plaintexts which differ only in one byte and guesses
the corresponding byte on K0. The configuration is the same as before and we
can apply the previous attack. This gives a new attack with a time complexity
of about 216 encryptions and negligible memory requirement.

5.2 Improved Forgery Attacks on Pelican-MAC

The best published attacks against Alpha-MAC and Pelican-MAC is [32]. For
Alpha-MAC, after having found an internal collision (this requires 265 queries),
the internal state is recovered with a guess-and-determine attack that makes
about 264 simple operations. For Pelican-MAC, an impossible differential attack
recovers the internal state with data and time complexity 285.5.

Automatic Search of Attacks on Round-Reduced AES and Applications 183

The general idea we exploit is to find a single collision in the internal state,
found by injecting message blocks following a fixed truncated differental char-
acteristic. Then, the state recovery problem is encoded in equations and given
to the tool. It must be noted that an attack with the same global complexity
has been independently found time by Dunkelman, Keller and Shamir [21], us-
ing an impossible differential. The “state-recovery” phase presented here is faster
though.

Pelican-MAC. We now present a new attack against Pelican-MAC, with time
and data complexity 264. We pick an arbitrary message block M1 and query the
MAC with 264 random two-block messages M1 ‖ M2, and store the (message,tag)
pair in a table. Then, we query the MAC on (M1 +Δi) || (M ′

2), where Δi is zero
everywhere except on the first byte, and M ′

2 is random. When a collision is found,
we know that the pair of internal states follows the differential characteristic of
figure 5 (there could be accidental difference cancellations with small probability
though).

We then wrote down the state-recovery problem as a system of equations:
two unknown states with a known one-byte difference yields two unknown states
with a known (full) difference. The tool of section 4 quickly found an attack that
runs in time and space about 232 (the attack with 224 in memory is much more
complicated to describe), and which is summarized by fig. 5. The key observation
(which the tool found all by itself) is that if α, β, γ and δ denote the differences
in Y1, then the differences in X2 are:

ΔX2 =

⎛⎜⎜⎝
02α β γ 03δ
α β 03γ 02δ
α 03β 02γ δ

03α 02β γ δ

⎞⎟⎟⎠

X0 Y0 X1

α

δ
γ

β

Y1 X2

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

Y2

1
1
1
1

2
2
2
2

3
3
3
3

4
4
4
4

1
1
1
1

2
2
2
2

3
3
3
3

4
4
4
4

X3 Y3

Fig. 5. Gray squares denote the presence of a difference. Hatched squares denote
a known difference.

We extracted a description of the attack from the tool’s output. It proceeds
as follows:

1-a Guess bytes 0-3 of X3. The corresponding values in X ′
3 can be found thanks

to the known difference in Y3.

184 C. Bouillaguet, P. Derbez, and P.-A. Fouque

1-b Partially decrypt in the second round to get suggestions for α, β, γ and δ.
1-c Store bytes 0 − 3 of X3 in a hash table T0 indexed by (α, β, γ, δ)

2 Repeat the process with the second column of X3. Store bytes 4 − 7 of X3

in a table T1 indexed by (α, β, γ, δ).
3 Repeat the process with the third and fourth column of X3. Build tables T2

and T3

4 Enumerate (α, β, γ, δ). Look-up T0, T1, T2 and T3 and retrieve the parts of
X3 corresponding to (α, β, γ, δ), if present.

5 if (α, β, γ, δ) occurs in the 4 tables, then we get a complete suggestion for
X3. Decrypt 3 rounds and recover X0. Check if the input difference is right.

We implemented the state-recovery part of the attack (the collision-finding would
not be feasible in practice for us) and validated it experimentally. The number
of tested candidates is consistent with the expected number (232).

Alpha-MAC. Obviously, we cannot overally improve on the attack of [32],
since finding the collision dominates the running time. However, it is noteworthy
that the tool found a state-recovery procedure that requires only 232 elementary
operations and memory, when the first input message difference contains only
one active byte. This is much more efficient than its counterpart in [32].

5.3 Improvement to the Piret-Quisquater Fault Attack

In the Piret-Quisquater fault attack [31], an unknown difference is introduced
in byte 0 of the internal state X7. The adversary observes the output difference,
and recovers the secret key in time 232. Here, we show an improved procedure
(found by the Tool) working in time 224 and memory 216. Let us denote by δ
the difference S(X0[0, 0]) + S(X ′

0[0, 0]). For the sake of simplicity, we describe
the attack assuming that the final MixColumns operation has not been removed.

X0

SB

SR

1
MC

ARK

2
2
5
8

X1

SB

SR

2
2

5
8

MC

ARK

3
3
3
3

9
9
9
9

6
6
6
6

3
3
3
3

X2

SB

SR

MC

ARK

X3

K1 K2 K3

Fig. 6. Fault attack against the AES. Gray square indicates the presence of a
difference.

Automatic Search of Attacks on Round-Reduced AES and Applications 185

The attack can be replayed without it, but some details become significantly
messier. The attack makes use of the following non-trivial observation, that we
extracted from the rool’s output:

Lemma 3. i) X1[1] can be deduced from X2[•, 0] and X2[•, 3]
ii) X1[2] can be deduced from X2[•, 0], X2[•, 2] and X2[•, 3]
iii) X1[3] can be deduced from X2[•, 0], X2[•, 1] and X2[•, 3]

1. Guess the difference in X1[0, 0]
2. Guess the actual value of X1[0, 0] and X1[1, 0]
3. Compute the difference in X2[•, 0] and X2[•, 3], then the actual values.
4. Use lemma 3, item i to filter the guesses of step 3. Only 216 out of 224 should

pass the test.
5. Guess the actual value of X1[2, 0]
6. Compute the difference in X2[•, 2], then the actual values.
7. Use lemma 3, item ii to filter the guesses of step 5. Only 216 should pass.
8. Guess the actual value of X1[3, 0]
9. Compute the difference in X2[•, 1], then the actual values.

10. Use lemma 3, item iii to filter the guesses of step 8. Only 216 should pass.
11. At this point we should have 216 candidates for (X1[•, 0], X ′

1[•, 0]). From
those, X2 can be reconstructed entirely, as well as K3. Simply test all the
candidates.

We implemented this attack and validated it in practice. It terminates in a couple
of seconds on a laptop. In particular, we could check that the actual number of
tested candidates was consistent with the expected number.

References

1. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

2. Biryukov, A.: Design of a New Stream Cipher—LEX. In: Robshaw, M.J.B., Bil-
let, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 48–56. Springer,
Heidelberg (2008)

3. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key Re-
covery Attacks of Practical Complexity on AES-256 Variants with up to 10 Rounds.
In: [22], pp. 299–319

4. Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Crypt-
analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 195–208. Springer, Heidelberg (2007)

5. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

6. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. [23], 231–249

7. Biryukov, A., Nikolic, I.: Automatic Search for Related-Key Differential Charac-
teristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad
and Others. [22], 322–344

186 C. Bouillaguet, P. Derbez, and P.-A. Fouque

8. Bouillaguet, C., Derbez, P., Dunkelman, O., Keller, N., Fouque, P.A.: Low Data
Complexity Attacks on AES. Cryptology ePrint Archive, Report 2010/633 (2010),
http://eprint.iacr.org/

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University
of Innsbruck (1965)

10. Buchmann, J., Pyshkin, A., Weinmann, R.-P.: A Zero-Dimensional Gröbner Basis
for AES-128. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 78–88.
Springer, Heidelberg (2006)

11. Cid, C.: Some Algebraic Aspects of the Advanced Encryption Standard. [16], 58–66
12. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.)

ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)
13. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined

Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

14. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific In-
stance ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 1–17. Springer, Heidelberg (2005)

15. Daemen, J., Rijmen, V.: The Pelican MAC Function. Cryptology ePrint Archive,
Report 2005/088 (2005), http://eprint.iacr.org/

16. Dobbertin, H., Rijmen, V., Sowa, A. (eds.): AES 2005. LNCS, vol. 3373. Springer,
Heidelberg (2005)

17. Dunkelman, O., Keller, N.: A New Attack on the LEX Stream Cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg
(2008)

18. Dunkelman, O., Keller, N.: Cryptanalysis of the Stream Cipher LEX (2010),
http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf

19. Dunkelman, O., Keller, N.: The effects of the omission of last round’s mixcolumns
on aes. Inf. Process. Lett. 110(8-9), 304–308 (2010)

20. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

21. Dunkelman, O., Keller, N., Shamir, A.: Alred blues: New attacks on
aes-based mac’s. Cryptology ePrint Archive, Report 2011/095 (2011),
http://eprint.iacr.org/

22. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

23. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
24. Keliher, L.: Refined Analysis of Bounds Related to Linear and Differential Crypt-

analysis for the AES. [16], 42–57
25. Keliher, L., Meijer, H., Tavares, S.: Improving the Upper Bound on the Maximum

Average Linear Hull Probability for Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 112–128. Springer, Heidelberg (2001)

26. Keliher, L., Meijer, H., Tavares, S.: New Method for Upper Bounding the Maximum
Average Linear Hull Probability for SPNs. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001)

27. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-
Oriented Hash Functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 164–181. Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf
http://eprint.iacr.org/

Automatic Search of Attacks on Round-Reduced AES and Applications 187

28. Monnerat, J., Vaudenay, S.: On Some Weak Extensions of AES and BES. In: López,
J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 414–426. Springer,
Heidelberg (2004)

29. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

30. NIST: Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST
(November 2001)

31. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer,
Heidelberg (2003)

32. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on Some
MACs Based on Block Ciphers. [23], 209–230

How to Improve Rebound Attacks

Maŕıa Naya-Plasencia�

FHNW, Windisch, Switzerland

Abstract. Rebound attacks are a state-of-the-art analysis method for
hash functions. These cryptanalysis methods are based on a well chosen
differential path and have been applied to several hash functions from the
SHA-3 competition, providing the best known analysis in these cases. In
this paper we study rebound attacks in detail and find for a large number
of cases that the complexities of existing attacks can be improved.

This is done by identifying problems that optimally adapt to the
cryptanalytic situation, and by using better algorithms to find solu-
tions for the differential path. Our improvements affect one particular
operation that appears in most rebound attacks and which is often the
bottleneck of the attacks. This operation, which varies depending on the
attack, can be roughly described as merging large lists. As a result, we
introduce new general purpose algorithms for enabling further rebound
analysis to be as performant as possible. We illustrate our new algorithms
on real hash functions.

Keywords: hash functions, SHA-3 competition, rebound attacks,
algorithms.

1 Introduction

The rebound attack is a recent technique introduced in [13] by Mendel et al. It
was conceived to analyze AES-like hash functions (like Grøstl [7] in [14,8,16],
Echo [2] in [14,8,18], Whirlpool [1] in [11]). A rebound attack is composed of two
parts: the inbound phase and the outbound phase. The aim of the inbound phase
is to find, at a low cost, a large number of pairs of values that satisfy a part of a
differential path that would be very expensive to satisfy in a probabilistic way.
The outbound phase then uses these values to perform an attack.

This technique has been applied to other algorithms with inner permutations
which are not AES-like; for instance it has been applied to JH [21] (reduced
to 22 rounds) in [17] and Luffa [4] (reduced to 7 rounds) in [10]; both of those
hash functions use Sboxes of size 4 × 4 and have a linear part in which the
mixing is done in a very different way than in the AES. The hash function
LANE [9], which includes several AES states, each treated by the AES round
transformation, and a different transformation for mixing these states has also
been analysed in [12,22] using rebound attacks.
� Supported by the National Competence Center in Research on Mobile Information

and Communication Systems (NCCR-MICS), a center of the Swiss National Science
Foundation under grant number 5005-67322.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 188–205, 2011.
c© International Association for Cryptologic Research 2011

How to Improve Rebound Attacks 189

In these cryptanalysis results, the rebound attack technique needs to be re-
fined and adapted to each case, but all of them follow the same scheme: first find
a differential path, then find solutions verifying this differential path. This paper
focuses on optimizing the latter part. In all the previously mentioned cryptanal-
ysis, that part involves enumerating, from a very large set of possible candidates
represented as a cross product of lists, all those that verify a given relation. We
call this operation ”merging” the lists. The merging problem can be described
more formally as follows.

Merging problem with respect to t: Let t be a Boolean function taking N k-bit
words as input, i.e. t : ({0, 1}k)N → {0, 1}. Let L1, . . . , LN be N given lists
of k-bit words drawn uniformly and independently at random from {0, 1}k. We
assume that the probability over all N -tuples X in L1 × . . .×LN that t(X) = 1
is Pt. For any given function t and any given N -tuple of lists (L1, . . . , LN) the
merging problem consists in finding the list Lsol of all X ∈ L1×. . .×LN satisfying
t(X) = 1. We call this operation merging the lists L1, . . . , LN to obtain Lsol.

It is assumed that the image of a given input under t can be easily computed.
In the following, the size of a list L is denoted by |L|. A brute force method for
solving this problem therefore consists in enumerating all the |L1|× . . .×|LN | in-
puts, in computing t on all of them and in keeping the ones verifying t = 1. Note
that, in the lack of any additional information on t, it is theoretically impossible
to do better. However, in practice, the function t often has a set of properties
which can be exploited to optimize this approach. We aim at reducing the num-
ber of candidates which have to be examined, in some cases by a preliminary
sieving similar to the one used in [5]. This paper presents such optimization
techniques, that, when applied to most of the rebound attacks published on
the SHA-3 candidates, yield significant improvements in the overall time and/or
memory complexities of the attack, as shown on Table 1. In this table we can
see that we have considered the best existing attacks against four hash functions
and the best rebound attack on a fifth (two of them are finalists and two are
second-round candidates of the SHA-3 competition), where by best attack we
denote the one on the highest number of rounds. We have been able to improve
their complexities by scrutinizing the original attack and finding a more efficient
algorithm for obtaining the solutions for the differential path. Most of the time
the improvement relies on a better merging of the lists, and sometimes it is due
to the use of more adequate conditions in the general algorithm. Let us recall
here that the aim is to find all the N -tuples that verify t = 1 for a complex
function t, which is significantly different from finding just one (or few) of them
for a linear t such as in [20,19,6,3]. As in the previous rebound analysis, we will
work throughout the paper with average values in the probabilistic cases.

In Section 2, we define Problem 1 that corresponds to functions t with a
particular form, and we propose three generic algorithms to solve it. These 3
algorithms have different optimal scenarios. Some examples of applications are
given. In Section 3 we define Problem 2 and propose the stop-in-the-middle al-
gorithms for solving it. We also present two concrete algorithms in this family

190 M. Naya-Plasencia

Table 1. Improvements on best known attacks. The highlighted values are the im-
proved complexities. For Luffa we consider the best known rebound attack where the
complexities presented in the second row have already been obtained in [10] by a ded-
icated algorithm similar to our general approach.

Hash function
SHA3

Best Known Analysis
Rounds Previous This paper

Round / total Time Memory Ref. Time Memory

JH
Final

semi-free-start coll. 16 / 42 2190 2104 [17] 297 297

JH semi-free-start near coll. 22 / 42 2168 2143.70 [17] 296 296

Grøstl-256
Final∗

(compr. function property) 10 / 10 2192 264 [16] 2182 264

Grøstl-256 (internal permutation dist.) 10 / 10 2192 264 [16] 2175 264

Grøstl-512 (compr. function property) 11 / 14 2640 264 [16] 2630 264

ECHO-256 2nd internal permutation dist. 8 / 8 2182 237 [18] 2151 267

Luffa 2nd semi-free-start coll. 7 / 8 2132 268.8 [10] 2112.9 268.8

(2104) (2102)

Lane-256
1st semi-free-start coll. 6+3 / 6+3 296 288 [12] 280 266

Lane-512 semi-free-start coll. 8+4 / 8+4 2224 2128 [12] 2224 266

* The Grøstl analysis does not apply after the final round tweak.

applied to the scenarios of ECHO and Lane. In Section 4 we show briefly how
applying these algorithms combined with an appropriate definition and decom-
position of the problem in each case, allows us to improve the complexities of
the best known rebound attacks on 5 SHA-3 candidates. Besides the results in
Table 1, the main interest of this paper is to present a general framework for
improving rebound attacks. We introduce several new algorithms that consider-
ably improve the overall effectiveness when the attack needs to merge large lists.
We provide a formal definition of the field of application of those algorithms,
and describe them as a set of constraints on t, in hope that designers of rebound
attacks will be able to easily identify scenarios where one of these algorithms, or
variants, may be applied. This was motivated by our own research path, when
we realized that a generalization of the techniques leveraged in specific cases al-
lowed us to find similar improvements in almost all of the rebound attacks that
we have studied so far.

2 When t is Group-Wise

In some cases we can considerably reduce the complexity of the merging problem
by redefining it into a more concrete one. We consider here a very common case
that will appear in many rebound scenarios, as we will later show with the
examples. This case corresponds to a function t that can be decomposed in
smaller functions. After introducing the general problem, we will illustrate it
with an example. Though we preferred to state the problem in full generality for
any possible N , in the concrete rebound examples that we studied, the number
of lists N was either 2, 4 or 6. Also, the elements of each list can be decomposed
in sets of small size s, where s is typically the size of the involved Sbox; and z
is the number of such sets involved1 in the function t.
1 Sometimes, elements are only partially involved in t.

How to Improve Rebound Attacks 191

Problem 1: Let L1, . . . , LN be N lists of size 2l1 , . . . , 2lN respectively, where
the elements are drawn uniformly and independently at random from {0, 1}k.

Let t be a Boolean function, t :
({0, 1}k

)N → {0, 1} for which there exists
N ′ < N , an integer z and some triples of functions tj : {0, 1}2s → {0, 1},
fj : ({0, 1}k)N ′ → {0, 1}s and f ′

j : ({0, 1}k)(N−N ′) → {0, 1}s for j = 1, . . . , z
such that, ∀ (x1, . . . ,xN) ∈ L1 × . . .× LN :

t(x1, . . . ,xN) = 1 ⇔
∀j = 1, . . . , z,{

tj(vj , v
′
j) = 1

with vj = fj(x1, . . . ,xN ′)
and v′j = f ′

j(xN ′+1, . . . ,xN)

Let Pt be the probability that t = 1 for a random input.
Problem 1 consists in merging these N lists to obtain the set Lsol, of size

Pt2
∑ N

i=1 li , of all N -tuples of (L1 × . . .× LN) verifying t = 1.

Reduction from N to 2: For any N ≥ 2 Problem 1 can be reduced to an equiv-
alent and simplified problem with N = 2, i.e. merging two lists LA and LB, which
consist of elements in ({0, 1}s)z corresponding to xA = v = (v1, . . . , vz) and
xB = v′ = (v′1, . . . , v

′
z), with respect to the function xA,xB �→ Πz

j=1tj(vj , v
′
j).

The reduction is performed as follows:

1. Build a table T ∗
A of size 2

∑N′
i=1 li storing each element eA = (x1, . . . ,xN ′) of

L1×. . .×LN ′, indexed2 by the value of (f1(eA), . . . , fz(eA)), i.e. (v1, . . . , vz).
Store the corresponding (v1, . . . , vz) in a list LA. Note that several eA may
lead to the same value of (v1, . . . , vz).

2. Build a similar table T ∗
B of size 2

∑ N
i=N′+1 li storing each element eB =

(xN ′+1, . . . ,xN) of LN ′+1 × . . . × LN , indexed by (f1(eB), . . . , fz(eB)),
i.e. (v′1, . . . , v

′
z). Store (v′1, . . . , v

′
z) in a list LB.

3. Merge LA and LB with respect to Πz
j=1tj and obtain Lsol.

4. Build L∗
sol by iterating over each pair ((v1, . . . , vz), (v′1, . . . , v

′
z)) of Lsol,

and adding the set of all (x1, . . . ,xN ′ ,xN+1, . . . ,xN) ∈ T ∗
A [(v1, . . . , vz)] ×

T ∗
B [(v′1, . . . , v

′
z)]. L∗

sol is the solution to the original problem.

Let 2Tmerge , 2Mmerge be the time and memory complexities of step 3. The total
time complexity of solving Problem 1 is O(sz2

∑N′
i=1 li + sz2

∑N
i=N′+1 li + 2Tmerge +

Pt2
∑ N

i=1 li) where the last term comes from the fact that only the N -tuples
satisfying t = 1 are examined at step 4 because of the sieve applied at step 3.
The proportion of such tuples is then Pt. The memory complexity3 is O((zs +
N ′k)2

∑N′
i=1 li +(zs+(N−N ′)k)2

∑ N
i=N′+1 li +2Mmerge +Pt2

∑N
i=1 li), where the last

term appears only when the solutions must be stored.
2 Here and in the following sections we can use standard hash tables for storage and

lookup in constant time, since the keys are integers.
3 The first two terms, corresponding to the storage of T ∗A and T ∗B could be avoided if

they were the bottleneck by slightly increasing the time complexity by a factor of 2.

192 M. Naya-Plasencia

Using the brute force approach, 2Tmerge would be 2lA+lB where 2lA (respec-
tively 2lB) denotes the size of LA (LB), and 2Mmerge would be negligible. We
present in the following sections some algorithms for solving Problem 1 consid-
ering N = 2 with LA and LB, that provide better complexities than the brute
force approach. Note that the roles of LA and LB are assigned by choice to ob-
tain the best overall complexity. Those algorithms can be applied for obtaining
a smaller 2Tmerge when N > 2.

2.1 Basic Algorithm for Solving Problem 1: Instant Matching

As s is typically very small we can enumerate the solutions (vj , v
′
j) of tj(vj , v

′
j) =

1 and store them in tables Tj of size ≤ 22s, indexed by v′j . This costs O(z · 22s)
in time and memory. We propose in Fig. 1 a first algorithm for solving Prob-
lem 1, which has lower complexity than the brute-force approach. Although
being the simplest algorithm presented in this paper, it has not been applied in
critical steps of some of the previously mentioned attacks, though it could yield
significant improvements.

Require: Two lists LA, LB and a Boolean function t as described in Problem 1.
Ensure: The returned list Lsol will contain all elements of LA × LB verifying t.
1: for j from 1 to z do
2: for all (vj , v

′
j) in {0, 1}s × {0, 1}s do

3: if tj(vj , v
′
j) = 1, then add vj to Tj [v

′
j].

4: for each (v′1, . . . , v
′
z) ∈ LB do

5: Empty Laux.
6: for j from 1 to z do
7: if Tj [v

′
j] is empty, then go to 4.

8: Add all tuples (v1, . . . , vz) verifying ∀j vj ∈ Tj [v
′
j] to Laux.

9: for each (v1, . . . , vz) in Laux do
10: if (v1, . . . , vz) ∈ LA then
11: Add (v1, . . . , vz, v′1, . . . , v

′
z) to Lsol.

12: Return Lsol.

Fig. 1. Instant matching algorithm

Let 2−pj be the probability over all pairs (vj , v
′
j) that tj(vj , v

′
j) = 1. The

relationship between t and the (tj)1≤j≤z implies that
∑z

j=1 pj = − log2(Pt)
where Pt is the probability that t = 1.

Let us determine the average size of Laux. The average size of Tj [v′j] over all
v′j is 2s−pj . Then the average size of Laux is 2zs−

∑ z
j=1 pj = Pt2zs. It follows that

the time complexity of the algorithm is O(z2s + zPt2lB+zs) and is proportional
to the product of the size of LB by the average size of4 Laux. The memory
complexity is O(z2s + 2lA + 2lB + Pt2lA+lB). In some cases, the last term can
disappear, namely if we do not need to store the list Lsol, but just use each
solution as soon as it is obtained. The same way, the list LB does not need to
be stored, if it can be given on the fly.
4 The cost of building and storing the lists Tj [v

′
j] is negligible.

How to Improve Rebound Attacks 193

We now describe a concrete example of application of the instant-matching
algorithm in a case included in a particular rebound attack, improving its com-
plexity. In the extended version of this paper [15] two more examples are provided
in Appendix A, where it clearly appears that identifying and isolating the most
appropriate problem (or problems) to solve is of major importance. These two
last examples might help also to understand the role of fj and f ′

j.

Example 1: Application of the Instant Matching Algorithm. We use
here a case presented in the analysis of JH [17] which is the attack on 8 rounds
using one inbound when the dimension of a block of bits denoted by d is 4. Here
we improve step 3 of the attack, which is also the bottleneck in time complexity.
Two lists are given, LA and LB of size 224.18 elements each. The aim of step 3 is
to merge those lists, i.e. find all pairs (v,v′) ∈ LA × �LB verifying 10 conditions
on groups of s = 4 bits of (v,v′).

In [17] this is solved by exhaustive search, i.e. all possible pairs are examined
and only the ones that verify the 10 conditions are kept, which has cost 248.36.
We can improve this complexity by applying the instant-matching algorithm:
first, we notice that 6 out of these 10 conditions can be written as

tj(vj , v
′
j) = 1, ∀j ∈ {1, . . . , 6},

where variables vj and v′j represent groups of differences of 4 bits. The functions
tj return 1 when the linear function of JH, L, applied to vj and v′j produces 4
bits out of 8 without difference in the wanted positions. Those functions tj can
be computed directly by using a precomputed table of size 28.

This is an instance of Problem 1 with the parameters: z = 6 (corresponding
to the number of relations t1, . . . , t6), and pj = 3.91 ∀j. Hence Pt2zs = 20.09 · 6 =
20.54 � 1.45. The instant-matching algorithm allows us to find all pairs satis-
fying these 6 conditions with a complexity of 227.8 in time and no additional
memory. We then obtain 224.9 pairs of elements that pass the first 6 conditions.
To complete step 3 of the attack, we evaluate the 4 remaining conditions for
each pair, for a global complexity of 224.9.

To summarize, we were able to resolve step 3 of the attack with a time com-
plexity of about 227.8, improving significantly the complexity of 248.36 given
in [17].

2.2 Solving Problem 1 When Pt2zs > 2lA : Gradual Matching

In Fig. 2 we present an algorithm for solving Problem 1 that is useful in cases
where the average size of Laux exceeds the size of LA, i.e.5 Pt2zs > 2lA . In this
case the instant-matching algorithm has a higher complexity than the exhaustive
search. This is why here, instead of directly matching the z groups that appear
in relation t, we will first match the z′ < z ones, and next, the z − z′ remaining

5 When Pt2
zs is close to 2lA this algorithm might also outperform the instant-matching

technique.

194 M. Naya-Plasencia

ones. We present here how to use one step of the gradual-matching algorithm for
solving Problem 1. This algorithm reminds the method used in Example 1 where
the problem is first solved with only 6 relations. But the difference is that the
remaining z − z′ relations can also be written in the form needed for Problem 1
and Pt2zs > 2lA . Let us suppose that we choose z′ so that z′s < lA (the best
value for z′ depends on the situation).

Require: Two lists LA and LB and a function t as described in Problem 1.
Ensure: List Lsol ⊂ LA × LB of all elements verifying t.
1: for j from 1 to z do
2: for all (vj , v

′
j) in {0, 1}s × {0, 1}s do

3: if tj(vj , v
′
j) = 1, then add vj to Tj [v

′
j].

4: for each α = (α1, . . . , αz′) in ({0, 1}s)z′
do

5: Empty Laux.
6: Consider the sublist LB(α) of all elements in LB with (v′1, . . . , v

′
z′) = α.

7: for each (v1, . . . , vz′) in T1[α1]× . . .× Tz′ [αz′] do
8: add (v1, . . . , vz′) to Laux.
9: for each γ = (γ1, . . . , γz′) in Laux do

10: Consider the sublist LA(γ) of all elements of LA with (v1, . . . , vz′) = γ.
11: Merge LA(γ) with LB(α) with respect to t′ = Πz

j=z′+1tj .
12: Add the solutions to Lsol.
13: Return Lsol, containing about Pt2

lA+lB elements.

Fig. 2. Gradual matching algorithm

Let 2merge be the time complexity of merging once lists LB(α) and LA(γ) as
defined in Fig. 2. Since their respective average sizes are 2lA−z′s and 2lB−z′s the
complexity of the brute force is 2lA+lB−2z′s. It can be improved by using one
of the proposed algorithms from this section but it cannot be smaller than the
size of the resulting merged list, i.e. 2lA+lB−2z′s−

∑ z
j=z′+1 pj . Now the average

size of Laux
6 is S = 2z′s−

∑ z′
j=1 pj . Then, the time complexity of this algorithm

is O(z2s + 2z′s(z′ + S2merge)). It is worth noticing that this complexity corre-

sponds to z′2z′s + 2lA+lB−
∑ z′

j=1 pj when the intermediate lists are merged by the
brute force algorithm and to z′2z′s +Pt2lA+lB if they are merged by an optimal
algorithm. The memory complexity is O(z2s +2lA +2lB +S +Pt2lA+lB). Again,
in some cases, the last term can disappear, if we do not need to store the list
Lsol, but just use the solutions on the fly.

2.3 Time-Memory Trade-Offs When Pt2zs > 2lA : Parallel Matching

The parallel-matching algorithm improves the time complexity of the gradual-
matching by a time-memory trade-off and can be applied in the same situations.
6 Here and in the previous section, there is no need for storing Laux, as each element

can be treated as soon as it is obtained, but these auxiliary lists are very useful for
describing the complexities.

How to Improve Rebound Attacks 195

It is a generalization of an algorithm proposed in [10]. As the gradual-matching
algorithm this algorithm first finds elements that verify tj = 1 for j ∈ {1, . . . , z′}
and then, for each of them, it checks if the remaining (z − z′) relations are also
verified. However, in this algorithm, the matching of the z′ relations is done in
parallel for n and m relations, so that z′ = m + n. The motivation of choosing
different variables for n and m is showing that there is no need for them to be
the same when applying the algorithm. We choose n so that n < z, ns < lA

Fig. 3. Representation of the parallel-matching algorithm

and ns < lB, and in the same way, we choose m (n + m = z′ ≤ z). This
algorithm will be explained with ordered lists, as it is more graphical and helps
the understanding. However, since we can perform it with hash tables indexed
by the values we want to have ordered, we do not need to take into account the
logarithmic terms for ordering and searching in the final complexity. First we
build the lists that we will use and that are represented in Fig. 3:

– We order the list LA by the first n groups (v1, . . . , vn). LA has 2lA−sn

elements in average corresponding to a given value of these n groups.
– We order the list LB by the next m groups (v′n+1, . . . , v

′
n+m). LB has 2lB−sm

elements in average corresponding to a given value of these m groups.
– We build the list Ln of size 22ns−

∑ n
j=1 pj formed by all (v1, . . . , vn, v

′
1, . . . , v

′
n)

with vj ∈ Tj[v′j] for all 1 ≤ j ≤ n. All the elements from this list satisfy
tj(vj , v

′
j) = 1 for j ∈ [1, . . . , n].

– We build the list Lm of size 22ms−
∑ n+m

j=n+1 pj formed by all (vn+1, . . . , vn+m,
v′n+1, . . . , v

′
n+m) with vj ∈ Tj [v′j] for all (n + 1) ≤ j ≤ (n + m). All the

elements from this list satisfy tj(vj , v
′
j) = 1 for j ∈ [n + 1, . . . , n + m].

– From Lm and LB we build L′
m as follows: for each (β, β′) in Lm, we add to

L′
m all elements (β, v′1, . . . , v

′
z) of LB such that (v′n+1, . . . , v

′
n+m) = β′ and

we store them ordered by the values of (β, v′1, . . . , v′n). The average size of
L′

m is 2lB+sm−
∑ n+m

j=n+1 pj . Then we perform the algorithm given in Fig. 4.

In total we find the 2lA+lB−
∑ z

j=1 pj existing matches, with a complexity of
O(2ln + 2lm + 2lA+lB−

∑ n+m
j=1 pj + 2lA+ns−

∑ n
j=1 pj + 2lB+ms−

∑ m
j=n+1 pj) in time

196 M. Naya-Plasencia

1: for each (α, α′) in Ln do
2: for each (v1, . . . , vz) in LA with (v1, . . . , vn) = α do
3: if L′m contains any element (vn+1, . . . , vn+m, v′1, . . . , v

′
z) starting by

(vn+1, . . . , vn+m, α′) then
4: if (v1, . . . , vz, v′1, . . . , v

′
z) satisfies the remaning (z−n−m) conditions then

5: Add (v1, . . . , vz , v′1, . . . , v
′
z) to Lsol.

6: Return Lsol containing about Pt2
lA+lB elements.

Fig. 4. Parallel matching algorithm

and O(2ln + 2lm + 2lB + 2lB+ms−
∑ m

j=n+1 pj + 2lA+lB−
∑z

j=1 pj) in memory, where
the last term corresponds to the storage of all solutions, not always needed. In
this case, the storage of LA is not necessary.

2.4 Example 2: Gradual Matching vs Parallel Matching

We are going to apply both previous algorithms to the analysis of Luffa presented
in [10]. We are given two lists LA and LB of size 267 and 265.6. These lists
contain elements formed by z = 52 groups of differences of s = 4 bits. List LA

contains the possible differences for the input of 52 Sboxes. List LB contains the
possible differences for the output of the same 52 Sboxes. For the j-th Sbox, the
probability that one input difference can be associated to one output difference
is 2−pj = 2−1.23. The average size of Laux if we apply the instant-matching
algorithm is then Pt2zs = 2144.04. In this case t can be decomposed in 52 tj , one
per Sbox. So tj(vj , v

′
j) = 1 if there exists x ∈ {0, 1}s such that

Sbox(x) ⊕ Sbox(x⊕ vj) = v′j .

The brute force algorithm for solving this problem has complexity of 265.6+67 =
2132.6 in time and of 268.8 in memory. If we apply the gradual-matching algorithm
with z′ = 16 we have S = 244.32, and we obtain the 268.8 solutions with a time
complexity of 2112.9 and the same memory as before as no additional memory is
needed. If instead we apply the parallel-matching algorithm with m = n = 13, we
can obtain the solutions with a time complexity of 2104 and a memory complexity
of 2102. Different choices of parameters allow many other time-memory trade-
offs, but we just show here the one that provides the lowest time complexity, and
so the highest memory needs, for contrast with the gradual matching algorithm.

3 Stop-in-the-Middle Algorithms

In this section we present another case that allows to reduce the complexity
of solving the basic problem. It is described in Problem 2. Then, we define the
main lines of the stop-in-the-middle algorithms, that we use for solving Prob-
lem 2. Next, we present such an algorithm that solves Problem 2 in the scenario
of Lane-256. Then a more complex variant of this algorithm is applied to an

How to Improve Rebound Attacks 197

ECHO-256 scenario. We believe that, in particular, this kind of algorithms can
be adapted and applied to functions that use several AES (like) states in parallel
which are then merged at the end of each round.

In the following, we consider a permutation F from {0, 1}sk to {0, 1}sk and we
assume that there exists a decomposition function φ (respectively ψ) of the input
of F (respectively the output) in k elements of {0, 1}s. These two decompositions
may be different. Then, instead of the original function F we will now focus on
the function f = ψ ◦ F ◦ φ−1 which is a function over ({0, 1}s)k (see Fig. 5). In
the following (u,w) denotes the word corresponding to the concatenation of the
vectors u and w.

Problem 2: Let zA and zB be two integers less than or equal to k . Let LA

be a list of elements in ({0, 1}s)zA and LB be a list of elements on ({0, 1}s)zB .
The Problem 2 consists on finding all triples (a, b, c) with a ∈ LA, b ∈ LB and
c ∈ LC = ({0, 1}s)k such that

f(c) ⊕ f(c⊕ (a, 0s(k−zA))) = (b, 0s(k−zB)),

where there exists the function F1 : ({0, 1}s)k → ({0, 1}s)k and some
permutations of {0, 1}s, g1, . . . , gk and h1, . . . , hk over {0, 1}s such that

f = H ◦ F1 ◦G

where

G : ({0, 1}s)k → ({0, 1}s)k

(x1, . . . , xk) → (g1(x1), . . . , gk(xk))

and

H : ({0, 1}s)k → ({0, 1}s)k

(x1, . . . , xk) → (h1(x1), . . . , hk(xk))

Fig. 5. Representation of F from Problem 2

198 M. Naya-Plasencia

1: for each b in LB do
2: for each j ∈ [1, . . . , zB] do
3: for each yj ∈ {0, 1}s do
4: add (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ bj)) to Lj,b.
5: for each a in LA do
6: for each i ∈ [1, . . . , zA] do
7: for each xi in {0, 1}s do
8: add (gi(xi), gi(xi)⊕ gi(xi ⊕ ai)) to Li.
9: Using the previous lists Li and Lj,b, match in the middle using F1, i.e. construct

Laux = {(x, b1, . . . , bzB), x ∈ ({0, 1}s)k} such that
((F1[g1(x1), . . . , gzA(xzA), x∗)], F1[g1(x1 ⊕ a1), . . . , gzA(xzA ⊕ azA), x∗)]) =(
(h−1

1 (y1), . . . , h
−1
zB

(yzB), y∗), (h−1
1 (y1 ⊕ b1), . . . , h

−1
zB

(yzB ⊕ bzB), y∗)
)

for some x∗ ∈ ({0, 1}s)k−zA and y∗ ∈ ({0, 1}s)k−zB .
10: for all (x, b1, . . . , bzB) in Laux do
11: if b = (b1, . . . , bzB) ∈ LB then
12: add (a, b, x) to Lsol.
13: Return Lsol.

Fig. 6. General scheme of stop-in-the-middle algorithms

It is worth noting that we assume that both decompossitions φ and ψ have
been chosen in an appropriate way such that the zA words of a (respectively the
zB words of b) correspond to the first words of the input state (respectively of the
output state). We call stop-in-the-middle algorithms those that solve Problem 2
following the main general scheme described in Fig. 6. The associated complex-
ities depend on the particular form of F1, as we show in the next sections.

In the cases we have studied and that we detail below, the function f is formed
by several AES transformations in parallel. We then expect 2lA+lB solutions, as
for each a ∈ LA and each b ∈ LB there exists one c ∈ LC so that the condition
of Problem 2 holds. The match-in-the-middle step is assumed to be simple due
to the simple form of F1 (typical functions F1 are linear diffusion layers). For
the same reason, Laux can typically be written in a compact way, for example,
in several independent lists.

3.1 Algorithm for Lane-256

Each lane of the internal state of Lane-256 is composed of two AES states. An
AES state is a state of size 128 bits that can be seen as a 4×4 matrix of bytes.
The AES transformations are noted: SB for SubBytes, SR for ShiftRows and MC
for MixColumn. The transformation SC mixes the two AES states at the end of
each round by interchanging their columns. We consider Fig. 7 that represents
a part of the differential path used in [12]. In that attack it was treated as the
merging of two inbounds and 264 solutions were found with a complexity of 296

in time and 288 in memory. We consider the scheme represented in Fig. 7 where
we have swapped lines and columns for a more easy intuitive understanding (so
SR is applied to the columns and MC is applied to the lines).

How to Improve Rebound Attacks 199

Fig. 7. Differential path associated to the first improvement on the Lane

analysis

Using the example from [12], lA = 32 and lB = 32 and LC is the list of all
possible input values and needs to be neither stored nor computed. We consider
that the input state (respectively the output state) of the function f presented in
Fig. 7 is decomposed into eight 32-bit words (i.e. s = 32 and k = 8). The input
differences and output differences that we consider in LA and LB correspond
to the first zA = zB = 4 32-bit words of the state. In Fig. 7 each one of the
4+4 = 8 32-bits active word corresponds to the four active bytes with the same
number written on them (1 to 4 for the four active input words and 5 to 8 for
the 4 active output words).

With the algorithm described in Fig. 8 we find the 264 solutions with a com-
plexity of 266 in time and 265 in memory. The time complexity associated to the
studied path is zB2lB+32 + 2lA+32. This comes from the fact that each Li has
average size 216. Then, L5,6 and L7,8 have size 2lB+32. Then the size of both
L0

aux and L1
aux is 2lB since in each we keep the pairs of elements that match

on 4 active bytes, and this happens with a probability of 2−64 (32 values and
32 differences); and the number of possible pairs is 216+16+lB+32. The memory
complexity is 2lB+32+1 + 232+1 + 2lA+lB for obtaining 2lA+lB solutions. In [15]
a detailed explanation on how this algorithm allows to considerably reduce the
complexity of the Lane-256 semi-free-start collision presented in [12] is given,
when applied jointly with other improvements concerning other steps of the
attack.

3.2 Algorithm for ECHO-256

An ECHO-256 state is a state of size 2048 bits that can be seen as a 4×4 matrix
of AES states. The ECHO operations BigSR, BigMC and BigSB are similar to
the AES ones, but they operate on AES states instead of bytes. A SuperSbox
is an Sbox defined by SR ◦ SB ◦MC ◦ SR ◦ SB. Applied on an AES state, it can
be seen as a 32×32 Sbox. We define a SuperSbox set as each one of the 4 (in the
AES state) sets of bits that act as input and output of the SuperSbox. We define
a BigSuperSbox as an Sbox defined by BigSR ◦BigSB ◦BigMC ◦BigSR ◦BigSB.
Applied to ECHO it defines 4 sets of size 4 AES-states.

We consider Fig. 9, where each column represents the four AES states that
form a BigSuperSbox at a certain state #i, for i from 1 to 13. Each possi-
ble differences in #1 in LA consist of zA = 12 32-bit words and the possible

200 M. Naya-Plasencia

Require: Function f and lists LA and LB of differences in #1 and #11 respectively.
Ensure: List Lsol = {(a, b, c) such that f(c⊕ (a, 0s(k−zA)))⊕ f(c) = (b, 0s(k−zB))}.
1: for each b in LB do
2: for i from 5 to 8 do
3: for each y ∈ {0, 1}32 do
4: if h−1

i (y)⊕ h−1
i (y⊕ bi) has only the two bytes active (see state #7) then

5: Store (y, bi, h
−1
i (y), h−1

i (y⊕ bi)) in Li, where the last two terms are trun-
cated to the 2 active bytes.

6: for each (y5, b5, u5, w5) from L5 and (y6, b6, u6, w6) from L6 do
7: Add (u5, w5, u6, w6, y5, y6, b5, b6) in L5,6 indexed by u5, w5, u6, w6.
8: for each (y7, b7, u7, w7) from L7 and (y8, b8, u8, w8) from L8 do
9: Add (u7, w7, u8, w8, y7, y8, b7, b8) in L7,8 indexed by u7, w7, u8, w8.

10: Empty L5, L6, L7 and L8.
11: for each a in LA do
12: for i from 1 to 4 do
13: for each xi ∈ {0, 1}32 do
14: if gi(xi)⊕ gi(xi ⊕ ai) has only the two bytes active (see state #4) then
15: Store (xi, gi(xi), gi(xi⊕ai)) in Li, where the two last terms are truncated

to the 2 active bytes.
16: for i from 0 to 1 do
17: for each (x2i+1, u2i+1, w2i+1) in L2i+1 and (x2i+2, u2i+2, w2i+2) in L2i+2 do
18: if there exists an element in L5+2i,6+2i indexed by

(u2i+1, w2i+1, u2i+2, w2i+2) then
19: Add (x2i+1, x2i+2, b5+2i, b6+2i) to Li

aux indexed by (b5+2i, b6+2i).
20: for each (x1, x2, b5, b6) in L0

aux do
21: for each (b7, b8) such that (b5, b6, b7, b8) ∈ LB do
22: if there exists an element in L1

aux indexed by (b7, b8) then
23: add (a, (b5, b6, b7, b8), (x1, x2, x3, x4)) to Lsol.
24: Return Lsol.

Fig. 8. Algorithm for solving two inbounds of Lane-256

differences in #13 consist of zB = 8 32-bit words, where LB can be written as
LB = LB1 × LB2 with both LB1 (associated to AES state B1 in Fig. 9) and
LB2 (associated to AES state B4) are subsets of ({0, 1}32)4 each of size 232 (this
is a particular case which has to be adapted in other cases). Finding solutions
for this differential path with the previously mentioned conditions is a problem
proposed in [18] and was solved in such a way that 232 solutions could be found
with a complexity of 2128 in time and 237 in memory. We propose here a new
algorithm that can solve it for obtaining 264 solutions with the same time com-
plexity and a memory of 267. Variants of our algorithm can be applied in several
cases, like when the transition in #7 to #8 is from 2 active states to 3, or from
1 to 4 or from 4 to 1. Additionally we believe that it can improve the complexity
of other future attacks on ECHO-256.

The list LC contains all the possible values for the input state. This list needs
to be neither computed nor stored. Here the aim is to find for each possible
(a, b1, b2) in LA×LB1 ×LB2 the associated c so that f(c)⊕ f(c⊕ (a, 0s(k−zA)) =

How to Improve Rebound Attacks 201

Fig. 9. Differential path on a BigSuperSbox of ECHO-256

(b1, b2, 0s(k−zB)). In Fig. 9 we can see how the function f can be written in
the way requested by Problem 2. We omit the operation BigSR as it does not
affect the states, as well as the round keys that are taken into account in the
different gi and hj. For the sake of simplicity we consider in Fig. 9 the list LB of
possible differences before the last MC of the BigSuperSbox. This can be done
by a simple transformation MC−1 of the differences in #B’. The grey bytes
represent the bytes with differences. We can observe that, from #1 to #6 there
are zA = 12 independent active SuperSbox sets (s = 32), denoted in Fig. 9 by
a number from 1 to 12. To each of these groups we can associate a difference
from LA and a value from LC at state #1 and we can apply independently gi,
i ∈ [1, . . . , 12] to obtain the value and the difference of the group in #6. The
same way, from #8 to #13 there are zB = 8 independent active SuperSbox sets
and the corresponding functions h−1

i , i ∈ [1, . . . 8] that link state #13 with state
#8. The function F1 =MC◦BigMC takes a complete internal state in #6 and
computes the corresponding state in #8. Let f(x) = y, and let d#7

i the ith active
diagonal in state #7. Without knowing the values of x∗ nor of y∗ represented
in Fig. 9 we can still write the following equations that have to be verified, that
are obtained from BigMC, and that are used in the algorithm:

2×d#7
i ⊕d#7

i+4⊕d#7
i+8⊕9×d#7

i ⊕3×d#7
i+4⊕6×d#7

i+8 = h−1
i (yi)⊕3×h−1

i+4(yi+4) (1)

for i ∈ 1, . . . , 4 where the multiplication corresponds to the one in the definition
of MC applied independently to each byte of the diagonal.

We consider that the input state (respectively the output state) of the function
presented in Fig. 9 is decomposed into sixteen 32-bit words (i.e. s = 32 and
k = 16). The input differences (respectively output differences) that we consider
in LA (LB) correspond to the first zA = 12 (zB = 8) 32-bit words of the state.
In Fig. 9 each one of the 12 (respectively 8) 32-bits active word from the input
(respectively the output) corresponds to the four active bytes with the same
number written on them (1 to 12 for the twelve active input words and 1 to 8
for the eight active output words).

Let VX (VY , VO respectively) be the values at the positions in #7 marked
with an X (Y , O) and ΔX (ΔY , ΔO) their differences. Let Δ#r

j′ be an auxil-
iary variable denoting the difference for the SuperSbox set j′ in state #r. The
algorithm is described in Fig. 10.

202 M. Naya-Plasencia

Require: Function f , lists of differences LA (in #1) and LB1 and LB2 (in #13).
Ensure: Lsol = {(a, b1, b2, c), such that f(c)⊕f(c⊕(a, 0s(k−zA))) = (b1, b2, 0s(k−zB))}

1: for j from 1 to 4 do
2: for each yj ∈ {0, 1}32 and for each b1 from LB1 do
3: Store (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ b1
j)) in Lj

#8,b1
(4× 232 lists of size 232).

4: for j from 5 to 8 do
5: for each yj ∈ {0, 1}32 and for each b2 from LB2 do
6: Store (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ b2
j)) in Lj

#8,b2
(4× 232 lists of size 232).

7: for each a in LA do
8: for i from 1 to 12 do
9: for each xi ∈ {0, 1}32 do

10: Store (gi(xi), gi(xi)⊕ gi(xi, ai)) in Li
#6.

11: for ΔX from 0 to 264 − 1 (and not the 128 bits as done in [18]) do
12: Compute ΔO and Δ#8

j′ for j′ ∈ {1, 2, 5, 6} (with BigMC and linear condit.).

13: for each b1 in LB1 and for j = [1, 2] do
14: Find an element in Lj

#8,b1
such that h−1

j (yj) ⊕ h−1
j (yj ⊕ b1

j) = Δ#8
j and

store (h−1
1 (y1), Δ

#8
1 , h−1

2 (y2), Δ
#8
2 , b1) in Laux1 .

15: for each b2 in LB2 and for j = [5, 6] do
16: Find an element in Lj

#8,b2
such that h−1

j (yj) ⊕ h−1
j (yj ⊕ b2

j) = Δ#8
j and

store (h−1
5 (y5), Δ

#8
5 , h−1

6 (y6), Δ
#8
6 , b2) in Laux2 .

17: for each (h−1
1 (y1), Δ

#8
1 , h−1

2 (y2), Δ
#8
2 , b1) in Laux1 and for each

(h−1
5 (y5), Δ

#8
5 , h−1

6 (y6), Δ
#8
6 , b2) in Laux2 do

18: Compute V ′1 = h−1
1 (y1)⊕ 3×h−1

5 (y5) and V ′2 = h−1
2 (y2)⊕ 3×h−1

6 (y6), and
store ((h−1

1 (y1), Δ
#8
1 , h−1

2 (y2), Δ
#8
2 , b1), (h−1

5 (y5), Δ
#8
5 , h−1

6 (y6), Δ
#8
6 , b2))

in a hash table T indexed by these (V ′1 , V ′2).
19: for ΔY from 0 to 264 − 1 do
20: Determine by BigMC Δ#8

j′ for j′ = 3, 4, 7, 8; and Δ#6
j for j ∈ [1, . . . , 12].

21: for i from 1 to 12 do
22: Find the element from Li

#6 such that gi(xi)⊕ gi(xi, ai) = Δ#6
i .

23: Compute with them by MC the values d#7
i of the active diagonals in #7

and Vj = 2× d#7
j ⊕ d#7

j+4⊕ d#7
j+8⊕ 9× d#7

j ⊕ 3× d#7
j+4⊕ 6× d#7

j+8 for j = 1, 2.
24: if there is an element such that V ′1 = V1 and V ′2 = V2 in T (one on average,

determines b1 and b2) then

25: Find (h−1
j′ (yj′), Δ

#8
j′) from Lj′

#8,b1
for j′ = 3, 4. This implies y3 and y4.

26: Find (h−1
j′ (yj′), Δ

#8
j′) from Lj′

#8,b2
for j′ = 7, 8. This implies y7 and y8.

27: if with these values of (h−1
j′ (yj′), j′ = 3, 4, 7, 8 and the ones obtained

in step 22 of gi(xi) for i = 3, 4, 7, 8, 11, 12, the equation (1) for i = 3, 4
derived from F1 can be verified (happens with a probability of 2−64) then

28: The value x∗ is determined. Add (x1, . . . , xzA , x∗, a, b1, b2) to Lsol

29: Return Lsol, containing about 264+lA elements.

Fig. 10. Algorithm for finding solutions for one ECHO BigSuperSbox

So the time complexity is O(zB2lB1+s + zB2lB2+s + zA2s + 2lA+64(2lB1 +
2lB2 + 2lB1 2lB2 + zA264)). The memory complexity is O(zB2lB1+s + zB2lB2+s +
2lB1+lB2 + |Lsol|). In the case of lA = 0, we will obtain a complexity of 2129 in

How to Improve Rebound Attacks 203

time and 266 in memory for obtaining 264 solutions. This algorithm proposes
several trade-offs when changing the values of |ΔX |, and can be adapted for
other forms of LB.

4 How to Improve the Best Known Attacks on Five
SHA-3 Candidates

In this section we enumerate briefly the main algorithms or ideas that we use
to improve the best known attacks on the hash functions JH, Grøstl, ECHO,
Luffa and Lane as shown on Table 1. In the full version of the paper [15] more
detailed descriptions are provided.

– JH: To improve the complexities over the ones in [17] we use the instant-
matching (as in Section 2.1) and gradual-matching algorithms as well as the
fact that we do not merge the lists until we really have to (to keep lists of
smaller sizes, with a smaller complexity).

– Grøstl: Instead of the initial lists used in [16], we can define them so that
we erase the elements that for sure won’t verify the outbound part. Having
lists of smaller size translates to a smaller complexity.

– ECHO: Using conviniently the algorithm from Section 3.2 we provide better
trade-offs improving the time complexity from [18].

– Luffa: The parallel-matching algorithm is applied in [10], improving the time
complexity over the brute force merging method by increasing the memory
requirements. If we apply instead the gradual-matching algorithm, the time
complexity can still be better than the brute force one while the memory
needs are not increased.

– Lane: In the cases of Lane-256 and Lane-512 several improvements are
applied at different steps of the attacks from [12]. They use the instant-
matching algorithm, as well as some more appropriate ways to formulate the
problem, and the algorithms from Section 3.1 and from [15, App.B].

5 Conclusion

The main contribution of this paper is to propose several algorithms for solving
the problem which constitutes the bottleneck of most rebound attacks, leading
to improvements of the previously known complexities. We also highlight the im-
portance of identifying the situations that could help improving the complexity
of this type of attacks. This is often a difficult task due to the high technicality
of the attacks and algorithms.

Finally, the previous contributions lead to improvements of most of the best
known rebound attacks applied to the SHA-3 candidates JH, Grøstl, Luffa,
ECHO-256 and Lane. It is important to point out that we just tried to im-
prove the complexities of existing attacks. However, the work presented in this
paper can be very useful for future rebound attacks, in particular we believe that
the attacks on JH and on the compression function of ECHO can be improved

204 M. Naya-Plasencia

(extending the number of rounds attacked) by exploiting the algorithms and
ideas presented here. Finally, we believe that some of these algorithms, specially
those of Section 2, will be applicable in other contexts besides rebound attacks.

Acknowledgements. The author would like to thank Willi Meier, Simon Knell-
wolf, Marine Minier, Thomas Peyrin, Martin Schläffer, Joana Treger and Fabien
Viger for many helpful comments and discussions. A special mention is needed
for Anne Canteaut and Andrea Röck for all the help and suggestions to improve
this paper.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function (revised in 2003)
2. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,

Seurin, Y.: Sha-3 proposal: ECHO. Submission to NIST (2009) (updated)
3. Camion, P., Patarin, J.: The knapsack hash function proposed at crypto 1989 can

be broken. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 39–53.
Springer, Heidelberg (1991)

4. Canniere, C.D., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Sub-
mission to NIST (2009) (Round 2)

5. Canteaut, A., Naya-Plasencia, M.: Structural weaknesses of permutations with low
differential uniformity and generalized crooked functions. In: Finite Fields: Theory
and Applications - Selected Papers from the 9th International Conference Finite
Fields ans Applications. Contemporary Mathematics, vol. 518, pp. 55–71. AMS,
Providence (2010),
http://www-rocq.inria.fr/secret/Maria.Naya Plasencia/

papers/canteaut-nayaplasencia.pdf

6. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

7. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submitted to the SHA-3
competition, NIST (2008), http://www.groestl.info

8. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for AES-
like permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 365–383. Springer, Heidelberg (2010)

9. Indesteege, S.: The Lane hash function. Submitted to the SHA-3 competition, NIST
(2008), http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

10. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of
Luffa v2 Components. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010.
LNCS, vol. 6544, pp. 388–409. Springer, Heidelberg (2011)

11. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

12. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full Lane Compression Function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

http://www-rocq.inria.fr/secret/Maria.Naya_Plasencia/papers/canteaut-nayaplasencia.pdf
http://www-rocq.inria.fr/secret/Maria.Naya_Plasencia/papers/canteaut-nayaplasencia.pdf
http://www.groestl.info
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

How to Improve Rebound Attacks 205

13. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

14. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced grøstl compression function, ECHO permutation and AES block cipher. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 16–35. Springer, Heidelberg (2009)

15. Naya-Plasencia, M.: How to Improve Rebound Attacks. Cryptology ePrint Archive,
Report 2010/607 (2010), http://eprint.iacr.org/2010/607.pdf (extended
version)

16. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

17. Rijmen, V., Toz, D., Varıcı, K.: Rebound Attack on Reduced-Round Versions of JH.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 286–303. Springer,
Heidelberg (2010)

18. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

19. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) algorithm for certain NP-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

20. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

21. Wu, H.: The hash function JH. Submission to NIST (2009) (updated),
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

22. Wu, S., Feng, D., Wu, W.: Cryptanalysis of the LANE hash function. In: Jacob-
son Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 126–140. Springer, Heidelberg (2009)

http://eprint.iacr.org/2010/607.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

A Cryptanalysis of PRINTcipher: The Invariant

Subspace Attack

Gregor Leander, Mohamed Ahmed Abdelraheem,
Hoda AlKhzaimi, and Erik Zenner

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{G.Leander,M.A.Abdelraheem,H.Alkhzaimi,E.Zenner}@mat.dtu.dk

Abstract. At CHES 2010, the new block cipher PRINTcipher was
presented as a light-weight encryption solution for printable circuits [15].
The best attack to date is a differential attack [1] that breaks less than
half of the rounds. In this paper, we will present a new attack called
invariant subspace attack that breaks the full cipher for a significant
fraction of its keys. This attack can be seen as a weak-key variant of a
statistical saturation attack. For such weak keys, a chosen plaintext dis-
tinguishing attack can be mounted in unit time. In addition to breaking
PRINTcipher, the new attack also gives us new insights into other, more
well-established attacks. We derive a truncated differential characteris-
tic with a round-independent but highly key-dependent probability. In
addition, we also show that for weak keys, strongly biased linear approx-
imations exists for any number of rounds. In this sense, PRINTcipher

behaves very differently to what is usually – often implicitly – assumed.

Keywords: Symmetric cryptography, block cipher, invariant subspace
attack, truncated differentials, linear cryptanalysis, statistical saturation
attack.

1 Introduction

Block ciphers are often said to be amongst the best understood subjects in the
area of symmetric cryptography. Compared to – for example – stream ciphers
and hash functions, the design of a secure block cipher is probably more straight-
forward. However, designing a secure block cipher that is at the same time very
efficient is still challenging.

Incidentally, most recent block cipher proposals aim for the area of light-
weight cryptography [3,5,13]. Light-weight cryptography provides building blocks
for secure communication on extremely constrained devices. The constraints
are mainly cost driven and result in highly limited computing power, chip area
and/or power supply. It is an ongoing competition to design the most efficient
block cipher for such devices. This competition resulted in more and more ag-
gressive designs that often show two characteristics: (1) Innovative techniques
are used to improve upon known ciphers, often leading to less standard and thus
less well-understood designs. (2) The security margins that block ciphers are

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 206–221, 2011.
c© International Association for Cryptologic Research 2011

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 207

traditionally equipped with are reduced as much as possible in order to optimize
the cipher performance.

Unsurprisingly, this has led to a number of attacks against these newer de-
signs [4,7,11]. In addition to constituting a break of the light-weight cipher in
question, these attacks sometimes also have an additional quality: They improve
our understanding of block ciphers in general. Note that an attack that breaks
a light-weight cipher may be prevented by a conventional block cipher not by
design, but by accident: Even though the attack was not even known by the time
of designing the cipher, it may not pose a threat to the cipher simply because
of the security margin.

In the following, we will present such a new attack called invariant subspace
attack that breaks the block cipher PRINTcipher [15] proposed at CHES 2010.
The best currently known analysis of PRINTcipher is a differential-style attack
presented at FSE 2011 [1] that could be applied for less than half the rounds of
PRINTcipher, making use of the full code book. Apart from breaking PRINTci-

pher and providing us with a new tool for attacking block ciphers, the invariant
subspace attack also displays interesting relationships to other well-established
attack techniques that increase our understanding of block cipher cryptanalysis
in general.

1.1 Our Contribution

In this paper, detailed in Section 2.2, we present a new attack on PRINTcipher.
In a nutshell, the attack is based on the observation that for PRINTcipher there
exist cosets of subspaces of Fn

2 that the round function maps to cosets of the
same subspace. The exact coset is determined by the round key only. Now, if the
round key is such that a coset gets mapped to itself, the fact that all round keys
are identical in PRINTcipher (almost) immediately leads to the conclusion that
for certain (weak) keys some affine subspaces are invariant under encryption.
The round constants, mainly introduced to avoid slide attacks, do not prevent
the attack as the round constants are included in the subspace. The principle of
the attack is described in Section 2.1.

More particular, using this new attack technique, which we call (for obvious
reasons) invariant subspace attack, we demonstrate the existence of 252 weak
keys (out of 280) for PRINTcipher-48 and 2102 weak keys (out of 2160) for
PRINTcipher-96. If a key is weak, our attack results in a distinguisher using
less than 5 chosen plain- or ciphertexts. That is, even in the case of RFID-tags,
where the amount of data available for a practical attack is strictly limited,
our attacks apply. In a known plain- or ciphertext scenario the data complexity
increases by a factor of 216 (PRINTcipher-48) resp. 232 (PRINTcipher-96).

Besides the low data complexity of the distinguisher, the attack technique
has interesting relations to more established attacks which we like to highlight.
Firstly, see Section 3, the invariant subspace attack implies a truncated differ-
ential attack, where the probability of the truncated differential characteristic is
highly key-dependent. For a weak key, this probability is 2−16, independent of

208 G. Leander et al.

the number of rounds – while for a non-weak key the probability is zero for any
number of rounds greater or equal to two.

Secondly, the invariant subspace attack can be interpreted as a statistical
saturation attack [7,8]. Here a weak key, together with a special choice of the
fixed bits in a statistical saturation attack, leads to a maximal bias, independent
of the number of rounds. Taking into account the close relation of statistical
saturation attacks to multi-dimensional linear attacks, we show that the invariant
subspace attack implies the existence of strongly biased linear approximations
for weak keys, again independent of the number of rounds. Details can be found
in Section 4.

It follows in particular that PRINTcipher is an example of a non-toy cipher
where attacks do not behave as we usually expect them to. The probability of
truncated differential characteristics, the bias for statistical saturation attacks,
and the bias of linear hulls are extremely key-dependent. For a weak key, in-
creasing the number of rounds up to the full number of rounds does not increase
the security of the cipher with respect to these attacks.

1.2 Related Work

As already mentioned in the abstract, our attack can be seen as a weak key
variant of statistical saturation attacks [7,8]. As the statistical saturation attack
itself is a special case of partitioning cryptanalysis [12], so is our attack. Again,
the main difference is that we make use of weak keys and for those keys the bias
is maximal. More loosely our work is related to conditional cryptanalysis [2,14]
in the sense that the truncated differential characteristic described in Section 3
is conditioned to certain key and message bits. Moreover, our attack can also be
interpreted as an extreme case of a dynamic cube attack [11]. Here, the algebraic
normal form of certain ciphertext bits becomes a constant when a weak key is
used and certain message bits are fixed correctly.

2 The Invariant Subspace Attack

2.1 General Idea

Consider an n-bit block cipher with a round function Ek consisting of a key
addition and an SP-layer

E : Fn
2 → Fn

2 ,

that is Ek is defined by Ek(x) = E(x + k). Assume that the SP-layer E is
such that there exists a subspace U ⊆ Fn

2 and two constants c, d ∈ Fn
2 with the

property:
E(U + c) = U + d.

Then, given a (round) key k = u + c + d with u ∈ U , the following holds:

Ek(U + d) = E((U + d) + (u + c + d)) = E(U + c) = U + d,

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 209

i.e. the round function maps the affine subspace U + d onto itself. If all round
keys are in k ∈ U + (c + d) (in particular if a constant round key is used),
then this property is iterative over an arbitrary number of rounds. This yields
a very efficient distinguisher for a fraction of the keys. U should be as large as
possible to increase this fraction. We call this new attack technique an invariant
subspace attack. In the next section we show an example of how to apply it to
the light-weight block cipher PRINTcipher.

2.2 Attack against PRINTcipher

Description of PRINTcipher. PRINTcipher is a block cipher proposed by
Knudsen et al. at CHES 2010 [15]. It is a class of two SP-networks with a block
size of n = 48 (resp. n = 96) bits, a key size of l = 80 (resp. l = 160) bit, and 48
(resp. 96) rounds. One round of PRINTcipher-48 is shown in Figure 1.

xor sk1

xor RCi

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

Fig. 1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16
3-bit S-boxes from one round to the next. sk1 denotes the xor key, p the permutation
key, and RCi the round counter.

PRINTcipher uses the same key for all rounds. It is split into two parts:
The first n bits are used as an xor key, the remaining l − n bits control the
permutations p. In order to introduce differences between the rounds, a round
counter RCi is used which is generated by an LFSR (for details, see [15]). The
other elements of the round function are defined as follows.

The linear layer consists of a bit permutation, where bit i of the current
state is moved to bit position P (i) where

P (i) =
{

3i mod n− 1 for 0 ≤ i ≤ n− 2,
n− 1 for i = n− 1,

where n ∈ {48, 96} is the block size.
Then the state bits are arranged in 16 (resp. 32) blocks of 3 bits each, which

are permuted individually in the permutation layer. Out of 6 possible permu-
tations on 3 bits, only four are valid permutations for PRINTcipher. Specifically,

210 G. Leander et al.

the three input bits c2||c1||c0 are permuted to give the following output bits ac-
cording to two key bits a1||a0.

nr. a1||a0 p
0 00 c2||c1||c0
1 01 c1||c2||c0
2 10 c2||c0||c1
3 11 c0||c1||c2

Finally, in the non-linear layer, each 3-bit block is processed by the same
s-box, which is shown in the following table.

x 0 1 2 3 4 5 6 7
S[x] 0 1 3 6 7 4 5 2

An Attack on PRINTcipher. One interesting property of the PRINTcipher

s-box is that a one bit difference in the input causes a one bit difference in the
same bit in the output with probability 2/8. That is, there exists exactly one
pair for each one bit input difference resulting in a one bit output difference (at
the same position). More precisely, denoting by ∗ an arbitrary value in F2, the
following holds for the PRINTcipher s-box:

S(000) = 000
S(001) = 001

⇔ S(00*) = 00*

S(100) = 111
S(110) = 101

⇔ S(1*0) = 1*1

S(011) = 110
S(111) = 010

⇔ S(*11) = *10

In addition, there exists a subset of s-boxes such that (1) two output bits of
those s-boxes map onto two input bits of the same s-boxes in the next round
and (2) the round-dependent RCi is not involved (see Figure 2).

xor sk1

xor RCi

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

p

S

Fig. 2. A subset of PRINTcipher-48 s-boxes mapping onto itself

Now consider an xor-key sk1 of the form

Xor key = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***,

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 211

and a permutation key with the following restrictions:

Perm. key = 0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **,

where again ∗ denotes an arbitrary value in F2. For those keys the following
structural iterative one round property holds:

Start 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***
Key xoring 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***
Lin. layer 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***
RC 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***
Perm. layer 00* *11 *** *** 00* *11 *** *** 00* *11 *** *** 00* *11 *** ***
S-box layer 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

This property holds with probability one if both keys are of the above form.
The fraction of those keys is (1/2)16 for the XOR key and (1/2)13 for the per-
mutation key, meaning that the property is met for a fraction of (1/2)29 of all
keys. In other words, there exist 251 weak keys of this form.

Thus, one can very efficiently check if a key of the above form is used by
encrypting a few texts of the above form and check if the ciphertext is again
of the same form. Given that the probability for false positives is ≈ 2−16, trial
encrypting just a handful of selected plaintexts will uniquely identify such a weak
key. If such a key is found, we do of course immediately have a distinguisher on
PRINTcipher.

Invariant Subspace Description. Let us briefly rephrase the attack in terms
of an invariant subspace attack. For this we fix a permutation key of the above
form. Remember that the inner state at the beginning and the end of each round
was

Start = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***.

This means that the relevant subspace U ⊂ F48
2 is defined by

U = {00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***},
(1)

and that the affine subspace is defined by any fixed vector d of the form

d = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***. (2)

Then for any fixed vector c of the form

c = 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***, (3)

and any xor-key k ∈ (U + c+d), the round function does indeed map U +d onto
itself.

2.3 Other Attack Profiles

In the following we describe other sets of weak keys for PRINTcipher-48 and
similar ones for PRINTcipher-96.

212 G. Leander et al.

Other Weak Keys for PRINTcipher-48. As it turns out, there are some more
invariant subspaces that also can be used for PRINTcipher-48. They are all of
the form

00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***,

where an ’X’ marks a bit position where the attacker has to make an arbitrary
assignment. Note that each position can be filled independently of the others.
Thus, we have 26 possible plaintexts that we can work with, each of which targets
another class of weak keys.

For each such assignment, the cipher behaves as follows:
Start (1) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***
Key xoring (2) 0X* X01 *** X*1 01* *0X *** *** 0X* 001 *** X*X 01* *0X *** ***
Lin. layer (3) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***
RC (4) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***
Perm. layer (5) 00* XXX *** 1*0 00* *11 *** *** 00* XXX *** 1*0 00* *11 *** ***
S-box layer (6) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***

The behaviour is best understood by traversing the cipher in the inverse di-
rection, i.e. by starting from the end and then finding the key bits that ensure
that all fixed bits in line (1) match their counterparts in line (6).

Let us start with the output of the s-box, i.e. line (6), and let the bit positions
marked by ’X’ be arbitrarily and independently fixed to either 0 or 1. Then going
backwards through the s-box uniquely determines the bits in line (5). We then
use a permutation key of the form

Perm. Key = 0* ** ** (00 or 11) 10 01 ** ** 11 ** ** 10 0* 11 ** **

to obtain line (4), noting that 2−13 of all permutation keys meet this property.
We then apply round counter and linear layer to obtain line (2). Now note that
line (2) contains 22 bits that are fixed and that have to match the corresponding
bits in line (1). Thus, 22 key bits of the xoring key are determined, meaning that
2−22 of all xoring keys are suitable for the attack.

Summing up, for each of the 26 possible assignments to the bits marked by
’X’ in line (1) or (6), a fraction of exactly 2−35 keys are weak, meaning that in
total, we have found another fraction of 2−29 weak keys that can be attacked by
the above technique.

Analysis of PRINTcipher-96. As it turns out, the same attack can also be
applied to PRINTcipher-96. Again, there are two types of weak keys. The first
type is based on 32 active bits and is met by a fraction of 2−59 of all keys. The
second type is based on 44 active bits and has an additional 12 freely chosable
input bits. Each of the resulting 212 inputs targets a fraction of 2−71 keys,
meaning that this group, too, contains a fraction of 2−59 weak keys in total. The
active bits for these weak keys are given in Table 1.

2.4 Protecting Against the Attack

The above attack against PRINTcipher is a special case of the general attack
described in the beginning of the section, since the subspace is described by

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 213

Table 1. Subsets of active bits for PRINTcipher-96, grouped according to s-boxes

Subset 1 Active input bits for linear layer:
(0 1) (4 5) (12 13) (16 17) (24 25) (28 29) (36 37) (40 41)
(48 49) (52 53) (60 61) (64 65) (72 73) (76 77) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 5) (12 13) (15 16) (25 26) (28 29) (36 38) (39 41)
(48 49) (51 52) (61 62) (64 65) (72 74) (75 77) (84 85) (87 88)

Subset 2 Active input bits for linear layer:
(0 1) (3 4 5) (9 11) (12 13) (16 17) (24 25) (27 28 29)
(33 35) (36 37) (40 41) (48 49) (51 52 53) (57 59) (60 61)
(64 65) (72 73) (75 76 77) (81 83) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 4 5) (9 10) (12 13) (15 16) (25 26) (27 28 29)
(33 35) (36 38) (39 41) (48 49) (51 52 53) (58 59) (61 62)
(64 65) (72 74) (75 76 77) (81 82) (84 85) (87 88)

simply fixing some of its bits. In theory, describing the subspace by a set of linear
equations is possible, opening for a wide range of attacks. The full potential of
this generalized attack is yet to be determined.

As for the special case used against PRINTcipher, it is relatively easy to
protect the design against the attack. Note that the list of attack profiles by
fixing bits given here is complete, and that all attack profiles fix two of the bits
39-41 (PRINTcipher-48) resp. 87-89 (PRINTcipher-96). Thus, it would suffice
to spread the round counter over the last three s-boxes, e.g. by assigning two
counter bits to each s-box. This would destroy the only attack profiles available,
at no extra hardware cost.

We also analysed the block cipher NOEKEON, which was proposed by Dae-
men et al. in 2000 [9]. NOEKEON is a 16-round block cipher with a constant
round key, making it a particularly tempting target for the attack. However,
as it turns out, the linear mixing layer of NOEKEON is much more resistant
against the above type of attack. Here, the stronger round function (necessary
for a cipher with only 16 rounds) works to the advantage of the cipher. As it
turns out, even if there was no round counter involved in NOEKEON, the sim-
ple attack described above – i.e. where the subspace is defined by fixing certain
bits – could not be applied. Whether or not the generalized attack has a better
chance of succeeding remains yet to be determined.

3 Truncated Differential Attacks

As pointed out by Murphy in [18] the attack complexity for linear attacks is
often wrongly stated in the literature. One of the reasons is that it is often easy
to compute the average squared bias ε2 when averaging over all keys. However, it
is often stated that the average attack complexity is γ

ε2 for some small γ, which,

214 G. Leander et al.

in general, is wrong. In particular, the average complexity is formally infinite as
soon as there exists a single key with no bias, while γ

ε2 is finite as soon as there
exists a single key with a bias.

Now, to some extent the same is true for (truncated) differential attacks. A
truncated differential characteristic on an n-bit block cipher can be, in general,
described by a set of input and output differences. For 0 ≤ i ≤ r let Ui ⊂ Fn

2

and
Ui

Ei→ Ui+1

be a set of differential characteristics with probability pi.
Assuming independent round keys the average probability, taken over all keys,

of the truncated r-round differential characteristic

U0
E0→ U1

E1→ · · · Er−1→ Ur

is p =
∏

i pi. One normally assumes (cf. the hypothesis of stochastic equivalence
in [16]) that for (almost) all keys it holds that pk ≈ p. Here pk denotes the
probability of the truncated differential characteristic for a fixed key k.

However, this may be highly incorrect. Indeed PRINTcipher is an example of
the extreme opposite. We will show below that for PRINTcipher, the attack dis-
cussed in Section 2 implies the existence of a truncated differential characteristic
such that

pk ∈ {2−16, 0},
for any number of rounds r ≥ 2. Since a fraction of 2−29 of all keys is weak, the
average probability over all keys is

pav = 2−16 · 2−29 = 2−45,

again noting that this holds for any number r ≥ 2 of rounds. After introducing
the invariant subspace attack, the existence of such truncated differential charac-
teristics might not be so surprising, as one basically pays the price for following
the characteristic only once. That is to say that pairs that follow the charac-
teristic for two rounds automatically follow the characteristic for any number of
rounds.

However, this disproves the naive assumption where multiplying the proba-
bilities for the individual rounds yields an average attack complexity that tends
to zero for an increasing number of rounds. Thus, not only is the assumption
that all keys behave more or less similar wrong. Also, the assumption that the
round keys are independent leads to a very wrong conclusion. Concluding this
part, studying the average complexity does not reveal the actual behavior of
PRINTcipher. On the contrary, PRINTcipher behaves completely opposite to
what is usually assumed.

3.1 Rephrasing the Attack in Terms of Truncated Differentials

In this section, we will prove the above claims. To make the description easier,
consider a PRINTcipher-48 version where we fix the permutation key to

00 11 00 00 10 01 00 00 11 00 00 00 00 11 00 00

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 215

xor sk1

xor RCi

S S S S S S S S S S S S S S S S

Fig. 3. One round of PRINTcipher with fixed permutation key. Only the bits that
matter for the differential characteristic are shown in the linear layer.

One round of PRINTcipher with this key is given in Figure 3. Other weak
permutation keys behave similarly.
Now, consider an r-round truncated differential characteristic1 of the form

α
Ek→ U ′ Ek→ U . . . U

Ek→ U, (4)

where α is given by

α = 000 100 011 101 000 100 001 100 000 000 001 110 001 000 101 110,

and U ′ contains all vectors of the form

U ′ = {001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**}.

Finally, as in Section 2, U is defined by

U = {00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***}.

Note that α ∈ U ′ ⊂ U . Given these definitions, we can prove the following
theorem:

Theorem 1. For a fixed (xor)-key k , denote the probability of the truncated
differential characteristic given by Equation (4) by pk. It holds that

pk =
{

2−16 if k is weak
0 if k is not weak

Here a (xor)-key k is weak if and only if it is of the form

k = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***.

1 We emphasize that we deal with truncated differential characteristics and not with
truncated differentials. In particular, for the characteristic we are using, for the
corresponding differential one can expect a probability of 2−16 even for a random
round function.

216 G. Leander et al.

Table 2. This table shows how the differences of the truncated differential character-
istic from Section 3 propagate through the round functions. The underlined values are
the only positions where the difference propagation has a probability not equal to 1.
That is, only those positions pose restrictions on the pairs satisfying the characteristic.

Input 1st Rnd. 000 100 011 101 000 100 001 100 000 000 001 110 001 000 101 110
After P-layer 001 001 001 100 010 010 001 100 100 100 001 100 001 001 001 100
After perm.key 001 100 001 100 001 100 001 100 001 100 001 100 001 100 001 100
S-box layer 001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**

Input 2st Rnd. 001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**
After P-layer 001 001 1** 1** 010 010 **1 **1 100 100 *1* *1* 001 001 1** 1**
After perm.key 001 100 1** 1** 001 100 **1 **1 001 100 *1* *1* 001 100 1** 1**
S-box layer 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***

Input 3rd Rnd. 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***
After P-layer 00* 00* *** *** 0*0 0*0 *** *** *00 *00 *** *** 00* 00* *** ***
After perm.key 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***
S-box layer 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***

The idea behind this theorem is similar to results from [10]. Before we prove
this result, we have to introduce some notation similar to that in [10]. Given a
round function E : Fn

2 → Fn
2 excluding the initial key addition and two subsets

A,B ⊆ Fn
2 we denote by

F(A,B) = {x | E(x) + E(x + α) = β, α ∈ A, β ∈ B}

the set of input pairs satisfying the truncated differential A Ek→ B.
As observed in [10] in many cases F (A,B) is a coset of a subspace. This is

also the case here. More precisely, we have the following lemma.

Lemma 1. Let E be the round function of PRINTcipher excluding the inital
key addition, α, U ′ and U as defined above. Then

F({α},U ′) = F(U ′,U) = U + c,

where c is defined as in Equation (3).

Proof. This can be seen from Table 2, where it is shown how the differences
propagate through the round functions. ��

Now to prove Theorem 1, from the invariant subspace attack on PRINTci-

pher, as discussed in Section 2.2, we know that E(U + c) = U + d. It follows
that for the good pairs for

α
Ek→ U ′ Ek→ U

the inputs to the second round are given by

(U + d + k) ∩ (U + c) =
{

U + c if k ∈ U + d + c
∅ if k �= U + d + c

This already proves that for a non-weak key the probability of the truncated
differential characteristic given in the above theorem is 0. For a weak key it
holds that Ek(U + d) = U + d and therefore, for any x in Fa,b + k = U + d the
pair (x, x+α) fullfils the whole r round truncated differential characteristic. ��

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 217

4 Statistical Saturation Attacks and Multidimensional
Linear Attacks

The attack on PRINTcipher discussed in Section 2.2 is clearly strongly related
to statistical saturation attacks as described in [7]. In this section, after briefly
recalling some of the principles of statistical saturation attacks, we elaborate on
the details of this relation. Maybe the most interesting finding here is that for
PRINTcipher there exist strongly biased linear approximations for any num-
ber of rounds, if the key is weak in the sense of the invariant subspace attack.
This result follows using a link between statistical saturation attacks and multi-
dimensional linear attacks (see [17]). Understanding these strongly biased linear
approximations by studying the linear hulls directly is an interesting problem
that we leave open for further investigation.

4.1 Necessary Background Information

Notations. The canonical inner product on Fn
2 is denoted by 〈·, ·〉, i.e.

〈(a0, . . . , an−1), (b0, . . . , bn−1)〉 :=
n−1∑
i=0

aibi.

We note that all linear forms, i.e. all linear functions l : Fn
2 → F2, can be

described as �(x) = 〈a, x〉 for a suitable a ∈ Fn
2 . Given a (vectorial Boolean)

function F : Fn
2 → Fm

2 the Fourier coefficient of F at the pair (a, b) ∈ Fn
2 ×Fm

2

is defined by
F̂ (a, b) =

∑
x∈Fn

2

(−1)〈b,F (x)〉+〈a,x〉.

The bias εF (a, b) of the linear approximation 〈a, x〉 of 〈b, F (x)〉 is defined as

εF (a, b) :=
|{x | 〈b, F (x)〉 + 〈a, x〉 = 0}|

2n
− 1

2
.

The fundamental relation between the Fourier transformation of F and the bias
of a linear approximation is given by

εF (a, b) =
F̂ (a, b)
2n+1

(5)

Given F : Fn
2 → Fm

2 , the value used to determine the complexity of both mul-
tidimensional linear attacks and statistical saturation attacks is the capacity of
F given by

Cap(F) =
∑

z∈Fm
2

(2−n · |{x ∈ Fn
2 | F (x) = z}| − 2−m)2

2−m
.

218 G. Leander et al.

Statistical Saturation Attacks. Let us first briefly recall some concepts from
statistical saturation attacks. We refer to [7] for details. Given an encryption
function

e : Fn
2 → Fn

2 ,

statistical saturation attacks study the distribution of e when some of its input
bits are fixed. Up to a fixed bijective linear transformation before and after the
cipher, we can restrict ourselves without loss of generality to the case where
one fixes the first r bits in the inputs and considers only the first t bits of the
output2. Thus we write

e : Fr
2 ×Fs

2 → Ft
2 ×Fu

2

e(y, x) =
(
e(1)(y, x), e(2)(y, x)

)
,

where r + s = t + u = n and e(1)(y, x) ∈ Ft
2, e

(2)(y, x) ∈ Fu
2 . For convenience we

denote by hy the restriction of e by fixing the first r bits to y and considering
only the first t bits of the output, that is

hy : Fs
2 → Ft

2

hy(x) = e(1)(y, x).

In a statistical saturation attack one considers the capacity of hy, and the attack
complexity is usually a constant times 1/Cap(hy). Computing this capacity
is difficult in general. However, when averaging over all possible fixings y the
following has been proven in [17]:

Theorem 2. The average capacity in statistical saturation attacks where the
average is taken over all possible fixations y is given by

Cap(hy) = 2−r
∑
y∈Fr

2

Cap(hy) = 2−2n
∑

a∈Fr
2 ×{0}

b∈Ft
2 ×{0},b�=0

(ê(a, b))2 (6)

4.2 On the Choice of the Values of the Fixed Bits

We now focus on the case where r = t, that is the number of fixed bits is the
same as the number of bits considered at the output.

Assume a cipher is vulnerable to an invariant subspace attack. As for statis-
tical saturation attacks, up to a fixed bijective linear transformation before and
after the cipher, we can assume that, for a weak key, the affine subspace of the
form {d} × Fs

2 is mapped to an affine subspace of the form {d} × Fs
2. It then

follows immediately that (for a weak key) the function of the restriction hy for
y = d is a constant, more precisely

hd(x) = e(1)(d, x) = d.

2 This differs slightly from the notation in [17].

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 219

For the special choice of the values of the fixed bits the capacity is maximal.
Hence for a weak key this special fixing of the bits leads to an optimal statistical
saturation attack. Note that Theorem 2 does not reveal the existence of such
extreme cases, as it only considers the average capacity of the restrictions.

While in an invariant subspace attack, given the subspace, the choice of the
coset is crucial, for statistical saturation attacks the fixed bits are usually as-
signed with random values. As the invariant subspace attack on PRINTcipher

does not imply that PRINTcipher is in general vulnerable to a statistical sat-
uration attack, it does not come as a surprise that the experiments in [15] did
not reveal any weakness of PRINTcipher with respect to those attacks.

4.3 On the Existence of Highly Biased Approximations

Theorem 2 was used to compute the average capacity using the Fourier coeffi-
cients. However, for us, the reciprocal is of interest as it implies the following
corollary.

Corollary 1. Assume an n-bit block cipher Ek is vulnerable to an invariant
subspace attack, that is there exist a subspace U , a constant d and keys k such
that

Ek(U + d) = U + d.

Then, for those keys, there exist linear approximations with a bias ε such that

ε ≥ 2dim(U)−n−1 − 22(dim(U)−n)−1.

Proof. With the notation as in Section 4.2, hd is a constant function. Thus
Cap(hd) = 2r − 1 and furthermore∑

y∈Fr
2

Cap(hy) ≥ Cap(hd) = 2r − 1.

Considering Equation (6) it follows that∑
a∈Fr

2 ×{0}
b∈Ft

2 ×{0},b�=0

(ê(a, b))2 ≥ 22n(1 − 2−r)

Lower bounding the maximal value by the average (and recalling that r = t),
we compute

max
a,b�=0

(ê(a, b))2 ≥ 2−2r
∑

a∈Fr
2 ×{0}

b∈Ft
2 ×{0},b�=0

(ê(a, b))2 ≥ 22n−2r(1 − 2−r)

Thus there exists at least one Fourier coefficient such that

|ê(a, b)| ≥ 2n−r
√

1 − 2−r ≥ 2n−r − 2n−2r

220 G. Leander et al.

Applying identity (5) and remembering that r = n − dimU , the theorem
follows. ��
Clearly, this Theorem is only interesting for the case where dim(U) > n/2 as
the existence of the stated approximations otherwise is trivial. For the case of
PRINTcipher-48 we summarize the findings below

Corollary 2. Given a weak key for any round r ≤ 48 there exists at least one
linear approximation for PRINTcipher-48 with bias at least 2−17 − 2−33.

5 Conclusions

We have presented a new attack against iterative block ciphers named invariant
subspace attack and demonstrated its validity by breaking PRINTcipher for a
significant fraction of its keys. The presented invariant subspace attack shows
that 252 keys (out of 280) for PRINTcipher-48 and 2102 keys (out of 2160) for
PRINTcipher-96 are weak. In addition, we have shown the relationship of the
invariant subspace attack to other classes of attacks such as truncated differ-
ential attack, multi-dimentional attack linear attack and statistical saturation
attack. In doing this, we could provide an example for a truncated differential
attack whose success probability is round-independent, disproving the common
implicit assumptions that the total success probability is the product of the in-
dividual round probabilities and that the overall success probability against a
cipher can be averaged over all keys. The probability of this truncated differential
characteristic is 2−16 for weak keys and zero for non-weak keys given that the
number of rounds is greater than or equal to two. Moreover, for PRINTcipher

there are strongly biased linear approximations for any number of rounds, if a
weak key is chosen. For example, there is at least one linear approximation for
PRINTcipher-48 with bias at least 2−17.

Open Questions and Future Work. The attack presented against PRINTcipher

is a special case of the general invariant subspace attack. It should be evaluated
whether the generalised attack provides even better results against PRINTcipher

and other potentially vulnerable ciphers. Hence, the possibility of extending
the presented distinguishing attack on weak keys classes into a key recovery
attack is an open problem that needs to be further analysed. Understanding
the strongly biased linear approximations by studying the linear hulls directly
is another interesting open problem. We believe that it will increase our general
understanding of linear hulls and how (very simple) key scheduling algorithms
influence the distribution of biases.

References

1. Abdelraheem, M.A., Leander, G., Zenner, E.: Differential cryptanalysis of round-
reduced PRINTcipher: Computing roots of permutations. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 1–17. Springer, Heidelberg (2011)

A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack 221

2. Ben-Aroya, I., Biham, E.: Differential cryptanalysis of Lucifer. Journal of Cryptol-
ogy 9(1), 21–34 (1996)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidel-
berg (2011)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

6. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

7. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 195–210. Springer, Heidelberg (2009)

8. Collard, B., Standaert, F.-X.: Multi-trail Statistical Saturation Attacks. In: Zhou,
J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 123–138. Springer, Heidelberg
(2010)

9. Daemen, J., Peeters, M., van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON
(2000), http://gro.noekeon.org/Noekeon-spec.pdf

10. Daemen, J., Rijmen, V.: Plateau characteristics. Information Security, IET 1(1),
11–17 (2007)

11. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

12. Harpes, C., Massey, J.L.: Partitioning Cryptanalysis. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997)

13. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

14. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

15. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

16. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

17. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

18. Murphy, S.: The Effectiveness of the Linear Hull Effect. Technical report,
RHUL-MA-2009-19 (2009)

http://gro.noekeon.org/Noekeon-spec.pdf

The PHOTON Family of Lightweight Hash

Functions

Jian Guo1, Thomas Peyrin2,�, and Axel Poschmann2,�

1 Institute for Infocomm Research, Singapore
2 Nanyang Technological University, Singapore

{ntu.guo,thomas.peyrin}@gmail.com, aposchmann@ntu.edu.sg

Abstract. RFID security is currently one of the major challenges cryp-
tography has to face, often solved by protocols assuming that an on-
tag hash function is available. In this article we present the PHOTON

lightweight hash-function family, available in many different flavors and
suitable for extremely constrained devices such as passive RFID tags.
Our proposal uses a sponge-like construction as domain extension algo-
rithm and an AES-like primitive as internal unkeyed permutation. This
allows us to obtain the most compact hash function known so far (about
1120 GE for 64-bit collision resistance security), reaching areas very close
to the theoretical optimum (derived from the minimal internal state
memory size). Moreover, the speed achieved by PHOTON also compares
quite favorably to its competitors. This is mostly due to the fact that
unlike for previously proposed schemes, our proposal is very simple to
analyze and one can derive tight AES-like bounds on the number of active
Sboxes. This kind of AES-like primitive is usually not well suited for ultra
constrained environments, but we describe in this paper a new method
for generating the column mixing layer in a serial way, lowering dras-
tically the area required. Finally, we slightly extend the sponge frame-
work in order to offer interesting trade-offs between speed and preimage
security for small messages, the classical use-case in hardware.

Keywords: lightweight, hash function, sponge function, AES.

1 Introduction

RFID tags are likely to be deployed widely in many different situations of ev-
eryday life and they represent a great business opportunity for various markets.
However, this rising technology also provides new security challenges that the
cryptography community has to handle. RFID tags can be used to fight product
counterfeiting by authenticating them and on the other hand, we would also like
to guarantee the privacy of the users.

These two security aspects have already been studied considerably and, inter-
estingly, in most of the privacy-preserving RFID protocols proposed [3,20,23] a
� The authors were supported in part by the Singapore National Research Foundation

under Research Grant NRF-CRP2-2007-03.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 222–239, 2011.
c© International Association for Cryptologic Research 2011

The PHOTON Family of Lightweight Hash Functions 223

hash function is required. Informally, such a primitive is a function that takes an
arbitrary length input and outputs a fixed-size value. While no secret is involved
in the computation, one would like that finding collisions (two distinct messages
hashing to the same value) or (second)-preimages (a message input that hashes
to a given challenge output value) is computationally intractable for an attacker.
More precisely, for an n-bit ideal hash function we expect to perform 2n/2 and 2n

computations in order to find a collision and a (second)-preimage respectively.
While not as mature as block-ciphers, the research on hash functions saw a rapid
development lately, mainly due to the groundbreaking attacks on standardized
primitives [37,35,36]. At the present time, most of the attention of the symmet-
ric key cryptography academic community is focused on the SHA-3 competition
organized by NIST [28], which should provide a potential replacement of the
MD-SHA family.

In parallel, nice advances have also been made in the domain of lightweight
symmetric key primitives in the last years. Protocol designers now have at dis-
posal PRESENT1, a 64-bit block-cipher with 80-bit key whose security has already
been analyzed intensively and that can be as compact as 1075 GE [32]. Stream-
ciphers are not outcast with implementations [19] with 80-bit security requiring
about 1300 GE and 2600 GE reported for GRAIN and TRIVIUM respectively, two
candidates selected in the final eSTREAM hardware portfolio. However, the
situation is not as bright in the case of hash functions.

As already pointed out in [18] and echoed in, the community lacks very com-
pact hash functions. Standardized primitives such as SHA-1 [26] or SHA-2 [27]
are much too large to fit in very constrained hardware (5527 GE [29] and 10868
GE [18] for 80 and 128-bit aimed security respectively) and even compact-
oriented proposals such as MAME require 8100 GE for 128-bit security. While
hardware is an important criteria in the selection process, one can not expect
the SHA-3 finalists to be much more compact. At the present time, all SHA-3
finalists require more than 12000 GE for 128-bit security (smaller versions of
KECCAK that have not been submitted to the competition provide for example
64-bit security with 5090 GE). Note that a basic RFID tag may have a total gate
count of anywhere from 1000-10000 gates, with only 200-2000 gates budgeted
for security [22].

This compactness problem in hash algorithms is partly due to the fact that
it widely depends on the memory registers required for the computation. Most
hash functions proposed so far are software-oriented and output at least 256
bits in order to be out of reach of any generic collision search in practice. While
such an output size makes sense where high level and long-term security are
needed, RFID use-cases could bear much smaller security parameters. This is
for example the path taken in, where the authors instantiate lightweight hash
functions using literature-based constructions [21,31] with the compact block-
cipher PRESENT. With SQUASH, Shamir proposed a compact keyed hash function
inspired by the Rabin encryption scheme that processes short messages (at most

1 Due to space limit, we omitted the references for many designs, interested readers
are referred to [1] for an extended version of this article.

224 J. Guo, T. Peyrin, and A. Poschmann

64-bit inputs) and that provides 64 bits of preimage security, without being col-
lision resistant. At CHES 2010, the lightweight hash-function family ARMADILLO
was proposed, but has recently been shown to present serious security weak-
nesses [11]. At the same conference, Aumasson et al. published the hash func-
tion QUARK, using sponge functions [4] as domain extension algorithm, and an
internal permutation inspired from the stream-cipher GRAIN and the block-cipher
KATAN [14]. Using sponge functions as operating mode is another step towards
compactness. Indeed, classical n-bit hash function constructions like the MD-SHA
family utilize a Merkle-Damg̊ard [24,17] domain extension algorithm with a com-
pression function h built upon an n-bit block-cipher E in Davies-Meyer mode
(h(CV,M) = EM (CV) ⊕ CV), where CV stands for the chaining variable and
M for the current message block. Avoiding any feed-forward like for sponge con-
structions saves a lot of memory registers at the cost of an invertible iterative
process which induces a lower (second)-preimage security for the same internal
state size. All in all, designers have to deal with a trade-off between security and
memory requirements.

In this article, we describe a new hardware-oriented hash-function family:
PHOTON. We chose to use the sponge functions framework in order to keep the
internal memory size as low as possible. However, we extend this framework so as
to provide very interesting trade-offs in hardware between preimage security and
small messages hashing speed (small message scenario is a classical use-case and
can be problematic for sponge functions because of their squeezing process that
can be very slow in practice). The internal permutations of PHOTON can be seen
as AES-like primitives especially derived for hardware: our columns mixing layer
can be computed in a serial way while maintaining optimal diffusion properties.
Overall, as shown in Table 2 in Section 4.3, not only PHOTON is easily the small-
est hash function known so far, but it also achieves excellent area/throughput
trade-offs.

In terms of security, it is particularly interesting to use AES-like permutations
as we can fully leverage all the previous cryptanalysis performed on AES and on
AES-based hash functions (again due to space limit we refer the reader to [1]
for a detailed security analysis). Moreover, we can directly derive very simple
bounds on the number of active Sboxes for 4 rounds of the permutation. These
bounds being tight, we can confidently set an appropriate number of rounds that
ensures a comfortable security margin.

2 Design Choices

In tag-based applications, one typically does not require high security primitives,
such as a 512-bit output hash function. In contrary, 64 or 80-bit security is often
appropriate considering the value of objects an RFID tag is protecting and the
use cases. Moreover, a designer should use exactly the level that he expects from
his primitive, so as to avoid any waste of area or computing power. This is the
reason why we chose to precisely instantiate several security levels for PHOTON,
ranging from 64-bit preimage resistance security to 128-bit collision resistance
security.

The PHOTON Family of Lightweight Hash Functions 225

2.1 Extended Sponge Functions

Sponge functions have been introduced by Bertoni et al. [4] as a new way of
building hash functions from a fixed permutation (later more applications were
proposed [7]). The internal state S, composed of the c-bit capacity and the r-bit
bitrate, is first initialized with some fixed value. Then, after having appropriately
padded and split the message into r-bit chunks, one simply and iteratively pro-
cesses all r-bit message chunks by xoring them to the bitrate part of the internal
state and then applying the (c+ r)-bit permutation P . Once all message chunks
have been handled by this absorbing phase, one successively outputs r bits of
the final hash value by extracting r bits from the bitrate part of the internal
state and then applying the permutation P on it (squeezing process).

When the internal permutation P is modeled as a randomly chosen permu-
tation, a sponge function has been proven to be indifferentiable from a random
oracle [5] up to 2c/2 calls to P . More precisely, for an n-bit sponge hash func-
tion with capacity c and bitrate r, when the internal primitive is modeled as a
random permutation, one obtains min{2n/2, 2c/2} as collision resistance bound
and min{2n, 2c/2} as (second)-preimage bound. However, in the case of preim-
age, there exists a gap between this bound and the best known generic attack2.
Therefore, we expect the following complexities in the generic case:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2n, 2c,max{2n−r, 2c/2}}

Moreover, sponge functions can be used as a Message Authentication Code with
MACK(M) = H(K||M), where K ∈ {0, 1}k stands for the key and M for the
message. It has been shown [8] that as long as the amount of message queries
is limited to 2a with a # c/2, then no attack better than exhaustive key search
exists if c ≥ k + a + 1.

Sponge functions seem a natural choice in order to minimize the amount of
memory registers in hardware since they can offer speed/area/security trade-
offs. Indeed, the only memory required for the internal state is c + r bits, while
for a classical Davies-Meyer construction using an m-bit block cipher with a
k-bit key input one needs to store 2m+ k bits, out of which m bits are required
for the feed-forward. For an equivalent ideal collision security level (thus setting
m = c = n) and by minimizing the area (r and k are very small), the sponge
function requires only about half of the memory. Note that if one looks for a
perfectly (second)-preimage resistant hash function (up to the 2n ideal bound),
then it is required that c ≥ 2 · n (which implies that the n-bit hash function
built is indifferentiable from an n-bit random oracle anyway). In that particular
case the sponge functions are not better than the Davies-Meyer construction in

2 The 2n−r term for preimage comes from the fact that in order to invert the hash func-
tion, the attacker will have to invert the squeezing process. The best known generic
attack to solve this “multiblock constrained-input constrained-output problem” [6]
requires 2n−r computations.

226 J. Guo, T. Peyrin, and A. Poschmann

terms of area requirements and therefore in this work we will not focus on this
scenario. Instead, we will build hash functions that may have ideal resistance to
collision, but not for (second)-preimage. The typical shape will be a capacity c
equal to the hash output n and a very small bitrate r. This security/area trade-
off, already utilized by the QUARK designers, will allow us to aim at extremly low
area requirements, while maintaining security expectations very close to ideal.

In, the authors identify that in most RFID applications the user will not
hash a large amount of data, i.e. in general less than 256 bits. Consider for
example the electronic product code (EPC) number, which is a 96-bit string
that is meant to identify globally any tag/product. In this particular case of
small messages, sponge functions with a small bitrate r seem to be slow since
one needs to call (�n/r� − 1) times the internal permutation to complete the
final squeezing process. This is for example the case with U-QUARK, that has a
throughput of 1.47 kbps for very long messages which drops to 0.63 kbps for 96-
bit inputs. On the other side, this “small messages” effect is reduced by the fact
that having a small bitrate will reduce the amount of padding actually hashed
(the padding simply consists in adding a “1” and as many “0” required to fill the
last message block). Note that lightweight proposals based on classical Davies-
Meyer construction that include the message length as suffix padding are also
slow for small messages: DM-PRESENT-80 has a throughput of 14.63 kbps for very
long messages which drops to 5.85 kbps for 96-bit inputs, because in the latter
case many of the compression function calls are spent in order to handle padding
blocks.

r bits

c bits

m0

P

m1

P

m2

P

m3

P

r′ bits

c′ bits

z0

P

z1

P

z2

absorbing squeezing

Fig. 1. The extended sponge framework, the domain extension algorithm used by the
PHOTON hash-function family

In order to allow more flexibility about this issue, we propose to slightly
extend the sponge framework by allowing the number r′ of bits extracted during
each iteration of the squeezing process to be different from the bitrate r3 (see
Figure 1). Increasing r′ will directly reduce the time spent in the squeezing
process, but might also reduce the preimage security. On the contrary, decreasing

3 A recent work from Andreeva et al. [2] also independently proposed such an extension
of the sponge model.

The PHOTON Family of Lightweight Hash Functions 227

r′ might improve the preimage bound at the cost of a speed drop for small
messages. As long as the preimage security remains in an acceptable bound, this
configuration can be interesting in many scenarios where only tiny inputs are to
be hashed. More precisely, in this new model, the best known generic attacks
require the following amount of computations:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2n, 2c,max{2n−r′

, 2c/2}}
Finally, in most tag-based applications the collision resistance is not a require-
ment, while only the one-wayness of the function must be ensured. However,
as we previously explained, for lightweight scenarios the sponge construction
does not maintain the (second)-preimage security at the full level of its ca-
pacity c. This is due to the output process of the sponge operating mode. Of
course, performing a Davies-Meyer like feed-forward just after the final trunca-
tion would do the job, but that would also double the memory area required
(which is precisely what we are trying to avoid). The nice trick of squeezing in
the sponge functions framework permits to avoid any feed-forward while some-
how rendering the process non-invertible, up to some extend (see multiblock
constrained-input constrained-output problem in [6]). One solution to reach
the full capacity preimage security would be to add one more squeezing iter-
ation, thus increasing the output size of the hash by r′ bits.4 Then, the best
known generic preimage attack for this (n + r′)-bit hash function will run in
min{2n+r′

, 2c,max{2n, 2c/2}} ≥ 2n when c ≥ n and one has to note that this
hash output extension has no influence on the second-preimage resistance.

In this article, we will provide five sizes of internal permutations and one
PHOTON flavor for each of them. The four biggest versions fit the classical sponge
model and will ensure 2n/2 collision and second preimage resistance and 2n−r

concerning preimage. However, in order to illustrate the powerful trade-offs al-
lowed by our extended model, the smaller PHOTON variant will have different
input/output bitrates and an extended hash size. Using the five permutations
defined in the next Section, one can derive its own PHOTON flavor depending on
the collision / (second)-preimage / MAC security required, the maximal area
and the maximal hash output size allowed. Note that the area required will only
depend on the internal permutation chosen.

2.2 An AES-like Internal Permutation

We define an AES-like function to be a fixed key permutation P applied on an
internal state of d2 elements of s bits each, which can be represented as a (d×d)
matrix. P is composed of Nr rounds, each containing four layers : AddConstants
(AC), SubCells (SC), ShiftRows (ShR), and MixColumnsSerial (MCS). Infor-
mally, AddConstants simply consists in adding fixed values to the cells of the
4 This generalization has been independently utilized by the QUARK designers in a

revised version of their original article.

228 J. Guo, T. Peyrin, and A. Poschmann

internal state, while SubCells applies an s-bit Sbox to each of them. ShiftRows
rotates the position of the cells in each of the rows and MixColumnsSerial linearly
mixes all the columns independently.

We chose to use AES-like permutations because they offer much confidence in
the design strategy as one can leverage previous cryptanalysis works done on
AES and on AES-like hash functions. Moreover, AES-like permutations allow to
derive very simple proofs on the number of active Sboxes over four rounds of
the primitive. More precisely, if the matrix underlying the MixColumnsSerial
layer is Maximum Distance Separable (MDS), then one can immediately show
that at least (d+1)2 Sboxes will be active for any 4-round differential path [16].
This bound is tight, and we already know differential paths with only (d +
1)2 active Sboxes for four rounds (we will use them later for security analysis
purposes). Moreover, note that the permutations we will design are fixed-key, so
we naturally get rid of related-key attacks or any issue that might arise from the
construction of a key-schedule [9,10].

AddConstants

d cells

d cells

s bits

SubCells

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShiftRows MixColumnsSerial

Fig. 2. One round of a PHOTON permutation

AddConstants. The constants have been chosen such that each of the Nr

round computations are different, and such that the classical symmetry between
columns in AES-like designs are destroyed (without the AddConstants layer, an
input with all columns equal would maintain this property through any number
of rounds). Also, the round constants can be generated by a combination of very
compact Linear Feedback Shift Registers. For performance reasons, only the first
column of the internal state is involved.

SubCells. Our choice of the Sboxes was mostly motivated by their hardware
quality. 4-bit Sboxes can be very compact in hardware while the acceptable
upper limit on the cell size is s = 8. We avoided to use an Sbox size s which is
odd, because this leads to odd message block size or capacity when d is also odd.
This leaves us with s = 4, 6, 8, but we also believe that reusing some already
trusted and well analyzed components increases the confidence in the security
of the scheme and saves a lot of time for cryptanalysts. Finally, we will use
two types of Sboxes: the 4-bit PRESENT Sbox SBOXPRE and the 8-bit AES Sbox
SBOXAES the latter being only utilized for high security levels (at least 128 bits
of collision resistance). Note also that s = 4, 8 allows simpler and faster software
implementations.

The PHOTON Family of Lightweight Hash Functions 229

ShiftRows. The choice of the ShiftRows constants is very simple for PHOTON
since our internal state is always a square of cells. Therefore, row i will classically
be rotated by i positions to the left, i counts from 0.

MixColumnsSerial. The matrix underlying the AES MixColumns function is
a circulant matrix with low hamming weight coefficients. Even if those coeffi-
cients and the irreducible polynomial used to create the Galois field for the AES
MixColumns function have been chosen so as to improve the hardware footprint
of the cipher, it can not be implemented in an extremely compact way. One of
the main reason is that the byte-serial implementation of this function is not
compact. Said in other words, if we write the AES MixColumns matrix as the
composition of d operations each updating a single byte at a time in a serial
way, then the coefficients of these d matrices will be very bad for small area
implementations.

In order to solve this issue, we took the problem the other way round. Let A be
the matrix that updates the last cell of the column vector with a linear combina-
tion of all of the vector cells and then rotates the vector by one position towards
the top. Our new MixColumnsSerial layer will be composed of d applications of
this matrix to the input column vector. More formally, let X = (x0, . . . , xd−1)T

be an input column vector of MixColumnsSerial and Y = (y0, . . . , yd−1)T be the
corresponding output. Then, we have Y = Ad ×X , where A is a (d× d) matrix
of the form:

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0

...
...

0 0 0 0 · · · 0 0 0 1
Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

⎞⎟⎟⎟⎟⎟⎠
where coefficients (Z0, . . . , Zd−1) can be chosen freely. We denote by Serial(Z0,
. . ., Zd−1) such a matrix. Of course, we would like the final matrix Ad to be MDS,
so as to maintain as much diffusion as for the AES initial design strategy. For
each square size d we picked during the design of PHOTON, we used MAGMA [12]
to test all the possible values of Z0, . . . , Zd−1 and picked the most compact
candidate making Ad an MDS matrix. We also chose the irreducible polynomial
with compactness as main criterion.

For design strategy comparison purposes, we can take as an example the AES
case. By using our new mixing layer design method, we were able to find the
matrix A = Serial(1, 2, 1, 4) which gives the following MDS final matrix:

(A)4 =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⎞⎟⎟⎟⎠
4

=

⎛⎜⎜⎜⎝
1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

⎞⎟⎟⎟⎠

230 J. Guo, T. Peyrin, and A. Poschmann

The smallest AES hardware implementation requires 2400 GE [25], for which
263 GE are dedicated to MixColumns. It is possible to implement MixColumns
of AES in a byte-by-byte fashion, which requires only 81 GE to calculate one
byte of the output column. However, since AES uses a circulant matrix, at least
three additional 8-bit registers (144 GE), are required to hold the output, plus
additional control logic, which increases the area requirements significantly. That
is why [25] does not use a serial MixColumns, but rather processes one column
at a time.

Please note that in general the choice of non-zero constants for any d×d MDS
matrix on s-bit cells has only a minor impact of the area consumption, since a
multiplication by x consists of w XOR gates, where w denotes the Hamming
weight of the irreducible polynomial used. At the same time, (d − 1) · s XOR
gates are required to sum up the d individual terms of s bits each. It is no
surprise, that multiplying with the constants above accounts for only 21.3 GE
out of the 74 GE required. In fact, the efficiency of our approach lies in the
shifting property of A, since this allows to re-use the existing memory with
neither temporary storage nor additional control logic required.

All in all, using our approach would provide a tweaked AES cipher with the
very same diffusion properties as the original one (the matrix being MDS), but
that can fit in only 2210 GE, a total saving of around 8%. Moreover, for the
deciphering process, a slightly modified hardware can be used in order to unroll
the MixColumnsSerial, further reducing the area footprint of such a PHOTON-
based cipher. One might think that the software implementations will suffer from
this new layer. While our goal is to make a hardware-oriented primitive, we would
like to remark that most AES software implementations are precomputed tables-
based (applying both the Sbox and the MixColumns coefficients at the same
time) and the very same method can be applied to PHOTON. This is confirmed by
our first software implementations, whose benchmarks are given in Section 4.4.

3 The PHOTON Hash-Function Family

We describe in this section the PHOTON family of hash functions.5 Each variant
will be fully defined by its hash output size 64 ≤ n ≤ 256, its input and its output
bitrate r and r′ respectively. Therefore we denote each function PHOTON-n/r/r′.
The internal state size t = (c+ r) depends on the hash output size and can take
only 5 distinct values: 100, 144, 196, 256 and 288 bits. As a consequence, we
only have to define 5 internal permutations Pt, one for each internal state size.

In order to cover a wide spectrum of applications, we propose five different
flavors of PHOTON, one for each internal state size: PHOTON-80/20/16, PHOTON-
128/16/16, PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 will
use internal permutations P100, P144, P196, P256 and P288 respectively. Note
that the first proposal is special in the sense that it is designed for the specific
cases where 64-bit preimage security and 64-bit key MAC are considered to be
5 An extended version of this paper including a more detailed description of PHOTON

and test vectors can be found at the PHOTON website [1].

The PHOTON Family of Lightweight Hash Functions 231

sufficient.6 In contrary, the last proposal provides a high security level of 128-bit
collision resistance, thus making it suitable for generic applications.

3.1 The Domain Extension Algorithm

The message M to hash is first padded by appending a “1” bit and as many zeros
(possibly none) such that the total length is a multiple of the bitrate r and we
can finally obtain l message blocks m0, . . . ,ml−1 of r bits each. The t-bit internal
state S is initialized by setting it to the value S0 = IV = {0}t−24||n/4||r||r′,
where || denotes the concatenation and each value is coded on 8 bits. For imple-
mentation purposes, note that each byte is interpreted in big-endian form.

Then, as for the classical sponge strategy, at iteration i we absorb the message
block mi on leftmost part of the internal state Si and then apply the permutation
Pt, i.e. Si+1 = Pt(Si⊕(mi||{0}c)). Once all l message blocks have been absorbed,
we build the hash value by concatenating the successive r′-bit output blocks zi

until we reach the appropriate output size n: hash = z0|| . . . ||zl′−1, where l′

denotes the number of squeezing iterations, that is l′ = �n/r′�−1. More precisely,
zi is the r′ leftmost bits of the internal state Sl+i and we have Sl+i+1 = Pt(Sl+i)
for 0 ≤ i < l′. If the hash output size is not a multiple of r′, one just truncates
zl′−1 to n mod r′ bits.

3.2 The Internal Permutations

We define here the internal permutations Pt, where t ∈ {100, 144, 196, 256, 288}.
The internal state of the Nr-round permutation is viewed as a (d × d) matrix
of s-bit cells and the corresponding values depending of t are given in Table 1.
Note that we will always use a cell size of 4 bits, except for the largest version
for which we use 8-bit cells, and that the number of rounds is always Nr = 12,
whatever the value of t is. The internal state cell located at row i and column j
is denoted S[i, j] with 0 ≤ i, j < d.

One round is composed of four layers (see Figure 2): AddConstant (AC),
SubCell (SC), ShiftRows (ShR) and MixColumnsSerial (MCS).

AddConstant. At round number v (starting the counting from 1), we first
XOR a round constant RC(v) to each cell S[i, 0] of the first column of the internal
state. Then, we XOR distinct internal constants ICd(i) to each cell S[i, 0] of the
same first column. Overall, for round v we have S′[i, 0] = S[i, 0]⊕RC(v)⊕ICd(i)
for all 0 ≤ i < d. The round constants are

RC(v) = [1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10].

6 By sponge keying and using the security bound from [8], PHOTON-80/20/16 provides
a secure 64-bit key MAC as long as the number of messages to be computed is lower
than 215. For a secure 64-bit key MAC handling more messages (up to 227), one can
for example go for a very similar PHOTON-80/8/8 version that also uses P100. This
version with capacity c = 92 would require the same area as PHOTON-80/20/16 but
would be slower.

232 J. Guo, T. Peyrin, and A. Poschmann

Table 1. The parameters of the internal permutations Pt, together with the inter-
nal constants ICd, the irreductible polynomials and the Zi coefficients for the Mix-
ColumnsSerial computation

t d s Nr ICd(·) irr. polynomial Zi coefficients

P100 100 5 4 12 [0, 1, 3, 6, 4] x4 + x + 1 (1, 2, 9, 9, 2)

P144 144 6 4 12 [0, 1, 3, 7, 6, 4] x4 + x + 1 (1, 2, 8, 5, 8, 2)

P196 196 7 4 12 [0, 1, 2, 5, 3, 6, 4] x4 + x + 1 (1, 4, 6, 1, 1, 6, 4)

P256 256 8 4 12 [0, 1, 3, 7, 15, 14, 12, 8] x4 + x + 1 (2, 4, 2, 11, 2, 8, 5, 6)

P288 288 6 8 12 [0, 1, 3, 7, 6, 4] x8 + x4 + x3 + x + 1 (2, 3, 1, 2, 1, 4)

The internal constants depend on the square size d and on the row position i.
They are given in Table 1.

SubCells. This layer simply applies an s-bit Sbox to each of the cells of the
internal state, i.e. S′[i, j] = SBOX(S[i, j]) for all 0 ≤ i, j < d. In the case of 4-bit
cells, we use the PRESENT Sbox SBOXPRE while for the 8-bit cells case we use the
AES Sbox SBOXAES [16].

ShiftRows. As for the AES, for each row i this layer rotates all cells to the left
by i column positions. Namely, S′[i, j] = S[i, (j + i) mod d] for all 0 ≤ i, j < d.

MixColumnsSerial. The final mixing layer is applied to each of the columns of
the internal state independently. For each column j input vector (S[0, j], . . . , S[d−
1, j])T , we apply d times the matrix At = Serial(Z0, . . . , Zd−1). That is, for all
0 ≤ j < d: (S′[0, j], . . . , S′[d − 1, j])T = Ad

t × (S[0, j], . . . , S[d − 1, j])T where
the coefficients Z0, . . . , Zd−1 are given in Table 1. In the case of 4-bit cells, the
irreducible polynomial we chose is x4 + x + 1, while for the 8-bit case we chose
the AES one, i.e. x8 + x4 + x3 + x + 1. Note that all Ad

t matrices are Maximum
Distance Separable.7

4 Performances and Comparison

Before we detail the hardware architectures and the optimizations done, we first
describe the tools used. Finally we compare our results to previous work.

4.1 Design Flow

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-
2007.12-SP1 for functional simulation and synthesis of the designs to the Virtual
Silicon (VST) standard cell library UMCL18G212T3 [34], which is based on the
UMC L180 0.18μm 1P6M logic process with a typical voltage of 1.8 V. We used

7 One could wonder why we did not propose a version with d = 9 and s = 4. The
reason is that there is no matrix fulfilling the desired “serial MDS” properties for
those parameters, whatever the irreducible polynomial chosen.

The PHOTON Family of Lightweight Hash Functions 233

Synopsys Power Compiler version A-2007.12-SP1 to estimate the power con-
sumption of our ASIC implementations. For synthesis and for power estimation
we advised the compiler to keep the hierarchy and use a clock frequency of 100
KHz. Note that the wire-load model used, though it is the smallest available for
this library, still simulates the typical wire-load of a circuit with a size of around
10 000 GE.

4.2 Hardware Architectures

To substantiate our claims on the hardware efficiency of our PHOTON family,
we have implemented the flavors specified in Section 3 in VHDL and simulated
their post-synthesis performance. We designed two architectures: one is fully
serialized, i.e. performing operations on one cell per clock cycle, and aims for
the smallest area possible; the second one is a d times parallelization of the first
architecture, thus performing operations on one row in one clock cycle, resulting
in a significant speed-up. As can be seen in Figure 3, our serialized design consists
of six modules: MCS, State, IO, AC, SC, and Controller.

IO allows to 1) initialize our implementation with an all ‘0’ vector, 2) input the
IV, 3) absorb message chunks, and 4) forward the output of the State module
to the AC module without further modification. Instead of using two Multiplexer
and an XOR gate, we used two NAND and one XOR gate thereby reducing the
gate count required from s · 7.33 to s · 4.67 GE.

State comprises a d · d array of flip-flop cells storing s bits each. Every row
constitutes a shift-register using the output of the last stage, i.e. column 0, as
the input to the first stage (column d − 1) of the same row and the next row.
Using this feedback functionality ShiftRows can be performed in d − 1 clock
cycles with no additional hardware costs. Further, since MixColumnsSerial is
performed on column 0, also a vertical shifting direction is required for this

00 01 0(d-2) 0(d-1)

10 11 1(d-2) 1(d-1)

(i)0 (i)1 (i)(d-2) (i)(d-1)

(d-2)0 (d-2)1 (d-2)
(d-2)

(d-2)
(d-1)

s

s

s

...

...

...

...

(d-1)0 (d-1)1 (d-1)
(d-2)

(d-1)
(d-1)

input

...

At

RC

NB

S

s

nReset

s

IC

s

s

output

State

IO

AC

SC Controler
s

MCS

outReady

s

s

s

s

...

...

x2

x2 x8 x8 x2

x8

4

4 4 4 4 4

A100

Fig. 3. Serial hardware architecture of PHOTON (left). As an example for its component
At we also depict A100 with its sub-components (right).

234 J. Guo, T. Peyrin, and A. Poschmann

column. Consequently, columns 0 and d − 1 consist of flip-flop cells with two
inputs (6 GE), while columns 1 to d − 2 consist of flip-flop cells with only one
input (4.67 GE). The overall gate count for this module is s·d·((d−2)·4.67+2·6)
GE and for all flavors it occupies the majority of the area required (between 65
and 77.5%).

MCS calculates the last row of At in one clock cycle. The result is stored in the
State module, that is in the last row of column 0, which has been shifted up-
wards at the same time. Consequently, after d clock cycles the MixColumnsSerial
operation is applied to an entire column. Then the whole state array is rotated by
one position to the left and the next column is processed. In total d ·(d+1) clock
cycles are required to perform MCS. As an example of the hardware efficiency
of MCS we depict A100 in the upper and its sub-components in the lower right
part of Figure 3. Using our library, for a multiplication by 2, 4 and 8, we need
2.67 GE, 4.67 GE, and 7 GE when using the irreducible polynomial x4 + x + 1,
respectively. Therefore the choice of the coefficients has only a minor impact on
the overall gate count, as the majority is required to sum up the intermediate
results. For example, in the case of A100, 56 out of 75.33 GE are required for the
XOR sum. The gate counts for the other matrices are: 80 GE, 99 GE, 145 GE,
and 144 GE for A144, A196, A256, and A288, respectively.

AC performs the AddConstant operation by XORing the sum of the round
constant RC with the current internal constant IC. Furthermore, since AC is
only applied to the first column, the input to the XNOR gate is gated with a
NAND gate. Instead of using an AND gate in combination with an XOR gate,
our approach allows to reduce the area required from s · 6.67 to s · 6 GE.

SC performs the SubCells operation and consists of a single instantiation of
the corresponding Sbox. For s = 4 we used an optimized Boolean representation
of the PRESENT Sbox, which only requires 22.33 GE and for s = 8 we used
Canright’s representation of the AES Sbox [15] which requires 233 GE. It takes
d · d clock cycles to perform AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals
required. Furthermore, also the round constants and the internal constants are
generated within this module, as their values are used for the transition condi-
tions of the FSM. The FSM consists of one idle state, one state for the combined
execution of AC and SC, d− 1 states for ShR and two states for MCS (one for
processing one column and another one to rotate the whole state to the left).
Naturally, its gate count varies depending on d: 197 GE, 210 GE, 235 GE, and
254 GE for d = 5, 6, 7, 8, respectively.

4.3 Hardware Results and Comparison

We assume the message to be padded correctly and the IVs to be loaded at the
beginning of the operation. Then it requires d ·d+(d−1)+d · (d+1) clock cycles
to perform one round of the permutation P , resulting in a total latency of 12 ·(2 ·
d·(d+1)−1) clock cycles. Table 2 compares our results to previous works, sorted
after preimage and collision resistance levels. Area requirements are provided in

The PHOTON Family of Lightweight Hash Functions 235

GE, while the latency is given in clock cycles for only the internal permutation
P (or the internal block-cipher E), and the whole hash function H . Further
metrics are Throughput in kbps and a Figure of Merit (FOM) proposed by. In
order to have a comparison for a best case scenario and a real-world application,
we provide the latter two metrics for ‘long’ messages (omitting any padding
influences) and for 96-bit messages, where we do take padding into account. In
particular this means that a 96-bit message is padded with “1” and as many “0”s
as required. Furthermore Merkle-Damg̊ard constructions need additional 64 bits
to encode the message length. The parameters n, c, r and r′ stand for the hash
output size, the capacity, the input bitrate and the output bitrate respectively.
Finally, the column “Pre” gives the claimed preimage resistance security and
“Col” the claimed collision resistance security.

As can be seen, our proposals compete well in terms of area requirements,
since they are 18% to 75% smaller compared to previous proposals with a similar
preimage/collision resistance level. For a smaller area, the throughput of PHOTON
variants is comparable to the QUARK proposals8. Alternatively, for a similar area,
PHOTON variants are much faster than the QUARK proposals. This can be observed
in the Figure of Merit column of the results Table. One could argue that the
throughput of two proposals can not be compared because the security margin
is not taken in account. However, we would like to emphasize that the security
margin is very hard to measure as it greatly depends on the simplicity of the
scheme, the amount of work spent by the cryptanalysts, etc. Unlike most of
the lightweight hash functions proposed, in the case of PHOTON, we chose very
simple to analyse internal permutations, thus directly leveraging the extensive
analysis work already known for AES-like permutations. While 8 rounds over
12 of the internal permutations of PHOTON can be distinguished from a random
permutation, we provide strong arguments that this is very unlikely to be much
improved.

We did not include power figures in Table 2 for several reasons. First, the
power consumption strongly depends on the technology used and cannot be
compared between different technologies in a fair manner. Furthermore, simu-
lated power figures strongly depend on the simulation method used, and the
effort spent. Instead, we just briefly list the simulated power figures for our
proposals here: 1.59, 2.29, 2.74, 4.01, and 4.55μW for serialized implementation
of PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32,
and PHOTON-256/32/32, respectively. The d-parallel implementations require 2.7,
3.45, 4.35, 6.5, and 8.38μW, respectively. This let us conclude that all PHOTON
flavors seem to be suitable for ultra-constrained devices, such as passive RFID
tags, which was one of our initial design goals.

8 We synthesized the publicly available VHDL source code of U-QUARK using the same
tool chain and ASIC library as for our proposals. The post-synthesis figures for
U-QUARK are slightly higher than the previously published ones, i.e. 1400 GE instead
of 1379 GE, which indicates that PHOTONs smaller footprint is not caused by a dif-
ferent tool chain. However, for comparison we took the previously available figures,
which is in favour of QUARK.

236 J. Guo, T. Peyrin, and A. Poschmann

Table 2. Overview of parameters, security level, and performance of several lightweight
hash functions. Throughput and FOM figures have been derived at a clock frequency
of 100 KHz. We marked by a * the preimage resistances of PHOTON-128/16/16, PHOTON-
160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 in order to indicate that these
PHOTON variants can achieve equal preimage resistance compared to its competitors by
simply adding one more squeezing round. This will increase the hash output size n by
r′ bits and slightly reduce the throughput for small messages, while the area and the
long message performances will remain the same.

Name Ref.

Parameters Security Performance

n c r r′ Pre Col
Area Latency Throughput FOM

[GE] [clk] [kbps] [nb/clk/GE2]

P/E H long 96-bit long 96-bit

64-bit preimage resistance

SQUASH [38] 64 x x x 64 0 2646 31800 31800 0.2 0.15 0.29 0.14

DM-PRESENT-80 64 64 80 x 64 32 1600 547 547 14.63 5.85 57.13 19.04

DM-PRESENT-80 64 64 80 x 64 32 2213 33 33 242.42 96.67 495.01 165.00

DM-PRESENT-128 64 64 128 x 64 32 1886 559 559 22.90 8.59 64.37 32.19

DM-PRESENT-128 64 64 128 x 64 32 2530 33 33 387.88 145.45 605.98 302.99

KECCAK-f[200] 64 128 72 72 64 32 2520 900 900 8.00 5.33 12.6 8.4

PHOTON-80/20/16 80 80 20 16 64 40 865 708 3540 2.82 1.51 37.73 20.12

PHOTON-80/20/16 80 80 20 16 64 40 1168 132 660 15.15 8.08 111.13 59.27

64-bit collision resistance

U-QUARK 136 128 8 8 128 64 1379 544 9248 1.47 0.61 7.73 3.20

U-QUARK 136 128 8 8 128 64 2392 68 1156 11.76 4.87 20.56 8.51

H-PRESENT-128 128 128 64 x 128 64 2330 559 559 11.45 5.72 21.09 10.54

H-PRESENT-128 128 128 64 x 128 64 4256 32 32 200.00 100.00 110.41 55.21

ARMADILLO2-B 128 128 64 x 128 64 4353 256 256 25.00 12.50 13.19 6.60

ARMADILLO2-B 128 128 64 x 128 64 6025 64 64 100.00 50.00 27.55 13.77

KECCAK-f[400] 128 256 144 144 128 64 5090 1000 1000 14.40 9.60 5.56 3.71

PHOTON-128/16/16 128 128 16 16 112* 64 1122 996 7968 1.61 0.69 12.78 5.48

PHOTON-128/16/16 128 128 16 16 112* 64 1708 156 1248 10.26 4.4 35.15 15.06

80-bit collision resistance

D-QUARK 176 160 16 16 160 80 1702 704 7744 2.27 0.80 7.85 2.77

D-QUARK 176 160 16 16 160 80 2819 88 968 18.18 6.42 22.88 8.08

ARMADILLO2-C 160 160 80 x 160 80 5406 320 320 25.00 10.00 8.55 3.42

ARMADILLO2-C 160 160 80 x 160 80 7492 80 80 100.00 40.00 17.82 7.13

SHA-1 [29] 160 160 512 x 160 80 5527 344 344 148.84 27.91 48.72 9.14

PHOTON-160/36/36 160 160 36 36 124* 80 1396 1332 6660 2.70 1.03 13.87 5.28

PHOTON-160/36/36 160 160 36 36 124* 80 2117 180 900 20 7.62 44.64 17.01

112-bit collision resistance

S-QUARK 256 224 32 32 224 112 2296 1024 8192 3.13 0.85 5.93 1.62

S-QUARK 256 224 32 32 224 112 4640 64 512 50.00 13.64 23.22 6.33

PHOTON-224/32/32 224 224 32 32 192* 112 1736 1716 12012 1.86 0.56 6.19 1.86

PHOTON-224/32/32 224 224 32 32 192* 112 2786 204 1428 15.69 4.71 20.21 6.06

128-bit collision resistance

ARMADILLO2-E 256 256 128 x 256 128 8653 512 512 25.00 9.38 3.34 1.25

ARMADILLO2-E 256 256 128 x 256 128 11914 128 128 100.00 37.50 7.05 2.64

SHA-2 [18] 256 256 512 x 256 128 10868 1128 1128 45.39 8.51 3.84 0.72

PHOTON-256/32/32 256 256 32 32 224* 128 2177 996 7968 3.21 0.88 6.78 1.85

PHOTON-256/32/32 256 256 32 32 224* 128 4362 156 1248 20.51 5.59 10.78 2.94

The PHOTON Family of Lightweight Hash Functions 237

Table 3. Software performances in cycles per byte of the PHOTON variants for long
messages

PHOTON-80/20/16 PHOTON-128/16/16 PHOTON-160/36/36 PHOTON-224/32/32 PHOTON-256/32/32

95 c/B 156 c/B 116 c/B 227 c/B 157 c/B

4.4 Software Implementation

We give in Table 3 our software implementation performances for the PHOTON
variants. The processor used for the benchmarks is an Intel(R) Core(TM) i7 CPU
Q 720 clocked at 1.60GHz. For comparison purposes, we also benchmarked the
speed of an AES permutation (without the key schedule) and a modified version
of it with a serially computable MDS matrix instead (the 4 × 4 matrix A given
in Section 2.2). As expected, the table-based implementations reach the same
speed for both versions. We also benchmarked other lightweight hash function
designs. QUARK reference code, very likely to be optimizable, runs at 8k, 30k
and 22k cycles per byte for U-QUARK, D-QUARK and S-QUARK, respectively. The
optimized PRESENT code runs at 90 cycles per byte, hence the estimate speed for
DM-PRESENT-80, DM-PRESENT-128 and H-PRESENT-128 are 72, 45 and 90 cycles
per byte, respectively.

5 Conclusion

We proposed PHOTON, the most lightweight hash-function family known so far,
very close to the theoretical optimum. Our proposal is based on the well known
AES design strategy, but we introduced a new mixing layer building method
that perfectly fits small area scenarios. This allows us to directly leverage the
extensive work done on AES and AES-like hash functions so as to provide good
confidence in the security of our scheme. Due to page restrictions we refer to
an extended version of this paper [1] for a detailed security analysis of PHOTON.
Finally, PHOTON is not only the smallest hash function, but it also achieves excel-
lent area/throughput trade-offs and we obtained very acceptable performances
with simple software implementations.

Acknowledgement. The authors would like to thank the anonymous referees
for their helpful comments. Also, we are very grateful to Dag Arne Osvik and
AlpCode for providing an optimized Boolean representation of the PRESENT Sbox,
to Jean-Philippe Aumasson for providing his cube testers source code and to
Christina Boura for her help with zero-sum distinguishers.

References

1. The PHOTON Family of Lightweight Hash Functions,
http://sites.google.com/site/photonhashfunction/

2. Andreeva, E., Mennink, B., Preneel, B.: The Parazoa Family: Generalizing the
Sponge Hash Functions. Cryptology ePrint Archive, Report 2011/028 028 (2011)

http://sites.google.com/site/photonhashfunction/

238 J. Guo, T. Peyrin, and A. Poschmann

3. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Pro-
tocol. In: PerCom Workshops, pp. 110–114. IEEE Computer Society, Los Alamitos
(2005)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt
Hash Workshop 2007 (May 2007)

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of
the Sponge Construction. In: Paterson [30], pp. 181–197 (2011)

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak specifications. Submis-
sion to NIST (2009) (Round 2)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-Based Pseudo-
Random Number Generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed
sponge construction. In: Leander, G., Thomsen, S. (eds.) SKEW (2011)

9. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

10. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

11. Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.: Cryptanalysis of AR-
MADILLO2. Cryptology ePrint Archive, Report 2011/160 (2011)

12. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational Algebra
and Number Theory, Londan (1993)

13. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
14. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A

Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

15. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar,
B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005), The HDL specification is available at the author’s official webpage
http://faculty.nps.edu/drcanrig/pub/index.html

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

17. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [13],
pp. 416–427 (1989)

18. Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in
RFID Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)

19. Good, T., Benaissa, M.: ASIC Hardware Performance. In: Robshaw, M.J.B.,
Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 267–293.
Springer, Heidelberg (2008)

20. Henrici, D., Götze, J., Müller, P.: A Hash-based Pseudonymization Infrastructure
for RFID Systems. In: SecPerU, pp. 22–27. IEEE Computer Society, Los Alamitos
(2006)

21. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

http://faculty.nps.edu/drcanrig/pub/index.html

The PHOTON Family of Lightweight Hash Functions 239

22. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup [33], pp. 293–308 (2005)

23. Lee, S.-M., Hwang, Y.J., Lee, D.H., Lim, J.I.: Efficient Authentication for Low-
Cost RFID Systems. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee,
H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp.
619–627. Springer, Heidelberg (2005)

24. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [13], pp. 428–446
(1989)

25. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of the AES. In: Paterson [30]

26. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

27. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002), http://csrc.nist.gov

28. National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a NewCryptographic Hash Algorithm
(SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (Oc-
tober 17, 2008)

29. O’Neill, M.: Low-Cost SHA-1 Hash Function Architecture for RFID Tags. In: Do-
minikus, S., Aigner, M. (eds.) RFIDSec (2008),
http://events.iaik.tugraz.at/RFIDSec08/Papers/

30. Paterson, K.G. (ed.): EUROCRYPT 2011. LNCS, vol. 6632. Springer, Heidelberg
(2011)

31. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression
Functions and Block Cipher-Based Hash Functions. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

32. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementa-
tions for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Hei-
delberg (2008)

33. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
34. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part

Number: UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology:
0.18μm (July 2004)

35. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup [33],
pp. 17–36 (2005)

36. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

37. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup
[33], pp. 1–16 (2005)

38. Zhilyaev, S.: Evaluating a new MAC for current and next generation RFID.
Master’s thesis, University of Massachusetts Amherst (2010),
http://scholarworks.umass.edu/cgi/

viewcontent.cgi?article=1477&context=theses

http://csrc.nist.gov
http://csrc.nist.gov
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://events.iaik.tugraz.at/RFIDSec08/Papers/
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1477\&context=theses
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1477&context=theses

Perfectly-Secure Multiplication for Any t < n/3

Gilad Asharov1,�, Yehuda Lindell1,�, and Tal Rabin2

1 Bar-Ilan University
asharog@cs.biu.ac.il, lindell@biu.ac.il

2 IBM T.J. Watson Research
talr@us.ibm.com

Abstract. In the setting of secure multiparty computation, a set of n
parties with private inputs wish to jointly compute some functionality
of their inputs. One of the most fundamental results of information-
theoretically secure computation was presented by Ben-Or, Goldwasser
and Wigderson (BGW) in 1988. They demonstrated that any n-party
functionality can be computed with perfect security, in the private chan-
nels model. The most technically challenging part of this result is a
protocol for multiplying two shared values, with perfect security in the
presence of up to t < n/3 malicious adversaries.

In this paper we provide a full specification of the BGW perfect mul-
tiplication protocol and prove its security. This includes one new step for
the perfect multiplication protocol in the case of n/4 ≤ t < n/3. As in the
original BGW protocol, this protocol works whenever the parties hold
univariate (Shamir) shares of the input values. In addition, we present a
new multiplication protocol that utilizes bivariate secret sharing in order
to achieve higher efficiency while maintaining a round complexity that
is constant per multiplication. Both of our protocols are presented with
full proofs of security.

1 Introduction

The groundbreaking BGW protocol [4] for perfectly-secure multiparty compu-
tation appeared over 20 years ago and has had a huge impact on our field; the
importance of the result coupled with its elegant and ingenious techniques are
the source of this great following. The BGW protocol enables a set of parties
P1, . . . , Pn to compute any functionality of their inputs while preserving security
in the presence of up to t < n/3 malicious parties. The protocol is comprised
of a few components; a method for verifiable secret sharing (VSS), a protocol
for adding two secrets that are in shared form and a protocol for multiplying
two secrets given in shared form. Despite its importance and the fact that over
a thousand papers have built upon it, a full proof of its correctness has never
appeared. In [1] we rectify this situation and present a proof of the BGW pro-
tocol, together with a new more efficient multiplication protocol presented here.
In addition, we provide a full specification of the protocol. This includes a new
� Supported by the European Research Council as part of the ERC project LAST.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 240–258, 2011.
c© International Association for Cryptologic Research 2011

Perfectly-Secure Multiplication for Any t < n/3 241

step that is needed for the case of n/4 ≤ t < n/3. In this extended abstract we
focus on the question of perfect multiplication, including the new step needed
for the BGW protocol and our new more efficient protocol.

BGW Perfect Multiplication. The aim of the BGW multiplication protocol
is to have a set of parties compute a sharing of the product a·b, given a sharing
of the individual values a and b.1 Let a1, . . . , an denote the parties’ shares of a,
and let b1, . . . , bn denote their shares of b. The protocol works according to the
following steps:

1. Each party Pi shares its shares ai and bi with all other parties. This is carried
out in a way (using error correcting codes) that prevents a corrupted Pi from
sharing a value a′i �= ai or b′i �= bi.

2. Next, each Pi needs to distribute shares of the product of its shares ai ·bi

as follows. We focus on a fixed party Pi, and let A(x) and B(x) be the
respective polynomials for the sharing of ai and bi from the previous step.
(a) Party Pi computes polynomials D1, . . . , Dt so that C(x) = A(x) ·B(x)−∑t

�=1 x� ·D�(x) is a degree-t polynomial with free coefficient ai·bi. Note
that since each polynomial D� is multiplied by x�, we have that the free
coefficient of C(x) is always ai· bi (i.e., A(0) ·B(0)). As shown in BGW,
Pi can choose the polynomials D1, . . . , Dt in a special way so as to cancel
out all coefficients of degree higher than t, and to ensure that C(x) is of
degree-t exactly. We stress that if Pi uses “incorrect” polynomials, then
C(x) may be of degree higher than t.

(b) Party Pi verifiably shares the polynomials D1, . . . , Dt with all parties.
(c) Each party computes its share of C(x) based on its shares of ai, bi and

the polynomials D1, . . . , Dt.
(d) At this point, it is guaranteed that the parties hold shares of a polynomial

with free coefficient ai·bi (as described in Step 2a above) and it remains
to verify that these shares define a polynomial of degree t (and not a
higher degree).

3. Once the above is completed for all Pi we have that all parties hold valid
shares of all share products a1·b1, . . . , an·bn. Given these subshares, it suffices
for each party to carry out a local linear computation [14] with the result
being that they obtain valid shares of a·b, as required.

Verifying the Degree of the Polynomial. We examine how to carry out
Step 2d above, that is, how to verify that the shares held by the parties define
a degree-t polynomial rather than a polynomial of higher degree.

First we need to touch on a subtle point which is the source of the challenge of
realizing the verification step. The question is what we mean when we say that
the shares of the honest parties should define a polynomial of degree t (or less)?
There is a clear distinction between two cases. The first is that given the set of
2t+1 shares held by the honest parties, we wish to ensure that their shares all lie
1 There are actually some subtleties in formally defining the multiplication functional-

ity since the adversary can determine some of the points that the sharing polynomial
goes through. Nevertheless, this is the basic idea.

242 G. Asharov, Y. Lindell, and T. Rabin

on the same degree-t polynomial. If they do not, then we are willing to modify
up to t of the honest parties’ shares to achieve this goal. This is what typically
happens in the verification step of VSS protocols; the dealer modifies the shares
that it originally gave to some of the parties by broadcasting new shares. The
second interpretation is that we need to verify that all of the 2t + 1 shares held
by the honest parties at the onset lie on a single degree-t polynomial. If not, then
they should be notified of this fact, and should not change their shares. This is
the cause of some difficulty as it requires a mechanism to distinguish between
honest and corrupt parties; in particular, to distinguish between a corrupt party
who lies about its share and an honest party who has an incorrect share.

In the BGW multiplication step we are in the second case. The shares that
the honest parties hold have been created via the computation in Step 2c. The
correctness of the computation requires that the constant term of the polynomial
defined by the honest parties’ shares be ai·bi. However, a corrupted Pi who does
not share the D�’s in an appropriate manner can cause the resulting polynomial
C(x) to be of degree higher than t. In this case, there are at least two subsets of
honest parties of size t + 1 such that the polynomials f(x) and f ′(x) defined by
their shares have different free coefficients. Thus at least one is not equal to ai ·bi.

We conclude that in order to carry out the verification required in the multi-
plication, we cannot use the verification strategy offered by known VSS protocols
(in particular the one in BGW). This is because their strategy just guarantees
that all parties output shares on a polynomial defined by some subset of t+1 of
the honest parties’ shares. Furthermore, any verification technique that provides
only this guarantee cannot be used.

Therefore, a new verification protocol is needed that guarantees that the
polynomial C(x) is of degree-t without changing the value of the free coefficient
of C(x), i.e. by not changing the shares of the honest parties. Conceptually, this
can be achieved by constructing a protocol that enables honest parties to prove
that their share is incorrect, and by that prove that Pi has cheated. We stress
that the VSS methodology does not achieve this property since in the case of
inconsistencies the parties cannot know if the dealer or another party is cheating.

Our Results. In this paper, we focus on perfect multiplication in the presence
of up to t < n/3 malicious parties. We present two methods for carrying out
the verification, along with a complete specification and proof of security of the
resulting multiplication protocols. The first protocol works whenever the parties
have univariate Shamir shares [19] of the input values. Thus, it does not depend
on any specific properties of the VSS method used to initially share the values.
Furthermore, it is close in flavor to the original protocol of BGW. The second
protocol that we present utilizes the additional information given in a bivari-
ate polynomial sharing (as used in the verifiable secret sharing of BGW and
Feldman [4,12]) in order to significantly improve the efficiency of each multipli-
cation, while preserving a constant round complexity for a single multiplication.
For example, we can completely eliminate the first step of the BGW multiplica-
tion protocol, which is to share the shares ai and bi. In addition to being more
efficient, our resulting multiplication protocol is also significantly simpler. The

Perfectly-Secure Multiplication for Any t < n/3 243

communication complexity of our protocol in the worst case (i.e., when some
parties behave maliciously) is O(n5) field elements over point-to-point channels
and O(n4) field elements over a broadcast channel. This is in contrast to the
first protocol (the original BGW protocol) which has worst-case communica-
tion complexity of O(n6) field elements over point-to-point channels and O(n6)
field elements over a broadcast channel. We remark that in the case that no
parties actually cheat, both of the protocols have communication complexity of
only O(n4) field elements over point-to-point channels, and require no message
broadcasts at all.

In summary, our two protocols are incomparable. The first protocol is less
efficient but works with any VSS of Shamir shares, and not necessarily with
VSS that is based on bivariate techniques. The second protocol is simpler and
more efficient but works only when the parties also have additional information
on the shares that is a byproduct of the bivariate-based VSS protocol.

An additional important contribution of this paper is that we provide full
proofs of security of all of our protocols and subprotocols, under the standard
definitions of security following the ideal/real model paradigm [5,11]. This in-
cludes the non-trivial definition of the ideal multiplication functionality and
other subfunctionalities used. The full proof of the protocols in this paper to-
gether with a full proof of the entire BGW protocol (including the semi-honest
case, the VSS protocol and more) appears in [1].

We also consider our work as addressing the question whether or not it is
possible to construct protocols with round and communication complexity that
are both low. Our second protocol takes the first step by reducing the communi-
cation complexity of BGW and [8] while maintaining constant round complexity
per multiplication.

Concurrent Composition and Adaptive Security. Both of our protocols
achieve perfect security, as in the original work of BGW. We stress that perfect
security is not just a question of aesthetics, but rather provides a substantive
advantage over protocols that are only proven statistically secure. First, in [18] it
is shown that if a protocol is perfectly secure in the stand-alone setting and has a
black-box straight-line simulator, then it is also secure under concurrent general
composition, or equivalently, universal composition [6]. Second, it was shown
in [7] that any protocol that is perfectly secure in the presence of malicious
static adversaries under the definition of security of [10], is also secure in the
presence of malicious adaptive corruptions. The additional requirements of the
definition of [10] clearly hold for all BGW protocols and subprotocols. Thus, we
obtain both adaptive security and universal composition for free.

Related Work. We compare our second protocol to those in the existing litera-
ture. The only other protocol for perfectly-secure multiplication for any t < n/3
that is constant round (and in particular does not depend on the number of
participating parties) is that of Cramer et al. [8]. This protocol works in a
different way to the BGW protocol, and has worst-case communication com-
plexity of O(n5) field elements over point-to-point channels and O(n5) field ele-
ments over a broadcast channel, in contrast to O(n4) broadcasts in our protocol.

244 G. Asharov, Y. Lindell, and T. Rabin

Furthermore, in the case that no parties actually cheat, the cost of [8] is O(n4)
field elements over point-to-point channels and O(n3) field elements over a broad-
cast channel, in contrast to O(n4) field elements over point-to-point channels
(and no broadcast) in our protocol.

There has been a considerable amount of work focused on improving the com-
munication complexity of information-theoretic protocols using the player elimi-
nation technique [15,16,2,17,9,3]. This work culminated in linear communication
complexity in [3], providing highly efficient protocols for achieving perfect secure
computation. However, all of these works have round complexity that depends
on the number of participating parties, and not just on the depth of the circuit
being computed. This is inherent in the player elimination technique since every
time cheating is detected, two players are eliminated and some computations
are repeated by the remaining parties. Thus, this technique yields protocols that
have round complexity of at least Ω(t). We remark that the round complexity of
these protocol are actually higher; e.g., the round complexity of [15] is O(d+n2)
where d is the depth of the circuit. Although in many cases player elimination
would give a more efficient protocol, there are some cases where it would not;
for example, when a low-depth circuit is computed by many parties. In addition,
from a theoretical perspective the question of low round and communication
complexity is an important one. These protocols are therefore incomparable.

2 Preliminaries and Tools

In this paper we will refer to a few functionalities which are described formally
in the full version [1]. Here we give a brief description of these functionalities.

We use the following VSS functionality FV SS . The dealer inputs a polynomial
f(x) of degree t, and the parties receive shares of that polynomial; i.e., party
Pi receives f(αi) where α1, . . . , αn are fixed elements in the finite field. The
“verifiable” part is that if f is of degree greater than t, then the parties reject
the dealer’s shares and output ⊥. Observe that the secret s = f(0) is only
implicitly defined in the functionality; it is however well defined.

The second functionality which we need is for sub-sharing of shares, denoted
F subshare

V SS . Informally speaking, the F subshare
V SS functionality is a way for a set

of parties to verifiably give out shares of values that are themselves shares.
Specifically, assume that the parties P1, . . . , Pn hold values f(α1), . . . , f(αn),
respectively, where f is a degree-t polynomial.2 The goal is for each party to
share its share f(αi) with all other parties while ensuring that a malicious Pi

shares its correct f(αi) and not something else. The protocol for achieving this
sub-sharing is highly non trivial, and involves n invocations of VSS plus the
2 If not all of the points lie on a single degree-t polynomial, then no security guarantees

are obtained. Formally, this is achieved by defining that in this case the function-
ality sends the inputs of the honest parties to the corrupted parties, and sets the
output of the honest parties to be whatever the adversary desires. In this way, any
protocol is secure in this “bad case”. From now on we just ignore this case, since our
functionalities are used only when this property is fulfilled.

Perfectly-Secure Multiplication for Any t < n/3 245

transmission of O(n3) field elements over private channels. A full discussion of
the complexity and the solution from BGW appear in the full version.

We denote by I ⊂ [n] the indices of the (up to t) corrupted parties.

3 Verifying That a Shared Polynomial is of Degree t

As discussed in the introduction, in order to complete the BGW multiplication
protocol we need a subprotocol that enables the parties to verify that the shares
held by all the honest parties for C(x), as computed in Step 2a of the BGW
perfect multiplication described above, lie on the same degree-t polynomial. That
is, the parties all hold shares of A(x), B(x), D1(x), . . . , Dt(x) and they wish
to verify that their shares of A(x) · B(x) − ∑t

�=1 x� · D�(x) define a degree-
t polynomial. In this section we show how to do this; the full multiplication
protocol using this verification step appears in [1].

We carry out this verification step by first having the dealer share the poly-
nomial C′(x) = C(x) using FV SS , and then having each party Pj verify that
C′(αj) = C(αj) (where C′(αj) is its output from FV SS and C(αj) is the re-
sult of its computation based on its shares of A(x), B(x) and D1(x), . . . , Dt(x)).
If equality does not hold then the party complains. As we have explained, we
cannot have the dealer change the share of a complaining party, but rather the
party needs to “prove” that its share does not lie on the polynomial. This is
achieved by having the parties run a subprotocol to check whether or not the
complaint is legitimate. Note that the parties all hold shares of C′(x) and C(x)
so in principle there is enough information to verify a complaint. However, care
must be taken not to reveal more information than allowed, in case the com-
plaint is false. If there is a legitimate complaint against the dealer then the
computation halts. Otherwise, we are guaranteed that the degree-t polynomial
C′(x) shared using FV SS agrees with the computed polynomial C(x) on at least
2t + 1 honest parties’ shares. Since C(x) is of degree at most 2t (recall that
C(x) = A(x) ·B(x) − ∑t

�=1 x
� ·D�(x) where every D�(x) is guaranteed to be of

degree at most t since it was shared using FV SS), this implies that C(x) = C′(x)
and so it is actually of degree-t, with the desired free coefficient.

3.1 The Verification Protocol

The verification procedure is defined formally in Functionality 1.
We stress that C′(x) was already shared using FV SS and so is guaranteed to be

of degree-t. Thus, the aim of the parties is to verify that the shared C′(x) equals
A(x) ·B(x)−∑t

�=1 x
� ·D�(x). We also remark that the adversary always receives

the corrupted parties’ shares as part of the output, and receives all of the shares
in the case that the honest parties’ output is 0. The fact that the adversary
always receives the corrupted parties’ shares makes no difference since it already
knows these shares in any setting where this functionality is used. However, this
is needed for technical reasons in order to prove the security of our protocol
(according to simulation-based definitions). Furthermore, the fact that it learns
everything if the output is 0 makes no difference because when the shares of

246 G. Asharov, Y. Lindell, and T. Rabin

FUNCTIONALITY 1. (The Fvrfy functionality)

1. Fvrfy receives the shares {βA
j , βB

j , βD1
j , . . . , βDt

j , βC′
j }j /∈I of honest parties.

2. Let A, B,D1, . . . , Dt and C′ be the polynomials that are defined
from the shares βA

j , βB
j , βD1

j , . . . , βDt
j , and βC′

j , respectively; this as-
sumes that the polynomials A,B, D1, . . . , Dt, C

′ are all of degree-t (see
Footnote 2). Functionality Fvrfy sends the corrupted parties’ shares
{A(αi), B(αi), D1(αi), . . . , Dt(αi), C

′(αi)}i∈I to the adversary.
3. If C′(x) = A(x) · B(x) − ∑t

�=1 x� · D�(x) then Fvrfy sends 1 to every
party for output, otherwise it sends 0 to every party for output and sends
A(x),B(x), D1(x), . . . , Dt(x), C′(x) to the adversary.

A,B,D1, . . . , Dt, C
′ are all dealt by an honest party this case never happens,

and when they are dealt by a corrupted party then the adversary already knows
all the shares anyway.

The Protocol. The protocol is very simple. Each party Pj locally computes
βA

j · βB
j − ∑t

�=1(αj)� · βD�
j and complains if the result does not equal βC′

j . In
such a case, all parties use F j

eval described in Section 3.2 below to publicly
reconstruct all the input shares of the complainant, without exposing the shares
of the other participating parties. This enables all parties to determine whether
or not the complaint was legitimate. We stress that public reconstruction does
not reveal anything since if the complaint is legitimate and so the output is 0,
everything is anyway allowed to be revealed to the adversary. Furthermore, if
the complaint is not legitimate then the complainant is corrupt and all that is
revealed are a corrupted party’s shares. See Protocol 2 for full details.

PROTOCOL 2. (Securely computing Fvrfy in the F j
eval-hybrid model)

– Inputs: Each party Pi holds shares βA
i , βB

i , βD1
i , . . . , βDt

i , βC′
i , all on the

degree-t polynomials A, B, D1, . . . , Dt, C
′ (resp).

– The protocol:
1. Each party Pi computes β′ = βA

i · βB
i −

∑t
�=1(αi)

� · βD�
i .

If β′ �= βC′
i , then Pi broadcasts (complaint, i).

2. For every party Pj that broadcast (complaint, j) do the following:
(a) Run t + 3 invocations of F j

eval: Each party Pi inputs

βA
i , βB

i , βD1
i , . . . , βDt

i , βC′
i , respectively, in each of the invocations.

(b) Let β̃A
j , β̃B

j , β̃D1
j , . . . , β̃Dt

j and β̃C′
j be the respective outputs from

the invocations.
(c) If β̃C′

j �= β̃A
j · β̃B

j −
∑t

�=1(αj)
� · β̃D�

j , then output 0 and halt.

3. If the output was not already determined to be 0 then output 1.

Theorem 3. Let t < n/3. Then, Protocol 2 t-securely computes the Fvrfy func-
tionality in the F j

eval-hybrid model, in the presence of a static malicious
adversary.

Perfectly-Secure Multiplication for Any t < n/3 247

The proof of this theorem is implicit in [1] (in the proof of security of the Fmult
V SS

functionality).

3.2 Complaint Verification – The F j
eval Functionality

When an honest party Pj complains, this implies that C′(αj) �= A(αj) ·B(αj)−∑t
�=1(αj)� · D�(αj). In order to verify whether this is a legitimate complaint

we need to reconstruct all the input shares of Pj , i.e. βA
j , βB

j , βD1
j , . . . , βDt

j , βC′
j ,

without revealing anything else. Note, that each such value can be calculated
from the values of the honest parties as they all define a polynomial of degree
t. Thus, using this information we can “extract” the values of the complaining
party. However, this must be done without revealing anything but the com-
plainants shares. We begin by formally defining the functionality; the function-
ality is parameterized by an index j that determines which party’s share is to be
revealed; equivalently, at which point the shared polynomial is to be evaluated.

FUNCTIONALITY 4. (The F j
eval functionality)

1. The F j
eval functionality receives the inputs of the honest parties {βi}i/∈I .

Let f(x) be the unique degree-t polynomial determined by the points
{(αi, βi)}i/∈I . (If not all the points lie on a single degree-t polynomial,
then no security guarantees are obtained. See Footnote 2.)

2. The functionality F j
eval sends the output pair (f(αi), f(αj)) to every party

Pi (i = 1, . . . , n).

We remark that although each party Pi already holds f(αi) as part of its
input, we need the output to include it in order to simulate in the case that a
corrupted party has incorrect input. This will not make a difference in its use,
since f(αi) is supposed to be known to Pi.

In this paper we provide two methods for computing F j
eval that are depen-

dent on the specific implementation that we use for the secret sharing. In the
following we describe the first implementation that uses univariate polynomials.
The second solution uses bivariate sharing and will be given in Section 4.

Background. The parties’ inputs are a (row) vector �β
def= (β1, . . . , βn) where

for every i it holds that βi = f(αi). Thus, the parties’ inputs are computed by
�β = Vα · �f , where Vα is the n × (t + 1) Vandermonde matrix with α1, . . . , αn

and �f is the length t + 1 (column) vector of coefficients of the polynomial f(x).
Let �αj = (1, αj , (αj)2, . . . , (αj)t) be the jth row of Vα. Then the output of the
functionality is f(αj) = �αj · �f . We have:

�αj · �f = �αj ·
(
V −1

α · Vα

) · �f =
(
�αj · V −1

α

) · (Vα · �f
)

=
(
�αj · V −1

α

) · �β
where V −1

α is the left inverse of Vα, of degree (t + 1) × n. Thus, there exists a
vector of constants (�αj · V −1

α) so that the inner product of this vector and the
inputs yields the desired result. In other words, F j

eval is just a linear function of
the parties’ inputs.

248 G. Asharov, Y. Lindell, and T. Rabin

The Protocol. Since F j
eval is simply a linear function of the parties’ inputs, it

can be computed by each party sharing its share and then locally computing
the function on the subshares. The result is that each party Pi holds a share
δi of a polynomial whose free coefficient is the result f(αj). Thus, the parties
can now simply send their δi shares to each other and reconstruct the resulting
polynomial. This suffices for the semi-honest case. However, malicious parties
may send incorrect shares and try to cheat. In order to prevent them from
doing this, the F subshare

V SS functionality is used in order to share the shares; see
Section 2. Then, the reconstruction in the last stage is carried out using Reed-
Solomon decoding to correct any bad values sent by the malicious parties. This
ensures that t < n/3 malicious parties cannot affect the result. See Protocol 5
for the full description.

PROTOCOL 5. (Computing F j
eval in the F subshare

V SS -hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αi, βi)
for every honest Pi all lie on a single degree-t polynomial f (see the defi-
nition of F j

eval above and Footnote 2)

• The protocol:
1. The parties invoke the F subshare

V SS functionality with each party Pi using
βi = f(αi) as its private input.

2. At the end of this stage, each party Pi holds g1(αi), . . . , gn(αi), where
all the gi(x) are of degree t, and for every i, gi(0) = βi.

3. Each party Pi locally computes: H(αi) =
∑n

�=1 γ� · g�(αi), where
(γ1, . . . , γn) = �αj · V −1

α . Each party Pi sends H(αi) to every other
party.

4. Upon receiving (Ĥ(α1), . . . , Ĥ(αn)), each party runs the Reed-
Solomon decoding procedure and receives (H(α1), . . . , H(αn)). It then
reconstructs H(x) and computes H(0).

5. Each party Pi outputs (βi, H(0)).

Theorem 6. Let t < n/3. Then, Protocol 5 t-securely computes the F j
eval func-

tionality in the F subshare
V SS -hybrid model, in the presence of a static malicious

adversary.

The motivation behind the security of the protocol appears above, and a full
proof of Theorem 6 appears in [1].

4 Efficient Multiplication Using Bivariate VSS

We present a new BGW-based protocol that is more efficient than the original
BGW protocol. In a nutshell, this protocol uses the bivariate structure intro-
duced by BGW for the purpose of VSS throughout the entire multiplication
protocol. Hirt et al. [15] also observed that the use of the bivariate polynomial

Perfectly-Secure Multiplication for Any t < n/3 249

can offer efficiency improvements; however they do not utilize this to the fullest
extent possible. In this section we will show how this approach enables us to
completely avoid the use of F subshare

V SS and compute the other subprotocols for
the multiplication procedure more efficiently. As we have discussed in Section 2,
F subshare

V SS is expensive and so this is a significant improvement.
Recall that the original BGW multiplication protocol follows the invariant

that each wire in the circuit is hidden by a random univariate polynomial f(x)
of degree-t, and the share of each party is a point (αi, f(αi)). Multiplication then
works as follows:

1. Subsharing – F subshare
V SS : Given shares a1, . . . , an and b1, . . . , bn of values a

and b, each party shares its shares to all other parties. This step is carried
out using F subshare

V SS , as described above.
2. Multiplication of subshares – Fmult

V SS : Each party Pi plays the role of dealer in
a protocol for which the result is that all parties hold shares (with threshold
t) of the product ai·bi of its initial shares ai and bi. This step uses the fact
that all parties hold subshares of ai, bi as carried out in the previous section.

3. Linear combination: As described in [14], once the parties all hold shares of
a1·b1, . . . , an·bn, they can each carry out a local linear combination of their
shares, with the result being that they hold shares c1, . . . , cn of a·b.

In our proposed protocol, we have an analogous invariant (as in [15]): each wire
in the circuit is hidden by a (random) bivariate polynomial F (x, y) of degree-t
in both variables. As a result, the share of each party is the pair of degree-t
polynomials (F (x, αi), F (αi, y)). We note that in the BGW protocol the VSS
sharing is carried out using a bivariate polynomial; however after the initial
sharing the parties resort back to the shares of a univariate polynomial, by setting
their shares for further computations to F (αi, 0). In contrast, we will preserve
the shares of the bivariate but at times will also use univariate polynomials.

In the full version of this paper [1] we define the functionalities required, in-
cluding a redefinition of the VSS protocol of BGW where the output includes
the bivariate shares. In addition, we show how to reconstruct and add shared
secrets in this format, and provide the full details of the multiplication protocol
and its proof. In what follows we focus on our new protocols and techniques.
First, we will explain why the first step of computing F subshare

V SS is not needed
when bivariate shares are maintained. Next, we describe a functionality that en-
ables the conversion (or extension) of a univariate polynomial secret sharing into
a bivariate secret sharing. We then use a combination of the above to securely
compute the bivariate analogue of the complaint verification functionality F j

eval

(see Section 3.2). Finally, we use all of the above to construct a simpler and more
efficient version of Fmult

V SS .
From here on, we assume that there are two secrets a and b that were shared

amongst the parties, and we denote by FA(x, y) and FB(x, y) the bivariate poly-
nomials that hide a and b, respectively. The shares of party Pi are defined to be
the pairs of univariate polynomials FA(x, αi), FA(αi, y) and FB(x, αi), FB(αi, y),
respectively.

250 G. Asharov, Y. Lindell, and T. Rabin

4.1 F subshare
V SS for Free

As described above, in order to carry out the “multiplication of subshares” step,
the parties need to each have shares of all the other parties’ univariate shares.
Thus, in the univariate case, the parties first run the F subshare

V SS protocol at the
cost of n executions of VSS plus the transmission of O(n3) field elements. Our
first important observation is that in the bivariate case the subshares of each
share are already distributed among the parties. In order to see this, recall that
each party Pi holds shares FA(x, αi), FA(αi, y). Based on this, we can define
the univariate “Shamir” sharing of a via the polynomial fa(x) def= FA(x, 0) as
in the original BGW protocol; due to the properties of the bivariate sharing,
fa(x) is a univariate polynomial of degree-t that hides a. Furthermore, since
each party Pi holds the polynomial FA(αi, y), it can locally compute its share
ai = FA(αi, 0) = fa(αi) on the univariate polynomial fa(x).

We now claim that for every i, it holds that all the other parties Pj actually
already have univariate shares of ai. These shares of ai are defined via the
polynomial gai(y) = FA(αi, y). This is due to the fact that each Pj holds the
polynomial FA(x, αj) and so can compute aj

i = FA(αi, αj) = gai(αj). Observe
that by the definition of the bivariate polynomial FA(x, y), it holds that gai(y)
is a degree-t univariate polynomial. Furthermore, gai(0) = FA(αi, 0) = ai and
each aj

i = gai(αj). In other words, the values aj
i that are locally computed by

each party Pj are valid univariate shares of ai, which is the univariate share of
Pi in the polynomial fa(x) that hides a. We conclude that all of the subshares
that are computed via the F subshare

V SS functionality in the original BGW protocol
can actually be locally computed by each party using the bivariate shares that
they already obtained in the VSS stage. (Of course, these bivariate shares need
to be maintained throughout the circuit computation phase; we show how this
is achieved below.)

4.2 Transformation from Univariate to Bivariate – F̃extend

As we will show below (in Section 4.3) and as we have seen regarding F subshare
V SS ,

it is possible to utilize the additional information provided by a bivariate secret
sharing in order to obtain higher efficiency. However, some of the intermediate
sharings used in the multiplication protocol are inherently univariate. Thus, we
introduce a new functionality called3 F̃extend that enables a dealer to efficiently
extend shares of a univariate polynomial q(x) of degree-t to a sharing based on
a bivariate polynomial S(x, y) of degree-t in both variables, with the guarantee
that q(x) = S(x, 0). In the functionality definition, the dealer receives the poly-
nomial q(x) that is distributed via the inputs of the honest parties. Although in
any use of the functionality this is already known to the dealer, we need it for
technical reasons in the simulation when the dealer is corrupted. See Function-
ality 7 for a full definition (observe that the dealer has as input the univariate
polynomial q(x) and a bivariate polynomial S(x, y) such that S(x, 0) = q(x)).

3 By convention, we denote bivariate-sharing based functionalities with a tilde.

Perfectly-Secure Multiplication for Any t < n/3 251

FUNCTIONALITY 7. (The Reactive Functionality F̃extend)

1. The F̃extend functionality receives the shares of the honest parties {βj}j /∈I .
Let q(x) be the unique degree-t polynomial determined by the points
{(αj , βj)}j /∈I . (If no such polynomial exists then no security is guaranteed;
see Footnote 2.)

2. In case that the dealer is corrupted, F̃extend sends q(x) to the adversary.

3. F̃extend receives S(x, y) from the dealer. Then, it checks that S(x, y) is of
degree-t in both variables x, y, and S(x, 0) = q(x).

4. If both conditions hold, F̃extend accepts the bivariate polynomial S(x, y),
and sends to each party Pj the pair of polynomials (fj(x), gj(y)) (which
are (S(x,αj), S(αj , y))).

5. If either of the conditions do not hold, F̃extend rejects the bivariate poly-
nomial S(x, y) and sends to each party Pj the value ⊥.

The protocol that implements this functionality is simple and efficient, but
the argument for its security is delicate. The dealer distributes shares of S(x, y),
using the bivariate VSS protocol (securely computing the bivariate VSS func-
tionality F̃V SS ,4 described in the full version [1]). Each party receives shares
S(x, αi), S(αi, y), and checks that S(αi, 0) = q(αi). If not, it broadcasts a com-
plaint. The parties accept the shares of S(x, y) if and only if there are at most
t complaints. A formal description of the protocol appears in the full version.
Before proceeding to describe why this protocol securely computes F̃extend, we
remark that its cost is just a single VSS invocation and at most O(n) broadcasts.

We now give an intuitive argument as to why the protocol securely computes
the functionality. First, assume that the dealer is honest. In this case, the dealer
inputs a degree-t bivariate polynomial that satisfies S(x, 0) = q(x), as required.
The bivariate VSS functionality F̃V SS ensures that the honest parties receive
the correct shares. Now, since the polynomial satisfies the requirement, none of
the honest parties complain. As a result, at most t parties complain, and all the
honest parties accept the new bivariate shares.

The case where the dealer is corrupted is more subtle. At first, it may seem
possible that t honest parties receive inconsistent shares and broadcast a
complaint, while the remaining t + 1 honest parties receive consistent shares
and remain silent (together with all the corrupted parties). In such a case, only
t complaints would be broadcast and so the parties would accept the bivariate
polynomial even though it is not consistent with the inputs of all honest parties.
Fortunately, as we show, such a situation can actually never occur. This is due
to the fact that the F̃V SS functionality ensures that the bivariate polynomial
that is distributed is of degree-t in both variables, and due to the fact that the
inputs of the honest parties lie on a polynomial with degree-t. As we show in the
proof [1], this implies that if there exists a set of t + 1 honest parties for which
the bivariate polynomial agrees with their inputs, then this bivariate polynomial

4 This functionality receives a bivariate polynomial S(x, y) and hands each party Pi

shares S(x, αi), S(αi, y) if and only if S(x, y) is of degree t in both variables.

252 G. Asharov, Y. Lindell, and T. Rabin

must satisfy S(x, 0) = q(x). In other words, we prove that once t + 1 of the
bivariate shares are consistent with the points of t + 1 of the honest parties,
then all of the bivariate shares must be consistent with all of the honest parties’
points.

4.3 Bivariate Complaint Verification – The F̃ k
eval Functionality

In order to deal with complaint verification as discussed in the beginning of
Section 3, we define an analogous functionality to F j

eval in the bivariate setting.
That is, given a sharing of a bivariate polynomial S(x, y) of degree-t in both
variables, the parties wish to evaluate the bivariate polynomial on some point αk,
or equivalently to learn the pair of polynomials S(x, αk), S(αk, y). Here, however,
the implementation of this functionality is much easier than the implementation
of F j

eval in the univariate setting (we use the index k here instead of j since the
bivariate setting requires additional indices). The F̃ k

eval functionality is defined
as follows:

FUNCTIONALITY 8. (The Functionality F̃ k
eval)

1. The F̃ k
eval functionality receives from each honest party Pj the pair of

degree-t polynomials (fj(x), gj(y)), for every j /∈ I . Let S(x, y) be the
single bivariate polynomial with degree-t in both variables that satisfies
S(x, αj) = fj(x), S(αj , y) = gj(y) for every j /∈ I . (If no such S(x, y)
exists, then no security is guaranteed; see Footnote 2).

2. F̃ k
eval sends every party Pi the polynomials (S(x,αk), S(αk, y)).

The protocol computing F̃ k
eval is straightforward and very efficient. Given

input (fi(x), gi(y)) (which under the assumption on the inputs as in Foot-
note 2 equals S(x, αi), S(αi, y)), each party Pi sends fi(αk), gi(αk) (equivalently,
S(αk, αi), S(αi, αk))) to every other party; broadcast is not needed for this. Once
a party holds all the points {S(αj , αk)}j∈[n], it can reconstruct the polynomial
fk(x) = S(x, αk), and likewise gk(y) = S(αk, y) from {S(αk, αj)}j∈[n]. Since
S(x, y) is of degree-t in both variables, the polynomials fk(x) = S(x, αk) and
gk(y) = S(αk, y) are both of degree-t, and thus each party can reconstruct the
polynomials even if the corrupted parties sent incorrect values, by using Reed-
Solomon decoding.

The simplicity and efficiency of this protocol demonstrates the benefits of the
approach of utilizing the bivariate shares throughout the entire multiplication
protocol.

4.4 The F̃ mult
V SS Functionality for Sharing a Product of Shares

As we have described in the Introduction and in the beginning of Section 4, the
main step for achieving secure multiplication is a method for a party Pi to share
the product of its shares ai ·bi, while preventing a corrupted Pi from sharing an

Perfectly-Secure Multiplication for Any t < n/3 253

incorrect value. In the univariate case, the parties use F subshare
V SS to first share

their shares, and then use Fmult
V SS to distribute shares of the product of their

shares. In this section, we revisit the multiplication for the bivariate case. In this
case, the parties hold shares of univariate polynomials that hide a party Pi’s
shares ai, bi, exactly as in the univariate solution with functionality Fmult

V SS . We
stress that in our case these shares are univariate (i.e. points on a polynomial)
and not bivariate shares (i.e. univariate polynomials) since we are referring to
the subshares. Nevertheless, as we have shown, these can be separately extended
to bivariate sharings of ai and bi using F̃extend. Our goal with F̃mult

V SS is for the
parties to obtain a sharing of ai ·bi, by holding shares of a bivariate polynomial
C(x, y) whose constant term is the desired product.

For the sake of clarity and to reduce the number of indices, in this section
we refer to a and b as the shares of Pi (and not the secret), and to aj and bj

the univariate subshares that Pj holds of Pi’s shares a and b. We also write the
functionality and protocol with P1 as the dealer (i.e., the party who has shares
a and b and wishes to share a · b); in the full multiplication, each party plays the
dealer in turn. See Functionality 9 for a specification of this step.

FUNCTIONALITY 9. (The reactive F̃ mult
V SS functionality)

1. The F̃ mult
V SS functionality receives input shares (aj , bj) from every honest

party Pj (j /∈ I).

2. F̃ mult
V SS computes the unique degree-t polynomials A′(x) and B′(x) such

that A′(αj) = aj and B′(αj) = bj for every j /∈ I (if no such A′ or B′

exist, then see Footnote 2).

3. F̃ mult
V SS sends (A′(x), B′(x)) to the dealer P1.

4. F̃ mult
V SS receives a bivariate polynomial C(x, y) from P1, and chooses

C∗(x, y) as follows:

(a) If the input is the special symbol ∗, then F̃ mult
V SS chooses a random

bivariate polynomial C∗(x, y) of degree-t in both variables under the
constraint that C∗(0, 0) = A′(0) · B′(0).

(b) Else, if the input is a bivariate polynomial C such that deg(C) = t in

both variables and C(0, 0) = A′(0) ·B′(0), then F̃ mult
V SS sets C∗ = C.

(c) Otherwise, if either deg(C) > t or C(0, 0) �= A′(0) ·B′(0), then F̃ mult
V SS

sets C∗(x, y) = A′(0) · B′(0) to be the constant polynomial equalling
A′(0) ·B′(0) everywhere.

5. F̃ mult
V SS sends C∗(x, y) to the dealer P1, and sends

(A′(αi), B
′(αi), C

∗(x, αi), C
∗(αi, y)) to Pi for every i = 1, . . . , n.

The special input symbol ∗ is an instruction for the trusted party comput-
ing F̃mult

V SS to choose the polynomial C∗(x, y) determining the output shares
uniformly at random.

We remark that although the dealing party P1 is supposed to already have
A′(x), B′(x) as part of its input, and each party Pi is also supposed to already

254 G. Asharov, Y. Lindell, and T. Rabin

have A′(αi) and B′(αi) as part of its input, this information is provided as output
in order to enable simulation in the case that the corrupted parties use incorrect
inputs.

The Protocol. As in the univariate case, the protocol for implementing this
functionality is based on the BGW method “(II) Verifying that c = a · b”, with
the addition of complaint verification. In addition, here the parties will output
bivariate and not univariate shares.

As described in the Introduction, the dealer chooses the univariate polyno-
mials D1(x), . . . , Dt(x) as instructed in BGW; see the full version for a detailed
description of this. It then distributes them using bivariate polynomials that
hide them. That is, in order to distribute a polynomial Di(x), the dealer selects
a bivariate polynomial Di(x, y) uniformly at random under the constraint that
Di(x, 0) = Di(x), and then shares it using the bivariate VSS functionality F̃V SS .
This ensures that all the polynomials D1(x, 0), . . . , Dt(x, 0) are of degree-t. In
addition, this comes at no additional cost since the BGW VSS protocol any-
way uses bivariate polynomials. At this point, each party holds shares of the
univariate polynomials A(x), B(x), and shares of the t bivariate polynomials
D1(x, y), . . . , Dt(x, y). From the construction (see the brief explanation in the
introduction), the univariate polynomial defined by:

C′(x) = A(x) · B(x) −
t∑

k=1

xk ·Dk(x, 0)

is a random polynomial with free coefficient a · b, and each party Pi can locally
compute its share C′(αi) on this polynomial. However, as in the univariate case, if
the dealer did not choose the polynomials Di(x, y) as instructed, the polynomial
C′(x) may not be of degree-t, and in fact can be any polynomial of degree 2t
(but no more since all the polynomials were shared using VSS and so are of
degree at most t). We must therefore check the degree of C′(x).

At this point, the dealer chooses a random bivariate polynomial C(x, y) of
degree-t in both variables under the constraint that C(x, 0) = C′(x), and shares
it using the bivariate VSS functionality F̃V SS . This guarantees that the parties
hold shares of a degree-t bivariate polynomial C(x, y). If this polynomial satisfies

C(x, 0) = C′(x) = A(x) ·B(x) −
t∑

k=1

xk ·Dk(x, 0)

then C(0, 0) = A(0) · B(0) = a · b, and we are done.
We therefore want to check that indeed C(x, 0) = C′(x). Each party Pi holds

shares of the polynomial C(x, y), and so it holds the univariate polynomials
C(x, αi), C(αi, y). Moreover, it has already computed its share C′(αi). Thus, it
can check that C(αi, 0) = C′(αi). Since C′(x) is of degree at most 2t, and since
C(x, y) is of degree-t, then if this check passes for all of the 2t+1 honest parties,
we are guaranteed that C(x, 0) = C′(x), and so C(0, 0) = a · b. Thus, each party
checks that C(αi, 0) = C′(αi), and if not it broadcasts a complaint. If there are

Perfectly-Secure Multiplication for Any t < n/3 255

more than t complaints, then it is clear that the dealer is corrupted. However, as
in the univariate case, even when there are less than t complaints the dealer can
be corrupted, and so the parties need to unequivocally verify each complaint.

The way the parties verify whether or not a complaint is false is similar to
the univariate case, described in Section 3.1. That is, the parties evaluate each
one of the polynomials D1, . . . , Dt, A,B, and C on the point of the complaining
party. However, this time we use the bivariate evaluation functionality F̃ k

eval

(see Section 4.3) instead of the univariate one F j
eval. Observe that all of the

polynomials D1, . . . , Dt, C are bivariate and of degree-t, and so the bivariate
F̃ k

eval can be used. In contrast, A(x) and B(x) are only univariate polynomials
and so F̃extend (see Section 4.2) is first used in order to distribute bivariate
polynomial A(x, y) and B(x, y) that fit A(x) and B(x), respectively. Following
this, F̃ k

eval can also be used for A(x, y) and B(x, y). Finally, after the parties
receive all of the shares of the complaining party, they can check whether the
complaint is true or false. In case of a true complaint, the parties reconstruct
the original shares and set their output to be a ·b. See Protocol 11 for a full
specification.

We have the following theorem, that is proven in the full version.

Theorem 10. Let t < n/3. Then, Protocol 11 t-securely computes the F̃mult
V SS

functionality in the (F̃V SS , F̃
k
eval, F̃extend)-hybrid model, in the presence of a

static malicious adversary.

PROTOCOL 11. (Securely computing F̃ mult
V SS)

• Inputs: The dealer P1 holds degree-t polynomials A(x) and B(x). Each
party Pi holds a pair of shares ai and bi such that ai = A(αi) and bi = B(αi).

• The protocol:
1. Dealing phase:

(a) The dealer P1 defines the degree-2t polynomial D(x) = A(x) ·B(x);
denote D(x) = a · b +

∑2t
k=1 dk · xk.

(b) P1 chooses t2 values {rk,j} uniformly and independently at random
from F, where k = 1, . . . , t, and j = 0, . . . , t − 1. For every k =
1, . . . , t, the dealer defines the polynomial Dk(x):

Dk(x) =
t−1∑
�=0

rk,� · x� +

⎛⎝dk+t −
t∑

j=k+1

rj,t+k−j

⎞⎠ · xt.

(c) P1 computes the polynomial:

C′(x) = D(x)−
t∑

k=1

xk ·Dk(x).

(d) P1 chooses t random degree-t bivariate polynomials D1(x, y),
. . . , Dt(x, y) under the constraint that Dk(x, 0) = Dk(x) for every
k = 1, . . . , t. In addition, it chooses a random bivariate polynomial
C(x, y) of degree-t under the constraint that C(x, 0) = C′(x).

(e) P1 invokes the F̃V SS functionality as dealer with the following inputs
C(x, y), and Dk(x, y) for every k = 1, . . . , t.

256 G. Asharov, Y. Lindell, and T. Rabin

Protocol for securely computing F̃ mult
V SS (continued):

2. Each party Pi works as follows:
(a) If any of the shares it receives from F̃V SS equal ⊥ then Pi proceeds

to the reject phase.

(b) Pi computes c′(i)
def
= ai ·bi−∑t

k=1(αi)
k ·Dk(αi, 0). If C(αi, 0) �= c′(i),

then Pi broadcasts (complaint, i); note that C(αi, y) is part of Pi’s

output from F̃V SS with C(x, y).
(c) If any party Pj broadcast (complaint, j) then go to the complaint res-

olution phase.

3. Complaint resolution phase:

(a) P1 chooses two random bivariate polynomials A(x, y), B(x, y) of de-
gree t under the constraint that A(x, 0) = A(x) and B(x, 0) = B(x).

(b) The parties invoke the F̃extend functionality twice, where P1 inserts
A(x, y), B(x, y) and each party inserts ai, bi. If any one of the outputs
is ⊥ (in which case all parties receive ⊥), Pi proceeds to reject phase.

(c) The parties run the following for every (complaint, k) message:

i. Run t + 3 invocations of F̃ k
eval, with each party Pi inputting its

shares of A(x, y), B(x, y), D1(x, y), . . . , Dt(x, y), C(x, y), respec-
tively.
Let A(αk, y), B(αk, y),D1(αk, y), . . . , Dt(αk, y), C(αk, y) be the
resulting shares (we ignore the dual shares S(x,αk) for each poly-
nomial).

ii. If: C(αk, 0) �= A(αk, 0) ·B(αk, 0)−∑t
�=1 α�

kD�(αk, 0), proceed to
the reject phase.

4. Reject phase:

(a) Every party Pi sends ai, bi to all Pj . Party Pi defines the vector of
values �a = (a1, . . . , an) that it received, where aj = 0 if it was not re-
ceived at all. Pi sets A′(x) to be the output of Reed-Solomon decoding
on �a. Do the same for B′(x).

(b) Every party Pi sets C(x, αi) = C(αi, y) = A′(0) · B′(0); a constant
polynomial.

5. Outputs: Every party Pi outputs C(x, αi), C(αi, y). Party P1 outputs
(A(x),B(x), C(x, y)).

4.5 Wrapping Things Up – Perfectly-Secure Multiplication

Given bivariate shares of the input wires to a multiplication gate, the parties each
in turn play the dealer in F̃mult

V SS . At the end of these executions, all parties hold
bivariate shares of the product of all other parties shares (recall that a bivariate
share is a pair of univariate polynomials). As in [14], the parties can obtain
bivariate shares of the product of the input-wire values by just carrying out a
local computation on their shares. This therefore concludes the multiplication
protocol. A full description and proof appears in the full version.

Efficiency Analysis. A detailed efficiency analysis of the protocols appears
in [1]. In short, our protocol utilizing the bivariate properties costs up to O(n5)
field elements in private channels, together with O(n4) field elements in broadcast

Perfectly-Secure Multiplication for Any t < n/3 257

per multiplication gate in the case of malicious behavior. We remark that when
no parties actively cheat, the protocol requires O(n4) field elements in private
channels and no broadcast at all.

References

1. Asharov, G., Lindell, Y., Rabin, T.: A Full Proof of the Perfectly-Secure BGW
Protocol and Improvements. Cryptology ePrint Archive, 2011/136 (2011)

2. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient Multi-party Computation with Dispute
Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

3. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: 20th STOC, pp. 1–10
(1988)

5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd FOCS, pp. 136–145 (2001)

7. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive ver-
sus Non-Adaptive Security of Multi-Party Protocols. Journal of Cryptology 17(3),
153–207 (2004)

8. Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

9. Damg̊ard, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

10. Dodis, Y., Micali, S.: Parallel Reducibility for Information-Theoretically Secure
Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92.
Springer, Heidelberg (2000)

11. Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge University Press, Cambridge (2004)

12. Feldman, P.: Optimal Algorithms for Byzantine Agreement. PhD thesis, Mas-
sachusetts Institute of Technology (1988)

13. Feldman, P., Micali, S.: An Optimal Probabilistic Protocol for Synchronous Byzan-
tine Agreement. SIAM - Journal on Computing 26(4), 873–933 (1997)

14. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and Fact-Track Multiparty
Computations with Applications to Threshold Cryptography. In: 17th PODC,
pp. 101–111 (1998)

15. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient Secure Multi-party Computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

16. Hirt, M., Maurer, U.: Robustness for Free in Unconditional Multi-party Computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001)

258 G. Asharov, Y. Lindell, and T. Rabin

17. Hirt, M., Nielsen, J.B.: Robust Multiparty Computation with Linear Communica-
tion Complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006)

18. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-Theoretically Secure Protocols
and Security Under Composition. SIAM Journal on Computing 39(5), 2090–2112
(2010)

19. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

The IPS Compiler: Optimizations, Variants and

Concrete Efficiency�

Yehuda Lindell, Eli Oxman, and Benny Pinkas

Dept. of Computer Science, Bar Ilan University, Ramat Gan, Israel
lindell@cs.biu.ac.il, eli.oxman@gmail.com, benny@pinkas.net

Abstract. In recent work, Ishai, Prabhakaran and Sahai (CRYPTO
2008) presented a new compiler (hereafter the IPS compiler) for con-
structing protocols that are secure in the presence of malicious adver-
saries without an honest majority, from protocols that are only secure
in the presence of semi-honest adversaries. The IPS compiler has many
important properties: it provides a radically different way of obtaining
security in the presence of malicious adversaries with no honest major-
ity, it is black-box in the underlying semi-honest protocol, and it has
excellent asymptotic efficiency.

In this paper, we study the IPS compiler from a number of differ-
ent angles. We present an efficiency improvement of the “watchlist setup
phase” of the compiler that also facilitates a simpler and tighter analysis
of the cheating probability. In addition, we present a conceptually simpler
variant that uses protocols that are secure in the presence of covert adver-
saries as its basic building block. This variant can be used to achieve more
efficient asymptotic security, as we show regarding black-box construc-
tions of malicious oblivious transfer from semi-honest oblivious transfer.
Finally, we analyze the IPS compiler from a concrete efficiency perspec-
tive and demonstrate that in some cases it can be competitive with the
best efficient protocols currently known.

1 Introduction

In the setting of secure multiparty computation, a set of parties wish to jointly
compute some function of their inputs while preserving security properties such
as privacy, correctness, independence of inputs, and more. These properties must
be preserved in the face of adversarial behavior. In this paper, we consider se-
curity in the presence of three types of adversaries. The two classic adversary
models are those of semi-honest adversaries that follow the protocol specification
exactly but attempt to learn more than they should, and malicious adversaries
that can behave as they wish and as such can arbitrarily deviate from the proto-
col specification. A more recent model, called security in the presence of covert

� Research generously supported by the European Research Council as part of the
ERC project LAST. The first author was also supported by the israel science

foundation (grant No. 781/07).

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 259–276, 2011.
c© International Association for Cryptologic Research 2011

260 Y. Lindell, E. Oxman, and B. Pinkas

adversaries, guarantees that if a malicious adversary behaves in a way that en-
ables it to break the protocol in some way, then it will be caught cheating by
the honest parties with some probability ε [1].

There are two rather distinct settings for studying the problem of secure mul-
tiparty computation. In the first, it is assumed that a majority of the parties are
honest. In such a case, it is possible to securely compute any efficient function-
ality with information-theoretic security [3,4] assuming private channels (and
broadcast, for the case of n/3 ≤ t < n/2 corrupted parties). In the second
setting, any number of the parties may be corrupted; this case includes the im-
portant two-party setting where one party may be corrupted. In this case of no
guaranteed honest majority, information-theoretic security cannot be achieved.
Nevertheless, assuming the existence of oblivious transfer, which can be con-
structed from enhanced trapdoor permutations and homomorphic encryption, it
has been shown that any efficient functionality can be securely computed without
an honest majority [24,12].

Beyond proving an important theorem stating that any functionality can be
securely computed without an honest majority, the construction of [12] shows
how to compile any protocol that is secure in the presence of semi-honest adver-
saries into a protocol that is secure in the presence of malicious adversaries, using
one-way functions alone. This result is therefore often referred to as the GMW
compiler. Recently, a new compiler was presented by Ishai, Prabhakaran and Sa-
hai (IPS) [16]. This compiler works in a completely different way to that of the
GMW compiler. First, unlike GMW, it does not compile an m-party protocol for
securely computing a functionality f in the presence of semi-honest adversaries
into an m-party protocol for securely computing the same f in the presence
of malicious adversaries. Rather, the IPS compiler uses m-party protocols that
securely compute some basic operations (like addition and multiplication in a
finite field) in the presence of semi-honest adversaries with no honest majority,
in order to transform a multiparty protocol that securely computes f in the pres-
ence of malicious adversaries with an honest majority, to an m-party protocol
that securely computes f in the presence of malicious adversaries with no honest
majority. As a specific example, note that by setting m = 2 the IPS compiler
can generate a two-party protocol for computing f that is secure against mali-
cious adversaries, from two-party protocols for computing basic functionalities
(secure against semi-honest adversaries), and a multiparty protocol for comput-
ing f (secure against malicious adversaries which can corrupt only a minority
of the parties). Intriguingly, the IPS compiler utilizes the world of information-
theoretic secure computation in order to achieve security in the setting of no
honest majority, since the basic protocol computing f , to which the compiler is
applied, can be defined in an information-theoretic setting.

The IPS compiler has a number of important properties. First, it is black
box in the underlying constructions; see [13] for why this is important. Second,
it provides a uniform approach to both the two-party and multiparty settings,
like the GMW compiler. Third, in some settings, it has excellent asymptotic
efficiency. This is due to the fact that in some cases (e.g., when an arithmetic

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 261

circuit computing f is significantly smaller than a Boolean circuit computing f),
information-theoretic protocols for the setting of an honest majority are much
more efficient than computational protocols for the setting of no honest majority.
The compiler can be applied to these more efficient protocols. This property has
already been utilized to present protocols that have excellent theoretical, asymp-
totic efficiency [17]. Despite the above, it is unclear as to whether this approach
can be used to achieve concrete efficiency for functionalities of interest [14].

1.1 The IPS Compiler

The compiler of [16] utilizes the following components in order to achieve the
secure m-party computation of a functionality f , with no honest majority:

– A multiparty information-theoretic protocol π computing f with m clients
who provide input and n = O(m2k) servers who carry out the computation
(where k is a security parameter analyzed in our work), which is secure in
the presence of a malicious adversary corrupting a minority of the servers.
This is called the outer protocol by [16].

– m-party subprotocols and local client instructions for simulation of the server
computation in π, that are secure as long as the adversary behaves in a
semi-honest manner. Given the known techniques for information-theoretic
secure multiparty computation, it suffices for example to use m-party sub-
protocols for securely computing additive shares of the product of shares (all
other steps can be carried using local client instruction for generating shares,
adding shares, and so on). We stress that these subprotocols need only be
secure in the presence of semi-honest adversaries. These are called the inner
protocols by [16].

The way that the compiler works is for the m real parties to run the information-
theoretic protocol π by emulating the operations of the n servers in π. This
emulation is carried out using the secure m-party subprotocols, run between
the m real parties (clients), to compute the next step of all parties in π. Thus,
the n servers running π are virtual and are emulated by the m real parties
running the protocol. Observe that if the real adversary were to behave in a
semi-honest manner in each subprotocol, then the overall computation would
clearly be secure. This is due to the fact that the emulation of the n parties in
π is carried out using a protocol that is secure in the presence of semi-honest
adversaries. Thus, f is securely computed, as guaranteed by π. However, the
adversary here may be malicious.

The magic in the IPS compiler is how to leverage the semi-honest security
of the subprotocols in order to achieve security in the presence of malicious ad-
versaries. The central observation is that in order for a malicious adversary to
cheat, it must cheat in at least n/2 of the subprotocols. This is due to the fact
that π is secure unless a majority of the servers, namely at least n/2 of them,
behave maliciously. In order to prevent such cheating, the IPS compiler sets up
watchlists, which enable the honest parties to verify that malicious parties are
not cheating. These watchlists are generated as follows. Each real party (client)

262 Y. Lindell, E. Oxman, and B. Pinkas

chooses the randomness that it will use when running the semi-honest subpro-
tocol for each virtual server. Then, using oblivious transfer, each other client
obtains k of the random strings of all other clients. Now, given the randomness
that a party is supposed to use in the semi-honest subprotocol, it is possible to
check that it is indeed behaving honestly. Furthermore, since oblivious transfer
is used to obtain these strings, no client can know which semi-honest executions
are being “watched”. It is important to note, however, that it is not possible to
raise the number of watchlists too high, because each time the randomness of
a client (used with respect to some server) is watched, the internal state of the
server is seen and that server is corrupted. It is shown in [16] that n = O(k2m)
servers are required in order to obtain security with a probability of cheating that
is negligible in k. This number is important because it determines the number
of servers in the information-theoretic protocol and thus its complexity.

In our presentation, we assume some familiarity with the IPS compiler. See
the IPS papers for a description [16,17], or the brief tutorial of the construction
in the full version of our paper.

1.2 Optimizations of the IPS Compiler

As will become clear in our concrete analysis of the efficiency of the compiler,
see Sections 1.4 and 4, the number of servers n can become very large for some
choices of parameters. This can have a severe effect on the efficiency of the
protocol in a number of ways, one of these being the watchlist setup phase
where m2n executions of Rabin oblivious transfers must be carried out (each
of these costing logn regular oblivious transfers; see Section 2 for a detailed
explanation). This can therefore quickly become the bottleneck of the protocol.
We therefore first devise a method for reducing the required number of servers
to n = O(mk) rather than n = O(m2k), and second for setting up the watchlists
in a way that costs an equivalent of O(mn) regular oblivious transfers (rather
than O(m2n logn) oblivious transfers). These optimizations are significant since
they enable a better choice of parameters for the outer information-theoretic
protocol. (Specifically, the best efficiency is obtained by using a protocol with
many servers and a small fraction of corrupted parties; this enables the heavy use
of the packed or multi-secret sharing methodology of [10].) Using our method,
a smaller number of virtual servers can be corrupted and so a more efficient
protocol can be used. We stress that when measuring concrete complexity, our
new watchlist setup protocol is substantially more efficient, even for the two-
party case where m = 2. An additional optimization is described in Section 2.3.

1.3 Variants of the IPS Compiler for Covert Adversaries

A simple compiler from covert to malicious security. We present an
analog of the IPS compiler that uses subprotocols that are secure in the presence
of covert adversaries instead of protocols that are secure in the presence of semi-
honest adversaries. Recall that a protocol is secure in the presence of covert
adversaries, with a deterrent parameter ε, if any cheating by an adversary is
detected by the honest parties with probability at least ε [1]. (For our purposes,

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 263

it is convenient to assume that ε = 1/2.) The use of subprotocols with this level
of security fits naturally with the IPS paradigm: the information-theoretic outer
protocol is emulated using protocols that are secure in the presence of covert
adversaries with deterrent ε = 1/2. Then, if the adversary tries to cheat in k
of the subprotocol executions, it will be caught except with probability 2−k.
Observe that there is no need for any watchlists. In addition, the analysis and
proof of security of this compiler are extraordinarily straightforward, since the
cheating probability can be measured exactly with ease.

Beyond being a significant conceptual simplification, the usage of covert proto-
cols also enables us to use an information theoretic protocol with just n = m+2k
parties (tolerating up to k corruptions), rather than O(mk) parties when using
semi-honest security. Relying on the fact that protocols that are secure in the
presence of covert adversaries with deterrent ε = 1/2 are only about 2–3 times
the cost of semi-honest protocols, this results in an asymptotic efficiency im-
provement over the original compiler (we stress, though, that by our concrete
analysis, the original compiler of [16] will typically be more efficient for concrete
parameters since the use of watchlists means that local computation by a party
can be checked directly and need not be distributed).

An IPS compiler from semi-honest to covert security. We observe that
the IPS compiler with some minor modifications can be used to obtain security in
the presence of covert adversaries from protocols that are secure in the presence
of semi-honest adversaries, via a black-box reduction. We show that it suffices
to use O(m) watchlists and an oblivious transfer protocol that is secure in the
presence of covert adversaries to set up those watchlists. (We also show that
covert oblivious transfer can be constructed at the cost of only a constant number
of semi-honest oblivious transfers.) This answers a major open question left by
the work of [6].

IPS compilation and covert adversaries. Based on the above, we have that
the IPS paradigm significantly contributes to our understanding of security in
the presence of covert adversaries, and enables us to position covert adversaries
in their natural place between semi-honest and malicious adversaries with re-
spect to protocol constructions. In addition, as we show, it is possible to obtain
quantitative improvements using this methodology. Specifically, we obtain a fully
black-box reduction from semi-honest OT and one-way functions to malicious
OT, at the cost of just a linear number of semi-honest OT invocations (the previ-
ous reduction of this type requires a quadratic number of semi-honest OTs [13]).

1.4 The Concrete Efficiency of the IPS Protocol

On an abstract level, the IPS compiler provides an elegant and conceptually
simple way of constructing protocols that are secure in the presence of mali-
cious adversaries. However, the actual instantiation of a protocol using the IPS
approach depends on many different parameters and choices, all having a sig-
nificant effect on the concrete efficiency of the result. To start with, appropriate
inner and outer protocols must be chosen, and these choices are interdependent.

264 Y. Lindell, E. Oxman, and B. Pinkas

This is due to the fact that the most efficient information-theoretic outer protocol
may require more invocations of the inner protocol for computing multiplications
(which may be more expensive than other operations) than a less efficient proto-
col, when judging efficiency in the standard information-theoretic setting. Thus,
the cost of running the inner multiplication protocol must be traded off with the
cost of other operations in the outer protocol. In addition, there may be outer
protocols that can utilize different inner protocols and obtain higher efficiency.

Another parameter that must be chosen is the exact number of servers n =
O(mk). Observe that each corrupted client has effectively corrupted k servers,
since the watchlists it obtains from the honest parties reveal the internal state
of these servers. In addition, some additional servers may be corrupted by the
client cheating in the inner protocols emulating these servers, and hoping that
it does not get caught. Based on this, it is clear that n > 2mk since m − 1
corrupted parties have already effectively corrupted (m − 1)k servers, from the
watchlists of the honest parties that they observe. However, how large should n
be? A naive approach, which is to take n to be the smallest possible function of
k, actually may have the opposite effect. For example, if m = 2 and n = 4k then
the corrupted party, who corrupts k servers through its watchlists, needs to cheat
in k inner protocols in order to cheat in the outer In order to be concrete, let the
number of clients m equal 2, and consider an outer protocol that tolerates any
t < n/2 corruptions. We briefly analyze the difference between setting n = 4k
and n = 3k, where k is the number of watchlists viewed. In the case of n = 4k, the
adversary needs to corrupt an additional k servers in order to have a dishonest
majority of 2k servers, and this requires cheating in the simulation of at least
k servers in the inner semi-honest protocols. The honest party does not detect
this if its watchlists all fall in the other 3k (out of 4k) servers. A rough analysis
gives that the probability that the adversary succeeds in this case is (3/4)k. In
contrast, if n = 3k then the adversary needs to corrupt an addition k/2 servers
and so it successfully cheats with probability only (2.5/3)k = (5/6)k. Setting a
fixed error of 2−40, we have that when n = 4k we need to set k = 97 and so
n = 388, and when n = 3k we need to set k = 152 and so n = 456. We therefore
conclude that it is better to take n = 4k than n = 3k since this results in a lower
number of servers n relative to the same cheating probability of 2−40.

The above analysis relates to an outer protocol that tolerates any t < n/2
corruptions. However, the best protocols for this setting [7] use the packed secret
sharing methodology of [10]. This methodology enables the effective multiplica-
tion of an entire block of shares using a single multiplication protocol as well
as other efficiency improvements. Thus, large blocks can significantly lower the
complexity of the protocol. However, the outer protocol must have the property
that the number of corrupted parties that can be tolerated is upper bounded
by the difference between the secret sharing threshold (which for [7] must be
less than n/4) and the block size. This demonstrate the complexity of choosing
good parameters since they are all interdependent. Observe that in our concrete
analysis, we use k as the number of watchlists and not an independent security
parameter; in the above asymptotic treatment these were the same.

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 265

2 Optimizations of the IPS Compiler

2.1 Efficient Watchlist Setup

As we have mentioned, the first step in the IPS compiler involves the setup of
watchlists. Recall that the number of real parties is m and the number of virtual
servers is n. Denote the real parties by P1, . . . , Pm. Technically, each party Pi

chooses n random strings r1
i , . . . , r

n
i (say, of length the security parameter k) and

runs a two-party protocol with every other party Pj in which Pj receives k of the
strings without Pi knowing which. The value r�

i is the random tape used by Pi

in the semi-honest protocol simulating the �th server. Thus, any party knowing
rj
i can verify that Pi is running the protocol honestly.

The IPS setup. The method proposed in [16] is for each pair of parties Pi, Pj

to run n executions of Rabin oblivious transfer [22]; in the �th execution the
sender Pi inputs r�

i and the receiver Pj obtains this string with probability k/n,
and obtains nothing otherwise. The result of this procedure is that the expected
number of strings obtained by the receiver is n·k/n = k, as required. As described
in [16] it is possible to construct a single Rabin oblivious transfer with receipt
probability k/n by running a single 1-out-of-n oblivious transfer, which in turn
can be constructed using logn regular 1-out-of-2 oblivious transfers [19]. Thus,
the cost of this setup phase is n logn oblivious transfers for Pi as sender and each
Pj as receiver, with an overall of m(m− 1)n logn oblivious transfers between all
parties. With n = O(m2k) as stated in [16] we have that the cost is approximately
O(m4k log(m2k)) oblivious transfers.

Concretely, this step can be carried out in two ways; one is to use the efficient
extending of oblivious transfers of [15]. However, in the case of malicious oblivious
transfer the oblivious transfer extension is not so efficient since it is based on the
cut-and-choose methodology; in addition, it requires the use of the less standard
assumption of correlation-robust hash functions. Alternatively, one can use a
highly efficient OT protocol with O(1) exponentiations per transfer [21] (the
cost here is 11 exponentiations per transfer, with UC and stand-alone variants
at essentially the same cost).
A new watchlist setup. We propose a new watchlist setup with the following
properties. First, the method guarantees that each malicious party views the
same k server watchlists for every honest party. This means that an adversary
can examine the computation of k, rather than (m−1)k, servers. As we will see,
this means that it suffices to set n = O(mk) instead of O(m2k). Second, it guar-
antees that each party views exactly k watchlists; this enables a tighter and more
straightforward analysis of the probability that an adversary can cheat. Finally,
we present a concrete protocol that gives a considerable efficiency improvement
over the IPS setup, for both aforementioned implementation options.

Recall that the aim of the watchlist setup procedure is for each party to
obtain k watchlists that it can view. Rather than achieving this by having each
pair of parties run a separate procedure, we have the parties run a protocol for
what we call multi-sender k-out-of-n oblivious transfer. This m-party functionality
enables a receiver Pm to obtain k-out-of-n strings from m − 1 different senders

266 Y. Lindell, E. Oxman, and B. Pinkas

P1, . . . , Pm−1 (each with a set of n strings). The functionality is formally defined
in Figure 1.

Figure 1 (Multi-Sender k-out-of-n Oblivious Transfer Fk
n).

Inputs: For every j = 1, . . . , n − 1, party Pj inputs a vector of n strings
(xj

1, . . . , x
j
n). The receiver Pm inputs a set of indices I ⊂ [n] of size exactly k.

Outputs: If |I | �= k then all parties receive ⊥ as output. Otherwise, for every
j = 1, . . . , m − 1, party Pm receives the set {(i, xj

i)}i∈I of k strings. Parties
P1, . . . , Pm−1 receive no output.

We stress that the receiver is forced to use the same index set I for all sender
parties. In the context of the IPS compiler, this means that each party can choose
k servers for which it watches all parties. Now, let t be the number of corrupted
real parties in the protocol. Then, the parties can together view t · k servers,
which is equivalent to these servers being corrupted. In addition, the probability
that the corrupted real parties can cheat in the semi-honest subprotocols for
more than L servers equals the probability that none of the honest parties have
any of these servers in their watchlists. A single honest party chooses k out of
n watchlists and so the probability that it does not detect such cheating equals(
n− L

k

)
/
(
n
k

)
.

Let m = 2 and let n = 4k. We have that the corrupted real party views k of
the servers in its watchlist and needs to cheat in L = k more in order to have
corrupted at least half of the servers. The probability that it can do this without

being detected is therefore
(
3k
k

)
/
(
4k
k

)
< (3/4)k. Now consider the general case

of m real parties and n = 4mk. We first analyze the case that m− 1 parties are
corrupted. Then, the adversary can view (m−1)k different servers, and needs to
corrupt (m+1)k additional servers in order to have corrupted half of the servers.

Thus, the probability that it goes undetected is
(
(3m− 1)k

k

)
/
(
4mk

k

)
< (3/4)k.

Thus, we conclude that it suffices to use n = 4mk virtual servers rather than
O(m2k). In addition, as is evident, the proof of this fact is straightforward.
(We stress that as shown in Section 4, this is not necessarily the best way to
choose the parameters for concrete efficiency. However, here we are dealing with
asymptotic efficiency.)

We conclude with the following somewhat informal claim; it’s proof follows
from the analysis above and the proof of security of [16].

Claim 2. The IPS compiler with the watchlist setup phase using the multi-sender
k-out-of-n oblivious transfer functionality is secure with n = O(mk) servers.

2.2 Securely Realizing Multi-sender k-out-of-n Oblivious Transfer

A general protocol from oblivious transfer. It is possible to securely realize
the multi-sender k-out-of-n oblivious transfer functionality in a straightforward
way using committed oblivious transfer, which in turn can be constructed in a

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 267

black-box way from any 1-out-of-2 oblivious transfer [5]. This construction has
the advantage of preserving the IPS general structure of working under gen-
eral assumptions and using any oblivious transfer protocol that is secure in the
presence of malicious adversaries. Thus, we obtain the efficiency improvement
regarding the number of servers and the simpler analysis, while remaining within
the same framework. We note, however, that this strategy will not yield a con-
cretely efficient watchlist setup.

A concrete protocol with greater efficiency. One of the aims in this paper,
which is dealt with in detail in Section 4, is to consider the concrete efficiency of
the IPS compiler. As such, in this section we present a highly-efficient protocol for
securely computing the multi-sender k-out-of-n oblivious transfer functionality
in the presence of malicious adversaries. The security of the protocol is based on
the DDH assumption and requires just O(n) exponentiations. Below, we compare
the concrete efficiency of our watchlist setup method based on this protocol to
the best-known concrete instantiations of the original IPS watchlist setup, and
show that the efficiency improvement is dramatic. As we will see, the use of this
protocol enables the use of significantly more servers than otherwise (in Section 4
it will become apparent why this is so important).

The protocol uses ideas from the cut-and-choose oblivious transfer protocol
of [18]. The idea is for the receiver Pm to choose n pairs of group elements
(ai, bi) so that relative to two fixed group elements g, h it holds that at most k
out of the n tuples (g, h, ai, bi) are Diffie-Hellman tuples (and all the others are
non-DH tuples). The receiver then broadcasts all of these pairs to the sending
parties P1, . . . , Pm−1 and proves that at most k are DH tuples, as required.
Following this, all of the sending parties send values with the property that Pm

can obtain the ith string if and only if (g, h, ai, bi) is a DH tuple. This ensures
that Pm receives k-out-of-n of the strings and no more. Furthermore, since the
pairs are broadcast to all P1, . . . , Pm−1, it is guaranteed that Pm receives the ith
string from every P1, . . . , Pm−1 if and only if (g, h, ai, bi) is a DH tuple. Thus,
intuitively, the protocol securely computes the multi-sender k-out-of-n oblivious
transfer functionality. See the full version of our paper for a full description and
proof of security. The overall number of exponentiations in that protocol is 4n+
(11n+k)(m−1). (For large m, this is approximately 11mn+km exponentiations.
For the special case of m = 2 this comes to 15n + k.)

A comparison of concrete efficiency. We now compare the concrete cost of
running our watchlist setup protocol to the method of [16]. Recall that the IPS
setup requires m(m− 1)n logn oblivious transfers and this can be implemented
using [21] at the cost of 11·m(m−1)n logn exponentiations, or using the method
of extending oblivious transfers of [15]. In contrast, our protocol requires 4n +
(11n+ k)(m− 1) exponentiations. (All exponentiations here are in any group in
which the DDH assumption holds.)

For the sake of comparison and simplicity, assume that the same level of
security is obtained using both setups and so the same values of k and n can be
used. We compare this for two sets of concrete parameters given in Section 4.3,
optimizing the performance of the inner protocol for the case of m = 2 parties.

268 Y. Lindell, E. Oxman, and B. Pinkas

For the AES-type circuit, we have k = 207 and n = 1752. Then, the cost of the
original IPS setup is m(m−1)n logn = 2×1752×11 = 38544 oblivious transfers.
This can be implemented using [21] at a cost of 11 exponentiations per oblivious
transfer, resulting in 423, 984 exponentiations. Alternatively, using the method
of extending oblivious transfers of [15], the cost is about 6, 000 oblivious transfers
(requiring 66, 000 exponentiations) and approximately 2, 500, 000 hash function
computations.1 In contrast, our new setup costs 15n+k = 15·1752+207 = 26, 487
exponentiations, which is much less (even than the solution using [15]). An even
more illustrative example relates to the two settings of parameters given for the
case of a circuit of size 30, 000 in Section 4.3; for this we just directly use the
extending oblivious transfer alternative. With the first choice of parameters, n =
19554 and k = 729, we have that the IPS setup costs 66, 000 exponentiations and
38, 700, 000 hash operations, versus 294, 039 exponentiations for our protocol.
The other choice of parameters, of n = 3362 and k = 292, requires 66, 000
exponentiations and 5, 300, 000 hash operations, versus 50, 772 exponentiations
for our protocol. Thus, using our setup protocol, it is still feasible to choose
either of the optimal choices of parameters and tradeoff the cost for the rest of
the protocol. In contrast, using the IPS setup, only the latter setting of k and n
can be reasonably used.

2.3 Flexibility of the Outer Protocol

In the original analysis carried out by [16] and that discussed above, the outer
protocol chosen is secure in the presence of a malicious adversary that can adap-
tively corrupt up to t servers, for an appropriately chosen t. However, the cor-
ruptions of the servers are actually of two distinct types. The up to (m − 1)k
corruptions that are due to the fact that the adversary sees the watchlists of the
honest parties, are actually semi-honest corruptions, meaning that the adversary
sees the internal state of these servers but does not cause them to deviate from
the protocol specification. In contrast, the corruptions that are due to the cor-
rupted real parties cheating in the semi-honest server simulation (without being
caught) are malicious corruptions. Thus, it is possible to use an outer protocol
that provides hybrid security in the presence of t1 malicious corruptions and t2
semi-honest corruptions, for appropriate t1 and t2. This model has been studied,
and it has been demonstrated that better resilience can be achieved [9].

In order to be concrete, we demonstrate this on the parameters discussed
above in Section 2.1. When m = 2 and n = 4k, we have that the corrupted
party views k of the servers and needs to actively corrupt k more. Thus, the
outer protocol needs to be secure in the presence of k malicious servers and k
semi-honest servers, rather than 2k malicious servers. This can significantly sim-
plify the outer protocol and yield higher efficiency. (For example, the simple and
efficient multiplication protocol of BGW [3] for the case of t < n/4 malicious cor-
ruptions can also be used in the case of t1 < n/6 malicious corruptions together

1 This calculation is based on a 128-bit seed, and setting the parameter σ of the
extending OT scheme to be of size 44 in order to obtain an error of 2−40 in the
oblivious transfer extension protocol; see [15, Figure 2].

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 269

with t2 < n/6 semi-honest corruptions. Thus, although the overall number of
corruptions is t < n/3, the simpler and more efficient multiplication protocol
can be used. This can be heavily utilized in the setting of IPS compilation.)

3 IPS Variants Using Covert Adversaries

In this section we present variants of the IPS compiler in order to obtain security
in the presence of malicious adversaries from security in the presence of covert
adversaries, and security in the presence of covert adversaries from security in
the presence of semi-honest adversaries. In addition, we show that this approach
has a quantitative advantage regarding the black-box construction of malicious
oblivious transfer from semi-honest oblivious transfer.

3.1 Secure Computation for Malicious from Covert Adversaries

We show an extraordinarily simple analog of the IPS compiler when the starting
point is a protocol for secure computation in the presence of covert adversaries.
As we have already discussed the idea behind our construction in Section 1, we
proceed directly to the construction. We construct a protocol for computing a
function f for m parties, where any number of them can be corrupt. The protocol
is secure against malicious adversaries. The security parameter is denoted by k.
The protocol uses the following tools.

Outer protocol: Let π be a multiparty (outer) protocol for m clients and n =
2k servers, which is secure for any number of corrupted clients and as long
as less than k servers are corrupted by an adaptive malicious adversary. π
computes the function f where parties P1, . . . , Pm provide input and receive
output. For simplicity, the protocol π is such that all messages are sent over
a broadcast channel, and every party broadcasts in every round

Server protocols: Let π1, . . . , πm+n be the instructions for the different parties
in π. That is, the clients P1, . . . , Pm run π1, . . . , πm and the ith server runs
πm+i. For the servers, namely for i = 1, . . . , n, let Fm+i be the reactive ideal
functionality computing πm+i. Loosely speaking, Fi is a functionality that
receives n + m− 1 inputs in each round and generates a single output; the
m + n− 1 inputs are the values broadcast by all parties Pj for j �= i in the
previous round and the output is the value that Pi should broadcast in this
round. The exact description of the functionality Fi is more involved. This
functionality is actually run by the m real parties. Thus, each party inputs
a vector of length m + n with the values broadcast in the previous round.
The functionality then verifies that all vectors input by the m clients are
identical. If not, it outputs ⊥. If yes, it computes the next message that Pi

would send and hands it to all the m clients.
Covert model functionality: We denote by Fε

m+i the functionality Fm+i in
the covert model with deterrent ε. This means that we consider an ideal
functionality that computes Fi with the additional instructions of the trusted
party of the ideal model of the definition of covert adversaries; see [1].

270 Y. Lindell, E. Oxman, and B. Pinkas

Protocol 3 uses these tools to obtain security in the presence of a malicious
adversary controlling an arbitrary number of the m parties. The protocol is
defined in a hybrid model where the functionalities Fε

m+1, . . . ,F ε
m+n are executed

by a trusted party. Security is derived when these functionalities are instantiated
by real protocols via standard composition theorems.

Protocol 3 (Security for Malicious in the Covert Fε
m+i-Hybrid Model).

Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm

The protocol: For every round of protocol π, the parties P1, . . . , Pm do:
1. Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs

the client Pj to send in this round (using πj), based on the messages
from the last round.

2. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) sends to the ideal
functionality Fε

m+i the vector of all messages broadcast in the previous
round. (In the first round, the vector contains m + n empty values λ.)

3. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) receives an output
from Fε

m+i. If the output is corrupted� or abort� (see [1]), then Pj halts
and outputs abort�. Otherwise, it records the output as the message
“broadcast” by server Pm+i in this round.

Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client
Pj to output.

We now state the security of Protocol 3. The proof appears in the full version of
the paper; it is very straightforward, and this highlights the conceptual advantage
of this alternative IPS compiler.

Theorem 4. Let π be a protocol for m clients and n = 2k servers that securely
computes the m-party functionality f with abort, in the presence of an adaptive
malicious adversary corrupting any number of clients and less than k of the
servers, and let ε > 0 be any constant. Then, Protocol 3 securely computes f
with abort in the Fε

m+1, . . . ,F ε
m+n hybrid model, in the presence of an adaptive

malicious adversary corrupting any number of parties.

3.2 Secure Computation for Covert from Semi-Honest Adversaries
We describe a black-box transformation from semi-honest protocols to covert
protocols, using a covert oblivious transfer protocol. This result answers an open
question left by the work of [6], which showed a similar transformation in the
information-theoretic setting with an honest majority, but did not cover the case
of a majority of corrupted parties. The construction is similar to the original con-
struction of IPS [16] with two exceptions. First, only a small number of watchlists
are used. Second, it suffices for us to use an oblivious transfer protocol with secu-
rity for covert adversaries, rather than security for malicious adversaries, in order
to set up the watchlists. (Oblivious transfer protocols with security for covert
adversaries with constant ε can be constructed using O(1) black-box invocations
of semi-honest OT, as described in the full version of our paper.)

The protocol computes a function f for m parties, where any number of them
can be corrupt. The security parameter is denoted by k.

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 271

Tools:
– Let π be a multiparty protocol for m clients and n = 4m servers, which is se-

cure for any number of corrupted clients and less than n/2 corrupted servers.
As in Protocol 3, all messages of π are sent over a broadcast channel and
every party broadcasts in every round. Furthermore, the clients P1, . . . , Pm

are the only ones who provide input and receive output.
– Let π1, . . . , πm+n be the instructions for the parties in π, and let Fm+i

be the reactive ideal functionality computing πm+i, for i = 1, . . . , n. The
functionality is as defined for Protocol 3.

– Let ρm+1, . . . , ρm+n be m-party protocols such that ρm+i securely computes
Fm+i in the presence of semi-honest adversaries. Without loss of generality
we assume that the random-tape of each party in each ρi is of length exactly
k (a pseudorandom generator can be used if it is longer).

The compiler is described in Protocol 5.

Protocol 5 (Security for Covert from Semi-Honest).

Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm

The protocol:

1. Phase 1 – set up watchlists:
(a) For every j = 1, . . . , m, party Pj chooses a vector of n = 4m random

seeds sj
1, . . . , s

j
4m ∈ {0, 1}k. The parties all then run m multi-sender

1-out-of-n oblivious transfers that are secure in the presence of covert
adversaries, so that each party Pj receives {si

rj
}mi=1 for m random in-

dices rj ∈R {1, . . . , n}.
(b) At the conclusion of this phase, each client Pj holds the following:

i. A vector sj = (sj
1, . . . , s

j
n) of random seeds chosen by Pj

ii. A set of strings {si
rj
}mi=1 received by Pj from others

2. Phase 2 – emulate π: For every round of the n = 4m-party protocol π, the
parties P1, . . . , Pm work as follows:
(a) Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs

the client Pj to send in this round, based on the previous messages.
(b) For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) runs ρm+i with

input the vector of all messages broadcast in the previous round, and
using random-tape sj

i .
(c) Each party Pj checks its watchlists for the executions run in the previ-

ous step. Specifically, for every � = 1, . . . , m (� �= j), party Pj verifies
that party P� computed the next message according to ρm+rj using the

random tape s�
rj

and the messages broadcast. If no, then Pj outputs
corrupted� (signifying that P� cheated) and halts.

(d) For every i = 1, . . . , n, each Pj (1 ≤ j ≤ m) receives from ρm+i an
output and records it as the message “broadcast” by Pi in this round.

Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client
Pj to output.

272 Y. Lindell, E. Oxman, and B. Pinkas

Security is stated by the following theorem (proved in the full version).

Theorem 6. Let π be a protocol for m clients and n = 4m servers that securely
computes the m-party functionality f with abort, in the presence of an adaptive
malicious adversary corrupting any number of clients and a minority of servers.
Then, Protocol 5 securely computes f in the Fm+1, . . . ,Fm+n (semi-honest) hy-
brid model, where n = 4m, in the presence of an adaptive covert adversary
corrupting any number of corrupted parties, with ε-deterrence for ε > 1− e−0.25.

3.3 The Semi-honest Cost of Malicious Oblivious Transfer

In the full version of this paper, we use our methodology of IPS compilation via
covert adversaries to prove the following theorem:

Theorem 7. There exists a black-box reduction from bit oblivious transfer that
is secure in the presence of malicious adversaries to one-way functions and O(k)
invocations of bit oblivious transfer that is secure for semi-honest adversaries.

Previously, the best known such reduction required O(k2) invocations of semi-
honest oblivious transfer [13].

4 The Concrete Efficiency of IPS

In this section, we describe our analysis of the concrete efficiency of the best
IPS-type protocols. Due to the high level of abstraction in the IPS construction,
its concrete complexity was completely unknown.

The protocol that we examined is based on sharing values using block secret
sharing as in [10], in which � values are encoded in a single polynomial. Thus,
given blocks a = (a1, ..., a�), b = (b1, ..., b�) which are shared using two polyno-
mials of degree δ, addition results in a sharing of a polynomial of degree δ that
hides the block a+b = (a1+b1, ..., a�+b�), while multiplication results in sharing
a polynomial of degree 2δ which hides the block ab = (a1b1, ..., a�b�); as usual, a
protocol is used to reduce the degree of the polynomial to δ.

An in-depth analysis of the protocol, described in the full version of the pa-
per, reveals that the overall complexity of the protocol is dominated by the
number of multiplications and the number of OTs (both the communication
complexity and other computational operations are negligible in comparison to
these). Our efficiency analysis will therefore present those two factors. The OTs
are only needed for the inner semi-honest multiplication protocols,2 and so the
other building blocks will be analyzed only in terms of the number of multiplica-
tions. We emphasize that these OTs must only be secure against a semi-honest
adversary, and not a malicious one.

2 We remark that the OTs needed for setting up the watchlists (which must be secure
against malicious adversaries) are also a factor. However, they depend only on the
number of servers n and so can be considered at the end.

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 273

4.1 An Analysis of the Building Blocks

Secret sharing for blocks: This secret sharing scheme is a variant of Shamir’s
secret sharing [23], presented in [10]. Each polynomial encodes a block of � values.
The cost of sharing w elements among n servers, using blocks of size � and
polynomials of degree δ, is (w/�)(δ2 + nδ) multiplications.
Proving that shares lie on δ-degree polynomials: After sharing the secrets
it must be proved that the shares are indeed encoded by z polynomials, each
of degree δ (each polynomial is used to hide � field elements; depending on the
number of inputs, multiple polynomials must be used for the sharing). A protocol
for such a proof is presented in [17]. It requires δ(z + n + k) multiplications.
Proving a replication pattern of shared blocks: The protocol requires par-
ties to prove that certain shared blocks follow some replication pattern (namely
that a certain output value is used as an input value for the next layer). The
protocol we used is mentioned in the computation complexity analysis of [17].
The cost is (4δ)2 + 4δn + 2((2δn + (2δ)2)u + (δn + δ2)v) + 2(n + k)(u + v) mul-
tiplications, where v is the number of input blocks (represented by polynomials
of degree δ) and u is the number of output blocks (represented by polynomials
of degree 2δ).
Semi-honest inner multiplication: For multiplication gates the parties run a
semi-honest protocol for the functionality (x1, x2) �→ (x1x2 − r, r) for a random
r ∈R F . Six different protocols are presented for this functionality in [17]. We
present the analysis for the most efficient protocols only (based on our concrete
analysis for all options). The first protocol is based on packed Reed-Solomon
encoding and is black-box in the field [17], and the second protocol is due to
Glboa [11] and makes nonblack-box usage of the field and assumes standard bit
representation of elements.

As is detailed in the full version of the paper, for a security parameter s = 40
giving error 2−40, the packed Reed-Solomon encoding protocol costs 2734 mul-
tiplications and 16 1-out-of-2 OTs per inner multiplication, while the protocol
of [11] uses 40 multiplications and 40 1-out-of-2 OTs. Namely, one protocol is
more efficient in terms of OTs and the other is more efficient in terms of multi-
plications. For concrete numbers this phenomenon might present implementers
with a real dilemma.

4.2 Instantiating the Parameters

In order to count concrete efficiency, the values of the different parameters must
be set. We do not claim to have found the absolute optimal parameters, as
the analysis of their effect on the overhead is very complex. We do present
for each parameter the different considerations affecting the choice of its value,
and eventually show that the protocol is comparable in its efficiency to other
protocols from the literature and may be competitive in some settings.

The four main parameters that must be set are the degree of the polynomials
δ, the block size �, the number of corrupted parties tolerated t, and the number
of servers n. Three out of the four different parameters, the degree, the block

274 Y. Lindell, E. Oxman, and B. Pinkas

size and the corruption threshold, are tightly interconnected in that setting any
two of them determines the third one. In addition, these three parameters are all
chosen as a function of the number of servers n, and given their descriptions the
actual concrete value of n is chosen (independently of the circuit). As we will see
below, the determination of the degree δ is a straightforward choice. We then
determine the block size based on the actual circuit being computed, thereby
essentially setting the threshold.
The degree δ: Due to the replication proof protocol, it must hold that δ < n/4.
Other than that δ should be maximized, and we therefore set δ = n/4 − 1 (for
simplicity of notation, from here on we write δ = n/4).
The block size �: The block size has to be strictly smaller than the degree δ,
but otherwise the larger the block size, the more efficient the outer protocol gets.
This is because more multiplications are carried out together (note that there is
no use in having a block size larger than the width of a layer in the circuit since
this already upper bounds the number of multiplications that can be carried out
together). However, the number of corrupted servers that the outer protocol can
tolerate is δ − �, thus the closer � is to δ, the smaller the fraction of corrupt
servers that can be tolerated. As a result, more servers are required in order
to ensure that the probability of catching the adversary cheating in the server
simulation does not go down.
The corruption threshold t: As shown in [10], up to t < δ − � corrupted
servers receive no information about the secret block when using block secret
sharing with degree δ and block size �. Thus t is set to δ − �− 1.
The number of servers n: Define τ = n/t, and so 1/τ is the ratio of servers
that the adversary needs to corrupt in order to successfully cheat. Denote n =
O(mk) = a ·mk for some parameter a which should be chosen to minimize n. We
have already observed in Section 1.4, however, that the naive approach of mini-
mizing a is not optimal. An analysis reveals that for the two-party case the best
choice is to take a = τ , and thus to use n = 2τk servers in the outer protocol.

4.3 Setting Concrete Values

We now show the concrete cost of IPS based on the results of our analysis
regarding parameter instantiation. The choices of parameters are demonstrated
for two different circuits, which clarify the dilemmas that arise in practice. As
stated above the only parameter which we did not set independently of the
circuit, but rather want to optimize for the concrete circuit, is the block size. We
therefore calculated the number of operations required for a large range of block
sizes. Our calculations are based on a combination of an analytic and numerical
analysis of the parameters that yield a cheating probability of at most 2−40.

The first example uses circuit parameters similar to the AES circuit of [8],
assuming 2400 multiplication gates split over 100 layers. In this case minimal
values for the number of OTs and the number of multiplications occur for the
same block size of n/73. Remembering that δ = n/4, the threshold ratio is
τ = 1

(δ−�)/n ≈ 4.231. Setting a = τ as suggested above results in n = 4.231 · 2k.

The IPS Compiler: Optimizations, Variants and Concrete Efficiency 275

In order to get a cheating probability of 2−40, each client must check k = 207
watchlists, and the number of servers is n ≈ 1752.3

The number of OTs and multiplications which are required in this setting de-
pends on the inner multiplication protocol that is used (based on Reed-Solomon
codes, or on the protocol of [11]). The first choice results in approximately 5.5·106

OTs and 5.5 · 109 multiplications, while the latter choice requires approximately
13.8 · 106 OTs and 4.5 · 109 multiplications. The choice of the inner protocol
is therefore not trivial, and depends on the properties of concrete implementa-
tions of the OT and multiplication primitives. Recall that multiplications are in
a finite field of size 240 and therefore elements fit in a single word of a mod-
ern 64-bit architecture, and can be done very efficiently. The OTs need only be
secure against semi-honest adversaries, and so can be efficiently implemented
using methods of extending OT as in [15]. Given these two observations, the run
time of the protocol seems reasonable in comparison to that of other protocols
providing security against malicious adversaries.

The second example is of a circuit of 30000 multiplication gates split over
10 layers, and results in another optimization dilemma. Setting the block size
� = n/5.7 results in the minimal number of OTs, but minimizing the number
of multiplications requires setting � = n/13.1. The actual numbers of operations
are described below.

n k RS OT Gilboa OT RS mult Gilboa mult
� = n/5.7 19554 729 5.6 · 106 11.1 · 106 54 · 109 53 · 109

� = n/13.1 3362 292 12 · 106 31 · 106 13 · 109 11 · 109

The reason for this tradeoff is that the number of OTs is minimized when the
block size can accommodate an entire layer in a single block, but this setting
requires more servers (compared to a smaller block size), and so multi-point
evaluation and interpolation become more expensive (as they depend on the
number of servers), which results in an increased amount of multiplications.
Observe also that setting � = n/5.7 results in a much larger number of servers
which in turn affects the cost of the watchlist setup protocol. Plugging in the cost
of our watchlist setup (15n + k exponentiations), we have that when � = n/5.7
the setup cost is 294, 039 exponentiations, versus just 50, 722 when � = n/13.1.
This cost may also weigh in as a factor.

We conclude that the IPS protocol may be competitive in some settings.
We are currently implementing the protocol in order to empirically verify our
analysis and conclusions.

References

1. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries. J. of Cryptology 23(2), 281–343 (2010)

2. Beaver, D.: Correlated Pseudorandomness and the Complexity of Private Compu-
tations. In: The 28th STOC, pp. 479–488 (1996)

3 Note that the block size, of n/73 = 24, is equal to its maximum reasonable value,
namely to the width of a layer of the circuit, which is also 24.

276 Y. Lindell, E. Oxman, and B. Pinkas

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: 20th STOC, pp. 1–10
(1988)

4. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party Unconditionally Secure Proto-
cols. In: 20th STOC, pp. 11–19 (1988)

5. Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Pri-
vate Multi-Party Computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995)

6. Damg̊ard, I., Geisler, M., Nielsen, J.B.: From Passive to Covert Security at Low
Cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145. Springer,
Heidelberg (2010)

7. Damg̊ard, I., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

8. Damg̊ard, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 367–374. Springer, Heidelberg (2010)

9. Fitzi, M., Hirt, M., Maurer, U.M.: Trading Correctness for Privacy in Unconditional
Multi-Party Computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998)

10. Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation
(Extended Abstract). In: The 24th STOC, pp. 699–710 (1992)

11. Gilboa, N.: Two Party RSA Key Generation (Extended Abstract). In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999)

12. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987)

13. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-Box Construc-
tions of Protocols for Secure Computation. SIAM Journal on Computing 40(2),
225–266 (2011)

14. Ishai, Y.: Personal Communication (2011)
15. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-

ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

16. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Trans-
fer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No
Honest Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009)

18. Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Obliv-
ious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

19. Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

20. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Compu-
tation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

21. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

22. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,
Aiken Computation Laboratory, Harvard U. (1981)

23. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

24. Yao, A.: How to Generate and Exchange Secrets. In: 27th FOCS, pp. 162–167 (1986)

1/p-Secure Multiparty Computation without

Honest Majority and the Best of Both Worlds

Amos Beimel1,�, Yehuda Lindell2,��, Eran Omri2,��, and Ilan Orlov1,�

1 Dept. of Computer Science, Ben Gurion University
2 Dept. of Computer Science, Bar Ilan University

Abstract. A protocol for computing a functionality is secure if an ad-
versary in this protocol cannot cause more harm than in an ideal compu-
tation, where parties give their inputs to a trusted party which returns
the output of the functionality to all parties. In particular, in the ideal
model such computation is fair – all parties get the output. Cleve (STOC
1986) proved that, in general, fairness is not possible without an honest
majority. To overcome this impossibility, Gordon and Katz (Eurocrypt
2010) suggested a relaxed definition – 1/p-secure computation – which
guarantees partial fairness. For two parties, they construct 1/p-secure
protocols for functionalities for which the size of either their domain or
their range is polynomial (in the security parameter). Gordon and Katz
ask whether their results can be extended to multiparty protocols.

We study 1/p-secure protocols in the multiparty setting for general
functionalities. Our main result is constructions of 1/p-secure protocols
that are resilient against any number of corrupt parties provided that
the number of parties is constant and the size of the range of the func-
tionality is at most polynomial (in the security parameter n). If less than
2/3 of the parties are corrupt, the size of the domain is constant, and
the functionality is deterministic, then our protocols are efficient even
when the number of parties is log log n. On the negative side, we show
that when the number of parties is super-constant, 1/p-secure protocols
are not possible when the size of the domain is polynomial. Thus, our
feasibility results for 1/p-secure computation are essentially tight.

We further motivate our results by constructing protocols with
stronger guarantees: If in the execution of the protocol there is a major-
ity of honest parties, then our protocols provide full security. However,
if only a minority of the parties are honest, then our protocols are 1/p-
secure. Thus, our protocols provide the best of both worlds, where the
1/p-security is only a fall-back option if there is no honest majority.

1 Introduction

A protocol for computing a functionality is secure if an adversary in this protocol
cannot cause more harm than in an ideal computation, where parties give their
� Generously supported by ISF grant 938/09 and by the Frankel Center for Computer

Science.
�� Generously supported by the European Research Council as part of the ERC project

LAST, and by ISF grant 781/07.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 277–296, 2011.
c© International Association for Cryptologic Research 2011

278 A. Beimel et al.

inputs to a trusted party which, in turn, returns the output of the functionality
to all parties. This is formalized by requiring that for every adversary in the
real world, there is an adversary in the ideal world, called simulator, such that
the output of the real-world adversary and the simulator are indistinguishable
in polynomial time. Such security can be achieved when there is a majority
of honest parties [13]. Secure computation is fair – all parties get the output.
Cleve [7] proved that, in general, fairness is not possible without an honest
majority.

To overcome the impossibility of [7], Gordon and Katz [18] suggested a re-
laxed definition – 1/p-secure computation – which guarantees partial fairness.
Informally, a protocol is 1/p-secure if for every adversary in the real world, there
is a simulator running in the ideal world, such that the output of the real-world
adversary and the simulator cannot be efficiently distinguished with probabil-
ity greater than 1/p. For two parties, Gordon and Katz construct 1/p-secure
protocols for functionalities whose size of either their domain or their range
is polynomial (in the security parameter). They also give impossibility results
when both the domain and range are super-polynomial. Gordon and Katz ask
whether their results can be extended to multiparty protocols. We give positive
and negative answers to this question.

Previous Results. Cleve [7] proved that any protocol for coin-tossing without
an honest majority cannot be fully secure; specifically, if the protocol has r
rounds, then it is at most 1/r-secure. Protocols with partial fairness, under
various definitions and assumptions, have been constructed for coin-tossing [7,
8, 23, 3], for contract signing/exchanging secrets [5, 22, 10, 4, 9, 6], and for
general functionalities [26, 11, 1, 14, 25, 12, 18]. We next describe the papers that
are most relevant to our paper. Moran, Naor, and Segev [23] construct 2-party
protocols for coin tossing that are 1/r-secure (where r is the number of rounds
in the protocol). Gordon and Katz [18] define 1/p-security and construct 2-party
1/p-secure protocols for every functionality whose size of either the domain or
the range of the functionality is polynomial. Finlay, Beimel, Omri, and Orlov [3]
construct multiparty protocols for coin tossing that are O(1/r)-secure provided
that the fraction of corrupt parties is slightly larger than half. In particular,
their protocol is O(1/r)-secure when the number of parties is constant and the
fraction of bad parties is less than 2/3.

Gordon et al. [15] showed that complete fairness is possible in the two party
case for some functions. Gordon and Katz [17] showed similar results for the
multiparty case. The characterization of the functions that can be computed
with full fairness without honest majority is open. Gordon et al. [16] studied
completeness for fair computations. Specifically, they showed a specific function
that is complete for fair two-party computation; this function is also complete
for 1/p-secure two-party computation.

Ishai et al. [19] considered “best of two worlds” protocols. Such protocols
should provide full security with an honest majority and some (weaker) security
if there is only a minority of honest parties. They give positive and negative
results for the existence of such protocols. We discuss some of their results below.

1/p-Secure Multiparty Computation without Honest Majority 279

1.1 Our Results

We study 1/p-secure protocols in the multiparty setting. We construct protocols
for general functionalities that are 1/p-secure against any number of corrupt
parties provided that the number of parties is constant. Our protocols require
that the size of the range of the (possibly randomized) functionality is at most
polynomial in the security parameter. That is, we show the following feasibility
result.

Theorem (Informal). Let F be a (possibly randomized) functionality with a
constant number of parties whose size of range is at most polynomial in the
security parameter n. Then, for every polynomial p(n) there is a 1/p(n)-secure
protocol for F tolerating any number of corrupt parties.

Our results are the first general feasibility results for 1/p-secure protocols in
the multi-party setting, e.g., even for the case that there are 3 parties and two
of them might be corrupt. We provide two additional protocols that are 1/p-
secure assuming that the fraction of corrupt parties is less than 2/3. These two
protocols are more efficient than the protocols discussed above. Specifically, one
of the protocols is 1/p-secure even when the number of parties is log logn (where
n is the security parameter) provided that the functionality is deterministic and
the size of the domain of inputs is constant.

The definition of 1/p-security allows that with probability 1/p the outputs of
the honest parties will be arbitrary, e.g., for a Boolean function the outputs can
be non-Boolean. Some of our protocols are always correct, that is, they always
return an output of the functionality with the inputs of the honest parties and
some inputs for the corrupt parties. This correctness property is essential for the
best of both worlds results described below.

We further motivate our results by constructing protocols with best of both
worlds guarantees: If in the execution of the protocol there is a majority of honest
parties, then our protocols provide full security. However, if only a minority of
parties are honest, then our protocols are 1/p-secure. The protocols succeed
although they do not know in advance if there is an honest majority or not.
Specifically, we show that

Theorem (Informal). Let F be a functionality with a constant number of
parties whose size of domain and range is at most polynomial in the security
parameter n. Then, for every polynomial p(n) there is a protocol for F tolerating
any number of corrupt parties such that

– If there is an honest majority, then the protocol is fully secure.
– If there is no honest majority, then the protocol is 1/p(n)-secure.

Thus, the 1/p-security guarantee can be considered as a fall-back option if there
is no honest majority. Our protocols provide the best of both worlds, the world
of honest majority where the known protocols (e.g., [13]) provide full security
if there is an honest majority and provide no security guarantees if no such
majority exists and the world of secure computation without honest majority.

280 A. Beimel et al.

In the latter world the security is either security-with-abort or 1/p-security.
These types of security are incomparable. Ishai et al. [19] proved that there is no
general protocol which provides full security when there is an honest majority
and security-with-abort without an honest majority. Thus, our protocols provide
the best possible combination of both worlds.

Katz [21] presented a protocol, for any functionality F , with full security when
there is an honest majority, as well as 1/p-security with abort for any number
of corrupt parties. This result assumes a non-rushing adversary. In contrast, our
protocols achieve a stronger security with a minority of honest parties and can
handle the more realistic case of a rushing adversary. However, our protocols
only work with a constant number of parties and a polynomial size domain.

To complete the picture, we prove interesting impossibility results. We show
that, in general, when the number of parties is super-constant, 1/p-secure pro-
tocols are not possible without honest majority when the size of the domain is
polynomial. This impossibility result justifies the fact that in our protocols the
number of parties is constant. We also show that, in general, when the number of
parties is ω(logn), 1/p-secure protocols are not possible without honest majority
even when the size of the domain is 2. The proof of the impossibility results is
rather simple and follows from an impossibility result of [18]. Nevertheless, they
show that our general feasibility results are almost tight.

Our impossibility results should be contrasted with the coin-tossing protocol
of [3] which is an efficient 1/p-secure protocol even when m(n), the number of
parties, is polynomial in the security parameter and the number of bad parties
is m(n)/2 + O(1). Our results show that these parameters are not possible for
general 1/p-secure protocols even when the size of the domain of inputs is 2.

The above mentioned impossibility results do not rule out that the best of
two worlds results of Katz [21] can be strengthened by removing the restriction
that the adversary is non-rushing. We show that this is impossible, that is, in
general, when the number of parties is super-constant and the size of the domain
is polynomial, there is no protocol that is fully secure with an honest majority
and 1/p-secure-with-abort without such a majority.

The ideas behind our protocols. Our protocols use ideas from the protocols of
Gordon and Katz [18] and Beimel et al. [3], both of which generalize the protocol
of Moran, Naor, and Segev [23]. In addition, our protocols introduce new ideas
that are required to overcome challenges that did not occur in previous works,
e.g., dealing with inputs (in contrast to the scenario of [3]) and dealing with a
dishonest majority even after parties abort (in contrast to the scenario of [18]). In
particular, in order to achieve resilience against any number of corrupt parties
we introduce new techniques for hiding the round in which parties learn the
output of an execution. Specifically, our protocols proceed in rounds, where in
each round values are given to subsets of parties. There is a special round i� in
the protocol. Prior to round i�, the values given to a subset of parties are values
that can be computed from the inputs of the parties in this subset; starting from
round i� the values are the “correct” output of the functionality. The values
given to a subset are secret shared such that only if all parties in the subset

1/p-Secure Multiparty Computation without Honest Majority 281

cooperate they can reconstruct the value. Similar to the protocols of [23, 18, 3],
the adversary can cause harm (e.g., bias the output of the functionality) only
if it guesses i�; we show that in our protocols this probability is small and the
protocols are 1/p-secure.

In our protocols that are 1/p-secure against a fraction of 2/3 corrupt parties
(which are described in Section 4), if in some round many (corrupt) parties have
aborted and there is a majority of honest parties among the active parties, then
the set of active parties reconstructs the value given to this set in the previous
round. The mechanism to secret share the values in this protocols is similar
to [3], however, there are important differences in this sharing, as the sharing
mechanism of [3] is not appropriate for 1/p-secure computations of functionali-
ties which depend on inputs. The fact that the protocol proceeds until there is
an honest majority imposes some restrictions that imply that the protocol can
tolerate only a fraction of 2/3 corrupt parties.

Our protocols that are 1/p-secure against any number of corrupt parties
(which are described in Section 5) take a different route. To describe the ideas
of the protocol, we consider only the three-party case, where at most two par-
ties are corrupt. In the protocol if one party aborts, then the remaining two
parties execute a two-party protocol for the functionality. Again, this protocol
proceeds in rounds, where in each round each party gets a value. If the party
in the three-party protocol aborts after round i�, then all these values are the
“correct” output of the functionality. To hide i�, also prior to i�, with some
probability all these values must be equal. With the remaining probability, a
new i� is chosen with uniform distribution for the two-party protocol. In other
words, in the two-party protocol prior to the original i�, with some probability,
we chose a “fake” value of 1 for the new i� of the two-party protocol.

Open Problems. In our impossibility results the size of the range is super-
polynomial (in the security parameter). However, in all our protocols the size of
the range is polynomial. It is open if there is an efficient 1/p-secure protocol when
the number of parties is not constant and the size of both the domain and range
is polynomial. In our protocols, the number of rounds is double-exponential in
the number of parties. Our impossibility results do not rule out that this double-
exponential dependency can be improved.

The protocols of [18] are private – the adversary cannot learn any information
on the inputs of the honest parties (other than the information that it can learn
in the ideal world of computing F). The adversary can only bias the output.
Some of our protocols are provably not private (that is, the adversary can learn
extra information). However, for other protocols, we do not know whether they
are private. It is open if there are general multiparty 1/p-secure protocols that
are also private.

2 Background and the Model of Computation

A multi-party protocol with m parties is defined by m interactive probabilis-
tic polynomial-time Turing machines p1, . . . , pm. Each Turning machine, called

282 A. Beimel et al.

party, has the security parameter 1n as a joint input and a private input yj . The
computation proceeds in rounds. In each round, the active parties broadcast and
receive messages on a common broadcast channel. The number of rounds in the
protocol is expressed as some function r(n) in the security parameter (typically,
r(n) is bounded by a polynomial). At the end of the protocol, the (honest) par-
ties should hold a common value w (which should be equal to an output of a
predefined functionality).

In this work we consider a corrupt, static, computationally-bounded (i.e., non-
uniform probabilistic polynomial-time) adversary that controls some subset of
parties. That is, before the beginning of the protocol, the adversary corrupts a
subset of the parties and may instruct them to deviate from the protocol in an
arbitrary way. The adversary has complete access to the internal states of the
corrupted parties and fully controls the messages that they broadcast throughout
the protocol. The honest parties follow the instructions of the protocol.

The parties communicate via a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary sees the
messages broadcast by the honest parties before broadcasting the messages of the
corrupted parties for this round (thus, the broadcast messages of the corrupted
parties can depend on the messages of the honest parties in the same round).

In this work we consider 1/p-secure computation. Roughly speaking, we say
that a protocol Π is 1/p-secure if for every adversary A attacking Π in the
real-world there is a simulator S running in the ideal-world, such that the global
output of the real-world and the ideal-world executions cannot be distinguished
with probability greater than 1/p. The formal definitions of 1/p-security and
security with abort and cheat detection, which is a tool used in this paper, will
be given in the full version of the paper.

3 Feasibility Results for 1/p-Secure Multiparty
Computation

In this section we state our main feasibility results. Our main result asserts
that any functionality with a polynomial size range for a constant number of
parties can be 1/p-securely computed in polynomial time tolerating any number
of corrupt (malicious) parties. We next formally state this result.

Theorem 1. Let F be an m-party (possibly randomized) functionality. If en-
hanced trap-door permutations exist, and if m is constant and the size of the
range g(n) is bounded by a polynomial in the security parameter n, then for
any polynomial p(n) there is an r(n)-round 1/p(n)-secure protocol computing F
tolerating up to m− 1 corrupt parties, where r(n) =

(
p(n) · g(n)

)2O(m)

.

The protocol that implies Theorem 1 for general m will appear in the full ver-
sion of this paper. In this extended abstract we present, in Section 5, the 3-party
version of this protocol tolerating up to 2 corrupt parties. In addition, for func-
tionalities where the domain size is also bounded by a polynomial, we will present

1/p-Secure Multiparty Computation without Honest Majority 283

in the full version of this paper a protocol with somewhat stronger security prop-
erties. Using these stronger security, we can transform it into a protocol of the
best of both worlds type (see Section 6.1 for details).

We give substantially better protocols secure against an adversary that may
corrupt strictly less than two-thirds of the parties. Formally, we prove the fol-
lowing theorem.

Theorem 2. Let F be an m(n)-party (possibly randomized) functionality. Let
t(n) be such that m(n)/2 ≤ t(n) < 2m(n)/3. If enhanced trap-door permutations
exist, then for any polynomial p(n) the following hold:

– If m(n) is constant (hence, t = t(n) is constant) and the size of the range
g(n) is bounded by a polynomial, then there exists an r(n)-round 1/p(n)-
secure protocol computing F tolerating up to t corrupt parties, where r(n) =
(2p(n))2

t+1 · g(n)2
t

.
– If F is deterministic and the size of the domain d(n) is bounded by a poly-

nomial, then there exists an r(n)-round 1/p(n)-secure protocol computing
F tolerating up to t(n) corrupt parties, where r(n) = p(n) · d(n)m(n)·2t(n)

,
provided that r(n) is bounded by a polynomial.

The protocols that imply the results of Theorem 2 are presented in Section 4. As
implied by the second item of Theorem 2, the round complexity of our protocol
when F is deterministic has only a linear dependency on p(n). Specifically, this
protocol has polynomially many rounds even when the number of parties is
0.5 log logn provided that the functionality is deterministic and the size of the
domain of inputs is constant.

4 Protocols with Less Than Two-Thirds Corrupt Parties

In this section we describe our protocols that are secure when the adversary
corrupts strictly less than two thirds of the parties. We start with a protocol that
assumes that either the functionality is deterministic and the size of the domain
is polynomial, or that the functionality is randomized and both the domain
and range of the functionality are polynomial. We then present a modification
of the protocol that is 1/p-secure for (possibly randomized) functionalities if
the size of the range is polynomial (even if the size of the domain of F is not
polynomial). The first protocol is more efficient for deterministic functionalities
with polynomial-size domain. Furthermore, the first protocol has full correctness,
while in the modified protocol, correctness is only guaranteed with probability
1 − 1/p.

Following [23, 3], we present the first protocol in two stages. We first describe
in Section 4.1 a protocol with a dealer and then in Section 4.2 present a protocol
without this dealer. The goal of presenting the protocol in two stages is to
simplify the understanding of the protocol and to enable us to prove the protocol
in a modular way. In Section 4.3, we present a modification of the protocol which
is 1/p-secure if the size of the range is polynomial (even if the size of the domain
of f is not polynomial).

284 A. Beimel et al.

4.1 The Protocol for Polynomial-Size Domain with a Dealer

In this section we assume that there is a special trusted on-line dealer, denoted
T . This dealer interacts with the parties in rounds, sending messages on private
channels. We assume that the dealer knows the set of corrupt parties. In Sec-
tion 4.2, we show how to remove this dealer and construct a protocol without a
dealer.

In our protocol the dealer sends in each round values to subsets of parties;
the protocol proceeds with the normal execution as long as at least t + 1 of the
parties are still active. If in some round i, there are at most t active parties, then
the active parties reconstruct the value given to them in round i − 1, output
this value, and halt. Following [21, 15, 23, 18, 3], the dealer chooses at random
with uniform distribution a special round i�. Prior to this round the adversary
gets no information and if the corrupt parties abort the execution prior to i�,
then they cannot bias the output of the honest parties or cause any harm. After
round i�, the output of the protocol is fixed, and also in this case the adversary
cannot affect the output of the honest parties. The adversary can cause harm
only if it guesses i� and this happens with small probability.

In this extended abstract, we only give a verbal description of the proto-
col. This protocol is designed such that the dealer can be removed from it
in Section 4.2. At the beginning of the protocol each party sends its input
yj to the dealer. The corrupted parties may send any values of their choice.
Let x1, . . . , xm denote the inputs received by the dealer. If a corrupt party pj

does not send an input, then the dealer sets xj to be a random value selected
uniformly from the input domain Xn. In a preprocessing phase, the dealer T se-
lects uniformly at random a special round i� ∈ {1, . . . , r}. The dealer computes
w ← fn(x1, . . . , xm). Then, for every round 1 ≤ i ≤ r and every L ⊂ {1, . . . ,m}
such that m − t ≤ |L| ≤ t, the dealer selects an output, denoted σi

L, as fol-
lows (this output is returned by the parties in QL = {pj : j ∈ L} if the protocol
terminates in round i + 1 and QL is the set of the active parties):

Case I: 1 ≤ i < i�. For every j ∈ L the dealer sets x̂j = xj and for every j /∈ L
it chooses x̂j independently with uniform distribution from the domain Xn;
it computes the output σi

L ← fn(x̂1, . . . , x̂m).
Case II: i� ≤ i ≤ r. The dealer sets σi

L = w.

The dealer T interacts with the parties in rounds, where in round i, for 1 ≤
i ≤ r, there are of three phases:

The peeking phase. The dealer T sends to the adversary all the values σi
L

such that all parties in QL are corrupted.
The abort and premature termination phase. The adversary sends to T

the identities of the parties that abort in the current round. If there are less
than t+1 active parties, then T sends σi−1

L to the active parties, where QL is
the set of the active parties, where parties can also abort during this phase.
The honest parties return this output and halt.

The main phase. If at least t+1 parties are active, T notifies the active parties
that the protocol proceeds normally to the next round.

1/p-Secure Multiparty Computation without Honest Majority 285

If after r rounds there are at least t + 1 active parties, then T sends w to all
active parties and the honest parties output this value.

Example 1. As an example, assume that m = 5 and t = 3. In this case the dealer
computes a value σi

L for every set of size 2 or 3. Consider an execution of the
protocol where p1 aborts in round 4 and p3 and p4 abort in round 100. In this
case, T sends σ99

{2,5} to p2 and p5, which return this output.

We next hint why for deterministic functionalities, an adversary can cause harm
in the above protocol by at most O(dO(1)/r), where d = d(n) is the size of
the domain of the inputs and the number of parties, i.e., m, is constant. As in
the protocols of [23, 18, 3], the adversary can only cause harm by causing the
protocol to terminate in round i�. In our protocol, if in some round there are two
values σi

L and σi
L′ that the adversary can obtain such that σi

L �= σi
L′ , then the

adversary can deduce that i < i�. Furthermore, the adversary might have some
auxiliary information on the inputs of the honest parties, thus, the adversary
might be able to deduce that a round is not i� even if all the values that it gets
are equal. However, there are less than 2t values that the adversary can obtain
in each round (i.e., the values of subsets of the t corrupt parties of size at least
m− t). We will show that for a round i such that i < i�, the probability that all
these values are equal to a fixed value is 1/dO(1) for a deterministic function fn

(for a randomized functionality this probability also depends on the size of the
range). By [18, Lemma 2], this implies that the protocol is dO(1)/r-secure.

4.2 Eliminating the Dealer of the Protocol

We eliminate the trusted on-line dealer in a few steps using a few layers of
secret-sharing schemes. First, we change the on-line dealer, so that, in each
round i, it shares the value σi

L of each subset QL among the parties of QL using
a |L|-out-of-|L| secret-sharing scheme – called inner secret-sharing scheme. As
in protocol with the dealer (described in Section 4.1), the adversary is able to
obtain information on σi

L only if it controls all the parties in QL. On the other
hand, the honest parties can reconstruct σi−1

L (without the dealer), where QL is
the set of active parties containing the honest parties. In the reconstruction, if
an active (corrupt) party does not give its share, then it is removed from the set
of active parties QL. This is possible since in the case of a premature termination
an honest majority among the active parties is guaranteed (as further explained
below).

Next, we convert the on-line dealer to an off-line dealer. That is, we construct
a protocol in which the dealer sends only one message to each party in an initial-
ization stage; the parties interact in rounds using a broadcast channel (without
the dealer) and in each round i each party learns its shares of the ith round
inner secret-sharing schemes. In each round i, each party pj learns a share of
σi

L in a |L|-out-of-|L| secret-sharing scheme, for every set QL such that j ∈ L
and m − t ≤ |L| ≤ t (that is, it learns the share of the inner scheme). For this
purpose, the dealer computes, in a preprocessing phase, the appropriate shares

286 A. Beimel et al.

for the inner secret-sharing scheme. For each round, the shares of each party pj

are then shared in a 2-out-of-2 secret-sharing scheme, where pj gets one of the
two shares (this share is a mask, enabling pj to privately reconstruct its shares
of the appropriate σi

L although messages are sent on a broadcast channel). All
other parties get shares in a t-out-of-(m−1) Shamir secret-sharing scheme of the
other share of the 2-out-of-2 secret-sharing. We call the resulting secret-sharing
scheme the outer (t + 1)-out-of-m scheme (since t parties and the holder of the
mask are needed to reconstruct the secret).

To prevent corrupt parties from cheating, by say, sending false shares and
causing reconstruction of wrong secrets, every message that a party should send
during the execution of the protocol is signed in the preprocessing phase (to-
gether with the appropriate round number and with the party’s index). In ad-
dition, the dealer sends a verification key to each of the parties. To conclude,
the off-line dealer gives each party the signed shares for the outer secret sharing
scheme together with the verification key.

The protocol with the off-line dealer proceeds in rounds. In round i of the
protocol, all parties broadcast their (signed) shares in the outer (t + 1)-out-
of-m secret-sharing scheme. Thereafter, each party can unmask the message
it receives (with its share in the appropriate 2-out-of-2 secret-sharing scheme)
to obtain its shares in the |L|-out-of-|L| inner secret-sharing of the values σi

L

(for the appropriate sets QL’s to which the party belongs). If a party stops
broadcasting messages or broadcasts improperly signs messages, then all other
parties consider it as aborted. If m − t or more parties abort, the remaining
parties reconstruct the value of the set that contains all of them, i.e., σi−1

L . If
the premature termination occurs in the first round, then the remaining active
parties engage in a fully secure protocol (with honest majority) to compute fn.

The use of the outer secret-sharing scheme with threshold t+1 plays a crucial
role in eliminating the on-line dealer. On the one hand, it guarantees that an
adversary, corrupting at most t parties, cannot reconstruct the shares of round i
before round i. On the other hand, at least m−t parties must abort to prevent the
reconstruction of the outer secret-sharing scheme (this is why we cannot proceed
after m− t parties aborted). Furthermore, since t ≤ 2m/3, when at least m− t
corrupt parties aborted, there is an honest majority. To see this, assume that at
least m− t corrupt parties aborted. Thus, at most t− (m− t) = 2t−m corrupt
parties are active. There are m− t honest parties (which are obviously active),
therefore, as 2t − m < m− t (since t < 2m/3), an honest majority is achieved
when at least m− t parties abort. In this case we can execute a protocol with
full security for the reconstruction.

Finally, we replace the off-line dealer by using a secure-with-abort and cheat-
detection protocol computing the functionality computed by the dealer. This is
done similarly to the preprocessing phase in [3], which in turn use the results
of [24, 2]. Obtaining the outputs of this computation, an adversary is unable
to infer any information regarding the input of honest parties or the output of
the protocol (since it gets t shares of a (t + 1)-out-of-m secret-sharing scheme).
The adversary, however, can prevent the execution, at the price of at least one

1/p-Secure Multiparty Computation without Honest Majority 287

corrupt party being detected cheating by all other parties. In such an event, the
remaining parties will start over without the detected cheating party. This goes
on either until the protocol succeeds or there is an honest majority and a fully
secure protocol computing fn is executed.

Comparison with the multiparty coin-tossing protocol of [3]. Our protocol com-
bines ideas from the protocols of [18, 3]. However, there are some important
differences between our protocol and the protocol of [3]. In the coin-tossing pro-
tocol of [3], the bits σi

L are shared using a threshold scheme where the threshold
is smaller than the size of the set QL. This means that a proper subset of QL

containing corrupt parties can reconstruct σi
L. In coin-tossing this is not a prob-

lem since there are no inputs. However, when computing functionalities with
inputs, such σi

L might reveal information on the inputs of honest parties in QL,
and we share σi

L with threshold |QL|. As a result, we use more sets QL than
in [3] and the bias of the protocol is increased (put differently, to keep the same
security, we need to increase the number of rounds in the protocol). For exam-
ple, the protocol of [3] has small bias when there are polynomially many parties
and t = m/2. Our protocol is efficient only when there are constant number of
parties. As explained in Section 7, this difference is inherent as a protocol for
general functionalities with polynomially many parties and t = m/2 cannot have
a small bias.

4.3 A 1/p-Secure Protocol for Polynomial Range

Using an idea of [18], we modify our protocol so that it will have a small bias
when the size of the range of the functionality F is polynomially bounded (even
if F is randomized and has a big domain of inputs). The only modification is
the way that each σi

L is chosen prior to round i�: with probability 1/(2p) we
choose σi

L as a random value in the range of fn and with probability 1− 1/(2p)
we choose it as in Case I described in Section 4.1. More formally, in the protocol
with the dealer, in the preprocessing phase we replace Case I with the following
step:

– For each i ∈ {1, . . . , i� − 1} and for each L ⊆ [m] s.t. m− t ≤ |L| ≤ t,
• with probability 1/(2p), the dealer selects uniformly at random zi

L ∈ Zn

and sets σi
L = zi

L.
• with the remaining probability 1 − 1/(2p), the dealer chooses σi

L as in
Case I described in Section 4.1.

Similar changes are made in the protocol without the dealer.
The idea why this change improves the protocol is that now the probability

that all values held by the adversary are equal prior to round i� is larger, thus,
the probability that the adversary guesses i� is smaller. This modification, how-
ever, can cause the honest parties to output a value that is not possible given
their inputs, and, in general, we cannot simulate the case (which happens with
probability 1/(2p)) when the output is chosen with uniform distribution from
the range.

288 A. Beimel et al.

5 The 3-party Protocol Tolerating Two Corrupt Parties

In this section we describe an r-round 3-party protocol tolerating two corrupt
parties. Unlike Section 4, we directly describe our protocol without any dealer.
The formal description of the 3-party protocol, Protocol MPCFor3Protocolr,
appears in Figure 1 and Figure 2.

We next sketch the ideas of the protocol. As in all our protocols, we con-
struct a protocol with two phases. The first phase is a preliminary phase in
which the parties compute a given functionality (securely-with-abort with cheat
detection). The output of this functionality for party pj includes the messages
that pj broadcasts throughout the second phase – called the interaction phase.
For simplicity of presentation, in the rest of the paper, we assume that in the
interaction phase of the protocol the adversary is a fail-stop adversary. That is,
all parties follow the protocol with one exception: the corrupt parties may abort
the computation at any time. For our protocols, this assumption is without loss
of generality, since in each round there is a small number of messages that each
party can send. We have already demonstrated how to limit the adversary to
aborts in this case by signing (in the preprocessing phase) any such possible
message. Using this assumption, we can omit the discussion regarding signing of
the messages.

In the preliminary phase of the protocol, for each round i and for each subset
L ⊂ {1, 2, 3} of size one or two a value σi

L is chosen similarly to the way the
values in the protocols in Section 4 are chosen; this value is used by the parties
{pj : j ∈ L} if the other party/parties abort in round i + 1. Specifically, there
is a special round, called i�, chosen with uniform distribution from {1, . . . , r}.
Prior to round i�, the values chosen for each subset depends only on the inputs
of the subset: random inputs are chosen for the parties not in the subset and the
function fn is computed with the inputs of the subset and the random inputs for
other party/parties. Starting in round i�, the value of each subset is the output
w of fn on the inputs of all parties.

If no party aborts during the protocol, then each party pj outputs the value
σr
{j}. If two corrupt parties abort in some round i, then the third party pj outputs

the value σi−1
{j} . The difficult case is when one party, say p3, aborts in some round

i. In this case one of the active parties p1, p2 might be corrupt. Thus, the parties
execute a variant of the two-party r-round O(1/r)-secure protocol of [18] to
compute fn. Specifically, if i ≥ i�, then in each round of the two-party protocol
the parties get the value w (thus, an abort of p3 after round i� does not affect
the output). If i < i�, then we would like to execute the following protocol: (1)
a new special round i�{1,2},i is selected with uniform distribution from {1, . . . , r},
and (2) an r-round protocol is executed, where prior to round i�{1,2},i each party
gets a value that depends only on its input and starting from round i�{1,2},i, each
party gets σi−1

{1,2}.
The protocol sketched above is flawed: suppose now that p1, p2 are corrupt. In

each round i they can simulate the execution of the two-party protocol that they
would have executed if p3 has aborted. The first round i in which all the values

1/p-Secure Multiparty Computation without Honest Majority 289

Inputs: Each party pj holds a private input yj ∈ Xn and the joint input: the
security parameter 1n and the number of rounds r = r(n).

Computing default values:

1. Set w ← fn(x1, x2, x3) and select i� ∈ {1, . . . , r} with uniform distri-
bution.

2. For each 1 ≤ i < i� and for each j ∈ {1, 2, 3},
(a) Set L = {1, 2, 3} \ {j},
(b) With probability 1/

√
r, set i�L,i = 1. With the remaining proba-

bility, select i�L,i ∈ {1, . . . , r} with uniform distribution.
(c) Select uniformly at random ẑj ∈ Xn, for each � ∈ L set ẑ� = x�,

and set σi
L ← fn(ẑ1, ẑ2, ẑ3).

(d) For each 1 ≤ i2 < i�L,i and for each � ∈ L,
i. Set ẑ� = x� and for each j ∈ {1, 2, 3} \ {j}, select ẑj with

uniform distribution from Xn.
ii. Set σi

L,�,i2 ← fn(ẑ1, ẑ2, ẑ3).
(e) For each i�L,i ≤ i2 ≤ r and for each � ∈ {1, 2, 3}\{j}, set σi

L,�,i2 =
σi

L.
3. For each i� ≤ i < r, for each j ∈ {1, 2, 3}, for each 1 ≤ i2 ≤ r, set

L = {1, 2, 3} \ {j} and for each � ∈ L set σi
L,�,i2 = w.

4. For each 1 ≤ i < i� and for each j ∈ {1, 2, 3},
(a) Set x̂j = xj and for each � ∈ {1, 2, 3} \ {j}, select uniformly at

random x̂� ∈ Xn.
(b) Set σi

j ← fn(x̂1, x̂2, x̂3).
5. For each i� ≤ i ≤ r and for each j ∈ {1, 2, 3}, set σi

j = w.

Computing messages:

1. For each 1 ≤ i ≤ r, each 1 ≤ i2 ≤ r, each L ⊂ {1, 2, 3} s.t. |L| = 2,
and each � ∈ L, share σi

L,�,i2 in a |2|-out-of-|2| secret-sharing scheme
for the parties {pj : j ∈ L}.
For each j ∈ L, let Si

L,�,i2,j be the share of pj of the secret σi
L,�,i2

.
2. For each 1 ≤ i ≤ r and for each j ∈ {1, 2, 3},

(a) Set mi,j = σi
j ◦
(
Si
{j,�},�,i2,j

)
1≤i2≤r;�∈{1,2,3}\{j}.

(b) Share mi,j in a |3|-out-of-|3| secret-scheme. For each � ∈ {1, 2, 3},
let Si,j,� be the share of p� of the secret mi,j .

(c) For each j ∈ {1, 2, 3} compute Mi,j ← (Si,j,�)�∈{1,2,3}\{j} .

Outputs: Each party pj receives
– The messages M1,j , . . . , Mr,j that pj broadcasts during the protocol.
– pj ’s shares S1,j,j , . . . , Sr,j,j for reconstructing the values for the three

party protocol.
– pj ’s shares Si

L,j,i2,j for each 1 ≤ i ≤ r, each 1 ≤ i2 ≤ r, each L ⊂
{1, 2, 3} s.t. |L| = 2, and j ∈ L for reconstructing the values in the
two-party protocol for {p� : � ∈ L}.

Fig. 1. Functionality ShareGenFor3r

290 A. Beimel et al.

Inputs: Each party pj holds the private input yj ∈ Xn and the joint input: the
security parameter 1n and the number of rounds in the protocol r = r(n).

Preliminary phase:
1. The parties execute a secure-with-abort and cheat-detection protocol com-

puting Functionality ShareGenFor3r. Each honest party pj inputs yj as
its input for the functionality.

2. If an abort has occurred, that is, the output of the honest parties is
“ abortj” for at least one index j, then, for each such index j, the re-
maining active parties mark pj as inactive, i.e., set D = D ∪ {j} and
execute the instructions for one or two active parties with i = 1.

3. Else (no party has aborted), denote D = ∅ and proceed to the first round.
Instructions for three active parties:
In each round i = 1, . . . , r do:

(a) Each party pj broadcasts Mi,j .
(b) For every pj that aborts, all parties mark pj as inactive and the active

parties execute the instructions for one or two active parties.

At the end of round r: Each active party pj reconstructs the value σr
j ,

outputs it, and halts.
Instructions for two active parties indexed by L:

(a) If i = 1, then execute the two party protocol of [18] for the function-
ality fn(·, ·, ·) in which, the input for the aborted party is selected
uniformly at random from Xn and halt.

(b) Else, each active party pj reconstructs mi−1,j and for each round
i2 = 1, . . . , r in the two-party protocol:

i. Each active party pj where j ∈ L broadcasts the share Si−1
L,�,i2,j

where p� is the other active party.
ii. If pj aborts, then the remaining active party p� marks pj as in-

active and
– If i2 > 1, i.e., at least one round of the two-party protocol

was competed, then, p� reconstructs σi−1
L,�,i2−1, outputs it, and

halts.
– Else, if no round of the two-party protocol was competed,

then, the active party p� reconstructs the value σi−1
� from

the three party protocol, outputs it, and halts.
(c) At the end of round r: Each active party pj reconstructs the value

σi−1
L,j,r, outputs it, and halts.

Instructions for one active party p�:
(a) Set x̂� = y� and for every j ∈ D, select x̂j with uniform distribution

from Xn.
(b) Set w← fn(x̂1, x̂2, x̂3), output w, and halt.

Fig. 2. The 3-party protocol MPCFor3r for computing F

1/p-Secure Multiparty Computation without Honest Majority 291

they get in the simulated protocol are equal is i�. Thus, they can determine i�

and bias the output of the protocol with a high probability. To overcome this
problem, we modify the way that i�L,i is chosen prior to round i: with probability
O(1/

√
r) set i�L,i = 1, and with the remaining probability choose it at random

from {1, . . . , r}. Notice that the simulated protocol in the case i�L,i = 1 looks like
the simulated protocols in rounds starting from i�, thus, the probability that the
corrupted parties guess i� is O(

√
r/r) = O(1/

√
r). However, a corrupt p2 can

bias the protocol by guessing i�L,i = 1 and aborting in round 1 of the two-party
protocol. This can cause an additional bias of at most O(1/

√
r). All together,

the resulting protocol is O(1/
√
r)-secure.

We next explain how the two-party protocol is executed. The two-party proto-
col of [18] has, again, two stages: a preliminary stage and an interaction phase.
In our protocol, we have only one preliminary stage, in which all preliminary
phases of the two-party protocols are executed simultaneously. That is, in the
preliminary phase, for every round 1 ≤ i ≤ r and for every L ⊂ {1, 2, 3} of size
two, the preliminary phase of the two-party protocol of [18] is executed for L
(using σi

L and i�L,i). Let (Si
L,j)j∈L be the two outputs of the preliminary phase

that should be given to the parties indexed by L. Each Si
L,j for j ∈ L is shared

using a 3-out-of-3 secret sharing scheme. The output of the preliminary phase
of each party includes exactly one of these shares.

Later, in each interaction round i, for each L ⊂ {1, 2, 3} of size two and for
each j ∈ L, the parties pk, where k �= j, broadcast their shares of Si

L,j. Thus,
pj obtains Si

L,j while the other two parties learn nothing on it. Now, if a party,
say p3, aborts in round i, parties p1 and p2 can execute the two party protocol
of round i− 1 using Si−1

{1,2},1 and Si−1
{1,2},2 respectively.

In the above, we only sketched the protocols. The formal description of the
functionality computed by the preliminary phase appears in Figure 1 and the
protocol appears in Figure 2. The proof that the protocol is 1/p-secure will
appear in the full version of the paper. To construct a 3-party protocol for
functionalities where the size of range is small we use the same trick used in
Section 4.3: With some small probability a value given to a set is chosen from
the range prior to i� in the 3-party interaction and prior to i�L,i in the two parties’
protocols. The m-party protocols tolerating up to m − 1 corrupt parties, uses
the same ideas as our 3-party protocols. In a preliminary phase, i� and values
σi

L are chosen as above. If one party aborts in some round i, then the remaining
m − 1 parties execute our (m − 1)-party protocol, where if i ≥ i� then it uses
i�L,i = 1, and if i < i� then i�L,i = 1 with some probability and i�L,i is random
otherwise. In this (m− 1)-party protocol, if a party aborts the remaining m− 2
parties execute our (m − 2)-party protocol (again with its special round being
set to 1 with some probability), and so on.

6 Best of Both Worlds – The 1/p Way

We study the question of whether or not it is possible to construct “best of
both worlds” protocols, when the fall-back security guarantee is 1/p-security

292 A. Beimel et al.

or 1/p-security-with-abort. We investigate whether protocols with these weaker
notions of security are possible when full privacy cannot be guaranteed. In the
full version of the paper, we construct protocols that guarantee full-security
whenever less than half of the parties are corrupt, and 1/p-security-with-abort
otherwise. These protocols are simpler and more efficient than the protocols that
guarantee fall-back 1/p-(full)-security, which we describe below.

To construct the protocols that have fall-back 1/p-(full)-security, we show in
Section 6.1 how to transform 1/p-secure protocols of a certain type into pro-
tocols that retain the same security for the case of no honest majority, while
guaranteeing full-security whenever less than half of the parties executing the
protocol are corrupt. Specifically, we will prove the following theorem.

Theorem 3. Let F be an m-party (possibly randomized) functionality. If en-
hanced trap-door permutations exist, and if m is constant and the size of the
domain g(n) and the size of the range g(n) are bounded by a polynomial in
the security parameter n, then for any polynomial p(n) there is an r(n)-round
1/p(n)-secure protocol computing F tolerating up to m− 1 corrupt parties and,
in addition, guarantees full-security in the presence of an honest majority, where

r(n) = 2 · p(n)2
m ·
(
d(n) · g(n)

)2O(m)

.

A similar theorem will appear in the full version of the paper for the result of
applying the above transformation to the protocol implying the second item of
Theorem 2. The resulting protocol has polynomially many rounds even when the
number of parties is 1

2 log logn provided that the functionality is deterministic
and the size of the domain of inputs is constant.

6.1 Best of Both Worlds – The 1/p-(full)-Security Variant

In this section we show how to transform 1/p-secure protocols of a certain type
into protocols that retain the security of the original protocol for the case of
no honest majority, while guaranteeing full-security whenever less than half of
the parties executing the protocol are corrupted. Intuitively, the transformation
works if the original protocol has full security against a weaker adversary that
can only abort at the beginning of each round (i.e., before seeing the messages of
the honest parties for this round). Specifically, this transformation can be applied
to all protocols in this paper that have full correctness (namely, the protocols
that assume that the sizes of the domain and the range are polynomial). Note
that protocols that do not have full correctness (at least for the case of honest
majority) do not guarantee full-security for the case of honest majority. At the
end of this section, we will hint why the resulting protocols guarantee the desired
security notion. The full argument will appear in the full version of the paper.

The basic structure of protocols that can be transformed. For simplicity of pre-
sentation we first present our transformation for an (original) protocol with a
certain structure. Consider an m-party protocol for computing a functionality F
that has the following structure: The interaction starts with a preliminary phase
in which the parties execute a secure-with-abort with cheat-detection protocol

1/p-Secure Multiparty Computation without Honest Majority 293

for computing the messages that the parties are to send in the next r interaction
rounds; after this phase, each party pj holds a (signed) message M i

j for each
round 1 ≤ i ≤ r. In each interaction round i, each party pj broadcasts the mes-
sage M i

j . Any failure of party pj to broadcast the signed message as prescribed
by the protocol is considered as an abort of pj . The adversary can cause the
protocol to prematurely terminate by instructing some tA < �m

2 � corrupted par-
ties to abort. Unless premature termination takes place, the protocol proceeds
normally (that is, as long as less than tA of parties have aborted). In the case of
premature termination, the remaining parties engage in a protocol ΠTERM for
agreeing on the output of the protocol, based on the view of the parties in the
protocol so far. More specifically, the decision upon the output is based on the
outputs of the (remaining) parties from the preliminary phase, on the messages
broadcast until round i− 1, and on the set of parties that have aborted D.

Indeed, all our protocols that were described in previous sections have the
above structure. For the sake of being concrete, however, in the following we
will describe the transformation as applied to the protocol of Section 4.2. In
this protocol ΠTERM is a protocol for reconstructing the output that is always
executed with a guaranteed honest majority.

The transformation. The core of the change is a mask we add to the messages
of the parties in each round. This mask is shared in a (

⌊
m
2

⌋
+1)-out-of-m secret-

sharing scheme. Hence, the messages of the parties disclose the original messages
if and only if a majority of the parties work together to reconstruct the appro-
priate masks. Below we explain this change in more detail.

Denote by M i
j the message that party pj is instructed to broadcast in round

i of the original protocol. That is, the output of party pj from the preliminary
phase of the original protocol includes the messages M1

j , . . . ,M
r
j . In the prelimi-

nary phase of the new protocol a random string ri
j will be selected for each party

pj and each round i, and the sequence M̂1
j , . . . , M̂

r
j will be given to party pj ,

where M̂ i
j = M i

j ⊕ ri
j . In addition, each party will also receive a share of ri

j in
a (
⌊

m
2

⌋
+ 1)-out-of-m Shamir secret-sharing scheme. The message M̂ i

j and the
shares of its mask ri

j are all signed.
Each interaction round of the original protocol is turned into a two-phased

round in the new protocol. In the first phase, each party pj broadcasts the
message M̂ i

j . In the second phase, the parties reconstruct all masks of round i by
broadcasting all shares of masks ri

j , for 1 ≤ j ≤ m. If both phases are completed,
then the parties have the same information as in the original protocol. Any
failure of party pj to broadcast the signed message as prescribed by the protocol
is considered as an abort of pj (including messages added by the transformation).

The adversary can cause the protocol to prematurely terminate only by in-
structing some tA < �m

2 � corrupted parties to abort. We handle such premature
termination in round i by instructing the parties to behave as if premature
termination has occurred at the beginning or at the end of round i (i.e., at the
beginning of round i+1). Specifically, if premature termination takes place before
the reconstruction of the masks (in the second phase of round i) is completed,

294 A. Beimel et al.

then the remaining parties will behave as if the original protocol was terminated
at the beginning of round i. That is, they will engage in a protocol ΠTERM for
agreeing on the output of the protocol, based on the messages broadcast until
round i − 1 and on the set of parties that have aborted D. Otherwise, if the
reconstruction of the masks was completed before the abort, then the remaining
parties will behave as if the original protocol was terminated at the beginning
of round i + 1.

The security of the new protocol. In the full version of this paper, we argue that
applying the above transformation to any of the our protocols that assume that
the domain and the range are polynomial, results in a protocol that is (i) fully
secure against a malicious adversary that can corrupt any strict minority of the
parties, and (ii) 1/p-secure against a malicious adversary that can corrupt up to
t parties. Furthermore, we will show that this is true for any protocol that has
the structure defined above and, in addition, satisfies a few simple requirements.

We now give some intuition for why this is true if the transformation is applied
to the protocol of Section 4.2. We need to consider two cases. In the case that
at list half of the parties are malicious, it is quite straightforward to see that the
adversary attacking the transformed protocol is not any more powerful than an
adversary for the original protocol, since once the adversary sees the messages
of the corrupted parties, the masks add no new information.

In the case of an honest majority, the shares of ri
j that the corrupted parties

see, do not reveal anything to the adversary as long as the shares of honest
parties are not revealed (these shares are only revealed in the second phase
of round i). Thus, if the adversary causes a premature termination during the
first phase of round i, then it has no more information than is obtained in
the original protocol (by an adversary corrupting the same subset of parties)
until the beginning of round i. If it aborts after the first phase, then the honest
parties will succeed in reconstructing the masks. Thus, the adversary is no more
powerful then an adversary for the original protocol that can only abort at
the beginning of each round. However, the security of the original protocol can
only be violated if the adversary causes premature termination during round i�.
Finally, the reconstruction is fully secure in the presence of an honest majority.

7 Impossibility of 1/p-secure Computation with
Non-constant Number of Parties

For deterministic functions, our protocols are efficient when the number of parties
m is constant and the size of the domain or range is at most polynomial (in
the security parameter n) or when the number of parties is log logn and the
size of the domain is constant. We show that, in general, there is no efficient
protocol when the number of parties is m(n) = ω(1) and the size of the domain
is polynomial and when m(n) = ω(logn) and the size of the domain of each
party is 2. That is, we prove the following two theorems.

1/p-Secure Multiparty Computation without Honest Majority 295

Theorem 4. For every m(n) = ω(logn), there exists a deterministic m(n)-
party functionality F ′ with domain {0, 1} that cannot be 1/p-securely computed
for p ≥ 2 + 1/ poly(n) without an honest majority.

Theorem 5. For every m(n) = ω(1), there exists a deterministic m(n)-party
functionality F ′′ with domain {0, 1}log n that cannot be 1/p-securely computed
for p ≥ 2 + 1/ poly(n) without an honest majority.

7.1 Impossibility of Achieving “The Best of Both Worlds” for
General Functionalities

Above we showed that 1/p-secure computation is impossible in general when the
number of parties is m(n) = ω(1) and the size of the domain is polynomial and
when m(n) = ω(logn) and the size of the domain of each party is 2. Since a “Best
of Both Worlds” type protocol with fall-back 1/p-security is in particular 1/p-
secure, the same impossibility results are implied for protocols of this type (i.e.,
guaranteeing full-security with an honest majority and 1/p-security otherwise).
We show that such protocols are impossible in general, even when allowing the
fall-back security to be the weaker notion of 1/p-security-with-abort. Hence, we
show that the results discussed in Section 6 are somewhat optimal.

We start by showing in that for general functionalities (i.e., where both do-
mains and both ranges may be super-polynomial), it is impossible to construct
even 3-party protocols that simultaneously achieve full-security for the case of
honest majority (i.e., at most one corrupted party) and 1/p-security-with-abort
with no honest majority. We then use this result to prove general impossibility
results, that is, to prove the two following theorems:

Theorem 6. For every m(n) = ω(logn), there exists a deterministic m(n)-
party functionality F ′ with domain {0, 1} that cannot be computed simultaneously
guaranteeing full-security with an honest majority and 1/p-security-with-abort
for p ≥ 2 + 1/ poly(n) against an adversary controlling $m(n)/2% + 1 parties.

Theorem 7. For every m(n) = ω(1), there exists a deterministic m(n)-party
functionality F ′′ with domain {0, 1}log n that cannot be computed simultaneously
guaranteeing full-security with an honest majority and 1/p-security-with-abort
for p ≥ 2 + 1/ poly(n) against an adversary controlling $m(n)/2% + 1 parties.

References

[1] Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
FOCS, pp. 468–473 (1989)

[2] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
22nd STOC, pp. 503–513 (1990)

[3] Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010)

[4] Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A fair protocol for signing con-
tracts. In: 12th ICALP, pp. 43–52 (1985)

296 A. Beimel et al.

[5] Blum, M.: How to exchange (secret) keys. ACM Trans. Comput. Syst. 1(2), 175–
193 (1983)

[6] Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

[7] Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: 18th STOC, pp. 364–369 (1986)

[8] Cleve, R.: Controlled gradual disclosure schemes for random bits and their ap-
plications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 573–588.
Springer, Heidelberg (1990)

[9] Damg̊ard, I.: Practical and provably secure release of a secret and exchange of
signatures. J. of Cryptology 8(4), 201–222 (1995)

[10] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
CACM 28(6), 637–647 (1985)

[11] Galil, Z., Haber, S., Yung, M.: Cryptographic computation: Secure fault toler-
ant protocols and the public-key model. In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)

[12] Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

[13] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th
STOC, pp. 218–229 (1987)

[14] Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

[15] Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: 40th STOC, pp. 413–422 (2008)

[16] Gordon, D. S., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primi-
tives for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108.
Springer, Heidelberg (2010)

[17] Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35.
Springer, Heidelberg (2009)

[18] Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

[19] Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the “best
of both world” in secure multiparty computation. SIAM J. on Computing 40(1)
(2011) (Journal version of [20, 21])

[20] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

[21] Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: 39th STOC, pp. 11–20 (2007)

[22] Luby, M., Micali, S., Rackoff, C.: How to simultaneously exchange a secret bit by
flipping a symmetrically-biased coin. In: 24th FOCS, pp. 11–21 (1983)

[23] Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

[24] Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: 36th STOC, pp. 232–241 (2004)

[25] Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

[26] Yao,A.C.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986)

Leakage-Resilient Zero Knowledge

Sanjam Garg, Abhishek Jain�, and Amit Sahai�

UCLA
{sanjamg,abhishek,sahai}@cs.ucla.edu

Abstract. In this paper, we initiate a study of zero knowledge proof sys-
tems in the presence of side-channel attacks. Specifically, we consider a
setting where a cheating verifier is allowed to obtain arbitrary bounded
leakage on the entire state (including the witness and the random coins) of
the prover during the entire protocol execution. We formalize a meaningful
definition of leakage-resilient zero knowledge (LR-ZK) proof system, that
intuitively guarantees that the protocol does not yield anything beyond the
validity of the statement and the leakage obtained by the verifier.

We give a construction of LR-ZK interactive proof system based on
standard general assumptions. To the best of our knowledge, this is the
first instance of a cryptographic interactive protocol where the adversary
is allowed to perform leakage attacks during the protocol execution on
the entire state of honest party (in contrast, prior work only considered
leakage prior to the protocol execution, or very limited leakage during
the protocol execution). Next, we give an LR-NIZK proof system based
on standard number-theoretic assumptions.

Finally, we demonstrate the usefulness of our notions by giving two
concrete applications:
– We initiate a new line of research to relax the assumption on the

“tamper-proofness” of hardware tokens used in the design of various
cryptographic protocols. In particular, we give a construction of a
universally composable multiparty computation protocol in the leaky
token model (where an adversary in possession of a token is allowed
to obtain arbitrary bounded leakage on the entire state of the token)
based on standard general assumptions.

– Next, we give simple, generic constructions of fully leakage-resilient
signatures in the bounded leakage model as well as the continual
leakage model. Unlike the recent constructions of such schemes, we
also obtain security in the “noisy leakage” model.

1 Introduction

Zero knowledge proof systems, introduced in the seminal work of Goldwasser,
Micali and Rackoff [31], have proven fundamental to cryptography. Very briefly,
a zero knowledge proof system is an interactive proof between two parties – a
� Research supported in part from a DARPA/ONR PROCEED award, NSF grants

0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 297–315, 2011.
c© International Association for Cryptologic Research 2011

298 S. Garg, A. Jain, and A. Sahai

prover, and a verifier – with the remarkable property that the verifier does not
learn anything beyond the validity of the statement being proved. Subsequent
to their introduction, zero knowledge proofs have been studied in various adver-
sarial settings such as concurrency attacks [23], malleability attacks [22], to list
a few, with very successful results. Over the years, zero knowledge proofs (and
its various strengthened notions) have turned to be extremely useful, finding
numerous applications in the design of various cryptographic protocols.

We note that the standard definition of zero knowledge proofs, like most
classical security notions, assumes that an adversary is given only black-box ac-
cess to the honest party algorithms. Unfortunately, over the last two decades,
it has become increasingly evident that such an assumption may be unrealistic
when arguing security in the real world where the physical implementation (e.g.
on a smart card or a hardware token) of an algorithm is under attack. Moti-
vated by such a scenario, in this paper, we initiate a study of zero knowledge
proof systems in the presence of side-channel attacks [46,5,61,28,37]. Specifi-
cally, we study zero knowledge proofs in the intriguing setting where a cheating
verifier, in addition to receiving a proof of some statement, is able to obtain
arbitrary bounded leakage on the entire state (including the witness and the
random coins) of the prover during the entire protocol execution. We note that
while there has been an extensive amount of research work on leakage-resilient
cryptography in the past few years, to the best of our knowledge, almost all
prior work has either been on leakage resilient primitives such as encryption and
signature schemes [24,2,59,21,4,56,44,18,25,3,45,10,19,20,48,51,9,47], or leakage-
resilient (and tamper-resilient) devices [41,40,26,1], while very limited effort
has been dedicated towards constructing leakage-resilient interactive protocols.
To the best of our knowledge, the recent works on correlation extractors [39],
and leakage-resilient identification and authenticated key agreement protocols
[4,20,19] come closest to being considered in the latter category. However, we
stress that in all these works, either leakage attacks are allowed only prior to
the protocol execution, or very limited leakage is allowed during the protocol
execution; in contrast, we consider the setting where the adversary can obtain
leakage on the entire state of the honest party during the protocol execution.

We find it imperative to stress that handling leakage attacks on interactive
protocols can be particularly challenging. On the one hand, for the leakage at-
tacks to be meaningful, we would want to allow leakage on the secret state of the
protocol participants. However, the state of a party typically includes a secret
value (witness and random coins of the prover in the case of zero knowledge
proofs) and any leakage on that secret value might immediately violate a secu-
rity property (e.g., the zero knowledge property) of the protocol. Then, coming
back to setting of zero knowledge proofs, it is not immediately clear how to even
define “leakage-resilient zero knowledge.”

How to define Leakage-Resilient Zero Knowledge? One possibility is to
pursue an assumption such as only computation leaks information [53] (i.e., as-
suming that there is no leakage in the absence of computation). While this
is a valuable and interesting approach, we note that this assumption is often

Leakage-Resilient Zero Knowledge 299

problematic (e.g. cold-boot attacks [37]). In our work here, therefore, we do
not make any such assumption. We seek a general definition maximizing the
potential applicability of that definition to different application scenarios.

Another possibility is to allow a “leakage-free pre-processing phase” prior to
the actual protocol execution, in an attempt to render the leakage attacks dur-
ing the protocol useless. We note, however, that allowing pre-processing would
limit the applicability of our notion. In particular, such a definition would be
problematic for scenarios where the statement to be proven is generated “on-
line” (thereby eliminating the possibility of pre-processing the witness “safely”).
Furthermore, we give strong evidence that such an approach is unlikely to yield
better guarantees than what we are able to achieve (see the full version for
further discussion on this issue).

Indeed, our goal is to obtain a meaningful and appropriate definition of zero
knowledge in the model where an adversarial verifier can obtain leakage on any
content (state) of the prover machine at any time. We do not consider any
“leakage-free” time-period; in particular, any pre-processing phase is subject to
leakage as well. However, in such a setting, it is important to note that since
the adversary could simply choose to leak on the witness (and no other prover
state), the zero knowledge simulator must be able to obtain similar amount of
leakage in order to perform correct simulation. We shall see that even with this
limitation, our notion turns out to be both quite nontrivial to obtain and very
useful in application scenarios.

Our Definition – Informally. To this end, we consider a definition of leakage-
resilient zero knowledge that provides the intuitive guarantee that the protocol
does not yield anything beyond the validity of the statement and the leakage ob-
tained by the adversary. In other words, whatever an adversary “learns” from
the protocol (with leakage) should be no more than what she can learn from
only the leakage without running the protocol. To formalize the above intuition,
as a first step, we consider a leakage oracle that gets as private input the witness
of the honest prover; the zero knowledge simulator is then given access to such a
leakage oracle. More concretely, we consider a parameter λ, and say that an in-
teractive proof system is λ-leakage-resilient zero knowledge (LR-ZK) if for every
cheating verifier, there exists a simulator with access to a leakage oracle (that
gets the honest prover’s witness as private input) that outputs a view of the ver-
ifier (indistinguishable from the real execution), with the following requirement.
Let � bits be an upper bound on the total amount of leakage obtained by the
adversarial verifier. Then the simulator is allowed to obtain at most λ · � bits of
leakage. (In the full version, we show that constructing an LR-ZK proof system
with λ < 1 is in fact impossible.)

Applications of Our Definition. Now that we have a definition for LR-ZK
proof system, one may question how meaningful it is. As we now discuss, the
above definition indeed turns out to be very useful. Intuitively, our definition
is appropriate for a scenario where a leakage-resilient primitive A is being used
in conjunction with a zero knowledge proof system (where the proof system is
used to prove some statement about A), in the design of another cryptographic

300 S. Garg, A. Jain, and A. Sahai

protocol B. The reason for this is that our definition of LR-ZK allows us to di-
rectly reduce the leakage-resilience property of B on the leakage-resilience prop-
erty of A.

As an application of our LR-ZK interactive proof system, we first construct
a universally composable (UC) multiparty computation protocol in the leaky
token model (which is a relaxation of the model of Katz [43] in that a malicious
token user is now allowed to leak arbitrary bounded information on the entire
state of the token). Very briefly, we use leakage-resilient hard relations [20] and
hardware tokens that implement the prover algorithm of our LR-ZK proof system
where we prove the validity of an instance of the hard relation; then the leakage
on the state of the token can be easily “reduced” to leakage on (the witness
corresponding to) an instance of the hard relation.

Next, we are able to extend the notion of LR-ZK to the non-interactive set-
ting in a natural way. Then, as an application of LR-NIZKs, we give generic
constructions of fully leakage-resilient (FLR) signature schemes (where leakage
is allowed on the entire state as opposed to only the secret key). Very briefly, we
use leakage-resilient hard relations in conjunction with “simulation-extractable”
LR-NIZKs (see below); we are then able to reduce the leakage-resilience prop-
erty of the signature scheme to that of the hard relation. We now summarize
our results.

1.1 Our Results

We first study the possibility of constructing leakage-resilient zero knowledge
protocols and obtain the following results:

– We construct a (1+ ε)-leakage-resilient zero knowledge interactive proof sys-
tem (where ε is any positive constant) based on standard general assumptions
(specifically, the existence of a statistically hiding commitment scheme that
is public-coin w.r.t. the receiver). To the best of our knowledge, this is the
first instance of a cryptographic interactive protocol where an adversary is
allowed to obtain arbitrary bounded leakage on the entire state of the honest
parties during the protocol execution.

– Next, we consider the non-interactive setting and show that any NIZK proof
system with honest prover state reconstruction property [36] is an LR-NIZK
proof system for λ = 1. As a corollary, we obtain an LR-NIZK proof system
from [36] based on the decisional linear assumption.

We supplement our above positive results by proving the impossibility of con-
structing an LR-ZK proof (or argument) system for λ < 1. Then, as applications
of leakage-resilient zero knowledge, we obtain the following results:

– We initiate a new line of research to relax the assumption on the “tamper-
proofness” of hardware tokens used in the design of various cryptographic
protocols. In particular, assuming semi-honest oblivious transfer, we give
a construction of a universally composable (UC) multiparty computation
protocol in the leaky token model, where the token user is allowed to obtain

Leakage-Resilient Zero Knowledge 301

arbitrary bounded leakage on the entire state of the token. We stress that all
prior works on designing cryptographic protocols using hardware tokens, in-
cluding the work on UC secure computation [43,14,54,15], made the implicit
assumption that the tokens are completely leakage-resilient.

– Next, we extend the notion of leakage-resilient NIZKs to incorporate the
property of simulation-extractability [63,17] (also see [58] in the context of
interactive proofs), in particular, the “true” variant [20]. We are then able
to adapt the approach of Katz and Vaikuntanathan [44], and in particular,
Dodis et al [20,19] (who use a leakage-resilient hard relation in conjunc-
tion with a true simulation-extractable NIZK argument system to construct
leakage-resilient signatures) to the setting of full leakage. As a result, we ob-
tain simple, generic constructions of fully leakage-resilient signature schemes
in the bounded leakage model as well as the continual leakage model. Simi-
lar to [20,19], our signature scheme inherits the leakage-resilience properties
(and the leakage bounds) of the hard relation used in its construction.1 In
contrast to the recent constructions of FLR signature schemes by [51,9,47]
in the standard model2, our scheme is also secure in the noisy leakage model
[56]. We supplement our result by showing that a true simulation-extractable
leakage-resilient NIZK argument system is implied by the UC-NIZK of Groth
et al. [36], which can be based on the decisional linear assumption.

1.2 Our Techniques

We now briefly discuss the main techniques used to obtain our positive results on
leakage-resilient zero knowledge proof systems. Recall that our goal is to realize
a definition where a cheating verifier does not learn anything from the protocol
beyond the validity of the statement and the leakage information obtained from
the prover. Further, recall that in our definition, simulator is given access to a
leakage oracle that gets the honest prover’s witness as private input and accepts
leakage queries on the witness string. (In contrast, the verifier is allowed to
make leakage queries on the entire state, including the witness and the random
coins used by the prover thus far in the protocol execution.) Then, during the
simulation, on receiving a leakage query from the verifier, our simulator attempts
to convert it into a “valid” query to the leakage oracle. Now, note that the
simulator may be cheating in the protocol execution (which is typically the case
since it does not possess a valid witness); then, since the verifier can arbitrarily
leak on both the witness and the random coins (which completely determine
the actions of the prover thus far), at every point in the protocol execution,
the simulator must find a way to “explain its actions so far”. Note that this is
reminiscent of adaptive security [7,11,13,50] in the context of secure computation

1 As such, if we use the key pairs from the encryption scheme of Lewko et al [47] as
a hard relation, then our signature scheme can tolerate leakage during the update
process as well.

2 Earlier, FLR signature schemes were constructed either only in the random oracle
model [4,20,10], or were only “one-time” [44].

302 S. Garg, A. Jain, and A. Sahai

protocols. We stress, however, that adaptive security does not suffice to achieve
the property of leakage-resilient zero knowledge in the interactive proofs setting,
as we explain below.

Recall that the notion of adaptive security corresponds to the setting where
an adversary is allowed to corrupt parties during the protocol execution (as
opposed to static corruption, where the parties can only be corrupted before the
protocol begins). Once a party is corrupted, the adversary learns the entire state
(including the input and random coins) of that party. The adversary may choose
to corrupt several parties (in the case of multi-party protocols) throughout the
course of the protocol. The notion of adaptive security guarantees security for
the remaining uncorrupted parties.

While adaptive corruption itself is not our focus, note that in our model, a
cheating verifier may obtain leakage on the prover’s state at several points during
the protocol execution. Furthermore, the honest prover may not even be aware
as to what was leaked. Our goal is to guarantee that the adversary does not
learn anything beyond the leaked information. Then, in order to provide such
a guarantee, note that our simulator must continue to simulate the prover even
after leakage happens, in a way that is consistent with the leaked information
even though it does not know the prover’s witness or what information was
leaked. In contrast, the simulator for adaptively secure protocols does not need
to simulate a party once it is corrupted.3 In summary, we wish to guarantee
some security for the honest party even after leakage happens, while adaptive
security does not provide any such guarantees. We stress that this difference is
crucial, and explains why known techniques for achieving adaptive security do
not suffice for our purposes. Nevertheless, as we explain below, adaptive security
serves as a good starting point for our purpose.

Recall that the main challenge in the setting of adaptive security is that
whenever an adversary chooses to corrupt a party, the simulator must be able to
explain its random coins, in a way that is consistent with the party’s input and
the messages it generated so far in the protocol. The main technique for over-
coming this challenge is to allow the simulator to equivocate. For our purposes,
we will also make use of equivocation so that the leakage queries can be answered
correctly by the simulator. However, since our simulator would need to simulate
the prover even after leakage happens (without the knowledge of the prover’s
witness or the information that was leaked), we do not want this equivocation
to interfere with the simulation of prover’s messages. In other words we want
to be able to simulate the prover’s messages independent of what information
is being leaked but still remain consistent with it. Our solution is to have two
separate and independent ways of cheating at the simulator’s disposal. It will
use one way to cheat in the protocol messages and the second way is reserved
for answering the leakage queries correctly. Furthermore, we would need to make
sure that the simulator does not “step on its own toes” when using the two ways
to cheat simultaneously.

3 Indeed, for this reason, known adaptively secure ZK protocols are not leakage-
resilient.

Leakage-Resilient Zero Knowledge 303

We now briefly discuss the actual construction of our protocol in order to
illustrate the above ideas. We recall two well-known ways of constructing constant-
round zero knowledge protocols – the Feige-Shamir [27] approach of using equiv-
ocal commitments (also used in adaptive security), and the Goldreich-Kahan [29]
approach of requiring the verifier to commit to its challenges in advance. Now,
armed with the intuition that our simulator will need two separate ways of cheat-
ing, we use both the above techniques together. Our protocol roughly consists of
two phases: in the first phase, the verifier commits to a challenge string using a
standard challenge-response based extractable commitment scheme (in a manner
similar to [62]); in the second phase, we execute the Blum-Hamiltonicity protocol
instantiated with an equivocal commitment scheme. While leakage during the
first phase can be handled easily by our simulator, handling leakage during the
second phase makes use of the ideas discussed above.

Unfortunately, although the above construction seems to satisfy most of our
requirements, it fails on the following account. Recall that our goal is to obtain
a leakage-resilient zero knowledge protocol with nearly optimal precision (i.e.,
λ = 1 + ε) with respect to the leakage queries of the simulator. Now note that
in the above construction, the simulator would need to extract the verifier’s
challenge in the first phase by means of rewinding before proceeding to phase
two of the protocol. Then, depending upon the verifier’s behavior, the simulator
may need to perform several rewinds in order to succeed in extraction. Now,
note that a cheating verifier may be able to make a different leakage query
during each rewind, thus forcing our simulator to make a new query as well to
its leakage oracle. As a result, depending upon the number of such rewinds, the
total leakage obtained by the simulator may potentially become a polynomial
factor of the leakage obtained by the adversary in a real execution.

In order to obtain a precision in the leakage queries of the simulator, we
borrow techniques from the work on precise zero knowledge pioneered by Micali
and Pass [52]. We remark that in the context of precise ZK, (for fundamental
reasons of modeling) it is typically not possible to obtain a precision of almost
1. In our case, however, we are able to achieve a precision of λ = 1 + ε (where ε
is any positive constant) with respect to the leakage queries of the simulator.

Finally, we note that in the case of non-interactive zero knowledge, since the
simulator does not need to simulate any “future messages” after the leakage,
we are indeed able to show that an adaptively secure NIZK is also a leakage-
resilient NIZK. Specifically, we show that any NIZK with honest prover state
reconstruction property, as defined by Groth et al. [36] (in the context of adaptive
security), is also a leakage-resilient NIZK with λ = 1.

Related Work. In a very recent and exciting concurrent work, Canetti et al.
consider a model of leakage in the context of UC protocols [8].

2 Leakage-Resilient Zero Knowledge: Interactive Case

We consider the scenario where a malicious verifier can obtain arbitrary bounded
leakage on the entire state (including the witness and the random coins) of the

304 S. Garg, A. Jain, and A. Sahai

prover during the protocol execution. We wish to give a meaningful definition
of zero knowledge interactive proofs in such a setting. To this end, we first
modify the standard model for zero knowledge interactive proof system in order
to incorporate leakage attacks and then proceed to give our definition.

We model the prover P and the verifier V as interactive turing machines that
have the ability to flip coins during the protocol execution (such that the random
coins used by a party in any round are determined only at the beginning of that
round). In order to incorporate leakage attacks, we allow a malicious verifier V ∗

to make adaptive leakage queries on the state of the prover during the protocol
execution. A leakage query to the prover consists of an efficiently computable
function fi (described as a circuit), to which the prover responds with fi(state),
where state is a variable that denotes the “current state” of the prover at any
point during the protocol execution. The variable state is initialized to the
witness of the prover. At the completion of each step of the protocol execution
(that corresponds to the prover sending a protocol message to the verifier), the
random coins used by the prover in that step are appended to state. That is,
state := state‖ri, where ri denote the random coins used by the prover in that
step. The verifier may make any arbitrary polynomial number of such leakage
queries during the protocol execution. Unlike prior works, we do not require an
a-priori bound on the total leakage obtained by the verifier in order to satisfy
our definition (described below). Nevertheless, in order for our definition to be
meaningful, we note that the total leakage obtained by the verifier must be
smaller than the witness size.

We model the zero knowledge simulator S as a ppt machine that has access
to a leakage oracle Lk,λ

w (·) that is parameterized by the honest prover’s witness
w, a leakage parameter λ (see below), and the security parameter k. A query to
the oracle consists of an efficiently computable function f(·), to which the oracle
answers with f(w). In order to bound the total leakage available to the simulator,
we consider a parameter λ and require that if the verifier obtains � bits of total
leakage in the real execution, then the total leakage obtained by the simulator
(from the leakage oracle) must be bounded by λ · � bits. Finally, we require that
the view output by the simulator be computationally indistinguishable from the
verifier’s view in the real execution. We formalize this in the definition below.

Definition 1 (Leakage-Resilient Zero Knowledge). An interactive proof
system 〈P, V 〉 for a language L with a witness relation R is said to be λ-leakage-
resilient zero knowledge if for every ppt machine V ∗ that makes any arbitrary
polynomial number of leakage queries on P ’s state (in the manner as described
above) with � bits of total leakage, there exists a ppt algorithm S that obtains
at most λ · � bits of total leakage from a leakage oracle Lk,λ

w (·) (as defined above)
such that for every (x,w) ∈ R, every z ∈ {0, 1}∗, viewV ∗(x, z) and SLk,λ

w (·)(x, z)
are computationally indistinguishable.

Some observations on the above definition are in order.

Leakage parameter λ. Note that when λ = 0, no leakage is available to the
simulator (as is the case for the standard zero knowledge simulator). In this

Leakage-Resilient Zero Knowledge 305

case, our definition guarantees the standard zero knowledge property. It is not
difficult to see that it is impossible to realize such a definition. In fact, as we
show in the full version, it is impossible to realize the above definition for any
λ < 1, where ε is any constant less than 1. On the other hand, in Section 2.1,
we give a positive result for λ = 1 + ε, where ε is any positive constant. The
meaningfulness of our positive result stems from the observation that when λ is
close to 1, very roughly, our definition guarantees that a malicious verifier does
not learn anything from the protocol beyond the validity of the statement being
proved and the leakage obtained from the prover.

Leakage-oblivious simulation. Note that in our definition of leakage resilient
zero-knowledge, (apart from the total output length) there is no restriction on
the nature of leakage queries that the simulator may make to the leakage oracle.
Then, since the simulator has indirect access to the honest prover’s witness (via
the leakage oracle), it may simply choose to leak on the witness (regardless of the
leakage queries of the verifier) in order to help with the simulation of protocol
messages instead of using the leakage oracle to only answer the leakage queries of
the verifier. We stress that this issue should not affect any potential application
of leakage resilient zero-knowledge that one may think of. Nonetheless, we think
that this is an important issue since it relates to the meaningfulness of the
definition. To this end, we note that this issue can easily handled by putting
a restriction on how the simulator accesses the leakage oracle. Specifically, we
can model the interaction between the simulation and the oracle such that the
simulator is not allowed to look at the oracle’s responses to its queries. The
simulator is still allowed to look at the leakage queries of the verifier, and use
them to create new queries for the oracle; however, the oracle’s responses are
sent directly to the verifier and the simulator does not get to seem them. We call
such simulators leakage-oblivious. We note that the simulator that we construct
for our protocol 〈P, V 〉 (described in the next subsection) is leakage-oblivious.4

2.1 Our Protocol

We now proceed to give our construction of a leakage-resilient zero knowledge
interactive proof system as per Definition 1. Very roughly speaking, our protocol
can be seen as a combination of Feige-Shamir [27] and Goldreich-Kahan [29], in
that we make use of equivocal commitments from the prover’s side, as well as
require the verifier to commit to all its challenges in advance. Note that while
either of the above techniques would suffice for standard simulation, interestingly,
we need to use them together to help the simulator handle leakage queries from
a cheating verifier. We now describe our protocol in more detail.

Let P and V denote the prover and verifier respectively. Our protocol 〈P, V 〉
proceeds in three stages, described as follows. In Stage 1, V commits to its
challenge and a large random string r′ using a challenge-response based PRS [60]
style preamble instantiated with a public-coin statistically hiding commitment

4 Indeed, since we cannot rule out of obfuscation of arbitrary functionalities, we do not
know how to obtain a formal proof without making the simulator leakage-oblivious.

306 S. Garg, A. Jain, and A. Sahai

scheme [57,38,16]. In Stage 2, P and V engage in coin-flipping (that was initiated
in Stage 1 when V committed to r′) to jointly compute a random string r. Finally,
in Stage 3, P and V run k (where k denotes the security parameter) parallel
repetitions of the 3-round Blum Hamiltonicity protocol, where P uses Naor’s
commitment scheme [55] to commit to the permuted graphs in the first round.
Here, for each bit commitment i, P uses a different substring ri (of appropriate
length) of r as the first message of Naor’s commitment scheme. Protocol 〈P, V 〉 is
described in Figure 1. Intuitively, the purpose of multiple challenge response slots
in Stage 1 is to allow the simulator to extract the values committed by V ∗ with
minimal use of the leakage oracle. With the knowledge of the extracted values,
the simulator can force the output of the coin-flipping to a specific distribution
of its choice. This, in turn, allows the simulator to convert Naor’s commitment
scheme into an equivocal commitment scheme during simulation.

Common Input: A k-vertex graph G.
Private Input to P : A Hamiltonian Cycle H in graph G.

Parameters: Security parameter 1k, n = ω(log(k)), t = 3k4, ε > 0. Without loss of
generality, we assume that 1

ε
is an integer.

Stage 1 (Commitment phase)

V � P : Commit to a t-bit random string r′ and (n2

ε
)-pairs of random shares{

r′
0
i,j , r

′1
i,j

}i= n
ε

,j=n

i=1,j=1
(such that r′

0
i,j⊕r′

1
i,j = r′ for every i ∈ [n

ε
], j ∈ [n]) using

a public-coin statistically hiding commitment scheme. Similarly commit to a

k-bit random string ch and (n2

ε
)-pairs of random shares

{
ch0

i,j , ch
1
i,j

}i= n
ε

,j=n

i=1,j=1

(such that ch0
i,j ⊕ ch1

i,j = ch for every i ∈ [n
ε
], j ∈ [n]) using a public-coin

statistically hiding commitment scheme.
Challenge-response slots: For every i ∈ [n

ε
],

P → V : Choose n-bit random strings αi = αi,1, . . . , αi,n and βi =
βi,1, . . . , βi,n. Send αi, βi to V .

V → P : For every j ∈ [n] , V ∗ decommits to r′
αi,j

i,j and ch
βi,j

i,j .
Stage 2 (Coin-flipping completion phase)

P → V : Choose a t-bit random string r′′ and send it to V .
V → P : Decommit to r′ and r′

0
i,j , r′

1
i,j for every i ∈ [n

ε
], j ∈ [n]. Let r = r′⊕ r′′.

Stage 3 (Blum Hamiltonicity protocol)
P → V : Let r = r1, . . . , rk3 , where |ri| = 3k for every i ∈ [k3]. For every i ∈ [k],

– Choose a random permutation πi and prepare an isomorphic copy of G,
denoted Gi = πi(G).

– For every j ∈ [k2], commit to bit bj in the adjacency matrix of Gi using
Naor’s commitment scheme with ri×j as the first message.

V → P : Decommit to ch and ch0
i,j , ch1

i,j for every i ∈ [n
ε
], j ∈ [n].

P → V : Let ch = ch1, . . . , chk. For each i ∈ [k], if chi = 0, decommit to every
edge in Gi and reveal the permutation πi. Else, decommit to the edges in the
Hamiltonian Cycle in Gi.

Fig. 1. Protocol 〈P, V 〉

Leakage-Resilient Zero Knowledge 307

Theorem 1. If public-coin statistically hiding commitment schemes exist, then
the protocol 〈P, V 〉, parameterized by ε, is a (1 + ε)-leakage-resilient zero knowl-
edge proof system.

We note that statistically hiding commitment schemes imply one-way functions,
which in turn suffice for Naor’s statistically binding commitment scheme used
in our construction. In the interest of space, we give a proof of Theorem 1 in the
full version.

3 Leakage-Resilient NIZK

We now turn our attention to the setting of non-interactive zero knowledge proof
systems. We consider the scenario where a malicious verifier can obtain arbitrary
leakage on the witness and the random coins used by an honest prover to generate
the proof string. To model leakage attacks, we allow the cheating verifier to make
adaptive leakage queries on the honest prover’s witness and the random coins
used to generate the proof string. A leakage query to the prover consists of an
efficiently computable function f , to which the prover replies with f(w‖r), where
w and r denote the prover’s witness and random coins respectively. It is easy to
see that in the non-interactive proofs setting, a cheating verifier who is allowed
multiple leakage queries enjoys no additional power than one who is allowed
only one leakage query. Therefore, for simplicity of exposition, from now on, we
only consider cheating verifiers who make only one leakage query. We note that
our definition given below can be easily adapted to incorporate multiple leakage
queries.

We model the zero knowledge simulator S as a ppt machine that has access
to a leakage oracle Lk

w(·) that is parameterized by the honest prover’s witness w
and the security parameter k. (Unlike the interactive proofs setting, here we do
not consider the leakage parameter λ for simplicity of exposition.) The leakage
oracle accepts queries of the form f (where f(·) is an efficiently computable
function) and outputs f(w). In order to bound the total leakage available to
the simulator, we require that if the verifier obtains � bits of total leakage from
the honest prover, then the total leakage obtained by the simulator (from the
leakage oracle) must be bounded by � bits.

We now setup some notation. Let R be an efficiently computable relation that
consists of pairs (x,w), where x is called the statement and w is the witness.
Let L denote the language consisting of statements in R. Recall that a non-
interactive proof system for a language L consists of a setup algorithm K, a
prover P and a verifier V . The setup algorithm K generates a common reference
string σ. The prover P takes as input (σ, x, w) and checks whether (x,w) ∈ R;
if so, it produces a proof string π, else it outputs fail. The verifier V takes as
input (σ, x, π) and outputs 1 if the proof is valid, and 0 otherwise.

Definition 2 (LR-NIZK). A non-interactive proof system (K,P, V) for a ppt

relation R is said to be a leakage-resilient NIZK if there exists a simulator S =
(S1,S2,S3) such that for all adversaries A,

Pr[σ ← K(1k) : APR(σ,·,·,·)(σ) = 1]
c≡ Pr[(σ, τ)← S1(1

k) : ASRLk
w(·)(σ,τ,·,·,·)(σ) = 1],

308 S. Garg, A. Jain, and A. Sahai

where PR(σ, x, w, f) computes r ← {0, 1}�P (k); π ← P (σ, x, w; r); y = f(w‖r)
and returns (π, y), while SRLk

λ(·)w(σ, τ, x, w, f) computes r ← {0, 1}�S(k); π ←
S2(σ, τ, x; r); f ′ ← S3(σ, τ, x, r, f); y ← Lk

w(f ′) and returns (π, y). Here, the
leakage query f ′ made to Lk

w(·) is such that its output length is no more than
the output length of f . Both the oracles PR and SR output fail if (x,w) /∈ R.

3.1 Our Result

We now claim that every NIZK proof system with the honest prover state recon-
struction property5 is in fact a leakage-resilient NIZK. An immediate corollary
is that the Groth et al. [36] NIZK proof system is a leakage-resilient NIZK proof
system. We refer the reader to the full version for a formal proof.

Theorem 2. A NIZK proof system (K,P, V) for a relation R with honest prover
state reconstruction is a leakage resilient NIZK for R.

4 Applications of Leakage-Resilient Zero Knowledge

4.1 UC with Leaky Tokens

Starting with the work of Goldreich and Ostrovsky on software protection [30],
tamper-proof hardware tokens have been used for a variety of cryptographic tasks
such as achieving universal composability [43,14,54,15], one-time-programs [32],
unconditionally secure protocols [35,34], compilers for leakage-resilient computa-
tion [42,33], etc. To the best of our knowledge, all prior works using tamper-proof
hardware tokens make the assumption that the tokens are completely leakage-
resilient (i.e., a token does not leak any information to an adversary who is in
possession of the token). Here, we start a new line of research to investigate
whether it is possible to relax this assumption for various cryptographic tasks.
In particular, we study the feasibility of doing universally composable secure
computation using “leaky” tokens. We start with the tamper-proof hardware
token model of Katz [43] and modify it appropriately to incorporate “bounded”
leakage. Then, by making use of leakage-resilient hard relations [20] and our
leakage-resilient zero knowledge proof system, we give a construction for a uni-
versally composable multi-party computation protocol in the leaky token model.

The Leaky Token Model. We first briefly recall the hardware token model of Katz
[43]. In the model of [43], it is assumed that a party (referred to as the creator)
can take some software code and “seal” it inside a tamper-proof hardware token;
the party can then give this token to another party (referred to as the user),
who can then access the embedded software in a black-box manner. This setup is

5 Very briefly, this property (also known as non-erasure zero knowledge) requires that
not only can we simulate an honest party making a proof, but also how it constructed
the proof (i.e., create convincing randomness so that it looks like the simulated proof
was constructed by an honest prover using this randomness). See [36] for a formal
definition.

Leakage-Resilient Zero Knowledge 309

modeled by a “wrapper” functionality Gwrap that accepts two types of messages:
the first type is used by a party P to “create” a hardware token (encapsulating
an interactive protocol M) and to “send” this token to another party P ′. On
receiving the token, P ′ can interact with it in an arbitrary black-box manner.
This is formalized by allowing P ′ to send messages of its choice to M via Gwrap.
Each time M is invoked, fresh random coins are chosen for M .

In order to incorporate leakage attacks, we consider a modified wrapper func-
tionality G�

wrap parametrized by a leakage-parameter � that defines the “total”
leakage available to a token user over all the executions of the token. More con-
cretely, the new wrapper functionality G�

wrap is defined in the same manner as
Gwrap, except that G�

wrap accepts special leak queries (from the token user) that
consist of a efficiently computable function fi : {0, 1}∗ → {0, 1}�i (described as a
circuit), to which the functionality answers with f(M, state), where M denotes
the code of the interactive Turing machine encapsulated in the token and state
denotes the current state of M consisting of all the protocol messages received
from the user and the random coins used so far by M in the current protocol
execution. The token user can make any arbitrary polynomial number of such
leakage queries over multiple protocol executions with M ; we only require that
the functions fi be efficiently computable, and the total number of bits leaked
(over all executions) is

∑
i �i = �. We stress that by allowing leakage on M ,

we allow the token user to obtain leakage on any secret values hardwired into
M . In the interest of space, we defer formal description of G�

wrap to the full
version.

UC Security via UC-Puzzles. In order to obtain our positive result, we build on
the recent work of Lin et al. [49] which puts forward a unified framework for
designing UC secure protocols from known setup assumptions [12,13,43,6]. Lin
et al. observe that a general technique for constructing UC secure protocols is to
have the simulator obtain a “trapdoor string” which is hard to compute for the
adversary. This is formalized in the form of (two party) “UC-puzzle” protocols
that enable the simulator to obtain such a trapdoor string (but prevent the
adversary from doing so). Following the work of [49], the task of constructing UC
secure protocols from any setup assumption reduces to the task of constructing
a UC-puzzle in the hybrid model of the corresponding setup.6 We obtain our
positive result by following the same route. Specifically, we construct a “family
of UC-puzzles” in the G�

wrap-hybrid model.

Our Protocol. Recall that in the hardware token model, each pair of parties
in the system exchange hardware tokens with each other. Now consider a sys-
tem with m parties P1, . . . , Pm. For each pair of parties (Pi, Pj), we will construct

6 Very briefly, this is because Lin et al. show that a UC-puzzle can be used in con-
junction with a strongly non-malleable witness indistinguishable protocol in order
to construct a “concurrent simulation-sound” zero knowledge protocol with “UC
simulation” property, which in turn is known to be sufficient to construct UC secure
protocols (see e.g. [13]). We refer the reader to the full version for more details.

310 S. Garg, A. Jain, and A. Sahai

two different UC-puzzles in the G�
wrap hybrid model, (a) one where Pi (resp., Pj)

acts as the puzzle sender (resp., receiver) and (b) the other where the roles of
Pi and Pj are reversed. This gives us a family of m2 UC-puzzles.

We now describe the construction of a family of protocol and relation pairs
(〈Sij , Rij〉,Rij), where i, j ∈ [m]. Here the choice of notation is to highlight
that party Pi (resp., Pj) plays the role of the sender (resp., receiver) in protocol
〈Sij , Rij〉. We will then prove that each pair (〈Sij , Rij〉,Rij) is a UC-puzzle in
the G�

wrap-hybrid model. In our construction, we will use a (1 + ε)-LR-ZK proof
of knowledge system7 as well as an �′-leakage-resilient hard relation [20], where
�′ = (1 + ε) · �.
Description of 〈Sij , Rij〉. The interactive Turing machine Sij , when invoked with
the inputs the identity of the sender Pi, the identity of the receiver Pj and the
session id sid, proceeds as follows. It first checks whether this is the first time
interacting with party Pj . If so, it first samples a pair (x, y) from an �′-leakage
resilient hard relation R�′ and then “creates” and “gives” Pj a token (by sending
the “appropriate” message to G�

wrap), which encapsulates the interactive Turing
machine M that gives a λ-LR-ZKPOK of the statement that there exists an x
such that (x, y) ∈ R�′ . To actually challenge Pj , Sij simply sends y as the puzzle
to the receiver.

The interactive Turing machine Rij , on receiving y from Sij , engages in an
execution of our λ-LR-ZKPOK protocol with M (via G�

wrap) where M proves
that there exists an x such that (x, y) ∈ R�′ . An adversarial receiver Rij may
additionally send leakage queries (leak, f) to G�

wrap, who responds with f(M‖r)
(where r denotes the random coins used by M “so far”) as long as the total
leakage (over all queries) is bounded by �.

Description of Rij . The puzzle relation Rij is simply {(x, y)|(x, y) ∈ R�′}.
This completes the description of the pair (〈Sij , Rij〉,Rij). We refer the reader
to the full version for a proof of our claim that (〈Sij , Rij〉,Rij) is a UC-puzzle
in the G�

wrap-hybrid model.

4.2 Fully Leakage-Resilient Signatures

In this section, we give generic constructions of fully leakage-resilient (FLR) sig-
nature schemes in the bounded leakage model as well as the continual leakage
model. In order to obtain our results, we will adapt the approach of Katz and
Vaikuntnathan [44], and in particular, Dodis et al. [20,19] (who used leakage-
resilient hard relations and tag-based true simulation-extractable (tSE) NIZK
argument systems to construct “standard” leakage-resilient signature schemes)
to the setting of full leakage (where the adversary can leak on the entire state, as
opposed to only the secret key). Specifically, we first extend our notion of leakage-
resilient NIZKs to incorporate the property of true simulation-extractability.

7 We note here that the LR-ZK proof system discussed in Section 2.1 is not a proof
of knowledge. However, it is easy to modify the construction to obtain a proof of
knowledge system by using a leakage-sound zero knowledge proof system. We refer
the reader to the full version for more details.

Leakage-Resilient Zero Knowledge 311

Then, by using a hard relation that is leakage-resilient in the bounded (resp., con-
tinual) leakage model along with our true simulation-extractable leakage-resilient
(tSE-LR) NIZK argument system, we obtain FLR signatures in the bounded
(resp., continual) leakage model. Somewhat interestingly, unlike the recent con-
structions of FLR signature schemes [51,9], our constructions are also secure in
the noisy leakage model [56]. In interest of space, here we limit our discussion to
the construction of an FLR signature scheme in the bounded leakage model. We
refer the reader to the full version for further discussion on the continual leakage
model and the noisy leakage model.

True Simulation-Extractable Leakage-Resilient NIZK. We first (informally) de-
fine tag-based tSE-LR-NIZK argument system and give a construction for the
same. Let us first recall the notion of tSE-NIZK, as defined in [20]. Very roughly,
a NIZK proof system is true simulation extractable if there exists a ppt extrac-
tor which (when given an extraction trapdoor to the CRS) extracts a witness w∗

from any proof π∗ produced by an adversary A (using a tag tag∗), even if A has
previously seen some simulated proofs for other true statements (with different
tags). Our notion of tSE-LR-NIZK extends the notion of tSE-NIZK by allowing
the adversary to obtain (in addition to simulated proofs) leakage on the witness
and randomness used to generate the simulated proofs.

A tag based tSE-LR-NIZK argument system (K,P ,V) follows directly from
the adaptively secure UC-NIZK of Groth et al. [36]. The complete construction
and proof is given in the full version.

Fully Leakage-Resilient Signatures in the Bounded Leakage Model. We will fol-
low the definition of FLR signature schemes due to Boyle et al [9]. Very roughly,
we say that a signature scheme is fully leakage-resilient in the bounded-leakage
model if it is existentially unforgeable against any ppt adversary that can obtain
polynomially many signatures over messages of her choice, as well as bounded
leakage information on the secret key and the randomness used by the signing
algorithm and the key generation algorithm) throughout the lifetime of the sys-
tem. Due to space constraints, we omit the formal definition of FLR signatures
from this manuscript. We now proceed to describe our construction. The security
proof is deferred to the full version.

Our Construction. Let R� be an �-leakage-resilient hard relation with a ppt

sampling algorithm kgen(·). Let (K,P, V) be a tag-based tSE-LR-NIZK argu-
ment system for a relation R. The signature scheme (KeyGen, Sign, Verify) is
described as follows.

– KeyGen(1k, �): Sample (x, y) ← kgen(1k), σ ← K(1k). Output sk = x and
pk = (σ, y).

– Signsk(m): Output Φ = π, where π ← P (σ, y,m, x). (Here m is the tag in
the argument.)

– Verifypk(m,Φ): Output V (σ, y,m, Φ).

Theorem 3. If R� is an �-leakage-resilient hard relation and (K,P, V) is a
tag-based true simulation-extractable leakage-resilient NIZK argument system,

312 S. Garg, A. Jain, and A. Sahai

then (KeyGen, Sign, Verify) is an �-fully-leakage-resilient signature scheme in
the bounded-leakage model.

5 Conclusions

In this paper, we give definitions and constructions of leakage-resilient zero
knowledge proof systems, where an adversarial verifier can obtain arbitrary
bounded leakage on the secret state of the prover. It is natural to consider the
(opposite) scenario where a malicious prover can obtain arbitrary leakage on the
random coins of the verifier during the protocol execution. The question that
we may ask is whether it is possible to construct interactive proofs that remain
sound in such a scenario. Going even further, we can consider the question of
constructing an interactive proof system that simultaneously satisfies the notions
of “leakage-soundness” and leakage-resilient zero knowledge. In the full version,
we give positive results for both these settings.

A natural question following our work is whether we can extend our notions
and results to the setting of secure two-party computation. We address this in
an upcoming work.

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: STOC
(2011)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

5. Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note. In: WOEC (1996)
6. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols

with relaxed set-up assumptions. In: FOCS (2004)
7. Beaver, D.: Adaptive zero knowledge and computational equivocation. In: STOC

(1996)
8. Bitansky, N., Canetti, R., Halevi, S.: Leakage tolerant interactive protocols. Cryp-

tology ePrint Archive, Report 2011/204 (2011)
9. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,

K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

10. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS (2010)

11. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC (1996)

Leakage-Resilient Zero Knowledge 313

12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

13. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC (2002)

14. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

15. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty com-
putation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

16. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptology (1997)

17. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
p. 566. Springer, Heidelberg (2001)

18. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

19. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS (2010)

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
(2009)

22. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
(2000)

23. Dwork, C., Naor, M., Sahai, A.: Concurrent zero knowledge. In: STOC (1998)
24. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS (2008)
25. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:

Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

26. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

27. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–545. Springer, Heidelberg
(1990)

28. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251.
Springer, Heidelberg (2001)

29. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology (1996)

30. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (1996)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC (1985)

32. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

314 S. Garg, A. Jain, and A. Sahai

33. Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leak-
age. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer,
Heidelberg (2010)

34. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
pCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 173–190. Springer, Heidelberg (2010)

35. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

36. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

37. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium (2008)

38. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 201–215. Springer, Heidelberg (1996)

39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In:
FOCS (2009)

40. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

41. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

42. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

43. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

44. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

45. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

46. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

47. Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: STOC (2011)
48. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual

system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

49. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent se-
curity: universal composability from stand-alone non-malleability. In: STOC (2009)

50. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 183–201.
Springer, Heidelberg (2009)

51. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: EUROCRYPT (2011)

Leakage-Resilient Zero Knowledge 315

52. Micali, S., Pass, R.: Local zero knowledge. In: STOC (2006)
53. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC

2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)
54. Moran, T., Segev, G.: David and goliath commitments: UC computation for asym-

metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

55. Naor, M.: Bit commitment using pseudo-randomness (extended abstract). In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg
(1990)

56. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

57. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC (1989)

58. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC (2005)

59. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

60. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS (2002)

61. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: E-smart (2001)

62. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004)

63. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS (1999)

A Comprehensive Evaluation of Mutual
Information Analysis Using a Fair Evaluation

Framework

Carolyn Whitnall and Elisabeth Oswald

University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK

{carolyn.whitnall,elisabeth.oswald}@bris.ac.uk

Abstract. The resistance of cryptographic implementations to side-
channel analysis is a matter of considerable interest to those concerned
with information security. It is particularly desirable to identify the at-
tack methodology (e.g. differential power analysis using correlation or
distance-of-means as the distinguisher) able to produce the best results.
Such attempts are complicated by the many and varied factors contribut-
ing to attack success: the device power consumption characteristics, an
attacker’s power model, the distinguisher by which measurements and
model predictions are compared, the quality of the estimations, and so
on. Previous work has delivered partial answers for certain restricted sce-
narios. In this paper we assess the effectiveness of mutual information-
based differential power analysis within a generic and comprehensive
evaluation framework. Complementary to existing work, we present sev-
eral notions/characterisations of attack success with direct implications
for the amount of data required. We are thus able to identify scenarios
in which mutual information offers performance advantages over other
distinguishers. Furthermore we observe an interesting feature—unique
to the mutual information based distinguisher—resembling a type of
stochastic resonance, which could potentially enhance the effectiveness
of such attacks over other methods in certain noisy scenarios.

Keywords: side channel analysis, mutual information.

1 Introduction

Side-channel analysis (SCA) refers to a collection of cryptanalytic techniques for
extracting secret information from the physical leakage of a device as it executes a
cryptographic algorithm. Of the various types, one of the most popularly studied
is differential power analysis (DPA); it involves applying some type of statistic
(the distinguisher) to identify a correct hypothesis about (part of) the secret
key from the set of all possible hypotheses about this key. Popular distinguisher
choices are the Pearson correlation coefficient and the distance-of-means test.
Mutual information (MI) measures the total dependency between two random
variables, and was first proposed for use in DPA at CHES 2008 [6]. A priori

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 316–334, 2011.
c© International Association for Cryptologic Research 2011

A Comprehensive Evaluation of Mutual Information Analysis 317

it was expected to display certain advantages over other distinguishers, loosely
summarized by three (informal) conjectures:

1. By comprehensively exploiting all of the information contained within trace
measurements it could have an efficiency advantage over existing side-channel
distinguishers such as correlation (which measures linear dependencies only).

2. By capturing total dependency between the true device leakage and the
modeled leakage it could prove effective in scenarios where an accurate model
for the data-dependent leakage of the device is not known, thereby serving
as a ‘generic’ distinguisher.

3. By natural extension to multivariate statistics it might be adapted to the
context of higher-order attacks against (for example) protected implementa-
tions. Existing distinguishers operate on univariate data only and therefore
require trace data to be pre-processed, resulting in loss of information.

Subsequent investigations such as [1,17,20,23] have found little evidence of the
first two expectations being met in practice (there is rather more support for
the third—see, for example, [1,5,17]). However, the literature has not been com-
prehensive in explaining why this might be. We must bear in mind that many
factors influence DPA outcomes: not only the choice of distinguisher, but also the
target intermediate function, the form of the data-dependent device leakage and
how well this can be modeled, and the precision with which the distinguishing
vector can be estimated using the resources and capabilities available. It is often
unclear whether the observed underperformance of MI-based DPA is an inher-
ent theoretical weakness of the distinguisher, a result of sub-optimal estimation
procedures, or simply a failure to identify scenarios (i.e. combinations of target
functions and power consumption patterns) where it offers a useful advantage:
see Batina et al. [1] for an overview of these issues.

In this paper we introduce a framework for assessing and comparing DPA
attacks in any given scenario on a theoretical basis, abstracting away from the
problem of practical estimation. We use this to gain fresh insight into the findings
of the existing literature and to clarify when and in what sense the a priori
intuition regarding MI-based DPA does hold. Moreover, we are able to identify
and describe attack scenarios in which MI-based DPA is theoretically successful
whilst other distinguishers fail, or in which it displays a theoretic advantage large
enough to potentially translate to a practical advantage. Further, we demonstrate
that the (standardised) MI-based distinguishing vector exhibits the property of
stochastic resonance as the noise levels in the power consumption vary. This
feature, which is not shared by correlation-based DPA, could potentially be
exploited to enhance MI-based attacks via noise injection.

In what follows, we first give the relevant preliminary information on DPA
attacks, including details of particular distinguishers and a discussion of pre-
vious work in Sect. 2. In Sect. 3 we describe our methodology, whilst Sect. 4
reports on our findings as they relate to various attack scenarios. We conclude
in Sect. 5.

318 C. Whitnall and E. Oswald

2 DPA Attacks

We consider a ‘standard DPA attack’ scenario such as defined in [13]: The power
consumption L of the target device depends on some internal value (or state)
fk∗(x): a function of some part of the plaintext x ∈ X , as well as some part
of the secret key k∗ ∈ K. Hence, we have that L = L ◦ fk∗(x) + ε, where L is
some function which describes the data-dependent component and ε comprises
the remaining power consumption which can be modeled as independent random
noise. The attacker has N power measurements corresponding to encryptions of
N known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key
k∗. The attacker can accurately compute the internal values as they would be
under each key hypothesis {fk(xi)}N

i=1, k ∈ K and uses whatever information he
possesses about the true leakage function L to construct a model M .

DPA exploits the fact that the modeled power traces corresponding to the
correct key hypothesis should bear more resemblance to the true power traces
than do the modeled traces corresponding to incorrect hypotheses. An attacker is
thus concerned with quantifying and comparing the degree of similarity between
the true and modeled traces for each key hypothesis. A range of comparison
tools—‘distinguishers’—are available, of which mutual information and Pear-
son’s correlation coefficient are popular examples. We introduce these formally
and examine them in more detail in the remaining parts of this section. We use
the shorthands CPA and MIA to refer (respectively) to correlation-based and
MI-based DPA attacks.

2.1 Reasoning about the Success and Efficiency of DPA Attacks

Previous work has made some progress towards providing meaningful and
practically relevant definitions for the ‘success’ and ‘efficiency’ of DPA attacks.
Standaert’s work [21] formalised the notion of key-recovery success (and, corre-
spondingly, success rate), which we adopt for our purposes here: The theoretic
attack distinguisher is D = {D(k)}k∈K = {D(L ◦ fk∗(X) + ε,M ◦ fk(X))}k∈K,
where the plaintext input X takes values in X according to some known distribu-
tion (usually uniform). We say the attack is theoretically successful if D(k∗) >
D(k) ∀k �= k∗. We say it is o-th order theoretically successful if #{k ∈ K :
D(k∗) ≤ D(k)} < o.

However, in practice D must be estimated. Suppose we have observations
corresponding to the vector of inputs x = {xi}N

i=1, and write e = {ei}N
i=1 to

be the observed noise (i.e. drawn from the distribution of ε). Then the size #K
estimated vector is D̂N = {D̂N(k)}k∈K = {D̂N (L ◦ fk∗(x) + e,M ◦ fk(x))}k∈K.
We then say the attack is successful if D̂N(k∗) > D̂N (k) ∀k �= k∗ and o-th order
successful if #{k ∈ K : D̂N (k∗) ≤ D̂N (k)} < o.

Since we are particularly interested in the impact of L on attack outcomes, it
is desirable to abstract away from the impact of noise, as well as from the estima-
tion process. We define a distinguisher as ideally successful if it is theoretically
successful in a noise-free scenario.

A Comprehensive Evaluation of Mutual Information Analysis 319

Ideal success thus depends on the target intermediate function, the form of the
data-dependent device leakage L, the set X ′ ⊆ X of plaintexts being encrypted,
and the choice of power model and distinguisher. Theoretic success is further
determined by the size and distribution of the noise ε whilst practical success
depends additionally on the choice of estimator for the distinguisher and the
number of trace measurements N . That is, given an attack which theoretically
distinguishes the correct key (by a margin of a certain size), the practical outcome
will be determined by whether or not an attacker has adequate resources to
estimate D̂ with sufficient precision to detect a difference of that size.

2.2 Distinguishers for DPA Attacks

Standaert et al. [20] provide a good overview of the many distinguishers that
have been employed in the literature since DPA was first introduced in the late
1990s [9]. In this paper, we focus on mutual information and compare it with
one other distinguisher of interest: Pearson’s correlation coefficient.

In recent work, Mangard et al. [13] have shown that in the scenario of stan-
dard DPA attacks, the three most popular distinguishers, Pearson correlation,
distance of means, and Bayes, are equally successful. Under additional, strong
assumptions such that the MI can be estimated parametrically as a Gaussian
mixture, they are even able to demonstrate a mapping between a correlation-
based and an MI-based distinguisher. Our work relates to rather more general
distributional assumptions.

Mutual Information. Mutual information measures, in bits, the total infor-
mation shared between two random variables X and Y . It is most intuitively
expressed in terms of entropies via Shannon’s formula: I(X ;Y) = H(X) −
H(X |Y).1

Mutual information is a functional of probability distributions, and estimation
is a much studied problem with no simple answers [3,8,14,19,22]. All estimators
are biased, and further no ‘ideal’ estimator exists; different estimators perform
differently depending on the underlying structure of the data.

The usual approach is to first estimate the underlying marginal and condi-
tional densities and then to substitute these into Shannon’s formula via a ‘plug-
in’ estimator for discrete entropy. There are many different ways to estimate
densities and the quality of the resulting estimator for MI is very sensitive to
the methods and parameters chosen. If we have a good understanding of the un-
derlying distributions we can fit a parametric model such as a Gaussian mixture
(see Veyrat-Charvillon et al. [23]). However, since MIA has been proposed for
use in scenarios where our usual assumptions do not hold we are generally more
interested in nonparametric methods, which are somewhat sensitive to user ap-
proach and known to incur an overhead in terms of estimation costs. In practice,
1 The original (but equivalent) definition is I(X; Y) =∑

y∈Y
∑

x∈X pX,Y (x, y) log2

(
pX,Y (x,y)

pX(x) pY (y)

)
, where pX,Y is the joint probability

density of X and Y and pX , pY are the marginal densities.

320 C. Whitnall and E. Oswald

due to the large sample space and small datasets we usually estimate the densi-
ties via an m-bin regularisation of the space. By an important data processing
inequality2 this means we are always estimating a lower bound on the mutual
information—as the binning or mesh becomes finer the estimate approaches the
true mutual information monotonically from below [14].

In security evaluations we often would like to be able to talk about the num-
ber of traces needed for an attack to be successful. This requires knowing the
sampling distribution for the distinguisher under reasonable assumptions. Un-
fortunately, estimators for MI do not ‘behave nicely’ as do other statistics (such
as the correlation coefficient—see below); in fact, there are no universal rates
of convergence [14], so that whatever estimator we pick, we can always find a
distribution for which the error vanishes arbitrarily slowly.

The relationship between the ideal MI and the theoretic MI in the presence
of noise is complex (see, for example, [11]). In particular, whilst I(X + ε;Y) ≤
I(X ;Y) (X , ε independent), nonetheless I(X ;Y)−I(X+ε;Y) �= I(X ;Z)−I(X+
ε;Z). Thus, the elements of the theoretic MIA vector are differentially affected
so that ideal outcomes do not directly generalise to theoretic outcomes in the
presence of noise.

Pearson’s Correlation Coefficient. Pearson’s correlation coefficient mea-
sures the total linear dependency between two random variables X and Y . It is
defined as ρ(X,Y) = cov(X,Y)

σXσY
. It takes values from -1 to 1 and, as with mutual

information, is zero whenever X and Y are independent. However, the converse
is not true; namely, X and Y may be (non-linearly) dependent with a (linear)
correlation of 0.

It is estimated from samples {xi}N
i=1, {yi}N

i=1 via the sample correlation coef-
ficient: r(X,Y) =

∑ N
i=1(xi−x̄)(yi−ȳ)√∑

N
i=1(xi−x̄)2

√∑
N
i=1(yi−ȳ)2

. This is a consistent estimator for

ρ(X,Y) and, moreover, is asymptotically unbiased and efficient if X and Y have
a joint Normal distribution. Under the same assumptions, we can even approxi-
mate the sampling distribution which leads to ‘nice’ results such as the number
of trace measurements required for attacks to be successful (see Chap. 6.4 of
[12]).

The relationship between the ideal correlation and the theoretic correlation in
the presence of noise is straightforward. In fact, as derived in Chap. 6.3 of [12],
ρ(L + ε,Mk) = ρ(L,Mk)√

1+
σ2

ε
Var(L)

. Thus, the larger the noise, the more diminished are

the correlations. But—crucially—the denominator does not depend on the key
hypothesis; the theoretic distinguisher vector is thus scaled in such a way that
the rankings and other relative features are preserved. This does not at all imply
that practical CPA attacks are immune to noise: As the sample variance of the
estimator increases, the number of traces required to reach a sufficient level of
precision also increases (see Chap. 4 of [12])).

2 I(S(X);T (Y)) ≤ I(X; Y) for any random variables X and Y and any functions S
and T on the range of X and Y .

A Comprehensive Evaluation of Mutual Information Analysis 321

3 A Comprehensive Evaluation Framework

We compute and examine ideal/theoretic CPA and MIA vectors for a broad
spectrum of possible leakage scenarios in unprofiled attacks where the true leak-
age L is unknown and modeled via the Hamming weight (HW) or the raw value
(ID) of the target function output. For CPA, this is the same as assuming that
the leakage is proportional to the HW or ID of the target, whereas for MIA this
is the same as allowing the leakage to be different for each distinct HW or ID
value, without any restriction on the nature of that dependency (for example,
it needn’t be a monotonic relationship). These vectors provide insight into the
relative strengths and weaknesses of the distinguishers. We are particularly in-
terested in finding scenarios where MIA has an ideal/theoretic advantage over
CPA because we hope that a sufficiently large theoretic advantage would trans-
late into a practical advantage. To do this we need to formulate an appropriate
notion of “advantage”.

An extremely desirable metric for security evaluation is the number of traces
needed for an attack to be successful. We can compute this for a given estimator
using the techniques of statistical power analysis [10], provided the sampling
distribution can be approximated—but this is not achievable in general (see Sect.
2.2), besides which we are seeking to avoid estimator-specific comparisons. Our
solution is to choose measures based on those characteristics of the theoretic
vectors which have the greatest bearing on the trace efficiency of a practical
attack:

1. Correct key ranking: The position of the correct key when ranked by distin-
guisher value. If the correct key is ranked joint first the ranking order is the
number of keys sharing position 1, so that an attack with a ranking order of
o is oth-order theoretically successful as defined in Sect. 2.1. The relationship
with practical efficiency is obvious: attacks which are not first-order success-
ful will not be able to uniquely extract the correct key from any number of
trace measurements (except by random chance).

2. Average distinguishing score: The number of standard deviations above (or
below) the mean for the distinguisher value corresponding to the correct key.
This matches the “DPA signal-to-noise ratio” described by [7] and indicates
the sensitivity of the attack in isolating the correct key: A very sensitive at-
tack may be able to succeed in practice with only a few trace measurements,
as even imprecise estimates will detect a large difference. A theoretically
‘unsuccessful’ attack may still be able to return a small candidate subset
containing the correct key if the average distinguishing power is high.

3. Nearest-rival distinguishing score: The distance from the ‘nearest rival’ (i.e.
the difference between the correct key distinguisher value and the value for
the highest ranked alternative), normalised by the standard deviation. This
represents, more directly than the average distinguishing power, the margin
to be detected by a practical attack.

By computing the above measures for uniformly drawn plaintexts X
unif.← X ,

we are able to compare theoretic behaviour of attacks when provided with full

322 C. Whitnall and E. Oswald

information. We propose to explore the sensitivity of attacks to restricted infor-
mation by inspecting ideal/theoretic attack vectors for reduced subsets of the
plaintext space. These vectors depend not only on the size but also on the com-
position of the input set; we cannot perform the computation exhaustively over
the entire space of possible subsets (it is too large), but by repeated random
draws of increasing size we can estimate the average support size needed for
attack success. Thus we add the following measures as further clues to the “how
many traces” problem:

5. Average minimum support : On average, the required support size of the
input distribution for the attack to achieve oth-order success (where o is the
ranking order).

6. Support required for x% success rate: The support size for which the rate of
success (of the appropriate order) is at least x per cent.

Our criteria are best viewed in conjunction with one another rather than in
isolation, and trade-offs between them will interplay differently with practical
considerations. For instance, a methodology which achieves only oth-order suc-
cess (where o > 1) might be preferable to one achieving 1st-order success if the
distinguisher vector can be estimated more precisely and/or efficiently. Likewise,
nearest-rival distinguishability may be more important than average minimum
support in the presence of high noise.

In some parts of this study it is more desirable to measure the average be-
haviour of an attack in a class of scenarios than to describe results under a specific
scenario. This is relevant, for example, when considering functions of sufficient
arbitrariness that we cannot detail each case exhaustively. In such cases, as with
the analysis of restricted input support, we estimate average behaviour by using
randomly sampled examples (note that the distinguishing vectors themselves are
still computed, not estimated).

We acknowledge that data complexity is not the only measure of cost and that
considerations such as computational complexity also play a role in determining
the practicality of an attack. A formal study is outside the scope of this paper,
but we do try to comment where appropriate.

Ideal/Theoretic vs. Practical Attacks. Recall that we define theoretic (as well as
ideal, i.e. noise-free) attacks to abstract away from the impact of the estimation
process (and from noise). As such, theoretic outcomes depend on the target in-
termediate function, the device leakage (including how much noise is present),
the set of plaintexts used as inputs, the attackers choice/knowledge about the
power model, and the theoretical distinguisher (which is in this case the es-
timand). Practical outcomes depend on an additional, crucial factor, namely
the estimator—the quality of which, and the sensitivity to the underlying pop-
ulation parameters and noise, will ultimately determine whether an observed
ideal/theoretical advantage is translated into a real advantage in a practical
attack.

We consider several outcome measures to allow for a nuanced analysis of
the distinguisher qualities contributing to practical outcomes. For example, the

A Comprehensive Evaluation of Mutual Information Analysis 323

notion of ranking order is needed in addition to correct key ranking because,
whilst ties are highly unlikely in the estimated vectors arising from practical
attacks, the underlying theoretic values may well rank keys equally. The ap-
proach of studying the distinguishing quality of the estimands separately from
the qualities of the estimators is new and, as we will demonstrate in latter parts
of the paper, provides fresh insight into the strengths and weaknesses of different
distinguishers in practice.

4 Results

We now evaluate MIA and CPA distinguishers using the framework and con-
siderations w.r.t. leakage models as spelled out before. For the sake of clarity
and conciseness, we first show one detailed example (Hamming-weight leakage
of a device implementing the DES algorithm), and then briefly report outcomes
for some other leakage models. The choice for our focus is motivated by pre-
vious practical work which has focused on DES implementations [1], and the
fact that DES is still used as predominant algorithm in the banking world. Note
though that our framework could be used in the same way in a different context,
and that the results of our evaluation of MI as a distinguisher are not strongly
dependent on our specific choice.

4.1 Hamming-Weight Leakage

We begin with an ideal evaluation of MIA relative to CPA in the simplest and
most popularly studied scenario: the first S-Box in a DES implementation (short:
DESS1) with a Hamming-weight (HW) leakage. As attacker power models we
consider HW and the identity (ID) power model. For the sake of simplicity we
use the following abbreviations: CPA(HW) as short-hand for correlation-based
DPA with a HW power model, MIA(HW)/MIA(ID) as short-hand for MI-based
DPA with a HW/ID power model, and MMIA for multivariate MI-based DPA.
Using the notation as introduced before we first evaluate

CPA(M) : {ρ(L ◦ DESS1(x, k∗),M ◦ DESS1(x, k))}k∈K, (1)
MIA(M) : {I(L ◦ DESS1(x, k∗);M ◦ DESS1(x, k))}k∈K (2)

assuming that both the attacker’s power model, as well as the device’s power
model is the Hamming weight, i.e. L = M = HW .

This is a scenario in which we expect CPA(HW) to perform well: the use of the
true power model enables perfect prediction of the data-dependent leakage under
the correct key hypothesis, whilst the choice of the S-Box as target ensures that
the alternative hypotheses will each give rise to substantially different predictions
(see [16]).

Figure 1 shows the ideal distinguisher values for a CPA(HW) and an MIA(HW)
attack. Since the target function has the Equal Images under different Subkeys
(EIS) property [18] and the plaintexts are assumed uniformly distributed, at-
tack outcomes are key independent [13]: the correct hypothesis yields the same

324 C. Whitnall and E. Oswald

distinguisher value under any key, and only the arrangement of the remaining
vector entries changes.

It is evident that both attacks are first-order successful by a clear margin,
but that MIA(HW) has a substantial ideal advantage, with a nearest-rival dis-
tinguishability score of 5.61 compared with just 2.14 for CPA(HW). This simple
result confirms that it must instead be a combination of the impact of noise and
the relative efficiency of estimating the correlation coefficient which enables CPA
to consistently outperform MIA in practical attacks with a good power model.

0 10 20 30 40 50 60
−0.5

0

0.5

1

Offset from correct key (k ⊕ k*)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Correlation based distinguisher

0 10 20 30 40 50 60

−1

0

1

2

3

st

an
da

rd
 d

ev
ia

tio
ns

True key Nearest rival

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Offset from correct key (k ⊕ k*)

M
ut

ua
l i

nf
or

m
at

io
n

(b
its

)

Mutual information based distinguisher

0 10 20 30 40 50 60

−1
0
1
2
3
4
5
6
7

st

an
da

rd
 d

ev
ia

tio
ns

True key Nearest rival

Fig. 1. Ideal distinguishing vectors using the HW power model against the output of
the first DES S-Box

As a partial insight into the quantity of data needed we next look at the
minimum input support size required for the distinguishers to approach their
full ideal potential. The space of possible plaintext combinations is too large
to explore exhaustively, so we look at the average behaviour of the attacks in
repeated random draws from the plaintext space. We find that CPA is able to
identify the correct key from a far smaller support than MIA, requiring just
6 inputs on average, and achieving 100% success with just 12, compared with
an average of 8 and threshold of 14 for MIA. Note as well that even once a
high ideal success rate is achieved, it may be that a broader support is required
before MIA regains the distinguishing advantage it displays with respect to the
full distribution.

We next investigate the enhancement of MIA via the incorporation of an ad-
ditional data point in a multivariate attack on AddRoundKey (short: DESARK)
and the first S-Box jointly. Figure 2 plots the ideal outcome3. First observe that
the distinguisher values are greater in size (by a factor of about two) than that
of the single point attack—that is, we are capturing a larger amount of informa-
tion. However, the increase applies across the range of key hypotheses so does not
3 Note that what we are proposing here is to use the mutual information between two

bivariate variables; since joint entropy is well-defined this is entirely consistent with
the formulation of MI described in Section 2.2. However, there are other notions of
‘multivariate mutual information’ which become more interesting and relevant in the
context of higher-order attacks against protected implementations—see [1] for a full
discussion.

A Comprehensive Evaluation of Mutual Information Analysis 325

0 10 20 30 40 50 60
2

2.5

3

3.5

4

Offset from correct key (k ⊕ k*)

M
ut

ua
l i

nf
or

m
at

io
n

(b
its

)

Multivariate mutual information based distinguisher

0 10 20 30 40 50 60
−2

−1

0

1

2

3

4

5

6

st

an
da

rd
 d

ev
ia

tio
ns

True key Nearest rival

Fig. 2. Ideal MIA vector against the DES AddRoundKey and the first S-Box jointly

automatically raise the distinguishing power. In fact the true key is less strongly
distinguished than in the attack against the S-Box alone: the nearest-rival distin-
guishability is reduced from 5.61 to 3.66. Moreover, the attack requires a larger
input support—13 on average compared with 8 for MIA(HW).

Table 1 summarises outcomes for a wider selection of attacks, including
MIA(ID): the proposed ‘generic’ attack of [6]. Unsurprisingly, in this first ex-
ample where the leakage is proportional to the HW, MIA(ID) displays a disad-
vantage relative to MIA(HW). The generic capabilities of MIA will be of more
relevance in leakage scenarios where the attacker is not able to correctly model
the true leakage.

The attacks against AddRoundKey well illustrate the role of the target func-
tion: distinguishing power is greatly reduced in the case that incorrect key hy-
potheses give rise to outputs closely resembling the correct key outputs. Greater
precision (and therefore a greater number of measured traces) will be required
in order to detect a difference of this size in a practical attack, and moreover in
the case of MIA there will remain an ambiguity between the true key k∗ and its
bitwise complement k̄∗.

Table 1. Ideal strength of CPA and MIA attacks against DES with Hamming weight
leakage

AddRoundKey First S-Box Multivariate

DES with a HW leakage CPA MIA CPA MIA MIA MMIA
(HW) (HW) (HW) (HW) (ID) (HW)

Correct key ranking (order) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1)
Average score 2.45 4.48 3.61 6.59 6.35 6.04
Nearest-rival score 0.82 0.00 2.14 5.61 5.08 3.66
Average minimum support 6 9 6 8 16 13
Support required for 90% SR 8 11 8 11 19 15
Support required for 100% SR 11 15 12 14 22 21

326 C. Whitnall and E. Oswald

Stochastic Resonance. We conclude this section by briefly considering the
impact of (Gaussian) noise on theoretic outcomes. Figure 3 plots distinguishing
scores against an increasing signal-to-noise ratio (SNR, defined as var(L◦fk∗ (X))

var(ε)),
confirming that (standardised) MIA outcomes are not constant. Moreover, the
relationships are not monotonic: in each case there seems to be an optimal SNR
at which the distinguishing scores reach a maximum, after which they diminish
to that of the ideal (as depicted by the dashed lines). Such a phenomenon is a
type of stochastic resonance [2], which can (in principle) occur in any nonlinear
measurement system. Perhaps surprisingly, the required support sizes for both
MIA(HW) and MIA(ID) match the ideal requirements and remain constant—
though in general, such measures could also be subject to similar effects.

Recall, from Sect. 2.2, that by the properties of correlation, (standardised)
CPA outcomes are unaffected by the level of noise. Hence the opportunity to
enhance MIA (at least theoretically) by varying the noise is not available in the
context of CPA.

0.125 0.5 2 8 32 128
2

3

4

5

6

7

Signal−to−noise ratio

D
is

tin
gu

is
hi

ng
 s

co
re

Nearest−rival distinguishing score

MIA(ID) MIA(HW) CPA(HW)

0.125 0.5 2 8 32 128

4

5

6

7

Signal−to−noise ratio

D
is

tin
gu

is
hi

ng
 s

co
re

Average distinguishing score

MIA(ID) MIA(HW) CPA(HW)

Fig. 3. The effect of Gaussian noise on HW and ID attacks against HW leakage of the
first DES S-Box

4.2 Hamming-Distance Leakage

Whilst the Hamming weight model is very popular in the literature, Ham-
ming distance leakage can be widely observed in practical devices using CMOS
logic. Broadly speaking there are three scenarios which may be encountered.
Firstly, the previous state is known to the attacker, in which case the attacks
are equivalent to Hamming weight attacks. Secondly, the previous state is un-
known to the attacker but fixed. Thirdly, the previous state is unknown to the
attacker and can vary. The latter two scenarios are the focus of the following
discussion.

Constant Reference State. Now let us suppose, as in [4], that the reference
state is a constant but unknown machine word R. The device no longer leaks
L(fk∗(X)) but rather L(R⊕ fk∗(X)).

A Comprehensive Evaluation of Mutual Information Analysis 327

First observe that no attack against a linear target function such as
AddRoundKey can achieve first-order success, because the ‘true key’ values
are perfectly replicated under an incorrect key hypothesis, namely k∗ ⊕ R. The
power consumption for a plaintext X will be proportional to HD((k∗⊕X), R) =
HW((k∗⊕X)⊕R) = HW((k∗⊕R)⊕X), so that when our hypothesis is k = k∗⊕R
we get maximum correlation/MI (for both HW and ID models) and in fact the
theoretical distinguishing vector is identical to that of a successful attack against
HW leakage with a key of k∗ ⊕R.

Targeting the S-Box avoids this predicament thanks to the high nonlinearity
of the S-Box. In particular, there is no R′ such that S-Box(k∗ ⊕ X) ⊕ R =
S-Box((k∗ ⊕ R′) ⊕ X) ∀X ∈ X , so no incorrect key will produce the correct
predictions. It remains to be seen whether the resemblance between the imperfect
predictions (with naive power models) and the true power consumption remains
strong enough for the correct key and weak enough for the alternative hypotheses
for any sort of attack to be successful.

Ideal CPA(HW) succeeds precisely in those scenarios where the HW of the
reference is 1 (or 0) and fails whenever it is 2 (see Table 2). Further, were we to
use the absolute value of the correlation to distinguish (denoting this strategy as
|CPA(HW)|) the resulting ideal attack would succeed whenever the HW of the
reference state is 3 or 4; however, there is a substantial reduction in theoretic
strength when the HW is 1 or 3, and for some reference states |CPA(HW)|
requires almost the entire plaintext set to determine the correct key.

MIA(HW) succeeds in all scenarios and gains a considerable advantage both in
terms of the ideal distinguishing scores with full information (nearest-rival scores
are in the range of 3.6 to 4.5 for MIA(HW) but just 0.5-2.7 for |CPA(HW)|) and
also in terms of the minimum input support required for success (on average,
14 to 15 for MIA(HW) compared with 17 to 18 for |CPA(HW)|). We can take
advantage of the non-injectivity of the DES S-Box to launch generic MIA(ID)
attacks. As the authors of [6] observed, these are essentially unaffected by a
constant reference state so that the nearest-rival distinguishing score is always
around 5 for MIA(ID) and average support requirement around 16. This means
that when R ∈ {0000(2), 1111(2)} (i.e. L is the HW function) the generic attacks
are less effective than the equivalent methods combined with a HW power model,
but in all other reference state scenarios they gain an advantage. The consistency
and ideal strength of these attacks might be sufficient to translate into a practical
advantage—a possibility which we will investigate in a latter section.

We have thus shown that MIA applied with little consideration for or knowl-
edge about the true leakage can be effective even when that leakage actually
depends on an unknown reference state. CPA, applied equally blindly, is far less
likely to yield a successful attack. However, Brier et al. [4] showed how to adapt it
in order to determine R as an unknown of the problem in addition to fk∗(X)⊕R,
which together reveals the secret key k∗. Whilst this simultaneous search process
is more computationally costly than a standard CPA(HW) attack, MIA with an
ID power model can itself be computationally costly in addition to the likely data

328 C. Whitnall and E. Oswald

Table 2. Theoretical strength of CPA and MIA attacks against DES with Hamming
distance leakage from a constant reference state

4 LSBs of reference state CPA |CPA| MIA MIA

(HW) (HW) (HW) (ID)

Hamming weight 1
Correct key ranking 1 1 1 1
Average score 2.04-4.05 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival score 0.38-2.28 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support 17-25 20-34 14-15 16-17
Support required for 90% SR 31-49 33-53 20-22 19-20
Support required for 100% SR 40-59 44-61 28-32 21-24

Hamming weight 2
Correct key ranking 27-32 54-63 1 1
Average score 0.00 -1.94-0.00 5.06-5.53 5.98-6.43
Nearest-rival score -2.31-0.00 -5.62-0.00 3.05-3.16 4.49-5.42
Average minimum support - - 17-18 16-16
Support required for 90% SR - - 26-29 19-20
Support required for 100% SR - - 33-36 22

Hamming weight 3
Correct key ranking 64 1 1 1
Average score -2.44-0.00 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival score -4.58-0.00 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support - 20-34 14-15 16-17
Support required for 90% SR - 33-53 20-22 19-20
Support required for 100% SR - 44-61 28-32 21-24

Hamming weight 4
Correct key ranking 64 1 1 1
Average score 0.00 5.14 6.59 6.35
Nearest-rival score 0.00 3.56 5.61 5.08
Average minimum support - 6 8 16
Support required for 90% SR - 8 11 19
Support required for 100% SR - 12 14 22

complexity overheads. Further work (and broader cost considerations) would be
required to establish which of the two methods is most practical.

A Note on DRP logic. We observe an important and useful parallel between HD
leakage and the expected behaviour of DPA-resistant dual-rail precharge (DRP)
logic. In fact, an imperfect realisation of the logic style can be shown to exhibit
data-dependent power consumption of a similar form to the HD from a constant
reference state, enabling us to clarify its vulnerability to the ‘generic’ MIA(ID)
attack described by Gierlichs et al. in [6].

A Comprehensive Evaluation of Mutual Information Analysis 329

DRP logic attempts to eradicate the data-dependency of the power consump-
tion by making it equal in each clock cycle. This is achieved insofar as the
capacitances of the complementary output wires in each logic gate can be bal-
anced, a difficult feat in practice [15]. Suppose the ith bit of an m-bit word
x is carried by a DRP logic gate driving two differential outputs with im-
perfectly balanced capacities (αi, βi), so that αi = βi + γi. The power con-
sumption of such a circuit can be shown to be equivalent to leakage scenarios
with which we are more familiar, enabling us to comment on theoretical attack
capabilities.

Let us initially consider the simplified case that both capacitances are the
same throughout the circuit: βi = β, αi = β + γ, ∀i ∈ {0, . . . ,m− 1}. Then the
data-dependent leakage is proportional to:

HW(x)α + HW(x̄)β = HW(x)(β + γ) + HW(x̄)β
= (HW(x) + HW(x̄))β + HW(x)γ
= mβ + HW(x)γ

The constant mβ is absorbed into the non-data-dependent component and we
thus obtain the result that the leakage is proportional to the Hamming weight.
Both CPA(HW) and MIA(HW) will be theoretically capable of returning the
correct key; practical success will depend on ability and resources to estimate
the distinguishing vectors with sufficient precision, in which case CPA(HW) is
likely to have an advantage, as we have already seen.

Now suppose that the capacitances are the same throughout the circuit but
that the order changes, i.e. so that some gates have capacitances (α, β) and others
(β, α), where α = β+γ. We can express this by introducing R = (r0, . . . , rm−1) ∈
{0, 1}m such that gate i is (β, α) if ri = 1 and (α, β) otherwise. Then the data-
dependent leakage is:

HW(x⊕R)α + HW(x⊕ R̄)β = HW(x ⊕R)(β + γ) + HW(x⊕ R̄)β
= (HW(x⊕R) + HW(x⊕ R̄))β + HW(x⊕R)γ
= mβ + HW(x⊕R)γ

That is, the data-dependent leakage is proportional to the Hamming distance
from R, which equates to the scenario of a more conventional logic style (such
as CMOS) consuming power proportional to the number of transitions from a
constant, unknown reference state. We have already shown that MIA(ID) re-
mains ideally successful against such leakage, whilst CPA(HW) is (depending on
the state) either unsuccessful or greatly reduced in distinguishing power. This
confirms that DRP logic gives rise to leakage scenarios under which first-order
MIA(ID) could be useful, in particular, shedding light on the experimental result
of [6].

In the most general case, the size of the capacitances and not just the direc-
tion of the differences may vary over the circuit. Suppose the gates corresponding
to bits i = 1, . . . ,m have capacitances (αi, βi) such that αi = βi+γi where γi can

330 C. Whitnall and E. Oswald

be positive or negative. Letting x = (x1, . . . , xm) and α = (α1, . . . , αm), β =
(β1, . . . , βm), γ = (γ1, . . . , γm) we get a leakage function of x · α + (x ⊕ 1) ·
β = (x + x ⊕ 1) · β + x · γ = 1 · β + x · γ, so that the data-dependent power
consumption is proportional to a weighted combination of the bits of x, where
the weights can take negative values. Further investigation is needed to establish
the expected behaviour of our distinguishers as the relative weights become
increasingly disproportionate.

Data-Dependent Reference State. We next investigate ideal performance
against Hamming distance leakage allowing for R to take two or more different
values depending on the plaintext, unknown to the attacker, but restricting it to
be constant in repeated runs. In practice this could happen due to an incorrect
implementation of a masking scheme.

In the (commonly studied) case of an 8-bit micro-controller, the reference
states (or masks) take values in {0, 1}8 = {0, . . . , 255}. Since our attacks on
the first DES S-Box target 6-bit key portions, our plaintext inputs are drawn
from {0, 1}6 = {0, . . . , 63}—there could be up to 64 different input-dependent
reference states. The number of possible ways that r reference states could be
associated with the 64 input values is given by the Stirling number of the sec-
ond kind:

{
64
r

}
= 1

r!

∑r
j=0(−1)r−j

(
r
j

)
j64, so it is no longer possible to exhaus-

tively explore every scenario. Instead, we calculate the success rates in 1,000
random experiments for increasing numbers of different reference states, ran-
domly assigned to approximately equal-sized subsets of the input space (see
Figure 4)4.

We find that MIA is much better able to succeed than |CPA|, particularly
when provided with an ID power model—although even then it does not achieve
100% success for attacks with more than 2 different states and for more than
6 states success rates drop to below 50%. The success of |CPA(HW)| degrades
rapidly; for attacks with about 20 different states it is no better than a random
guess, whilst MIA(ID) and even MIA(HW) appear to retain some advantage
over guessing.

Thus, when very little is known about the leakage an attacker may well be able
to recover a great deal of information just by applying a ‘blind’ MIA—though
even ideal success will be partially determined by chance, and the number of
traces required for adequate estimation may be prohibitive. Such an approach
may not be the best way of exploiting the available data: where resources permit,
it may prove more effective or efficient to refine a CPA based approach (or
similar), investing greater effort in understanding the leakage to begin with,
perhaps through profiling.

4 When the reference state is constant, only the 4 bits which are replaced by the
S-Box output contribute to the data-dependent leakage whilst the contribution of
the remaining bits is absorbed into the static component of the power consumption.
However, when the state depends on the data in the manner described here, the
contribution of the remaining bits does need to be taken into consideration as it
becomes part of the data-dependent power consumption.

A Comprehensive Evaluation of Mutual Information Analysis 331

0 5 10 15 20
0

20

40

60

80

100

R
at

e
of

 th
eo

re
tic

 s
uc

ce
ss

 (
%

)

distinct reference states

MIA(ID)
MIA(HW)
CPA(HW)
|CPA(HW)|

Fig. 4. Ideal success against the first DES S-Box in the presence of data-dependent
reference states of length 8 bits, as the number of different states increases

4.3 Theoretical vs. Practical Success

We now return to a scenario which was identified as a candidate for MIA to hold
an advantage over CPA in practice: Hamming-distance leakage from a reference
state unknown to the attacker (taken to be 0100(2) for the purposes of our ex-
ample). We wish to investigate whether the observed ideal advantages generalise
(theoretically) in the presence of noise and hence whether they can be translated
into practical advantages. Figure 5 shows the impact of Gaussian noise on theo-
retic attack effectiveness, both in terms of nearest-rival distinguishability and in
terms of the minimum support size required for first-order success. MIA(HW)
distinguishability is not very robust to the addition of noise, even falling be-
low that of CPA(HW). Moreover, there is a hefty penalty in terms of required
support size. By contrast, MIA(ID) distinguishability is more robust and even
exhibits some evidence of stochastic resonance-type behaviour, whilst required
support size remains constant in the tested range.

0.125 0.5 2 8 32 128
0

1

2

3

4

5

Signal−to−noise ratio

D
is

tin
gu

is
hi

ng
 s

co
re

Nearest−rival distinguishing score

MIA(ID) MIA(HW) CPA(HW)

0.125 0.5 2 8 32 128
10

20

30

40

50
Average minimum support

Signal−to−noise ratio

In
pu

t s
up

po
rt

 s
iz

e

MIA(ID) MIA(HW) CPA(HW)

Fig. 5. Nearest-rival distinguishability and required support size of theoretic attacks
against Hamming distance leakage (with a reference state of 0100(2)) for varying levels
of Gaussian noise

Our simulated attacks use histogram-based estimators where bin counts are
chosen equal to the cardinality of the power model domain, according to the

332 C. Whitnall and E. Oswald

0.125 0.5 2 8 32 128
10

100

1000

Signal−to−noise ratio

N
um

be
r

of
 tr

ac
es

MIA(ID) (16 bins)
MIA(HW) (5 bins)
CPA(HW)

Fig. 6. Average number of traces required for key recovery in simulated practical at-
tacks against Hamming-distance leakage (with a reference state of 0100(2)), for varying
levels of Gaussian noise

heuristic which has emerged from the literature (see, for example, [1]). In a
pure-signal scenario (see the dashed lines in Figure 6) the 5-bin estimator for
MIA(HW) requires fewer traces than CPA(HW) to identify the correct key, but
the introduction of even the smallest amount of noise incurs a burden so that
across the tested range it is substantially less efficient. By contrast, the 16-bin
estimator for MIA(ID) approaches the efficiency achieved in the pure-signal sce-
nario as the SNR increases, and moreover substantially outperforms CPA(HW)
once the SNR is at least 1. We have thus confirmed that—in this instance at
least—ideal MIA advantages can be translated into practical advantages.

5 Conclusions

In this paper we have presented a framework for evaluating and comparing DPA
methodologies on a like-for-like, ideal/theoretic basis. Our outcome measures
allow for a nuanced assessment of the relative strengths and weaknesses of par-
ticular distinguishers as employed under different leakage scenarios. We have
thus been able to compare MIA and CPA as abstracted away from the con-
founding problem of estimation, gaining valuable insight into the empirical re-
sults of existing literature which tends to focus on practical instantiations of
the attacks. We have identified scenarios in which MIA offers a substantial the-
oretic advantage over CPA, and demonstrated that such theoretic advantages
can be translated into practical advantages. Particular candidate scenarios for
MIA to be useful arise when the leakage takes the form of the Hamming dis-
tance from an unknown reference state or in implementations using dual-rail
precharge logic—and, in fact, we are able to demonstrate a relationship between
these two cases. The generic capabilities of MIA are found to be an advantage as
the HW model degrades relative to the true leakage, but multivariate extensions
do not exhibit much if any advantage over univariate attacks in the first-order
‘unprotected’ setting. Lastly, we observe for the first time (to our knowledge) the
noise-sensitivity of the (standardised) MIA distinguishing vector, which exhibits
an effect which can be likened to stochastic resonance and which could possibly
be exploited in certain noisy scenarios to enhance the distinguishing ability of

A Comprehensive Evaluation of Mutual Information Analysis 333

MIA attacks. This is a question for further research. Another open problem—
persistently arising in the context of MIA—is that of finding estimators which
most effectively translate theoretical advantages into practical ones.

Acknowledgements. The authors would like to thank Dave Cliff for pointing
them towards the concept of stochastic resonance, and the anonymous referees
for their comments. The first author of this paper has been funded via an EPSRC
studentship. The second author has been supported by an EPSRC Leadership
Fellowship I005226.

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon,
N.: Mutual Information Analysis: a Comprehensive Study. Journal of Cryptology
24, 269–291 (2011)

2. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic Resonance in Climatic
Change. Tellus 34(1), 10–16 (1982)

3. Bonachela, J., Hinrichsen, H., Munoz, M.: Entropy Estimates of Small Data Sets.
Journal of Physics A – Mathematical and Theoretical 41(20) (2008)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 135–152.
Springer, Heidelberg (2004)

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis: a
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Guilley, S., Hoogvorst, P., Pacalet, R.: Differential Power Analysis Model and Some
Results. In: Quisquater, J.J., Paradinas, P., Deswarte, Y., El Kalam, A. (eds.)
Smart Card Research and Advanced Applications VI. IFIP, pp. 127–142. Springer,
Boston (2004)

8. Hutter, M.: Distribution of Mutual Information. Advances in Neural Information
Processing Systems 14, 399–406 (2002)

9. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kreamer, H.C., Thiemann, S.: How many Subjects?: Statistical Power Analysis in
Reasearch, 1st edn. Sage Publications Inc., Newbury Park (1987)

11. Madiman, M.: On the entropy of sums. In: 2008 IEEE Information Theory Work-
shop (2008)

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

13. Mangard, S., Oswald, E., Standaert, F.X.: One for all - all for one: Unifying stan-
dard DPA attacks. IET Information Security (to appear, 2011), preprint available
from http://eprint.iacr.org/2009/449

14. Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computa-
tion 15(6), 1191–1253 (2003)

15. Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance With-
out Routing Constraints. In: Rao, J., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

http://eprint.iacr.org/2009/449

334 C. Whitnall and E. Oswald

16. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

17. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidel-
berg (2009)

18. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

19. Shiga, M., Yokota, Y.: An Optimal Entropy Estimator for Discrete Random Vari-
ables. In: Proceedings of the IJCNN, pp. 1280–1285. IEEE, New York (2005)

20. Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

21. Standaert, F.X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

22. Treves, A., Panzeri, S.: The Upward Bias in Measures on Information Derived From
Limited Data Samples. Neural Computation 7(2), 399–407 (1995)

23. Veyrat-Charvillon, N., Standaert, F.X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

Key-Evolution Schemes Resilient to Space-Bounded
Leakage�

Stefan Dziembowski1, Tomasz Kazana2, and Daniel Wichs3

1 University of Warsaw and Sapienza University of Rome
2 BioInfoBank Research Institute and University of Warsaw

3 New York University

Abstract. Much recent work in cryptography attempts to build secure schemes
in the presence of side-channel leakage or leakage caused by malicious software,
like computer viruses. In this setting, the adversary may obtain some additional
information (beyond the control of the scheme designer) about the internal secret
state of a cryptographic scheme. Here, we consider key-evolution schemes that
allow a user to evolve a secret-key K1 via a deterministic function f , to get up-
dated keys K2 = f(K1), K3 = f(K2), Such a scheme is leakage-resilient if
an adversary that can leak on the first i steps of the evolution process does not get
any useful information about any future keys. For such schemes, one must assume
some restriction on the complexity of the leakage to prevent pre-computation at-
tacks, where the leakage on a key Ki simply pre-computes a future key Ki+t and
leaks even a single bit on it.

Much of the prior work on this problem, and the restrictions made therein, can
be divided into two types. Theoretical work offers rigor and provable security, but
at the cost of having to make strong restrictions on the type of leakage and design-
ing complicated schemes to make standard reduction-based proof techniques go
through (an example of such an assumption is the “only computation leaks” ax-
iom). On the other hand, practical work focuses on simple and efficient schemes,
often at the cost of only achieving an intuitive notion of security without formal
well-specified guarantees.

In this paper, we complement the two tracks via a middle-of-the-road ap-
proach. On one hand, we rely on the random-oracle model. On the other hand,
we show that even in the random-oracle model, designing secure leakage-resilient
schemes is susceptible to pitfalls. For example, just assuming that leakage “can-
not evaluate the random oracle” can be misleading. Instead, we define a new
model in which we assume that the “leakage” can be any arbitrary space bounded
computation that can make random oracle calls itself. We connect the space-
complexity of a computation in the random-oracle modeling to the pebbling com-
plexity on graphs. Using this connection, we derive meaningful guarantees for
relatively simple key-evolution constructions.

Our scheme is secure also against a large and natural class of active attacks,
where an attacker can leak as well as tamper with the internals of a device. This
is especially important if the key evolution is performed on a PC that can be at-
tacked by a virus, a setting considered by prior work in the bounded retrieval

� The European Research Council has provided financial support to the first two authors of this
paper under the European Community’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement no CNTM-207908.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 335–353, 2011.
c© International Association for Cryptologic Research 2011

336 S. Dziembowski, T. Kazana, and D. Wichs

model (BRM)). This paper provides the first scheme were the adversary in the
BRM can also modify the data stored on the machine.

Keywords: graph pebbling, leakage-resilient cryptography, bounded-retrieval
model.

1 Introduction

In the recent years, there has been a growing interest in the design of cryptographic
schemes that are secure even if implemented on a devices that can leak information.
The motivation for this research comes from the fact that, in practice, it is very hard to
construct hardware that does not reveal any “extra” information about its internal data.
In particular, leakage on the internals can often be obtained using side-channel attacks,
that exploit physical phenomena such as electromagnetic radiation [36,30], timing [5],
power consumption [29], acoustic emanations [38], and many others (see e.g. [33] for an
overview). Another case in which the adversary may obtain leakage from cryptographic
protocols is the situation when the protocols are implemented on PCs on which the
adversary can install malicious software, like the computer viruses.

The first papers proposing algorithmic countermeasures against the side-channel at-
tacks came from the practitioners’ community (e.g. [7]). Later this area attracted a lot
of attention also from the theoreticians, starting from the seminal papers of Ishai et al.
[24], Micali and Reyzin [31], and Akavia et al. [1]. The theoretical countermeasures
against the virus attacks are known under the name bounded-retrieval model [8,14].

In this paper we consider the following natural problem. Suppose a cryptographic
key K0 is stored on a device that leaks information. If leakage occurs continuously,
then the adversary may obtain more and more information about the key, and eventu-
ally learn it entirely. A natural idea to prevent this from happening is to periodically
update the key i.e. to repeatedly apply some key evolution function f to it, obtaining a
sequence of keys K0,K1, . . . , where each Ki+1 := f(Ki). The key evolution func-
tion should be constructed in such a way that the evolved key Ki used in period i is
indistinguishable from uniform, even if the adversary can leak from the entire evolu-
tion process K1 → K2 → . . . → Ki−1. We will assume that the key evolution is
deterministic (i.e. it does not depend on any external randomness) hence these keys Ki

will be shared by synchronized devices, which evolve their keys simultaneously but
independently (without communication). As we will see, the design of key-evolution
functions is also intimately related to the design of leakage-resilient stream-ciphers,
and pseudo-random generators. The problem of designing such primitives been stud-
ied before, both by the practitioners and by the theoreticians. Next, we look at several
models of leakage-resilience and their results.

1.1 Leakage Resilient Key Evolution: Theory vs. Practice

Theoretical work on leakage-resilience usually included a formal model for reasoning
about leakage. Usually, side-channel leakage is modeled as a family of functions where
the attacker can choose a function from the family and learn the output of this func-
tion applied to the secret key. For example, a popular and powerful model of Akavia

Key-Evolution Schemes Resilient to Space-Bounded Leakage 337

et al. [1], allows the adversary to compute arbitrary poly-time leakage functions of
the internal secret key, subject only to the constraint that the amount of data retrieved
(the output-length of the function) is bounded. Unfortunately, when it comes to key-
evolution, it is clear that security cannot be achieved in this model, even if the adversary
is restricted to leaking a single bit! In fact, just given the ability to leak on the initial
key K1, the adversarial leakage-function can pre-compute any future key Ki and out-
put (say) the first bit of it. If the adversary can leak even 1 bit in several consecutive
rounds, the adversary can eventually recover any future key Ki in full! This example
(called a key-precomputation attack in [19]) shows that, when considering the security
of the key-evolution schemes, the sole restriction that the output of the leakage function
is bounded does not suffice. However, it is also easy to see that the leakage-functions
used in the above counter-examples are extremely artificial, and are very unlikely to
model natural side-channel attacks that occur in real life. Hence, it is natural to look for
different (weaker) models for the leakage, that still cover all the realistic attacks, but in
which key-evolution schemes may exist. We survey two such key-evolution schemes in
their corresponding models of leakage. The two schemes come from two very differ-
ent point views: one theoretical with an emphasis on models and proofs, and the other
practical with an emphasis toward efficiency and simplicity. Therefore, it is interesting
to compare their advantages and disadvantages.

The scheme of Dziembowski and Pietrzak [19]. On the theoretical side, [19] constructed
a stream cipher (and, implicitly, a key evolution scheme) in a formal model called “only
computation leaks information”, first proposed by Micali and Reyzin [31] and refined
in [19]. In this model, the internal memory of the device is separated into two or more
segments, and all computation is divided into simpler sub-computations that access
only some small subset of these segments. The assumption is that, during each sub-
computation, the adversary can leak an arbitrary bounded-length function of only the
memory segments accessed by the sub-computation. In other words, during any com-
putational step, data can leak if and only if it is accessed. Pre-computation attacks can
therefore be prevented, since the adversary can never get any global leakage of the entire
state of the system needed to compute a future key.

The actual scheme of [19] (and a related scheme of [34]) uses an alternating structure
with two memory segments accessed in alternating rounds. The main drawback of this
model is that it relies on the highly controversial assumption that data which is not
accessed cannot leak. Also, the security of solutions in this model is highly dependent
on “implementation details” such what data is accessed when.

The scheme of Kocher [28]. On the practical side, Kocher [28] proposes a simple and
efficient solution to just use a “sufficiently complicated” cryptographic hash function for
the key-evolution function f . This scheme seems intuitively secure since it’s unlikely
that any natural and therefore “sufficiently simple” leakage could learn anything about
Ki+1 = f(Ki) from Ki (or even from the entire key-evolution process used to derive
Ki), if f is “sufficiently complicated”. However, [28] does not offer any meaningful
model in which to analyze the above intuition. The main idea is to assume that the
adversarial leakage on the ith update Ki → Ki+1 can be an arbitrary function of the
entire state of that update subject to the constraints: (1) the leakage function cannot

338 S. Dziembowski, T. Kazana, and D. Wichs

make any random-oracle calls, (2) the output-length of the leakage function is bounded
to be just slightly smaller than the key-length |K|. At first, it may seem that constraint
(1) offers a meaningful way of capturing “sufficiently simple” leakage. Unfortunately,
it is not clear what this constraint means in practice, and can lead to counter-intuitive
consequences, described next.

Since the amount of leakage tolerated by the scheme should be close to |K|, it is
natural to try to increase |K| if one would want to achieve more leakage. Of course,
that means using a key-evolution function, and therefore hash function, with suffi-
ciently large input-size and output-size. Assume we start with a compression func-
tion H : {0, 1}2� → {0, 1}�, and we want to allow key-size |K| = t� to allow
for more leakage. The standard technique for domain-extension is the Merkle-Damgård
transformation [9] (and variants of it in the indifferentiability framework) which gives
a function H ′ : {0, 1}∗ → {0, 1}�. Now, to increase the output-size, we can de-
fine H̃ : {0, 1}t� → {0, 1}t� by H̃(K) = H(H ′(K)||1), . . . , H(H ′(K)||t). But, it
is clear that, if one leaks the �-bit value H ′(K1) used as sub-component of the key-
evolution computation K2 = H̃(K1), then one can compute all future keys Kj and
thus completely break the key-evolution scheme! Therefore, the scheme is not secure
with respect to even � bits of leakage when instantiated with real-world hash functions.
Notice that the leakage-function does not perform any complicated computation; it just
leaks several consecutive bits of the internal state, corresponding to H ′(K), which is
computed as an intermediate value during the key-evolution computation.

So we see that, although the initial scheme of Kocher provides some intuitive leakage-
resilience properties, one runs into pitfalls when trying to model and quantify them. In
particular, by relying on the random-oracle model in an unintended way (assuming that
simple functions cannot make random oracle calls), and assuming that leakage on a
computation making random-oracle calls only gets the input and output of such calls,
one reaches a model that doesn’t correspond to reality in a meaningful way.

The scheme of Yu Yu et al. [40]. In a recent important work Yu Yu et al. [40] propose
a practical scheme whose security is based on the assumptions that (1) the leakage
functions cannot be chosen adaptively, and (2) the leakage function cannot evaluate the
hash function (which is modeled as a random oracle). The security of the scheme that
we construct in this paper does not require these assumptions. On the other hand, from
the engineering point of view the assumptions made in [40] may look more attractive,
since they are easier to verify empirically.

Other Models of Leakage-Resilience. We note that several other models of leakage
resilience, with restricted leakage functions, have appeared in the literature. For ex-
ample, [24] assumes leakage functions that leak individual wires from a circuit that
performs a computation. Alternatively, Faust et al. [21] assume that leakage-function is
an AC0 circuit of the internal state. Several works consider computation that uses some
small/simple leak-free components [22,21,23,26].

1.2 Our Model: Space-Bounded Leakage

In this paper we propose a method for the key evolution that combines the advantages of
the Kocher’s practical scheme (efficiency and simplicity of model, scheme) with some

Key-Evolution Schemes Resilient to Space-Bounded Leakage 339

of the advantages of the theoretical scheme of [19] (provable security and scalability).
On a high level, we restrict the class of leakage functions to ones that are bounded in the
amount of “auxiliary work space” used during the computation of the output. In partic-
ular, this should model natural leakage which is unlikely to be sufficiently complex to
require much space to compute. We will analyze a variant of the Kocher key-evolution
scheme in the random-oracle model, but give all parties (including the leakage func-
tions) the ability to compute the random oracle. In particular, we define a deterministic
key-evolution function f that makes random-oracle calls to compute Ki+1 = f(Ki).
On a high level, pre-computation attacks will not be possible because the space allowed
to the leakage function is not sufficient to pre-compute Ki+1 from Ki.

In greater detail, we model the leakage process on the key evolution as follows.
We consider an adversary A = (Asmall,Abig) consisting of two parts: the adversary
Abig corresponds to the external real-world attacker that tries to break the scheme,
and Asmall corresponds to the “space-bounded” device which is storing and evolving
the secret key while leaking partial information to the external attacker Abig . We do
not assume anything about how the computation is implemented on the device, and
thus allow the computation Asmall itself to be adversarial. Initially, Asmall is given
the random starting key K1. Since key evolution is deterministic, this will completely
specify all future keys K2,K3, Of course, we need somehow to “force” Asmall to
perform the key evolution (if Asmall can completely “halt” the key evolution, then he
can simply keep K1 on M for a long time, and slowly retrieve it bit-by-bit). In the
passive case we could simply assume that, in time period i, the key Ki is fully stored on
the machine and therefore there is not enough memory on the machine to store much
information about any of the prior keys from earlier time periods. However, if Asmall

is active then this assumption could be completely unreasonable as the attacker could
just keep K1 on the machine for arbitrarily many time periods and leak it entirely.
Therefore, we will introduce a special procedure that we call Verifyi, and assume that
this procedure is called in each time period i to ensure that the device is storing the full
key Ki at that point in time.

During the entire key-evolution process, Asmall can communicate with Abig and
can perform arbitrary computation (in addition to / instead of computing Ki honestly)
including the ability to make random oracle calls. We only make three restrictions: (1)
the amount of data that Asmall can send to Abig in each period is bounded (2) the
space-complexity of Asmall is bounded and not much larger then the space-complexity
of the honest computation of f , (3) the number of oracle-queries made by all parties is
polynomial (no other computational assumptions are made). (4) At the end of round i,
the machine Asmall stores the correct key Ki. We will allow unlimited communication
in the other direction Abig to Asmall.

Let us elaborate on the restrictions in more detail. Restriction (1) models the fact that
natural leakage is too simple to reveal too much data about any single computational
step. Restriction (2) models that fact that the complexity of natural leakage functions
is rather simple. In particular, the space-complexity of leaking on the internals of a
computation should not be much larger then the amount of space actually used by the
computation itself! This seems to be a rather conservative assumption. Lastly, restriction
(3) models that all parties run in polynomial time, as is standard in cryptography, and

340 S. Dziembowski, T. Kazana, and D. Wichs

restriction (4) models the fact that the device itself correctly computes the key Ki in
round i.

Now that we have explained the model, let us give some intuition why key-evolution
schemes are achievable in it. Firstly, note that, in round i, the adversary can (in prin-
ciple) pre-compute any future key Ki+t in the space it is allotted. However, we will
ensure that such computation would necessarily require the adversary to erase some
data about Ki (since it cannot store all of Ki and compute Ki+1 simultaneously with
limited space) and hence it will be unable to satisfy the requirement that Ki is stored
on the system at the end of round i.

1.3 Our Results

We construct a key-evolution function f that is secure in the model described above.
Let c be the amount of bits that the adversary can retrieve in each round, and let s be
the space that the adversary can use to compute the leakage function (including the |K|
bits needed to store the key K). We show that our scheme is secure as long as

4c + s ≤ 3 · |K|/2 (1)

(cf. Theorem 1). Let us mention two applications of our construction.

Security against passive leakages. Firstly, suppose that the evolving key Ki is stored on
some device (say, a smart-card) that may leak some information. Imagine that the device
is used for (message or entity) authentication with a trusted server that has his own copy
of Ki. Suppose the adversary can get a temporary access to the device, observe the
process of key evolution and learn some partial information about the keys. At some
later point the adversary looses access to the device. The properties of our function
f will guarantee that the future keys are unknown to the adversary assuming that the
leakage is bounded in the way described above. Since in this case the adversary is only
passive, there is no need to perform the procedure Verifyi. It may look like the model
described above is stronger than what we need for this application, since it seems too
pessimistic to assume that the adversary fully controls how the keys Ki are computed on
the device. It may seem tempting to consider a weaker model, where the computation is
done is some honest way, and the adversary can apply the leakage functions during the
evolution process. We believe that such a restriction would not make the proof simpler
(while it would make the model more complicated). Moreover, going to the extreme
and allowing the adversary to control the computation has the advantage that it protects
us (to a certain extent) against implementation errors.

Security against active attacks in the BRM. The second application of our construc-
tion concerns the bounded-retrieval model (BRM) [8,15]. In this model one constructs
schemes where the cryptographic key K is very large. The idea is that K can be stored
on a PC that can be infected by viruses, and, as long as the virus does not retrieve a
large portion of K , the scheme should remain secure. So far, all the work in the BRM
considered only the passive attacks, where the virus was not allowed to modify the data
on the machine. Now, consider the following problem: suppose we are using the BRM

Key-Evolution Schemes Resilient to Space-Bounded Leakage 341

scheme for the session-key agreement [15,6] (where a pair of users share a secret key
K), and we want to evolve the secret key K stored on the machine, so that in total over
a long period of time we can tolerate a leakage of more than |K| bits from the machine.
We show that f can be used as such a key-evolution function. The details of the model
are as follows. Suppose we store the keys Ki on the machine M, and assume that the
size of the local memory on M is s, and the amount of bits that can be retrieved in
each key-evolution round is c, and c and s are such that (1) holds. Suppose M wants
to authenticate to a trusted server that has his own copy of Ki. If there is a virus on M
then we can even allow him to modify the data stored on M. The restrictions that we
impose are as follows. First, we assume that any computation that the virus performs
has to be done within M’s memory (of size s). Second, we somehow need to guarantee
that the verification procedure Verifyi can be performed. We do it by assuming that M
is equipped with a small tamper-free component D that can periodically check if the
contents of the memory is “correct”. For example, D could store the values of some
hash function of K1,K2, . . . ,, and the Verifyi procedure would just consist of hashing
the contents of the memory where Ki is supposed to be stored, and comparing the result
with H(Ki).

1.4 Some Implementation Details

In this paper we do not define formally the security of the concrete schemes (like the
message authentication), since we are more interested in considering the key-evolution
as an abstract procedure. Every key Ki will consist of N − 1 blocks:
Ki = (K0

i , . . . ,K
N−1
i), each of the blocks being an output of a hash function modeled

as a random oracle. Hence, we can simply say that Ki is secret if none of its blocks has
every been calculated by the random oracle (in our model calculating such a block will
correspond to “labeling” a vertex in some graph).

Of course, the key evolution scheme would be useless, if we could not use the
evolved key in some other application. In other words, after each round i, the key evo-
lution function should output some key κi, and in the formal model this κi should be
given to Abig “for free”. In our case we simply assume that κi is equal to one of the
blocks of Ki. Note, that it does not require any modification of the model, since we can
as well assume that κi is sent to Abig by Asmall.

The Verifyi procedure (that verifies the knowledge of Ki) can be implemented as
follows: (1) the verifier (that knows Ki) sends a random value c to the device, and (2)
the device replies with v = MAC(c,Ki) (where MAC is a tagging function of some
message authentication code scheme, c is treated as a key for the MAC, and Ki is
treated as a message), (3) the verifier checks if v = MAC(c,Ki), and if not then he
aborts. Note, that we cannot hope for more than only verifying the correctness, since in
the worst case an active adversary can anyway completely destroy the contents of the
device. In our model we will not assume anything about how MAC(c,Ki) is computed
by Asmall. For example, it will be possible that he partially “pre-computes” it before
learning c. The only property of MAC that we use is that Asmall can compute the value
of MAC(c,Ki) only if each of the blocks of Ki were computed by him at some point
earlier.

342 S. Dziembowski, T. Kazana, and D. Wichs

1.5 Organization

Our key-evolution function is defined using a special type of a graph, that we call a
tower graph. The method of translating graphs into functions is described in Section
2. The tower-graphs and the function f are defined in Section 3. The main theorem is
stated in Section 4, which also introduces most of the tools needed for the proof. The
proof itself appears in Section 5.

1.6 Related Work

The theoretical countermeasures against the side-channel attacks were considered in
[19,1,35,27,32,10,39,11,12,20,4,3]. The schemes in the Bounded Retrieval Model were
constructed in [8,15,14,6,18,25,2]. We will use the technique called “graph pebbling”
(cf. e.g. [37]), that was already used in cryptography in [13]. Some of our techniques
(esp. those used in Sections 4.1 and 4.5) were introduced in [13] and recently extended
in [17]. We note that, although our techniques are quite similar, the application is com-
pletely different (the main application of [17] is a construction of a scheme for the
password-protected local storage). Unfortunately, it is impossible to use the theorems
from [13,17] in a black-box way, and therefore we needed to non-trivially extend them.
On a technical level, the main difference comes from the fact that in [17] the total
amount of leakage was bounded globally, and in our paper we need to consider contin-
ual leakage over an unbounded number of round.

2 Random-Oracle Labeling of a Graph.

Let G = (V,E) be a directed acyclic graph (DAG). A vertex v is a child of a vertex
v′ if there is an edge from v to v′. Let V0 be the set of its input vertices, i.e. the ver-
tices without children. A labeling of G is a function label(·), which assigns values
label(v) ∈ {0, 1}w to vertices v ∈ V . We call w the label-length. For any function
H : {0, 1}∗ → {0, 1}w and input-labels K = (K1, . . . ,KN) with Ki ∈ {0, 1}w, we
define the (H,K)-labeling of G as follows:

– The labels of the N distinct input vertices v1, v2, . . . , vN are given by label(vi)
def=

Ki.
– The label of every other vertex v is defined recursively by

label(v) def= H(label(v1), · · · , label(vj), v)

where v1, · · · , vj are the children of v.

A random oracle labeling of G is an (H,K)-labeling of G where H is a random-
function and K is chosen uniformly at random. For convenience, we also define
preLabel(v) def= (label(v1), . . . , label(vj), v), where v1, . . . , vj are the children of
v, so that label(v) = H(preLabel(v)).

Key-Evolution Schemes Resilient to Space-Bounded Leakage 343

3 Our Key-Evolution Scheme

In this section we define our key-evolution function f . We start with defining a special
type of graphs, that we call the “tower graphs”. A graph G = (V,E) is called an
(N,M)-tower graph if V = {0, . . . ,M − 1} × {0, . . . , N − 1} and E = {((i, j), (i +
1, j) : i ∈ {0, 1, . . . , }, j ∈ {0, . . . , N − 1}} ∪ {((i, j), (i + 1, (j − 1) mod N) : i ∈
{0, 1, . . .}, j ∈ {0, . . . , N − 1}} (cf. Figure in the appendix of extended version [16]).
For i = 0, . . . , t the set Vi = {(i, 0), . . . , (i, N − 1)} is called the ith line of G. Let V≥i

denote the set Vi ∪ Vi+1 ∪ · · · . Note that the set of the input vertices of G is equal to
V0. We will say that an (infinite) graph G is an N -tower graph if it is an (N,∞)-tower
graph.

We are now ready to define f . If we fix a hash function H and label length w then the
(N,M)-tower graph G defines a function f : {0, 1}Nw → {0, 1}Nw in the following
way. On an input K the function f computes the (H,K)-labeling of G and it outputs
(K ′

1, . . . ,K
′
N), where each Ki is the label of (M − 1, i). The procedure for computing

f(K0, . . . ,KN−1) simply computes the labels bottom-up row-by-row in the following
way:

– Set (K0
0 , . . . ,K

0
N−1) := (K0, . . . ,KN−1).

– For j = 1, . . . ,M − 1 do
• For i = 0, . . . , N − 1 do Kj

i := H(Kj−1
i ,Kj−1

i+1 mod N , (i, j))

Observe that the time needed to compute f is roughly equal to N · M times the
time needed to compute H, and the space needed to compute f is only slightly larger
than the space needed to store K , since we can overwrite each (Kj

0 , . . . ,K
j
N−1) with

(Kj+1
0 , . . . ,Kj+1

N−1) and hence re-use the space.
It is also easy to see that iterating the computation of f on the same input a times, i.e.

computing K ′ = fa(K) can be seen as computing the labeling of an (N, aM)-tower
graph, and in particular, if we want to evolve the key K0 using the procedure Ki+1 =
f(Ki) (for i = 0, 1, . . .) then we can look at it as a labeling the tower infinite N -tower
graph, where the keys K1,K2, . . . appear as labels of the lines V1·M , V2·M , We will
call such lines the round-switching lines.

4 Games on Tower Graphs

We will show a connection between an adversary computing a “random oracle graph”
and a pebbling game for the corresponding graph. A similar connection appears in [13]
(and in [17], see Section 1.6 for more on relation between this work and [17]).

4.1 Model of Computation

Our main goal is to show that computing the labeling of a tower graph G requires a
large amount of resources in the random-oracle model, and is therefore difficult. To do
so, we must fix a model of computation in which we can make statements of the above
form precise. Recall that we will usually consider an adversary that consists of two
parts: a “space-bounded” component which gets access to the internals of an attacked
device and has “bounded communication” to an external, and otherwise unrestricted,
adversary.

344 S. Dziembowski, T. Kazana, and D. Wichs

We model such a adversary A = (Abig ,Asmall) as a pair of interactive algorithms1

with oracle-access to a random-oracle H(·). Let M be some natural number that we
will call the round length. While executing the algorithms the time is divided into
rounds. Initially the computation is in a round 1. The adversary Asmall is responsible
for switching to next round. Namely: the round is changed to k when Asmall calls spe-
cial function nextRoundk(label(a1) . . . label(an)), where {a1, . . . , an} is the kth
round-switching line Vk·M . A round k can be switched only to round k + 1, in other
words the order of the round-changing calls has to be nextRound1, nextRound2,
The period between the calls nextRoundi and nextRoundi+1 will be called the ith
round. The algorithm Abig will only be restricted in the number of oracle calls made.
On the other hand, we impose the following additional restrictions on Asmall:

– s-bounded space: The total amount of space used by Asmall is bounded by s. That
is, we can accurately describe the entire configuration of Asmall at any point in
time using s bits.2

– c-bounded communication: The total number of outgoing bits communicated by
Asmall in each round is bounded by c.3

Note that these restrictions imply that he total number of outgoing bits communicated
by Asmall in every round is bounded by c and there is no global bound for communi-

cation. We use the notation AH(·)(K) =
(
AH(·)

big () � AH(·)
small(K)

)
to denote the in-

teractive execution of Abig and Asmall, where Asmall gets input K and both machines
have access to the oracle H(·). In particular, we will usually (only) care about the list of
random-oracle calls made by Abig and Asmall during such an execution. We say that an
execution AH(·)(K) labels a vertex v, if a random-oracle call to preLabel(v) is made
by either Abig or Asmall. We are now ready to state our main theorem.

Theorem 1. Let G be a N -tower graph and λ > 0. Suppose c, s and q are such
that 4c+s+λ

w−log(q) ≤ N + N/2, and let T be an arbitrary natural number. Let A =
(Abig ,Asmall) be an adversary with c-bounded communication and s-bounded stor-
age that makes at most q queries to H . The probability p (taken over the choice of
(H,K)) that there exists i = 1, . . . , T − 1 such that A labels the line V(i+1)·M of G in
round i is at most

q · 2−w + T · 21−λ (2)

The proof appears in Section 5. The necessary machinery is introduced in the next
sections.

1 Say ITMs, interactive RAMs, . . . The exact model will not matter.
2 This is somewhat different than standard space-complexity considered in complexity theory,

even when we restrict the discussion to ITMs. Firstly, the configuration of Asmall includes
the value of all tapes, including the input tape. Secondly, it includes the current state that the
machine is in and the position of all the tape heads.

3 To be precise, we assume that we can completely describe the patters of outgoing communi-
cation of Asmall using c bits. That is, Asmall cannot convey additional information in when
it sends these bits, how many bits are sent at a given time and so on.

Key-Evolution Schemes Resilient to Space-Bounded Leakage 345

4.2 Pebbling Games on Tower Graphs

We will consider a variant of the pebble game that we call the “red-black” pebble game
over an N -tower graph G = (V,E). Each vertex of the graph G can either be empty,
contain a red pebble, contain a black pebble, or contain both types of pebbles. More
precisely, if G is a tower graph, then a pebbling configuration on G is a function γ :
V → P({red, black}). Define Red(γ) := {v : red ∈ γ(v)}, and Black (γ) := {v :
black ∈ γ(v)}. If V ′ ⊆ V then define proj (V ′) := (|V ′ ∩ V1|, . . . , |V ′ ∩ Vt|).

For a set V ′ ⊆ V denote by [V ′] the closure of V defined recursively as follows:

– if v ∈ V ′ then v ∈ [V ′],
– if all the children of v′ are in [V ′] then v′ ∈ [V ′].

An initial configuration γ1 consists of (only) a black pebble placed on each input ver-
tex of G. The game proceeds in steps where, in the ith step, the configuration γi is
transformed into γi+1 using one of the following four actions:

1. A red pebble can be placed on any vertex already containing a black pebble.
2. If both children of a vertex v have a red pebble on them, a red pebble can be placed

on v.
3. If both children of v have some pebble on them (red or black), a black pebble can

be placed on v.
4. A black pebble can be removed from any vertex.

A pebbling game is a sequence γ1 → γ2 → · · · →� of configurations. The game is
— similarly to real computational model — divided into rounds. One starts a game in
round 1. A round may be switched to u in a configuration γi if all vertices from a line
Vu·M in γi are pebbled by some pebble (technically, a round is switched to u by issuing
a request nextRoundu). This switch is not obligatory when the specific row is pebbled.
However, we require that the order of the request is nextRound0, nextRound1, . . . ,.

We define the black-pebble complexity of a round k of a pebbling game to be the
maximum number of black pebbles on vertices in V≥k·M in use at any time of round
k. More precisely if γi → · · · → γj are the configurations in round k. Then the black
pebble complexity of k is equal to maxj

�=i |Black (γ�) ∩ V≥k·M |. If γi, . . . , γj are as
above then the red pebble complexity of k is equal to the number of times in round k
in which Step 1 was applied. For a parameter X a pebbling game is X-bounded if for
every round k we have 2Rk + Bk < X , where Rk and Bk denote the red- and the
black-pebble complexities (resp.) of round k.

4.3 Auxiliary Lemmata

We need some auxiliary definitions and lemmas. For (a0, . . . , at) ∈ {0, . . . , N}t+1

define the optimistic width of (a0, . . . , at) as: OptWidth(a0, . . . , at) := (b0, . . . , bt),
where

– b0 := a0, and
– for every i = 1, . . . , t we set

bi :=
{

N if bi−1 = N
min(N, bi−1 − 1 + ai) otherwise

346 S. Dziembowski, T. Kazana, and D. Wichs

Intuitively, the idea is that if (b1, . . . , bt) := OptWidth(a0, . . . , at) then bi’s give an
upper bound on the number of pebbles in the ith line of [V ′] (for any V ′ ⊆ V), assuming
that ai is the number of pebbles in the ith line of V ′. Formally, this is shown in the
following lemma.

Lemma 1. Take any set V ′ ⊆ V and let (a0, . . . , at) := proj ([V ′]) and (b0, . . . , bt) :=
OptWidth(proj (V ′)). For every i we have that ai ≤ bi.

Proof. The proof goes by induction on i = 0, . . . , t. Case i = 0 follows immediately
from the fact that the closure operation does not change the configuration of the pebbles
on the bottom row (V0), and hence a0 = b0.

Now suppose the lemma holds for some i. The set of pebbles in the (i + 1)st line of
[V ′] is equal to the sum of V ′

i+1 and the pebbles P that were derived (using the closure
operation) from the pebbles in the ith line of [V ′]. By the induction hypothesis we get
that the number of pebbles in the ith line of [V ′] is at most bi−1. Now, consider the
case when bi−1 �= N . From the definition of the closure operation it follows that |P | ≤
bi−1−1. Therefore |V ′

i+1∪P | ≤ |V ′
i+1|+ |P | ≤ ai+bi−1−1. Since the maximal value

of ai + bi−1 − 1 cannot be greater than N we get |V ′
i+1 ∪P | ≤ min(N, ai + bi−1 − 1).

The second case (bi−1 = N) follows easily from the fact that in this case bi = N .

A sequence (a0, . . . , at) is called wide if for some i we have ai = N . A set V ′ ⊆ V
will be called wide if proj ([V ′]) is wide. We have the following simple observation.

Lemma 2. For U,W ⊆ V such that U ∪W is not wide define
(a0, . . . , at) :=OptWidth(proj ([U∪W])) and (b0, . . . , bt) := OptWidth(proj ([W])).
Then, for every i we have bi ≤ ai − |W |. In other words: adding |W | elements to U
cannot increase the values on the coordinates in OptWidth(proj ([U])) by more than
|W | (as long as the resulting set U ∪W is not wide).

Proof (sketch). Suppose we add the elements of W to U one-by-one. From the defini-
tion of the closure operation it easily follows that adding one element cannot increase
OptWidth(proj ([W])) by more than on each coordinate (as long as the resulting set is
not wide). Hence the statement of the lemma follows.

A subgraph G′ of a tower graph is a pyramid graph (cf. Fig. in Appendix in extended
version [16]) if it is induced by the set of vertices: {(i+x mod N − 1, j+ y mod N) :
0 ≤ x + y ≤ N − 1} for some i and j. The vertex (i + N, j) will be call the root of
G′. We now have the following lemma whose proof appears in Appendix in extended
version [16].

Lemma 3. Consider a pebbling game for initially empty pyramid graph. If the root ver-
tex is pebbled at the end of the game then there exist a configuration γ of the considered
game with sum of red pebbles in the first row and the black pebbles is at least N .

4.4 The Impossibility of Pebbling

Our goal is to show that — with some restrictions on red and black pebble complexity
— it is impossible to pebble any vertex in V≥(u+2)·M in round u. Intuitively, it means
that we cannot get any information about pebbles from any line V≥(u+2)·M , before
switching to round u + 1. More precisely, the following theorem holds:

Key-Evolution Schemes Resilient to Space-Bounded Leakage 347

Theorem 2. Let N,T and X be arbitrary natural numbers such that

X <
3N
2

.

Set M := 3N
2 . Suppose G is an N -tower graph. Then, for any X-bounded pebbling

game for G with round length M and any configuration γ that belongs to the uth round,
we have that in γ there are no pebbles on V≥(u+2)·M .

Proof. In an execution of a pebbling game a pebble will be called heavy if it is a
black pebble, or a red pebble placed on the graph using rule 1 (cf. Page 345). For a
round u let γiu be the last configuration of this round. We claim that in γiu there is
no pebble on V≥(u+2)·M . Let Au be the set of all pebbled vertices in the configura-
tion γiu and let Qu be the set of all pebbles in Au except of the black pebbles ly-
ing on the line u · M . More precisely: Qu = Au \ (Au ∩ Vu·M ∩ Black (γ)). Set
Yu := V≥M·u \ V≥M·(u+1)

Lemma 4. For every u we have:

1. Au ∩ V≥(u+2)·M = ∅
2. OptWidth(proj ([Qu]))= (a0, . . . , aT ·M)< (N, . . . , N︸ ︷︷ ︸

u·M

, N/2, . . . , N/2︸ ︷︷ ︸
M

, 1, . . . , 1),

in particular [Qu] is not wide.

After showing this we will be done with the proof since Point 1 of Lemma 4 clearly
implies that Theorem 2 holds.

Proof (Proof of Lemma 4). Induction on u = 1, 2, The base of the induction holds
trivially since in the initial configuration only the bottom line is pebbled. Let us now
assume the statement holds for some u. Now we prove the following claims for next
round u + 1:

Claim. During the entire round u + 1 there must be at least N/2 heavy pebbles in the
subgraph Yu (i.e. the lines u ·M, . . . , (u + 1) ·M − 1).

Proof. Let us consider any configuration γ from this round and denote the set of heavy
pebbles in X in γ by P . At the end of the round every vertex on the (u + 1)st round-
switching line V(u+1)·M will contain a pebble. Therefore the closure [P] of heavy peb-
bles P from the current configuration and the pebbles from the previous rounds Qu

need to contain whole line V(u+1)·M . This is because otherwise one would never be
able to pebble V(u+1)·M in the future (this follows easily from the definition of closure
and the pebbling game). Hence [P ∪Qu] has to be wide and therefore (from Lemma 1)
OptWidth(P ∪Qu also has to be wide. On the other hand, by the induction hypothesis
we know that every coordinate of OptWidth(Qu) on positions u ·M, . . . is smaller than
N/2. Now, by Lemma 2 adding to Qu a set of cardinality |P | cannot increase any of
this coordinates by more than |P |. Hence |P | ≥ N/2.

348 S. Dziembowski, T. Kazana, and D. Wichs

Claim. Through the whole round u + 1 no vertex in V≥(u+2)·M is pebbled.

Proof. For the sake of contradiction assume that the claim is not true. So, we have a con-
figuration γ from round u+1 with a pebble on some vertex v from set V≥(u+2)·M . De-
note by (V ′, E′)′ the subgraph forming the pyramid graph with root in vertex v. From
Lemma 3 we have that before γ there was a configuration γ′ that: had b black pebbles
on V ′ and had r red pebbles in bottom line of V ′ (which is the line V≥(u+2)·M−N+1 of
the tower graph) and b + s ≥ N . However from Claim 4.4 there are at least N/2 heavy
pebbles on Yu, and Yu is disjoint with the pyramid (V ′, E′). The number of all heavy
pebbles is A := B + R < (N − R) + (N/2). Therefore in the set V≥M·(u+1) ⊃ V ′

there are at most (N − R) heavy pebbles. Since b + s is bounded by the number of
heavy pebbles so we have a contradiction with the fact that b + s ≥ N .

Claim. OptWidth(proj ([Qu+1])) = (a0, . . . , aT ·M) < (N, . . . , N︸ ︷︷ ︸
u+1·M

, N/2, . . . , N/2)

Proof. Denote the configuration at the end of this round by γ and the set of heavy
pebbles in γ by P . Let P ′ denote P without black-pebbled vertices from (u + 1)th
finishing line. From definition, we have [Qu+1] = [Qu∪P ′]. In γ the (u+1)th finishing
line is pebbled. There at most R red pebbles, so at least N−R black pebbles are on this
line. So |P ′| is at most A − (N − R) = B + 2R− N < N/2. Similarly as at the end
of proof of the Claim 4.4 adding to Qu a set of cardinality |P ′| < N/2 cannot increase
any coordinate of OptWidth by more then |P ′|. This finishes the proof.

Claims 4.4 and 4.4 prove inductive hypothesis for u + 1. Hence we are done.

4.5 Connection between RO Labeling and the Pebbling Game

We now connect the random-oracle labeling of a tower graph G in our model of com-
putation to the red-black pebbling game on G (a similar connection appeared recently
in [17] and it is an extention of the technique from [13]). The idea is to show that from
any execution of A (with space bounded by some s, and communication bounded by
some c) we can construct some pebbling game for pebble game described before. Then,
we show that (with high probability) this game respects the rules of the game and is
(B,R)-bounded (for some B,R that will depend on c and s). We will then combine it
with Theorem 2 to conclude that some specific oracle calls are impossible.

The main fact about the connection is that — in every round — the black-pebble
complexity of the pebbling will correspond to the space-complexity of Asmall and the
red-pebble complexity corresponds to the communication-complexity of Asmall.

First, let us strictly define the method of translating an execution of A into a pebbling
game. Let H : {0, 1}∗ → {0, 1}w be a random oracle, and let K = (K1, . . . ,KN) be a
labeling of the input-vertices of G. For any algorithms A = (Abig ,Asmall) we can use

the execution AH(·)(K) =
(
AH(·)

big � AH(·)
small(K)

)
to construct a red-black pebbling

of the graph G. In particular, we get a transcript listing all oracle calls made during its
entire execution, and whether they were made by Asmall or Abig and all nextRound
calls made by Asmall.

Key-Evolution Schemes Resilient to Space-Bounded Leakage 349

We fix some terminology about the transcript. Given (H,K), we say that an oracle
call of the form H(label1, label2, v) is correct if (label1, label2, v) =
preLabel(v). We call the children v1, v2 of v the input-vertices of the oracle call, and
v is the output-vertex of the oracle call.

Using the transcript (along with the description of H,K) we define the ex-post-
facto pebbling of the graph G. We do so by processing the random-oracle calls and
nextRound calls in the transcript one-by-one starting with the earliest one, and, for
each call, we take the following steps:

Change round: If Asmall calls nextRound, change round in the pebble game.
Place all necessary red pebbles: A vertex v is red-necessary if, looking at the entire

transcript of all oracle calls, there exists some correct oracle call made by Abig with
v as an input-vertex, which precedes all correct oracle calls made by Abig with v as
an output-vertex. If the call is taken in kth round and v ∈ V≥k·M then we say that
v is k-red-necessary.
Go through all red-necessary vertices v one-by-one and, for each one check if that
has a black pebble,but no red pebble. If so, put red pebble on v.4

Delete all unnecessary black pebbles: A vertex v is black-necessary if it is not red-
necessary and, in the remainder of the transcript of oracle-calls that have not yet
been processed (including the current call), there exists some correct oracle call
made by Asmall with v as an input-vertex such that:

– In the remainder of the transcript, there is no earlier correct oracle call made
by Asmall with v as an output-vertex.

– In the entire transcript, there is no earlier correct oracle call made by Abig

with v as an output-vertex.
Go through all vertices v which are not black-necessary but have a black pebble on
them, one-by-one, and remove the black pebble.5

Process oracle call: If the current oracle call is correct and made by Asmall (respec-
tively Abig) with output vertex v, we put a black (respectively red) pebble on v.

We notice that every vertex that is labeled by the execution of AH(·)(K) gets a (red
or black) pebble placed on it in the corresponding ex-post-facto pebbling (although, of
course, this pebble may have been removed at some later point). Moreover, the order in
which vertices get red/black pebbles corresponds to the order in which the oracle calls
are made by A.

4 Note that the set of red-necessary vertices does not change throughout the process. Intuitively,
these are the vertices whose labels must be communicated by Asmall toAbig at some point in
time, and correspondingly for which we need to take pebbling-action 1 to place a red pebble
on them. We choose to take this action as early as legally possible, since it might allow us to
remove related black pebbles early.

5 Note that the set of black-necessary vertices can be different at different points in the process.
Intuitively, at any point in time, a black-necessary vertex is one whose label must be stored
in the memory of Asmall since it will not be re-computed by Asmall via oracle calls, it was
never communicated to Abig , nor will it be computed by Abig in time.

350 S. Dziembowski, T. Kazana, and D. Wichs

As mentioned before, we now show that, for any adversary A = (Asmall,Abig)
which is space/communication bounded, and which makes a bounded number of oracle
calls, the ex-post-facto pebbling is legal and has small space/communication
complexity.

Theorem 3. Let G be an N -tower graph. Let A = (Abig ,Asmall) be any adversarial
labeling game in our restricted model of computation. Let (H,K) define a random-
oracle labeling of the graph G, with label-length w. Assume that A makes at most
q random-oracle queries during the execution. Then, the ex-post-facto pebbling of G
corresponding to an execution of AH(·)(K) has the following properties (for any k):

1. It is a legal pebbling (i.e. follows the rules of the red-black pebbling game and
changes round only when appropriate condition is hold) with probability 1 − q

2w

over the choice of (H,K).
2. Assuming that Asmall has c-bounded communication and that in rounds 0, . . . , k−

2 no vertices from V≥k·M were pebbled in the ex-post-facto game then, for any
λ ≥ 0 the red-pebble complexity of the round k is at most 2c+λ

w−log(q) with probability

1 − 2−λ over the choice of (H,K).
3. Assuming that Asmall has s-bounded storage and c-bounded communication and

that in rounds 0, . . . , k − 2 no vertices from V≥k·M were pebbled then, for any
λ > 0, the sum of the red-pebble complexity and the black-pebble complexity of the
round k is at most 2c+s+λ

w−log(q) with probability 1 − 2−λ over the choice of (H,K).

The proof appears in Appendix in extended version [16].

5 Proof of Theorem 1

Consider an execution of A and a corresponding ex-post-facto pebbling game G. Let X
denote an event that G is legal. For i = 1, . . . , T let Bi and Ri denote the respective
black- and red-pebble complexities of round i in G. Moreover, let Yi denote the event
that in the round i we have that (1) Bi +2Ri < N +N/2, and (2) no vertex in V(i+2)·M
has been pebbled. Recall that every vertex that is labeled gets also pebbled. Therefore
we have

1 − p ≥ P (Y1 ∧ · · · ∧ YT−2)
≥ P (X ∧ Y1 ∧ · · · ∧ YT−2)
= P (X) · P (Y1|X) · P (Y2|Y1 ∧ X) · · ·P (YT−2|Y1 ∧ · · · ∧ YT−3 ∧ X) (3)

Let us look at a term P (Yi|Y1∧· · ·∧Yi−1∧X). Suppose Y1∧· · ·∧Yi−1∧X occurred.
The events Y1, . . .Yi−2 together imply that until round i− 2 no pebble has been placed
on any vertex in V≥i·M . Hence:

– Ri ≤ 2c+λ
w−log(q) with probability at least 1 − 2−λ (from Part 2 of Theorem 3), and

– Bi + Ri ≤ 2c+s+λ
w−log(q) with probability at least 1 − 2−λ (from Part 3 of Theorem 3).

Key-Evolution Schemes Resilient to Space-Bounded Leakage 351

Therefore we get that Bi + 2Ri ≤ 4c+s+λ
w log(q) ≤ N + N/2 with probability at least

1−21−λ. Since the events Y1, . . .Yi−1 also imply that Bj +2Rj ≤ N +N/2 holds for
every j < i, therefore we can apply Theorem 2 and get that with probability 1 − 21−λ

no pebble is put on any vertex in V≥(i+1)·M in round i. Since we also know that the
pebbling is legal (because we assumed that X occurred), a vertex can be labeled by
A only if it is pebbled. Hence Yi holds (with probability at least 1 − 21−λ). From
Part 1 of Theorem 3 we have that P (X) ≥ 1 − q

2w . Putting things together we get
P (Yi|Y1 ∧ · · · ∧ Yi−1 ∧ X) ≥ 1 − 21−λ. Hence (3) is at least equal to(

1 − q

2w

)
· (1 − 21−λ

)T−2

≥ (1 − q · 2−w
) · (1 − T · 21−λ

)
≥ 1 − q · 2−w − T · 21−λ

Therefore p is at most (2).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–
495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-
retrieval model (2009), http://eprint.iacr.org/

3. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under
subgroup indistinguishability (or: Quadratic residuosity strikes back) (2010)

4. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Cryptography resilient to continual
memory leakage (2010)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw. (2005)
6. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-resilient key

exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 479–498. Springer, Heidelberg (2007)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 398. Springer,
Heidelberg (1999)

8. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in the
bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
225–244. Springer, Heidelberg (2006)

9. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Davı̀, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010),
http://eprint.iacr.org/

11. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key en-
cryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 361–381. Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/

352 S. Dziembowski, T. Kazana, and D. Wichs

12. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against continuous
memory attacks (2010)

13. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

14. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S., Rabin,
T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)

15. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

16. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-bounded
leakage (2011), http://eprint.iacr.org/

17. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing functions. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Heidelberg (2011)

18. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS (2007)
19. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS (2008)
20. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Miccian-

cio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)
21. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from

leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)

22. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

23. Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leakage. In: Ra-
bin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidelberg (2010)

24. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing At-
tacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidel-
berg (2003)

25. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-
retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer,
Heidelberg (2009)

26. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg (2010)

27. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)

28. Kocher, P.: Design and validation strategies for obtaining assurance in countermeasures to
power analysis and related attacks. In: NIST Physical Security Testing Workshop (2005)

29. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

30. Kuhn, M.G.: Compromising emanations: eavesdropping risks of computer displays. Techni-
cal Report UCAM-CL-TR-577 (2003)

31. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

32. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

33. European Network of Excellence (ECRYPT). The side channel cryptanalysis lounge (re-
trieved on April 7, 2010),
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

34. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

Key-Evolution Schemes Resilient to Space-Bounded Leakage 353

35. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

36. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and counter-
measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140,
p. 200. Springer, Heidelberg (2001)

37. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison Wesley,
Reading (1997)

38. Shamir, A., Tromer, E.: Acoustic cryptanalysis. on nosy people and noisy machines. A web-
page: http://people.csail.mit.edu/tromer/acoustic/ (accessed on May
27, 2009)

39. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 443–461. Springer, Heidelberg (2009)

40. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical Leakage-Resilient Pseudorandom
Generators. In: CCS: ACM Conference on Computer and Communications Security (2010)
(to appear)

http://people.csail.mit.edu/tromer/acoustic/

Generic Side-Channel Distinguishers:

Improvements and Limitations

Nicolas Veyrat-Charvillon� and François-Xavier Standaert��

UCL Crypto Group, Université catholique de Louvain
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium

{nicolas.veyrat,fstandae}@uclouvain.be

Abstract. The goal of generic side-channel distinguishers is to allow key
recoveries against any type of implementation, under minimum assump-
tions on the underlying hardware. Such distinguishers are particularly
interesting in view of recent technological advances. Indeed, the tradi-
tional leakage models used in side-channel attacks, based on the Ham-
ming weight or distance of the data contained in an implementation, are
progressively invalidated by the increased variability in nanoscale elec-
tronic devices. In this paper, we consequently provide two contributions
related to the application of side-channel analysis against emerging cryp-
tographic implementations. First, we describe a new statistical test that
is aimed to be generic and efficient when exploiting high-dimensional
leakages. The proposed distinguisher is fully non-parametric. It formu-
lates the leakage distributions using a copula and discriminates keys
based on the detection of an “outlier behavior”. Next, we provide exper-
iments putting forward the limitations of generic side-channel analysis
in advanced scenarios, where leaking devices are protected with counter-
measures. Our results exhibit that all non-profiled attacks published so
far can sometimes give a false sense of security, due to incorrect leak-
age models. That is, there exists settings in which an implementation is
secure against such non-profiled attacks and can be defeated with profil-
ing. This confirms that the evaluations of cryptographic implementations
should always consider profiling, as a worst case scenario.

1 Introduction

Since the introduction of differential power analysis by Kocher, Jaffe and Jun
in the late 1990s [13], physical attacks have become an important issue for the
security of cryptographic devices. On the academic side, it gave rise to many
exciting developments of new attacks, countermeasures and models for the eval-
uation (or, recently, proof) of physical security. On the industrial side, security
against such attacks is now required to reach high certification levels for crypto-
graphic products. Roughly speaking, side-channel attacks are usually classified

� Postdoctoral researcher supported by the Walloon region SCEPTIC project.
�� Associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 354–372, 2011.
c© International Association for Cryptologic Research 2011

Generic Side-Channel Distinguishers: Improvements and Limitations 355

as profiled or non-profiled [15]. Profiled attacks are typically useful in an evalu-
ation context, where one can exploit devices with known keys in order to build
precise leakage models, e.g. templates [5]. They can then be used in order to
estimate evaluation metrics such as the mutual information, in order to capture
a worst-case scenario [28]. By contrast, non-profiled attacks, on which we will
focus in this paper, rather aim to capture the behavior of actual adversaries, who
do not have a precise prior characterization of the devices they target. They are
usually suboptimal from a data complexity point of view, and exploit the “on-
the-fly” estimation of the leakage probability distributions (or their moments) in
order to recover secret information. In general, the gap between these two sce-
narios can be large. Hence, profiled and non-profiled attacks are complementary
and shed a different light on the security of embedded devices.

In brief, a non-profiled side-channel attack generally works by comparing key-
dependent leakage models with actual measurements. If the attack is successful,
the key candidate giving rise to the best comparison is the one manipulated
by the target device. As a consequence, evaluating the performances of such a
distinguisher can typically be done along two axes. On the one hand, attacks are
expected to be efficient, meaning that they allow recovering keys with limited
data (i.e. measurements), time and memory. On the other hand, attacks should
also be generic, i.e. applicable against any type of device and (if possible) unsensi-
tive to unprecise leakage models. A brief look at the state-of-the-art suggests that
most previous works can be viewed as exploring the tradeoff between these two
(usually contradictory) goals. For example, in the seminal paper of Crypto 1999,
a “single-bit DPA” is performed using a simple difference-of-means test. This ap-
proach has limited efficiency, because the single-bit model implies a low SNR, and
it cannot take advantage of any knowledge of the target device that may be avail-
able to the adversary. As a consequence, many “multiple bit” extensions have
been proposed in the literature. Most prominently, the Correlation Power Anal-
ysis (CPA) introduced in 2004 works very efficiently in contexts where a device
leaks according to a well known and linear (e.g. Hamming weight) model [2]. But
it is also quite specific, and can end up to be completely ineffective if an unprecise
leakage model is used. In order to avoid this model-dependency, a powerful solu-
tion is to build stochastic models “on-the-fly”, as suggested by Schindler, Lemke
and Paar in 2005 [26]. A possible drawback of stochastic models is their para-
metric nature. But as discussed in [6], such a linear regression-based approach
gives excellent results in the context of first-order side-channel attacks against
unprotected devices. Alternatives to stochastic models include the Mutual Infor-
mation Analysis, introduced in 2008 [8], and tests such as the Cramér-von-Mises
one, discussed in [31]. These last two distinguishers are quite generic, and can
capture any type of leakage dependency. They are also non-parametric in the
case of MIA (which still implies pdf estimation, e.g. with histograms or Kernels,
hence requiring to select number of bins or Kernel bandwidth adequately [19])
and completely free of parameters for the Cramér-von-Mises test.

Interestingly, recent technological advances suggest that the genericity of side-
channel distinguishers could be an important feature in the evaluation of future

356 N. Veyrat-Charvillon and F.-X. Standaert

cryptographic devices. Indeed, as discussed in [24], the move towards nanoscale
electronic circuits implies the apparition of new leakage functions, that strongly
deviate from the traditional (Hamming weight, distance) assumptions. Also, the
increasing device variability implies that each target implementation can be char-
acterized by a different leakage model. Quite naturally, the situation turns out to
be even nastier when moving to higher-order attacks against devices protected
with masking [4,10]. Indeed, straightforward extensions of DPA and CPA re-
quire the introduction of a heuristic dimensionality reduction technique, usually
denoted as the combination function in the literature [17]. But as discussed in
[20,29], the selection of a good combination function is inherently dependent on
the leakage function (i.e. the target device), and can only degrade the amount of
information exploited by the distinguisher. Similarly, extensions of the stochastic
model are direct in the profiled context [14], when masks are available during
the profiling, but their application in a non-profiled scenario requires either to
estimate pdf mixtures in an unsupervised manner (i.e. a problem for which we do
not have systematic and efficient solutions), or to take advantage of some heuris-
tic assumptions (e.g. using a combination function). In fact, only MIA directly
generalizes to multivariate side-channel attacks, without requiring a combination
function [1,7,19]. Given this attractive feature, it appears natural to investigate
how such distinguishers can deal with advanced scenarios, mixing non-linear
leakage functions and countermeasures like masking.

This paper presents two contributions in this direction. First, we propose a
new test for side-channel analysis, aimed to be generic and efficient when exploit-
ing high-dimensional leakages. For this purpose, we start from the observation
that, in order to be generic, MIA selects the key candidate that maximizes the
mutual information between an adversary’s key-dependent leakage models and
actual measurements. Our new distinguisher uses the alternative criterion to se-
lect the key candidate for which these leakage models deviate the most from a
reference (e.g. uniform) distribution. Next, it has been observed in experiments
on MIA that the generalization to multivariate attacks can be less efficient, be-
cause of the difficulty of estimating a multivariate pdf “on-the-fly”, without spe-
cific assumptions [29]. Also, previously considered estimation methods such as
using histograms, Kernels, or splines [30], generally require to tune a parameter,
e.g. the number of bins in histograms, that directly impacts the efficiency of the
attack. Hence, although MIA aims at genericity more than efficiency, it would be
interesting to avoid such parameters, or to make their tuning as easy as possible.
Our new distinguisher takes advantage of advanced statistical tools in order to
mitigate these issues. For this purpose, we first apply a leakage transformation,
exploiting copulas [18]. It projects the samples into a new space where their
distribution (among each dimension) is uniform. Thanks to this transform, we
base our distinguisher on the generic criterion of selecting the key candidate for
which the model maximizes the deviation from uniform. Afterwards, we exploit
distance sampling, i.e. we evaluate the distribution of the distance between two
samples (conditioned on a leakage model), rather than the distribution of single
samples. Distance sampling has interesting features in a multivariate setting,

Generic Side-Channel Distinguishers: Improvements and Limitations 357

as it allows to avoid dealing with multivariate distributions directly (we rather
evaluate the univariate distribution of a distance taken over several dimensions).
As a result, our test is completely free of parameters and mainly requires to
compute empirical cumulative distributions, for each dimension taken indepen-
dently. Summarizing, it is pointed out in [34] that the efficiency loss of MIA is
due to the problem of estimating the leakage distributions. The present paper
complements this view and aims at making this estimation step easier.

Second, we propose different experiments in order to evaluate this new distin-
guisher. Namely, we investigated attacks against unprotected and masked S-box
computations, in three different settings: naive Hamming weight simulations,
real measurements of a 65 nanometer CMOS chip, Spice simulations of a dual-
rail logic style. These examples are expected to be reflective of the variety of
leakage functions that one can find in side-channel analysis. They highlight that
the proposed generic test compares favorably with MIA, in all investigated sce-
narios. They also underline that, despite the generic nature of MIA and the
new distinguisher, their application against modern electronic devices can be
strongly affected by inaccurate leakage models, and that the impact of such im-
precisions is amplified with countermeasures such as masking. In other words,
even generic tests can be unsuccessful in certain contexts, unless preliminary as-
sumptions (similar to profiling) are available to the adversary. We note that this
last observation holds for all non-profiled distinguishers published so far. Hence,
our results raise the question whether non-profiled attacks could be improved in
order to deal with such critical contexts, or alternatively, whether these contexts
can be formalized and used as a design criteria for new countermeasures. For
now on, they at least confirm the importance of a profiled information theoretic
analysis in the evaluation of leaking cryptographic devices.

2 Side-Channel Analysis

The next sections of the paper analyze the attack depicted in Figure 1, as de-
scribed in [1]. That is, we consider a device performing several cryptographic
computations Ek(p) on different plaintexts p drawn uniformly from the text
space P , using some fixed key k drawn uniformly from the key space K. While
computing Ek(P) (where P is a random variable over P), the device will handle
some intermediate values (defined as sensitive variables in [25]) that depend on
the known input P and the unknown key k. In practice, the interesting sensi-
tive variables in a DPA attack are the ones that only depend on an enumerable
subkey s: we denote them as Vs,P . Anytime such a sensitive intermediate value
is computed, the device generates some physical leakage, denoted as Yk,P .

In order to perform a key recovery, an adversary first has to select a sensitive
value. Given that this value only depends on a subkey s, he can then evaluate its
result for the same plaintexts that have been used to generate Yk,P and all the
possible subkey candidates j ∈ S. It gives rise to different hypothetical values
Vj,P . Afterwards, he uses a leakage model to map these values from their original
space V towards a hypothetical leakage space X . It is usually in this step that

358 N. Veyrat-Charvillon and F.-X. Standaert

P

k

Vs,P Yk,P

j

Vj,P Xj,P

D

compute leak

predict model

j �= s ?

Device

Adversary

Fig. 1. Schematic illustration of a side-channel key recovery attack

engineering intuition can be exploited, if available. For example, a usual model
that has been experimentally confirmed, e.g. in [15], is to take the Hamming
weight of the values Vj,P . Such a model is justified by the dominating dynamic
part of the power consumption in certain microelectronic devices. As a result,
the adversary obtains |S| different models denoted as Xj,P , again corresponding
to the different subkey candidates. Eventually, he uses a distinguisher D to
compare the different models Xj,P with the actual leakages Yk,P . If the attack is
successful, the best comparison result (i.e. the highest value of the distinguisher)
should be obtained for the correct subkey candidate j = s. This procedure can
then be repeated for different subkeys in order to eventually recover the full key.

3 The New Generic Test

A central problem in non-profiled side-channel analysis is to properly estimate
the leakage distribution “on the fly” during an attack. Previous methods for
this purpose typically range in two categories. A first class of distinguishers
exploits specific assumptions about the target implementation, resulting in ef-
ficient attacks provided that these assumptions are fulfilled. Another class of
distinguishers aims to avoid relying on assumptions, at the cost of a (hope-
fully small) efficiency loss. Quite naturally, the genericity of this second class of
distinguishers essentially comes from that they try to completely characterize
the leakage distribution (rather than its first- or second-order moments, typi-
cally). And its efficiency loss comes from the difficulty of the density estimation
problem. For example, tools for estimating pdf usually rely on a good choice
of parameters: number of modes in Gaussian mixtures, number of bins in his-
tograms, bandwidth in Kernel estimators, to name a few. Also, these estimators
strongly suffer from the curse of dimensionality: a 9-bin univariate histogram
will typically require 81 bins in two dimensions. In the remainder of the section,

Generic Side-Channel Distinguishers: Improvements and Limitations 359

we first describe a distinguisher, illustrated in Figure 2, that aims to limit these
drawbacks. Next, we discuss its advantages and limitations.

3.1 Specification

The distinguisher is based on six main steps (one being optional).

Leakage space transform. In order to circumvent the problem of estimat-
ing the leakage distribution, our method first transforms the samples by means
of copula. A copula simply applies the probability integral transform to every
marginal variable, which renders the distribution of samples along each axis
uniform. More precisely, for Y = (Y1, Y2, . . . , Yd) a d-dimension random vari-
able, the copula transformation gives a derived variable Z = (Z1, Z2, . . . , Zd) =
(F1(Y1), F2(Y2), . . . , Fd(Yd)), where Fi is the cumulative distribution function of
Yi, defined by Fi(yi) = Pr[Yi ≤ yi]. Interestingly, the Zi have a uniform distri-
bution by definition of the probability integral transform, but any dependency
among the Yi variables implies a corresponding dependency among the Zi’s. This
is illustrated in Figure 2, where it is clearly seen that the marginal distribution
Pr[Z = z] is uniform after reduction, while the conditional distributions remain
easily distinguishable. For illustration, the figure represents the simple case of a
single-bit leakage model. In practice, since the leakage density and its cumula-
tive function are both unknown, we compute an empirical copula, i.e. a copula
where the cumulative distributions are approximated by empirical distributions.
For an n-sample set y1, · · · yn drawn from the distribution of a one-dimension
random variable Y , the empirical cumulative distribution of a value y is given
by F̂ (y) = 1

n

∑
i I(y ≤ yi), where I is the indicator function. That is, it only

requires to sort the samples and is equivalent to computing the quantile of y for
that sample set. Thanks to the Glivenko-Cantelli theorem [3,9], we know that
the empirical cumulative distribution function converges almost surely towards
the common cumulative distribution function, uniformly over all y. That is:

‖F̂n − F‖∞ ≡ sup
y∈R

∣∣F̂n(y) − F (y)
∣∣ a.s.−−→ 0. (1)

An advantage of the empirical copula is that reduced samples only take quo-
tient values: 0, 1

n , . . . , i
n , . . . 1, built from n real-valued leakages. Hence, it allows

dealing with probability mass functions instead of densities, which simplifies
computations. In general, the transform amounts to working on modified values
Zk,P instead of the leakages Yk,P , which have by construction a simple uniform
distribution, but still retain the information contained in the original leakages.

Leakage partitioning. This step is common to all standard side-channel at-
tacks. After transformation, the leakage samples are classified, based on pre-
dictions Xj,P made up from the plaintexts and key hypotheses. Intuitively, the
expectation is that predictions obtained from the correct key candidate will lead
to a meaningful leakage partition, i.e. there will be a dependency between the
categories x and the samples y they contain. By contrast, a wrong key hypothesis
should give rise to random predictions, so that the categories only correspond to

360 N. Veyrat-Charvillon and F.-X. Standaert

Marginal distribution

Conditional distribution Xj,P = 0

Conditional distribution Xj,P = 1

Empirical
Cumulant

Copula
z = F̂Y (y)

y

Pr[Y = y]
y

F̂Y (y)

0 1
z

Pr[Z = z]

Leakage transform

correct key wrong keyLeakage partition

0 1
u

Pr[U = u]

0 1
u

Pr[U = u]

Distance sampling

0 1
u

Pr[U = u]

Smoothing and evaluation

Theoretical distribution

Distance distribution, correct key

Distance distribution, wrong key

Fig. 2. Illustrated process of the distinguisher (1D)

a random shuffling of leakages from the sample set. Interestingly, thanks to the
transformation step, a random sampling should tend towards a uniform distri-
bution, as illustrated in the leakage partition step in Figure 2.

Feature selection and template building. Given the (uniform or not) dis-
tributions representing the key candidates, one can select a feature of these
distributions, that properly captures possible non-uniformities. In the following,
we will consider the distance between couples of samples for this purpose, which
corresponds to the notion of spacings in statistics [21]. When dealing with multi-
variate leakages, we define spacings via the L1 or Manhattan distance (instead of

Generic Side-Channel Distinguishers: Improvements and Limitations 361

the Euclidean one), which avoids dealing with irrational values. The Manhattan
distance between two samples z and z′ is given by d1(z, z′) =

∑
i |zi − z′i|, where

the sum is taken over the different dimensions of the samples. Next, since the
marginal distribution of the leakages is known to be always uniform, we sim-
ply build a template for the distribution of the distance between two uniform
samples. This template is precomputed once for all attacks, independently of
the target implementation. Its shape is actually a spline, which ensure a degree
of smoothness (see appendix A for details). We note that the interest of fea-
ture selection is not obvious in the univariate attack context of Figure 2. But
it implies a dimensionality reduction that becomes convenient in a multivariate
setting1. It also leads to an efficient solution for the estimation problem, as we
now detail.

Estimation. This is the central step of the attack, in which we try to model
the distributions corresponding to the different key candidates. For this purpose,
one limitation of MIA was the need to estimate one conditional distribution per
model value, for each key candidate. In other words, each of these distributions
has to be estimated from only a part of the available samples. By contrast,
our new test allows to estimate only one distribution, from all the available
samples. This is possible because we know (again thanks to the copula) that the
marginal distribution should be uniform for a wrong key candidate. Hence, we
can sample the Manhattan distance for all partitions, and combine the results
into a single probability mass function, which has to be consistent with uniformly
drawn samples. Combined with the previous feature selection, it implies that
one can estimate the distributions for each key candidate by iterating the next
steps:

– Pick a random leakage z from the complete set of samples.
– Pick a different random leakage z′, from the same model category as z.
– Compute their Manhattan distance d1(z, z′).

Finally, we obtain the sampled probability mass function of the distance. This
distance can only take n · d distinct values, with n the number of samples avail-
able and d the dimensionality of the leakages. This is possible because we use
the Manhattan distance (i.e. there are as many possible distances as there are
samples). Note that if there are m leakages corresponding to a model value
X = x, the number of possible couples to sample scales as m2. In our follow-
ing experiments, it was always possible to test these couples exhaustively. But
in attacks requiring millions of traces, exploiting Monte Carlo sampling would
of course be an alternative to reduce the time complexity to more tractable
values.

Smoothing. As can be seen from Figure 2, the distance histograms can be used
to discriminate the different partitions, but they remain quite noisy. In order

1 Distance sampling is reminiscent of the use of an absolute distance combining func-
tion in higher-order side-channel attacks [17]. The prior application of a copula allows
us to give it a stronger foundation and to remove its device-dependent flavor.

362 N. Veyrat-Charvillon and F.-X. Standaert

to improve the signal-to-noise ratio of the pdf estimations, one straightforward
solution is to apply a lowpass filter. Different solutions can be used for this pur-
pose. A very generic one, that we applied in our experiments, is to use Kernel
smoothing with an Epanechnikov function [12] (which is both the most efficient
Kernel and the least costly to compute). The advantage of Kernel smoothing is to
generalize easily to distributions with any number of dimensions. Its drawback
is to introduce a parameter (the window size used in the smoothing). How-
ever, we note that this parameter is significantly easier to select than, e.g. the
number of bins or Kernel bandwidth in the case of MIA, since we know ex-
actly how the distribution of the wrong key candidates should look like. Namely,
this distribution should correspond to the previously described uniform distance
template. How to select this parameter adequately will be explained in the next
subsection.

Evaluation. Finally, we compute the integrated square distance between the
sample distributions of all the key candidates and the theoretical distance dis-
tribution (i.e. the uniform ditance template construted in step 3). The attack is
successful if the correct key candidate corresponds to the largest deviation2.

3.2 Pros and Cons

One important advantage of this new test is that it nicely extends to multi-
variate attacks. As illustrated in Figure 3 for a bivariate example (i.e. d = 2)
and a Hamming weight leakage model, the leakage transformation is performed
independently for each dimension. That is, we just have to compute d univari-
ate empirical cumulative functions (rather than one d-dimensional distribution
when applying MIA). The empirical cumulative functions are straightforward to
compute and require no parameter at all. By applying the copula, the leakage
samples are transformed in such a way that their marginal distribution along
each dimension becomes uniform over [0, 1]. As a result, we can again discrimi-
nate key candidates by simply assuming that the leakage model generated with
the good key candidate should lead to a partitioning for which the distance to
uniform is large. On the negative side, the estimation of the distance distribution
follows a multinomial distribution (a generalization of the binomial distribution
to more than two categories), which implies that the sampled distribution tends
to be noisy. The smoothing part that aims at reducing this noise requires to set
a parameter that can be seen as the counterpart of the number of bins or Kernel
bandwidth when directly trying to estimate the leakage pdf in MIA. However,
this task is arguably easier in our new distinguisher, since we only need to detect
departures from a well-characterized distribution. In practice, a Kernel smooth-
ing with window size equal to 1 allows us to only retain the general features of
the distance distribution, which is enough to detect departures from the uniform
template. This is only suboptimal when dealing with very low-noise scenarios,
where a smaller window size is enough to smooth out the estimated densities.

2 As detailed in [31], different alternatives could be considered. A robust one would be
to use the smoothed median of the distributions for all key hypotheses as a template.

Generic Side-Channel Distinguishers: Improvements and Limitations 363

Leakage transform

F̂Y1(y)

F̂
Y
2
(y
)

Pr[Y = y]

y1

y2

Hamming weight = 1

Hamming weight = 6

correct key wrong keyLeakage partition

0 1
u

Pr[U = u]

0 1
u

Pr[U = u]Distance sampling and smoothing

0 1
u

Pr[U = u]

Theoretical distributionDistance distribution, correct key

Distance distribution, wrong key

Fig. 3. Illustrated process of the distinguisher (2D)

4 Experiments

We now provide experiments, in order to verify the relevance of the previously in-
troduced generic test and to compare its efficiency with other distinguishers used
in side-channel analysis. For this purpose, we consider the following contexts.
1. Different target computations. We investigated three possible cases. In the
first one, we target the leakage corresponding to the execution of an unpro-
tected AES S-box, denoted as vk,p = S(p ⊕ k) � yk,p, where the adversary is
provided with the plaintext p and leakage yk,p. In the second one, we consider
the execution of a masked AES S-box, denoted as v1

k,p = S(p ⊕ k) ⊕ m � y1
k,p,

v2
k,p = m � y2

k,p. In this case, the mask m is a uniformly random value and

364 N. Veyrat-Charvillon and F.-X. Standaert

the adversary is provided with the plaintext p and leakages y1
k,p, y

2
k,p. Finally,

we consider the execution of a masked S-box where the the adversary only re-
ceives the plaintext p and a combination of the two leakage samples. Following
the previous analyzes in [20,29], we used the normalized product between the
samples, i.e. C(y1

k,p, y
2
k,p) = (y1

k,p − Ê(Y 1
k,P)) · (y2

k,p − Ê(Y 1
k,P)), where Ê denotes

the sample mean operator.
2. Different leakage functions and target devices. We again analyzed three pos-
sible cases. In the first one, the leakages are simulated with a Hamming weight
function, to which we added a Gaussian noise, with mean 0 and variance σ2

n.
Although not always realistic, the investigation of this setting is justified by the
numerous works carried out under this assumption, as a reference. In the second
case, we use the leakage measured from an S-box implemented in a 65 nanometer
CMOS technology, running at 2MHz and sampled with a 1 Gsample/sec digital
oscilloscope), previously analyzed in [24]. In the third case, the leakage of a dual-
rail pre-charged S-box, implemented in the same 65 nanometer technology and
using the logic style described in [11], was simulated with Spice. The details of
this S-box are out of the scope of this paper, but it was selected as an example of
leakage function that strongly deviates from the Hamming weight model. Both
for the CMOS and the dual-rail S-boxes, we selected one single leakage sample
per target operation. This selection is not supposed to be optimal, but was the
same for all the investigated attacks, in order to allow fair comparisons.
3. Different distinguishers. First, correlation attacks based on Pearson’s coeffi-
cient were applied, following the descriptions in [2]. Next, we performed MIA3

with histogram-based pdf estimation, following [8]. The number of bins in his-
tograms was selected according to Scott’s rule of thumb [27]. Third, we used
the stochastic approach first described in [26] and analyzed in the non-profiled
setting by Doget et al. [6]. The goal of the stochastic approach is to approxi-
mate the S-box leakages with a linear function L̂(j, p) =

∑
αi gi(j, p), where the

coefficients αi are determined by regression, and the gi(j, p)’s correspond to the
base functions used in the attack. Finally, we experimented our new generic test,
with the window size in the Kernel smoothing step systematically set to one in
the attacks (i.e. a version of the distinguisher completely free of parameters).
4. Different leakage assumptions. As detailed in Section 2, the non-profiled dis-
tinguishers studied in this paper need to rely on some preliminary assumptions
on the leakage. For correlation attacks, MIA and the new test, we first evaluated
the Hamming weight and identity leakage models (where one takes xj,p as the
Hamming weight, or the 7 least significant bits of vj,p, respectively). These are
usual assumptions when performing a side-channel attack. However, as will be
discussed in the remaining of the section, these models were not sufficient to
perform successful key recoveries in all the investigated contexts. Hence, we ad-
ditionally used a profiled leakage model in some experiments. Different solutions
3 To avoid issues like described in [32], we performed a robust variant of MIA,

by selecting the subkeys according to their mutual information bias, i.e. the dis-
tance between Î(Xj,P , Yk,P) and the median of this quantity, computed over all key
candidates.

Generic Side-Channel Distinguishers: Improvements and Limitations 365

are possible for this purpose, e.g. exploiting templates [5]. In the following, we
built model classes by grouping together transitions leading to similar leakage
values (e.g. 9 such groups would appear for an 8-bit Hamming weight model,
corresponding to the 9 possible weights). The model groups were built using a
K-means clustering algorithm. Again, this selection is not supposed to be opti-
mal, but to serve as a background to discuss generic distinguishers. As for the
stochastic approach, one just needs to select the base vectors used in the adver-
sary’s predictions. We followed the classical strategy and used the target S-box
output bits for this purpose (i.e. a 9-element basis, with 8 bits and a constant).

As our goal is to compare distinguishers, the evaluations we performed fol-
lowed the security metrics in [28]. For each investigated context, we computed
the success rate of the attacks, over a set of 100 to 500 independent experiments.
The figures corresponding to these experiments have been reported in appendix.
They allow a number of interesting observations that we now detail.

Observation 1. On different types of leakage functions. The different leakage func-
tions considered imply very different constraints for the non-profiled adversaries.
In the case of Hamming weight leakages (Figures 4 and 5 left), this function is
purely linear, i.e. L(k, p) =

∑
αi vj,p[i], with vj,p[i] the ith bit of the S-box out-

put and all αi coefficients set to 1. In addition, as shown in [29], the bivariate
distribution of the leakages conditioned on the key, for a masked S-box, is ac-
curately characterized by the correlation between the samples L1

k,P and L2
k,P in

this case. As a result, all investigated attacks are very efficient. By contrast, when
moving to the analysis of real measurements on a 65nm chip (Figures 5 right and
6), the Hamming weight assumption becomes invalid, and the quadratic, cubic,
. . . terms in L(k, p) =

∑
αi vj,p[i]+

∑
βi,j vj,p[i] ·vj,p[j]+ . . . are non-negligible.

As a result, attacks using this model are not successful anymore. Interestingly,
the stochastic attack using a linear basis is still efficient, confirming the analysis
in [24] that the linear terms of the leakage function are still significant. Surpris-
ingly, the correlation attacks in Figure 6 suggests that a masked S-box may be
easier to attack than an unmasked one, under a Hamming weight assumption.
This is explained by the fact that actual leakages are not accurately predicted
by Hamming weights in the unprotected case, whereas their inter-sample cor-
relation remains informative in a second-order attack against a masked S-box.
Eventually, the (simulated) dual-rail S-box is an example of implementation with
completely non-linear leakages, as witnessed by the impossibility to perform a
successful stochastic attack using a linear basis (see Figure 7).

Observation 2. On the limits of generic distinguishers and models. Generic dis-
tinguishers are expected to capture any type of leakage dependency. Still, they
are dependent on the leakage model used to build the partitions in a side-channel
attack. An interesting outcome of our experiments is that these distinguishers
are in fact strongly affected by incorrect assumptions. For example, the Ham-
ming weight leakage model does not lead to successful attacks, neither against
the 65nm CMOS chip, nor against the dual-rail pre-charged one. More criti-
cally, the identity leakage model that is supposed to provide a generic way to
target any implementation in [8], is not successful either in certain cases (Fig-

366 N. Veyrat-Charvillon and F.-X. Standaert

ures 5 right, 7). For Figures 5 right and 7 left, only models obtained through
profiling lead to successful key recoveries with the new distinguisher. For Fig-
ure 7 right, only template attacks are successful. These limitations are due to
the lack of relevance of the leakage models used by the adversary. They are
in fact not new: already in 2005, Mangard et al. observed an implementation
for which even single-bit leakage models were not accurate enough to perform a
successful DPA [16]. More generally, and as also emphasized in [33], MIA-like dis-
tinguishers can naturally exploit identity models when applied to non-bijective
S-boxes (as in the DES), because such S-boxes imply a meaningful partition by
design. But the genericity of this model does not extend to bijective S-boxes (or
other block cipher components), excepted if justified by specific implementation
choices. In other words, there is no generic leakage model. As discussed in [31],
even MIA requires a partitioning such that Î(Xj,P ;Yk,P) is maximized for the
correct key candidate. The extension of MIA in this paper faces a very similar
requirement.
Observation 3. On the limits of non-profiled side-channel attacks. Another con-
sequence of our experiments is to emphasize that, in the context of the dual-rail
S-box (Figure 7), none of the non-profiled side-channel attacks could lead to
successful key recoveries. Interestingly, the “on-the-fly” stochastic approach fails
in this context, even when increasing the size of the basis (e.g. using not only
linear, but quadratic, cubic, . . . terms). The failure of a stochastic model us-
ing linear base vectors is easily explained by the strongly non-linear nature of
the simulated leakages produced by the dual-rail S-box. The unsuccessful results
with larger bases just derive from the fact that these large bases allow refining
the model for all key candidates (i.e. not only the correct one). In fact, also
in this case, it is important that the base vectors are justified by a reasonable
physical intuition. For example, in case of linear leakage functions, the regression
is easy for the correct key candidate (because provided with a good basis) and
difficult for the wrong key candidates (because the regression essentially has to
capture the non-linearity of a modified S-box S′ such that S(x⊕kw) = S′(x⊕kg),
with kg and kw the good and a wrong key candidate). But as soon as the base
vectors do not have a connection with the actual leakages, the advantage of the
correct key candidate in building a good stochastic model vanishes4. When com-
bining this dual-rail logic style with masking (in Figure 7 right), we see that
only a bivariate template attack, similar to the ones in [29], allows recovering
keys. In this respect, it is worth noting that a leakage model that is sound in an
unprotected setting (e.g. the one based on clustering in Figure 7 left) does not
translate into a sound model for the corresponding masked implementation (in
Figure 7 right).
Observation 4. MIA versus the new test. Finally, our new distinguisher compares
favorably to MIA in all the investigated experiments. We note that the effi-
ciency of MIA could possibly be improved, by exploiting pdf estimation based on
4 This limitation is only due to the application of the stochastic approach in a non-

profiled scenario. In profiled attacks, the stochastic approach remains perfectly
sound, as soon as provided with enough base vectors, just as a template attack.

Generic Side-Channel Distinguishers: Improvements and Limitations 367

Kernels, splines or parametric techniques [19]. However, more than the efficiency
of the distinguisher, it is worth to notice that in certain settings, e.g. the masked
65nm CMOS S-boxes in Figures 5 right and 6 right, it allows exploiting a leakage
assumption while MIA cannot. It is an open question to determine whether these
experiments can be formally confirmed (e.g. are they due to identified limita-
tions as in the example given in [32], Section 3) or are the result of measurement
artifacts that would vanish with more intensive measurement efforts.

5 Conclusion and Open Problems

Generic distinguishers are a useful tool for evaluating leaking devices. In this pa-
per, we first proposed a new and efficient generic test that is fully non-parametric,
based on a natural discriminating criterion, and exploits state-of-the-art statis-
tical tools. It can be useful in all scenarios where the previously introduced MIA
shows significant advantages over other non-profiled distinguishers.

Next, we discussed the relevance of generic distinguishers in general. Based
on experimental validation in different contexts, we put forward that such non-
profiled attacks do not get rid of the need of sound assumptions during the
partitioning step in a side-channel analysis. Similarly, when applied “on-the-
fly”, the stochastic approach of Schindler et al. is only sound when provided with
meaningful based vectors, that may not be easy to guess for practical adversaries.
This observation suggests that the gap between profiled and non-profiled side-
channel attacks can be huge, when such assumptions are are not available. It re-
emphasizes the need to consider two aspects in the security analysis of a leaking
device, as advocated in [28]. First, the worst case security can only be evaluated
with a profiled attack (e.g. using templates), and quantified with an information
theoretic metric. Second, different types of non-profiled distinguishers can be
compared with a security metric, in order to measure how efficiently they can
take advantage of the available information. In this respect, generic tests bring an
interesting alternative to more specific (e.g. correlation-based) statistical tools.
But they are not immune to model imprecisions, and resisting such attacks is
not sufficient to conclude that an implementation is secure.

Admittedly, the most critical examples we exhibit in this paper are based
on simulations and practical implementations usually show linear dependencies
in their leakages. Nevertheless, this discussion underlines that the theoretical
limits of present non-profiled attacks have to be properly understood. It also
leads to interesting questions for the design and analysis of secure implementa-
tions. First, as non-profiled distinguishers published in the literature seem spe-
cially affected by non-linear leakage functions, designing hardware logic styles
with this criterion in mind appears as an interesting scope for further research.
Preliminary experiments reported in [23] suggest that the DDSLL logic style
may not be the most suitable for this purpose. Second, the partitioning step
of generic distinguishers is made specially easy when non-bijective S-boxes (or
components) are used. Hence, such S-boxes should be avoided when designing
ciphers to be secured against physical attacks. In the same lines, targeting the

368 N. Veyrat-Charvillon and F.-X. Standaert

output of MixColumn in an AES implementation could be an interesting topic
for further investigation. Depending on the architectures (e.g. 8-bit software
or 32-bit hardware), it could also lead to leakage models that are simple to ex-
ploit. Eventually, non-profiled security evaluations are typically misleading when
randomization-based countermeasures such as masking are combined with the
difficulty to make sound assumptions on the leakage model. Hence, developing
new tools to get rid of this limitation, or showing that no such tools actually
exist, is an important challenge for evaluating the security of future embedded
cryptographic devices.

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol-
ogy 24(2), 269–291 (2011)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Cantelli, F.P.: Sulla determinazione empirica della legge di probabilita. Giorn. Ist.
Ital. 4, 421–424 (1933)

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

6. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. In: COSADE, Darmstadt, Germany, pp. 1–15 (February
2011)

7. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order
DPA attacks. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 221–234.
Springer, Heidelberg (2010)

8. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

9. Glivenko, V.: Sulla determinazione empirica della legge di probabilita. Giorn. Ist.
Ital. 4, 92–99 (1933)

10. Goubin, L., Patarin, J.: DES and differential power analysis (the ”duplication”
method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–
172. Springer, Heidelberg (1999)

11. Hassoune, I., Macé, F., Flandre, D., Legat, J.-D.: Dynamic differential self-timed
logic families for robust and low-power security ics. Integration, the VLSI Jour-
nal 40(3), 355–364 (2007)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, ch.6.
Springer Series in Statistics. Springer New York Inc., New York (2001)

Generic Side-Channel Distinguishers: Improvements and Limitations 369

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implemen-
tations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

16. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked aes hard-
ware implementations. In: Rao, Sunar [22], pp. 157–171

17. Messerges, T.S.: Using second-order power analysis to attack dpa resistant software.
In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer,
Heidelberg (2000)

18. Nelsen, R.B.: An Introduction to Copulas, 1st edn. Lecture Notes in Statistics.
Springer, Heidelberg (1998)

19. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information
based side channel analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Hei-
delberg (2009)

20. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

21. Pyke, R.: Spacings revisited. In: Proceedings of the Sixth Berkeley Symposium
on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. I: Theory of statistics, pp. 417–427. Univ. California Press, Berke-
ley (1972)

22. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005)

23. Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Scaling trends for dual rail
logic styles (2011) (preprint)

24. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

25. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

26. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, Sunar [22], pp. 30–46

27. Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610
(1979)

28. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

29. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: Another look on second-order
dpa. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

30. Venelli, A.: Efficient entropy estimation for mutual information analysis using b-
splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron,
D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)

370 N. Veyrat-Charvillon and F.-X. Standaert

31. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: How, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

32. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side channel distinguishers: Im-
provements and limitations. Cryptology ePrint Archive, Report 2011/149 (2011),
http://eprint.iacr.org/

33. Whitnall, C.: An information theoretic assessment of first-order mia. First year
PhD report, University of Bristol (2010)

34. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: To Appear In The Proceedings Of Crypto
2011, Santa Barbara, California, USA, August 2011, vol. xxxx, pp. yyy–zzz (2011)

A Results of Our Experiments

Correlation, HW model

Stochastic, linear basis

MIA, HW model

new test, HW model

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80

success

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000
#msg

success

Fig. 4. Simulations with a Hamming weight leakage function, attacks against an un-
protected S-box (left) and a masked S-box with combined samples (right)

B Building the Distance Templates

The distance templates are built by convolution of independent uniform random
variables. That is, for one dimension, the probability of a spacing of length u is
the probability that two random variables X and X ′ drawn from the n-valued
discrete uniform distribution on the interval [0, 1] (each value has probability 1

n)
will differ by an amount u. That is:

Pr[U = u] =
∑

x

Pr[X = x] · Pr[X ′ = x± u]

http://eprint.iacr.org/

Generic Side-Channel Distinguishers: Improvements and Limitations 371

MIA, HW model

new test, HW model

MIA, 7-bit model

new test, 7-bit model

new test, clusters

MIA, clusters

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000 2500 3000

success

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
#msg

success

Fig. 5. Masked S-box with bivariate leakages. Attacks with simulated Hamming weight
leakage function (left) and actual measurements on a 65nm CMOS chip (right).

Correlation, HW model

Stochastic, linear basis

MIA, HW model

MIA, 7-bit model

MIA, clusters

new test, HW model

new test, 7-bit model

new test, clusters

0.0

0.2

0.4

0.6

0.8

1.0

102 103 104

success

0.0

0.2

0.4

0.6

0.8

1.0

102 103 104

#msg

success

Fig. 6. Measurements on a 65nm CMOS chip, attacks against an unprotected S-box
(left) and a masked S-box with combined samples (right)

Correlation, HW model

Stochastic, linear basis

new test, clusters

MIA, clusters

Bivariate template

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

success

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
#msg

success

Fig. 7. Spice simulations of a 65nm dual-rail logic style, attacks against an unprotected
S-box (left) and a masked S-box with bivariate samples (right)

372 N. Veyrat-Charvillon and F.-X. Standaert

In our specific case, since the discrete uniform distribution results from an
integral transform of continuous variables, it is impossible to have a spacing of
0. The spacing distribution is therefore Pr[U = u] = 2

n−1 × (1 − u) for u > 0, 0
otherwise. As one considers higher dimensions, using the Manhattan distance to
extend the notion of spacings, the distribution becomes a convolution of spacings
on one dimension:

Pr[U = u] =
∑
ui

d−1∏
i=1

Pr[Ui = ui] · Pr

[
Ud =

(
u−

d−1∑
i=1

ui

)]
,

where the Ui are spacings taken along dimension i. In the case of two dimensions,
this formula simply gives :

Pr[U = u] =
∑
u1

Pr[U1 = u1] · Pr[U2 = u− u1],

which is the integral of two affine functions, therefore a piecewise cubic polyno-
mial since U1 and U2 are only defined on the interval [0, 1] while U ranges over
[0, 2]. While it is possible to compute the sampling distribution analytically for
higher dimensions, it quickly becomes cumbersome, and it is much more practi-
cal to build the distribution by composing lower-dimension distance histograms.
This is done very efficient by following a method similar to the square-and-
multiply algorithm, where for example the template for dimension 4 is built by
convoluting the template for dimension 2 with himself.

Cryptography with Tamperable and Leaky

Memory

Yael Tauman Kalai1, Bhavana Kanukurthi2,�, and Amit Sahai3,��

1 Microsoft Research
2 Boston University

3 University of California (UCLA)

Abstract. A large and growing body of research has sought to secure
cryptographic systems against physical attacks. Motivated by a large
variety of real-world physical attacks on memory, an important line of
work was initiated by Akavia, Goldwasser, and Vaikuntanathan [1] where
security is sought under the assumptions that: (1) all memory is leaky,
and (2) leakage can be an arbitrarily chosen (efficient) function of the
memory.

However, physical attacks on memory are not limited to leakagethrough
side-channels, but can also include active tampering attacks through a
variety of physical attacks, including heat and EM radiation. Neverthe-
less, protection against the analogous model for tampering – where (1) all
memory is tamperable, and (2) where the tampering can be an arbitrar-
ily chosen (efficient) function applied to the memory – has remained an
elusive target, despite significant effort on tampering-related questions.

In this work, we tackle this question by considering a model where we
assume that both of these pairs of statements are true – that all mem-
ory is both leaky and (arbitrarily) tamperable. Furthermore, we assume
that this leakage and tampering can happen repeatedly and continually
(extending the model of [10,7] in the context of leakage). We construct
a signature scheme and an encryption scheme that are provably secure
against such attacks, assuming that memory can be updated in a ran-
domized fashion between episodes of tampering and leakage. In both
schemes we rely on the linear assumption over bilinear groups.

We also separately consider a model where only continual and re-
peated tampering (but only bounded leakage) is allowed, and we are able
to obtain positive results assuming only that “self-destruct” is possible,
without the need for memory updates.

Our results also improve previous results in the continual leakage
regime without tampering [10,7]. Whereas previous schemes secure
against continual leakage (of arbitrary bounded functions of the secret
key), could tolerate only 1/2− ε leakage-rate between key updates under
the linear assumption over bilinear groups, our schemes can tolerate 1−ε
leakage-rate between key updates, under the same assumption.

� Research supported in part by CNS-0546614, CNS-0831281, CNS-1012910. Part of
this work was done while visiting Microsoft Research, New England.

�� Research supported in part from a DARPA/ONR PROCEED award, NSF grants
0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 373–390, 2011.
c© International Association for Cryptologic Research 2011

374 Y.T. Kalai, B. Kanukurthi, and A. Sahai

1 Introduction

A large and growing body of research has sought to secure cryptographic systems
against physical attacks (e.g. [8,23,28,18,22,13,31,1,29,25,11,9,15,24,19]). Moti-
vated by a large variety of real-world physical attacks on memory [26,27,30,21,20],
an important line of work was initiated by Akavia, Goldwasser, and Vaikun-
tanathan [1] where security is sought under the assumptions that: (1) all mem-
ory is leaky, and (2) leakage can be an arbitrarily chosen (efficient) function of
the memory1.

However, physical attacks on memory are not limited to leakage through side-
channels, but can also include active tampering attacks (see [20] and the refer-
ences therein) through a variety of physical attacks, such as exposure to heat and
EM radiation [17,33,32]. Nevertheless, protection against the analogous model
for tampering – where (1) all memory is tamperable, and (2) where the tam-
pering can be an arbitrarily chosen (efficient) function applied to the memory
– has remained an elusive target, despite significant effort on tampering-related
questions (e.g. [18,22,3,14,2])2. In this work, we tackle this question by consid-
ering a model where we assume that both of these pairs of statements are true
– that all memory is both leaky and (arbitrarily) tamperable. Furthermore, we
assume that this leakage and tampering can happen repeatedly and continu-
ally (extending the model of [10,7] in the context of leakage). We show strong
positive results for cryptographic tasks including signatures and decryption, as-
suming that memory can be updated in a randomized fashion between episodes
of tampering and leakage. We note that we only consider tampering with the
memory and do not consider the question of tampering during the computation
(which might occur, for instance, due to fault attacks [5,4,27]).

We also separately consider a model where only continual and repeated tam-
pering (but bounded leakage) is allowed, and we are able to obtain positive re-
sults assuming only that “self-destruct” is possible, without the need for memory
updates.

Background. Before explaining our results in greater detail, let us first recall
the results of [10,7], which we strengthen. These results construct various cryp-
tographic schemes (such as encryption and signature schemes), that remain se-
cure even if the secret key is being continually leaked. In this continual leakage
model, at each time period the adversary can make a leakage query L, where L
is a poly-size circuit, and get back L(sk). Clearly, in order to get security under
continual leakage, one must bound the leakage function L in some way, since
if, for example, L is the identity function, security is clearly breached. Both
works [10,7] allow L to be any shrinking leakage function; e.g., any L such that
|L(sk)| ≤ 0.99|sk|. More generally, they allow any leakage function L such that
sk has “enough” min-entropy left conditioned on L(sk). We note that several
earlier continual leakage models were considered in the literature, such as the
1 To prevent trivial attacks, the leakage function should either be significantly shrink-

ing or leave the memory with enough entropy.
2 We elaborate on these related works in Section 1.3.

Cryptography with Tamperable and Leaky Memory 375

one due to Micali and Reyzin [28] who consider the “only computation leaks
information” assumption, and the one due to Ishai, Sahai and Wagner [23], who
consider only leakage of individual bits produced during honest computation.
We elaborate on these related works, as well as others, in Section 1.3.

As was argued in [7,10], since the leakage may be continual, and at any time
period the adversary can learn any bounded poly-size function of the secret key,
the secret-key must be periodically updated, since otherwise it will eventually be
completely leaked. We emphasize that this should be done without modifying
the public key, and these updates should be oblivious to all other users. In
addition, deletions must be allowed, since otherwise the adversary can choose to
(gradually) leak the initial secret-state from which everything can be derived. In
such case, updating the state is useless because the adversary will leak from the
original state and not the updated one.

We note that both these results rely on the linear assumption over bilinear
groups. The work of [7] allow 1/2 − ε of the secret key to leak during each time
period, whereas [10] allow only 1/3− ε of the secret key to leak during each time
period.3 We note that in addition to our main results concerning tampering, we
improve the leakage bounds of [10,7], even if we restrict our attention only to the
regime of continual leakage (as opposed to continual leakage and tampering).

1.1 Our CTL Model

In this work, we extend the continual leakage model of [7,10], and consider not
only continual leakage attacks, but also continual tampering attacks. Namely,
we consider an adversary, that uses side channel attacks not only to continually
leak information about the secret key, but also to continually tamper with the
secret key. For example, consider an adversary that is given a signature card. The
adversary may use various side channel attacks, such as timing attacks and power
attacks, to continually leak information about the secret key stored in the card,
but may also use various other physical attacks [20] to tamper with this secret
key. For example, the adversary can extract information by causing mutations
in the secret key, and then observing the input/output behavior of the tampered
system (i.e., observing signatures of messages with respect to tampered secret
keys).

More formally, our model generalizes the continual leakage model of [10,7], in
that we allow the adversary at each time period to make any bounded leakage
query L, as well as any tampering query T . Both types of queries are modeled as
a poly-size circuit. After the adversary makes a tampering query T , the secret key
sk is replaced with T (sk). We call this model the continual tampering and leakage
model, or the CTL model, for short. We note that we only allow tampering with
the secret key and not the actual computation. We say that a scheme is secure
in the CTL model if after continually leaking information about the secret keys,
and continually tampering with them, the adversary cannot break security with
respect to the original secret key; i.e., in the case of signature schemes, the
3 We note that under the less standard SXDH assumption their leakage rate can

increase to 1− ε in [7] and 1/2− ε in [10].

376 Y.T. Kalai, B. Kanukurthi, and A. Sahai

adversary cannot forge signatures with respect to the original verification key;
in the case of encryption schemes, the adversary cannot break semantic security
with respect to the original public key.

At first glance, the reader may wonder whether tampering attacks can be
viewed as leakage attacks, and thus whether the CTL model is at all more
general than the continual leakage model. The answer is that it is indeed more
general, for the following two reasons. First, in leakage attacks there is always
an assumed bound on the leakage size (within each time period, in the case of
continual leakage). On the other hand, in a tampering attack, the adversary can
mutate the key in an arbitrary manner, and receive signatures with this mutated
key. Note that if such signatures reveal the entire mutated secret key (which is
possible since the key is malformed), then this tampering attack is an illegal
leakage attack (since this leakage is not bounded). The other (and perhaps more
profound) reason why the CTL model seems much harder to deal with than the
continual leakage model, is that in the CTL model the update procedure updates
a mutated key, as opposed to an honestly generated key. Thus, we need to argue
that the update procedure is still “effective” even if it is applied to mutated
keys. We note that the schemes of [10,7] are not secure in the CTL model.

An additional assumption that we make is that we assume that a CRS is
honestly chosen and hard-coded into the cryptographic system, not in memory
but into the logic itself, so that the CRS is not tamperable. We stress that the
CRS is fixed once and for all and does not depend on any secret information
chosen later by the user, which is stored in memory. We note that to some extent,
the hardware manufacturer must always be trusted to implement the correct
algorithms in hardware. (For instance, we must trust that the manufacturer
did not implement an algorithm that leaks secrets through specific subliminal
channels.) Thus we are not asking a significantly higher level of trust from the
user to assume that the manufacturer (or some outside entity with higher trust)
honestly chose a CRS and that the manufacturer correctly hard-coded this CRS
into the logic of the device. We leave the problem of eliminating the CRS, or
exploring ways to reduce the level of trust needed in the manufacturer, as an
important open problem.

1.2 Our Results

In what follows we present informal statements of our results.

Theorem 1. Under the linear assumption in a prime order group G, there exists
a encryption scheme that is semantically secure in the CTL model, tolerating a
leakage of 1 − ε in each time period.

Theorem 2. Under the linear assumption in a prime order group G, there ex-
ists a signature scheme that is existentially unforgeable under adaptive chosen
message attacks in the CTL model, tolerating a leakage of 1 − ε in each time
period.

Theorem 3. Given a signature scheme that is existentially unforgeable in the
bounded leakage model, there exists an efficient transformation to covert it into

Cryptography with Tamperable and Leaky Memory 377

a signature scheme that is existentially unforgeable in the continual tampering
and bounded leakage model.4

The proofs of these theorems are deferred to the full version.

1.3 Previous Work

Work on tolerating leakage was initiated by Rivest and Boyko [34,6] in the con-
text of increasing the cost of brute-force attacks on block ciphers and efficiency
issues. Ideas there were applied to the context of leakage by numerous works on
exposure-resilient cryptography [8,12,23]. These works consider simple leakage
functions that reveal a subset of the bits of the secret key or the internal mem-
ory of the cryptographic device. This line of research culminated in the work
of Ishai, Sahai and Wagner [23] who show how to “compile” any cryptographic
algorithm into one that tolerates such types of leakage.

In contrast to these works, that consider leakage functions that act locally, the
focus of later works has been on more powerful leakage functions that can per-
form some global computation on the secret key. Micali and Reyzin [28] proposed
to construct and study formal models that capture general types of leakage. This
study has led to two distinct strands of work, described below.

Bounded Leakage Models. This line of work considers the leakage model that
allows the adversary to obtain the output of applying any efficiently computable
function f , of his choice, to the secret key sk. This is allowed as long as the output
f(sk) “does not reveal the entire secret key”. This latter condition has been
formalized in many different ways, starting with the work of Akavia, Goldwasser
and Vaikuntanathan [1] who restrict the leakage function f to have output length
�(|sk|) # |sk| and subsequently in the works of Naor and Segev [29] and Dodis,
Kalai and Lovett [11]. Constructions of cryptosystems satisfying one or more of
these definitions can be found in various works (for example [1,29,11,25,9]).

Continual Leakage Models. This line of work considers the case where the leak-
age is continual, i.e., a bounded amount of information about the secret key is
leaked in each time period, but the overall leakage in the entire lifetime of the
secret key is unbounded. It is easy to see that to guarantee any security in this
model the secret key must necessarily be updated between time-periods. Mi-
cali and Reyzin [28] proposed to study security against continual leakage under
the assumption that “only computation leaks information”. In other words, in-
formation leakage may occur any time a computation takes place; however, the
assumption is that the parts of memory that are not involved in the computation
during a certain time-period, are not subject to leakage during that time-period.
A number of works (for example [13,31,16,24,19]) design cryptographic schemes
that are resilient to leakage under this assumption.

Very recently, Dodis, Haralambiev, Lopez-Alt and Wichs [10] and Brakerski,
Kalai, Katz, and Vaikuntanathan [7] constructed cryptographic schemes (such
4 For this result we need to assume that the signature card can self-destruct.

378 Y.T. Kalai, B. Kanukurthi, and A. Sahai

as signature schemes and encryption schemes) in the continual leakage model
without this assumption that only computation leaks. Our main result builds
upon the result of Brakerski et al.

Tampering models. Several models of security against tampering have been
considered in the past, however all of them differ substantially from ours. The
notion of algorithmic tamper-proof security was proposed by Gennaro, Lysyan-
skaya, Malkin, Micali, and Rabin [18] in which devices have both tamper-proof
but fully leakable memory (which can be programmed with key information
uniquely customized to each user), along with tamperable memory – which can
be continually tampered with using arbitrary polynomial-time tampering func-
tions. (In contrast, our model allows all memory to be arbitrarily tampered.)
Security against related-key attacks was formalized by Bellare and Kohno [3] in
the context of block-cipher security, but can be seen as relating to a model where
the key can be tampered with. However, this line of work (see [2] and references
therein) deals with limited kinds of tampering functions, such as functions that
simply XOR the key with a fixed value or affine linear transformations. The
recent work on non-malleable codes [14] also looks as such limited tampering
functions. (In contrast, our model allows arbitrary polynomial-time tampering
functions.) Finally, the work of Ishai, Prabhakaran, Sahai, and Wagner [22] con-
siders still weaker tampering functions, which only allow individual bits to be
toggled or set to a specific value. However, in contrast to our work, Ishai et al.
also allow tampering to affect the computation, and not just the memory, which
is beyond the scope of our work.

2 Overview

Notation. We use the following notational conventions. Bold uppercase denotes
matrices (X ∈ Zn×k

p) and bold lowercase denotes vectors (x ∈ Zn
p). All vectors

are column vectors, row vectors are denoted by xT . In what follows, we let G
be a multiplicative group of prime order p, and g be a generator of G. We let
e : G × G → GT be a bilinear map. All our results assume that the linear
assumption holds in G.5 For a matrix X ∈ Zk×n (or a vector, as a special case),
we let gX denote a k × n matrix such that (gX)i,j = g(X)i,j .

Let X be a probability distribution over a domain S, we write x ← X to
indicate that x is sampled from the distribution X . For a set S, we write x ← S
to indicate that x is chosen uniformly from S. Two ensembles X = {Xk}k,
Y = {Yk}k are said to be ε = ε(k)-close if the statistical distance between them
is at most ε(k), this is also denoted by X

ε≡ Y .
As was mentioned in the introduction, our work builds on the work of [7],

which (among other things) constructs encryption and signature schemes that
were proven secure against continual leakage. Let us start by recalling some of
the ideas in [7], which are relevant to this work. In both their encryption scheme

5 Formally, G = {Gk}k∈N where each group Gk is a group of prime order p, where p
is a k bit prime, and where k is the security parameter.

Cryptography with Tamperable and Leaky Memory 379

and their signature scheme, the public key is of the form ga and the secret key is
of the form gb, where g is a generator of G, and a,b ← Z�

p such that a · b = 0.6

The secret key is updated by simply multiplying it by a random scalar in the
exponent, i.e., updating it to be gα·b where α ← Zp. Thus, the updated secret
keys are simply random elements in span(b) (in the exponent). To prove security
against continual leakage, they rely on the following lemma, which states that
random subspaces are resilient to continual leakage.

Lemma 1. [7] Let B ← Z�×d
p be a random subspace of dimension d where � ≥

d ≥ 2. Let r ← Zd
p and u ← Z�

p. Then for any leakage function L : Z�
p → W ,

chosen independent of B,

(B, L(B · r)) ε≡ (B, L(u))

as long as |W | ≤ pd−1 · ε2.

Intuitively, the above lemma says that leakage on random points taken from a
random subspace is indistinguishable from leakage on random points taken from
the whole space. In other words, leakage on random points of a subspace doesn’t
reveal any information about the subspace.

This lemma is used as follows: First, use the DDH assumption to claim that it
is computationally hard to distinguish between the case that all the secret keys
are indeed random in span(b) or are random in a random dimension-2 subspace
B ⊆ ker(a).7 Therefore, if there exists an adversary that breaks security, then
this adversary will also succeed in breaking the security if all the secret keys
were random elements in B (in the exponent), as opposed to random elements
in span(b). In this case, one can use Lemma 1 above, to claim that no information
about the subspace B is revealed (information theoretically).

Suppose for the sake of simplicity, that the adversary that breaches security,
actually finds a secret key (rather than merely forging a signature or breaking
semantic security). Then, the fact that the random subspace B is (information
theoretically) hidden, implies that with overwhelming probability the secret key
gb′

that the adversary outputs is not in B. If indeed gb′
is a valid secret key,

i.e., b′ ∈ ker(a), and b′ is not in the subspace B, then one can use this to break
the linear assumption.

6 Actually, using such keys, [7] get security under the SXDH assumption. To get
security under the linear assumption, they take the public key to be gA and the
secret key to be gB, where A ← Z2×�

p and B ← Z�×2
p such that A · B = 0. This

results in a slightly more complicated scheme.
7 Note that they rely on the DDH assumption, and in addition, in order to verify or

decrypt they need to assume the existence of a bilinear map. Thus, they need to
rely on the SXDH assumption. However, by taking the public key to be two random
vectors A← Z2×�

p (in the exponent) and the secret key to be two vectors in ker(A)
(in the exponent), they can get security based on the linear assumption over bilinear
groups. For this, they use a more general form of Lemma 1.

380 Y.T. Kalai, B. Kanukurthi, and A. Sahai

This work. In this work, we allow the adversary to both leak and tamper with
the secret key. Namely, the adversary can change the secret key from gb to
T (gb). Note that the above proof idea cannot handle tampering, since the update
procedure updates a (tampered) secret key by raising it to the power of α ← Z�

p,
i.e., updates T (gb) to T (gb)α. Since the tampering function T is adversarially
chosen, we cannot rely on the DDH assumption anymore, and thus cannot use
Lemma 1. Indeed, we cannot prove that the scheme of [7] is secure against
tampering. Instead, we slightly modify their schemes.

Our schemes. We think of both ga and gb as public parameters (or crs), that
may be shared among all users, and we assume that these parameters cannot be
tampered with. As was mentioned in the introduction, the justification for this
assumption is that these parameters are independent of the secret key, and can
be thought of as generated in the manufacturing level, and hardwired into the
card in a secure way.

Actually, to prove security under the linear assumption (rather than the
SXDH assumption), we set the public parameters to be gA and gB, where
A ← Z2×�

p and B ← Z�×2
p such that A · B = 0. Then, we let the secret key

be gs where s ← Z�
p, and the public key be e(g, g)A·s, where e : G × G → GT

is a bilinear map. The secret key gs is updated by multiplying it by gB·R where
R ← Z2×2

p . Note that this does not change the public key since

e(g, g)A·(s+B·R) = e(g, g)A·s.

Now, when the adversary tampers with the secret key, and converts it to T (gs),
this tampered secret key is updated to be T (gs) · gB·R, and we can still use the
linear assumption to claim that this is computationally indistinguishable from
the case that the secret key is updated by adding to it (in the exponent) a
random element from a random (independent) subspace B′ ⊆ ker(A).8

We would like to use Lemma 1 to argue that if indeed all the updates are done
using B′ (which is a random subspace in ker(A)), then this subspace remains
(information theoretically) hidden, even given all the leakages. If we could do
so, then we would be in good shape, as before: For the sake of simplicity, sup-
pose that an adversary that breaches security actually outputs a valid secret key
(rather than a merely outputting a valid signature or breaking semantic secu-
rity).9 Then, this adversary outputs some gs′ such that e(g, g)As′ = e(g, g)As,
and thus s′ − s ∈ ker(A). The fact that B′ is information theoretically hidden
implies that with overwhelming probability s′−s is not in span(B′,B), and thus
can be used to break the linear assumption.

Unfortunately, when trying to use Lemma 1, we face several technical difficul-
ties. The main problem is the following: Note that we need some affine version
of Lemma 1. Indeed, it is quite straightforward to prove that the affine version
8 We defer the details of the actual encryption scheme and signature scheme to Sec-

tions 5 and 6, respectively, since they are not of relevance to the discussion here.
9 Needless to say, this assumption significantly simplifies matters, and the actual proof

contains several additional technicality that are hidden from this high level overview.

Cryptography with Tamperable and Leaky Memory 381

Lemma 1 is also true (while using Lemma 1 as a black box), assuming the affine
element is independent of the (hidden) subspace B. Namely, for any s ∈ Z�

p

(B, L(s + B · r)) ε≡ (B, L(u))

where B ← Z�×d
p , r ← Zd

p and u ← Z�
p (independent of s). However, in our

case the adversary, who controls the tampering function T , may cause the affine
element T (gs+BR) to depend in some (arbitrary) way on the subspace B. In this
case, we do not know how to prove an affine version of Lemma 1.

Nevertheless, we do succeed in proving an affine variant of Lemma 1 which is
secure against tampering. This lemma (Lemma 2), does make use of Lemma 1
(in a black box manner), but requires overcoming several additional technical
barriers. We present Lemma 2, which we think of as our main technical lemma,
in Section 4, and defer its formal proof to the full version. We note that by
updating the secret key using gB, which is part of the public parameters (rather
than the secret key), doesn’t only allow us to be resilient to tampering, but
also improves the leakage bounds of [7]. Known schemes that were proven secure
against continual leakage under the linear assumption [7,10], could resist at most
1/2− ε leakage rate between updates, whereas we can tolerate 1− ε leakage rate
between updates.10

Roadmap. We define our CTL model in Section 3, followed by a formal statement
of our main lemma in Section 4. A formal description of our encryption scheme
and our signature scheme can be found in Sections 5 and 6 respectively. Our
construction in the model of continual tampering with bounded leakage can be
found in Section 7.

3 Our CTL Model

Our CTL model generalizes the continual memory leakage model of [7,10], to
allow the adversary to (continually) tamper with the secret state, as well as
(continually) leak. In what follows we define encryption scheme in the CTL
model.

Encryption schemes in the CTL model. The definition of an encryption scheme in
the CTL model is very similar to the definitions given in [7,10], except for the fol-
lowing difference. In our definition, we partition the key generation algorithm into
two parts. The first part is the public-parameter generation algorithm, denoted by
ppGen. This algorithm takes as input a security parameter 1k and produces public
parameters pp. These public parameters can be thought of as part of the verifica-
tion key, however we choose to differentiate them from the verification key, since
these are independent of the secret key, whereas the verification key does depend
on the secret key. The reason for this distinction is that in our results, we do not al-
low tampering with these public parameters. The justification for this assumption
10 We note that [7] could tolerate 1 − ε leakage rate under the less standard SXDH

assumption.

382 Y.T. Kalai, B. Kanukurthi, and A. Sahai

is that these parameters are independent of the secret key, and can be thought of
as generated in the manufacturing level, and hardwired into the card in a secure
way. We note that the same public parameters can be shared among all users. The
second part is the key generation algorithm, denoted by Gen, which takes as input
these public parameters pp and the security parameter 1k, and generates a pair
(sk, pk) of secret and public keys.

Formally, an encryption scheme in the CTL model consists of five ppt

algorithms:

– The public-parameter generation algorithm ppGen takes as input the security
parameter 1k, and outputs public parameters pp. We denote this by pp ←
ppGen(1k).

– The key-generation algorithm Gen takes as input the security parameter 1k

and public parameters pp, and outputs a pair of secret and public keys
(sk, pk). We denote this by (sk, pk) ← Gen(1k, pp).

– Encryption. Takes as input the public parameters pp, a public-key pk and a
message m in the message space M, and outputs a ciphertext c. We denote
this by c ← Encpp,pk(m).

– Decryption. Takes as input the public parameters pp, a secret-key sk, and a
ciphertext c, and outputs a message m′. We denote this by m′ ← Decpp,sk(c).

– Key-update. Takes as input the public parameters pp and a secret-key sk,
and outputs an “updated” secret-key sk′ such that

∣∣sk′∣∣ = |sk|. We denote
this by sk′ ← Updatepp(sk).

The correctness requirement is that for all m ∈ M and any polynomial t,
setting pp ← ppGen(1k), (sk0, pk) ← Gen(1k, pp) and then computing ski ←
Updatepp(ski−1) for i ∈ [t], we have that for c ← Encpp,pk(m) and m′ ←
Decpp,skt(c), it holds that m = m′ with all but negligible probability (where
the probability is over all the randomness in the experiment).

We next define semantic security in the CTL model. We use the definition
from [7], and augment it by allowing for tampering queries. Formally, the leakage
in this model is associated with three leakage parameters (ρG, ρU , ρM), where ρG

bounds the leakage rate from the key-generation process, ρU bounds the leakage
rate from the update process, and ρM is a “global” (relative) memory leakage
bound that is enforced between key updates. For the sake of simplicity, we define
security for the special case that ρU = 0. This simplifies the definition and allows
for a cleaner exposition. The result of [7], can be used to show that any scheme
that is secure against continual leakage, can tolerate O(log k) leakage from each
update process, and thus our scheme can tolerate such leakage as well.

Definition 1. An encryption scheme E = (ppGen,Gen,Enc,Dec,Update) is se-
mantically secure in the CTL model with leakage rate (ρG, ρU , ρM) = (ρG, 0, ρM),
if any ppt adversary succeeds in the following game with probability 1/2+negl(k).

1. Initialize. The forger specifies a circuit f such that |f(r)| ≤ ρG · |r| for
all r. The challenger chooses “secret randomness” r, generates (sk0, pk) =
Gen(1k, pp; r), where pp are the public parameters generated by ppGen, sends
(pk, f(r)) to the adversary, and sets L := |f(r)|.

Cryptography with Tamperable and Leaky Memory 383

2. Tampering, leakage and updates. The adversary makes queries of the follow-
ing type:
– Update queries update. The challenger sets sk ← Updatepp(sk), and sets

L := 0.
– Tampering queries (tamper, T), where T is a circuit. The challenger sets

sk := T (sk).
– Leakage queries (leak, f), where f is a circuit. If L + |f(sk)| ≤ ρM · |sk|

then the challenger returns f(sk) to the forger, and sets L := L+|f(sk)|.
Otherwise, the challenger aborts.

3. Challenge. The adversary sends two messages m0,m1 to the challenger. The
challenger flips a coin b ← {0, 1}, computes c ← Encpp,pk(mb), and sends c
to the adversary.

4. Finish. The adversary outputs a “guess” b′ ∈ {0, 1}.
The adversary succeeds if b′ = b.

Signature schemes in the CTL model. The definition of signature scheme in the
CTL model is similar to the definition of encryption scheme in the CTL model,
except for the following two differences. First, a signature scheme in the CTL
model is associated with an additional leakage parameter ρS, which captures
leakage allowed from the signing process itself. Since our results cannot tolerate
leakage from the signing process, throughout this work, we set ρS = 0. The
second difference, which is more subtle, is the following: In the case of signature
schemes we bound the number of tampering queries within each time period
(however, the number of tampering queries overall is unbounded). The reason is
that the adversary has access to a signing oracle, and the signatures themselves
(w.r.t. tampered keys) leak some information about the tampered key. We defer
the formal definition to the full version.

4 Main Lemma

Intuitively, the main lemma considers the setting where a random vector s ← Z�
p

is chosen, and is being continually updated by adding to it either a random
element from a small subspace, or a random element from a bigger subspace.
In between every two updates the random vector can be tampered with, and
partially leaked, many times, as long as the total amount of leakage is bounded.
The claim is that it is hard to distinguish between the case where the updates
were from a small subspace or from the large subspace, assuming the leakage
functions take as input these vectors “in the exponent”. More specifically, we
consider a random matrix A ← Zc×�

p consisting of c rows, for 2 ≤ c < �. The
random vector gs is either updated by adding to it a random element in ker(A)
“in the exponent”, or by adding to it a random element in span(B) “in the
exponent”, where B ∈ Z�×d

p is a random d-dimensional subspace of ker(A). The
former is called the ideal game, and the latter is called the real game, and the
claim is that it is computationally hard to distinguish between the two, even
given B.

384 Y.T. Kalai, B. Kanukurthi, and A. Sahai

Lemma 2. For any security parameter k, let G be a group of order p, where
p is a k-bit prime, such that the linear assumption holds in G. Let �, c, d ∈ N
be polynomially bounded parameters such that c ≥ 2, 4 + c ≤ d ≤ � − c,11 and
let t = poly(k). Then, for any ppt adversary A,

GA
real(p, �, c, d, t)≈GA

ideal(p, �, c, d, t)

as long as each Li : G� → Wi satisfies |Wi| ≤ pd−c−4, where GA
real(p, �, c, d, t) and

GA
ideal(p, �, c, d, t) are defined below.

Experiment GA
real(p, �, c, d, t). In GA

real(p, �, c, d, t), a challenger C interacts with
the adversary A as follows:

1. C chooses a random matrix A ← Zc×�
p and a random vector s ← Z�

p. It sets
v1 = gs, and gives A, s to A.

2. C chooses a random d dimensional subspace B ← Z�×d
p such that A ·B = 0

(i.e., each column in B is uniformly distributed in ker(A)). For i = 1 to t,
do:
(a) A specifies a leakage queries Li and a tampering function Ti.
(b) C gives Li(vi) to A. In addition he chooses ri ← Zd

p, sets bi = B · ri,
and sets vi+1 = Ti(vi) · gbi .

3. Finally, C gives the adversary A the subspace B, and A outputs either 0
or 1.

Thus, during this experiment A gets

L1(v1), L2(v2), . . . , Lt(vt),

where v1 = gs and vi+1 = Ti(vi) · gbi for 1 ≤ i ≤ t− 1.

Experiment GA
ideal(p, �, c, d, t). This experiment is exactly the same as

GA
real(p, �, c, d, t) with the exception that bi ← ker(A). For the sake of clarity,

we will use the notation ki to denote updates in the ideal game (as opposed to
bi in the real game). That is, in the ideal game, C sets vi+1 = Ti(vi) · gki in
Step 2b above.

Thus, during this experiment A gets

L1(v1), L2(v2), . . . , Lt(vt),

where v1 = gs and vi+1 = Ti(vi) · gki for 1 ≤ i ≤ t− 1.

We defer the proof of Lemma 2 to the full version.

5 Encryption Scheme in the CTL Model

In this section, we construct an encryption scheme that is secure in the CTL
model. Our encryption scheme E = (ppGen,Gen,Enc,Dec,Update) is defined in
Figure 1.
11 Think of c as a small constant (such as c = 2), think of � as growing polynomially

with the security parameter, and think of d as approaching � (such as d = � − c).
Such parameters will optimize our leakage bounds.

Cryptography with Tamperable and Leaky Memory 385

Encryption scheme E

Public-parameter generation. The public-parameter generation
algorithm ppGen takes as input the security parameter 1k, and does
as follows:

1. Choose at random A ← Z2×�
p and B ← Z�×2

p such that AB = 0
(i.e., both of the columns of B are randomly chosen in ker(A)).

Output pp = (gA, gB)

Key generation. The key generation algorithm Gen, takes as input
the security parameter 1k and public parameters pp = (gA, gB), and
does as follows:

1. Choose a random a vector gs ← G� (i.e., s← Z�
p).

2. Set sk = gs and pk = e(g, g)A·s.

Output (sk, pk) as the secret and public key pair.

Encrypting. The encryption algorithm Enc, takes as input a message
b ∈ {0, 1}, public parameters pp = (gA, gB), and a public key pk =
e(g, g)A·s, and does as follows:

1. If b = 0, choose a random vector r ← Z2
p, and output (c1, c2) =

(grT ·A, e(g, g)r
T ·A·s).

2. If b = 1, choose a random vector r ← Z2
p and a random element

u← Zp, and output (c1, c2) = (grT ·A, e(g, g)u).

Decrypting. The decryption algorithm Dec, takes as input a cipher-
text c = (c1, c2), public parameters pp = (gA, gB), and a secret key
sk = gs, and does as follows:

1. If e(c1, g
s) = c2 then output b′ = 0. Otherwise, output b′ = 1.

Updates. The update procedure Update, takes as input public pa-
rameters pp = (gA, gB) and a secret key sk = gs, it chooses u ← Z2

p

and outputs sk = gs+Bu.

Fig. 1. Encryption scheme in the CTL model

Theorem 4. Let G be a group of prime order p, with a bilinear map e : G×G →
GT and a generator g, and assume that the linear assumption holds in G. Then
the encryption scheme E = (ppGen,Gen,Enc,Dec,Update), described in Fig-
ure 1, is semantically secure in the CTL model, with leakage rate (ρG, ρU , ρM) =
(�−13

� , 0, �−13
�).

We defer the proof of this theorem, as well as those of theorems appearing in
the subsequent sections, to the full version.

386 Y.T. Kalai, B. Kanukurthi, and A. Sahai

6 Signature Schemes in the CTL Model

In this section, we show how to convert any encryption scheme that is secure
in the CTL model into a signature scheme that is secure in the CTL model.
Our transformation follows the Katz-Vaikuntanathan paradigm [25] and uses
the follows building blocks:

– An encryption scheme ET L = (ppGenT L,GenT L,EncT L,DecT L,UpdateT L)
that is semantically secure in the CTL model with leakage rate (ρG, ρU , ρM).
We assume the encryption scheme ET L has a deterministic predicate T such
that T (pk, sk) = 1 if and only if sk is a “valid” secret key corresponding to
pk (i.e., if sk correctly decrypts ciphertexts encrypted using pk with over-
whelming probability).

– An adaptive simulation-sound NIZK proof system Π = (�, P, V, S = (S1, S2))
(as defined by Sahai [35]) for the following language L:

L =
{
(m, c, pk′, pk) : ∃sk, r s.t. c = Encpk′ (sk; r) and T (pk, sk) = 1

}
.

– An (ordinary) semantically secure encryption scheme E = (Gen,Enc,Dec)
(without leakage or tampering).

Our signature scheme S = (ppGen,Gen, Sign,Ver,Update) is defined in Figure 2
and results in the following theorem:

Theorem 5. The signature scheme S=(ppGen,Gen, Sign,Ver,Update) described
in Figure 2 is existentially unforgeable under adaptive chosen message attacks in
the CTL model, with leakage rate (ρG, ρU , ρS, ρM

′), where ρM
′ = ρM − |vk|

|sk| and
ρS = 0.

In particular, by using the encryption scheme described in Figure 1, we obtain
a signature scheme S = (ppGen,Gen, Sign,Ver,Update) that is existentially un-
forgeable under adaptive chosen message attacks in the CTL model, with leakage
rate (ρG, ρU , ρS, ρM) = (�−13

� , 0, 0, �−15
�).

7 Signature Scheme in the Continual Tampering and
Bounded Leakage Model

In this section we show how to convert a signature scheme S, that is secure in
the bounded leakage model of [1], into a signature scheme that is secure in the
continual tampering and bounded leakage model12. Our construction uses the
following primitives as building blocks:

12 To enable tampering in the bonded leakage model (where the secret key is never
updated), we need to require that the circuit has a self-destruct mechanism i.e., it is
possible for the circuit to erase the entire contents of memory. We defer these details
to the full version.

Cryptography with Tamperable and Leaky Memory 387

Signature scheme S

Public-parameter generation. The public-parameter generation
algorithm ppGen takes as input a security parameter 1k, and does the
following:

1. Sample pp← ppGenT L(1
k).

2. Sample a public key pk′ for the (ordinary) encryption scheme E .
3. sample a random string crs← {0, 1}�(k).

Output (pp, pk′, crs) as the public parameters.

Key generation. The key generation algorithm Gen, takes as input
the security parameter 1k and public parameters (pp, pk′, crs), and
generates (sk, pk)← GenT L(1

k, pp). Output sk as the secret key and
pk as the verification key.

Signing. Given a message m, public parameters (pp, pk′, crs), and a
secret key sk, do the following:

1. Choose a random string r and compute c = Encpk′(sk; r).
2. Compute a proof π for the statement (m, c, pk′, pk) ∈ L w.r.t. the

common random string crs, using (sk, r) as the witness, where

L =
{
(m, c, pk′, pk) : ∃sk, r s.t. c = Encpk′(sk; r) and T (pk, sk) = 1

}
.

Namely, compute π ← Pcrs((m, c, pk′, pk), (sk, r)).

Output σ = (c, π) as a signature for m.

Verifying. To verify a signature σ = (c, π) on a message m with re-
spect to the verification key pk and the public parameters (pp, pk′, crs),
check whether π is a valid proof of the statement (m, c, pk′, pk) ∈ L
with respect to the common random string crs.

Updates. The update procedure Update is identical to that of
UpdateT L. More specifically, it takes as input the public parameters
(pp, pk, crs) and a secret key sk, and updates the secret key by com-
puting UpdateT L(pp, sk).

Fig. 2. Signature scheme in the CTL model

– S = (Gen, Sign,Ver), a signature scheme secure in ρ-bounded leakage model,
i.e., S is existentially unforgeable even if the adversary gets leakage L(sk) of
his choice such that | L(sk) |≤ ρ · |sk|. We assume that S has the property
that sk ← {0, 1}g(k) and that there exists a PPT algorithm pkGen such that
vk ← pkGen(sk) (as is satisfied by [25]).

– A pseudo-random generator PRG : {0, 1}k → {0, 1}g(k).
– A single theorem adaptive “short” simulation sound (SS) NIZK POK [35]

Π = (�, P, V, S = (S1, S2), E) for the language L = {ψ : ∃s s.t. ψ =
PRG(s)}, where the length of the proofs are polynomial in the witness length.

388 Y.T. Kalai, B. Kanukurthi, and A. Sahai

Signature scheme S ′

Public-parameter generation. The public-parameter generation
algorithm ppGen′ takes as input the security parameter 1k, and does
as follows:

1. Sample a string crs← {0, 1}�(k).

Output pp′ = crs

Key generation. The key generation algorithm Gen′, takes as input
the security parameter 1k and public parameters pp′ = crs, and does
as follows:

1. Choose s← {0, 1}k.
2. Set sk = PRG(s) and choose vk ← pkGen(sk).
3. Compute a short SS NIZK POK π for the statement sk ∈ L,

w.r.t. crs, where

L = {sk : ∃s′ s.t. sk = PRG(s′)}
Namely, π ← P (sk, s, crs).

4. Set sk′ = (sk, π).

Output (sk′, vk) as the secret and verification key pair.

Signing. Given a message m, public parameter pp′ = crs, and a secret
key sk′ = (sk, π), do the following:

1. Verify that π is a valid proof for the statement sk ∈ L with
respect to the common random string crs. Namely, check that
V (sk, π, crs) = 1. If not, self destruct.

2. Compute σ ← Signsk(m) (where Sign is the original leakage re-
silient signing algorithm).

Output σ as a signature for m.

Verifying. To verify a signature σ on a message m w.r.t. the verifi-
cation key vk, run Vervk(m, σ) and output whatever it does.

Fig. 3. Signature scheme secure in the continual tampering and bounded leakage
model

We convert S into S′ = (ppGen′,Gen′, Sign′,Ver′), a signature scheme that is
secure against continual tampering and bounded leakage, as depicted in Figure 3.
This results in the following theorem:

Theorem 6. The signature scheme S′ = (ppGen′,Gen′, Sign′,Ver′), presented in
Figure 3, is existentially unforgeable in the continual tampering and ρ′-bounded
leakage model, where ρ′ =

(
ρ·g(k)

g(k)+γ(k) − 2k+γ(k)
g(k)+γ(k)

)
.

Cryptography with Tamperable and Leaky Memory 389

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key at-
tacks and applications. Cryptology ePrint Archive, Report 2010/544 (2010),
http://eprint.iacr.org/

3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-
prps, rka-prfs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

6. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999)

7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 335–359 (2010)

8. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)

9. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

10. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS (2010)

11. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

12. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 301–324. Springer, Heidelberg (2001)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–
302 (2008)

14. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

15. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

16. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

17. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

http://eprint.iacr.org/

390 Y.T. Kalai, B. Kanukurthi, and A. Sahai

18. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

19. Goldwasser, S., Rothblum, G.: How to play mental solitaire under continuous side-
channels: A completeness theorem using secure hardware (2010) (manuscript)

20. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)

21. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold
boot attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60
(2008)

22. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

23. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

24. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

25. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

26. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

27. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

28. Micali, S., Reyzin, L.: Physically observable cryptography (extented abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

29. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

30. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

31. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

32. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

33. Rao, J.R., Rohatgi, P.: Empowering side-channel attacks. Cryptology ePrint
Archive, Report 2001/037 (2001), http://eprint.iacr.org/

34. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

35. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

http://eprint.iacr.org/

Merkle Puzzles in a Quantum World

Gilles Brassard1, Peter Høyer2, Kassem Kalach1,
Marc Kaplan1, Sophie Laplante3, and Louis Salvail1

1 Département d’informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succursale Centre-ville

Montréal (QC), H3C 3J7 Canada
2 Department of Computer Science, University of Calgary

2500 University Drive N.W., Calgary, AB, T2N 1N4 Canada
3 LRI, Université Paris-Sud, 91400 Orsay, France

Abstract. In 1974, Ralph Merkle proposed the first unclassified scheme
for secure communications over insecure channels. When legitimate com-
municating parties are willing to spend an amount of computational
effort proportional to some parameter N , an eavesdropper cannot break
into their communication without spending a time proportional to N2,
which is quadratically more than the legitimate effort. We showed in
an earlier paper that Merkle’s schemes are completely insecure against
a quantum adversary, but that their security can be partially restored
if the legitimate parties are also allowed to use quantum computation:
the eavesdropper needed to spend a time proportional to N3/2 to break
our earlier quantum scheme. Furthermore, all previous classical schemes
could be broken completely by the onslaught of a quantum eavesdropper
and we conjectured that this is unavoidable.

We give two novel key agreement schemes in the spirit of Merkle’s.
The first one can be broken by a quantum adversary that makes an
effort proportional to N5/3 to implement a quantum random walk in
a Johnson graph reminiscent of Andris Ambainis’ quantum algorithm
for the element distinctness problem. This attack is optimal up to loga-
rithmic factors. Our second scheme is purely classical, yet it cannot be
broken by a quantum eavesdropper who is only willing to expend effort
proportional to that of the legitimate parties.

Keywords: Merkle Puzzles, Public Key Distribution, Quantum Cryp-
tography.

1 Introduction

While Ralph Merkle was delivering the 2005 International Association for Cryp-
tologic Research (IACR) Distinguished Lecture at the Crypto annual confer-
ence in Santa Barbara, describing his original unpublished 1974 scheme [15] for
public key distribution (much simpler and more elegant than his subsequently
published, yet better known, Merkle Puzzles [16]), one of us (Brassard) imme-
diately realized that this scheme was totally insecure against an eavesdropper
equipped with a quantum computer. The obvious question was: can Merkle’s

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 391–410, 2011.
c© International Association for Cryptologic Research 2011

392 G. Brassard et al.

idea be repaired and made secure again in our quantum world? The defining
characteristics of Merkle’s protocol are that (1) the legitimate parties communi-
cate strictly through an authenticated classical channel on which eavesdropping
is unrestricted and (2) a protocol is deemed to be secure if the cryptanalytic
effort required of the eavesdropper to learn the key exchanged by the legitimate
parties grows super-linearly with the legitimate work.

We partially repaired Merkle’s scheme in Ref. [8] with a scheme in which the
eavesdropper needed an amount of work in Ω(N3/2) to obtain the key estab-
lished by quantum legitimate parties whose amount of work is in O(N). This
was not quite as good as the work in Ω(N2) required by a classical eavesdrop-
per against Merkle’s original scheme, but significantly better than the work in
O(N) sufficient for a quantum eavesdropper against the same scheme. Two main
questions were left open in Ref. [8]:

1. Can the quadratic security possible in a classical world be restored in our
quantum world?

2. Is any security possible at all if the legitimate parties are purely classical,
yet the eavesdropper is endowed with a quantum computer?

We give two novel key distribution protocols to address these issues. In the first
protocol, the legitimate parties use quantum computers and classical authen-
ticated communication to establish a shared key after O(N) expected queries
to two black-box random functions (which can be modelled with a single ran-
dom oracle). We then give a nontrivial quantum cryptanalytic attack that uses
a quantum random walk in a Johnson graph, much like Andris Ambainis’
algorithm to solve the element distinctness problem [2], which allows a quantum
eavesdropper to learn the key after Θ(N5/3) queries to the functions. Finally, we
prove that our attack is optimal up to logarithmic factors. Therefore, we have
not quite restored the quadratic security possible in a classical world, but we
have made significant progress towards it.

Second, we give a purely classical protocol, in which the legitimate parties use
classical communication and classical computation to establish a key after O(N)
calls to similar black-box random functions. We then attack this protocol with a
quantum cryptanalytic algorithm that uses Θ(N13/12) queries to the functions.
As unlikely as it may sound, this attack is optimal (up to logarithmic factors)
and therefore it is not possible to break this purely classical protocol with a
quantum attack that uses an amount of resource linear in the legitimate effort.

Before describing our new protocols (Sects. 3 and 4), quantum attacks against
them (Sects. 3.1 and 4.1), proofs of optimality for those attacks (Sects. 3.2
and 4.2), and conjectures about the existence of even better schemes (Sect. 5),
we begin with a review (lifted from Ref. [8]) of Merkle’s original idea, its melt-
down against a quantum eavesdropper, and our earlier partial quantum solu-
tion (Sect. 2). Some of the technical tools required by our quantum attacks are
reviewed in the Appendix and new lower bound techniques are introduced.

Merkle Puzzles in a Quantum World 393

2 Merkle’s Original Scheme and How to Break and
Partially Repair It

The first unclassified document ever written that pioneered public key distri-
bution and public key cryptography was a project proposal written in 1974 by
Merkle when he was a student in Lance Hoffman’s CS244 course on Computer
Security at the University of California, Berkeley [15]. Hoffman rejected the
proposal and Merkle dropped the course but “kept working on the idea” and
eventually published it as one of the most seminal cryptographic papers in the
second half of the twentieth century [16]. Merkle’s scheme in his published paper
was somewhat different from his original 1974 idea, but both share the property
that they “force any enemy to expend an amount of work which increases as the
square of the work required of the two [legitimate] communicants” [16]. It took
35 years before Boaz Barak and Mohammad Mahmoody-Ghidary proved that
this quadratic discrepancy between the legitimate and eavesdropping efforts are
the best possible in a classical world [3].

In his IACR Distinguished Lecture 1, which he delivered at the Crypto ’05
Conference in Santa Barbara, Merkle described from memory his first solution
to the problem of secure communications over insecure channels. As a wondrous
coincidence, he unsuspectingly opened up a box of old folders a mere three weeks
after his Lecture and happily recovered his long-lost CS244 Project Proposal,
together with comments handwritten by Hoffman [15]! To quote his original
typewritten words:

Method 1: Guessing. Both sites guess at keywords. These
guesses are one-way encrypted, and transmitted to the
other site. If both sites should chance to guess at
the same keyword, this fact will be discovered when
the encrypted versions are compared, and this keyword
will then be used to establish a communications link.

Discussion: No, I am not joking.

In more modern terms, let f be a one-way permutation. In order to “one-way
encrypt” x, as Merkle said in 1974, we assume that one can compute f(x) in
unit time for any given input x but that the only way to retrieve x given f(x) is
to try preimages and compute f on them until one is found that maps to f(x).
This is known as the black-box (or oracle) model. Hereinafter, in accordance
with this model, efficiency is defined solely in terms of the number of calls to
such black-box functions (there could be more than one). In the quantum case,
these calls can be made in superposition of inputs. We also assume throughout
this paper (as did Merkle) that an authenticated channel is available between
the legitimate communicants, although this channel offers no protection against
eavesdropping.

The “keywords” guessed at by “both sites” are random points in the domain
of f. They are “one-way encrypted” by applying f to them. If there are N2

1 www.iacr.org/publications/dl.

www.iacr.org/publications/dl

394 G. Brassard et al.

points in the domain of f, it suffices to guess O(N) keywords at each site before
a variation on the birthday paradox makes it overwhelmingly likely that “both
sites should chance to guess at the same keyword”, which becomes their shared
key. An eavesdropper who listens to the entire conversation has no other way
to obtain this key than to invert f on the revealed common encrypted keyword.
In accordance with the black-box model, this can only be done by trying on the
average half the points in the domain of f before one is found that is mapped
by f to the target value. This will require an expected number of calls to f
in Ω(N2), which is quadratic in the legitimate effort.

Shortly thereafter, Whitfield Diffie and Martin Hellman discovered a cele-
brated method for public-key distribution that makes the cryptanalytic effort
apparently exponentially harder than the legitimate effort [10]. However, no proof
is known that the Diffie-Hellman scheme is secure at all since it relies on the
conjectured difficulty of extracting discrete logarithms, an assumption doomed
to fail whenever quantum computers become available. In contrast, Merkle’s
approach offers provable quadratic security against any possible classical attack,
under the sole assumption that f cannot be inverted by any other means than
exhaustive search.

Next, we explain why Merkle’s original proposal becomes completely inse-
cure if the eavesdropper is capable of quantum computation (Merkle’s published
“puzzles” [16] are equally insecure). We then sketch a protocol from Ref. [8]
that is not completely broken. This is be achieved by granting similar quantum
computation capabilities to one of the legitimate communicating parties.

2.1 Quantum Attack and Partial Remedy

Let us now assume that function f can be computed quantum mechanically on
a superposition of inputs. In this case, Merkle’s original scheme is completely
compromised by way of Grover’s algorithm [11]. Indeed, this algorithm needs
only O(

√
N2) = O(N) calls on f in order to invert it on any given point of its

image, making the cryptanalytic task as easy (up to constant factors) as the
legitimate key setup process. 2

To remedy the situation, we allow the communicating parties to use quan-
tum computers as well (actually, one of the parties will remain classical), and
we increase the domain of f from N2 to N3 points. Instead of having both sites
transmit one-way encrypted guesses to the other site, one site called Alice chooses
N distinct random values x1, x2, . . . , xN and transmits them, one-way encrypted
by the application of f, to the other site called Bob. Let Y = {f(xi) | 1 � i � N}
denote the set of encrypted keywords received by Bob, which becomes known
2 If an unstructured search problem has t solutions among M candidates, Grover’s

algorithm [11], or more precisely its so-called BBHT generalization [6], can find one
of the solutions after O(

√
M/t) expected calls to a function that recognizes solutions

among candidates. However, Theorem 4 of Ref. [7] implies that, whenever the number
t > 0 is known, a solution can be found with certainty after O(

√
M/t) calls to that

function in the worst case. From now on, when we mention Grover’s algorithm or
BBHT, we really mean this improvement according to Ref. [7].

Merkle Puzzles in a Quantum World 395

to the eavesdropper. Now, Bob defines Boolean function g on the same domain
as f by

g(x) =
{

1 if f(x) ∈ Y

0 otherwise .

Out of N3 points in the domain of f, there are exactly t = N solutions to
the problem of finding an x so that g(x) = 1. It suffices for Bob to apply the
BBHT generalization [6] of Grover’s algorithm [11], which finds such an x after
O(
√

N3/t) = O(
√
N2) = O(N) calls on g (and therefore on f). Bob sends back

f(x) to Alice, who knows the value of x because she was careful to keep her
randomly chosen points. Therefore, it suffices of O(N) calls on f by Alice and
Bob for them to agree on key x. 3

The eavesdropper, on the other hand, is faced with the need to invert f on
a specific point of its image. Even with a quantum computer, this requires a
number of calls on f proportional to the square root of the number of points
in its domain [5], which is Ω(

√
N3) = Ω(N3/2). This is more effort than what

is required of the legitimate parties, yet less than quadratically so, as would
have been possible in a classical world. Even though we have avoided the melt-
down of Merkle’s original approach, the introduction of quantum computers
available to all sides seems to be to the advantage of the codebreakers. Can
we remedy this situation? Furthermore, is any security possible at all against
a quantum computer if both legitimate parties are restricted to being purely
classical? We address these two questions in the rest of this paper.

3 Improved Key Distribution Scheme

For any positive integer N , let [N] denote the set of integers from 1 to N .
We describe our novel key distribution protocol assuming the existence of two
black-box random functions f : [N3] → [Nk] and g : [N3] × [N3] → [Nk′

] that
can be accessed in quantum superposition of inputs. Constants k and k′ are
chosen large enough so that there is no collision in the images of f and g, except
with negligible probability. (For simplicity, we shall systematically disregard the
possibility that such collisions might exist.) Notice that a single binary random
oracle (which “implements” a random function from the integers to {0, 1}) could
be used to define both functions f and g provided we disregard logarithmic fac-
tors in our analyses since O(logN) calls to the random oracle would suffice to
compute f or g on any single input. For this reason, it is understood hereinafter
that all our results are implicitly stated “up to logarithmic factors”. As men-
tioned in the previous section, the only resource that we consider in our analyses
of efficiency and lower bounds is the number of calls made to these functions or,
equivalently, to the underlying binary random oracle.
3 As we made clear already, we are only concerned in this paper by the number of

calls made to black-box functions. Nevertheless, if we cared also about computa-
tional efficiency, Bob would sort the elements of Y in increasing order after receiving
them from Alice so that he can quickly determine, given any y = f(x), whether or
not y ∈ Y, which is needed to compute function g.

396 G. Brassard et al.

Protocol 1.

1. Alice picks at random N distinct values {xi}N
i=1 with xi ∈ [N3] and transmits

the encrypted values yi = f(xi) to Bob. Let X and Y denote {xi | 1 � i � N}
and {yi | 1 � i � N}, respectively. Note that Alice knows both X and Y,
whereas Bob and the eavesdropper have immediate knowledge (i.e. without
querying the black-box for function f) of Y only.

2. Bob finds the pre-images x and x′ of two distinct random elements in Y.
To find each one of them, he uses BBHT [6] to search for an x such that
φ(x) = 1, where φ : [N3] → {0, 1} is defined as follows:

φ(x) =
{

1 if f(x) ∈ Y
0 otherwise .

There are exactly N values of x such that φ(x) = 1, out of N3 points
in the domain of φ. Therefore, Bob can find one such random x with
O(
√

N3/N) = O(N) calls to function f . He needs to repeat this process
twice in order to get both x and x′. (A small variation in function φ can be
used the second time to make sure that x′ �= x).

3. Bob sends back w = g(x, x′) to Alice.
4. Because Alice had kept her randomly chosen set X , there are only N2

candidate pairs (xi, xj) ∈ X ×X such that g(xi, xj) could equal w. Using
Grover’s algorithm, she can find the one pair (x, x′) that Bob has in mind
with O(

√
N2) = O(N) calls to function g.

5. The key shared by Alice and Bob is the pair (x, x′).

All counted, Alice makes N calls to f in step 1 and O(N) calls to g in step 4,
whereas Bob makes O(N) calls to f in step 2 and a single call to g in step 3.
If the protocol is constructed over a binary random oracle, it will have to be
called O(N logN) times since it takes O(logN) binary queries to compute either
function on any given input.

3.1 Quantum Attack

All the obvious (and not so obvious) cryptanalytic attacks against this scheme,
such as direct use of Grover’s algorithm (or BBHT), or even more sophisticated
attacks based on amplitude amplification [7], require the eavesdropper to call
Ω(N2) times functions f and/or g. Unfortunately, a more powerful attack based
on the more recent paradigm of quantum walks in Markov chains [17] allows the
eavesdropper to recover Alice and Bob’s key (x, x′) with an expected O(N5/3)
calls to f and O(N) calls to g. This attack was inspired by Ambainis’ quan-
tum algorithm for element distinctness [2], which can find the unique pair (i, j)
such that c(i) = c(j) with O(N2/3) expected queries to single-collision function
c whose domain contains N elements (whereas all previous approaches based
on Grover’s algorithm and amplitude amplification [12,9] had required Ω(N3/4)
queries).

Merkle Puzzles in a Quantum World 397

Theorem 1. There exists an eavesdropping strategy that outputs the pair (x, x′)
in Protocol 1 with O(N5/3) expected quantum queries to functions f and g.

Proof. In a nutshell, we apply Ambainis’ algorithm for element distinctness with
two modifications: (1) instead of looking for i and j such that c(i) = c(j), we
are looking for x and x′ such that g(x, x′) = w and (2) instead of being able to
get randomly chosen values in the image of c with a single call to oracle c per
value, we need to get random elements of X by applying BBHT on the list Y,
which requires O(

√
N3/N) = O(N) calls to oracle f per element. The second

modification explains why the number of calls to f , compared to O(N2/3) calls
to c for element distinctness, is multiplied by O(N). Hence, we need O(N5/3)
calls to function f . To determine the number of calls required to function g,
however, we have to delve deeper into the eavesdropping algorithm.

The eavesdropping algorithm uses a quantum walk on a Johnson graph—see
the Appendix for a review of this topic. Each node of the graph contains some
number r (to be determined later) of distinct elements of X . We are looking for
a node that contains the two elements x and x′ such that g(x, x′) = w, where w
is the value announced by Bob in step 3 of the protocol. We apply Theorem 5
(Appendix) to analyse the cost of a quantum walk on this graph [2,17]. The set
up cost S corresponds to finding r random elements of X . Since BBHT can
be used to find one such element with O(N) calls to f , and even to find an
element of X guaranteed to be different from those already in the initial node
(provided k # N , which it will be), S = O(rN) calls to f . The update cost U
corresponds to finding one random element of X not already in the node, which
is U = O(N) calls to f , again by BBHT. The checking cost C requires us to
decide if there is a pair (x, x′) of elements in the node such that g(x, x′) = w,
which can be done with O(

√
r2) = O(r) calls to g using Grover’s algorithm since

there are r2 pairs of elements in the node. Putting it all together, the expected
cryptanalytic cost is

S + O
(

N
r (

√
r U + C)

)
= O

(
(rN calls to f) + N

r

(√
r(N calls to f) + (r calls to g)

))
= O

(
rN + N2/

√
r
)

calls to f and O(N) calls to g .

To minimize the number of calls to f , we choose r so that rN = N2/
√
r, which

is r = N2/3. It follows that a quantum eavesdropper is able to find the key (x, x′)
with an expected O(rN) = O(N5/3) calls to f and O(N) calls to g. ��
Note that the use of Grover’s algorithm in the checking step was not necessary
to prove Theorem 1. Should this step be carried out classically, this would result
in C = O(r2) calls to g. The net result would be that the key is found after an
expected O(N5/3) calls to f and also O(N5/3) calls to g.

3.2 Lower Bound

The proof that the quantum attack described above against our protocol is
optimal proceeds in three steps.

398 G. Brassard et al.

1. We define a search problem reminiscent of element distinctness;
2. We prove a lower bound on the difficulty to solve this search problem; and
3. We reduce this search problem to the eavesdropping problem against our

protocol. More precisely, we show that any attack on our key distribution
scheme that would have a nonvanishing probability of success after o(N5/3)
calls to functions f and g could be turned into an algorithm capable of
solving the search problem more efficiently than possible.

First, consider a function c : [N] → [N] so that there exists a single pair (i, j),
1 � i < j � N , for which c(i) = c(j). Ambainis’ quantum algorithm for element
distinctness [2] can find this pair with O(N2/3) queries to function c and Scott
Aaronson and Yaoyun Shi proved that this is optimal even for the decision
version of this problem [1].

Now, consider a function h : [N] × [N2] → [N]′, where [N]′ denotes {0} ∪ [N].
The domain of this function is composed of N “buckets” of size N2, where h(i, ·)
corresponds to the ith bucket, 1 � i � N . In bucket i, all values of the function
are 0 except for one single random vi ∈ [N2] for which h(i, vi) = c(i):

h(i, j) =

{
c(i) if j = vi

0 otherwise .

It follows from the definitions of c and h that there is a single pair of distinct a
and b in the domain of h such that h(a) = h(b) �= 0. How difficult is it to find
this pair given a black box for function h but no direct access to c?

Lemma 1. Given h structured as above, finding the pair of distinct elements a
and b in the domain of h such that h(a) = h(b) �= 0 requires Ω(N5/3) quantum
queries to h, except with vanishing probability.

Proof. This problem can be modelled as the composition of element distinctness
across buckets with finding the single non-zero entry in each bucket. It is there-
fore a special case of technical Lemma 5, stated in the Appendix, with parameters
α = N (the number of buckets) and β = N2 (the size of the buckets). It follows
that finding the desired pair (a, b) requires

Ω(α2/3β1/2) = Ω(N2/3
√
N2) = Ω(N5/3)

quantum queries to h, except with vanishing probability. ��
Consider now a slightly different search problem in which there are no buck-
ets anymore, but there is an added coordinate in the image of the function:
h′ : [N3] → [N]′ × [N]′ is defined so that h′(a) = (0, 0) on all but N randomly
chosen points in its domain, namely w1, w2,. . . , wN . On these N points,
h′(wi) = (i, c(i)), where c is the function considered at the beginning of this
section. We are required to find the unique pair of distinct a and b in [N3] such
that π2(h′(a)) = π2(h′(b)) �= 0, where “π2 ” denotes the projection on the second
coordinate (similarly for “ π1 ”). The lower bound on the earlier search problem

Merkle Puzzles in a Quantum World 399

concerning h implies directly the same lower bound on the new search problem
concerning h′ since any algorithm capable of solving the new problem can be
used at the same cost to solve the earlier problem through randomization. In
other words, the more structured version of the problem cannot be harder than
the less structured one. The next Lemma formalizes the argument above.

Lemma 2. Given h′ structured as above, finding the pair of distinct elements a
and b in the domain of h′ such that π2(h′(a)) = π2(h′(b)) �= 0 requires Ω(N5/3)
quantum queries to h′, except with vanishing probability.

Proof. Define intermediary function h̃ : [N] × [N2] → [N]′ × [N]′ by

h̃(i, j) =

{
(i, h(i, j)) = (i, c(i)) if h(i, j) �= 0

(0, h(i, j)) = (0, 0) otherwise .

It is elementary to reduce the search problem concerning h to the one con-
cerning h̃ as well as the search problem concerning h̃ to the one concerning h′.
Therefore, the lower bound concerning h given by Lemma 1 applies mutatis
mutandis to h′. ��
Finally, we show how to reduce the search problem concerning h′ to the crypt-
analytic difficulty for the eavesdropper to determine the key that Alice and Bob
have established by using our protocol. This is the last step in proving the secu-
rity of our scheme.

Theorem 2. Any eavesdropping strategy that recovers the key (x, x′) in proto-
col 1 requires a total of Ω(N5/3) quantum queries to functions f and g, except
with vanishing probability.

Proof. Consider any eavesdropping strategy A that listens to the communication
between Alice and Bob and tries to determine the key (x, x′) by querying black-
box functions f and g. In fact, there are no Alice and Bob at all! Instead, there
is a function h′ : [N3] → [N]′ × [N]′ as described above, for which we want to
solve the search problem by using unsuspecting A as a resource.

We start by supplying A with a completely fake “conversation” between
“Alice” and “Bob”: for sufficiently large k and k′, we choose randomly N points
y1, y2,. . . , yN in [Nk] and one point w ∈ [Nk′

] and we pretend that Alice has sent
the y’s to Bob and that Bob has responded with w. We also choose random func-
tions f̂ : [N3] → [Nk] and ĝ : [N3] × [N3] → [Nk′

], as well as a random Boolean
s ∈ {true, false}. Note that the selection of f̂ and ĝ may take a lot of time,
but this does not count towards the number of queries that will be made of
function h′, and our lower bound on the search problem concerns only this num-
ber of queries. The Boolean s indicates, when true (resp. false), that the fake
“execution” is such that “Bob” has first picked x and then x′ such that x < x′

(resp. x′ > x). Both cases happen with probability 1/2 in any real execution and
for any public announcements Y and w. The value s will be used in the reduction
to distinguish between g(x, x′) and g(x′, x) so that only g(x, x′) will be set to w.

400 G. Brassard et al.

Now, we wait for A’s queries to f and g.

– When A asks for f(i) for some i ∈ [N3], there are two possibilities.
• If h′(i) = (0, 0), return f̂(i) to A as value for f(i).
• Otherwise, return yπ1(h′(i)) .

– When A asks for g(i, j) for some i, j ∈ [N3], there are again two possibilities.
• If π2(h′(i)) = π2(h′(j)) �= 0 and either s is true and i < j or s is false and

i > j, return w as value for g(i, j).
• Otherwise, return ĝ(i, j).

Suppose A happily returns the pair (i, j) for which it was told that g(i, j) = w,
which is what a successful eavesdropper is supposed to do. This pair is in
fact the answer to the search problem concerning h′ since g(i, j) = w im-
plies that π2(h′(i)) = π2(h′(j)) �= 0, except with the negligible probability that
ĝ(i′, j′) = w for some query (i′, j′) that A asks about g.

Queries asked by A concerning f and g are answered in the same way as they
would be if f and g were two random functions consistent with the Y and w
announced by Alice and Bob during the execution of a real protocol. To see this,
remember that Y (subset of [Nk]) and w (element of [Nk′

]) are uniformly picked
at random in both the simulated and the real worlds. Moreover, the simulated
function f is such that f(i) is random when h′(i) = (0, 0). The remaining N
output values are in Y, as expected by A. On the other hand, the simulated
function g is random everywhere except for one single input pair (i, j), i �= j
for which g(i, j) = w, as it is also expected by A. Therefore, A will behave
in the environment provided by the simulation exactly as in the real world.
Since we disregard the negligible possibility that g might not be be one-to-one,
the reduction solves the search problem concerning h′ whenever A succeeds in
finding the key. Notice finally that each (new) question asked by A to either f
or g translates to one or two questions actually asked to h′.

It follows that any successful cryptanalytic strategy that makes o(N5/3) total
queries to f and g would solve the search problem with only o(N5/3) queries to
function h′, which is impossible, except with vanishing probability. This estab-
lishes the Ω(N5/3) lower bound on the cryptanalytic difficulty of breaking our
key exchange protocol, again except with vanishing probability, which matches
the upper bound provided by the explicit attack given in Sect. 3.1. ��

4 Fully Classical Key Distribution Scheme

In this section, we revert to the original setting imagined by Merkle in the sense
that Alice and Bob are now purely classical. However, we allow full quantum
power to the eavesdropper. Recall that Merkle’s original schemes [15,16] are
completely broken in this context [8]. Is it possible to restore some security in
this highly adversarial (and unfair!) scenario? The following purely classical key
distribution protocol, which is inspired by our quantum protocol described in
the previous section, provides a positive answer to this conundrum.

Merkle Puzzles in a Quantum World 401

This time, black-box random functions f and g are defined on a smaller
domain to compensate for the fact that classical Alice and Bob can no longer use
Grover’s algorithm. Specifically, f : [N2] → [Nk] and g : [N2] × [N2] → [Nk′

],
again with sufficiently large k and k′ to avoid collisions in these functions, ex-
cept with negligible probability (k and k′ need not be the same here as in the
previous section). As before, these two functions could be replaced by a single
binary random oracle. For simplicity, we choose N to be a perfect square.

Protocol 2.

1. Alice picks at random N distinct values {xi}N
i=1 with xi ∈ [N2] and transmits

the encrypted values yi = f(xi) to Bob. Let X and Y denote {xi | 1 � i � N}
and {yi | 1 � i � N}, respectively.

2. Bob finds the pre-images x and x′ of two distinct random elements in Y.
To find each one of them, he chooses random values in [N2] and applies f
to them until one is found whose image is in Y. By virtue of the birthday
paradox, he is expected to succeed after O(

√
N2) = O(N) calls to function f .

Until now this is identical to Merkle’s original scheme, except for the fact
that Bob needs to find two elements of X rather than one.

3. Bob sends back w = g(x, x′) to Alice. In addition, he chooses
√
N − 2 random

elements from Y \ {f(x), f(x′)} and he forms a set Y ′ of cardinality
√
N by

adding f(x) and f(x′) to those elements. He sends the elements of Y ′ to
Alice in increasing order of values.

4. Because Alice had kept her randomly chosen set X , she knows the preimages
of each element of Y ′. Let X ′ denote {x ∈ X | f(x) ∈ Y ′}. By exhaustive
search over all pairs of elements of X ′, Alice finds the one pair (x, x′) such
that g(x, x′) = w.

5. The key shared by Alice and Bob is the pair (x, x′).

All counted, Alice makes N calls to f in step 1 and at most N calls to g in
step 4 because there are

√
N
√
N = N pairs of elements of X ′ and one of them

is the correct one. As for Bob, he makes an expected O(N) calls to f in step 2
and a singe call to g in step 3. The total expected number of calls to f and g is
therefore in O(N) for both legitimate parties.

4.1 Quantum Attack

Theorem 3. There exists an eavesdropping strategy that outputs the pair (x, x′)
in Protocol 2 with O(N13/12) expected quantum queries to functions f and g.

Proof. A quantum eavesdropper can set up a walk in a Johnson graph very
similar to the one explained in Sect. 3.1, except that now the nodes in the
graph contain some number r (to be determined later) of distinct elements of X ′

(rather than of X). The eavesdropper can find random elements of X ′ from his
knowledge of Y ′ with an expected

O

(√
N2/

√
N

)
= O

(
N3/4

)

402 G. Brassard et al.

calls to f per element of X ′. Therefore, S = O(rN3/4) calls to f , U = O(N3/4)
calls to f and C = O(r) calls to g. Furthermore, δ is still Θ(1/r) but
ε = Ω(r2/N).

Putting it all together, the expected quantum cryptanalytic cost is

S + O
(√

N
r (

√
rU + C)

)
= O

(
(rN3/4 calls to f) +

√
N
r

(√
r(N3/4 calls to f) + (r calls to g)

))
= O

(
rN3/4 + N5/4/

√
r
)

calls to f and O(
√
N) calls to g .

To minimize the number of calls to f , we choose r so that rN3/4 = N5/4/
√
r,

which is r = N1/3. It follows that a quantum eavesdropper is able to find the
key (x, x′) with an expected O(rN3/4) = O(N13/12) calls to f and O(

√
N) calls

to g. ��

4.2 Lower Bound

The proof that it is not possible to find the key (x, x′) with fewer than Ω(N13/12)
calls to f and g, except with vanishing probability, follows the same lines as the
lower bound proof in Sect. 3.2. It is therefore possible for purely classical Alice
and Bob to agree on a shared key after calling f and g an expected number of
times in the order of N whereas it is not possible, even for a quantum eaves-
dropper, to be privy of their secret with an effort in the same order, except with
vanishing probability.

We refer the reader to Sect. 3 for the meaning of notation [N] and to Sect. 3.2
for the definitions of projectors π1, π2, and the meaning of notation [N]′.

Consider a function c : [
√
N] → [

√
N] so that there is a single pair (i, j),

1 � i < j �
√
N , for which c(i) = c(j). Aaronson and Shi’s lower bound [1] tells

us that finding this pair requires Ω((
√
N)2/3) = Ω(N1/3) calls to function c.

Now, consider a function h : [
√
N] × [N3/2] → [

√
N]′ where h(i, ·) denotes the

ith bucket, 1 � i �
√
N . In bucket i, all values of the function are 0 except for

one: there is a single random vi ∈ [N3/2] such that h(i, vi) = c(i). It follows from
the definitions of c and h that there is a single pair of distinct a and b in the
domain of h such that h(a) = h(b) �= 0.

Lemma 3. Given h structured as above, finding the pair of distinct elements a
and b in the domain of h such that h(a) = h(b) �= 0 requires Ω(N13/12) quantum
queries to h, except with vanishing probability.

Proof. The proof is identical to the one for Lemma 1, mutatis mutandis. It is
again a special case of Lemma 5, but with parameters α =

√
N (the number

of buckets) and β = N3/2 (the size of the buckets). It follows that finding the
desired pair (a, b) requires

Ω(α2/3β1/2) = Ω
(√

N
2/3√

N3/2
)

= Ω(N13/12)

quantum queries to h, except with vanishing probability. ��

Merkle Puzzles in a Quantum World 403

Let h′ : [N2] → [
√
N]′ × [

√
N]′ denote the unstructured version of the

same search problem for h, defined the same way as in Sect. 3.2, mutatis
mutandis. There is a single pair of distinct elements a and b such that
π2(h′(a)) = π2(h′(b)) �= 0. The problem of finding this pair is at least as difficult
as finding the collision in h.

Lemma 4. Given h′ structured as above, finding the pair of distinct elements a
and b in the domain of h′ such that π2(h′(a)) = π2(h′(b)) �= 0 requires Ω(N13/12)
quantum queries to h′, except with vanishing probability.

It remains to show that the search problem concerning h′ reduces to the crypt-
analytic difficulty for the eavesdropper to determine the key established by Alice
and Bob.

Theorem 4. Any eavesdropping strategy that recovers the key (x, x′) in proto-
col 2 requires a total of Ω(N13/12) quantum queries to functions f and g, except
with vanishing probability.

Proof. Consider any eavesdropping strategy A that listens to the communication
between Alice and Bob and tries to determine the key (x, x′) by querying the
black-box functions f and g. As before, the reduction does not have access to
Alice and Bob but instead, to a function h′ : [N2] → [

√
N]′ × [

√
N]′ as described

above and given as an oracle, for which we want to solve the search problem by
using A as a resource.

We choose random functions f̂ : [N2] → [Nk] and ĝ : [N2] × [N2] → [Nk′
],

as well as a random Boolean s ∈ {true, false}, which has the same purpose as
in the proof of Theorem 2. Let Im(f̂) denote the image of function f̂ . We then
supply A with a fake “conversation” between “Alice” and “Bob”: we choose
randomly

√
N points y′1, y

′
2,. . . , y

′√
N

in [Nk], N−√
N points y1, y2, . . . , yN−

√
N

in Im(f̂) ⊂ [Nk], and one point w ∈ [Nk′
]. We pretend that Alice has sent the

list Y = {y1, y2, . . . , yN−
√

N} ∪ {y′1, y′2, . . . , y′√N
} to Bob (in random order) and

that Bob has responded with Y ′ = {y′1, y′2, . . . , y′√N
} (in increasing order) and w.

Now, we wait for A’s queries to f and g.

– When A asks for f(i) for some i ∈ [N2], there are two possibilities:
• If h′(i) = (0, 0), return f̂(i) to A as value for f(i).
• Otherwise, return y′π1(h′(i)) .

– When A asks for g(i, j) for some i, j ∈ [N2], there are two possibilities:
• If π2(h′(i)) = π2(h′(j)) �= 0 and either s is true and i < j or s is false and

i > j, return w as value for g(i, j).
• Otherwise, return ĝ(i, j).

Suppose A happily returns the pair (i, j) for which it was told that g(i, j) = w,
which is what a successful eavesdropper is supposed to do. This pair is in fact
the answer to the search problem concerning function h′. Indeed, g(i, j) = w for
only the pair (i, j) for which π2(h′(i)) = π2(h′(j)) �= 0, except with the negligible
probability that ĝ(i′, j′) = w for some query (i′, j′) that A asks about g. However,

404 G. Brassard et al.

we need an additional condition for the reduction to create an environment
identical to the real one: if y ∈ Y then h′(f−1(y)) = (0, 0). This is required for
all elements in Y \ Y ′ to be accessible when A is querying f in the reduction.
Fortunately, it is easy to see that this condition is satisfied except with vanishing
probability when k is large enough.

Provided this condition is satisfied, queries asked by A concerning f and g
are answered in the same way as they would be if both f and g were random
functions consistent with the Y, Y ′ and w announced by Alice and Bob during
the execution of the protocol. To see this, remember that Y and Y ′ (subsets
of [Nk]) and w (element of [Nk′

]) are uniformly picked at random in both the
simulated and the real worlds. Moreover, the simulated function f is such that
f(i) is random when h′(i) = (0, 0). Among these N2 −√

N input values, there
are exactly N −√

N output values in Y \ Y ′, as expected by A. The remaining√
N input values i also satisfy f(i) ∈ Y ′ as it should be. On the other hand,

the simulated function g is random everywhere except for one single input pair
(i, j), i �= j, for which g(i, j) = w, as it is also expected by A. Therefore, A will
behave in the environment provided by the simulation exactly as in the real case.
Since we disregard the negligible possibility that g might not be be one-to-one,
the reduction solves the search problem concerning h′ whenever A succeeds in
finding the key. Notice again that each (new) question asked by A to either f or
g translates to one or two questions actually asked to h′.

It follows that any successful cryptanalytic strategy that makes o(N13/12)
total queries to f and g would solve the search problem with only o(N13/12)
queries to function h′, which is impossible by Lemma 4, except with vanishing
probability. This establishes the Ω(N13/12) lower bound on the cryptanalytic
difficulty of breaking our key exchange protocol, which matches the upper bound
provided by the explicit attack discussed in Sect. 4.1. ��

5 Conclusion, Conjectures and Open Questions

We presented an improved protocol for quantum key distribution over a classical
channel and the first secure protocol for classical key distribution against a
quantum adversary. Is it possible that they are optimal? We conjecture that
they are not.

Indeed, we have discovered two sequences of protocols Q� and C� for � � 2
(which we shall describe in a subsequent paper) with the following properties.
In protocol Q�, a classical Alice exchanges a key with a quantum Bob after
O(N) accesses to a random oracle in such a way that our most efficient quantum
eavesdropping strategy requires the eavesdropper to access the same random
oracle Θ

(
N1+ �

�+1
)

expected times. In protocol C�, purely classical Alice and
Bob exchange a key after O(N) accesses to a random oracle in such a way that
our most efficient quantum eavesdropping strategy requires the eavesdropper
to access the same random oracle Θ

(
N

1
2+ �

�+1
)

expected times.

Merkle Puzzles in a Quantum World 405

Our attacks proceed by quantum walks in Johnson graphs similar to those
exploited in the proofs of Theorems 1 and 3 to obtain optimal attacks against
our protocols 1 and 2. If they are the best possible against our new protocols as
well, then key distribution protocols à la Merkle can be arbitrarily as secure in
our quantum world as they were in the whimsical classical world known to Merkle
in 1974: arbitrarily close to quadratic security can be restored. The obvious open
question is to prove the optimality of our attacks. It would also be interesting to
find a quantum protocol that exactly achieves quadratic security. . . or better!
Indeed, even though it has been proven in the classical case that quadratic
security is the best that can be achieved [3], there is no compelling evidence yet
that such a limitation exists in the quantum world.

If our quantum attacks against the classical protocols are optimal, classical
Alice and Bob can exchange a secret key against a quantum eavesdropper with
as good a security (in the limit) as it was known to be possible for quantum
Alice and Bob before this work. The main open question would be to break the
Ω(N3/2) barrier or prove that this is not possible.

Even though our protocols Q� and C� require classical Alice to access the
random black-box function only N times, she has to work for a time in Θ(N �)
to complete her share of the protocol. (This could be reduced to Θ(N �/2) for Q�

if both Alice and Bob used quantum computing capabilities, but this remains
nonlinear as soon as � � 3.) Could similar protocols exist in which Alice would
be efficient even outside the required calls to the black-box function?

Finally, our lower bounds prove that it is not possible for the eavesdropper to
learn Alice and Bob’s key (x, x′), except with vanishing probability, unless she
queries the black-box functions significantly more than the legitimate parties.
However, we have not addressed the possibility for the eavesdropper to obtain
efficiently partial information about the key. We leave this important issue for
further research.

Acknowledgements. We are grateful to Troy Lee and Mohammad Mahmoody-
Ghidary for insightful discussions. G. B. is also grateful to Ralph Merkle for his
most inspiring Distinguished Lecture at Crypto ’05, which sparked this entire
line of work.

G. B. is supported in part by Canada’s Natural Sciences and Engineer-
ing Research Council of Canada (Nserc), the Institut transdisciplinaire
d’informatique quantique (Intriq), the Canada Research Chair program, the
Canadian Institute for Advanced Research (Cifar) and the QuantumWorks
Network. P. H. is supported in part by Nserc, Cifar, QuantumWorks, and
the Canadian Network Centres of Excellence for Mathematics of Information
Technology and Complex Systems (Mitacs). S. L. is supported in part by the
European Union 7th framework program Qcs, Anr Défis Qrac and Anr Jeune
chercheur Cryq. L. S. is supported in part by Nserc, QuantumWorks, Funda-
mental Research on Quantum Networks and Cryptography (Frequency) and
Intriq.

406 G. Brassard et al.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on
Computing 37, 210–239 (2007)

3. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — An O(n2)–query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

4. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. Journal of the ACM 48(4), 778–797 (2001)

5. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM Journal on Computing 26(5), 1510–1523
(1997)

6. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte Der Physik 46, 493–505 (1998)

7. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. In: Lomonaco Jr., S.J. (ed.) Quantum Computation and Quantum
Information. Contemporary Mathematics, vol. 305, pp. 53–74. AMS, Providence
(2002)

8. Brassard, G., Salvail, L.: Quantum Merkle puzzles. In: Proceedings of Second Inter-
national Conference on Quantum, Nano, and Micro Technologies (ICQNM 2008),
Sainte Luce, Martinique, pp. 76–79 (February 2008)

9. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Sántha, M., de
Wolf, R.: Quantum algorithms for element distinctness (2000),
http://arxiv.org/abs/quant-ph/0007016v2

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

11. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters 79(2), 325–328 (1997)

12. Heiligman, M.: Finding matches between two databases on a quantum computer
(2000), http://arxiv.org/abs/quant-ph/0006136v1

13. Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In:
Proceedings of 39th Annual Symposium on Theory of Computing (STOC), pp.
526–535 (June 2007), The complete version can be found at
http://arxiv.org/abs/quant-ph/0611054v2

14. Lee, T., Mittal, R., Reichardt, B.W., Špalek, R.: An adversary for algorithms
(2010), http://arxiv.org/abs/1011.3020v1

15. Merkle, R.: C.S. 244 Project Proposal (1974), Facsimile available at
http://www.merkle.com/1974

16. Merkle, R.: Secure communications over insecure channels. Communications of the
ACM 21(4), 294–299 (1978)

17. Sántha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D.-
Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 31–46. Springer,
Heidelberg (2008)

http://arxiv.org/abs/quant-ph/0007016v2
http://arxiv.org/abs/quant-ph/0006136v1
http://arxiv.org/abs/quant-ph/0611054v2
http://arxiv.org/abs/1011.3020v1
http://www.merkle.com/1974

Merkle Puzzles in a Quantum World 407

A Quantum Query Complexity

In our protocols, the work of the different parties is quantified by the number
of queries made to black-box random functions, which can be modelled by a
random oracle. In this Appendix, we review the main results from quantum
query complexity that we used to prove our results and we sketch a new technical
result that is needed for our lower-bound proofs.

Upper Bounds

Our attacks can be modelled as quantum walks on Johnson graphs. The graph
J(n, r) is an undirected graph in which each node contains some number r of
distinct elements of [n] and there is an edge between two nodes if and only if they
differ by exactly two elements. Intuitively, we may think of “walking” from one
node to an adjacent node by dropping one element and replacing it by another.
The task is to find a specific k-subset of [n]. The nodes that contain this subset
are called marked.

A random walk P on a Johnson graph can be quantized and the cost of the
resulting quantum algorithm can be written as a function of S, U and C. These
are the cost of setting up the quantum register in a state that corresponds to
the stationary distribution, moving unitarily from one node to an adjacent node,
and checking if a node is marked in order to flip its phase if it is, respectively.

Theorem 5. [2,17] Let M be either empty, or the set of vertices that contain
a fixed subset of constant size k � r. Then there is a quantum algorithm that
finds, with high probability, the k-subset if M is not empty at an expected cost
in the order of

S +
1√
ε

(
1√
δ
U + C

)
,

where δ = n/r(n− r) is the eigenvalue gap of the symmetric walk on J(n, r) and
ε = Ω(rk

nk) is the probability that a node is marked.

Lower Bounds

The central technical part of our lower bound consists in analysing the complex-
ity of a function closely related to the hardness of breaking the key distribution
protocols. This function is obtained by composing element distinctness and a
variant of the search problem.

Consider two integer parameters α and β and three functions c : [α] → [α],
v : [α] → [β] and h : [α] × [β] → [α]′ so that there exists a single pair (i, j),
1 � i < j � α, for which c(i) = c(j), which is called a collision, and

h(i, j) =

{
c(i) if j = v(i)

0 otherwise .

408 G. Brassard et al.

The task is to find the unique nonzero collision in h, having only access to a black-
box that computes h. This can be thought of as searching among β possibilities
for the sole nonzero h(i, ·) for each i and then finding two of those elements,
among α possibilities, that are not distinct. Our main technical lemma, below,
gives a lower bound on the number of queries to h that are required.

Lemma 5. Finding a nonzero collision in h, structured as above, requires
Ω(α2/3β1/2) quantum queries to h, except with vanishing probability.

A complete proof of this lemma will appear separately but we now proceed to
sketch it. For technical reasons, it is more convenient to prove this lower bound
for the related decision problem: we are given a function h of the type above,
but it is either based on a function c that has a single collision (as above) or on
a one-to-one function c (in which case h is collision-free, except for value 0 in its
image). The task is to decide which is the case. Obviously, any algorithm that
can solve the search problem with probability of success at least p > 0 can be
used to solve the decision problem with error bounded by 1

2 − p
2 : run the search

algorithm; if a collision is found (and verified), output “collision”, otherwise
output either “collision” or “no collision” with equal probability after flipping a
fair coin. It follows that any lower bound on the bounded-error decision problem
applies equally well to the search problem.

Again for technical reasons, we shall change the notation in order to adapt it
to the normal usage in the field of quantum query complexity. For instance, func-
tion c : [α] → [α] will be represented by an element of [α]α. This makes it possi-
ble to think of the decision version of element distinctness as a Boolean function
ED : [α]α → {0, 1}, although it is a partial function since there is a promise on the
valid inputs to ED: Given α integers (z1, . . . , zα) ∈ [α]α, the promise is that either
all the elements are distinct; or that all the elements are distinct except two, say
zi �= zj. The goal is to decide which of the two cases occurs by making as few
queries as possible to the function that returns zi on input i.

Ambainis’ element distinctness quantum algorithm [2] runs in O(α2/3) queries
to the input, and Aaronson and Shi proved that this is optimal [1]. Although
the lower bound was proven using the polynomial method [4], a recent theorem
of Ref. [14] shows that the generalized adversary bound is tight. Since our proof
of the lower bound is derived using the generalized adversary method [13], we
may conclude that there exists an adversary bound for element distinctness.

We compose the element distinctness problem with α instances of a promise
version of a Search problem, which we call pSEARCH. pSEARCH : [α]′β → [α] is
also a promise problem. On input (a1, . . . aβ), the promise is that all but one of
the numbers are zero. The goal is to find and output this non-zero number by
making queries that take i as input and return ai.

The composed function we study is H = ED ◦ pSEARCHα. We now restate
Lemma 5 in its decision-problem version.

Lemma 6. The quantum query complexity of H is in Ω(α2/3β1/2).

The proof uses the generalized adversary method for quantum query complexity,
which we briefly describe here. Suppose we want to determine the quantum query

Merkle Puzzles in a Quantum World 409

complexity of a function F. We will assign weights to pairs of inputs in such a
way as to bring out how hard it is (in terms of number of queries) to distinguish
these inputs apart from one another. The adversary lower bound is the worst
ratio of the spectral norm of this matrix, which measures the overall progress
necessary in order for the algorithm to be correct, to the spectral norms of a
associated matrices, which measure the maximum amount of progress that can
be achieved by making a single query.

Definition 1. Fix a function F : Sn → T . A symmetric matrix Γ : Sn×Sn → R
is an adversary matrix for F provided Γ [x, y] = 0 whenever F(x) = F(y). Let
Di[x, y] = 1 if xi �= yi and 0 otherwise. The adversary bound of F using Γ is

Adv±(F;Γ) = min
i

‖Γ‖
‖Γ ◦Di‖ ,

where ◦ denotes entrywise (or Hadamard) product, and ‖A‖ denotes the spec-
tral norm of A (which is equal to its largest eigenvalue). The adversary bound
Adv±(F) is the maximum, over all adversary matrices Γ for F, of Adv±(F;Γ).

Since H is defined as the composition of ED and pSEARCH, one would like to
apply a composition theorem for the generalized adversary method [13], which
would say that if a function H = F ◦ Gα, then Adv±(H) = Adv±(F)Adv±(G)
(up to constant factors, which will no longer be mentioned). Unfortunately, the
composition theorem of Ref. [13] requires the inner and outer functions to be
Boolean, which is not the case here for the inner function. (In fact, the outer
function does not need to be Boolean according Corollary 5.6 in Ref. [14], but
there are no general results known to the authors that yield a similar theorem
when the inner function is not Boolean.)

Nevertheless, we are still able to prove the lower bound using techniques
from Ref. [13] . Although our inner function is not Boolean, it has a lot of
structure, which turns out to be sufficient for the proof to go through, modulo
some modifications, which we briefly sketch here. (For the full version of the
composition theorem, we refer the reader to the ArXiv version of Ref. [13].)

Our goal is to construct an adversary matrix ΓH that captures the difficulty
of applying ED to α instances of pSEARCH. Recall that Adv± is tight for query
complexity, so we know that there exists an adversary matrix ΓED for which
Adv±(ED;ΓED) � α2/3. We don’t have an explicit expression for this matrix, let
alone its spectral decomposition, but we know it exists.

For the inner pSEARCH problem, we construct an adversary matrix that we
call ΓG to keep consistent with the notation of Ref. [13]. We can analyse this
matrix and give its explicit spectral decomposition. The block structure of the
matrix and the form of its eigenvalues is key to proving the lower bound, so our
proof does not hold for arbitrary non-Boolean inner functions g.

There are two main parts to the proof that Adv±(H) = α2/3β1/2. First we give
a lower bound on ‖ΓH‖, then we give an upper bound on ‖ΓH ◦Di‖, for each i.

Claim. ‖ΓH‖ = ‖ΓED‖‖ΓG‖α.

ArXiv

410 G. Brassard et al.

Proving this claim is the central and most technical part of the proof. In order
to compute ΓH’s spectral norm, we give its spectral decomposition. As in
Ref. [13], we provide (αβ)α eigenvectors and show that they form a basis. Our
basis differs from that of Ref. [13], and is tailored to the properties we know about
the spectral decomposition of ΓG. We make essential use of the block structure
of ΓG and the fact that there are just two kinds of block: diagonal blocks, and
off-diagonal blocks. (In the case of Boolean outputs, the same structure occurs,
but there are just four blocks in that case, whereas we can handle many.)

Once we have the norm of ΓH, we can use similar ideas to compute the value
of ‖ΓH ◦ Di‖. Because of the symmetry of H, it suffices to compute ‖ΓH ◦ Di‖
for a fixed i. Fortunately, ‖ΓH‖ and ‖ΓH ◦Di‖ share sufficient structure so that
once the calculation of ‖ΓH‖ is done, the calculation of ‖ΓH ◦Di‖ follows easily.

For any query i, we decompose it into the index p in which it occurs within x,
and the index of the position queried within xp. Then, Di decomposes naturally
into two parts, Dp and Dq.

Claim. ∀i that decomposes into p, q, ‖ΓH◦Di‖ = ‖ΓED ◦Dp‖‖ΓG ◦Dp‖‖ΓG‖α−1.

Combining the two claims, we get

Adv±(H;ΓH) = Adv±(ED)Adv±(pSEARCH) = Q(ED)Q(OR),

where Q denotes the quantum query complexity, and where the final inequality
follows from the fact that OR is a special case of pSEARCH. The lemma follows
by using the known quantum query complexity lower bounds for Q(OR), which
is in Ω(β1/2) [5], and for Q(ED), which is in Ω(α2/3) [1].

Classical Cryptographic Protocols in a Quantum World

Sean Hallgren�, Adam Smith��, and Fang Song

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, U.S.A.

Abstract. Cryptographic protocols, such as protocols for secure function evalu-
ation (SFE), have played a crucial role in the development of modern cryptogra-
phy. The extensive theory of these protocols, however, deals almost exclusively
with classical attackers. If we accept that quantum information processing is the
most realistic model of physically feasible computation, then we must ask: what
classical protocols remain secure against quantum attackers?

Our main contribution is showing the existence of classical two-party proto-
cols for the secure evaluation of any polynomial-time function under reasonable
computational assumptions (for example, it suffices that the learning with errors
problem be hard for quantum polynomial time). Our result shows that the basic
two-party feasibility picture from classical cryptography remains unchanged in a
quantum world.

1 Introduction

Cryptographic protocols, such as protocols for secure function evaluation (SFE), have
played a crucial role in the development of modern cryptography. Goldreich, Micali and
Wigderson [25], building on the development of zero-knowledge (ZK) proof systems
[27,26], showed that SFE protocols exist for any polynomial-time function under mild
assumptions (roughly, the existence of secure public-key cryptosystems). Research into
the design and analysis of such protocols is now a large subfield of cryptography; it has
also driven important advances in more traditional areas of cryptography such as the
design of encryption, authentication and signature schemes.

The extensive theory of these protocols, however, deals almost exclusively with clas-
sical attackers. However, given our current understanding of physics, quantum infor-
mation processing is the most realistic model of physically feasible computation. It is
natural to ask: what classical protocols remain secure against quantum attackers? In
many cases, even adversaries with modest quantum computing capabilities, such as the
ability to share and store entangled photon pairs, are not covered by existing proofs of
security.

Clearly not all protocols are secure: we can rule out anything based on the compu-
tational hardness of factoring, the discrete log [43], or the principal ideal problem [28].
More subtly, the basic techniques used to reason about security may not apply in a

� Partially supported by National Science Foundation award CCF-0747274 and by the National
Security Agency (NSA) under Army Research Office (ARO) contract number W911NF-08-1-
0298.

�� Partially supported by National Science Foundation award CCF-0747294.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 411–428, 2011.
c© International Association for Cryptologic Research 2011

412 S. Hallgren, A. Smith, and F. Song

quantum setting. For example, some information-theoretically secure two-prover ZK
and commitment protocols are analyzed by viewing the provers as long tables that are
fixed before queries are chosen by the verifier; quantum entanglement breaks that anal-
ysis and some protocols are insecure against colluding quantum provers (Crépeau et
al., [17]).

In the computational realm, rewinding is a key technique for basing the security of
a protocol on the hardness of some underlying problem. Rewinding proofs consist of a
mental experiment in which the adversary is run multiple times using careful variations
of a given input. At first glance, rewinding seems impossible with a quantum adversary
since running it multiple times might modify the entanglement between its internal
storage and an outside reference system, thus changing the overall system’s behavior.

In a breakthrough paper, Watrous [49] showed that a specific type of zero-knowledge
proof (3-round, GMW-style protocols) can be proven secure using a rewinding argu-
ment tailored to quantum adversaries. Damgård and Lunemann [21] showed that a
similar analysis can be applied to a variant of Blum’s coin flipping protocol. Hallgren
et al. [29] showed certain classical transformations from honest-verifier to malicious-
verifier ZK can be modified to provide security against malicious quantum verifiers.
Some information-theoretically secure classical protocols are also known to resist quan-
tum attacks [15,5,23,47]. Finally, there is a longer line of work on protocols that
involve quantum communication, dating back to the Bennett-Brassard key exchange
paper. Overall, however, little is known about how much of the classical theory can be
carried over to quantum settings. See “Related Work”, below, for more detail.

1.1 Our Contributions

Our main contribution is showing the existence of classical two-party protocols for
the secure evaluation of any polynomial-time function under reasonable computational
assumptions (for example, it suffices that the learning with errors problem [42] be hard
for quantum polynomial time). Our result shows that the basic two-party feasibility
picture from classical cryptography remains unchanged in a quantum world. The only
two-party general SFE protocols which had previously been analyzed in the presence
of quantum attackers required quantum computation and communication on the part of
the honest participants (e.g. [14,18]).

In what follows, we distinguish two basic settings: in the stand-alone setting, proto-
cols are designed to be run in isolation, without other protocols running simultaneously;
in network settings, the protocols must remain secure even when the honest participants
are running other protocols (or copies of the same protocol) concurrently. Protocols
proven secure in the universal composability (UC) model [11] are secure in arbitrary
network settings, but UC-security is impossible to achieve in many settings.

Our contributions can be broken down as follows:

Classical Zero-knowledge Arguments of Knowledge Secure Against Quantum
Adversaries. We construct a classical zero-knowledge argument of knowledge (ZKAoK)
protocol that can be proven secure in our model. In particular it means that our con-
struction is “witness-extendable” [33] in the sense that one can simulate an interac-
tion with a malicious prover and simultaneously extracting a witness of the statement
whenever the prover succeeds. Our construction overcomes a limitation of the proofs of

Classical Cryptographic Protocols in a Quantum World 413

knowledge recently analyzed by Unruh [46], where a simulator for the prover is not
given, and thus it is unclear how to analyze security when using his proof of knowledge
as a subprotocol. As in the classical case, our ZKAoK protocol is an important building
block in designing general SFE protocols.

The main idea behind our construction is to have the prover and verifier first execute
a weak coin-flipping protocol to generate a public key for a special type of encryption
scheme. The prover encrypts his witness with respect to this public key and proves
consistency of his ciphertext with the statement x using the ZK protocols analyzed
by Watrous [49]. A simulator playing the role of the verifier can manipulate the coin-
flipping phase to generate a public key for which she knows the secret key, thus allowing
her to extract the witness without needing to rewind the prover. A simulator playing the
role of the prover, on the other hand, cannot control the coin flip (to our knowledge)
but can ensure that the public key is nearly random. If the encryption scheme satisfies
additional, non-standard properties (that can be realized under widely used lattice-type
assumptions), we show that the verifier’s view can nonetheless be faithfully simulated.
Lunemann and Nielsen [36] independently gave a similarly-flavored construction of
ZKAoK for quantum adversaries; see “Related Work”.

(More) General modeling of stand-alone security with quantum adversaries. We
describe a security model for two-party protocols in the presence of a quantum attack-
ers. Proving security in this model amounts to showing that a protocol for computing
a function f behaves indistinguishably from an “ideal” protocol in which f is com-
puted by a trusted third party, which we call the ideal functionality F . Our model is
a quantum analogue of the model of stand-alone security developed by Canetti [10] in
the classical setting. It slightly generalizes the existing model of Damgård et al.[18] in
two ways. First, our model allows for protocols in which the ideal functionalities that
process quantum information (rather than only classical functionalities). Second, it al-
lows for adversaries that take arbitrary quantum advice, and for arbitrary entanglement
between honest and malicious players’ inputs.

We also show a sequential modular composition theorem for protocols analyzed in
our model. Roughly, it states that one can design protocols modularly, treating sub-
protocols as equivalent to their ideal versions when analyzing security of a high-level
protocol. While the composition results of Damgaard et al. allow only for classical
high-level protocols, our result holds for arbitrary quantum protocols.

Classical UC Protocols in a Quantum Context: Towards Unruh’s Conjecture. We
show that a large class of protocols which are UC-secure against computationally
bounded classical adversaries are also UC-secure against quantum adversaries. In his
recent paper, Unruh [47] showed that any classical protocol which is proven UC-secure
against unbounded classical adversaries is also UC-secure against unbounded quantum
adversaries. He conjectured (roughly, see [47] for the exact statement) that classical ar-
guments of computational UC security should also go through as long as the underlying
computational primitives are not easily breakable by quantum computers.

We provide support for this conjecture by describing a family of classical security
arguments that go through verbatim with quantum adversaries. We call these arguments

414 S. Hallgren, A. Smith, and F. Song

“simple hybrid arguments”. They use rewinding neither in the simulation nor in any of
the steps that show the correctness of simulation.1

Our observation allows us to port a general result of Canetti, Lindell, Ostrovsky
and Sahai [13] to the quantum setting. We obtain the following: in the GZK-hybrid
model, where an ideal functionality GZK implementing ZKAoK is available, there exist
classical protocols for the evaluation of any polynomial-time function f that are UC-
secure against quantum adversaries under reasonable computational assumptions.

As an immediate corollary, we get a classical protocol that quantum UC-emulates
ideal functionalityGCF for coin-flipping. Adapting ideas from [33], we also give a direct
construction of coin-flipping from ZK. More interestingly, we can develop the converse
by describing a simple classical protocol for ZKAoK that is UC-secure against quantum
adversaries in the GCF-hybrid model (a.k.a the common reference string model where
all participants have access to a common, uniformly distributed bit string). The “simple
hybrid arguments” mentioned above do not suffice for proving the security of the UC-
secure ZKAoK protocol. Specifically, one component of our protocol, a construction of
a witness-indistinguishable proof system, needs a new proof of security. The basic strat-
egy is still a hybrid argument, but its analysis requires breaking the space of possible
executions into pieces (classically, this involves conditioning on complementary events;
quantumly, this involves projecting onto orthogonal subspaces) and arguing that (a) the
adversary cannot have a significant advantage in either piece and (b) the original state
was a mixture, not a superposition, of the two pieces. This establishes the equivalence
between GZK and GCF in the UC model, which may be of independent interest, e.g., in
simplifying protocol designs.

Implications. The modular composition theorem in our stand-alone model allows us to
get the general feasibility result below by combining our stand-alone ZKAoK protocol
and the UC-secure protocols in GZK-hybrid model:

Under standard assumptions, there exist classical SFE protocols in the plain model
(without a shared random string) which are stand-alone-secure against static quantum
adversaries. This parallels the classic result of Goldreich, Micali and Wigderson [25].

The equivalence of zero-knowledge and coin-flipping functionalities in the UC model
also gives rise to interesting implications. First, the availability of a common reference
string suffices for implementing quantum UC-secure protocols. Secondly, given our
stand-alone ZKAoK protocol, we get a quantum stand-alone coin-flipping protocol due
to the aforementioned equivalence.

Independently of our work, Lunemann and Nielsen [36] obtained similar results to
ours. See the discussion at the end of “Related Work”.

1.2 Related Work

In addition to the previous work mentioned above, we expand here on three categories
of related efforts.

1 In general, it is hard to clearly define what it means for a security proof to “not use rewinding”.
It is not enough for the protocol to have a straight-line simulator, since the proof of the simula-
tor’s correctness might still employ rewinding. Simple hybrid arguments provide a clean, safe
subclass of arguments that go through with quantum adversaries.

Classical Cryptographic Protocols in a Quantum World 415

Composition Frameworks for Quantum Protocols. Systematic investigations of the
composition properties of quantum protocols are relatively recent. Canetti’s UC frame-
work and Pfitzmann and Waidner’s closely related reactive functionality framework
were extended to the world of quantum protocols and adversaries by Ben-Or and May-
ers [7] and Unruh [45,47]. These frameworks (which share similar semantics) pro-
vide extremely strong guarantees—security in arbitrary network environments. They
were used to analyze a number of unconditionally secure quantum protocols (key ex-
change [6] and multi-party computation with honest majorities [5]). However, many
protocols are not universally composable, and Canetti [11] showed that classical pro-
tocols cannot UC-securely realize even basic tasks such as commitment and zero-
knowledge proofs without some additional setup assumptions such as a CRS or public-
key infrastructure.

Damgård et al.[18], building on work by Fehr and Schaffner [23], proposed a general
composition framework which applies only to secure quantum protocols of a particular
form (where quantum communication occurs only at the lowest levels of the modular
composition). As noted earlier, our model is more general and captures both classical
and quantum protocols. That said, understanding the exact relationship between the
models is delicate, and connected to basic questions in complexity theory such as the
power of quantum advice (BQP/poly vs BQP/qpoly). We defer further discussion of
this relationship to the full version.

Analyses of quantum protocols. The first careful proofs of security of quantum pro-
tocols were for key exchange (Mayers [37], Lo and Chau [35], Shor and Preskill [44],
Beaver [2]). Research on quantum protocols for two-party tasks such as coin-flipping,
bit commitment and oblivious transfer dates back farther [9,8] but many initially pro-
posed protocols were insecure [37]. The first proofs of security of such protocols were
based on computational assumptions [22,14]. They were highly protocol-specific and
it was not known how well the protocols composed. The first proofs of security us-
ing the simulation paradigm were for information-theoretically-secure protocols for
multi-party computations assuming a strict majority of honest participants [15,16,5].
Subsequently, a line of work on the bounded quantum storage model [20,19,23,48] de-
veloped tools for reasoning about specific types of composition of two-party protocols,
under assumptions on the size of the adversary’s quantum storage. Unruh’s UC security
work, mentioned above, was the first we are aware of that was sufficiently general to
encompass classical and quantum protocols and generic composition.

Straight-line simulators and code-based games. As mentioned above, we introduce
“simple hybrid arguments” to capture a class of straightforward security analyses that
go through against quantum adversaries. Several formalisms have been introduced in
the past to capture classes of “simple” security arguments. To our knowledge, none of
them is automatically compatible with quantum adversaries. For example, straight-line
black-box simulators [32] do not rewind the adversary nor use an explicit description of
its random coins; however, it may be the case that rewinding is necessary to prove that
the straight-line simulator is actually correct. In a different vein, the code-based games
of Bellare and Rogaway [4] capture a class of hybrid arguments that can be encoded
in a clean formal language; again, however, the arguments concerning each step of the
hybrid may still require rewinding.

416 S. Hallgren, A. Smith, and F. Song

Independent Work: Lunemann and Nielsen [36]. Lunemann and Nielsen [36] inde-
pendently obtained similar results to the ones described here, via a slightly different
route. Specifically, they start by constructing a stand-alone coin-flipping protocol that
is fully simulatable against quantum poly-time adversaries. Then they use the coin-
flipping protocol to construct a stand-alone ZKAoK protocol, and finally by plugging
into the GMW construction, they get quantum stand-alone-secure two-party SFE proto-
cols as well. The computational assumptions in the two works are similar and the round
complexities of the stand-alone SFE protocols are both polynomial in the security pa-
rameter. Our approach to composition is more general, however, leading to results that
also apply (in part) to the UC model.

Organization. The rest of the paper is organized as follows: Section 2 reviews basic
notations and definitions. In Section 3, we propose our quantum stand-alone security
model. A quantum stand-alone-secure ZKAoK protocol is developed in Section 4. Sec-
tion 5 studies a family of classical analysis that go through in the quantum UC model,
and then Section 6 discusses equivalence of GZK and GCF. Finally in Section 7, we
obtain, among other consequences, classical SFE that are quantum stand-alone-secure
with no set-up assumptions. We conclude with future directions.

2 Preliminaries

For m ∈ N, [m] denotes the set {1, . . . , m}. We use n ∈ N to denote a security
parameter. The security parameter, represented in unary, is an implicit input to all cryp-
tographic algorithms; we omit it when it is clear from the context. Quantities derived
from protocols or algorithms (probabilities, running times, etc) should be thought of
as functions of n, unless otherwise specified. A function f (n) is said to be negligi-
ble if f = o(n−c) for any constant c, and negl(n) is used to denote an unspecified
function that is negligible in n. We also use poly(n) to denote an unspecified function
f (n) = O(nc) for some constant c. Let X = {Xn}n∈N and Y = {Yn}n∈N be two
ensembles of binary random variables. We call X, Y indistinguishable, denoted X ≈ Y,
if |Pr(Xn = 1)− Pr(Yn = 1)| ≤ negl(n).

We assume the reader is familiar with the basic concepts of quantum information
theory (see, e.g., [39]). We use a capital letter (e.g. X) to denote a quantum register and
for each n, we use script letter (e.g., X (n)) to denote the corresponding Hilbert space.
Let D(H) be the set of density operators acting on space H. Let {ρn}n∈N denote an
ensemble of mixed states where ρn ∈ D(Hn) and Hn is a poly(n)-qubit space.

Quantum Machine Model. We adapt Unruh’s machine model in [47] with minor
changes. A quantum interactive machine (QIM) M is an ensemble of circuits {Mn}n∈N,
for each value n of the security parameter. M operates on three registers: a state regis-
ter S used for input and workspace; an output register O; and a network register N for
communicating with other machines. We say the size (or running time) of M is t(n), if
there is a deterministic classical Turing machine that computes the description of Mn
in time t(n) on input 1n. We say a machine is polynomial time if t(n) = poly(n).

When two QIMs M and M′ interact, their network register N is shared. The cir-
cuits Mn and M′

n are executed alternately. When three or more machines interact, the
machines may share different parts of their network registers (for example, a private

Classical Cryptographic Protocols in a Quantum World 417

channel consists of a register shared between only two machines; a broadcast channel
is a register shared by all machines). The order in which machines are activated may be
either specified in advance (as in a synchronous network) or adversarially controlled.

A noninteractive quantum machine (referred to as QTM hereafter) is a QIM M with
no network register that runs for only one round (for all n). This is equivalent to the
quantum Turing machine model (see [50]). A classical interactive machine is a special
case of a QIM, where the registers only store classical strings and all circuits are clas-
sical. Classical polynomial-time QIMs are equivalent to polynomial-time interactive
Turing machines.

Indistinguishability of Quantum States. Recall Watrous’s notion of indistinguishabil-
ity of quantum states.

Definition 1. ((t, ε)-indistinguishable quantum states. [49, Definition 2]) We say two
quantum state ensembles ρ = {ρn}n∈N and η = {ηn}n∈N are (t, ε)-quantum-
indistinguishable, denoted ρ ≈t,ε

Q η, if for every t(n)-time QTM Z and every mixed

state σn ∈ W(n), W(n) is a t(n)-qubit auxiliary system,

|Pr[Z(ρn ⊗ σn) = 1]− Pr[Z(ηn ⊗ σn) = 1]| ≤ ε(n).

The states ρ and η are called quantum computationally indistinguishable, denoted
ρ≈Qη, if for every t(n) ≤ poly(n), there exists a negligible ε(n) such that ρn and
ηn are (t, ε)-indistinguishable. This definition subsumes classical distributions, since
classical distributions can be represented by density matrices that are diagonal with
respect to the standard basis.

Indistinguishability of quantum machines. Next we define indistinguishability of
quantum interactive machines. Let Z , M be two QIMs, we denote 〈Z(σ), M〉 as the
process that Z with auxiliary input σ, interacts with M and finally Z outputs one clas-
sical bit 1 or 0.

Definition 2 ((t, ε)-indistinguishable QIMs). We say two QIMs M1 and M2 are (t, ε)-
interactively indistinguishable, denoted M1 ≈t,ε

I M2, if for any quantum t(n)-time
interactive machine Z and every mixed state σn on t(n) qubits, X1 ≈ X2, where
Xi = {〈Z(σn), Mi〉}n∈N for i = 1, 2. QIMs M1 and M2 are called interactively
indistinguishable, denoted M1 ≈I M2, if for every t(n) ≤ poly(n), there exists a
negligible ε(n) such that M1 and M2 are (t, ε)-interactively indistinguishable.

Finally we state the computational assumptions that we make in this work.

Assumption 1. There exists a classical pseudorandom generator secure against quan-
tum distinguishers.

Based on this assumption and the construction of [38], we can obtain a statistically
binding and quantum computationally hiding commitment scheme (comm, decom).
All commitment scheme we use afterwards refers to this one. This assumption also
suffices for Watrous’s ZK proof system for any NP-language against quantum attacks.

Assumption 2. There exists a dense classical public-key cryptosystem that is IND-CPA
(chosen-plaintext attack) secure against quantum distinguishers. A public-key cryp-
tosystem is dense if a valid public key is indistinguishable in quantum poly-time from a
uniformly random string of the same length.

418 S. Hallgren, A. Smith, and F. Song

Although it is likely that standard reductions would show that Assumption 2 implies
Assumption 1, we chose to keep the assumptions separate because the instantiation one
would normally use of the pseudorandom generator would not be related to the public-
key system (instead, it would typically be based on a symmetric-key block or stream
cipher). Both assumptions hold, for instance, assuming the hardness of leaning with
errors (LWE) problem [42].

In one of our constructions (stand-alone ZKAoK), we need an encryption scheme
that has one extra property than the one in Assumption 2.

Assumption 3. There exists a dense classical public-key cryptosystem that is IND-CPA
secure against quantum distinguishers. In addition, encryptions of two messages under
a uniformly random string are statistically indistinguishable.

Note that the dense property already implies encryptions under a random string are
quantum computationally indistinguishable. Assumption 3 strengthens this requirement
to be statistically indistinguishable. This allows “cheating” in the sense that if a cipher-
text is generated under a uniformly random string, we can then claim it to be an en-
cryption of an arbitrary message. This type of encryption scheme is sometimes called
Meaningful/Meaningless encryption (e.g., see [31]). Again, the LWE assumption im-
plies Assumption 3.

3 Quantum Stand-Alone Security and Modular Composition

In this section, we propose a stand-alone security model for two-party protocols in the
presence of quantum attacks and show that modular composition holds in our model.
Our definition can be viewed in two ways: either as a quantum analogue of Canetti’s
classical stand-alone model [10] or as a relaxed notion of a variant of Unruh’s quantum
UC security [47].

3.1 Security Definition

A two-party protocol Π consists of two quantum interactive machines A and B. Two
players Alice and Bob that execute Π are called honest if they run machines A and
B respectively. An adversary in Π is one entity that corrupts some player and controls
its behavior. We consider both semi-honest (a.k.a. honest-but-curious) and malicious
adversaries. In the quantum setting, a semi-honest adversary runs the honest protocol
coherently, that is, replacing measurements and classical operations with unitary equiv-
alents.

We consider only static adversaries, which corrupt a set of players before the pro-
tocol execution starts, but do not perform further corruptions during the protocol exe-
cution.For ease of exposition, we merge the identities of an adversary and the party it
corrupts. Machines run by an adversary are indicated by a ˆ symbol (e.g., B̂).

Our definition of security follows the simulation paradigm where we compare two
modes of execution called real-world and ideal-world. A real-world execution is an in-
teraction between an honest player and a real-world adversary, e.g., A and B̂. In an ideal
world, there is a trusted party that communicates with AI and BI (subscript I indicates

Classical Cryptographic Protocols in a Quantum World 419

entities in the ideal world) through private channels and completes the desired task. We
model the trusted party as a quantum interactive machine, and call it an ideal function-
ality F . For example, in the secure evaluation of a function f , an ideal functionality F
would take inputs (x, y) from AI and BI respectively, compute (fA, fB) = f (x, y) and
give fA to AI and fB to BI . We then say a protocol Π securely realizes a given task,
formulated by an ideal functionality F , if for any adversary B̂ attacking a real-world
execution, there exists an ideal-world adversary B̂I emulating “equivalent” attacks in
the ideal-world. Equivalent means on any input state the output states of the players in
the real world and ideal world are indistinguishable.

To be more specific, in the real world we initialize SA, SB̂ and an auxiliary register W
with a quantum state σn ∈ SA(n) ⊗ SB̂(n) ⊗W(n). Then A and B̂ interact, and end
up with a state σ′

n ∈ OA(n) ⊗OB̂(n) ⊗W(n). Finally a QTM Z , which we call an
environment, takes σ′

n as input and outputs one classical bit. Abstractly, we treat A and B̂
collectively as a noninteractive machine MB̂ with state space SA ⊗SB̂ and output space
OA ⊗OB̂. Analogously, for each ideal world adversary B̂I , we can model AI , B̂I and F
as a single QTM MB̂I

with state space SAI ⊗ SB̂I
and output space OAI ⊗OB̂I

. Then
let EXECΠ,B̂,Z := {Z((MB̂ ⊗ 1W(n))σn)}n∈N and IDEALF ,B̂I ,Z := {Z((MB̂I

⊗
1W(n))σn)}n∈N be the binary distribution ensembles of Z’s output in the real-world
execution and in the ideal-world execution respectively. See Fig. 3.1 for an illustration
of real-world and ideal-world executions.

(a) Real-world execution EXECΠ,B̂,Z (b) Ideal-world execution IDEALF ,B̂ I,Z

Fig. 1. Real-world and Ideal-world Executions

Definition 3. (Quantum Stand-alone Secure Emulation). Let F be a two-party func-
tionality and let Π be a two-party protocol. We say Π quantum stand-alone-emulates
F , if for any poly-time QIM B̂, there is a poly-time QIM B̂I , such that for any poly-time
QTM Z , and for any σ = {σn : σn ∈ SA(n) ⊗ SB̂(n) ⊗W(n)}n∈N, EXECΠ,B̂,Z ≈
IDEALF ,B̂I ,Z .

Remark. (I) Equivalently, the definition can be formulated as: for any B̂, there exists
B̂I , such that QTMs MB̂ and MB̂I

are indistinguishable, as per Definition 2 restricting to
non-interactive machines. (II) We focus on computational security in this work, and the
model extends to information-theoretical setting straightforwardly. (III) We stress that

420 S. Hallgren, A. Smith, and F. Song

σ not only encodes the inputs to the players, but also contains auxiliary system W that
might be entangled with the inputs and moreover serves as quantum advice to later assist
Z in distinguishing the two worlds. There are other possible choices in the definition,
e.g., disallowing auxiliary system W and only giving Z classical advice, which may
give rise to variants that coincide with or subsume existing models. See the full version
for a thorough discussion. (IV) For technical reasons, we require functionalities to be
well-formed and protocols to be nontrivial, which are satisfied by all functionalities and
protocols in our paper. (See [13, Sect.3] for details.) Aside from that, F could be as
general as randomized, reactive, and evaluating quantum circuits, though in this work
we concentrate on SFE of classical functions.

3.2 Modular Composition

It is common practice in the design of large protocols that we break a given task into
subtasks, accomplish these subtasks and then use these modules as building blocks
(subroutines) in a solution for the initial task. We formalize this paradigm by hybrid
models2. A protocol in the G-hybrid model, denoted ΠG , has access to a trusted party
that implements ideal functionality G. As before, for each adversary B̂H (subscript H
indicates entities in a hybrid model) in the G-hybrid model, we can define MB̂H

and

EXECΠG ,B̂H ,Z likewise. Then we say ΠG quantum stand-alone-emulates ideal func-
tionality F in the G-hybrid model if EXECΠG ,B̂H ,Z ≈ IDEALF ,B̂I ,Z for all poly-time
QTMs Z and all σ.

Now suppose we have ΠG
1 in the G-hybrid model and a protocol Π2 realizing G. The

operation of replacing an invocation of G with an invocation of Π2 is done in the natural
way: machines in Π1 initialize machines in Π2 and pause; machines in Π2 execute Π2
and generate outputs; then Π1 resumes with these outputs. We denote the composed
protocol ΠΠ2

1 .

Theorem 1. (Modular Composition Theorem) Let ΠG
1 be a two-party protocol that

quantum stand-alone-emulatesF in the G-hybrid model and let Π2 be a two-party pro-
tocol that quantum stand-alone-emulatesG. Then the composed protocol ΠΠ2

1 quantum
stand-alone-emulates F .

Remark. See the full version for its proof. It is easy to extend our analysis to a more
general case where Π can invoke G multiple times and also access polynomially many
ideal functionalities (G1,G2, . . .). However, we stress that at each round, only one func-
tionality is invoked for at most once.

4 Quantum Stand-Alone-Secure ZK Arguments of Knowledge

A very important building block in cryptographic protocols is Zero-Knowledge Argu-
ments of Knowledge (ZKAoK) for NP, formulated below as the ideal functionality GZK .
In this section we provide a construction that quantum stand-alone-emulates GZK . Let

2 In contrast, we call it a plain model if there are no trusted parties and no trusted setup assump-
tions like common reference string or public-key infrastructure, etc.

Classical Cryptographic Protocols in a Quantum World 421

L ∈ NP and let RL = {(x, w)|w is a witness of x}. Assume the length of the witness
is bounded above by a polynomial w(n).

Ideal Functionality GZK: prover PI ; verifier VI ; NP-relation RL

– Upon receiving (x, w) from PI , GZK verifies (x, w)
?∈ RL. If yes, it sends x to VI ; otherwise

it halts.

Notice that this is indeed an argument of knowledge, since the prover has to explicitly
show a valid witness to the trusted party.

Let E = (Gen, Enc, Dec) be a cryptosystem as in Assumption 3.

ZKAoK Protocol ΠZK

Phase 1
1. V chooses a ← {0, 1}n at random, and sends P a commitment of a: c = comm(a).
2. P sends b ← {0, 1}n to V.
3. V sends P string a.
4. V proves to P that c is indeed a commitment of a using Watrous’s ZK protocol.
5. P and V set pk = a ⊕ b and interpret it as a public key.

Phase 2
1. P, holding an instance x and a witness w, encrypts w under pk. Let e = Encpk(w). P sends

(x, e) to V.
2. P proves to V that e encodes a witness of x using Watrous’s ZK protocol. V outputs x if it

accepts in this ZK protocol. Otherwise it halts.

Theorem 2. Protocol ΠZK quantum stand-alone-emulates GZK .

The key idea lies in the inherent power of the simulator S of Watrous’s ZK protocol.
Namely, we can use S to generate a bogus proof that is indistinguishable from a real
ZK proof run by a prover and a verifier, when we don’t know a witness of a statement,
or even when there isn’t one, i.e., the statement is false. Specifically, an ideal-world
V̂I , receiving a true statement x from GZK , needs to convince V̂ of the validity of x
without knowing a witness. We do know that on true instances, i.e., the ciphertext e
indeed encodes a witness w, S simulates a proof successfully by definition. The trouble
then boils down to generating an encryption of w without knowing w. This might sound
contradictory, but it is actually very natural. For instance, suppose a function f maps all
strings to 0, then generating f (r) without knowing r is trivial–just output 0! Our situa-
tion is more sophisticated, yet shares the same spirit. We need the fact that encryptions
under a uniform string are statistically close. This implies, in particular, that encryption
of any string under a uniform string pk, will coincide with Encpk(w) with high prob-

ability. In addition, if we let V̂I play an honest prover in Phase 1, the outcome pk will
be guaranteed uniformly random. This shows how we handle corrupted verifiers.

On the other hand, in the case of a corrupted prover P̂, an ideal-world P̂I needs to
extract a witness w from e when P̂ provides an accepting proof in Phase 2. The trick is
that P̂I can use S to cheat in Phase 1 and force the outcome to be a real public key pk
of which he knows a corresponding secret key sk, so that P̂I can decrypt e to recover
w in the end. The difficulty is that P̂I wants to make a = pk ⊕ b, but it has to commit

422 S. Hallgren, A. Smith, and F. Song

to a before seeing b. It turns out we could commit to 0n, and later run S on the false
statement that comm(0n) is a commitment of a. S must behave equally well as if it
is given a true statement (comm(a), a), because otherwise S will break the hiding
property of the commitment scheme. The formal proof can be found in the full version.

5 Classical Protocols with Quantum UC Security

In this section, we investigate classical protocols in the quantum Universal Composabil-
ity (UC) model. We propose a framework, simple hybrid arguments, to capture a large
family of classical security analyses that also go through against quantum adversaries
(under reasonable computational assumptions). Applying our framework to the classi-
cal results of Canetti et el. [13], we get classical protocols that quantum UC-securely
realize two-party SFE in the GZK-hybrid model.

Universally Composable (UC) security, proposed in the classical context by Canetti
[11], differs from the stand-alone definition of security in that the environment is al-
lowed to be interactive: during the execution of the protocol, the environment may
provide inputs and receive the outputs of the honest players, and exchange arbitrary
messages with the adversary. In contrast, the environment in the stand-alone model runs
only at the end of the protocol execution (and, implicitly, before the protocol starts, to
prepare the inputs to all parties). UC-secure protocols enjoy a property called general
(or universal) composition3: loosely speaking, the protocol remains secure even if it
is run concurrently with an unbounded number of other arbitrary protocols (whereas
proofs of security in the stand-alone model only guarantee security when only a single
protocol at a time is running).

Earlier work on defining UC security and proving universal composition in the quan-
tum setting appears in [7,45]. We will adapt the somewhat simpler formalism of Un-
ruh [47]. Modulo a small change in Unruh’s model (quantum advice, discussed below),
our stand-alone model is exactly the restriction of Unruh’s model to a non-interactive
environment, that is one which is idle from the start to the finish of the protocol. 4

We make one change to Unruh’s model in order to be consistent with our earlier
definitions and the work of Watrous on zero-knowledge [49]: we allow the environment
to take quantum advice, rather than only classical advice. See the full version for de-
tails. This modification of Unruh’s definition does not change the proof of the universal
composition theorem:

3 There is a distinction between UC security (a definition that may be satisfied by a specific
protocol and ideal functionality) and universal composition (a property of the class of protocols
that satisfy a security definition). Not all definitions that admit universal composition theorems
are equivalent to UC security. See [30,34] for discussion.

4 The only apparent difference in the models is that in the UC model, the environment runs for
some time before the protocol starts to prepare inputs, while in Section 3.1 we simply quantify
over all joint states σ of the honest players’ and adversary’s inputs and the auxiliary input W
to the distinguisher. This difference is only cosmetic, though: the state σ can be taken to be
the joint state of the outputs and internal memory of the environment at the time the protocol
begins.

Classical Cryptographic Protocols in a Quantum World 423

Theorem 3. (Quantum UC Composition Theorem [47, Theorem 11]) Let Π1, Π2 and
Π be quantum-polynomial-time protocols. Assume that Π1 quantum UC-emulates Π2.
Then ΠΠ1 quantum UC-emulates ΠΠ2 .

5.1 Classical Proofs for Quantum Adversaries: Simple Hybrid Argument

The goal of this section is to analyze a class of protocols, including the protocol of
Canetti et al. [13] for two- and multi-party computation (referred to in the sequel as
CLOS). These are classical protocols, proven secure in the classical UC model. We will
show that these protocols remain secure in the presence of quantum adversaries as long
as the underlying primitives (pseudorandom generators and a special kind of public-key
encryption scheme) are secure against quantum adversaries. Specifically, we show:

Theorem 4. Let F be a well-formed two-party functionality. Under Assumptions 1 and
2, there exists a nontrivial classical protocol that UC-emulates F in the GZK-hybrid
model in the presence of polynomial-time malicious, static quantum adversaries.

To prove Theorem 4, we propose an abstraction that captures a family of classical se-
curity arguments in the UC model which remains valid in the quantum setting (as long
as the underlying primitives are secure against quantum adversaries).

We use the term experiment loosely to describe a well-defined probability experiment
which results in 0 or 1. The arguments described here could also be cast in the more
stringent formalism of code-based games [4]; however, because the experiments we use
are ultimately fairly simple, we have chosen a less formal exposition.

We’ll use the following fact about UC-secure protocols, classical [11, Claim 10] and
quantum [47, Lemma 10]: the adversary can be taken to be a “dummy” adversary, which
simply relays messages faithfully to and from the environment without doing any actual
processing. Because we will only discuss protocols with classical communication, we
can assume w.l.o.g. that the adversary in our experiments is a known, classical machine;
in particular, all quantum processing can be deferred to the environment. Note that ideal
world adversaries will also be classical. Consequently, we can treat the process exter-
nal to the environment as a whole, and view it as a classical interactive machine M.
Namely, we let M describe the process 〈world, dummy-adv〉 or 〈world, simulator〉
where world is an ideal world, a real world or an execution in a hybrid model. (Recall
that 〈M1, M2〉 denotes the interaction between M1 and M2. It is itself an interactive
machine whose inputs are the inputs expected by M1 and M2 together with messages
expected by M1 and M2 from other entities. The outputs of 〈M1, M2〉 are the out-
puts of M1 and M2 together with any messages sent by them to other entities.) Thus,
all the experiments (real-world executions, ideal-world executions with simulators or
without, executions in hybrid models, etc) we will analyze in this section have the form
〈M,Z〉, where M is a classical interactive machine which depends only on the protocol
description as we described above and Z is an adversarial environment.

Definition 4 (Simply related machines). We say two QIMs Ma and Mb are (t, ε)-
simply related if there is a classical time-t machine M and a pair of classical distribu-
tions Da, Db such that

424 S. Hallgren, A. Smith, and F. Song

1. M(Da) ≡ Ma (for two QIMs N1 and N2, we say N1 ≡ N2 if the two machines be-
have identically on all inputs, that is, if they can be described by the same circuits),

2. M(Db) ≡ Mb, and
3. Da ≈2t,ε

Q Db.

Definition 5 (Simple hybrid argument). Two machines M0 and M� are related by a
(t, ε)-simple hybrid argument of length � if there is a sequence of intermediate ma-
chines M1, M2, ..., M�−1 such that each adjacent pair Mi−1, Mi of machines, i =
1, . . . , �, is (t, ε

�)-simply related.

Lemma 1. For any t, ε and �, if two machines are related by a (t, ε)-simple hybrid
argument of length �, then the machines are (t, ε)-interactively indistinguishable.

Proofs of all the statements from this section are deferred to the full version.

Observation 5 (CLOS proof structure). Except for the proof of security of protocol
compilation from semi-honest to malicious adversaries, all the security proofs for static
adversaries in CLOS consist of either (a) simple hybrid arguments with t = poly(n)
and ε = negl(n), or (b) applications of the UC composition theorem.

Moreover, the underlying indistinguishable distributions in the CLOS arguments
consist of either (i) switching between a real public key and a uniformly random string,
(ii) changing the plaintext of an encryption, or (iii) changing the message in the commit
phase of a commitment protocol.

From this observation, we get the corollary below, where GCP denotes the “commit-
and-prove” functionality of Canetti et al. [13, Figure 8].

Corollary 6 (CLOS—simple hybrids). Under Assumptions 1 and 2,

1. In the GZK-hybrid model, there is a nontrivial protocol that UC-emulates GCP in
the presence of polynomial-time malicious static quantum adversaries.

2. Let F be a well-formed two-party functionality. In the plain model, there is a pro-
tocol that UC-emulates F in the presence of polynomial-time semi-honest static
quantum adversaries.

It remains to discuss the proof of the security of the compiler from semi-honest to
malicious adversaries in the GCP model. The proof structure is only slightly different
from the hybrid proofs above. Let Π be a protocol designed for the semi-honest model
and let Comp(Π) be the result of applying the CLOS compiler to Π to get a protocol in
the (malicious) GCP-hybrid model. We use the following result from Canetti et al. [13]:

Proposition 7 (Canetti et al. [13, Proposition 8.1]). Let Π be any real-world protocol
designed for the semi-honest model. For every classical adversary B̂, there exists a clas-
sical adversary B̂′ with running time polynomial in that of B̂ such that the interaction
of B̂ with honest players running Comp(Π) in the GCP-hybrid model is identical to the
interaction of B̂′ with Π in the semi-honest model; that is, 〈Comp(Π), B̂〉 ≡ 〈Π, B̂′〉.
Combining the previous proposition with the simpler arguments from CLOS (Corol-
lary 6, above) we can prove Theorem 4. See the full version for further details.

Classical Cryptographic Protocols in a Quantum World 425

6 Equivalence between GZK and GCF

In this section, we sketch the UC equivalence of zero-knowledge and coin-flipping in
the quantum setting. The fact that coin-flipping can be realized in the GZK hybrid model
follows from the general result of CLOS, discussed in the previous section. In the full
version, we also give a direct construction of coin-flipping from ZK inspired by the
parallel coin-flipping protocol of Lindell [33]. The direct construction relies only on
the assumption of a quantum-secure PRG. More interestingly, we give a construction
of GZK in the GCF-hybrid model which resists attacks by quantum adversaries.

Proposition 8. 1. Under Assumption 1, there is a constant-round protocol ΠGZK
CF that

quantum UC-emulates GCF in the GZK-hybrid model.
2. Under Assumptions 1 and 2, there is a constant-round protocol ΠGCF

ZK that quantum
UC-emulates GZK in the GCF-hybrid model.

This implies that in the stand-alone model, it suffices to construct a secure (simulatable)
coin-flipping protocol to obtain secure SFE protocols for arbitrary functions. This gives
a different avenue for constructing secure protocols, which might produce protocols
that rely on assumptions weaker than (or incomparable to) those in our work, or that use
fewer rounds. The related work of Lunemann and Nielsen [36] starts by constructing
a coin-flipping protocol rather than a ZKAoK, though they rely on assumptions very
similar to ours and have similar round complexity.

Our ΠGCF
ZK protocol uses a standard transformation to get a ZKAoK from a witness-

indistinguishable (WI) proof system in the CRS model. The main technical step in
our analysis is showing that Blum’s 3-round ZK protocol for Hamiltonian Cycle is in
fact WI against a malicious quantum adversary. Our proof avoids rewinding, and is
reminiscent of proofs that certain WI protocols can be composed concurrently. Details
can be found in the full version.

7 Applications and Discussions

We first recap the results that we have obtained so far and derive a couple of straight-
forward yet important corollaries about two-party SFE in presence of quantum attacks.

1. Under Assumptions 1 and 2, for any well-formed two-party functionality F , there
is a classical protocol ΠGZK quantum UC-emulating F in the GZK-hybrid model.
(Theorem 4)

2. GZK and GCF are equivalent in the quantum UC model. (Prop. 8)
3. There exists classical protocol ΠZK that quantum stand-alone-emulates GZK . (The-

orem 2)

Applying modular composition theorem in the stand-alone model to item 1 and 3 we
have:

Corollary 9. For any well-formed classical two-party functionality F , there exists a
classical protocol Π that quantum stand-alone-emulatesF with no set-up assumptions.

426 S. Hallgren, A. Smith, and F. Song

Note that item 2 immediately implies equivalence of GZK and GCF in the quantum
stand-alone model. Combining with item 3 we get:

Corollary 10. There exists a classical protocol ΠCF that quantum stand-alone-emulates
GCF with no set-up assumptions.

Discussion. Our work suggests a number of straightforward conjectures. For example,
it is likely that our techniques in fact apply to all the results in CLOS (multi-party,
adaptive adversaries) and to corresponding results in the “generalized” UC model [12].
Essentially all protocols in the semi-honest model seem to fit the simple hybrids frame-
work, in particular protocols based on Yao’s garbled-circuits framework (e.g. [3]). It is
also likely that existing proofs in security models which allow super-polynomial sim-
ulation (e.g., [40,41,1]) will carry through using a similar line of argument to the one
here.

However, our work leaves open some basic questions: for example, can we construct
constant-round ZK with negligible completeness and soundness errors against quantum
verifiers? Watrous’s technique does not immediately answer it since sequential repeti-
tion seems necessary in his construction to reduce the soundness error. A quick look at
classical constant-round ZK (e.g., [24]) suggests that witness-indistinguishable proofs
of knowledge are helpful. Is it possible to construct constant-round witness-extendable
WI proofs of knowledge? Do our analyses apply to extensions of the UC framework,
such the generalized UC framework of Canetti et al. [12]? Finally, more generally,
which other uses of rewinding can be adapted to quantum adversaries? Aside from
the original work by Watrous [49], Damgård and Lunemann [21] and Unruh [46] have
shown examples of such adaption.

Acknowledgments. This work was informed by insightful discussions with many col-
leagues, notably Michael Ben-Or, Claude Crépeau, Ivan Damgård and Daniel Gottes-
man. Several of the results were obtained while A.S. was at the Institute for Pure and
Applied Mathematics (IPAM) at UCLA in the fall of 2006. He gratefully acknowledges
Rafi Ostrovksy and the IPAM staff for making his stay there pleasant and productive.

References

1. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent compo-
sition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE, Los Alamitos (2005)

2. Beaver, D.: On deniability in quantum key exchange. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: STOC,
pp. 503–513. ACM, New York (1990)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-
based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 409–426. Springer, Heidelberg (2006)

5. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quan-
tum computation with (only) a strict honest majority. In: FOCS, pp. 249–260. IEEE, Los
Alamitos (2006)

6. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal com-
posable security of quantum key distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 386–406. Springer, Heidelberg (2005)

Classical Cryptographic Protocols in a Quantum World 427

7. Ben-Or, M., Mayers, D.: General security definition and composability for quantum and
classical protocols, arxiv:quant-ph/0409062v2 (September 2004)

8. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum oblivious
transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer,
Heidelberg (1992)

9. Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Menezes,
A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 49–61. Springer, Heidelberg
(1991)

10. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol-
ogy 13(1), 143–202 (2000)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145. IEEE, Los Alamitos (2001)

12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global
setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg
(2007)

13. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: STOC, pp. 494–503. ACM, New York (2002)

14. Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state
with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
374–393. Springer, Heidelberg (2004)

15. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: STOC,
pp. 643–652. ACM, New York (2002)

16. Crépeau, C., Gottesman, D., Smith, A.: Approximate quantum error-correcting codes and
secret sharing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 285–
301. Springer, Heidelberg (2005)

17. Crépeau, C., Salvail, L., Simard, J.-R., Tapp Classical, A.: quantum strategies
for two-prover bit commitments. In: Quantum Information Processing, QIP (2006),
http://crypto.cs.mcgill.ca/˜crepeau/PDF/CSST06.pdf

18. Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security
of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 408–427. Springer, Heidelberg (2009), Full version at arXiv:0902.3918v4

19. Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and qkd in the bounded-
quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–
359. Springer, Heidelberg (2007)

20. Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-
storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)

21. Damgård, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)

22. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any
quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 300–315. Springer, Heidelberg (2000)

23. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)

24. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: CRYPTO,
pp. 526–544. Springer, Heidelberg(1990)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–
229. ACM, New York (1987)

26. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all
languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput. 18, 186–208 (1989)

http://crypto.cs.mcgill.ca/~crepeau/PDF/CSST06.pdf

428 S. Hallgren, A. Smith, and F. Song

28. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem. J. ACM 54(1), 1–19 (2007)

29. Hallgren, S., Kolla, A., Sen, P., Zhang, S.: Making classical honest verifier zero knowl-
edge protocols secure against quantum attacks. In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 592–603. Springer, Heidelberg (2008)

30. Hofheinz, D., Unruh, D.: Simulatable security and polynomially bounded concurrent com-
posability. In: Symposium on Security and Privacy, pp. 169–183. IEEE, Los Alamitos (2006)

31. Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432. ACM, New
York (2008)

32. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security
under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)

33. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryp-
tology 16(3), 143–184 (2003)

34. Lindell, Y.: General composition and universal composability in secure multiparty computa-
tion. J. Cryptology 22(3), 395–428 (2009)

35. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily
long distances. Science 283(5410), 2050–2056 (1999)

36. Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applica-
tions. In: Africacrypt (February 2011); arXiv:1102.0887

37. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)
38. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge (2000)
40. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition.

In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg
(2003)

41. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability with-
out trusted setup. In: STOC, pp. 242–251. ACM, New York (2004)

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J.
ACM 56(6) (2009); Preliminary version in STOC 2005

43. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

44. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution pro-
tocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

45. Unruh, D.: Simulatable security for quantum protocols, arXiv:quant-ph/0409125v2 (2004)
46. Unruh, D.: Quantum proofs of knowledge, IACR ePrint 2010/212 (April 2010)
47. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H.

(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010);
arXiv:0910.2912v1

48. Unruh, D.: Concurrent composition in the bounded quantum storage model. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 467–486. Springer, Heidelberg (2011)

49. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58
(2009); Preliminary version in STOC 2006

50. Yao, A.C.-C.: Quantum circuit complexity. In: FOCS, pp. 352–361. IEEE, Los Alamitos
(1993)

Position-Based Quantum Cryptography:

Impossibility and Constructions

Harry Buhrman1,2,�, Nishanth Chandran3,��, Serge Fehr1, Ran Gelles3,��,
Vipul Goyal4, Rafail Ostrovsky3,� � �, and Christian Schaffner2,1,†

1 Centrum Wiskunde & Informatica (CWI), The Netherlands
2 University of Amsterdam, The Netherlands
3 University of California (UCLA), CA, USA

4 Microsoft Research, Bangalore, India

Abstract. The aim of position-based cryptography is to use the ge-
ographical position of a party as its only credential. In this work, we
study position-based cryptography in the quantum setting.

We show that if collaborating adversaries are allowed to pre-share an
arbitrarily large entangled quantum state, then position-verification, and
as a consequence position-based cryptography in general, is impossible
(also) in the quantum setting.

To this end, we prove that with the help of sufficient pre-shared entan-
glement, any non-local quantum computation, i.e., any computation that
involves quantum inputs from two parties at different locations, can be
performed instantaneously and without any communication, up to local
corrections that need to be applied to the outputs. The latter can be un-
derstood in that the parties obtain their respective outputs “encrypted”,
where each corresponding encryption key is known by the opposite party.
This result generalizes to any number of parties, and it implies that any
non-local quantum computation can be performed using a single round
of mutual communication (in which the parties exchange the encryption
keys), and that any position-verification scheme can be broken, assuming
sufficient pre-shared entanglement among the adversaries.

On the positive side, we show that for adversaries that are restricted
to not share any entangled quantum states, secure position-verification is
achievable. Jointly, these results suggest the interesting question whether
secure position-verification is possible in case of a bounded amount of
entanglement. Our positive result can be interpreted as resolving this
question in the simplest case, where the bound is set to zero.

� Supported by a NWO VICI grant and the EU 7th framework grant QCS.
�� Supported in part by NSF grants 0716835, 0716389, 0830803, and 0916574.

� � � Supported in part by IBM Faculty Award, Xerox Innovation Group Award, the
Okawa Foundation Award, Intel, Teradata, DARPA, BSF grant 2008411, NSF
grants 0716835, 0716389, 0830803, 0916574 and U.C. MICRO grant.
† Supported by a NWO VENI grant.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 429–446, 2011.
c© International Association for Cryptologic Research 2011

430 H. Buhrman et al.

1 Introduction

1.1 Background

The goal of position-based cryptography is to use the geographical position of a
party as its only “credential”. For example, one would like to send a message
to a party at a geographical position pos with the guarantee that the party can
decrypt the message only if he or she is physically present at pos. The general
concept of position-based cryptography was introduced by Chandran, Goyal,
Moriarty and Ostrovsky [1]; certain specific related tasks have been considered
before under different names (see below and Sect. 1.3).

A central task in position-based cryptography is the problem of position-
verification. We have a prover P at position pos, wishing to convince a set of
verifiers V0, . . . , Vk (at different points in geographical space) that P is indeed at
that position pos. The prover can run an interactive protocol with the verifiers
in order to convince them. The main technique for such a protocol is known as
distance bounding [2]. In this technique, a verifier sends a random nonce to P
and measures the time taken for P to reply back with this value. Assuming that
the speed of communication is bounded by the speed of light, this technique
gives an upper bound on the distance of P from the verifier.

The problem of secure positioning has been studied before in the field of wire-
less security, and there have been several proposals for this task ([2,3,4,5,6,7,8,9]).
However, [1] shows that there exists no protocol for secure positioning that offers
security in the presence of multiple colluding adversaries. In other words, the set
of verifiers cannot distinguish between the case when they are interacting with
an honest prover at pos and the case when they are interacting with multiple
colluding dishonest provers, none of which is at position pos. Their impossibility
result holds even if one makes computational hardness assumptions, and it also
rules out most other interesting position-based cryptographic tasks.

In light of the strong impossibility result, [1] considers a setting that assumes
restrictions on the parties’ storage capabilities, called the Bounded-Retrieval
Model (BRM) in the full version of [1], and constructs secure protocols for
position-verification and for position-based key exchange (wherein the verifiers,
in addition to verifying the position claim of a prover, also exchange a secret key
with the prover). While these protocols give us a way to realize position-based
cryptography, the underlying setting is relatively hard to justify in practice.

This leaves us with the question: is there any other assumption or setting in
which position-based cryptography is realizable?

1.2 Our Approach and Our Results

In this work, we study position-based cryptography in the quantum setting. To
start with, let us briefly explain why moving to the quantum setting might be
useful. The impossibility result of [1] relies heavily on the fact that an adversary
can locally store all information he receives and at the same time share this
information with other colluding adversaries, located elsewhere. Recall that the
positive result of [1] in the BRM circumvents the impossibility result by assuming

Position-Based Quantum Cryptography: Impossibility and Constructions 431

that an adversary cannot store all information he receives. By considering the
quantum setting, one may be able to circumvent the impossibility result thanks
to the following observation. If some information is encoded into a quantum
state, then the above attack fails due to the no-cloning principle: the adversary
can either store the quantum state or send it to a colluding adversary (or do
something in-between, like store part of it), but not both.

However, this intuition turns out to be not completely accurate. Once the
adversaries pre-share entangled states, they can make use of quantum telepor-
tation [10]. Although teleportation on its own does not appear to immediate
conflict with the above intuition, we show that, based on techniques by Vaid-
man [11], adversaries holding a large amount of entangled quantum states can
perform instantaneous nonlocal quantum computation, which in particular im-
plies that they can compute any unitary operation on a state shared between
them, using only local operations and one round of classical mutual communica-
tion. Based on this technique, we show how a coalition of adversaries can attack
and break any position-verification scheme.

Interestingly, sharing entangled quantum systems is vital for attacking the
position-verification scheme. We show that there exist schemes that are secure
in the information-theoretic sense, if the adversary is not allowed to pre-share or
maintain entanglement. Furthermore, we show how to construct secure protocols
for several position-based cryptographic tasks: position-verification, authentica-
tion, and key exchange.

This leads to an interesting open question regarding the amount of pre-
shared entanglement required to break the positioning scheme: the case of a
large amount of pre-shared states yields a complete break of any scheme while
having no pre-shared states leads to information-theoretically secure schemes.
The threshold of pre-shared quantum systems that keeps the system secure is
yet unknown.

1.3 Related Work

To the best of our knowledge, quantum schemes for position-verification have
first been considered by Kent in 2002 under the name of “quantum tagging”.
Together with Munro, Spiller and Beausoleil, a patent for an (insecure) scheme
was filed for HP Labs in 2004 and granted in 2006 [12]. Their results have not
appeared in the academic literature until 2010 [13]. In that paper, they describe
several basic schemes and describe how to break them using teleportation-based
attacks. They propose other variations (Schemes IV–VI in [13]) not suspect to
their teleportation attack and leave their security as an open question. Our
general attack presented here shows that these schemes are insecure as well.

Concurrent and independent of our work reported here and the work on
quantum tagging described above, the approach of using quantum techniques
for secure position-verification was proposed by Malaney [14,15]. However, the
proposed scheme is merely claimed secure, and no rigorous security analysis is
provided. As pointed out in [13], Malaney’s schemes can also be broken by a
teleportation-based attack. Chandran et al. have proposed and proved a secure

432 H. Buhrman et al.

quantum scheme for position-verification [16]. However, their proof implicitly as-
sumed that the adversaries have no pre-shared entanglement; as shown in [13],
their scheme also becomes insecure without this assumption.

In a subsequent paper [17], Lau and Lo use similar ideas as in [13] to show
the insecurity of position-verification schemes that are of a certain (yet rather
restricted) form, which include the schemes from [14,15] and [16]. Furthermore,
they propose a position-verification scheme that resists their attack, and they
conjecture it secure. While these protocols might be secure if the adversaries do
not pre-share entanglement, our attack shows that all of them are insecure in
general.

In a recent note [18], Kent considers a different model for position-based
cryptography where the prover’s position is not his only credential, but he is
assumed to additionally share with the verifiers a classical key unknown to the
adversary. In this case, quantum key distribution can be used to expand that key
ad infinitum. This classical key stream is then used as authentication resource.

The idea of performing “instantaneous measurements of nonlocal variables”
has been put forward by Vaidman [11] and was further investigated by Clark et
al. [19]. The concept of instantaneous nonlocal quantum computation presented
here is an extension of Vaidman’s task. After the appearance and circulation of
our work, Beigi and König [20] used the technique of port-based teleportation by
Ishizaka and Hiroshima [21,22] to reduce the amount of entanglement required
to perform instantaneous nonlocal quantum computation (from our double ex-
ponential) to exponential.

In [23], Giovannetti et al. show how to measure the distance between two
parties by quantum cryptographic means so that only trusted people have access
to the result. This is a different kind of problem than what we consider here,
and the techniques used there are not applicable in our setting.

1.4 Our Attack and Our Schemes in More Detail

Position-Verification - A Simple Approach. Let us briefly discuss here the
1-dimensional case in which we have two verifiers V0 and V1, and a prover P at
position pos that lies on the straight line between V0 and V1. Now, to verify P ’s
position, V0 sends a BB84 qubit Hθ|x〉 to P , and V1 sends the corresponding
basis θ to P . The sending of these messages is timed in such a way that Hθ|x〉
and θ arrive at position pos at the same time. P then has to measure the qubit
in basis θ to obtain x, and immediately send x to both V0 and V1, who verify
the correctness of x and if it has arrived “in time”.

The intuition for this scheme is the following. Consider a dishonest prover P̂0

between V0 and P , and a dishonest prover P̂1 between V1 and P . (It is not too
hard to see that additional dishonest provers do not help.) When P̂0 receives
the BB84 qubit, she does not know yet the corresponding basis θ. Thus, if she
measures it immediately when she receives it, then she is likely to measure it
in the wrong basis and P̂0 and P̂1 will not be able to provide the correct x.
However, if she waits until she knows the basis θ, then P̂0 and P̂1 will be too late
in sending x to V1 in time. Similarly, if she forwards the BB84 qubit to P̂1, who

Position-Based Quantum Cryptography: Impossibility and Constructions 433

receives θ before P̂0 does, then P̂0 and P̂1 will be too late in sending x to V0. It
seems that in order to break the scheme, P̂0 needs to store the qubit until she
receives the basis θ and at the same time send a copy of it to P̂1. But this is
excluded by the no-cloning principle.

The Attack and Instantaneous Nonlocal Quantum Computation. The
above intuition turns out to be wrong. Using pre-shared entanglement, P̂0 and
P̂1 can perform quantum teleportation which enables them (in some sense) to act
coherently on the complete state immediately upon reception. Combining this
with the observation by Kent et al. [13] that the Pauli-corrections resulting from
the teleportation commute with the actions of the honest prover in the above
protocol shows that colluding adversaries can perfectly break the protocol.

Much more generally, we will show how to break any position-verification
scheme, possibly consisting of multiple (and interleaved) rounds. To this end,
we will show how to perform instantaneous nonlocal quantum computation. In
particular, we prove that any unitary operation U acting on a composite system
shared between players can be computed using only a single round of mutual
classical communication. Based on ideas by Vaidman [11], the players teleport
quantum states back and forth many times in a clever way, without awaiting the
classical measurement outcomes from the other party’s teleportations.

Position-Verification in the No-PE Model. On the other hand, the above
intuition is correct in the no pre-shared entanglement (No-PE) model, where the
adversaries are not allowed to have pre-shared entangled quantum states prior
the execution the protocol, or, more generally, prior the execution of each round
of the protocol in case of multi-round schemes. Even though this model may be
somewhat unrealistic and artificial, analyzing protocols in this setting serves as
stepping stone to obtaining protocols which tolerate adversaries who pre-share
and maintain some limited amount of entanglement. But also, rigorously proving
security in the restrictive (for the adversary) No-PE model is already non-trivial
and requires heavy machinery. Our proof uses the strong complementary infor-
mation trade-off (CIT) due to Renes and Boileau [24], and it guarantees that
for any strategy, the success probability of P̂0 and P̂1 is bounded by approxi-
mately 0.89. By repeating the above simple scheme sequentially, we get a secure
multi-round positioning scheme with exponentially small soundness error. We
note that when performing sequential repetitions in the No-PE model, the ad-
versaries must enter each round with no entanglement; thus, they are not allowed
to generate entanglement in one round, store it, and use it in the next round(s).

Position-based authentication and key-exchange in the No-PE Model.
Based on (sequential repetitions of) our position-verification scheme in the No-
PE model, we can also construct schemes for position-based authentication and
for position-based key-exchange, and prove their security in the No-PE model.
Due to space limitation, these schemes and their analyses only appear in the full
version of this paper [25].

434 H. Buhrman et al.

2 Preliminaries

2.1 Notation and Terminology

We assume familiarity with the basic concepts of quantum information theory
and refer to [26] for an excellent introduction; we merely fix some notation here.

Qubits. A qubit is a quantum system A with a 2-dimensional state space HA =
C2. The computational basis {|0〉, |1〉} (for a qubit) is given by |0〉 =

(
1
0

)
and

|1〉 =
(
0
1

)
, and the Hadamard basis by H {|0〉, |1〉} = {H |0〉, H |1〉}, where H

denotes the 2-dimensional Hadamard matrix, which maps |0〉 to (|0〉 + |1〉)/√2
and |1〉 to (|0〉− |1〉)/√2. The state space of an n-qubit system A = A1 · · ·An is
given by the 2n-dimensional space HA = (C2)⊗n = C2 ⊗ · · · ⊗ C2.

Since we mainly use the above two bases, we can simplify terminology and
notation by identifying the computational basis {|0〉, |1〉} with the bit 0 and the
Hadamard basis H {|0〉, |1〉} with the bit 1. Hence, when we say that an n-qubit
state |ψ〉 ∈ (C2)⊗n is measured in basis θ ∈ {0, 1}n, we mean that the state is
measured qubit-wise where basis Hθi {|0〉, |1〉} is used for the i-th qubit. As a
result of the measurement, the string x ∈ {0, 1}n is observed with probability
|〈ψ|Hθ|x〉|2, where Hθ = Hθ1 ⊗ · · · ⊗Hθn and |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉.

An important example of a 2-qubit state is the EPR pair, which is given by
|ΦAB〉 = (|0〉|0〉 + |1〉|1〉)/√2 ∈ HA ⊗ HB = C2 ⊗ C2 and has the following
properties: if qubit A is measured in the computational basis, then a uniformly
random bit x ∈ {0, 1} is observed and qubit B collapses to |x〉. Similarly, if qubit
A is measured in the Hadamard basis, then a uniformly random bit x ∈ {0, 1}
is observed and qubit B collapses to H |x〉.
Teleportation. The goal of teleportation is to transfer a quantum state from
one location to another by only communicating classical information. Telepor-
tation requires pre-shared entanglement among the two locations. To teleport
a qubit Q in an arbitrary unknown state |ψ〉 from Alice to Bob, Alice per-
forms a Bell-measurement on Q and her half of an EPR-pair, yielding a classical
measurement outcome k ∈ {0, 1, 2, 3}. Instantaneously, the other half of the cor-
responding EPR pair, which is held by Bob, turns into the state σ†

k|ψ〉, where
σ0, σ1, σ2, σ3 denote the four Pauli-corrections {I, X, Z,XZ}, respectively, and
σ† denotes the complex conjugate of the transpose of σ. The classical informa-
tion k is then communicated to Bob who can recover the state |ψ〉 by performing
σk on his EPR half. Note that the operator σk is Hermitian, thus σ†

k = σk.

3 Setup and the Task of Position Verification

3.1 The Security Model

We informally describe the model we use for the upcoming sections, which is a
quantum version of the Vanilla (standard) model introduced in [1] (see there for
a full description). We also describe our restricted model used for our security
proof, that we call the no pre-shared entanglement (No-PE) model. We consider

Position-Based Quantum Cryptography: Impossibility and Constructions 435

entities V0, . . . , Vk called verifiers and an entity P , the (honest) prover. Addition-
ally, we consider a coalition P̂ of dishonest provers (or adversaries) P̂0, . . . , P̂�.
All entities can perform arbitrary quantum (and classical) operations and can
communicate quantum (and classical) messages among them.

For our positive results, we consider a restricted model, which prohibits en-
tanglement between the dishonest verifiers. Specifically, the No-PE model is such
that the dishonest provers enter every new round of communication, initiated
by the verifiers, with no pre-shared entanglement. That is, in every round, a
dishonest prover can send an entangled quantum state only after it receives the
verifier’s message, and the dishonest provers cannot maintain such an entangled
state in order to use it in the next round. As mentioned in the introduction, con-
sidering this simple (but possibly unrealistic) model may help us in obtaining
protocols that are secure against adversaries with limited entanglement.

For simplicity, we assume that quantum operations and communication are
noise-free; however, our results generalize to the more realistic noisy case, assum-
ing that the noise is low enough. We require that the verifiers have a private and
authenticated channel among themselves, which allows them to coordinate their
actions by communicating before, during or after protocol execution. We stress
however, that this does not hold for the communication between the verifiers and
P : P̂ has full control over the destination of messages communicated between
the verifiers and P (both ways). This in particular means that the verifiers do
not know per-se if they are communicating with the honest or a dishonest prover
(or a coalition of dishonest provers).

The above model is now extended by incorporating the notion of time and
space. Each entity is assigned an arbitrary fixed position pos in the d-dimensional
space Rd, and we assume that messages to be communicated travel at fixed
velocity v (e.g. with the speed of light), and hence the time needed for a message
to travel from one entity to another equals the Euclidean distance between the
two (assuming that v is normalized to 1). This holds for honest and dishonest
entities. We assume on the other hand that local computations take no time.

Finally, we assume that the verifiers have precise and synchronized clocks, so
that they can coordinate exact times for sending off messages and can measure
the exact time of a message arrival. We do not require P ’s clock to be precise or
in sync with the verifiers. However, we do assume that P cannot be reset.

This model allows to reason as follows. Consider a verifier V0 at position pos0,
who sends a challenge ch0 to the (supposedly honest) prover claiming to be at
position pos. If V0 receives a reply within time 2d(pos0, pos), where d(·, ·) is the
Euclidean distance measure in Rd and thus also measures the time a message
takes from one point to the other, then V0 can conclude that he is communicating
with a prover that is within distance d(pos0, pos).

We stress that in our model, the honest prover P has no advantage over the
dishonest provers beyond being at its position pos. In particular, P does not
share any secret information with the verifiers, nor can he per-se authenticate
his messages by any other means.

436 H. Buhrman et al.

Throughout the article, we require that the honest prover P is enclosed by
the verifiers V0, . . . , Vk in that the prover’s position pos ∈ Rd lies within the
tetrahedron, i.e., convex hull, Hull(pos0, . . . , posk) ⊂ Rd formed by the respective
positions of the verifiers. Note that in this work we consider only stand-alone
security, i.e., there exists only a single execution with a single honest prover, and
we do not guarantee concurrent security.

3.2 Secure Position Verification

A position-verification scheme should allow a prover P at position pos ∈ Rd

(in d-dimensional space) to convince a set of k + 1 verifiers V0, . . . , Vk, who are
located at respective positions pos0, . . . , posk ∈ Rd, that he is indeed at position
pos. We assume that P is enclosed by V0, . . . , Vk. We require that the verifiers
jointly accept if an honest prover P is at position pos, and we require that the
verifiers reject with “high” probability in case of a dishonest prover that is not
at position pos. The latter should hold even if the dishonest prover consist of
a coalition of collaborating dishonest provers P̂0, . . . , P̂� at arbitrary positions
apos0, . . . , apos� ∈ Rd with aposi �= pos for all i. We refer to [1] for the gen-
eral formal definition of the completeness and security of a position-verification
scheme. In this article, we mainly focus on position-verification schemes of the
following form:

Definition 1. A 1-round position-verification scheme PV = (Chlg,Resp,Ver)
consists of the following three parts. A challenge generator Chlg, which outputs
a list of challenges (ch0, . . . , chk) and auxiliary information x; a response al-
gorithm Resp, which on input a list of challenges outputs a list of responses
(x′

0, . . . , x
′
k); and a verification algorithm Ver with Ver(x′

0, . . . , x
′
k, x) ∈ {0, 1}.

PV is said to have perfect completeness if Ver(x′
0, . . . , x

′
k, x) = 1 with

probability 1 for (ch0, . . . , chk) and x generated by Chlg and (x′
0, . . . , x

′
k) by Resp

on input (ch0, . . . , chk).

The algorithms Chlg, Resp and Ver are used as described in Fig. 1 to verify the
claimed position of a prover P . We clarify that in order to have all the challenges
arrive at P ’s (claimed) location pos at the same time, the verifiers agree on a
time T and each Vi sends off his challenge chi at time T − d(posi, pos). As a
result, all chi’s arrive at P ’s position pos at time T . In Step 3, Vi receives x′

i in
time if x′

i arrives at Vi’s position posi at time T + d(posi, pos). Throughout the
article, we use this simplified terminology. Furthermore, we are sometimes a bit
sloppy in distinguishing a party, like P , from its location pos.

We stress that we allow Chlg, Resp and Ver to be quantum algorithms and chi,
x and x′

i to be quantum information. In our constructions, only ch0 will actually
be quantum; thus, we will only require quantum communication from V0 to P ,
all other communication is classical. Also, in our constructions, x′

0 = . . . = x′
k,

and Ver(x′
0, . . . , x

′
k, x) = 1 exactly if x′

i = x for all i.

Definition 2. A 1-round position-verification scheme PV = (Chlg,Resp,Ver) is
called ε-sound if for any position pos ∈ Hull(pos0, . . . , posk), and any coalition

Position-Based Quantum Cryptography: Impossibility and Constructions 437

Common input to the verifiers: their respective positions pos0, . . . , posk, and P ’s
(claimed) position pos.

0. V0 generates a list of challenges (ch0, . . . , chk) and auxiliary information x
using Chlg, and sends chi to Vi for i = 1, . . . , k.

1. Every Vi sends chi to P in such a way that all chi’s arrive at the same time
at P ’s position pos.

2. P computes (x′0, . . . , x
′
k) := Resp(ch0, . . . , chk) as soon as all the chi’s arrive,

and he sends x′i to Vi for every i.

3. The Vi’s jointly accept if and only if all Vi’s receive x′i in time and
Ver(x′0, . . . , x

′
k, x) = 1.

Fig. 1. Generic 1-round position-verification scheme

of dishonest provers P̂0, . . . , P̂� at arbitrary positions apos0, . . . , apos�, all �= pos,
when executing the scheme from Fig. 1 the verifiers accept with probability at
most ε. We then write PVε for such a protocol.

In order to be more realistic, we must take into consideration physical limitations
of the equipment used, such as measurement errors, computation durations, etc.
Those allow a dishonest prover which resides arbitrarily close to P to appear
as if she resides at pos. Thus, we assume that all the adversaries are at least
Δ-distanced from pos, where Δ is determined by those imperfections. For sake
of simplicity, this Δ is implicit in the continuation of the paper.

4 Instantaneous Nonlocal Quantum Computation

In order to analyze the (in)security of position-verification schemes, we first ad-
dress a more general task, which is interesting in its own right: instantaneous
nonlocal quantum computation1. Consider the following problem, involving two
parties Alice and Bob. Alice holds A and Bob holds B of a tripartite system
ABE that is in some unknown state |ψ〉. The goal is to apply a known unitary
transformation U to AB, but without using any communication, just by local
operations. In general, such a task is clearly impossible, as it violates the non-
signalling principle. The goal of instantaneous nonlocal quantum computation is
to achieve almost the above but without violating non-signalling. Specifically, the
goal is for Alice and Bob to compute, without communication, a state |ϕ′〉 that
coincides with |ϕ〉 = (U ⊗ I)|ψ〉 up to local and qubit-wise operations on A and
B, where I denotes the identity on E. Furthermore, these local and qubit-wise
operations are determined by classical information that Alice and Bob obtain as
part of their actions. In particular, if Alice and Bob share their classical informa-
tion, which can be done with one round of simultaneous mutual communication,
1 This is an extension of the task of “instantaneous measurement of nonlocal variables”

introduced by Vaidman [11].

438 H. Buhrman et al.

then they can transform |ϕ′〉 into |ϕ〉 = U |ψ〉 by local qubit-wise operations.
Following ideas by Vaidman [11], we show below that instantaneous nonlocal
quantum computation, as described above, is possible if Alice and Bob share
sufficiently many EPR pairs.

In the following, let HA, HB and HE be Hilbert spaces where the former
two consist of nA and nB qubits respectively, i.e., HA = (C2)⊗nA and HB =
(C2)⊗nB . Furthermore, let U be a unitary matrix acting on HA ⊗ HB. Alice
holds system A and Bob holds system B of an arbitrary and unknown state
|ψ〉 ∈ HABE = HA ⊗HB ⊗HE . Additionally, Alice and Bob share an arbitrary
but finite number of EPR pairs.

Theorem 1. For every unitary U and for every ε > 0, given sufficiently many
shared EPR pairs, there exist local operations A and B, acting on Alice’s and
Bob’s respective sides, with the following property. For any initial state |ψ〉 ∈
HABE, the joint execution A⊗B transforms |ψ〉 into |ϕ′〉 and provides classical
outputs k to Alice and � to Bob, such that the following holds except with prob-
ability ε. The state |ϕ′〉 coincides with |ϕ〉 = (U ⊗ I)|ψ〉 up to local qubit-wise
operations on A and B that are determined by k and �.

We stress that A acts on A as well as on Alice’s shares of the EPR pairs, and
the corresponding holds for B. Furthermore, being equal up to local qubit-wise
operations on A and B means that |ϕ〉 = (V A

k,� ⊗ V B
k,� ⊗ I)|ϕ′〉, where {V A

k,�}k,�

and {V B
k,�}k,� are fixed families of unitaries which act qubit-wise on HA and

HB, respectively. In our construction, the V A
k,� and V B

k,�’s will actually be tensor
products of one-qubit Pauli operators.

As an immediate consequence of Theorem 1, we get the following.

Corollary 1. For every unitary U and for every ε > 0, given sufficiently many
shared EPR pairs, there exists a nonlocal operation AB for Alice and Bob which
consists of local operations and one round of mutual communication, such that for
any initial state |ψ〉 ∈ HABE of the tripartite system ABE, the joint execution
of AB transforms |ψ〉 into |ϕ〉 = (U ⊗ I)|ψ〉, except with probability ε.

For technical reasons, we will actually prove the following extension of Theo-
rem 1, which is easily seen equivalent. The difference to Theorem 1 is that Alice
and Bob are additionally given classical inputs: x to Alice and y to Bob, and
the unitary U that is to be applied to the quantum input depends on x and y.
In the statement below, x ranges over some arbitrary but fixed finite set X , and
y ranges over some arbitrary but fixed finite set Y.

Theorem 2. For every family {Ux,y} of unitaries and for every ε > 0, given
sufficiently many shared EPR pairs, there exist families {Ax} and {By} of lo-
cal operations, acting on Alice’s and Bob’s respective sides, with the following
property. For any initial state |ψ〉 ∈ HABE and for every x ∈ X and y ∈ Y, the
joint execution Ax ⊗By transforms the state |ψ〉 into |ϕ′〉 and provides classical
outputs k to Alice and � to Bob, such that the following holds except with prob-
ability ε. The state |ϕ′〉 coincides with |ϕ〉 = (Ux,y ⊗ I)|ψ〉 up to local qubit-wise
operations on A and B that are determined by k and �.

Position-Based Quantum Cryptography: Impossibility and Constructions 439

The solution works by teleporting states back and forth in a clever way [11], but
without communicating the classical outcomes of the Bell measurements, so that
only local operations are performed. Thus, in the formal proof below, whenever
we say that a state is teleported, this should be understood in this sense, i.e., the
sender makes a Bell measurement resulting in some classical information, and
the receiver takes his shares of the EPR pairs as the received state, but does/can
not (yet) correct it.

Proof. To simplify notation, we assume that the joint state of A and B is pure,
and thus we may ignore system E. However, all our arguments also hold in case
the state of A and B is entangled with E.

Next, we observe that it is sufficient to prove Theorem 2 for the case where
B is “empty”, i.e., dimHB = 1 and thus nB = 0. Indeed, if this is not the
case, then Alice and Bob can do the following. Bob first teleports B to Alice.
Now, Alice holds A′ = AB with nA′ = nA +nB, and Bob’s system has collapsed
and thus Bob holds no quantum state anymore, only classical information. Then,
they do the nonlocal computation, and in the end Alice teleports B back to Bob.
The modification to the state of B introduced by teleporting it to Alice can be
taken care of by modifying the set of unitaries {Ux,y} accordingly (and making it
dependent on Bob’s measurement outcome, thereby extending the set Y). Also,
the modification to the state of B introduced by teleporting it back to Bob does
not harm the requirement of the joint state being equal to |ϕ〉 = Ux,y|ψ〉 up to
local qubit-wise operations.

Hence, from now on, we may assume that B is “empty”, and we write n
for nA. Next, we describe the core of how the local operations Ax and By work.
To simplify notation, we assume that X = {1, . . . ,m}. Recall that Alice and Bob
share (many) EPR pairs. We may assume that the EPR pairs are grouped into
groups of size n; each such group we call a teleportation channel. Furthermore, we
may assume that m of these teleportation channels are labeled by the numbers
1 up to m, and that another m of these teleportation channels are labeled by
the numbers m + 1 up to 2m.

1. Alice teleports |ψ〉 to Bob, using the teleportation channel that is labeled by
her input x. Let us denote her measurement outcome by k◦ ∈ {0, 1, 2, 3}n.

2. For every i ∈ {1, . . . ,m}, Bob does the following. He applies the unitary
Ui,y to the n qubits that make up his share of the EPR pairs given by the
teleportation channel labeled by i. Then, he teleports the resulting state
to Alice using the teleportation channel labeled by m + i. We denote the
corresponding measurement outcome by �◦,i.

3. Alice specifies the n qubits that make up her share of the EPR pairs given
by the teleportation channel labeled by m + x to be the state |ϕ′〉.

Let us analyze the above. With probability 1/4n, namely if k◦ = 0 · · · 0, tele-
porting |ψ〉 to Bob leaves the state unchanged. In this case, it is easy to see
that the resulting state |ϕ′〉 satisfies the required property of being identical to
|ϕ〉 = Ux,y|ψ〉 up to local qubit-wise operations determined by �◦,x, and thus

440 H. Buhrman et al.

determined by x and �◦ = (�◦,1, . . . , �◦,m). This proves the claim for the case
where ε ≥ 1 − 1/4n.

We now show how to reduce ε. The crucial observation is that if in the above
procedure k◦ �= 0 · · · 0, and thus |ϕ′〉 is not necessarily identical to |ϕ〉 up to local
qubit-wise operations, then

|ϕ′〉 = V�◦,xUx,yVk◦ |ψ〉 = V�◦,xUx,yVk◦U
†
x,y|ϕ〉 ,

where V�◦,x and Vk◦ are tensor products of Pauli matrices. Thus, setting |ψ′〉 :=
|ϕ′〉, x′ := (x, k◦) and y′ := (y, �◦), and U ′

x′,y′ := Ux,yVk◦U
†
x,yV�◦,x , the state |ϕ〉

can be written as |ϕ〉 = U ′
x′,y′ |ψ′〉. This means, we are back to the original

problem of applying a unitary, U ′
x′,y′ , to a state, |ψ′〉, held by Alice, where the

unitary depends on classical information x′ and y′, known by Alice and Bob,
respectively. Thus, we can re-apply the above procedure to the new problem
instance. Note that in the new problem instance, the classical inputs x′ and y′

come from larger sets than the original inputs x and y, but the new quantum
input, |ψ′〉, has the same qubit size, n. Therefore, re-applying the procedure will
succeed with the same probability 1/4n.

As there is a constant probability of success in each round, re-applying the
above procedure sufficiently many times to the resulting new problem instances
guarantees that except with arbitrary small probability, the state |ϕ′〉 will be
of the required form at some point (when Alice gets k◦ = 0 · · · 0). Say, this is
the case at the end of the j-th iteration. Then, Alice stops with her part of the
procedure at this point, keeps the state |ϕ′〉, and specifies k to consist of j and
of her classical input into the j-th iteration (which consists of x and of the k◦’s
from the prior j − 1 iterations). Since Bob does not learn whether an iteration
is successful or not, he has to keep on re-iterating up to some bound, and in
the end he specifies � to consist of the �◦’s collected over all the iterations. The
state |ϕ′〉 then equals |ϕ〉 = Ux,y|ψ〉 up to local qubit-wise operations that are
determined by k and �. ��
Doing the maths shows that the number of EPR pairs needed by Alice and Bob
in the scheme described in the proof is double exponential in nA +nB, the qubit
size of the joint quantum system.

In recent subsequent work [20], Beigi and König have used a different kind of
quantum teleportation by Ishizaka and Hiroshima [21,22] to reduce the amount
of entanglement needed to to perform instantaneous nonlocal quantum compu-
tation to exponential in the qubit size of the joint quantum system. It remains
an interesting open question whether such an exponentially large amount of
entanglement is necessary.

5 Impossibility of Unconditional Position Verification

For simplicity, we consider the one-dimensional case, with two verifiers V0 and V1,
but the attack can be generalized to higher dimensions and more verifiers.

We consider an arbitrary position-verification scheme in our model (as spec-
ified in Sect. 3.1). We recall that in this model, the verifiers must base their

Position-Based Quantum Cryptography: Impossibility and Constructions 441

decision solely on what the prover replies and how long it takes him to reply, and
the honest prover has no advantage over a coalition of dishonest provers beyond
being at the claimed position2. Such a position-verification scheme may be of
the form as specified in Fig. 1, but may also be made up of several, possibly
interleaved, rounds of interaction between the prover and the verifiers.

For the honest prover P , such a general scheme consists of steps that look as
follows. P holds a local quantum register R, which is set to some default value
at the beginning of the scheme. In each step, P obtains a system A from V0 and
a system B from V1, and V0 and V1 jointly keep some system E. Let |ψ〉 be the
state of the four-partite system ABRE; it is determined by the scheme and by
the step within the scheme we are focussing on. P then has to apply a fixed3

known unitary transformation U to ABR, and send the (transformed) systems
A and B back to V0 and V1 (and keep R). Note that after the transformation, the
state of ABRE is given by |ϕ〉 = (U⊗I)|ψ〉, where I is the identity acting on HE .
For technical reasons, as in Sect. 4, it will be convenient to distinguish between
classical and quantum inputs, and therefore, we let the unitary U depend on
classical information x and y, where x has been sent by V0 along with A, and y
has been sent by V1 along with B.

We now show that a coalition of two dishonest provers P̂0 and P̂1, where
P̂0 is located in between V0 and P and P̂1 is located in between V1 and P ,
can perfectly simulate the actions of the honest prover P , and therefore it is
impossible for the verifiers to distinguish between an honest prover at position
pos and a coalition of dishonest provers at positions different from pos. The
simulation of the dishonest provers perfectly imitates the computation as well
as the timing of an honest P . Since in our model this information is what the
verifiers have to base their decision on, the general impossibility of position-
verification in our model follows.

Consider a step in the scheme as described above, but now from the point of
view of P̂0 and P̂1. Since P̂0 is closer to V0, he will first receive A and x; similarly,
P̂1 will first receive B and y. We specify that P̂1 takes care of and maintains
the local register R. If the step we consider here is the first step in the scheme,
then the state of ABRE equals |ψ〉, as in the case of an honest P . In order to
have an invariant that holds for all the steps, we actually relax this statement
and merely observe that the state of ABRE, say |ψ′〉, equals |ψ〉 up to local and
qubit-wise operations on the subsystem R, determined by classical information
x◦ and y◦, where P̂0 holds x◦ and P̂1 holds y◦. This invariant clearly holds for
the first step in the scheme, when R is in some default state, and we will show
that it also holds for the other steps.

By Theorem 2, it follows that without communication, just by instantaneous
local operations, P̂0 and P̂1 can transform the state |ψ′〉 into a state |ϕ′〉 that
coincides with |ϕ〉 = (Ux,y ⊗ I)|ψ〉 up to local and qubit-wise transformations on

2 In particular, the prover does not share any secret information with the verifiers,
differentiating our setting from models as described for example in [18].

3 U is fixed for a fixed scheme and for a fixed step within the scheme, but of course
may vary for different schemes and for different steps within a scheme.

442 H. Buhrman et al.

A, B and R, determined by classical information k (known to P̂0) and � (known
to P̂1). Note that the initial state is not |ψ〉, but rather a state of the form
|ψ′〉 = (Vx◦,y◦ ⊗ I)|ψ〉, where x◦ is known to P̂0 and y◦ to P̂1. Thus, Theorem 2
is actually applied to the unitary U ′

x′,y′ = Ux,yV
†
x◦,y◦ , where x′ = (x◦, x) and

y′ = (y◦, y). Given |ϕ′〉 and k and �, P̂0 and P̂1 can now exchange k and � using
one mutual round of communication and transform |ϕ′〉 into |ϕ′′〉 that coincides
with |ϕ〉 up to qubit-wise operations only on R, and send A to V0 and B to
V1. It follows that the state of ABE and the time it took P̂0 and P̂1 for the
computation and communication is identical to that of an honest P , i.e., P̂0 and
P̂1 have perfectly simulated this step of the scheme.

Finally, we see that the invariant is satisfied, when moving on to the next step
in the scheme, where P̂0 and P̂1 receive new A and B (along with new classical
x and y) from V0 and V1, respectively. Even if this new round interleaves with
the previous round in that the new A and B etc. arrive before P̂0 and P̂1 have
finished exchanging (the old) k and �, it still holds that the state of ABRE is as
in the case of honest P up to qubit-wise operations on the subsystem R. This
implies that the above procedure works for all the steps and thus that P̂0 and P̂1

can indeed perfectly simulate honest P ’s actions throughout the whole scheme.

6 Secure Position-Verification in the No-PE Model

In this section we show the possibility of secure position-verification in the No-
PE model. We consider the following basic 1-round position-verification scheme
in the No-PE model, given in Fig. 2. It is based on the BB84 encoding.

We implicitly specify that parties abort if they receive any message that is
inconsistent with the protocol, for instance (classical) messages with a wrong
length, or different number of received qubits than expected, etc.

Theorem 3. The 1-round position-verification scheme PVε
BB84 from Fig. 2 is

ε-sound with ε = 1 − h−1(1
2), in the No-PE model.

The function h : [0, 1] → [0, 1] denotes the binary entropy function defined as
h(p) = −p log(p) − (1 − p) log(1 − p) for 0 < p < 1 and as h(p) = 0 for p = 0
or 1, and h−1 : [0, 1] → [0, 1

2] denotes its inverse on the branch 0 ≤ p ≤ 1
2 . A

numerical calculation shows that h−1(1
2) ≥ 0.11 and thus ε ≤ 0.89. A particular

attack for a dishonest prover P̂ , sitting in-between V0 and P , is to measure

0. V0 chooses two random bits x, θ ∈ {0, 1} and privately sends them to V1.

1. V0 prepares the qubit Hθ|x〉 and sends it to P , and V1 sends the bit θ to P ,
so that Hθ|x〉 and θ arrive at the same time at P .

2. When Hθ|x〉 and θ arrive, P measures Hθ|x〉 in basis θ to observe x′ ∈ {0, 1},
and sends x′ to V0 and V1.

3. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Fig. 2.Position-verification scheme PVε
BB84 based on the BB84 encoding

Position-Based Quantum Cryptography: Impossibility and Constructions 443

the qubit Hθ|x〉 in the Breidbart basis, resulting in an acceptance probability of
cos(π/8)2 ≈ 0.85. This shows that our analysis is pretty tight.

Proof. The proof uses several concepts of quantum information theory which
are explained in more detail in the full version of this paper [25]. A key idea in
this proof is the use of the complementary information trade-off (CIT) [24] (see
also [27] for a generalization). In a form useful for us, CIT states that for any
tri-partite state |ψAEF 〉 ∈ HA ⊗ HE ⊗ HF with HA = (C2)⊗n, the following
holds. If Θ is uniformly distributed in {0, 1}n and X is the result of measuring
A in basis Θ, then H(X |ΘE) + H(X |ΘF) ≥ n, where H is the (conditional) von
Neumann entropy.

In order to analyze the position-verification scheme it is convenient to con-
sider an equivalent purified version, given in Fig. 3. The only difference between
the original and the purified scheme is the preparation of the bit Hθ|x〉. In the
purified version, it is done by preparing |ΦAB〉 = (|0〉|0〉 + |1〉|1〉)/√2 and mea-
suring A in basis θ. This changes the point in time when V0 measures A, and
the point in time when V1 learns x. This, however, has no influence on the view
of the (dishonest or honest) prover, nor on the joint distribution of θ, x and x′,
and thus neither on the probability that V0 and V1 accept. It therefore suffices
to analyze the purified version.

0. V0 and V1 privately agree on a random bit θ ∈ {0, 1}.
1. V0 prepares an EPR pair |ΦAB〉 ∈ HA⊗HB , keeps qubit A and sends B to P ,

and V1 sends the bit θ to P , so that B and θ arrive at the same time at P .

2. When B and θ arrive, P measures B in basis θ to observe x′ ∈ {0, 1}, and
sends x′ to V0 and V1.

3. Only now, when x′ arrives, V0 measures A in basis θ to observe x, and privately
sends x to V1. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Fig. 3. EPR version of PVε
BB84

We first consider security against two dishonest provers P̂0 and P̂1, where P̂0

is between V0 and P and P̂1 is between V1 and P . In the end we will argue that
a similar argument holds for multiple dishonest provers on either side.

Since V0 and V1 do not accept if x′ does not arrive in time and dishonest
provers do not use pre-shared entanglement in the No-PE-model, any potentially
successful strategy of P̂0 and P̂1 must look as follows. As soon as P̂1 receives
the bit θ from V1, she forwards (a copy of) it to P̂0. Also, as soon as P̂0 receives
the qubit A, she applies an arbitrary quantum operation to the received qubit A
(and maybe some ancillary system she possesses) that maps it into a bipartite
state E0E1 (with arbitrary state space HE0 ⊗HE1), and P̂0 keeps E0 and sends
E1 to P̂1. Then, as soon as P̂0 receives θ, she applies some measurement (which
may depend on θ) to E0 to obtain x̂0, and as soon as P̂1 receives E1, she applies
some measurement (which may depend on θ) to E1 to obtain x̂1, and both send
x̂0 and x̂1 immediately to V0 and V1, respectively. We will now argue that the
probability that x̂0 = x and x̂1 = x is upper bounded by ε as claimed.

444 H. Buhrman et al.

Let |ψA E0E1〉 ∈ HA⊗HE0⊗HE1 be the state of the tri-partite system AE0E1

after P̂0 has applied the quantum operation to the qubit B. It is important to
realize that the state |ψA E0E1〉 is independent of θ. This is because P̂0 has to
apply the quantum operation to B before learning θ.4 Recall that x is obtained
by measuring A in either the computational (if θ = 0) or the Hadamard (if θ = 1)
basis. Writing x, θ, etc. as random variables X , Θ, etc., it follows from CIT that
H(X |ΘE0) + H(X |ΘE1) ≥ 1. Let Y0 and Y1 denote the classical information
obtained by P̂0 and P̂1 as a result of measuring E0 and E1, respectively, with
bases that may depend on Θ. By the well-known Holevo bound, it follows from
the above that

H(X |ΘY0) + H(X |ΘY1) ≥ 1 ,

therefore H(X |ΘYi) ≥ 1
2 for at least one i ∈ {0, 1}. By Fano’s inequality, we

can conclude that the corresponding error probability qi = P [X̂i �=X] satisfies
h(qi) ≥ 1

2 . It thus follows that the failure probability

q = P [X̂0 �=X ∨ X̂1 �=X] ≥ max {q0, q1} ≥ h−1(
1
2
) ,

and the probability of V0 and V1 accepting, P [X̂0 =X ∧ X̂1 =X] = 1 − q, is in-
deed upper bounded by ε as claimed. See full details in [25].

It remains to argue that more than two dishonest provers in the No-PE model
cannot do any better. The reasoning is the same as above. Namely, in order to
respond in time, the dishonest provers that are closer to V0 than P must map
the qubit A—possibly jointly—into a bipartite state E0E1 without knowing θ,
and jointly keep E0 and send E1 to the dishonest provers that are “on the other
side” of P (i.e., closer to V1). Then, the reply for V0 needs to be computed from
E0 and θ (possibly jointly by the dishonest provers that are closer to V0), and
the response for V1 from E1 and θ. Thus, it can be argued as above that the
success probability is bounded by ε as claimed. ��
The soundness error can be further reduced by sequentially repeating the scheme,
assuming that the adversaries do not share entanglement at the beginning of each
round. Also, the scheme can easily be extended to arbitrary dimension d. The
idea is to involve additional verifiers V2, . . . , Vd and have the basis θ secret-shared
among V1, V2, . . . , Vd.

7 Other Position-based Cryptographic Tasks

In the full version of this paper [25], we show the following additional results.
Using a generic position-verification scheme, we construct a position-based au-
thentication scheme, which ensures that a communicated message m originates
from an entity P that is at some specific location. In combination with an off-the-
shelf quantum-key-distribution (QKD) scheme, this results in a position-based

4 We stress that this independency breaks down if P̂0 and P̂1 may start off with an
entangled state, because then P̂1 can act on his part of the entangled state in a
θ-dependent way, which makes the overall state dependent of θ.

Position-Based Quantum Cryptography: Impossibility and Constructions 445

key-distribution scheme, which enables the verifiers to exchange a cryptographic
key K with the prover, with the guarantee that only the honest prover at location
pos obtains K, but any adversary (or coalition of adversaries) not at location pos
learns no information on K. Using our position-verification scheme in the No-PE
model as underlying scheme, we obtain secure position-based authentication and
position-based key-distribution schemes in the No-PE model.

8 Conclusion and Open Questions

We have proven a general impossibility result for position-based quantum cryp-
tography, thereby showing the insecurity of several recently proposed schemes
[13,14,15,16,17]. Our no-go result has already sparked subsequent work [20]
about the amount of entanglement needed to break general position-verification
schemes.

On the positive side, we have shown the existence of secure position-based
quantum cryptographic schemes under the (strong) assumption that adversaries
do not share any entanglement (prior to each round). An interesting open ques-
tion is the existence of secure schemes under more relaxed and realistic assump-
tions, like in the bounded-quantum-storage model [28], where adversaries are
limited in the number of qubits they can store reliably?

Acknowledgements. We thank Charles Bennett, Frédéric Dupuis and Louis
Salvail for interesting discussions. HB would like to thank Sandu Popescu for
explaining Vaidman’s scheme and pointing [19] out to him.

References

1. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009)

2. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EU-
ROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

3. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: WiSe
2003, pp. 1–10 (2003)

4. Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. In:
Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 369–383. Springer, Hei-
delberg (2005)

5. Bussard, L.: Trust Establishment Protocols for Communicating Devices. PhD the-
sis, Eurecom-ENST (2004)

6. Capkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application
to sensor networks. In: IEEE INFOCOM, 1917–1928 (2005)

7. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: IEEE MASS’10 (2005)

8. Zhang, Y., Liu, W., Fang, Y., Wu, D.: Secure localization and authentication in
ultra-wideband sensor networks. IEEE Journal on Selected Areas in Communica-
tions 24, 829–835 (2006)

446 H. Buhrman et al.

9. Capkun, S., Cagalj, M., Srivastava, M.: Secure localization with hidden and mobile
base stations. In: IEEE INFOCOM (2006)

10. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

11. Vaidman, L.: Instantaneous measurement of nonlocal variables. Phys. Rev.
Lett. 90(1), 010402 (2003)

12. Kent, A., Munro, W., Spiller, T., Beausoleil, R.: Tagging systems, US patent nr
2006/0022832 (2006)

13. Kent, A., Munro, B., Spiller, T.: Quantum tagging: Authenticating location
via quantum information and relativistic signalling constraints, arXiv/quant-
ph:1008.2147 (2010)

14. Malaney, R.A.: Location-dependent communications using quantum entanglement.
Phys. Rev. A 81(4), 042319 (2010)

15. Malaney, R.A.: Quantum location verification in noisy channels, arXiv/quant-
ph:1004.2689 (2010)

16. Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R.: Position-based quan-
tum cryptography, arXiv/quant-ph:1005.1750 (2010)

17. Lau, H.K., Lo, H.K.: Insecurity of position-based quantum-cryptography protocols
against entanglement attacks. Phys. Rev. A 83(1), 012322 (2011)

18. Kent, A.: Quantum tagging with cryptographically secure tags, arXiv/quant-
ph:1008.5380 (2010)

19. Clark, S.R., Connor, A.J., Jaksch, D., Popescu, S.: Entanglement consumption
of instantaneous nonlocal quantum measurements. New Journal of Physics 12(8),
083034 (2010)

20. Beigi, S., Koenig, R.: Simplified instantaneous non-local quantum computa-
tion with applications to position-based cryptography, arXiv/quant-ph:1101.1065
(2011)

21. Ishizaka, S., Hiroshima, T.: Asymptotic teleportation scheme as a universal pro-
grammable quantum processor. Phys. Rev. Lett. 101(24), 240501 (2008)

22. Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of
multiple output ports. Phys. Rev. A 79(4), 042306 (2009)

23. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum cryptographic ranging. Journal
of Optics B 4(4), 042319 (2002)

24. Renes, J., Boileau, J.: Conjectured strong complementary information tradeoff.
Phys. Rev. Let. 103(2), 020402 (2009)

25. Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R.,
Schaffner, C.: Position-Based Quantum Cryptography: Impossibility and Construc-
tions. Full version of this paper (2010), http://arxiv.org/abs/1009.2490

26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

27. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty
principle in the presence of quantum memory. Nature Physics (2010)

28. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 449–458. IEEE, Los Alamitos (2005)

Analyzing Blockwise Lattice Algorithms Using
Dynamical Systems

Guillaume Hanrot1, Xavier Pujol1, and Damien Stehlé2

1 ÉNS Lyon, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France

2 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France

{guillaume.hanrot,xavier.pujol,damien.stehle}@ens-lyon.fr

Abstract. Strong lattice reduction is the key element for most attacks
against lattice-based cryptosystems. Between the strongest but impracti-
cal HKZ reduction and the weak but fast LLL reduction, there have been
several attempts to find efficient trade-offs. Among them, the BKZ al-
gorithm introduced by Schnorr and Euchner [FCT’91] seems to achieve
the best time/quality compromise in practice. However, no reasonable
complexity upper bound is known for BKZ, and Gama and Nguyen [Eu-
rocrypt’08] observed experimentally that its practical runtime seems to
grow exponentially with the lattice dimension. In this work, we show that
BKZ can be terminated long before its completion, while still providing
bases of excellent quality. More precisely, we show that if given as inputs
a basis (bi)i≤n ∈ Qn×n of a lattice L and a block-size β, and if ter-
minated after Ω

(
n3

β2 (log n + log log maxi ‖bi‖)
)

calls to a β-dimensional
HKZ-reduction (or SVP) subroutine, then BKZ returns a basis whose

first vector has norm ≤ 2ν
n−1

2(β−1) + 3
2

β ·(det L)
1
n , where νβ ≤ β is the maxi-

mum of Hermite’s constants in dimensions ≤ β. To obtain this result, we
develop a completely new elementary technique based on discrete-time
affine dynamical systems, which could lead to the design of improved
lattice reduction algorithms.

Keywords: Euclidean lattices, BKZ, lattice-based cryptanalysis.

1 Introduction

A (full-rank) n-dimensional lattice L ⊆ Rn is the set of integer linear combi-
nations

∑n
i=1 xibi of some linearly independent vectors (bi)i≤n. Such vectors

are called a basis and we write L = L[(bi)i]. Since L is discrete, it contains
a shortest non-zero lattice vector, whose norm λ1(L) is called the lattice min-
imum. Computing such a vector given a basis is referred to as the (compu-
tational) Shortest Vector Problem (SVP), and is NP-hard under randomized
reductions [1,12]. The complexities of the best known SVP solvers are no less
than exponential [22,23,2,15] (the record is held by the algorithm from [22],
with complexity 22n+o(n) ·Poly(log maxi ‖bi‖)). Finding a vector reaching λ1(L)

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 447–464, 2011.
c© International Association for Cryptologic Research 2011

448 G. Hanrot, X. Pujol, and D. Stehlé

is polynomial-time equivalent to computing a basis of L that is reduced in the
sense of Hermite-Korkine-Zolotarev (HKZ). The aforementioned SVP solvers can
all be used to compute HKZ-reduced bases, in exponential time. On the other
hand, bases reduced in the sense of Lenstra-Lenstra-Lovász (LLL) can be com-
puted in polynomial time [16], but the first vector is only guaranteed to satisfy
the weaker inequality ‖b1‖ ≤ (4/3 + ε)

n−1
2 · λ1(L) (for an arbitrary ε > 0).

In 1987, Schnorr introduced time/quality trade-offs between LLL and HKZ [33].
In the present work, we propose the first analysis of the BKZ algorithm [36,37],
which is currently the most practical such trade-off [40,8].

Lattice reduction is a popular tool in cryptanalysis [27]. For many applica-
tions, such as Coppersmith’s method for computing the small roots of polyno-
mials [5], LLL-reduction suffices. However, reductions of much higher quality
seem required to break lattice-based cryptosystems. Lattice-based cryptogra-
phy originated with Ajtai’s seminal hash function [1], and the GGH and NTRU
encryption schemes [9,14]. Thanks to its excellent asymptotic performance, prov-
able security guarantees, and flexibility, it is currently attracting wide interest
and developing at a steady pace. We refer to [21,31] for recent surveys. A major
obstacle to the real-life deployment of lattice-based cryptography is the lack of
a precise understanding of the limits of the best practical attacks, whose main
component is the computation of strongly reduced lattice bases. This prevents
from having a precise correspondence between specific security levels and prac-
tical parameters. Our work is a step towards a clearer understanding of BKZ,
and thus of the best known attacks.

Strong lattice reduction has been studied for about 25 years (see among oth-
ers [33,37,34,6,32,8,7]). From a theoretical perspective, the best known time/
quality trade-off is due to Gama and Nguyen [7]. By building upon the proof
of Mordell’s inequality on Hermite’s constant, they devised the notion of slide
reduction, and proposed an algorithm computing slide-reduced bases: Given an
arbitrary basis B = (bi)i≤n of a lattice L, the slide-reduction algorithm finds a
basis (ci)i≤n of L such that

‖c1‖ ≤ ((1 + ε)γβ)
n−β
β−1 · λ1(L), (1)

within τslide := O
(

n4

β·ε · log maxi ‖bi‖
)

calls1 to a β-dimensional HKZ-
reduction algorithm and a β-dimensional (computational-)SVP solver, where γβ

≈ β is the β-dimensional Hermite constant. If L ⊆ Qn, the overall cost of the
slide-reduction algorithm is ≤ Poly(n, size(B))·CHKZ(β), where CHKZ(β) = 2O(β) is
the cost of HKZ-reducing in dimension β. The higher β, the lower the achieved
SVP approximation factor, but the higher the runtime. Slide reduction also
provides a constructive variant of Minkowski’s inequality, as (letting detL de-
note vol(Rn/L)):

‖c1‖ ≤ ((1 + ε)γβ)
n−1

2(β−1) · (detL)
1
n , (2)

1 The component n4

β
of this upper bound is derived by adapting the results from [7]

to our notations. A more thorough analysis leads to a smaller term.

Analyzing Blockwise Lattice Algorithms 449

Fromapractical perspective, however, slide reduction seems to be (significantly)
outperformed by the BKZ algorithm [8]. BKZ also relies on a β-dimensional HKZ-
reduction algorithm (resp. SVP-solver). The worst-case quality of the bases it re-
turns has been studied in [34] and is comparable to that of the slide reduction algo-
rithm. The first vector of the output basis (ci)i≤n satisfies ‖c1‖ ≤ ((1 + ε)γβ)

n−1
β−1 ·

λ1(L). Note that this bound essentially coincides with (1), except for large val-
ues of β. A bound similar to that of (2) also holds.2 In practice, the quality of the
computed bases seems much higher with BKZ than with the slide-reduction algo-
rithm [8]. With respect to run-time, no reasonable bound is known on the num-
ber of calls to the β-dimensional HKZ reduction algorithm it needs to make before
termination.3 In practice, this number of calls does not seem to be polynomially
bounded [8] and actually becomes huge when β ≥ 25. Because of its large (and
somewhat unpredictable) runtime, it is folklore practice to terminate BKZ before
the end of its execution, when the solution of the problem for which it is used for is
already provided by the current basis [38,24].

Our result. We show that if terminated within polynomially many calls to
HKZ/SVP, a slightly modified version of BKZ (see Section 3) returns bases
whose first vectors satisfy a slightly weaker variant of (2).

Theorem 1. There exists4 C > 0 such that the following holds for all n and β.
Let B = (bi)i≤n be a basis of a lattice L, given as input to the modified BKZ algo-
rithm of Section 3 with block-size β. If terminated after τBKZ := C n3

β2(
log n + log log maxi

‖bi‖
(detL)1/n

)
calls to an HKZ-reduction (or SVP solver) in

dimension β, the output (ci)i≤n is a basis of L that satisfies (with νβ ≤ β de-
fined as the maximum of Hermite’s constants in dimensions ≤ β):

‖c1‖ ≤ 2(νβ)
n−1

2(β−1) + 3
2 · (detL)

1
n .

If L ⊆ Qn, then the overall cost is ≤ Poly(n, size(B)) · CHKZ(β).

By using [18, p. 25], this provides an algorithm with runtime bounded by
Poly(n, size(B)) · CHKZ(β) that returns a basis whose first vector satisfies ‖c1‖ ≤
4(νβ)

n−1
β−1+3 · λ1(L), which is only slightly worse than (1). These results indicate

that BKZ can be used to achieve essentially the same quality guarantees as
slide reduction, within a number of calls to HKZ in dimension β that is no
larger than that of slide reduction. Actually, note that τBKZ is significantly smaller
than τslide, in particular with a dependence with respect to maxi ‖bi‖ that is
exponentially smaller. It may be possible to obtain a similar bound for the slide-
reduction algorithm by adapting our analysis.

2 In [8], the bound ‖c1‖ ≤ (γβ)
n−1

2(β−1) + 1
2 · (det L)

1
n is claimed to hold, but without proof

nor reference. We prove a (slightly) weaker bound, but we are able to improve it if γn

is replaced by any linear function. See the appendix of the full version [10].
3 A bound (nβ)n is mentioned in [8]. For completeness, we give a proof of a similar result

in the appendix of the full version [10].
4 The constant C is used to absorb lower-order terms in n, and could be taken small.

450 G. Hanrot, X. Pujol, and D. Stehlé

To achieve our result, we use a completely new approach for analyzing lattice
reduction algorithms. The classical approach to bound their runtimes was to
introduce a quantity, sometimes called potential, involving the current Gram-
Schmidt norms ‖b∗i ‖, which always strictly decreases every time some elemen-
tary step is performed. This technique was introduced by Lenstra, Lenstra and
Lovász [16] for analyzing their LLL algorithm, and is still used in all complexity
analyses of (variants of) LLL we are aware of. It was later adapted to stronger lat-
tice reduction algorithms [33,6,32,7]. We still measure progress with the ‖b∗i ‖’s,
but instead of considering a single scalar combining them all, we look at the
full vector (‖b∗i ‖)i. More specifically, we observe that each call to HKZ within
BKZ has the effect of applying an affine transformation to the vector (log ‖b∗i ‖)i:
instead of providing a lower bound to the progress made on a “potential”, we are
then led to analyze a discrete-time dynamical affine system. Its fixed-points en-
code information on the output quality of BKZ, whereas its speed of convergence
provides an upper bound on the number of times BKZ calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to es-
sentially replace β consecutive coefficients by their average. We formalize this
intuition by making a specific assumption (see Section 4). Under this assump-
tion, the execution of BKZ exactly matches with a dynamical system that we
explicit and fully analyze. However, we cannot prove that this assumption is
always correct (counter-examples can actually be constructed). To circumvent
this difficulty, we instead consider the vector μ = (1

i

∑i
j=1 log ‖b∗j‖)i≤n. This

amortization (also used in [11] for analyzing HKZ-reduced bases) allows us to
rigorously bound the evolution of μ by the orbit of a vector under another dy-
namical system. Since this new dynamical system happens to be a modification
of the dynamical system used in the idealized model, the analysis performed for
the idealized model can be adapted to the rigorous set-up.

This approach is likely to prove useful for analyzing other lattice reduction
algorithms. As an illustration of its power, we provide two new results on LLL.
First, we show that the SVP approximation factor

√
4/3

n−1
can be reached

in polynomial time using only Gauss reductions. This is closely related to the
question whether the “optimal LLL” (i.e., using LLL parameter δ = 1) terminates
in polynomial time [3,17]. Second, we give a LLL-reduction algorithm of bit-
complexity Poly(n)·Õ(size(B)). Such a complexity bound was only very recently
achieved, with a completely different approach [29]. Note that close-by results
on LLL have been concurrently and independently obtained by Schnorr [35].

Practical aspects. Our result is a (possibly pessimistic) worst-case quality
bound on BKZ with early termination. In itself, this does not give a precise
explanation of the practical behavior of BKZ. In particular, it does not explain
why it outperforms slide reduction, but only why it does not behave signifi-
cantly worse. However, this study illustrates the usefulness of early termination
in BKZ: Much progress is done at the beginning of the execution, and quickly
the basis quality becomes excellent; the rest of the execution takes much longer,
for a significantly less dramatic quality improvement. This behavior is very clear
in practice, as illustrated by Figure 1 of Section 2. Since most of the work

Analyzing Blockwise Lattice Algorithms 451

performed by BKZ is completed within the first few calls to HKZ, it shows that
the BKZ performance extrapolations used to estimate the hardness of crypto-
graphic instances should focus only on the cost of a single call to HKZ and on
the achieved basis quality after a few such calls. For instance, it indicates that
the strategy (adopted, e.g., in [14,13]) consisting in measuring the full run-time
of BKZ might be reconsidered.

Additionally, parts of the analysis might prove useful to better understand BKZ
and devise reduction algorithms with improved practical time/quality trade-offs.
In particular, the heuristic modelisation ofBKZas a discrete-time affine dynamical
system suggests that the block of vectors on which HKZ-reduction is to be applied
could be chosen adaptively, so that the system converges faster to its limit. It would
not improve the outputquality forBKZ,but it is likely to accelerate its convergence.
Also, the second phase of BKZ, the one that takes longer but during which little
progress is still made, could be understood by introducing some randomness in the
model: most of the time, the norm of the first vector found by the HKZ-reduction
sub-routine is around its expected value (a constant factor smaller than its worst-
case bound), but it is significantly smaller every nowand then. If such amodel could
predict the behavior of BKZ during its second phase, then maybe it would explain
why it outperforms slide reduction. It might give indications on the optimal time
for stopping BKZ with block-size β before switching to a larger block-size.

Notations. All vectors will be denoted in bold, and matrices in capital letters.
If b ∈ Rn, the notation ‖b‖ will refer to its Euclidean norm. If B ∈ Rn×n,
we define ‖B‖2 = max‖x‖=1 ‖B · x‖ and we denote the spectral radius of B
by ρ(B). If B is a rational matrix, we define size(B) as the sum of the bit-sizes
of the numerators and denominators of its entries. All complexity statements
refer to elementary operations on bits. We will use the Landau notations o(·),
O(·), Õ(·) and Ω(·). The notations log(·) and ln(·) respectively stand for the
base 2 and natural logarithms.

2 Reminders

For an introduction to lattice reduction algorithms, we refer to [28].
Successive Minima. Let L be an n-dimensional lattice. Its i-th minimum λi(L)
is defined as the minimal radius r such that B(0, r) contains ≥ i linearly inde-
pendent vectors of L.
Hermite’s constant. The n-dimensional Hermite constant γn is defined as the
maximum taken over all lattices L of dimension n of the quantity λ1(L)2

(detL)2/ dim(L) .
Let νn = maxk≤n γk, an upper bound on γn which increases with n. Very few
values of νn are known, but we have νn ≤ 1 + n

4 for all n (see [20, Re 2.7.5]).
Gram-Schmidt orthogonalisation. Let (bi)i≤n be a lattice basis. Its Gram-
Schmidt orthogonalization (b∗i)i≤n is defined recursively by b∗

i = bi−
∑

j<i μi,jb
∗
j

with μi,j = (b∗i , b
∗
j)/‖b∗j‖2 for i > j. The b∗

i ’s are mutually orthogonal. For i ≤ j,
we define b

(i)
j as the projection of bj orthogonally to Span(bk)k<i. Note that if L

is an n-dimensional lattice, then detL =
∏n

i=1 ‖b∗i ‖, for any basis (bi)i≤n of L.

452 G. Hanrot, X. Pujol, and D. Stehlé

A few notions of reduction. Given a basis (bi)i≤n, we say that it is size-
reduced if the Gram-Schmidt coefficients μi,j satisfy |μi,j | ≤ 1/2 for all j < i ≤ n.
We say that (bi)i≤n is δ-LLL-reduced for δ ≤ 1 if it is size-reduced and the Lovász
conditions δ‖b∗i ‖2 ≤ ‖b∗i+1‖2 +μ2

i+1,i‖b∗i ‖2 are satisfied for all i < n. For any δ <
1, a δ-LLL-reduced basis of a rational lattice L can be computed in polynomial
time, given an arbitrary basis of L as input [16]. We say that (bi)i≤n is HKZ-
reduced if it is size-reduced and for all i < n, we have ‖b∗i ‖ = λ1(L[(b(i)

j)i≤j≤n]).
An HKZ-reduced basis of a lattice L ⊆ Qn can be computed in time 22n+o(n) ·
Poly(size(B)), given an arbitrary basis B of L as input [22]. The following is a
direct consequence of the definitions of the HKZ-reduction and Hermite constant.

Lemma 1. ForanyHKZ-reducedbasis (bi)i≤n,wehave:∀i < n, ‖b∗i ‖ ≤ √
νn−i+1·

(
∏n

j=i ‖b∗j‖)
1

n−i+1 .

The BKZ algorithm. We recall the original BKZ algorithm from [37] in Al-
gorithm 1. BKZ was originally proposed as a mean of computing bases that are
almost β-reduced. β-Reduction was proposed by Schnorr in [33], but without an
algorithm for achieving it. The BKZ algorithm proceeds by iterating tours consist-
ing of n − 1 calls to a β-dimensional SVP solver called on the lattices
L[(b(k)

i)k≤i≤k+β−1]. Its execution stops when no change occurs during a tour.

Input : A (LLL-reduced) basis (bi)i≤n, a blocksize β and a constant δ < 1.
Output : A basis of L[(bi)i≤n].
repeat

for k← 1 to n− 1 do
Find b such that ‖b(k)‖ = λ1(L[(b

(k)
i)k≤i≤min(k+β−1,n)]);

if δ · ‖b∗
k‖ > ‖b‖ then

LLL-reduce(b1, . . . , bk−1, b, bk, . . . , bmin(k+β,n)).
else

LLL-reduce(b1, . . . , bmin(k+β,n)).
until no change occurs.

Algorithm 1. The Schnorr and Euchner BKZ algorithm

3 Terminating BKZ

In this article, we will not analyze the original BKZ algorithm, but we will
focus on a slightly modified variant instead, which is given in Algorithm 2. It
also performs BKZ tours, and during a tour it makes n − β + 1 calls to a β-
dimensional HKZ-reduction algorithm. It fits more closely to what would be the
simplest BKZ-style algorithm, aiming at producing a basis (bi)i≤n such that the
projected basis (b(k)

i)k≤i≤k+β−1 is HKZ-reduced for all k ≤ n− β + 1.

Differences between the two variants of BKZ. The differences between
the two algorithms are the following:

Analyzing Blockwise Lattice Algorithms 453

• In Algorithm 2, the execution can be terminated at the end of any BKZ
tour.

• In the classical BKZ algorithm, the vector b found by the SVP solver is kept
only if ‖b(k)‖ is smaller than δ · ‖b∗k‖. Such a factor δ < 1 does not appear
in Algorithm 2. It is unnecessary for our analysis to hold, complicates the
algorithm, and leads to output bases of lesser quality.

• For each k within a tour, Algorithm 1 only requires an SVP solver while
Algorithm 2 calls an HKZ-reduction algorithm, which is more complex. We
use HKZ-reductions for the ease of the analysis. Our analysis would still
hold if the loop was done for k from 1 to n − 1 and if the HKZ-reductions
were replaced by calls to any algorithm that returns bases whose first vector
reaches the minimum (which can be obtained by calling any SVP solver,
putting the output vector in front of the input basis and calling LLL to
remove the linear dependency).

• Finally, to insert b in the current basis, Algorithm 1 performs an LLL-
reduction. Indeed, applying LLL inside the projected block (i.e., to b(k), b

(k)
k ,

. . . , b
(k)
k+β−1) would be sufficient to remove the linear dependency while keep-

ing b(k) in first position, but instead it runs LLL from the beginning of
the basis until the end of the next block to be considered (i.e., up to in-
dex min(k + β, n). This reduction is performed even if the block is already
reduced and no vector is inserted. Experimentally, this seems to improve the
speed of convergence of the algorithm by a small factor, but it does not seem
easy to use our techniques to analyze this effect.

Input : A basis (bi)i≤n and a blocksize β.
Output : A basis of L[(bi)i≤n].
repeat

for k← 1 to n− β + 1 do
Modify (bi)k≤i≤k+β−1 so that (b

(k)
i)k≤i≤k+β−1 is HKZ-reduced;

Size-reduce(b1, . . . , bn).
until no change occurs or termination is requested.

Algorithm 2. BKZ’, the modified BKZ algorithm

On the practical behavior of BKZ. In order to give an insight on the practi-
cal behavior of BKZ and BKZ’, we give experimental results on the evolution of
the quantity ‖b1‖

(detL)1/n (the so-called Hermite factor) during their executions. The
experiment corresponding to Figure 1 is as follows: We generated 64 knapsack-
like bases [25] of dimension n = 108, with non-trivial entries of bit-length 100n;
Each was LLL-reduced using fplll [4] (with parameters δ = 0.99 and η = 0.51);
Then for each we ran NTL’s BKZ [40] and an implementation of BKZ’ in NTL,
with blocksize 24. Figure 1 only shows the beginning of the executions. For both
algorithms, the executions of about half the samples consisted in � 600 tours,
whereas the longest execution stopped after � 1200 tours. The average value
of ‖b1‖

(det L)1/n at the end of the executions was � 1.012.

454 G. Hanrot, X. Pujol, and D. Stehlé

 1.012

 1.013

 1.014

 1.015

 1.016

 1.017

 1.018

 1.019

 1.02

 1.021

 0 20 40 60 80 100

H
er

m
ite

 fa
ct

or

Number of tours

Quality of BKZ output

BKZ
BKZ’

Fig. 1. Evolution of the Hermite factor ‖b1‖
(det L)1/n during the execution of BKZ and

BKZ’

Cost of BKZ’. In order to bound the bit-complexities of BKZ and BKZ’, it is
classical to consider several cost components separately. In this article, we will
focus on the number of tours. The number of calls to an SVP solver (for BKZ)
or an HKZ-reduction algorithm (in the case of BKZ’) is ≤ n times larger. A tour
consists of efficient operations (LLL, size-reductions, etc) and of the more costly
calls to SVP/BKZ. The cost of the SVP solver or the HKZ-reduction algorithm
is often bounded in terms of the number of arithmetic operations it performs:
For all known algorithms, this quantity is (at least) exponential in the block-
size β. Finally, one should also take into account the bit-costs of the arithmetic
operations performed to prepare the calls to SVP/HKZ, during these calls, and
after these calls (when applying the computed transforms to the basis, and call-
ing LLL or a size-reduction). These arithmetic costs are classically bounded by
considering the bit-sizes of the quantities involved. They can easily be shown to
be polynomial in the input bit-size, by relying on rational arithmetic and using
standard tools from the analyses of LLL and HKZ [16,15]. It is likely that these
costs can be lowered further by relying on floating-point approximations to these
rational numbers, using the techniques from [26,30]. To conclude, the overall cost
is upper bounded by Poly(n, log ‖B‖) · 2O(β) · τ , where τ is the number of tours.

4 Analysis of BKZ’ in the Sandpile Model

In this section, we (rigorously) analyze a heuristic model of BKZ’. In the following
section, we will show how this analysis can be adapted to allow for a (rigorous)
study of the genuine BKZ’ algorithm.

Analyzing Blockwise Lattice Algorithms 455

We first note that BKZ’ can be studied by looking at the way the vec-
tor x := (log ‖b∗i ‖)i changes during the execution, rather than considering the
whole basis (bi)i. This simplification is folklore in the analyses of lattice reduc-
tion algorithms, and allows for an interpretation in terms of sandpiles [19]. The
study in the present section is heuristic in the sense that we assume the effect
of a call to HKZβ on x is determined by x only, in a deterministic fashion.

4.1 The Model and Its Dynamical System Interpretation

Before describing the model, let us consider the shape of a β-dimensional HKZ-
reduced basis. Let (bi)i≤β be an HKZ-reduced basis, and define xi = log ‖b∗i ‖.
Then, by Lemma 1, we have:

∀i ≤ β, xi ≤ 1
2

log νβ−i+1 +
1

β − i + 1

β∑
j=i

xj . (3)

Our heuristic assumption consists in replacing these inequalities by equalities.

Heuristic Sandpile Model Assumption (SMA). We assume for any HKZ-
reduced basis (bi)i≤β , we have xi = 1

2 log νβ−i+1 + 1
β−i+1

∑β
j=i xj for all i ≤ β,

with x = (log ‖b∗i ‖)i≤β .
Under SMA, once

∑
i xi (i.e., | det(bi)i|) is fixed, an x of an HKZ-reduced

basis is uniquely determined.

Lemma 2. Let (bi)i≤β be HKZ-reduced, x = (log ‖b∗i ‖)i and E[x] =
∑

i≤β
xi

β .
Then, under SMA, xβ = E[x] − Γβ(β − 1) and:

∀i < β, xi = E[x] − (β − i + 1)Γβ(i− 1) + (β − i)Γβ(i),

with Γn(k) =
∑n−1

i=n−k
log νi+1

2i for all 0 ≤ k < n.

We now exploit SMA to interpret BKZ’ as a discrete-time linear dynamical
system. Let (bi)i≤n be a lattice basis and x = (log ‖b∗i ‖)i. Let β ≤ n be a block-
size and α ≤ n − β + 1. When we apply an HKZ reduction algorithm to the
projected sublattice (b(α)

i)α≤i<α+β−1, we obtain a new basis (b′
i)i≤n such that

(with x′ = (log ‖b′∗i ‖)i):

α+β−1∑
i=α

x′
i =

α+β−1∑
i=α

xi and ∀i �∈ [α, α + β − 1], x′
i = xi.

Under SMA, we also have:

∀i ∈ [α, α + β − 1], x′
i =

1
2

log να+β−i +
1

α + β − i

α+β−1∑
j=i

x′
j .

456 G. Hanrot, X. Pujol, and D. Stehlé

By applying Lemma 2, we obtain x′ = A(α) · x + g(α), with:

A(α) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .
1

1
β · · · 1

β (α)

...
. . .

...
1
β · · · 1

β (α+β−1)

1
. . .

g
(α)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if i < α

(β + α− i− 1)Γβ(i− α + 1) − (β + α− i)Γβ(i− α)
if i ∈ [α, α + β − 2]

−Γβ(β − 1) if i = α + β − 1
0 if i ≥ α + β.

We recall that a BKZ’ tour is the successive (n − β + 1) applications of an
HKZ-reduction algorithm with α = 1, . . . , n−β +1 (in this order). Under SMA,
the effect of a BKZ’ tour on x is to replace it by Ax + g with g = g(n−β+1) +
A(n−β+1) · (g(n−β) + A(n−β) · (. . .)) and:

A = A(n−β+1) · . . . ·A(1) =

(1) (β)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
β · · · 1

β
β−1
β2 · · · β−1

β2
1
β

...
...

.
(β−1)n−β

βn−β+1 · · · (β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n−β+1)

...
...

...
...

(β−1)n−β

βn−β+1 · · · (β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n)

.

We sum up the study of the discrete-time dynamical system x ← A · x + g
in the following Theorem. The solutions and speed of convergence respectively
provide information on the output quality and runtime of BKZ’ (under SMA).
Overall, we have:

Theorem 2. Under SMA, there exists C > 0 such that the following holds
for all n and β. Let (bi)i≤n be given as input to BKZ’β and L the lattice
spanned by the bi’s. If terminated after C n2

β2 (logn+log log maxi
‖b∗

i ‖
(det L)1/n) tours,

then the output (ci)i≤n is a basis of L that satisfies ‖x − x∞‖2 ≤ 1, where

Analyzing Blockwise Lattice Algorithms 457

xi = log ‖c∗
i ‖

(detL)1/n for all i and x∞ is the unique solution of the equation x∞ =
A · x∞ + g with E[x∞] = 0. This implies that:5

‖c1‖ ≤ 2(νβ)
n−1

2(β−1) + 3
2 · (detL)

1
n .

4.2 Solutions of the Dynamical System

Before studying the solutions of x = A · x + g, we consider the associated
homogeneous system.

Lemma 3. If A · x = x, then x ∈ span(1, . . . , 1)T .

It thus suffices to find one solution to x = A · x + g to obtain all the solutions.
We define x as follows:

xi =

{
β

2(β−1) log νβ + 1
β−1

∑i+β−1
j=i+1 xj if i ≤ n− β

g
(n−β+1)
i if i > n− β

.

Lemma 4. We have x = A · x + g.

We now provide explicit lower and upper bounds for the coordinates of the
solution x.

Lemma 5. For all i ≤ n − β + 1, we have
(

n−i
β−1 − 3

2

)
log νβ ≤ xi − xn−β+1 ≤

n−i
β−1 log νβ.

We refer to [10] for proofs Lemmata 3, 4, 5.
As the set of solutions to x = A ·x + g is x + Span(1, . . . , 1)T , the value of x

is only interesting up to a constant vector, which is why we bound xi − xn−β+1

rather than xi. In other words, since x∞ of Theorem 1 is x−(E[x])i, the Lemma
also applies to x∞. It is also worth noting that the difference between the upper
and lower bounds 3

2 log νβ is much smaller than the upper bound n−i
β−1 log νβ (for

most values of i). If we replace νβ by β, then, via a tedious function analysis,
we can improve both bounds so that their difference is lowered to 1

2 log β. In the
special case β = 2, the expression of x is xi = xn + (n− i) log ν2.

4.3 Speed of Convergence of the Dynamical System

The classical approach to study the speed of convergence (with respect to k) of
a discrete-time dynamical system xk+1 := An · xk + gn (where An and gn are
the n-dimensional values of A and g respectively) consists in providing an upper
bound to the largest eigenvalue of AT

nAn. It is relatively easy to prove that it
is 1 (note that An is doubly stochastic). We are to show that the second largest
5 If we replace νβ by a linear function that bounds it (e.g., νβ ≤ β), then the constant 3

2

may be replaced by 1−ln 2
2

+ ε (with ε > 0 arbitrarily close to 0 and β sufficiently
large).

458 G. Hanrot, X. Pujol, and D. Stehlé

singular value is < 1 − β2

2n2 , and that this bound is sharp, up to changing the
constant 1/2 and as long as n− β = Ω(n).

The asymptotic speed of convergence of the sequence (Ak
n · x)k is in fact

determined by the eigenvalue(s) of An of largest module6 (this is the principle of
the power iteration algorithm). However, this classical fact provides no indication
on the dependency with respect to x, which is crucial in the present situation.
As we use the bound ‖Ak

n ·x‖ ≤ ‖An‖k
2 · ‖x‖, we are led to studying the largest

singular values of AT
nAn.

We first explicit the characteristic polynomial χn of AT
nAn. The following

lemma shows that it satisfies a second order recurrence formula.

Lemma 6. We have χβ(t) = tβ−1(t−1), χβ+1(t) = tβ−1(t−1)(t− 1
β2) and, for

any n ≥ β:

χn+2(t) =
(2β(β − 1) + 1)t− 1

β2
· χn+1(t) −

(
β − 1
β

)2

t2 · χn(t).

This is used to study the roots of χn(t). The proof of the following result relies
on several changes of variables to link the polynomials χn(t) to the Chebyshev
polynomials of the second kind.

Lemma 7. For any n ≥ β ≥ 2, the largest root of the polynomial χn(t)
t−1 belongs

to
[
1 − π2β2

(n−β)2 , 1 − β2

2n2

]
.

We refer to [10] for proofs of Lemmata 6 and 7.

Proof of Theorem 2. The unicity and existence of x∞ come from Lemmata 3
and 4.

Let (b(k)
i)i≤n be the basis after k tours of the algorithm BKZ’β and x

(k)
i =

log ‖b
(k)∗
i ‖

(detL)1/n . The definition of x∞ and a simple induction imply that x(k)−x∞ =

Ak(x(0) − x∞). Both x(0) and x∞ live in the subspace E := Span(1, . . . , 1)⊥,
which is stabilized by A. Let us denote by AE the restriction of A to this subspace.
Then the largest eigenvalue of AT

EAE is bounded in Lemma 7 by
(
1 − β2

2n2

)
.

Taking the norm in the previous equation gives:

‖x(k) − x∞‖2 ≤ ‖AE‖k
2 · ‖x(0) − x∞‖2 = ρ(AT

E AE)k/2 · ‖x(0) − x∞‖2

≤
(

1 − β2

2n2

)k/2

‖x(0) − x∞‖2.

The term ‖x(0) −x∞‖2 is bounded by
(
log maxi ‖b∗

i ‖
(det L)1/n

)
n+nO(1). Thus, there ex-

ists C such that ‖x(k) −x∞‖2 ≤ 1 when k ≥ C n2

β2 (logn+log log maxi
‖b∗

i ‖
(detL)1/n).

6 Which can also be proved to be ≤ 1− cβ2/n2 for some constant c.

Analyzing Blockwise Lattice Algorithms 459

We now prove the last inequality of the theorem. By Lemma 5 and the fact
that

∑n
i=n−β+1 x∞

i ≥ βx∞
n−β+1 +

∑n
i=n−β+1

(
log νβ

β−1 (n− i) − 3
2 log νβ

)
, we have:

x∞
1 ≤ (n− 1)

log νβ

β − 1
− 1

n

n∑
i=1

(
log νβ

β − 1
(n− i) − 3

2
log νβ

)
=
(

n− 1
2(β − 1)

+
3
2

)
log νβ.

Using the inequality x
(k)
1 ≤ x∞

1 + 1 and taking the exponential (in base 2) leads
to the result. ��

5 Analysis of BKZ’

We now show how the heuristic analysis of the previous section can be made
rigorous. The main difficulty stems from the lack of control on the ‖b∗i ‖’s of an
HKZ-reduced basis (bi)i≤β . More precisely, once the determinant and ‖b∗β‖ are
fixed, the ‖b∗i ‖’s are all below a specific curve (explicitly given in Lemma 2).
However, if only the determinant is fixed, the pattern of the ‖b∗i ‖’s can vary
significantly: as an example, taking orthogonal vectors of increasing norms shows
that ‖b∗1‖ (resp. ‖b∗β‖) can be arbitrarily small (resp. large). Unfortunately, when
applying HKZ within BKZ’, it seems we only control the determinant of the
HKZ-reduced basis of the considered block, although we would prefer to have
an upper bound for each Gram-Schmidt norm individually. We circumvent this
difficulty by amortizing the analysis over the ‖b∗i ‖’s: as observed in [11], we have
a sharp control on each average of the first ‖b∗i ‖’s. For an arbitrary basis B :=
(bi)i≤n, we define μ

(B)
k = 1

k

∑
1≤i≤k log ‖b∗i ‖, for k ≤ n.

Lemma 8 ([11, Le. 3]). If B = (bi)i≤β is HKZ-reduced, then μ
(B)
k ≤

β−k
k logΓβ(k) + μ

(B)
β for all k ≤ β.

5.1 A Dynamical System for (Genuine) BKZ’ Tours

We now reformulate the results of the previous section with the μ
(B)
i ’s instead

of the log ‖b∗i ‖’s. This amounts to a base change in the discrete-time dynamical
system of Subsection 4.1. We define:

P = (1
i 1i≥j)1≤i,j≤n, Ã = PAP−1 and g̃ = P · g.

Note that μ(B) = P · x(B), where x(B) = (log ‖b∗i ‖)i and μ(B) = (μ(B)
i)i.

Lemma 9. Let B′ be the basis obtained after a BKZ’ tour given an n-dimensional
basis B as input. Then μ(B′) ≤ Ã · μ(B) + g̃, where the inequality holds
componentwise.

460 G. Hanrot, X. Pujol, and D. Stehlé

5.2 Analysis of the Updated Dynamical System

Similarly to the analysis of the previous section, it may be possible to obtain
information on the speed of convergence of BKZ’ by estimating the eigenvalues
of ÃT · Ã. However, the latter eigenvalues seem significantly less amenable to
study than those of ATA. The following lemma shows that we can short-circuit
the study of the modified dynamical system. For a basis B ∈ Rn×n given as
input to BKZ’β, we define B[0] = B and B[i] as the current basis after the i-th
BKZ’ tour. We also define μ∞ = P · x∞.

Lemma 10. Let B ∈ Rn×n a basis given as input to BKZ’β . Wlog we assume
that μ(B)

n = μ∞
n (since μ

(B)
n = 1

n log | detB|, this can be achieved by multiplying B
by a scalar). We have:

∀k ≥ 0, ∀i ≤ n, μ
(B[k])
i ≤ μ∞

i + (1 + logn)1/2 ·
(
1 − β2

2n2

)k/2

‖x(B[0]) − x∞‖2.

Lemma 11. There exists C > 0 such that the following holds for all inte-
gers n ≥ β, and ε ∈ (0, 1]. Let (bi)i≤n be a basis of a lattice L, given as in-
put to the modified BKZ’ algorithm of Section 2 with block-size β. If terminated
after C n3

β2 (log n
ε + log log maxi

‖b∗
i ‖

(detL)1/n) calls to an HKZ-reduction (resp. SVP
solver) in dimension β, the output (ci)i≤n is a basis of L that satisfies:

‖c1‖ ≤ (1 + ε)νβ

n−1
2(β−1) + 3

2 · (detL)
1
n .

Theorem 1 corresponds to taking ε = 1 in Lemma 11. Also, when β = 2, using
the explicit expression of x∞ leads to the improved bound ‖c1‖ ≤ (1 + ε) ·
(ν2)

n−1
2 · (detL)

1
n .

6 Applications to LLL-Reduction

In this section, we investigate the relationship between BKZ’2 reduction and the
notion of LLL-reduction [16]. Note that analogues of some of the results of this
section have been concurrently and independently obtained by Schnorr [35].

Reminders on the LLL algorithm. The LLL algorithm with parameter δ pro-
ceeds by successive loop iterations. Each iteration has a corresponding index k,
defined as the smallest such that (bi)i≤k is not δ-LLL-reduced. The iteration con-
sists in size-reducing (bi)i≤k and then checking Lovász’s condition δ‖b∗k−1‖2 ≤
‖b∗k‖2 + μ2

k,k−1‖b∗k−1‖2. If it is satisfied, then we proceed to the next loop itera-
tion, and otherwise, we swap the vectors bk and bk−1. Any such swap decreases
the quantity Π((bi)i) =

∏n
i=1 ‖b∗i ‖2(n−i+1) by a factor ≥ 1/δ whereas it remains

unchanged during size-reductions. Since Π((bi)i) ≤ 2O(n2 size(B))) and since for
any integer basis Π((bi)i) is an integer, this allows to prove termination within
O(n2 size(B)) loop iterations when δ < 1. When δ = 1, we obtain the so-called
optimal LLL algorithm. Termination can still be proven by using different argu-
ments, but with a much larger bound 2Poly(n) · Poly(size(B)) (see [3,17]).

Analyzing Blockwise Lattice Algorithms 461

An iterated version of BKZ’2. We consider the algorithm Iterated-BKZ’2
(described in Algorithm 3) which given as input a basis (bi)i≤n successively
applies BKZ’2 to the projected bases (bi)i≤n, (b(2)

i)2≤i≤n, . . . , (b(n−1)
i)n−1≤i≤n.

By using a quasi-linear time Gauss reduction algorithm (see [39,41]) as the HKZ2

algorithm within BKZ’2, Algorithm Iterated-BKZ’2 can be shown to run in quasi-
linear time.

Input : A basis (bi)i≤n of a lattice L.
Output : A basis of L.
for k := 1 to n− 1 do

Apply BKZ’2 to the basis (b
(k)
i)k≤i≤n;

Let T be the corresponding transformation matrix;
Update (bi)i≤n by applying T to (bi)k≤i≤n.

Return (bi)i≤n.

Algorithm 3. Iterated-BKZ’2 Algorithm

Lemma 12. Let B be a basis of an n-dimensional lattice, and ε > 0 be arbi-
trary. Then, using Algorithm Iterated-BKZ’2, one can compute, in time Poly(n)·
Õ(size(B)), a basis (b′

i)i≤n such that

∀i ≤ n, ‖b′i∗‖ ≤ (1 + ε)
(

4
3

)n−i
2

·
(n∏

j=i

‖b′i∗‖
) 1

n−i+1

. (4)

A close analogue of the optimal LLL. Let B = (bi)i≤n an integral ba-
sis output by Iterated-BKZ’2. For i ≤ n, we let pi, qi be coprime rational
integers such that pi

qi
=

(
3
4

)(n−i+1)(n−i) · ‖bi
∗‖2(n−i+1)∏n
j=i ‖bj

∗‖2 . By (4), we know

that pi/qi ≤ (1 + ε)n−i+1. Note that pi/qi is a rational number with denom-
inator ≤ 2O(n2+size (B)). We can thus find a constant c such that, for all i,
the quantity |pi/qi − 1| is either 0 or ≥ 2−c(n2+size (B)). Hence, if we choose
ε < 1

2n .2−c(n2+size(B′)), all the inequalities from (4) must hold with ε = 0. Over-
all, we obtain, in polynomial time and using only swaps and size-reductions, a
basis for which (4) holds with ε = 0.

A quasi-linear time LLL-reduction algorithm. BKZ’2 can be used to obtain
a variant of LLL which given as input an integer basis (bi)i≤n and δ < 1 returns
a δ-LLL-reduced basis of L[(bi)i≤n] in time Poly(n) · Õ(size(B)). First, we apply
the modification from [18, p. 25] to a terminated BKZ’2 so that the modified
algorithm, when given as input an integer basis (bi)i≤n and ε > 0, returns
in time Poly(n) · Õ(size(B)) a basis (b′i)i≤n of L[(bi)i≤n] such that ‖b′1‖ ≤
(1+ ε)2(4/3)n−1λ1(L). The complexity bound holds because the transformation
from [18, p. 25] applies BKZ’2 n times on bases whose bit-sizes are Poly(n) ·
Õ(size(B)).

We iterate this algorithm n times on the projected lattices (b(k)
i)k≤i≤n so that

the output basis (ci)i≤n of L[(bi)i≤n] satisfies:

∀i ≤ n, ‖ci
∗‖ ≤ (1 + ε)2(4/3)n−iλ1(L[(b(i)

j)i≤j≤n]). (5)

462 G. Hanrot, X. Pujol, and D. Stehlé

It follows from inequalities and the size-reducedness of (ci)1≤i≤n that size(C) =
Poly(n) · size(B).

We call δ-LLL’ the successive application of the above algorithm based on
BKZ’2 and LLL with parameter δ. We are to prove that the number of loop
iterations performed by δ-LLL is Poly(n).

Theorem 3. Given as inputs a basis B ∈ Zn×n of a lattice L and δ < 1,
algorithm δ-LLL’ algorithm outputs a δ-LLL-reduced basis of L within Poly(n) ·
Õ(size(B)) bit operations.

Proof. With the same notations as above, it suffices to prove that given as in-
put (ci)i≤n, algorithm δ-LLL terminates within Poly(n) · Õ(size(C)) bit oper-
ations. Let (c′i)i≤n be the output basis. As size-reductions can be performed
in time Poly(n) · Õ(size(C))), it suffices to show that the number of loop it-
erations of δ-LLL given (ci)i≤n as input is Poly(n). To do this, it suffices to
bound Π((ci)i≤n)

Π((c′
i)i≤n) by 2Poly(n).

First of all, we have λ1(L[(c(i)
j)i≤j≤n]) ≤ λi(L), for all i ≤ n. Indeed, let

v1, . . . ,vi ∈ L be linearly independent such that maxj≤i ‖vj‖ ≤ λi(L); at least
one of them, say v1, remains non-zero when projected orthogonally to Span
(cj)j<i. We thus have λ1(L[(c(i)

j)i≤j≤n]) ≤ ‖v1‖ ≤ λi(L). Now, using (5), we
obtain:

Π((ci)i≤n) =
n∏

i=1

‖ci
∗‖2(n−i+1) ≤ 2O(n3)

n∏
i=1

λi(L)2(n−i+1).

On the other hand, we have (see [16, (1.7)]) λi(L) ≤ maxj≤i ‖c′j‖
≤ (1√

δ−1/4
)i−1‖c′∗

i ‖, for all i ≤ n. As a consequence, we have Π((c′i)i≤n) ≥
2−O(n3) · ∏n

i=1 λi(L)2(n−i+1). This completes the proof. ��

Acknowledgments. We thank N. Gama and P. Q. Nguyen for explaining to
us their bound on the number of tours of the original BKZ algorithm. We also
thank C.-P. Schnorr for helpful discussions. The authors were partly supported
by the LaRedA ANR grant and an ARC Discovery Grant DP110100628.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proc. of STOC, pp. 99–108. ACM, New York (1996)

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proc. of STOC, pp. 601–610. ACM, New York (2001)

3. Akhavi, A.: Worst-case complexity of the optimal LLL algorithm. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 355–366. Springer, Heidelberg
(2000)

4. Cadé, D., Pujol, X., Stehlé, D.: fplll-3.1, a floating-point LLL implementation,
http://perso.ens-lyon.fr/damien.stehle

http://perso.ens-lyon.fr/damien.stehle

Analyzing Blockwise Lattice Algorithms 463

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

6. Gama, N., Howgrave-Graham, N., Koy, H., Nguyên, P.Q.: Rankin’s constant and
blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 112–130. Springer, Heidelberg (2006)

7. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Proc. of STOC, pp. 207–216. ACM, New York (2008)

8. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

9. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. TR96-056 (1996), http://www.eccc.uni-trier.de/

10. Hanrot, G., Pujol, X., Stehlé, D.: Terminating BKZ. Cryptology ePrint Archive
(2011), http://eprint.iacr.org/2011/198

11. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector algo-
rithm (extended abstract). In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 170–186. Springer, Heidelberg (2007)

12. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In: Proc. of STOC, pp. 469–477. ACM, New
York (2007)

13. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM ap-
proaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

15. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proc. of STOC, pp. 99–108. ACM, New York (1983)

16. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

17. Lenstra Jr., H.W.: Flags and lattice basis reduction. In: Proceedings of the Third
European Congress of Mathematics, vol. 1. Birkhäuser, Basel (2001) 1

18. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia
(1986)

19. Madritsch, M. G., Vallée, B.: Modelling the LLL algorithm by sandpiles. In: López-
Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 267–281. Springer, Heidelberg
(2010)

20. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Heidelberg (2002)
21. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-

mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

22. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: Proc. of STOC, pp.
351–358. ACM, New York (2010)

23. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proc. of SODA. ACM, New York (2010)

24. Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem
from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–
304. Springer, Heidelberg (1999)

http://www.eccc.uni-trier.de/
http://eprint.iacr.org/2011/198

464 G. Hanrot, X. Pujol, and D. Stehlé

25. Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

26. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J.
Comput. 39(3), 874–903 (2009)

27. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

28. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications.
Information Security and Cryptography. Springer, Heidelberg (2009)

29. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-
linear time complexity. To Appear in the Proceedings of STOC (2011),
http://prunel.ccsd.cnrs.fr/ensl-00534899/en

30. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer,
Heidelberg (2008)

31. Regev, O.: The learning with errors problem. In: Invited Survey in CCC 2010
(2010), http://www.cs.tau.ac.il/~odedr/

32. Schnorr, C.P.: Progress on LLL and lattice reduction. In: [28]
33. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor.

Comput. Science 53, 201–224 (1987)
34. Schnorr, C.P.: Block reduced lattice bases and successive minima. Combinatorics,

Probability and Computing 3, 507–533 (1994)
35. Schnorr, C.P.: Accelerated slide- and LLL-reduction. Electronic Colloquium on

Computational Complexity (ECCC) 11(50) (2011)
36. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991)

37. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Mathematics of Programming 66, 181–199 (1994)

38. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

39. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: Pro-
ceedings of the 1991 International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC 1991), pp. 128–133. ACM, New York (1991)

40. Shoup, V.: NTL, Number Theory C++ Library, http://www.shoup.net/ntl/
41. Yap, C.K.: Fast unimodular reduction: planar integer lattices. In: Proceedings of

the 1992 Symposium on the Foundations of Computer Science (FOCS 1992), pp.
437–446. IEEE Computer Society Press, Los Alamitos (1992)

http://prunel.ccsd.cnrs.fr/ensl-00534899/en
http://www.cs.tau.ac.il/~odedr/
http://www.shoup.net/ntl/

Pseudorandom Knapsacks and the Sample

Complexity of LWE Search-to-Decision
Reductions�

Daniele Micciancio and Petros Mol

Department of Computer Science & Engineering,
University of California, San Diego
{daniele,pmol}@cs.ucsd.edu

Abstract. We study the pseudorandomness of bounded knapsack func-
tions over arbitrary finite abelian groups. Previous works consider only
specific families of finite abelian groups and 0-1 coefficients. The main
technical contribution of our work is a new, general theorem that pro-
vides sufficient conditions under which pseudorandomness of bounded
knapsack functions follows directly from their one-wayness. Our results
generalize and substantially extend previous work of Impagliazzo and
Naor (J. Cryptology 1996).

As an application of the new theorem, we give sample preserving
search-to-decision reductions for the Learning With Errors (LWE) prob-
lem, introduced by (Regev, STOC 2005) and widely used in lattice-based
cryptography. Concretely, we show that, for a wide range of parameters,
m LWE samples can be proved indistinguishable from random just un-
der the hypothesis that search LWE is a one-way function for the same
number m of samples.

1 Introduction

The Learning With Errors (LWE) problem, introduced by Regev in [31], is the
problem of recovering a secret n-dimensional integer vector s ∈ Zn

q , given a
collection of perturbed random equations ais ≈ bi where ai ∈ Zn

q is chosen uni-
formly at random and bi = ais + ei for some small, randomly chosen error term
ei. In recent years, LWE has been used to substantially expand the scope of
lattice based cryptography, yielding solutions to many important cryptographic
tasks, including public key encryption secure against passive [31,20,29] and active
attacks [30,28], (hierarchical) identity based encryption [14,10,1,2], digital signa-
tures [14,10], oblivious transfer protocols [29], several forms of leakage resilient
encryption [5,6,11,16], homomorphic encryption [13] and more. The versatility

� This research was supported in part by NSF under grants CNS-0831536 and CNS-
0716790. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation. This is an extended abstract of the work. For the full
version, see the authors’ webpage.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 465–484, 2011.
c© International Association for Cryptologic Research 2011

466 D. Micciancio and P. Mol

of the LWE problem in the construction of a plethora of cryptographic applica-
tions is due in large part to its pseudorandomness properties: as proved in [31],
if recovering (with high1 probability) the secret s from the samples (ai,ais+ ei)
is computationally hard, then it is also hard to distinguish the LWE samples
(ai, ais + ei) from uniformly random ones (ai, bi) where the bi ∈ Zq are chosen
uniformly and independently at random. In other words, any efficient distin-
guisher (between the LWE and uniform distributions) can be turned into an
inverter that recovers the secret s, with only a polynomial slow-down.

On the theoretical side, cryptography based on LWE is supported by deep
worst-case/average-case connections [31,28], showing that any algorithm that
solves LWE (on the average) can be efficiently converted into a (quantum) al-
gorithm to solve the (worst-case) hardest instances of several famous lattice
approximation problems which are believed to be intractable, including approxi-
mating the minimum distance of a lattice within factors that grow polynomially
in the dimension, and related problems [23]. It should be remarked that, while
such proofs of security based on worst-case lattice assumptions provide a solid
theoretical justification for the probability distributions used in LWE cryptogra-
phy, they are hardly useful in practice: in order to get meaningful estimates on
the hardness of breaking LWE cryptography, it is generally more useful and ap-
propriate to conjecture the average-case hardness of solving LWE, and use that
as a starting point. In fact, all recent work aimed at determining appropriate key
sizes and security parameters [26,22,33] follows this approach, and investigates
experimentally the concrete hardness of solving LWE on the average.

In light of that, LWE is best formulated as the problem of inverting the one-
way function family (indexed by a random matrix A ∈ Zm×n

q , where m is the
number of samples) that maps the secret s and error vector e to Ax + e. The
search-to-decision reduction of [31] shows that if the LWE function family is one-
way, then it is also a good pseudorandom generator. However, the reduction in
[31] somehow hides a very important detail: the value of m for which the function
is assumed to be one-way is much higher (still polynomially related) to the value
of m for which the output of the function is pseudorandom. While theoretical
results based on worst-case lattice problems are fairly insensitive to the value of
m (i.e., the number of samples used in the LWE instance), this number becomes
more important and relevant when considering concrete attacks on the average-
case hardness of LWE.

For instance, recent algorithmic results [7], show that when the errors ei are
sufficiently small, the LWE problem can be solved in subexponential (or even
polynomial) time, provided a sufficiently large (but still polynomial) number of
samples is available. Therefore, for certain ranges of the parameters, the number
of available samples can have a significant impact on the computational hardness
of the LWE problem. Likewise, some lattice attacks perform better in practice
when given many (typically ω(n)) samples [26]. However, LWE-based encryp-
tion schemes (e.g., see [22]) typically expose only a small number of samples (say,

1 Due to the self-reducibility properties of the LWE problem, here “high” can be
interpreted in a variety of ways, ranging from “nonnegligible” to “very close to 1”.

Pseudorandom Knapsacks and the Sample Complexity of LWE 467

comparable to the dimension n of the LWE secret s) during key generation and
encryption. Fixing the number of available samples to a small value may signif-
icantly reduce the effectiveness of concrete attacks, and increase our confidence
in the security of the schemes.

It should also be noted that when the number of available samples is above a
certain threshold, one can efficiently generate an arbitrary number of additional
samples [14,6,32], but at the cost of increasing the magnitude of the errors. So,
for certain other ranges of the parameters the impact of increasing the number
of samples may not be as critical as in [7]. Still, even in such situations, using
a large number of samples comes at the price of lowering the quality of the
samples, which can negatively impact the concrete security and performance of
LWE-based cryptographic functions.

This motivates the following question: how big of a blow-up in the number of
samples is required to prove the pseudorandomness of the LWE problem, based
on the conjectured hardness of its search (secret recovery) version? The main
result of this paper is that, perhaps surprisingly, in most common applications
of LWE in cryptography, no such blow-up is necessary at all: there is a sample
preserving reduction from solving the search LWE problem (with nonnegligible
success probability) to the problem of distinguishing the LWE distribution from
random (with nonnegligible advantage). At the core of our result is a general
theorem about the pseudorandomness of the bounded knapsacks over arbitrary
groups, that substantially extends previous results in the area and might be of
independent interest.

Contributions and Applications. Let (G,+) be a finite abelian group, and
g = (g1, . . . , gm) ∈ Gm a sequence of group elements chosen uniformly at ran-
dom. The group elements g define a knapsack function fg(x) that maps the
vector x ∈ Zm to the group element fg(x) =

∑
i xigi. If the input x is restricted

to vectors with small entries, then for a large variety of groups G, fg is conjec-
tured to be a one-way function family, i.e., a family of functions that are hard to
invert on average when the key g is chosen uniformly at random. For example,
when the input x is restricted to the set {0, 1}m of binary vectors, inverting fg is
the famous subset-sum problem, which is conjectured to be hard to solve on av-
erage, and has been extensively studied in cryptography. In a classic paper [18],
Impagliazzo and Naor showed that for some specific, but representative, choices
of the group G, if the subset-sum function is one-way, then it is also a pseudo-
random generator, i.e., it is computationally hard to distinguish (g, fg(x)) from
a uniformly random element of Gm+1, when g ∈ Gm and x ∈ {0, 1}m are chosen
uniformly at random. We generalize the results of [18] in two respects:

– We consider functions over arbitrary groups G. Only groups of the form ZN

were considered in [18], and for two specific (but representative) choices of
N (prime and power of 2).

– We consider input coefficients xi that take values from a set {0, . . . , s} (or
{−s, . . . , s}) for any (polynomially bounded) s. Moreover, we consider arbi-
trary input distributions. By contrast, the results in [18] hold for inputs x
distributed uniformly with coefficients in {0, 1}.

468 D. Micciancio and P. Mol

Both extensions are essential for the sample-preserving search-to-decision LWE
reduction presented in Section 4.2, which requires the pseudorandomness of the
knapsack function over vector groups G = Zk

q , and for inputs x following a
nonuniform (Gaussian) distribution over a sufficiently large set {−s, . . . , s}. Our
main technical result (Theorem 2) shows that for any group G and input dis-
tribution X , the output of the knapsack function is pseudorandom provided the
following two conditions hold:

1. fg is a one-way function family with respect to input distribution X , and
2. certain folded versions of fg (where both the key g and the output fg(x)

are projected onto a quotient group Gd = G/dG for some d ∈ Z,) have
pseudorandom output.

The second condition above may seem to make the statement in the theorem vac-
uous, as it asserts the pseudorandomness of fg assuming the pseudorandomness
of (certain other versions of) fg. The power of the theorem comes from the fact
that the quotient groups Gd considered are very small, so small that in many
important settings the output of the folded knapsack function fg(x) mod dG
is statistically close to uniform. As a technical tool, we provide upper bounds
on the statistical distance between the distribution (g, fg(x)) mod dG and the
uniform distribution over Gm+1

d (Lemma 4). We use these bounds to show that
for many interesting groups and input distributions, the output of the folded
knapsack function is statistically close to uniform. Therefore, as a corollary to
the main theorem, we get that one-wayness of the bounded knapsack function
implies that knapsacks are good pseudorandom generators. Specific groups and
input distributions for which this holds include among others:

– Groups whose order contains only large prime factors, larger than the max-
imum value of the input coefficients. Cyclic groups with prime order and
vector groups Zk

p for prime p fall into this category. This result generalizes
those in [18] from uniform binary input to arbitrary input distributions.

– Distributions that, when folded (modulo small divisors of the order of G,)
maintain high entropy relative to the size of the quotient group G/dG. (See
Theorem 6.) Groups of the form G = Zk

2� and uniform input distribution
over Zm

2i for some i < � satisfy this requirement. This parameter set is a very
attractive choice in practice since both group operations and input sampling
are particularly efficient and easy to implement.

Using the duality between LWE and the knapsack problem [35,25], we obtain
sample preserving search-to-decision reductions for LWE for several interesting
choices of the modulus q and input distribution, which include (among others):

– q = 2 and any error distribution. This directly proves the pseudorandomness
of the well-known Learning Parity with Noise (LPN) problem, as already
established in [9,19], but in a sample-preserving manner.

– prime q and any polynomially bounded error distribution.
– power-of-prime modulus q = pe for p large enough so that the error distri-

bution is concentrated over {−(p− 1)/2, . . . , (p− 1)/2}.
– q = pe for small prime p and uniform error distribution over Zpi (i < e).

Pseudorandom Knapsacks and the Sample Complexity of LWE 469

These results subsume (see below) several previous pseudorandomness results
for LWE [31,6] and LPN [19] but with an important difference. While the proofs
in [31,6,19] require that LWE (resp. LPN) is hard to solve for a very large num-
ber of samples, our reductions are sample preserving : the pseudorandomness of
LWE (resp. LPN) holds, provided the same problem is one-way for the same
number of samples. We remark that previous results are often phrased as reduc-
tions from solving the LWE search problem with high probability, to solving the
LWE decision problem with nonnegligible advantage, combining the search-to-
decision reduction and success probability amplification into a single statement.
By contrast, our reduction shows how to solve the LWE search problem with
nonnegligible probability. Our results subsume previous work in the sense that
the LWE search problem can be solved with high probability by first invoking
our reduction, and then amplifying the success probability using standard rep-
etition techniques. Of course, any such success probability amplification would
naturally carry the cost of a higher sample complexity. We remark that a close
inspection of worst-case to average-case reductions for LWE [31,28] shows that
these reductions directly support the conjecture that LWE is a strong one-way
function. As already discussed, worst-case to average-case reductions do not
provide quantitatively interesting results, and are best used as qualitative argu-
ments to support the conjecture that certain problems are computationally hard
on average. Under the standard conjecture that search LWE is a strong one-way
function, the results in this paper offer a fairly tight, and sample preserving
proof that LWE is also a good pseudorandom generator, which can be efficiently
used for the construction of many other lattice based public key cryptographic
primitives. By contrast, it is not known how to take advantage of the strong
one-wayness of LWE within previous search-to-decision reductions, resulting in
a major degradation of the parameters. Of course, if we change the complexity
assumption, and as a starting point we use the worst-case hardness of lattice
problems or the assumption that LWE is only a weak one-way function, then
our reduction will also necessarily incur a large blow up in sample complexity
through amplification, and lead to quantitatively uninteresting results.

2 Preliminaries

We use N,C,T for the sets of natural, complex and complex numbers of unit
magnitude respectively. We use lower case for scalars, upper case for sets, bold
lower case for vectors and bold upper case for matrices. We use calligraphic
letters for probability distributions and (possibly randomized) algorithms. For
s ∈ N, the set of the first s nonnegative integers is denoted [s] = {0, 1, . . . , s−1}.

2.1 Probability

We write x ← X for the operation of selecting x according to a probability
distribution X or by running probabilistic algorithm X . We use {(x, x′) | x ←
X , x′ ← X} to denote the probability distribution obtained by drawing two

470 D. Micciancio and P. Mol

samples from X independently at random. For any probability distribution X
over set X and any value x ∈ X , Pr{x ← X} is the probability associated to x
by distribution X . The uniform distribution over a set A is denoted U(A), and
the support of a distribution X is denoted [X] = {x ∈ X | Pr{x ← X} > 0}.
The collision probability of X is the probability Col (X) = Pr{x = x′ | x ←
X , x′ ← X} =

∑
x∈[X] Pr{x ← X}2 that two independent identically distributed

samples from X take the same value. The mode of X is the probability of the
most likely value, i.e. mode (X) = maxx∈X Pr{x ← X}. It is easy to see that
Col (X) ≤ mode (X) .

The statistical distance Δ(X ,Y) between distributions X and Y, defined over
the same set X, is the quantity 1

2

∑
x∈X |Pr{x ← X} − Pr{x ← Y}|. The sta-

tistical distance satisfies Δ(f(X), f(Y)) ≤ Δ(X ,Y) for any (possibly proba-
bilistic) function f . Two distributions X ,Y are ε-close if Δ(X ,Y) ≤ ε. They
are (t, ε)-indistinguishable if Δ(D(X),D(Y)) ≤ ε for any probabilistic predicate
D : X → {0, 1} (called the distinguisher) computable in time at most t. Other-
wise, we say that X ,Y are (t, ε)-distinguishable. When Y = U(X) is the uniform
distribution, we use ΔU (X) = Δ(X ,U(X)) as an abbreviation and say that X is
ε-random (resp. (t, ε)-pseudorandom) if it is ε-close (resp. (t, ε)-close) to U(X).

Function families. A function family (F,X) is a collection F = {fi : X →
R}i∈I of functions indexed by i ∈ I with common domain X and range R,
together with a probability distribution X over the input set X ⊇ [X]. For
simplicity, in this paper we always assume that the set of functions is endowed
with the uniform probability distribution U(F). Each function family (F,X)
naturally defines a probability distribution

F(F,X) = {(f, f(x)) | f ← U(F), x ← X} (1)

obtained by selecting a function at random and evaluating it at a random input.
A function family F = (F,X) is called (t, ε)-one-way if there is no (prob-

abilistic) algorithm I running in time at most t such that Pr{f(x) = y |
(f, y) ← F(F,X), x ← I(f, y)} ≥ ε. In this paper it is convenient to use the
related notion of “uninvertible function”. A (t, ε)-inverter for a function fam-
ily (F,X) is a (probabilistic) algorithm I running in time at most t such that
Pr{x = y | f ← U(F), x ← X , y ← I(f, f(x))} ≥ ε. If there exists a (t, ε)-
inverter for a function family (F,X), then we say that (F,X) is (t, ε)-invertible.
A function family such that there is no (t, ε)-inverter is called (t, ε)-uninvertible.
In this paper, we deal with function families that are (almost) injective, i.e. with
overwhelming probability over f ← U(F) and x ← X , there exists no x′ �= x such
that f(x) = f(x′). When this is the case, then one-wayness and uninvertibility
are equivalent notions. A (t, ε)-pseudorandom generator family is a function fam-
ily (F,X) such that the associated distribution (1) is (t, ε)-pseudorandom, i.e.,
it is (t, ε)-indistinguishable from the uniform distribution U(F ×R).

Asymptotics. We use n as a (security) parameter that controls all other param-
eters. Unless otherwise stated, any other parameter (say m) will be polynomi-
ally related to n. We use standard asymptotic notation O(·), Ω(·), o(·), ω(·), etc.

Pseudorandom Knapsacks and the Sample Complexity of LWE 471

We write negl(n) for the set of negligible functions and poly(n) for the set of
polynomially bounded functions. In the asymptotic computational complexity
setting, one often considers probability ensembles, i.e., sequences X = (Xn)n∈N

of probability distributions over possibly different sets Xn ⊇ [Xn]. Two distribu-
tions ensembles X = (Xn)n∈N and Y = (Yn)n∈N are statistically close (denoted
X s≈ Y) if Xn and Yn are ε(n)-close for some negligible function ε(n) = negl(n).
The ensembles X and Y are computationally indistinguishable (denoted X c≈ Y)
if Xn and Yn are (t(n), ε(n))-indistinguishable for ε(n) = negl(n) and any t(n) =
poly(n) under a uniform sequence (Dn : Xn → {0, 1})n∈N of distinguishers. Def-
initions for function families are also extended in the obvious way to function
family ensembles F = (Fn)n in the asymptotic setting by taking ε(n) = negl(n)
and t(n) = poly(n), and considering uniform sequences of distinguishing algo-
rithms. In particular, a function family ensemble F = (Fn)n is one-way if Fn is
(t(n), ε(n))-one-way for ε(n) = negl(n) and any t(n) = poly(n). It is pseudoran-
dom if the associated (asymptotic) distribution (1) is (t(n), ε(n))-pseudorandom,
i.e., it is (t(n), ε(n))-indistinguishable from the uniform distribution U(Fn ×Rn).

Discrete Gaussian Distributions. Gaussian-like distributions play a central
role in the Learning With Errors (LWE) problem. For each sample (a, b = a ·
s + e), the distribution χ from which e is drawn, is a normal distribution over
the integers. Below, we focus mainly on the discrete Gaussian distribution and
provide bounds on its collision probability. Those bounds are used in establishing
the search-to-decision reduction for LWE. Similar bounds can be established for
the discretized Gaussian (defined in [31]).

The Gaussian function on Rm with parameter r and center c is defined as
∀x ∈ Rm, ρr,c(x) = exp(−π‖x − c‖2/r2). The discrete Gaussian distribution
over a countable set S is defined as

∀x ∈ S, DS,r,c =
ρr,c(x)∑

y∈S ρr,c(y)

Here, we are interested in vectors x = (x1, . . . , xm) ∈ Zm distributed according
to DZm,r (c = 0). In that case, each coordinate xi of x is identically and in-
dependently distributed according to the 1-dimensional Gaussian DZ,r. For our
search-to-decision reduction of LWE with discrete Gaussian error distribution,
we need to consider the folded (1-dimensional) distribution DZ,r mod d. The
following lemma bounds the collision probability of this distribution.

Lemma 1. For any r > 0 and d ∈ Z, we have Col (DZ,r mod d) ≤ 1
r + 1

d .
Furthermore, if r = d · ω(

√
logn), then Col (DZ,r mod d) ≤ 1

d + negl(n).

2.2 Groups and Knapsack Function Families

In this work, by group we always mean finite abelian group. We use additive
notation for groups; 0G is the identity element, |G| is the order (size) of G and
MG its exponent, i.e. the smallest non-zero integer e such that e · g = 0G for
all g ∈ G. We use the dot product notation x · y =

∑
i xi · yi both for the

472 D. Micciancio and P. Mol

inner product of two vectors x,y ∈ Rn with elements in a ring R, and also
to take integer linear combinations x ∈ Zn of a vector y ∈ Gn with elements
in an additive group. For x = (x1, . . . , xn) ∈ Rn and a ∈ R, we also define
x · a = (x1 · a, . . . , xn · a).

For any group G and (positive) integer d, we use Gd to denote the quotient
group G/dG where dG is the subgroup {d · g ∣∣ g ∈ G}, in analogy with the usual
notation Zd = Z/dZ for the group of integers modulo d. Likewise, for an element
g ∈ G, we use g mod dG (or just g mod d) for the image of g under the natural
homomorphism from G to Gd. For any integer vector w = (w1, . . . , wr) ∈ Zr,
we write gcdG(w) = gcd(w1, . . . , wr,MG) for the greatest common divisor of the
elements of w and the group exponent.

Lemma 2. For any group G and integer vector w ∈ Zr, {w ·g | g ← U(Gr)} =
U(gcdG(w) ·G). In particular, Pr

[
w · g = 0G

∣∣ g ← U(Gr)
]

= 1
| gcdG(w)·G| .

Knapsack Families. For any group G and input distribution X over Zm, the
knapsack family K(G,X) is the function family with input distribution X and set
of functions fg : [X] → G indexed by g ∈ Gm and defined as fg(x) = g · x ∈ G.
We will often use g instead of fg to describe a member function drawn from
K(G,X). When G,X are clear from the context we will simply write K. We
often consider folded knapsack families K(Gd,X) over quotient groups Gd. For
brevity, when G and X are clear from the context, we will write Kd instead of
K(Gd,X). The following lemma shows that the distribution F(Kd) associated
to a folded knapsack function family is closely related to the distribution

Fd(K) = {(g, g + h) | (g, g) ← F(K), h ← U(d ·G)}. (2)

Lemma 3. For any knapsack family K and d ∈ Z, ΔU (Fd(K)) = ΔU (F(Kd)).
Also, Fd(K) is pseudorandom if and only if F(Kd) is pseudorandom.

For a group H such that K(H,X) compresses its input, Lemma 4 provides an
upper bound on the statistical distance between F(K(H,X)) and U(Hm ×H)
by generalizing the Leftover Hash Lemma [17] to (non-necessarily universal)
knapsack function families K(H,X) over arbitrary groups.

Lemma 4 (LHL, generalized). For any finite abelian group H and integer d,

ΔU (F(K(H,X))) ≤ 1
2

√ ∑
1<d | M

|Hd| · Pr{gcdH(x − y) = d | x ← X ,y ← X}

(3)
where M is the exponent of H and d > 1 ranges over all divisors of M .

2.3 Fourier Analysis and Learning

Fourier analysis has been used extensively in learning theory, especially in the
context of learning functions defined over the boolean hypercube (see [21,8,27]
for some examples). In Cryptography, two noteworthy examples are the

Pseudorandom Knapsacks and the Sample Complexity of LWE 473

Kushilevitz-Mansour [21] formulation of the proof of the Goldreich-Levin [15]
hard-core predicate for any one-way function and the proofs of hard-core predi-
cates for several number-theoretic one-way functions by Akavia, Goldwasser and
Safra [4].

Below we review some basic facts from Fourier analysis focusing on the discrete
Fourier transform over finite abelian groups. We restrict the presentation to what
is needed and refer the interested reader to [3,34] for more details.

Fourier Basics. Let H be a finite abelian group and h1, h2 : H → C be
functions from H to the complex numbers. The inner product of h1 and h2 is
defined as

〈h1, h2〉 = E
x←U(H)

[
h1(x)h2(x)

]
=

1
|H |

∑
x∈H

h1(x)h2(x)

where z̄ is the conjugate of z ∈ C. The �2-norm and �∞-norm of h are defined as

‖h‖2 =
√
〈h, h〉 and ‖h‖∞ = max

x∈H
|h(x)|.

The set of characters of H (denoted as char(H)) is the set of all the homomor-
phisms from H to the complex numbers of unit magnitude T. Namely,

char(H) = {χ : H → T
∣∣ ∀x, y ∈ H, χ(x + y) = χ(x) · χ(y)}

When H is a vector group, i.e. H � Z�
k, and α = (α1, ..., α�) ∈ H, then the

character χα : H → T is defined as χα(x) = (ωk)
∑ �

i=1 αixi = ωx·α
k .

Fourier Transform. The Fourier transform of a function h : H → C is the
function ĥ : H → C defined as ĥ(α) = 〈h, χα〉. The Fourier transform measures
the correlation of h with the characters in H.
The energy of a Fourier coefficient α is defined as the square of its norm (|ĥ(α)|2)
while the total energy of h is defined as

∑
α∈H |ĥ(α)|2. Parseval’s identity says

that
∑

α∈H |ĥ(α)|2 = ‖h‖2
2.

Learning Heavy Fourier Coefficients. Let τ ∈ R, α ∈ H and h : H →
C where H is a finite abelian group. Following the notation and terminology
from [3], we say that α is a τ -significant (or τ -heavy) Fourier coefficient of
h if |ĥ(α)|2 ≥ τ. The set of τ -significant Fourier coefficients of h is denoted by
Heavyτ (h), that is Heavyτ (h) = {α ∈ H

∣∣ |ĥ(α)|2 ≥ τ}. The following Theorem
provides the conditions for learning heavy Fourier coefficients of functions defined
over arbitrary finite groups and will be used in the proof of our main result.

Theorem 1. (Significant Fourier Transform,[3, Theorem 3.3]) There exists a
probabilistic algorithm (SFT) that on input a threshold τ and given query access
to a function h : H → C, returns all τ-heavy Fourier coefficients of h in time
poly(log |H |, 1/τ, ‖h‖∞) with probability2 at least 2/3.
2 The success probability is taken over the internal randomness of the SFT algorithm

only, and can be amplified using standard repetition techniques. However, this is not
needed in our context, so for simplicity we fix the success probability to 2/3.

474 D. Micciancio and P. Mol

3 Pseudorandomness of Knapsack Functions

In this section we establish the connection between the search and decision prob-
lems for families of bounded knapsack functions. The following theorem summa-
rizes our main result.

Theorem 2 (Main). Let X be a distribution over [s]m ⊂ Zm for some s =
poly(n) and G be a finite abelian group. If K(G,X) is one-way and K(Gd,X) is
pseudorandom for all d < s, then K(G,X) is pseudorandom.

The proof of Theorem 2 makes use of the intermediate notion of (un)predictability
defined below. Informally, for any � ∈ N, a �-predictor for a function family (F,X)
is a weak form of inverter algorithm that on input a function f ∈ F , a target
value f(x) and a query vector r ∈ Zm

� , attempts to recover the value of x · r
(mod �), rather than producing the entire input x.

Definition 1. For any � ∈ N and function family (F,X) with domain [X] ⊆ Zm,
a �-predictor for (F,X) is a probabilistic algorithm P that on input (f, y, r) ∈
F × R × Zm

� outputs a value P(f, y, r) ∈ Z� which is intended to be a guess for
x · r (mod �). The error distribution of a predictor P is defined as

E�(P) = {x · r − P(f, f(x), r) (mod �) | f ← U(F),x ← X , r ← U(Zm
�)}.

The bias of a �-predictor P is the quantity
∣∣∑

k∈Z�
Pr{k ← E�(P)} · ω−k

�

∣∣. If P
runs in time t and has bias at least ε, we say that P is (t, ε)-biased. A function
family (F,X) that admits a (t, ε)-biased �-predictor is (t, ε, �)-predictable.

The proof of Theorem 2 proceeds in two steps. In the first step (Lemma 5) we
show that a certain (non-trivial) predictor for K implies a non-trivial inverter
for K. This step uses Fourier analysis and holds true for any function family
(and not just for K) with domain [X] ⊆ Zm. In the second step (Proposition 2),
we prove that if there exists a distinguisher for K(G,X), but no distinguisher
for K(Gd,X) for small d, then there exists a predictor for K(G,X). This step
is specific to knapsack families and depends on both the underlying group G
and the distribution X . The two steps combined yield Theorem 2. Sections 3.1
and 3.2 are devoted to each step of the reduction.

3.1 From Predictability to Invertibility

Proving that predictability implies invertibility is not specific to knapsack fam-
ilies. Rather, it holds for any function family (F,X) with F : X → G where
X ⊆ Zm and G is a finite abelian group. Lemma 5 provides the conditions under
which predictability implies invertibility.

Lemma 5. Let (F,X) be a function family with [X] ⊆ [s]m ⊂ Zm for some
s = poly(n). If (F,X) is (t, ε, �)-predictable for some � > s, then (F,X) is
(poly(n, log �, 1/ε) · t, ε

3)-invertible.

Pseudorandom Knapsacks and the Sample Complexity of LWE 475

Proof (Sketch). We use Fourier analysis and the SFT algorithm from Theo-
rem 1. Let P be a �-predictor for F that runs in time t. Roughly speaking, the
inverter I on input (f, f(x)) for some f ← U(F), simulates the execution of
SFT in order to find x. For every query r ∈ Zm

� issued by SFT , I invokes P
on appropriate input and sends back the result to SFT . It turns out that, if the
predictor P is (t, ε)-biased for some “sufficiently large” bias ε, then I simulates
to SFT a (deterministic) function h : Zm

� → C which is highly correlated with
the character χx(·), that is, the function h SFT is given access to (through I,P)
is such that ĥ(x) is “sufficiently heavy”3 and therefore SFT will include x in
the list it returns.

3.2 From Distinguishability to Predictability

We now proceed into proving that, under certain conditions, a distinguisher
D for K(G,X) with noticeable distinguishing advantage implies a predictor for
K(G,X) with noticeable bias. At a high level, the predictor works as follows:
on input a modulus �, function g ← U(Gm), y = g · x ∈ G and r ∈ Zm

� , it
first makes a guess for the inner product x · r mod �; it then uses that guess
to modify the knapsack instance (g, y), and finally invokes the distinguisher
D on the modified instance (g′, y′). To conclude, the output of D is used to
determine whether the initial guess was correct or not. The same technique has
been used by Impagliazzo and Naor in [18]. However, in the setting considered
in [18] – subset-sum over a cyclic group of prime order4 – the reduction is rather
straightforward: if the guess for x · r is correct, then the modified knapsack
instance (g′, y′) is distributed according to F(K(G,X)), whereas if the guess is
wrong, the distribution of (g′, y′) is (statistically close to) uniform. Therefore, a
distinguisher with noticeable advantage implies almost immediately a 2-predictor
with noticeable bias.

When considering general (not necessarily cyclic) abelian groups with possi-
bly composite order and distributions X with [X] �⊆ {0, 1}m, several technical
difficulties arise. Unlike [18], if the guess for x·r is wrong, then the distribution of
(g′, y′) can be statistically far from uniform. In fact, (g′, y′) can be distributed ac-
cording to Fd(K(G,X)) for any divisor d of the group exponent MG. Depending
on the order and structure of the underlying group, and the output distribution
of the distinguisher D on the various auxiliary distributions Fd(K(G,X)), the
technical details of the reduction differ significantly. As a warm-up, we first state
a weak form of our main Theorem.

Proposition 1. If K(G,X) is (t, δ)-distinguishable from uniform for some no-
ticeable δ, but K(Gd,X) is pseudorandom for all d ≤ 2ms2 then there is a

3 In the context of polynomial time reductions “sufficiently high” and “sufficiently
heavy” is to be interpreted as noticeable in the security parameter.

4 [18] also consider cyclic groups with power-of-2 order but this makes their analysis
only slightly more complicated.

476 D. Micciancio and P. Mol

poly(n)-bounded prime p ≥ s and a polynomial5 q(·) such that K(G,X) is (O(t+
m), 1/q(n), p)-predictable.
Even though Proposition 1 already gives search-to-decision reductions for some
interesting families K, it is not strong enough to establish Theorem 2 in its full
generality. This is achieved in Proposition 2. Theorem 2 then follows directly if
we combine Proposition 2 and Lemma 5.

Proposition 2. If K(G,X) is (t, δ)-distinguishable from random for some no-
ticeable δ, but K(Gd,X) is pseudorandom for all d < s, then there exists a polyno-
mially bounded d∗ ≥ s and polynomial q(·) such that K is (O(t+m), 1/q(n), d∗)-
predictable.

Proof. For simplicity, we write K (resp. Kd) instead of K(G,X) (resp. K(Gd,X)).
We use Fd(K) (as in (2)) for all auxiliary distributions. For a distinguisher D,
probDd := Pr [D(Fd(K)) = 1] . Notice that Pr [D(U(Gm ×G)) = 1] = probD1
and Pr [D(F(K)) = 1] = probDMG

. The distinguishing advantage of D between
distributions Fd1(K) and Fd2(K) is defined as AdvD(Fd1(K),Fd2(K)) = |probDd1

−
probDd2

|. When one of the two distribution is U(Gm ×G), we write AdvDd instead
of AdvD(Fd(K),F1(K)). We often write a ≡c b instead of a ≡ b (mod c) and
define δij = 1 if i = j and 0 otherwise.

By hypothesis, there exists distinguisher D and polynomial t(·) such that
|AdvDMG

| ≥ 1
t(n) and |AdvDd′ | = negl(n) ∀d′ < s. If AdvDd′ = negl(n) ∀d′ < 2ms2

then proof follows directly from Proposition 1. Else, there exists d with s ≤ d <
2ms2 (notice that since both s and m are polynomially bounded in n, so is d)
and polynomial w(·) such that |AdvDd | ≥ 1

w(n) . Let d∗ be the smallest divisor of

d such that6 |AdvDd∗ | ≥ d∗3

d3w(n) (in particular, this implies that|AdvDd′ | < d′3
d3w(n)

for all d′ | d∗). Since d∗3

d3w(n) ≥ 1
poly(n) and |AdvDd′ | = negl(n) ∀d′ < s, it should be

the case that d∗ ≥ s. Consider now the predictor P shown in Algorithm 1 (P
tries to guess the inner product r · x (mod d∗)).

It can be checked that, if P ’s guess for r · x (mod d∗) (line 1) is correct,
then the input distribution to D (line 4) is exactly Fd∗(K). Otherwise the input
distribution to D is Fd′(K) for some d′ | d∗ with d′ < d∗.

It only remains to compute the bias of P . First notice that

Pr{k ← Ed∗(P)} = Pr [guess ≡d∗ v − k]

=
d∗−1∑
j=0

Pr
[
guess ≡d∗ v − k

∣∣ c ≡d∗ v − j
]
Pr [c ≡d∗ v − j]

=
1
d∗

d∗−1∑
j=0

Pr
[
guess ≡d∗ v − k

∣∣ c ≡d∗ v − j
]

(4)

5 We only care about the predicting advantage being noticeable and do not seek to
optimize it as a function of the distinguishing advantage. We simply mention that
the success probability ε of the predictor is ε ≥ δ/4ms2.

6 such a d∗ always exists. Indeed d itself satisfies this condition and is a divisor of
itself.

Pseudorandom Knapsacks and the Sample Complexity of LWE 477

input : (g, y, r) // y = g · x, r ← U(Zm
d∗)

output: guess ∈ Zd∗

Pick c ← U(Zd∗);1

Pick g1 ← U(G), g2 ← U(G);2

ḡ ← g − r · g1 // r · g1 = (r1 · g1, . . . , rm · g1) ;3

Run D on input (ḡ, y − c · g1 + d∗ · g2) ;4

if D returns 1 then5

guess ← c ;6

else7

guess ← U(Zd∗ \ c) ;8

end9

return guess10

Algorithm 1. Predictor for strong reduction (Proposition 2)

Conditioning on D’s output and after doing some calculations, we get

Pr{k ← Ed∗(P)} =
1
d∗

+
1
d∗

probDgcd(k,d∗) −
1

d∗(d∗ − 1)

∑
j �=k

probDgcd(j,d∗)

which implies that

Pr{k ← Ed∗(P)} − Pr{1 ← Ed∗(P)} =
probDgcd(k,d∗) − probD1

d∗ − 1
=

AdvDgcd(k,d∗)

d∗ − 1

Using this and the fact that
∑d∗−1

k=0 ω−k
d∗ = 0 we get that∣∣∣∣∣

d∗−1∑
k=0

Pr{k ← Ed∗(P)} · ω−k
d∗

∣∣∣∣∣ =
1

d∗ − 1

∣∣∣∣∣
d∗−1∑
k=0

AdvDgcd(k,d∗)ω
−k
d∗

∣∣∣∣∣
≥ 1

d∗ − 1

[∣∣∣AdvDd∗

∣∣∣− d∗−1∑
k=1

∣∣∣AdvDgcd(k,d∗)

∣∣∣] (5)

Next we bound
∑d∗−1

k=1

∣∣∣AdvDgcd(k,d∗)

∣∣∣ . Define Φ(d∗, k) = {1 ≤ i < d∗ : gcd(i, d∗) =

k} and let7 φ(d∗, k) = |Φ(d∗, k)|. Clearly φ(d∗, d′) ≤ d∗
d′ ∀d′ | d∗. So

d∗−1∑
k=1

∣∣∣AdvDgcd(k,d∗)

∣∣∣ ≤ ∑
d′ | d∗

d′<d∗

φ(d∗, d′)
∣∣∣AdvDgcd(k,d∗)

∣∣∣ ≤ d∗

d3w(n)

∑
d′ | d∗

d′<d∗

d
′2

7 This is a generalization of Euler’s totient function.

478 D. Micciancio and P. Mol

where in the last inequality we used the fact that for all proper divisors d′ of d∗,
|AdvDd′ | < d

′3
d3w(n) . Replacing back in (5) we finally get∣∣∣∣∣

d∗−1∑
k=0

Pr{k ← Ed∗(P)} · ω−k
d∗

∣∣∣∣∣ ≥ 1
d∗ − 1

[
d∗3

d3w(n)
− d∗

d3w(n)

∑
d′ | d∗

d′<d∗

d′2
]

≥ d∗3

d3(d∗ − 1)w(n)

(
2 − π2

6

)
≥ 1

q(n)

for some polynomial q(·). In the last inequality we used the fact that for any
d ∈ N,

∑
r|d,r<d r2 ≤ (π2/6) · d2.

4 Implications and Applications

Theorem 2 provides explicit criteria for checking if a knapsack family is pseu-
dorandom. For a group G and input distribution X , one needs only to check
whether the folded families Kd = K(Gd,X) are pseudorandom. As it turns out,
for many choices of (G,X), the folded knapsack functions Kd compress their in-
put and map X to a distribution which is statistically close to uniform over Gd.
More specifically, ΔU (F(K(Gd,X))) = negl(n), and K(Gd,X) is pseudorandom
in a strong statistical sense. Below, we provide some representative examples
focusing on those that are most interesting in applications.

4.1 Specific Groups and Input Distributions

We start with groups G whose order does not contain any factors that are smaller
than the maximum value the input can take, i.e. [X] ⊆ [s]m and any prime factor
of |G| is at least as large as s. In this case, a direct interpretation of Theorem 2
reveals that one-wayness implies pseudorandomness for any input distribution.

Corollary 1. Let p be the smallest prime factor of |G| and X be such that
[X] ⊆ [p]m. If K(G,X) is one-way, then it is also pseudorandom.

Corollary 1 is already very powerful. For instance, in the standard subset sum
problem we have [X] = {0, 1}m ⊆ [p]m for any prime p. Therefore, Corollary 1
significantly generalizes the results from [18] and [12]. More specifically, it asserts
that any knapsack family K(G,X) with [X] ⊆ {0, 1}m is pseudorandom provided
it is one-way, for any abelian group G. Other interesting groups Corollary 1 is
directly applicable to include groups with prime order, vector groups Zk

p for
prime p and generally groups Zk

pe where p is a prime such that [X] ⊆ [p]m.
For groups with small prime factors (smaller than s, where [X] ⊆ [s]m), the

connection between one-wayness and pseudorandomness is more subtle: search
to decision equivalence can be shown only for some input distributions and
groups G. We summarize a few such examples focusing on vector groups, i.e.
G = Zk

q both for simplicity and because those groups are most interesting from

Pseudorandom Knapsacks and the Sample Complexity of LWE 479

a cryptographic viewpoint (see Section 4.2). Throughout, we assume m − k =
ω(logn).

For a vector group G = Zk
q consider the folded knapsack function Kd =

K(Gd,X). First notice that MG = q and dG = dZk
q = gcd(d, q) · Zk

q . By Theo-
rem 2, proving pseudorandomness of K(G,X) amounts to proving that Kd are
pseudorandom for all d < s with d | q. In fact, below we study cases where Kd

are statistically random, i.e. ΔU (F(K(Zk
d ,X))) = negl(n) for all divisors d < s

of q. Lemma 6 provides sufficient conditions for pseudorandomness expressed in
terms of the statistical properties of X and the factorization of q. The statisti-
cal properties of X can be better expressed by defining the d-folded distribution
Xd = {x (mod d) | x ← X}. Lemma 6 then requires that, for every “small” divi-
sor of q, the d-folded distribution Xd has collision probability sufficiently smaller
than a quantity that depends exclusively on dk, the order of the quotient group
Gd = Zk

d. The proof follows almost immediately from Theorem 2 and Lemma 4.

Lemma 6. If K = K(Zk
q ,X) is one-way, [X] ⊆ [s]m and dk · Col (Xd) = negl(n)

for all d | q with d < s, then K(Zk
q ,X) is also pseudorandom.

Below, we present 2 natural families of distributions which have small collision
probability when “folded” over small d. Search to decision reductions for the
corresponding knapsack families follow directly from Lemma 6 and the bounds
on the collision probability of the two distributions. Lemmas 7 and 8 provide
formal statements.

Uniformly Folded Distributions. For a given vector group G we say that
a distribution X with [X] ⊆ [s]m is uniformly folded with respect to G, if Xd =
(X mod d)

s≈ U(Zm
d) for all d < s such that d | MG. When G = Zk

q , one such
example is X = U(Zm

q) or X = U(Zm
pi) when q = pe for some e > i.

Lemma 7. If K(Zk
q ,X) is one-way and X is uniformly folded with respect to

Zk
q , (with [X] ⊆ [s]m for s = poly(n)), then it is also pseudorandom.

Gaussian. Gaussian-like distributions are typically used for sampling the error
in LWE-based cryptographic constructions. The following lemma establishes the
search-to-decision reduction for knapsack families defined over Zk

q and discrete
Gaussian input distribution. Qualitatively similar results hold for discretized
(rounded) Gaussians.

Lemma 8. Let r be the Gaussian parameter with8 ω(logn) ≤ r ≤ poly(n). If
K(Zk

q ,DZm,r) is one-way then it is also pseudorandom provided that either
(a) q is prime or
(b) q is composite and there exists a function β(n) = ω(

√
logn) such that all

divisors d of q lie outside the interval [r/β(n), r · β(n)] .

8 In typical instantiations, r = Ω(nθ) for some constant θ > 0.

480 D. Micciancio and P. Mol

4.2 Applications to LWE

In this section, we show how our results for knapsack functions imply similar
search-to-decision reductions for the Learning With Errors (LWE) problem with
the interesting feature of being sample-preserving. Following existing LWE liter-
ature, we use n for the length of the secret vector s, m for the number of samples,
q for the modulus and χ for the error distribution. Let n,m, q be positive integers
and χ a distribution with [χ] ⊆ Zq. For a vector s ∈ Zn

q , define the distribution

As,χ = {(a,a · s + e) | a ← U(Zn
q), e ← χ}.

The LWE problem is the problem of recovering s given m samples from distri-
bution As,χ. In its decisional version (DLWE), one is given m samples drawn in-
dependently at random either from As,χ (for some secret s) or from U(Zn

q × Zq).
The goal is to tell the two distributions apart with noticeable probability.

We are interested in reductions from LWE to DLWE that preserve all the
parameters n,m, q, χ, including the number of samples m. Sample-preserving
reductions are more naturally described using matrix notation for the LWE
problem. Given a collection of m LWE samples (ai, bi) ← As,χ, we can combine
them in a matrix A having the vectors ai as rows, and a column vector b with
entries equal to bi. That is, b = As + e where e ← χm. With this notation,
we want to prove that any algorithm that distinguishes (A,b = As + e) from
U(Zm×n

q × Zm
q) can be used to recover the secret s. Notice that once the secret

s has been recovered, one can also recover the error vector e = b − As. So, we
can equivalently define LWE as the problem of recovering both s and e. This is
exactly the problem of inverting the following function family.

Definition 2. Let n,m, q and χ defined as above. LWE(n,m, q, χ) is the func-
tion family (F,X) where X = {(s, e) | s ← U(Zn

q), e ← χm}, and F is the set of
functions fA indexed by A ∈ Zm×n

q and defined as fA(s, e) = As + e.

The decision LWE is the problem of distinguishing F(LWE(n,m, q, χ)) from
U(Zm×n

q × Zm
q). However, LWE(n,m, q, χ) is not a knapsack family. In order

to apply the results from Section 3, we exploit the duality between the LWE
problem and an associated knapsack function family described in the following
lemmas.

Lemma 9. For any9 n,m ≥ n + ω(logn), q and χ, there is a polynomial time
reduction from the problem of inverting LWE(n,m, q, χ) with probability ε, to the
problem of inverting K(Zm−n

q , χm) with probability ε′ = ε + negl(n).

Proof (Sketch). The transformation from the LWE problem into an equivalent
knapsack problem requires that the matrix A be nonsingular, i.e., the rows
of A generate Zn

q . When A ← U(Zm×n
q), this is true except with probability

at most 1/pm−n−1, where p is the smallest prime factor of q. So, for m ≥ n +

9 The requirement m ≥ n +ω(log n) is a standard assumption in the context of LWE,
where typically m ≥ n + Ω(n).

Pseudorandom Knapsacks and the Sample Complexity of LWE 481

ω(logn), Pr [A singular] = negl(n). We can therefore assume A has been chosen
at random, but conditioned on the property that it is nonsingular.

Consider now the set that contains all vectors g such that gA = 0 (mod q).
Under the assumption that A is nonsingular, this set is generated by the rows
of a matrix G ∈ Z(m−n)×m

q that can be efficiently computed from A using
linear algebra. We can further randomize G by left-multiplying it by a random
unimodular matrix U ∈ Z(m−n)×(m−n)

q . Finally, if A is chosen at random among
all nonsingular matrices, then this randomized G is also distributed uniformly
at random among all matrices whose columns generate Zm−n

q . As before, the
distribution of G is within negligible statistical distance from U(Z(m−n)×m

q),
so we can treat the columns of G as random elements from the vector group
G = Zm−n

q . Finally, we set c = Gb = GAs + Ge = Ge, so the distribution
(G, c) is statistically close to a random instance of the knapsack problem with
group G = Zm−n

q and input distributed according to the error distribution χm.

Lemma 10. For any n,m ≥ n + ω(logn), q and χ, there is a polynomial time
reduction from the problem of distinguishing F(K(Zm−n

q , χm)) from uniform with
advantage ε to the problem of distinguishing F(LWE(n,m, q, χ)) from uniform
with advantage ε′ = ε + negl(n).

Proof (Proof Sketch). The reduction reverses the steps taken to transform LWE
into knapsack. We start from a pair (G, c). As before, we can assume that the
columns of G generate Zm−n

q . Next, by linear algebra, we compute a matrix
A ∈ Zm×n

q whose columns generate the set of vectors a such that Ga = 0
(mod q). As before, we can randomize A by right-multiplying it by a random
unimodular matrix U ∈ Zn×n

q to obtain A′. We also map c to A′s′ + r where
s′ ← U(Zn

q) and r is a random solution to the equation Gr = c. It can be
checked that this transformation maps the knapsack distribution (G, c = Ge)
to the LWE distribution (A′,A′s + e) (with uniformly random s), when G and
A′ are chosen at random subject to the constraint that they are nonsingular.
The transformation also maps the uniform distribution to a (statistically close
to) uniform distribution.

LWE: From Search to Decision. Sample-preserving search to decision reduc-
tions for LWE are immediately obtained combining the reductions from Lemma 9
and Lemma 10 with the results from Section 3 on K(Zm−n

q , χm). Similarly to
the knapsack case, the reductions do not hold unconditionally; rather they hold
for specific, yet very broad, moduli q and error distributions χ. Below we give
a general statement for the search to decision reduction parametrized by n,m, q
and χ. Upon giving the statement, we provide specific instantiations of the error
distribution χ and the modulus q for which the statement holds. Throughout,
we assume that m ≥ n + ω(logn).

Proposition 3. Assume there exists an efficient algorithm D that distinguishes
between F(LWE(n,m, q, χ)) and U(Zm×n

q × Zm
q) with noticeable advantage. Then

there exists an efficient algorithm I that inverts LWE(n,m, q, χ) with noticeable
success probability.

482 D. Micciancio and P. Mol

The following “assignments” provide examples of q and χ that make the above
statement true.

• prime q = Θ(nc) for constant c and χ = DZ,r. The search to decision reduc-
tion of the corresponding bounded knapsack problem follows directly from
Corollary 1. Setting q and χ as above is typical for instantiations of LWE-
based cryptographic applications.

• q = pe for prime p = poly(n), and χ = DZ,r for “sufficiently narrow” standard
deviation (more specifically, it is required that r = o(p

log n)). Again, the
search to decision reduction of the bounded knapsack problem stems from
Corollary 1. We note that this case provides a sample-preserving version of
the search to decision reduction proved in [6].

• q = pe = poly(n), with χ = U(Zpi) for some i < e. Pseudorandomness of the
knapsack instance stems directly from Lemma 7. Search to decision reduction
for LWE with such noise distribution appears to be new; no such (even non-
sample-preserving) reduction has previously appeared in the literature.

5 Open Problems

Our work leaves many interesting open questions. To startwith, sample-preserving
search to decision reductions for LWE with bounded noise as considered in this
work, don’t seem to extend to the unbounded noise regime, i.e. when each coef-
ficient ei of the error vector e of LWE is drawn from a set with superpolynomial
size. We note that such search to decision reductions are known [28] but are not
sampling preserving. These reductions rely heavily on a Chinese Reminder The-
orem (CRT) approach: using a perfect10 distinguisher, they first learn the secret
modulo pi with overwhelming success probability for each polynomially bounded
prime factor pi of the modulus q; they then use the CRT to recover the entire
secret. In sample preserving reductions, where only an imperfect distinguisher
can be afforded by the available number of samples, learning the secret modulo
pi can be performed in a much looser, list-decoding sense: the secret modulo pi is
included in the corresponding lists Li but among possibly many other elements.
And the only way to check which of the list elements corresponds to the secret
modulo pi seems to be by forming first the entire secret using CRT and then
verifying that the result is the LWE secret. Thus, one has to solve superpolyno-
mially many CRT instances before recovering the correct value of the secret. It
would be nice to extend the list-decoding approach to work even in that case.

As an additional motivation, we mention that extending our sample preserving
reductions to the unbounded error setting is likely to have implications to the
search to decision equivalence of the newly introduced Ring LWE (R-LWE)
problem [24]. R-LWE is an algebraic variant of LWE that leads to much more
efficient constructions than standard LWE while still enjoying strong security

10 By perfect here we mean a distinguisher with advantage almost 1. Getting a perfect
distinguisher out of an imperfect one (one with only a nonnegligible advantage) is
the main reason for the blowup in the number of samples the reduction consumes.

Pseudorandom Knapsacks and the Sample Complexity of LWE 483

guarantees. Much like LWE with unbounded noise, existing search to decision
reductions [24] decompose the secret (which is an element from a ring R) modulo
qi where qi are prime ideal factors.

Our work also highlights the importance of understanding the hardness of
LWE under various noise distributions. Current hardness proofs for search LWE
[31] based on worst-case lattice problems rely on the noise following a Gaussian
distribution. Can lattice-based hardness results for search LWE be extended
to noise distributions other than Gaussian? Can we show similar lattice-based
hardness results if the noise is distributed uniformly at random modulo 2i? The
latter case is very attractive from a practical viewpoint since arithmetic modulo
2 and sampling from uniform distributions can be implemented very efficiently.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimen-
sion and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

3. Akavia, A.: Learning Noisy Characters, Multiplication Codes and Hardcore Pred-
icates. PhD thesis. MIT (February 2008)

4. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List
Decoding. In: FOCS, pp. 146–157 (2003)

5. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

7. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: ICALP
(2011), http://www.eccc.uni-trier.de/report/2010/066/

8. Blum, A., Furst, M.L., Jackson, J.C., Kearns, M.J., Mansour, Y., Rudich, S.:
Weakly Learning DNF and Characterizing Statistical Query Learning using Fourier
Analysis. In: STOC, pp. 253–262 (1994)

9. Blum, A., Furst, M.L., Kearns, M. J., Lipton, R.J.: Cryptographic Primitives
Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 278–291. Springer, Heidelberg (1994)

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

11. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

12. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as
syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 245–255. Springer, Heidelberg (1996)

13. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem
from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–
522. Springer, Heidelberg (2010)

http://www.eccc.uni-trier.de/report/2010/066/

484 D. Micciancio and P. Mol

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC, pp. 197–206. ACM, New York (2008)

15. Goldreich, O., Levin, L.A.: A Hard-Core Predicate for All One-Way Functions. In:
STOC, pp. 25–32 (1989)

16. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
Learning with Errors Assumption. In: ICS (2010)

17. Impagliazzo, R., Zuckerman, D.: How to Recycle Random Bits. In: FOCS, pp.
248–253. IEEE Computer Society, Washington, DC, USA (1989)

18. Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as
Subset Sum. J. Cryptology 9(4), 199–216 (1996)

19. Katz, J., Shin, J.S., Smith, A.: Parallel and Concurrent Security of the HB and
HB+ Protocols. J. Cryptology 23(3), 402–421 (2010)

20. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007)

21. Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Sprectrum.
In: STOC, pp. 455–464 (1991)

22. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

23. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

25. Micciancio, D.: Duality in Lattice Based Cryptography. In: Public Key Cryptog-
raphy (2010) (invited talk)

26. Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Post Quantum Cryp-
tography, pp. 147–191. Springer Publishing Company, Heidelberg (2009)

27. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning Juntas. In: STOC, pp. 206–212
(2003)

28. Peikert, C.: Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem. In: STOC, pp. 333–342. ACM, New York (2009)

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

30. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC, pp. 187–196. ACM, New York (2008)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of ACM 56(6), 34 (2009); Preliminary version in STOC 2005

32. Regev, O.: The Learning with Errors Problem (Invited Survey). In: IEEE Confer-
ence on Computational Complexity, pp. 191–204 (2010)

33. Rückert, M., Schneider, M.: Estimating the Security of Lattice-based Cryptosys-
tems. Technical Report 2010/137, IACR ePrint archive (2010)

34. Stefankovic, D.: Fourier Transform in Computer Science. Master’s thesis, Univer-
sity of Chicago (October 2000)

35. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient Public Key Encryption
Based on Ideal Lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

Tor and Circumvention: Lessons Learned�

(Abstract to Go with Invited Talk)

Roger Dingledine

The Tor Project

Tor is a free-software anonymizing overlay network that helps people around the
world use the Internet in safety. Tor’s 2500 volunteer relays carry almost 10Gb/s
of traffic for several hundred thousand users each day.

While many in the research community know Tor as the primary fielded sys-
tem in the anonymous communications literature [2], Tor has also played a cen-
tral role in recent research on blocking resistance. That is, even if an anonymity
system provides great anonymity, a government censor can render it moot by
simply blocking the relays. In recent years we streamlined Tor’s network com-
munications to look more like ordinary SSL, and we introduced “bridge relays”
that are harder for an attacker to find and block than Tor’s public relays [1].

Tor played a key role in several Middle Eastern countries in early 2011. In
this talk I’ll walk the audience through how Iran used its Nokia DPI boxes to
filter SSL flows that used Tor’s original Diffie-Hellman parameter p; the surge in
Tor traffic when Egypt blocked Facebook and the flatline when they unplugged
the net; the continued bad news for Libya’s Internet; and an intriguing trend in
Saudi Arabia. I’ll also cover current trends in China and Tunisia (not pictured).

Fig. 1. Estimates of daily Tor clients connecting from each country

� This work is available under the Creative Commons Attribution (CC-BY) License.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 485–486, 2011.
c© International Association for Cryptologic Research 2011

486 R. Dingledine

The data for these user graphs, along with historical Tor network data and on-
going performance statistics, are all available at https://metrics.torproject.org/.
Our WECSR’10 paper [3] explains our aggregation techniques and why we
think they’re safe—we’d love for you to show us that we’re wrong. Further, if
you’re working on Tor-related research, please talk to us (https://torproject.org/
research) so we can explain what’s available and help interpret your results.

Some open questions from the anonymity field. Here are a few examples
of open anonymity and blocking-resistance problems:

1) How effective is the traffic correlation attack really? Tor’s threat model
assumes that an adversary who can see a traffic flow into the Tor network and
the corresponding flow out of the Tor network can correlate them with high
probability and low false positives. Recent results from Steven Murdoch [4] show
confirmation attacks even when both sides only see a small sample of traffic on
each side. But how quick can the attack actually be in practice, using how little
traffic? Are there effective padding schemes to make correlation less effective?

2) For various diversity metrics (like entropy), how has the diversity of the
Tor network changed over time? How robust is it to change or attack?1

3) How can we automatically recognize blocking events—when Tor relays are
censored at a firewall by destination address or by traffic flow characteristics?

4) Clients who are censored from the public Tor relays can use private ad-
dresses to “bridge” into the public Tor network. What strategies should we use
to give out these addresses such that legitimate users get enough addresses but
adversaries can’t learn too many?

5) How can we make it hard for censors to recognize Tor traffic flows by
content (e.g. distinguishing Tor’s handshake from other expected protocols) and
by traffic characteristics (packet size, volume, and timing)? We need obfuscation
metrics to let us anticipate which protocols will blend in better with background
traffic or otherwise defeat deep packet inspection (DPI) algorithms.

References

1. Dingledine, R., Mathewson, N.: Design of a blocking-resistant anonymity system.
Technical Report 2006-1, The Tor Project (November 2006)

2. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proc. 13th USENIX Security Symposium (August 2004)

3. Loesing, K., Murdoch, S.J., Dingledine, R.: A Case Study on Measuring Statistical
Data in the Tor Anonymity Network. In: Sion, R., Curtmola, R., Dietrich, S., Ki-
ayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010.
LNCS, vol. 6054, pp. 203–215. Springer, Heidelberg (2010)

4. Murdoch, S.J., Zieliński, P.: Sampled Traffic Analysis by Internet-Exchange-Level
Adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007)

1 https://blog.torproject.org/blog/research-problem-measuring-safety-tor-network

Fully Homomorphic Encryption over the

Integers with Shorter Public Keys

Jean-Sébastien Coron1, Avradip Mandal1,
David Naccache2, and Mehdi Tibouchi1,2

1 Université du Luxembourg
{jean-sebastien.coron,avradip.mandal}@uni.lu

2 École normale supérieure
{david.naccache,mehdi.tibouchi}@ens.fr

Abstract. At Eurocrypt 2010 van Dijk et al. described a fully homomor-
phic encryption scheme over the integers. The main appeal of this scheme
(compared to Gentry’s) is its conceptual simplicity. This simplicity comes
at the expense of a public key size in Õ(λ10) which is too large for any
practical system. In this paper we reduce the public key size to Õ(λ7)
by encrypting with a quadratic form in the public key elements, instead
of a linear form. We prove that the scheme remains semantically secure,
based on a stronger variant of the approximate-GCD problem, already
considered by van Dijk et al.

Wealsodescribe thefirst implementationof the resulting fully homomor-
phic scheme. Borrowing some optimizations from the recent Gentry-
Halevi implementation of Gentry’s scheme, we obtain roughly the same
level of efficiency. This shows that fully homomorphic encryption can be
implemented using simple arithmetic operations.

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is homomorphic if
it supports operations on encrypted data. For example RSA is multiplicatively
homomorphic since c1 = me

1 mod N and c2 = me
2 mod N yield the encryption

of m1 ·m2 without using the private key.
Similarly, Paillier cryptosystem [12] is additively homomorphic because from

c1 = gm1rN mod N2 and c2 = gm2sN mod N2 one can compute the encryption
of m1 + m2.

In a breakthrough work Gentry described in 2009 the first encryption scheme
that supports both addition and multiplication on ciphertexts, i.e. a fully homo-
morphic encryption scheme [5]. The construction proceeds by successive steps:
First Gentry describes a “somewhat homomorphic” scheme that supports a lim-
ited number of additions and multiplications on ciphertexts. This is because
every ciphertext has a noise component and any homomorphic operation ap-
plied to ciphertexts increases the noise in the resulting ciphertext. Once this
noise reaches a certain threshold the resulting ciphertext does not decrypt cor-
rectly anymore; this limits the degree of the polynomial that can be applied to
ciphertexts.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 487–504, 2011.
c© International Association for Cryptologic Research 2011

488 J.-S. Coron et al.

Secondly Gentry shows how to “squash” the decryption procedure so that it
can be expressed as a low degree polynomial in the bits of the ciphertext and
the secret key (equivalently a circuit of small depth). Then the breakthrough
idea consists in evaluating this decryption polynomial not on the bits of the
ciphertext and the secret key (as in regular decryption), but homomorphically
on the encryption of those bits. Then instead of recovering the bit plaintext,
one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the
same plaintext; see Figure 1 for an illustration. Now if the degree of the decryp-
tion polynomial is small enough, the resulting noise in this new ciphertext can be
smaller than in the original ciphertext; this is called the “ciphertext refresh” pro-
cedure. Given two refreshed ciphertexts one can apply again the homomorphic
operation (either addition or multiplication), which was not necessarily possible
on the original ciphertexts because of the noise threshold. Using this “ciphertext
refresh” procedure the number of permissible homomorphic operations becomes
unlimited and we get a fully homomorphic encryption scheme.

Decryption
Circuit

× +

+

Ciphertext bits Secret-Key bits

0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Encryption of
Ciphertext bits

Encryption of
Secret-Key bits

0 1 11 ? ? ??

?

Encryption of

Plaintext bit
=

Refreshed
Ciphertext

Fig. 1. The decryption circuit applied on the ciphertext bits and secret key bits (left),
and the ciphertext refresh procedure with the decryption circuit applied homomorphi-
cally on the encryption of those bits (right).

The prerequisite for the “ciphertext refresh” procedure is that the degree of
the polynomial that can be evaluated on ciphertexts exceeds the degree of the
decryption polynomial (times two, since one must allow for a subsequent addition
or multiplication of refreshed ciphertexts); this is called the “bootstrappability”
condition. Once the scheme becomes bootstrappable it can be converted into a
fully homomorphic encryption scheme by providing the encryption of the secret
key bits inside the public key.

Based on Gentry’s approach, two different fully homomorphic schemes are
known: Gentry’s scheme [5] based on ideal lattices and a scheme by van Dijk,
Gentry, Halevi and Vaikuntanathan (DGHV) over the integers, that appeared
at Eurocrypt 2010 [4].

Gentry’s scheme and its implementations. Gentry described in [5] a some-
what homomorphic encryption scheme that is similar to GGH [7,14] over ideal
lattices. To reduce the degree of the decryption polynomial, Gentry introduced

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 489

the following transformation [5]: instead of using the original secret key, the
decryption procedure uses a very sparse subset of values that adds up to the
secret key; the full set of values is made part of the public key. To apply the new
decryption procedure the original ciphertext must first be “expanded” using the
full set of public values. This expanded ciphertext can then be decrypted with
a low-degree polynomial in the bits of the new secret key (which are the charac-
teristic vector of the sparse subset sum); this is called the “squashed decryption”
procedure.

At PKC 2010 Smart and Vercauteren [16] made the first attempt to implement
Gentry’s scheme using a variant based on principal ideal lattices and requiring
that the determinant of the lattice be a prime number. However the authors of
[16] could not obtain a bootstrappable scheme because that would have required
a lattice dimension of at least n = 227, whereas due to the prime determinant
requirement they could not generate keys for dimensions n > 2048.

Gentry and Halevi described in [6] the first implementation of Gentry’s scheme.
The authors follow the same direction as Smart and Vercauteren, but for key
generation they eliminate the requirement that the determinant is a prime. Ad-
ditionally they present many clever optimizations. Four concrete parameter set-
tings are provided, from a “toy” setting in dimension 512, to “small”, “medium”
and “large” settings of dimensions 2048, 8192 and 32768, respectively. For the
“large” setting public key size is 2.3 Gigabytes. The authors of [6] report that for
an optimized implementation on a high-end workstation, key generation takes
2.2 hours, encryption takes 3 minutes, and ciphertext refresh takes 30 minutes.

The DGHV fully homomorphic scheme over the integers. At Eurocrypt
2010, van Dijk, Gentry, Halevi and Vaikuntanathan described a fully homomor-
phic encryption scheme over the integers [4]. As in Gentry’s scheme the authors
first describe a somewhat homomorphic scheme supporting a limited number
of additions and multiplications over encrypted bits. Then they apply Gentry’s
“squash decryption” technique to get a bootstrappable scheme and then Gentry’s
“ciphertext refresh” procedure (see Fig. 1) to get a fully homomorphic scheme.

The main appeal of the scheme (compared to the original Gentry’s scheme) is
its conceptual simplicity; namely all operations are done over the integers instead
of ideal lattices. However the public-key was in Õ(λ10) which is too large for any
practical system.

Our Contributions. In this paper we show how to reduce the public key size
of the somewhat homomorphic scheme from O(λ10) down to O(λ7). The idea
consists in storing only a smaller subset of the public key and then generating
the full public key on the fly by combining the elements in the small subset
multiplicatively; we describe the new scheme in Section 3. In Section 4 we show
that the new scheme is still semantically secure, but under a stronger variant of
the approximate GCD assumption.

Our second contribution is to describe an implementation of the fully homo-
morphic DGHV scheme under our variant, using some of the optimizations from
[6]. We use the refined analysis from [17] of the sparse subset sum problem; how-
ever we do not use the probabilistic decryption circuit from [17] because as in [6]

490 J.-S. Coron et al.

the error probability is too high for our set of parameters. The main difficulty is
to determine a secure set of concrete parameters; our approach is to implement
the known attacks, measure their running time and extrapolate for large param-
eters; we can then fix the concrete parameters according to the desired level of
security.

We obtain similar performances as the Gentry-Halevi implementation of Gen-
try’s scheme [6]. More precisely we use four security levels inspired by the levels
from [6] (though they may not be directly comparable due to different notions of
“security bits”): “toy”, “small”, “medium” and “large”, corresponding to 42, 52,
62 and 72 bits of security respectively. For “large” parameters, encryption and
recryption take 3 minutes and 14 minutes respectively, with a public key size of
800 MBytes. Decryption is always close to instantaneous. This shows that fully
homomorphic encryption can be implemented with a simple scheme.

2 The DGHV Scheme over the Integers

In this section we first recall the somewhat homomorphic encryption scheme
published by van Dijk, Gentry, Halevi and Vaikuntanathan at Eurocrypt 2010
[4]. The scheme is based on a set of public integers: xi = p · qi + ri, 0 ≤ i ≤ τ ,
where the integer p is secret.

Notation. We use the same notation as in [4]. For a real number x, we denote
by �x�, $x% and �x% the rounding of x up, down, or to the nearest integer. For
integers z, p we denote the reduction of z modulo p by [z]p with −p/2 < [z]p ≤
p/2. We also denote [z]p by z mod p. We write f(λ) = Õ(g(λ)) if f(λ) =
O(g(λ) logk g(λ)) for some k ∈ N.

The scheme parameters. Given the security parameter λ, the following pa-
rameters are used:

• γ is the bit-length of the xi’s.
• η is the bit-length of secret key p.
• ρ is the bit-length of the noise ri.
• τ is the number of xi’s in the public key.
• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =
{

Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q · p+ r
}

KeyGen(1λ). Generate a random odd integer p of size η bits. For 0 ≤ i ≤ τ
sample xi ← Dγ,ρ(p). Relabel so that x0 is the largest. Restart unless x0 is odd
and [x0]p is even. Let pk = (x0, x1, . . . xτ) and sk = p.

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 491

Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random
integer r in (−2ρ′

, 2ρ′
), and output the ciphertext:

c =

[
m + 2r + 2

∑
i∈S

xi

]
x0

Evaluate(pk, C, c1, . . . , ct): given the circuit C with t input bits, and t cipher-
texts ci, apply the addition and multiplication gates of C to the ciphertexts,
performing all the additions and multiplications over the integers, and return
the resulting integer.

Decrypt(sk, c). Output m ← (c mod p) mod 2. Note that since c mod p =
c− p · $c/p� and p is odd, one can compute instead: m ← [c]2 ⊕ [$c/p�]2.

This completes the description of the scheme. It is shown in [4] that the scheme
is a somewhat homomorphic scheme and that it is semantically secure under the
approximate-GCD assumption.

Definition 2.1 (Approximate GCD). The (ρ, η, γ)-approximate-GCD prob-
lem is: For a random η-bit odd integer p, given polynomially many samples from
Dγ,ρ(p), output p.

Note that after one Mult operation c ← c1 · c2 the ciphertext size doubles since
there is no modular reduction involved. To reduce the ciphertext size after one
Mult two techniques are described in [4]. The second and simpler technique
consists in generating x0 without noise, that is x0 = q0 · p, and then reducing
the ciphertext modulo x0. The scheme is still semantically secure under the
(stronger) approximate-GCD assumption with error-free x0. While this problem
seems easier to solve, as the adversary is given an exact multiple of p, no better
attack is known against it than on the unmodified problem.

We recall in the full version of this paper [3] the constraints on the scheme
parameters. To satisfy theses constraints the following parameter set is suggested
in [4]: ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ. The public key size
is then Õ(λ10). In practice the size of the xi’s should be at least γ = 223 bits to
prevent lattice attacks. The public key size is then at least 246 bits, which is too
large for any practical system.

3 Our Variant of the DGHV Scheme

3.1 Description

Our technique consists in working with integers x′
ij of the form x′

i,j = xi,0 · xj,1

mod x0 for 1 ≤ i, j ≤ β where β is a new parameter. Then only 2β integers xi,b

need to be stored in the public key in order to generate the τ = β2 integers x′
ij

used for encryption. In other words we encrypt using a quadratic form in the
public key elements instead of a linear form, which enables to reduce the public
key size from τ down to roughly 2

√
τ integers of γ bits.

492 J.-S. Coron et al.

Our technique requires to use an error-free x0, that is x0 = q0 · p, since
otherwise the error would grow too large. Additionally for encryption we consider
a linear combination of the x′

i,j with coefficients in [0, 2α) instead of bits; this
enables to further reduce the public key size.

KeyGen(1λ). Generate a random prime p ∈ ∩[2η−1, 2η). Let x0 = q0 · p where q0

is a random square free 2λ-rough1 integer in [0, 2γ/p). Generate integers xi,b for
1 ≤ i ≤ β and b ∈ {0, 1}:

xi,b = p · qi,b + ri,b, 1 ≤ i ≤ β, 0 ≤ b ≤ 1 (1)

where qi,b are random integers in [0, q0) and ri,b are integers in (−2ρ, 2ρ). Let
sk = p and pk = (x0, x1,0, x1,1, . . . xβ,0, xβ,1).

Encrypt(pk,m ∈ {0, 1}). Generate a random vector b = (bi,j) of size τ = β2 and
with components in [0, 2α). Generate a random integer r in (−2ρ′

, 2ρ′
). Output

the ciphertext:

c = m + 2r + 2
∑

1≤i,j≤β

bi,j · xi,0 · xj,1 mod x0 (2)

Evaluate and Decrypt: same as in the original scheme, except that ciphertexts
are reduced modulo x0 after addition and multiplication.

3.2 Constraints on the Parameters

The first three constraints are the same as in the original DGHV scheme:

• ρ = ω(logλ) to avoid brute force attack on the noise (see Section 6.1).
• η ≥ (2ρ + α) · Θ(λ log2 λ) in order to support homomorphic operations for

evaluating the “squashed decryption circuit” (see Section 5).
• γ = ω(η2 · logλ) in order to thwart lattice-based attacks (see Section 6).
• α · β2 ≥ γ + ω(logλ) for the reduction to approximate GCD (see Section 4).
• ρ′ = 2ρ + α + ω(logλ) for the secondary noise parameter (see Section 4).

To satisfy these conditions we can still take ρ = λ, η = Õ(λ2) and γ = Õ(λ5)
as in the original scheme, and we can take α = λ, β = Õ(λ2) and ρ′ = 4λ. The
main difference is that instead of having τ = Õ(λ5) integers xi’s, we now have
only 2β = Õ(λ2) integers xi. Hence the public key size becomes Õ(λ7) instead
of Õ(λ10). In Section 7.5 we describe concrete parameters in order to resist all
known attacks.

Remark 3.1. It is possible to generate q0 as a uniformly random square free
2λ-rough integer of suitable size in probabilistic polynomial time: it suffices to
generate a uniformly random number with known factorization [1] and try again
if it has small or repeated factors. However, this makes key generation rather
1 An integer is said to be a-rough when it does not contain prime factors smaller than

a. Note that for a > 2 such integer must be odd.

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 493

unpractical. Alternatively, one can choose q0 as the product of (γ−η)/λ2 random
primes, each of size λ2 bits.2 This is faster, but the security of the scheme then
depends on a slightly more convoluted, though no less plausible, computational
assumption, to account for the different key distribution.

3.3 Correctness

We refer to the full version of this paper [3] for the definition of correct homomor-
phic scheme with respect to a given circuit or circuit set. As in [4,5] we define a
permitted circuit as one where for any i ≥ 1 and any set of integer inputs all less
than τ i · 2i(ρ′+2) in absolute value, the generalized circuit’s output has absolute
value at most 2i(η−3−n) with n = �log2(λ+1)�; we let CE be the set of permitted
circuits. As in [4], we have (see proof in the full version of this paper [3]):

Lemma 3.1. The scheme from above is correct for CE .

Remark 3.2. Since “fresh” ciphertexts output by Encrypt have noise at most
τ · 2ρ′+2, the ciphertext output by Evaluate applied to a permitted circuit has
noise at most 2η−3−n < p/(4(λ + 1)). A bound of p/2 would suffice to ensure
correct decryption, but this stronger bound will be useful to prove the correctness
of the bootstrappable version of this scheme later on.

Remark 3.3. The definition of a permitted circuit doesn’t seem to give an easy
criterion to determine whether a given computation is permitted. However, it
is easy to give a sufficient condition on a multivariate polynomial f for the
associated arithmetic circuit C to be permitted. If f is of degree d and if the
sum of the absolute values of its coefficients is denoted by ‖f‖1, then C ∈ CE
provided that:

d ≤ η − 3 − n− log ‖f‖1

ρ′ + 2 + 2 log β

Following [4], we refer to such polynomials f as permitted polynomials, and de-
note the set of these polynomials by PE .

4 Security of our Variant

4.1 Overview

In this section we show that our variant is still semantically secure, but under
the (stronger) error-free approximate GCD assumption. Our security proof fol-
lows the same strategy as in [4]: show that an adversary breaking the scheme’s
semantic security can be converted into a LSB predictor for z mod p, where z is
an integer such that z mod p is small; this in turns enables to recover p in the
approximate-GCD problem.
2 The reason we choose λ2-bit factors rather than λ is because factorization algorithms

like ECM have a complexity subexponential in the size of factors, and can thus be
used to extract λ-bit prime factors efficiently. In the implementation, to thwart this
attack, it is safe to generate q0 as a product of, say, 1000-bit primes.

494 J.-S. Coron et al.

For this one must show that given c ← Encrypt(pk,m), the distribution of
c′ = [c+z]x0 is essentially the same as Encrypt(pk,m′) with m′ = m⊕ [z mod p]2.
In [4] this is done by showing that the distribution of $c/p� =

∑τ
i=1 bi · qi where

b ← {0, 1}τ is statistically close to uniform in Zq0 . For this [4] applies the leftover
hash lemma on the hash function family h(b) =

∑τ
i=1 bi·qi mod q0 parametrized

by the qi’s, which is clearly pairwise independent.
Similarly to prove the security of our variant we must apply the leftover hash

lemma on the hash function family h′ : [0, 2α)β2 → Zq0 where:

h′(b) =
∑

1≤i,j≤β

bi,j · qi,0 · qj,1 mod q0

The main difficulty is to show that h′ is (almost) pairwise independent; as shown
below this requires to study the zeroes of the corresponding quadratic form. We
note that our result might be of independent interest since it enables to construct
a universal hash function with a small memory footprint.

4.2 Leftover Hash Lemma

A family H of hash functions h : X → Y is pairwise independent if for all
x �= x′ it holds that Prh[h(x) = h(x′)] = 1/|Y |. Since h′ is not exactly pairwise
independent we introduce a slightly more general definition:3

Definition 4.1. A family H of hash functions h : X → Y is ε-pairwise inde-
pendent if ∑

x �=x′

(
Pr

h←H
[h(x) = h(x′)] − 1

|Y |
)

≤ |X |2 · ε

|Y |
The following lemma is a straightforward generalization of the usual leftover

hash lemma. We provide the proof in the full version of this paper [3].

Lemma 4.1 (Leftover hash lemma). Let H be a family of ε-pairwise inde-
pendent hash functions. Suppose that h ← H and x ← X are chosen uniformly
and independently. Then (h, h(x)) is (1

2

√|Y |/|X |+ ε)-uniform over H× Y .

4.3 Proof of Pairwise Independence

Let q be an integer. Let H be a hash function family from {0, . . . , 2α − 1}β×β to
Zq. The members h ∈ H are associated to elements qi,0, qi,1 of Zq for 1 ≤ i ≤ β.
For b ∈ {0, . . . , 2α − 1}β×β, we let:

h(b) =
∑

1≤i,j≤β

bijqi,0qj,1 mod q

3 Note that this is quite different from “ε-almost universal hash function fami-
lies” in the sense of Wegman and Carter [19]. We need the collision probability
Prh←H[h(x) = h(x′)] to be at most (1 + ε)/|Y | on average, with negligible ε; 2/|Y |
is not good enough.

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 495

Lemma 4.2. For an odd prime integer q, the hash function family H is ε-
pairwise independent, with:

ε =
1
q

+
β2

2αβ2−2(α+1)β

Proof. For each choice of b �= b′, the probability Prh←H[h(b) = h(b′)] can be
expressed in terms of the number of zeros of a certain hyperbolic quadratic form
in Z2β

q . More precisely let A = (aij) be the β × β matrix in Mβ(Zq) given by
aij = bij − b′ij . We have:

Pr
h

[h(b) = h(b′)] =
1

q2β
#
{

(u1, . . . , uβ, v1, . . . , vβ) ∈ Z2β
q :

∑
1≤i,j≤β

aijuivj = 0
}

Now the quadratic form Q =
∑

1≤i,j≤β aijuivj has the matrix 1
2

(
0 A

AT 0

)
, which

is clearly conjugate to 1
2

(
0 J
J 0

)
where J is the canonical row echelon form of A.

It follows that Q is the orthogonal sum of r hyperbolic planes, with r the rank
of A. Hence, its number of zeros is well-known (see e.g. [9, Theorem 6.32] for the
non-degenerate case, from which the general case follows immediately):

#
{

(u1, . . . , uβ, v1, . . . , vβ) ∈ Z2β
q :

∑
1≤i,j≤β

aijuivj = 0
}

= q2β−1+q2β−r−q2β−r−1

In particular, we get:

Pr
h

[h(b) = h(b′)] − 1
q
≤ 1

qr

This estimate is quite sufficient for our purposes, except in the case when r = 1.
Therefore, we need to bound the number of pairs (b, b′) such that the correspond-
ing matrix A is of rank 1. Noting that A has all its entries in −2α + 1, . . . , 2α − 1,
it is enough to bound the cardinality of the set Uα of matrices of rank 1 in Mβ(Zq)
with entries in that interval.

To do so, note that a matrix of rank 1 with a nonzero upper-left entry is
entirely determined by its first line and its first column. If the entries are in
{−2α + 1, . . . , 2α − 1}, this leaves 2α+1 − 2 choices for the upper-left entries and
(2α+1 − 1)2β−2 choices for the remainder of the first line and the first column.
Hence, there are less than 22(α+1)(β−1) matrices in Uα with a nonzero upper-left
entry (and usually much fewer, since not all first lines and first columns need
to give rise to matrices with all their entries in the proper interval). The same
argument can be applied to any other nonzero entry (i, j), leading to the coarse
bound:

|Uα| < β2 · 22(α+1)β

Now, the number of pairs (b, b′) such that the corresponding matrix A is
of rank 1 is at most |X | · |Uα|, since for any choice of b, there are at most |Uα|

496 J.-S. Coron et al.

possible values of b′ such that A is in Uα. We can thus bound the value δ defined
by:

δ =
|Y |
|X |2

∑
b�=b′

(
Pr
h

[h(b) = h(b′)] − 1
|Y |
)

as required. Indeed:

δ =
q

|X |2
∑
b�=b′

(
Pr
h

[h(b) = h(b′)] − 1
q

)
≤ q

|X |2
(∑

b �=b′
A �∈Uα

1
q2

+
∑
b�=b′
A∈Uα

1
q

)

≤ q

|X |2
(|X |2

q2
+

|X | · |Uα|
q

)
≤ 1

q
+

|Uα|
|X | ≤ 1

q
+

β2

2αβ2−2(α+1)β

which concludes the proof. ��

Corollary 4.1. When q is a product of distinct primes greater than 2α, the hash
function family H is ε-pairwise independent, with:

ε =
log q

log p

(
e

p
+

β2 · 2(log q)/(log p)

2αβ2−2(α+1)β

)
where p is the smallest prime factor of q.

Proof. The proof is largely similar to the previous one. See the full version of
this paper [3] for details.

4.4 Semantic Security

We are now ready to show that our variant is semantically secure under the
(stronger) error-free approximate GCD assumption. The proof follows the same
strategy as [4]; we refer to the full version of this paper [3] for the details. For
two specific integers p and q0, we define the modified distribution:

D′
ρ(p, q0) =

{
Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p + r

}
Definition 4.2 (Error-free approximate GCD). The (ρ, η, γ)-error-free-ap-
proximate-GCD problem is: For a random η-bit prime integer p, given x0 = q0 ·p
where q0 is a random square free 2λ-rough integer in [0, 2γ/p), and polynomially
many samples from D′

ρ(p, q0), output p.

Theorem 4.1. Let A be an attacker with advantage ε against our variant en-
cryption scheme with parameters (ρ, ρ′, η, γ, τ = β2) polynomial in the secu-
rity parameter λ. There exists an algorithm B for solving the (ρ, η, γ)-error-
free-approximate-GCD problem that succeeds with probability at least ε/2. The
running time of B is polynomial in the running time of A, λ and 1/ε.

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 497

5 Making the Scheme Fully Homomorphic

5.1 The Squashed Scheme

Gentry’s transformation to “squash the decryption” consists in adding to the
public key some extra information about the secret key and use this extra in-
formation to “post process” the ciphertext. Then the post-processed ciphertext
can be decrypted by a decryption polynomial of small degree. This requires to
introduce an additional complexity assumption, namely the sparse subset-sum
assumption.

We follow the description of [4]. Three more parameters κ, θ and Θ are added.
Concretely, one uses θ = λ, κ = γ + 2 + �log2(θ + 1)�, and Θ = Õ(λ3).4 One
adds to the public key a set y = {y1, . . . , yΘ} of rational numbers in [0, 2) with
κ bits of precision, such that there is a sparse subset S ⊂ {1, . . . , Θ} of size θ
with

∑
i∈S yi � 1/p mod 2. The expanded ciphertext is computed using the yi’s.

The secret key sk is replaced by the indicator vector of the subset S.
However adding Θ elements yi each of size κ bits would give a public key of

size Θ · κ = Õ(λ8), instead of Õ(λ7) in our variant. Therefore instead of storing
the yi’s in the public key as in [4], we generate the yi’s using a pseudo-random
generator5 f(se). Then only the seed se and y1 need to be stored in the public
key, and the other yi’s can be recovered during ciphertext expansion by applying
f(se) again. We obtain the following squashed scheme:

KeyGen. Generate sk∗ = p and pk∗ as before. Set xp ← $2κ/p�, choose at random
a Θ-bit vector s = (s1, . . . , sΘ) with Hamming weight θ with s1 = 1, and let
S = {i : si = 1}.

Initialize a system-wide pseudo-random number generator f with a random
seed se, and use f(se) to generate integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ. Then,
set u1 such that

∑
i∈S ui = xp mod 2κ+1. Set yi = ui/2κ and y = {y1, . . . , yΘ}.

Hence each yi is a positive number smaller than two, with κ bits of precision
after the binary point. Also, [

∑
i∈S yi]2 = (1/p) −Δp for some |Δp| < 2−κ.

Output the secret key sk = s and public key pk = (pk∗,y).

Encrypt and Evaluate. Generate a ciphertext c∗ as before. Then for i ∈ {1, . . . , Θ}
set zi ← [c∗ ·yi]2, keeping only n = �log2(θ+1)� bits of precision after the binary
point for each zi. Output both c∗ and z = (z1, . . . , zΘ).

Decrypt: Output m ← [c∗ − $∑i sizi�]2.
This completes the description of the scheme. Note that as in [6] we use

n = �log2(θ + 1)� bits of precision, instead of n = �log2 θ� + 3 in the orig-
inal scheme. This enables to reduce the degree of the decryption polynomial.

4 We use Θ = Õ(λ3) instead of Θ = ω(κ · log λ) in [4] from a better analysis of the
hardness of the SSSP problem (see Section 6.3).

5 Note that f doesn’t really need to be a cryptographically strong PRNG: all that
is needed is that the sparse subset-sum problem remains hard when the subset is
generated by f . Heuristically, this is a mild requirement. In our implementation, we
use random numbers produced by the PRNG from the glibc.

498 J.-S. Coron et al.

In practice we will use n = 4. Note that for encryption we don’t need to store
all the yi’s in memory again; we can generate them one by one from the PRNG
to compute zi ← [c∗ · yi]2 with n bits of precision.

The proof of the following lemma is similar to the one in [4] (see the full version
of this paper [3]), but we can handle a smaller precision n, as in [6], because in
our scheme, ciphertext size does not grow in homomorphic operations.

Lemma 5.1. The modified scheme is correct for the set C(PE) of circuits that
compute permitted polynomials.

5.2 Bootstrapping

As in [4], one obtains that the scheme is bootstrappable. From Gentry’s theorem
we obtain homomorphic encryption schemes for circuits of any depth.

Theorem 5.1. Let E be the scheme above, and let DE be the set of augmented
(squashed) decryption circuits. Then, DE ⊂ C(PE).

Proof. The proof is as in [4]. We provide a slightly different analysis. We consider
the decryption equation:

m ← c∗ −
⌊

Θ∑
i=i

si · zi

⌉
mod 2

where si are the secret key bits and zi are rational numbers in [0, 2) with n bits
of precision after the binary point (therefore n+1 bits in total). We must express
the decryption equation as a low degree polynomial in the bits si and the bits
in zi, i.e. a permitted polynomial.

11111

11111

11111

248

359

79

15

15 815

Fig. 2. Grade-school addition for Θ or θ = 15 numbers of n = 4 bits of precision after
the binary point. The numbers indicate the degree of each bit as a binary polynomial
in the input bits.

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 499

For this one uses a simple grade-school addition of the numbers ai = si · zi.
As illustrated in Fig. 2 the bits of the ai’s are arranged in Θ rows and n + 1
columns (one column before the binary point and n columns after). To see how
this grade-school addition can be performed efficiently, first recall the following
result from [4, §6.2].

Lemma 5.2. Let b = (b1, b2, . . . , bΘ) be any binary vector, and denote its Ham-
ming weight by W . Write the binary digits of W as W = Wk · · ·W1W0

2
. Then

the j-th bit Wj of W can be expressed as a binary polynomial of degree exactly
2j in the bi’s, namely the 2j-th elementary symmetric polynomial:

Wj =
∑

I⊂{1,...,Θ}
|I|=2j

∏
i∈I

bi

Moreover, the bits W0,W1, . . .Wj can be simultaneously computed by an arith-
metic circuit of size 2j ·Θ.

That the Wj ’s are given by elementary symmetric polynomials is classical
(see e.g. [2, Lemma 4]). Thus, to compute them, it suffices to find the top 2j

coefficients of the polynomial (X − b1)(X − b2) · · · (X − bΘ), which can be done
iteratively with at most 2j · Θ operations. We recall in the full version of this
paper [3] the dynamic programming algorithm from [4].

Then, the procedure to compute

Q =

⌊
Θ∑

k=1

ak

⌉
is as follows. We number the columns containing the ak’s from left to right as 0
(before the binary point), −1, −2, . . . , −n.

As usual, grade-school addition starts from the rightmost column (column
−n). Adding all Θ bits from that column produces a bit of result and a certain
number of bits of carry. Since we are only interested in the n+1 least significant
bits of the sum, we only need to keep track of the result and the first n carry bits:
this amounts to computing the rightmost bits W

(−n)
0 ,W

(−n)
1 , . . . ,W

(−n)
n of the

Hamming weight W (−n) of column −n, which can be done with at most 2n ·Θ
multiplications according to the previous lemma.

Now, push carry bit W (−n)
1 to column −n+1, carry bit W (−n)

2 to column −n+2
and so on. We can then continue the grade-school addition process from column
−n + 1, where we only need to compute the result and n− 1 carry bits, namely
the bits W

(−n+1)
j of the Hamming weight W (−n+1) of the column, including

the possible carry bit from column −n. This amounts to at most 2n−1 · (Θ + 1)
multiplications. When this is done, push the carry bits W

(−n+1)
1 , . . .W (−n+1)

n−1

to columns −n + 2, −n + 3, . . . , 0 respectively, move to the next column and
continue as before. This is illustrated in Figure 2 for n = 4.

As shown in the full version of this paper [3], this can be done in O(Θ ·θ) mul-
tiplications, and the decryption polynomial is a polynomial f of the ciphertext

500 J.-S. Coron et al.

bits and the secret key satisfying d = deg f = 2n+1 and ‖f‖1 ≤ 2Θ. In view of
Remark 3.3, f is a permitted polynomial as long as d ≤ (η−4−n− log2 Θ)/(ρ′+
2 + 2 log2 β) ≈ η/ρ′ which is satisfied by choosing η according to the constraint
in Section 3.2. ��

6 Attacks

In this section we recall the known attacks. For each attack we provide an asymp-
totic analysis (as in [4]) and we also run the attacks in practice in order to derive
concrete parameters for our implementation. We use four security levels inspired
by the levels from [6]: “toy”, “small”, “medium” and “large”, corresponding to
42, 52, 62 and 72 bits of security respectively. For security parameter λ we wish
to ensure that the best attack requires at least 2λ clock cycles on a standard PC.

Note that we use the SAGE [13] interface to the fplll lattice reduction
package [15] which is to our knowledge the fastest publicly available. However
any progress in LLL implementations will require an increase of our security
parameters.

6.1 Brute Force Attack on the Noise

The easiest attack is the brute force attack on the noise in the public key. Given
x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, one can guess r1 and compute
gcd(x0, x1−r1) to recover p. The state of the art algorithm for computing GCD’s
is the Stehlé-Zimmermann algorithm [18] with time complexity Õ(γ) for integers
of γ bits. The attack complexity is then 2ρ·Õ(γ). Therefore the attack is thwarted
if ρ = ω(logλ).

A better attack [11] consists in computing p = gcd(x0,
∏2ρ

i=−2ρ(x1 − i) [x0]).
Using fast multiplication the asymptotic complexity is also 2ρ · Õ(γ). Experimen-
tally this later attack is roughly 5 times faster. See the full version of this paper
[3] for concrete parameters.

6.2 Approximate-GCD Attack on the Public Key

We do not consider Coppersmith’s attack since as shown in [4] it does not apply
for the range of parameters. We consider the attack based on Nguyen and Stern’s
orthogonal lattice [10] (see Section B.1 in [4]). One considers the first t ≤ τ
integers xi = p · qi + ri and x0 = p · q0. The attack builds the lattice L of
row vectors orthogonal to x = (x1, . . . , xt) modulo x0 (see the full version of this
paper [3] for more details). One must find a vector u ∈ L such that ‖u‖∞ ≤ 2η−ρ.
From Minkowski’s bound there exists a nonzero lattice vector of norm about√
t · det(L)1/t � 2γ/t, which gives the condition t > γ/η. However when the

lattice dimension t is large, lattice reduction algorithms will not recover such a
short vector but only an approximation.

As in [4] we use the following “rule of thumb” conjecture about lattice al-
gorithms performance: there exists a constant μ such that for any k and any

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 501

dimension t, one cannot find a μt/k approximation of the shortest vector in time
smaller than 2k. Since we must find a vector u such that ‖u‖∞ ≤ 2η−ρ, we need
better than a 2η−ρ approximation of the shortest vector. To get a 2η approxima-
tion (which is not quite enough to recover u), from t > γ/η the time required
is then at least 2k where k = (log2 μ)γ/η2. We recover the asymptotic condition
γ = η2 · ω(logλ). To obtain concrete parameters we have run some experiments
with the LLL and BKZ-20 lattice reduction algorithms; see the full version of
this paper [3].

6.3 Lattice Attack on the Sparse Subset-sum Problem

We use the refined analysis from [17] of the sparse subset sum problem. The
attacker must solve the equation

∑Θ
i=1 si·ui = xp mod 2κ where s = (s1, . . . , sΘ)

is of small Hamming weight θ.
As shown in the full version of this paper [3] the lattice attack leads to a lattice

L of determinant detL � 2Θ+κ � 2Θ+γ . The lattice has a short vector of norm
about

√
Θ. From Minkowsky’s bound we can expect that the norm of the second

shortest vector is � (detL)1/Θ � 2γ/Θ. Therefore to find the shortest vector
we need better than a 2γ/Θ approximation. From the lattice “Rule of Thumb”
conjecture with the previous notations the time required is then at least 2k with
k = (log2 μ)Θ2/γ. Asymptotically the condition is therefore Θ2 = γ · ω(logλ).
Therefore with γ = Õ(λ5) we can take Θ = Õ(λ3). We refer to the full version
of this paper [3] for concrete parameters; we also consider a birthday-like attack
on the sparse subset-sum problem.

7 Implementation of the Fully Homomorphic Scheme

7.1 Recryption

Now that decryption can be expressed as an arithmetic circuit of low depth,
it is possible to achieve bootstrapping, i.e. to publicly evaluate the decryption
circuit homomorphically on a ciphertext, which produces another ciphertext for
the same message, but with possibly less noise (a “recryption”). This process,
which is Gentry’s key idea [5] for achieving fully homomorphic encryption, is
illustrated in Figure 1. The procedure that evaluates the decryption circuit ho-
momorphically, called Recrypt, takes as input encryptions of the ciphertext bits,
and encryptions of the secret key bits.

In the case of the DGHV scheme or of our variant, 0 and 1 are valid encryptions
of themselves, so the ciphertext bits can be passed as is to the decryption circuit.
However, encryptions of the secret key bits should also be made available publicly,
so the key generation from §5.1 should be modified to include encryptions σi of
the si’s into the public key pk = (pk∗,y,σ). Then the Recrypt procedure is
simply obtained by applying the decryption circuit to the ciphertext bits and
the encrypted secret key bits.

Note that such ciphertexts σi are normally generated using the xi,b’s from
the public key, leading to σi’s with noise of size ρ′. However since we are at key

502 J.-S. Coron et al.

generation phase we can do better and let σi = si + 2r′i + 2p · q′i mod x0 for
1 ≤ i ≤ Θ, for random integers q′i modulo q0 and random integers r′i in (−2ρ, 2ρ).
The resulting ciphertexts σi have the same distribution as regular ciphertexts
but with noise ρ instead of ρ′. Since ρ < ρ′ this enables to reduce the size η of p
required to achieve bootstrappability.

For the refreshed ciphertext to decrypt correctly, its noise must be small
enough, and in fact small enough that a multiplication operation between re-
freshed ciphertexts still decrypts correctly. The ciphertext bits are noise-free
encryptions of themselves and the encrypted secret key bits contain ρ bits of
noise, so one must have d · ρ < η/2, where d is the degree of the decryption cir-
cuit discussed in the previous section (or in fact, only half that degree, because
only the degree with respect to the secret key bits matters; the contribution
in the ciphertext bits zi can be ignored as they are used directly and without
noise).

7.2 Optimization of the Decryption Circuit

We use the optimization from [4] which consists in representing the secret key
s in θ boxes of B = Θ/θ bits each, such that each box has a single 1-bit in
it. This enables to obtain a grade-school addition algorithm that requires O(θ2)
multiplications of bits instead of O(Θ · θ). We refer to the full version of this
paper [3] for the details. Note in particular that it results from the analysis that
the degree of the decryption polynomial in the secret key bits is exactly θ. See
also Fig. 2 for an illustration of the grade-school addition algorithm with n = 4.

7.3 Compression of Encrypted Secret Key Bits

The modification of the public key described previously, to accommodate for the
Recrypt procedure, has the problem of increasing public key size significantly.
Namely the vector σ in the enlarged public key consists of Θ = Õ(λ3) ciphertexts,
each of size γ = Õ(λ5), so we obtain a public key size of Õ(λ8), instead of Õ(λ7)
in the basic scheme.

To alleviate this problem, an additional compression trick is described in [6].
Instead of generating the secret key as a single bit vector s = (s1, . . . , sΘ), one
uses two bit vectors s(0) and s(1) of length

√
Θ, and s is then recovered on the

fly during decryption with si,j = s
(0)
i · s(1)

j . See the full version of this paper
[3] for the details. This brings down the size of the encrypted secret key bits to
about

√
Θ · γ = Õ(λ6.5). Note on the other hand that this increases the noise

in σ by a factor of 2 since the σi,j are obtained as products of two ciphertexts;
this implies that to keep bootstrappability the size η of p must be doubled.

7.4 Smaller Dimension for Knapsack Encryption

From the previous section the size of the public key in the full scheme is now
about (β +

√
Θ) · γ bits. The conditions from Section 3.2 imply that we must

have β = Õ(λ2) to apply the leftover hash lemma. Since
√
Θ = Õ(λ1.5) we have

Fully Homomorphic Encryption over the Integers with Shorter Public Keys 503

that β is the bottleneck. Therefore in practice we would like to use a smaller β,
for which the leftover hash lemma would not apply but no attack would work.

This implies that we must consider a lattice attack against the knapsack sum
in the encryption algorithm. The analysis is the same as in Section 6.3, with
τ = β2 instead of Θ. This gives the asymptotic condition τ2 = γ ·ω(log λ) which
for α < τ is weaker than the condition α · τ ≥ γ + ω(logλ) necessary for the
reduction to the approximate GCD problem. Under this condition we can take
τ = Õ(γ3) instead of τ = Õ(γ4) and therefore β = Õ(γ1.5) instead of β = Õ(γ2).
The public key size is then (β +

√
Θ) · γ = Õ(λ6.5) instead of Õ(λ7).

7.5 Concrete Parameters

From the analysis of the known attacks in the previous section we are now ready
to derive the concrete parameters for the four levels of security. For all four levels
we take θ = 15. In this case the degree of the decryption polynomial is 2θ = 30
when using the degree-2 compression of the encryption of the secret key bits.
Since we must allow for an additional multiplication after Recrypt, the total
degree is d = 4 · θ = 60. To allow for some margin we take η = (d + 8)ρ = 68 · ρ.
We obtain the parameters given in Table 1.

Table 1. Concrete parameters and corresponding timings, as measured using our im-
plementation in Sage 4.5.3 [13] and GMP 4.3.2 [8], on a single core of a desktop com-
puter with an Intel Core2 Duo E8500 CPU at 3.12 GHz. The public key is roughly
2(β +

√
Θ +1)γ bit long. Note that almost all the CPU time of key generation is spent

in primality tests, to generate a rough q0.

Parameters λ ρ η γ β Θ

Toy 42 16 1088 1.6 · 105 12 144

Small 52 24 1632 0.86 · 106 23 533

Medium 62 32 2176 4.2 · 106 44 1972

Large 72 39 2652 19 · 106 88 7897

Parameters KeyGen Encrypt Expand Decrypt Recrypt pk size

Toy 4.38 s 0.05 s 0.03 s 0.01 s 1.92 s 0.95 MB

Small 36 s 0.79 s 0.46 s 0.01 s 10.5 s 9.6 MB

Medium 5 min 9 s 10 s 8.1 s 0.02 s 1 min 20 s 89 MB

Large 43 min 2 min 57 s 3 min 55 s 0.05 s 14 min 33 s 802 MB

Acknowledgments. We would like to thank Phong Q. Nguyen, Nigel P. Smart
and the CRYPTO referees for helpful comments. The work described in this
paper has been supported in part by the European Commission through the
ICT program under contract ICT-2007-216676 ECRYPT II.

504 J.-S. Coron et al.

References

1. Bach, E.: How to generate factored random numbers. SIAM J. Comput. 17,
179–193 (1988)

2. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean
functions over the basis (∧,⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

3. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys, http://eprint.iacr.org

4. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

5. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), http://crypto.stanford.edu/craig

6. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

8. Grandlung, T., et al.: The GNU Multiple Precision arithmetic library, Version 4.3.2
(2010), http://gmplib.org

9. Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and its
Applications, vol. 20, Addison-Wesley, Reading (1983)

10. Nguyên, P.Q., Stern, J.: The Two Faces of Lattices in Cryptology. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

11. Nguyen, P.Q.: Personal Communication
12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

13. Stein, W.A., et al.: Sage Mathematics Software (Version 4.5.3), The Sage Develop-
ment Team (2010), http://www.sagemath.org

14. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

15. Pujol, X., Stehlé, D., et al.: Fplll lattice reduction library,
http://perso.ens-lyon.fr/xavier.pujol/fplll/

16. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

17. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

18. Stehlé, D., Zimmermann, P.: A binary recursive gcd algorithm. In: Buell, D.A. (ed.)
ANTS 2004. LNCS, vol. 3076, pp. 411–425. Springer, Heidelberg (2004)

19. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

http://eprint.iacr.org
http://crypto.stanford.edu/craig
http://gmplib.org
http://www.sagemath.org
http://perso.ens-lyon.fr/xavier.pujol/fplll/

Fully Homomorphic Encryption from Ring-LWE

and Security for Key Dependent Messages

Zvika Brakerski1 and Vinod Vaikuntanathan2

1 Weizmann Institute of Science
zvika.brakerski@weizmann.ac.il

2 Microsoft Research and University of Toronto
vinodv@cs.toronto.edu

Abstract. We present a somewhat homomorphic encryption scheme
that is both very simple to describe and analyze, and whose security
(quantumly) reduces to the worst-case hardness of problems on ideal lat-
tices. We then transform it into a fully homomorphic encryption scheme
using standard “squashing” and “bootstrapping” techniques introduced
by Gentry (STOC 2009).

One of the obstacles in going from “somewhat” to full homomorphism
is the requirement that the somewhat homomorphic scheme be circular
secure, namely, the scheme can be used to securely encrypt its own se-
cret key. For all known somewhat homomorphic encryption schemes, this
requirement was not known to be achievable under any cryptographic
assumption, and had to be explicitly assumed. We take a step forward
towards removing this additional assumption by proving that our scheme
is in fact secure when encrypting polynomial functions of the secret key.

Our scheme is based on the ring learning with errors (RLWE) as-
sumption that was recently introduced by Lyubashevsky, Peikert and
Regev (Eurocrypt 2010). The RLWE assumption is reducible to worst-
case problems on ideal lattices, and allows us to completely abstract out
the lattice interpretation, resulting in an extremely simple scheme. For
example, our secret key is s, and our public key is (a, b = as+2e), where
s, a, e are all degree (n − 1) integer polynomials whose coefficients are
independently drawn from easy to sample distributions.

1 Introduction

Fully-homomorphic encryption is one of the most sought after goals of mod-
ern cryptography. In a nutshell, a fully homomorphic encryption scheme is an
encryption scheme that allows evaluation of arbitrarily complex programs on
encrypted data. The problem was first suggested by Rivest, Adleman and Der-
touzos [36] back in 1978, yet the first plausible construction came thirty years
later with the breakthrough work of Gentry in 2009 [14,15] (although, there has
been partial progress in the meanwhile; see, e.g., [21,12,30,6]).

The cornerstone of Gentry’s construction is the notion of a “somewhat ho-
momorphic” encryption scheme – namely, an encryption scheme that allows
evaluation of a class of functions below some complexity threshold. Specifically,

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 505–524, 2011.
c© International Association for Cryptologic Research 2011

506 Z. Brakerski and V. Vaikuntanathan

his construction of a somewhat homomorphic encryption scheme allows the ho-
momorphic evaluation of any (arithmetic or Boolean) function whose polyno-
mial representation has bounded degree. He then showed how to “bootstrap”
from a sufficiently powerful somewhat homomorphic encryption scheme into a
fully homomorphic encryption scheme. To construct a somewhat homomorphic
encryption scheme, Gentry harnessed the power of ideal lattices – a sophisti-
cated algebraic structure with many useful properties. Specifically, he was able
to reduce the security of his somewhat homomorphic encryption scheme to the
worst-case hardness of standard problems (such as the shortest vector problem)
on ideal lattices [15].1

Gentry’s construction is quite involved – the secret key, even in the private-
key version of his scheme, is a short basis of a “random” ideal lattice. Generating
pairs of public and secret bases with the right distributions appropriate for the
worst-case to average-case reduction is technically quite complicated, and sig-
nificant effort has been devoted recently to this issue [38,16]. We will present
a scheme where key generation is simply sampling a random degree-(n − 1)
polynomial with coefficients in Zq. Furthermore, all parts of our scheme can be
described in elementary terms, with no reference to ideals.

A parallel line of work that utilizes ideal lattices in cryptography dates back
to the NTRU cryptosystem [22]. The focus of this line of work is to use ideal
lattices for efficient cryptographic constructions. The added structure of ideal
lattices, compared to ordinary lattices, makes their representation more succinct
and enables fast computation. Starting with the work of Micciancio [28], there
has been an ongoing effort [31,23,32,25,24] to come up with very efficient con-
structions of various cryptographic primitives whose security can formally be
reduced to the hardness of short-vector problems in ideal lattices. A recent work
along these lines, which serves as an essential stepping stone for this work, is
that of Lyubashevsky, Peikert and Regev [26].

Lyubashevsky et al. [26] present the ring learning with errors (RLWE) as-
sumption, which is the “ring counterpart” of Regev’s learning with errors as-
sumption [34]. Roughly speaking, the assumption is that given polynomially
many samples over a certain ring of the form (ai, ais + ei), where s is a random
“secret ring element”, ai’s are uniformly random in the ring, and ei are “small”
ring elements, an adversary cannot distinguish this sequence of samples from
random pairs of ring elements. They show that this simple to state assumption
can be (very efficiently) reduced to the worst case hardness of short-vector prob-
lems on ideal lattices. They also construct a very efficient ring counterpart to
Regev’s [34] public-key encryption scheme, as well as a counterpart to the iden-
tity based encryption scheme of [17] (using the basis sampling techniques of [39]).
The description of the scheme is very elegant since, as explained above, RLWE
is stated without directly referring to lattices (similarly to the LWE assumption
and ordinary lattices).

1 The specific variant of the (approximate) shortest vector problem, as well as the
specific approximation factor, are irrelevant for the current discussion.

Fully Homomorphic Encryption from Ring-LWE 507

A natural question that comes out of these two lines of work is whether one
can get the best of both worlds, namely the expressive functionality on the one
hand, and the simplicity and efficiency on the other. We show that indeed this
can be done – we construct a somewhat homomorphic encryption scheme based
on RLWE and thus inherit the simplicity and efficiency, as well as the worst
case relation to ideal lattices. Furthermore, our scheme enjoys key dependent
message security (KDM security, also known as “circular security”) – namely,
the scheme can securely encrypt polynomial functions (over an appropriately
defined ring) of its own secret key. This property, while interesting in its own
right,2 carries special significance in the context of homomorphic encryption as
we explain next.

All known constructions of fully homomorphic encryption employ a “boot-
strapping” technique, which enforces the public key of the scheme to grow lin-
early with the maximal depth of evaluated circuits. This is a major drawback
with regards to the usability and the efficiency of the scheme. However, the size
of the public key can be made independent of the circuit depth if the somewhat
homomorphic scheme can securely encrypt its own secret key. Achieving circular
secure somewhat homomorphic encryption has been, thus, an interesting open
problem3 which we resolve in this paper. Unfortunately, the circular security
we can prove is with respect to the representation of the secret key as a ring
element, where bootstrapping requires circular security with respect to the bit-
wise representation of the secret key (to be precise: the bitwise representation of
the “squashed” secret key). However, since prior to this work it was not known
whether somewhat homomorphism can co-exist with any form of circular secu-
rity, we view this property as a significant first step towards removing the above
assumption.

We also show how to transform this into a fully homomorphic encryption
scheme, following Gentry’s blueprint of “squashing” and “bootstrapping”.4 Al-
ternatively, applying techniques from a followup work [10], “squashing” can be
avoided at the cost of relying on a “sparse” version of RLWE that is not known
to reduce to worst case problems.

Lastly, we remark that our scheme is (additive) key-homomorphic, a prop-
erty which recently found applications to achieving security against related-key
attacks [3].

We elaborate more on the properties of our scheme below.

2 In some ranges of parameters, we improve upon the best known based on any lattice
assumption, see Section 1.1.

3 Of course, one can just assume that some scheme is circular secure and hope that
it is correct. This has indeed been the solution so far.

4 Although our somewhat homomorphic encryption scheme assumes only the hard-
ness of ring LWE (which can be based on the worst-case hardness of ideal lattice
problems), the squashing step adds another assumption, namely the hardness of
the sparse subset sum problem. This is completely analogous to what happens in
Gentry’s work.

508 Z. Brakerski and V. Vaikuntanathan

1.1 Our Results and Techniques

We present a public-key encryption scheme under the polynomial LWE (PLWE)
assumption, which is a simplified version of the aforementioned RLWE. We show
that our scheme is both somewhat homomorphic and circular secure. The for-
mer means that bounded complexity functions can be evaluated on encrypted
data. The latter means that non-trivial functions of the secret key (including
the secret key itself) can be securely encrypted by our scheme. Finally, we show
how fully homomorphic encryption can be obtained by bootstrapping, using
“Gentry-style” squashing. We also mention how squashing can be traded for a
sparse variant of PLWE using techniques from a follow-up work. Details follow.

The Assumption. We formally define the polynomial learning with errors as-
sumption (PLWE), which is a simplified version of [26]’s RLWE assumption. We
emphasize that PLWE is implicit in [26] and we just make it explicit. In par-
ticular, using the results of [26], the hardness of PLWE can be based on the
worst-case hardness of ideal lattice problems.

In the standard parameter setting, we consider the polynomial ring Rq
.=

Zq[x]/ 〈xn + 1〉, where n is a power of 2, namely the ring of all integer polyno-
mials of degree (n − 1) and coefficients in Zq. Addition and multiplication over
this ring are defined modulo (xn +1, q). The PLWE assumption in this setting is
that it is hard to distinguish polynomially many samples from the distribution
(ai, ais+ei) and the same number of samples from the distribution (ai, ui), where
s, the ai’s and the ui’s are uniform in Rq and the ei’s are “noise polynomials”
whose coefficients are sampled (independently) from a narrow Gaussian (which
we refer to as the noise distribution χ). An important observation is that the
assumption still holds if s is sampled from the noise distribution χ rather than
the uniform distribution (this is the “Hermite normal form” of the assumption).

The resemblance to standard learning with errors is apparent, especially when
noticing that the additive group of Rq and Zn

q are isomorphic (as vector spaces,
obviously multiplication in the latter is undefined). The new aspect of PLWE
is the use of multiplication in Rq in the place of inner product, which results
in a larger amount of pseudo-randomness generated per sample. Rather than
obtaining just one element in Zq, as in standard LWE, we here obtain n such
elements.

The PLWE problem, in some parameter settings, is reducible to the worst case
hardness of “short vector problems” in ideal lattices. This is a straightforward
consequence of [26]. Specifically, we require that q is a sub-exponential prime and
that there is a sub-exponential gap between the q and the standard deviation of
the Gaussian error (used to sample the coefficients of the ei’s described above).
These parameters translate to the worst-case hardness of approximating the
shortest vector problem to within a (slightly) sub-exponential approximation
factor, using (slightly) sub-exponential algorithms. We note that the best (ideal)
lattice algorithms run in time roughly 2n/k to come up with a 2k-approximation
of shortest vectors (where k is a “tunable” parameter of the algorithm).

Fully Homomorphic Encryption from Ring-LWE 509

The Basic Scheme. Our somewhat homomorphic encryption scheme is so simple
that the best way to present it is to spell it out. We first present the symmetric-
key variant of the scheme and then explain how to transform it into a public-key
scheme.

To generate the (symmetric) key for our scheme, we sample s
$← χ (in fact,

if we only care about homomorphism and not KDM security, sampling s
$← Rq

is sufficient). Encryption is performed by sampling a
$← Rq and e

$← χ and
outputting the ciphertext c = (c0, c1) where c1 = −a and c0 = as + 2e +
m. The message m resides in the ring of polynomials with binary coefficients
R2 = Z2[x]/ 〈xn + 1〉 (which is isomorphic to {0, 1}n but, as one might guess,
has additional structure that will be used for homomorphism). To decrypt the
ciphertext c = (c0, c1), one computes c0 + c1s (mod 2). Note that we slightly
deviate from the standard notation for LWE based schemes for reasons that will
be apparent below.

The correctness of the scheme is apparent, and security follows from the PLWE
assumption by noting that (a, as+2e) is indistinguishable from (a, u), where u is
uniform (the additional factor of 2 is not a problem, since 2 is invertible in Zq).
The ciphertext, thus, is indistinguishable from one that carries no information
on the message.

A Public-Key Scheme. We obtain a public-key encryption scheme using a variant
of the construction of [26]. Notice that in order to encrypt with our symmetric
scheme, we only need the ability to generate pairs of the form (a, as + 2e). We
show that given one such pair, it is easy to re-randomize and generate as many of
them as we want. Given (a, b = as+2e), we consider the tuple (a′ = av+2e′, b′ =
bv + 2e′′), where v, e′

$← χ, e′′ $← χ′, where χ′ is a noise distribution like χ, only
with larger standard deviation. It holds that b′ = asv + 2(ev + e′′) = a′s +
2(ev+ e′′− e′s). If the standard deviation of e′′ is sufficiently large, it holds that
b′

s≈ a′s+2e′′. In addition, a′ is computationally indistinguishable from uniform
(even for an adversary who knows s). Therefore (a′, b′) are computationally
indistinguishable, even given the secret key, from an appropriately distributed
pair that can be used for encryption. Security is not affected because the original
pair (a, b) posted as the public key is computationally indistinguishable from
being independent of s.

Somewhat Homomorphic Scheme. Achieving additive homomorphism is simple,
via coordinate-wise addition: cadd = c + c′ = (c0 + c′0, c1 + c′1) = ((a + a′)s +
2(e+e′)+(m+m′),−(a+a′)), which decrypts properly so long as the error does
not “blow up”. It is multiplicative homomorphism that requires careful handling.
The intuition is that multiplying together the c0 elements of 2 ciphertexts should
create an element that depends on the product of the messages. Writing it down,
we indeed see that c0 · c′0 = −aa′s2 + (c0a′ + c′0a)s+ 2(2ee′ + em′ + e′m) +mm′,
which almost looks like a legitimate ciphertext, except for the term −aa′s2,
which contains a high power of s. The key observation is that we can make this
ciphertext decryptable at the expense of adding an element to the ciphertext.
Our new ciphertext will be cmult = (cmult,0, cmult,1, cmult,2), where cmult,2 =

510 Z. Brakerski and V. Vaikuntanathan

c1c
′
1, cmult,1 = c0c

′
1 + c′0c1, cmult,0 = c0c

′
0. In other words, since we know that

m + 2e = c0 + c1s and m′ + 2e′ = c′0 + c′1s, then it holds that (m + 2e) ·
(m′ + 2e′) = (c0 + c1s) · (c′0 + c′1s). We can open the parenthesis on the right
hand side symbolically (without knowing s), and come up with cmult such that
(c0 + c1s) · (c′0 + c′1s) = cmult,0 + cmult,1s + cmult,2s

2. Note that all of the above
can be computed from c, c′. To decrypt a 3 element ciphertext c = (c0, c1, c2),
the decryption process will be c0 + c1s+ c2s

2 (mod 2). It is important to notice
that ciphertexts of all lengths can be again added and multiplied, where addition
results in a ciphertext of the maximal length of its operands and multiplication
results in a ciphertext of length sum of operands minus 1.

The limiting factor on the number of homomorphic operations is the growth
of the error term. We start with a sub-exponential ratio between the modulus
q and the elements of e. In order to decrypt correctly, we need this ratio to be
more than 2. Making the calculations (see Section 3), the total degree of the
evaluated function (represented as a polynomial) needs to be less than nε for
some constant ε (additions are relatively negligible).

The restriction on the error also limits the total length of a ciphertext: A de-
cryptable ciphertext can have no more than nε elements (recall that the number
of elements in a ciphertext and the degree of homomorphic operations are closely
related). We denote this limit on the maximal degree by D.

KDM Security. The KDM properties of our scheme take after ideas from the
work of Applebaum, Cash, Peikert and Sahai [2], who showed KDM security
(w.r.t. linear functions) for Regev’s LWE based scheme, and from the work of
Malkin, Teranishi and Yung [27], who showed KDM security w.r.t. polynomials of
the secret key (treated as integer) based on the decisional composite residuosity
assumption.

To see that our scheme can encrypt non-trivial functions of its own secret key,
consider the ciphertext c = (as + 2e + s,−a) which “looks like” an encryption
of the secret key s.5 If we define a′ = a + 1, however, we have that c = (a′s +
2e,−a′ + 1). We notice that (a′, a′s + 2e) is exactly a PLWE instance, so it is
computationally indistinguishable from (a′, u′), where u′ is uniform. We have
that c

c≈ (u′,−a′ + 1), which is a completely uniform pair. This methodology
is easy to extend to any linear function of s and for any polynomial number of
ciphertexts.

We now revisit our previous claims that the aforementioned c “looks like”
an encryption of s. In fact, s, drawn from χ, does not necessarily lie in the
message space of the scheme, R2, so the above statement is possibly meaningless!
There are two ways to resolve this difficulty. One is to observe that choosing the
parameters correctly, our c is statistically indistinguishable from an encryption
of s (mod 2), which is a non-trivial function of the secret key. Alternatively,
and perhaps more satisfactory, is replacing the coefficient 2 in our scheme by a
larger prime t, such that with all but negligible probability, s ∈ Rt. This enables
achieving KDM security w.r.t. linear functions over the ring Rt.
5 In fact, there is an important discrepancy between c and a legal encryption of s, but

we will ignore it for this part of the discussion and return to it later.

Fully Homomorphic Encryption from Ring-LWE 511

To obtain KDM security for higher degree polynomials, we use a technique
similar to that of [27]. We focus on quadratic functions for the sake of concrete-
ness: We change our encryption algorithm so that encryption of a message m is
performed in 2 stages: First, we compute a ciphertext as in our previous scheme
(a1s+ 2e1 +m,−a1), but then, rather than sending −a1 as a part of the cipher-
text, we encrypt it too and obtain (a2s+2e2−a1,−a2). The final ciphertext will
be c = (c0, c1, c2) = (a1s + 2e1 + m, a2s + 2e2 − a1,−a2). To decrypt, we first
extract −a1 (plus some noise) from c2, c1, and then use this noisy −a1 to decrypt
c0 and extract m. The decryption process here involves more noise than our stan-
dard scheme, but an appropriate choice of parameters enables correct decryption.
Now let us consider c = (c0, c1, c2) = (a1s+2e1 + s2, a2s+2e2−a1,−a2). Defin-
ing a′1 = a1 +s, a′2 = a2 +1, we have that c = (a′1s+2e1, a

′
2s+2e2−a′1,−a′2 +1).

Applying PLWE twice, we have that c is computationally indistinguishable from
a tuple of uniform ring elements.

By repeating the above process, we can securely encrypt degree D polynomials
using ciphertexts of length D. We notice that similar considerations apply in this
case and in the case of the somewhat homomorphic scheme defined above, and
indeed the decryption process in the two cases is very similar.

We further remark that our scheme can be proven to be KDM(ν) secure w.r.t.
the same class of polynomial functions. Namely, even in the case where there
is a polynomial number, ν, of users, encrypting functions of each other’s se-
cret keys, our scheme remains secure. However, this property is less relevant
for homomorphism and we refer the reader to Section 4.1 for details. Achieving
KDM(ν) security w.r.t. super-constant degree polynomials of the secret key was
not known under any lattice assumption.

Full Homomorphism Using Squashing. One way to obtain a fully homomorphic
scheme is to use Gentry’s “bootstrapping” and “squashing”. First, we notice
that, as in all previously known somewhat homomorphic encryption schemes,
the decryption circuit of our basic scheme has higher degree than can be homo-
morphically evaluated. Thus we use the by now established technique of posting,
along with the public key, a sequence of elements that “hide” the secret key as
a sparse subset sum. This enables reducing the complexity of decryption as we
describe below.

We consider the vector s = (1, s, . . . , sD) ∈ RD+1
q which contains all powers

of the secret key s that are relevant for decryption. Note that to decrypt a
ciphertext vector c = (c0, . . . , cD), one needs to compute

∑D
i=0 cis

i = 〈c, s〉,
where the “inner product” is over the ring Rq, and then take the result mod 2.

We post, along with the public key, a sequence of vectors z1, . . . , zm ∈ RD+1
q

that are uniformly sampled conditioned on the existence of a small set L ⊆ [m]
s.t. |L| = nδ and

∑
�∈L zi = s. The new secret key, therefore, is the set L

(represented as a binary incidence vector over {0, 1}m). The encryptor then,
along with the ciphertext vector c, also posts τj = 〈c, z�〉, for all � ∈ [m]. The
decryption task reduces to computing

∑
�∈L τ� and taking the result modulo

2. As can be verified, this process, expressed as a polynomial over the bits of
the incidence vector, has degree ∼ nδ. If we choose δ < ε (recall that nε is

512 Z. Brakerski and V. Vaikuntanathan

the maximal degree that can be evaluated), we have that the decryption circuit
is shallow enough to be homomorphically evaluated. This is sufficient for the
“bootstrapping” procedure a la Gentry.

As explained above, in order to use the bootstrapping method to obtain a
public key whose size does not depend on the evaluated circuit, it is necessary
to provide the evaluator with an encryption of the secret key of the somewhat
homomorphic scheme. This requirement refers to the secret key of the squashed
scheme, namely to the bits of the incidence vector of L. As we explained above,
our KDM security proof does not extend to this case.

Full Homomorphism Using Sparse-PLWE. We mention a different way to achieve
full homomorphism, as an alternative to squashing. In a followup of this paper,
[10] introduced a “re-linearization” technique which they use to construct a fully
homomorphic scheme based on the standard LWE assumption. One can verify
that the re-linearization technique can be applied to PLWE as well – namely, a
ciphertext c = (c0, . . . , cD) can be “re-linearized” to a ciphertext c = (c0, c1) that
is, in turn, decrypted in the same way. The decryption circuit thus becomes c0 +
c1s (mod 2) and its complexity depends on the number of non-zero coefficients
in the polynomial s ∈ Rq. If we sampled s from a distribution over nδ-sparse
polynomials, namely ones that have at most nδ non-zero coefficients, then the
decryption complexity will reduce in a similar manner to squashing. For this
method to work, one needs to explicitly assume that PLWE is secure even when
using such sparse s. Although the hardness of such assumption has not been
thoroughly explored, we are not aware of an approach for breaking it either.

An Application: Private Information Retrieval. Our somewhat homomorphic
encryption scheme can be used to construct a very efficient private information
retrieval protocol [11,18] with almost logarithmic communication complexity,
and security under worst-case hardness assumptions. While any (appropriate)
somewhat homomorphic encryption scheme can be used to construct a PIR pro-
tocol (in particular, the scheme of [14]), our construction from ring LWE results
in a particularly efficient and elegant PIR scheme. Due to space constraints, we
do not provide a detailed explanation in this extended abstract.

1.2 Other Related Works

The only known candidate for fully homomorphic encryption, aside from Gen-
try’s aforementioned scheme (and a variant thereof [38]), was presented by van
Dijk, Gentry, Halevi and Vaikuntanathan [13]. Their scheme works over the inte-
gers and relies on a new assumption which roughly states that finding the great-
est common divisor of many “noisy” multiples of a number is computationally
hard. They cannot, however, reduce their assumption to worst case hardness.

The efficiency of implementing Gentry’s scheme also gained much attention.
Smart and Vercauteren [38], as well as Gentry and Halevi [16] conduct a study
on reducing the complexity of implementing the scheme, specifically the key
generation process. We note that the key generation process in this work is
simpler and does not require generating lattice bases.

Fully Homomorphic Encryption from Ring-LWE 513

Candidate KDM secure encryption schemes in the standard model (i.e. with-
out random oracles) started with the work of Boneh, Halevi, Hamburg and Os-
trovsky [7] who presented a scheme based on the decisional Diffie-Hellman as-
sumption that can securely encrypt linear combinations of the bits of its secret
key. The aforementioned work of [2] showed a similar result based on LWE, where
now the linear functions were over the components of the secret key, that reside
in the space Zp for some prime p. Later, Brakerski and Goldwasser [8] showed
KDM security for linear functions based on a class of assumptions they refer to
as “subgroup indistinguishability assumptions”, which includes quadratic resid-
uosity and decisional composite residuosity. The domain of the functions varied
by the assumption. A number of works [4,9,1] showed that KDM w.r.t. linear
functions can be extended to more complex functions. The work of [27] takes a
different path by treating the secret key as an element in a ring (integers modulo
a composite, in their case), an approach we adopt here as well.

In a followup work, [10] showed that fully homomorphic encryption can be
achieved from the classical LWE assumption, without referring to ideal lat-
tices and without squashing. Some of their techniques can also be applied to
PLWE (e.g. to achieve full homomorphism via sparse polynomials as we describe
above).

1.3 Notation

Let D denote a distribution over some finite set S. Then, d
$← D is used to

denote the fact that d is chosen from the distribution D. When we say d
$← S,

we simply mean that d is chosen from the uniform distribution over S.
The ring of polynomials over the integers (i.e. symbolic polynomials with

integer coefficients) is denoted Z[x]. Given a degree n polynomial f(x), the ring
Z[x]/ 〈f(x)〉 is the ring of all polynomials modulo f(x). The ring of polynomials
with coefficients in Zq is denoted Zq[x] and Zq[x]/ 〈f(x)〉 is defined analogously
to above. For additional background in algebraic number theory, we refer the
reader to to [40].

We denote scalars in plain (e.g. x) and vectors in bold (e.g. v). A norm of a
vector is denoted by ‖v‖ and always refers to �∞: ‖v‖ = maxi |vi|. The norm
of a polynomial ‖p(x)‖ is the norm of its coefficient vector. More generally, we
use the standard isomorphism between degree (n − 1) polynomials in Z[x] and
vectors in Zn, given by the vector of coefficients, that allows to treat the two
objects interchangeably: the vector p will indicate the vector of coefficients of
p(x). We explicitly mention when we use this isomorphism.

We let the distribution DZn,r to indicate the n-dimensional discrete Gaussian
distribution. To sample a vector x ∈ Zn from this distribution, sample yi ∈ R
from the Gaussian of standard deviation r and set xi:= $yi�, where $·� represents
rounding to the nearest integer. Using the isomorphism mentioned above, we
treat DZn,r as a distribution over integer degree n polynomials. Note that in
this work we only need spherical Gaussian distributions, in which the standard
deviation over each dimension is the same.

514 Z. Brakerski and V. Vaikuntanathan

2 The Ring LWE Problem, and Variants

In this section, we describe a variant of the “ring learning with errors” (RLWE)
assumption of Lyubaskevsky, Peikert and Regev [26], that we call polynomial
LWE (or, PLWE). This assumption is in fact implicit in [26], and can be thought
of as a special case of their general RLWE assumption. Fortunately, for the pa-
rameters of interest to us, it follows from [26] that breaking the PLWE assumption
leads to an algorithm to solve worst-case ideal lattice problems. Our motivation
in working with the PLWE assumption is due in part to our desire to keep the ex-
position elementary, but is also dictated by the particular choice of the message
encoding in our encryption schemes. See Section 2.1 for a detailed comparison,
and the statement of the worst-case to average-case reduction for PLWE.

The PLWE assumption is analogous to the (by now standard) “learning with
errors” (LWE) assumption, defined by Regev [34,35] (generalizing the learning
parity with noise assumption of Blum et al. [5]). In the PLWE assumption, we
consider rings R

.= Z[x]/ 〈f(x)〉 and Rq
.= R/qR for some degree n integer

polynomial f(x) ∈ Z[x] and a prime integer q ∈ Z. Note that Rq ≡ Zq[x]/ 〈f(x)〉,
i.e. the ring of degree (n − 1) polynomials with coefficients in Zq. Addition in
these rings is done component-wise in their coefficients (thus, their additive group
is isomorphic to Zn and Zn

q respectively). Multiplication is simply polynomial
multiplication modulo f(x) (and also q, in the case of the ring Rq).

Thus an element in R (or Rq) can be viewed as a degree (n−1) polynomial over
Z (or Zq). As we mentioned in Section 1.3, we represent such an element using
the vector of its coefficients. For an element a(x) = a0+a1x+. . .+an−1x

n−1 ∈ R,
we let ‖a‖ = max |ai| denote its �∞ norm.

The PLWEf,q,χ assumption is parameterized by an integer polynomial f(x) ∈
Z[x] of degree n (which defines the ring R = Z[x]/ 〈f(x)〉), a prime integer q ∈ Z
and an error distribution χ over R.6 We require that χ is efficiently sampleable
in our representation, namely that it is efficient to sample the coefficients of the
polynomial representing the sampled element.

Let s
$← Rq be a uniformly random ring element. The assumption is that given

any polynomial number of samples of the form (ai, bi = ai ·s+ei) ∈ (Rq)2, where
ai is uniformly random in Rq and ei is drawn from the error distribution χ, the
bi’s are computationally indistinguishable from uniform in Rq. If the number
of samples that the distinguisher obtains is limited by � = �(κ), then we call
this assumption PLWE

(�)
f,q,χ. Our formal definition below presents the hermite

normal form of the assumption, where the secret s is sampled from the noise
distribution χ rather than being uniform in Rq. This presentation is more useful
for the purposes of this paper and it turns out that to be equivalent to the
original one, up to obtaining one additional sample [2,26].

Definition 1 (The PLWE Assumption - Hermite Normal Form). For
all κ ∈ N, let f(x) = fκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let

6 To be precise, n(κ), q(κ) are functions of the security parameter κ and {fκ(x)} and
{χκ} are ensembles of polynomials and distributions respectively.

Fully Homomorphic Encryption from Ring-LWE 515

q = q(κ) ∈ Z be a prime integer, let the ring R
.= Z[x]/ 〈f(x)〉 and Rq

.= R/qR,
and let χ denote a distribution over the ring R.

The polynomial LWE assumption PLWEf,q,χ states that for any � = poly(κ)
it holds that

{(ai, ai · s + ei)}i∈[�]
c≈ {(ai, ui)}i∈[�] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “error
polynomials” ei are sampled from the error distribution χ, and finally, the ring
elements ui are uniformly random over Rq.

When we require the indistinguishability to hold given only � samples (for
some � = poly(κ)), we denote the assumption by PLWE

(�)
f,q,χ.

Note that we define the PLWE assumption as a decisional assumption. One
could also define the search assumption which requires an adversary to find
s ∈ Rq, given any polynomial number of samples (ai, ai · s+ ei). The search and
decisional assumptions are equivalent for some range of parameters, as shown by
[26]. We focus here on the decisional assumption since that is the most natural
for cryptographic applications.

Scaling the noise. It is very useful in our schemes to generate the PLWE samples
as (ai, ai · s + t · ei), where ai, s, ei are as above and t ∈ Z∗

q . This variant is
equivalent to PLWE just by virtue of q and t being relatively prime as stated
below. The proof is straightforward and is omitted.

Proposition 1. Let f(x), q and χ be as in Definition 1. Let t = t(κ) ∈ Z∗
q

(thus t and q are relatively prime). Then for any � = poly(κ), the PLWE
(�)
f,q,χ

assumption implies that,

{(ai, ai · s + t · ei)}i∈[�]
c≈ {(ai, ui)}i∈[�] .

where ai, s, ei and ui are as in Definition 1.

2.1 Choice of Parameters

Our results rely on a specific choices of the polynomial f(x), the modulus q,
and the error distribution χ. The parameter choices are dictated by the search-
to-decision reduction of [26], as well as our choice of message encoding in the
encryption scheme (which seems necessary to achieve homomorphic properties).
In particular, setting κ as our security parameter, we assume that:

– We set f(x) = xn + 1, where n = 2�log κ�−1 (this polynomial is also denoted
Φm(x), where m = 2n; see below). Since n ∈ (κ/4, κ], all asymptotics can be
stated in terms of n. For the knowledgable reader we mention that f(x) =
Φm(x) is the mth cyclotomic polynomial.
In addition, the fact that f(x) = xn + 1 means that multiplication of ring
elements does not increase their norm by too much (see lemmas below).

– The error distribution χ is the discrete Gaussian distribution DZn,r for some
r > 0. A sample from this distribution defines a polynomial e(x) ∈ R.

516 Z. Brakerski and V. Vaikuntanathan

Some Useful Facts. We present some elementary facts about the Gaussian er-
ror distribution, and multiplication over the ring Z[x]/ 〈xn + 1〉. The first fact
bounds the (Euclidean and therefore, the �∞) length of a vector drawn from
a discrete Gaussian of standard deviation r by r

√
n. The second says that the

statistical distance between two Gaussian distributions with the same standard
deviation r (but different centers) is proportional to Δ/r, where Δ is the dis-
tance between their centers. The third and final fact says that multiplication in
the ring Z[x]/ 〈Φm(x)〉 increases the norm of the constituent elements only by a
modest amount.

Lemma 1 (see [29], Theorem 4.4). Let n ∈ N. For any real number r =
ω(

√
logn), we have Prx←DZn,r

[||x|| > r
√
n] ≤ 2−n+1.

Lemma 2 (see [20], Lemma 3). Let n∈N. For any real number r=ω(
√

logn),
and any c ∈ Zn, the statistical distance between the distributions DZn,r and
DZn,r,c is at most ||c||/r.
Lemma 3 (see [23,14]). Let n ∈ N, m = 2n, and let f(x) = Φm(x) = xn + 1
and let R = Z[x]/ 〈Φm(x)〉. For any s, t ∈ R, ||s·t (mod Φm(x))|| ≤ √

n·||s||·||t||,
and ||s · t (mod Φm(x))||∞ ≤ n · ||s||∞ · ||t||∞.

The Worst-case to Average-case Connection. We state a worst-case to average-
case reduction from the shortest vector problem on ideal lattices to the PLWE
problem for our setting of parameters. The reduction stated below is a special
case of the results of [26].

Theorem 1 (A special case of [26]). Let κ be the security parameter. Let
k ∈ N and let m = 2�log κ� be a power of two. Let Φm(x) = xn + 1 be the mth

cyclotomic polynomial of degree n = ϕ(m) = m/2. Let r ≥ ω(
√

logn) be a real
number, and let q ≡ 1 (mod m) be a prime integer. Let R = Z[x]/ 〈Φm(x)〉.
Then:

– There is a randomized reduction from 2ω(log n) · (q/r)-approximate R-SVP
to PLWEΦm,q,χ where χ = DZn,r is the discrete Gaussian distribution. The
reduction runs in time poly(n, q).

– There is a randomized reduction from (n2q/r) · (n(� + 1)/ log(n(� + 1)))1/4-
approximate R-SVP to PLWE

(�)
Φm,q,χ where χ = DZn,r is the discrete Gaussian

distribution. The reduction runs in time poly(n, q, �).7

3 A Somewhat Homomorphic Encryption Scheme

We present a somewhat homomorphic encryption scheme with message space
Rt = Zt[x]/ 〈f(x)〉 for some integer t = t(κ). The homomorphism will be over
this ring. For the sake of concreteness, we advise the reader to think of t = 2
7 For the interested reader, we remark that the term (� + 1) replaces the original �

of [26] due to our choice to define PLWE in hermite normal form.

Fully Homomorphic Encryption from Ring-LWE 517

as a running example. We describe our scheme in the symmetric case in Sec-
tion 3.1 and then describe the public-key variant in Section 3.2. The transition
to full homomorphism via squashing and bootstrapping is fairly standard and is
omitted due to space limitations.

3.1 The Symmetric Scheme

Let κ denote the security parameter. Our scheme is parameterized by a prime
number q and a prime t ∈ Z∗

q , a degree n polynomial f(x) ∈ Z[x], and an error
distribution χ over the ring Rq

.= Zq[x]/ 〈f(x)〉. The parameters n, f, q and χ
are public and we assume that given κ, there are polynomial-time algorithms
that output f and q, and sample from the error distribution χ. An additional
parameter of the scheme is an integer D ∈ N that is related to the maximal
degree of homomorphism allowed (and to the maximal ciphertext length). This
is not a “free” parameter, and is determined by f, q, χ in the analysis of the
scheme.

– SH.Keygen(1κ): Sample a ring element s
$← χ and set the secret key sk:=s.

Define the secret key vector as s:=(1, s, s2, . . . , sD) ∈ RD+1
q , which is effi-

ciently computable given s and will be used in the decryption process.
– SH.Enc(sk,m): Recall that our message space is Rt. Namely, we encode our

message as a degree n polynomial with coefficients in Zt.
To encrypt, sample (a, b = as+te) ∈ R2

q, where a
$← Rq and e

$← χ. Compute

c0:=b + m ∈ Rq and c1:= − a

and output the ciphertext c:=(c0, c1) ∈ R2
q .

An important note is that the encryptor only uses the key s in order to sample
(a, b). This will be important when we present our public-key scheme, where
we will show that the public key enables sampling from this distribution
without direct access to s.
While the encryption algorithm only generates ciphertexts c ∈ R2

q , homo-
morphic operations (described below) might add more elements to the ci-
phertext. Thus the most generic form of a decryptable ciphertext in our
scheme is c = (c0, . . . , cd) for d ≤ D. We remark that, as we will show below,
“padding with zeros” does not effect the ciphertext. Namely (c0, . . . , cd) ≡
(c0, . . . , cd, 0, . . . , 0).

– SH.Eval(p(ξ1, . . . , ξ�), (c1, . . . , c�)): We show how to evaluate an �-variate
polynomial p : R�

t → Rt. To this end, we show how to homomorphically
add and multiply two elements in Rt.
• Given two ciphertexts c = (c0, . . . , cd) and c′ = (c′0, . . . , c′d) (we assume

w.l.o.g that they have the same length, e.g. by padding), output the
ciphertext cadd = c + c′ = (c0 + c′0, . . . , cd + c′d) ∈ Rd+1

q , as an encryp-
tion of the sum of the underlying messages. Namely, addition is done
by coordinate-wise vector addition of the ciphertext vectors. Note that
addition does not increase the number of elements in the ciphertext vec-
tors.

518 Z. Brakerski and V. Vaikuntanathan

• Given two ciphertexts c = (c0, . . . , cd) and c′ = (c′0, . . . , c
′
d′) (here we

do not pad with zeros), an encryption of their product is computed as
follows.
Let v be a symbolic variable and consider the expression

(∑d
i=0 civ

i
)
·(∑d′

i=0 c′iv
i
)

(over Rq). We can (symbolically, treating v as an unknown
variable) open the parenthesis to compute ĉ0, . . . , ĉd+d′ ∈ Rq such that
for all v ∈ Rq (

d∑
i=0

civ
i

)
·
⎛⎝ d′∑

i=0

c′iv
i

⎞⎠ ≡
d+d′∑
i=0

ĉiv
i .

The output ciphertext is cmult = (ĉ0, . . . , ĉd+d′).
We claim that if c is an encryption of a message m ∈ Rt and c′ is an
encryption of m′ ∈ Rt, then these two operations generate ciphertexts that
decrypt to m + m′ and mm′, respectively, where arithmetics is over Rt.

– SH.Dec(sk, c): Recall that the general form of a decryptable ciphertext is
w.l.o.g c = (c0, c1, . . . , cD) ∈ RD+1

q , e.g. by padding.
To decrypt, we first compute 〈c, s〉 .=

∑D
i=0 cis

i ∈ Rq, which can be inter-
preted as inner product over RD+1

q , and output m = 〈c, s〉 (mod t) as the
message.
Note that the condition for correct decryption is that the �∞ norm of the
polynomial 〈c, s〉 is smaller than q/2.

We note that for the sake of the symmetric key somewhat homomorphic encryp-
tion scheme, the secret key s can be chosen uniformly at random. Choosing s
from the error distribution is important both in the public-key variant as well
as for KDM security.

We state the correctness and security below. Proofs are omitted from this
extended abstract.

Theorem 2. Let χ = DZn,r be the discrete Gaussian noise distribution with
standard deviation r. The scheme described above is a somewhat homomorphic
encryption scheme capable of evaluating �-variate degree-D polynomials over Rt,
as long as M · (trn1.5)D < q/2, where M is the �∞ norm of the polynomial (i.e.
its maximal coefficient).

Theorem 3. Let n, q, f(x) be as in the scheme, let r = poly(n) and q = 2nε

for some 0 < ε < 1. Then, the scheme allows evaluation of degree-O(nε/ logn)
polynomials with at most 2O(nε/ log n) terms, and is secure under the worst-case
hardness of approximating shortest vectors on ideal lattices to within a factor of
O(2nε

).

3.2 Public-Key Encryption

There is a number of ways to go from symmetric-key to public-key somewhat
homomorphism. The work of Rothblum [37] provides a generic though inefficient

Fully Homomorphic Encryption from Ring-LWE 519

way to go from homomorphic symmetric to public key encryption. Alternatively,
one can use re-randomization via the leftover hash lemma (as used in Regev’s
LWE based scheme). However, the greatest efficiency is achieved using a method
that appears in the full version of [26] and due to space limitations will be the
only one discussed here.

Recall that in order to encrypt with our symmetric scheme, we only need the
ability to generate pairs of the form (a, as + te). We show that given one such
pair (with smaller noise parameter), it is easy to re-randomize and generate as
many of them as we want.

Concretely, we show that given one sample (a, b = as+ te), where the noise e
comes from a distribution χ, we can generate as many additional samples as we
would like, without knowing s, but with noise coming from a distribution χ′ of
greater standard deviation. To be even more precise, we will generate samples
that are computationally indistinguishable from the desired distribution, even
given the secret key s, under the PLWE

(1)
f,q,χ assumption. This is sufficient for

all of our purposes since in all scenarios we consider (including KDM security)
the randomness used to generate these samples is not revealed to any entity
(including the decryptor). The re-randomization lemma follows.

Lemma 4. Let f, q, χ = DZn,r be parameters for PLWE and let t be co-prime to
q. Let χ′ = DZn,r′ , with r′ ≥ 2ω(log n) · r. Let s, v, e, e′

$← χ, a, a′ $← Rq, e′′
$← χ′,

b
.= as + te, then under the PLWE

(1)
f,q,χ assumption,

(s, (a, b), (av + te′, bv + te′′))
c≈ (s, (a, b), (a′, a′s + te′′)) .

Proof. Denote α
.= av + te′ and β

.= bv + te′′. Then it holds that β = (as +
te)v + te′′ = αs + t(e′′ + ev − e′s). By Lemma 1 and Lemma 2, it holds that
e′′ + ev − e′s

s≈ e′′. Namely

(s, (a, b), (av + te′, bv + te′′))
s≈ (s, (a, b), (α, αs + te′′)) .

However, (s, a, α) = (s, a, av + te′)
c≈ (s, a, a′) by PLWE

(1)
f,q,χ and the result fol-

lows.

Therefore, to achieve a public key scheme, the following changes need to be
made in our scheme. Let χ, χ′ be as above.

1. In the key generation, in addition to the secret key sk = s
$← χ, a public key

pk
.= (a0, b0 = a0s + te0) is output. Where a0

$← Rq, e0
$← χ.

2. In the encryption algorithm, instead of using (a, as + te), the encryptor will
use (a0v + te′, b0v + te′′), where v, e′

$← χ and e′′
$← χ′.

As a side note we remark that for all applications except KDM security, it is
sufficient to generate (a, as + te) where the error e is not distributed according
to the correct error distribution. Generating such “skewed” samples is easier and
improves the parameters of the scheme. We omit the details.

520 Z. Brakerski and V. Vaikuntanathan

4 Key Dependent Message (Circular) Security

We show that our somewhat homomorphic scheme from Section 3 (using a suffi-
ciently large parameter t) is KDM secure w.r.t. linear functions of the secret key,
over the ring Rt. We further show that changing just the encryption algorithm,
allows for KDM security w.r.t. degree-d polynomials. An interesting interplay
between KDM security and somewhat homomorphism allows the key generation
and even the decryption circuit to stay unchanged. We note that even though
we change the encryption algorithm, the ciphertexts of the resulting scheme can
still undergo homomorphic operations (although a little fewer than before). Let
us elaborate a bit more about the connection between homomorphism and KDM
security.

Assume that we can prove that our basic scheme, as is, is secure w.r.t. linear
functions of the secret key, then somewhat homomorphism implies that we can
generate encryptions of degree d ≤ D polynomials of the secret key, by taking
encryptions of the secret key and e.g. multiplying them together to generate
quadratic polynomials, multiply by constants, add more terms etc. The above
implies a very weak form of KDM: that it is possible to generate secure cipher-
texts that decrypt to the right function of the secret key. To show full KDM, we
need to present an encryption algorithm that produces indistinguishable cipher-
texts whether it encrypts functions of the secret key or the constant message 0.
Not surprisingly, we accomplish this by modifying the encryption algorithm to
generate ciphertexts that look a lot like the one generated by homomorphism.
Specifically, to be secure against degree-d polynomials, our encryption algorithm
will generate (d+1)-element ciphertexts (contrast this with the encryption algo-
rithm of the somewhat homomorphic encryption scheme in Section 3, that gen-
erates ciphertexts with just two non-zero ring elements). Our techniques borrow
from a recent work of Malkin et al. [27]. We describe our scheme in the symmet-
ric key setting only, noting that the public key variant applies to here as well.
Due to space limitations, we do not provide proofs in this section. The formal
definition of KDM security is omitted as well (see e.g. [7]).

We define Pd = Pd[Rt] to be the class of all degree d polynomials over Rt,
i.e. all functions of the form p(z) =

∑d
i=0 αiz

i, where αi ∈ Rt and arithmetics
is over Rt as well.

The Scheme. Let κ denote the security parameter. Our scheme is parameterized
by the same parameters as our somewhat homomorphic scheme from Section 3:
The primes q, t ∈ Z∗

q , a degree n polynomial f(x) ∈ Z[x], and an error distribu-
tion χ over the ring Rq

.= Zq[x]/ 〈f(x)〉. As before, there is the maximal degree
parameter D. An additional parameter d ≤ D determines the class of functions
for which KDM security holds. The message space is Rt.

– KDM.Keygen(1κ): As we explained above, the key generation is identical to
that of our basic scheme SH.Keygen: The secret key is generated as s

$← χ.
(Note that we will set χ to be a Gaussian distribution with small enough
parameter r # t such that with all but negligible probability s ∈ Rt)

Fully Homomorphic Encryption from Ring-LWE 521

– KDM.Enc(sk,m): To encrypt a message m ∈ Rt, we generate the ciphertext
c = (c0, . . . , cd) ∈ Rd+1

q as follows.
We generate d pairs {(ai, bi = ais + tei)}i∈[d], where ai

$← Rq, ei
$← χ′ (χ′

will be set with noise parameter much larger than χ) and set:

c0 = b1 + m ; ∀i∈[d−1]. ci = bi+1 − ai ; cd = −ad .

This encryption algorithm coincides with our basic scheme when d = 1.
While we analyze the correctness of the scheme separately, let us justify our
encryption algorithm by noting that for our ciphertext it holds that

d∑
i=0

cis
i = b1 + m +

∑
i∈[d−1]

(bi+1 − ai) si − ads
d

= m +
∑
i∈[d]

bis
i−1 −

∑
i∈[d]

ais
i

= m +
∑
i∈[d]

(bi − ais)si−1

= m + t ·
∑
i∈[d]

eis
i−1 . (1)

– KDM.Dec(sk, c): The decryption algorithm is identical to the basic scheme
and in fact is able to decrypt ciphertexts that were originally generated by
the encryption algorithm of our KDM scheme above, and then underwent
somewhat homomorphic operations. Recall that the general form of a de-
cryptable ciphertext is, w.l.o.g, c = (c0, c1, . . . , cD) ∈ RD+1

q . To decrypt, we
first compute 〈c, s〉 =

∑D
i=0 cis

i ∈ Rq, and output m = 〈c, s〉 (mod t) as the
message.

Parameter Setting. Let us now describe a plausible parameter setting for our
scheme. As usual, we will set f(x) = Φm(x) (where n = 2�log κ�−1, and m = 2n)
and our error distributions will be Gaussian χ = DZn,r, χ′ = DZn,r′ for r, r′

defined next. Our q needs to be super-polynomial as implied by the selection
below.

We set r = 2ω(log n) to be a super-polynomial function, and r′ = 2ω(log n) · rd.
We note that the rd factor is so that χ′ can “swallow” degree d polynomials over
χ.

The parameter t is chosen so that t > r
√
n (i.e. a sample from χ resides in

Rt with all but negligible probability) and on the other hand, for correctness,
t < 2−ω(log n) · r−d · q.

We conclude that in our parameter setting, the scheme supports KDM func-
tions of degree d ≈ (log q − log t − O(1))/ω(log n) = log q/ω(logn), for some
super-logarithmic ω(logn). Security will be based on PLWEΦm,q,r.

We next state correctness in light of this parameter setting. (We remark that
we can somewhat improve efficiency with a more aggressive parameter setting;
we choose to present the concrete setting above for simplicity).

522 Z. Brakerski and V. Vaikuntanathan

Lemma 5. Consider the parameters of our scheme as defined above. Then for
all m ∈ Rt it holds that

Pr[KDM.Dec(s,KDM.Enc(s,m)) �= m] = negl(κ) ,

where the probability is taken over the choice of s and over the randomness of
KDM.Enc.

The KDM(1)-security of our scheme is stated below.

Theorem 4. Our scheme is KDM(1)
Pd

-secure under the PLWEΦm,q,χ assumption.

4.1 KDM(ν) Security

We proceed to show that our scheme is KDM(ν)-secure for any polynomial ν.
We use a methodology introduced by [7] and used by all following KDM(ν) con-
structions: The ν secret keys associated with the ν users are simulated by one
“real” secret key. The secret key of each specific user is obtained by offsetting the
“real” secret key by a known (to the challenger) amount. The offset can be done
without knowing the real key and the offset keys look like appropriately gener-
ated keys. This enables using the same techniques as for KDM(1). We present
a variant of this argument where the offset is drawn from a distribution that
“swallows” the real secret key. A formal statement follows, the proof is omitted.

Towards formally stating our scheme, we introduce an additional distribution
and parameter. For the purpose of the proof, we will need to sample our keys
from an even narrower distribution as before. We denote this distribution by
χ∗ = DZn

q ,r∗ , and require that r∗ = 2−ω(log n) · r. Namely that it is “swallowed”
by our “normal” secret key distribution. One can verify that such r∗ can be
chosen without affecting the other parameters of the scheme.

Theorem 5. Our scheme is KDM(ν)
Pd

-secure under the PLWEΦm,q,χ∗ assump-
tion, for any ν = poly(κ).

Acknowledgments. We thank Chris Peikert for providing us with a full version
of [26], and Nigel Smart and the anonymous CRYPTO reviewers for numerous
insightful comments on the draft.

References

1. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness theorems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

3. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: To Appear in Innovations in Computer Science, ICS (2011),
http://eprint.iacr.org/2010/544

http://eprint.iacr.org/2010/544

Fully Homomorphic Encryption from Ring-LWE 523

4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert [19], pp. 423–444

5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin [33], pp. 1–20

9. Brakerski, Z., Goldwasser, S., Kalai, Y.: Balck-box circular secure encryp-
tion beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 201–218. Springer, Heidelberg (2011)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
standard lwe (2011) (manuscript)

11. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

12. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: FOCS, pp. 372–382. IEEE, Los Alamitos
(1985)

13. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert [19], pp. 24–43, Full Version in
http://eprint.iacr.org/2009/616.pdf

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM, New York (2009)

15. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness.
In: Rabin [33], pp. 116–137

16. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM, New
York (2008)

18. Gentry, C., Ramzan, Z.: Single-database private information retrieval with con-
stant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer,
Heidelberg (2005)

19. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

20. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C.-C. (ed.) ICS, pp. 230–240. Tsinghua
University Press, Beijing (2010)

21. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377. ACM, New York
(1982)

http://eprint.iacr.org/2009/616.pdf

524 Z. Brakerski and V. Vaikuntanathan

22. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

23. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

24. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

25. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal
for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer,
Heidelberg (2008)

26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert [19], pp. 1–23, Draft of full version was provided by the
authors

27. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with kdm security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

28. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007)

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

31. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

32. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 478–487. ACM,
New York (2007)

33. Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223. Springer, Heidelberg (2010)
34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.

In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)
35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.

J. ACM 56(6) (2009)
36. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-

phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

37. Rothblum, R.: Homomorphic encryption: From private-key to public-key. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011)

38. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

39. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

40. Stein, W.: A Brief Introduction to Classical and Adelic Algebraic Number Theory
(2004)

Bi-Deniable Public-Key Encryption

Adam O’Neill1,�, Chris Peikert2,��, and Brent Waters1,���

1 University of Texas at Austin
2 Georgia Institute of Technology

Abstract. In 1997, Canetti et al. (CRYPTO 1997) put forward the in-
truiging notion of deniable encryption, which (informally) allows a sender
and/or receiver, having already performed some encrypted communica-
tion, to produce ‘fake’ (but legitimate-looking) random coins that open
the ciphertext to another message. Deniability is a powerful notion for
both practice and theory: apart from its inherent utility for resisting
coercion, a deniable scheme is also noncommitting (a useful property
in constructing adaptively secure protocols) and secure under selective-
opening attacks on whichever parties can equivocate. To date, however,
known constructions have achieved only limited forms of deniability, re-
quiring at least one party to withhold its randomness, and in some cases
using an interactive protocol or external parties.

In this work we construct bi-deniable public-key cryptosystems, in
which both the sender and receiver can simultaneously equivocate; we
stress that the schemes are noninteractive and involve no third parties.
One of our systems is based generically on “simulatable encryption” as
defined by Damg̊ard and Nielsen (CRYPTO 2000), while the other is
lattice-based and builds upon the results of Gentry, Peikert and Vaikun-
tanathan (STOC 2008) with techniques that may be of independent in-
terest. Both schemes work in the so-called “multi-distributional” model,
in which the parties run alternative key-generation and encryption algo-
rithms for equivocable communication, but claim under coercion to have
run the prescribed algorithms. Although multi-distributional deniability
has not attracted much attention, we argue that it is meaningful and
useful because it provides credible coercion resistance in certain settings,
and suffices for all of the related properties mentioned above.

� Supported in part by the grants of the third author. Most of this work was completed
while at the Georgia Institute of Technology.

�� This material is based upon work supported by the National Science Foundation
under Grant CNS-0716786 and CAREER Award CCF-1054495, and by the Alfred
P. Sloan Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

��� Department of Computer Science, University of Texas at Austin. Supported by NSF
CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-1-0352, DARPA
PROCEED, DARPA N11AP20006, Google Faculty Research award, the Alfred
P. Sloan Foundation, and Microsoft Faculty Fellowship.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 525–542, 2011.
c© International Association for Cryptologic Research 2011

526 A. O’Neill, C. Peikert, and B. Waters

1 Introduction

Suppose that Eve has two children: Alice, who is away at college, and a young
Bob, who still lives at home. The siblings are planning a surprise party for Eve,
so to keep their plans secret, they communicate using public-key encryption. Eve,
however, has taken note of their encrypted communications and grows suspicious.
Using her inherent parental authority, she demands that Alice and Bob reveal
their secret decryption keys, as well as any of the encryption randomness they
might have retained. Is there any way for Alice and Bob to comply, without
spoiling the surprise? The answer seems to be obviously no: using the secret
keys, Eve can simply decrypt their messages and learn about the party.

However, the above argument misses a subtle point: if Alice and Bob are
able to produce alternative keys and randomness that are consistent with their
ciphertexts so far, then they might be able to fool Eve into thinking that they
are communicating about something else (or at least not alert her to the party).
A scheme that makes this possible is said to be deniable, a notion formally
introduced by Canetti, Dwork, Naor, and Ostrovsky [10].

In practice, deniable encryption has been sought by users whose legitimate
activities may not always be protected from subpoenas or legal coercion, e.g.,
journalists and whistleblowers, or lawyers and activists in repressive regimes. In-
deed, several commercial and open-source storage encryption products claim lim-
ited forms of deniability (see, for example, [1, 2], and further references in [24]),
though without formal definitions or supporting security proofs. More worry-
ingly, these products only allow for denying the existence of messages on a
storage medium, not for equivocating those messages. This is insufficient in a
communications setting, where the mere exchange of messages between parties
indicates that they are communicating in some form.

Deniability is also a compelling property for theoretical reasons: in particu-
lar, deniable encryption schemes are noncommitting (a fundamental concept in
the design of adaptively secure protocols) [11, 16, 14], secure against selective-
opening attacks [19, 7], and imply incoercible multiparty computation [12]. We
point out that deniable encryption is stronger than noncommitting encryption,
because equivocable ciphertexts actually decrypt to the intended messages, and
users of the system (not just a simulator) can themselves produce such cipher-
texts.

Canetti et al. distinguish between two different models of deniability. The first
is full deniability, in which the parties always run the prescribed key-generation
and encryption algorithms, and can equivocate their messages later on if they so
choose. The second model is called multi-distributional deniability, in which there
exist alternative “deniable” algorithms whose outputs can be equivocated, so
that it appears as if the prescribed algorithms had been used all along. Whether
these models are useful in various settings has been the subject of some debate
over the years; we discuss these issues in Section 1.2 below. We also discuss some
recent developments and related work in Section 1.3.

Under standard assumptions, Canetti et al. construct a multi-distributional
sender -deniable scheme (i.e., one that remains secure if only the sender is

Bi-Deniable Public-Key Encryption 527

coerced), and give a fully sender-deniable scheme where the coercer’s distinguish-
ing advantage between a ‘real’ and ‘fake’ opening is an inverse polynomial that
depends on the public key size. They also construct a receiver-deniable scheme
that requires an additional round of interaction, and a sender- and receiver-
deniable protocol that relies on third parties, at least one of whom must remain
uncoerced. In particular, up to this point there have not been any noninterac-
tive schemes offering receiver-deniability, nor any schemes (interactive or not) in
which all the parties can be coerced simultaneously, in either of the two models
(full or multi-distributional deniability).

1.1 Our Contributions

Bideniable public-key encryption. Our main results are the first known bide-
niable (that is, simultaneously sender- and receiver-deniable) public-key encryp-
tion schemes, in the multi-distributional model. We stress that the schemes are
noninteractive, require no third parties, and are immediately noncommitting and
secure under selective-opening attacks.

We give two qualitatively different constructions. The first is built generi-
cally, using a combinatorial construction with somewhat large overhead, from
any “simulatable” encryption scheme in the sense of Damg̊ard and Nielsen [16].
This shows (perhaps surprisingly) that simulatability is sufficient not only for
noncommitting encryption, but for a form of deniability as well. The scheme is
presented in Section 4.

Our second scheme is based on worst-case lattice problems via “learning with
errors” [23], and builds upon the trapdoor function and identity-based encryption
techniques of Gentry, Peikert, and Vaikuntanathan [21]. In particular, it exploits
a unique property of the GPV IBE, namely its negligible chance of oblivious
decryption error when the secret key vector and the error vector in the ciphertext
are too highly “aligned.” Our scheme relies on the ability of the receiver to
resample a fresh secret key that is highly correlated with the ciphertext error
term. Proving that this secret key “looks real” relies on a symmetry between
correlated (discrete) Gaussians, which we believe may be of independent interest
and application in lattice cryptography. Interestingly, the deniable scheme is
essentially identical to the GPV cryptosystem, and it appears to be the first
known cryptosystem that “naturally” supports receiver-deniability without any
substantial changes. It is also essentially as efficient for the receiver as the GPV
system, but it is less efficient for the sender because she must encrypt each bit
separately (rather than amortizing). The details of the system are described in
Section 6.

In addition to our public-key schemes, we also define notions of deniability
for the identity-based setting, and show how our techniques immediately adapt
to it as well. As we discuss below, multi-distributional deniability (especially for
the receiver) may be more palatable in this setting because the receiver does not
run a different key-generation algorithm (indeed, there is no such algorithm). We
also remark that to be meaningful, the identity-based setting inherently requires
any solution to be noninteractive.

528 A. O’Neill, C. Peikert, and B. Waters

Plan-ahead bideniability with short keys. A simple information-theoretic
argument reveals that in any noninteractive receiver-deniable encryption scheme,
the secret key must be at least as long as the message: a fixed ciphertext can
only decrypt to N different plaintexts if there are at least N distinct secret keys
for the public key (see also [22] and the recent work [9]). We circumvent this
constraint by designing a scheme offering “plan-ahead” bideniability (a notion
also introduced in [10]) that can encrypt arbitrarily long messages using fixed-
sized keys. In plan-ahead deniability, the sender must choose at encryption time
a bounded number of potential ‘fake’ messages, to which the parties may later
equivocate. This may be seen as the deniable analogue of “somewhat noncom-
mitting encryption,” introduced by Garay, Wichs and Zhou [20]. In many cases,
this model would seem to be sufficient for coercion resistance, since the sender
can just include one “innocuous” message along with the real one.

Our plan-ahead scheme is a hybrid system that reduces the deniable encryp-
tion of an arbitrary-length message to that of a short symmetric key. For example,
when combined with the moderately good efficiency of our GPV-style bideniable
scheme, the overall system is potentially usable in practice. (Though as noted
above, our scheme is not able to amortize many bits into one ciphertext as the
GPV scheme does, so our bandwidth requirements are larger.) Due to space
constraints, we defer the details of our plan-ahead scheme to the full version.

Relations among notions. We clarify and study relations among the vari-
ous types of deniability introduced in [10]. Our main contribution is that any
type of multi-distributional deniability suffices to obtain the corresponding type
of full deniability, with an inverse-polynomial distinguishing advantage related
to the size of the public key. This further reinforces the usefulness of multi-
distributional deniability itself. We also observe that for multi-distributional
schemes, bideniability implies sender-deniability, but perhaps surprisingly, it may
not imply receiver-deniability alone. That is, bideniability relies on the sender
to correctly run the deniable encryption algorithm.

1.2 Discussion

Is (multi-distributional) deniability useful? The ideal deniable encryption scheme
would be noninteractive and fully deniable for both parties. Unfortunately, it has
been recently shown [9] that these properties cannot all be achieved at once, even
for receiver deniability alone (see related work below). So to obtain a noninter-
active scheme we must work in the multi-distributional model.

A common objection to multi-distributional deniability is that, since there
are alternative deniable algorithms (for encryption and key generation) that are
strictly more powerful than the normal ones, why would anyone ever run the
normal algorithms? And given this situation, why would a coercer ever accept a
transcript corresponding to the normal algorithms? Whether this is a significant
problem will depend on the setting in which coercion happens, and what recourse
the coercer has in response to the users’ claims.

For example, if there is a prescribed legal process (such as a subpoena or
search warrant) by which parties are forced to reveal their transcripts, then

Bi-Deniable Public-Key Encryption 529

multi-distributional deniability may be sufficient to protect the users. Even if
the coercer asks for a transcript corresponding to the deniable algorithms, the
users can simply assert that they did not run those algorithms, and so cannot
produce coins for them. The users’ claims might also gain in credibility via “safety
in numbers,” if a deployed implementation defaults to the normal algorithms
— which do make up an operational cryptosystem, after all — or by formally
standardizing on the normal algorithms within an organization. Since the coercer
would only have reason to believe — but not any actual evidence — that the
deniable algorithms were used in a particular instance, imposing a sanction seems
fundamentally unjust, and might even be ruled out by the prescribed process. If,
on the other hand, the coercer is able to punish the users until they “tell him what
he wants to hear,” then multi-distributional deniability might not be enough to
protect the users — but neither might full deniability! After all, in either model
the coercer has no reason to believe what the users have revealed. Anticipating
potential punishment, the users of a multi-distributional scheme might retain the
coins of the deniable algorithms as a “backup plan,” just in case they might later
want to reveal a convincing proof for the true message (e.g., if the punishment
becomes too severe). But even a fully deniable scheme allows for a similar backup
plan and proof of the true message, by using “verifiably random” coins such as
the digits of π or the output of a pseudorandom generator.

In the identity-based setting, multi-distributional deniability may be useful as
well, especially for the receiver. Here the receiver does not run a key-generation
algorithm at all, but instead gets his secret key from an authority who possesses a
‘master’ secret key for all users. Our model allows the receiver to ask the authority
for a fake (but real-looking) secret key that causes a particular ciphertext to
decrypt to any desired message. This could be useful if the authority is out of
the coercer’s jurisdiction (e.g., if the receiver is travelling in another country),
or if it can argue that exposing its master secret key would harm the privacy of
too many other users.

In summary, the purpose of deniability is not at all to ‘convince’ the coercer
that the surrendered transcripts are real; indeed, it is common knowledge that
they can easily be faked. Instead, the goal is to preempt coercion in the first place
by making it useless, since parties who “stick to their stories” can never be pinned
down to the real message. At the same time, neither form of deniability seems ap-
propriate if a user might eventually want to convincingly reveal the true plaintext,
e.g., to sell her vote in an election. The main significant difference we see between
the two models relates not to security, but usability: multi-distributional denia-
bility requires the users to know in advance which messages they might want to
equivocate, whereas full deniability allows the user to decide afterward.

Why not erase? At first glance, erasures appear to provide a very simple way of
achieving deniability: the parties can just tell the coercer that they deliberately
erased their coins (perhaps according to a published schedule), and therefore
cannot surrender them. For sender deniability, this claim might be credible, since
there is no point in the sender keeping her ephemeral encryption coins. (And
indeed, none of our results preclude using erasures on the sender side.) For

530 A. O’Neill, C. Peikert, and B. Waters

receiver deniability, erasures seem much less credible, since the receiver must
store some form of decryption key in order to decrypt messages, and at some
point in time this key can be subject to coercion. Certain regulatory regimes
(e.g., in the financial sector) might also mandate retention of all data for a certain
time, for potential audit. The existence of deniable encryption means that such
requirements would still not necessarily guarantee compliance with the intent of
the regulations. In any case, we contend that there is a significant qualitative
difference between deniable schemes that use erasures, and those that do not.
In the former, the coerced parties must resort to the claim that they no longer
have the desired evidence, even though they once did. In the latter, the parties
can credibly claim to have provided the coercer with all the evidence they have
ever had, and yet still equivocate.

1.3 Other Related Work

Subsequent to the initial dissemination of this work in 2010, there has been
additional work on deniable encryption that complements our own. Dürmuth and
Freeman [18] announced an interactive, fully sender-deniable encryption protocol
(i.e., one with a single encryption protocol and negligible detection advantage).
However, following its publication Peikert and Waters found a complete break
of this system (and a corresponding flaw in the claimed security proof); see [17]
for details. In particular, the problem of constructing a fully deniable encryption
scheme remains an intriguing open question. Bendlin et al. [9] recently showed
that any noninteractive public-key scheme having key size σ can be fully receiver-
deniable (or bideniable) only with non-negligible Ω(1/σ) detection advantage.
In particular, our use of the multi-distributional model is necessary to achieve a
noninteractive receiver-deniable scheme.

Deniability can be seen as a type of security that holds true even when secret
information is revealed to the adversary. In the case of break-ins, one relevant
notion is “forward security” (see, e.g., [8, 13]), which relies on secure erasures
to update secret state over time. In the case of side-channel or memory attacks,
relevant notions include the “bounded retrieval model” and “leakage-resilient”
cryptography, which limit the amount of secret information the adversary may
learn (see the recent survey [5] and references therein). In contrast, deniability
ensures security in contexts where the adversary obtains the entire, unchanging
secret key and/or encryption randomness, but cannot tell whether those values
came from the actual execution of the system.

2 Preliminaries

We denote the set of all binary strings by {0, 1}∗ and the set of all binary strings
of length i by {0, 1}i. The length of a string s is denoted by |s|. By s1‖s2 we de-
note an encoding of strings s1, s2 from which the two strings are unambiguously
recoverable. (If the lengths of s1, s2 are known, then concatenation suffices.) For
i ∈ N we denote by [i] the set {1, . . . , i}. We use the standard definitions of
negligible functions, and statistical and computational indistinguishability.

Bi-Deniable Public-Key Encryption 531

We say an algorithm A with input space X has invertible sampling [16] if there
is an efficient inverting algorithm, denoted IA, such that for all x ∈ X the outputs
of the following two experiments are indistinguishable (either computationally,
or statistically):

y ← A(x; r)

Return (x, y, r)

y ← A(x; r)
r′ ← IA(x, y)
Return (x, y, r′)

In other words, given just an input-output pair of A, it is possible to efficiently
generate appropriately distributed randomness that “explains” it. It may also
be the case that IA requires some “trapdoor” information about x in order to
do so. Namely, we say that A has trapdoor invertible sampling if we replace the
second line in the right-hand experiment above with “r′ ← IA(tdx, x, y),” where
tdx is a trapdoor corresponding to x (we think of x and tdx as being sampled
jointly as the setup to both of the above experiments).

A public-key cryptosystem PKC with message space M consists of three al-
gorithms: The key generation algorithm Gen(1n; rR) outputs a public key pk,
and the randomness rR is used as the associated secret decryption key. (This
convention is natural in the context of deniability, where we might even con-
sider coercing the receiver to reveal the random coins rR it used to generate
its public key. This is without loss of generality, since the stored “secret key,”
whatever its form, can always be computed from rR.) The encryption algorithm
Enc(pk,m; rS) outputs a ciphertext c. The deterministic decryption algorithm
Dec(pk, rR, c) outputs a message m or ⊥. For correctness, we require the proba-
bility that m′ �= m be negligible for all messages m ∈ M, over the experiment
pk ← Gen(1n; rR), c ← Enc(pk,m), m′ ← Dec(pk, rR, c). To distinguish between
the above notion and deniable encryption as defined in Section 3, we sometimes
refer to the former as normal encryption.

3 Bideniable Encryption

Here we formally define bideniable encryption and its security properties, along
with some weaker variants. (We use “bideniable” as shorthand for “sender-and-
receiver deniable” in the language of Canetti et al. [10].) Following the definitions,
we discuss further how our notion relates to the variants of deniable encryption
introduced in [10].

As with normal encryption, bideniable encryption allows a sender in posses-
sion of the receiver’s public key to communicate a message to the latter, confi-
dentially. Additionally, if the parties are later coerced to reveal all their secret
data — namely, the coins used by the sender to encrypt her message and/or
those used by the receiver to generate her key — bideniable encryption allows
them to do so as if any desired message (possibly chosen as late as at the time
of coercion) had been encrypted.

In a multi-distributional deniable encryption scheme, there are ‘normal’ key
generation, encryption, and decryption algorithms that can be run as usual

532 A. O’Neill, C. Peikert, and B. Waters

— though the resulting communication may not be equivocable later on. In
addition, there are ‘deniable’ key generation and encryption algorithms that
can be used for equivocable communication. Associated with these deniable al-
gorithms are ‘faking’ algorithms, which can generate secret coins that open a
deniably generated public key and ciphertext to any desired message, as if the
normal algorithms had been used to generate them. Note that the ability to
generate fake random coins for the parties yields the strongest definition, since
such coins can be used to compute whatever locally stored values (e.g., a secret
key of some form) the coercer might expect. We now give a formal definition.

Definition 1 (Deniable encryption). A multi-distributional sender-,
receiver-, or bi-deniable encryption scheme DEN with message space M is made
up of the following algorithms:

– The normal key-generation, encryption, and decryption algorithms Gen,Enc,
Dec are defined as usual for public-key encryption (see Section 2). These
algorithms make up the induced normal scheme.

– The deniable key-generation algorithm DenGen(1n) outputs (pk, fk), where
fk is the faking key.1 We also extend Dec to so that it can decrypt using fk
in lieu of the usual receiver randomness rR.

– The deniable encryption algorithm DenEnc has the same interface as the
normal encryption algorithm.

– The sender faking algorithm SendFake(pk, rS ,m
′,m), given a public key pk,

original coins rS and message m′ of DenEnc, and desired message m, outputs
faked random coins r∗S for Enc.

– The receiver faking algorithm RecFake(pk, fk, c,m), given the public and
faking keys pk and fk (respectively), a ciphertext c, and a desired message
m, outputs faked random coins r∗R for Gen.

We require the following properties:

1. Correctness. Any triplet (G,E,Dec), where G ∈ {Gen,DenGen} and E ∈
{Enc,DenEnc}, should form a correct public-key encryption scheme.

2. Multi-distributional deniability. Let m,m′ ∈ M be arbitrary messages, not
necessarily different. The appropriate experiment below, which represents
equivocation (by the appropriate party/parties) of an encrypted m′ as m,
should be computationally indistinguishable from the following ‘honest open-
ing’ experiment: let pk ← Gen(1n; rR), c ← Enc(pk,m; rS), and output pk,
c, and whichever of rR, rS are appropriate to the type of deniability under
consideration.

1 Without loss of generality, we could replace fk with the randomness of DenGen,
but since this randomness will never be exposed to the adversary, we elect to define
a distinguished faking key.

Bi-Deniable Public-Key Encryption 533

Sender-Deniable Receiver-Deniable Bi-Deniable
pk ← Gen(1n; rR)
c← DenEnc(pk,m′; rS)

r∗S ← SendFake(pk, rS ,m
′,m)

Return (pk, c, r∗S)

(pk, fk)← DenGen(1n)
c← Enc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c,m)

Return (pk, c, r∗R)

(pk, fk)← DenGen(1n)
c← DenEnc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c, b)
r∗S ← SendFake(pk, rS ,m

′,m)
Return (pk, c, r∗R, r

∗
S)

Multi-distributional bideniability is a particularly strong theoretical notion.
For example, it immediately implies non-committing encryption as defined in [11]
— but in addition, equivocable ciphertexts actually decrypt to the intended mes-
sages, and can be produced by the regular users of the scheme, not just by a
simulator. Bideniability is also important in practice; in particular, each party’s
security does not depend upon the incoercibility of the other.

Note that we did not explicitly require DEN to satisfy the standard notion of
indistinguishability under chosen-plaintext attack; this is because it is implied
by any of the above notions of deniability.

Proposition 1. Suppose that DEN satisfies any of sender-, receiver-, or bideni-
ability. Then any triplet (G,E,Dec), where G ∈ {Gen,DenGen} and
E ∈ {Enc,DenEnc}, is semantically secure.

While our focus is on multi-distributional bideniability, we also briefly exam-
ine interrelations among the other types. We start with a basic question: for a
particular deniable encryption scheme DEN, which notions of deniability imply
which others? (This question is also important in practice, since an encryption
scheme may not always be used in the ways it is intended.) First, we show that
bideniablility implies sender deniability.

Proposition 2. If DEN is bideniable, then DEN is sender-deniable.

Proof. By assumption, we know that the distributions (pk, c, rR, rS) and
(pk, c, r∗R, r∗S) are computationally indistinguishable, as produced by the two bide-
niability experiments. Clearly, the distributions (pk, c, rS) and (pk, c, r∗S) are in-
distinguishable when produced by the same two experiments, where we can now
omit the generation of r∗R in the faking experiment. This modified bideniable
faking experiment producing (pk, c, r∗S) differs from the sender-deniable faking
experiment only its use of DenGen instead of Gen. Because neither experiment
uses fk, all we need is for the pks output by DenGen and by Gen to be indistin-
guishable. But this follows directly from bideniability, by restricting the outputs
of the two experiments to just pk.

One might also expect bideniability to imply receiver-deniability. Perhaps sur-
prisingly, at least in the multi-distributional setting this appears not to be the
case! For example, in our abstract scheme from Section 5, the receiver can equiv-
ocate a normal ciphertext in one direction (from 1 to 0), but apparently not
from 0 to 1. In general, the problem is that to allow the receiver to equivocate a
message, DenEnc may need to produce special ciphertexts that Enc would never

534 A. O’Neill, C. Peikert, and B. Waters

(or very rarely) output. In other words, the receiver’s ability to equivocate a
message may depend crucially the sender’s use of DenEnc.

In the reverse direction, it appears that a scheme that is both sender-deniable
and (separately) receiver-deniable still might not be bideniable. Indeed, the fake
randomness produced by SendFake and RecFake (which depend on the ciphertext
c) might be obviously correlated in such a way that exposing both together is easily
detected, whereas exposing only one is safe.Constructing a concrete example along
these lines to demonstrate a formal separation remains an interesting problem.

4 Bideniable Encryption from Simulatable Encryption

Here we give a bideniable public-key encryption scheme from any simulatable
one, in the sense of Damg̊ard and Nielsen [16]. In particular, this shows that
simulatable encryption suffices to realize not just a noncommitting encryption
scheme, but also a (multi-distributional) bideniable one.

Simulatable public-key encryption. We recall the notion of a simulatable public-key
encryption scheme from [16]. Intuitively, this is a scheme in which it is possible to
‘obliviously’ sample a public key without knowing the secret key, and to ‘oblivi-
ously’ sample the encryption of a random message without knowing the message.

Definition 2 (Simulatable PKE [16]). A simulatable public-key
encryption scheme PKC-SIM with message space M is made up of the following
algorithms:

– The normal key-generation, encryption, and decryption algorithms Gen,Enc,
Dec are defined as usual for a public-key encryption scheme (see Section 2).

– The oblivious key-generation algorithm OGen(1n; rOGen) outputs a public key
opk, and has invertible sampling via algorithm IOGen.

– The oblivious encryption algorithm OEnc(pk) outputs a ciphertext oc, and
has invertible sampling via algorithm IOEnc.

We require the following properties:

1. Oblivious key generation. The distribution of pk, where pk ← Gen(1n; rR),
should be computationally indistinguishable from opk, where opk ←
OGen(1n; rOGen).

2. Oblivious ciphertext generation. The output distributions of the following
two experiments should be computationally indistinguishable:

pk ← Gen(1n; rR)
m ← M
c ← Enc(pk,m)
Return (pk, rR, c)

pk ← Gen(1n; rR)

oc ← OEnc(pk)
Return (pk, rR, oc)

Note that the above conditions are non-trivial in light of the the fact that OGen,
OEnc are required to have invertible sampling. In particular, it follows by Con-
dition 2 (after removing rR from the output distributions) that any simulatable
public-key encryption scheme is semantically secure.

Bi-Deniable Public-Key Encryption 535

Simulatable encryption can be realized under a variety of standard computa-
tional assumptions such as DDH and RSA [16], as well as worst-case lattice
assumptions [16, 21] (though we later show a more efficient bideniable encryp-
tion scheme based on the latter using an entirely different approach).

4.1 A “Coordinated” Scheme

Overview. To get at the technical core of our construction, we first present a
coordinated scheme in which the faked random coins r∗R for the receiver and
r∗S for the sender are outputs of the same algorithm FakeCoins(pk, fk, rS , b

′, b, c)
(we give the corresponding ciphertext c for convenience); i.e., the sender and
receiver coordinate their faked coins upon being coerced. We later describe how
the coordination can be removed for our specific scheme. Additionally, we present
a scheme that encrypts one-bit messages, but a scheme that encrypts poly(n)-
bit messages then follows generically by parallel repetition with independent
keys.

The high-level idea for our scheme draws on and extends that of Choi et al. [14]
(who generalized the approach of Damg̊ard and Nielsen [16]) used to achieve
noncommitting encryption. In our scheme, we run 5n instances of an underlying
simulatable encryption scheme in parallel. In normal (non-deniable) operation,
by using the oblivious key and ciphertext generation algorithms appropriately,
the receiver “knows” the secret keys corresponding to a random size-n subset S ⊂
[5n] of indices and the sender “knows” the plaintexts and associated encryption
randomness corresponding to the ciphertexts for an independent random size-n
subset R ⊂ [5n]. In particular, S corresponds to encryptions of the message bit
b, and [5n] \ S corresponds to oblivious encryptions of random bits. To decrypt,
the receiver decrypts ciphertexts corresponding to R and takes a majority vote.
In deniable operation, the receiver knows all the secret keys and the sender
knows all the plaintexts and associated encryption randomness. In particular,
in addition to choosing a random size-n ‘biasing’ subset Y ⊂ [5n] corresponding
to encryptions of the true message bit b′, the sender also chooses two random
pairwise disjoint size-n subsets S0,S1 ⊂ [5n], also disjoint from Y, corresponding
to encryptions of 0s and 1s respectively; the ciphertexts in [5n]\Y∪S0∪S1 encrypt
random bits. To open a deniably encrypted message b′ as b, the sender chooses
S∗ = Sb and the receiver chooses R∗ so that it has an appropriate random
number of elements in common with Sb, and then chooses the remainder of R∗

as random indices from [5n] \ (S0 ∪ S1 ∪ Y).

The scheme. To formally define our scheme, let PKC-SIM be simulatable public-
key encryption scheme with message space {0, 1}. Below, for a set X we denote by
P(X) the set of all subsets of X and by Pi(X) the set of all subsets of X of size i.
Additionally, for nonnegative integers x, y,N ≥ M , let PHGD(x;N,M, y) denote
the probability that exactly x values from [M] are chosen after a total of y values
are drawn uniformly at random from [N], without replacement. We denote by
HGD(N,M, y) the hypergeometric distribution on [N] with parameters M, y that
assigns to each x ∈ {0, . . . ,M} the probability PHGD(x;N,M, y). Below we will
use parameters N,M, y polynomial in the security parameter, so we can sample

536 A. O’Neill, C. Peikert, and B. Waters

efficiently from this distribution simply by running the sampling experiment.
Define scheme BI-DEN[PKC-SIM] with message-space {0, 1} as follows:

BI-DEN.Gen(1n):
R ← Pn([5n])
For i = 1 to 5n do:
If i ∈ R then
pki ← Gen(1n; rR,i)
Else pki ← OGen(1n; rR,i)
EndFor
pk ← pk1‖ . . . ‖pk5n
Return pk

BI-DEN.Enc(pk, b):
S ← Pn([5n])
For i = 1 to 5n do:
If i ∈ S then
ci ← Enc(pki, b; rS,i)
Else ci ← OEnc(pki; rS,i)
EndFor
c← c1‖ . . . ‖c5n
Return c

BI-DEN.Dec((R, rR), c):
For all i ∈ R do:
di ← Dec(rR,i, ci)
EndFor
If most di’s are 1 then
Return 1
Else return 0

BI-DEN.DenGen(1n):
R ← Pn([5n])
For i = 1 to 5n do:
pki ← Gen(1n; rR,i)
EndFor
pk ← pk1‖ . . . ‖pk5n
r ← rR,1‖ . . . ‖rR,5n

Return (pk, (R, r))

BI-DEN.DenEnc(pk, b′):
S0 ← Pn([5n])
S1 ← Pn([5n] \ S0)
Y ← Pn([5n] \ (S0 ∪ S1))
For i = 1 to 5n do:
If i ∈ S0 then
ci ← Enc(pki, 0; rS,i)
If i ∈ S1 then
ci ← Enc(pki, 1; rS,i)
If i ∈ Y then
ci ← Enc(pki, b

′; rS,i)
Else ci ← OEnc(pk; rS,i)
EndFor
c← c1‖ . . . ‖c5n
Return c

BI-DEN.FakeCoins
(pk, fk, rS , b

′, b, c):
z ← HGD(5n, n, n)
Z ← Pz(Sb)
Z ′ ← Pn−z([5n]
\(S0 ∪ S1 ∪ Y))

R∗ ← Z ∪ Z ′

S∗ ← Sb
For i = 1 to 5n do:
If i ∈ S∗ then r∗S,i ← rS,i
Else r∗S,i ← IOEnc(pki, ci)

If i ∈ R∗ then r∗R,i ← rR,i

Else r∗R,i ← IOGen(pki)

EndFor
r∗S ← r∗S,1‖ . . . ‖r∗S,5n
r∗R ← r∗R,1‖ . . . ‖r∗R,5n

Return (r∗S , r
∗
R)

Removing the coordination. To remove the coordination between the sender and
receiver in the faking algorithm, the idea is for the sender to communicate its
choices of S0,S1,Y to the receiver in-band by using a separate instance of the
simulatable encryption scheme. Details are deferred to the full verison.

4.2 Correctness and Security

Theorem 1. Let PKC-SIM be a simulatable public-key encryption scheme. Then
BI-DEN[PKC-SIM] is correct.

The proof is a simple argument that relies on a Chernoff-like tail inequality for
the hypergeometric distribution, and the Chernoff bound. Due to space restric-
tions we leave it to the full version. We now turn to security.

Theorem 2. Let PKC-SIM be a simulatable public-key encryption scheme. Then
BI-DEN[PKC-SIM] satisfies bideniability under chosen-plaintext attacks.

Bi-Deniable Public-Key Encryption 537

We sketch the proof outline, leaving details to the full version. We consider three
hybrid experiments that transition from an ‘honest’ opening of an ‘honest’ en-
cryption of b to a ‘fake’ opening of a deniably encrypted bit b′ as b. The first two
experiments differ only in how they choose the size-n subsets Y,S0,S1,R ⊂ [5n]
of indices (i.e., the corresponding key pairs and ciphertexts are generated identi-
cally; in fact, S1−b,Y are not used). Namely, the first experiment chooses Sb and
R at random independently and then S1−b and Y at random as pairwise disjoint
and disjoint from Sb ∪ R, while the second chooses Sb and S1−b at random as
pairwise disjoint, then Y at random as disjoint from Sb ∪ S1−b, and finally R
to have an HGD-distributed random number of elements in common with Sb

and the remainder at random disjoint from S0 ∪ S1 ∪ Y. The outputs of these
experiments are identically distributed by a combinatorial argument. Finally,
the third experiment appropriately changes how the key pairs and ciphertexts
corresponding to Y,S0,S1,R are generated. The outputs of the last two experi-
ments are computationally indistinguishable by simulatability of the underlying
encryption scheme.

5 Bideniable Encryption from Bitranslucent Sets

Here we construct a bideniable encryption scheme based on a new primitive we
call a bitranslucent set, which extends the notion of a translucent set from [10].
Whereas translucent sets can be constructed straightforwardly from any trap-
door permutation (and other specific assumptions) [10], bitranslucent sets ap-
pear much more challenging to realize. In Section 6 we give a novel construction
based on lattices.

Bitranslucent sets. Informally, a translucent set is a subset P of a universe U ,
which can be sampled efficiently using only public information, and which is
pseudorandom unless its associated secret key is known (in which case it is
easily distinguishable from uniform over the universe).

Here we strengthen the notion of a translucent set in two ways. The first, main
strengthening essentially preserves the pseudorandomness of P even if the secret
key is revealed. Of course this is impossible as just stated, because the secret key
makes P ‘transparent’ by design. Instead, we introduce an algorithm that, given a
‘faking’ key for the set system, and some c drawn from the pseudorandom set P , is
able to resample a new, ‘good-looking’ secret key for which c appears uniformly
random. We stress that such keys are necessarily very rare, because a typical
secret key should correctly recognize P with high probability. Nevertheless, it
can still be the case that for any c ∈ P , there are a few rare keys that misclassify c
(without making it apparent that they are doing so). A bitranslucent set scheme
is able to use the faking key find such keys.

Looking ahead to our bideniable encryption scheme, bitranslucency will allow
a coerced sender and receiver both to plausibly claim that a value c ∈ P is
actually uniform: the sender simply declares that c was chosen uniformly from
U (by claiming c itself as the random coins), and the receiver resamples a secret
key that also makes c appear uniform.

538 A. O’Neill, C. Peikert, and B. Waters

The second strengthening, which yields qualitative improvements in efficiency
and may have independent applications, allows for multiple translucent sets to
share a single, fixed-size faking key. Essentially, this makes the bitranslucent set
‘identity-based’ (although we do not refer to identities explicitly): each translu-
cent set has its own public and secret keys for generating and distinguishing
P - and U -samples, and the master faking key makes it possible to generate a
good-looking secret key that equivocates a given P -sample as a U -sample. In-
terestingly, this implies a bideniable encryption scheme in which the deniable
key generator’s faking key is a fixed size independent of the message length, de-
spite the information-theoretic bound that normal secret keys must exceed the
message length.

Definition 3 (Bitranslucent Set Scheme (BTS)). A bitranslucent set
scheme BTS is made up of the following algorithms:

– The normal setup procedure Setup(1n; rSetup) outputs a public parameter pp.
We require that Setup has invertible sampling via an algorithm ISetup.

– The deniable setup procedure DenSetup(1n) outputs a public parameter pp
and a faking key fk.

– The key generator Gen(pp; rR) outputs a public key pk, whose associated
secret key is the randomness rR (without loss of generality).
We require that Gen has trapdoor invertible sampling via an algorithm IGen

and trapdoor fk, where (pp, fk) ← DenSetup(1n).
– The P - and U -samplers SampleP(pp, pk; rS) and SampleU(pp, pk; rS) each

output some c ∈ {0, 1}∗.
– The P -tester TestP(pp, rR, c) either accepts or rejects.
– The sender-coins faker FakeSCoins(pp, pk, rS) outputs some coins r∗S for the

U -sampler.2

– The receiver-coins faker FakeRCoins(pp, fk, pk, c) outputs some coins r∗R for
the key generator.

We require:

1. (Correctness.) The following experiment should accept (respectively, reject)
with overwhelming probability over all its randomness: let pp ← Setup(1n),
pk ← Gen(pp; rR), c ← SampleP(pp, pk; rS) (resp., c ← SampleU(pp, pk; rS)),
and output TestP(pp, rR, c).
We also require correctness for the faking algorithms: with overwhelming
probability over all the random choices, letting (pp, fk) ← DenSetup(1n) and
pk ← Gen(pp; rR), we should have

SampleU(pp, pk; FakeSCoins(pk, rS)) = SampleP(pp, pk; rS)
Gen(pp; FakeRCoins(pp, fk, pk,SampleP(pp, pk; rS))) = pk.

2 In some realizations, including our own, FakeSCoins can directly compute coins r∗S
given just a ciphertext c← SampleP(pp, pk; rS), not rS (or even pp, pk). We retain
the more relaxed definition above for generality.

Bi-Deniable Public-Key Encryption 539

2. (Indistinguishable public parameters.) The public parameters pp as produced
by the two setup procedures pp←Setup(1n; rSetup) and (pp, fk)←DenSetup(1n)
should be indistinguishable (either statistically or computationally).

3. (Bideniability.) The following two experiments should be computationally in-
distinguishable:

(pp, fk) ← DenSetup(1n)
pk ← Gen(pp; rR)
c ← SampleU(pp, pk; rS)

Return (pp, rR, rS)

(pp, fk) ← DenSetup(1n)
pk ← Gen(pp; rR)
c ← SampleP(pp, pk; rS)
r∗R ← FakeRCoins(pp, fk, c)
r∗S ← FakeSCoins(pk, rS)
Return (pp, r∗R, r∗S)

Remark 1. For correctness, it suffices (and is more convenient) to require that
when c ← SampleU(pp, pk), TestP(pp, rR, c) just rejects with probability at least
(say) 1/2. The error probability can then be made negligible by parallel repetition
of Gen and SampleU, using the same public parameters pp.

The definition is designed to allow for the use of many public keys pki and
associated secret keys rR,i under the same public parameter pp. This lets the
sender and receiver exchange multiple bits more efficiently, and have shorter
keys/randomness, than if the entire system were parallelized. In addition, in
deniable mode, the receiver can perform all its secret-key operations (for multiple
public keys pki) using just the single faking key fk, without keeping any of the
random strings rR,i that were used to generate the pki, by just resampling rR,i as
needed using IGen(fk, pp, pki). This trivially allows the receiver to decrypt, and
to open P -samples and U -samples ‘honestly’ (without equivocation), in deniable
mode.

Note that in the bideniability property above, both experiments use the de-
niable setup algorithm DenSetup, rather than using the normal setup in the
left-hand experiment. However, the choice of setup in the left experiment is es-
sentially arbitrary, and the definition would be equivalent if we replaced the first
line of the left-hand experiment with a normal setup pp ← Setup(1n; rSetup). This
is because the faking key fk is never used, the public parameters are indistin-
guishable, and Setup has invertible sampling. We chose the presentation above
because it yields a more modular proof that one can securely equivocate many
independent public key/ciphertext pairs (pki, ci) under a single public parame-
ter pp: first, the bideniability property allows us to replace each pair of calls to
the faking algorithms, one by one, with their normal counterparts. Then, finally,
the deniable setup can be replaced with a normal setup, as just described.

Construction of deniable encryption. Canetti et al. [10] described a simple encod-
ing trick to construct a multi-distributional sender-deniable encryption scheme
from a translucent set: the normal encryption algorithm encodes a 0 message
as “UU” whereas the deniable encryption algorithm encodes it as “PP ;” both
algorithms encode 1 as “UP .” Thus, the sender can always open a deniably
generated ciphertext as any message bit, by equivocating zero or more P s as Us.

540 A. O’Neill, C. Peikert, and B. Waters

The same encoding lets us construct a multi-distributional bideniable encryp-
tion scheme from a bitranslucent set, since now the sender and receiver are both
able to produce ‘fake’ coins that simultaneously equivocate a P as a U . Using
the security properties of BTS, the proof of the following theorem (which we
given in the full version) is routine.

Theorem 3. Existence of a bitranslucent set scheme implies existence of a bide-
niable encryption scheme, secure under chosen-plaintext attacks.

Canetti et al. [10] also construct a fully sender-deniable scheme from a translu-
cent set, where the ‘fake’ coins can be distinguished with an inverse-polynomial
probability related to the public key size. We show that for bideniability an anal-
ogous construction from a bitranslucent set also works, but requires the sender
and receiver to ‘coordinate’ their fake coins as described Section 4. However,
this coordination can again be removed using simulatable encryption. Details
are deferred to the full version.

6 Lattice-Based Bitranslucent Set

In this section we give an overview of a bideniable translucent set scheme based
on lattice problems, and the intuition behind its security. Due to the large amount
of background required to formalize the system, space restrictions require us to
defer a complete description and security proof to the full version.

Here we describe the main ideas behind our construction. To start, it will
help to consider a basic mechanism for a (sender-deniable) translucent set. The
public key is the description of a lattice Λ, and the secret key is a short lattice
vector z ∈ Λ. (A lattice is a periodic “grid” of points — formally, a discrete
additive subgroup — in Rm.) A P -sample is a point very close to the dual lattice
Λ∗, while a U -sample is a uniformly random point in a certain large region.
(The dual lattice Λ∗ is the set of points v ∈ span(Λ) for which 〈z,v〉 ∈ Z
for every z ∈ Λ.) With knowledge of z, it is possible to distinguish these two
types of points c by computing the inner product 〈z, c〉: when c is close to
some v ∈ Λ∗, the inner product 〈z, c〉 ≈ 〈z,v〉 ∈ Z is close to an integer.
On the other hand, when c is uniform, the inner product is uniformly random
modulo Z. Moreover, distinguishing between P -samples and U -samples (given
only the public information) is essentially the decision-LWE problem, when the
lattice Λ is defined appropriately in relation to the LWE instance. All of this
is so far very similar to the structure of lattice-based encryption going back to
the seminal scheme of Ajtai and Dwork [4], but in that system, the public key
uniquely defines a secret key while the ciphertext does not uniquely define the
encryption randomness. By contrast, here we have essentially described the ‘dual’
cryptosystem of Gentry, Peikert, and Vaikuntanathan [21], where there are many
short vectors in Λ and hence many valid secret keys, and the ciphertext uniquely
specifies the encryption randomness.

To construct a bitranslucent set, we exploit and build upon additional tech-
niques from [21]. The faking key for the scheme is a short basis T of Λ (con-
structed using techniques from [3, 6]). As shown in [21], such a basis acts as

Bi-Deniable Public-Key Encryption 541

a ‘master trapdoor’ that allows for efficiently sampling secret keys under a
Gaussian-like distribution, and for efficiently extracting the short offset vector x
from a P -sample c = v + x, where v ∈ Λ∗.

Using the above facts, our receiver faking algorithm works as follows: given the
short basis T and a P -sample c = v + x that needs to be ‘faked’ as a U -sample,
the algorithm first extracts x, and then samples a secret key z∗ ∈ Λ that is highly
correlated with x. By this we mean that z∗ comes from a Gaussian distribution
(over Λ) centered at u·x, for some random and large enough correlation coefficient
u ∈ R. Modulo Z, the inner product 〈z∗, c〉 ≈ 〈z∗,x〉 ≈ u · ‖x‖2, because z∗ ∈
Λ is short. When u is chosen from a wide enough Gaussian distribution, this
inner product is uniform (modulo Z), hence c “looks like” a U -sample when
tested with the fake secret key z∗. The natural question at this point is, why
should it be secure to release a z∗ that is so correlated with the secret offset
vector x? That is, why do z∗ and c ‘look like’ an honestly generated secret key
and U -sample, respectively? The first key point is that as Gaussian random
variables, the correlation between x and z∗ is essentially symmetric. That is, we
can consider an alternative experiment in which z∗ is chosen first (according to
the normal key generation algorithm), and then x is chosen from a Gaussian
centered at v · z∗ (for some appropriate random v ∈ R). In both experiments,
the pair (z∗,x) is jointly distributed as a nonspherical Gaussian, with the same
covariance. This allows us to switch from the faking experiment to one in which
the ‘faked’ secret key z∗ is generated normally, followed by c = v + x where
v ∈ Λ∗ and x is centered at v · z∗. The second key point is that when x is
correlated with z∗ as described above, it may be written as the sum of two
terms: the component v ·z∗, and an independent (spherical) Gaussian component
g. Under the LWE assumption, we can switch from c = (v + g) + v · z∗ to
c′ = u + v · z∗, where u is uniformly random. Of course, the latter quantity
c′ is truly uniform and independent of the (normally generated) secret key z∗.
This coincides exactly with the generation and subsequent honest opening of a
normal secret key and U -sample, as desired.

Acknowledgments. We thank Ran Canetti and Cynthia Dwork for suggesting
this research topic, Josh Benaloh and Ari Juels for helpful discussions about
deniability, and the anonymous reviewers for useful comments.

References

[1] The rubberhose encryption system. Internet website (accessed February 9, 2010),
http://iq.org/~proff/marutukku.org/

[2] Truecrypt: Free open-source on-the-fly encryption. Internet website (accessed
Feburary 9, 2010), http://www.truecrypt.org

[3] Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

[4] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC, pp. 284–293 (1997)

http://iq.org/~proff/marutukku.org/
http://www.truecrypt.org

542 A. O’Neill, C. Peikert, and B. Waters

[5] Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage resilience and the bounded
retrieval model. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS,
vol. 5973, pp. 1–18. Springer, Heidelberg (2010)

[6] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

[7] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

[8] Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

[9] Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Receiver-deniable public-
key encryption is impossible. Cryptology ePrint Archive, Report 2011/046 (2011),
http://eprint.iacr.org/

[10] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

[11] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639–648 (1996)

[12] Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract).
In: FOCS, pp. 504–513 (1996)

[13] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptology 20(3), 265–294 (2007), Preliminary version in EUROCRYPT 2003.

[14] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

[15] Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25,
285–287 (1979)

[16] Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

[17] Duermuth, M., Freeman, D.M.: Deniable encryption with negligible detection prob-
ability: An interactive construction. Cryptology ePrint Archive, Report 2011/066
(2011), http://eprint.iacr.org/

[18] Dürmuth, M., Freeman, D.M.: Deniable encryption with negligible detection prob-
ability: An interactive construction. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 610–626. Springer, Heidelberg (2011)

[19] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J.
ACM 50(6), 852–921 (2003); Preliminary version in FOCS 1999

[20] Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)

[21] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

[22] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[23] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009); Preliminary version in STOC 2005

[24] Wikipedia. Deniable encryption — Wikipedia, the free encyclopedia. Internet
website (2010), http://en.wikipedia.org/wiki/Deniable_encryption (accessed
February 9, 2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://en.wikipedia.org/wiki/Deniable_encryption

Better Security for Deterministic Public-Key

Encryption: The Auxiliary-Input Setting

Zvika Brakerski1 and Gil Segev2

1 Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot 76100, Israel

zvika.brakerski@weizmann.ac.il
2 Microsoft Research, Mountain View, CA 94043, USA

gil.segev@microsoft.com

Abstract. Deterministic public-key encryption, introduced by Bellare,
Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to ran-
domized public-key encryption in various scenarios where the latter ex-
hibits inherent drawbacks. A deterministic encryption algorithm, how-
ever, cannot satisfy any meaningful notion of security when the plaintext
is distributed over a small set. Bellare et al. addressed this difficulty by
requiring semantic security to hold only when the plaintext has high
min-entropy from the adversary’s point of view.

In many applications, however, an adversary may obtain auxiliary
information that is related to the plaintext. Specifically, when determin-
istic encryption is used as a building block of a larger system, it is rather
likely that plaintexts do not have high min-entropy from the adversary’s
point of view. In such cases, the framework of Bellare et al. might fall
short from providing robust security guarantees.

We formalize a framework for studying the security of deterministic
public-key encryption schemes with respect to auxiliary inputs. Given the
trivial requirement that the plaintext should not be efficiently recover-
able from the auxiliary input, we focus on hard-to-invert auxiliary inputs.
Within this framework, we propose two schemes: the first is based on the
decisional Diffie-Hellman (and, more generally, on the d-linear) assump-
tion, and the second is based on a rather general class of subgroup indis-
tinguishability assumptions (including, in particular, quadratic residu-
osity and Paillier’s composite residuosity). Our schemes are secure with
respect to any auxiliary input that is subexponentially hard to invert
(assuming the standard hardness of the underlying computational as-
sumptions). In addition, our first scheme is secure even in the multi-user
setting where related plaintexts may be encrypted under multiple public
keys. Constructing a scheme that is secure in the multi-user setting (even
without considering auxiliary inputs) was identified by Bellare et al. as
an important open problem.

1 Introduction

Public-key encryption is one of the most basic cryptographic tasks. A public-key
encryption scheme consists of three algorithms: a key-generation algorithm that

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 543–560, 2011.
c© International Association for Cryptologic Research 2011

544 Z. Brakerski and G. Segev

produces a secret key and a corresponding public key, an encryption algorithm
that uses the public key for mapping plaintexts into ciphertexts, and a decryption
algorithm that uses the secret key for recovering plaintexts from ciphertexts.
For modeling the security of public-key encryption schemes, the fundamental
notion of semantic security was introduced in the seminal work of Goldwasser
and Micali [20]. Semantic security asks that it should be infeasible to gain any
effective information on the plaintext by seeing the ciphertext and the public key.
More specifically, whatever can be computed efficiently from the ciphertext, the
public key and possibly some auxiliary information, can essentially be computed
efficiently from the public key and the auxiliary information alone.

Together with its rigorous, robust, and meaningful modeling of security, se-
mantic security inherently carries the requirement for a randomized encryption
algorithm. In some cases, however, a randomized encryption algorithm may suf-
fer from various drawbacks. In terms of efficiency, ciphertexts are not length
preserving (and might be significantly longer than their corresponding plain-
texts), and are in general not efficiently searchable. These properties severely
limit the deployment of public-key encryption schemes in applications involv-
ing, for example, massive data sets where the ciphertext expansion is crucial, or
global deduplication-based storage systems where searches are highly frequent
(e.g., [26]). In addition, in terms of security, the security guarantees provided by
randomized public-key encryption, and by randomized cryptographic primitives
in general, are typically highly dependant on the availability of true and fresh
random bits (see, for example, [3] and the references therein).

Deterministic public-key encryption. For dealing with these kind of draw-
backs, Bellare, Boldyreva, and O’Neill [2] initiated the study of determinis-
tic public-key encryption schemes. These are public-key encryption schemes in
which the encryption algorithm is deterministic1. In this setting, where full-
fledged sematic security is out of reach, Bellare et al. put forward the goal of
formalizing a notion of security that captures semantic security as much as pos-
sible. An immediate consequence of having a deterministic encryption algorithm,
however, is that essentially no meaningful notion of security can be satisfied if
the plaintext is distributed over a set of polynomial size. Indeed, in such a case
an adversary who is given a public key pk and an encryption c of some plaintext
m under the public key pk, can simply encrypt all possible plaintexts, compare
each of them to the given ciphertext c, and thus recover the plaintext m.

Bellare et al. addressed this problem by requiring security to hold only when
the plaintext is sampled from a distribution of high min-entropy. Subject to
this restriction, they adapted semantic security to the setting of deterministic
encryption: For any high-entropy plaintext distribution, whatever can be com-
puted efficiently from the ciphertext and the public key, can also be computed
efficiently from the public key alone. Constructions of deterministic public-key
encryption schemes satisfying this and similar notions of security were proposed
in the random oracle model by Bellare et al. [2], and then in the standard model
1 Note that this is effectively a collection of injective trapdoor functions (assuming

the decryption algorithm is deterministic as well).

Better Security for Deterministic Public-Key Encryption 545

by Bellare, Fischlin, O’Neill, and Ristenpart [4], by Boldyreva, Fehr, and O’Neill
[5], and by O’Neill [23]. We refer the reader to Section 1.2 for an elaborated
discussion of these constructions.

Security with respect to auxiliary information. In typical applications, a
deterministic public-key encryption scheme is used as building block of a larger
system. In such a setting, an adversary usually has additional information that
it can use when trying to break the security of the scheme. This danger becomes
even more critical when such additional information is related to the encrypted
plaintext. In general, security with respect to auxiliary information is essential
towards obtaining composable security (see, for example, [11] and the references
therein). More closely related to our approach are the studies of security with
respect to auxiliary information in the contexts of perfect one-way functions [10],
program obfuscation [19], and leakage-resilient encryption [13,12,8].

For example, when using a deterministic public-key encryption scheme for
enabling efficient searches on encrypted databases, as suggested by Bellare et al.
[2], it is not unlikely that the same plaintext belongs to more than one database,
and is therefore encrypted under several public keys; or that various statistics
of the database are publicly available. A more acute example is when using a
deterministic public-key encryption scheme for a key-encapsulation mechanism
that “hedges against bad randomness” [3]. In such a case an adversary that
observes the usage of the encapsulated key (say, as a key to a symmetric-key
encryption scheme) may in fact obtain a huge amount of additional information
on the encapsulated key.

In this light, the notion of security proposed by Bellare et al. [2] might fall
short of capturing the likely case where auxiliary information is available. That
is, although a plaintext may be sampled from a distribution with high min-
entropy to begin with, it might still have no entropy, from the point of view of
an adversary, in many realistic scenarios. We note that already in the setting
of deterministic symmetric-key encryption of high-entropy messages, Dodis and
Smith [14] observed that the main weakness of an approach that does not take
into account auxiliary information, is the lack of composable security. It is thus a
highly desirable task to model and to construct secure deterministic encryption
schemes in the setting of auxiliary information, as a crucial and essential step
towards obtaining more realistic security guarantees.

1.1 Our Contributions

In this paper we introduce a framework for modeling the security of determinis-
tic public-key encryption schemes with respect to auxiliary inputs. Within this
framework we propose constructions that are based on standard cryptographic
assumptions in the standard model (i.e., without random oracles). Our frame-
work is a generalization of the one formalized by Bellare et al. [2] (and further
studied in [4,5,23]) to the auxiliary-input setting, in which an adversary possibly
obtains additional information that is related to the encrypted plaintext, and
might even fully determine the encrypted plaintext information theoretically.

546 Z. Brakerski and G. Segev

Modeling auxiliary information. An immediate consequence of having a de-
terministic encryption algorithm is that no meaningful notion of security can be
satisfied if the plaintext can be recovered from the adversary’s auxiliary informa-
tion (see Section 3 for a discussion of this inherent constraint2). Thus, we focus
our attention on the case of hard-to-invert auxiliary inputs, where the source of
hardness may be any combination of information-theoretic hardness (where the
auxiliary-input function is many-to-one) and computational hardness (where the
auxiliary input function is injective, but is hard to invert by efficient algorithms).

Notions of security. Following [2,4,5] we formalize three notions of security
with respect to auxiliary inputs, and prove that all three are equivalent. The
first is a simulation-based notion, capturing the intuitive meaning of semantic
security: whatever can be computed efficiently given a public key, an encryption
of a message, and hard-to-invert auxiliary input, can be computed efficiently
given only the public key and the auxiliary input. The second is a comparison-
based notion, which essentially serves as an intermediate notion towards an
indistinguishability-based one that is somewhat easier to handle in proofs of se-
curity. The high-level approach of the equivalence proofs is motivated by those
of [4,5], but the existence of auxiliary inputs that may fully determine the en-
crypted messages introduces various difficulties that our techniques overcome.

Constructions. We propose two constructions in the standard model satisfying
our notions of security. At a first glance, one might hope that the constructions
proposed in [2,4,5,23] can be naturally extended to the auxiliary-input setting
by replacing the notion of statistical min-entropy with an appropriate notion of
computational min-entropy. This, however, does not seem to be the case (at least
without relying on random oracles), as these constructions seem to heavily rely
on information-theoretic properties that might not have natural computational
analogues3.

Our first construction is based on the decisional Diffie-Hellman assumption,
(and more generally, on any of the d-linear assumptions), and our second con-
struction is based on a rather general class of subgroup indistinguishability as-
sumptions as defined in [8] (including, in particular, the quadratic residuosity
assumption, and Paillier’s composite residuosity assumption [24]). The resulting
schemes are secure with respect to any auxiliary input that is subexponentially
hard to invert4. In addition, our first scheme is secure even in the multi-user
setting where related messages may be encrypted under multiple public keys. In
this setting we obtain security (with respect to auxiliary inputs) for any poly-
nomial number of messages and users as long as the messages are related by
invertible linear transformations. Constructing a scheme that is secure is the
2 This is somewhat similar to the observation that security is impossible to achieve

when the plaintext is distributed over a small set.
3 A prime example is the generalized crooked leftover hash lemma [5], for which a

computational analogue may seem somewhat challenging to devise.
4 We emphasize that in this paper we rely on standard computational assumptions

(i.e., d-linear or quadratic residuosity), and only the auxiliary inputs are assumed to
have subexponential hardness.

Better Security for Deterministic Public-Key Encryption 547

multi-user setting (even without considering auxiliary inputs) was identified as
an important open problem by Bellare et al. [2]. Finally, we note that this scheme
also exhibits an interesting homomorphic property: it allows homomorphic addi-
tions and one multiplication, in the spirit of [6,16]. This property may be found
especially useful in light of the possible applications of deterministic public-key
encryption schemes in database systems [2].

1.2 Related Work

Exploiting the entropy of messages to prove otherwise-impossible security was
first proposed by Russell and Wang [25], followed by Dodis and Smith [14]. These
works achieved information-theoretic security for symmetric-key encryption with
short keys.

In the setting of public-key encryption, deterministic encryption for high min-
entropy messages was proposed by Bellare, Boldyreva, and O’Neill [2] who for-
malized a definitional framework, which was later refined and extended by Bel-
lare, Fischlin, O’Neill, and Ristenpart [4], by Boldyreva, Fehr, and O’Neill [5],
and by O’Neill [23]. Bellare et at. [2] presented two constructions in the random
oracle model: The first relies on any semantically-secure public-key encryption
scheme; whereas the second relies on the RSA function (and is in fact length
preserving). Constructions in the standard model (i.e., without random oracles),
were then presented in [4,5]. Bellare et al. [4] presented a construction based
on trapdoor permutations, which is secure as long as the messages are (almost)
uniformly distributed. Boldyreva et al. [5] presented a construction based on
lossy trapdoor functions, which is secure as long as its n-bit messages have min-
entropy at least nε for some constant 0 < ε < 1. These constructions, however,
fall short in two interesting cases: In the multi-message setting, where arbitrarily
related messages are encrypted under the same public key; and in the multi-
user setting where the same message is encrypted under several (independently
chosen) public keys. Recently, O’Neill [23] made a step towards addressing the
former, by presenting a scheme that can securely encrypt any fixed number q
of messages, but whose parameters depend polynomially on q. The latter case
remained unexplored until this work.

Deterministic public-key encryption was used by Bellare et al. [3] who defined
and constructed “hedged” public-key encryption schemes. These are schemes
that are semantically secure in the standard sense, and maintain a meaning-
ful and realistic notion of security even when “corrupt” randomness is used
for the encryption, so long as the joint message-randomness pair has sufficient
min-entropy. The definition of security in the latter case takes after that of de-
terministic public-key encryption.

The tools underlying our constructions in this paper are inspired by the line of
research on “encryption in the presence of auxiliary input”, initiated by Dodis,
Kalai, and Lovett [13] in the context of symmetric-key encryption, and then ex-
tended in [12,8] to public-key encryption.Theseworks consider encryption schemes
where the adversary may obtain a hard-to-invert function of the secret key — ex-
tending the frameworks of “bounded leakage” [1] and “noisy leakage” [22].

548 Z. Brakerski and G. Segev

1.3 Overview of Our Approach

In this section we provide a high-level overview of our approach and techniques.
We begin with a brief description of the notions of security that we consider
in the auxiliary-input setting, and then describe the main ideas underlying our
two constructions. For simplicity, in what follows we consider the case where one
message is encrypted under one public key, and refer the reader to the relevant
sections for the more general case.

Defining security with respect to auxiliary inputs. Towards describing
our notions of security, we first discuss our notion of hard-to-invert auxiliary
inputs. We consider any auxiliary input f(x) from which it is hard to recover
the input x. The source of hardness may be any combination of information-
theoretic hardness (where the function f is many-to-one), and computational
hardness (where f(x) fully determines x, but x is hard to recover by efficient
algorithms). Informally, we say that a function f is ε-hard-to-invert with respect
to a distribution D, if for every efficient algorithm A it holds that A(f(x)) = x
with probability at most ε, over the choice of x ← D and the internal coin tosses
of A.

As discussed in Section 1.1, we formalize three notions of security with respect
to auxiliary inputs, and prove that all three are equivalent. For concreteness we
focus here on the simulation-based definition, which captures the intuitive mean-
ing of semantic security: Whatever can be computed efficiently given a public key,
an encryption of a message, and hard-to-invert auxiliary input, can be computed
efficiently given only the public key and the auxiliary input. A bit more formally,
we say that a scheme is secure with respect to ε-hard-to-invert auxiliary in-
puts if for any probabilistic polynomial-time adversary A, and for any efficiently
samplable plaintext distribution M, there exists a probabilistic polynomial-time
simulator S, such that for any efficiently computable function f that is ε-hard-to-
invert with respect to M, and for any function g ∈ {0, 1}∗ → {0, 1}∗, the prob-
abilities of the events A (pk, Encpk(m), f(m)) = g(m) and S (pk, f(m)) = g(m)
are negligibly close, where m ← M. We note that the functions f and g may
be arbitrary related5. This is a generalization of the definitions considered in
[2,4,5,23].

The scheme of Boldyreva et al. [5]. Our starting point is the scheme of
Boldyreva et al. [5] that is based on lossy trapdoor functions. This is in fact the
only known construction in the standard model (i.e., without random oracles)
that is secure for arbitrary plaintext distributions with high (but not nearly
full) min-entropy. In their construction, the public key consists of a function
h that is sampled from the injective mode of the collection of lossy trapdoor
functions, and a pair-wise independent permutation π. The secret key consists
of the trapdoor for inverting h (we assume that π is efficiently invertible). The
encryption of a message m is defined as Encpk(m) = h(π(m)), and decryption is
naturally defined.
5 In fact, the “target” function g is allowed to take as input also the randomness that

is used for sampling m, and any other public randomness – see Section 3.

Better Security for Deterministic Public-Key Encryption 549

In a high level, the proof of security in [5] considers the joint distribution of the
public key and the ciphertext (pk, Encpk(m)), and argues that it is computation-
ally indistinguishable from a distribution that is independent of the plaintext
m. This is done by considering a distribution of malformed public keys, that
is computationally indistinguishable from the real distribution. Specifically, the
injective function h is replaced with a lossy function h̃ to obtain an indistinguish-
able public key p̃k. The next step is to show that the ciphertext c̃ = Enc

p̃k
(m)

can be described by the following two-step process. First, an analogue of a strong
extractor is applied to m (where the seed is the permutation π that lies in p̃k) to
obtain v = ext

p̃k
(m). Then, the output of the extractor is used to compute the

ciphertext c̃ = g(p̃k, v). From this point of view, it is evident that so long as the
plaintext m is drawn from a distribution with high min-entropy, it holds that
v = ext

p̃k
(m) is statistically close to a uniform distribution (over some domain).

This holds even given the malformed public key, and does not depend on the
distribution of m. This methodology of using an analog of a strong extractor
relies on the crooked leftover hash lemma of Dodis and Smith [14], that enables
to base the construction on any collection of lossy trapdoor functions.

Our constructions. In our setting, we wish to adapt this methodology to rely
on computational hardness instead of min-entropy. However, there is currently no
known analog of the crooked leftover hash lemma in the computational setting.
This is an interesting open problem. We overcome this difficulty by relying of
specific collections of lossy trapdoor functions, for which we are in fact able to
extract pseudorandomness from computational hardness. We do this by replacing
the strong extractor component with a hard-core function of the message (with
respect to the auxiliary input). Specifically, our encryption algorithm (when
using the malformed public key) can be interpreted as taking an inner product
between our message m (viewed as a vector of bits) and a random vector a,
where the resulting ciphertext depends only on (a, 〈m, a〉). This is similar to
the Goldreich-Levin hard-core predicate [18], except that the vector a is not
binary and the inner product is performed over some large Z-module and not
over the binary field. We thus require the generalized Goldreich-Levin theorem of
Dodis et al. [12] to obtain that even given the auxiliary input, the distributions
(a, 〈m, a〉) and (a, u) are computationally indistinguishable, where u is uniformly
distributed and does not depend on the distribution of m.

To be more concrete, let us consider our DDH-based scheme (formally pre-
sented in Section 4) which is based on the lossy trapdoor functions of Freeman
et al. [15]. The scheme is instantiated by a DDH-hard group G of prime order q
that is generated by g. The message space is {0, 1}n (where n is polynomial in
the security parameter) and the public key is gA, for a random n × n matrix A
over Zq. Encryption is done by computing EncgA(m) = gA·m and decryption is
performed using sk = A−1.6

6 We overload the notation gx to matrices as follows: for X ∈ Zk×n
q , we let gX ∈ Gk×n

denote the matrix defined as (gX)i,j = g(X)i,j .

550 Z. Brakerski and G. Segev

For analyzing the security of the scheme, we consider the joint distribu-
tion of the public key, ciphertext and auxiliary input (pk, Encpk(m), f(m)) =
(gA, gA·m, f(m)). The malformed distribution p̃k is obtained by taking A to be
a random rank-1 matrix (rather than completely random). DDH implies that pk

and p̃k are computationally indistinguishabile. Such a low-rank matrix takes the
form A = r · bT , and therefore A · m = r · bT · m, for random vectors r and b.
Thus, our ciphertext depends only on (b, 〈b,m〉) which is indistinguishable from
(b, u), for a uniformly random u, even given f(m), by the generalized Goldreich-
Levin theorem [12]. Our initial distribution is therefore indistinguishable from
the distribution (gr·bT

, gr·u, f(m)) as required.
In the multi-user setting, we observe that any polynomial number of public

keys gA1 , . . . , gA� are computationally indistinguishable, by DDH, from having
joint rank-1. Namely, in this case the distributions (gA1 , . . . , gA�) and (gr1·bT

,

. . . , gr�·bT

) are computationally indistinguishable, where the same vector b is
used for all keys. Encrypting a message m under all such � public keys results
in a set of ciphertexts (gr1·bT ·m, . . . , gr�·bT ·m), where all elements depend on
(b, 〈b,m〉). This enables to apply the above approach, and we show that it in
fact extends to linearly-related messages.

Our second scheme (based on subgroup indistinguishability assumptions) is
analyzed quite similarly. We rely on the lossy trapdoor functions of [21] and can
again show that our public key distribution is indistinguishable from one over
rank-1 matrices. However, the groups under consideration might be non-cyclic.
This adds additional complications into the analysis. In addition, this scheme
does not seem to allow a “joint rank” argument as above, and we leave it as an
open problem to construct an analogous scheme that is secure in the multi-user
setting.

Paper organization. The remainder of this paper is organized as follows. In
Section 2 we formalize a general notion for hard-to-invert auxiliary inputs. In
Section 3 we introduce a framework for modeling the security of deterministic
public-key encryption schemes with respect to auxiliary inputs, consisting of
three main notions of security. In Section 4 we present a construction based
on the decisional Diffie-Hellman assumption (and, more generally, on any of
the d-linear assumptions), and in Section 5 we present a construction based on
subgroup indistinguishability assumptions.

Due to space limitations, not all results and proofs appear in this extended
abstract. We refer the reader to the full version of this paper [9] for more
details.

Notation. Throughout the paper we denote scalars in plain lowercase letters
(x ∈ {0, 1}). We use the term “vector” both in the algebraic sense, where it
indicates an element in a vector space and denoted by bold lowercase letters (x ∈
{0, 1}k); and in the “combinatorial” sense, indicating an ordered set of elements
(not necessarily having any algebraic properties) for which we use the notation
�x. We denote a combinatorial vector whose elements are algebraic vectors by �x,
combinatorial vector of combinatorial vectors by ��x, and combinatorial vector of

Better Security for Deterministic Public-Key Encryption 551

combinatorial vectors of algebraic vectors by ��x. Matrices (always algebraic) are
denoted in bold uppercase (X ∈ {0, 1}k×n). The k×k identity matrix is denoted
Ik. All vectors are column vectors by default, and a row vector is denoted by xT .

2 Hard-to-Invert Auxiliary Inputs

In this work we consider any auxiliary input f(x) from which it is hard to recover
the input x. The source of hardness may be any combination of information-
theoretic hardness (where the function f is many-to-one) and computational
hardness (where f(x) fully determines x, but x is hard to recover by efficient
algorithms). Informally, we say that a function f is ε-hard-to-invert with respect
to a distribution D, if for every efficient algorithm A it holds that A(f(x)) = x
with probability at most ε over the choice of x ← D and the internal coin tosses
of A.

For our purposes, we formalize a slightly more general notion in which D is a
distribution over vectors of inputs �x = (x1, . . . , xt), and for every i ∈ {1, . . . , t}
it should be hard to efficiently recover xi when given f(�x). In addition, we also
consider a blockwise variant of this notion, in which it should be hard to efficiently
recover xi when given (x1, . . . , xi−1, f(�x)).

Definition 2.1. An efficiently computable function F = {fk}k∈N is ε(k)-hard-
to-invert with respect to an efficiently samplable distribution D = {Dk}k∈N over
vectors of t(k) inputs, if for every probabilistic polynomial-time algorithm A and
for every i ∈ {1, . . . , t(k)} it holds that

Pr
[
A
(
1k, fk(�x)

)
= xi

] ≤ ε(k) ,

for all sufficiently large k, where the probability is taken over the choice of �x =
(x1, . . . , xt(k)) ← Dk, and over the internal coin tosses of A.

Definition 2.2. An efficiently computable function F = {fk}k∈N is ε(k)-block-
wise-hard-to-invert with respect to an efficiently samplable distribution D =
{Dk}k∈N over vectors of t(k) inputs, if for every probabilistic polynomial-time
algorithm A and for every i ∈ {1, . . . , t(k)} it holds that

Pr
[
A
(
1k, x1, . . . , xi−1, fk(�x)

)
= xi

] ≤ ε(k) ,

for all sufficiently large k, where the probability is taken over the choice of �x =
(x1, . . . , xt(k)) ← Dk, and over the internal coin tosses of A.

Note that Definition 2.1 implies in particular that the distribution D is such
that each xi has min-entropy at least log(1/ε(k)). Furthermore, Definition 2.2
implies that the distribution D is a block source in which each block xi has
(average) min-entropy at least log(1/ε(k)) conditioned on the previous blocks
(x1, . . . , xi−1).

552 Z. Brakerski and G. Segev

3 Modeling Security in the Auxiliary-Input Setting

In this section we present a framework for modeling the security of deterministic
public-key encryption schemes with respect to auxiliary inputs. Our framework
is obtained as a generalization of those considered in [2,4,5] to a setting in which
the encrypted plaintexts may be fully determined by some auxiliary information
that is available to the adversary. Following [2,4,5] we formalize three notions of
security with respect to auxiliary inputs, and prove that all three are equivalent.
The first is a simulation-based semantic security notion (PRIV-SSS), capturing
the intuitive meaning of semantic security: whatever can be computed given
an encryption of a message and auxiliary input, can also be computed given
only the auxiliary input. The second is a comparison-based semantic-security
notion (PRIV-CSS), which essentially serves as an intermediate notion towards
an indistinguishability-based one (PRIV-IND) that is somewhat easier to handle
in proofs of security.

In the remainder of this paper we use the following notation. For a deter-
ministic public-key encryption scheme Π = (KeyGen, Enc, Dec), a public key pk,
and a vector of messages �m = (m1, . . . , mt) we denote by �Encpk(�m) the vector
(Encpk(m1), . . . , Encpk(mt)). When considering a distribution M over vectors of
messages �m = (m1, . . . , mt) all of which are encrypted under the same public
key, then for the case of hard-to-invert auxiliary inputs we make in this paper
the simplifying assumption that mi �= mj for every i �= j (a bit more formally,
one should require that all distributions have identical equality patterns – see
[2]). In the case of blockwise-hard-to-invert auxiliary inputs this assumption is
not necessary. In addition, for simplicity we present our definitions for the case
of hard-to-invert auxiliary inputs, and note that they naturally extend to the
case of blockwise-hard-to-invert auxiliary inputs.

Definition 3.1 (Simulation-based security). A deterministic public-key en-
cryption scheme Π = (KeyGen, Enc, Dec) is PRIV-SSS-secure with respect to ε-
hard-to-invert auxiliary inputs if for any probabilistic polynomial-time algorithm
A and for any efficiently samplable distribution M = {Mk}k∈N, there exists
a probabilistic polynomial-time algorithm S, such that for any efficiently com-
putable function F = {fk}k∈N that is ε-hard-to-invert with respect to M, and for
any function g ∈ {0, 1}∗ → {0, 1}∗, there exists a negligible function ν(k) such
that

AdvPRIV−SSS
Π,A,M,S,F ,g(k) def=

∣∣∣RealPRIV−SSS
Π,A,M,F ,g(k) − IdealPRIV−SSS

Π,S,M,F ,g(k)
∣∣∣ ≤ ν(k)

for all sufficiently large k, where

RealPRIV−SSS
Π,A,M,F ,g(k) = Pr

[
A
(
1k, pk, �Encpk(�m), fk(�m)

)
= g(�m)

]
IdealPRIV−SSS

Π,S,M,F ,g(k) = Pr
[
S
(
1k, pk, fk(�m)

)
= g(�m)

]
,

and the probability is taken over the choices of �m ← Mk, (sk, pk) ← KeyGen(1k),
and over the internal coin tosses of A and S.

Better Security for Deterministic Public-Key Encryption 553

Definition 3.2 (Comparison-based security). A deterministic public-key
encryption scheme Π = (KeyGen, Enc, Dec) is PRIV-CSS-secure with respect
to ε-hard-to-invert auxiliary inputs if for any probabilistic polynomial-time al-
gorithm A, for any efficiently samplable distribution M = {Mk}k∈N, for any
efficiently computable function F = {fk}k∈N that is ε-hard-to-invert with re-
spect to M, and for any function g ∈ {0, 1}∗ → {0, 1}∗, there exists a negligible
function ν(k) such that

AdvPRIV−CSS
Π,A,M,F ,g(k) def=

∣∣∣AdvPRIV−CSS
Π,A,M,F ,g(k, 0) − AdvPRIV−CSS

Π,A,M,F ,g(k, 1)
∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−CSS
Π,A,M,F ,g(k, b) = Pr

[
A
(
1k, pk, �Encpk(�mb), fk(�m0)

)
= g(�m0)

]
,

and the probability is taken over the choices of �m0 ← Mk, �m1 ← Mk, (sk, pk) ←
KeyGen(1k), and over the internal coin tosses of A.

Definition 3.3 (Indistinguishability-based security). A deterministic pub-
lic-key encryption scheme Π = (KeyGen, Enc, Dec) is PRIV-IND-secure with re-
spect to ε-hard-to-invert auxiliary inputs if for any probabilistic polynomial-time
algorithm A, for any two efficiently samplable distributions M0 = {M0,k}k∈N

and M1 = {M1,k}k∈N
, and for any efficiently computable function F = {fk}k∈N

that is ε-hard-to-invert with respect to both M0 and M1, there exists a negligible
function ν(k) such that

AdvPRIV−IND
Π,A,M0,M1,F (k) def=

∣∣∣AdvPRIV−IND
Π,A,M0,M1,F(k, 0) − AdvPRIV−IND

Π,A,M0,M1,F(k, 1)
∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−IND
Π,A,M0,M1,F(k, b) = Pr

[
A
(
1k, pk, �Encpk(�mb), fk(�m0)

)
= 1

]
,

and the probability is taken over the choices of �m0 ← M0,k, �m1 ← M1,k,
(sk, pk) ← KeyGen(1k), and over the internal coin tosses of A.

The hard-to-invert requirement. We emphasize that in the setting of de-
terministic public-key encryption the requirement that the encrypted messages
cannot be efficiently recovered from the auxiliary input is essential (unlike in the
setting of randomized encryption, where the notion of semantic security takes
into account any auxiliary input – see, for example, [17, Ch. 5]). This is easily
observed using our indistinguishability-based formulation (Definition 3.3): an al-
gorithm that on input fk(�m0) (where �m0 = (m0,1, . . . , m0,t(k))) can recover one
of the m0,i values can then encrypt this value under pk, compare the resulting
ciphertext with the i-th component of �Encpk(�mb), and thus learn the bit b.

Relation to previous notions. We note that any constant function is ε-
hard-to-invert with respect to any message distribution of min-entropy at least

554 Z. Brakerski and G. Segev

log(1/ε). Thus, our notion of auxiliary-input security strictly generalizes previ-
ous security notions, in which auxiliary input is not considered, and the message
distributions need to have sufficient min-entropy [2,4,5,23].

Access to the public key. As observed by Bellare et al. [2] it is essential
that the “target” function g does not take the public key as input. Specifically,
with a deterministic encryption algorithm the ciphertext itself is a non-trivial
information that it leaked about the plaintext, and can clearly be computed
efficiently using the public key. We refer the reader to [2] for a more elaborated
discussion.

The randomness of sampling. For our notions of security we in fact allow the
auxiliary-input function f and the “target” function g to take as input not only
the vector of message �m, but also the random string r ∈ {0, 1}∗ that was used for
sampling �m from the distribution Dk. When this aspect plays a significant role
we explicitly include r as part of the input for f and g, and denote by �m ← Dk(r)
the fact that �m is sampled using the random string r. When this aspect does
not play a significant role we omit it for ease of readability (in particular, we
omitted it from the above definitions).

PRIV1: focusing on a single message. As in [5] we also consider the PRIV1-
variants of our notion of security that focus on a single message (instead of
vectors of any polynomial number of messages). In the full version [9] we also
provide proof that security for a vector of messages with respect to a blockwise-
hard-to-invert auxiliary input is in fact equivalent to security for a single message
with respect to a hard-to-invert auxiliary input.

The multi-user setting. So far our notions of security considered vectors of
messages that are encrypted under the same public key. Our definitions in this
section naturally generalize to the multi-user setting, where there are multiple
public keys, each of which is used for encrypting a vector of messages. Due to
space limitations, we refer the reader to the full version [9] for this generalization.

An even stronger notion of security. Note that in Definition 3.3 the al-
gorithm A is given as input the vector

(
1k, pk, �Encpk(�mb), fk(�m0)

)
, and that a

seemingly stronger definition would even consider the vector(
1k, pk, �Encpk(�mb), �Encpk(�m1−b), fk(�m0), fk(�m1)

)
as its input. As indicated by the equivalence of our three definitions, such a
stronger variant is not needed for capturing the intuitive meaning of semantic
security as in Definition 3.1. Nevertheless, our schemes in this paper in fact
satisfy this stronger variant. We refer to this notion as strong indistinguishability
(PRIV-sIND), formally defined as follows:

Definition 3.4. A deterministic public-key encryption scheme Π = (KeyGen,
Enc, Dec) is PRIV-sIND-secure with respect to ε-hard-to-invert auxiliary inputs

Better Security for Deterministic Public-Key Encryption 555

if for any probabilistic polynomial-time algorithm A, for any two efficiently sam-
plable distributions M0 = {M0,k}k∈N

and M1 = {M1,k}k∈N
, and for any effi-

ciently computable function F = {fk}k∈N that is ε-hard-to-invert with respect to
both M0 and M1, there exists a negligible function ν(k) such that

AdvPRIV−sIND
Π,A,M0,M1,F (k) def=

∣∣∣AdvPRIV−sIND
Π,A,M0,M1,F(k, 0) − AdvPRIV−sIND

Π,A,M0,M1,F(k, 1)
∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−sIND
Π,A,M0,M1,F(k, b)

= Pr
[
A
(
1k, pk, �Encpk(�mb), �Encpk(�m1−b), fk(�m0), fk(�m1)

)
= 1

]
,

and the probability is taken over the choices of �m0 ← M0,k, �m1 ← M1,k,
(sk, pk) ← KeyGen(1k), and over the internal coin tosses of A.

4 A Scheme Based on the d-Linear Assumption

In this section we present our d-linear-based based deterministic encryption
scheme and discuss its properties. We show that the d-linear-based lossy trapdoor
function of Freeman et al. [15] is in fact a deterministic public-key encryption
that is secure with respect to hard-to-invert auxiliary inputs.

The scheme ΠLin. Let GroupGen be a probabilistic polynomial-time algorithm
that takes as input a security parameter 1k, and outputs a triplet (G, q, g) where
G is a group of prime order q that is generated by g ∈ G, and q is a k-bit prime
number. For describing the scheme we overload the notation gx to matrices: for
X ∈ Mk×n, we let gX ∈ Gk×n denote the matrix defined as (gX)i,j = g(X)i,j .
The scheme is parameterized by the security parameter k and the message length
n = n(k).

– Key generation. The key-generation algorithm KeyGen(1k) samples (G, q,
g)←GroupGen(1k), and a matrix A ← Zn×n

q . It then outputs pk = (G, q, g,

gA) and sk = A−1 (note that A is invertible with all but a negligible prob-
ability).

– Encryption. The encryption algorithm Encpk(m), where m ∈ {0, 1}n ⊆ Zn
q ,

outputs the ciphertext gc = gA·m.
– Decryption. The decryption algorithm Decsk(gc), where gc ∈ Gn, first

computes gm = gA−1·c. Then, note that if m ∈ {0, 1}n then it can be
efficiently extracted from gm. In such case it outputs m, and otherwise it
outputs ⊥.

Correctness follows immediately as in [15]. We prove the following theorem:

Theorem 4.1. Let d ∈ N be some integer. Then under the d-linear assumption,
for any constant 0 < μ < 1 and for any sufficiently large message length n =
n(k), the scheme ΠLin is PRIV-IND-secure with respect to 2−nμ

-blockwise-hard-
to-invert auxiliary inputs.

556 Z. Brakerski and G. Segev

Due to space limitations, we only describe the main ideas underlying the se-
curity of the scheme. The full proof can be found in the full version [9]. For
simplicity, we focus here on the case d = 1 (i.e., we rely on the DDH assump-
tion). Given a distribution M over messages m ∈ {0, 1}n, and an auxiliary-
input function f that is sub-exponentially hard to invert with respect to M,
we argue that an encryption of a messages m sampled from the distribution M
is computationally indistinguishable from being completely independent of the
public key pk and the auxiliary input f(m). More specifically, we prove that
(pk, Encpk(m), f(m))

c≈ (pk, gu, f(m)), for a uniformly chosen vector u. Trans-
forming this into either one of our notions of security from Section 3 is rather
standard.

Consider the joint distribution (pk, Encpk(m), f(m)) = (gA, gA·m, f(m)) of
the public key, the ciphertext, and the auxiliary input. The DDH assumption
implies that replacing the uniformly chosen matrix A with a random matrix of
rank 1 results in a computationally indistinguishable distribution. Such a low-
rank matrix can be written as A = r · bT , for random vectors r and b, and
therefore A ·m = r · bT ·m. However bT ·m = 〈b,m〉 is indistinguishable from
the uniform distribution, even given b and f(m), according to the generalized
Goldreich-Levin theorem of [12]. Our initial distribution is thus indistinguishable
from the distribution (gr·bT

, gr·α, f(m)).
Now, notice that the matrix [r · bT ‖r · α] ∈ Zn×(n+1)

q is essentially a ran-
dom matrix of rank 1. Relying on the DDH assumption once again, it can be
replaced with a completely random matrix while preserving computational in-
distinguishability. This yields the distribution (gA, gu, f(m)), where A and u
are chosen uniformly at random.

Homomorphic properties. The scheme naturally exhibits homomorphic prop-
erties w.r.t. multiplication by a scalar or addition of two ciphertexts over Zn

q .
This follows from “arithmetics in the exponent”. We stress, however, that the
output of such homomorphic operations will be decryptable if it lies in the mes-
sage space of our scheme, {0, 1}n, which is a proper subset of the domain Zn

q on
which these operations are performed. More generally, decryption is possible as
long as each entry of the encrypted plaintext vector belongs to a predetermined
set of logarithmic size.

In addition, if the underlying group G is associated with a bilinear map, then
our scheme enjoys an additional homomorphism w.r.t. one matrix multiplication.
This is similar to the homomorphism style achieved in [6] and in [16]. We stress
that in such case we base the security of the scheme on the d-linear assumption
for d ≥ 2 (as the 1-linear, i.e. DDH, cannot hold in such a group). Formally, let
G, q, and g be as in the parameters of our scheme, and let GT be a (different)
group of order q. A bilinear map e : G × G → GT has the following properties.
Bilinearity: for all x, y ∈ G, a, b ∈ Z it holds that e(xa, yb) = e(x, y)ab; Non-
degeneracy: e(g, g) �= 1. It follows that gT

def=e(g, g) generates GT .
Homomorphic matrix multiplication, thus, is performed in our scheme as fol-

lows: Given two ciphertexts gAm1 and gAm2 , one can compute e(g, g)Am1m
T
2 AT

.

Better Security for Deterministic Public-Key Encryption 557

This ciphertext can be decrypted by multiplying by A−1 from the left (in the ex-
ponent) and A−T from the right (again, in the exponent) to obtain e(g, g)m1·mT

2 .
Since m1 and m2 are binary, m1 · mT

2 is binary as well and can be extracted
from the exponent.

The multi-user setting. We now show that ΠLin is secure (with respect to
auxiliary inputs) even in the multi-user setting, where related messages may be
encrypted under multiple public keys. We allow any polynomial number of users,
and for simplicity we assume that each public key encrypts one message. As in
the single-user setting, this natural extends to the case where several messages
are encrypted under each public key with blockwise-hard-to-invert auxiliary in-
put. In addition, we require that the messages to be encrypted come from an
affine distribution, a term we define below. Intuitively, this means that there are
publicly known invertible linear relations (over Zn

q) between the messages.

Definition 4.2 (Affine message distributions). Let n = n(k) and � = �(k)
be integer functions of the security parameter, and let M = {M}k ⊆ ({0, 1}n)� be
a distribution ensemble.7 Then M is affine if there exist invertible and efficiently
computable (given k) matrices V2, . . . ,V� ⊆ Zn×n

q and vectors w2, . . . ,w� ∈ Zn
q ,

such that for all (m1, . . . ,m�) in the support of M and for all i ∈ {2, . . . , �} it
holds that mi = Vi · m1 + wi (where arithmetics is over Zq).

Note that we require that messages are taken over the space {0, 1}n, and arith-
metics is over Zq. In particular, this captures the case of “broadcast encryption”
where encrypting the same message under many public keys. Furthermore, this
also captures XORing with a constant vector over the binary field, or permuting
the coordinates of a binary vector (a tool used, e.g., in [7]). The result is formally
stated below. For proof, see full version [9].

Theorem 4.3. Let d ∈ N be some integer. Then under the d-linear assumption,
for any constant 0 < μ < 1 and for any sufficiently large message length n =
n(k), the scheme ΠLin is PRIV1-IND-MU-secure with respect to 2−nμ

-hard-to-
invert auxiliary inputs.

5 A Scheme Based on Subgroup Indistinguishability
Assumptions

In this section we present our second deterministic encryption scheme, which is
based on a rather general class of subgroup indistinguishability. For concreteness
we first describe the scheme based on the quadratic residuosity assumption, and
then describe the more general case. We show that (a slight generalization of)
the QR-based lossy trapdoor function of Hemenway and Ostrovsky [21] is in
fact a deterministic public-key encryption scheme that is secure against sub-
exponentially hard-to-invert auxiliary inputs.
7 To be absolutely precise should write that Mk is a distributions over (({0, 1}n)t)�

for t = 1, but this space is trivially isomorphic to the one we consider.

558 Z. Brakerski and G. Segev

The scheme ΠQR. Let GroupGen be a probabilistic polynomial-time algorithm
that takes as input a security parameter 1k, and outputs an integer N = PQ,
where P and Q are k-bit prime numbers, and P (mod 4) = Q (mod 4) = 3 (i.e.,
N is a Blum integer). In addition, recall that y←gx denotes an application of an
isomorphism transforming an element x in the module MQRN

into an element y
in the group QRN (since we will never express elements in the module explicitly,
we do not care which isomorphism is used). We let ĝ denote the isomorphism
between the group JN and the corresponding module, such that the generating
set that corresponds to ĝ is the same as that of g, appended with (−1). The
scheme is parameterized by the security parameter k and the message length
n = n(k).

– Key generation. The key-generation algorithm KeyGen(1k) samples N ←
GroupGen(1k), a vector gwT ← QRn

N , and a vector r ← (
[N2]

)n. It then
outputs pk = (N, gwT

, (−1)In · gr·wT

) and sk = r.
The matrix dot product above refers to element-wise multiplication:(

(−1)In · gr·wT
)

i,j
=
(
(−1)In

)
i,j

·
(
gr·wT

)
i,j

.

To be completely explicit, we emphasize that pk ∈ N × J1×N
N × Jn×n

N and
sk ∈ Nn.

– Encryption. The encryption algorithm Encpk(m), where pk = (N, ĝwT

, ĝT)
and m ∈ {0, 1}n, outputs the ciphertext c = (ĝwT ·m, ĝT·m). We note that
this computation can be performed efficiently and that c ∈ JN × Jn

N .
For a legally generated public key pk = (N, gwT

, (−1)In · gr·wT

) and sk = r,
we get c = (gwT ·m, (−1)m · gr·wT ·m).

– Decryption. The decryption algorithm Decsk(c), where c = (ĝv, ĝy), first
computes ĝ(y−r·v). If the output is of the form (−1)m, for m ∈ {0, 1}n, then
it outputs m and otherwise it outputs ⊥.

Correctness follows immediately by definition. Security is stated below. The
proof appears in the full version [9].

Theorem 5.1. Under the quadratic residuosity assumption, for any constant
0 < μ < 1 and for any sufficiently large message length n = n(k), the scheme
ΠQR is PRIV-IND-secure with respect to 2−nμ

-blockwise-hard-to-invert auxiliary
inputs.

Extension to general subgroup indistinguishability. As mentioned above,
this construction can be extended to general subgroup indistinguishability as-
sumptions [8] (these include, in particular, Paillier’s composite residuosity as-
sumption [24]). These assumptions are defined in a setting where GU = GM ×GL

is a product group such that GU and GL are computationally indistinguishable
(there are of course additional requirements, we refer the reader to [8] for de-
tails). Specifically, quadratic residuosity fits into this setting by letting GU = JN ,
GL = QRN , GM = {±1}. To generalize our construction, we let M be the mod-
ule that corresponds to GL and replace (−1) with a generator h of GM . Namely,

Better Security for Deterministic Public-Key Encryption 559

our keys become pk = (gwT

, hIn · gr·wT

) and sk = r; encryption of a message
m ∈ {0, 1}n is done by computing c = (gwT ·m, hm · gr·wT ·m); and decryption of
c = (ĝv, ĝy) is done by computing ĝ(y−r·v) = hm and extracting m. The proof
of security in this case is similar to that of the QR-based scheme.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

9. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
The auxiliary-input setting. Cryptology ePrint Archive, Report 2011/209 (2011)

10. Canetti, R.: Towards realizing random oracles: Hash functions that hide all par-
tial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pp. 136–145 (2001)

12. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

13. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pp. 621–630 (2009)

14. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

560 Z. Brakerski and G. Segev

15. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

16. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522.
Springer, Heidelberg (2010)

17. Goldreich, O.: Foundations of Cryptography – Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

18. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pp. 25–32 (1989)

19. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pp. 553–562 (2005)

20. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

21. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems. Electronic Colloquium on Computational Complexity, Report
TR09-127 (2009)

22. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

23. O’Neill, A.: Deterministic public-key encryption revisited. Cryptology ePrint
Archive, Report 2010/533 (2010)

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

25. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE
Transactions on Information Theory 52(3), 1130–1140 (2006)

26. Zhu, B., Li, K., Patterson, R.H.: Avoiding the disk bottleneck in the data domain
deduplication file system. In: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pp. 269–282 (2008)

The Collision Security of Tandem-DM

in the Ideal Cipher Model

Jooyoung Lee1, Martijn Stam2,�, and John Steinberger3,��

1 Faculty of Mathematics and Statistics, Sejong University, Seoul, Korea
jlee05@sejong.ac.kr

2 Department of Computer Science, University of Bristol, Bristol, United Kingdom
stam@cs.bris.ac.uk

3 Institute of Theoretical Computer Science, Tsinghua University, Beijing, China
jpsteinb@gmail.com

Abstract. We prove that Tandem-DM, which is one of the two “classi-
cal” schemes for turning a blockcipher of 2n-bit key into a double block
length hash function, has birthday-type collision resistance in the ideal
cipher model. A collision resistance analysis for Tandem-DM achieving
a similar birthday-type bound was already proposed by Fleischmann,
Gorski and Lucks at FSE 2009 [3]. As we detail, however, the latter
analysis is wrong, thus leaving the collision resistance of Tandem-DM as
an open problem until now. Our analysis exhibits a novel feature in that
we introduce a trick not used before in ideal cipher proofs.

1 Introduction

The Tandem-DM compression function is a 3n-bit to 2n-bit compression function
based on two applications of a blockcipher of 2n-bit key and n-bit word length
(Fig. 1). While Tandem-DM was proposed by Lai and Massey in 1992 [8] the
first proof of collision security for Tandem-DM (in the ideal cipher model, as is
usual for all such proofs) was only proposed in 2009 by Fleischmann, Gorski and
Lucks [3]. Unfortunately, as we detail in Section 3, the “FGL proof” (as we shall
refer to it) has a number of serious flaws which make it false and nonobvious to
repair. The purpose of this paper is to offer a correct collision resistance analysis
of Tandem-DM. We show that, as claimed in [3], Tandem-DM does indeed have
birthday-type collision security (necessitating at least 2120.8 queries to break
when the output length is 2n = 256 bits). A nice feature of our work is that
the analysis is relatively simple compared to typical results in this area. This
simplicity is afforded by a new trick we introduce, apparently not used before in
ideal cipher analyses.

� Part of the work performed while at LACAL, École Polytechnique Fédérale de Lau-
sanne, Switzerland.

�� Supported in part by the National Basic Research Program of China Grant
2007CB807900, 2007CB807901, the National Natural Science Foundation of China
Grant 61033001, 61061130540, 61073174 and by NSF grant CNS 0904380.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 561–577, 2011.
c© International Association for Cryptologic Research 2011

562 J. Lee, M. Stam, and J. Steinberger

E

E
B

B L

A R

R

S B⊕S

A⊕R

Fig. 1. The Tandem-DM compression function. All wires carry n-bit values. The top
and bottom blockciphers are the same. Each has a 2n-bit key and n-bit input/output.
The wire marked L is an input to the compression function (along with A and B).

Related work on double block length constructions. Another clas-
sical scheme for turning a 2n-bit key blockcipher into a 3n-bit to 2n-bit com-
pression function is Abreast-DM, pictured in Fig. 2, which was proposed by Lai
and Massey in the same paper as Tandem-DM [8]. The collision resistance of
Abreast-DM was independently resolved by Fleischmann, Gorski and Lucks [4]
and Lee and Kwon [9], who both showed birthday-type collision resistance for
Abreast-DM. Before that, Hirose [5] had given a collision resistance analysis for
a general class of compression functions that included Abreast-DM as a special
case, but under the assumption that the top and bottom blockciphers of the
diagram be distinct (this considerably simplifies the analysis). The work by Hi-
rose was further generalized by Özen and Stam [14], who additionally discuss
schemes that are only secure in the iteration.

Another 3n-bit to 2n-bit compression function making two calls to a blockci-
pher of 2n-bit key was proposed by Hirose [6], who proved birthday-type collision
resistance for his construction in the ideal cipher model. Hirose’s construction
(Fig. 3) is simpler than either Abreast-DM or Tandem-DM and in particular uses
a single keying schedule for the top and bottom blockciphers. It is noteworthy
that while Hirose introduced his construction over 10 years after Abreast-DM
and Tandem-DM his collision resistance analysis pre-dates similar collision re-
sistance analyses for Abreast-DM and Tandem-DM.

It is also possible to achieve birthday-type collision resistance for a 3n-bit to
2n-bit compression functions making only a single call to a 2n-bit key block-
cipher [22, 21, 13, 19, 20, 14, 10]; however these constructions have considerable
overhead (typically comparable to a blockcipher call itself).

Comparison. Of the three well-known 3n-bit to 2n-bit compression functions
making two calls to a 2n-bit key blockcipher—those being Tandem-DM, Abreast-
DM and Hirose’s construction—the two constructions whose collision resistance
has been successfully resolved (Hirose and Abreast-DM) share the feature that
the inputs to the top and bottom blockcipher are bijectively related. For exam-
ple, for Abreast-DM, if the top blockcipher call is EB‖L(A) then the bottom
blockcipher call (for the same input A‖B) is EL‖A(B), where B denotes bit
complementation of B; thus the inputs to the top and bottom blockciphers are

The Collision Security of Tandem-DM in the Ideal Cipher Model 563

E

E

Fig. 2. The Abreast-DM compression function. The empty circle at bottom left denotes
bit complementation.

E

Ec

Fig. 3. Hirose’s compression function. The bottom left-hand wire is not an input; it
carries an arbitrary nonzero constant c.

related by the permutation π : {0, 1}3n → {0, 1}3n, π(X‖Y ‖Z) = Y ‖Z‖X . (Here
the last 2n bits are the key.) In Hirose’s construction, the inputs to the top and
bottom blockciphers are related by the permutation π′ : {0, 1}3n → {0, 1}3n,
π′(X‖Y ‖Z) = X ⊕ c‖Y ‖Z.

By contrast, Tandem-DM exhibits a more subtle relationship between the
inputs of the top and bottom blockciphers, as an output of the top blockcipher
is used to key the bottom blockcipher. It is the presence of this “feedback”
within the construction, it seems, that has complicated efforts to prove a collision
resistance bound. On the other hand, Tandem-DM still has the agreeable feature
that the top and bottom blockcipher calls uniquely determine each other in
the following sense: given the key B‖L and output R of the top cipher one
can determine the key L‖R and the input B of the bottom cipher, and vice-
versa. This contrasts with constructions such as MDC-2 which use two calls to
a blockcipher of n-bit key, and in which the top and bottom blockcipher calls
do not uniquely determine each other. Typically, collision resistance analyses
are much harder for the latter kind of compression functions. (MDC-2 can only
be proved nontrivially collision resistant in the iteration, and the current best
bound of O(2

3
5 n) queries due to Steinberger [18] is undoubtedly suboptimal.)

We note that the permutations π and π′ discussed above share the com-
mon feature of having small cycle lengths—all cycles of π have length 6 and
all cycles of π′ have length 2—which constitutes another strong similarity

564 J. Lee, M. Stam, and J. Steinberger

between Abreast-DM and Hirose’s scheme. In fact, due to this reason, Hirose’s
collision resistance proof and the Abreast-DM collision resistance proof can be
seen as special cases of the same framework, as noted in [4, 9]. Building on this
observation, Fleischmann et al. [4] defined a general class of compression func-
tions called ‘Cyclic-DM’ that are amenable to collision resistance analyses and
that include Hirose’s scheme and Abreast-DM as special cases. Similarly, one
can define collision-resistant generalizations of Tandem-DM by isolating those
properties of Tandem-DM that are used in our proof. While defining the most
all-encompassing possible collision resistant generalization of Tandem-DM is not
the goal of our work, we do briefly discuss these key properties and the corre-
sponding collision-resistant generalizations of Tandem-DM in the paper’s full
version [11].

We mention that Fleischmann et al. [2] also provided a comprehensive gen-
eralization of their earlier works [3, 4]. In particular, a new and tighter collision
resistance claim for Tandem-DM is made. Unfortunately, this second analysis
has many similar flaws to the first, which are fatal to the integrity of the argu-
ment and to the final bound (in particular, the crucial “Argument B” of [2] is
incorrect).

Full version contents. The proof of collision resistance that we provide in
this paper is very slick, but slightly mysterious in its efficacy because it relies
on a subtle trick that cuts out a large portion of the case analysis that “would
have been there” in a more standard proof. As a kind of pedagogical bonus, the
full version of this paper [11] contains a second collision resistance proof which
does not utilize this trick. This proof is more straightforward but much longer,
and the bound obtained is slightly worse (but still birthday).

Fleischmann et al. [3] also provide a preimage resistance proof for Tandem-
DM which, unfortunately, suffers from similar flaws as their collision resistance
proof. The full version of this paper [11] contains a description of these flaws,
as well as a corrected preimage analysis. This preimage analysis shows Ω(2n)
queries are necessary to invert Tandem-DM on a random range point. We note,
however, that dramatic progress has recently been made in this area, and it is
now known that Ω(22n) queries are necessary to invert Tandem-DM as well as
Abreast-DM and Hirose’s scheme [7, 12].

Further possible improvements. We note that our collision resistance has
the form Õ(q/(2n−q)) rather than Õ(q2/(2n−q)2). Both bounds reach constant
values when q = Ω(2n), however q2/(2n − q)2 grows slower than q/(2n − q) since
our bound is (only) “linear birthday” rather than true “quadratic birthday”.
We leave it as an open problem to prove “quadratic birthday”-type collision
resistance for Tandem-DM (as exists for Abreast-DM and Hirose’s scheme).

2 Definitions

A blockcipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·)
is a permutation of {0, 1}n for each K ∈ {0, 1}m. We call m the key size and

The Collision Security of Tandem-DM in the Ideal Cipher Model 565

n the word size of the blockcipher. It is customary to write EK(X) instead of
E(K, X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1

K (·) denotes the inverse
of EK(·) (as EK(·) is a permutation).

Given a blockcipher E : {0, 1}2n × {0, 1}n → {0, 1}n we define the Tandem-
DM compression function TDME : {0, 1}3n → {0, 1}2n by

TDME(A‖B‖L) = (A ⊕ R)‖(B ⊕ S)

where
R = EB‖L(A) and S = EL‖R(B).

In the collision resistance experiment, a computationally unbounded adversary
A is given oracle access to a blockcipher E uniformly sampled among all blockci-
phers of key length 2n and word lengthn. We allowA to query both E and E−1. Af-
ter q queries to E, the query history of A is the set of triples Q = {(Xi, Ki, Yi)}q

i=1

such that EKi(Xi) = Yi and A’s i-th query is either EKi(Xi) or E−1
Ki

(Yi) for
1 ≤ i ≤ q. We let Qi = {(Xj , Kj, Yj)}i

j=1 be the first i elements of the query his-
tory; thus Q = Qq. We say A succeeds or finds a collision after its first i queries if
there exist distinct 3n-bit values, A‖B‖L, A′‖B′‖L′ such that TDME(A‖B‖L) =
TDME(A′‖B′‖L′) and such that Qi contains both the queries necessary to com-
pute TDME(A‖B‖L) and TDME(A′‖B′‖L′). More formally—and see Fig. 4—
we define this event by a predicate Coll(Qi), which is true if and only if there exist
n-bit values A, B, L, R, S, A′, B′, L′, R′, S′ such that

A‖B‖L �= A′‖B′‖L′, A ⊕ R = A′ ⊕ R′, B ⊕ S = B′ ⊕ S′ (1)

and such that

(A, B‖L, R), (B, L‖R, S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Qi. (2)

We denote by
Advcoll

TDM (q)

the maximum chance of an adversary making q queries causing Coll(Q) to become
true. The probability occurs over the uniform choice of E and over A’s coin
tosses, if any. Also note that n is a hidden parameter.

The “XOR-output” of a query (Xi, Ki, Yi) is the quantity Xi ⊕ Yi. Another
predicate which plays an important part in both our proof and the FGL proof
is the “many queries with the same XOR-output” predicate Xor(Q), defined on
a query history Q = {(Xi, Ki, Yi)}q

i=1 by

Xor(Q) ⇐⇒ max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}| > α.

Here α is a free parameter of the analysis which appears in the final collision re-
sistance bound. (In [3] this predicate is named Lucky(Q); in [18] a similar pred-
icate is named Win0(Q).) Without going into details at this point, we mention
that the FGL collision resistance proof—and ours, essentially, as well—upper
bounds Pr[Coll(Q)] by Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]. A larger α implies

566 J. Lee, M. Stam, and J. Steinberger

a lower value for Pr[Xor(Q)] and a higher value for Pr[Coll(Q) ∧ ¬Xor(Q)]. The
best value of α can be found numerically for a given value of n and q. Gener-
ally, readers may think of α as some small constant value (e.g. for n = 128 and
q = 2120.87, α = 16).

So far, we have described “infrastructure” that is common to both proofs. We
shall now introduce some material proper to our proof. Note a query history Q =
{(Xi, Ki, Yi)}q

i=1 does not record whether each triple (Xi, Ki, Yi) was obtained
by the adversary through a forward query EKi(Xi) or a backward query E−1

Ki
(Yi).

For this, we maintain two arrays Fwd[·] and Bwd[·] where Fwd[i] = 1 if and only
if the adversary’s i-th query is a forward query and Bwd[i] = 1 if and only if the
adversary’s i-th query is a backward query. We then define an additional predicate

FB(Q) ⇐⇒ max
Z∈{0,1}n

|{i : (Yi = Z ∧ Fwd[i] = 1) ∨ (Xi = Z ∧ Bwd[i] = 1)}| > α.

(3)

(‘FB’ stands for “Forward Backward”.) Here α is the same free parameter as
above. Note that ¬FB(Q) implies that

maxZ∈{0,1}n |{i : Yi = Z ∧ Fwd[i] = 1}| ≤ α, (4)
maxZ∈{0,1}n |{i : Xi = Z ∧ Bwd[i] = 1}| ≤ α. (5)

It is really consequences (4) and (5) of ¬FB(Q) that interest us, though we define
FB(Q) via (3) because this makes it slightly easier to bound Pr[FB(Q)]. We will
use the bound

Pr[Coll(Q)] ≤ Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]
≤ Pr[Xor(Q)] + Pr[FB(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q) ∧ ¬FB(Q)]. (6)

One should thus think of FB(Q) and Xor(Q) as bad events whose nonoccurrence
helps bound the probability of Coll(Q) occurring. We warn that (6) constitutes a
slightly oversimplified encapsulation of our proof’s high-level structure. We refer
to Section 4 for more details.

3 The FGL Collision Resistance Proof

Since the interest of our paper would be substantially diminished (though not
nullified, since our proof is much shorter) if the FGL collision resistance proof
were correct, we detail here some of our objections to [3]. This material also
serves as a good introduction to our own proof, and will give the reader more
intuition about Tandem-DM.

Starting with a q-query collision-finding adversary A, FGL first make the
standard assumption that A never makes a query to which it already knows the
answer (this could occur two ways: A could make the exact same query twice, or
A could query (say) E−1

K (Y) after having received Y as an answer beforehand
to a query EK(X)). This ensures each answer A receives comes uniformly at

The Collision Security of Tandem-DM in the Ideal Cipher Model 567

TL

BL
B

B L

A R

R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 4. The collision diagram for Tandem-DM. The adversary must find blockcipher
queries to fit both sides of the diagram such that A ⊕ R = A′ ⊕ R′, B ⊕ S = B′ ⊕ S′

and A‖B‖L �= A′‖B′‖L′. More precisely, the adversary must find four queries of the
form EB‖L(A) = R, EL‖R(B) = S, EB′‖L′(A′) = R′, EL′‖R′(B′) = S′ such that the
above conditions hold. Each query could either be learned through a forward query (to
E) or through a backward query (to E−1). The four queries in the diagram are labeled
‘TL’, ‘BL’, ‘TR’, ‘BR’ for ‘Top Left’, ‘Bottom Left’, etc.

random from a set of size at least 2n − q (since EK(·) is a random permutation
for each K). Moreover, after A makes i queries its query history will contain
exactly i distinct elements.

Say A succeeds at the i-th query if Coll(Qi) holds but neither Coll(Qi−1) nor
Xor(Qi−1) holds.Byupper bounding the probability thatA ever succeedsweupper
bound Pr[Coll(Q)∧¬Xor(Q)]. (Upper bounding Pr[Xor(Q)] is an easy probability
exercise that we overlook for the purposes of this proof sketch.) A good analogy is
to view A as trying to complete a puzzle where each element of its query history
is a puzzle piece it can use to complete the collision diagram of Fig. 4. We use the
expressions “A succeeds”, “Afinds a [puzzle] solution” or “A completes a collision”
interchangeably (and we will rarely remind that the condition ¬Xor(Qi−1) must
hold for A to succeed). We refer to the four queries (in any hypothetical puzzle
solution (a.k.a. collision)) as ‘TL’, ‘BL’, ‘TR’ and ‘BR’; see Fig. 4.

Note the constraint A‖B‖L �= A′‖B′‖L′ does not imply that the queries TL,
BL, TR, BR are all distinct. For example, one could have TL = BR (in which case
(A, B‖L, R) = (B′, L′‖R′, S′), so A = B′, B = L′, L = R′ and R = S′) or TL =
BL (in which case we have the dramatic consequence that A = B = L = R = S,
as is easy to check). This gives rise to several combinatorially distinct cases
to consider; A’s chance of obtaining a solution of each kind is upper bounded
separately, and these probabilities are added together to form a final upper bound
on A’s chance of success. (Oddly, FGL include the cases TL = TR and BL = BR
in their analysis, while these are impossible since they imply A‖B‖L = A′‖B′‖L′.
This oversight, however, does not imply an incorrect proof in itself.)

We shall restrict our critique to FGL’s analysis of the “generic” case when the
queries TL, BL, TR, BR are all distinct. We note that, in these types of analyses,
the generic case is usually the hardest to handle as A’s job typically grows harder
when additional constraints are placed on its solution. (The possibility of reusing
the same query in two different positions of the collision diagram does, however,
occasionally prove useful to A, depending on the construction, so all cases must
always be considered.) We call a puzzle solution in which TL, BL, TR, BR are
distinct a “generic solution.”

568 J. Lee, M. Stam, and J. Steinberger

IfA succeeds in finding a generic solution there is a smallest i such that a generic
solution can be assembled from the queries in Qi. The i-th query is then called the
“last query” of A’s solution. To upper bound A’s chance of obtaining a generic
solution, FGL consider two cases. The first case is the event that A’s last query
can be used in position TL of the puzzle solution and the second case is the event
that A’s last query can be used in position BL (one of these two cases must occur).
We shall focus on the first of these two cases, which is also the first analyzed in
the order of the FGL proof. We call it the “TL generic” case.

One would typically consider two subcases for the TL generic case (or any
other) depending on whether A’s last query is a forward query to E or an inverse
query to E−1, but FGL lump their analysis into a single argument claiming that
the two types of queries can be handled the same (in fact, they make this claim for
every case in their proof, and never distinguish between forward and backward
queries to E). For clarity, however, we shall restrict ourselves to considering the
case of a forward query to E, and discuss how their argument specializes to that
case. We also choose to specifically consider the forward query case because this
is where FGL’s analysis seems to be the most problematic.

The task at hand is thus to upper bound A’s chance of completing a generic
solution by making a forward query to E that can be used as query TL of such a
solution. The usual approach for this, and the one used by FGL, is to consider any
given forward query EKi(Xi) made by A and to upper bound the probability that
the answer Yi to this query is such that the query history element (Xi, Ki, Yi) can
be used in the desired manner; one then multiplies this probability by q since
A can make q queries total. With foresight on how we wish to use the query
EKi(Xi) it is convenient to rename Ki as B‖L and Xi as A; thus the query is
EB‖L(A). To proceed, one would typically upper bound the number of values
R ∈ {0, 1}n such that, if we had EB‖L(A) = R, the query (A, B‖L, R) could
be used in position TL of a generic solution together with previous elements of
the query history, and divide this number by 2n − q, since the answer to the
query EB‖L(A) will come uniformly at random from a set of size at least 2n − q.
In turn, the standard, formal way of bounding the number of such R’s would
be to upper bound the possible number of query triples (BL, BR, TR) already
in the query history that could potentially be used with the query EB‖L(A) to
form a generic solution, as the number of such triples is an upper bound for
the number of R’s. Note such a triple must have the form BL = (B, L‖R, S),
BR = (B′, L′‖R′, S′), TR = (A′, B′‖L′, R′) where B ⊕ S = B′ ⊕ S′ (and note
that A, B and L are fixed here by the last query).

FGL, however, do not adopt1 this approach for bounding the number of good
R’s. Rather, they make the following argument: take the value of R, whatever
it is, that is returned by the query EB‖L(A); because ¬Xor(Qi−1) there will be

1 Neither do we, in fact. Using a careful trick, we manage to upper bound the number
of good R’s by only considering the possibilities for the query BL rather than by
considering the possible triples (BL, TR, BR). In the full version [11], however,
we give for comparison the “brute force” proof which uses the method of upper
bounding the number of triples (BL, TR, BR).

The Collision Security of Tandem-DM in the Ideal Cipher Model 569

at most α queries TR = (A′, B′‖L′, R′) in the query history such that A ⊕ R =
A′ ⊕ R′; as the TR query uniquely determines the BR query, there are at most
α possibilities for the BR query; now “give the query BL = (B, L‖R, S) for free
to the adversary”; then since there are at most α possibilities for the query BR
= (B′, L′‖R′, S′) there is chance at most α/(2n − q) that B ⊕ S = B′ ⊕ S′ for
one of the queries BR, so total chance at most qα/(2n − q) that the adversary
ever obtains a TL-generic solution with a forward query, there being at most q
queries total.

The fallacy in the above argument can be succinctly summarized by pointing
out that the query BL = (B, L‖R, S) may already be in the query history, in
which case there is no randomness left in the value B⊕S. However, let us review
in detail the argument in two different cases: when the query BL = (B, L‖R, S)
is already in the query history prior to the last query, and when it isn’t. (Note
that query BL only depends on R (besides B and L which are fixed by the last
query), and not on which queries are “chosen” for TR and BR.) In the latter
case, when BL = (B, L‖R, S) is not yet in the query history at the i-th query,
then A’s last query can in any case not succeed in completing a generic TL
collision since the query BL is missing; thus there is no need to bound anything
(and no need even to “give the query BL for free”). In the case when query BL
is already in the query history, on the other hand, all randomness is lost once R
is revealed. FGL successfully argue that, for a given value of R, there will be at
most α possibilities for the pair (TR , BR), but this does not in any way imply
the non-existence of such queries TR, BR.

Note also that nothing in the FGL argument precludes the possibility that,
when the adversary makes its i-th query EB‖L(A), there is not some very large
number of distinct values of R—say 20.5n—for which there exists a triplet of
queries (BL, TR, BR) of the form BL = (B, L‖R, S), BR = (B′, L′‖R′, S′),
TR = (A′, B′‖L′, R′) where B ⊕ S = B′ ⊕ S′, and such that R does not yet
appear as the third coordinate of any query in the query history with key B‖L.
Certainly, there being such a large number of values of R does not contradict
¬Xor(Qi−1). Also certainly, the i-th query would have chance 20.5n/(2n − q) of
making the adversary succeed if such a large number of values of R existed, and
not chance α/(2n − q). In other words, one can infer something is wrong with
the FGL argument because it simply does not address the main difficulty of the
case at hand—that being the potential existence of a large number of triples
(BL, BR, TR) that may fit with the query EB‖L(A).

Other issues are raised by FGL’s casual comment that the query BL =
(B, L‖R, S) is simply “given for free” to the adversary. Indeed, if this query
is not yet present, is it added to the query history before or after the i-th query
itself? Is this query only made after the value of R is revealed, or is it somehow
inserted into the query history before the value of R is revealed? The former
might be all right; the latter not, since it would (drastically) alter R’s distribu-
tion conditioned on the query history, i.e. R would no longer come uniformly
at random from a set of size ≥ 2n − q. Most importantly, since this free query
becomes part of the query history, one should account for the possibility that

570 J. Lee, M. Stam, and J. Steinberger

this query (not the i-th query) causes the adversary to succeed (and not neces-
sarily by being used in position BL of a generic solution). Indeed, we are forced
to give such credit to the adversary, since we have required the adversary never
to make a query to which it already knows the answer, and since the adversary
may have wished to subsequently make this query itself; this means the case
analysis should be applied recursively to the free query, but if the case analysis
requires other queries to be “given for free”, then we bite our tail and end up
giving an astronomical number of free queries to the adversary (e.g., nearly all
possible queries).

While we singled out the TL generic case for examination, the same kinds
of problems recur throughout the FGL case analysis, essentially invalidating the
entire proof. Moreover, since the FGL proof sidesteps the most crucial challenges
posed by an analysis of Tandem-DM (see the paragraph before last), it leaves
little for any subsequent analysis to build on. We note that the FGL preimage
resistance proof suffers from very similar flaws as the collision resistance proof,
as discussed in the full version of this paper [11].

4 Main Result: Collision Resistance of Tandem-DM

It will be easier to explain the form of the probability bound in our main theorem
if we explain a few high-level ideas from the proof beforehand. The proof starts by
considering an arbitrary q-query collision-finding adversary A for Tandem-DM.
We then construct an adversary A′ as follows: A′ simulates A, but after each
forward query EV ‖W (U) made by A, A′ makes the backward query E−1

U‖V (W)
if it does not already know2 the answer to this query, and after each backward
query E−1

U‖V (W) made by A, A′ makes the forward query EV ‖W (U) if it does
not already know3 the answer to this query. (To better understand the relation
of these instructions to Tandem-DM, view U , V , W as B, L, R.) Moreover if
A ever makes a query to which A′ already knows the answer from its query
history, A′ ignores this query. Thus A′ never makes a query to which it knows
the answer.

Let Q′ be the query history of A′ and Q be the query history of A. Then
Q ⊆ Q′ and |Q′| ≤ 2q. Since Q ⊆ Q′ we have

Pr[Coll(Q)]
≤ Pr[Coll(Q′)]
≤ Pr[Xor(Q′)] + Pr[FB(Q′)] + Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. (7)

Our proof uses the inequality above to bound Pr[Coll(Q)]. We point out that if
we construct an adversary A′′ from A′ the same way A′ is constructed from A,
then A′′ and A′ will have the same query history, as is not difficult to see. In
other words, every forward query EV ‖W (U) made by A′ (including its “own”

2 More formally, if its query history does not contain any triple of the form (·, U‖V, W).
3 More formally, if its query history does not contain any triple of the form (U,V ‖W, ·).

The Collision Security of Tandem-DM in the Ideal Cipher Model 571

queries) is followed by the query E−1
U‖V (W) unless A′ already knows this query,

and likewise every backward query E−1
U‖V (W) made by A′ is followed by the

forward query EV ‖W (U) unless A′ already knows the answer to this query. The
use of the augmented adversary A′ may seem superficially similar to Fleischmann
et al.’s idea of “giving away a query for free”. However, it will become clear from
our case analysis that we exploit the added structure of Q′ entirely differently
from the way Fleischmann et al. exploit their free queries. We also point out
that the added structure of Q′ enables the main interesting trick of our analysis,
to be found in case ‘TL Forward’ of Proposition 3 below.

We can now more easily discuss our main result:

Theorem 1. Let N = 2n, q < N/2, N ′ = N − 2q and let α be an integer,
1 ≤ α ≤ 2q. Then

Advcoll
TDM (q) ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ .

The term 2N
(

2eq
αN ′

)α
in Theorem 1 is an upper bound for Pr[Xor(Q′)]+Pr[FB(Q′)].

In fact Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(
2eq
αN ′

)α
. The two remaining

terms 4qα/N ′+4q/N ′ are an upper bound for Pr[Coll(Q′)∧¬Xor(Q′)∧¬FB(Q′)].
To bound Advcoll

TDM (q) for a given value of n and q one should optimize α numer-
ically. For example, for n = 128, Theorem 1 yields that Advcoll

TDM (2120.87) < 1
2

using α = 16. Asymptotically, Theorem 1 yields the following result:

Corollary 1. limn→∞ Advcoll
TDM (N/n) = 0.

Proof. Let q = N/n and α = n/ logn, where the logarithm takes base 2. Since
N ′ > N/2 for n > 4, we have

Advcoll
TDM (q) ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ ≤ 2N

(
4eq

αN

)α

+
8qα

N
+

8q

N

≤ 2N

(
4e logn

n2

) n
log n

+
8

log n
+

8
n

= 2
(

4e logn

n

) n
log n

+
8

log n
+

8
n

.

The last expression obviously goes to zero as n → ∞. ��
In particular, limn→∞ Advcoll

TDM

(
2(1−ε)n

)
= 0 for any fixed ε > 0.

The proof of Theorem 1 uses refinements Coll1(Q), Coll2(Q), Coll3(Q) of the
collision predicate Coll(Q), defined as follows:

Coll1(Q) occurs if Q contains a collision with TL, BL, TR, BR distinct.
Coll2(Q) occurs if Q contains a collision with either TL = BL or TR = BR.
Coll3(Q) occurs if Q contains a collision with either TL = BR or BL = TR.

For example, Coll2(Q) occurs if there exist values A, B, L, R, S, A′, B′, L′, R′, S′

such that (1)–(2) hold and such that (A, B‖L, R) = (B, L‖R, S). Since BL �=
BR and TL �= TR in any collision, we have the following proposition.

572 J. Lee, M. Stam, and J. Steinberger

Proposition 1. Coll(Q) =⇒ Coll1(Q) ∨ Coll2(Q) ∨ Coll3(Q) for any query
history Q.

In view of proving Theorem 1, let A be an arbitrary q-query adversary for
Tandem-DM, and let A′ be obtained from A as outlined above; let Q be the
query history of A and Q′ be the query history of A′. Then by (7) it suffices to
show that

Pr[Xor(Q′)] ≤ N

(
2eq

αN ′

)α

Pr[FB(Q′)] ≤ N

(
2eq

αN ′

)α

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα

N ′ +
4q

N ′

since the sum of the above probabilities is an upper bound for Pr[Coll(Q)]. More-
over, by Proposition 1, Pr[Coll(Q′)∧¬Xor(Q′)∧¬FB(Q′)] can be upper bounded
by finding upper bounds for Pr[Colli(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] for i = 1, 2, 3
and taking the sum of these. We now upper bound these various probabilities in
a series of propositions. For these propositions q, N and α are as in Theorem 1,
and Q′ is the query history of any adversary A′ as just specified. We emphasize
that |Q′| ≤ 2q and that probabilities are taken over the random cipher E and
over the coins of A′, if any (it inherits these from A).

Proposition 2. Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(
2eq
αN ′

)α
.

Proof. Without loss of generality, we can assume that A′ always makes exactly
2q queries. Let Q′ = {(X ′

i, K
′
i, Y

′
i)}2q

i=1 denote the query history of A′. Since

Pr[|{i : X ′
i ⊕ Y ′

i = Z}| > α] ≤
(

2q

α

)(
1

N ′

)α

,

for each Z ∈ {0, 1}n, we have

Pr[Xor(Q′)] ≤ N

(
2q

α

)(
1

N ′

)α

≤ N

(
2q · e

α

)α (1
N ′

)α

≤ N

(
2eq

αN ′

)α

.

Pr[FB(Q′)] can be bounded similarly. ��
Proposition 3. Pr[Coll1(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα/N ′.

Proof. Let

Success1(Q′
i) = Coll1(Q′

i) ∧ ¬Coll1(Q′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)

for i = 1 . . . 2q. Then Pr[Coll1(Q′)∧¬Xor(Q′)∧¬FB(Q′)] ≤ ∑2q
i=1 Pr[Success1(Q′

i)]
and Pr[Success1(Q′

i)] ≤ Pr[Coll1(Q′
i)|¬Coll1(Q′

i−1) ∧ ¬Xor(Q′
i−1) ∧ ¬FB(Q′

i−1)].
Fix a value of i, 1 ≤ i ≤ 2q. We call the i-th query made by A′ the last

query. If Success1(Q′
i) occurs then either the adversary (i.e. A′) can use its last

The Collision Security of Tandem-DM in the Ideal Cipher Model 573

query as query TL or as query BL of a collision in which TL, BL, TR and BR
are distinct, by symmetry. Moreover the last query could either be a forward
query or a backward query. This gives rise to four possible cases, and we bound
Pr[Success1(Q′

i)] for each separately. (We note the very first case, ‘TL forward’,
is the case we discussed in Section 3.) For each case, we call the last query suc-
cessful if this query completes a collision with TL, BL, TR, BR distinct and
where the last query is used in the position stipulated by that case (e.g., for the
case ‘TL forward’, the last query must be used in position TL).

TL forward: Let the last query be EB‖L(A). Call a value R good if there exists a
query of the form (B, L‖R, ·) in Q′ that was obtained by A′ as a backward query.
We note that because of (5), ¬FB(Q′

i−1) implies there are at most α good R’s.
We claim that for the last query to be successful the value R returned as an

answer to the query must be good. Indeed, let R be the value returned; then a
prerequisite for the query to be successful is that there be a query of the form
(B, L‖R, ·) in Q′

i−1. We claim that this query must have been obtained as a
backward query. Indeed, assume that the query (B, L‖R, ·) was obtained as a
forward query EL‖R(B) by A′. Then, by construction, A′ would have imme-
diately followed this query by the query E−1

B‖L(R) unless A′ already knew the
answer to E−1

B‖L(R). Either way, A′ would have the query (A, B‖L, R) in its
query history prior to the i-th (forward) query EB‖L(A), a contradiction since
A′ never makes a query to which it knows the answer. Thus the value R returned
as an answer to the query EB‖L(A) must be good for the query to be successful.

Since there are at most α good values of R and since A′ makes at most 2q
queries, the probability that the last query is successful is therefore at most
α/(2n − 2q) = α/N ′.

TL backward: Let the last query be E−1
B‖L(R). For the last query to be successful,

there must be a (necessarily unique) query BL = (B, L‖R, S) ∈ Q′
i−1, for some

value S ∈ {0, 1}n. From the condition B ⊕ S = B′ ⊕ S′ and from ¬Xor(Q′
i−1)

there are at most α possibilities for the query BR. As each query BR uniquely
determines the query TR, there are at most α possibilities for the query TR as
well, and thus at most α possibilities for the value A′ ⊕ R′. Thus the value A
returned by the last query has chance at most α/N ′ that A ⊕ R will be equal
to A′ ⊕ R′ for one of these values A′ ⊕ R′, and so the last query has chance at
most α/N ′ of being successful.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmet-
ric to the case TL backward. The chance of success in this case is therefore at
most α/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is sym-
metric to the case TL forward. The chance of success in this case is therefore at
most α/N ′.

574 J. Lee, M. Stam, and J. Steinberger

The chance a forward last query is successful is therefore at most 2α/N ′

(adding the TL and BL forward cases) and likewise the chance that a backward
last query is successful is at most 2α/N ′. Thus Pr[Success1(Q′

i)] ≤ 2α/N ′ for all
i and

∑2q
i=1 Pr[Success1(Q′

i)] ≤ 4qα/N ′. ��
Proposition 4. Pr[Coll2(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2q/N ′.

Proof. Note that when TL = BL, B‖L = L‖R, so B = L = R; moreover R = S
and A = B, so A = B = L = R = S. For the adversary to obtain a collision
with TL = BL, therefore, it must obtain a query of the form (U, U‖U, U). The
same argument applies to the case TR = BR. The chance of a query EU‖U (U)
or of a query E−1

U‖U (U) being answered by U is at most4 1/N ′. Thus, since 2q

queries are made total, Pr[Coll2(Q′)] ≤ 2q/N ′. ��
Proposition 5. Pr[Coll3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

Proof. Note that in a collision with TL = BR we must have TL �= BL and
A ⊕ R = B ⊕ S (since B ⊕ S = B′ ⊕ S′ = A ⊕ R, using TL = BR). Say the
event Coll′3(Q′

i) occurs if there exist distinct queries (A, B‖L, R), (B, L‖R, S)
in Q′

i such that A ⊕ R = B ⊕ S. With the same argument applied to the case
BL = TR, we have Coll3(Q′

i) =⇒ Coll′3(Q′
i). Therefore it suffices to show

Pr[Coll′3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.
The analysis now proceeds rather similarly to Proposition 3. Let

Success′3(Q′
i) = Coll′3(Q′

i) ∧ ¬Coll′3(Q′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1).

We have Pr[Coll′3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ ∑2q
i=1 Pr[Success′3(Q′

i)].
Fix a value of i, 1 ≤ i ≤ 2q, and call the i-th query made by A′ the last

query. If Success′3(Q′
i) occurs then either the adversary (i.e. A′) can use its last

query as query TL or as query BL of its Coll′3-solution. This gives rise to four
possible cases given that the last query could be either forward or backward. In
each case, we call the last query successful if Success′3(Q′

i) occurs and if the last
query can be used in the position prescribed by that case (either TL or BL) in
the Coll′3-solution.

TL forward: We can use exactly the same analysis as in the case ‘Forward TL’
of Proposition 3. The probability that the last query is successful is therefore at
most α/N ′.

TL backward: Let E−1
B‖L(R) be the last query. For the last query to be success-

ful, there must be a (necessarily unique) query of the form (B, L‖R, S) ∈ Q′
i−1,

for some S ∈ {0, 1}n. Since the answer A to the last query must be such that
A⊕R = B⊕S (as per the definition of Coll′3) and B⊕S is uniquely determined,
the last query has chance at most 1/N ′ of success.

4 Since for each key there is only one relevant query, the tighter 1/N could be used
as well.

The Collision Security of Tandem-DM in the Ideal Cipher Model 575

BL forward: A 180◦ rotation of the collision diagram shows this case is symmet-
ric to the case TL backward. The chance of success in this case is therefore at
most 1/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is sym-
metric to the case TL forward. The chance of success in this case is therefore at
most α/N ′.

The chance a forward last query is successful is therefore at most (α + 1)/N ′

(adding the TL and BL forward cases) and likewise the chance that a backward
last query is successful is at most (α+1)/N ′. Thus Pr[Success′3(Q′

i)] ≤ (α+1)/N ′

for all i and
∑2q

i=1 Pr[Success1(Q′
i)] ≤ 2qα/N ′ + 2q/N ′. (In fact, we even have

Pr[Coll3(Q′)∧¬FB(Q′)] ≤ 2qα/N ′+2q/N ′ since ¬Xor(Q′) was never used in the
above.) ��
Taking the sum of the bounds of Propositions 3, 4 and 5 one obtains that

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 6qα

N ′ +
4q

N ′ .

However, cases TL forward, BL backward and cases TL forward, BL backward
of Propositions 3 and 5 reference the same events (the adversary is successful
in case TL forward of Proposition 3 if and only if it is successful in case TL
forward of Proposition 5, and likewise for the BL backward cases), which results
in an “overcounting” of the adversary’s probability of success by 2qα/N ′. A more
careful accounting of the adversary’s probability of success thus shows

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα

N ′ +
4q

N ′ . (8)

Here we have not established (8) entirely formally, though this is the bound
we use for Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] in Theorem 1. Establishing (8)
formally would require dividing the event Coll(Q) into a different, less intuitive
set of events than Coll1(Q), Coll2(Q), Coll3(Q), events that are directly based
on those that occur in the case analyses of Propositions 3–5. (For example, one
of these events would be the event that the adversary ever obtains a “good R”
through a forward or backward query, as defined for forward queries in case
TL forward of Proposition 3 and implicitly defined (by symmetry) for backward
queries in case BL backward of Proposition 3; another event would cover the
cases TL backward and BL forward of Proposition 5; and so on.) The current
form of the proof is our best compromise between readability and formality. In
any case, the difference between 4qα/N ′ and 6qα/N ′ is relatively minor.

Summing (8) with the bounds of Proposition 2 and using (7), we obtain

Pr[Coll(Q)] ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ . (9)

Since (9) holds for an arbitrary q-query adversary A, this establishes Theorem 1.

576 J. Lee, M. Stam, and J. Steinberger

5 Conclusion

In this work, we have shown that an earlier work concerning the security of
Tandem-DM was incorrect. However, with a new proof (exploiting new ideas)
we have shown that, in the ideal-cipher model, Tandem-DM is collision resistant
almost up to the birthday bound and (provably) preimage resistant essentially
up to the birthday bound (leaving considerable room for improvement for the
latter).

On a high level, our proof of collision resistance adheres to a (by now) standard
framework. We first modify the collision-finding adversary by giving it several
“free” queries and subsequently we bound the modified adversary’s chance of
success using a case analysis. This approach allows to easily bound both the
number of free queries and the probability of a query (free or not) causing a
collision.

In contrast, the FGL proof directly uses a case analysis and subsequently
uses free queries within the case analysis. This ad hoc addition of free queries
(and its binding to a particular case) is problematic, as it does not allow proper
accounting of the free queries. In particular, if a free query is fresh it might cause
a collision (or other bad event) elsewhere whereas if the free query has actually
been asked before, no new randomness can be extracted from it.

Thus, apart from having established the security of Tandem-DM, we hope
that our work also serves as a useful reminder to some of the subtleties involved
in ICM proofs and as a guideline on how to avoid certain pitfalls.

References

1. Dodis, Y., Steinberger, J.: Message Authentication Codes from Unpredictable
Block Ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–
285. Springer, Heidelberg (2009), Full version available at
http://people.csail.mit.edu/dodis/ps/tight-mac.ps

2. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Collision resistant double-length
hashing. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp.
102–118. Springer, Heidelberg (2010)

3. Fleischmann, E., Gorski, M., Lucks, S.: On the security of tandem-DM. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 84–103. Springer, Heidelberg (2009)

4. Fleischmann, E., Gorski, M., Lucks, S.: Security of Cyclic Double Block Length
Hash Functions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 153–175. Springer, Heidelberg (2009)

5. Hirose, S.: Provably secure double-block-length hash functions in a black-box
model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

6. Hirose, S.: Some plausible constructions of double-block-length hash functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

7. Krause, M., Armknecht, F., Fleischmann, E.: Preimage resistance beyond the birth-
day bound: double-length hashing revisited. Preprint,
http://eprint.iacr.org/2010/519

http://people.csail.mit.edu/dodis/ps/tight-mac.ps
http://eprint.iacr.org/2010/519

The Collision Security of Tandem-DM in the Ideal Cipher Model 577

8. Lai, X., Massey, J.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

9. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. IEICE
Transactions 94-A(1), 104–109 (2011), http://eprint.iacr.org/2009/225.pdf

10. Lee, J., Steinberger, J.: Multi-property-preserving Domain Extension Using
Polynomial-Based Modes of Operation. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 573–596. Springer, Heidelberg (2010)

11. Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the
ideal-cipher model. Full version of this paper, http://eprint.iacr.org/2010/409

12. Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length
compression functions. Preprint, http://eprint.iacr.org/2011/210

13. Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Sym-
metric Cryptography. Dagstuhl Seminar Proceedings, 07021 (2007)

14. Özen, O., Stam, M.: Another Glance at Double-Length Hashing. In: Parker, M.G.
(ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer,
Heidelberg (2009)

15. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004)

16. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-
key blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–
450. Springer, Heidelberg (2008)

17. Shrimpton, T., Stam, M.: Building a collision-resistant compression function
from non-compressing primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)

18. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

19. Stam, M.: Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compres-
sion Functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008)

20. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

21. Wagner, D.: Cryptanalysis of the Yi-Lam Hash. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 483–488. Springer, Heidelberg (2000)

22. Yi, X., Lam, K.-Y.: A new hash function based on block cipher. In: Mu, Y.,
Pieprzyk, J.P., Varadharajan, V. (eds.) ACISP 1997. LNCS, vol. 1270, pp. 139–146.
Springer, Heidelberg (1997)

http://eprint.iacr.org/2009/225.pdf
http://eprint.iacr.org/2010/409
http://eprint.iacr.org/2011/210

Order-Preserving Encryption Revisited:

Improved Security Analysis
and Alternative Solutions

Alexandra Boldyreva1, Nathan Chenette1, and Adam O’Neill2,�

1 Georgia Institute of Technology
{sasha,nchenette}@gatech.edu
2 University of Texas at Austin

adamo@cs.utexas.edu

Abstract. We further the study of order-preserving symmetric encryp-
tion (OPE), a primitive for allowing efficient range queries on encrypted
data, recently initiated (from a cryptographic perspective) by Boldyreva
et al. (Eurocrypt ’09). First, we address the open problem of character-
izing what encryption via a random order-preserving function (ROPF)
leaks about underlying data (ROPF being the “ideal object” in the secu-
rity definition, POPF, satisfied by their scheme.) In particular, we show
that, for a database of randomly distributed plaintexts and appropriate
choice of parameters, ROPF encryption leaks neither the precise value
of any plaintext nor the precise distance between any two of them. The
analysis here is quite technically non-trivial and introduces useful new
techniques. On the other hand, we also show that ROPF encryption does
leak both the value of any plaintext as well as the distance between any
two plaintexts to within a range of possibilities roughly the square root
of the domain size. We then study schemes that are not order-preserving,
but which nevertheless allow efficient range queries and achieve security
notions stronger than POPF. In a setting where the entire database is
known in advance of key-generation (considered in several prior works),
we show that recent constructions of “monotone minimal perfect hash
functions” allow to efficiently achieve (an adaptation of) the notion of
IND-O(rdered) CPA also considered by Boldyreva et al., which asks that
only the order relations among the plaintexts is leaked. Finally, we intro-
duce modular order-preserving encryption (MOPE), in which the scheme
of Boldyreva et al. is prepended with a shift cipher. MOPE improves the
security of OPE in a sense, as it does not leak any information about
plaintext location. We clarify that our work should not be interpreted
as saying the original scheme of Boldyreva et al., or the variants that
we introduce, are “secure” or “insecure.” Rather, the goal of this line
of research is to help practitioners decide whether the options provide a
suitable security-functionality tradeoff for a given application.

Keywords: Searchable encryption, symmetric encryption, hypergeomet-
ric distribution, range queries.

� Part of the work done while at the Georgia Institute of Technology.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 578–595, 2011.
c© International Association for Cryptologic Research 2011

Order-Preserving Encryption Revisited 579

1 Introduction

Background and Motivation. An order-preserving symmetric encryption (or
OPE) scheme is a deterministic symmetric encryption scheme whose encryption
algorithm produces ciphertexts that preserve numerical ordering of the plain-
texts. OPE was proposed in the database community by Agrawal et al. [1] in 2004
as a tool to support efficient range queries on encrypted data. (When encryption
is done using an OPE scheme, a range query simply consists of the encryptions
of the two end-points.) However, the first formal cryptographic treatment of
OPE did not appear until recently, in the paper by Boldyreva et al. [8]. The
authors formalized a security requirement for OPE and proposed an efficient
blockcipher-based scheme provably meeting their security definition.

Yet despite having an OPE scheme that provably satisfies their security no-
tion, the authors warn against its practical use before further studies of its
security are performed. To explain this, consider the security notion (or “ideal
object”) from [8], called a pseudorandom order-preserving function (POPF).

Informally, the POPF notion calls an OPE scheme secure if oracle access to its
encryption algorithm is indistinguishable from that to a random order-preserving
function (ROPF), i.e., a random element of the set of all strictly-increasing func-
tions on the same domain and range. This is a rather straight-forward adaptation
of the classical notion of pseudorandom function (PRF)—which asks that oracle
access to a function be indistinguishable from that to a truly random function on
the same domain and range—to the order-preserving context, and it captures
some intuition of what should be the “best possible” OPE scheme. However,
the POPF definition is somewhat deceiving and confusing in terms of giving an
idea of what kind of security it describes. A random function’s behavior is well
understood: on a new input the output is a random point in the range. Hence,
an adversary seeing a function value learns absolutely no information about the
pre-image, unless the former happens to coincide with one it has previously seen.
But the situation with a random OPF is much harder to describe. It is clear that
a random OPF cannot provide such strong security, but what exactly is leaked
about the data and what is protected? The distribution of ciphertexts is known
and it is not immediately clear if encryption is even one-way.

Despite its authors’ warning of lingering unanswered questions, the OPE
scheme from [8] immediately received attention from the applied community
[21,20,18,17,14]. We agree that a secure OPE is better than no encryption at all
and understand why the idea of its implementation may sound appealing. But
practical use without a clear security understanding can be very dangerous and
thus it is very important to clarify the security questions as soon as possible.

In this work we first address this open problem. We revisit the security of the
“ideal object” ROPF introduced by [8] and provide results that help characterize
what it leaks and what it protects about the underlying data. We then observe
that it may be possible to achieve stronger security notions than POPF using
schemes that fall outside the OPE class but nevertheless allow efficient range
queries on encrypted data, and propose two such schemes. We now discuss our
contributions in more detail.

580 A. Boldyreva, N. Chenette, and A. O’Neill

New Definitions for Studying ROPF Security. As (perhaps surprisingly)
pointed out by [8], a random order-preserving function—the ideal object in the
POPF definition from that paper—itself requires a cryptographic treatment.

In order to better understand the strengths and limitations of encryption with
an ROPF we first propose several security notions. One captures a basic one-
wayness security and measures the probability that an adversary, given a set of
ciphertexts of random messages, decrypts one of them. (The fact that messages
are chosen uniformly at random we call the “uniformity assumption,” and it
will be discussed later.) We give the adversary multiple challenge ciphertexts
because this corresponds to practical settings and because the ciphertexts are
not independent from each other: learning more points of the OPE function may
give the adversary additional information. We actually consider a more general
security notion that asks the adversary given same inputs to guess an interval
(window) within which the underlying challenge plaintext lies. This definition
helps us get a better sense of how accurately the adversary can identify the
location of a data point. The size of the window and the number of challenge
ciphertexts are parameters of the definition. When the window size is one, the
notion collapses to the case of simple one-wayness.

Our subsequent definitions address leakage of information not about the lo-
cation of the data points but rather the distances between them, which seems
crucial in other applications (e.g., a database of salaries). Indeed, [8] showed that
an ROPF with a practical range size does not hide distances between plaintexts.
We attempt to clarify this intuition. We consider a definition measuring the
adversary’s success in (precisely) guessing the distance1 between the plaintexts
corresponding to any two out of the set of ciphertexts of random messages given
to the adversary. Again, we also consider a more general definition where the
adversary is allowed to specify a window in which the distance falls.

We analyze security of an ROPF under these definitions as we believe this
helps to understand secure pseudorandom OPE schemes’ security guarantees
and limitations, and also to evaluate the risk of their usage in various applica-
tions. (Indeed, we believe they capture the information about the data, namely
location and relative distances, that practitioners are most likely to care about in
applications.) However, especially in light of the uniformity assumption (which
is unlikely to be satisfied in practice), we view our results as providing important
steps in the direction of this understanding (as even under this assumption our
results are challenging to prove) but still warn against practical usage of OPE
based on current knowledge.

Analysis of an ROPF. We first give an upper bound on the one-wayness
advantage of any adversary attacking an ROPF. The proof is quite involved
(and is explained in detail in the full version [9]), but the result is a very con-
cise, understandable bound that, under reasonable assumptions, does not even

1 Technically, for purposes that will become clear in the paper, “distance” actually
refers to “directed modular distance,” i.e. the distance from one point “up” to the
other point, possibly wrapping around the space. As such, distance in our context
is non-commutative.

Order-Preserving Encryption Revisited 581

depend on the size of the ciphertext space. (Intuitively, an ROPF’s one-wayness
comes from the function’s probability to deviate from points on the linear OPF
m �→ (N/M)m. Increasing the ciphertext space size beyond a certain amount has
little to no effect on these deviations.) We evaluate the bound for several param-
eters to get an idea of its quality. Our evaluation demonstrates that on practical
parameters ROPF and POPF-secure OPEs significantly resist one-wayness at-
tacks, i.e. the maximum one-wayness advantage of any adversary is quite low.

On the other hand, our ROPF analysis under the window one-wayness defi-
nition shows that a very efficient adversary can successfully break window one-
wayness if the size of the window is not very small. In particular, for message
space size M and arbitrary constant b, if the window size is approximately b

√
M ,

there exists an adversary A whose window one-wayness is at least 1 − 2e−b2/2.
Thus, for b large enough (say, b ≥ 8), there exists an adversary with window
one-wayness advantage very close to one.

We then extend our analysis of an ROPF to the distance one-wayness and win-
dow distance one-wayness definitions. Using similar techniques we show entirely
analogous results, namely that the former is very small but the latter becomes
large when the adversary is allowed to specify a window of size approximately
b
√

M .
We conclude our ROPF analysis with several important supplemental remarks

regarding the effect of known-plaintext attacks in the schemes, choosing an ap-
propriate ciphertext space size, and the need to satisfy the uniformity assumption
in practical implementations.

Achieving Stronger Security. We next consider the question of whether dif-
ferent types of schemes that support efficient range queries can achieve stronger
security than POPF. To capture such schemes we introduce a general notion of
efficiently orderable encryption (EOE), that covers all schemes supporting stan-
dard range queries by requiring a publicly computable function that determines
order of the underlying plaintexts given any two ciphertexts. Since EOE leaks
order of ciphertexts, IND-OCPA (which [8] showed is unachievable by OPE) is
an ideal level of security for EOE schemes (although what information about
the data can be inferred from it is outside the scope of the current paper).

An Optimally Secure Committed EOE Scheme. We focus on a scenario
where we can show something like IND-OCPA security is possible. We define
“committed” versions of EOE and IND-OCPA, called CEOE and IND-CCPA,
corresponding to a setting where the database is static and completely known
to the user in advance of encryption. Such a scenario is apparently important as
it was considered in the first paper to propose an order-preserving scheme [1],
and was also studied in several works including [13] for the case of exact-match
queries. We observe that the more restrictive functionality in this setting allows
one to achieve IND-CCPA. We propose a new scheme that uses a monotone min-
imal perfect hash function (MMPHF) directly as an “order preserving tagging
algorithm” for the given message set, together with a secure encryption. The
construction allows for easy implementation of range queries while also achiev-
ing the strongest security. Moreover, while MMPHFs are known to require long

582 A. Boldyreva, N. Chenette, and A. O’Neill

keys [4], recent constructions [4] are close to being space-optimal. Thus, this ap-
plication of MMPHFs for tagging seems to be a novel, nearly efficient-as-possible
way to support range queries, leaking nothing but the order of ciphertexts, when
the database is fixed in advance.

A New Modular OPE Scheme and its Analysis. Finally, we propose a
technique that improves on the security of any OPE scheme without sacrificing
efficiency. Recall that our ROPF analysis reveals information leakage in OPE not
alluded to by [8], namely about the locations of the data points rather than just
the distances between them. We suggest a modification to (that can be viewed as
a generalization of) an OPE scheme that overcomes this. The resulting scheme is
not order-preserving per se, but still permits range queries—in this case, modular
range queries. (When the left end of the queried range is greater than the right
end, a modular range query returns the “wrap-around range,” i.e. everything
greater than the left end or less than the right end.) The modification to the
scheme is simple and generic: the encryption algorithm just adds (modulo the
size of the message space) a secret offset to the message before encryption. (The
secret offset is the same for all messages.) We call a scheme obtained this way
a modular OPE scheme, and generalize the security notion: the ideal object is
now a random modular OPF (RMOPF), i.e. a random OPF applied to messages
with a randomly picked offset. It is easy to see that any secure OPE scheme
yields a secure modular OPE scheme using the above transformation.

We show that a random modular OPF, unlike a random OPF, completely
hides the locations of the data points (but has the same leakage with respect to
distance and window-distance one-wayness). On the other hand, if the adversary
is able to recover a single known plaintext-ciphertext pair, security falls back to
that of a random OPF.

We also note that the technique with a secret offset can be applied to the
CEOE scheme to enhance its security even beyond IND-CCPA when support
for modular range queries is sufficient.

Related Work. Efficient (sub-linear time) search on encrypted data for the
case of simple exact-match queries has been addressed by [2] in the symmetric-
key setting and [6,10,7] in the public-key setting. The work of [16] suggested
enabling efficient range queries on encrypted data not by using OPE but so-
called prefix-preserving encryption (PPE) [22,5]. But as discussed in [16,2], PPE
schemes are subject to certain attacks. Allowing range queries on encrypted data
in the public-key setting was studied in [11,19], but the solutions are not suitable
for large databases, requiring to scan the whole database on every query. As we
mentioned, order preserving encryption as an efficient solution for range queries
has been proposed in [1], however, they do not provide any formal security
analysis.

2 Preliminaries

Notation. If M is an integer, then [M] denotes the set {1, . . . , M}. For a set S
and n ≤ |S|, let CombS

n denote the set of n-element subsets of S. If Enc is an

Order-Preserving Encryption Revisited 583

encryption function with key K, x = (x1, . . . , x�) is a vector, and X = {x1, . . . , x�}
is a set, then Enc(K,x) is shorthand for (Enc(K, x1), . . . , Enc(K, x�)) and Enc(K,
X) is shorthand for {Enc(K, x1), . . . , Enc(K, x�)}. The same holds for decryp-
tion Dec.

A Convention. For simplicity, in many cases we will assume a domain/plaintext
space [M] and range/ciphertext space [N], for N ≥ M . Naturally, all results for
arbitrary spaces D, R can be derived from those of [|D|], [|R|].
Range Queries. For fixed plaintext and ciphertext spaces [M] and [N], a range
query target is a pair of plaintexts (mL, mR) that comes in two varieties: standard
if mL ≤ mR, or wrap-around if mL > mR. If (mL, mR) is a target, its associated
range is [mL, mR] in the standard case and [mL, M]∪ [1, mR] in the wrap-around
case.

To model the intended application, suppose a server has a database encrypted
under a scheme (K, Enc,Dec) with key K

$← K. In a standard range query, the
user submits two unordered ciphertexts {c1, c2} to the server. Let (m1, m2) =
Dec(K, (c1, c2)). Then the target is (min{m1, m2}, max{m1, m2}), and the server
must return the set of ciphertexts in the database whose decryptions fall into
the associated range. Notice that these targets are always standard.

In a modular range query, the user submits two ordered ciphertexts (cL, cR).
Let (mL, mR) = Dec(K, (cL, cR)). Then the range query target is (mL, mR), and
the server must return the set of ciphertexts in the database whose decryptions
fall into the associated range. Notice that these targets can be standard or wrap-
around.

Order-Preserving Encryption (OPE). Following [8] we say that SED,R =
(K, Enc, Dec) with associated plaintext-space D and ciphertext-space R is de-
terministic if the encryption algorithm Enc is deterministic. For A, B ⊆ N with
|A| ≤ |B|, a function f : A → B is order-preserving if for all i, j ∈ A, f(i) > f(j)
iff i > j. We say that deterministic encryption scheme SED,R = (K, Enc,Dec)
is order-preserving if Enc(K, ·) is an order-preserving function from D to R for
all K output by K (with elements of D,R interpreted as numbers, encoded as
strings).

Security of OPE. We recall the security definition for OPE from [8].2 Infor-
mally (refer to [8] for the formal definition), it says that an OPE scheme is secure
if oracle access to its encryption function is indistinguishable from oracle access
to a random order-preserving function (ROPF) on the same domain and range.
Any secure OPE scheme (including the only currently known blockcipher-based
scheme from [8]) should “closely” imitate the behavior of an ROPF. Accordingly
we focus in this paper on analyzing the ideal object, an ROPF.

2 For simplicity, we do not discuss chosen-ciphertext attacks in detail. Note that sym-
metric schemes such as these can be made resistant to chosen-ciphertext attacks
by implementing Encrypt-then-MAC with a MAC having strong unforgeability, pre-
venting adversaries from even constructing valid ciphertexts.

584 A. Boldyreva, N. Chenette, and A. O’Neill

An “Ideal” Scheme ROPF. We define the “ideal” ROPF scheme as follows.
Let OPFD,R denote the set of all order-preserving functions from D to R. Define
ROPFD,R = (Kr, Encr,Decr) as the following encryption scheme:

• Kr returns a random element g of OPFD,R.
• Encr takes the key and a plaintext m to return g(m).
• Decr takes the key and a ciphertext c to return g−1(c).

Of course the above scheme is not computationally efficient, but our goal is
its security analysis for the purpose of clarifying security of all POPF-secure
constructions.

Most Likely Plaintext. Fix a symmetric encryption scheme SED,R = (K, Enc,
Dec). For given c ∈ R, if mc ∈ D is a message such that

Pr
[

K
$← K : Enc(K, m) = c

]
achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely
plaintext for c.

Most Likely Plaintext Distance. Fix a symmetric encryption scheme
SE [M],[N] = (K, Enc,Dec). For given c1, c2 ∈ R, if dc1,c2 ∈ {0, 1, . . . , M − 1}
such that

Pr
[

K
$← K : (c1, c2) = Enc(K, (m1, m2)) ; m2 − m1 mod M = d

]
achieves a maximum at d = dc1,c2 , then we call dc1,c2 a (if unique, “the”) most
likely plaintext distance from c1 to c2.

3 New Security Definitions

As explained in the introduction, the “ideal” ROPF scheme defined in Section 2
itself requires a cryptographic treatment. Toward this end, we propose several
generalized security definitions that help us understand its security.

Let SE [M],[N] = (K, Enc,Dec) be a deterministic symmetric encryption
scheme.

Window One-Wayness. The most basic question left unanswered by [8] is
whether a POPF-secure scheme is even one-way. Towards this end we start
with the one-wayness definition. Our definition is a stronger and more general
version of the standard notion of one-wayness. For 1 ≤ r ≤ M and z ≥ 1, the
adversary is given a set of z ciphertexts of (uniformly) random messages and is
asked to come up with an interval of size r within which one of the underlying
plaintexts lies. We call our notion r, z-window one-wayness (or r, z-WOW). Note
that when r = 1, the definition collapses to the standard one-wayness definition
(for multiple ciphertexts), and we will call it one-wayness for simplicity.

The r, z-window one-wayness (r, z-WOW) advantage of adversary A against
SE [M],[N] is

Advr,z-wow
[M],[N] (A) = Pr

[
Expr,z-wow

SE [M],[N]
(A) = 1

]
,

Order-Preserving Encryption Revisited 585

where

Experiment Expr,z-wow
SE[M],[N]

(A)

K
$← K ; m $← Comb[M]

z ; c ← Enc(K,m)

(mL, mR) $← A(c)
Return 1 if (mR − mL) mod M + 1 ≤ r and there exists m ∈ m so that

either m ∈ [mL, mR] or (mL > mR and m ∈ [mL, M] ∪ [1, mR])
Return 0 otherwise

Notice that the latter success condition allows the adversary to specify a win-
dow that “wraps around” the message space. Granting this extra power to the
adversary will be useful in analyzing the MOPE scheme of Section 5.2.

Window Distance One-Wayness. To identify the extent to which an OPE
scheme leaks distance between plaintexts, we also provide a definition in which
the adversary attempts to guess the interval of size r in which the distance
between any two out of z random plaintexts lies, for 1 ≤ r ≤ M and z ≥ 2. We
call the notion r, z-window distance one-wayness (r, z-WDOW). When r = 1,
the adversary has to guess the exact distance between any two of z ciphertexts.

The r, z-window distance one-way (r, z-WDOW) advantage of adversary A
against scheme SE [M],[N] is

Advr,z-wdow
[M],[N] (A) = Pr

[
Expr,z-wdow

SE [M],[N]
(A) = 1

]
,

where

Experiment Expr,z-wdow
SE [M],[N]

(A)

K
$← K ; m $← Comb[M]

z ; c ← Enc(K,m)

(d1, d2)
$← A(c)

Return 1 if d2 − d1 + 1 ≤ r and there exist distinct mi, mj ∈ m
with mj − mi mod M ∈ [d1, d2]

Return 0 otherwise

4 One-Wayness of a Random OPF

This section is devoted to analyzing the “ideal” scheme ROPF[M],[N] under the
security definitions given in the previous section. The first result shows an upper
bound on 1, z-WOW advantage against the scheme. This demonstrates that on
practical parameters, ROPF and POPF-secure OPEs significantly resist (size-
1-window) one-wayness attacks. In contrast, the second result shows the ideal
ROPF scheme is susceptible to an efficient large-window (a constant times

√
M)

one-wayness attack, by constructing an adversary and lower-bounding its r, z-
WOW advantage.

The analysis then proceeds similarly for window distance one-wayness defini-
tions: we will show analogous contrasting results for small- versus large-window
experiments. We now turn to the details of the analysis.

586 A. Boldyreva, N. Chenette, and A. O’Neill

An Upper Bound on the 1, z-WOW Advantage. The following theorem
states an upper bound on the 1, z-WOW advantage of any adversary against
ROPF[M],[N].

Theorem 1. For any challenge set of size z and adversary A, if N ≥ 2M and
M ≥ 15 + z then

Adv1,z-wow
ROPF[M],[N]

(A) <
9z√

M − z + 1
.

The formal proof is quite involved and is in the full version [9]. The idea is to first
bound 1, z-WOW security in terms of 1, 1-WOW security; because ciphertexts
are correlated, a simple hybrid argument does not work and our reduction uses
new ideas. Then, to bound 1, 1-WOW security, we take a combinatorial strat-
egy, as follows. We define a ciphertext’s most likely plaintext (m.l.p.) and recall
the negative hypergeometric distribution (NHGD). We first relate the middle
ciphertext’s m.l.p.’s NHGD probability for a given plaintext/ciphertext space to
that of a space twice the size; iterating this result produces a formula for the
middle ciphertext’s m.l.p.’s NHGD probability in a large space given the anal-
ogous value in a small space. We then relate any ciphertext’s m.l.p.’s NHGD
probability to that of the middle ciphertext in the space. Finally, we approxi-
mate the sum of m.l.p. NHGD probabilities over the ciphertext space in terms
of that of the middle ciphertext, and hence to that of the middle ciphertext in a
smaller space. Plugging in a value for the m.l.p. NHGD probability on the small
space and simplifying yields the bound.

Evaluating the Bound. The bound of Theorem 1 is quite succinct—it does
not even rely on N (as long as N ≥ 2M). The result in essence shows that as
long as the challenge set size z is small compared to M , the bound is a small
constant times z/

√
M . This in turn is small as long as z is small compared to√

M .
Plugging in some parameters, we can see some numerical bounds. (In all the

following, we assume N ≥ 2M .) For M = 280 and z = 1, the bound is 1.2 · 2−37.
For M = 280 and z = 220, the bound is 1.2 · 2−17. For M = 280 and z = 238, the
bound is no longer useful at 1.2.

We see that ROPF[M],[N] has very good one-wayness security for reasonably-
sized parameters. Given the results of [8] our bound for ROPF can be easily
adjusted for their POPF construction, by taking into account pseudorandomness
of an underlying blockcipher. But as we discussed in the introduction, standard
one-wayness may not be sufficient in all applications and we have to also analyze
the schemes under other security notions. Thus, we turn to the next result.

A Lower Bound on Large Window One-Wayness. Here we show that there
exists a very efficient adversary attacking the window one-wayness of an ROPF
for a sufficiently large window size. A more intuitive explanation of the result
follows the theorem.

Theorem 2. For any window size r and challenge set size z, there exists an
adversary A such that

Order-Preserving Encryption Revisited 587

Advr,z-wow
ROPF[M],[N]

(A) ≥ Advr,1-wow
ROPF[M],[N]

(A) ≥ 1 − 2e−
(r−1)2

2
(M−1)

M2 .

The proof is in the full version [9]. There, we construct a straightforward
attack and demonstrate that it has the above probability of success, using
some bounds by Chvátal on the tail probabilities of the hypergeometric
distribution.

Intuitively, Theorem 2 implies that for r ≈ b
√

M , where b is a large enough
constant (say b ≥ 8), there exists an adversary A whose r-window one-wayness
is very close to 1. More precisely, let r = b M√

M−1
+ 1, and the theorem implies

there exists an A such that

Advr,z-wow
ROPF[M],[N]

(A) ≥ 1 − 2e−b2/2 .

An Upper Bound on the 1, z-WDOW Advantage. The following theorem,
with the proof in the full version [9] , states an upper bound on the 1, z-distance
one-wayness of a random OPF that is very similar to the bound in Theorem 1.

Theorem 3. For any challenge set size z and adversary A, if N ≥ 2M and
M ≥ 16 + z then

Adv1,z-wdow
ROPF[M],[N]

(A) ≤ 9z(z − 1)√
M − z + 1

.

Naturally, as this result looks very much like that of Theorem 1, the proof fol-
lows the same strategy and achieves similar results. The only differences are that
the initial reduction relates r, z-WDOW security to r, 2-WDOW security, incur-
ring a factor z(z − 1) advantage increase as opposed to just z, and the initial
(tight) bound formula replaces parameters N , M with N − 1, M − 1. for proof
details.

Thus, the 1, z-window distance one-wayness of a random OPF is upper-
bounded in a similar fashion as the 1, z-window one-wayness, and we conclude
that random OPFs have good 1, z-WDOW security. Again, though, that is not
the whole story, as we see next.

A Lower Bound on Window Distance One-Wayness of ROPF. Here,
we derive a result similar to that of Theorem 2, but for the window distance
one-wayness of a random OPF.

Theorem 4. For any window size r and challenge set size z, there exists an
efficient adversary A such that

Advr,z-wdow
ROPF[M],[N]

(A) ≥ Advr,1-wdow
ROPF[M],[N]

(A) ≥ 1 − 2e
− (r−1)2

2
(M−2)
(M−1)2 .

The proof uses directly a result from the proof of Theorem 2 and appears in the
full version [9].

588 A. Boldyreva, N. Chenette, and A. O’Neill

Intuitively, Theorem 4 implies that for r ≈ b
√

M , where b is a large enough
constant (say, b ≥ 8), there exists an efficient adversary A whose r-window dis-
tance one-wayness advantage is very close to 1. More precisely, let r = b M−1√

M−2
+1,

and the theorem implies there exists an A such that

Advr,z-wow
ROPF[M],[N]

(A) ≥ 1 − 2e−b2/2.

4.1 Further Security Considerations for ROPFs

In this section, we explore several important questions regarding our ROPF
security analysis.

Effect of Known-Plaintext Attacks. It is a natural question to ask what
happens to the security of an ROPF scheme when the adversary knows a certain
number of plaintext-ciphertext pairs. In general, we can answer this question for
each definition of one-wayness using a simple extension of the arguments above.

In the scheme ROPFD,R, known plaintext-ciphertext pairs split the plaintext
and ciphertext spaces into subspaces. On each subspace, the analysis under each
one-wayness definition reduces to that of an ROPF on the domain and range
of the subspace. For instance, if (m1, c1) and (m2, c2) are known for m1 < m2,
and no other known plaintext-ciphertext pairs occur between these two, then for
D′ = {m ∈ D | m1 < m < m2} and R′ = {c ∈ R | c1 < c < c2}, we analyze
the behavior of the function on this subspace by considering the one-wayness
bounds on ROPFD′,R′ .

This brings up an important issue. For much of our analysis to apply to a
scheme, it must be the case that the ciphertext space is at least twice the size of
the message space. Therefore, in order to make sure that our analysis will still
apply to most subspaces once several plaintext-ciphertext pairs are discovered
by the adversary, we would like to choose the initial parameters in such a way
that subspaces are unlikely to violate this condition.

Choosing the Ciphertext Space Size. This brings us to the question posed
in [8]: given a plaintext space of size M , what should be the size N of the ci-
phertext space? The recommendation and justification given in [8] was ad-hoc,
necessarily so because the paper lacked a notion of security that would in any
way depend on the size of N compared to M . Indeed, the choice of N has to
do with the nature of the ideal object, an ROPF, while [8] was focused only
on pseudorandomly sampling that ideal object, not analyzing it. Now that we
have ways of characterizing the security of an ROPF using our one-wayness
definitions, we can more justifiably discuss the question of what to choose for
N .

For g ∈ OPF[M],[N], if m1 < m2 ∈ [M] exist such that g(m2)−g(m1) < 2(m2−
m1), then we say that g is shallow on the ciphertext interval [g(m1), g(m2)]. The
bounds found in the previous sections assume that N ≥ 2M . Thus, any non-
shallow interval can be analyzed through our theorems about one-wayness, and
as a result we would like to choose N to avoid shallow intervals, both in the
original space and in potential subspaces.

Order-Preserving Encryption Revisited 589

In particular, consider the following result, which bounds the probability that
an interval between encryptions of two random plaintexts is shallow.

Proposition 1. Let t = (N − 1)/(M − 1), and assume t ≥ 7. Let m1
$← [M],

m2
$← [M] \ {m1}, K

$← Kr, Encr(K, (m1, m2)) = (c1, c2), w = c2 − c1 mod M ,
and d = m2 − m1 mod M . Then over the choice of m1, m2, K,

Pr [2d > w] <
3
t

1√
(M − 1)/ lnM

.

The proof can be found in [9] and is mostly algebraic fiddling.
This bound gives us an idea of good values for t ≈ N/M . In particular, it

seems that choosing a constant for t ≥ 7, that is, taking N to be a constant
multiple of M , is sufficient in order to make the above probability negligible.
Whether the constant should be large or small depends on one’s tolerance for
random intervals to be shallow.

On Implementing a Scheme to Support Range Queries using POPF.
We stress that most of our analysis relies on the uniformity assumption as-
sumption, namely that challenge messages come from a uniform distribution.
(Intuitively, the we need this in our analysis so that the ciphertexts fall into
a range subset of the range.) It is an open problem to extend our analysis to
other input distributions, and until that is accomplished, we do not recommend
practitioners draw any conclusions from the analysis.

5 Achieving Stronger Security

We study new ways to achieve better security than the OPE scheme of [8] while
still allowing for efficient range queries on encrypted data. But first, we define
a general primitive, Efficiently Orderable Encryption (EOE), that includes all
schemes that support efficient standard range queries, including OPE. We show
that IND-OCPA, defined and shown to be unachievable by OPE in [8], is the
ideal security definition for such schemes.

We define “committed” analogues of EOE and IND-OCPA, namely CEOE and
IND-CCPA, that apply to the practical scenario where the database to encrypt
is pre-determined and static. Such a setting has been studied in several works on
searchable encryption, including the first paper to propose an order-preserving
scheme [1,13]. We then propose a new CEOE scheme that is CCPA-secure.

Finally, we develop a generic modification of an OPE that supports mod-
ular range queries (but not standard range queries) and overcomes some of
the security weaknesses of any OPE that we studied in Section 4. The scheme
is not EOE because it does not leak order; rather, it leaks only “modular”
order.

Efficiently Orderable Encryption. We say that EOE = (K, Enc,Dec, W) is
an efficiently-orderable encryption (EOE) scheme if K, Enc,Dec are the algo-
rithms of a symmetric encryption scheme, W is an efficient algorithm that takes

590 A. Boldyreva, N. Chenette, and A. O’Neill

two ciphertexts as input, and defining CK = {Enc(K , m) | m ∈ M} as the set
of valid ciphertexts for key K ,

W (c0, c1) =

⎧⎪⎨⎪⎩
1 if Dec(K , c0) < Dec(K , c1)
0 if Dec(K , c0) = Dec(K , c1)
−1 if Dec(K , c0) > Dec(K , c1)

for any key K and all c0, c1 ∈ CK . It is easy to see that such a scheme permits
efficient standard range queries, as the server can keep the encrypted database
sorted using W .

It is also clear that any OPE scheme (K, Enc,Dec) corresponds to an EOE
scheme with the same key generation, encryption, and decryption algorithms,
and W (c0, c1) outputting 1, 0, or −1 if the relation between c0 and c1 is <,
=, or >, respectively. But in general an EOE scheme does not have to be
deterministic.

5.1 Committed Efficiently-Orderable Encryption

Range Queries on a Predetermined Static Database. Now we consider
schemes for the settings when it is possible for the user to preprocess the whole
data before encrypting and sending it to the server. For that we allow the key
generation of an EOE scheme to take the message set as input, which we rename
a committed EOE scheme.

Committed efficiently-orderable encryption. A committed efficiently-order-
able encryption (CEOE) scheme on domain D is a tuple (K, Enc,Dec, W) satis-
fying the following.

– The randomized key generation algorithm K takes a message space M ⊂ D
(called the committed message space) as input and outputs a secret key K .

– For any committed message space M ⊂ D, (K(M), Enc,Dec, W) is an EOE
scheme on M.

We will show that a CEOE scheme can achieve very strong security. In particular,
it can achieve the “committed” adaptation of the IND-OCPA notion from [8],
where the adversary outputs two vectors of plaintexts with the same order and
equality pattern and is asked to guess whether it is given encryptions of the first
or second vector. We define indistinguishability under committed chosen plain-
text attacks (IND-CCPA). The definition mimics IND-OCPA except that the
adversary chooses the challenge vectors (now viewed as message spaces) before
key generation, and the scheme’s key generation algorithm takes the appropriate
message space as input.

IND-CCPA. Let CEOE = (K, Enc,Dec, W) be a CEOE scheme on message
space M.

For an adversary A = (A1, A2) and b ∈ {0, 1} consider the following experi-
ment. (σ denotes a state.)

Order-Preserving Encryption Revisited 591

Experiment Expind-ccpa-b
CEOE (A)

(M0,M1, σ) $← A1 ; If |M0| �= |M1| then output ⊥.
Otherwise, let l = |M0| = |M1|
Let mj

1 < mj
2 < . . . < mj

l be the elements of Mj, for j = 0, 1
If there exist 1 ≤ i ≤ l so that |m0

i | �= |m1
i | then output ⊥

K
$← K(Mb) ; cj ← Enc(K , mb

j) for j = 1, . . . , l

d
$← A2(σ, c1, c1, . . . , cl). Return d

For an adversary A, define its ind-ccpa advantage against SE as

Advind-ccpa
CEOE (A) = Pr

[
Expind-ccpa-1

CEOE (A) = 1
]
− Pr

[
Expind-ccpa-0

CEOE (A) = 1
]

.

We say that CEOE is IND-CCPA secure if the ind-ccpa advantage of any adver-
sary against CEOE is small.

Our CEOE construction and its security. We now propose a CEOE scheme
that will achieve IND-CCPA security. A ciphertext in our scheme consists of a
semantically-secure ciphertext of the message concatenated with the tag, which
indicates the order of the message in the ordered message list. As a building
block for our scheme we use monotone minimal perfect hash functions, defined
as follows.

Let M be a set with a total (lexicographical) order. h is a monotone minimal
perfect hash function [4] (MMPHF) on M if h sends the ith largest element of
M to i, for i = 0, 1, . . . , |M|− 1. Notice that the MMPHF on any given domain
M is unique. So that we can use MMPHFs in the upcoming construction, let an
index tagging scheme (K, τ) be a pair of algorithms such that K takes a domain
M and outputs a secret key KM so that τ(KM, ·) is the (unique) MMPHF for
M, while τ(K , m) =⊥ for any m /∈ M.

Our CEOE construction is based on two building blocks: MMPHF tagging
and any symmetric encryption scheme.

Let (Kt, τ) be an index tagging scheme. Fix a universe D, and let SE =
(K′, Enc′,Dec′) be any symmetric encryption scheme on D. We construct a
CEOE scheme (K, Enc,Dec, W) as follows.

– K takes M ⊂ D as input, runs Kt ← Kt(M) and Ke ← K′, and returns
K = Kt‖Ke.

– Enc takes key K = Kt‖Ke and message m as input, and computes i =
τ(Kt, m). If i =⊥ then Enc returns ⊥, otherwise it returns i‖Enc′(Ke, m).

– Dec takes key K = Kt‖Ke and ciphertext c = i‖c′ as input, and returns
Dec′(Ke, c

′).
– W takes ciphertexts c0 = i0‖c′0 and c1 = i1‖c′1 as input, and returns 1 if

i0 < i1, 0 if i0 = i1, and −1 if i0 > i1.

We note that unlike the scheme with pre-processing for exact-match queries [13],
when using the above scheme the server does indexing and query processing as
for unencrypted data, which is a practical advantage. Also, as the following result
shows, the scheme is secure under IND-CCPA.

592 A. Boldyreva, N. Chenette, and A. O’Neill

Theorem 5. The CEOE scheme defined above is IND-CCPA-secure provided
the underlying symmetric encryption scheme is IND-CPA secure.

The proof is in the full version [9].
Note that our secure CEOE construction relies on an efficient MMHPF imple-

mentation. Luckily, MMHPFs were studied recently by [4]. They showed that for a
universe of size 2w and for n ≥ log w, the shortest possible description of an MM-
PHF function (and thus, best possible key length for a tagging scheme) on n ele-
ments is unfortunately quite large at Ω(n) bits. This is somewhat disheartening, as
a naive solution, in which the MMPHF key consists of an n-entry array whose ith
entry is the ith largest element in the domain, has a key length of O(nw). Neverthe-
less, the authors of [4] were able to generate MMPHF descriptions that are closer
to the optimal bound: one construction uses O(n log log w) bits and has query time
O(log w), and the other uses O(n log w) bits and has constant query time. This is
still large, but may be practical depending on the parameters involved.

5.2 Modular OPE and Analysis of an Ideal MOPE Scheme

Modular OPE. We propose a modification to (that can be viewed as a gen-
eralization of) an OPE scheme that improves the security performance of any
OPE. The resulting scheme is no longer strictly order-preserving, but it still
permits range queries. However, now the queries must be modular range queries.
Standard range queries are not supported, as only “modular order” rather than
order is leaked. The modification from OPE is simple, generic, and basically free
computation-wise.

Let SE [M],[N] = (K, Enc,Dec) be an order-preserving encryption scheme. De-
fine a modular order-preserving encryption scheme (MOPE) SE [M],[N] = (Km,
Encm, Decm) as follows.

• Km runs K to get K, picks j
$← [M] and returns (K, j).

• Encm on input (K, j) and m returns Enc(K, m − j mod M).
• Decm on inputs (K, j) and c returns Dec(K, c) + j mod M .

Notice that a MOPE is suitable for modular range query support as follows. To
request the ciphertexts of the messages in the range [m1, m2] (if m1 ≤ m2), or
[m1, M] ∪ [1, m2] (if m1 > m2), the user computes c1 ← Encm(K, m1), c2 ←
Encm(K, m2) and submits ciphertexts (c1, c2) as the query. The server returns
the ciphertexts in the interval [c1, c2] (if c1 ≤ c2) or [c1, N] ∪ [1, c2] (if c1 > c2).

MOPE Security and Random MOPF. In order to define the security of
an MOPE scheme, we introduce a generalization of OPFs. For j ∈ [M], let
φj : [M] → [M] be the cyclic transformation φj(x) = (x − j − 1) mod M + 1.
We define the set of modular order preserving functions from [M] to [N] as

MOPF[M],[N] = {f ◦ φj | f ∈ OPF[M],[N], j ∈ [M]} .

Note that all OPFs are MOPFs; on the other hand, most MOPFs are not
OPFs. However, a MOPF g is “modular order-preserving” in that the function
g − g(0) mod N is order-preserving.

Order-Preserving Encryption Revisited 593

Now, define RMOPF[M],[N] = (Krm, Encrm, Decrm), the random modular order-
preserving function scheme, as the following (inefficient) encryption scheme:

• Krm returns a random instance g of MOPF[M][N].
• Encrm takes the key g and a plaintext m to return g(m).
• Decrm takes the key g and a ciphertext c to return g−1(c).

Note that an MOPF could alternatively be defined with a random ciphertext
shift following the OPF rather than a random plaintext shift preceding it. The
advantage of the above definition is that the map from (OPF, ciphertext offset)
pairs to MOPFs is bijective whereas in the alternative it is not one-to-one.

We now are ready to define MOPE security. Fix an MOPE scheme SE [M],[N] =
(Km, Encm,Decm). Let RMOPF[M],[N] = (Krm, Encrm,Decrm) be as defined
above. For an adversary A, define its Advpmopf

SE (A), pmopf-advantage (or pseu-
dorandom modular order-preserving function advantage) against SE as

Pr
[

K
$← Km : AEncm(K,·) = 1

]
− Pr

[
g

$← RMOPF[M],[N] : Ag(·) = 1
]

.

It is straightforward to show that the MOPE scheme obtained from any
POPF-secure OPE scheme via the transformation defined in the beginning of
Section 5.2 is PMOPF-secure, under the same assumption as the base scheme.
We omit the details.

We now analyze the ideal object, RMOPF, under the one-wayness definitions.

Window One-Wayness of RMOPF. The following proposition, proved in [9],
establishes that RMOPF is optimally r, z-window one-way (and hence optimally
one-way, taking r = 1) in the sense that an adversary cannot do better than
an adversary that outputs a random window independent of the challenge set.
(Reminder: “window” includes windows that wrap around the edge of the space.)

Proposition 2. Fix any window size r and challenge set size z. Let Arand(r)
be an r, z-WOW adversary that, on any input, outputs a random r-window from
[M]. Then for any adversary A,

Advr,z-wow
RMOPF[M],[N]

(A) ≤ Advr,z-wow
RMOPF[M],[N]

(Arand(r)) ≤ rz/M .

As one might surmise, the above “optimal” characterization of the one-wayness
of a random MOPF fails to show a complete picture of the information a random
MOPF leaks. To investigate further, we turn to distance one-wayness.

WDOW Advantage Bounds for RMOPF. We claim that the distance one-
wayness analysis for RMOPF is exactly the same as for ROPF. To see this,
consider the following proposition, whose (short) proof is in [9].

Proposition 3. Let c1, c2 ∈ [N]. Then for any d ∈ {0, . . . , M − 1},
Pr [Decr(K1, c2) −Decr(K1, c1) = d]

= Pr [Decrm(K2, c2) −Decrm(K2, c1) = d] ,

where the probabilities are over, respectively, K1
$← Kr and K2

$← Krm.

594 A. Boldyreva, N. Chenette, and A. O’Neill

Therefore, the 1, z-WDOW advantage upper bound of Theorem 3 and the r, z-
WDOW advantage lower bound of Theorem 4 against ROPF schemes also apply
to RMOPF schemes on the same parameters.

So, while an RMOPF has similar security to that of an ROPF for distance and
window distance one-wayness, it is better in terms of one-wayness and window
one-wayness. The analysis easily transfers to any secure MOPE scheme. We now
discuss a few supplemental security considerations for RMOPF schemes.

Effect of a Known-Plaintext Attack on RMOPF. In the RMOPF[M],[N]

scheme, if the adversary learns a single plaintext-ciphertext pair, then the one-
wayness analysis reduces to that of ROPF[M−1],[N−1]. To see this, note that if g
is a random function in MOPF[M],[N], and it is revealed that g(m0) = c0, then
f(m) = g(m+m0 mod M)−c0 mod N is a random function in OPF[M−1],[N−1].

On Implementing a Scheme to Support Range Queries using PMOPF.
We note that when a pseudorandom MOPF scheme is used to implement a
range-query-supporting database, even wrap-around target range queries must
be made, for otherwise an adversary may infer the secret offset of the MOPF
scheme after observing many non-wrap-around target queries.

Remark. We finally note that the tagging scheme defined in Section 5.1 could
be similarly modified so that its tag receives a secret offset. The resulting scheme
would support modular range queries in predetermined static database scenario,
and satisfy a stronger version of IND-CCPA, leaking only “modular” order.

Acknowledgements. We thank Nigel Smart, Abdullatif Shikfa and the anony-
mous reviewers for useful comments. We also thank Adam Smith and Brent
Waters for useful discussions, and in particular Adam Smith for pointing out
that ROPF encryption leaks the high-order bits of the plaintexts. Alexandra
Boldyreva and Nathan Chenette are supported in part by Alexandra’s NSF CA-
REER award 0545659 and NSF Cyber Trust award 0831184. Adam O’Neill was
supported in part by Brent Waters grants NSF CNS-0915361 and CNS-0952692.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: SIGMOD 2004, pp. 563–574. ACM, New York (2004)

2. Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-secure schemes for basic query
support in outsourced databases. In: DBSec 2007, pp. 14–30. Springer, Heidelberg
(2007)

3. Bauer, F.: Decrypted Secrets: Methods and Maxims of Cryptology. Springer, Hei-
delberg (2006)

4. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with o(1) accesses. In: SODA 2009, pp. 785–794. SIAM,
Philadelphia (2009)

5. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and
the hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

Order-Preserving Encryption Revisited 595

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

7. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

8. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009)

9. Boldyreva, A., Chenette, N., O’Neill, A.: Order-Preserving Encryption Revisited:
Improved Security Analysis and Alternative Solutions (2011) Full version of this
paper, http://www.cc.gatech.edu/~aboldyre/publications.html

10. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

12. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathemat-
ics 25(3), 285–287 (1979)

13. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved denitions and efficient constructions. In: CCS 2006, pp. 79–88.
ACM, New York (2006)

14. Ding, Y., Klein, K.: Model-Driven Application-Level Encryption for the Privacy of
E-health Data. In: International Conference on Availability, Reliability and Secu-
rity, pp. 341–346 (2010)

15. Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the gamma func-
tion. Mathematics of Computation 41(164), 607–611 (1983)

16. Li, J., Omiecinski, E.: Efficiency and security trade-off in supporting range queries
on encrypted databases. In: DBSec 2005, pp. 69–83. Springer, Heidelberg (2005)

17. Liu, H., Wang, H., Chen, Y.: Ensuring Data Storage Security against Frequency-
Based Attacks in Wireless Networks. In: Rajaraman, R., Moscibroda, T., Dunkels,
A., Scaglione, A. (eds.) DCOSS 2010. LNCS, vol. 6131, pp. 201–215. Springer,
Heidelberg (2010)

18. Lu, W., Varna, A.L., Wu, M.: Security analysis for privacy preserving search of
multimedia. In: Image Processing (ICIP), 2010, pp. 26–29 (2010)

19. Shi, E., Bethencourt, J., Chan, T.-H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: Symposium on Security and Privacy 2007,
pp. 350–364. IEEE, Los Alamitos (2007)

20. Tang, Q.: Privacy preserving mapping schemes supporting comparison. In: Pro-
ceedings of the ACM Workshop on Cloud Computing Security Workshop (CCSW
2010). ACM, New York (2010)

21. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure Ranked Keyword Search over
Encrypted Cloud Data. In: ICDCS 2010, pp. 253–262. IEEE, Los Alamitos (2010)

22. Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. In: ICNP 2002, pp. 280–289. IEEE, Los Alamitos (2002)

http://www.cc.gatech.edu/~aboldyre/publications.html

A New Variant of PMAC:

Beyond the Birthday Bound

Kan Yasuda

NTT Information Sharing Platform Laboratories,
NTT Corporation, Japan

yasuda.kan@lab.ntt.co.jp

Abstract. We propose a PMAC-type mode of operation that can be
used as a highly secure MAC (Message Authentication Code) or PRF
(Pseudo-Random Function). Our scheme is based on the assumption
that the underlying n-bit blockcipher is a pseudo-random permutation.
Our construction, which we call PMAC Plus, involves extensive modifica-
tion to PMAC, requiring three blockcipher keys. The PMAC Plus algo-
rithm is a first rate-1 (i.e., one blockcipher call per n-bit message block)
blockcipher-based MAC secure against O

(
22n/3

)
queries, increasing the

O
(
2n/2

)
security of PMAC at a low additional cost. Our analysis uses

some of the security-proof techniques developed with the sum construc-
tion (Eurocrypt 2000) and with the encrypted-CBC sum construction
(CT-RSA 2010).

Keywords: 64-bit blockcipher, PRP, sum construction, CBC vs. PMAC,
game-playing technique.

1 Introduction

MACs (Message Authentication Codes) are frequently realized by making iter-
ative use of blockciphers. They are called blockcipher-based MACs and specified
in a large number of standardized documents including ISO 9797-1 [13].

The majority of blockcipher-based MACs iterate a blockcipher in the so-called
CBC (Cipher Block Chaining) style [3,19,15], by xor-ing the current message
block with the previous chaining value and then inputting the xor-ed result into
the next blockcipher call. CBC-type MACs have a history of continuous updates,
whose purpose is mainly to reduce the number of keys and to increase efficiency
in the last message block. CMAC [18] a.k.a. OMAC [11], the first 1-key CBC
MAC derived from XCBC [7], can be regarded as an outcome of such evolution.

On the other hand, PMAC (Parallelizable MAC) [8] is a distinctive, paral-
lelizable blockcipher-based MAC. Its internal structure is completely different
from CBC iteration, which is inherently sequential and not parallelizable. If se-
quentially implemented, then PMAC becomes slightly slower than CBC MACs,
because PMAC requires an extra operation at every blockcipher call. The extra
operation is typically a constant multiplication in the finite field, which is fast
but still slower than a simple xor operation used by CBC MACs. However,

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 596–609, 2011.
c© International Association for Cryptologic Research 2011

A New Variant of PMAC: Beyond the Birthday Bound 597

under parallel implementation, PMAC can possibly outperform CBC MACs
significantly.

We believe it is worth re-evaluating PMAC-type constructions under the
current trend of “parallelizable” (pipeline, superscalar, vector, and multi-core)
CPUs (e.g., see [14] for a state-of-the-art implementation of AES in this di-
rection). It seems that today PMAC is still not as widespread as CBC MACs,
perhaps because most of the computational environments commercially avail-
able so far have been increasing the clock rate and hence the speed of sequential
operations.

In this paper we look at another advantageous aspect of PMAC-type con-
structions. That is its proof of security. The parallel construction has a structure
easy to analyze and to obtain better bounds. Intuitively, the difference between
PMAC-type and CBC-type iterations lies in the “long-message attacks” noted
by Preneel and Oorschot [20]: Suppose, for the moment, that we iterate an n-bit
function rather than permutation. Then two messages M00 · · ·0 and M ′00 · · ·0
would collide at some point of the CBC iteration if they are long enough—say
2n blocks—and the collision would propagate through the output of the MAC
algorithm. An event of this sort does not happen to PMAC. This appealing as-
pect of PMAC-type constructions is already pointed out, though implicitly, by
Minematsu [17] in obtaining an O

(
�q2/2n

)
-type bound for PMAC (where � is

the maximum length of a message, q the maximum number of queries and n
the block size). Recall that obtaining such a bound for CBC MACs seems more
troublesome [4].

Besides PMAC, there have been a few proposals of parallelizable MACs, for
which a blockcipher can be used. These include XOR MAC by Bellare et al. [2]
and PCS by Bernstein [6]. There have been also some improvements or al-
ternatives to PMAC. These include PMAC1 by Rogaway [21] and iPMAC by
Sarkar [22].

Birthday-Bound Problems and Our Contributions. We take the ad-
vantage of the provable-security aspect of PMAC-type constructions in solv-
ing the so-called birthday-bound problem of iterative MACs [20]. That is, a
MAC construction having an n-bit size of intermediate values cannot be secure
against more than O

(
2n/2

)
queries—a forgery becomes possible after so many

queries. Typical MAC constructions iterating an n-bit blockcipher suffer from
this problem.

This is a sever problem particularly for 64-bit blockciphers. Not to mention
the fact that the legacy Triple-DES is still widely used (especially in finan-
cial services), we also have new 64-bit blockciphers such as HIGHT [10] and
present [9], possibly due to industrial demands for “lightweight” algorithms.
The birthday bound may not be a serious problem for 128-bit blockciphers at the
current moment. However, it contributes not only to existing 64-bit blockciphers
but also to the longevity of 128-bit blockciphers in future use to construct an
efficient MAC mode which is free of the birthday-bound problem.

598 K. Yasuda

Table 1. Summary of our result and comparison with previous constructions

Rate # of keys Parallelizable? Security bound Ref.

Alg. 6 of ISO 9797-1 1/2 6 O
(
�4q3/22n

)
or [13]

restricted O
(
�3q3/22n

)
SUM-ECBC 1/2 4 O

(
�4q3/22n

)
or [23]

restricted O
(
�3q3/22n

)
PMAC Plus 1 3 	 O

(
�3q3/22n + �q/2n

)
This
work

The first attempt to solve this problem was made in ISO 9797-1 (without
proofs of security).1 Unfortunately, Algorithm 4 of ISO 9797-1 was attacked and
shown insecure (“insecure” meaning secure only up to the O

(
2n/2

)
birthday

bound) by Joux et al. [12]. Algorithm 6 of ISO 9797-1, on the other hand, has
been proven secure against O

(
22n/3

)
queries [23]. The O

(
22n/3

)
bound holds only

with certain restrictions on the message length. The work [23] has also presented
SUM-ECBC, the sum (xor) of two encrypted CBC MACs. SUM-ECBC has be-
come a 4-key rate-1/2 (meaning two encryptions to process n-bits) blockcipher-
based MAC having the same security bound as Algorithm 6 of ISO 9797-1. We
improve over these MAC constructions by utilizing a PMAC-type iteration. We
propose a new MAC algorithm PMAC Plus. PMAC Plus is an extensively modified
version of PMAC. PMAC Plus remains rate-1 but operates with three blockcipher
keys. PMAC Plus has an O(22n/3) bound without such a restriction on the mes-
sage length as existed with the security bound for the previous constructions.2

Table 1 summarizes our result.

Organization. Section 2 provides necessary background. In Section 3 we define
our algorithm PMAC Plus and state its security result. The entire Section 4 is
devoted to proofs of security. The paper ends with brief discussion in Section 5.

2 Preliminaries

Symbols and Notation. We fix a block size n, which is typically 64 or 128.
We write Perm(n) for the set of permutations P : {0, 1}n → {0, 1}n. We also
fix a key space K . Usually K = {0, 1}κ, where κ = 80, 128, 192 or 256. A
blockcipher E is a function E : K × {0, 1}n → {0, 1}n such that for each key
K ∈ K we have EK ∈ Perm(n), where EK : {0, 1}n → {0, 1}n is defined as
EK(X) := E(K, X). We can then write E−1

K for the inverse permutation.
The set {0, 1}n can be regarded as a set of integers {0, 1, . . . , 2n−1}. This can

be done by converting an n-bit string an−1 · · ·a1a0 ∈ {0, 1}n to an

1 See, for example, [1] for another direction (using random coins) of treating birthday-
bound problems.

2 Our new bound would become vacuous for very long messages, say 22n/3 blocks.

A New Variant of PMAC: Beyond the Birthday Bound 599

integer an−12n−1 + · · · + a12 + a0, where multiplication and addition are
integer arithmetic.

Let GF (2n) denote the finite field with 2n elements. We regard {0, 1}n as
GF (2n). That is, we identify an n-bit string an−1 · · · a1a0 ∈ {0, 1}n with a
formal polynomial an−1xn−1 + · · · a1x + 1 ∈ GF (2)[x]. To do so we need to
fix an irreducible polynomial a(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ GF (2)[x].
We sometimes write ⊕ and � to emphasize addition and multiplication in the
field, respectively. So for example we have 2 ⊕ 3 = x + (x + 1) = 1 and 3 � 3 =
(x + 1)2 = x2 + 1 = 5 if n ≥ 3.

We choose irreducible polynomials a(x) = x64 +x4 +x3 +x+1 for n = 64 and
a(x) = x128+x7+x2+x+1 for n = 128. These are actually primitive polynomials,
meaning the element 2 = x generates the entire multiplicative group GF (2n)∗

of order 2n − 1.

Security Notions. An adversary A is an oracle machine. A has access to its
oracle O(·) and, after interaction with the oracle, outputs a bit, 1 or 0. We write
A O(·) = 1 to denote the event that A outputs 1 after interacting with O(·).
We measure the resources of A in terms of time and query complexities. We
fix a model of computation and a method of encoding. The query complexity
is measured in terms of the number of queries (usually denoted q) and also in
terms of the maximum length of each query (denoted �). The length of a query
is measured in blocks (n bits).

We say that (informally) a block cipher E is a (secure) pseudo-random per-
mutation (PRP) if it is indistinguishable from a random permutation P

$←−
Perm(n), where $←− means uniformly random sampling. Specifically, we consider
the advantage function

Advprp
E (A) := Pr

[
A EK(·) = 1; K $←− K

]− Pr
[
A P (·) = 1; P $←− Perm(n)

]
,

and if this quantity is “small enough” for a class of adversaries, then we say
that E is a PRP. Here note that the probabilities are defined over internal coin
tosses of A , if any, as well as over the choices of K and P . We further define
Advprp

E (t, q) := maxA Advprp
E (A), where the max runs over all adversaries A

whose running time is at most t, making at most q queries to its oracle.
With abuse of notation let {0, 1}∗ denote the set of finite bit strings whose

length is at most �q blocks. Let Func(∗, n) denote the set of functions G :
{0, 1}∗ → {0, 1}n. Our goal is to construct a pseudo-random function (PRF)
FK : {0, 1}∗ → {0, 1}n having keys K ∈ K ′ (and preferably K ′ is not much
larger than K). Recall that any PRF can be used as a secure MAC. We
say that F is a secure PRF if it is indistinguishable from a random function
G

$←− Func(∗, n), or more precisely, we define

Advprf
F (A) := Pr

[
A FK(·) = 1; K $←− K ′]− Pr

[
A G(·) = 1; G $←− Func(∗, n)

]
.

We also define Advprf
F (t, q, �) to be the maximum advantage running over all

adversaries A whose running time is at most t, making at most q queries to its
oracle, each query being at most � blocks.

600 K. Yasuda

Game-Playing Techniques. Our proofs of security largely depend on the so-
called game-playing techniques [5]. In particular, we perform lazy sampling for
a random permutation P

$←− Perm(n). That is, P is initially set everywhere
undefined, and when a value P (X) becomes necessary at some point in the
game, a corresponding range point Y is randomly sampled as Y

$←− {0, 1}n,
so that we have P (X) = Y . We implicitly maintain two sets, DomP and RanP ,
which keep the record of already-defined domain points and that of range points,
respectively.

3 PMAC Plus: Specification and Security

There exist different versions of PMAC. The version that we use here is based
on the discrete-log-based LFSR (linear feedback shift register) developed by
Rogaway [21]. Our MAC construction PMAC Plus is defined in Algorithm 1. It
calls a subroutine Internal, which is described in Algorithm 2.

Algorithm 1. PMAC Plus[EK1 , EK2 , EK3](M)
1: (Σ, Θ)← Internal[EK1](M)
2: T ← EK2(Σ)⊕ EK3(Θ)
3: return T

Algorithm 2. Subroutine Internal[EK](M)
1: Δ0 ← EK(0)
2: Δ1 ← EK(1)
3: M ←M‖10∗
4: Partition M into M [1]

∥∥ · · · ∥∥ M [m]
5: for i = 1 to m do
6: X[i]←M [i]⊕ 2i ·Δ0 ⊕ 22i ·Δ1

7: Yi ← EK

(
X[i]

)
8: end for
9: Σ ← Y1 ⊕ · · · ⊕ Ym

10: Θ ← 2m−1 · Y1 ⊕ 2m−2 · Y2 ⊕ · · · ⊕ Ym

11: return (Σ, Θ)

In Algorithm 2, by “M [m]
∥∥ 10∗” we mean appending a bit 1 and then an

appropriate number of bits 0 so that the bit length of M [m]
∥∥ 10∗ becomes n. By

“partition M” we mean M = M [1]
∥∥ · · · ∥∥ M [m] so that

∣∣M [1]
∣∣ =

∣∣M [m]
∣∣ = n.

See Fig. 1 for a pictorial representation of our construction PMAC Plus.
The security of our PMAC Plus construction is as follows:

Theorem 1 (Security of PMAC Plus). We have

Advprf
PMAC Plus(t, q, �) ≤ 27�3q3

22n
+

3�q

2n
+ 3Advprp

E (t′, �q + 2),

where t′ is about t plus a time complexity necessary to compute E for �q +2q +2
times.

A New Variant of PMAC: Beyond the Birthday Bound 601

Fig. 1. Our PMAC Plus algorithm using three blockcipher keys K1, K2 and K3, where
E1 = EK1 , E2 = EK2 , E3 = EK3 , Δ0 = E1(0) and Δ1 = E1(1)

The additional term of 3Advprp
E (t′, �q+2) comes from the standard argument of

replacing actual blockciphers E1 = EK1 , E2 = EK2 and E3 = EK3 with random
permutations P1, P2 and P3, respectively.

4 Proofs of Security

We now prove that PMAC Plus[P1, P2, P3] is an O(22n/3)-secure PRF given
random permutations P1, P2 and P3.

4.1 Basic Ideas

Let A be an adversary that makes at most q queries, each query being at most
� blocks. The goal of A is to distinguish between the PMAC Plus[P1, P2, P3](·)
oracle and a random function G : {0, 1}∗ → {0, 1}n. We consider the game
described in Fig. 2. In games, given a set S ⊂ {0, 1}n, we write for its com-
plement S := {0, 1}n \ S. Codes of subroutines are given in Figures 3, 4, 5
and 6. We observe that the game with single-boxed statements coincides with a
random function G, whereas the game with double-boxed statements is exactly
PMAC Plus[P1, P2, P3]. These two algorithms differ only when Bad events occur.
Therefore, by the fundamental lemma of game-playing [5], we have

Pr
[
A PMAC Plus[P1,P2,P3](·) = 1

]− Pr
[
A G(·) = 1

] ≤ Pr
[
A sets Bad

]
,

where the bad events are classified into five “winning” events as

Pr[A sets Bad]
≤Pr[A sets Zero∗, Unfair∗, UpLow∗, LowUp∗ or Coll∗]
≤Pr[Zero∗] + Pr[Unfair∗] + Pr[UpLow∗] + Pr[LowUp∗] + Pr[Coll∗].

602 K. Yasuda

1: Δ0, Δ1
$←− {0, 1}n // sampling P1(0) and P1(1)

2: if Δ0 = 0 or Δ1 = 0 then
3: Zero∗ ← true
4: Bad← true Δ∗

$←− {0}
5: end if
6:
7: upon a query M do
8: (Σ, Θ)← Internal[P1](M) // lazy sampling for P1

9: if Σ /∈ DomP2 and Θ /∈ DomP3 then
10: go to Case A // lazy sampling for P2 and P3

11: end if
12: if Σ ∈ DomP2 and Θ /∈ DomP3 then
13: go to Case B // lazy sampling for P3

14: end if
15: if Σ /∈ DomP2 and Θ ∈ DomP3 then
16: go to Case C // lazy sampling for P2

17: end if
18: if Σ ∈ DomP2 and Θ ∈ DomP3 then
19: go to Case D // a bad event
20: end if
21: return T

Fig. 2. Main game

The first term can be easily bounded; it remains to bound the last four terms.
These correspond to Cases A, B, C and D, respectively, and they are described
as subroutines. Up to this point we essentially follow the same framework as the
proof of SUM-ECBC [23].

1: Choose a fair set R ⊂ RanP2 × RanP3

2: (U,L)
$←− RanP2 × RanP3

3: if (U, L) �∈ R then
4: if ¬Bad then
5: Unfair∗ ← true
6: end if
7: Bad← true (U, L)

$←− R
8: end if
9: T ← U ⊕ L

Fig. 3. Code for Case A

4.2 Bounding the Probability of Each Winning Event

Case A: Unfair∗. This case can be essentially handled by the technique of
fair sets developed by Lucks [16]. The proof is exactly the same as the case of
SUM-ECBC [23].

A New Variant of PMAC: Beyond the Birthday Bound 603

1: U ← P2(Σ)

2: L
$←− {0, 1}n

3: if L ∈ RanP3 then
4: if ¬Bad then
5: UpLow∗ ← true
6: end if

7: Bad← true L
$←− RanP3

8: end if
9: T ← U ⊕ L

1: L← P3(Θ)

2: U
$←− {0, 1}n

3: if U ∈ RanP2 then
4: if ¬Bad then
5: LowUp∗ ← true
6: end if

7: Bad← true U
$←− RanP2

8: end if
9: T ← U ⊕ L

Fig. 4. Code for Case B Fig. 5. Code for Case C

1: if ¬Bad then
2: Coll∗ ← true
3: end if
4: Bad← true T

$←− {0, 1}n T ← P2(Σ)⊕ P3(Θ)

Fig. 6. Code for Case D

Lemma 1 (Case A). We have

Pr[A sets Unfair∗] ≤ 2q3

22n
,

for q ≤ 2n−1.

Proof. The proof is given in [23], but for the sake of completeness we give one
in Appendix. ��

Case B: UpLow∗. To treat this case we need the following:

Lemma 2. For a pair of messages (M, M ′) such that M �= M ′, each being at
most � blocks, we have

Pr
[
Σ = Σ′; P $←− Perm(n)

] ≤ 8�

2n
,

where (Σ, Θ) ← Internal[P](M) and (Σ′, Θ′) ← Internal[P](M ′).

Proof. Consider lazy sampling for P . First draw a range point Δ := P (0). We
assume that Δ �= 0; the probability that Δ = 0 occurs is 1/2n. We next assume
that none of the input blocks X [a] or X ′[a] is 0 or 1; the probability that X [a] =
0, 1 or X ′[a] = 0, 1 occurs for some a ≤ � is at most 4�/2n.

Now without loss of generality we assume that |M | ≥ |M ′|. Let m, m′ be
the number of blocks in M and in M ′, respectively. Observe that we must have
m ≥ 2 for the above probability to be non-trivial. So assume m ≥ 2.

604 K. Yasuda

Determine an index i ∈ {1, . . . , m− 1} as follows. If m > m′, then set i := m.
If m = m′ and the last blocks are the only blocks that differ, then the above
probability becomes vacuous. So in the case of m = m′, let i ≤ m be the
maximum index such that M [i] �= M ′[i].

We focus on the input block X [i]. Assume that X [i] does not appear in any of
X [a] (1 ≤ a ≤ m−1) or X ′[a′] (1 ≤ a ≤ m′−1) except for itself. The probability
that X [i] = X [a] or X [i] = X ′[a′] occurs is at most

(
(�−1)+�

)
/2n = (2�−1)/2n.

Finally, consider the condition Σ = Σ′. Now resume the lazy sampling for P .
Sample the point P (X [i]) as Yi

$←− RanP after finishing sampling all other
points; the point P (X [i]) gets always sampled according to the way of choosing
the index i. In such a scenario the probability that Σ = Σ′ holds is at most
1/
∣∣RanP

∣∣ ≤ 1/
(
2n − 1 − (� − 2) − (� − 1)

)
/2n ≤ 1/(2n − 2�) ≤ 2/2n, assuming

� ≤ 2n−2 (otherwise the desired inequality would become meaningless).
We sum up each terms. Overall, the probability can be bounded as

1
2n

+
4�

2
+

2� − 1
2n

+
2
2n

≤ 8�

2n
,

as desired. ��
Now let M (1), . . . , M (q) denote A ’s queries. Then the probability that A sets
the UpLow∗ flag can be bounded as

q∑
i=2

Pr
[
Σ(i) ∈ DomP2 ∧ L(i) ∈ RanP3; P1, P2, P3

$←− Perm(n)
]

≤
q∑

i=2

i−1∑
j=1

Pr
[
(Σ(i) = Σ(j)); P1

$←− Perm(n)
] · Pr

[
L(i) ∈ RanP3; L(i) $←− {0, 1}n

]
≤

q∑
i=2

i−1∑
j=1

8�

2n
·
∣∣RanP3

∣∣
2n

≤
q∑

i=2

i−1∑
j=1

8�

2n
· 2q

2n
≤ q2

2
· 8�

2n
· 2q

2n
=

8�q3

22n
,

where we wrote (Σ(i), Θ(i)) := Internal[P1]
(
M (i)

)
and L(i) the sampling of L

at the i-the query.

Case C: LowUp∗. For this case we need the following lemma. Then the compu-
tation is similar to Case B, and we obtain the same bound of 8�q3/22n.

Lemma 3. For a pair of messages (M, M ′) such that M �= M ′, each being at
most � blocks, we have

Pr
[
Θ = Θ′; P $←− Perm(n)

] ≤ 8�

2n
,

where (Σ, Θ) ← Internal[P](M) and (Σ′, Θ′) ← Internal[P](M ′).

Proof. Similar to Lemma 2. ��

A New Variant of PMAC: Beyond the Birthday Bound 605

Case D: Coll∗. Since P1 is independent from P2 and from P3, we may fix
A ’s (distinct) queries and let M (1), . . . , M (q) denote them. We would like to
compute the probability that at the i-th query M (i) we get Σ(i) ∈ DomP2 and
Θ(i) ∈ DomP3. The event implies that there exist some earlier queries M (j) and
M (k) (j and k may be equal) such that Σ(j) = Σ(i) and Θ(k) = Θ(i).

Before evaluating the probability

Pr
[
(Σ(j) = Σ(i)) ∧ (Θ(k) = Θ(i)); P1

$←− Perm(n)
]
,

we first exclude the case that Ya
$←− RanP1 becomes zero (i.e., Ya = 0) in

sampling range points of P1 for messages M (1), . . . , M (q). The overall probability
that this event occurs is at most �q/2n.

We then consider the case when an “input collision” occurs among X(i)[a],
X(j)[a], X(k)[a]. By an “input collision” we mean an event X(∗)[a] = X(∗)[a′]
for some a �= a′. If input collisions occur at indices a < b < c such that
X(∗)[a] = X(∗)[b] = X(∗)[c], then this system of equations would determine
the values Δ0, Δ1, so the probability that this occurs is at most

(
3�
3

) · 1/2n ≤
5�3/2n.

Suppose no 3-collision occurs. The probability that a 2-collision happens upon
sampling Δ

$←− {0, 1}n for a fix set of M (i), M (j) and M (k) is at most
(
3�
2

) ·
1/2n ≤ 4.5�2/2n. Under the event of an input (2-)collision, we focus on the
equation Θ(i) = Θ(k). We show that this provides a non-trivial equation for
some random variable Y

(∗)
a . Without loss of generality assume, for the moment,

that m(i) ≤ m(k) where these are the number of blocks in the message M (i) and
that in M (k), respectively. Let α ∈ {1, . . . , m(i)} be the largest index such that
M (i)[α] �= M (k)[α], if such an index exists. Then we have X(i)[α] �= X(k)[α], so
at least one of these input values is non-zero, which means that either Y

(i)
α =

P (X(i)[α]) or Y
(k)
α = P (X(k)[α]) gets sampled. For that random variable the

equation Θ(i) = Θ(k) is non-trivial. On the other hand, if no such index α exists,
then it means that M (i)[a] = M (k)[a] for all a ∈ {1, . . . , m(i)} and m(i)+1 ≤ m(k)

(In such a case we say that M (i) is “contained” in M (k)). Consider the values
X(k)[m(i)+1], . . . , X(k)[m(k)]. It cannot be the case that all of these input values
are the same, as it would imply a zero value in the range of P1. Therefore, we
have m(i) + 2 ≤ m(k), and let β ∈ {m(i) + 1, . . . , m(k)} be the largest index such
that X(k)[β] �= 0. Then we see that Y

(k)
β = P (X(k)[β]) gets always sampled.

Therefore, the probability that this equation is satisfied is at most 1/
∣∣RanP1

∣∣ ≤
1/(2n − 2�) ≤ 2/2n assuming � ≤ 2n−2.

We can now bound the probability that, for a fix set of M (i), M (j) and M (k),
an input collision occurs and the equation Θ(i) = Θ(k) holds. It would be at
most 4.5�2/2n · 2 · /2n ≤ 9�2/22n.

Consider the case when no input collision occurs among X(i)[a], X(j)[a],
X(k)[a]. We start with the case j = k. Without loss of generality assume,
for the moment, that m(i) ≤ m(j) where these are the number of blocks in
the message M (i) and that in M (j), respectively. It can be directly verified

606 K. Yasuda

that we can choose indices α < β such that (a) β ≤ m(i) and M (i)[α] �= M (j)[α]
and M (i)[β] �= M (j)[β], (b) α ≤ m(i) and M (i)[α] �= M (j)[α] and m(i) + 1 ≤
β ≤ m(j), or (c) m(i) + 1 ≤ α < β ≤ m(j). In any case, the system of equations
Σ(j) = Σ(i) and Θ(j) = Θ(i) provides a unique solution set for the random
variables Y

(∗)
α , Y

(∗)
β . So the probability of this event is at most 1/

∣∣RanP1

∣∣ ·
1/
∣∣RanP1

∣∣ ≤ 1/(2n − 2�)2 ≤ 4/22n, assuming � ≤ 2n−2.
It remains to treat the case j �= k. We consider the cases (a) M (i) is contained

in M (j), (b) M (j) is contained in M (i), (c) M (i) is contained in M (k), or (d) M (k)

is contained in M (i). For example, we discuss case (a). We can choose indices α, β
such that (a1) m(k) +1 ≤ α ≤ m(i) and m(i) +1 ≤ β ≤ m(j), (a2) m(i) +1 ≤ α ≤
m(k) and m(k)+1 ≤ β ≤ m(j), (a3) m(i)+1 ≤ α ≤ m(j) and m(j)+1 ≤ β ≤ m(k),
(a4) m(i) + 1 ≤ α ≤ m(j) and 1 ≤ β ≤ m(i) and M (i)[β] = M (j)[β] �= M (k)[β],
or (a5) m(i) + 1 ≤ α ≤ m(j) and M (j)[α] �= M (k)[α]. In any case, the system
of equations Σ(j) = Σ(i) and Θ(j) = Θ(i) provides a unique solution set for two
random variables, so the probability of this event is at most 4/22n, assuming
� ≤ 2n−2.

Lastly, assume that none of the containment (a) through (d) occurs. Then it
means that there exist indices α, β such that M (i)[α] �= M (j)[α] and M (i)[β] �=
M (k)[β]. If α �= β, then we can simply choose Y

(i)
α and Y

(i)
β to be the two

variables. Suppose no such indices exist, that is, α = β and this is the only
index that a difference occurs. If M (j)[α] �= M (k)[α], then we can choose two
variables accordingly. If M (j)[α] = M (k)[α], then since M (j) �= M (k), then M (j)

is contained in M (k), or M (k) is contained in M (j), or there exists an index γ > α
such that M (j)[γ] �= M (k)[γ]. In any case, the system of equations Σ(j) = Σ(i)

and Θ(j) = Θ(i) gives us a unique solution set for two random variables, and the
probability of this event can be bounded as 4/22n, again assuming � ≤ 2n−2.

Now we are done with Case D. We just run indices i, j and k to get

�q

2n
+

q∑
i=2

i−1∑
j=1

i−1∑
k=1

5�3 + 9�2 + 4 + 4 + 4
22n

≤ �q

2n
+

q3

3
· 26�2

22n
≤ �q

2n
+

9�2q3

22n

for bounding the probability that case D happens.

4.3 Summing Up the Probabilities

We now bound the overall probability. The bound sums up to

Pr[A sets Zero∗, Unfair∗, UpLow∗, LowUp∗ or Coll∗]

≤ 2
2n

+
2q3

22n
+

8�q3

22n
+

8�q3

22n
+

�q

2n
+

9�3q3

22n

≤27�2q3

22n
+

3�q

2n
,

which completes the proof.

A New Variant of PMAC: Beyond the Birthday Bound 607

5 Discussion

We have presented a 3-key rate-1 MAC construction based on a PMAC-type it-
eration. This raises a challenge to come up with a 1-key rate-1 MAC construction
which is secure beyond the birthday bound.

After beating the birthday bound of O(2n/2), we seem to be encounter-
ing another “bound problem” at the query complexity of O(22n/3). To beat
this new bound efficiently is also a challenge for blockcipher-based message
authentication.

Acknowledgments. The author would like to thank CRYPTO 2011 program
committee members and reviewers for valuable feedback.

References

1. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom
functions: Security beyond the birthday barrier. In: Wiener, M. J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)

2. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

3. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidel-
berg (1994)

4. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Hei-
delberg (2005)

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

6. Bernstein, D.J.: How to stretch random functions: The security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

7. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages:The Three-Key
Constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

8. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 384–397. Springer, Heidelberg (2002)

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

10. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

608 K. Yasuda

11. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

12. Joux, A., Poupard, G., Stern, J.: New Attacks against Standardized MACs. In:
Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 170–181. Springer, Heidelberg
(2003)

13. JTC1. ISO/IEC 9797-1:1999 Information technology—Security techniques—
Message Authentication Codes (macs)—Part 1: Mechanisms using a block cipher
(1999)

14. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Hei-
delberg (2009)

15. Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

16. Lucks, S.: The Sum of PRPs Is a Secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

17. Minematsu, K., Matsushima, T.: New Bounds for PMAC, TMAC, and XCBC. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Heidelberg
(2007)

18. NIST. Recommendation for block cipher modes of operation: The CMAC mode
for authentication. SP 800-38B (2005)

19. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. Cryptology 13(3),
315–338 (2000)

20. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

21. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

22. Sarkar, P.: Pseudo-random functions and parallelizable modes of operations of a
block cipher. IEEE Transactions on Information Theory 56(8), 4025–4037 (2010)

23. Yasuda, K.: The Sum of CBC MACs Is a Secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010)

A Proof Lemma 1

Proof. The proof is almost exactly the same as the one for Lucks’ sum
2 con-

struction P2(X) ⊕ P3(X) [16]. The fact that we have Σ �= Θ does not have
much effect on the computation of the probability. Specifically, we consider the
following simulation of P2(Σ) ⊕ P3(Θ).

The code without the boxed statement corresponds with P2(Σ)⊕P3(Θ). The
code with the boxed statement corresponds with a random oracle R, because
the set R is fair; that is, R is chosen so that the number of pairs (U, L) ∈ R such
that

T = U ⊕ L

is the same for each value T ∈ {0, 1}n. In the code, we choose a fair set R as
follows. Enumerate RanP2 as {U1, . . . , Uα} and RanP3 as {L1, . . . , Lβ}. For each

A New Variant of PMAC: Beyond the Birthday Bound 609

1: Y ← RanP2, Z ← RanP3

2: Choose a fair set R ⊂ Y × Z
3: (U, L)

$←− Y × Z
4: if (U, L) �∈ R then

5: Bad ← true (U, L)
$←− R

6: end if
7: T ← U ⊕ L
8: return T

i and j such that 1 ≤ i ≤ α and 1 ≤ j ≤ β we choose arbitrarily representatives
(U ′

i , L
′
j) ∈ Y × Z such that U ′

i ⊕ L′
j = Ui ⊕ Lj. We then define R ← Y × Z \⋃

i,j{(U ′
i , L

′
j)}. We see that, for each value T ∈ {0, 1}n,∣∣{(U, L) ∈ R | U ⊕ L = T }∣∣ = 2n − α − β,

so R is indeed a fair set.
After q queries, the overall probability that the bad event occurs becomes

Pr
[
Bad

] ≤ q∑
i=1

∣∣(Y × Z) \ R
∣∣

|Y × Z|

=
q∑

i=1

αβ

(2n − α)(2n − β)

≤
q−1∑
i=0

i2

(2n − q)2

≤ 1
(2n − q)2

·
q−1∑
i=0

i2

≤ 1
(2n−1)2

· q(q − 1)(2q − 1)
6

≤ 2q3

22n
,

where we used the condition q ≤ 2n−1. ��

Authenticated and Misuse-Resistant Encryption
of Key-Dependent Data

Mihir Bellare and Sriram Keelveedhi

Department of Computer Science & Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, California 92093, USA
http://www.cs.ucsd.edu/users/{mihir,skeelvee}/

Abstract. This paper provides a comprehensive treatment of the secu-
rity of authenticated encryption (AE) in the presence of key-dependent
data, considering the four variants of the goal arising from the choice
of universal nonce or random nonce security and presence or absence of
a header. We present attacks showing that universal-nonce security for
key-dependent messages is impossible, as is security for key-dependent
headers, not only ruling out security for three of the four variants but
showing that currently standarized and used schemes (all these target
universal nonce security in the presence of headers) fail to provide secu-
rity for key-dependent data. To complete the picture we show that the
final variant (random-nonce security in the presence of key-dependent
messages but key-independent headers) is efficiently achievable. Rather
than a single dedicated scheme, we present a RO-based transform RHtE
that endows any AE scheme with this security, so that existing imple-
mentations may be easily upgraded to have the best possible seurity in
the presence of key-dependent data. RHtE is cheap, software-friendly,
and continues to provide security when the key is a password, a setting
in which key-dependent data is particularly likely. We go on to give a
key-dependent data treatment of the goal of misuse resistant AE. Imple-
mentations are provided and show that RHtE has small overhead.

1 Introduction

The key used by BitLocker to encrypt your disk may reside on the disk. The key
under which a secure filesystem is encrypted may itself be stored in a file on the
same system. The result is encryption of key-dependent data.

There is growing recognition that security of key-dependent data, first de-
fined to connect cryptography to formal methods [18] and provide anonymous
credentials [24], is a more direct and widespread concern for secure systems. The
problem is particularly acute when keys are passwords, for many of us store
our passwords on our systems and systems store password hashes. If nothing
else, one cannot expect applications to ensure or certify that their data is not
key-dependent, making security for key-dependent data essential for easy-to-use,
robust and misuse-resistant cryptography.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 610–629, 2011.
c© International Association for Cryptologic Research 2011

Authenticated Encryption of Key-Dependent Data 611

This paper provides a comprehensive treatment of security for key-dependent
data for the central practical goal of symmetric cryptography, namely authen-
ticated encryption. For each important variant of the goal we either show that
it is impossible to achieve security or present an efficient solution. Our attacks
rule out security for in-use and standardized schemes in their prescribed and
common modes while our solutions show how to adapt them in minimal ways to
achieve the best achievable security. Let us now look at all this more closely.

Background. The standard IND-CPA and IND-CCA goals that our encryption
schemes are proven to meet do not guarantee security when the message being
encrypted depends on the key. (In the symmetric setting, we mean the single
key used for both encryption and decryption.) Black, Rogaway and Shrimpton
(BRS) [18] extend IND-CPA to allow key-dependent messages (KDMs). The
adversary provides its encryption oracle with a function φ, called a message-
deriving function, that the game applies to the target key K to get a message
M , and the adversary is returned either an encryption of M under K or the
encryption of 0|M|, and must be unable to tell which. (They, and we, actually
consider a multi-key setting, but the single-key setting will simplify the current
discussion.) They present a simple random-oracle (RO) model solution.

Post-BRS work has aimed mainly at showing existence of schemes secure
against as large as possible a class of message deriving functions without random
oracles [19,36,4,21,23,20,7,25,17,3,38]. The schemes suffer from one or more of the
following: they are in the asymmetric setting while data encryption in practice is
largely symmetric; they are too complex to consider usage; or security is provided
for a limited, mathematical class of message-deriving functions which does not
cover all key-dependencies in systems.

Backes, Pfitzmann and Scedrov (BPS) [6] define KDM-security for a basic
form of authenticated encryption and and show that Encrypt-then-MAC [12]
achieves it if the encryption scheme is KDM secure and the MAC is strongly
unforgeable (remarkably, no KDM security is required from the MAC), resulting
in RO model solutions via [18]. In this paper we will extend their treatment of
AE in several directions.

Setting. Privacy without authenticity, meaning plain (IND-CPA) encryption,
is of limited utility. The most important symmetric primitive in practice is au-
thenticated encryption (AE), which provides both privacy and integrity. This
is evidenced by numerous standards and high usage: CCM [50,49] is in IEEE
802.11, IEEE 802.15.4, IPSEC ESP and IKEv2; GCM [39] is standardized by
NIST as SP 800-38D; EAX [16] is in ANSI C12.22 and ISO/IEC 19772; OCB
2.0 [45,47] is in ISO 19772. Consideration of KDM security for these standards
is compelling and urgent but has not been done. We seek to fill this gap.

Symmetric encryption schemes take as input a nonce, also called an IV. Clas-
sically — [9] following [30]— this was chosen at random by the encrypter. We call
this random-nonce security (r). Later schemes targeted universal-nonce security
(u) [44,46,48] where security must hold even when the adversary provides the
nonce, as long as no nonce is re-used. This is adopted by the above-mentioned
standards.

612 M. Bellare and S. Keelveedhi

(ki, ki) (kd, kd) (ki, kd) (kd, ki)

u Yes No No No
r Yes No No Yes

Fig. 1. Each of message and header may be key-dependent (kd) or key-independent
(ki), leading to the four choices naming the columns. Security could be universal-nonce
(u) or random-nonce (r), leading to the two choices naming the rows. For each of the
8 possibilities, we indicate whether security is possible (Yes, meaning a secure scheme
exists) or impossible (No, meaning there is an attack that breaks any scheme in this
category). The first column reflects known results when inputs are not key-dependent.

Besides key, nonce and message, modern AE schemes, including the above
standards, take input a header, or associated data [44]. The scheme must provide
integrity but not privacy of the header. Thus we must consider that not just the
message, but also the header, could be key-dependent.

Abbreviate key-dependent by kd and key-independent by ki. With two choices
for nonce type —nt ∈ {u, r}— two for message type —mt ∈ {kd, ki}— and two
for header type —ht ∈ {kd, ki}— we have 8 variants of AE. The form of AE
treated by Backes, Pfitzmann and Scedrov [6] is the special case of (nt, mt, ht) =
(r, kd, ki) in which the header is absent.

Definition. Our first contribution is a definition of security for AE under key-
dependent inputs that captures all these 8 variants in a unified way. The encryp-
tion oracle takes functions φm, φh, and applies them to the key to get message
and header respectively, and the adversary gets back either an encryption of
these under the game-chosen target key, or a random string of the same length.
The decryption oracle takes a ciphertext and, importantly, not a header but a
function φh to derive it from the key, and either says whether or not decryption
under the key is valid, or always says it is invalid. Varying the way nonces are
treated and from what spaces φm, φh are drawn yields the different variants of
the notion. A definition of MACs for key-dependent messages emerges as the
special case of empty messages.

On a real system, the data may be a complex function of the key, such as a
compressed (zipped) version of file containing, amongst other things, the key, or
an error-corrected version of the key. If the key is a password the system will store
its hash that will be encrypted as part of the disk, so common password-hashing
functions must be included as message-deriving functions. All this argues for
not restricting the types of message-deriving or header-deriving functions, and
indeed, following [18,6], we allow any functions in this role. These functions are
even allowed to call the RO, a source of challenges in proofs.

Underlying the above definition is a new one of the standard AE goal that
simplifies that of [48] by having the decryption oracle turn into a verification
oracle, returning, not the full decryption, but only whether it succeeded or not,
along the lines of [12]. When data is key-independent, these and prior formula-
tions [12,37] are equivalent, but the difference is important with key-dependent
data.

Authenticated Encryption of Key-Dependent Data 613

Impossibility results. We present an attack that shows that no AE scheme
can achieve universal-nonce security for key-dependent data. (Regardless of whe-
ther or not the header is key-dependent.) This explains the “No” entries in the
first row of Fig. 1. The attack requires only that the nonce is predictable. Thus it
applies even when the nonce is a counter, ruling out KDM security for counter-
based AE schemes and showing that the standardized schemes (CCM, GCM,
EAX, OCB) are all insecure for key-dependent messages in this case. The at-
tack does not use the decryption oracle, so rules out even KDM universal-nonce
CPA secure encryption. Thus, the universal-nonce security proven for the stan-
dardized schemes for key-independent messages fails to extend to key-dependent
ones, demonstrating that security for key-dependent messages is a fundamentally
different and stronger security requirement.

An attack aiming to show that no stateful scheme is KDM-CPA secure was
described in [18] but the message-deriving functions execute a search and it is
not clear how long this will take to terminate or whether it will even succeed.
(In asymptotic terms, the attack is not proven to terminate in polynomial time.)
Our attack extends theirs to use pairwise independent hash functions, based on
which we prove that it achieves a constant advantage in a bounded (polynomial)
amount of time. Interestingly, as a corollary of the bound proven on our modified
attack, we are able to also prove a bound on the running time of the attack of [18],
although it was not clear to us how to do this directly.

We also present an attack that shows that no AE scheme can achieve secu-
rity for key-dependent headers. (Even for random, rather than universal, nonce
security, and even for key-independent messages.) This explains the “No” entries
in columns 2 and 3 of Fig. 1. This rules out security of the standardized schemes
even with random nonces in a setting where headers may be key-dependent.

One might consider this trivial with the following reasoning: “Since the header
is not kept private, the adversary sees it, and if it is key-dependent, it could for
example just be the key, effectively giving the adversary the key.” The fallacy is
the assumption that the adversary sees the header. In our model, it is given a
ciphertext but not directly given the header on which the ciphertext depends.
This choice of model is not arbitrary but reflects applications, where a key-
dependent header is present on the encrypting and decrypting systems (which
may be the same system) but not visible to the adversary. Instead, the attack
exploits the ability of the adversary to test validity of ciphertexts with implicitly
specified headers.

RHtE. We turn to achieving security in the only viable, but still important set-
ting, namely (nt, mt, ht) = (r, kd, ki). As background, recall that to achieve
KDM-CPA security, BRS [18] encrypt message M by picking R at random and
returning H(K‖R)⊕M) where H is a RO returning |M | bits. (Here and below,
it is assumed the decryptor and adversary also get the nonce R, but it is not
formally part of the ciphertext.) We note that this is easily extended to achieve
(r, kd, ki)-AE security. To encrypt header H and message M under key K, pick R
at random and return (C, T) where C = H1(K‖R)⊕M and T = H2(K‖R, H, C)
and H1, H2 are ROs.

614 M. Bellare and S. Keelveedhi

Randomized Hash then Encrypt (RHtE) is more practical. Unlike the above, it
is not a dedicated scheme but rather transforms a standard (secure only for key-
independent data) base AE scheme into a (r, kd, ki)-secure AE scheme. RHtE,
given key L and randomness R, derives subkey K = H(R‖L) via RO H and
then runs the base scheme with key K on the header and message to get the
ciphertext C. Only one-time security of the base scheme is required, so it could
even be deterministic. The software changes are non-intrusive since the code
of the base scheme is used unchanged. Thus RHtE can easily be put on top of
existing standards like CCM, GCM, EAX, OCB to add security in the presence
of key-dependent messages. As long as these base schemes transmit their nonce,
RHtE has zero overhead in bandwidth because it can use the base scheme with
some fixed, known nonce and use the nonce space for R. (It is okay to re-use the
base-scheme nonce because this scheme is only required to be one-time secure. Its
key is changing with every encryption.) The computational overhead of RHtE is
independent of the lengths of header and message and hence becomes negligible
as these get longer.

The proof of security is surprisingly involved due to a combination of three
factors. First is that the message-deriving functions are allowed to call the RO.
Second, while the BRS scheme and its extension noted above are purely infor-
mation theoretic, the security of RHtE is computational due to the base scheme,
and must be proven by reduction. Third, unlike BRS, we must deal with decryp-
tion queries. To handle all this we will need to invoke the security of the base
scheme in multiple, inter-related ways, leading to a proof with two, interleaved
hybrids that go in opposite directions.

Some indication of the complexity of the proof is provided by the fact that
the bound we finally achieve in Theorem 5 is weaker than we would like. It is an
interesting open problem to either prove a better bound for RHtE or provide an
alternative scheme with such a bound.

Extensions. In filesystem encryption, as with most applications, security is
likely to stem from your password pw. The system stores a hash pw = h(pw) of
it to authenticate you and an AE scheme must then encrypt or decrypt using
pw. Key dependent data is now an even greater concern. One reason is that users
tend to write their passwords in files in their filesystems. The other reasons is
that pw is a function of pw that must be stored on the system and thus will be
encrypted with disk encryption. To address this, we show that RHtE is secure
even when its starting key L is a password as long as the latter is drawn from a
space that, asymptotically, has super-logarithmic min-entropy.

The security discussed so far relies crucially on using fresh randomness with
each encryption. This is fine in theory but in real systems, failures of random-
number generation (RNG) due to poorly gathered entropy or bugs are all too
common and have lead to major security violations [29,33,22,42,41,1,51,27]. Sim-
ply asking that system designers get their RNGs “right” is unrealistic.
Misuse-resistant [18] or hedged [8] encryption take a different approach, miti-
gating the damage caused by RNG failures by providing as much security as
possible when randomness fails.

Authenticated Encryption of Key-Dependent Data 615

We extend this to the key-dependent data setting in the full version [10]. A
misuse resistant AE scheme for key-dependent data provides two things. First,
it must continue to provide (r, kd, kd)-security when the nonce is random. Sec-
ond, even for nonces that are entirely adversary controlled (and may repeat),
the scheme must meet a second condition that we define to capture its providing
the security of deterministic AE in the presence of key-dependent data. In the
latter case it is impossible to protect against certain classes of message-deriving
functions. We show however that RHtE provides security against any class of
functions satisfying the output-unpredictability and collision-resistance condi-
tions of [11]. This is a fairly significant class, containing functions of pragmatic
interest.

Implementation. We implemented RHtE for base schemes CCM, EAX and
GCM, with SHA256 instantiating the RO. The results, provided in [10]show for
example that with CCM the slowdown is 11% for 5KB messages and only 1%
for 50KB messages. The implementations use the crypto++ library on a Intel
Core i5 M460 CPU running at 2.53 GHz with code compiled using g++ -O3 for
data sizes small enough to fit in the level 2 cache.

Related work. The issue (key-dependent messages) was pointed out as early
as Goldwasser and Micali [30], and asymmetric encryption of decryption keys
was treated by Camenisch and Lysyanskaya [24], but a full treatment of key-
dependent message (KDM) encryption awaited BRS [18], who provided RO
model KDM-CPA secure schemes. Researchers then asked for what classes of
message-deriving functions one could achieve KDM security in the standard
model, providing results for both symmetric and asymmetric encryption under
different assumptions [19,36,4,21,23,20,7,25,17,3,38]. On the more practical side,
Backes, Dürmuth and Unruh [5] show that RSA-OAEP [13,28] is KDM-secure
in the RO model. Backes, Pfitzmann and Scedrov [6] treat active attacks and
provide and relate a number of different notions of security.

By showing that IND-CPA security does not even imply security for the en-
cryption of 2-cycles, Acar, Belenkiy, Bellare and Cash [2] and Green and Hohen-
berger [32] settled a basic question in this area and showed that achieving even
weak KDM-security requires new schemes, validating previous efforts in that di-
rection. Acar et. al. [2] also connect KDM secure encryption to cryptographic
agility. Haitner and Holenstein [34] study the difficulty of proving KDM security
by blackbox reduction to standard primitives.

Halevi and Krawczyk [35] consider blockciphers under key-dependent inputs.
Muñiz and Steinwandt [40] study KDM secure signatures. González, in an
unpublished thesis [31], studies KDM secure MACs.

Motivated by attacks on SSH, Paterson and Watson [43] consider notions of
security (in the standard ki-data context) which allow the attacker to interact
in a byte-by-byte manner with the decryption oracle. Our treatment does not
encompass such attacks, and extending the model of [43] to allow key-dependent
data is an interesting direction for future work.

616 M. Bellare and S. Keelveedhi

2 Definitions

We provide a unified definition for universal and random nonce AE security and
then extend this to definitions of universal and random nonce AE security in the
presence of key-dependent messages and headers.

Notation. If S is a (finite) set then s ←$ S denotes the operation of picking s
from S at random and |S| is the size of S. Read the term “efficient” as meaning
“polynomial-time” in the natural asymptotic extension of our concrete frame-
work. If x is a string then |x| denotes its length and x[i] denotes its i-th bit. The
empty string is denoted ε. By a1‖ . . . ‖an, we denote the concatenation of strings
a1, . . . , an. Unless otherwise indicated, an algorithm may be randomized. We
denote by y ←$ A(x1, x2, . . .) the operation of running A on the indicated inputs
and fresh random coins to get an output denoted y. For integers k, w let Fun(k, w)
be the set of all functions φ for which there exists an integer ol(φ), called the out-
put length of φ, such that φ: ({0, 1}k)w → {0, 1}ol(φ). Input-deriving functions
will be drawn from this set. Let Cns(k, w) be the subset of Fun(k, w) consisting
of constant functions, restricting attention to which drops KDI (key-dependent
input) notions of security down to their standard, non-KDI counterparts.

Games. Some of our definitions and proofs are expressed via code-based
games [15]. Such a game —see Fig. 2 for an example— consists of procedures
that respond to adversary oracle queries. In an execution of game G with an ad-
versary A, the latter must make exactly one Initialize query, this being its first
oracle query, and exactly one Finalize query, this being its last oracle query. In
between, it can query other game procedures. Each time it makes a query, the
corresponding game procedure executes, and what it returns, if anything, is the
response to A’s query. The output of Finalize, denoted GA, is called the output
of the game, and we let “GA ⇒ d” denote the event that this game output takes
value d. If Finalize is absent it is understood to be the identity function, so
the game output is the adversary output. Boolean flags are assumed initialized
to false and BAD(GA) is the event that the execution of game G with adversary
A sets flag bad to true. The running time of an adversary by convention is the
worst case time for the execution of the adversary with the game defining its
security, so that the time of the called game procedures is included.

AE syntax. A symmetric encryption scheme SE = (K, E ,D) is specified by
a key generation algorithm K that returns k-bit strings, an encryption func-
tion E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and decryption function
D: {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}. Inputs to E are key,
nonce, header and message, and output is a ciphertext. Inputs to D are key,
nonce, header and ciphertext, and output is a message or ⊥. We refer to k
as the keylength and n as the noncelength. Both E and D are determinis-
tic, it being the way nonces are handled by the games defining security that
will distinguish universal-nonce and random-nonce security. We require that
D(K, N, H, E(K, N, H, M)) = M for all values of the inputs shown. We also
require that E is length respecting in the sense that the length of a ciphertext
depends only on the length of the message and header. Formally, there is a

Authenticated Encryption of Key-Dependent Data 617

proc Initialize // KIAESE,nt

K←$K
S ← ∅
b←$ {0, 1}
proc Enc(N, H,M) // KIAESE,nt

If (nt = r) then N ←$ {0, 1}n
If (b = 1) then C ← E(K,N, H, M)
Else c← cl(|M |, |H |) ; C ←$ {0, 1}c
S ← S ∪ {(N, H, C)}
Return (N, C)

proc Dec(N, H, C) // KIAESE,nt

If (N, H, C) ∈ S then return ⊥
If (b = 1) then M ← D(K, H, N, C)
Else M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Finalize(b′) // KIAESE,nt

Return (b′ = b)

proc Initialize(w) // KDAESE,nt

For j = 1, . . . , w do
Kj ←$ K ; Sj ← ∅

b←$ {0, 1}
proc Enc(j, N, φh, φm) // KDAESE,nt

M ← φm(K1, . . . , Kw) ; H ← φh(K1, . . . , Kw)
If (nt = r) then N ←$ {0, 1}n
If (b = 1) then C ← E(Kj, N, H,M)
Else c← cl(ol(φm), ol(φh)) ; C ←$ {0, 1}c
Sj ← Sj ∪ {(N, H,C)}
Return (N, C)

proc Dec(j, N, φh, C) // KDAESE,nt

H ← φh(K1, . . . , Kw)
If (N, H, C) ∈ Sj then return ⊥
If (b = 1) then M ← D(Kj , N, H,C)
Else M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Finalize(b′) // KDAESE,nt

Return (b′ = b)

Fig. 2. On the left is game KIAESE,nt defining AE-security of encryption scheme SE =
(K, E ,D), where nt ∈ {u, r} indicates universal or random nonce. On the right is game
KDAESE,w,nt defining KDI AE-security of SE.

function cl(·, ·) called the ciphertextlength such that |C| = cl(|M |, |H |) for any
C that may be output by E(·, ·, H, M).

As in [46,48], D takes the nonce and header as an input. (In this view, the
ciphertext in standard counter-mode encryption does not incude the counter.
It is up to the application to transmit nonce and header if necessary, so the
“ciphertext” in practice may be more than the output of E , but in many settings
the receiver gets nonce and header in out-of-band ways.) But our treatment
differs from standard ones [9] in that the nonce must be explicitly provided to
D even when it is random. This means that, for randomized schemes, we are
limited to ones that make the randomness public, but this is typically true. The
restriction is only to compact and unify the presentation. Otherwise we would
have needed separate games to treat universal and random nonce security.

AE security. We now define standard (neither message nor header is key-
dependent) AE security for SE = (K, E ,D). Consider game KIAESE,nt shown on
the left side of Fig. 2. Define the advantage of adversary A via Advae-nt

SE (A) =
2 Pr[KIAEA

SE,nt ⇒ true] − 1. When nt = u the definition captures what we call
universal-nonce security. (It is simply called nonce-based security in [46,44,48].)

618 M. Bellare and S. Keelveedhi

It is understood that in this case we only consider A that is unique-nonce, mean-
ing we have N �= N ′ for any two Enc queries N, H, M and N ′, H ′, M ′. Security
is thus required even for adversary-chosen nonces as long as no nonce is used
for more than one encryption. When nt = r, the adversary-provided nonce in
Enc is ignored, a random value being substituted by the game, and we have
random-nonce security, in the classical spirit of randomized encryption [30,9].
The nonce returned by Enc is redundant in the u case but needed in the r case
and thus always returned for uniformity.

Historically the first definitions of security for AE had separate privacy (IND-
CPA) and integrity (INT-CTXT) requirements [12,37,14]. Our version is a blend
of the single-game formulation of [48] and INT-CTXT. Privacy is in the strong
sense of indistinguishability from random, meaning ciphertexts are indistinguish-
able from random strings, which implies the more common LR-style [9] privacy,
namely that ciphertexts of different messages are indistinguishable from each
other. (A subtle point is that the length-respecting property assumed of E is
important for this implication.) The integrity is in the fact that the adversary
can’t create new ciphertexts with non-⊥ decryptions. (“New” means not output
by Enc.) Unlike [48], oracle Dec does not return decryptions but only whe-
ther or not they succeed. This simpler version is nonetheless equivalent to the
original. IND-CCA is implied by this definition of AE [12,44].

KDI security of AE. We now extend the above along the lines of [18,6] to
provide our definition of security for AE in the presence of key-dependent inputs,
considering both key-dependent messages and key-dependent headers. Consider
game KDAESE,nt shown on the right side of Fig. 2. Define the advantage of
adversary A via Advae-nt

SE (A) = 2 Pr[KDAEA
SE,nt ⇒ true] − 1. The argument w

to Initialize is the number of keys; arguments φm, φh (message and header
deriving functions, respectively) in the Enc,Dec queries must be functions in
Fun(k, w); ol(φ) is the output length of φ ∈ Fun(k, w); and cl is the ciphertext
length of SE. When nt = u the definition again captures universal-nonce se-
curity. That A is unique-nonce (always assumed in this case) now means that
for each j ∈ [1..w] we have N �= N ′ for any two Enc queries j, N, φm, φh and
j, N ′, φ′

m, φ′
h. When nt = r we have random-nonce security.

Messages could be key-dependent or not, and so could headers, giving rise
to four settings of interest. These are best captured by considering different
classes of adversaries. For Φm, Φh ⊆ Fun(k, w) let A[Φm, Φh] be the class of
all adversaries A for which φm in A’s Enc queries is in Φm and φh in its
Enc,Dec queries is in Φh. Let A[mt, ht] = A[Φm, Φh] where the values of
(Φm, Φh) corresponding to (mt, ht) = (kd, kd), (kd, ki), (ki, kd), (ki, ki) are, re-
spectively, (Fun(k, w), Fun(k, w)), (Fun(k, w), Cns(k, w)), (Cns(k, w), Fun(k, w)),
(Cns(k, w), Cns(k, w)). Say that SE = (K, E ,D) is (nt, mt, ht)-AE secure if
Advae-nt

SE (A) is negligible for all efficient A ∈ A[mt, ht].
Now that the header may not be known to the adversary in a Dec query, it

does not know in advance whether or not (H, N, C) ∈ Sj and it deserves to know
whether rejection took place due to this or due to unsuccessful decryption. This
why we do not return ⊥ for both but rather ⊥ for one and 0 for the other. It was

Authenticated Encryption of Key-Dependent Data 619

to disambiguate these that we found it convenient to modify the starting defi-
nition of AE. The issue is crucial when considering security with key-dependent
headers.

In the RO model there is an additional procedure Hash representing the RO.
As usual it may be invoked by the scheme algorithms and the adversary, but,
importantly, also by the input-deriving functions φm, φh.

For input-deriving functions to be adversary queries it is assumed they are
encoded in some way. Recall that, as per our convention, the running time of
A is that of the execution of A with the game, so A pays in run time if it
uses functions whose description or evaluation time is too long. In asymptotic
terms, A is restricted to polynomial-time computable input-deriving functions,
and their description could be set to the Turing-machine that computes them.

Passwords as keys. The key-generation algorithm K in our syntax SE =
(K, E ,D) does not have to output random k-bit strings but could induce an
arbitrary distribution, allowing us to capture passwords. The metric of interest
in this case is the min-entropy H∞(K) = − log2(GP(K)), where the guessing
probability GP(K) is defined as the maximum, over all k-bit strings K, of the
probability that K ′ = K when K ′ ←$ K. We aim to provide security as long as
the min-entropy of the key-generator is not too small.

Providing security when keys are passwords is crucial because key-dependent
data is more natural and prevalent in this case. In practice, our keys are largely
passwords. They may be stored on disk. Their hashes are stored on the disk by
the system.

3 Impossibility Results

We rule out universal-nonce security for key-dependent messages as well as
security for key-dependent headers.

3.1 Universal-Nonce Insecurity

Standardized schemes all achieve universal-nonce security for ki-messages. This
is convenient because an application-setting often provides for free something
that can play the role of a nonce, like a counter. It also increases resistance to
misuse. We would like to maintain this type of security in the presence of key-
dependent data. Unfortunately we show that this is impossible. We show that
no scheme is (u, kd, ki)-AE secure:

Proposition 1. Let SE = (K, E ,D) be an encryption scheme. Then there is an
efficient adversary A ∈ A[kd, ki] such that Advae-u

SE (A) ≥ 1/4.

As the proof of the above will show, the attack we present is strong in that the
adversary does not just distinguish real from random encryptions but recovers
the key. (A simpler attack is possible if we only want to distinguish rather than
recover the key.) Also the attack works even when the nonce is a counter rather

620 M. Bellare and S. Keelveedhi

than adversary controlled. And since the adversary does not use the decryption
oracle we rule out even KDM-CPA security.

We begin with some background and an overview, then prove Proposition 1,
and finally show how to apply an underlying lemma to provide the first analysis
of an attack in BRS [18].

Background and overview. BRS [18, Section 6] suggest an attack aimed at
showing that no stateful symmetric encryption scheme is KDM-secure. For the
purpose of our discussion we adapt it to an attack on universal-nonce security of
an AE scheme SE = (K, E ,D). Let k be the keylength of the scheme. We will use
messages of length m. Let c denote the length of the resulting ciphertexts. Let
Hip(V, C) = V [1]C[1]+· · ·+V [c]C[c] mod 2 denote the inner product modulo two
of c-bit strings V, C. Let φV,i denote the message-deriving function that on input
a key K returns the first m-bit message M such that Hip(V, E(K, i, ε, M)) = K[i],
or 0m if there is no such message. (Here we use i as the nonce and ε as the header.)
The adversary can pick V (BRS do not say how, but the natural choice is at
random), query φV,i to get (i, C), and then recover K[i] as Hip(V, C), repeating
for i = 1, . . . , k to get K.

The difficulty is that φV,i must search the message space until it finds a
message satisfying the condition, and it is unclear how long this will take. In
asymptotic terms, this means there is no proof that the attack runs in polynomial
time, meaning is a legitimate attack at all. This issue does not appear to be
recognized by BRS, who provide no analysis or formal claims relating to the
attack.

In order to have a polynomial time attack where the key-recovery probability
is, say, a constant, one would need to show that there is a polynomial number
l of trials in which the failure probability to recover a particular bit K[i] of the
key is O(1/k). (A union bound will then give the desired result.) We did not see
a direct way to show this. Certainly, for a particular i, the probability that the
first message M fails to satisfy Hip(V, E(K, i, ε, M)) = K[i] is at most 1/2, but it
is not clear what is the failure probability in multiple trials because they all use
the same V . The first thought that comes to mind is to modify the attack so that
φV1,...,Vl,i now depends on a sequence V1, . . . , Vl of strings, chosen independently
at random by the adversary. On input the key K, the function computes the
smallest j such that Hip(Vj , E(K, i, ε, Mj)) = K[i], where M1, M2, . . . , Ml is
a fixed sequence of messages, and returns Mj . Although one can prove that
this “successful” j is quickly found, the attack fails to work, since, to recover
K[i] = Hip(Vj , C) from the ciphertext C = E(K, i, ε, Mj), the adversary needs
to know j, and it is not clear how the ciphertext is to “communicate” the value
of j to the adversary.

We propose a different modification, namely to replace the inner product
function with a family H : {0, 1}s × {0, 1}c → {0, 1} of pairwise independent
functions. The message-deriving function φS,i, on input K, will now search for M
such that H(S, E(K, i, ε, M)) = K[i]. The adversary can pick S at random, query
φS,i to get (i, C), and then recover K[i] as H(S, C), repeating for i = 1, . . . , k
to get K. We will prove that O(k) trials suffice for the search to have failure

Authenticated Encryption of Key-Dependent Data 621

probability at most O(1/k) for each i, and thus that the adversary gets a constant
advantage in a linear number of trials.

This strategy can be instantiated by the pairwise independent family of func-
tions H : {0, 1}c+1×{0, 1}c → {0, 1} defined by H(S, C) = Hip(S[1] . . . S[c], C)+
S[c + 1] mod 2 to get a concrete attack that is only a slight modification of the
BRS one but is proven to work. Given this, the question of whether the original
attack can be proven to work is perhaps moot, but we find it interesting for
historical reasons. Our results would not at first appear to help to answer this
because the inner product function is not pairwise independent. (For example,
0c is mapped to 0 by all functions in the family.) But curiously, as a corollary
of our proof that the attack works for the particular family H we just defined,
we get a proof that the BRS attack works as well. This is because we show that
the attack using H works for an overwhelming fraction of functions from H , and
thus, with sufficient probability, even for functions drawn only from the subspace
of inner-product functions. Let us now proceed to the details.

Attack and analysis. We begin with a general lemma.

Lemma 2. Let H : {0, 1}s×{0, 1}c → {0, 1} be a family of pairwise independent
hash functions. Let C1, . . . , Cl ∈ {0, 1}c be distinct and let T ∈ {0, 1}. Then

Pr [∀j : H(S, Cj) �= T] ≤ 1
l

where the probability is over a random choice of S from {0, 1}s.

Proof (Lemma 2). For each j ∈ {1, . . . , l} define Xj : {0, 1}s → {0, 1} to take
value 1 on input S if H(S, Cj) = T and 0 otherwise. Regard X1, . . . , Xj as
random variables over the random choice of S from {0, 1}s. Let X = X1 + · · ·+
Xl and let μ = E [X]. By Chebyshev’s inequality, the probability above is

Pr [X = 0] ≤ Pr [|X − μ| ≥ μ] ≤ Var[X]
μ2

.

Since H is pairwise independent, so are X1, . . . , Xl and hence Var[X] = Var[X1]
+ · · · + Var[Xl]. But for each j we have E [Xj] = 1/2 and Var[Xj] = 1/4, so
μ = l/2 and Var[X] = l/4. Thus the above is at most (l/4)/(l/2)2 = 1/l as
desired. ��

We now use this to prove Proposition 1.

Proof (Proposition 1). Let k be the keylength, n the noncelength and cl the
ciphertextlength of SE. Let l = 4k. Let NumToStr(j) denote a representation
of integer j ∈ {0, . . . , l} as a string of length exactly m = �log2(l + 1)� bits.
Let H : {0, 1}s × {0, 1}cl(m,0) → {0, 1} denote a family of pairwise independent
hash functions with s-bit keys. We construct an adversary B that recovers the
target key with probability at least 3/4 when playing the real game, meaning
game KDAESE,u with challenge bit b = 1. From B it is easy to build A achieving

622 M. Bellare and S. Keelveedhi

advantage at least 1/4. Below we depict B and also define the message-deriving
functions it uses. Nonces are given as integers and assumed encoded as n-bit
strings:
Adversary B

Initialize(1)
For j = 1, . . . , l do

m[j] ← NumToStr(j)
S ←$ {0, 1}s

For i = 1, . . . , k do
(i, C) ←$ Enc(1, i, φε, φm,S,i) ; L[i] ← H(S, C)

Return L

Function φm,S,i(K)

M ← NumToStr(0)
For j = 1, . . . , l do

Cj ← E(K, i, ε,m[j])
If H(S, Cj) = K[i] then

M ← m[j]
Return M

Above m is a l-vector over {0, 1}m and φε is the constant function that returns
the empty string on every input. In its first step, B initializes the game to play
with w = 1, meaning a single target key. Function φm,S,i(K) returns a message
from whose encryption under nonce i and empty header one can recover bit i
of the key by encoding this bit as the result of H(S, ·) on the ciphertext. For
the analysis, Lemma 2 says that for each i, adversary B fails to recover K[i]
with probability at most 1/4k. By the union bound B fails to recover K with
probability at most 1/4. ��

Analysis of the BRS attack. As a corollary of Lemma 2 we not only show
that the inner-product function works but that it is worse only by a factor of
two:

Lemma 3. Let Hip: {0, 1}c × {0, 1}c → {0, 1} be defined by Hip(V, C) =
V [1]C[1] + · · · + V [c]C[c] mod 2. Let C1, . . . , Cl ∈ {0, 1}c be distinct and let
T ∈ {0, 1}. Then

Pr [∀j : Hip(V, Cj) �= T] ≤ 2
l

(1)

where the probability is over a random choice of V from {0, 1}c.

Proof (Lemma 3). Define H : {0, 1}c+1 × {0, 1}c → {0, 1} by

H(S, C) = Hip(S[1] . . . S[c], C) + S[c + 1] mod 2 .

This family of functions is pairwise independent. Let G be the set of all S ∈
{0, 1}c+1 such that H(S, Cj) = T for some j. For b ∈ {0, 1} let Gb be the set of
all S ∈ G with S[c + 1] = b. Let ε = 1/l. Lemma 2 says that |G| ≥ (1 − ε)2c+1.
But G = G0 ∪ G1 and G0, G1 are disjoint so

|G0| = |G| − |G1| ≥ |G| − 2c ≥ (1 − ε)2c+1 − 2c = (1 − 2ε)2c .

To conclude we note that the probability on the left of Equation (1) equals
1 − |G0|/2c. ��

With this in hand, one can substitute H by Hip in the proof of Lemma 1. By
also doubling the value of l, the analysis goes through and shows that the BRS
attack terminates in a linear number of trials and achieves a constant advantage.

Authenticated Encryption of Key-Dependent Data 623

3.2 Header Insecurity

We would like to use schemes in such a way that headers are not key-dependent
but it may not be under our control. Applications may create headers based
on data present on the system in a way that results in their depending on the
key. We would thus prefer to maintain security in the presence of key-dependent
headers. We show that this, too, is impossible, even when messages are key-
independent. For both nt = u and nt = r, we present attacks showing no
scheme is (nt, ki, kd)-secure.

Proposition 4. Let SE = (K, E ,D) be an encryption scheme. Then for any nt ∈
{u, r} there is an efficient adversary A ∈ A[ki, kd] such that Advae-nt

SE (A) ≥ 1/2.

Proof (Proposition 4). Let k be the keylength of SE. Again, we present an ad-
versary B that recovers the key with probability 1, from which A is easily built.
Below we depict B and also define the message-deriving functions it uses. Nonces
are given as integers and assumed encoded as n-bit strings:

Adversary B

Initialize(1)
For i = 1, . . . , k do

(Ni, Ci) ←$ Enc(1, i, biti, φ0) ; Vi ← Dec(1, Ni, φ0, Ci)
If Vi = ⊥ then L[i] ← 0 else L[i] ← 1

Return L

Function biti(K)

Return K[i]

Here φc denotes the constant function that returns c ∈ {0, 1}. The header com-
puted and used by the game in response to the i-th Enc query is K[i]. The
header computed and used by the game in response to the i-th Dec query is
0. Thus, Dec will return ⊥ if K[i] = 0. Otherwise, it will most likely return 0
because the headers don’t match, although it might return 1, but in either case
we have learned that K[i] = 1.

The attack has been written so that it applies in both the universal and
random nonce cases. In the first case we will have Ni = i. In the second case, Ni

will be a random number independent of i chosen by the game.

3.3 Remarks

The message-deriving functions used by the adversary in the proof of Proposi-
tion 1 invoke the encryption algorithm, which is legitimate since any efficient
function is allowed. Having encryption depend on a RO will not avoid the attack
because the message-deriving functions are allowed to call the RO and can con-
tinue to compute encryptions. (In an instantiation the RO will be a hash function
and the system may apply it to the key to get data that is later encrypted.)

We do not suggest that precisely these attacks may be mounted in practice.
(The message-deriving functions in our attacks are contrived.) However, our
attacks rule out the possibility of a proof of security and thus there may exist
other, more practical attacks. Indeed, the history of cryptography shows that
once an attack is uncovered, better and more practical ones often follow.

624 M. Bellare and S. Keelveedhi

4 The RHtE Transform and Its Security

We describe our RHtE (Randomized Hash then Encrypt) transform and prove
that it endows the base scheme to which it is applied with (r, kd, ki)-AE security.

The transform. Given a base symmetric encryption scheme SE = (K, E ,D),
a key-generation algorithm L returning l-bit strings, and an integer parameter
r representing the length of the random seed used in the key-hashing, the RHtE
transform returns a new symmetric encryption scheme SE = RHtE[SE,L, r] =
(L, E ,D). It has L as its key-generation algorithm, keylength l, noncelength r
and the same ciphertextlength as the base scheme. Its encryption and decryption
algorithms are defined as follows, where Hash: {0, 1}r+l → {0, 1}k is a RO,
L ∈ {0, 1}l is the key, R ∈ {0, 1}r is the nonce (which in the security game will
be random), H is the header and M is the message:

Algorithm E(L, R, H, M)
K ← Hash(R ‖L) ; C ← E(K, H, M)
Return C

Algorithm D(L, R, H, C)
K ← Hash(R ‖L) ; M ← D(K, H, C)
Return M

The base scheme SE = (K, E ,D) is assumed to achieve standard (nt, ki, ki)-AE
security, with nt being either u or r. It is assumed to be a standard (as opposed
to RO) model scheme. This is not a restriction because for the type of security
we assume of it (no key-dependent data) there is no need to use a RO and
none of the standardized, in use schemes do, and in any case the assumption is
only for simplicity. We are not concerned with keys of the base scheme being
passwords because, in standard schemes, they aren’t. (Most of the time the key
is an AES key.) So it is assumed that K returns random strings of length k. We
only require one-time security of the base scheme. Accordingly we assume it is
nonceless and deterministic and drop the nonce input above for both encryption
and decryption. One can obtain such a scheme from standard ones by fixing a
single, public nonce and hardwiring it into the algorithm. The repeated use of
the nonce causes no problems since the key K is different on each encryption.

We want the constructed scheme SE to provide security not only when its keys
are full-fledged cryptographic ones but also when they are passwords. Hence we
view as given an (arbitrary) key-generation algorithm L returning l-bit strings
under some arbitrary distribution, and design SE to have L as its key-generation
algorithm.

The ciphertext returned is a ciphertext of the base scheme but this is decep-
tive since in practice R will have to be transmitted too to enable decryption.
Nonetheless, in common usage, there will be no bandwidth overhead. This is
because we must compare to a standard use of the base scheme where it too uses
and transmits a nonce. We have saved this space by fixing this nonce and can
use it for R. However, if we are in a mode where the base scheme gets the nonce
out-of-band, we have r bits of bandwidth overhead. The computational overhead
is independent of the message size. Implementations with base schemes CCM,
EAX and GCM (see Section 5) show that for the first the slowdown is 11% for
5KB messaegs and only 1% for 50KB messages.

Authenticated Encryption of Key-Dependent Data 625

The BRS scheme [18] is purely RO-based, and one needs ROs with outputs of
length equal to the length of the message. In our scheme the RO is used only for
key-derivation and its output length is independent of the length of the message
to be encrypted. In this sense, the reliance on ROs is reduced.

Security of RHtE. The following theorem says that if the base scheme is
secure for key-independent headers and messages then the constructed scheme is
random-nonce secure for key-dependent messages and key-independent headers.

Theorem 5. Let SE = (K, E ,D) be a base symmetric encryption scheme as
above. Let L be a key-generation algorithm with keylength l and let r be a positive
integer. Let SE = RHtE[SE,L, r] be the RO model symmetric encryption scheme
associated to SE,L, r as above. Let A ∈ A[kd, ki] be an adversary making qe

Enc queries, qd Dec queries and qh Hash queries, and let w ≤ 2H∞(L)−1 be
the number of keys, meaning the argument of A’s Initialize query. Then there
is an adversary D such that

Advae-r
SE

(A)

≤ (24q2
e + 2qd) · Advae

SE(D) +
8wqeqh + 2w(w − 1)qe

2H∞(L)
+

2qe(qh + 2qew)
2r

. (2)

Adversary D makes only one Enc query and has the same number of Dec queries
and the same time complexity as A.

We have omitted the nt superscript in the advantage of D because SE is nonce-
less. That only one-time security is required of SE is reflected in the fact that D
makes only one Enc query. We remark that the bound in Theorem 5 does not
appear to be tight. It is an interesting open problem to either provide a proof
with a better bound or an alternative scheme for which a tight bound can be
proved.

Proof overview. As we noted in Section 1 the proof is surprisingly involved
because message-deriving functions are allowed to query the RO and because
the assumed security of the base scheme must be invoked in multiple, inter-
related ways in different parts of the argument, leading to two hybrids in opposite
directions, one, unusually, with steps that are differently weighted.

Assume for simplicity that w = 1, meaning there is a single target key, denoted
L. Also assume A makes no Dec queries. Denote by φ1, . . . , φqe the message-
deriving functions in its Enc queries and ignore the corresponding headers. Pick-
ing index g at random we set up a hybrid in which the i-th Enc query φi is
answered by encrypting message φi(L) under L as in the real game if i < g and
answered at random if i > g, the g-th query toggling between real and random
to play the role of the challenge for an adversary B against the base scheme.
Let R1, . . . , Rqe denote the random nonces chosen by the game. The reduction
B cannot answer hash oracle query Rg‖L because the reply is its target key so
a bad event is flagged if A either makes this query directly, or indirectly via a
message-deriving function. But once query g has been answered, A has Rg and

626 M. Bellare and S. Keelveedhi

Hash Scheme RHtE Relative Running Time
KeySetup 5KB 50KB 500KB

SHA256

CCM 2.73 1.11 1.01 1.00
EAX 1.94 1.10 1.01 1.00

GCM-2k 1.66 1.10 1.02 1.00
GCM-64k 1.19 1.09 1.02 1.00

Fig. 3. Table showing relative slowdown of RHtE with SHA256 in Crypto++ for com-
mon AE schemes and different message sizes. KeySetup is the relative slowdown in the
keysetup phase alone. GCM-2k and GCM-64k correspond to GCM implemented with
tables of corresponding size.

thus for queries i > g, nothing can prevent φi from querying Rg‖L to the RO,
and how are these queries to be answered by B? Crucial to this was doing the
hybrid top to bottom, meaning first real then random rather than the other way
round. This enables us to avoid evaluating φi on L for post-challenge queries, so
that its RO queries do not need to be answered at all. This leaves the possibil-
ity that A directly makes hash query Rg‖L after it gets Rg. Intuitively this is
unlikely because A does not know L. The subtle point is that this relies on the
assumed security of the base scheme and hence must be proven by reduction.
However, doing such a reduction means another hybrid and seems to simply
shunt the difficulty to another query. To get around this circularity, we do the
second hybrid in the opposite direction and also with different “weights” on the
different steps. A full proof can be found in [10].

5 Implementation Results

We recall that RHtE works on an existing AE scheme and a hash function. We
ran RHtE with common AE schemes like CCM, EAX and GCM (with tables of 2k
and 64k entries) to measure the slowdown relative to the original schemes, using
a truncated version of SHA256 as the hash function and setting l = r = k = 128.
We ran these tests using Crypto++ [26], a standard cryptography library. The
measurements in Fig. 3 correspond to a Intel Core i5 M460 64-bit CPU running
at 2.53 GHz with code compiled using g++ -O3 for data sizes small enough
to fit in the level 2 cache. For our purposes, the relative performance of these
routines is of more importance. From Fig. 3, we can observe that even at modest
message sizes of around 50KB, the slowdown due to RHtE is no more than 1%.
Futhermore, if algorithms like GCM are implemented with large tables and in
turn a lot of precomputation in the key-setup phase, the RHtE overhead is even
less noticeable.

Acknowledgments. The authors are supported in part by NSF grants CNS-
0904380 and CCF-0915675. We thank the Crypto 2011 reviewers for their
comments.

Authenticated Encryption of Key-Dependent Data 627

References

1. Abeni, P., Bello, L., Bertacchini, M.: Exploiting DSA-1571: How to break PFS in
SSL with EDH (July 2008),
http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html

2. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

3. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

5. Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under key-dependent mes-
sages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523.
Springer, Heidelberg (2008)

6. Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under
active attacks - brsim/uc-soundness of dolev-yao-style encryption with key cycles.
Journal of Computer Security 16(5), 497–530 (2008)

7. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

8. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

9. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
Los Alamitos (1997)

10. Bellare, M., Keelveedhi, S.: Authenticated and misuse-resistant encryption of key-
dependent data. Cryptology ePrint Archive, Report 2011/269 (2011), Full version
of this paper, http://eprint.iacr.org/

11. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

12. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

13. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

14. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

15. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

16. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B. K.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html
http://eprint.iacr.org/

628 M. Bellare and S. Keelveedhi

17. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

18. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

19. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

20. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability-(or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

21. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011)

22. Brown, D.R.: A weak randomizer attack on RSA-OAEP with e=3. IACR ePrint
Archive (2005)

23. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

24. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

25. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption
and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
52–71. Springer, Heidelberg (2010)

26. Dai, W.: Crypto++ library, http://www.cryptopp.com
27. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random

number generator. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM
CCS 2007, pp. 476–485. ACM Press, New York (2007)

28. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)

29. Goldberg, I., Wagner, D.: Randomness in the Netscape browser. Dr. Dobb’s Journal
(January 1996)

30. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

31. González, M.: Cryptography in the Presence of Key Dependent Messages. PhD
thesis, Florida Atlantic University (2009)

32. Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems that
are not 2-circular secure. Cryptology ePrint Archive, Report 2010/144 (2010),
http://eprint.iacr.org/

33. Gutterman, Z., Malkhi, D.: Hold your sessions: An attack on java session-id gener-
ation. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 44–57. Springer,
Heidelberg (2005)

34. Haitner, I., Holenstein, T.: On the (Im)Possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009)

http://www.cryptopp.com
http://eprint.iacr.org/

Authenticated Encryption of Key-Dependent Data 629

35. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: Ning, P., di
Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 466–475. ACM Press,
New York (2007)

36. Hofheinz, D., Unruh, D.: Towards key-dependent message security in the stan-
dard model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–
126. Springer, Heidelberg (2008)

37. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

38. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key en-
cryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

39. McGrew, D.A., Viega, J.: The security and performance of the galois/Counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

40. Muñiz, M.G., Steinwandt, R.: Security of signature schemes in the presence of
key-dependent messages. Tatra Mt. Math. Publ. 47, 15–29 (2010)

41. Mueller, M.: Debian OpenSSL predictable PRNG bruteforce SSH exploit (May
2008), http://milw0rm.com/exploits/5622

42. Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009)

43. Paterson, K.G., Watson, G.J.: Plaintext-dependent decryption: A formal security
treatment of SSH-CTR. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 345–361. Springer, Heidelberg (2010)

44. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, New York (2002)

45. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

46. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

47. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press, New York (2001)

48. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

49. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Undated
manuscript. Submission to NIST, available from their web page (June 2002)

50. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Informational) (2003)

51. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability. In: IMC. ACM,
New York (2009)

http://milw0rm.com/exploits/5622

Round Optimal Blind Signatures

Sanjam Garg1, Vanishree Rao1, Amit Sahai1, Dominique Schröder2,�,
and Dominique Unruh3

1 University of California, Los Angeles, USA
2 University of Maryland, USA
3 University of Tartu, Estonia

Abstract. Constructing round-optimal blind signatures in the standard
model has been a long standing open problem. In particular, Fischlin and
Schröder recently ruled out a large class of three-move blind signatures
in the standard model (Eurocrypt’10). In particular, their result shows
that finding security proofs for the well-known blind signature schemes
by Chaum, and by Pointcheval and Stern in the standard model via
black-box reductions is hard. In this work we propose the first round-
optimal, i.e., two-move, blind signature scheme in the standard model
(i.e., without assuming random oracles or the existence of a common
reference string). Our scheme relies on the Decisional Diffie Hellman
assumption and the existence of sub-exponentially hard 1-to-1 one way
functions. This scheme is also secure in the concurrent setting.

1 Introduction

Blind signature schemes [13,14] provide the functionality of a carbon copy enve-
lope: The user (receiver), puts his message into this envelope and hands it over
to the signer (sender). The signer in return signs the envelope and gives it back
to the user who uses the signed enelope to recover the original message together
with a signature on it. The notion of security in this context entails (1) that the
signer remains oblivious about the message (blindness), but at the same time,
(2) the receiver cannot forge signatures for fresh messages (unforgeability).

Blind signatures are an important primitive, whose classical applications in-
clude e-cash, e-voting, and anonymous credentials [9, 10, 8]. Moreover, obliv-
ious transfer can be built from unique blind signatures [12, 17]. The several
known instantiations of blind signature schemes are based on security assump-
tions either in the random oracle model [35, 2, 6, 7, 5, 37], or in the standard
model [11, 33, 24, 28, 3]. Constructions based on general assumptions are also
known [25,16, 23, 17].

One central measure of efficiency in these schemes is the round complexity
of the signing protocol. This has been an explicit problem for at least a decade,
since the work of Abe [2]. Currently, the best known blind signature scheme in
terms of the round complexity in the standard model is due to Okamoto [33].
This scheme has four rounds.
� Supported in part by a DAAD postdoctoral fellowship.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 630–648, 2011.
c© International Association for Cryptologic Research 2011

Round Optimal Blind Signatures 631

All round optimal solutions (the user sends a single message to the signer and
gets a single response) rely either on the random oracle heuristic [14,7], or they
require a common reference string [16,3,22,31,5,4,19,27], and some instantiations
even prove their security under an interactive assumption [6, 7, 22].

Many interesting impossibility results ruling out the existence of secure blind
signatures have also been proposed. Most prominently, Fischlin and Schröder
[18] provide a very general impossibility result for a large class of blind signature
schemes. In their result, they rule out signing protocols of less than four rounds,
but under some natural technical conditions on the protocols (motivated by exist-
ing blind signature schemes). Interestingly, most of the round optimal blind sig-
nature schemes known today have these properties [14, 7, 16]. In particular, this
means that there is not much hope to instantiate one of the known schemes under
weaker assumptions. Furthermore, Katz, Schröder and Yerukhimovich [26] rule
out black-box constructions of blind signature schemes from one-way permuta-
tions. In light of these result, it seems clear that significant new ideas would be
needed to construct round-optimal blind signatures.

Concurrently Secure Blind Signature Schemes. Another reason why round
optimal blind signature schemes are desirable is that a solution would be concur-
rently secure. Concurrently secure blind signature schemes, however, are difficult
to obtain. Juels, Luby, and Ostrovsky [25] explained why a straight forward ap-
proach does not work. The authors present a solution that is, according to Hazay
et al. [23], only secure in the sequential setting. The reason is that the solution
seems to require a concurrently secure protocol for two-party computation. Such
a protocol, however, is a mayor open problem in the standard model [23].

Obtaining a concurrently secure protocol under simulation-based definition
via black-box proofs is impossible as shown by Lindell [29]. Previous protocols
overcome this impossibility result by assuming a common reference string and by
relying on game-based definitions. The only exception is the protocol of Hazay
et al. [23] that does not need a CRS. The authors build a blind signature scheme
that uses the concurrent zero-knowledge protocol of Prabhakaran, Rosen, and
Sahai [36] that has an (almost) logarithmic round complexity as a building block.

1.1 Our Contribution

In this work we give the first round-optimal, i.e., two-move, blind signature
scheme in the standard model. Our scheme is also secure in the concurrent
setting. This follows directly from the fact that any two round blind signature
schemes is concurrently secure, as observed by [23]. In contrast to prior schemes,
our solution does not need any setup assumption such as a common reference
string.

This result is especially surprising in light of the recent impossibility result of
Fischlin and Schröder [18]. They provide a very general impossibility result that
rules out a large class of three (or less than three) round blind signature schemes in
the setting of both statistical blindness and computational blindness. Specifically,
they investigate the possibility of instantiating random oracles in the schemes by

632 S. Garg et al.

Chaum [13] and by Pointcheval and Stern [35], and of giving a security proof based
only on standard assumptions. Therefore, in order to make their Cproblem
tractable they restrict themselves to those blind signature schemes which satisfy a
few technical conditions which encompass most1 known blind signature schemes.
One of these conditions is that the reduction in the unforgeability proof needs to be
efficient (since the reduction is transformed into an adversaryagainst the blindness
game). In fact, this is precisely the technical condition that we avoid in our scheme
and overcome the impossibility result. We note that our scheme relies on the De-
cision Diffie Hellman (DDH) assumption2 and the existence of sub-exponentially
hard 1-to-1 one way functions. Further, we stress that our result is only a feasi-
bility result, and it is not as efficient as the earlier constructions. However, our
work opens doors to the possibility of constructing efficient round-optimal blind
signature schemes in the standard model.

Besides being interesting in its own right, our construction is an example
of a scenario in which known impossibility results for concurrently-secure 2-
party computation [29, 30] can be avoided to achieve meaningful game-based
security definitions. Finally, we note that in a recent result Pass [34] rules out
the existence of unique blind signatures using super-polynomial reductions, as
long as the blindness property holds for appropriately strong adversaries. In our
case blindness holds against polynomial time adversaries only and hence our
result is in some tight with respect this impossibility result.

The results presented in this paper are a merge between the following two
publications [38, 20].

Notations. Before presenting our results we briefly recall some basic definitions.
In what follows we denote by λ ∈ N the security parameter. We say that a
function is negligible if it vanishes faster than the inverse of any polynomial. A
function is non-negligible if it is not negligible. If S is a set, then x ← S indicates
that x is chosen uniformly at random over S (which in particular assumes that S
can be sampled efficiently). We write A(x; X) to indicate that A is an algorithm
that takes as input a value x and uses randomness X . In general, we use capital
letters for the randomness. W.l.o.g. we assume that X has bit length λ.

2 Blind Signatures and Their Security

By (a, b) ← 〈X (x),Y(y)〉 we denote interactive execution of algorithms X and
Y, where x (resp., y) is the private input of X (resp., Y), and a (resp., b) is the
private output of X (resp., Y). We write X 〈·,Y〉∞ for X with oracle access two
arbitrarily many interactions with Y. And X 〈·,Y〉1 for X with oracle access two
arbitrarily a single interaction with Y.

1 Known blind signature schemes can indeed be modified in rather unnatural ways to
construct blind signature schemes that do not satisfy their conditions.

2 We also need a ZAP (a two round witness indistinguishable proof system) which can
be constructed under the DDH assumption. We note that ZAPs can in fact be con-
structed from any one-way trapdoor permutation.

Round Optimal Blind Signatures 633

Experiment UnforgeBS
U∗(λ)

(sk, vk)← Gen(1λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← U∗〈S(sk),·〉∞(vk)

Return 1 iff
m∗i �= m∗j for all i, j with i �= j, and
Vrfy(vk, m∗i , σ∗i) = 1 for all i, and
at most k interactions with S(sk)

were completed.

Experiment UnblindBS
S∗(λ)

(vk, m0, m1, stfind)← S∗(find, 1λ)
b← {0, 1}
stissue ← S∗〈·,U(vk,mb)〉1,〈·,U(vk,mb̄)〉1(issue, stfind)

and let σb, σb̄ denote the
(possibly undefined) local outputs

of U(vk, mb) resp. U(vk, mb̄).
set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

Fig. 1. Security games of blind signatures

Definition 1. A blind signature scheme BS consists of PPT algorithms Gen, Vrfy
along with interactive PPT algorithms S,U such that for any λ ∈ N:

– Gen(1λ) generates a key pair (sk, vk).
– The joint execution of S(sk) and U(vk, m), where m ∈ {0, 1}λ, generates

an output σ for the user and no output for the signer. We write this as
(⊥, σ) ← 〈S(sk),U(vk, m)〉.

– Algorithm Vrfy(vk, m, σ) outputs a bit b.

We require completeness i.e., for any m ∈ {0, 1}λ, and for (sk, vk) ← Gen(1λ),
and σ output by U in the joint execution of S(sk) and U(vk, m), it holds that
Vrfy(vk, m, σ) = 1 with overwhelming probability in λ ∈ N.

Note that it is always possible to sign messages of arbitrary length by applying
a collision-resistant hash function to the message prior to signing.

Blind signatures must satisfy two properties: unforgeability and blindness
[25,35]. Notice that we can also achieve the stronger definition of unforgeability
from [39] by applying their transformation which does not increase the round
complexity.

For unforgeability we require that a user who runs k executions of the
signature-issuing protocol should be unable to output k + 1 valid signatures
on k + 1 distinct messages.

Definition 2. A blind signature scheme BS = (Gen, S, U , Vrfy) is unforgeable if
for any PPT algorithm U∗ the probability that experiment UnforgeBS

U∗(λ) defined
in Figure 1 evaluates to 1 is negligible (as a function of λ).

Blindness says that it should be infeasible for a malicious signer S∗ to decide
which of two messages m0 and m1 has been signed first in two executions with an
honest user U . This condition must hold, even if S∗ is allowed to choose the public
key maliciously [1]. If one of these executions has returned an invalid signature,
denoted by ⊥, then the signer is not informed about the other signature either.

Definition 3. A blind signature scheme BS = (Gen,S,U , Vrfy) satisfies blind-
ness if for any efficient algorithm S∗ (working in modes find, issue, and guess)
the probability that experiment UnblindBS

S∗(λ) defined in Figure 1 evaluates to 1
is negligibly bigger than 1/2.

A blind signature scheme is secure if it is unforgeable and blind.

634 S. Garg et al.

3 Towards a Secure Construction

A central idea behind our work is to adapt techniques from secure two-party
computation, despite the fact that we cannot achieve the traditional notions of
secure two-party computation in the standard model with only 2 rounds. Indeed,
unfortunately, very few two round protocol techniques are known at all.3 The
high-level idea of our construction is as follows: We employ a two-move secure
function evaluation (SFE) protocol to let the signer and user compute a signature
on a message chosen by the user. Using Yao’s garbled circuits together with Naor-
Pinkas OT [32], we get a two-move SFE protocol with the following properties:
The user sends the first message, the signer replies, and only the user gets output.
The user’s input stays secret even in the case of an active malicious signer (as
the user does not send any responses to the signer’s messages, an active signer
is no more powerful than a passive one). The signer’s input stays secure against
active malicious users. The correctness of the protocol’s output is guaranteed
against active users and against passive signers.

If we use this SFE protocol for signing, we face the following two problems:

(a) Although the signer does not learn the user’s inputs, he could cheat in the
SFE to make the signatures output by the two users in the blindness game
depend on the message in different ways. Even if the SFE would have cor-
rectness against active signers, such cheating would still be possible by using
different signing keys or randomnesses in the two interactions.

(b) To prove unforgeability of the blind signature scheme, we have to reduce
it to the unforgeability of the underlying non-interactive signature scheme.
To do so, we need to extract the messages sent by the user in order to feed
them into a signing oracle. But in a two-round SFE protocol, we cannot use
rewinding to extract the message.

To solve (a), we let the signer commit, as part of his public verification key, to
the secret key, and to a random seed to be used when signing. In order to force
the signer to actually use that key and randomness, we would like to use a zero-
knowledge proof that the SFE was performed correctly and with the right inputs.
Unfortunately, two-move zero-knowledgeproofs do not exist in the standard model
(without CRS). However, there are two-move witness indistinguishable proofs, so-
called ZAPs. As these are not zero-knowledge, we cannot use them directly (wit-
ness indistinguishable proofs might still leak, e.g., the signing key). To make the
ZAP “almost zero-knowledge”, we introduce a trapdoor: We introduce the possibil-
ity of producing a fake proof by using the preimage under some one-way function
of a value chosen by the user. A complexity-leveraged simulator can then use this
trapdoor, and we can show that the ZAP does not reveal too much.

The solve (b), we again use complexity leveraging: Our SFE protocol only has
computational security for the user, so the signer can extract the message m to

3 We do know of two round witness indistinguishable protocols (ZAPs), which will be
useful for us. But as we will see later, ZAPs by themselves are not sufficient for our
purposes.

Round Optimal Blind Signatures 635

be signed in superpolynomial time T . Thus, we can transform the unforgeability
game into one where the signer extracts m, sends it to a signing oracle, and
re-inserts the resulting signature back into the SFE. This allows to reduce the
unforgeability of the blind signature scheme against the unforgeability of the
underlying non-interactive signature scheme. Note however, that the underlying
scheme needs to be secure against T -time adversaries in this reduction. Also,
standard properties of SFE do not seem to allow us to perform such an extraction
and re-insertion. Thus, we define a new property called Alice-extraction-privacy
for this purpose; fortunately, Yao’s garbled circuits using Naor-Pinkas OTs have
this property.

4 Required Primitives

Before presenting our generic construction, we review the required primitives.
Most definitions are standard, except that in some cases we require security
against superpolynomial adversaries. In these cases we write, e.g., T -one-wayness
and mean one-wayness against adversaries running in time T · poly(λ). We
will now review those primitives and security definitions that are not standard.
Complete definitions are given in the full version [21].

ZAPs. A ZAP [15] is a two-round witness-indistinguishable proof system. That
is, a ZAP for a language L consists of a prover P and a verifier V . The first
invocation of V(1λ) is independent of the statement to be proven and outputs
a message msg. Given that message, the prover P(1λ, msg, s, w) outputs a proof
π for statement s with witness w. Finally the verifier V(msg, s, π) checks the
proof π. Notice that this verification only uses msg but no private state from
the first invocation of V . In particular, the prover can check on his own whether
verification succeeds.

Two-party-computation. We will need a two-move two-party secure function
evaluation protocol. Syntactically, such a protocol is described by three PPT
algorithms SFE1, SFE2, SFE3. The intended use is as follows: Assume that Alice
holds a circuit C and Bob holds an input m to that circuit. Then Bob first
computes (sfe1, sfest) ← SFE1(1λ, m) and sends sfe1 to Alice (sfest is Bob’s state).
Then Alice computes sfe2 ← SFE2(1λ, sfe1, C) and sends sfe2 to Bob. Finally,
Bob computes the result σ of the computation via σ ← SFE3(1λ, sfe2, sfest). We
require two standard properties, perfect completeness (an honest execution gives
the right result with probability 1) and Bob-privacy (from Alice’s point of view,
different Bob-inputs are computationally indistinguishable). We also require one
non-standard property for Alice’s security:

Instead of requiring that Bob does not learn anything about the circuit C
except for C(m), we require the following: If Alice knows m (which we model by
a superpolynomial-time extraction algorithm SFEExt), then instead of applying
SFE2 with circuit C, she can instead compute σ := C(m) directly and hardcode
the result into the function evaluation using a function SFEFake2. (This property
will be needed so that we can outsource the evaluation of C to a signing oracle
later in our proofs.)

636 S. Garg et al.

Definition 4 (Non-uniform T -Alice-extraction-privacy). There is a (T ·
poly(λ))-time probabilistic algorithm SFEExt and a polynomial-time algorithm
SFEFake2 such that the following holds:

For an adversary A, consider the following experiments:

Experiment 1
(sfe1, C, sfest) ← A(1λ)

sfe2 ← SFE2(1λ, sfe1, C)
b ← A(sfe2, sfest)

Experiment 2
(sfe1, C, sfest) ← A(1λ)
m ← SFEExt(1λ, sfe1)
σ ← C(m)
sfe2 ← SFEFake2(1λ, sfe1, σ)
b ← A(sfe2, sfest)

Then for any PPT A, |Pr[b = 1 : Experiment 1] − Pr[b = 1 : Experiment 2]| is
negligible in λ.

In the fullversion [21], we show that Yao’s garbled circuits using Naor-Pinkas
OTs [32] satisfies these conditions for any T such that the DDH problem can be
decided in time T .

5 Construction and Security Proofs

In this section, we present our construction and show its security.

5.1 Construction

We proceed to define our blind signature scheme. Fix superpolynomial functions
T and T ′ with T ′ < T . In our construction, we assume a one-way function f ,
a pseudorandom function F , commitment schemes CR, CX , a signature scheme
Sig = (SigGen, Sign, SigVrfy), a ZAP Z = (P ,V), and a two-message two-party
secure function evaluation protocol (SFE1, SFE2, SFE3). We then define the blind
signature scheme (Gen,S,U , Vrfy) as follows:

Key Generation. Gen(1λ) peforms the following steps:
- R, S, T ← {0, 1}λ

- (ssk, svk) ← SigGen(1λ; S)
- comR ← ComR((R, ssk); T)
- set sk ← (svk, ssk, R, S, T) and vk ← (svk, comR)

Signing. The signature issue protocol between the signer S and the user U is
as follows:
– U generates the first message of the SFE protocol (sfe1, sfest) ←

SFE1(1λ, m) and the challenge msg ← V(1λ) for the ZAP Z. It picks
x ← {0, 1}λ uniformly at random, sets y ← f(x), and sends (sfe1, msg, y)
to S.

– S receives (sfe1, msg, y) from the user. If y is not a valid image of f ,
then S sends ⊥. Otherwise, denote by Cssk,R(m) the circuit computing
Sign(ssk, m; FR(m)). The signer S picks two random values V, X each of

Round Optimal Blind Signatures 637

Signer S(sk) User U(vk, m)

parse sk = (svk, ssk, R, S, T) parse vk = (svk, comR)

// first message (sfe1, sfest)← SFE1(1
λ, m)

of the SFE

//generate the challenge x← {0, 1}λ, y ← f(x)

for the ZAP msg← V(1λ)

if y ∈ image(f), then
(sfe1, msg, y)←−−−−−−−−−−−−−−−−−−

V, X ← {0, 1}λ
sfe2 ← SFE2(1

λ, sfe1, Cssk,R; V) //sign the message
comx ← ComX(0λ; X)
s← (svk, comR, sfe1, sfe2, comx, y)
w← (R,S, T, V, ssk)
π ← P(msg, s, w)

else sfe2, comx, π ← ⊥ (sfe2, comx, π)−−−−−−−−−−−−−−−−−−→ s← (svk, comR, sfe1,
sfe2, comx, y)

if V(msg, s, π) = 1

σ ← SFE3(1
λ, sfe2, sfest)

output σ

Fig. 2. Issue protocol of the two move blind signature scheme

bit length λ, it computes sfe2 ← SFE2(1λ, sfe1, Cssk,R; V) and comx ←
ComX(0λ; X). Then, it generates a proof π (with respect to msg) for the
statement (svk, comR, sfe1, sfe2, comx, y) ∈ L, where L contains tuples for
which there exists either a witness ω1 = (R, S, T, V, ssk) such that:

sfe2 = SFE2(1λ, sfe1, Cssk,R; V)
∧

comR = ComR((R, ssk); T)
∧

(ssk, svk) = SigGen(1λ; S)

or there exists a witness ω2 = (x, X) such that

comx = ComX(x; X)
∧

f(x) = y.

S then sends (sfe2, comx, π) to U .
– U verifies that π is a valid proof for the statement (svk, comR, sfe1,

sfe2, comx, y) ∈ L with respect to msg and the ZAP Z. If this proof
fails, then U outputs ⊥. Otherwise, it computes the signature σ ←
SFE3(1λ, sfe2, sfest) and outputs σ.

Verification. Vrfy(vk, σ, m) returns SigVrfy(svk, σ, m).

5.2 Security

Theorem 5. Assume that Sig is complete; (SFE1, SFE2, SFE3) is correct; CR, CX

are complete; and Z = (P ,V) is complete. Then the protocol from Section 5.1 is
complete.

638 S. Garg et al.

Theorem 6. Assume that f is invertible in time T and has efficiently decidable
images; F is a T -pseudorandom function; (SFE1, SFE2, SFE3) is non-uniformly
T -Alice-extraction-private; Sig is T -unforgeable; CR is T -hiding; CX is
non-uniformly hiding; the ZAP Z = (P ,V) is non-uniformly computationally
witness-indistinguishable.

Then the blind signature scheme from Section 5.1 is unforgeable.

Theorem 7. Assume that f is T ′-one-way; (SFE1, SFE2, SFE3) is perfectly cor-
rect and has Bob-privacy; CR, CX are perfectly binding; CX is T -extractable; ZAP
Z = (P ,V) is adaptively sound.

Then the scheme from Section 5.1 is blind.

Theorem 5 is immediate from the construction of the protocol, and Theorems 6
and 7 will be shown in the next section.

Instantiating the Primitives. The primitives needed in our construction (see
Theorems 5, 6, and 7) can be instantiated if the DDH problem is non-uniformly
hard, and if subexponentially-hard4 1-1 one-way functions with efficiently decid-
able range exist: Given the one-way functions, we can construct a perfectly hid-
ing non-uniformly T -hiding commitment CR, a T -unforgeable signature scheme
Sig, and a T -pseudorandom function (for some T ∈ 2ηΩ(1)

). By scaling of the
security parameter (such that the used randomness is < log T), we can pro-
duce a T -extractable non-uniformly commitment CR. By similar rescaling, we
get a T ′-one-way T -time invertible one-way function f . Non-uniform ZAPs can
be instantiated from non-uniform DDH [15]. Finally, (SFE1, SFE2, SFE3) can be
instantiated given non-uniform one-way functions (for Yao’s circuits) and DDH
(for Naor-Pinkas OT), see the full version [21], as long as the underlying DDH
can be broken in time T . This can again be achieved by rescaling the security
parameter.

5.3 Security Proofs

Proof of Unforgeability. The proof idea is the following. We start with a
game that corresponds to the unforgeability game of blind signatures and we
then gradually change this game such that at the end we can build an adversary
against the unforgeability of the underlying signature scheme. The main steps
of the proof are the following:

– We apply a complexity leveraging argument. This technique allows us to ex-
tract the message m out of the first message of the secure function evaluation
protocol. We also use this technique in order to invert the one-way function
f and obtain f−1(y).

– We use the external signing oracle in the unforgeability game of the under-
lying signature scheme to sign the message m.

4 By subexponentially-hard, we mean that a function T ∈ 2ηΩ(1)
exist, such that the

primitive is hard against T -time adversaries.

Round Optimal Blind Signatures 639

– Instead of computing the second message of the SFE protocol honestly, we
use the SFEFake2 algorithm. These modifications do not change the success
probability of the adversary (against the unforgeability of the blind signature
scheme) because:

• the SFE protocol is extraction-private and thus, the attacker cannot tell
the difference;

• the ZAP remains valid as it now uses the previously computed preimage
x of f as a witness.

Due to the complexity leveraging, we have to be careful which primitives need
superpolynomial-hardness and which do not. In some cases, non-uniform security
turns out to be sufficient, even though we use the security of a primitive in a
game involving superpolynomial computations.

Proof (of Theorem 6). Assume towards contradiction that the construction from
Section 5.1 is not unforgeable. Then there exists a PPT algorithm U∗ that out-
puts (� + 1) message/signature pairs (mi, σi) after � executions of the signature
issue protocols. This adversary wins if all messages are distinct and all signa-
tures verify under vk. Now, consider the following sequence of games, where the
first game Game-0 is the unforgeability game in which we run the game with the
forger U∗. Within all games, the first digit of the line numbers is the number of
the game (i.e., line 107 in Game-1 corresponds to 007 in Game-0).

Game-0
000 R, S, T, Vi, Xi ← {0, 1}λ

001 (ssk, svk) ← SigGen(1λ; S)
002 comR ← . . .
003 st0 ← U∗(svk, comR)
004 for i = 1, . . . , �
005 (sfe1,i, msgi, yi) ← U∗(sti−1)
006 if yi ∈ image(f) then
007 sfe2,i ← SFE2,i(1λ, sfe1,i, Cssk,R)
008 comx,i ← ComX(0λ; Xi)
009 si ← (svk, comR, C, sfe1,i, sfe2,i, comx,i, yi)
010 wi ← (R, S, T, Vi, ssk)
011 πi ← P(msgi, si, wi)
012 else
013 sfe2,i, comx

i , πi ← ⊥
014 sti ← U∗(sfe2,i, comx,i, πi, sti)
015 end for
016 (m1, σ1, . . . , m�+1, σ�+1) ← U∗(st�)
017 Return 1 iff SigVrfy(svk, mi, σi) = 1 for all

i = 1, . . . , � + 1 and mi �= mj for all i �= j

Game-0 ⇒ Game-1. We now modify the above game by letting the signer (after
Step 005) extract the message mi ← SFEExt(1λ, sfe1,i) from the first message

640 S. Garg et al.

of the SFE protocol sfe1,i according to Definition 4. Analogously, f
−1

(y) is the
algorithm that inverts the one-way function f . Both algorithms are running in
time T .

Game-1
105a xi ← f

−1
(yi) , mi ← SFEExt(1λ, sfe1,i)xi ← f

−1
(yi) , mi ← SFEExt(1λ, sfe1,i)xi ← f

−1
(yi) , mi ← SFEExt(1λ, sfe1,i)

108 comx,i ← ComX(xixixi; Xi)

The difficulty in showing that the adversary’s success probability in both
games is the same arises from the point that Step 105a cannot be computed
efficiently. Nevertheless, we solve this issue by applying the following (standard)
technique. The idea is to consider primitives that are secure against non-uniform
adversaries. This allows us to perform computations in advance that are not fea-
sible in polynomial time. More precisely, consider the commitment scheme CX

that is non-uniformly hiding. The adversary is allowed to be unbounded as long
as it has not received the commitment (since the unbounded computation is cap-
tured by the auxiliary input). Once the attacker has obtained the commitment,
it runs in polynomial time. The basic idea behind this approach is that it is
possible to wire an advice into the circuit that is hard to compute. This ob-
servation allows us to perform a computation that is not feasible in polynomial
time before seeing the commitment. During this step, we extract the message out
of the encryption mi ← SFEExt(1λ, sfe1,i) and we invert the one-way function
xi ← f

−1
(yi). Then, we commit to xi (instead of 0λ). Note that this is only

possible because Step 108 happens after Step 105. This, however, is not quite
true because this step happens in a loop. Thus, at some point Step 108 happens
before Step 105. To handle this issue, we refine our argument as follows: let
Game-1̃i be the game where we applied the modifications during the first i itera-
tions but not in iterations i + 1, . . . , �. Now, the same argument as above shows
that Game-1̃i and Game-1̃i+1 are indistinguishable for any i (even if i depends on
the security parameter). This, however, also implies that Game-1̃0 and Game-1̃�

are indistinguishable. Furthermore Game-1̃0 = Game-0 and Game-1̃� = Game-1,
hence Game-0 ≈ Game-1 where ≈ indicates that the probability that both games
output 1 is the same (except for a negligible amount).

Game-1 ⇒ Game-2 ⇒ Game-3. In the next game, Game-2, we first change the
witness of the ZAP Z. That is, we use as a witness the pre-image xi of the one-
way function f that we have inverted in the previous step. Afterwards, in Game-3,
we sign the message that was extracted in Game-1, and then use SFEFake2 in
order to make the function evaluation output that signature σi.

Game-2
209 si ← (svk, comR, sfe1,i

, sfe2,i, comx,i, yi)
210 wi := (xi, Xi)(xi, Xi)(xi, Xi)
211 πi ← P(msg, si,wiwiwi)

Game-3
307 σi ← Sign(ssk, mi; FR(mi))σi ← Sign(ssk, mi; FR(mi))σi ← Sign(ssk, mi; FR(mi))
307a sfe2,i ← SFEFake2(1λ, sfe1,i, σi)SFEFake2(1λ, sfe1,i, σi)SFEFake2(1λ, sfe1,i, σi)

Now, we argue that both modifications do not change the success probability
of the adversary U∗ by more than a negligible amount and therefore, Game-0 ≈
Game-3. This should follow from the following two observations

Round Optimal Blind Signatures 641

– The one-way function f has efficiently decidable images and the signer checks
if yi is a valid image under f in step 006. Thus, according to our construction
the witness wi is a valid witness. Note that according to our construction
the witness wi := (R, S, T, Vi, ssk) used in Game-1 is also valid. Since both
witnesses are a valid witness and because we have assumed that the ZAP Z
is non-uniformly witness-indistinguishable, it follows that the success proba-
bility of U∗ in both games is the same (except for a negligible amount).

– The secure function evaluation scheme is T -Alice-extraction-private. Thus,
the adversary U∗ does not notice the difference in the computation of sfe2,i.

We elaborate more on the second point: The only difference between Game-2
and Game-3 is that in the i-th iteration of the loop, in Game-3 we replace
sfe2,i ← SFE2,i(1λ, sfe1,i, Cssk,R) (Step 207) by sfe2,i ← SFEFake2(1λ, sfe1,i, σi) =
Cssk,R(mi), where σi ← Sign(ssk, mi; FR(mi)) (Steps 307, 307a). By definition
of T -Alice-extraction-privacy, it follows that the games are indistinguishable.
(Notice that we use non-uniform T -Alice-extraction-privacy, the fact that there
are superpolynomial computations occurring before the SFE does not limit the
applicability of T -Alice-extraction-privacy.) Unfortunately, we cannot apply the
arguments justifying the transformations Game-1 ⇒ Game-2 ⇒ Game-3 directly.
The reason is that these arguments are only applicable as long as the games run
in polynomial time (or at least those steps of the games occurring after the mod-
ifications). In the previous step, however, we have inverted the one-way function
and we have extracted the message from the first message of the SFE protocol.
Both steps, however, are not computable in polynomial time. We handle this
issue by carefully applying a hybrid argument. Now, we apply carefully a hybrid
argument over all three games. We omit the details of this hybrid argument.

Game-3 ⇒ Game-4. This game is identical to the prior one, but instead of com-
mitting to R and ssk, we commit to an all zero string.

Game-4
401 comR ← ComR(0λ0λ0λ; T)

Since the commitment scheme CR is T hiding, and since the commitment’s
randomness T is not used anywhere else, this modification changes the success
probability of U∗ only by a negligible amount and thus, Game-3 ≈ Game-4 and
therefore Game-0 ≈ Game-4. (Remember that both f−1 and SFEExt and thus all
steps in the game run in time T .)

Game-4 ⇒ Game-5. In this game, we do not generate the signing key locally, but
we build a forger B against the signature scheme Sig. The difference to the above
described games is that it uses its external signing oracle in order to obtain the
signature σi on the message mi.

Game-5
500 x, T, Vi, Xi ← {0, 1}λ (removed R, SR, SR, S)
501 svk ← ŜigGen(1λ)svk ← ŜigGen(1λ)svk ← ŜigGen(1λ), comR ← ComR(R, ssk; T)
507 σi ← Ŝign(mi)σi ← Ŝign(mi)σi ← Ŝign(mi)

642 S. Garg et al.

Here ŜigGen and Ŝign constitute a signing oracle. ŜigGen produces a verifica-
tion key and Ŝign signs messages, but whenever a message is submitted that was
already signed, Ŝign returns the previously produced signature again.

Since F is a T -pseudorandom function, and since R and S are used in Game-4
only in the arguments of SigGen and Sign, it follows that Game-4 ≈ Game-5 and
thus Game-0 ≈ Game-5.

Now, assume that the adversary U∗ wins the unforgeability game Game-0 with
non-negligible probability. Then, since Game-0 ≈ Game-5, U∗ also wins with non-
negligible probability in Game-5.

Then it returns � + 1 pairs (mi, σi) such that mi �= mj for all i �= j and
SigVrfy(vk, mi, σi) = 1 for all i = 1, . . . , � + 1. We denote by Q = (m̂1, . . . , m̂�)
the set of messages that have been asked to the external signing oracle Ŝign.
Since all messages mi are distinct there exists at least one message mj �∈ Q.
The forger B outputs (mj , σj). Since SigVrfy(vk, mi, σi) = 1 for all i, we have in
particular that the pair (mj , σj) verifies and thus B succeeds with non-negligible
probability. Since B runs in time T · poly(λ), this contradicts the assumption
that Sig is T -unforgeable. This concludes the proof.

Proof of Blindness. Before proving the blindness property, we discuss the
central points. In our protocol, the privacy of the user (blindness) is preserved
by the fact that the secure function evaluation does not reveal the message to
be signed (Bob-privacy). We cannot, however, directly apply Bob-privacy: Bob-
privacy only guarantees that the users are unlinkable as long as the outputs of the
SFE are not revealed. In our setting, however, the outputs are revealed. Thus,
we first have to transform the blindness game into one where the signer does
not get the signatures output by the users. To achieve this, we use a rewinding
argument: Instead of using the signatures produced in the main execution of
the blindness game, we rewind the blindness game and use the signatures from
the rewound execution (called look-ahead threads). The ZAP sent by the signer
guarantees that the signatures are always produced using the same randomness,
hence the signatures in the look-ahead threads equal those of the main thread.
Finally, we show that the signer can simulate the look-ahead threads on his own.
Thus we have a game in which the output of the SFE in the main thread is not
used, and we can apply Bob-privacy.

Care needs to be taken with the ZAPs: In our ZAP, one can fake the proof by
committing to the preimage f−1(y). Since a ZAP is not a proof of knowledge, the
mere fact that the signer does not know f−1(y) is not sufficient to show that the
signer cannot fake the ZAP. A complexity-leveraging argument between Games
3 and 4 solves this issue.

Proof (of Theorem 7). We prove this theorem via a sequence of games. In or-
der to facilitate notation, we assume that the malicious signer S∗ is given by
a deterministic, stateless algorithm S∗. That is, in its first invocation, S∗ ex-
pects an explicit random tape as argument and returns its new internal state st.

Round Optimal Blind Signatures 643

In further invocations, S∗ expects the previous internal state st and returns a
new internal state st′.

In the blindness game, S∗ has the liberty to schedule the instances of the
user in an arbitrary order. In case of a two-move scheme, however, we can fix
the ordering. Since S∗ does not receive any response to the message it sends
to the user, we can assume that S∗ sends these messages after having gathered
all incoming messages from the user. Thus, without loss of generality, S∗ first
outputs the public key vk and the challenge messages m0, m1, then expects the
two incoming blinded messages from the two user instances, and then outputs
its responses to the user messages.

With these assumptions aboutS∗, the blindness game can be reformulated as
follows:

Game-0
000 randS∗ ← {0, 1}∞, b ← {0, 1}
001 (st, vk, m0, m1) ← S∗(1λ, randS∗)
002 usermsg0 ← U(vk, mb) | usermsg1 ← U(vk, mb̄)
003 (st′, signermsg0, signermsg1) ← S∗(st, usermsg0, usermsg1)
004 if fail then b′ ← S∗(st′,⊥,⊥)
005 else b′ ← S∗(st′, σb, σb̄)

In Game-0 and in the following, we use the abbreviation fail for σ0 = ⊥ or σ1 =
⊥. Blindness is then equivalent to requiring that

∣∣Pr[b′ = b : Game-0] − 1
2

∣∣ is
negligible. For contradiction, we assume that blindness does not hold, i.e., that∣∣Pr[b′ = b : Game-0] − 1

2

∣∣ is non-negligible. Then there exists a polynomial
p = p(λ) such that Pr[b′ = b : Game-0] ≥ 1

2 + 1/p for infinitely many λ. (Or
≤ 1

2 − 1/p, but in this case we can replace S∗ by an adversary that outputs the
negated guess 1 − b′.)

Game-0 ⇒ Game-1. Our first transformation is to make the definition of the user
explicit in the blindness game. That is, we replace invocations to U by its program
code. For notational convenience later on, we split the description of Game-0 into
the actual game and a subroutine Thread that executes the interaction between
S∗ and the users.

Thread(vk, m0, m1, b, st)
T00 K0, K1, X0, X1, E0, E1, x0, x1 ← {0, 1}λ

T01 (sfe1,0, sfest0) ← SFE1(1λ, mb) (sfe1,1, sfest1) ← SFE1(1λ, mb̄)
T07 y0 ← f(x0) y1 ← f(x1)
T08 msg0 ← V(1λ) msg1 ← V(1λ)

T09 (st′, (sfe2,0, comx,0, π0), (sfe2,1, comx,1, π1)) ← S∗(st, (sfe1,0, msg0, y0), (sfe1,1, msg1, y1))
T10 s0 ← (svk, comR, sfe1,0, sfe2,0, comx,0, y0) s1 ← (svk, comR, sfe1,1, sfe2,1, comx,1, y1)
T11 if V(msg0, s0, π0) = 1 then if V(msg0, s1, π1) = 1 then
T12 σb ← SFE3(1λ, sfe2,0, sfest0) else σb ← ⊥ σb̄ ← SFE3(1λ, sfe2,1, sfest1) else σb̄ ← ⊥
Return(σ0, σ1, st′)

644 S. Garg et al.

Game-1
100 b ← {0, 1}, randS∗ ← {0, 1}∞
101 (st, vk, m0, m1) ← S∗(1λ; randS∗) with vk = (svk, comR)
102 (σ0, σ1, st′) ← Thread(vk, m0, m1, b, st)
103 if fail then b′ ← S∗(st′,⊥,⊥)
104 else b′ ← S∗(st′, σ0, σ1)

Since we have only restructured the game, we have Pr[b′ = b : Game-0] =
Pr[b′ = b : Game-1].

Game-1 ⇒ Game-2. Game-2 is identical to Game-1 except for the following mod-
ifications. Once both user instances have computed their signatures, i.e., right
after Step 202, we reset the malicious signer S∗ to the point where it has returned
the two messages, i.e., to after Step 201. We repeat this procedure p times. Since
S∗ is deterministic and stateless, this can be modeled by running the subroutine
Thread p times using the same initial state st for S∗ in each thread. Each thread
uses a fresh random bit b̂ to assign the messages to the user instances. We refer to
the first execution as the main thread (representing the original blindness game)
and to the other p executions as look-ahead threads. Observe that this rewinding
only involves Step T01 to T12. The other steps are part of the blindness game. In
particular, S∗ gets in Step 204 the signatures σ0 and σ1 from the main thread.

Game-2
200 b ← {0, 1}, randS∗ ← {0, 1}∞, b̂1, . . . , b̂p ← {0, 1}b̂1, . . . , b̂p ← {0, 1}b̂1, . . . , b̂p ← {0, 1}
201 (vk, m0, m1, st) ← S∗(1λ; randS∗) with vk = (svk, comR)
202 (σ0, σ1, st′) ← Thread(vk, m0, m1, b, st)

202a (σla
0,i, σ

la
1,i, st

′
i) ← Thread(vk, m0, m1, b̂i, st) for i = 1, . . . , p(σla

0,i, σ
la
1,i, st

′
i) ← Thread(vk, m0, m1, b̂i, st) for i = 1, . . . , p(σla

0,i, σ
la
1,i, st

′
i) ← Thread(vk, m0, m1, b̂i, st) for i = 1, . . . , p

203 if fail then b′ ← S∗(st′,⊥,⊥)
204 else b′ ← S∗(st′, σ0, σ1)

The success probability of S∗ in both games is clearly the same, because the
results of the look-ahead threads are not used and Thread has no side effects.
That is, Pr[b′ = b : Game-1] = Pr[b′ = b : Game-2].

Now, we bound the probability that both user instances in the main thread
return valid signatures, but at least one user algorithm in each look-ahead
threads fails. Observe that this includes aborting parties, decryption attempts
that fail, or the case where a certain ZAP may be invalid. Recall that fail = 1
if σ0 = ⊥ or σ1 = ⊥. We define faillai analogously to fail, i.e., faillai = 1 if
σla

0,i = ⊥ or σla
1,i = ⊥.

Lemma 8. Denote by bad the event that faillai holds for all i = 1, . . . , p but that
fail does not hold. The probability that bad happens in Game-2 is less or equal

1
p+1 .

Game-2 ⇒ Game-3. In this game, we set b′ = 0 whenever the the main thread
produces valid signatures (¬fail) but the look-ahead threads do not (fail1 and
. . . and failp).

Round Optimal Blind Signatures 645

Game-3
303 if fail then b′ ← S∗(st′,⊥,⊥)
303a else if failla1 and . . . and faillap then b′ ← 0else if failla1 and . . . and faillap then b′ ← 0else if failla1 and . . . and faillap then b′ ← 0
304 else b′ ← S∗(st′, σ0, σ1)

Notice that the else-branch in line 303a is only taken if the event bad occurs.
This happens with probability at most 1

p+1 by Lemma 8. Thus, S∗’s avantage
reduces at most by 1

p+1 , i.e., Pr[b′ = b : Game-3] ≥ Pr[b′ = b : Game-2] − 1
p+1 .

Game-3 ⇒ Game-4. In this hybrid, we do not give the adversary S∗ the signatures
from the main thread, but the ones from one of the successful look-ahead threads.
That is, we choose a random g with ¬faillag and we give the signatures (σ0,g, σ1,g)
to S∗. Notice that we only need to do this if failla1 ∧ · · · ∧ faillap does not hold
(otherwise line 404 would not have been reached), so there is always at least one
such g.

Game-4
404 else g ← {i : ¬faillai }g ← {i : ¬faillai }g ← {i : ¬faillai }, b′ ← S∗(st′,σ0,gσ0,gσ0,g,σ1,gσ1,gσ1,g)

We first argue that all messages σ0, σ0,g have the same value (if defined), and
analogously for σ1, σ1,g: Due to the adaptive soundness of the ZAP, we have
that with overwhelming probability the statements proven by the ZAPs are true.
That is, for each thread it holds that comx,0 contains a preimage of y under f
or that the message sfe2,0 is constructed correctly. The first occurs only with
negligible probability, otherwise by using the T ′-extractability of CX we could
build a T ′-time inverter for f , breaking the T ′-onewayness of f . Thus sfe2,0 is
constructed correctly in all thread with overwhelming probability. Analogously
for sfe2,1. Due to the perfect correctness of SFE (and the perfect binding property
of CR), this implies that all signatures σi,g are produced by applying the same
circuit Cssk,R with the same ssk and R to the message mi. Thus, giving the
malicious signer S∗ the signatures returned from the gth look-ahead thread does
not change its success probability by more than a negligible amount. That is,
|Pr[b′ = b : Game-3] − Pr[b′ = b : Game-4]| is negligible.

Game-4 ⇒ Game-5. Now, we modify Game-4 to Game-5 by returning (⊥,⊥) to
S∗ only if one of the ZAPs in the main thread failed. Formally, we check this by
validating the ZAP π. In what follows, we denote by msg0(st′), su′

0 (st′), π0(st′) the
messages that are needed to verify the ZAP as seen by S∗. We assume, w.l.o.g.,
that these messages are stored in the state st′.

Game-5
503 if V(msg0(st′), su

0 (st′), π0(st′)) = 0V(msg0(st
′), su

0 (st′), π0(st′)) = 0V(msg0(st′), su
0 (st′), π0(st′)) = 0 or

V(msg1(st
′), su

1 (st′), π1(st′)) = 0V(msg1(st′), su
1 (st′), π1(st′)) = 0V(msg1(st

′), su
1 (st′), π1(st′)) = 0 then b′ ← S∗(st′,⊥,⊥)

Due to the soundness of the ZAP, this modification does not change the success
probability of S∗ by more than a negligible amount.

Game-5 ⇒ Game-6. In this game, we build an attacker B that simulates the
look-ahead threads and the malicious signer S∗ locally.

646 S. Garg et al.

B(st, st′)
B00 b̂1, . . . , b̂p ← {0, 1}
B01 (σla

0,i, σ
la
1,i, st

′
i) ← Thread(vk, m0, m1, b̂i, st) for i = 1, . . . , p

B02 if V(msg0(st
′), su′

0 (st′), π0(st′)) = 0 or
V(msg1(st′), su

1 (st′), π1(st′)) = 0 then b′ ← S∗(st′,⊥,⊥)
B03 else if fail1 and . . . and failp then b′ ← 0
B04 else g ← {i : ¬faili}, b′ ← S∗(st′, σ0,g, σ1,g)

The game looks as follows (here, we show the whole Game-6, not just the lines
changed with respect to Game-5):

Game-6
600 b ← {0, 1}, randS∗ ← {0, 1}∞
601 (vk, m0, m1, st) ← S∗(1λ; randS∗) with vk = (svk, comR)
602 (σ0, σ1, st) ← Thread(vk, m0, m1, b, st)
603 b′ ← B(st, st′)b′ ← B(st, st′)b′ ← B(st, st′)

Clearly, the success probability of B in this game is equal to the success
probability of S∗ in the previous game since we have just moved some of the
computations of Game-5 into B.

Game-6 ⇒ Game-7. Now, we modify the algorithm Thread only for the main
thread (recall that all other threads are computed by B locally). Our modifica-
tion removes all dependencies on the input message m. That is, we let the user
algorithm compute the first message of the SFE protocol on 0λ instead of m.
Additionally, we remove the computation of the signatures σ0, σ1 that are never
used.

Thread’
T’01 (sfe1,0, sfest0) ← SFE1(1λ,0λ0λ0λ) (sfe1,1, sfest1) ← SFE1(1λ,0λ0λ0λ)
T’11–T’12 (removed) (removed)

Since the SFE scheme is Bob-private, the success probability of B remains
the same (except for a negligible amount). This, however, means that the entire
transcript is independent of the message.

Now, we obtain the following contradiction concluding that advantage of S∗

in Game-0 is less or equal 1
p+1 +negl(λ), where negl(λ) is a negligible function. In

Game-0, however, we assumed that S∗ wins the blindness game with advantage at
least ν ≥ 1/p (infinitely often). Since 1/p > 1/(p+1)+ negl for sufficiently large
λ we obtain a contradiction. Thus, our initial assumption that S∗ succeeds with
non-negligible probability was wrong and therefore, our construction is blind.

Acknowledgments. We thanks the anonymous reviewers for valuable comments
and Masayuki Abe for his useful feedback on this merged paper. Dominique Un-
ruh was supported by European Social Fund’s Doctoral Studies and Internation-
alisation Programme DoRa. Dominique Schröder is also supported by the Emmy
Noether Program Fi 940/2-1 of the German Research Foundation (DFG). Part of
this work was supported by CASED (www.cased.de). Amit Sahai is supported in
part from a DARPA/ONR PROCEED award, NSF grants 0916574 and 0830803, a

Round Optimal Blind Signatures 647

Xerox Foundation Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant.

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message
authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
262–279. Springer, Heidelberg (2006)

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

4. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR ePrint 2010/133 (2010)

5. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
435–450. Springer, Heidelberg (2009)

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3), 185–215 (2003)

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

8. Brands, S., Paquin, C.: U-prove cryptographic specification v1.0 (March 2010),
http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?
Dow%nloadID=26953

9. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

10. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: ACM
CCS 2008, pp. 345–356. ACM Press, New York (2008)

11. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

12. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007)

13. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp.
199–203. Plenum Press, New York (1983)

14. Chaum, D.: Blind signature system. In: CRYPTO 1983, p. 153. Plenum Press, New
York (1984)

15. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

16. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

17. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(2009)

http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?Dow%nloadID=26953

648 S. Garg et al.

18. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

19. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. IACR ePrint 2009/320 (2009)

20. Garg, S., Rao, V., Sahai Round, A.: optimal blind signatures in the standard model
(2011) (manuscript)

21. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signa-
tures. IACR ePrint (2011)

22. Ghadafi, E., Smart, N.: Efficient two-move blind signatures in the common refer-
ence string model. IACR ePrint 2010/568 (2010)

23. Hazay, C., Katz, J., Koo, C.Y., Lindell, Y.: Concurrently-secure blind signatures
without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

24. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007)

25. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (1997)

26. Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signature from
one-way permutation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629.
Springer, Heidelberg (2011)

27. Kiayias, A., Zhou, H.S.: Concurrent blind signatures without random oracles. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006)

28. Kiayias, A., Zhou, H.S.: Equivocal blind signatures and adaptive UC-security. In:
Canetti,R.(ed.)TCC2008.LNCS,vol. 4948,pp.340–355.Springer,Heidelberg(2008)

29. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: STOC 2003, pp. 683–692. ACM Press, New York (2003)

30. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

31. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: The case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010)

32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp.
448–457 (2001)

33. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

34. Pass, R.: Limits of provable security from standard assumptions. In: STOC 2011.
ACM Press, New York (to appear, 2011)

35. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

36. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS 2002, pp. 366–375. IEEE, Los Alamitos (2002)

37. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010)

38. Schröder, D., Unruh, D.: Round optimal blind signatures. IACR ePrint (2011)
39. Schröder, D., Unruh, D.: Security of blind signatures revisited. IACR ePrint (2011)

Optimal Structure-Preserving Signatures in
Asymmetric Bilinear Groups

Masayuki Abe1, Jens Groth2,�, Kristiyan Haralambiev3, and Miyako Ohkubo4

1 Information Sharing Platform Laboratories, NTT Corporation, Japan
abe.masyuki@lab.ntt.co.jp

2 University College London, UK
j.groth@ucl.ac.uk

3 Computer Science Department, New York University, US
kkh@cs.nyu.edu

4 National Institute of Information and Communications Technology, Japan
m.ohkubo@nict.go.jp

Abstract. Structure-preserving signatures are signatures defined over bilinear
groups that rely on generic group operations. In particular, the messages and sig-
natures consist of group elements and the verification of signatures consists of
evaluating pairing product equations. Due to their purist nature structure-
preserving signatures blend well with other pairing-based protocols.

We show that structure-preserving signatures must consist of at least 3 group
elements when the signer uses generic group operations. Usually, the generic
group model is used to rule out classes of attacks by an adversary trying to break
a cryptographic assumption. In contrast, here we use the generic group model to
prove a lower bound on the complexity of digital signature schemes.

We also give constructions of structure-preserving signatures that consist of 3
group elements only. This improves significantly on previous structure-preserving
signatures that used 7 group elements and matches our lower bound. Our structure-
preserving signatures have additional nice properties such as strong existential
unforgeability and can sign multiple group elements at once.

Keywords: Structure-Preservation, Digital Signatures, Generic Group Model.

1 Introduction

Digital signatures are fundamental cryptographic primitives used as building blocks in
countless scenarios. Often, signatures are combined with zero-knowledge (ZK) proof
systems, for example when constructing privacy-preserving cryptographic protocols.
While suitable signature schemes for such cases have long been known, e.g., the
schemes of Camenisch and Lysyanskaya [CL02, CL04], they were constructed with
the intent to be used with interactive ZK proofs. The reason was the absence of an ef-
ficient non-interactive zero-knowledge (NIZK) proof system. Moreover, the only way
to construct efficient NIZK proofs was using certain heuristics, e.g., random oracles,
which transform interactive ZK proofs into NIZK proofs. In [GS08], Groth and Sahai

� Supported by EPSRC grant number EP/G013829/1.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 649–666, 2011.
c© International Association for Cryptologic Research 2011

650 M. Abe et al.

presented the first practical NIZK proof system for a non-trivial class of languages
which does not resort to such heuristics. It is based on bilinear maps and is designed
to be used on certain satisfiable systems of equations. The most interesting type of
equation is the so-called “pairing-product equation” for which the proofs are also fully
extractable, and therefore the proof system yields NIZK proofs of knowledge.

As pointed out in [AFG+10], many previous signatures scheme were not fully
“compatible” with pairing-product equations. Even if the verification algorithm used
pairing-product equations, the signatures and messages were not composed entirely
of group elements and thus were not ideal counterparts for the pairing product equa-
tions of Groth-Sahai proofs. That is why [AFG+10] defined the notion of structure-
preserving signatures which requires verification keys, messages, and signatures to be
composed entirely of group elements and the verification equations to use pairing-
product equations. Equipped with such signatures, one can easily design modular cryp-
tographic protocols which rely on signatures and NIZK proofs and instantiate them
efficiently. Of course some cryptographic protocols find other ingenious efficient solu-
tions but these are specific to their tasks. In contrast, modular design makes construc-
tions easier to build, less prone to errors, and provide a good alternative for efficiency
comparisons. Moreover, modular constructions can be realized under different assump-
tions by choosing appropriate instantiations of the building blocks. Applications of
structure-preserving signatures combined with Groth-Sahai proofs are numerous: group
signatures, blind signatures, delegatable credentials, oblivious transfer, credential-based
identification/key-exchange with hierarchical certification, etc.

Efficient structure-preserving signatures were presented in [AFG+10] and were ap-
plied to the construction of round-optimal blind signatures and fully-secure group sig-
natures with concurrent join protocols. Although they were efficient, it was left as an
open problem to find the optimal signature size and determine whether more efficient
schemes can be constructed. These are the problems we consider in this work.

1.1 Our Contribution

Results. We prove lower bounds on the complexity of structure-preserving signatures
based on asymmetric bilinear groups. As far as we are aware, this is the first non-trivial
lower bound for the complexity of practical signature schemes. We also construct a
structure-preserving signature scheme that matches the lower bounds giving an optimal
solution in terms of efficiency.

We demonstrate that a structure-preserving signature scheme must use at least two
pairing product equations to verify a signature. Any structure-preserving signature
scheme where the verification only uses one pairing product equation can be broken
with a random message attack.

We also give a lower bound on the size of a signature. A structure-preserving sig-
nature with less than 3 group elements is vulnerable to a random message attack. The
lower bound holds even when the message is a single group element.

Finally, we prove that the lower bounds are optimal by presenting a structure-
preserving signature scheme where the verification of signatures uses only two
verification equations and the signatures consist of only 3 group elements.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 651

Our signature scheme has several nice properties. First, it is structure preserving.
Second, it is strongly existentially unforgeable against adaptive chosen message attacks.
Third, messages to be signed can consist of many group elements, which can be drawn
from both of the base groups of the bilinear map.

The existential unforgeability of our signature scheme against adaptive chosen mes-
sage attacks corresponds to an interactive cryptographic assumption, which we prove
is true when the adversary only uses generic group operations. By adding a few extra
group elements to the signatures (1 or 3 depending on whether the messages only con-
tain elements in one base group or contains a mix of elements from both base groups)
we can base security on a non-interactive cryptographic assumption.

Techniques. The lower bound on the number of pairing product equations needed in
the verification process follows from a demonstration that any two signatures on two
different random messages can be combined to yield signatures on different messages.

However, when there are two or more verification equations, the analysis of the num-
ber of group elements involved in a signature becomes intricate. We base our analysis
on the signer being a generic algorithm. This differs from the standard use of the generic
group model to rule out classes of attacks on cryptographic assumptions since the anal-
ysis is based on what the signing algorithm can do, not what some arbitrary unknown
adversary can do. Arguably this is a more compelling way to use the generic group
model since the analysis only fails for signature schemes where the designer invents a
non-generic signing algorithm.

A generic signer must create signatures that are related to the messages in a specific
way. Furthermore, the correctness of the signature scheme implies that signatures cre-
ated this way must be valid signatures. With these two facts in mind, we analyze the
pairing product equations in the verification and show that all pairing product equations
must be linearly related if the signatures consist of 1 or 2 group elements. We conclude
that they can be replaced by an equivalent single verification equation. But that would
make the signature scheme vulnerable to a random message attack.

Our work on lower bounds on structure-preserving signatures gives insight into what
a structure-preserving signature with more group elements should look like. The verifi-
cation equations must be organized such that a generic signer can use the secret signing
key to solve them for arbitrary messages. A random choice of 2 or more verification
equations is unlikely to be solvable for a generic signing algorithm. With signature
sizes of 3 or more group elements, however, it is possible to carefully select the verifi-
cation equations such that they are solvable by a generic signer. We find such a set of
verification equations that are solvable by a generic signer and at the same time resists
generic attackers with access to an adaptive chosen message attack.

1.2 Related Work

Lower bounds for cryptographic protocols have been studied extensively. For some
tasks it is possible to give information-theoretic lower bounds; ciphertexts must, for
instance, be longer than plaintexts to enable correct decryption. In the context of zero-
knowledge proofs lower bounds on the round complexity [GO94] have been found by
exploiting the tension between soundness and zero-knowledge. However, these lower

652 M. Abe et al.

bounds do not readily apply to digital signatures where the hash-and-sign paradigm
rules out strong information-theoretic bounds on the size and the protocols are non-
interactive by definition. Gennaro, Gertner and Katz [GGK03] instead investigated the
complexity of digital signatures that only make black-box calls to a one-way permu-
tation and found asymptotic lower bounds on the number of black-box queries. In
contrast, our lower bounds apply to practical pairing-based signature schemes.

The generic group model [Nec94, Sho97] is widely used in pairing-based cryptogra-
phy to rule out generic attacks on cryptographic assumptions. However, there has been
little work on using the generic group model to prove lower bounds on the efficiency
of cryptographic protocols except for Bangerter, Camenisch and Krenn [BCK10] that
gave lower bounds on the knowledge error in certain Sigma-protocols and Ostrovsky
and Skeith [OS08] that gave lower bounds on single-server private information retrieval
protocols based on homomorphic encryption. The generic group model has not been
used to give lower bounds for the complexity of signature schemes.

The first structure-preserving signatures were presented by Groth [Gro06] who used
them to build group signatures. Groth’s signature scheme is based on the decision linear
assumption but consists of thousands of group elements and is therefore not practical.

Green and Hohenberger [GH08] presented a structure-preserving signature scheme
that provides security against random-message attacks, which they used to build a
universally composable adaptive oblivious transfer protocol.

Cathalo, Libert and Yung [CLY09] constructed a partially structure-preserving sig-
nature scheme which signs only a single group element and used it for the construction
of a group-encryption scheme.

Fuchsbauer [Fuc09] presented a structure-preserving signature scheme for signing
messages that are Diffie-Hellman pairs. Fuchsbauer’s scheme is automorphic, i.e., the
public verification keys belong to the message space. Automorphic signatures have
several applications including blind signatures, group signatures, anonymous proxy
signatures and anonymous delegatable credentials [Fuc09, FV10, Fuc11].

Abe, Haralambiev and Ohkubo [AHO10] presented several constructions of structure-
preserving signatures and found applications to blind signatures and group signatures.
A merged version of [Fuc09, AHO10, Gro09] first coined the term structure-preserving
signatures. The most efficient structure-preserving signature scheme from [AFG+10]
can sign multiple group elements belonging to one of the base groups with signatures
that consist of 7 group elements and use two pairing product equations in the verifi-
cation. In comparison, we present a scheme that can sign messages that contain group
elements from both base groups and only uses 3 group elements in the signatures.

2 Preliminaries

2.1 Bilinear Groups

Throughout the paper we let G be a bilinear group generator that on security parameter
k returns (p, G, H, T, e, G, H) ← G(1k) with the following properties:

– G, H, T are groups of prime order p.
– e : G × H → T is a bilinear map such that ∀U ∈ G, ∀V ∈ H, ∀a, b ∈ Z :

e(Ua, V b) = e(U, V)ab.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 653

– G generates G, H generates H and e(G, H) generates T.
– There are efficient algorithms for computing group operations, evaluating the

bilinear map, comparing group elements and deciding membership of the groups.

There are many ways to set up bilinear groups. We will work in what Galbraith,
Paterson and Smart [GPS08] call type III groups, where there are no efficiently com-
putable isomorphisms G → H or H → G. We focus on type III groups here be-
cause they have the most efficient instantiations and therefore the highest relevance for
cryptographic purposes.

In a group (p, G, H, T, e, G, H) generated by G we refer to deciding group member-
ship, computing group operations in G, H or T, comparing group elements and eval-
uating the bilinear map as the generic group operations. In the signature schemes we
construct we only use generic group operations.

As a matter of notation, we will mostly use capital letters A, G, M, R, S, U for group
elements in G and capital letters B, H, N, T, V, W for group elements in H and cap-
ital letter Z for group elements in T. We will use small letters r, s, t, . . . for discrete
logarithms of group elements with respect to base G or base H . We use Greek let-
ters α, β, . . . for hidden field elements in Zp chosen by algorithms as part of their
operation.

2.2 Secure Signature Schemes

A digital signature scheme over groups generated by a bilinear group generator G is a
triple of efficient algorithms (K,S,V). The key generation algorithm K takes a descrip-
tion of the bilinear group as input and returns a public verification key V K and a secret
signing key SK . The signing algorithm S takes a signing key SK and a message M in
the message space M defined by GK and V K as input and returns a signature Σ. The
verification algorithm V takes the verification key V K , a message M and the signature
Σ and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (K,S,V) over bilinear group
generator G is (perfectly) correct if for all security parameters k ∈ N

Pr[GK ← G(1k); (V K, SK)← K(GK); M ←M; Σ ← SSK(M) : VV K(M, Σ) = 1] = 1.

A signature scheme is said to be existentially unforgeable if it is hard to forge a signa-
ture on a new message that has not been signed before. The adversary may see signa-
tures on other messages before making the forgery. We distinguish between a random
message attack, where the adversary gets pairs of random messages and corresponding
signatures, and an adaptive chosen message attack where the adversary can choose ar-
bitrary messages and receive signatures on them. Our signatures will be secure against
adaptive chosen message attack, but our lower bounds on the complexity of signature
schemes will hold even for the weaker random message attacks. We now formally define
existential unforgeability against an adaptive chosen message attacks.

Definition 2 (EUF-CMA). A signature scheme (K,S,V) over bilinear group gener-
ator G is existentially unforgeable against adaptive chosen message attacks if for all
non-uniform polynomial time A

654 M. Abe et al.

Pr[GK ← G(1k); (V K, SK) ← K(GK); (M, Σ) ← ASSK(·)(V K) :
M /∈ Q ∧ VV K(M, Σ) = 1] = negl(k),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signature for
a message that has already been signed. A signature scheme is strongly existentially
unforgeable if it is hard to find a signature on a message that has not been signed before
and also hard to find a new signature for a message that has already been signed.

Definition 3 (sEUF-CMA). A signature scheme (K,S,V) over bilinear group gener-
ator G is strongly existentially unforgeable against adaptive chosen message attacks if
for all non-uniform polynomial time A

Pr[GK ← G(1k); (V K, SK) ← K(GK); (M, Σ) ← ASSK(·)(V K) :
(M, Σ) /∈ Q ∧ VV K(M, Σ) = 1] = negl(k),

where Q is the set of message-signature pairs from A’s queries to the signing oracle.

2.3 Structure-Preserving Signature Schemes

In this paper, we study structure-preserving signature schemes [AFG+10]. In a struc-
ture preserving signature scheme the verification key, the messages and the signatures
consist only of group elements and the verification algorithm evaluates the signature
by deciding group membership of elements in the signature and by evaluating pairing
product equations, which are equations of the form∏

i

∏
j

e(Ai, Bj)aij = Z,

where A1, A2, . . . ∈ G, B1, B2, . . . ∈ H, Z ∈ T are group elements appearing in
GK, V K, M or Σ and a11, a12, . . . ∈ Z are constants. Structure-preserving signa-
tures are extremely versatile because they mix well with other pairing-based protocols.
Groth-Sahai proofs [GS08] are for instance designed with pairing product equations in
mind and can therefore easily be applied to structure-preserving signatures.

Definition 4 (Structure-preserving signatures). A signature scheme (K,S,V) over
bilinear group generator G is said to be structure preserving if

– G generates a bilinear group GK = (p, G, H, T, e, G, H),
– the verification key consists of GK and group elements in G and H,
– the messages consist of group elements in G and H,
– the signatures consist of group elements in G and H, and
– the verification algorithm evaluates membership in G and H and pairing product

equations with Z = 1.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 655

Our signatures are structure-preserving as defined above. When proving our lower
bounds, we will relax the definition of structure-preserving signatures to allow arbi-
trary target group elements Z ∈ T to be included in the verification key and to appear
in the verification equations. This strengthens our results, getting lower bounds in a
relaxed model of structure-preserving signatures and constructing signatures in a strict
model of structure-preserving signatures.

Generic Signer. Abe et al. [AFG+10] did not explicitly require the signing algorithm
to only use generic group operations when they defined structure-preserving signa-
tures. However, it would be a natural addition to the definition of structure-preserving
signatures because otherwise the cryptographic designer would have to invent some
non-generic operations to be used in the signature scheme and that would be a surpris-
ing result in itself. All our signature schemes have a generic signer; as do all earlier
structure-preserving signatures in the literature.

3 Lower Bounds on Structure-Preserving Signatures

In this section, we will prove lower bounds on the complexity of structure-preserving
signatures. We summarize our lower bounds in the following main theorem, which
follows from Theorems 2, 3 and 4.

Theorem 1. All generic-signer structure-preserving signature schemes that are exis-
tentially unforgeable against random message attacks must use at least two verification
equations and have signatures consisting of at least three group elements drawn from
both G and H. This holds even when the messages are single group elements and even
if we allow the verification key to contain elements of T.

3.1 Impossibility of One Verification Equation

Theorem 2. There is no structure-preserving signature with a single verification
equation that is existentially unforgeable against random message attacks.

Proof. Consider a structure preserving signature scheme for messages M ∈ G with the
verification key containing group elements U1, U2, . . . ∈ G, V1, V2, . . . ∈ H, Z ∈ T.
Signatures are of the form (S1, S2, . . . , T1, T2, . . .) with Si ∈ G and Tj ∈ H and are
verified by the following verification equation

∏
i

∏
j

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
j

e(M, Tj)
cj ·

∏
j

e(M, Vj)
dj ·

∏
i

∏
j

e(Ui, Tj)
eij =Z.

Please note there is no need for terms of the form e(Ui, Vj) because without loss of
generality they can be incorporated into Z ∈ T.

Suppose we get a signature (S1, . . . , T1, . . .) on a random message M ∈ G. Isolating
T� and M in the verification, define for every �

A� =
∏

i

Sai�

i ·
∏

i

Uei�

i B� =
∏
j =�

T
cj

j ·
∏
j

V
dj

j .

656 M. Abe et al.

Suppose there is an � for which A� �= M−c� . We can rewrite the verification equation

e(M, T�)
c�e(A�, T�)e(M, B�) ·

∏
i

∏
j �=�

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
i

∏
j �=�

e(Ui, Tj)
eij = Z.

If c� = 0 then setting T ′
� = T�B

−1
� while keeping the rest of the signature intact gives

us a forged signature on M ′ = MA�, where A� �= M−c� = M0 = 1. If c� �= 0

then setting T ′
� = T−1

� B
− 2

c�

� while keeping the rest of the signature intact gives us

a forged signature on M ′ = M−1A
− 2

c�

� �= M , where the inequality follows from
A� �= M−c� . To avoid forged signatures must therefore, with overwhelming probability,
have A� = M−c� for all �.

If there is overwhelming probability that A�M
c� = 1 for all �, then each T� is

cancelled out in the verification. We can therefore without loss of generality ignore
T1, T2, . . . and look at the case where signatures are of the form (S1, S2, . . .) with
Si ∈ G and the verification equation is of the form∏

i

∏
j

e(Si, Vj)bij ·
∏
j

e(M, Vj)dj = Z.

Obtaining two signatures (S1, S2, . . .) and (S′
1, S

′
2, . . .) on two random messages M

and M ′ gives us a signature (S2
1/S′

1, S
2
2/S′

2, . . .) on M2/M ′. With overwhelming
probability M2/M ′ /∈ {M, M ′} and we have a forgery.

3.2 Impossibility of Unilateral Signatures

Let us call a signature unilateral if it only contains group elements in G or only con-
tains group elements in H. In other words, a unilateral signature is either of the form
(S1, S2, . . .) with Si ∈ G or of the form (T1, T2, . . .) with Ti ∈ H.

Theorem 3. There is no unilateral generic-signer structure-preserving signature
scheme that is existentially unforgeable against random message attacks.

Proof. Let us without loss of generality look at a signature scheme for single group
element messages M ∈ G. The verification key contains group elements U1, U2, . . . ∈
G, V1, V2, . . . ∈ H, Z1, Z2, . . . ∈ T.

We first look at the case, where signatures are of the form (S1, S2, . . .) with Si ∈ G
and fit a number of verification equations of the form∏

i

∏
j

e(Si, Vj)bqij ·
∏
j

e(M, Vj)dqj = Zq.

Given two signatures (S1, . . .) and (S′
1, . . .) on random messages M and M ′ we see that

(S2
1/S′

1, . . .) is a signature on M2/M ′. There is negligible probability of M2/M ′ ∈
{M, M ′} so this gives us an existential forgery.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 657

Next, consider the case where signatures are of the form (T1, T2, . . .) with Tj ∈ H
and satisfy verification equations of the form∏

j

e(M, Tj)cqj ·
∏
j

e(M, Vj)dqj ·
∏

i

∏
j

e(Ui, Tj)eqij = Zq.

A generic signer chooses (T1, . . .) independently of M because they belong to different
groups. Generating the signature independently of M combined with correctness of the
signature scheme means that the resulting signature must be valid for all messages M
so it is trivial to find a selective forgery after a one-time random message attack.

3.3 Impossibility of Signatures with 2 Group Elements

Theorem 4. No generic-signer structure-preserving signature scheme with signatures
having two group elements is existentially unforgeable against random message attacks.

Proof. Theorem 3 ruled out the existence of unilateral generic-signer structure-
preserving signatures. The remaining question is therefore, whether we can have signa-
tures of the form (S, T) with S ∈ G and T ∈ H. Suppose without loss of generality that
we have a generic-signer structure-preserving signature scheme for messages M ∈ G.
The public verification key contains U1, . . . ∈ G, V1, . . . ∈ H, Z1, . . . ∈ T and a
signature (S, T) on M satisfies a number of verification equations of the form

e(S, T)aq ·
∏
j

e(S, Vj)bqj · e(M, T)cq ·
∏
j

e(M, Vj)dqj ·
∏

i

e(Ui, T)eqi = Zq.

Without loss of generality we may assume that the signer knows the discrete loga-
rithms of all the elements in the public verification key. Using generic group operations
it can only construct S = MαGβ and T = Hτ , where α, β, τ may be correlated to
each other and the public verification key but are independent of M . Taking discrete
logarithms of the verification equations, we get equations of the form

(αm + β)τaq + (αm + β)
∑

j

vjbqj + mτcq + m
∑

j

vjdqj + τ
∑

i

uieqi = zq.

The correctness of the signature scheme means that these equations are satisfied for any
choice of m. Defining bq =

∑
j vjbqj , dq =

∑
j vjdqj , eq =

∑
i uieqi this means that

the choice of α, β and τ must satisfy pairs of equations of the form

aqατ + bqα + cqτ + dq = 0 aqβτ + bqβ + eqτ = zq.

By taking suitable non-trivial linear combinations of two such pairs of equations, say
equation q1 and q2, we can eliminate the ατ and βτ terms to get a pair of equations of
the form

bα + cτ + d = 0 bβ + eτ = z.

If b = 0 and c �= 0 or b = 0 and e �= 0 we get a fixed τ and T = Hτ is uniquely
determined. This T can therefore without loss of generality be published as part of the

658 M. Abe et al.

verification key making the signature scheme unilateral. Theorem 3 therefore tells us
that if b = 0 then c = 0 and e = 0. This implies d = 0 and z = 0 as well, and
we conclude that the two verification equations q1 and q2 are linearly related and one
of them can without loss of generality be eliminated from the signature scheme. From
Theorem 2 we deduce that there must be at least two verification equations that are not
linearly related giving a linear combination with b �= 0.

If b �= 0 we have

α = −c

b
τ − d

b
β = −e

b
τ +

z

b
.

Plugging them into the verification equations gives us equations of the form

−aq
c

b
τ2+(cq−aq

d

b
−bq

c

b
)τ = bq

d

b
−dq −aq

e

b
τ2+(eq+aq

z

b
−bq

e

b
)τ = −bq

z

b
+zq.

If one of the quadratic equations in τ is non-trivial then T can take at most two
possible values T0 or T1. After obtaining signatures on three random messages, two of
them would be using the same T . The adversary would thus have signatures (S, T) and
(S′, T) on messages M and M ′ and this would give a signature (S2/S′, T) on M2/M ′,
which with overwhelming probability gives an existential forgery.

If all the quadratic equations are trivial there are two possibilities. The first possibility
is that a1 = 0, a2 = 0, . . . but then

cq = bq
c

b
dq = bq

d

b
eq = bq

e

b
zq = bq

z

b

and it can be seen that all the verification equations are linearly related and can be
replaced with a single verification equation. Theorem 2 rules out this possibility. The
other possibility is that c = 0 and e = 0. This gives us

cq = aq
d

b
dq = bq

d

b
eq = −aq

z

b
zq = bq

z

b
α = −d

b
β =

z

b
.

Plugging S = MαGβ into the verification equations shows the verification equations
completely ignore T . With all verification equations ignoring T we are back in the
unilateral case that we ruled out in Theorem 3.

4 Minimal Structure-Preserving Signatures

We will now present a structure-preserving signature scheme that matches the lower
bounds we found in Section 3. The signature scheme is strongly existentially unforge-
able against adaptive chosen message attacks. We can simultaneously sign tuples of
messages in G and tuples of messages in H. A signature consists of three group ele-
ments and is verified using two verification equations.

Let us first discuss the case of signing a pair of group elements (M, N) ∈ G × H.
Working over a bilinear group (p, G, H, T, e, G, H) the verification key is of the form

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 659

(U, V, W, Z) ∈ G × H3. A signature on a message (M, N) ∈ G × H is of the form
(R, S, T) ∈ G2 × H and is verified by two verification equations

e(R, V)e(S, H)e(M, W) = e(G, Z) e(R, T)e(U, N) = e(G, H).

It is instructive to look at the verification equations from a generic signer’s perspec-
tive in light of the same type of equations we used to prove the lower bounds in Section
3. Using R = MαGβ , S = MγGδ and T = N εHη we get after taking discrete loga-
rithms of the verification equations

(αm + β)v + (γm + δ) + mw = z (αm + β)(εn + η) + un = 1.

The signer does not know the discrete logarithms of M and N so the verification
equations should hold for all choices of m and n. The signer must therefore choose
α, β, γ, δ, ε, η ∈ Zp such that the following equations are satisfied

vα+ γ +w = 0 βv + δ = z αε = 0 αη = 0 βε+u = 0 βη = 1.

This gives six constraints on α, β, γ, δ, ε, η. An arbitrary pair of equations could in con-
trast give eight constraints on the six variables and might not be solvable. Furthermore,
if we pick α = 0 we are left with only four constrains

γ = −w βv + δ = z βε + u = 0 βη = 1

on the five variables β, γ, δ, ε, η. This makes it possible to have many different solutions
to the equations and avoids R, S or T being constrained to a single fixed value, which
would bring us into conflict with the lower bounds from Section 3.

We extend the signature scheme sketched above in a natural way to sign messages in
GkM × HkN . The full signature scheme can be found in Figure 1.

Key generation K(GK): Parse GK as (p,G, H, T, e,G, H).
Pick at random u1, . . . , ukN , v, w1, . . . , wkM , z ← Z∗p and compute

Ui = Gui V = Hv Wi = Hwi Z = Hz.

Return the verification key V K = (GK, U1, . . . , UkN , V, W1, . . . , WkM , Z) and the
signing key SK = (V K, u1, . . . , ukN , v, w1, . . . , wkM , z).

Signing SSK(M1, . . . , MkM , N1, . . . , NkN):
Given (M1, . . . , MkM , N1, . . . , NkN) ∈ GkM ×HkM pick r ← Z∗p and compute

R = Gr S = Gz−rv
∏

i

M−wi
i T = (H

∏
i

N−ui
i)

1
r .

Return the signature (R,S, T).
Verification VV K((M1, . . . , MkM , N1, . . . , NkN), (R,S, T)):

Accept if M1, . . . , MkM , R, S ∈ G and N1, . . . , NkN , T ∈ H and

e(R,V)e(S, H)
∏

i

e(Mi, Wi) = e(G, Z) ∧ e(R,T)
∏

i

e(Ui, Ni) = e(G, H).

Fig. 1. Structure-preserving signature scheme for messages in GkM ×HkN

660 M. Abe et al.

Theorem 5. The signature scheme (K,S,V) described in Figure 1 is a structure-
preserving signature scheme over G that is strongly existentially unforgeable against
adaptive chosen message attacks in the generic group model.

Proof. The verification key, the messages and the signatures consist of group elements
in G and H and the verification consists of verifying two pairing product equations, so
it is a structure-preserving scheme. Correctness follows from verifying that

e(Gr, Hv)e(Gz−vr
∏

i

M−wi

i , H)
∏

i

e(Mi, H
wi) = e(G, Hz)

e(Gr, (H
∏

i

N−ui

i)
1
r)
∏

i

e(Gui , Ni) = e(G, H).

Lemma 1 shows that the signature scheme is secure in the generic group model for
kM = 1 and kN = 2. We will show that if the signature scheme is secure for kM = 1
and kN = 2, then the signature scheme is also secure when using arbitrary constants
kM ≥ 1 and kN ≥ 2. In the following we write (K,S,V) and (K′,S′,V ′) to distinguish
between the two settings. We will show that if there is an adversary A′ that can break
(K′,S′,V ′), then there is an adversary A that can break (K,S,V).

The adversary A gets as input a verification key V K = (GK, U1, U2, V, W1, Z). It
picks at random αi, βi ← Zp and γi, δi ← Zp and computes

U ′
1 = Uγ1

1 U δ1
2 . . . U ′

kN
= U

γkN
1 U

δkN
2 W ′

1 = Wα1
1 Hβ1 . . . W ′

kM
= W

αkM
1 HβkM .

It gives the verification key V K ′ = (GK, U ′
1, . . . , U

′
kN

, V, W ′
1, . . . , W

′
kN

, Z) to A′.
Conditioned on the overwhelmingly likely event U ′

i �= 1 and W ′
i �= 1 this has the same

distribution as a normal key produced by (K′,S′,V ′).
When A′ asks for a signature on (M ′

1, . . . , M
′
kM

, N ′
1, . . . , N

′
kN

) ∈ GkM × HkN the
adversary A computes

M =
∏

i

(M ′
i)

αi N1 =
∏

i

(N ′
i)

γi N2 =
∏

i

(N ′
i)

δi .

It asks the signing oracle for a signature (R, S, T) on (M, N1, N2). It then computes
S′ = S

∏
i(M

′
i)

−βi . It returns the signature (R, S′, T) to A. It is straightforward to
verify that a valid signature is returned to A′. Furthermore, we observe that the re-
turned signature is uniformly random over all possible solutions to the two verification
equations just like a normal signature would be. It is therefore a good simulation.

SupposeA′ produces a signature (R′, S′, T ′) on some (M ′
1, . . . , M

′
kM

, N ′
1, . . . , N

′
kN

)
satisfying the two verification equations using the key V K ′. A can translate that into a
valid signature (R′, S, T ′) on a message (M, N1, N2) using V K by computing

S = S′
∏

i

(M ′
i)

βi M =
∏

i

(M ′
i)

αi N1 =
∏

i

(N ′
i)

γi N2 =
∏

i

(N ′
i)

δ.

We now have a strong existential forgery unless (R′, S, T ′) has been used before in

some query q to sign a message (M (q), N
(q)
1 , N

(q)
2) = (M, N1, N2). That would give∏

i

(M ′
i)

αi =
∏

i

(M (q)′

i)αi

∏
i

(N ′
i)

γi =
∏

i

(N (q)′

i)γi .

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 661

Observe that αi and γi are information-theoretically hidden to A′ who only sees W ′
i =

Wαi
1 Hβi and U ′

i = Uγi

1 U δi
2 . Furthermore, no matter the values of αi, γi the adver-

sary gets uniformly random signatures as answer to the chosen message attacks, so
these signatures do not reveal anything about the αi’s and the γi’s either. The only
way the adversary can have more than negligible chance of success is by choosing

M ′
1 = M

(q)′

1 , . . . , M ′
kM

= M
(q)′

kM
, N ′

1 = N
(q)′

1 , . . . , N ′
kN

= N
(q)′

kN
. This means A′ has

repeated the message from query q and some calculation shows that it has also repeated
the signature (R(q)′ , S(q)′ , T (q)′). We conclude that A′ has negligible chance of break-
ing the strong existential unforgeability against chosen message attacks on the signature
scheme with kM ≥ 1 and kN ≥ 2.

The remaining case to consider is kM = 0 or kN ∈ {0, 1}. Here it is easy to get
a secure signature scheme, because we can simply require that the signer always uses
M = 1 or N1 = 1 or N2 = 1, which can be checked in the verification step. Further-
more, when we always have M = 1 or N1 = 1 or N2 = 1 then the corresponding W1

or U1 or U2 is not needed in the verification key.

Lemma 1. The signature scheme (K,S,V) described in Figure 1 is strongly existen-
tially unforgeable against adaptive chosen message attacks in the generic group model
for messages (M, N1, N2) ∈ G × H2.

Proof. Let us for ease of notation write W instead of W1 and U, U ′ instead of U1, U2.
We write (M, N, N ′) ∈ G × H2 for the messages we are signing. We consider an
adversary that only uses generic group operations on the group elements it sees and
is unaware of the random u, u′, v, w, z used in the public key and is unaware of the
randomness ri used to form the signature in signing query number i. Seeing signa-
tures (Ri, Si, Ti) on queries (Mi, Ni, N

′
i) the generic adversary is restricted to picking

ρ, ρu, ρu′ , ρ1, ρ
′
1, . . . , σ, σu, σu′ , σ1, σ

′
1, . . . , τ, τv, τw, τz , τ1, . . . ∈ Zp and computing

R = GρUρu (U ′)ρ
u′ ∏

i

R
ρi
i S

ρ′
i

i , S = GσUσu (U ′)σ
u′ ∏

i

R
σi
i S

σ′
i

i , T = Hτ V τv W τw Zτz
∏

i

T
τi
i .

The queries (Mi, Ni, N
′
i) are computed as products of G, U, U ′, R1, S1, . . . , Ri−1, Si−1

and H, V, W, Z, T1, . . . , Ti−1 raised to exponents chosen by the adversary and the mes-
sage (M, N, N ′) for which a forgery is obtained is computed similarly. Taking discrete
logarithms we have

mi = linear combination of 1, u, u′, r1, s1, . . . , ri−1, si−1

m = linear combination of 1, u, u′, r1, s1, . . . , rq, sq

r = ρ + ρuu + ρu′u′ +
∑

i

ρiri +
∑

i

ρ′i(z − riv − miw)

s = σ + σuu + σu′u′ +
∑

i

σiri +
∑

i

σ′
i(z − riv − miw)

ni, n
′
i = linear combination of 1, v, w, z, t1, . . . , ti−1

n, n′ = linear combination of 1, v, w, z, t1, . . . , tq

t = τ + τvv + τww + τzz +
∑

i

τi
1 − uni − u′n′

i

ri

662 M. Abe et al.

We first consider elements formal polynomials in the variables u, u′, v, w, z, r1, . . . , rq

and show that the generic adversary cannot make an existential forgery when they are
viewed as formal multi-variate polynomials. Later, we will then consider the risk of two
different formal polynomials resulting in identical values when evaluated over concrete
random choices of u, u′, v, w, z, r1, . . . , rq ∈ Z∗

p.
Taking discrete logarithms of the first verification equation gives us rv+s+mw = z,

which means

0 = ρv + ρuuv + ρu′u′v +
∑

i

ρiriv +
∑

i

ρ′i(vz − riv
2 − mivw)

+ σ + σuu + σu′u′ +
∑

i

σiri +
∑

i

σ′
i(z − riv − miw) + mw − z.

Since si = z−riv−miw we have that m1, . . . , mq and m are multi-variate polynomials
in u, u′, v, w, z, r1, . . . , rq . Each mi has degree at most i and m has degree at most q+1.

Looking at the coefficients for 1, u, u′, ri we see that σ = 0, σu = 0, σu′ = 0
and σi = 0 giving us s =

∑
i σ′

i(z − riv − miw). Looking at the coefficients for
v, uv, u′v, riv

2 we get ρ = 0, ρu = 0, ρu′ = 0, ρ′i = 0 giving us r =
∑

i ρiri. The
coefficients for riv give us σ′

i = ρi so s =
∑

i ρi(z − riv − miv).
Switching to the second verification equation we have rt + un + u′n′ = 1. Define

π =
∏

i ri and πj =
∏

i=j ri such that π = πjrj . Multiplying the equation on both
sides with π we get rtπ + unπ + u′n′π = π so

0 =

(∑
i

ρiri

)⎛⎝τπ + τvvπ + τwwπ + τzzπ +
∑

j

τj(πj − unjπj − u′n′
jπj)

⎞⎠
+unπ + u′n′π − π.

Observe, n1, n
′
1, . . . , nq, n

′
q, n, n′ are polynomials in u, u′, v, w, z, r−1

1 , . . . , r−1
q . Each

r−1
i has at most degree 1 and a closer inspection reveals that n1π1, n

′
1π1, . . . , nqπq, n

′
qπq

and nπ, n′π are polynomials in u, u′, v, w, z, r1, . . . , rq of degree at most q + 1.
Looking at the coefficients for π we see that there must exist some � such that ρ� �= 0

and τ� �= 0. Looking at the coefficients for r�π, r�vπ, r�wπ, r�zπ we see that τ =
0, τv = 0, τw = 0, τz = 0. Looking at the coefficients for r�πj we see that τj = 0 for
j �= �. Looking at the coefficients for riπ� we see that ρi = 0 for i �= �. This means

r = ρ�r� and t = τ�
1−un�−u′n′

�

r�
. We now have

ρ�r� · τ�
1 − un� − u′n′

�

r�
π − unπ − π = 0.

From the coefficient of π we deduce that τ� = 1
ρ�

. The equation now reads

π − un�π − u′n′
�π + unπ + u′n′π − π = 0,

which implies un�π + u′n�′π = unπ + u′n′
�π. Plugging in all the possible linear

combinations of 1, v, w, z,
1−un1−u′n′

1
r1

, . . . ,
1−unq−u′n′

q

rq
that can make n, n′, n�, n

′
� in

this equation, we get n = n� and n′ = n′
�.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 663

Going back to the first equation we now have r = ρ�r� and therefore s = ρ�(z −
r�v − m�v), which gives us the equality

ρ�r�v + ρ�(z − r�v − m�v) + mv − z = 0.

Looking at the coefficient of z we conclude ρ� = 1. That tells us m = m�. The adver-
sary has therefore reused m = m� and n = n�, n

′ = n′
� for some � and not obtained

an existential forgery. Furthermore, r = r�, s = s�, t = t� so the adversary cannot even
find a new signature on the same message.

We have now seen that the adversary cannot make an existential forgery when view-
ing group elements as formal multi-variate polynomials. However, it may be the case
that for concrete choices of variables, two formally different polynomials evaluate to
the same value. In this case, we cannot simulate the generic group and it may be that
the adversary can make an existential forgery. The verification equations can be eval-
uated using generic group operations, so without loss of generality we can assume the
adversary knows it when it has made a successful forgery. Since the polynomials have
degree O(q) we get with a birthday paradox argument and the Schwartz-Zippel lemma
that the probability of this type of error occurring in the generic group simulation is a
negligible O(q3

p) when the adversary makes O(q) generic group operations.

5 Other Aspects of Structure-Preserving Signatures

5.1 Strong One-Time Signatures Based on Standard Assumptions

We present below a strong one-time signature scheme for messages from GkM × HkN

with signature size 5 group elements. If the message is one-sided, i.e., (M1, . . . , MkM) ∈
GkM , there is a simpler signature with 2 group elements and a single verification equa-
tion e(R, H)e(S, V)

∏
i e(Mi, Vi) = e(G, W) [AHO10]. These schemes complement

the lower bounds in Section 3 where it was shown that structure-preserving signature
schemes with a single verification equation or with unilateral signatures or with sig-
natures with less than 3 group elements do not exist if the adversary gets access to
signatures on two random messages.

Key generation K(GK): Parse GK as (p, G, H, T, e, G, H).
Pick w, u, u1, . . . , ukN , v, z, v1, . . . , vkM ← Z∗

p at random and compute

W = Hw, U = Gu, U1 = Gu1 , . . . , UkN = GukN , and
Z = Hz, V = Hv, V1 = Hv1 , . . . , VkM = HvkM .

Return verification key V K = (GK, U, U1, . . . , UkN , V, Z, V1, . . . , VkM , W) and
signing key SK = (V K, w, u, u1, . . . , ukN , v, z, v1, . . . , vkM).

Signing SSK(M1, . . . , MkM , N1, . . . , NkN): Given (M1, . . . , MkM , N1, . . . , NkN) ∈
GkM × HkN pick at random s1, s2, t ← Z∗

p and compute

T = Gt, S2 = Hs2 , R2 = HtS−u
2

∏
i

N−ui

i

S1 = Gs1 , R1 = GwS−v
1 T−z

∏
i

M−vi

i

664 M. Abe et al.

Verification VV K((M1, . . . , MkM , N1, . . . , NkN), (R1, S1, T, R2, S2)):
Accept if M1, . . . , MkM , R1, S1, T ∈ G and N1, . . . , NkN , R2, S2 ∈ H and

e(R1, H)e(S1, V)e(T, Z)
∏

i

e(Mi, Vi) = e(G, W) ∧

e(G, R2)e(U, S2)
∏

i

e(Ui, Ni) = e(T, H)

Theorem 6 (Full paper). The signature scheme is strongly existentially unforgeable
against one-time chosen message attacks if the DDH assumption holds in G and H.

5.2 Non-interactive Assumptions

The existential unforgeability of our signature scheme in Figure 1 against adaptive cho-
sen message attacks corresponds to an interactive cryptographic assumption. It would
be nice to base the security of the signature scheme on a non-interactive assumption but
we do not know of any such security reduction.

By adding a few group elements to the signature it is possible to base the signature
scheme on a non-interactive cryptographic assumption though. Consider the following
variant of the signature scheme in Figure 1, where the signer picks M1 ← G and
N1, N2 ← H at random when making signatures. In other words, we can sign messages
of the form (M2, . . . , MkM , N3, . . . , NkN) ∈ GkM−1×HkN−2 and a signature consists
of (R, S, M1, T, N1, N2) ∈ G3 × H3, which is verified by the verification equations

e(R, V)e(S, H)
∏

i

e(Mi, Wi) = e(G, Z) and e(R, T)
∏

i

e(Ui, Ni) = e(G, H).

The signature scheme is strongly existentially unforgeable against adaptive chosen mes-
sage attacks if the following non-interactive assumption holds for G, which essentially
says the signature scheme (K,S,V) from Figure 1 is strongly existentially unforgeable
against random message attacks for message space G × H2.

Assumption 1. Given a random bilinear group (p, G, H, T, e, G, H) ← G(1k) and
uniformly random group elements (U, Û , V, W, Z) ∈ G2 × H3 and uniformly random
(R1, S1, M1, T1, N1, N̂1), . . . , (Rq, Sq, Mq, Tq, Nq, N̂q) ∈ G3 × H3 such that

e(Rj , V)e(Sj , H)e(Mj, W) = e(G, Z) and e(Rj , Tj)e(U, Nj)e(Û , N̂j) = e(G, H)

a non-uniform polynomial time adversary has negligible probability of finding a differ-
ent tuple (R, S, M, T, N, N̂) ∈ G3 × H3 satisfying the two pairing product equations.

Lemma 1 implies that Assumption 1 holds in the generic group model. Actually, a
careful analysis of the proof of Lemma 1 shows that a generic adversary using O(q)
group operations has probability O(q2

p) of breaking Assumption 1.

Theorem 7 (Full paper). If Assumption 1 holds, then the signature scheme (K,S,V)
in Figure 1 is strongly existentially unforgeable against adaptive chosen message at-
tacks when the signer always chooses M1 ← G and N1, N2 ← H at random.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups 665

The signature scheme we just described has signatures consisting of 6 group elements.
By setting U1 = 1, . . . , UkN = 1 and dropping N1 and N2 from a signature, the scheme
can be used to sign messages of the form (M2, . . . , MkM) ∈ GkM−1 using only 4 group
elements. This variant is secure under a related non-interactive assumption.

5.3 Rerandomizable Signatures

The signature scheme in Figure 1 is strongly existentially unforgeable, so it is not pos-
sible even to forge a new signature on a message that has already been signed before.
In some cases strong existential unforgeability is a useful feature, while in other cases
standard existential unforgeability suffices. In this section, we present a rerandomizable
signature scheme where a signature can be modified into a different signature for the
same message. Rerandomizability may for instance be useful in settings where the sig-
nature has to be hidden. One might choose to hide the signature by encrypting it but
if the signature is rerandomizable it may be possible to send part of the rerandomized
signature in the clear. An additional advantage of the rerandomizable signature scheme
we are about to present is that after rerandomization we may only need to hide ele-
ments in one of the groups H. This makes it possible to use special purpose variants of
Groth-Sahai proofs (they refer to it as the linear case) that are particularly efficient.

We do not know how to construct a rerandomizable signature scheme with 3 group
elements that can simultaneously sign messages both in G and H. But by setting Wi = 1
and Z = 1 in the signature scheme in Figure 1 we get an efficient rerandomizable
signature scheme for messages containing group elements in H. The full description of
our rerandomizable signature scheme can be found below.

Key generator K(GK): Parse GK as (p, G, H, T, e, G, H).
Pick at random u1, . . . , ukN , v ← Z∗

p and compute

U1 = Gu1 . . . UkN = GukN V = Hv.

Return V K = (GK, U1, . . . , UkN , V) and SK = (V K, u1, . . . , ukN , v).
Signing SSK(N1, . . . , NkN): Given (N1, . . . , NkN) ∈ HkN pick r ← Z∗

p and set

R = Gr S = Rv T = (H
∏

i

N−ui

i)
1
r .

Rerandomization RV K(R, S, T) :
Pick r′ ← Z∗

p and return the rerandomized signature (R′, S′, T ′) = (Rr′
, Sr′

, T
1
r′).

Verification VV K((N1, . . . , NkN), (R, S, T)):
Accept if R, S ∈ G and N1, . . . , NkN , T ∈ H and

e(R, V) = e(S, H) ∧ e(R, T)
∏

i

e(Ui, Ni) = e(G, H).

Theorem 8 (Full paper). The signature scheme (K,S,V) over G described above is a
rerandomizable structure-preserving signature scheme that is existentially unforgeable
against adaptive chosen message attacks in the generic group model.

666 M. Abe et al.

References

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

[AHO10] Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010)

[BCK10] Bangerter, E., Camenisch, J., Krenn, S.: Efficiency limitations for Σ-protocols for
group homomorphisms. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
553–571. Springer, Heidelberg (2010)

[CL02] Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from
bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72.
Springer, Heidelberg (2004)

[CLY09] Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009)

[Fuc09] Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320 (2009)

[Fuc11] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G.
(ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)

[FV10] Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 16–33.
Springer, Heidelberg (2010)

[GGK03] Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption and
digital signature schemes. In: STOC, pp. 417–425 (2003)

[GH08] Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Hei-
delberg (2008)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology 7(1), 1–32 (1994)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

[Gro09] Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint
Archive, Report 2009/007 (2009)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Hei-
delberg (2008)

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mat.
Zametki 55(2), 91–101 (1994)

[OS08] Ostrovsky, R., Skeith III, W.E.: Communication complexity in algebraic two-party
protocols. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 379–396.
Springer, Heidelberg (2008)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Constant-Rate Oblivious Transfer

from Noisy Channels

Yuval Ishai1,�, Eyal Kushilevitz1,��, Rafail Ostrovsky2,���

Manoj Prabhakaran3,†, Amit Sahai2,‡, and Jürg Wullschleger4,§

1 Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.il

2 University of California, Los Angeles
{rafail,sahai}@cs.ucla.edu

3 University of Illinois, Urbana-Champaign
mmp@cs.uiuc.edu

4 Université of Montréal and McGill University
juerg@wulli.com

Abstract. A binary symmetric channel (BSC) is a noisy communication
channel that flips each bit independently with some fixed error probabil-
ity 0 < p < 1/2. Crépeau and Kilian (FOCS 1988) showed that oblivious
transfer, and hence general secure two-party computation, can be un-
conditionally realized by communicating over a BSC. There has been a
long line of works on improving the efficiency and generality of this con-
struction. However, all known constructions that achieve security against
malicious parties require the parties to communicate poly(k) bits over
the channel for each instance of oblivious transfer (more precisely,

(
2
1

)
-

bit-OT) being realized, where k is a statistical security parameter. The
question of achieving a constant (positive) rate was left open, even in
the easier case of realizing a single oblivious transfer of a long string.

We settle this question in the affirmative by showing how to realize
n independent instances of oblivious transfer, with statistical error that
vanishes with n, by communicating just O(n) bits over a BSC. As a
corollary, any boolean circuit of size s can be securely evaluated by two
parties with O(s)+poly(k) bits of communication over a BSC, improving
over the O(s) · poly(k) complexity of previous constructions.

� Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426,
ISF grant 1361/10, and BSF grant 2008411.

�� Work done in part while visiting UCLA. Supported by ISF grant 1361/10 and BSF
grant 2008411.

��� Research supported in part by DARPA, IBM Faculty Award, Xerox Innovation
Group Award, the Okawa Foundation Award, Intel, Teradata, NSF grants 0830803,
0916574, BSF grant 2008411 and U.C. MICRO grant.
† Supported by NSF grant CNS 07-47027.
‡ Research supported in part from a DARPA/ONR PROCEED award, NSF grants

0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
§ Research supported by the Canada-France NSERC-ANR project FREQUENCY.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 667–684, 2011.
c© International Association for Cryptologic Research 2011

668 Y. Ishai et al.

1 Introduction

One of the attractive features of modern cryptography is its ability to “turn
lemons into lemonade.” Indeed, traditional complexity-based cryptography turns
computational intractability, a major obstacle tackled by Computer Science, into
a blessing. The present work is concerned with a similar phenomenon in the
context of information-theoretic cryptography: the ability to turn noise, a major
obstacle tackled by Information Theory, into a blessing.

Originating from the seminal work of Wyner [38] on the usefulness of noise for
secure communication, there has been a large body of work on basing various
cryptographic primitives on different types of noisy communication channels.
The most fundamental type of a noisy channel in information theory is the
binary symmetric channel (BSC). A BSC with crossover probability p, where
0 < p < 1

2 , flips each communicated bit independently with probability p.
In 1988, Crépeau and Kilian [10] showed that two parties can make use of a

BSC to realize oblivious transfer (OT) [32,15] with unconditional security. By
OT we refer by default to

(
2
1

)
-bit-OT, a protocol which allows a receiver to select

exactly one of two bits held by a sender without revealing the identity of the
received bit to the sender. We require by default that security hold even against
malicious parties. It is known that OT on a pair of m-bit strings reduces to
O(m) instances of bit-OT [4]. Much more broadly, OT can be used as a basis
for general secure two-party computation [39,19,26,24]. This settles the main
feasibility question concerning the cryptographic power of a BSC.

In contrast to the basic feasibility question, the corresponding efficiency ques-
tions are far less understood. To explain the main relevant issues, it is instructive
to draw an analogy with classical information theory. A naive approach to send
n bits of information over a noisy channel is to do it bit-wise, by repeating every
bit k times. A major breakthrough in information theory was the seminal result
of Shannon [33] that by sending bits in blocks and by using the right encod-
ing, one can achieve a constant transmission rate, namely use only a constant
number of channel transmissions per information bit with error that vanishes
with n. One can analogously define the notion of a constant-rate protocol for
OT from BSC (or a constant-rate reduction of OT to BSC) as a protocol which
realizes n independent instances of OT with negligible (in n) statistical error1

by exchanging O(n) bits over the channel.2 In such a protocol, the amortized
communication complexity for each instance of OT tends to a constant which is
independent of the desired level of security.

The existence of a constant-rate protocol for OT from BSC has been a long-
standing open question. The original protocol from [10] required O(k11) bits of
communication over a BSC to realize each instance of OT with error 2−k. This
communication overhead was subsequently improved by Crépeau [9] to O(k3).

1 By the error of OT or other secure computation protocol we refer to the statistical
simulation error under standard simulation-based definitions [5,6,18].

2 This is the best one can hope for up to the exact constant. Indeed, it is known that
Ω(n) bits over the BSC are necessary even if one additionally allows unlimited
communication over a noiseless channel [35].

Constant-Rate Oblivious Transfer from Noisy Channels 669

A major progress was made by Harnik et al. [20], who showed that constant rate
can be achieved in the semi-honest model, in which parties do not deviate from
the protocol except for trying to infer additional information from their view.

Constant-rate protocols for string OT, realizing a single selection between
two n-bit strings by communicating O(n) bits over the channel, are considerably
easier to obtain. (Indeed, known reductions [4] can be used to get constant-rate
string-OT from constant-rate bit-OT, but not the other way around.) Constant-
rate string-OT protocols from an erasure channel, which erases every bit with
probability 0 < p < 1 and informs the receiver of the erasures, were presented
in [30,22].

To summarize the prior state of the art, constant-rate protocols for bit-OT
from BSC were only known in the semi-honest model, and constant-rate string-
OT protocols could only be based on an erasure channel. The existence of
constant-rate bit-OT protocols from a BSC (or even from an erasure channel)
as well as the existence of constant-rate string-OT protocols from a BSC were
left open.

1.1 Our Results

We settle the above questions in the affirmative by presenting a statistically
secure protocol which realizes n independent instances of OT, with 2−k error,
in which the parties communicate only O(n) + poly(k) bits over a BSC.3 This
should be compared to the n · poly(k) bits required by previous constructions.

Combining the above main result with known results for secure two-party
computation based on OT [24] we get the following corollaries:

– Any boolean circuit of size s can be securely evaluated by two parties with
O(s) + poly(k) bits of communication over a BSC, improving over the O(s) ·
poly(k) complexity of previous constructions.

– Applying the previous corollary, any discrete memoryless channel (described
by rational crossover probabilities) can be faithfully emulated by a BSC at
a constant rate.

Our techniques can be used to get similar results based on any “non-trivial”
channel rather than just a BSC. We defer this generalization to the full version
of this paper.

1.2 Overview of Techniques

Our construction uses a novel combination of previous results on OT from
BSC [10,20], recent techniques from the area of secure computation [8,24], and
some new tools that may be of independent interest.

3 The protocol also involves a similar amount of communication over a noiseless
channel. This additional communication can be implemented using the BSC with
a constant rate.

670 Y. Ishai et al.

Among the new general-interest tools is a so-called “Statistical-to-Perfect
Lemma,” showing roughly the following. Given a 2-party functionality Ff for
securely evaluating a function f and 0 ≤ δ ≤ 1, we define F̃ (δ)

f to be an “δ-
faulty” version of Ff that with probability δ allows the adversary to learn the
inputs and have full control over the outputs but otherwise behaves normally.
The lemma says that any ε-secure protocol for F in a G-hybrid model (i.e., us-
ing oracle access to G) perfectly realizes the functionality F̃ (δ)

f in the G-hybrid
model, where δ tends to 0 with ε (but inherently grows with the size of the
input domain). The above lemma allows one to take an arbitrary (and possibly
inefficient) protocol for OT from a noisy channel, such as the one from [10], and
use it with a sufficiently large security parameter to get a perfectly secure imple-
mentation of F̃ (δ)

OT , for an arbitrarily small constant δ > 0, while communicating
just a constant number of bits (depending on δ) over the channel.

This calls for the use of OT combiners [21,20,31], which combine n OT im-
plementation candidates of which some small fraction may be faulty into m < n
good instances of OT. A similar high level approach was used in [20] to solve our
main question in the semi-honest model. While in the semi-honest model there
are constant-rate combiners (tolerating a constant fraction of faulty candidates
with m = Ω(n)) that make only a single use of each OT candidate [20], known
constant-rate OT combiners in the malicious model require a large number of
calls to each candidate, making them insufficient for our purposes. Instead, we
take the following alternative approach.

1. We give a direct construction of a constant-rate protocol for string-OT from
a BSC. (As discussed above, such a result was only known for the easier
cases of an erasure channel or in the semi-honest model.) The protocol em-
ploys previous protocols for OT from BSC [10], the completeness of OT
for secure two-party computation [26,24], techniques from secure multiparty
computation (including the use of algebraic-geometric multiplicative secret
sharing [8,25]), and privacy amplification techniques [3,2]. Its analysis relies
on the Statistical-to-Perfect lemma discussed above.

2. We extend the IPS protocol compiler [24] to apply also when the so-called
“inner protocol” can employ a BSC channel. The main difficulty is that even
when being forced to reveal their secrets, parties can use the uncertainty
of the channel to lie without taking the risk of being caught. We address
this difficulty in a natural way by employing statistical tests to ensure that
significant deviations are being caught with high probability. The extended
protocol compiler requires the inner protocol to satisfy an intermediate no-
tion of security, referred to as “error-tolerance,” that is stronger than security
in the semi-honest model and weaker than security in the malicious model.

3. We instantiate the ingredients required by the extended compiler from Step 2
as follows. The so-called “watchlists” are implemented using string-OTs ob-
tained via the protocol described in Step 1 above. The outer protocol is an
efficient honest-majority MPC protocol for n instances of OT (see [23], build-
ing on [13,8]). The error-tolerant inner protocol is based on an error-tolerant
constant-rate OT combiner from [20].

Constant-Rate Oblivious Transfer from Noisy Channels 671

1.3 Related Work

There is a very large body of related work on cryptography from noisy channels
that was not accounted for in the above survey, and even here we can only give
a very partial account. For the question of basing other cryptographic primitives
(such as key agreement and commitment) on noisy channels see [2,3,28,14,36,37]
and references therein. The question of characterizing the types of channels on
which OT can be based was studied in [27,11,14,12,37]. A general approach
for converting feasibility results for OT from noisy channels into constant-rate
protocols in the semi-honest model was given in [25]. Our work introduces a
similar conversion technique that can be applied in the malicious model.

2 Preliminaries

Some of our results and analysis (in particular Theorem 1) apply to general
2-party secure function evaluation (SFE) functionalities. Such a functionality
is characterized by a pair of functions f = (fA, fB), fA : X × Y → ZA and
fB : X × Y → ZB for (often finite) domains X , Y and ranges ZA,ZB . We will
refer to such an f as a 2-pary function. We associate a functionality Ff with
a 2-party function f , which behaves as follows: Ff waits for inputs from both
parties, and computes the respective outputs. Then if either party is corrupted,
it sends the corresponding output to that party. Then it waits for an instruction
from the adversary to release the output(s) to the uncorrupted party (or parties).
We shall refer to such a functionality Ff as a 2-party SFE functionality.

The two main functionalities in this work are FBSC and FOT. The FBSC func-
tionality (BSC stands for Binary Symmetric Channel) takes as input a bit x from
one of the parties (Alice), and outputs a single bit z to the other party (Bob)
such that Pr[x �= z] = p for some fixed constant probability strictly less than
half. (Note that this is a randomized functionality.) FOT is an SFE functional-
ity, associated with a function defined by fB(x0, x1; b) = xb where x0, x1, b are
single bits each; for FOT fA is a constant function. The functionality Fstring-OT

is similar to FOT, but the inputs from Alice x0, x1 are longer strings.
For every 2-party SFE functionality Ff , we define a weakened variant F̃ (p)

f

where 0 ≤ p ≤ 1 is a constant error probability in the following sense. When
invoked, an instance of F̃ (p)

f would first generate a random bit which is 1 with
probability p. Note that the bit is sampled before receiving inputs from any
party. If the bit is 0, then the functionality behaves exactly as Ff . Otherwise,
if the bit is 1, then the functionality yields itself to adversarial control: i.e., the
input(s) it receives are passed on to the adversary, and the adversary specifies the
outputs to be sent (and when they should be sent) to the honest party (parties).
In this case, even if neither party interacting with the functionality is corrupt,
the functionality will allow the adversary to control it.

The main security definition we use is of statistical Universally Composable
(UC) security [6]. The level of security – called statistical error – is indicated

672 Y. Ishai et al.

by the maximum distinguishing advantage between the real execution of the
protocol and a simulated execution involving the ideal functionality that any
environment can get (the distinguishing advantage being the difference in prob-
abilities of the environment outputting 1 when interacting with the two systems).
We require that the statistical error goes down as 2−Ω(k), where k is the security
parameter. The computational complexity of the protocols should be polynomial
in k and the input size. For intermediate constructions (and in Theorem 1) we
consider perfect security as well.

We say that a protocol Π is in the G-hybrid model if the parties can initiate
and interact with (any number of) instances of the ideal functionality G. Our
goal is to give a “constant-rate” protocol for FOT in the FBSC-hybrid model.
A protocol Π in the G-hybrid model is said to be a constant-rate protocol for
a functionality F , if the total communication in Π (including communication
with instances of G) is O(�) + poly(k), where � is the total communication with
F . We will be interested in realizing parallel instances of a target functionality,
given the number of instances as a parameter (during run-time). More formally
we can define a functionality F∗ which takes � as an initial input from one of the
parties, and then implements � parallel copies of F . Note that when F and G are
finite functionalities (i.e., with the total communication with a single instance
upperbounded by a constant, as is the case for FOT and FBSC), to securely realize
F∗, a constant-rate protocol Π will instantiate only O(�) + poly(k) instances of
G. (For simplicity, we shall refer to Π as a protocol for F , rather than F∗.)

An Arithmetic Encoding Scheme. Our protocol (particularly, the sub-protocol in
Section 4.1) relies on an efficient secret-sharing scheme that supports entrywise
addition and multiplication of shared vectors. Following the terminology of [7],
we refer to such a scheme as an arithmetic encoding scheme. Our abstraction
captures the useful features of algebraic-geometric secret-sharing, introduced in
[8] (see [25,7] for related abstractions).

Our notion of arithmetic encoding is parameterized by a tuple (F, ρ, δ, δ′) and
is defined by three efficient algorithms (Encode, Encode′, Decode′). Here F is a
constant-size finite field, ρ, δ, δ′ are positive constants less than 1, and the three
algorithms satisfy the following properties.

– Encode and Encode′ define constant-rate, probabilistic encodings of vectors
over F. More precisely, for every integer m > 0, there is an n, with m >
ρn, such that Encode and Encode′ probabilistically map vectors in Fm to
Fn. Further, Encode and Encode′ are linear: i.e., each entry of Encode(x)
(respectively, Encode′(x)) is a linear function of the entries of x and a set of
independent random elements.

– The joint distribution of any δn! entries of the output of Encode(x) is
independent of the input x.

– Decode′ is an efficient δ-error-correcting decoder for Encode′. More precisely,
we require that if y has Hamming distance at most δn from a vector in the
support of Encode′(x), then Decode′(y) = x.

Constant-Rate Oblivious Transfer from Noisy Channels 673

– We require the following “homomorphic” properties. For any X, Y, X ′, Y ′ in
the support of Encode(x), Encode(y), Encode′(x′), Encode′(y′), respectively:
• X ∗ Y is in the support of Encode′(x ∗ y)
• X ′ + Y ′ is in the support of Encode′(x′ + y′)

where ∗ and + denote entrywise multiplication and addition over F
respectively.

– We require Encode′ to be sufficiently randomizing. Note that Encode′(x) is
uniform over an affine subspace of Fn whose dimension is at most n−m. We
require that this dimension be at least n − m(1 + δ′).

An arithmetic encoding scheme with the above properties can be obtained from
the classes of algebraic geometric codes used in [8]. See Appendix A for details.

3 Statistical Security to Perfect Security

A crucial ingredient in our constructions and analysis is the ability to consider
a weakly secure protocol to be a perfectly secure protocol for a weaker variant
of the functionality. More precisely, we show the following.

Theorem 1. Let f : X ×Y → ZA×ZB be a 2-party function, and Ff the secure
function evaluation functionality for f . Suppose G is a 2-party functionality and
Π is a D-round protocol such that Π UC securely realizes Ff in the G-hybrid
model, with a statistical security error of ε. Then Π UC securely realizes F̃ (p)

f

in the G-hybrid model with perfect security, where p = D|X ||Y|ε.
Above, if Π is only standalone-secure for Ff , then the same conclusion holds

for standalone security of Π for F̃ (p)
f .

This result gives a powerful composition theorem when multiple instances of
the protocol Π are used together. Note that by UC security, it is indeed the
case that if k copies of Π are run, one could instead consider k copies of F ,
with a statistical security error bounded by kε. However, if ε is not negligible,
say ε > 1/k, then this bound gives us no useful security guarantee. What the
above result does is to give a strong security guarantee for the case when ε is
non-negligible, or even when it is a constant. It says that when k copies of Π are
run, it roughly yields (1 − p)k copies of F (mixed with about pk copies under
adversarial control). In fact, it is further guaranteed that which copies will be
corrupted is not under adversarial control.

In the full version we show that it is unavoidable that p is bigger than ε by a
factor that grows linearly with the domain size of the function.

We give a high-level idea of how we prove the above theorem. Given the
systems corresponding to real and ideal executions, the overall approach is to
decompose each of the real and ideal systems into two parts – real0,real1

and ideal0, ideal1 – so that real0 and ideal0 are identical and carry much of
the “mass” of the systems; then we construct a new ideal system by combining
ideal0 and real1, to get a system that is identical to the real system. Here, a
combination of two systems means that with a fixed probability one of the two

674 Y. Ishai et al.

systems is chosen (corresponding to whether F̃ (p)
f lets the adversary control it or

not, corresponding to choosing ideal1 and ideal0 respectively): in particular,
the simulator in the new system is not allowed to influence this choice. Further –
and this is the main difficulty in the proof – we need to ensure that ideal0 can
be implemented by a simulator interacting with Ff (without access to an honest
party’s inputs or outputs); to implement real1 the simulator may control the
functionality as well.

Note that Theorem 1 is related to Lemma 5 in [29]. The main difference are
the abovementioned restrictions on the system ideal0 which require extra care
in our proof.

Splitting the systems in this manner needs to be carefully defined, see full
version for details. Here we illustrate this by a toy example, to give a sense of
how the simulator for perfect security is derived from the simulator for statistical
security. The protocol we consider is for a degenerate 2-party function f which
provides a constant output to both parties. Further, it takes a fixed input from
Alice (|X | = 1) and takes a bit from Bob (Y = {0, 1}). The protocol Π for our
example consists of a single message z from Bob to Alice, which is equal to y with
probability 1

2 and ⊥ otherwise. We shall consider the case when Alice is corrupt
and Bob is honest. Further we need to consider only a “dummy adversary” who
simply allows the environment to play the role of Alice in the (real) protocol. The
simulator simulates a message from Bob, which is equal to ⊥ with probability
1
2 , and a uniformly chosen bit otherwise. It is easy to see that this simulation is
good up to a statistical distance of 1

4 .

10

0

10

Env receives
z from Adv

y to Bob
Env sends

01⊥ ⊥ 1

0.5 0.5 0.5 0.50 0

00

ideal1ideal0

00 0.50.5

1⊥⊥ 1 00

0.50.5

1⊥⊥ 1 00

0 01⊥ ⊥ 1

0.5 0.50 0

0 1

0 1

real ideal

0.25 0.25 0.25 0.25

0 0

Fig. 1. An example to illustrate Theorem 1. The protocol used in the example (in which
Bob sends a single message to Alice — please see text) is depicted as the interaction
of a system real with the environment. The original simulated system is ideal. The
modified simulation (for a functionality that yields to the adversary with probability
0.5) is obtained as the combination ideal0 + ideal1 which is exactly the same as the
real system.

Constant-Rate Oblivious Transfer from Noisy Channels 675

In Figure 1 we illustrate this example using what we call interaction trees,
which capture an execution involving a system (real or ideal) and an envi-
ronment. The edges from the top node in these trees correspond to the two
possible inputs that the environment can give to Bob (y = 0 and y = 1).
The edges out of the black nodes correspond to corrupt Alice reporting the
(only) message it receives from Bob in the protocol: this can be one of 0,
1, or ⊥. The leaves correspond to complete transcripts. The probabilities of
the system reaching a leaf, provided the environment sends the messages (in
our case, just y) that lead to that leaf is considered the “weight” assigned to
that leaf by the system.

The top-left figure corresponds to the real execution of the protocol, and
the top-right corresponds to the ideal execution. Note that in the simulation,
the behavior of the simulator is independent of the input y. Then we obtain a
“partial system” (with total weight only 0.5, for each value of y), ideal0 by
comparing the real and ideal systems. In this example, ideal0 is obtained by
retaining in each leaf the minimum of the weights assigned by the two systems,
on that leaf, but for any choice of y. We will use the ideal functionality F̃ (p)

f ,
with p = 1

2 , since that is the weight not retained by ideal0.
ideal1 is obtained by “subtracting” ideal0 from real, so that the combi-

nation of ideal0 and ideal1 is indeed real. In doing this we needed to ensure
that weights induced by ideal0 are no more than what real assigns (so that
the system real − ideal0 does not have negative weights). Also we needed to
ensure that ideal0 can be implemented by a simulator which does not have
access to y. Note that to implement ideal1, the simulator will need to know
y.

In going from this toy example to the general case poses several issues.
Here the simulator for ideal0 was determined without considering the inter-
action between the simulator and the functionality. (Indeed, there was little
interaction between the two.) In general we cannot afford to do this. To prop-
erly take into account how the simulator’s behavior depends on what it learns
from the functionality, we consider a separate interaction which the simulator
is the system and it interacts with an “enhanced environment” consisting of
the original environment and the functionality. But the original statistical se-
curity guarantee is only against normal environments (and indeed, does not
make sense against enhanced environments, since in the real execution there
is no ideal functionality present). This requires us to relate the behavior of
the enhanced environment to the behavior of the environment in the ideal
world.

The final proof uses several carefully defined quantities for the three systems
(the real and ideal executions, and the simulator system), and shows how one
can define ideal0 which can be implemented without using y, ensures that it can
be extended to a perfect simulation (i.e., that the remainder of the simulation
is a non-negative system), while retaining as much weight as possible (to keep p
low as promised in Theorem 1).

676 Y. Ishai et al.

4 A Constant-Rate OT Protocol

In this section we present our constant-rate protocol for FOT in the FBSC-hybrid
model. The construction follows the paradigm of the IPS compiler [24] of com-
bining an outer protocol secure in the honest-majority setting, with an inner pro-
tocol secure in the passive corruption (semi-honest) setting, using “watchlists”
implemented using string-OTs. For this we need to instantiate these components
in the FBSC-hybrid model, and also extend the IPS compiler so that it admits
an inner protocol in the FBSC-hybrid model. We outline these steps below, and
present the details in the subsequent sections.

– In order to construct the inner protocol, we will need a constant-rate OT pro-
tocol using FBSC, that is secure against adaptive passive corruption. However,
since monitoring the use of a FBSC functionality (which inherently allows er-
rors) is harder than monitoring the use of the FOT functionality we will need a
somewhat stronger security guarantee from this protocol (namely, passive se-
curity should hold even when a small constant fraction of the FBSC instances
can be corrupted). We shall formalize this notion of “error-tolerance” and ob-
serve that a protocol in [20] already has the requisite properties (Lemma 2).

– The next step is to construct a constant-rate string-OT protocol from FBSC,
with security against active corruption (Lemma 1). The protocol implements
a single instance of string-OT (i.e., takes only one choice bit as input from
the receiver), and the rate refers to the ratio of the length of the string to
the number of instances of FBSC used. This crucially relies on Theorem 1
which states that a weakly secure protocol for a functionality is a perfectly
secure protocol for a weak version of the same functionality.

– The final step involves an extension of the IPS compiler [24] wherein the
“inner-protocol” is in the FBSC-hybrid model (rather than in the FOT-hybrid
model) and enjoys error-tolerance (Lemma 3).

The extended IPS compiler from above is used to combine an appropriate
constant-rate4 outer protocol for FOT (based on [13,8], as used in [24]) with
an error-tolerant inner protocol obtained from the first step, using watchlists
implemented using string-OTs from the second step.

To implement n instances of FOT, the resulting compiled protocol will invoke
the string-OT protocols O(k) times with O(n/k) long strings. Since these string-
OTs are implemented using the constant-rate protocol from the second step, the
compiled protocol uses a total of O(n) instances of FBSC for the watchlists.

Similarly the compiled protocol invokes k instances of the inner-protocol
(for a functionality defined by the outer protocol). Originally, each instance

4 Here the constant-rate refers to the total communication in the protocol, and the
total computation of all the servers per instance of FOT produced. More precisely,
regarding the computational complexity of the servers, we are interested in the
complexity of a passive-secure protocol for implementing the server computations,
and it is only the so-called “type II” computations of the servers that contribute
to this. See [24] for details.

Constant-Rate Oblivious Transfer from Noisy Channels 677

of this inner-protocol can be implemented using O(n/k) instances of FOT, and
is passive-secure in the FOT-hybrid model. We shall replace the FOT instances
used by the inner protocol with the constant-rate error-tolerant protocol from
the first step. This results in an error-tolerant inner protocol in the FBSC-hybrid
model (for the same functionality as the original inner-protocol), which uses
O(n/k) instances of FBSC. Thus overall, for the inner-protocol instances too, the
compiled protocol uses O(n) instances of FBSC.

In the following sub-sections we describe how the above three steps are carried
out, and what precise security guarantees they provide. Then, by following the
above sketched construction we obtain our main result.

Theorem 2. There exists a UC-secure constant-rate protocol for FOT in the
FBSC-hybrid model. That is, there is a protocol that securely realizes n parallel,
independent instances of FOT with statistical error 2−k, with O(n)+poly(k) bits
of communication (including communication over FBSC).

An important corollary of implementing oblivious transfer is that it can be used
to implement arbitrary function evaluation, quite efficiently [24]. Thus combined
with the main result of [24] we have the following.

Corollary 1. For any two party function f that can be computed using a boolean
circuit of size s, there is a UC-secure protocol for Ff in the FBSC-hybrid model,
with O(s) + poly(k) bits of communication.

4.1 A Constant-Rate String-OT Protocol

We denote by Fstring-OT[�] a string-OT functionality for which the sender’s inputs
are two strings from {0, 1}�. In this section we prove the following.

Lemma 1. There exists a protocol which securely realizes a single instance of
Fstring-OT[�] in the FBSC-hybrid model, with total communication of O(�)+poly(k)
bits.

This constant-rate protocol for Fstring-OT in the FBSC-hybrid model is constructed
in three steps. The construction relies on an intermediate functionality, namely
FOLE (or more precisely, F̃OLE). The FOLE functionality (OLE stands for Oblivi-
ous Linear function Evaluation) over the field F evaluates the following function:
it takes p, r ∈ F from Alice and q ∈ F from Bob and outputs pq + r to Bob (and
sends an empty output to Alice). F̃OLE is the error-prone version of FOLE as
defined in Section 2. For simplicity we omit here the error parameter, which will
be chosen as a sufficiently small constant.

Our protocol for Fstring-OT in the FBSC-hybrid model is constructed by
composing the following protocols:

1. Fstring-OT protocol in the F̃OLE-hybrid model, using a constant-rate proto-
col that relies on a constant-rate arithmetic encoding scheme as defined in
Section 2.

678 Y. Ishai et al.

2. F̃OLE protocol in the F̃OT-hybrid model, and
3. F̃OT protocol in the FBSC-hybrid model.

The second step is obtained by applying Theorem 1 to any OT-based protocol
for FOLE (e.g., [26,24]), where the latter is invoked with a sufficiently large (but
constant) security parameter. The third step is obtained by similarly applying
Theorem 1 to any protocol for FOT from FBSC (e.g., [10]). See full version for
further details on the last two steps. In the rest of this section we focus on the
first step.

Reducing Fstring-OT to F̃OLE. This construction uses an arithmetic encoding
scheme as defined in Section 2, with parameters 0 < ρ, δ, δ′ < 1 and a constant-
size F. We point out that a given arithmetic encoding scheme can be con-
sidered to be a scheme with any smaller (positive) value of δ than originally
specified. Hence, to suit the requirements of our protocol, we shall assume that
δ < (1 − δ′)ρ/6. The protocol is in the F̃ (φ)

OLE-hybrid where φ ≤ δ/2.
We shall also use a strong randomness extractor Ext in our construction – a

family of pairwise independent hash functions suffices.
Suppose Alice’s inputs are two strings s0 and s1 and Bob’s input is a choice

bit b. Then the Fstring-OT protocol for �-bit strings proceeds as follows, where
Encode and Encode′ map strings in Fm to strings in Fn and d = δn!. The
parameter m (and the parameters of the extractor Ext) will be chosen such that
for a string x distributed uniformly over any set of size |F|m(1−δ′)/2 or more,
then Ext(x; h) ∈ {0, 1}� (where � = Ω(m) is the length of Alice’s strings), and
(h, Ext(x; h)) (for a randomly chosen h) is almost uniformly random (up to a
statistical distance of 2−Ω(k)) over its range, even given up to 3d log |F| + �
additional bits of information about x.

– Alice’s input is (s0, s1) where s0, s1 ∈ {0, 1}�, and Bob’s input is b ∈ {0, 1}.
– Alice lets X0 = Encode(x0), and X1 = Encode(x1), where x0, x1 are ran-

domly drawn from Fm. She also sets Z = Encode′(0m).
– Bob lets B = Encode(bm) (the bit b is identified with 0 or 1 in F).
– They invoke n instances of the F̃ (φ)

OLE functionality, as follows. For each i ∈ [n],
Alice inputs (pi, ri) = (X(i)

1 − X
(i)
0 , X

(i)
0 + Z(i)) and Bob inputs qi = B(i) to

an instance of F̃ (φ)
OLE, and Bob gets the output yi = piqi + ri. (X(i) stands

for the ith bit of the vector X .) The vector y ∈ Fn that Bob gets from this
is a (possibly) noisy version of X0 ∗ (1 − B) + X1 ∗ B + Z, which in turn is
in the support of Encode′(xb). Bob sets xb = Decode′(y).

– Alice picks two seeds h0, h1 for Ext and lets w0 = s0 ⊕ Ext(x0; h0) and
w1 = s1 ⊕ Ext(x1; h1). (The parameters of Ext are chosen as mentioned
above.) She sends (h0, h1, w0, w1) to Bob.

– Bob obtains sb = wb ⊕ Ext(xb; hb).

It is easy to see that the above protocol has a constant rate (since � = Ω(m)). To
prove the UC security of the protocol, we need to consider the case where both
parties are honest, as well as when one of the parties is corrupt. In all cases,

Constant-Rate Oblivious Transfer from Noisy Channels 679

note that at most 2φn < d out of n instances of F̃ (φ)
OLE will let the adversary

control them, except with negligible probability. In the simulation for all three
cases, the simulator starts off by faithfully simulating whether each instance
of F̃ (φ)

OLE lets the adversary control it or not. If more than d instances yield to
adversarial control, the simulation aborts; as in the real execution, this happens
with negligible probability. In the rest of the analysis, we condition on this not
happening in the real execution as well as in the simulation.

When neither party is corrupted, security follows from the error-correcting
property of Decode′. See full version for details.

Security When Neither Party Is Corrupt. In the simulation (i.e., ideal execution
of Fstring-OT), Bob’s output is always sb when Alice’s inputs are (s0, s1) and
Bob’s input is b. In the real execution of the protocol (conditioned on less than
d instances of F̃ (φ)

OLE being under adversarial control) the vector y received by
Bob has a Hamming distance of less than d from a vector in the support of
Encode′(xb). So, by the error-correcting guarantee of Decode′ Bob recovers xb,
and hence outputs sb correctly.

Security against Corrupt Alice. Here the simulation proceeds in two steps. First,
Alice’s view is completely straight-line simulated (if well-formed messages are
not received from Alice in any round, then Bob aborting the protocol can be
simulated). Next Bob’s view is sampled for the two cases b = 0 and b = 1,
conditioned on Alice’s view, from which Bob’s outputs for each case, denoted
s0 and s1, respectively, are obtained. To complete the simulation the simulator
sends (s0, s1) as the input to the ideal Fstring-OT functionality. Details of the two
steps follow.

Conditioned on F̃ (φ)
OLE yielding to the adversary at most d times, Alice sees at

most d entries of the encoding of B and this can be perfectly simulated since
they are independent of Bob’s input. So first the simulator will sample the (at
most) d entries for B and hands them over to the Alice as the message from
the instances of F̃ (φ)

OLE controlled by her. Then it receives from Alice the output
for Bob from these instances. Further, the simulator receives all but d entries
of (X0, X1, Z) from Alice as inputs to the instances of F̃ (φ)

OLE not controlled by
her. In the next round, the simulator receives (h0, h1, w0, w1) from Alice. This
completes the first part of the simulation.

For the next part, the simulator picks B0 = Encode(0m) and B1 = Encode(1m)
randomly, conditioned to match the d coordinates of B that were already simu-
lated. Then, it computes s0 as what Bob would compute in the protocol if it uses
B = B0 and receives the messages implied by what Alice sent to the simulator in
the first part. Similarly, it computes s1 if Bob used B = B1. Then the simulator
will send (s0, s1) to the functionality.

Given our conditioning the real and simulated executions on there being no
more than d instances of F̃ (φ)

OLE under adversarial control, this is a perfect simu-
lation. Thus over all, this gives a statistically good simulation.

680 Y. Ishai et al.

Security against Corrupt Bob. If Bob is corrupt, then he may not input a valid
B in the range of Encode(0m) or Encode(1m). Nevertheless, we shall see that by
using appropriate encodings and the extractor, there is a string sb such that Bob
learns a negligible amount of information about s1−b.

Note that what Bob learns by Step 2 of the protocol is given by a system of
n linear equations (defined by his input B to F̃OLE) over x0, x1 and the random
elements used by Alice in forming the encodings X0, X1 and the entries of Z,
and the values of X0, X1 and Z at no more than d randomly chosen entries.
Alice’s secrets at this point are two vectors x0, x1 of length only m, so it is
non-trivial to ensure that the information that Bob learns (which is more than
n field elements, and typically n > 2m) does not contain both x0 and x1. This is
ensured by the blinding: intuitively, Z encodes at least t′ := n−m(1+δ′) random
field elements, and so effectively Bob learns at most as much information about
(x0, x1) as from n − t′ = m(1 + δ′) < 2m linear equations.

More formally, let U denote the output vector in Fn obtained by Bob from
F̃OLE, and let Ũ denote the (at most 3d) field elements learned by Bob from
corrupted instances of F̃OLE. It can be shown (see full version) that for any
possible value of Bob’s F̃OLE input B there is c ∈ {0, 1} such that the distribution
of xc conditioned on B and any possible U is uniform in an affine space whose
dimension is at least m(1−δ′)

2 .
Note that c as above can be efficiently computed by solving for x0 and x1

from the equations defined by B and Encode′, and checking the dimension of
their solution spaces. The simulator first perfectly simulates B, Ũ , then uses
B to compute c, and then sends b = 1 − c to the functionality to obtain sb. To
complete the simulation, the simulator sets sc = 0 and generates Alice’s messages
(to both Bob and F̃OLE) at random conditioned on the values of B, Ũ that were
already simulated. The correctness of the simulator follows from the fact that in
the real protocol, conditioned on the choice of B, the string Ext(xc; hc) masking
sc is almost uniformly random even when further conditioned on the remaining
view of Bob. This follows from the fact that Ũ and (hb, Ext(xb; hb)) leak at most
3d log |F| and � additional bits of information, respectively, which our choice of
parameters for Ext tolerates. See full version for further details.

4.2 Error-Tolerant Protocol for FOT over FBSC

Error-tolerance. We say that a protocol π is an error-tolerant protocol for F
in the G-hybrid model if it is secure against adaptive passive corruption, and in
addition tolerates active corruption of a small constant fraction of G instances
that it invokes. More formally, we can define a modified functionality G′, which
behaves exactly as G until a new command corrupt is received as input from
the adversary; if this command is received, then this instance of G will yield
to adversarial control – i.e., send its current view to the adversary, forward
immediately any subsequent message that it receives, and send messages to other
parties in the protocol as instructed by the adversary. π is called a ε0-error-
tolerant protocol for F in the G-hybrid model if π is a secure protocol for F
in the G′-hybrid model against adaptive passive corruption, against the class of

Constant-Rate Oblivious Transfer from Noisy Channels 681

adversaries who send out the corrupt command to at most ε0T of G′ instances,
where T is (an upperbound on) the total number of G instances invoked by π.
We will call π simply an error-tolerant protocol if it is ε0-error-tolerant for any
constant ε0 > 0.

As described above in the inner protocol in our construction, we will require
a constant-rate error-tolerant protocol for FOT in the FBSC-hybrid model.

We observe that such a protocol is implicit in a result in [20]. They present
a constant-rate OT protocol in the FBSC-hybrid model which is secure against
adaptive passive adversaries. This construction starts with a simple passive-
secure constant-rate protocol Φ for FOT in the FBSC-hybrid model, with a small
but constant probability of error, and then uses a constant-rate combiner to
reduce the error to negligible. This combiner uses each candidate FOT instance
once, and (passive-securely) realizes a constant fraction of FOT instances. As
mentioned in [20], the “error-tolerant” version of their combiner allows a small
fraction of the candidate FOT instances to be actively and adaptively corrupted,
though requires the parties themselves to follow the combiner’s protocol honestly.
The combiner corresponds to a constant-rate protocol for FOT in the FOT-hybrid
model with error tolerance as we have defined above. By composing this proto-
col with Φ, we get a constant-rate protocol for FOT in the FBSC-hybrid model,
with the property that if a small constant fraction of the instances of FBSC are
corrupted (resulting in the corruption of a small fraction of FOT instances used
by the combiner protocol), security remains intact.

Lemma 2. [20] There is a constant-rate, error-tolerant protocol for FOT in the
FBSC-hybrid model.

4.3 An Extension to the IPS Compiler

IPS compiler requires a semi-honest inner protocol over FOT. We need to extend
this compiler to work with inner protocols over FBSC. The IPS compiler depends
on being able to monitor the use of FOT channels with a good probability of
catching errors; however, one cannot monitor the FBSC functionality at the same
level. Hence we shall depend on the slightly stronger error-tolerance guarantee
of the inner protocol. Here we shall limit ourselves to the 2-party setting (since
we are interested in a 2-party functionality, namely FOT).

Below we state the extension of the IPS compiler (with the new elements
underlined). See full version for a proof.

Lemma 3. Suppose Π is a protocol among n = Θ(k) servers and 2 clients, for
a 2-party functionality F between the clients, with UC-security against adaptive,
active corruption of Ω(n) servers and adaptive, active corruption of (any number
of) clients. Suppose ρFBSC is a 2-party protocol in the FBSC-hybrid model, that
realizes the functionality of each server in the protocol Π, with error tolerance.
Then there is a 2-party protocol (compiled protocol) for the functionality F
in the (FBSC,Fstring-OT)-hybrid model, with UC-security against adaptive, active

682 Y. Ishai et al.

adversaries. Further, if the (insecure) protocol obtained by directly implementing
each server of Π using ρFBSC has constant rate, then the compiled protocol has
constant rate too.

Putting Things Together. The final protocol is obtained from Lemma 3 by us-
ing the following outer and inner protocols. The outer protocol is the one used in
Section 5.1 of [24] (based on [13,8]) applied to the functionality which realizes n
instances of OT. The inner protocol is the standard OT-based implementation of
the GMW protocol in the semi-honest OT-hybrid model [18], except that the OT
instances consumed by this protocol are implemented using the error-tolerant pro-
tocol of Lemma 2. The watchlists are implemented using the protocol of Lemma 1.

References

1. Ahlswede, R., Csiszar, I.: On Oblivious Transfer Capacity. In: ISIT 2007, pp. 2061–
2064 (2007)

2. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy ampli-
fication. IEEE Transactions on Information Theory 41, 1915–1923 (1995)

3. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy Amplification by Public Dis-
cussion. SIAM J. Comput. 17(2), 210–229 (1988)

4. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Hei-
delberg (1987)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS 2001, pp. 136–145 (2001)

7. Cascudo, I., Cramer, R., Xing, C.: The Torsion-Limit for Algebraic Function Fields
and Its Application to Arithmetic Secret Sharing. In: Crypto 2011 (2011)

8. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

9. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: EURO-
CRYPT 1997, pp. 306–317 (1997)

10. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions. In: FOCS 1988, pp. 42–52 (1988)

11. Crépeau, C., Morozov, K., Wolf, S.: Efficient Unconditional Oblivious Transfer
from Almost Any Noisy Channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004.
LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

12. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair Noisy Channels and Oblivi-
ous Transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004)

13. Damg̊ard, I., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

14. Damg̊ard, I., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

15. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

16. Garcia, A., Stichtenoth, H.: On the asymptotic behavior of some towers of function
fields over finite fields. Journal of Number Theory 61(2), 248–273 (1996)

Constant-Rate Oblivious Transfer from Noisy Channels 683

17. Gemmell, P., Sudan, M.: Highly Resilient Correctors for Polynomials. Information
Processing Letters 43(4), 169–174 (1992)

18. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press,
Cambridge (2004)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987, pp. 218–229 (1987)

20. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-Combiners via Secure
Computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411.
Springer, Heidelberg (2008)

21. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On tolerant combiners for
oblivious transfer and other primitives. In: EUROCRYPT 2005, pp. 96–113 (2005)

22. Imai, H., Morozov, K., Nascimento, A.: Efficient Oblivious Transfer Protocols
Achieving a Non-Zero Rate from Any Non-Trivial Noisy Correlation. In: Desmedt,
Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 183–194. Springer, Heidelberg (2009)

23. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC 2007, pp. 21–30 (2007)

24. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Trans-
fer - Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting Correlations. In:
FOCS 2009, pp. 261–270 (2009)

26. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988, pp. 20–31
(1988)

27. Kilian, J.: More general completeness theorems for secure two-party computation.
In: STOC 2000, pp. 316–324 (2000)

28. Maurer, U.: Perfect Cryptographic Security from Partially Independent Channels.
In: STOC 1991, pp. 561–571 (1991)

29. Maurer, U.M., Pietrzak, K., Renner, R.: Indistinguishability Amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

30. Nascimento, A., Winter, A.: On the Oblivious Transfer Capacity of Noisy Corre-
lations. In: ISIT 2006, pp. 1871–1875 (2006)

31. Przydatek, B., Wullschleger, J.: Error-Tolerant Combiners for Oblivious Primitives.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 461–472. Springer,
Heidelberg (2008)

32. Rabin, M.O.: How to exchange secrets by oblivious transfer. In: TR 1981, Harvard
(1981)

33. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623-656 (1948)

34. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
35. Winkler, S., Wullschleger, J.: On the Efficiency of Classical and Quantum Oblivious

Transfer Reductions. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 707–
723. Springer, Heidelberg (2010)

36. Winter, A., Nascimento, A.C.A., Imai, H.: Commitment Capacity of Discrete Mem-
oryless Channels. In: IMA Int. Conf. pp. 35–51 (2003)

37. Wullschleger, J.: Oblivious Transfer from Weak Noisy Channels. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)

38. Wyner, A.D.: The wire-tap channel. Bell Cyst. Tech. J. 54, 1355–1387 (1975)
39. Yao, A.C.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167

(1986)

684 Y. Ishai et al.

A Arithmetic Encoding from MPC-Friendly Codes

In this section, we briefly sketch how an implementation of our notion of an
arithmetic encoding scheme (Encode, Encode′, Decode′) (as defined in Section 2)
follows from the literature.

Below we recall (verbatim) the notion of MPC-friendly codes from [25], which
almost have all the properties we need. (The parameter k in this section should
not be confused with the use of k as a security parameter in the rest of the
paper.)

Claim ([25], implicit in [8]). There exists a finite field F and an efficiently con-
structible family of linear error-correcting codes Ck : Fk → Fnk with the follow-
ing properties: (1) nk = O(k); (2) The dual distance of Ck is δk = Ω(k); (3) The
linear code C′

k spanned by all entrywise-products of pairs of codewords in Ck

supports efficient decoding of up to μk = Ω(k) errors. (The entrywise product
of (c1, . . . , cn) and (c′1, . . . , c

′
n) is (c1c

′
1, . . . , cnc′n).)

A family of codes Ck as above can be obtained from the construction of Gar-
cia and Stichtenoth [16]. An efficient decoder for C′

k can be obtained via the
Gemmel-Sudan generalization of the Welch-Berlekamp decoder for Reed-Solomon
codes [17].

The one stronger property that we need here (beyond what was needed
in [25]), in order to guarantee that Encode′ generates the amount of entropy
that we need, is a “near-MDS” property of the code C′

k. Specifically, it suffices
to ensure that, for a small enough constant δ0 > 0, we have:

(nk − dim(C′
k) − Δk) < δ0k.

Indeed, this follows immediately from the construction of [16], which in fact
allows us to obtain δ0 = o(1).

The code Ck corresponds to the Encode algorithm, and the code C′
k cor-

responds to the Encode′ algorithm. In both cases, not just the message, but
additional randomness would also be encoded (in the standard method for se-
cret sharing). More specifically, it will suffice to have Encode(x) (respectively,
Encode′(x)) sample a random codeword y in the range of Ck (respectively, C′

k)
such that y has x as a prefix, and set the encoding to be y modified by dropping
this prefix. This can be done efficiently since the codes are linear (by solving a
system of linear equations over x and randomly chosen field elements). In particu-
lar, if Ck and C′

k are systematic codes, then Encode(x) (respectively, Encode′(x))
will pick a random vector r of the appropriate dimension, let y = Ck(x||r) (re-
spectively, y = C′

k(x||r)), and output the last n − m entries of y.
It is instructive to note that Reed-Solomon codes satisfy all the properties we

need, except that Reed-Solomon codes would require the size of the field F to
grow linearly with k. One could use Reed-Solomon codes in our constructions
(instead of algebraic geometric codes) at the cost of a polylogarithmic deterio-
ration of the parameters.

The Torsion-Limit for Algebraic Function Fields

and Its Application to Arithmetic Secret Sharing

Ignacio Cascudo1, Ronald Cramer2, and Chaoping Xing3

1 CWI Amsterdam, The Netherlands
i.cascudo@cwi.nl

2 CWI Amsterdam & Mathematical Institute, Leiden University, The Netherlands
cramer@cwi.nl, cramer@math.leidenuniv.nl

3 Division of Mathematical Sciences, Nanyang Technological University, Singapore
xingcp@ntu.edu.sg.

Abstract. An (n, t, d, n−t)-arithmetic secret sharing scheme (with uni-
formity) for Fk

q over Fq is an Fq-linear secret sharing scheme where the
secret is selected from Fk

q and each of the n shares is an element of Fq.
Moreover, there is t-privacy (in addition, any t shares are uniformly ran-
dom in Ft

q) and, if one considers the d-fold “component-wise” product of
any d sharings, then the d-fold component-wise product of the d respec-
tive secrets is (n− t)-wise uniquely determined by it. Such schemes are
a fundamental primitive in information-theoretically secure multi-party
computation. Perhaps counter-intuitively, secure multi-party computa-
tion is a very powerful primitive for communication-efficient two-party
cryptography, as shown recently in a series of surprising results from
2007 on. Moreover, the existence of asymptotically good arithmetic secret
sharing schemes plays a crucial role in their communication-efficiency: for
each d ≥ 2, if A(q) > 2d, where A(q) is Ihara’s constant, then there ex-
ists an infinite family of such schemes over Fq such that n is unbounded,
k = Ω(n) and t = Ω(n), as follows from a result at CRYPTO’06. Our
main contribution is a novel paradigm for constructing asymptotically
good arithmetic secret sharing schemes from towers of algebraic func-
tion fields. It is based on a new limit that, for a tower with a given
Ihara limit and given positive integer �, gives information on the cardi-
nality of the �-torsion sub-groups of the associated degree-zero divisor
class groups and that we believe is of independent interest. As an appli-
cation of the bounds we obtain, we relax the condition A(q) > 2d from
the CRYPTO’06 result substantially in terms of our torsion-limit. As a
consequence, this result now holds over nearly all finite fields Fq. For
example, if d = 2, it is sufficient that q = 8, 9 or q ≥ 16.

1 Introduction

An (n, t, d, n− t)-arithmetic secret sharing scheme (with uniformity) for Fk
q over

Fq is an Fq-linear secret sharing scheme where k, n, t ≥ 1, d ≥ 2, the secret is
selected from Fk

q and each of the n shares is an element of Fq. Moreover, there
is t-privacy (in addition, any t shares are uniformly random in Ft

q) and, if one

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 685–705, 2011.
c© International Association for Cryptologic Research 2011

686 I. Cascudo, R. Cramer, and C. Xing

considers the d-fold “component-wise” product of any d sharings, then the d-
fold component-wise product of the d respective secrets is (n − t)-wise uniquely
determined by it.

Such schemes, first based on Shamir’s scheme and later abstracted and gener-
alized, are fundamental to (information-theoretically) secure multi-party compu-
tation [2,6,15,10]. Please refer to Section 5 for details about two main, well-known
applications. Note that both concern protocols for “secure multiplication” and
that the properties of arithmetic secret sharing are used somewhat differently
from what their definition perhaps seems to suggest on first encounter. Secure
multiplication is a fundamental primitive in its own right, as secure multi-party
computation is often based on combinations of secure addition and secure multi-
plication, the latter typically being demanding and involved while the former is
typically much more straightforward. Arithmetic secret sharing allows efficient
recovery of the secret in the presence of faulty shares, by a generalization of a
result from [12] (see Section 5) and also gives rise to verifiable secret sharing [10].

A series of surprising results, concerning zero-knowledge for circuit satisfia-
bility (“MPC in the Head”), two-party secure computation, OT-combiners, cor-
relation extractors, and OT from noisy channels [23,24,18,22,13,21], has caused
nothing less than a paradigm shift that perhaps appears even as counter-intuitive:
secure multi-party computation is a very powerful abstract primitive for
communication-efficient two-party cryptography. All these results use arithmetic
secret sharing schemes, typically with d = 2 (see also [11] for an application with
d > 2). Note that both [22,21] are information-theoretic in nature, require the
uniformity property, and also use the error correction procedure.

Also surprisingly, the existence of asymptotically good arithmetic secret shar-
ing schemes plays a crucial role in the communication-efficiency of these recent,
fundamental results on two-party cryptography: as follows from [7], for each
d ≥ 2, if A(q) > 2d (where A(q) is Ihara’s constant from algebraic geometry,
see Section 2) then there exists an infinite family of such schemes over Fq such
that n is unbounded, k = Ω(n) and t = Ω(n). Using these schemes (for d = 2),
“constant-rate communication” has been achieved in those results, due to the
removal of logarithmic terms caused by approaches using (appropriate modes
of) Shamir’s scheme [32]. Note that the original motivation of [7] was to give
a communication-efficient asymptotic version of the “fundamental theorem of
perfect information-theoretically secure multi-party computation” of [2,6], by
combining the asymptotically good scheme from [7] with the results from [10].
In particular, the field Fq of computation can be fixed, the number n of players
is unbounded, and a malicious t-adversary is tolerated with t = Ω(n).

In [9], an extension of [7] is given where Fk
q is replaced by Fqk . It follows by the

results of [4] that asymptotically good (n, t, d, n − t)-arithmetic secret sharing
schemes for Fk

q over Fq exist over any finite field, with the caveat that the unifor-
mity property does not hold after application of the dedicated descent technique
to the result from [7]. Therefore, A(q) > 2d is the weakest known condition un-
der which asymptotically good (n, t, d, n − t)-arithmetic secret sharing schemes
with uniformity (for Fk

q over Fq) are known to exist. All these asymptotic results

The Torsion-Limit for Algebraic Function Fields 687

rely crucially on good towers of algebraic function fields, and currently do not
seem to admit more elementary proofs avoiding this.1

The Drinfeld-Vlǎduţ bound states that A(q) ≤ √
q − 1. By Ihara [20], A(q) =√

q−1 if q is a square. By Serre’s Theorem [31], A(q) ≥ c · log q for some absolute
real constant c > 0 (for which the current best lower bound is about 1

96). If we
take d = 2, for example, then the condition A(q) > 4 is satisfied if q ≥ 49 is a
square (alternatively, q is a large enough cubic [3,1]) or if q is very large. Thus,
existence is unresolved for many values of q.

Our main contribution is a novel paradigm for constructing asymptotically
good arithmetic secret sharing schemes from towers of algebraic function fields.
It is based on a new limit that, for a tower with a given Ihara limit and given
positive integer �, gives information on the cardinality of the �-torsion sub-groups
of the associated degree-zero divisor class groups. Our “torsion limit,” which we
believe is of independent interest, can in general be upper bounded using Weil’s
classical theorem on torsion in Abelian varieties (and in many cases using the
Weil-pairing). However, the resulting bound is far too pessimistic, as we present
a tower for which our torsion limit is considerably smaller, yet it attains the
Drinfeld-Vlǎduţ bound.

By means of this paradigm, we weaken the condition A(q) > 2d to A(q) >
1+Jd(q, A(q)), where Jd(q, A(q)) upper-bounds a “d-torsion” rate (based on the
logarithm of the cardinality of the d-torsion, divided by the genus) taken over
all infinite families of curves defined over Fq such that the genus tends to infinity
and such that the Drinfeld–Vlǎduţ bound is attained.

More precisely, the bounds we obtain on this torsion limit allow us to show the
existence of the claimed arithmetic secret sharing schemes by solving an appro-
priate system of “Riemann-Roch type of equations” over an algebraic function
field (in fact, one such system for each algebraic function field in a given infinite
family). Each such equation is of the form �(λiX + Yi) = 0, where X is the
divisor to be solved for, λi ∈ {−1, d}, Yi is a given divisor, and �(·) denotes
Riemann-Roch dimension. The solution X of such a system defines a certain
AG-code with properties as claimed. The necessity of studying d-torsion arises
from the fact that λi = d does occur.

Concretely, for d = 2 we prove that for all finite fields Fq with q ≥ 16 (as
well as for q = 8, 9), asymptotically good (n, t, d, n− t)-arithmetic secret sharing
schemes with uniformity (for Fk

q over Fq) exist. This settles existence in the
affirmative for nearly all finite fields. As an application, the results from [22,21]
can in principle be based on smaller finite fields.

Finally, using our paradigm we also improve the explicit lower bounds on the
asymptotic optimal normalized corruption tolerance τ̂ (q) from [4] for all q with
q ≤ 81 and q square, as well as for all q with q ≤ 9. For instance, τ̂ (64) ≥ 0.52,

1 The existence of asymptotically good (n, t, 2, n)-arithmetic secret sharing schemes
for Fq over Fq (so k = 1!) can be shown by elementary means [8], with asymptotically
good self-dual error correcting codes as a special case. But this is a much weaker
class that neither supports the mentioned applications in two-party cryptography,
nor the asymptotic version of the “fundamental MPC theorem” given in [7].

688 I. Cascudo, R. Cramer, and C. Xing

whereas previously the best known lower bound was 0.42. As an application, the
asymptotic version of the Fundamental Theorem in principle tolerates a stronger
adversary (by a constant factor). Our results also have a bearing on the study of
the asymptotic complexity of multiplication in finite extension fields of Fq, but
we do not elaborate on this here.

This paper is organized as follows. Our main contributions are captured in Def-
inition 2 (the torsion-limit), Theorem 1 (bounds for this limit), Theorem 6 (suf-
ficient conditions for Riemann-Roch system solvability) and Main Theorems 1
and 2 (claimed arithmetic secret sharing schemes). After giving some preliminar-
ies in Section 2, we introduce our torsion limit in Section 3 and show our bounds.
In Section 4 we introduce Riemann-Roch systems of equations and show how
these may be solved using the bounds from Section 3. In Section 5 we introduce
an elementary framework in which our quantitative results can be conveniently
stated and apply our bounds to obtain the claimed arithmetic secret sharing
schemes. Efficiency issues are also discussed there.

2 Preliminaries

For a prime power q, let Fq be a finite field of q elements. An algebraic function
field over Fq in one variable is a field extension F ⊃ Fq such that F is a finite
algebraic extension of Fq(x) for some x ∈ F that is transcendental over Fq.
F/Fq denotes a function field with full constant field Fq; g(F) and N(F) are
the genus and the number of rational places of F respectively. P(F) denotes the
set of places of F , which is an infinite set, and P(k)(F) is the (finite) subset
consisting of the places of degree k of F . Ni(F) is the number of rational places
of the constant field extension FqiF , i.e., Ni(F) = N(FqiF) (note that N(F) =
N1(F)); Div(F) is the divisor group of F and Div0(F) its subset consisting
of the divisors of degree 0; Prin(F) is the principal divisor group of F ; Cl(F)
is the divisor class group Div(F)/Prin(F) of F and Cl0(F) = JF is the zero
divisor class group Div0(F)/Prin(F) of F , which is a finite group of cardinality
h(F) = |Cl0(F)| (the class number); Ar(F) is the set of effective divisors of
degree r ≥ 0, which is a finite set, and Ar(F) denotes its cardinality; Clr(F) is
the set of {[D] : deg(D) = r}, where [D] stands for the divisor class containing D
and Cl+r (F) is the subset of Clr(F) of classes which contain an effective divisor,
i.e., {[D] : deg(D) = r, D ≥ 0}. In case there is no confusion, we omit F in some
of the above notations. For instance, Ar(F) is denoted by Ar if it is clear in the
context. For a divisor G of F , L(G) := {f ∈ F ∗ : div(f) + G ≥ 0} ∪ {0} is its
Riemann-Roch space. It is a finite dimensional space over Fq. Its dimension �(G)
satisfies �(G) = deg(G) + 1− g(F) + �(K −G) where K is a canonical divisor of
degree 2g(F)−2 (Riemann-Roch theorem). Therefore, �(G) ≥ deg(G)+1−g(F),
with equality if deg(G) ≥ 2g(G) − 1. The zeta function of F is defined by the
following power series

ZF (T) := Exp

(∞∑
i=1

Ni(F)
i

T i

)
=

∞∑
i=0

Ai(F)T i.

The Torsion-Limit for Algebraic Function Fields 689

In fact (Weil), ZF (T) = LF (T)
(1−T)(1−qT) where LF (T) is a polynomial of degree

2g(F) in Z[T], called L-polynomial of F . Furthermore, LF (0) = 1. If we factorize
LF (T) into a linear product

∏2g(F)
i=1 (wiT − 1) in C[T], then Weil showed that

|wi| =
√

q for all 1 ≤ i ≤ 2g(F). The Functional Equation of the L-polynomial
states LF (T) = qg(F)T 2g(F)LF (1/qT). Finally we know LF (1) = h(F). All these
facts about the L-polynomial can be found in [34]. Again, when F is clear from
the context we write Z(T) and L(T) for its zeta function and L-polynomial,
respectively. From the definition of zeta function, one obtains Nm(F) = qm +1−∑2g(F)

i=1 wm
i for all m ≥ 1. This gives the Hasse-Weil bound N(F) = N1(F) ≤ q+

1+2g(F)
√

q. Define Nq(g) = maxF N(F), where F ranges over all function fields
of genus g over Fq, and define A(q) := lim supg→∞ Nq(g)/g, Ihara’s constant.
Vlǎduţ and Drinfeld showed A(q) ≤ √

q−1. Ihara [20] showed that A(q) ≥ √
q−1

for any square power q. Hence, A(q) =
√

q − 1 for all square powers. Zink [42],

and Bezerra et al. [3] (see also Bassa et al. [1]) showed that A(q3) ≥ 2(q2−1)
q+2

Serre showed that there is a absolute constant c > 0 such that A(q) ≥ c · log(q)
for all prime powers q. In [41], Xing and Yeo showed that A(2) ≥ 0.258. Very
recently, Duursma and Mak have reported in [14] the stronger bound A(2) ≥
0.316. For a family F = {F/Fq} of function fields with g(F) → ∞ such that
limg(F)→∞ N(F)/g(F) exists, one can define this limit to be the Ihara limit,
denoted by A(F). It is clear that there exists a family E = {E/Fq} of function
fields such that g(E) → ∞ and the Ihara limit A(E) is equal to A(q).

Remark 1. In general, we can define the Ihara limit for any family F = {F/Fq}
of function fields with g(F) → ∞ by lim supg(F)→∞ N(F)/g(F). However, for
convenience of this paper, we define the Ihara limit only for those families
{E/Fq} whose limit limg(E)→∞ N(E)/g(E) exists.

3 Torsion Point Limits

For the applications in this paper, we are interested in considering, in addition
to the Ihara limit of a family of function fields, a limit for the number of torsion
points of the zero divisor class groups of these function fields.

Let F/Fq be a function field. For a positive integer r > 1, we denote by JF [r]
the r-torsion point group in JF , i.e., JF [r] := {[D] ∈ JF : r[D] = 0}.
Definition 1. For each family F = {F/Fq} of function fields with g(F) → ∞,
we define

Jr(F) := lim inf
F∈F

logq |JF [r]|
g(F)

.

We define an asymptotic notion involving both Jr(F) and the Ihara limit A(F).

Definition 2 (The torsion-limit). For a prime power q, r ∈ Z>1 and a ∈ R,
let F be the set of families {F} of function fields over Fq such that genus in each
family tends to ∞ and the Ihara limit A(F) ≥ a for every F ∈ F. Then the
asymptotic quantity Jr(q, a) is defined by Jr(q, a) = lim infF∈F Jr(F).

690 I. Cascudo, R. Cramer, and C. Xing

Thus, for a given family, the limit Jr(F) measures the r-torsion against the
genus. The corresponding constant Jr(q, a) measures, for a given Ihara limit a
and for given r, the “least possible r-torsion.” Note that A(q), Ihara’s constant,
is the supremum of A(F) taken over all asymptotically good F over Fq. Now we
are ready to state the main results of this section.

Theorem 1. Let Fq be a finite field and let r > 1 be a prime.

(i) If r | (q − 1), then Jr(q, A(q)) ≤ 2
logr q .

(ii) If r � (q − 1), then Jr(q, A(q)) ≤ 1
logr q

(iii) If q is square and r | q, then Jr(q,
√

q − 1) ≤ 1
(
√

q+1) logr q .

The first part of Theorem 1, as well as the second part when, additionally, r|q, is
proved directly using a theorem of Weil [38,27] on torsion in Abelian varieties. 2

The second part, in the case r � q and r � (q − 1), can be proved by using Weil
pairing for abelian varieties and we will show it in Section 3.1 below. The most
interesting is perhaps the bound in the third part, which is substantially smaller
(we prove that bound in Section 3.2).

Theorem 2. Let Fq be a finite field of characteristic p.

(i) If r ≥ 2 is an integer, then Jr(q, A(q)) ≤ logq(dr), where d = gcd(r, q − 1).
(ii) Write r as p�m for some � ≥ 0 and a positive integer m co-prime to p. If q is a

square, then Jr(q,
√

q−1) ≤ �√
q+1 logq(p)+logq(cm), where c = gcd(m, q−1).

Proof. The result follows quite directly from the case of prime r considered
in Theorem 1 together with some observations about group torsion. We prove
this formally in Section 3.3 below. #
Finally, we show existence of certain function field families that is essential for
our applications in Section 5.

Theorem 3. For every q ≥ 8 except for q = 11 or 13, there exists a family F
of function fields over Fq such that the Ihara limit A(F) exists and it satisfies
A(F) > 1 + J2(F).

Proof. We prove it in two steps. The first one is to prove that the result is
true for all q ≥ 17 by using class field theory. The second step is to show that
the result holds for q = 8, 9, 16 by looking at each individual q. For q ≥ 17, we
prove the result only for odd q. For even q, we can similarly get it by considering
the Artin-Schreier extensions. Choose 7 nonzero square elements t1, . . . , t7 in
Fq (this is possible since (q − 1)/2 ≥ 7). For each i, consider the extension
Ki = Fq(x, yi), where y2

i = x + ti. Then the place x is completely splitting in

2 If K is algebraically closed, then, for any m �= 0, A[m] is isomorphic to (Z/mZ)2g

if m is co-prime to the characteristic p of K; and A[p] is isomorphic to (Z/pZ)a for
some 0 ≤ a ≤ g, where g is the dimension of A. See also [30]. This implies upper
bounds if K is not algebraically closed.

The Torsion-Limit for Algebraic Function Fields 691

Ki. Let K be the field Fq(x, y), where y2 =
∏7

i=1(x + ti). Then K is a subfield
of K1 · · ·K7/Fq(x) such that [K : Fq(x)] = 2 and K1 · · ·K7/K is an unramified
abelian extension. The three places, ∞ and those lying above x, are completely
splitting in K1 · · ·K7/K. Since the 2-rank of the Galois group of K1 · · ·K7/K
is 6 which is equal to 2 + 2

√
3 + 1, K has an infinite (2, S)-Hilbert class field

tower F , where S consists of the three places ∞ and those lying above x. This
yields A(F) ≥ 3/(g(K) − 1) = 3/2 (see [31] or [29, Corollary 2.7.8]). Now we
have A(F) ≥ 3/2 > 1+2/ log2(17) ≥ 1+2/ log2 q ≥ 1+J2(F). For q = 8, by the
lower bound for cubics from Section 2 we know that there exists a family F over
F8 such that A(F) ≥ 3/2. Thus, A(F) ≥ 3

2 > 1 + 1
3 ≥ 1 + J2(F). For q = 9, by

the result for squares from Section 2 we know that there exists a family F over
F9 such that A(F) = 2. Thus, A(F) = 2 > 1 + 2

log2 9 ≥ 1 + J2(F). For q = 16,
by the result for squares from Section 2 we know that there exists a family F
over F16 such that A(F) = 3. Thus, A(F) = 3 > 1 + 1

4 ≥ 1 + J2(F). #

3.1 Proof Theorem 1(ii)

For an abelian variety A defined over a field k and a positive integer m, the
m-torsion point group, denoted by A[m], is defined to be the set of the points
over the algebraic closure k̄ annihilated by m. We know that A[m] is isomorphic
to (Z/mZ)2g if m is co-prime to the characteristic p of k; and A[p] is isomorphic
to (Z/pZ)a for a non-negative integer a ≤ g, where g is the dimension of A (see
[38,27]). We also denote by A(k) the set of k-rational points. Thus, the set of
m-torsion k-rational points is A(k)[m] = A(k) ∩ A[m]. If m is co-prime with
the characteristic of k, then we can define the Weil pairing to be a map em

from A[m] × Â[m] to Gm, where Â denotes the dual abelian variety of A and
Gm % Z/mZ is the group of m-th roots of unity in k̄. The Weil paring em has
some properties such as bilinear, non-degenerate, commuting with the Galois
action of Gal(k̄/k) (see [26]), etc. More precisely:

(i) em(S1 +S2, T) = em(S1, T)em(S2, T); em(S, T1 +T2) = em(S, T1)em(S, T2);
(ii) If em(S, T) = 1 for all S ∈ A[m], then T = 0;
(iii) em(Sσ, T σ) = em(S, T)σ.

If there is a polarization λ from A to Â, we get a pairing: eλ
m from A[m]×A[m]

to Gm defined by eλ
m(P, Q) = em(P, λ(Q)). From now on, we assume that A is

a Jacobian over k. Then there is a principal polarization λ from A to Â which
is an isomorphism. In this case, we denote eλ

m by wm, i.e., wm is a pairing from
A[m]×A[m] to Gm. It is clear that wm satisfies all three properties above as well.
From the bilinear property, we have wm(tP, Q) = wm(P, Q)t and wm(P, tQ) =
wm(P, Q)t for any t ≥ 0 and P, Q ∈ A[m]. To derive an upper bound on the size
of r-torsion points, we need the following result which can be derived easily by
using linear algebra.

Lemma 1. For a prime r, consider an Fr-vector space W of dimension n and a
non-degenerate bilinear map e : W×W −→ Fr, i.e., e(x+z,y) = e(x,y)+e(z,y),

692 I. Cascudo, R. Cramer, and C. Xing

e(x,y+z) = e(x,y)+e(x, z), and if e(x,u) = 0 for all x ∈ W , then u = 0. If V
is an Fr-subspace of W with e(x,y) = 0 for all x,y ∈ V , then dimFr V ≤ n/2.

Applying Lemma 1 to the Weil paring wr, we obtain the following:

Corollary 1. If V is an Fr-subspace of A[r] such that wr(P, Q) = 1 for all
P, Q ∈ V , then dimFr (V) ≤ g.

Proof. Let ζ be a rth primitive root of unity and consider the bilinear map
(P, Q) �→ a ∈ Z/rZ, where a satisfies ζa = wr(P, Q). Now apply Lemma 1. #

Proposition 1. Let k = Fq and assume that a prime r does not divide q − 1.
If A is a Jacobian variety over k, then dim(A(k)[r]) ≤ g.

Proof. If r is the characteristic of k, then it follows from the Weil bound.
Now assume that r is not the characteristic of k. It is easy to verify that A(k)[r]
is an Fr-subspace of A[r]. For any σ in the Galois group Gal(k̄/k), one has
wr(P, Q) = wr(P σ, Qσ) = wr(P, Q)σ. This implies that wr(P, Q) is an element
of k. However, the only r-th root of unity in k is 1. We get wr(P, Q) = 1 for all
P, Q ∈ A(k)[r]. Our desired result follows from Corollary 1. #

3.2 Proof of Theorem 1(iii)

Let Fq be a finite field. Write p for its characteristic. For a function field F over
Fq denote by γ(F) the p-rank of F . It holds that γ(F) ≥ logp(JF [p]). Assume
q is a square. Consider the tower F = (F (0) ⊂ F (1) ⊂ · · ·) over Fq introduced
in [16], recursively defined by F (0) = Fq(x0) and F (n+1) = F (n)(xn+1), where
x
√

q−1
n x

√
q

n+1 + xn+1 = x
√

q
n . The following facts can be found in [16].

1. The tower F attains Drinfeld-Vlǎduţ bounds, i.e., its limit A(F) is given by
A(F) := limn→∞

N(F (n))

g(F (n))
=

√
q − 1.

2. For any place P ∈ P(F (n−1)) and any place Q ∈ P(F (n)) such that Q|P we
have d(Q|P) = (

√
q + 2)(e(Q|P) − 1), where d(Q|P) and e(Q|P) denote the

different exponent and ramification index.
3. g(F (n)) = q

n+1
2 + q

n
2 − q

n+2
4 − 2q

n
2 + 1 if n ≡ 0 (mod 2) and

g(F (n)) = q
n+1
2 + q

n
2 − 1

2q
n+3

4 − 3
2q

n+1
4 − q

n−1
4 + 1 if n ≡ 1 (mod 2).

We will now show

Theorem 4. It holds that γ(F (n)) = (
√

qn/2 − 1)2 if n ≡ 0 (mod 2) and
γ(F (n)) = (

√
q(n−1)/2 − 1)(

√
q(n+1)/2 − 1) if n ≡ 1 (mod 2).

In particular limn→∞
g(F (n))

γ(F (n))
=

√
q + 1.

Then Theorem 1(iii) is a direct corollary of the above theorem.
Without loss of generality we can assume that the constant fields of the func-

tion fields are Fq. We will use the following theorem.

The Torsion-Limit for Algebraic Function Fields 693

Theorem 5 (Deuring-Shafarevich (see e.g. [19])). Let E/F be a Galois
extension of function fields over Fq. Suppose its Galois group is a p-group.

Then γ(E) − 1 = [E : F](γ(F) − 1) +
∑

P∈P(F)

∑
Q∈P(E),Q|P (e(Q|P) − 1).

Proof of Theorem 4: Consider the extension F (n)/F (n−1). As this is an Artin-
Schreier extension, it is Galois and its Galois-group is a p-group. By Riemann-
Hurwitz (see e.g. [34] and fact 2. above), and by Deuring-Shafarevich, respec-
tively,

2·g(F (n))−2 =
√

q ·(2g(F (n−1))−2)+(
√

q+2)·
∑

P∈P(F (n−1))

∑
Q∈P(F (n))

Q|P

(e(Q|P)−1),

γ(F (n)) − 1 =
√

q · (γ(F (n−1)) − 1) +
∑

P∈P(F (n−1))

∑
Q∈P(F (n))

Q|P

(e(Q|P) − 1).

Combining these two equations we find

γ(F (n)) =
√

q ·γ(F (n−1))+2 · (g(F (n))−2
√

q ·g(F (n−1))−√
q
2 +

√
q)(

√
q +2)−1.

Using the fact that γ(F (0)) = 0 and applying induction, the result follows. #

3.3 Proof of Theorem 2

We first show how to lift the previous results from A(k)[r] to A(k)[rt].

Lemma 2. Let k = Fq and let r be a prime. If A is an Abelian variety over k
with |A(k)[r]| ≤ a, then |A(k)[rt]| ≤ at for every t ≥ 1.

Proof. We prove it by induction. The case t = 1 is the given condition.
Assume it holds for t−1. Consider the map [r]k : A(k)[rt] → A(k)[rt−1], P �→ rP.
Clearly the kernel of [r]k is A(k)[r]. Thus, |A(k)[rt]| = |Ker([r]k)| × |Im([r]k)| ≤
a × at−1 = at. The desired result follows. #

Proposition 2. Let k = Fq and assume that a prime r does not divide q − 1.

1. If A is a Jacobian variety over k, then |A(k)[rt]| ≤ rgt for every t ≥ 1.
2. If m ≥ 2 is an integer, then |A(k)[m]| ≤ (dm)g, where d = gcd(m, q − 1).

Proof. Part 1 is the direct result of Proposition 1 and Lemma 2. To prove
Part 2, we factorize m into the product

∏
p psp × ∏

� �s� of prime powers, where
d =

∏
p psp is a factor of q − 1 and

∏
� �s� = m/d. By Part 1 and the follow-

ing isomorphism A(k)[m] % ∏
p A(k)[psp] × ∏

� A(k)[�s�], we have |A(k)[m]| =
|∏p A(k)[psp]| × ∏

� |A(k)[�s�]| ≤ d2g × (m/d)g = (dm)g. #
Theorem 1(iii), Lemma 2, and Proposition 2 now imply Theorem 2.

694 I. Cascudo, R. Cramer, and C. Xing

4 Riemann Roch Systems of Equations

Let F/Fq be an algebraic function field.

Definition 3. Let L ∈ Z>0 and let Yi ∈ Cl(F), di ∈ Z \ {0} for i = 1, . . . , L.
The Riemann-Roch system of equations in the indeterminate X is the system
{�(diX + Yi) = 0}L

i=1 determined by these data. A solution is some [G] ∈ Cl(F)
which satisfies all equations when substituted for X .

It is often more convenient to define systems over Div(F) rather than Cl(F).
The idea of using Riemann-Roch systems of equations was already present in
some papers, e.g. [36], [39], [40]. However, those systems are less general, namely
they have di = ±1 for all i.3 The following theorem shows that a solution of
degree s exists if a certain numerical condition is satisfied that involves the class
number, the number Ari of effective divisors of degree ri and the cardinality of
the di-torsion subgroups of the degree-zero divisor class group, where the di are
determined by the system and the ri are determined by s and the di.

Theorem 6. Consider the Riemann-Roch system {�(diX + Yi) = 0}L
i=1. Write

si = deg Yi for i = 1, . . . , L. Denote by Ar the number of effective divisors of
degree r in Div(F) for r ≥ 0, and 0 for r < 0. Let s ∈ Z and define ri = dis + si

for i = 1, . . . , L. If h >
∑L

i=1 Ari · |JF [di]|, then the Riemann-Roch system has
a solution [G] ∈ Cls(F).

Proof. Let S be the set {1 ≤ i ≤ L : ri ≥ 0}. For each i ∈ S, we argue
as follows. Define the maps φi : Cls(F) → Cldis(F), X �→ diX and ψi :
Cldis(F) → Clri(F), X ′ �→ X ′ + Yi. Then ψi is an injection and each image
under φi has exactly |JF [di]| pre-images. Write σi = ψi ◦ φi. Then, for any
element Z ∈ Cl+ri

(F), |σ−1
i (Z)| ≤ |JF [di]|. Hence, |σ−1

i (Cl+ri
(F))| ≤ Ari ·|JF [di]|.

Thus,
⋃

i∈S σ−1
i (Cl+ri

(F))| ≤ ∑
i∈S Ari · |JF [di]|. Since by hypothesis we have

|Cls(F)| = h >
∑L

i=1 Ari · |JF [di]| =
∑

i∈S Ari · |JF [di]|, there is an element
[G] ∈ Cls(F)\⋃i∈S σ−1

i (Cl+ri
(F)). Since σi([G]) ∈ Clri(F) but σi([G]) /∈ Cl+ri

(F),
it follows that �(σi([G])) = 0 for i ∈ S, i.e., [G] is a solution of the system
{�(diX +Yi +Ti) = 0}i∈S . Finally [G] is also a solution of {�(diX +Yi) = 0}i∈S ,
because deg(di[G] + Yi) = ri < 0 for all i �∈ S. #

Remark 2. (“Solving by taking any divisor X of large enough degree”)

(i) If ri < 0 for all i = 1, . . . , L, then the inequality in Theorem 6 is automati-
cally satisfied and hence the Riemann-Roch system always has a solution.

(ii) For instance, in [7], it was simply assumed that ri < 0 to obtain (n, t, d, n−t)-
arithmetic secret sharing schemes. But this does not always give the best
results. In particular, in Section 5, we will show how we can employ Theorem
6 to get improvements, especially for small finite fields.

3 In [33], the case di = 2 was considered but their result must be corrected for torsion.

The Torsion-Limit for Algebraic Function Fields 695

5 Application to Arithmetic Secret Sharing

We first recall the results of [7], cast in a novel, technical framework.4 This
will make it possible to state our main quantitative results on arithmetic secret
sharing in transparent language, which also facilitates easy comparison with
earlier work. Let k, n be integers with k, n ≥ 1. Consider the Fq-vector space
Fk

q × Fn
q , where Fq is an arbitrary finite field.

Definition 4. The Fq-vector space morphism π0 : Fk
q × Fn

q → Fk
q is defined

by the projection (s1, . . . , sk, c1, . . . , cn) �→ (s1, . . . , sk). For each i ∈ {1, . . . , n},
the Fq-vector space morphism πi : Fk

q × Fn
q → Fq is defined by the projection

(s1, . . . , sk, c1, . . . , cn) �→ ci. For ∅ �= A ⊂ {1, . . . , n}, the Fq-vector space mor-
phism πA : Fk

q × Fn
q → F|A|

q is defined by the projection (s1, . . . , sk, c1, . . . , cn) �→
(ci)i∈A. For v ∈ Fk

q × Fn
q , it is sometimes convenient to denote π0(v) ∈ Fk

q by
v0 and πA(v) ∈ F|A|

q by vA. We write I∗ = {1, . . . , n}. It is also sometimes
convenient to refer to v0 as the secret-component of v and to vI∗ as its shares-
component.

Definition 5. An n-code for Fk
q (over Fq) is an Fq-vector space C ⊂ Fk

q × Fn
q

such that π0(C) = Fk
q and (Ker πI∗) ∩ C ⊂ (Ker π0) ∩ C. For c ∈ C, c0 ∈ Fk

q

is the secret and cI∗ ∈ Fn
q the shares.

The first condition means that, in C, the secret can take any value in Fk
q . More

precisely, for a uniformly random vector c ∈ C, the secret c0 is uniformly random
in Fk

q . This follows from the fact that the projection (π0)|C is regular (since it
is a surjective Fq-vector space morphism). The second condition means that the
shares uniquely determine the secret. Indeed, the shares do not always determine
the secret uniquely if and only if there are c, c′ ∈ C such that their shares
coincide but not their secrets. Therefore, by linearity, the shares determine the
secret uniquely if and only if the shares being zero implies the secret being
zero. Moreover this condition implies that k ≤ n. Note that an n-code with
the stronger condition (Ker πI∗) ∩ C = (Ker π0) ∩ C is a k-dimensional error
correcting code of length n.

Definition 6 (r-reconstructing). An n-code C for Fk
q is r-reconstructing

(1 ≤ r ≤ n) if (Ker πA) ∩ C ⊂ (Ker π0) ∩ C for each A ⊂ I∗ with |A| = r.

In other words, r-reconstructing means that any r shares uniquely determine
the secret. Note that r ≤ n by definition of an n-code.

Definition 7 (t-Disconnected). An n-code C for Fk
q is t-disconnected if

t = 0 or else if 1 ≤ t < n, the projection π0,A : C −→ Fk
q × πA(C), c �→

(π0(c), πA(c)) is surjective for each A ⊂ I∗ with |A| = t. If, additionally,
πA(C) = Ft

q, we say C is t-uniform.

4 This is a special case of the notion of an (arithmetic) codex that we introduced in an
invited talk at EUROCRYPT’11 and, earlier, at the IPAM workshop on Information-
Theoretic Cryptography.

696 I. Cascudo, R. Cramer, and C. Xing

If t > 0, then t-disconnectedness means the following. Let A ⊂ I∗ with
|A| = t. Then, for uniformly randomly c ∈ C, the secret c0 is independently
distributed from the t shares cA. Indeed, for the same reason that the secret
c0 is uniformly random in Fk

q , it holds that (c0, cA) is uniformly random in
Fk

q ×πA(C). Since the uniform distribution on the Cartesian-product of two finite
sets corresponds to the uniform distribution on one set, and independently, the
uniform distribution on the other, the claim follows. Uniformity means that, in
addition, cA is uniformly random in Ft

q.

Definition 8 (Generator of an n-Code). A generator (k0, σ) of an n-code
C consists of a positive integer k0 and a surjective Fq-vector space morphism
σ : Fk

q × Fk0
q −→ C, such that π0(σ(s, z)) = s for all (s, z) ∈ Fk

q × Fk0
q .

In particular, a generator selects an element of C with a prescribed secret. We
can always assume k0 ≤ n. Note that a generator can be represented by a matrix
defined by the columns (or rows, depending on one’s view) σ(e1,0), . . . , σ(ek,0),
σ(0, e′1), . . . , σ(0, e′k0

), where the ei’s are the standard unit-vectors in Fk
q , and

the e′j ’s are the standard unit-vectors in Fk0
q . Given such a matrix-representation,

selecting a uniformly random c ∈ C such that its secret equals some prescribed
value, can be done efficiently. By elementary linear algebra, this also holds for
r-reconstruction of a secret. Similarly, a generator can be computed efficiently
from a basis of C.

Definition 9 (Powers of an n-Code). Let m ∈ Z>0. For x,x′ ∈ Fm
q , their

product x ∗ x′ ∈ Fm
q is defined as (x1x

′
1, . . . , xmx′

m). Let d be a positive integer.
If C is an n-code for Fk

q , then C∗d ⊂ Fk
q ×Fn

q is the Fq-linear subspace generated
by all terms of the form c(1) ∗ . . . ∗ c(d) with c(1), . . . , c(d) ∈ C. For d = 2, we
use the abbreviation Ĉ := C∗2.

Remark 3 (Powering Need Not Preserve n-Code). Suppose C ⊂ Fk
q ×Fn

q

is an n-code for Fk
q . It follows immediately that the secret-component in C∗d takes

any value in Fk
q . However, the shares-component in C∗d need not determine the

secret-component uniquely. Thus, C∗d need not be an n-code for Fk
q .

Remark 4. Let C be an n-code for Fk
q and let (k0, σ) be a generator. For an

integer d ≥ 2, suppose C∗d is an n-code. If d = 2, then it is easy to see that
Ĉ is generated by the vectors x ∗ y ∈ Fk

q × Fn
q , where x,y range over all pairs

of vectors selected from σ(e1,0), . . . , σ(ek,0), σ(0, e′1), . . . , σ(0, e′k0
). Since, for

i = 1, . . . , k, the vector σ(ei,0) ∗ σ(ei,0) has the i-th unit vector as its secret-
component, a generator for Ĉ can be efficiently constructed from (k0, σ). This
generalizes to d > 2 in a straightforward way.

Definition 10 (Arithmetic secret sharing scheme).

An (n, t, d, r)-arithmetic secret sharing scheme for Fk
q (over Fq) is an n-code C

for Fk
q such that t ≥ 1, d ≥ 2, C is t-disconnected, C∗d is in fact an n-code for

Fk
q , and C∗d is r-reconstructing. C has uniformity if, in addition, it is t-uniform.

The Torsion-Limit for Algebraic Function Fields 697

For example, the case k = 1, d = 2, n = 3t + 1, r = n − t, q > n obtained
from Shamir’s secret sharing scheme (taking into account that degrees sum up
when taking products of polynomials) corresponds to the secret sharing scheme
used in [2,6]. The properties are easily proved using Lagrange’s Interpolation
Theorem. The generalization to k > 1 of this Shamir-based approach is due
to [15]. The abstract notion is due to [10], where also constructions for d = 2
were given based on general linear secret sharing. See also [7,8,9]. On the other
hand the following limitations are easy to establish.

Proposition 3. Let C be an (n, t, d, r)-arithmetic secret sharing scheme for Fk
q

over Fq. As a linear secret sharing scheme for Fk
q over Fq, C has t-privacy and

(r − (d − 1)t)-reconstruction. Hence, dt + k ≤ r. Particularly, if k = 1, d = 2,
r = n − t, then 3t + 1 ≤ n.

Stronger bounds are also known [5]. We note that arithmetic secret sharing
schemes enjoy efficient recovery of the secret in the presence of faulty shares.
The theorem below is a generalization of a result from [12].

Theorem 7. Let i, j be integers with 1 ≤ i < j. Suppose C and C∗j are n-codes
for Fk

q . If the n-code C∗i is t-disconnected and if C∗j has (n− t)-reconstruction,
then, given a generator for C, there is an efficient algorithm for the n-code
C∗(j−i) that, on input ã := cI∗ + e ∈ Fn

q (faulty shares) with c ∈ C∗(j−i) and
e ∈ Fn

q of Hamming-weight at most t, outputs c0 ∈ Fk
q (correct secret).

Proof. Note that if C and C∗j are an n-codes, then so is C∗j′ for any j′ with
1 ≤ j′ ≤ j. Let c ∈ C∗(j−i). Let (0, e) ∈ Fk

q×Fn
q such that e has Hamming-weight

at most t. Define c̃ = c+(0, e) and let ã = c̃I∗ = cI∗ +e. Write u = (1, . . . , 1) ∈
Fk

q . Consider the system of equations {ã∗xI∗ = yI∗ , x0 = u, x ∈ C∗i, y ∈ C∗j},
in the unknowns x,y. Note that this is in fact a linear system of equations (taking
into account that, of course, membership of a subspace can be captured by a
linear system of equations). We prove now that, first, this system has some
solution (x,y), and that, second, any solution (x,y) satisfies c0 = y0. Efficiency
then follows by linear algebra, in combination with the fact that a generator
for C is given and that generators for the higher powers can be constructed
efficiently from it. First, define A ⊂ {1, . . . , n} as the set of all i with ei �= 0.
Since C∗i is t−disconnected, there is z ∈ C∗i such that z0 = u and zA = 0.
Then x := z, y := c ∗ z is a solution. Second, let (x,y) be any solution. Then,
for at least n−|A| ≥ n− t indices within I∗ it holds that the vectors c∗x ∈ C∗j

and y ∈ C∗j coincide. Since C∗j has (n − t)-reconstruction and since x0 = u,
the claim follows. #
We briefly sketch two well-known applications. First, consider an (n, t, 2, n)-
arithmetic secret sharing scheme C for Fk

q over Fq. Such a scheme can be used to
reduce n-party secure multiplication to secure addition in the case of a honest-
but-curious adversary, at the cost of one round of interaction. From the defini-
tion, it follows there is an Fq-vector space morphism ψ : Fn

q −→ Fk
q such that,

698 I. Cascudo, R. Cramer, and C. Xing

for all c, c′ ∈ C, ψ(c1c
′
1, . . . , cnc′n) = c0 ∗c′0. The reduction works as follows.5 Let

cI∗ , c′I∗ ∈ Fn
q be secret-sharings, with respective secrets c0, c′0 ∈ Fk

q (c, c′ ∈ C).
Using a generator for C, player Pi secret-shares (λi1cic

′
i, . . . , λikcic

′
i) ∈ Fk

q , where
the coefficient vector is the “i-th row of the matrix representing ψ in the standard
basis” (i = 1, . . . , n). Next, player Pj sums the n received shares (j = 1, . . . , n).
This gives a secret-sharing of c0∗c′0 according to C (see e.g. [9]). This generalizes
Shamir-based solutions from [2,6,15] (see also [10]).

Second, consider an (n, t, 2, n − t)-arithmetic secret sharing scheme C for Fk
q

over Fq. Such a scheme can be used for “zero-knowledge verification of secret
multiplications.” In a nutshell, the main idea is as follows. Suppose a prover puts
forward commitments to secrets x0,y0, z0 ∈ Fk

q , and claims that x0 ∗y0 = z0. To
prove his claim, he gives (“coordinate-wise”) commitments to random x,y ∈ C
where the respective secrets are the x0,y0 from the input, and a (“coordinate-
wise”) commitment to a random z ∈ C∗2 where the secret is the z0 ∈ Fk

q from
the input. If the commitment scheme is Fq-linear, then it is easy to enforce that
indeed x,y ∈ C and z ∈ C∗2, and that the respective secrets are indeed the
ones from the input. Now, if z = x ∗y (as an honest prover would choose), then
indeed x0 ∗ y0 = z0. In this case, inspection of any t “share-triples” (xi, yi, zi)
gives no information on the “secret-triple” (x0,y0,x0y0). Yet, zi = xiyi for each
of those t share-triples. On the other hand, suppose z0 �= x0 ∗y0. Then there are
at most n − t − 1 share-triples (xi, yi, zi) such that zi = xiyi, and hence there
are at least t + 1 share-triples for which an inconsistency could show up. These
facts together give a handle to checking that z0 = x0y0 in several different appli-
cation scenarios, most notably perfect information-theoretically secure general
multi-party computation, in the case of a malicious adversary. See [11] for an
application with d > 2. The procedure above is essentially from [10] (which was
inspired by ideas from [2,6]).

We are now ready to state the asymptotical results from [7] in full generality.6

Let F/Fq be an algebraic function field (in one variable, with Fq as field of
constants). Let g denote the genus of F . Let k, t, n ∈ Z with n > 1, 1 ≤ t ≤ n,
1 ≤ k ≤ n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P(1)(F) are pairwise distinct Fq-
rational places. Write Q =

∑k
j=1 Qj ∈ Div(F) and D = Q +

∑n
i=1 Pi ∈ Div(F).

Let G ∈ Div(F) be such that supp D ∩ supp G = ∅, i.e, they have disjoint
support. Consider the AG-code

C(G; D) = {(f(Q1), . . . , f(Qk), f(P1), . . . , f(Pn)) |f ∈ L(G)} ⊂ Fk
q × Fn

q .

Theorem 8. (from [7]). Let t ≥ 1, d ≥ 2. Let C = C(G; D) with deg G ≥
2g + t + k − 1. If n > 2dg + (d + 1)t + dk − d, then C is an (n, t, d, n − t)-
arithmetic sharing scheme for Fk

q over Fq with uniformity.

Theorem 9. (from [7]). Fix d ≥ 2 and a finite field Fq. Suppose A(q) > 2d,
where A(q) is Ihara’s constant. Then there is an infinite family of (n, t, d, n− t)-
arithmetic secret sharing schemes for Fk

q over Fq with uniformity such that n

5 This “local share-multiplication plus re-sharing” simplification in the case of
Shamir’s scheme has been attributed to Michael Rabin

6 In fact, we state a version that is proved by exactly the same arguments as in [7].

The Torsion-Limit for Algebraic Function Fields 699

is unbounded, k = Ω(n) and t = Ω(n). Moreover, for every scheme C in the
family, a generator for C is poly(n)-time computable and C∗i has poly(n)-time
reconstruction of a secret in the presence of t faulty shares (i = 1, . . . , d − 1).

Since A(q) =
√

q − 1 if q is a square, it holds that A(q) > 2d if q is a square
with q > (2d + 1)2. Also, by Serre’s Theorem, A(q) > c log q for some absolute
constant c > 0. Therefore, A(q) > 2d if q is (very) large.7 The asymptoti-
cal result from [7] plays an important communication-saving role in two-party
cryptography, see [23,24,18,22,13,21]. Often, the point is that terms in the com-
munication analysis which would otherwise be logarithmic can be made constant
using the [7] results. Note that [22,21] also use the efficient error correction. We
will now apply our results on the torsion-limit in combination with appropriate
Riemann-Roch systems in order to relax the condition A(q) > 2d considerably.
As a result, we attain the result of [7] but this time over nearly all finite fields.

Theorem 10. Let t ≥ 1, d ≥ 2. Define I∗ = {1, . . . , n}. For A ⊂ I∗ with A �= ∅,
define PA =

∑
j∈A Pj ∈ Div(F). Let K ∈ Div(F) be a canonical divisor. If the

system {�(dX −D+PA +Q) = 0, �(K−X +PA +Q) = 0}A⊂I∗,|A|=t is solvable,
then there is a solution G ∈ Div(F) such that C(G; D) is an (n, t, d, n − t)-
arithmetic secret sharing scheme for Fk

q over Fq (with uniformity).

Proof. First note that if the system is solvable, then the Weak Approxima-
tion Theorem guarantees that we can take a solution G ∈ Div(F) such that
supp G∩supp D = ∅. We claim that the condition that �(K −G+PA +Q) = 0
for A ⊂ I∗ with |A| = t implies t-disconnection and uniformity on the code.
Write A = {i1, . . . , it}. Consider the map φ : L(G) → Fk+t

q given by f �→
(f(Q1), . . . , f(Qk), f(Pi1), . . . , f(Pit)). Its kernel is L(G−Q−PA). Consequently
dim(Im φ) = �(G)−�(G−Q−PA) = �(K−G)−�(K−G+Q+PA)+deg(Q+PA),
where the second equality follows by application of the Riemann-Roch theorem
to G and to G−Q−PA. Hence, �(K −G) ≤ �(K −G+ Q + PA) = 0, where the
inequality follows from the fact that Q, PA ≥ 0 and where the equality holds by
assumption. Therefore, �(K−G) = 0 and dim(Im φ) = deg(Q+PA) = k+ t. We
conclude that φ is surjective and this proves the claim. Finally we prove (n− t)-
reconstruction in C∗d. Let B = {i1, . . . , in−t} for distinct indices i1, . . . , in−t ∈
I∗. Since f1, . . . , fd ∈ L(G) implies

∏d
i=1 fi ∈ L(dG), it is sufficient to prove

that, for all f ∈ L(dG), the following holds: if the condition f(Pi) = 0 holds for
all i ∈ B, then f(Qj) = 0 for all j ∈ {1, . . . , k}. Since PB = D−Q−PA for some
A ⊂ I∗ with |A| = t, it holds that L(dG − PB) = L(dG − D + PA + Q), which
by assumption has dimension 0. Hence, f ∈ L(dG − PB) = {0}, and f = 0. #
And now as a corollary of Theorems 6 and 10 we get the following:

Corollary 2. Let F/Fq be an algebraic function field. Let d, k, t, n ∈ Z with
d ≥ 2, n > 1 and 1 ≤ t < n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P(1)(F) are
pairwise distinct. If there is s ∈ Z such that h >

(
n
t

)
(Ar1 + Ar2 |JF [d]|) where

r1 := 2g − s + t + k − 2 and r2 := ds− n + t, then there exists an (n, t, d, n − t)-
arithmetic secret sharing scheme for Fk

q over Fq with uniformity.

7 The best known estimate for c is currently about 1
96

.

700 I. Cascudo, R. Cramer, and C. Xing

Main Theorem 1. Let Fq be a finite field and d ∈ Z≥2. If there exists 0 < A ≤
A(q) such that A > 1+Jd(q, A), then there is an infinite family of (n, t, d, n− t)-
arithmetic secret sharing schemes for Fk

q over Fq with t-uniformity where n is
unbounded, k = Ω(n) and t = Ω(n).

This will follow from the more precise statement in Theorem 11 below. Combin-
ing Main Theorem 1 with Theorem 3 we obtain, in the special case d = 2:

Main Theorem 2. For q = 8, 9 and for all prime powers q ≥ 16 there is an
infinite family of (n, t, 2, n− t)-arithmetic secret sharing schemes for Fk

q over Fq

with t-uniformity where n is unbounded, k = Ω(n) and t = Ω(n).

As to efficiency, when given a divisor that is a solution to these Riemann-Roch
systems, it is efficient to compute a generator for the scheme C defined by this
divisor. However, solving Riemann-Roch systems efficiently in full generality is
subject of further research. In particular, for our strongest results to follow it
is not known at present how to efficiently compute a generator. But of course,
there exists a poly(n)-size description of generators, so overall, there is efficiency
as before, but now in the weaker model where such description is given as advice.

More precisely, we have the following result (for d > 2 there is a similar
analysis).

Theorem 11. Let Fq be a finite field. Suppose κ ∈ [0, 1
3) and τ ∈ (0, 1] and

0 < A ≤ A(q) are real number such that A > 1+κ
1−3κ (1 + J2(q, A)) and

τ +
H2(τ)
log q

<
1
3

(
1 − 3κ − (1 + J2(q, A))(1 + κ)

A

)
Then there is an infinite family of (n, t, 2, n−t)-arithmetic secret sharing schemes
for Fk

q over Fq with uniformity where n is unbounded, k = κn!+1 and t = τn!.
The proof of this fact relies on showing that the conditions in Corollary 2 are
satisfied asymptotically for a family of function field with Ihara’s limit A, if the
requirements of Theorem 11 are met. It is easy to show why Theorem 11 implies
Main Theorem 2: if 0 < A ≤ A(q) is such that A > 1 + J2(q, A) we can always
select κ ∈ (0, 1

3) and τ ∈ (0, 1] satisfying the conditions in Theorem 11. Note
that in order to obtain the result in Main Theorem 2 we require κ > 0.

We prove Theorem 11 formally below, but give here an an indication of how
one would bound asymptotically each parameter in the inequality of Corollary 2.
Of course |JF [2]| is dealt with asymptotically with the torsion limit J2(q, A)
which we have introduced in this paper. Stirling’s Formula gives an asymptotical
bound for the binomial coefficients

(
n
t

)
when t is some fixed fraction of n. Finally

the quotients Ar/h can be bounded by means of algebraic geometric techniques
which have been used before in the code theoretic literature, for instance [25],
[28], [39], [40]. We state now an upper bound of this type.

Proposition 4. Let F/Fq be a function field with g ≥ 1. Then, for any r ∈ Z
with 0 ≤ r ≤ g − 1, Ar/h ≤ g

qg−r−1(
√

q−1)2 .

The Torsion-Limit for Algebraic Function Fields 701

Proof. For i ≥ 2g − 1, Ai = h
q−1 (qi+1−g − 1) (see Lemma 5.1.4 and Corol-

lary 5.1.11 in [34]). This has been exploited in Lemma 3 (ii) from [28], to show
that

g−2∑
i=0

AiT
i +

g−1∑
i=0

qg−1−iAiT
2g−2−i =

L(T) − hT g

(1 − T)(1 − qT)

where L(T) is the L-polynomial associated to the zeta function of F .
The claim from Proposition 4 can be derived from a relation that is obtained

by taking the limit as T tends to 1/q on both sides of the equation above, where
l’Hôpital’s Rule is applied on the right hand side, then finding an expression
for L′(1/q) (using the Functional Equation for L-polynomials and the fact that
L(1) = h) and substituting that back in. This is similar to the proof of Propo-
sition 2.5 (in the case s = 0) in [40].

#
Proof of Theorem 11. Fix any A, κ, τ satisfying the conditions of the

statement. Let F = {Fm}m>0 be an infinite family of algebraic function fields
over Fq with g(Fm) → ∞ such that A(F) ≥ A and J := J2(F) = J2(q, A). Define
gm = g(Fm), hm = h(Fm), jm = logq(|J (Fm)[2]|). Let nm = 1

1+κ(N(Fm)− 1)!
and km = κnm! + 1. Note nm + km ≤ N(Fm) so we can pick nm + km distinct
rational points in Fm. We set tm = τnm!. We choose dm = δgm! where
δ = 1+ A−1−J

3 . Define (r1)m = 2gm−dm+tm+km−2 and (r2)m = 2dm−nm+tm.
For m large enough we want to verify that we can apply Corollary 2 to Fm. We
already noted we can take nm + km distinct points in P(1)(Fm) so we now need
to verify the condition

hm >

(
nm

tm

)
(A(r1)m

+ A(r2)m
|JFm [2]|).

We will use Proposition 4. It is easy to see that 0 ≤ (r1)m, (r2)m ≤ gm for large
enough m for our selection of the parameters. Thus,

A(ri)m
≤ gmhm

qgm−(ri)m−1(
√

q − 1)2

for large enough m and i = 1, 2. Consequently it is sufficient to show that(
nm

tm

)
gmqtm

qgm−1(
√

q − 1)2
(
q(r1)m−tm + q(r2)m−tm |JFm [2]|

)
< 1

which is equivalent, taking logarithms, to

logq

(
nm

tm

)
+ logq

(
gmqtm

qgm−1(
√

q − 1)2

)
+ logq

(
q(r1)m−tm + q(r2)m−tm |JFm [2]|

)
< 0.

(1)

Take ε ∈ R>0 such that τ + H2(τ)
log q < 1

3

(
1 − 3κ − (1+J)(1+κ)

3A − 3ε
)
, which exists

by hypothesis. For large enough m, by definition of J , jm < (J + ε)gm. Moreover

702 I. Cascudo, R. Cramer, and C. Xing

by definition of A we have (A − ε)gm < nm + km ≤ Agm for large enough m.
Note that this implies 1

1+κ (A − ε)gm ≤ nm ≤ 1
1+κAgm and km ≤ κ

1+κAgm + 1.
We have the following observations: First, since tm ≤ τnm, from Stirling’s
Formula

(
nm

tm

) ≤ 2H2(τ)nm , and hence logq

(
nm

tm

) ≤ H2(τ)
log q nm ≤ H2(τ)

(1+κ) log q Agm.
Second, we have

logq

(
q(r1)m−tm + |J (Fm)[2]|q(r2)m−tm

)
≤

logq 2 + max{2gm − dm + km − 2, 2dm − nm + jm}.
Now for large enough m, the following two inequalities hold:

2gm −dm +km −2 ≤
(

2 − δ +
κ

1 + κ
A

)
gm =

(
1 +

1
3
(1 + J) +

2κ − 1
3(1 + κ)

A

)
gm,

2dm − nm + jm ≤
(

2δ − 1
1 + κ

(A − ε) + (J + ε)
)

gm

≤
(

1 +
1
3
(1 + J) +

2κ − 1
3(1 + κ)

A + 2ε

)
gm.

Finally, for large enough m, using elementary calculus and noticing tm ≤ τnm

we get

logq

(
gmqtm

qgm−1(
√

q − 1)2

)
≤
(

τ

1 + κ
A − 1 + ε

)
gm.

Putting all these observations together we obtain that the left part of Equation 1
is at most

H2(τ)
(1 + κ) log q

Agm +
(

τ

1 + κ
A − 1 + ε

)
gm+

logq 2 +
(

1 +
1
3
(1 + J) +

2κ − 1
3(1 + κ)

A + 2ε

)
gm.

Now using τ + H2(τ)
log q < 1

3

(
1 − 3κ − (1+J)(1+κ)

3A − 3ε
)

one can see that this ex-
pression is at most logq 2 − κ

3(1+κ)Agm and this is clearly smaller than 0 for
large enough m. Therefore, we can apply Corollary 2 to Fm, for each m > M0

(for some constant M0), and we have an (nm, tm ,2 ,nm − tm)-arithmetic se-
cret sharing scheme for Fkm

q over Fq with uniformity, with km = κnm! + 1 and
tm = τnm!. Since N(Fm) tends to ∞ as m tends to ∞ (because A(F) ≥ A > 0)
then the set M = {nm}m≥M0 is infinite. This concludes the proof. #
Finally, using our paradigm we also improve the explicit lower bounds for the
parameter τ̂ (q) from [7] and [4] for all q with q ≤ 81 and q square, as well as for
all q with q ≤ 9. Recall τ̂ (q) is defined as the maximum value of 3t/(n−1) which
can be obtained asymptotically (when n tends to infinity) when t, n are subject
to the condition that an (n, t, 2, n − t)-arithmetic secret sharing for Fq over Fq

exists (no uniformity required here). The new bounds are shown in the upper row
of Table 1. All the new bounds marked with a star (*) are obtained by applying

The Torsion-Limit for Algebraic Function Fields 703

Theorem 11 in the case κ = 0 and using the upper bounds given in Theorem 1
for the torsion limits. To obtain the rest of the new upper bounds, for each q,
we apply the field descent technique in [4] to Fq2(in the special case of F9, even
though Theorem 11 can be applied directly, as remarked in Main Theorem 2, it
is better to apply Theorem 11 to F81 and then use the descent technique). These
are compared with the previous bounds: the ones obtained in [7] (marked also
with the symbol (*)), and the rest, which were obtained in [4] by means of the
aforementioned field descent technique.

Table 1. Lower bounds for τ̂(q)

q 2 3 4 5 7 8 9

New bounds 0.034 0.057 0.104 0.107 0.149 0.173(*) 0.173
Previous bounds 0.028 0.056 0.086 0.093 0.111 0.143 0.167

q 16 25 49 64 81

New bounds 0.298(*) 0.323(*) 0.448(*) 0.520(*) 0.520(*)
Previous bounds 0.244 0.278 0.333(*) 0.429(*) 0.500(*)

Acknowledgments. We are grateful for valuable contributions to the refine-
ments on the bounds for the torsion-limit in Theorem 1. Bas Edixhoven and
Hendrik Lenstra suggested the generic approach we used in its second part. Alp
Bassa and Peter Beelen confirmed our hope that stronger bounds should be
attainable from certain specific recursive towers, by contributing the proof of
its third part. We also thank Hendrik for many helpful discussions, and for his
encouragement since the paper was first circulated in the Fall of 2009. Part of
this research was done when Cascudo was with University of Oviedo, partially
supported by Spanish MEC project MTM2010-18370-C04-01. Cramer’s research
was supported by his NWO VICI project Mathematical Foundations of Secure
Computation. Xing’s research is partially supported by the Singapore National
Research Foundation Competitive Research Program grant NRF-CRP2-2007-03
and the Singapore Ministry of Education under Research Grant T208B2206.

References

1. Bassa, A., Garcia, A., Stichtenoth, H.: A new tower over cubic finite fields. Moscow
Mathematical Journal 8(3), 401–418 (2008)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of STOC
1988, pp. 1–10. ACM Press, New York (1988)

3. Bezerra, J., Garcia, A., Stichtenoth, H.: An explicit tower of function fields over
cubic finite fields and Zink’s lower bound. J. Reine Angew. Math. 589, 159–199
(2005)

4. Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically Good Ideal Linear
Secret Sharing with Strong Multiplication over Any Finite Field. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009)

704 I. Cascudo, R. Cramer, and C. Xing

5. Cascudo, I., Cramer, R., Xing, C.: Upper Bounds on Asymptotic Optimal
Corruption Tolerance in Strongly Multiplicative Linear Secret Sharing (2009)
(manuscript)

6. Chaum, D., Crépeau, C., Damgaard, I.: Multi-party unconditionally secure proto-
cols. In: Proceedings of STOC 1988, pp. 11–19. ACM Press, New York (1988)

7. Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and Secure
Multi-Party Computations over Small Fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 516–531. Springer, Heidelberg (2006)

8. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
Computation from Random Error Correcting Codes. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 329–346. Springer, Heidelberg (2007)

9. Chen, H., Cramer, R., de Haan, R., Cascudo Pueyo, I.: Strongly multiplicative
ramp schemes from high degree rational points on curves. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 451–470. Springer, Heidelberg (2008)

10. Cramer, R., Damgaard, I., Maurer, U.: General secure multi-party computation
from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, p. 316. Springer, Heidelberg (2000)

11. Cramer, R., Damgaard, I., Pastro, V.: On the Amortized Complexity of Zero
Knowledge Protocols for Multiplicative Relations (2010) (manuscript)

12. Cramer, R., Daza, V., Gracia, I., Jiménez Urroz, J., Leander, G., Mart́ı-Farré, J.,
Padró, C.: On codes, matroids and secure multi-party computation from linear
secret sharing schemes. IEEE Transactions on Information Theory 54, 2644–2657
(2008); Earlier version: CRYPTO 2005

13. Damgaard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation
and the Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

14. Duursma, I., Mak, K.-H.: On lower bounds for the Ihara constants A(2) and A(3).
preprint (2011), http://arxiv.org/abs/1102.4127

15. Franklin, M., Yung, M.: Communication Complexity of Secure Computation. In:
ACM STOC 1992, pp. 699–710

16. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
attaining the Drinfeld-Vlǎduţ bound. Invent. Math. 121, 211–222 (1995)

17. Garcia, A., Stichtenoth, H.: On the asymptotic behavior of some towers of function
fields over finite fields. J. Number Theory 61, 248–273 (1996)

18. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.: OT-Combiners via Secure Com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008)

19. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves of Finite Fields.
Princeton Series in Applied Mathematics (2008)

20. Ihara, Y.: Some remarks on the number of rational points of algebraic curves over
finite fields. J. Fac. Sci. Tokyo 28(3), 721–724 (1981)

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger,
J.: Constant-rate OT from Noisy Channels. These proceedings, CRYPTO (2011)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting Correlations. In:
Proc. 50th IEEE FOCS, pp. 261–270 (2009)

23. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of 39th STOC, San Diego, Ca., USA, pp.
21–30 (2007)

24. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious
Transfer-Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
572–591. Springer, Heidelberg (2008)

http://arxiv.org/abs/1102.4127

The Torsion-Limit for Algebraic Function Fields 705

25. Lachaud, G., Martin-Deschamps, M.: Deschamps Nombre de points des jacobiennes
sur un corps fini. Acta Arith. 56, 329–340 (1990)

26. Milne, J.S.: Abelian Varities. Online Lecture Notes (2009)
27. Mumford, D.: Abelian Varieties. Oxford University Press, Oxford (1970)
28. Niederreiter, H., Xing, C.: Low-Discrepancy Sequences and Global Function Fields

with Many Rational Places. Finite Fields and Their Applications 2, 241–273 (1996)
29. Niederreiter, H., Xing, C.: Rational points on curves over finite fields-theory and

applications, Cambridge (2000)
30. Rosen, M.: Number Theory in Function Fields. GTM, Springer (2001)
31. Serre, J.-P.: Rational points on curves over finite fields. Harvard University, Cam-

bridge (1985)
32. Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)
33. Shparlinski, I., Tsfasman, M., Vlǎduţ, S.: Curves with many points and multipli-

cation in finite fields. Lecture Notes in Math., vol. 1518, pp. 145–169. Springer,
Berlin (1992)

34. Stichtenoth, H.: Algebraic function fields and codes. Springer, Heidelberg (1993)
(new edition: 2009)

35. Tsfasman, M., Vlǎduţ, S.: Modular curves, Shimura curves, and Goppa codes,
better than Varshamov Gilbert bound. Math. Nachr. 109, 21–28 (1982)

36. Vlǎduţ, S.G.: An exhaustion bound for algebro-geometric modular codes. Probl.
Inf. Transm. 23, 22–34 (1987)

37. Vlǎduţ, S.G., Drinfeld, V.G.: Number of points of an algebraic curves. Funct. Anal.
Appl. 17, 53–54 (1983)

38. Weil, A.: Variétés Abéliennes et Courbes Algébriques. Hermann, Paris (1948)
39. Xing, C.: Algebraic geometry codes with asymptotic parameters better than the

Gilbert-Varshamov and the Tsfasman-Vlǎduţ-Zink bounds. IEEE Trans. on Inf.
Theory 47(1), 347–352 (2001)

40. Xing, C.: Goppa Geometric Codes Achieving the Gilbert-Varshamov Bound. IEEE
Trans. on Inf. Theory 51(1), 259–264 (2005)

41. Xing, C., Ling, Y.S.: Algebraic curves with many points over the binary field. J.
Algebra 311, 775–780 (2007)

42. Zink, T.: Degeneration of Shimura surface and a problem in coding theory. In:
Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 503–511. Springer, Heidelberg
(1985)

Public-Key Identification Schemes Based on

Multivariate Quadratic Polynomials

Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari

Sony Corporation
5-1-12 Kitashinagawa Shinagawa-ku, Tokyo 141-0001, Japan

{Koichi.Sakumoto,Taizo.Shirai,Harunaga.Hiwatari}@jp.sony.com

Abstract. A problem of solving a system of multivariate quadratic poly-
nomials over a finite field, which is called an MQ problem, is a promising
problem in cryptography. A number of studies have been conducted on
designing public-key schemes using the MQ problem, which are known
as multivariate public-key cryptography (MPKC). However, the security
of the existing schemes in MPKC relies not only on the MQ problem
but also on an Isomorphism of Polynomials (IP) problem. In this paper,
we propose public-key identification schemes based on the conjectured
intractability of the MQ problem under the assumption of the existence
of a non-interactive commitment scheme. Our schemes do not rely on the
IP problem, and they consist of an identification protocol which is zero-
knowledge argument of knowledge for the MQ problem. For a practical
parameter choice, the efficiency of our schemes is highly comparable to
that of identification schemes based on another problem including Per-
muted Kernels, Syndrome Decoding, Constrained Linear Equations, and
Permuted Perceptrons. Furthermore, even if the protocol is repeated in
parallel, our scheme can achieve the security under active attack with
some additional cost.

Keywords: identification scheme, zero knowledge, MQ problem.

1 Introduction

A problem of solving a system of multivariate quadratic polynomials over a finite
field, which is called an MQ problem, is a promising problem in cryptography.
The associated decision problem is known to be NP-complete [24,40], and a ran-
dom instance of the MQ problem is widely believed to be intractable. In contrast
to factorization or a discrete logarithm problem, there is no known polynomial-
time quantum algorithm to solve the MQ problem. A function consisting of
multivariate quadratic polynomials, which we call an MQ function, can be used
as a one-way function with short input and output. Complexity of generic at-
tacks using Gröbner basis is known to be exponential in time and space [3,16],
and the best known attack to break the MQ function over F2 with 84-bit input
and 80-bit output requires 288.7(> 280) bit operations [10].

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 706–723, 2011.
c© International Association for Cryptologic Research 2011

Public-Key Identification Schemes Based on MQ Polynomials 707

A number of studies on designing primitives based on the MQ function have
been conducted both in symmetric and in asymmetric cryptography. In sym-
metric cryptography, a stream cipher which is named QUAD is proposed by
Berbain et al. [7]. The security of QUAD is provably reducible to the conjectured
intractability of the MQ problem. In asymmetric cryptography, several public-
key schemes have been proposed, which are known as multivariate public-key
cryptography (MPKC) [30,35,39]. However, the security of the existing schemes
in MPKC relies not only on the MQ problem but also on an Isomorphism of
Polynomials (IP) problem. The IP problem consists of recovering a particular
transformation between two sets of multivariate polynomials, and some crypt-
analyses of the problem have been reported [11,17,22,41]. In fact, some schemes
in MPKC have been already shown to be insecure [11,14,31,38].

In this paper, we propose public-key identification schemes based on the con-
jectured intractability of the MQ problem under the assumption of the exis-
tence of a non-interactive commitment scheme which is statistically-hiding and
computationally-binding. We emphasize that our schemes do not rely on the IP
problem. The assumption for the commitment scheme is natural, since it can
be constructed from a collision resistant hash function [27]. Our identification
protocols are non-trivial constructions of statistical zero-knowledge argument of
knowledge for the MQ problem. Assuming the intractability of the MQ function,
our identification schemes consisting of the sequential composition and the par-
allel composition of the protocols are secure against impersonation under active
attack and passive attack, respectively. These security levels are the same as those
of known identification schemes based on another problem including Permuted
Kernels (PK) [46], binary Syndrome Decoding (SD) [47,49], Constrained Linear
Equations (CLE) [48], Permuted Perceptrons (PP) [42,43], and q-ary SD [12].

For a practical parameter choice, the sizes of a public key, a secret key, and
communication data of our schemes are comparable to those of the schemes
based on PK, SD, CLE, PP, and q-ary SD. In particular, the sizes of a pub-
lic key and a secret key of our 3-pass scheme are only 80 bits and 84 bits
for 80-bit security, respectively. These are smaller than those of the known
schemes [12,42,43,46,47,48,49]. This is due to the fact that the MQ function
has short input and output. The size of communication data in our 3-pass pro-
tocol is 29,640 bits when the impersonation probability is less than 2−30. This
is also small compared to those of the existing 3-pass protocols [42,43,47,48,49],
which are between 45,517 bits and 100,925 bits. Although the data size of system
parameter of our scheme is relatively large, it can be reduced to some small seed,
e.g. 128 bits, by employing a pseudo-random number generator. The technique
is also used in the implementation of QUAD [2].

Furthermore, we consider the case that our scheme employs the MQ function
which is substantially compressing (e.g., mapping 160 bits to 80 bits), although
the sizes of the secret key and the communication data increase compared to
those of the practical parameter choice. In this case, when such a function is
preimage resistant, our scheme is secure under active attack even if the protocol is
repeated in parallel. The proof of the security is non-trivial, since zero knowledge

708 K. Sakumoto, T. Shirai, and H. Hiwatari

is not preserved under the parallel composition. Thus we prove the security by
also showing that the MQ function is second-preimage resistant if such a function
is preimage resistant, although the MQ function is known not to have the collision
resistance [9].

Techniques for Our Constructions. Our protocols employ the cut-and-choose
approach, where a prover first divides her secret into shares and then proves the
correctness of some shares depending on the choice of a verifier without reveal-
ing the secret itself. The property of group homomorphism such as a modular
exponentiation x �→ gx mod p and a linear function x �→ Mx is useful for this
approach, since dividing a secret s = r0 + r1 simply corresponds to dividing its
image gs = (gr0)(gr1) and Ms = Mr0 + Mr1, respectively. However, the MQ
function (x1, . . . , xn) �→ (y1, . . . , ym) where yl =

∑
i,j al,i,jxixj +

∑
i bl,ixi does

not seem to have such a property.
Therefore, we introduce new dividing techniques using the bilinearity of a

polar form of the MQ function. The polar form G of the MQ function F is a
function G(x1,x2) = F(x1 + x2) − F(x1) − F(x2) and is known to be bilinear.
It was introduced as the differential of the quadratic system, and has been used
for cryptanalysis of MPKC so far [14,15,21,22]. To our knowledge, this is the
first time that it is constructively used in a context of a public-key identification
scheme.

Our dividing techniques are briefly described as follows. Let s and v = F(s)
be a secret key and a public key, respectively. When the secret key is divided as
s = r0 + r1, the public key v = F(r0 + r1) can be represented as v = F(r0) +
F(r1) + G(r0, r1) by using the polar form G of F. However, this representation
still contains the term G(r0, r1) which depends on both r0 and r1. Consider
that r0 and F(r0) are further divided as r0 = t0 + t1 and F(r0) = e0 + e1,
respectively. In this case, the public key can be divided into two parts v =(
G(t0, r1) + e0

)
+
(
F(r1) + G(t1, r1) + e1

)
, due to the bilinearity of G. Each of

the two parts is represented by either a tuple (r1, t0, e0) or a tuple (r1, t1, e1),
while no information on the secret key s can be obtained from one out of the
two tuples.

Related Work. Identification schemes based on PK [46], SD [47,49], CLE [48],
PP [42,43], and q-ary SD [12] have some features similar to our schemes as
follows. First, these schemes rely on the hardness of a random instance of each
of the problems whose associated decision version is known to be NP-complete.
Second, their protocols have perfect correctness. Finally, assuming the existence
of a non-interactive commitment scheme, the sequential version and the parallel
version of the schemes are secure against impersonation under active attack and
passive attack, respectively. However, it is not explicitly known that the parallel
versions of these schemes achieve the security under active attack.

On the other hand, lattice-based schemes [29,33,34,36] have other features.
They are based on an average-case problem which is as hard as worst-case prob-
lems, and some of them [29,33,34] are secure under active attack even if repeated
in parallel. Lyubashevsky’s scheme [34] is stated to be more practically efficient

Public-Key Identification Schemes Based on MQ Polynomials 709

than the others [29,33,36]. The size of communication data of the scheme [34]
for 80-bit security against impersonation is only about 65,000 bits, although the
scheme has small correctness error 2−20. Both of the sizes of the public key and
the secret key are 16,000 bits.

In a context of post-quantum cryptography, Komano et al. proposed a signa-
ture scheme based on a section finding problem on algebraic surface [32]. Their
construction, similarly to our schemes, does not rely on a property of homomor-
phism. However, their scheme is universally forgeable under key-only attack, and
their technique turned out to be unsuccessful to realize a signature scheme [45].

Paper Organization. The remainder of this paper is organized as follows. In
Section 2 we present several notions and tools that are used in our constructions.
In Section 3 and Section 4, our 3-pass and 5-pass constructions are presented,
respectively. In Section 5 we discuss their security and efficiency for a practical
parameter choice. In Section 6 we study the security of the parallel composition
of our scheme at the expense of the efficiency. In Section 7 we mention some
extensions of our scheme.

2 Preliminaries

A finite field of order q is denoted by Fq. If an element x is randomly chosen
from a finite set S, it is expressed by x ∈R S. If A and B are sets, and R ⊂ A×B
is a binary relation, then we define R(x) = {s : (x, s) ∈ R}. If s ∈ R(x), then s
is called a solution for x.

Identification Scheme. An identification scheme is a tuple of algorithms (Setup,
Gen, P, V) defined as follows. Setup is a setup algorithm which takes a security
parameter 1λ and outputs a system parameter param . Gen is a key-generation
algorithm which takes param , and outputs a public key and a secret key (pk , sk).
A pair of a prover P and a verifier V is an interactive protocol where a common
input is (param , pk) and an auxiliary input of P is sk . After interactions, V
outputs a bit as a verification result. The protocol (P, V) is called an identification
protocol.

Security against impersonation under passive/active attacks considers an ad-
versary whose goal is to impersonate the prover without the knowledge of the
secret key. The adversary under passive attack has access to interactions between
the real prover and an honest verifier. The adversary under active attack can
interact with the prover. Requiring security against impersonation under active
attack is stronger than under passive attack. The details are described in [1,18].

The definitions of zero knowledge, witness indistinguishability, and argument
of knowledge are omitted. For formal definitions, refer to textbooks, e.g., [25].

String Commitment Scheme. A string commitment function is denoted by Com .
The commitment scheme runs in two phases. In the first phase, the sender com-
putes a commitment value c ← Com(s; ρ) and sends c to the receiver, where s

710 K. Sakumoto, T. Shirai, and H. Hiwatari

is a string and ρ is a random string. In the second phase, the sender gives (s, ρ)
to the receiver and the receiver verifies c = Com(s; ρ). We require two security
properties of Com , statistically hiding and computationally binding. Informally,
the former means that, at the end of the first phase, no receiver can distinguish
two commitment values generated from two distinct strings even if the receiver is
computationally unbounded. The latter means that, no polynomial-time sender
can change the committed string after the first phase. The formal definitions and
a practical construction are given in [27]. Throughout this paper, we assume the
existence of such a commitment scheme. The assumption is natural, since it can
be constructed from a collision resistant hash function [27]. Note that such an
interactive commitment scheme can be constructed from any one-way function
including the MQ function [26].

The MQ Function. We denote by MQ(n, m, Fq) a family of functions{
F(x) = (f1(x), . . . , fm(x))

fl(x) =
∑

i,j al,i,jxixj +
∑

i bl,ixi,

al,i,j , bl,i ∈ Fq for l = 1, . . . , m

}
where x = (x1, . . . , xn). For the simplicity, constant terms are omitted with-
out any security loss. We call F ∈ MQ(n, m, Fq) an MQ function. A function
G(x,y) = F(x + y) − F(x) − F(y) is called the polar form of F. The func-
tion G = (g1, . . . , gm) is bilinear, since gl(x,y) =

∑
i,j al,i,j(yixj + xiyj) where

x = (x1, . . . , xn) and y = (y1, . . . , yn). An intractability assumption for a ran-
dom instance of MQ(n, m, Fq) is defined as follows.

Definition 1. For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MQ(n, m, Fq) is intractable if there is no polynomial-
time algorithm that takes (F,v) generated via F ∈R MQ(n, m, Fq), s ∈R Fn

q , and
v ← F(s) and finds a preimage s′ ∈ Fn

q such that F(s′) = v with non-negligible
probability ε(λ).

All the state-of-the-art solving techniques have exponential complexity to break
the intractability [8,10,16]. In particular, it is known that complexity of generic
attacks using Gröbner basis is exponential in time and space [3,16]. Bouillaguet
et al. stated that it would not outperform exhaustive search in the practically
interesting range m = n ≤ 200 [10]. They proposed an improved exhaustive
search algorithm to break MQ(n, m, F2) in 2n+2 · log2 n bit operations, which is
the best known algorithm [10].

In addition, for F ∈ MQ(n, m, Fq), we define a binary relation RF = {(v,x)
∈ Fm

q × Fn
q : v = F(x)}. Given an instance F ∈ MQ(n, m, Fq) and a vector

v ∈ Fm
q , the MQ problem is finding a solution s ∈ RF(v).

3 A 3-pass Identification Scheme

In this section, we construct an identification scheme which consists of a 3-pass
statistical zero-knowledge argument of knowledge for RF with knowledge error
2/3, assuming the existence of a non-interactive commitment scheme Com which
is statistically hiding and computationally binding.

Public-Key Identification Schemes Based on MQ Polynomials 711

Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q

r1 ← s− r0, t1 ← r0 − t0

e1 ← F(r0)− e0

c0 ← Com(r1,G(t0, r1) + e0)

c1 ← Com(t0, e0)

c2 ← Com(t1, e1) (c0, c1, c2)�
Pick Ch ∈R {0, 1, 2}Ch�

If Ch = 0, Rsp ← (r0, t1, e1)

If Ch = 1, Rsp ← (r1, t1, e1)

If Ch = 2, Rsp ← (r1, t0, e0) Rsp � If Ch =0, parse Rsp =(r0, t1, e1) and check

c1
?
= Com(r0 − t1,F(r0)− e1)

c2
?
= Com(t1, e1)

If Ch =1, parse Rsp =(r1, t1, e1) and check

c0
?
=Com(r1,v −F(r1)−G(t1, r1)− e1)

c2
?
= Com(t1, e1)

If Ch =2, parse Rsp =(r1, t0, e0) and check

c0
?
= Com(r1,G(t0, r1) + e0)

c1
?
= Com(t0, e0)

Fig. 1. Our 3-pass identification protocol

Key Generation. We begin with describing a setup algorithm and a key-
generation algorithm. Let λ be a security parameter. Let n = n(λ), m = m(λ),
and q = q(λ) be polynomially bounded functions. The setup algorithm Setup
takes 1λ and outputs a system parameter F ∈R MQ(n, m, Fq) which consists
of m-tuple of random multivariate quadratic polynomials. The key-generation
algorithm Gen takes F. After choosing a random vector s ∈R Fn

q , Gen computes
v ← F(s), then outputs (pk , sk) = (v, s).

An Identification Protocol. The basic idea for our 3-pass construction is that a
prover proves that she has a tuple (r0, r1, t0, t1, e0, e1) satisfying

G(t0, r1) + e0 = v − F(r1) − G(t1, r1) − e1 (1)
and (t0, e0) = (r0 − t1,F(r0) − e1), (2)

since if the tuple satisfies (1) and (2) then v = F(r0+r1). Note that G is the polar
form of F. In the concrete protocol, corresponding to a challenge Ch ∈ {0, 1, 2}
of a verifier, the prover reveals one out of three tuples (r0, t1, e1), (r1, t1, e1),
and (r1, t0, e0). The verifier can check each side of each equations (1) and (2) by
using either of the three tuples. Such vectors r0, r1, t0, t1, e0, e1 are produced by
using the dividing techniques described in Section 1. Thus, when r0, t0, and e0

are randomly chosen, the verifier can obtain no information on the secret key s
from only one out of the three tuples.

712 K. Sakumoto, T. Shirai, and H. Hiwatari

The 3-pass identification protocol is described in Figure 1. For the simplicity,
a random string ρ in Com is not written explicitly. The verifier finally outputs
1 if both the checks of “ ?=” are passed, otherwise outputs 0. This is denoted by
0/1 ← Dec(F,v; (c0, c1, c2),Ch,Rsp). It is easy to see that the verifier always
accepts an interaction with the honest prover. Thus the 3-pass scheme has perfect
correctness.

Now we show two properties of the protocol in Theorem 2 and Theorem 3 as
follows.

Theorem 2. The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV . We show that the simulator S can
impersonate the honest prover with probability 2/3. The simulator S randomly
chooses a value Ch∗ ∈R {0, 1, 2} and vectors s′, r′0, t

′
0 ∈R Fn

q , e′0 ∈R Fm
q , where

Ch∗ is a prediction of what value the cheating verifier CV will not choose. Then,
it computes r′1 ← s′ − r′0 and t′1 ← r′0 − t′0. If Ch∗ = 0 then it computes e′1 ←
v − F(s′) + F(r′0) − e′0, else e′1 ← F(r′0) − e′0. If Ch∗ = 2 then it computes
c′0 ← Com(r′1,v − F(r′1) − G(t′1, r

′
1) − e′1), else c′0 ← Com(r′1,G(t′0, r

′
1) + e′0).

It computes c′1 ← Com(t′0, e
′
0) and c′2 ← Com(t′1, e

′
1) and sends (c′0, c

′
1, c

′
2) to

CV. Due to the statistically hiding property of Com , a challenge Ch from CV is
different from Ch∗ with probability 2/3. If Ch �= Ch∗ then (r′0, t

′
1, e

′
1), (r′1, t

′
1, e

′
1),

and (r′1, t
′
0, e

′
0) are accepted responses to Ch = 0, 1, and 2, respectively. Note

that if Ch∗ = 0 and Ch = 1 then it is seen that v − F(r′1) − G(t′1, r′1) − e′1 =
G(t′0, r

′
1)+e′0, since e′1 = v−F(s′)+F(r′0)−e′0, F(s′) = F(r′0)+F(r′1)+G(r′0, r

′
1),

and r′0 − t′1 = t′0.
The details of the proof are given in the full paper, where we formally con-

struct a black-box simulator S which has oracle access to a cheating verifier CV ,
and outputs a successful transcript with probability 2/3. Furthermore, the dis-
tribution of the output of S is shown to be statistically close to the distribution
of the real transcript. ��
Theorem 3. The 3-pass protocol is argument of knowledge for RF with knowl-
edge error 2/3 when the commitment scheme Com is computationally binding.

Proof sketch. Let ((c0, c1, c2),Ch0,Rsp0), ((c0, c1, c2),Ch1,Rsp1), and ((c0, c1,
c2),Ch2,Rsp2) be three transcripts such that Chi = i and Dec(F,v; (c0, c1, c2),
Chi,Rspi) = 1 for i ∈ {0, 1, 2}. Then, by using the three transcripts, it is shown
to be able to either break the binding property of Com or extract a solution for v.
Consider the situation where the responses are parsed as Rsp0 = (r̃(0)

0 , t̃(0)
1 , ẽ(0)

1),
Rsp1 = (r̃(1)

1 , t̃(1)
1 , ẽ(1)

1), and Rsp2 = (r̃(2)
1 , t̃(2)

0 , ẽ(2)
0). Then, it is seen that

c0 = Com(r̃(1)
1 ,v − F(r̃(1)

1) − G(t̃(1)
1 , r̃(1)

1) − ẽ(1)
1)

= Com(r̃(2)
1 ,G(t̃(2)

0 , r̃(2)
1) + ẽ(2)

0), (3)

Public-Key Identification Schemes Based on MQ Polynomials 713

c1 = Com(r̃(0)
0 − t̃(0)

1 ,F(r̃(0)
0) − ẽ(0)

1) = Com(t̃(2)
0 , ẽ(2)

0), and (4)

c2 = Com(t̃(0)
1 , ẽ(0)

1) = Com(t̃(1)
1 , ẽ(1)

1). (5)

If the two pairs of the arguments of Com are distinct on any one of the above
equations, the binding property of Com is broken. Otherwise, the equation (3)
yields v = F(r̃(2)

1) + G(t̃(1)
1 + t̃(2)

0 , r̃(2)
1) + ẽ(2)

0 + ẽ(1)
1 . Combining it with the

equations (4) and (5), it is seen that v = F(r̃(2)
1) + G(r̃(0)

0 , r̃(2)
1) + F(r̃(0)

0) =
F(r̃(0)

0 + r̃(2)
1). It means that a solution r̃(0)

0 + r̃(2)
1 for v is extracted.

The details of the proof are given in the full paper, where we formally construct
a knowledge extractor which has oracle access to a message specification function
PF,v,s,r, and either breaks the binding property of Com or outputs a solution
for v. ��

Extension. The trick mentioned in [49] for saving one hash value can be applied
to our 3-pass identification protocol as follows. In the first pass, by using a
collision resistant hash function H , one hash value c = H(c0, c1, c2) instead
of three commitments (c0, c1, c2) is sent. In the third pass, for a challenge Ch
of a verifier, a prover sends ci|i=Ch in addition to Rsp. Consequently, a verifier
computes ci|i=Ch by using Rsp and checks c = H(c0, c1, c2). The modified version
of 3-pass protocol is also shown to be zero-knowledge argument of knowledge
with knowledge error 2/3.

4 A 5-pass Identification Scheme

In this section, we construct a 5-pass identification protocol which is statistical
zero-knowledge argument of knowledge for RF with knowledge error 1/2+1/2q,
assuming the existence of a non-interactive commitment scheme Com which is
statistically hiding and computationally binding. The knowledge error of the 5-
pass protocol is smaller than that of the 3-pass protocol when q ≥ 4. The setup
algorithm and the key-generation algorithm of the 5-pass scheme are identical
to those of the 3-pass scheme.

In the 5-pass protocol, a prover also divides the secret key s and the public
key F(s) as s = r0 + r1 and F(s) = F(r0 + r1) = F(r0) + F(r1) + G(r0, r1),
respectively. The difference from the 3-pass protocol is that r0 and F(r0) are
divided as αr0 = t0 + t1 and αF(r0) = e0 + e1 where α ∈ Fq is a choice of
a verifier. After sending (t1, e1) to the verifier, corresponding to a challenge
Ch ∈ {0, 1} of the verifier, the prover reveals one out of two vectors r0 and r1.
When r0, t0, and e0 are randomly chosen, the verifier can obtain no information
on the secret key s from only one out of the two vectors r0 and r1. On the other
hand, the argument-of-knowledge property comes from that, for more than one
choice of α ∈ Fq, an impersonator cannot response both of verifier’s challenges
Ch = 0 and Ch = 1 unless the impersonator has a solution s for v.

The 5-pass identification protocol is described in Figure 2 where G is the
polar form of F. For the simplicity, a random string ρ in Com is not written

714 K. Sakumoto, T. Shirai, and H. Hiwatari

Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q

r1 ← s− r0

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)�
Pick α ∈R Fqα�

t1 ← αr0 − t0

e1 ← αF(r0)− e0 (t1, e1)�
Pick Ch ∈R {0, 1}Ch�

If Ch = 0, Rsp ← r0

If Ch = 1, Rsp ← r1
Rsp� If Ch = 0, parse Rsp = r0 and check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

If Ch = 1, parse Rsp = r1 and check

c1
?
=Com(r1, α(v − F(r1))−G(t1, r1)−e1)

Fig. 2. Our 5-pass identification protocol

explicitly. The verifier finally outputs 1 if the check of “ ?=” is passed, otherwise
outputs 0. This is denoted by 0/1 ← Dec(F,v; (c0, c1), α, (t1, e1),Ch,Rsp). It is
easy to see that the verifier always accepts an interaction with the honest prover.
Thus the 5-pass scheme has perfect correctness.

Now we show two properties of the protocol in Theorem 4 and Theorem 5 as
follows.

Theorem 4. The 5-pass protocol is statistically zero knowledge when the
commitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV . We show that the simulator S can
impersonate the honest prover with probability 1/2. The simulator S randomly
chooses a value Ch∗ ∈R {0, 1} and vectors s′, r′0, t

′
0 ∈R Fn

q , e′0 ∈R Fm
q , where

Ch∗ is a prediction of what value the cheating verifier CV will choose. Then, it
computes r′1 ← s′ − r′0, c′0 ← Com(r′0, t

′
0, e

′
0), and c′1 ← Com(r′1,G(t′0, r

′
1)+ e′0).

It sends (c′0, c′1) to CV. Receiving a challenge α from CV , it computes t′1 ←
αr′0−t′0. If Ch∗ = 0 then it computes e′1 ← αF(r′0)−e′0, else e′1 ← α(v−F(s′)+
F(r′0)) − e′0. It sends (t′1, e

′
1) to CV. Due to the statistically hiding property of

Com , a challenge Ch from CV is equal to Ch∗ with probability 1/2. If Ch = Ch∗

then r′0 and r′1 are accepted responses to Ch = 0 and 1, respectively. Note that
the case of α = 0 does not spoil the zero-knowledge property. The details of
the proof are given in the full paper, where we formally construct a black-box
simulator S which outputs a successful transcript with probability 1/2 + 1/2q.

��

Public-Key Identification Schemes Based on MQ Polynomials 715

Theorem 5. The 5-pass protocol is argument of knowledge for RF with knowl-
edge error 1/2 + 1/2q when the commitment scheme Com is computationally
binding.

Proof sketch. Let ((c0, c1), αi, (t̃
(i)
1 , ẽ(i)

1),Chj ,Rsp(i,j)) be four transcripts for
i, j ∈ {0, 1} such that Dec(F,v; (c0, c1), αi, (t̃

(i)
1 , ẽ(i)

1),Chj ,Rsp(i,j)) = 1, α0 �=
α1, and Chj = j. Then, by using the four transcripts, it is shown to be able to
either break the binding property of Com or extract a solution for v. Consider
that the responses are parsed as Rsp(0,0) = r̃(0)

0 , Rsp(0,1) = r̃(0)
1 , Rsp(1,0) = r̃(1)

0 ,
and Rsp(1,1) = r̃(1)

1 . Then, it is seen that

c0 = Com(r̃(0)
0 , α0r̃

(0)
0 − t̃(0)

1 , α0F(r̃(0)
0) − ẽ(0)

1)

= Com(r̃(1)
0 , α1r̃

(1)
0 − t̃(1)

1 , α1F(r̃(1)
0) − ẽ(1)

1) and (6)

c1 = Com(r̃(0)
1 , α0(v − F(r̃(0)

1)) − G(t̃(0)
1 , r̃(0)

1) − ẽ(0)
1)

= Com(r̃(1)
1 , α1(v − F(r̃(1)

1)) − G(t̃(1)
1 , r̃(1)

1) − ẽ(1)
1). (7)

If the two tuples of the arguments of Com are distinct on either of the above
equations, the binding property of Com is broken. Otherwise, it is seen that
(α0 − α1)(v − F(r̃(0)

1)) = G(t̃(0)
1 − t̃(1)

1 , r̃(0)
1) + ẽ(0)

1 − ẽ(1)
1 from the equation (7).

Combining it with the equation (6) yields (α0 − α1)(v − F(r̃(0)
1)) = G((α0 −

α1)r̃
(0)
0 , r̃(0)

1) + (α0 − α1)F(r̃(0)
0). Thus, v = F(r̃(0)

1) + G(r̃(0)
0 , r̃(0)

1) + F(r̃(0)
0) =

F(r̃(0)
1 + r̃(0)

0) is obtained, since α0 �= α1. It means that a solution r̃(0)
1 + r̃(0)

0

for v is extracted. The details of the proof are given in the full paper, where a
knowledge extractor is formally constructed. ��

5 Security and Efficiency

In this section, we summarize the security which is easily derived from the prop-
erties of zero-knowledge argument of knowledge, and give a practical parameter
choice for each of the 3-pass scheme and the 5-pass scheme.

5.1 Security of the Identification Schemes

Here we briefly mention the security of each of the sequential and the parallel
compositions when MQ(n, m, Fq) is intractable and the commitment scheme
Com is statistically hiding and computationally binding. Let (P, V) be an iden-
tification protocol described in Section 3 or Section 4. Then identification pro-
tocols which consist of repeating (P, V) N -times in sequential and in parallel are
denoted by (P(s)

N , V
(s)
N) and (P(p)

N , V
(p)
N), respectively. The security of our identifi-

cation schemes (Setup, Gen, P(s)
N , V

(s)
N) and (Setup, Gen, P(p)

N , V
(p)
N) is evaluated as

follows.
First, we consider (Setup, Gen, P(s)

N , V
(s)
N). From Theorem 2 and the sequential

composition lemma [25], (P(s)
N , V

(s)
N) is statistically zero knowledge. Furthermore,

716 K. Sakumoto, T. Shirai, and H. Hiwatari

it is directly shown that the sequential repetition reduces the knowledge error at
an optimal rate in the same way as [48,49]. We note that Bellare and Goldreich
showed the theorem for a general reduction of a knowledge error by the sequen-
tial repetition [4]. Therefore, the identification scheme (Setup, Gen, P(s)

N , V
(s)
N) is

secure against impersonation under active attack where N = ω(log λ).
Second, consider (Setup, Gen, P(p)

N , V
(p)
N). It is easy to see that the parallel repe-

tition of (P, V) reserves zero-knowledge with respect to an honest verifier. Because
if the simulator S knows a challenge Ch which CV will choose, then S can always
output a successful transcript in both case of the 3-pass protocol and the 5-pass
protocol. Furthermore, Pass and Venkitasubramaniam mentioned that the paral-
lel repetition reduces a knowledge error in a constant-round public-coin argument
of knowledge [37]. In particular, the error rate drops exponentially with the num-
ber of repetitions N . Therefore, the identification scheme (Setup, Gen, P(p)

N , V
(p)
N)

is secure against impersonation under passive attack where N = ω(log λ). In
addition, for a certain parameter choice, the parallel version of our scheme is
also secure under active attack as shown in Section 6.

5.2 Efficiency

We estimate practical sizes of system parameters, a public key, a secret key, and
a transcript of our schemes. The numbers of arithmetic operations, computing
permutations, and computing hash functions are also estimated as computational
cost. Almost all arithmetic operations are done in evaluations of F and G. The
efficiency is compared with that of the identification schemes based on binary
SD, q-ary SD, CLE, PP, and PK. The key lengths of these schemes for around
80-bit security is estimated in [12,23]. In our evaluation, the key lengths given
in [12] are used, where lengths of a hash value and a random seed are 160 bits
and 128 bits, respectively.

First, we consider the 3-pass identification scheme employing MQ(84, 80, F2).
Following the same way as [7,3], the time complexity of the F5 algorithm to break
MQ(84, 80, F2) is estimated to be more than 280. Furthermore, the complexity of
the improved exhaustive search algorithm to break MQ(84, 80, F2) [10], which
is stated as the best known algorithm, is 288.7 and thus also more than 280.
Table 1 shows comparison of the sequential version of our scheme and the 3-
pass schemes based on binary SD, CLE, and PP when each protocol is repeated
until impersonation probability is less than 2−30. In the SD-based scheme, the
CLE-based scheme, and ours, we consider the case that H(c0, c1, c2) is sent in
the first pass instead of (c0, c1, c2) as mentioned at the end of Section 3. In the
PP-based scheme, we consider the efficient version using hash tree [43]. The sizes
of public/secret keys and communication of our scheme are smaller than those
of the others. Although the size of system parameter of our scheme is relatively
large, it can be reduced to some small seed, e.g. 128 bits, if a pseudo-random
number generator is used as the implementation of QUAD [2]. Although the cost
of arithmetic operations of our scheme is relatively high, it is still reasonable. In
particular, our scheme does not require random permutations.

Public-Key Identification Schemes Based on MQ Polynomials 717

Second, consider the 5-pass identification scheme. As the order q of a field
becomes larger, the knowledge error of the 5-pass protocol 1/2+1/2q is smaller.
Here we use MQ(45, 30, F24) which is one of the minimal recommended param-
eters given in [8] for 80-bit security. Table 2 shows efficiency of the sequential

Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [47,49] CLE [48] PP [43] Our

round 52 52 73 52

system parameter (bit) 122,500*1 4,608*1 28,497*1 285,600*1

public key (bit) 350 288*2 245 80
secret key (bit) 700 192 177 84

communication (bit) 59,800*6 45,517*3*4*6 100,925*6 29,640
arithmetic ops. (times/field) 224 / F2 216 / F257 222 / F127 226 / F2

permutations*5 (times/size) 2/S700 4/S24 2/S161,S177 NO
hash function (times) 4 4 8 4

best known key-recovery attack 287 284 > 274 280

Table 2. Comparison of 5-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [47,49] SD [12] PK [46] CLE [48] PP [42,43] Our

round 31 31 31 31 52 33

system parameter (bit) 122,500*1 32,768*1 4,608*1 4,608*1 28,497*1 259,200*1

public key (bit) 2450 512 384 288*2 245 120

secret key (bit) 4900 1024 203*7 192 177 180

communication (bit) 120,652*6 61,783*6 27,234*6 27,528*3*6 105,060*6 26,565
arithmetic ops. (times/field) 223/F2 218/F256 215/F251 215/F257 221/F127 222/F24

permutations*5 (times/size) 8/S700 2/S128 3/S48 4/S24 2/S161,S177 NO
hash function (times) 2 2 2 2 5 2

best known key-recovery attack 287 287 285 284 > 274 283

*1 These values can be reduced to 128 bit if a pseudo-random number generator is used.
*2 For the verification, only one vector P is required for the public key whose size is 96

bits. However, as mentioned in [48,12], zero-knowledge property of the scheme can
only be stated if two quantities (Sσ and Tτ) are public in addition to the vector P .

*3 It is estimated for the case where elements in F257 are regarded as 8 bits.
*4 In the original paper [48], a prover sends (Uσ, V τ, (U + S)σ, (V − T)τ) in the third

pass. However, if the prover sends (Uσ, V τ, Sσ, T τ) instead of (Uσ, V τ, (U+S)σ, (V −
T)τ), then the communication cost is reduced. Our estimation employs the efficient
version.

*5 This shows the number of times of computing permutations and the size of the
permutation, where Sn means a permutation over {1, . . . , n}.

*6 By following [46,48], the data size of Sn is regarded as �log2(n!)� bits. Furthermore,
in the same way as [48,49,12], the data size of a random permutation or a random
vector is estimated at the length of random seed as 128 bits if it is over 128 bits.

*7 We follow the original paper [46] and estimate the length of the secret key as
�log2(n!)� bits, although it is regarded as the length of the random seed in [12].

718 K. Sakumoto, T. Shirai, and H. Hiwatari

version of our scheme and the 5-pass schemes based on binary SD, q-ary SD,
CLE, PK, and PP when each protocol is repeated until impersonation probabil-
ity is less than 2−30. This table tells us some advantages of our 5-pass scheme,
which are similar to those of our 3-pass scheme.

6 On the Security against Active Attack in Parallel
Repetition

In this section, we focus on the case that the underlying MQ function is sub-
stantially compressing, in particular, mapping Fn

q to Fm
q where n = m + k and

k = ω(log λ). For example, the MQ function F ∈ MQ(2m, m, Fq) satisfies the
requirement where m = ω(log λ). In this case, the parallel version (Setup, Gen,
P
(p)
N , V

(p)
N) of our 3-pass scheme is shown to be secure against impersonation un-

der active attack, although the sizes of the secret key and the communication
data increase at most double compared to those of Section 5.2. This argument
can also be applied to our 5-pass scheme.

First, we define the preimage resistance and the second-preimage resistance
of the MQ function as follows. The preimage resistance is slightly different from
the intractability assumption of Definition 1 in the distribution of the challenge
v, but is also widely believed.

Definition 6. For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MQ(n, m, Fq) is preimage resistant if there is no
polynomial-time algorithm that takes (F,v) generated via F ∈R MQ(n, m, Fq)
and v ∈R Fm

q and finds a preimage s ∈ Fn
q such that F(s) = v with non-

negligible probability ε(λ). On the other hand, it is said that MQ(n, m, Fq) is
second-preimage resistant if there is no polynomial-time algorithm that takes
(F,x) generated via F ∈R MQ(n, m, Fq) and x ∈R Fn

q and finds a second preim-
age x′ ∈ Fn

q such that F(x′) = F(x) and x′ �= x with non-negligible probability
ε(λ).

When a second-preimage resistant hash function is substantially compressing,
it is known to be preimage resistant [44]. Conversely, with respect to the MQ
function, the following lemma is also shown.

Lemma 7. If MQ(n, m, Fq) is preimage resistant, then MQ(n + 1, m, Fq) is
second-preimage resistant.

Proof sketch. Given F = (f1, . . . , fm) ∈R MQ(n, m, Fq) and v = (v1, . . . , vm)
∈R Fm

q , we show that a preimage x satisfying v = F(x) can be found by using an
algorithm A that breaks the second-preimage resistance of MQ(n + 1, m, Fq),
where fl(x1, . . . , xn) =

∑n
i=1

∑n
j=1 al,i,jxixj +

∑n
i=1 bl,ixi. For the simplicity,

suppose that the algorithm A takes F̃ = (f̃1, . . . , f̃m) ∈ MQ(n + 1, m, Fq) and
t = (t1, . . . , tn+1) ∈ Fn+1

q and outputs a second preimage t+Δ such that F̃(t+Δ)
= F̃(t) and Δ = (d1, . . . , dn, 1), where f̃l(x1, . . . , xn+1) =

∑n+1
i=1

∑n+1
j=1 ãl,i,jxixj

Public-Key Identification Schemes Based on MQ Polynomials 719

+
∑n+1

i=1 b̃l,ixi. In this case, the equation F̃(t + Δ) − F̃(t) = 0 is expanded as
follows:

n∑
i=1

n∑
j=1

ãl,i,jdidj +
n∑

i=1

(
n+1∑
j=1

(ãl,i,j + ãl,j,i)tj + b̃l,i + (ãl,i,n+1 + ãl,n+1,i))di

+
n+1∑
j=1

(ãl,n+1,j + ãl,j,n+1)tj + b̃l,n+1 + ãl,n+1,n+1 = 0

for l = 1, . . . , m. From the above equation, we can see that the output t + Δ of
A satisfies v = F(d1, . . . , dn) if the input (F̃, t) of A is produced as follows.

– The vector t is generated via t ∈R Fn+1
q .

– For 1 ≤ i ≤ n and 1 ≤ j ≤ n do ãl,i,j ← al,i,j , otherwise ãl,i,j ∈R Fq.
– For 1 ≤ i ≤ n do b̃l,i ← bl,i − (ãl,n+1,i + ãl,i,n+1) − ∑n+1

j=1 (ãl,i,j + ãl,j,i)tj ,
otherwise b̃l,n+1 ← −vl − ãl,n+1,n+1 − ∑n+1

j=1 (ãl,n+1,j + ãl,j,n+1)tj .

The details of the proof of Lemma 7 are described in the full paper. ��
Moreover, the following lemma is also shown.

Lemma 8. Let n = m + k, k = ω(log λ), and N = ω(log λ). Suppose that
MQ(n, m, Fq) is second-preimage resistant. Then, (P(p)

N , V
(p)
N) achieves the secu-

rity against impersonation under active attack when Com is statistically hiding
and computationally binding.

Proof sketch. The proof of the lemma follows standard techniques used
in [19,29,33]. We construct an algorithm B breaking the second-preimage resis-
tance of MQ(n, m, Fq) by using an impersonator I = (CP, CV) which succeeds
impersonation under active attack. Given (F,x), the algorithm B runs the cheat-
ing verifier CV on input (F,v) where v = F(x). Using the secret key x, B can
simulate the prover oracle perfectly. After obtaining a state for CP from CV ,
B feeds the state to CP and acts as the legitimate verifier. By using standard
rewinding techniques, B either breaks the binding property of Com or obtains x′

satisfying v = F(x′), in the same way as the proof of Theorem 3. Furthermore,
the event x′ �= x occurs with non-negligible probability, because of the following
(1) and (2): (1) (P(p)

N , V
(p)
N) is statistically witness indistinguishable when Com

is statistically hiding, due to Theorem 2. (2) The probability that there is not
another x′ ∈ Fn

q \ {x} such that F(x) = F(x′) is at most q−k which is negligible,
since k = ω(log(λ)). In the case of x′ �= x, B finds a second preimage x′. The
details of the proof of Lemma 8 are described in the full paper. ��
We note that the above proof can be extended into that of the security under
concurrent attack [6] as in the proof of Kawachi et al. [29].

Finally, combining Lemma 7 and Lemma 8 yields the following theorem.

Theorem 9. Let n = m + k, k = ω(log λ), and N = ω(log λ). Suppose that
MQ(n − 1, m, Fq) is preimage resistant. Then, (P(p)

N , V
(p)
N) achieves the security

against impersonation under active attack when Com is statistically hiding and
computationally binding.

720 K. Sakumoto, T. Shirai, and H. Hiwatari

7 Extensions of Our Scheme

In this section we mention the following two extensions of our scheme.

Slightly Efficient Parallelization. The trick mentioned in the end of Section 3
can also be applied into the parallel version of our 3-pass scheme (Setup, Gen,
P
(p)
N , V

(p)
N) without losing the security. After that, a hash value of 3N -tuple of

commitments c = H((c0,1, c1,1, c2,1), . . . , (c0,N , c1,N , c2,N)) is sent by a prover in
the first pass, where ci,j is a commitment and H is a collision resistant hash
function. The sizes of a public key, a secret key, and communication data of the
modified scheme are only 80 bits, 84 bits, and 160 + 410N bits, respectively.

A Signature Scheme. The Fiat-Shamir method is a generic technique which
transforms an identification scheme into a signature scheme [20]. The signature
scheme is secure against chosen-message attack in the random oracle model if the
underlying identification scheme is secure against impersonation under passive
attack [1]. Thus the transform yields a signature scheme based on the conjec-
tured intractability of the MQ problem from the parallel version of our 3-pass
identification scheme. Using the signature scheme, our identification/signature
scheme can also be extended to an identity-based one in a natural way [5].

8 Conclusion

We introduced the dividing techniques using bilinearity of the polar form of
the MQ function and proposed public-key identification schemes consisting of a
non-trivial construction of zero-knowledge argument of knowledge for the MQ
problem, assuming the existence of a non-interactive commitment scheme. For a
practical parameter choice, the efficiency of our schemes is highly comparable to
identification schemes based on another problem including PK, SD, CLE, and
PP. Furthermore, even if the protocol is repeated in parallel, our scheme can
achieve the security under active attack with some additional cost.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Sig-
natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and
Forward-Security. In: Knudsen, L. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
418–433. Springer, Heidelberg (2002)

2. Arditti, D., Berbain, C., Billet, O., Gilbert, H.: Compact FPGA Implementations
of QUAD. In: Bao, F., Miller, S. (eds.) ASIACCS, pp. 347–349. ACM, New York
(2007)

3. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner Basis Computation
for Semi-regular Overdetermined Sequences over F2 with Solutions in F2. Research
Report RR-5049, INRIA (2003)

4. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

Public-Key Identification Schemes Based on MQ Polynomials 721

5. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes. J. Cryptology 22(1), 1–61 (2009)

6. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

7. Berbain, C., Gilbert, H., Patarin, J.: A Practical Stream Cipher with Provable
Security. In: Vaudenay [50], pp. 109–128

8. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid Approach for Solving Multivariate
Systems over Finite Fields. Journal of Mathematical Cryptology 3(3), 177–197
(2009)

9. Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Mul-
tivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

10. Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A.,
Yang, B.-Y.: Fast Exhaustive Search for Polynomial Systems in F2. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer,
Heidelberg (2010)

11. Bouillaguet, C., Faugère, J.-C., Fouque, P.-A., Perret, L.: Practical Cryptanalysis
of the Identification Scheme Based on the Isomorphism of Polynomial with One
Secret Problem. Cryptology ePrint Archive, Report 2010/504 (2010)

12. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identification
Scheme Based on the q-ary Syndrome Decoding Problem. In: Biryukov, A., Gong,
G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Hei-
delberg (2011)

13. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

14. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

15. Dubois, V., Fouque, P.-A., Stern, J.: Cryptanalysis of SFLASH with Slightly Mod-
ified Parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
264–275. Springer, Heidelberg (2007)

16. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York
(2002)

17. Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and The-
oretical Aspects. In: Vaudenay [50], pp. 30–47

18. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. J. Cryptol-
ogy 1(2), 77–94 (1988)

19. Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In:
STOC, pp. 416–426. ACM, New Orleans (1990)

20. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

21. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate
Schemes. In: Cramer [13], pp. 341–353

22. Fouque, P.-A., Macario-Rat, G., Stern, J.: Key Recovery on Hidden Monomial
Multivariate Schemes. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 19–30. Springer, Heidelberg (2008)

722 K. Sakumoto, T. Shirai, and H. Hiwatari

23. Gaborit, P., Girault, M.: Lightweight Code-Based Identification and Signature. In:
IEEE International Symposium on Information Theory, ISIT, pp. 191–195 (2007)

24. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

25. Goldreich, O.: Foundations of Cryptography: Volume I. Basic Tools. Cambridge
University Press, Cambridge (2001)

26. Haitner, I., Reingold, O.: Statistically-Hiding Commitment from Any One-Way
Function. In: Johnson, Feige [28], pp. 1–10

27. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996)

28. Johnson, D.S., Feige, U. (eds.): Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13. ACM, New
York (2007)

29. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently Secure Identification Schemes
Based on the Worst-Case Hardness of Lattice Problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

30. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

31. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

32. Komano, Y., Akiyama, K., Hanatani, Y., Miyake, H.: ASS-CC: Provably Secure
Algebraic Surface Signature Scheme. In: The 2010 Symposium on Cryptography
and Information Security 4A2-4 (2010)

33. Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active At-
tacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer,
Heidelberg (2008)

34. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009)

35. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Gunther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

36. Micciancio, D., Vadhan, S.P.: Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

37. Pass, R., Venkitasubramaniam, M.: An Efficient Parallel Repetition Theorem for
Arthur-Merlin Games. In: Johnson, Feige [28], pp. 420–429

38. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

39. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

40. Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and Multivariate Poly-
nominals. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334,
pp. 356–368. Springer, Heidelberg (1997)

41. Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One
Secret Problem. In: Cramer [13], pp. 354–370

Public-Key Identification Schemes Based on MQ Polynomials 723

42. Pointcheval, D.: A New Identification Scheme Based on the Perceptrons Problem.
In: Santis, A.D. (ed.) EUROCRYPT 1995. LNCS, vol. 950, pp. 319–328. Springer-
Verlag, Heidelberg (1995)

43. Pointcheval, D., Poupard, G.: A New NP-Complete Problem and Public-key Iden-
tification. Des. Codes Cryptography 28(1), 5–31 (2003)

44. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

45. Sakumoto, K., Shirai, T., Hiwatari, H.: On the Security of the Algebraic Surface
Signature Scheme. IEICE Technical Report ISEC2010-39 (2010-9) (2010)

46. Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels (Ex-
tended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–
609. Springer, Heidelberg (1990)

47. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

48. Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg
(1994)

49. Stern, J.: A New Paradigm for Public Key Identification. IEEE Transactions on
Information Theory, 13–21 (1996)

50. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

Inverting HFE Systems Is Quasi-Polynomial for

All Fields

Jintai Ding1,2 and Timothy J. Hodges2

1 South China University of Technology, Guangzhou, China
2 Department of Mathematical Sciences, University of Cincinnati,

Cincinnati, OH 45221-0025, USA
jintai.ding@gmail.com, timothy.hodges@uc.edu

Abstract. In this paper, we present and prove the first closed formula
bounding the degree of regularity of an HFE system over an arbitrary
finite field. Though these bounds are not necessarily optimal, they can
be used to deduce

1. if D, the degree of the corresponding HFE polynomial, and q, the size
of the corresponding finite field, are fixed, inverting HFE system is
polynomial for all fields;

2. if D is of the scale O(nα) where n is the number of variables in
an HFE system, and q is fixed, inverting HFE systems is quasi-
polynomial for all fields.

We generalize and prove rigorously similar results by Granboulan, Joux
and Stern in the case when q = 2 that were communicated at Crypto
2006.

1 Introduction

The security of cryptosystems such as RSA, ECC, and Diffie-Hellman key ex-
change scheme, depends on assumptions about the hardness of certain number
theory problems, such as the Integer Prime Factorization Problem or the Dis-
crete Logarithm Problem. However, in 1994 Peter Shor [19] showed that quantum
computers could break all public key cryptosystems that are based on these hard
number theory problems. People realize that we need to look ahead to a possible
future of quantum computers. In recent years significant effort has been put into
the search for alternative public key cryptosystems, now called post-quantum
cryptosystems, which would remain secure in an era of quantum computers.
Multivariate public key cryptosystems (MPKC) [5] are one of the main families
of cryptosystems that have the potential to resist quantum computer attacks.

An MPKC is a cryptosystem whose public key is given as a set of multivariate
polynomials over a normally small finite field. The security of such systems is
suggested by the fact that solving a system of multivariate polynomial equations
over a finite field is in general NP-complete [11]. A quantum computer has not
yet been shown to be efficient in solving this problem. Furthermore, computa-
tions in a finite field are more efficient than the manipulation of large integers

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 724–742, 2011.
c© International Association for Cryptologic Research 2011

Inverting HFE Systems Is Quasi-Polynomial for All Fields 725

which is required by the systems based on hard number theory problems. Thus
MPKC’s can be less computationally intense than these systems and therefore
have potential for application in small ubiquitous computing devices with limited
resources.

Research into MPKC’s started in the middle of 1980s in work of Diffie, Fell,
Tsujii, Shamir. However the success of this work was limited and the real break-
through in this direction was the cryptosystem proposed by Matsumoto and Imai
[16]. Their scheme used a simple quadratic function on an extension field whose
field structure was kept hidden. Unfortunately this efficient scheme was proved
to be insecure by Patarin using his linearization equation attack [18]. Hidden
Field Equation (HFE) cryptosystems are a family of cryptosystems proposed by
Patarin based on the same fundamental idea of quadratic functions on extension
fields [18].

Fixing a finite field F of characteristic 2 and cardinality q, Matsumoto and
Imai suggested using a bijective map P defined over K, an extension field of
degree n over F. By identifying K with Fn, one sees that P induces a multivariate
polynomial map P̃ : Fn −→ Fn. One can “hide” this map by composing on the
left by L1 and on the right by L2, where the Li : Fn −→ Fn are invertible affine
maps. This composition gives a map P̄ : Fn −→ Fn defined by

P̄ (x1, . . . , xn) = L1 ◦ P̃ ◦ L2 (x1, . . . , xn) = (y1, . . . , yn) .

For a Hidden Field Equation (HFE) system [18], P is given as a univariate
polynomial in the form:

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c ,

where the coefficients are randomly chosen. Here the total degree D of P should
not be too large since the decryption process involves solving the system of
single variable polynomial equations given by P (X) = Y ′ for a given Y ′ using
the Berlekamp-Massey algorithm.

Faugère and Joux showed that these systems can be broken rather easily in
the case when q = 2 and D is small [10] using the Gröbner basis algorithm
F4. Furthermore the experimental results suggested that such algorithms will
finish at degree of order logq(D) (by which we mean that the highest degree
polynomials encountered are of degree of order logq(D)) and, therefore, that the
complexity of the algorithm is O(nlogq(D)).

A key concept in the analysis of the complexity of these algorithms is that
of degree of regularity. The degree of regularity of the component functions of
P , p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) is the lowest degree at which non-trivial
polynomial relations between the pi occur (we also talk about this as the degree
of regularity of P or of the associated HFE system). Experimental evidence has
shown that this is the point at which the algorithm will terminate. Here we mean
by “termination at a certain degree”, that the large matrices, whose entries are
coefficients of multivariate polynomials, and on which the algorithm performs
Gaussian eliminations, contain polynomials at most of the designated degree.

726 J. Ding and T.J. Hodges

The largest size of all such matrices essentially determines the complexity of the
algorithm. Bardet, Faugère and Salvy defined (in a different notation) the de-
gree of regularity of random or generic systems and found an asymptotic formula
for this degree. However since the systems arising from HFE polynomials were
far from generic, the BFS bound does not yield useful information about the
complexity of HFE systems. Granboulan, Joux and Stern [12] outlined a new
way to bound the degree of regularity in the case q = 2. Their approach was
to lift the problem back up to the extension field K, an idea that originated in
the work of Kipnis and Shamir [13] and Faugère and Joux [10]. They sketched
that one can connect the degree of regularity of an HFE system to the degree
of regularity of a lifted system over the big field. Assuming this assertion, the
semi-regularity of a subsystem of the lifted system, and that the degree of regu-
larity of a subsystem is greater than that of the original system, and using some
asymptotic analysis of the degree of regularity of random systems found in [1],
they derived heuristic asymptotic bounds for the case q = 2, which implied that
if D is chosen to be O(nα) for α ≥ 1, then the complexity of Gröbner basis
attacks is quasi-polynomial. While the results derived from this method match
well with experimental results, the asymptotic bound formula has not yet been
proven rigorously. It relies on a formula that holds for a class of overdetermined
generic systems but it is not yet clear how to prove their systems belong to this
class. Therefore to derive any definitive general bounds on the degree of regular-
ity for general q and n, or on the asymptotic behavior of the degree of regularity
remained an open problem.

The security of HFE systems in the case when the characteristic of the field
is odd has been the subject of much less study. The notions of degree of regu-
larity and semi-regularity in [1] can be generalized to the case when q is odd.
However, the asymptotic analysis on which the results of [12] depend has not
yet been generalized to this situation. The work in [8] seemed to suggest that
HFE systems over a field of odd characteristic could resist the attack of Gröbner
basis algorithms even when D is small. When q is large the field equations
Xq

1 −X2, . . . , X
q
n −X1 cannot be used effectively and this limits the efficiency of

the Gröbner basis algorithms. A breakthrough in the case of general q came in
the recent work of Dubois and Gama [9]. They first refined and gave a rigorous
mathematical foundation for the arguments in [12]. They then derived a new
method to compute the degree of regularity over any field similar to that in [1].
This led to an algorithm that can be used to calculate a bound for the degree
of regularity for any choice of q, n and D. However it is not clear how to derive
a closed form for their bound from their algorithm and therefore they were not
able to answer the question of whether the complexity was quasi-polynomial in
this case.

The contributions of this Paper. In this article we answer the above ques-
tions by giving a global bound on the degree of regularity (in the sense of [9])
of an HFE system. We begin with a similar idea to that used in [12] - roughly
that one can bound the degree of regularity of a system by finding a bound for
certain simpler subsystems. However we obtain our bound using a very different

Inverting HFE Systems Is Quasi-Polynomial for All Fields 727

approach. Previously all estimates on the degree of regularity were based on a
dimension counting argument. At some point the assumption that there are no
trivial relations would imply that the space of linear combinations of the func-
tions p1, . . . , pn by polynomials of degree k would be greater than the dimension
of the space of all polynomials of degree k + 2. Dubois and Gama were able to
improve on earlier bounds by observing that the subspace of linear combinations
has to lie in a special subspace of the space of all polynomials of a fixed degree.
Unfortunately the dimension of this space is given by a recursive formula which
does not have a known closed form. In contrast our approach is to find explicit
non-trivial relations. Surprisingly, it is enough to do this for the case of a single
polynomial. Moreover, we can find an explicit formula for the degree in which
these non-trivial relations occur. This gives the degree of regularity as an explicit
function of q and D (it does not depend on n unless the degree D is a function of
n). Such explicit formulas enable us to draw conclusions about the complexity of
inverting the system using Gröbner basis methods. Our conclusions rely on no
heuristic assumptions beyond the standard assumption that the Gröbner basis
algorithms terminate at or shortly after the degree of regularity.

Specifically, we give a closed formula bound for the degree of regularity of a
multivariate quadratic polynomial of the form

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c .

This bound depends on the rank of P (in a sense defined below); since the
restriction qi + qj ≤ D implies a strong restriction on the rank of P , we are able
to deduce a sharp bound for the degree of regularity of P over a field of any order
q. When q is odd, these bounds are comparable with those found computationally
by Dubois and Gama when the block size n log2(q) is less than 700. Interestingly
this formula also yields the degree of regularity of the Matsumoto-Imai system
when q = 2 to be 3. This is precisely the statement that Patarin’s linearization
attack works in this case. Thus we believe that the notion of rank is a key new
ingredient in the analysis of multivariate quadratic cryptosystems.

A crucial step in our approach is to look at the single polynomial

P0(X1, ..., Xn) =
∑
i,j

aijXiXj

considered as an element of the graded algebra K[X1, . . . , Xn]/(Xq
i). Using meth-

ods from [9], the degree of regularity of the whole system is bounded by the
degree of regularity of this single polynomial. This problem was studied in detail
by the authors and their collaborators in [6,7] in the cases q = 2 and 3. Drawing
on the ideas from this work we are able to find explicit relations which give us
bounds on the degree of regularity of P0 for any q (which we believe are sharp
when q is odd). Specifically we show that the degree of regularity of the system
defined by P is bounded by

Rank(P0)(q − 1)
2

+ 2 ≤ (q − 1)(logq(D − 1)! + 1)
2

+ 2

728 J. Ding and T.J. Hodges

if Rank(P0) > 1. Here Rank(P0) is the rank of the quadratic form associated to
P0. by It is important to note that these are universal bounds that require no
assumption that the polynomials are of “generic type”.

There are two very critical points in the formula. First, the degree of regularity
depends only on the rank of P0, not the degree of P ; while the rank is bounded by
logq D +1, there are many situations (such as the Matsumoto-Imai operators or
sparse HFE polynomials) where the rank is much smaller than can be predicted
by looking at the degree; thus we believe that the rank of a HFE operator to be
a more important invariant than its degree. Second, while we do not expect our
formula to give sharp bounds, it yields similar results to those obtained in [9]
for prime q. It also explains many of the jump discontinuities in their data, since
jumps in the degree of regularity should be expected to occur when the degree
reaches a value which allows the rank of P to increase.

The formulas above enable us to draw the following conclusions about the
complexity of inverting an HFE polynomial using a Gröbner basis algorithm.

1. If D, the degree of the corresponding HFE polynomial, and q, the size of the
corresponding finite field, are fixed, then the degree of regularity is bounded
by a fixed integer (q − 1)(logq(D − 1)! + 1)/2 + 2 or q. Therefore inverting
HFE systems is polynomial for all fields;

2. If q is fixed and D is of the scale O(nα), then inverting HFE systems is
quasi-polynomial.

If, on the other hand, q is of the scale O(n), then our results are inconclusive and
the possibility remains that inverting HFE systems is actually exponential with
respect to this parameter. Comparisons with the results of [9,12], suggest that
our formulas asymptotically may be proportional to the degree of regularity at
least for the case where q is a prime.

This paper is organized as follows. We first briefly introduce HFE cryptosys-
tems in the section below. In Section 3, we review the definition and basic prop-
erties of the degree of regularity from [9]. In Section 4, we show how the notion
of rank can give a useful closed formula bound on the degree of regularity and
apply this to the analysis of the complexity of the Gröbner basis attacks on HFE
systems.

In the appendix, we develop the key ideas of [9] in a more abstract mathemat-
ical framework using the language of graded algebras. This allows us to create
different but abstractly more transparent proofs for the main theorems that we
use in the paper.

After the present paper was submitted, a paper by Bettale, Faugère and Perret
[2] was published that has some commonality with ours. In this article, the
authors come to similar conclusions on the security of the HFE systems, but
with respect only to the Kipnis-Shamir attack. They conjecture that if D is
fixed the complexity of the Kipnis-Shamir attack is polynomial in n, the degree
of the extension. Their experimental data backs up this conjecture.

Inverting HFE Systems Is Quasi-Polynomial for All Fields 729

2 HFE Systems

2.1 Quadratic Operators

Denote by F a finite field of order q and let K be an extension of F of degree n.
Any function from K to K can be expressed as a polynomial with coefficients in
K and degree less than qn. Thus it has the general form

P (X) =
qn−1∑
i=0

aiX
i, ai ∈ K .

There are two distinct notions of degree for P , the degree over K and the degree
over F. The degree over K, denoted by degK(P) is the degree in the usual sense
of degree of a polynomial function. On the other hand, the functions Xqi

are all
linear over F. Thus the degree of the monomial Xd will be the sum of the digits
in the base q expansion of d; that is, if d =

∑
i diq

i, degF(Xd) =
∑

i di. When
q = 2, this is the Hamming weight of the binary representation of d. The degree
of P over F, denoted degF(P) is the maximum of the degree of the monomial
terms.

An F-quadratic function from K to K is thus a polynomial all of whose mono-
mial terms have exponent qi + qj or qi for some i and j. The general form of an
F-quadratic function is

P (X) =
n−1∑
i,j=0

aijX
qi+qj

+
n−1∑
i=0

biX
qi

+ c .

2.2 HFE Systems

In an HFE cryptosystem, plaintext from Fn is encrypted using an identification
of Fn with K and an F-quadratic map P . The nature of P is further hidden by
pre- and post-composition with invertible affine linear maps L1, L2 : Fn → Fn.
Thus if φ : Fn → K is the chosen linear isomorphism, the encryption is performed
by the function P̄ = L1 ◦ φ−1 ◦ P ◦ φ ◦L2. Decryption is performed by inverting
the maps L1 and L2 and applying a standard root-finding algorithm for P .
The public key is the function P̄ expressed in terms of its quadratic component
functions p̄1, . . . , p̄n : Fn → F. Provided the degree of P is not too high the
decryption process will be manageable. However the direct solution of a system
of quadratic multivariate equations

p̄1 = b1, . . . , p̄n = bn

is a hard problem which provides the system with a certain level of security.

2.3 Gröbner Basis Attacks

One of the most successful attacks on HFE systems is to apply the refined
Gröbner basis algorithms F4 (and maybe F5 if we do know how to make it work

730 J. Ding and T.J. Hodges

as efficiently as claimed) to convert the system of equations p̄1 = b1, . . . , p̄n = bn

to a simpler system that can be solved quickly. From the point of view of security
analysis it is sufficient to consider the system p1 = 0, . . . , pn = 0 where the pi

are the component functions of φ−1 ◦P ◦φ with respect to the given basis. From
this point on, we restrict our attention to this case.

Implementation of the Gröbner basis algorithm involves searching through
combinations of multiples of the pi by polynomials of a fixed degree for poly-
nomials of smaller degree. If the combination

∑
i gipi has smaller degree then

the corresponding combination of leading components
∑

i gh
i ph

i is zero. Here,
by the leading component of a multivariate polynomial g we mean the multi-
variate polynomial gh derived from removing all the monomial terms of g with
degree lower than the degree of g, or the highest homogeneous component of
g. In general, the decisive moment in the calculation is when non-trivial such
combinations occur. These non-trivial relations will very likely generate what
is called mutants [3,4,15], which are instrumental in solving the system. Obvi-
ously the combinations ph

i ph
j − ph

j ph
i are tautologically zero and the equation

((ph
i)q−1 − 1)ph

i = 0 is a result of the identity aq = a in F. A non-trivial relation
is one that does not follow from these trivial identities. The degree at which
the first non-trivial relation occurs is called the degree of regularity. Extensive
experimental evidence has shown that the algorithm will terminate at or shortly
after the degree of regularity. Thus the calculation of the degree of regularity is
crucial to understanding the complexity of the algorithm.

3 Degree of Regularity

We begin with the formal definition of degree of regularity as given in [9] and
we summarize the key results from that paper. More abstract versions of these
results are also given in the appendix. Let

A = F[X1, . . . , Xn]/ 〈Xq
1 − X1, . . . , X

q
n − Xn〉 .

This is the algebra of functions from Fn to F. Let p1, . . . , pn be quadratic elements
of A. Denote by Ak the subspace of A consisting of functions representable by
a polynomial of degree less than or equal to k. For all j we have a natural map
ψj : An

j → ∑
i Ajpi given by

ψj(a1, . . . , an) =
∑

i

aipi .

We are interested in ‘degree falls’; a degree fall occurs when the ai have degree j
but

∑
i aipi has degree less than degree j+2. Obviously we can have trivial degree

falls of the form pjpi +(−pi)pj or (pq−1
i −1)pi. The degree of regularity of the set

{p1, . . . , pn} is the first degree (measured as deg ai+deg pi) at which a non-trivial
degree fall occurs. Obviously we can restrict our attention to the highest degree
terms in the ai and work modulo terms of smaller degree. Mathematically this
means working in the associated graded ring B = F[X1, . . . , Xn]/ 〈Xq

1 , . . . , Xq
n〉.

Inverting HFE Systems Is Quasi-Polynomial for All Fields 731

The degree of regularity of the {p1, . . . , pn} in A will be the first degree at
which we find non-trivial relations among the leading components ph

1 , . . . , ph
n

(considered as elements of B).
Denote by Bk the subspace of B consisting of homogeneous elements of degree

k. Consider an arbitrary set of homogeneous quadratic elements {λ1, . . . , λn} ∈
B2. For all j we have a natural map ψj : Bn

j → Bj+2 given by

ψj(b1, . . . , bn) =
∑

i

biλi .

Let Rj(λ1, . . . , λn) = kerψj ; this is the subspace of relations of the form
∑

i biλi

= 0. Inside Rj(λ1, . . . , λn) is the subspace of trivial relations, Tj(λ1, . . . , λn)
generated by elements of the form:

1. b(0, . . . , 0, λj , 0, . . . , 0,−λi, 0 . . . , 0) for 1 ≤ i < j ≤ n and b ∈ Bj−2; where
λj is in the i-th position and −λi is in the j-th position;

2. b(0, . . . , 0, λq−1
i − 1, 0 . . . , 0) for 1 ≤ i ≤ n and b ∈ Bj−2(q−1); where λq−1

i is
in the i-th position;

The space of non-trivial relations is the quotient space Rj(λ1, . . . , λn)/Tj

(λ1, . . . , λn).

Definition 3.1. The degree of regularity of {λ1, . . . , λn} is defined by

Dreg({λ1, . . . , λn}) = min{j | Rj−2({λ1, . . . , λn})/Tj−2({λ1, . . . , λn}) �= 0}
It turns out that the degree of regularity is dependent only on the subspace
generated by the λi so we can simplify the notation a little by denoting the
space generated by the λi by V and writing Dreg(V) for Dreg({λ1, . . . , λn}).

Two important properties of the degree of regularity were observed in [9].
First, the degree of regularity of a space is less than or equal to the degree of
regularity of a subspace.

Property 3.2. [9, Property 11] Let V ′ be a subspace of V . Then Dreg(V) ≤
Dreg(V ′).

Second, the degree of regularity is invariant under field extension. Let K be an
extension of F. Define BK = K[X1, . . . , Xn]/ 〈Xq

1 , . . . , Xq
n〉 and denote by VK be

the K-subspace of BK generated by the λi.

Property 3.3. [9, §4.4] Let K be an extension of F. Then Dreg(VK) = Dreg(V).

Returning to the situation where P is a quadratic map with component functions
p1, . . . , pn ∈ A. Let V and V h be the vector spaces generated by the p1, . . . , pn

and their leading components ph
1 , . . . , ph

n (considered as elements of B). Our goal
is to find a bound for Dreg(V h). We begin by extending the base field to K. When
we extend the base field in A, we pass from functions from Fn to F to functions
from Fn to K. Via the linear isomorphism φ−1 : K → Fn, this algebra is isomor-
phic to the algebra of functions from K to K which is simply K[X]/

〈
Xqn − X

〉
.

732 J. Ding and T.J. Hodges

It follows from elementary Galois theory that the space VK corresponds under
this identification with the space generated by P, P q, . . . , P qn−1

. If we filter the
algebra K[X]/

〈
Xqn − X

〉
by degree of functions over F, then the linear compo-

nent is spanned by X, Xq, . . . , Xqn−1
. The associated graded ring will then be the

algebra BK = K[X0, . . . , Xn−1] where Xi corresponds to Xqi

and Xq
i = 0. This

is naturally isomorphic to the algebra B with coefficients extended to K (proofs
in Appendix B). Thus the processes of extending the base field and taking the
associated graded ring commute.

Let Pi denote the leading component of P qi

in BK. Thus for instance if P is
defined as above, then

P0 =
n−1∑
i,j=0

aijXiXj .

The space generated by the Pi is exactly V h
K , the subspace of BK generated by

the ph
i . Putting all the above together we get the following important theorem.

A brief proof is given in Appendix B.

Theorem 3.4 ([9])

Dreg({p1, . . . , pn}) = Dreg({ph
1 , . . . , ph

n}) = Dreg({P0, . . . , Pn−1})
Using Property 2, we get the following immediate corollary.

Corollary 3.5. Dreg({p1, . . . , pn}) ≤ min{Dreg(Q) | Q ∈ V h
K }

4 Bounding the Degree of Regularity Using Q-Rank

Up to this point we have been following the ideas of [12,9]. In particular, the
proofs of all the above results are given in [9], which is the basis for this work. We
now, however, take a significant change of direction. The bounds on the degree of
regularity in [12,9] and previous authors are all found by counting dimensions.
The basic idea going back to [21,1] is that if dimBn

j − dimTj > dimBn+2
j ,

then Rj � Tj and the degree of regularity has been reached. This approach
was refined in [12] by using Property 1 to reduce to subsets {P0, . . . , Ps} which,
for HFE systems, involve significantly fewer variables. It was further refined in
[9] where the authors observed that the space on the right hand side of the
inequality could be replaced by a significantly smaller space, allowing a more
accurate computational estimate of the degree of regularity. The disadvantage
of the approach in [9] was that no general formula for the degree of regularity
could be derived.

Our approach is completely different. Instead of counting and comparing di-
mensions we actually find non-trivial relations in specific dimensions. Surpris-
ingly, an important bound can be found by restricting to the case of a single
polynomial. We begin by giving a bound on the degree of regularity of a single
polynomial in terms of its rank. Applying this formula to P0 yields a bound on
the degree of regularity of an HFE system in terms of its degree.

Inverting HFE Systems Is Quasi-Polynomial for All Fields 733

The degree of regularity of a single polynomial has been studied in great detail
in the cases where q = 2 and 3 [6,7]. In order to obtain the desired bound, we do
not need the kind of exact information found in those papers. We merely need
to demonstrate the existence of non-trivial relations. This we can do explicitly
using the classification of quadratic forms. Recall that P0 is a homogeneous
quadratic polynomial in the algebra K[X0, . . . , Xn−1]/

〈
Xq

0 , . . . , Xq
n−1

〉
. Using

the classification theorem of quadratic forms over finite fields, we are able to
explicitly construct nontrivial relations and hence derive a simple bound for the
degree of regularity of P0 in terms of its rank.

We now briefly review the classification of quadratic forms over a finite field.
We begin with the case when q is odd. A quadratic form in n indeterminates is a
homogeneous quadratic polynomial in the polynomial ring K[X1, . . . , Xn]. Two
forms P and Q are said to be equivalent (written P ∼ Q) if there is an invertible
linear change of variables L which transforms P into Q:

P ◦ L(X1, ..., Xn) = Q(X1, ..., Xn).

Pick an element c ∈ K that is not a square. Then a quadratic form is equivalent
to one of the two types

1. X2
1 + · · · + X2

r−1 + X2
r

2. X2
1 + · · · + X2

r−1 + cX2
r

for some r ≤ n [17, §62]. The same classification applies to quadratic elements
of the quotient ring K[X1, . . . , Xn]/ 〈Xq

1 , . . . , Xq
n〉.

When q is even, the situation is complicated by the fact that X2 is linear
rather than quadratic when q = 2. It is shown in [14, Theorem 6.30] that a
quadratic polynomial in the polynomial algebra K[X1, . . . , Xn] is equivalent to
an polynomial of one of the following forms for some r ≤ n:

1. X1X2 + ... + Xr−1Xr

2. X1X2 + ... + Xr−2Xr−1 + X2
r

3. X1X2 + ... + Xr−1Xr + X2
r−1 + cX2

r where c ∈ K\{0} satisfies TRK(c) = 1.

For q > 2 this classification carries over to the quotient ring K[X1, . . . , Xn]/
〈Xq

1 , . . . , Xq
n〉. When q = 2, all quadratic elements of the quotient ring are equiv-

alent to an element of the first type. In all cases the number r is known as the
rank of Q. Note that if q = 2, the rank of a quadratic element must be at least
2.

When r = 1 (in which case q > 2), Q is actually equal to aX2
1 for some a ∈ K.

It is easily verified that the smallest non-trivial relation is Xq−2(aX2) = 0 and
hence that Dreg(Q) = q. More generally we have the following inequality.

Theorem 4.1. Let Q be quadratic of rank r. If r > 1,

Dreg(Q) ≤ r(q − 1)
2

+ 2 .

734 J. Ding and T.J. Hodges

Proof. In the case of a single polynomial, the definition of degree of regularity
can be expressed in terms of non-trivial annihilators. Let Q be an arbitrary
quadratic element of B = K[X1, . . . , Xn]/ 〈Xq

1 , . . . , Xq
n〉. The annihilators of Q

are the elements of Ann(Q) = {f ∈ B | fQ = 0}. The trivial annihilators are the
multiples of Qq−1. The degree of regularity is the first k such that there is a non-
trivial annihilator of Q of degree k−2. The degree of regularity is invariant under
a linear change of variables, so it is sufficient to prove the result by exhibiting
explicit non-trivial annihilators for each of the above types of quadratic elements.

Because of the different types of standard forms we need to consider separately
the cases when q is odd and even. We also need to divide these cases into the
cases when r is odd or even.

– Case 1: q odd, r even

Set s = r/2. In this case Q is of the form

Q = X2
1 + X2

2 + · · · + X2
2s−1 + aX2

2s

for some a ∈ K. Let

Ki = Xq−1
2i−1 − X2

2iX
q−3
2i−1 + X4

2iX
q−5
2i−1 + · · · + (−1)(q−1)/2Xq−1

2i

for i = 1, . . . , s − 1; and

Ki = Xq−1
2s−1 − aX2

2sX
q−3
2s−1 + a2X4

2sX
q−5
2s−1 + · · · + (−a)(q−1)/2Xq−1

2s

Set
K = K1K2 . . . Ks .

It is clear that

Ki(X2
2i−1 + X2

2i) = Xq+1
2i−1 − (−1)(q+1)/2Xq+1

2i = 0 ,

for i = 1, ..., s − 1; and

Ks(X2
2s−1 + aX2

2s) = Xq+1
2s−1 − (−a)(q+1)/2Xq+1

2s = 0 .

Hence KQ = 0. Thus K ∈ Ann(Q) ∩ Bs(q−1). We claim that K /∈ 〈
Qq−1

〉
.

Consider the quotient algebra

B̄ = B/
〈
X2

2i−1 + X2
2i, i = 1, ..., s − 1; X2

2s−1 + aX2
2s

〉
.

The algebra B̄ has a basis consisting of monomials with the powers of the vari-
ables X2, X4, . . . , X2s at most 1. It is clear that the image of Q (and hence also
Qq−1) in B̄ is zero, whereas the image of K is

s∏
i

Xq−1
2i−1

(
q + 1

2

)s

which is non-zero. Therefore K is not in the ideal generated by Qq−1. Hence
Dreg(Q) ≤ r(q − 1)/2 + 2.

Inverting HFE Systems Is Quasi-Polynomial for All Fields 735

– Case 2: q odd, r odd

Set s = (r − 1)/2. In this case Q is of the form

Q = X2
1 + X2

2 + · · · + X2
2s−1 + X2

2s + aX2
2s+1

for some a ∈ K. From the classification of quadratic forms [20] we have

X2
2s−1 + X2

2s + aX2
2s+1 ∼ X2

2s−1 − X2
2s − aX2

2s+1 ∼ X2s−1X2s − aX2
2s+1

so Q can be taken to be of the form:

Q = X2
1 + X2

2 + · · · + X2
2s−2 + X2s−1X2s − aX2

2s+1 .

Let
Ki = Xq−1

2i−1 − X2
2iX

q−3
2i−1 + X4

2iX
q−5
2i−1 + · · · + (−1)(q−1)/2Xq−1

2i

for i = 1, . . . , s − 1; and

K ′ =
(X2s−1X2s)(q+1)/2 − a(q+1)/2X

(q+1)
2s+1

X2s−1X2s − aX2
2s+1

X
(q−1)/2
2s−1 .

Note that

K ′(X2s−1X2s − aX2
2s+1) = (X2s−1X2s)(q+1)/2X

(q−1)/2
2s−1 = 0 .

Set
K = K1K2 . . . Ks−1K

′.

Note that the degree of K is (s − 1)(q − 1) + 3(q − 1)/2 = r(q − 1)/2. Again we
see that KQ = 0 and so K ∈ Ann(Q)∩Br(q−1)/2. Consider the quotient algebra

B̄ = B/
〈
X2

2i−1 + X2
2i, i = 1, ..., s − 1; X2s−1X2s − aX2

2s+1

〉
,

Then B̄ has a basis consists of monomials in which the powers of the variables
X2, X4, . . . , X2(s−1), X2s+1 are at most one. The image of Q in B̄ is zero, but
that of K is

s−1∏
i=1

Xq−1
2i−1

(
q + 1

2

)s−1

Xq−1
2s−1X

(q−1)/2
2s

(
q + 1

2

)
which is non-zero. Hence K is not in the ideal generated by Qq−1 and Dreg(Q) ≤
r(q − 1)/2 + 2.

– Case 3: q even, r even (Q of type (1) or (3))

First suppose that Q is of the form Q = X1X2 + · · · + X2s−1X2s where r = 2s.
Set H = Xq−1

1 Xq−1
3 . . . Xq−1

2s−1. Then it is easily seen that H ∈ Ann(Q)∩Bs(q−1).
Consider the quotient algebra

B̄ = B/ 〈X1 − X2, . . . , X2s−1 − X2s〉 .

736 J. Ding and T.J. Hodges

The image of Q in B̄ is

Q̄ = X2
1 + X2

3 + · · · + X2
2s−1 = (X1 + X3 + · · · + X2n−1)2

so the image of Qq−1 is Q̄q−1 = 0. On the other hand the image of H is

Xq−1
1 Xq−1

3 . . . Xq−1
2s−1

which is non-zero. Thus H /∈ 〈Qq−1
〉

Hence Dreg(Q) ≤ r(q − 1)/2 + 2.
Next suppose that Q is of the form Q = X1X2+· · ·+X2s−1X2s+X2

2s−1+αX2
2s.

Let L be a finite extension field of K in which the equation 1 + X + aX2 has
a root. In L[X1, . . . , Xr], Q is equivalent to X1X2 + · · · + X2s−1X2s. Since the
degree of regularity is invariant under extensions of the base field by Property
2, it follows from the first part that Dreg(Q) ≤ r(q − 1)/2 + 2.

– Case 4: q even, r odd (Q of type (2))

Note that in this case we must have q > 2. We may assume that Q is of the form
Q = X1X2 + · · · + X2s−1X2s + X2

2s+1 where r = 2s + 1. Set

H = Xq−1
1 Xq−1

3 . . . Xq−1
2s−3X

q/2
2s−1(X2s−1X2s + X2

2s+1)
(q−2)/2 .

Note that deg H = r(q − 2)/2 and

HQ = (X2s−1X2s + X2
2s+1)

q/2X
q/2
2s−1 = Xq

2s−1X
q/2
2s + Xq

2s+1X
q/2
2s−1 = 0 .

Consider the quotient algebra

B̄ = B/ 〈X1 − X2, . . . , X2s−1 − X2s〉 .

The image of Q in B̄ is Q̄ = X2
1 + X2

3 + · · · + X2
2s−1 + X2

2s+1 = (X1 + X3 +
· · · + X2s−1 + X2s+1)2 so the image of Qq−1 is Q̄q−1 = 0. On the other hand
the image of H is Xq−1

1 Xq−1
3 . . .Xq−1

2s−3X
q/2
2s−1(X

2
2s−1 + X2

2s+1)
(q−2)/2 which is

non-zero. Thus H /∈ 〈Qq−1
〉

Hence Dreg(Q) ≤ r(q − 1)/2 + 2.

Note that for q odd, these bounds were conjectured to be optimal in [7].
Experimental evidence suggests that this is not the case when q is even.

Let us define the Q-Rank of a quadratic operator P (X) to be the minimal
rank of elements of the space V h

K generated by P0, . . . , Pn−1.

Q-RankP = min{RankQ | Q ∈ V h
K }

Note in particular that Q-Rank(P) ≤ Rank(P0).

Theorem 4.2. Let P be a quadratic operator of degree D. If Q-Rank(P) > 1,
the degree of regularity of the associated system is bounded by

(q − 1)Q-Rank(P)
2

+ 2 .

In particular, this is less than or equal to

(q − 1)(logq(D − 1)! + 1)
2

+ 2 .

If Q-Rank(P) = 1, then the degree of regularity is less than or equal to q.

Inverting HFE Systems Is Quasi-Polynomial for All Fields 737

Proof. The first assertion follows from Theorem 4.1 and Corollary 3.5. Suppose
that

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c .

Then
P0 =

∑
qi+qj≤D

aijXiXj .

Let k be the largest subscript of a variable Xk that occurs non-trivially in P0

(that is, aik �= 0 for some i). The rank of P0 is bounded by the number of
variables involved in its expression which is at most k + 1. On the other hand,
by our assumption on D, D ≥ qk + 1 or equivalently, k ≤ logq(D − 1)!. Thus
the rank of P0 is at most logq(D − 1)! + 1.

Example 4.3. Consider a Matsumoto-Imai operator of the form P (X) = X1+2θ

over the field GF (2). Then P0 = X0Xθ has rank 2. So our theorem implies
that the degree of regularity is less than or equal to three. This is precisely the
statement that linearization equations exist in this case [18]. On the other hand
if we consider a Matsumoto-Imai operator over a field of order q = 2m, then the
degree of regularity remains 3 but our bound is 2m + 1. Therefore our estimate
formula needs to be improved when q is not a prime.

For fixed q the degree of regularity is O(logq D). Consider now a Gröbner basis
attack on an HFE system of degree D. We continue to make the assumption
that these algorithms will terminate at degree equal to the degree of regularity
or shortly after this. The runtime of this algorithm will be O(n3Dreg). Assuming
that the security parameter is chosen in such a way that D = O(nα), the runtime
for the Gröbner basis attack on an HFE system over any base field will be
2O(log(n)2); that is, it will be quasi-polynomial.

On the other hand, suppose that q itself is a component of the security pa-
rameter and is taken to be of scale O(n) (this assumption is reasonable since it
will only increase the computation complexity for HFE systems by the scale of
O(log2 n)). If the bound above is asymptotically sharp then the degree of reg-
ularity will be at least of the scale O(n), and therefore inverting HFE systems
will be exponential.

We do not expect or believe the bound obtained in Theorem 4.2 to be optimal
in any degree of generality. We compare the bound (q−1)(logq(D−1)!+1)/2+2
with that obtained by Dubois and Gama for a large number of values of n and D
and prime q from [9]. The tables Appendix C give a detailed comparison of our
bound with the bound calculated in [9]. As n becomes large relative to q, the two
bounds appear to be getting closer, though ours are frequently slightly higher. It
seems possible that there may be a tighter upper bound of the form cq logq(D)
for some scalar c when q is a prime. The discontinuities in the Dubois-Gama
data are close to the discontinuities of logq(D − 1)! and the jump size seems
proportional to q.

738 J. Ding and T.J. Hodges

5 Conclusion

By finding explicit non-trivial relations, we prove that the degree of regularity of
a multivariate quadratic cryptosystem over a field of arbitrary characteristic q is
bounded above by a simple linear function of its Q-Rank and q. These universal
estimate formulas for the degree of regularity for HFE systems for all finite fields
allow us to show that if the degree D of the HFE formula is fixed and the number
of variables increased, the complexity of a Gröbner basis attack on this system
will grow as a polynomial function in n; if, on the other hand, the degree of the
HFE polynomial is O(nα), then the algorithm will take quasi-polynomial time,
as was observed in the case q = 2 in [12].

Our bounds on the degree of regularity are not likely to be optimal even
for large n - we look for relations involving a single polynomial rather than the
whole polynomial systems to prove our estimates. We expect in general that there
will be some non-trivial relations resulting from relations between polynomials
in subsystems, which have smaller degree than relations coming from single
polynomials. On the other hand there is a surprising similarity between our
bounds and those found by Dubois and Gama using a very different approach.
Of course, it is possible that neither bound is close to being optimal and it would
be interesting to run experimental trials for large values of n, D and q. However,
memory limitations prevent us from being able to do this at sufficiently large
values. Taking all this into account, we conjecture that our formulas should give
a good asymptotic estimate (up to a linear factor) of the degree of regularity in
the case q when is prime. If this is true, this would imply that inverting an HFE
system with q of size O(n) is actually exponential.

Acknowledgments. J. Ding would like to thank V. Dubois and N. Gama for
sending him their paper [9] before its publication and for sending him their data
and their program to compute the estimated bound of the degree of regularity
in terms of their formulation. J. Ding would like to thank V. Dubois for many
stimulating and insightful discussions, without which this paper will not be pos-
sible. J. Ding would like to thank C. Christensen and J. Buchmann for useful
discussions. J. Ding would also like to thank many years’ crucial support of the
Charles Phelps Taft Foundation and the support of the National Science
Foundation of China under the grant #60973131.

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: International Con-
ference on Polynomial System Solving - ICPSS, pp. 71–75 (November 2004)

2. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of Multivariate and Odd-
Characteristic HFE Variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)

3. Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms.
Privately distributed research note, University of Cincinnati and Technical Univer-
sity of Darmstadt (2006)

Inverting HFE Systems Is Quasi-Polynomial for All Fields 739

4. Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.-P.: Mutant
XL. In: First International Conference on Symbolic Computation and Cryptogra-
phy – SCC (2008)

5. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography. Advances
in Information Security series. Springer, Heidelberg (2006)

6. Ding, J., Hodges, T.J., Kruglov, V.: Growth of the ideal generated by a quadratic
boolean function. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 13–
27. Springer, Heidelberg (2010)

7. Ding, J., Hodges, T.J., Kruglov, V., Schmidt, D., Tohaneanu, S.: Growth of the
ideal generated by a multivariate quadratic function over GF(3), preprint

8. Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu,
T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
215–227. Springer, Heidelberg (2008)

9. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010)

10. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

11. Garey, M.R., Johnson, D.S.: Computers and intractability, A Guide to the theory
of NP-completeness. W.H. Freeman, San Francisco (1979)

12. Granboulan, L., Joux, A., Stern, J.: Inverting HFE Is Quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

13. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

14. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Cambridge University Press, Cambridge (1997)

15. Mohamed, M., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An Effi-
cient Algorithm for Computing Gröbner Bases of Zero-Dimensional Ideals. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg
(2010)

16. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

17. O’Meara, O.T.: Introduction to Quadratic Forms. Springer, Berlin (1963)
18. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-

crypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

19. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

20. Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Publish-
ing, Singapore (2003)

21. Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–
288. Springer, Heidelberg (2004)

A Degree of Regularity

Let F be a finite field with |F| = q. Denote by B =
⊕N

k=0 Bk a graded finite
dimensional algebra over F. Let V ⊂ Bd be a homogeneous subspace. Then for

740 J. Ding and T.J. Hodges

all j we have a natural map φj : Bj ⊗V → BjV given by φ(
∑

bi ⊗ vi) =
∑

bivi.
Let Rj(V) = kerφj . Inside Rj(V) there is a subspace of “trivial relations” Tj(V)
spanned by the elements

1. b(v ⊗ w − w ⊗ v) where v, w ∈ V and b ∈ Bj−d;
2. b(vq−1 ⊗ v) where v ∈ V and b ∈ Bj−(q−1)d.

A similar basis-dependent definition of trivial relations was give in [9]. It can be
shown that these two definitions coincide.

Following Dubois and Gama [9], we define the degree of regularity of V to be
the degree of the first space BjV in which non-trivial relations occur.

Definition A.1. For a homogeneous subspace V ⊂ Bd, the degree of regularity
of V is defined to be

Dreg(V) = min{j | Tj−d(V) � Rj−d(V)}
Let A be a filtered algebra over F and let GrA =

⊕
j Aj/Aj+1. Let V be a

subspace of Aj . We denote by V̄ its image in GrA; that is, V̄ = V + Aj−1 ⊂
Aj/Aj−1.

Definition A.2. For a subspace V ⊂ Ad, we define the degree of regularity of
V by

Dreg(V) =

{
d if dim V̄ < dimV

Dreg(V̄) otherwise

Extension of the base field does not affect the degree of regularity.

Theorem A.3. Let B be a graded algebra over F, let K be an extension field of
F and let B̃ = K ⊗F B. Let Ṽ = K ⊗ V ⊂ B̃. Then Dreg(V) = Dreg(Ṽ).

Secondly, the degree of regularity of a subspace is at least that of the original
space.

Theorem A.4. Let B be a graded algebra. Let V be a homogeneous subspace
and let V ′ be a subspace of V . Then Dreg(V) ≤ Dreg(V ′).

B Quadratic Operators

Let K be an extension of F of degree n; hence |K| = qn. An F-quadratic function
P : K → K takes the form

P (X) =
∑
i,j

aijX
qi

Xqj

+
∑

i

biX
qi

+ c

for some aij , bi, c ∈ K.
Fix a dual basis {ei ∈ K, xi ∈ K∗ = HomF(K, F)} for K over F. Define

A = Fun(K, F) = F[x1, . . . , xn]

Inverting HFE Systems Is Quasi-Polynomial for All Fields 741

Note that xq
i = xi and A is naturally isomorphic to F[T1, . . . , Tn]/

(T q
1 − T1, . . . , T

q
n − Tn). Note also that dimF A = qn and a basis for A is given

by all monomials of the form

xi1
1 . . . xin

n , where 0 ≤ ij ≤ q − 1.

Analogously we have that

Ã = Fun(K, K) = K[X]

where Xqn

= X . It can be easily verified that

Ã ∼= K ⊗F A = K[x1, . . . , xn]

This isomorphism identifies X with the element
∑

i eixi.
We can filter both of these algebra by degree over F. Thus for A we define

A0 = F, A1 =
∑

i

Fxi + F, Ai+1 = A1Ai

For Ã we note that the maps Xqi

are F-linear and that they span the K-space
of F-linear maps from K to K. Thus we define

Ã0 = K, Ã1 =
∑

i

KXqi

+ K, Ãi+1 = Ã1Ãi

Recall from basic Galois theory that
∑

i KXqi

=
∑

i Kxi. From this it follows
easily that Ãi

∼= K ⊗F Ai and that

B̃ = GrÃ ∼= K ⊗F GrA = K ⊗F B.

Define X̄i = Xqi

+ Ã0 ∈ B̃1 and x̄i = xi + A0 ∈ B1. Note that X̄q = 0 and
x̄q = 0 for all i. Note also that X̄i =

∑
i eqi

i x̄i and that B̃1 =
∑

Kx̄i. Hence

B̃ = K[X̄1, . . . , X̄n] = K[x̄1, . . . , x̄n].

Now consider a quadratic operator P . Let pi = xi ◦ P and let V =
∑

Fpi.

Theorem B.1.
∑

Kpi =
∑

KP qi

.

Proof. Note that ∑
Kpi = {L ◦ P | L ∈

∑
Kxi}

= {L ◦ P | L ∈
∑

KXqi}
=
∑

KP qi

since Xqi ◦ P = P qi

.

Let P̄i be the image of P qi

in B̃; that is, P̄i = P qi

+ Ã1 .

Corollary B.2.
∑

Kp̄i =
∑

KP̄i.

Proof.∑
Kp̄i =

∑
K(pi + A1) =

∑
Kpi + Ã1 =

∑
K(P qi

+ Ã1) =
∑

KP̄i.

742 J. Ding and T.J. Hodges

C Comparison with Dubois-Gama Bounds

The following tables give a detailed comparison of our bound with the bound
calculated in [9].

In these tables, the symbol D stands for the bound on the degree of the HFE
polynomial used in [9]. Rather than restrict by the total degree D of the HFE
operator, their restriction is given by

P (X) =
∑

i,j≤D
aijX

qi+qj

+
∑

qi≤D

biX
qi

+ c .

Thus D is one less than the number of variables involved in the polynomial P0

and so Q-Rank ≤ D + 1. In the same row as D, DG Dreg stands for the bound
on the degree of regularity given in [9], and DH Dreg stands for the bound
obtained from Theorem 4.2 using D + 1 in place of Q-Rank. Thus DH Dreg
= (q − 1)(D + 1)/2 + 2.

The authors would like to thank Vivien Dubois and Nicolas Gama for
providing the detailed data that made this comparison possible.

Table 1. Comparison with Dubois-Gama bound

q = 3 q = 5 q = 7 q = 11 q = 13 q = 17 q = 19 q = 23
Dreg Dreg Dreg Dreg Dreg Dreg Dreg Dreg

n D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH
8 3 5 6 2 6 8 2 6 11 2 6 17 2 6 20 2 6 26 2 6 29 2 6 35
12 3 5 6 3 7 10 2 7 11 2 7 17 2 7 20 2 7 26 2 7 29 2 7 35
16 3 6 6 3 9 10 2 9 11 2 9 17 2 9 20 2 9 26 2 9 29 2 9 35
20 4 7 7 3 10 10 3 12 14 2 11 17 2 11 20 2 11 26 2 11 29 2 11 35
24 4 7 7 3 10 10 3 13 14 2 13 17 2 13 20 2 13 26 2 13 29 2 13 35
28 4 7 7 3 10 10 3 14 14 2 14 17 2 14 20 2 14 26 2 14 29 2 14 35
32 4 7 7 3 10 10 3 14 14 2 16 17 2 16 20 2 16 26 2 16 29 2 16 35
36 4 7 7 3 10 10 3 14 14 3 21 22 2 18 20 2 18 26 2 18 29 2 18 35
40 4 7 7 3 10 10 3 14 14 3 22 22 2 20 20 2 20 26 2 20 29 2 20 35
44 4 7 7 3 10 10 3 14 14 3 22 22 2 21 20 2 21 26 2 21 29 2 21 35
48 4 7 7 3 10 10 3 14 14 3 22 22 3 25 26 2 23 26 2 23 29 2 23 35
52 5 8 8 3 10 10 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
56 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
60 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
64 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
68 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
72 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
76 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
80 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
84 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
88 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
92 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
96 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
100 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
104 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
108 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
112 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
116 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
120 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
124 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 3 42 46

Smaller Decoding Exponents:

Ball-Collision Decoding

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. Very few public-key cryptosystems are known that can en-
crypt and decrypt in time b2+o(1) with conjectured security level 2b

against conventional computers and quantum computers. The oldest of
these systems is the classic McEliece code-based cryptosystem.

The best attacks known against this system are generic decoding at-
tacks that treat McEliece’s hidden binary Goppa codes as random linear
codes. A standard conjecture is that the best possible w-error-decoding
attacks against random linear codes of dimension k and length n take
time 2(α(R,W)+o(1))n if k/n→ R and w/n→W as n→∞.

Before this paper, the best upper bound known on the exponent
α(R, W) was the exponent of an attack introduced by Stern in 1989.
This paper introduces “ball-collision decoding” and shows that it has a
smaller exponent for each (R, W): the speedup from Stern’s algorithm
to ball-collision decoding is exponential in n.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, post-
quantum cryptography, attacks, information-set decoding, collision de-
coding.

1 Introduction

In 1978, McEliece introduced a code-based public-key cryptosystem that has
maintained remarkable strength against every proposed attack. The top threats
against McEliece’s system have always been generic decoding algorithms that
decode random linear codes. The standard conjecture is that the best possible
generic decoding algorithm takes exponential time for any constant asymptotic
code rate R and constant asymptotic error fraction W : i.e., time 2(α(R,W)+o(1))n

for some positive real number α(R, W) if k/n → R and w/n → W as n → ∞.
Here n is the code length, k is the code dimension, and w is the number of errors.

Permanent ID of this document: 0e8c929565e20cf63e6a19794e570bb1. Date:
2011.05.27. This work was supported by the Cisco University Research Program, by
the National Institute of Standards and Technology under grant 60NANB10D263,
and by the European Commission under Contract ICT-2007-216646 ECRYPT II.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 743–760, 2011.
c© International Association for Cryptologic Research 2011

744 D.J. Bernstein, T. Lange, and C. Peters

Two decades ago a flurry of fundamental algorithmic improvements produced
a new upper bound on the optimal decoding exponent α(R, W). The upper
bound is the exponent of a 1989 algorithm by Stern [50]. This upper bound
arises from an asymptotic binomial-coefficient optimization and does not have a
simple formula, but it can be straightforwardly computed to high precision for
any particular (R, W). For example, for W = 0.04 and R = 1+W log2 W +(1−
W) log2(1−W) = 0.7577 . . ., Stern’s algorithm shows that α(R, W) ≤ 0.0809

There have also been many polynomial-factor speedups in generic decod-
ing algorithms; there are dozens of papers on this topic, both inside and out-
side cryptography. Here is an illustration of the cumulative impact of many
of the speedups. McEliece’s original parameter suggestions (“n = 1024, k =
524, t = 50”) take about 5243

(
1024
50

)
/
(
500
50

) ≈ 281 operations to break by the sim-
ple information-set-decoding attack explained in McEliece’s original paper [41,
Section 3]. (McEliece estimated the attack cost as 5243(1− 50/1024)−524 ≈ 265;
this underestimate was corrected by Adams and Meijer in [2, Section 3].) The
attack we presented in [8], thirty years after McEliece’s paper, builds on several
improvements and takes only about 260.5 operations for the same parameters.
That attack was carried out successfully, decrypting a challenge ciphertext. More
recent improvements include [28] and [45]; see Section 4 for a more comprehen-
sive discussion of the literature.

However, polynomial factors are asymptotically 2o(n), and thus have no rele-
vance to the exponent α(R, W) in 2(α(R,W)+o(1))n. The best known upper bound
on α(R, W) has been unchanged since 1989.

Contents of this paper. This paper presents smaller upper bounds on the
decoding exponent α(R, W). Specifically, this paper introduces a generic decod-
ing algorithm and demonstrates that this algorithm is, for every (R, W), faster
than Stern’s algorithm by a factor exponential in n. We call this algorithm “ball-
collision decoding” because of a geometric interpretation explained in Section 4.
The change in the exponent is not very large — for example, this paper uses
ball-collision decoding to demonstrate that α(R, W) ≤ 0.0807 . . . for the (R, W)
given above —but it is the first exponential improvement in decoding complexity
in more than twenty years.

This paper also evaluates the exact cost of ball-collision decoding, using the
same bit-operation-counting rules as in the previous literature, and uses this
evaluation to illustrate the impact of ball-collision decoding upon cryptographic
applications. For example, the parameters (6624, 5129, 117) were proposed in
[8, Section 7] at a 256-bit security level against a state-of-the-art refinement of
Stern’s algorithm; this paper shows that ball-collision decoding costs 2.6 times
fewer bit operations. At a theoretical 1000-bit security level the improvement
grows to 15.5. These concrete figures are consistent with the asymptotic analysis.

Of course, actually breaking these parameters remains very far out of reach,
and these results should not be interpreted as damaging the viability of the
McEliece cryptosystem. However, these results do raise new questions regard-
ing the proper choice of parameters for the McEliece cryptosystem. Section 8
discusses the problem of parameter selection for code-based cryptography.

Smaller Decoding Exponents: Ball-Collision Decoding 745

We also wrote a straightforward reference implementation of ball-collision
decoding, and tested the implementation on a long series of random challenges
at a much lower security level. The costs and success probabilities observed in
these experiments matched the formulas shown in this paper.

Attack model. “Attacks” above refer only to passive single-target inversion
attacks. The original McEliece cryptosystem, like the original RSA cryptosystem,
is really just a trapdoor one-way function; when used naively as a public-key
cryptosystem it is trivially broken by chosen-ciphertext attacks such as Berson’s
attack [11] and the Verheul–Doumen–van Tilborg attack [53].

Protecting the McEliece system against these attacks, to meet the standard
notion of IND-CCA2 security for a public-key cryptosystem, requires appropriate
padding and randomization, similar to RSA-OAEP. As shown by Kobara and
Imai in [36], adding this protection does not significantly increase the cost of the
McEliece cryptosystem.

2 Review of the McEliece Cryptosystem

The public key in the McEliece cryptosystem consists of a random-looking rank-
k matrix G ∈ Fk×n

2 . The sender encrypts a message m in Fk
2 by first multiplying

it with the matrix G, producing mG; choosing uniformly at random a word e in
Fn

2 of Hamming weight w; and adding e to mG, producing a ciphertext mG+ e.
The cryptosystem parameters are n, k, w.

The legitimate receiver decrypts mG + e using a secret key which consists of
a secret decoding algorithm producing the error vector e given mG + e. The
details are not relevant to our attack and can be found in, e.g., [44].

An attacker is faced with the problem of determining e given G and mG + e.
Note that finding e is equivalent to finding the message m: subtracting e from
mG + e produces mG, and then simple linear transformations produce m.

The set Fk
2G =

{
mG : m ∈ Fk

2

}
is called a linear code of length n and di-

mension k, specifically the linear code generated by G. The matrix G is called
a generator matrix for this code. The elements of Fk

2G are called codewords.
If the linear code Fk

2G equals {c ∈ Fn
2 : Hc = 0} then the matrix H is called a

parity-check matrix for the code.
Without loss of generality one can assume that the matrix G in a CCA2-secure

version of the McEliece cryptosystem is given in systematic form G = (Ik|−AT)
where Ik is a k×k identity matrix and A an (n−k)×k matrix. Then the matrix
H = (A|In−k) is a parity-check matrix for the code generated by G.

An information set Z for H is a set of k integers in {1, 2, . . . , n} for which
the n − k columns of H that are not indexed by Z are linearly independent.
Applying Gaussian elimination to those n − k columns shows that codewords
are determined by their Z-indexed components. For example, {1, 2, . . . , k} is an
information set for H = (A|In−k).

Fix m ∈ Fk
2 and e ∈ Fn

2 with wt(e) = w. Write c = mG. By linearity one
has H(c + e) = Hc + He = He since Hc = 0. The result s = He is called the

746 D.J. Bernstein, T. Lange, and C. Peters

syndrome of e. It is the sum of the w columns of H indexed by the positions of
1’s in e. The attacker’s task is equivalent to finding e given H and s = He.

3 The Ball-Collision-Decoding Algorithm

This section introduces ball-collision decoding. It first states the algorithm and
then discusses various optimizations. Section 4 explains how this algorithm re-
lates to previous algorithms.

The algorithm is given a parity-check matrix H ∈ F(n−k)×n
2 , a syndrome

s ∈ Fn−k
2 , and a weight w ∈ {0, 1, 2, . . .}. The goal of the algorithm is to find a

corresponding error vector e: i.e., a vector e ∈ Fn
2 of weight w such that s = He.

Ball-collision decoding has its roots in information-set decoding, which was
used against the McEliece system in, e.g., [50], [17], [18], and [8]. The previous
algorithms select a random information set in the parity-check matrix and then
search for vectors having a particular pattern of non-zero entries. Ball-collision
decoding is similar but searches for a more complicated, and more likely, pattern.
See Section 4 for further discussion of the previous work.

The reader is encouraged to consider, while reading the algorithm, the case that
the algorithm is given a matrix H already in systematic form and that it chooses
Z = {1, 2, . . . , k} as information set. The matrix U in Step 4 is then the identity
matrix In−k. The algorithm divides H into blocks, and divides the syndrome s
into corresponding blocks, as specified by algorithm parameters �1, �2:

H =
(

A1 I1 0
A2 0 I2

)
, s =

(
s1

s2

)
,

where s1 ∈ F�1+�2
2 , s2 ∈ Fn−k−�1−�2

2 , A1 ∈ F(�1+�2)×k
2 , A2 ∈ F(n−k−�1−�2)×k

2 ,
and each Ii is an identity matrix.

One iteration of ball-collision decoding:

Constants: n, k, w ∈ Z with 0 ≤ w ≤ n and 0 ≤ k ≤ n.
Parameters: p1, p2, q1, q2, k1, k2, �1, �2 ∈ Z with 0 ≤ k1, 0 ≤ k2, k = k1 + k2,

0 ≤ p1 ≤ k1, 0 ≤ p2 ≤ k2, 0 ≤ q1 ≤ �1, 0 ≤ q2 ≤ �2,
and 0 ≤ w − p1 − p2 − q1 − q2 ≤ n− k − �1 − �2.

Input: H ∈ F(n−k)×n
2 and s ∈ Fn−k

2 .
Output: Zero or more vectors e ∈ Fn

2 with He = s and wt(e) = w.

1. Choose a uniform random information set Z. Subsequent steps of the algo-
rithm write “FZ

2 ” to refer to the subspace of Fn
2 supported on Z.

2. Choose a uniform random partition of Z into parts of sizes k1 and k2. Sub-
sequent steps of the algorithm write “Fk1

2 ” and “Fk2
2 ” to refer to the corre-

sponding subspaces of FZ
2 .

3. Choose a uniform random partition of {1, 2, . . . , n} \ Z into parts of sizes
�1, �2, and n − k − �1 − �2. Subsequent steps of the algorithm write “F�1

2 ”
and “F�2

2 ” and “Fn−k−�1−�2
2 ” to refer to the corresponding subspaces of

F{1,2,...,n}\Z
2 .

Smaller Decoding Exponents: Ball-Collision Decoding 747

4. Find an invertible U ∈ F(n−k)×(n−k)
2 such that the columns of UH indexed

by {1, 2, . . . , n}\Z are an (n−k)×(n−k) identity matrix. Write the columns

of UH indexed by Z as
(

A1

A2

)
with A1 ∈ F(�1+�2)×k

2 , A2 ∈ F(n−k−�1−�2)×k
2 .

5. Write Us as
(

s1

s2

)
with s1 ∈ F�1+�2

2 , s2 ∈ Fn−k−�1−�2
2 .

6. Compute the set S consisting of all triples (A1x0+x1, x0, x1) where x0 ∈ Fk1
2 ,

wt(x0) = p1, x1 ∈ F�1
2 , wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0 + y1 + s1, y0, y1) where
y0 ∈ Fk2

2 , wt(y0) = p2, y1 ∈ F�2
2 , wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output x0 + y0 + x1 + y1 + A2(x0 + y0) + s2.

Note that Step 8 is a standard “join” operation between S and T ; it can be
implemented efficiently by sorting, by hashing, or by simple table indexing. In
[8, Section 6] we describe an efficient implementation of essentially the same
operation using only about 2�1+�2+1 bits of memory. See Sections 5 and 6 for
further discussion of arithmetic costs and memory-access costs.

Theorem 3.1 (Correctness of ball-collision decoding). The set of output
vectors e of the ball-collision decoding algorithm is the set of vectors e that satisfy
He = s and have weights p1, p2, q1, q2, w − p1 − p2 − q1 − q2 in Fk1

2 , Fk2
2 , F�1

2 ,
F�2

2 , and Fn−k−�1−�2
2 respectively.

Proof. Each element (v, x0, x1) ∈ S satisfies x0 ∈ Fk1
2 with wt(x0) = p1; v =

A1x0 + x1 and x1 ∈ F�1
2 with wt(x1) = q1. Similarly each element (v, y0, y1) ∈ T

satisfies y0 ∈ Fk2
2 with wt(y0) = p2; v = A1y0 + y1 + s1; y1 ∈ F�2

2 with wt(y1) =
q2. Now, with Z-indexed columns visualized as coming before the remaining
columns, we have

UHe = UH

⎛⎝ x0+y0

x1+y1

A2(x0+y0)+s2

⎞⎠ =
(

A1(x0+y0)+x1+y1

A2(x0+y0)+A2(x0+y0)+s2

)
=

(
s1

s2

)
= Us

so He = s. Furthermore, x0 + y0 ∈ Fk1+k2
2 has weights p1, p2 in Fk1

2 ,Fk2
2 ;

x1 + y1 ∈ F�1+�2
2 has weights q1, q2 in F�1

2 ,F�2
2 ; and wt(A2(x0+y0)+s2) =

w−p1−p2−q1−q2.
Conversely, the iteration finds every vector e having this weight distribution

and satisfying He = s. Indeed, write e as x0 + y0 + x1 + y1 + e2 with x0 ∈
Fk1

2 , y0 ∈ Fk2
2 , x1 ∈ F�1

2 , y1 ∈ F�2
2 , and e2 ∈ Fn−k−�1−�2

2 . By hypothesis the
weights of x0, y0, x1, y1, e2 are p1, p2, q1, q2, w − p1 − p2 − q1 − q2, respectively.
Now define v = A1x0 +x1. The equation UHe = Us implies v = A1y0 + y1 + s1;
and e2 = A2(x0 + y0) + s2. Hence (v, x0, x1) ∈ S and (v, y0, y1) ∈ T . Finally
wt(A2(x0 + y0) + s2) = wt(e2) = w− p1 − p2 − q1 − q2 so the algorithm prints e
as claimed. ��

748 D.J. Bernstein, T. Lange, and C. Peters

Finding an information set. The simplest way to choose a uniform ran-
dom information set is to repeatedly choose a uniform random size-k subset
Z ⊆ {1, 2, . . . , n} until the n− k columns of H indexed by {1, 2, . . . , n} \ Z are
linearly independent. Standard practice (see, e.g., Stern [50]) is to eliminate the
fruitless Gaussian-elimination steps here, at the expense of negligible bias, by
assembling the information set one column at a time, ensuring that each newly
added column is linearly independent of the previously selected columns. After
this optimization there is only one Gaussian-elimination step per iteration.

Reusing intermediate sums. Computing the vector A1x0 for a weight-p1

word x0 in Fk1
2 can be done by adding the specified p1 columns of A1 in p1 − 1

additions in F�1+�2
2 .

Computing A1x0 for all the
(
k1
p1

)
vectors x0 can be done more efficiently than

repeating this process for each of them. Start by computing all
(
k1
2

)
sums of 2

columns of A1; each sum costs one addition in F�1+�2
2 . Then compute all

(
k1
3

)
sums of 3 columns of A1 by adding one extra column to the previous results. Pro-
ceed in the same way until all

(
k1
p1

)
sums of p1 columns of A1 are computed. This

produces all required sums in only marginally more than one F�1+�2
2 addition

per sum; see Section 5 for a precise operation count.

Early abort. The vector A2(x0 + y0) + s2 is computed as a sum of p1 + p2 + 1
vectors of length n−k− �1− �2. Instead of computing the sum on all n−k− �1−
�2 positions one computes the sum row by row and simultaneously checks the
weight. If the weight exceeds w−p1−p2− q1− q2 one can discard this particular
pair (x0, y0).

We comment that one can further reduce the cost of this step by precomputing
sums of smaller sets of columns, but we do not use this idea in our analysis,
because it is not critical for the algorithm’s performance.

4 Relationship to Previous Algorithms

This section discusses the relationship of ball-collision decoding to previous
information-set-decoding algorithms.

Collision decoding vs. ball-collision decoding. We use the name “collision
decoding” for the special case q1 = q2 = 0 of ball-collision decoding. The idea
of collision decoding is more than twenty years old: Stern’s algorithm in [50] is,
aside from trivial details, exactly the special case q1 = q2 = 0, p1 = p2, k1 ≈ k2.
Dumer in [26] independently introduced the core idea, although in a more limited
form, and in [27] achieved an algorithm similar to Stern’s.

All state-of-the-art decoding attacks since [50] have been increasingly opti-
mized forms of collision decoding. Other approaches to decoding, such as “gra-
dient decoding” ([4]), “supercode decoding” ([5]), and “statistical decoding” (see
[3] and [43]), have never been competitive with Stern’s algorithm. This does not
mean that those approaches should be ignored; our generalization from collision

Smaller Decoding Exponents: Ball-Collision Decoding 749

decoding to ball-collision decoding is inspired by one of the steps in supercode
decoding.

Collision decoding searches for collisions in F�1+�2
2 between points A1x0 and

points A1y0 + s1. Ball-collision decoding expands each point A1x0 into a small
ball (in the Hamming metric), namely {A1x0 + x1 : x1 ∈ F�1

2 , wt(x1) = q1}; sim-
ilarly expands each point A1y0 into a small ball; and searches for collisions be-
tween these balls.

From the perspective of ball-collision decoding, the fundamental disadvantage
of collision decoding is that errors are required to avoid an asymptotically quite
large stretch of �1 + �2 positions. Ball-collision decoding makes a much more
reasonable hypothesis, namely that there are asymptotically increasingly many
errors in those positions. It requires extra work to enumerate the points in each
ball, but the extra work is only about the square root of the improvement in suc-
cess probability. The cost ratio is exponential when all parameters are optimized
properly; see Section 7.

Collision decoding also has a secondary disadvantage compared to ball-collision
decoding: its inner loop is slower, since computing A1x0 for a new x0 is consid-
erably more expensive than adding x1 for a new x1. The cost ratio here is only
polynomial, and is not relevant to the exponents (see Section 7), but is accounted
for in the bit-operation count (see Section 5). This disadvantage of collision de-
coding is also visible in the number of memory accesses to A1 (see Section 6);
however, standard practice in the literature on this topic is to count the number
of bit operations involved in arithmetic and to ignore the cost of memory access.

Additional credits. The simplest form of information-set decoding, introduced
by Prange in [47], did not allow errors in the information set. For asymptotic
analyses see [41], [1], and [2].

The idea of allowing errors was published by Lee and Brickell in [38], by
Leon in [39], and by Krouk in [37], but without Stern’s collision idea; in the
terminology of ball-collision decoding, with p2 = 0, q1 = q2 = 0, and �2 = 0.
For each pattern of p1 errors in k columns, Lee and Brickell checked the weight
of the remaining n − k columns; Leon and Krouk required �1 columns to have
weight 0, and usually checked only those columns. For asymptotic analyses see
[37], [23], and [24].

Overbeck and Sendrier [44] give a visual comparison of the algorithms by
comparing to which interval they restrict how many errors. Figure 4.1 extends
their picture to include ball-collision decoding. It shows that the new algorithm
allows errors in an interval that had to be error-free in Leon’s and Stern’s
algorithms.

The idea of allowing errors everywhere can be extracted, with considerable
effort, from the description of supercode decoding in [5]. After a detailed anal-
ysis we have concluded that the algorithm in [5] is much slower than collision
decoding. The same algorithm is claimed in [5] to have smaller exponents than
collision decoding (with astonishing gaps, often 15% or more), but this claim is
based on a chain of exponentially large inaccuracies in the algorithm analysis

750 D.J. Bernstein, T. Lange, and C. Peters

Plain information-set decoding
0 w

Lee-Brickell
p w − p

k � n− k − �Leon
p 0 w − p

Stern
p p 0 w − 2p

Ball-collision decoding (new)
p p q q w − 2p− 2q

Fig. 4.1. Error positions hypothesized by various decoding algorithms

in [5]. The starting point of the chain is [5, “Corollary 12”], which claims size(
k
e1

)(
y
e2

)
/2by for lists that actually have size

(
k
e1

)(
y
e2

)b
/2by.

The idea of allowing errors everywhere can also be found in the much more
recent paper [28], along with a polynomial-factor “birthday” speedup obtained
by dropping Stern’s left-right separation. The algorithm analysis by Finiasz and
Sendrier in [28] concludes that the overall “gain compared with Stern’s algo-
rithm” is a constant times “ 4

√
πp/2”, which is bounded by a polynomial in n.

Our own assessment is that if parameters had been chosen more carefully then
the algorithm of [28] would have led to an exponential improvement over col-
lision decoding, contrary to the conclusions in [28]. This algorithm would still
have retained the secondary disadvantage described above, and therefore would
not have been competitive with ball-collision decoding.

A more detailed analysis of the “birthday” speedup in collision decoding ap-
peared in [45] along with an optimized generalization to Fq. These modifications
can be adapted to ball-collision decoding but would complicate the algorithm
statement and analysis without changing the exponent of binary decoding; we
have skipped these modifications for simplicity.

One way to speed up Gaussian elimination is to change only one information-
set element in each iteration. This idea was introduced by Omura, according to
[22, Section 3.2.4]. It was applied to increasingly optimized forms of information-
set decoding by van Tilburg in [51] and [52], by Chabanne and Courteau in
[19], by Chabaud in [20], by Canteaut and Chabanne in [16], by Canteaut and
Chabaud in [17], and by Canteaut and Sendrier in [18]. In [8] we improved the
balance between Gaussian-elimination cost and error-searching cost by changing
c information-set elements in each iteration for an optimized value of c. The
ideas of reusing sums and aborting weight calculations also appeared in [8], in
the context of an improved collision-decoding algorithm.

Smaller Decoding Exponents: Ball-Collision Decoding 751

5 Complexity Analysis

This section analyzes the complexity of ball-collision decoding. In particular,
this section analyzes the success probability of each iteration and the number of
bit operations needed for each iteration.

Success probability. Assume that e is a uniform random vector of weight w.
One iteration of ball-collision decoding finds e exactly if it has the right weight
distribution, namely weight p1 in the first k1 positions specified by the informa-
tion set, weight p2 in the remaining k2 positions specified by the information set,
weight q1 on the first �1 positions outside the information set, and weight q2 on
the next �2 positions outside the information set.

The probability that e has this weight distribution is, by a simple counting
argument, exactly

b(p1, p2, q1, q2, �1, �2) =
(

n

w

)−1(
n− k − �1 − �2

w − p1 − p2 − q1 − q2

)(
k1

p1

)(
k2

p2

)(
�1

q1

)(
�2

q2

)
.

The expected number of iterations of the outer loop is, for almost all H , very
close to the reciprocal of the success probability of a single iteration. We explicitly
disregard, without further comment, the extremely unusual codes for which the
average number of iterations is significantly different from the reciprocal of the
success probability of a single iteration. For further discussion of this issue and
how unusual it is see, e.g., [24] and [10].

Gaussian elimination. There are many ways to speed up Gaussian elimination,
as discussed in Section 4; implementors are encouraged to use those optimiza-
tions. However, in this paper we will be satisfied with a quite naive form of
Gaussian elimination, taking (1/2)(n− k)2(n + k) bit operations; our interest is
in large input sizes, and elimination takes negligible time for those sizes.

Building the set S. The total cost of computing A1x0 for all x0 of Hamming
weight p1, using intermediate sums as explained in Section 3, is

(�1 + �2)
((

k1

2

)
+

(
k1

3

)
+ · · ·

(
k1

p1

))
.

Using L(k, p) =
∑p

i=1

(
k
i

)
as a shorthand, the costs can be written as (�1 +

�2) (L(k1, p1)− k1). The �1+�2 factor is the number of bit operations to compute
A1x0 from A1x

′
0 where x0 extends x′

0 by a single bit.
Then for each x0 all

(
�1
q1

)
possible words x1 in F�1

2 of weight q1 are added to
A1x0, producing A1x0 + x1. For x1, as for x0, we loop over the possible sets
of indices, and reuse sums obtained from subsets. This slightly increases the
number of sums up to L(�1, q1), but decreases the cost of each sum down to a
single bit operation, computing A1x0 + x1 from A1x0 + x′

1. Overall this step
takes min{1, q1}

(
k1
p1

)
L(�1, q1) bit operations; note that for q1 = 0 the cost of this

step is indeed 0.
Each choice of (x0, x1) adds one element to S. Hence, the number of elements

in S equals exactly the number of choices for x0 and x1, i.e. #S =
(
k1
p1

)(
�1
q1

)
.

752 D.J. Bernstein, T. Lange, and C. Peters

Building the set T . The set T is built similarly to the set S. The only difference
is that the expression A1y0 + y1 + s1 involves adding s1 and thus the single
columns (corresponding to weight-1 words y0) already cost (�1 + �2)

(
k2
1

)
bit

operations. In total this step takes (�1 + �2)L(k2, p2) + min{1, q2}
(
k2
p2

)
L(�2, q2).

The set T contains exactly #T =
(
k2
p2

)(
�2
q2

)
elements.

Checking collisions. The last step does one check for every (x0, x1, y0, y1)
satisfying the equation A1x0 + x1 = A1y0 + y1 + s1. There are

(
k1
p1

)(
k2
p2

)(
�1
q1

)(
�2
q2

)
choices of (x0, x1, y0, y1).

If the vectors v appearing in S and T were uniformly distributed among the
2�1+�2 possible values then on average #S ·#T · 2−�1−�2 checks would be done.
The expected number of checks is extremely close to this for almost all H ; as
above we disregard the extremely unusual codes with different behavior.

Each check consists of computing wt(A2(x0 + y0)+ s2) and testing whether it
equals w− p1 − p2 − q1 − q2. When using the early-abort weight calculation, on
average only 2(w − p1 − p2 − q1 − q2 + 1) bits of the result are computed before
the weight is found too high. Each bit of the result costs p1 + p2 bit operations
because x0 + y0 has weight p1 + p2.

Cost of one iteration. To summarize, the total cost per iteration of the inner
loop with parameters p1, p2, q1, q2, �1, �2 amounts to

c(p1, p2, q1, q2, �1, �2)

=
1
2
(n− k)2(n + k) + (�1 + �2)

(
L(k1, p1) + L(k2, p2)− k1

)
+ min{1, q1}

(
k1

p1

)
L(�1, q1) + min{1, q2}

(
k2

p2

)
L(�2, q2)

+ 2(w − p1 − p2 − q1 − q2 + 1)(p1 + p2)
(

k1

p1

)(
k2

p2

)(
�1

q1

)(
�2

q2

)
2−�1−�2 .

6 Concrete Parameter Examples

This section considers concrete examples in order to show the speedup gained by
ball-collision decoding in comparison to collision decoding. The first parameters
were previously proposed to achieve 256-bit security against current attacks. We
designed the second parameters according to similar rules to achieve a 1000-bit
security level against current attacks. We do not mean to suggest that 1000-bit
security is of any real-world relevance; we consider it to illustrate the asymptotic
superiority of ball-collision decoding.

Finiasz and Sendrier in [28] presented “lower bounds on the effective work
factor of existing real algorithms, but also on the future improvements that
could be implemented”; and said that beating these bounds would require the
introduction of “new techniques, never applied to code-based cryptosystems”.
For each set of parameters we evaluate the Finiasz–Sendrier lower bound and
the costs of three algorithms:

Smaller Decoding Exponents: Ball-Collision Decoding 753

(1) collision decoding (q1 = q2 = 0),
(2) collision decoding using the birthday trick from [28] as analyzed in [45], and
(3) ball-collision decoding.

Ball-collision decoding beats the Finiasz–Sendrier lower bound in both of these
examples. The main reason for this is that ball-collision decoding dodges the
secondary disadvantage described in Section 4; the lower bound assumes that
each new vector requires �1 + �2 bit operations to update A1x0, but in ball-
collision decoding each new vector requires just 1 bit operation to update x1.

We emphasize that all of these costs and bounds use the same model of com-
putation, counting the number of bit operations for arithmetic and disregarding
costs of memory access, copies, etc. A table-indexing join operation can easily
be carried out for free in this model. We would prefer a more carefully defined
model of computation that includes realistic memory-access costs, such as the
Brent–Kung circuit model [13], but the bit-operation model is simpler and is
standard in papers on this topic.

256-security revisited. According to [8, Section 7] a binary code with length
n = 6624, k = 5129, w = 117 achieves 256-bit security. The best collision-
decoding parameters are actually slightly below 2256 bit operations: they use
2181.4928 iterations (on average), each taking 274.3741 bit operations, for a total
of 2255.8669 bit operations.

Collision decoding with the birthday trick takes, with optimal parameters,
2255.54880 bit operations. The birthday trick increases the cost per iteration by a
factor of 2.2420 compared to the classical collision-decoding algorithm, to 275.5390

bit operations. However, the trick increases the chances of finding the desired
error vector noticeably, reducing the number of iterations by a factor of 2.7951,
to 2180.0099. Thus the birthday trick yields an overall 1.2467× speedup.

The Finiasz–Sendrier lower bound is 2255.1787 bit operations, 1.6112× smaller
than the cost of collision decoding.

Ball-collision decoding with parameters k1 = 2565, k2 = 2564, �1 = �2 = 47,
p1 = p2 = 8, and q1 = q2 = 1 needs only 2254.1519 bit operations to attack the
same system. On average the algorithm needs 2170.6473 iterations each taking
283.5046 bit operations.

Ball-collision decoding thus costs 3.2830× less than collision decoding, 2.6334×
less than collision decoding with the birthday trick, and 2.0375× less than the
Finiasz–Sendrier lower bound.

1000-bit security. Attacking a system based on a code of length n = 30332,
k = 22968, w = 494 requires 21000.9577 bit operations using collision decoding
with the optimal parameters k1 = k2 = 11484, �1 = �2 = 140, p1 = p2 = 27 and
q1 = q2 = 0.

The birthday trick reduces the cost by a factor of 1.7243, to 21000.1717 bit oper-
ations. This means that this system offers 1000-bit security against all previously
known attacks.

The Finiasz–Sendrier lower bound is 2999.45027 bit operations, 2.8430× smaller
than the cost of collision decoding and 1.6488× smaller than the cost of collision
decoding with the birthday trick.

754 D.J. Bernstein, T. Lange, and C. Peters

Ball-collision decoding with parameters k1 = k2 = 11484, �1 = �2 = 156,
p1 = p2 = 29, and q1 = q2 = 1 needs only 2996.21534 bit operations. This is
26.767× smaller than the cost of collision decoding, 15.523× smaller than the
cost of collision decoding with the birthday trick, and 9.415× smaller than the
Finiasz–Sendrier lower bound.

7 Asymptotic Complexity of Ball-Collision Decoding

This section analyzes the asymptotic behavior of the cost of ball-collision decod-
ing, and shows that it always has a smaller asymptotic exponent than the cost
of collision decoding.

Input sizes. Fix a real number W with 0 < W < 1/2, and fix a real number R
with −W log2 W − (1−W) log2(1−W) ≤ 1−R < 1.

Consider codes and error vectors of very large length n, where the codes have
dimension k ≈ Rn, and the error vectors have weight w ≈ Wn. More precisely,
fix functions k, w : {1, 2, . . .} → {1, 2, . . .} that satisfy limn→∞ k(n)/n = R and
limn→∞ w(n)/n = W ; more concisely, k/n→ R and w/n→W .

Attack parameters. Fix real numbers P, Q, L with 0 ≤ P ≤ R/2, 0 ≤
Q ≤ L, and 0 ≤ W − 2P − 2Q ≤ 1 − R − 2L. Fix ball-collision parameters
p1, p2, q1, q2, k1, k2, �1, �2 with pi/n→ P , qi/n→ Q, ki/n→ R/2, and �i/n→ L.

We have also analyzed more general asymptotic parameter spaces, for example
splitting P into P1, P2 where pi/n→ Pi. Balanced parameters always turned out
to be asymptotically optimal (as one would expect), so this section focuses on
the parameter space (P, Q, L) stated above. Note that the asymptotic optimality
of P1 = P2 does not imply the concrete optimality of p1 = p2; for example,
(p1, p2) = (2, 1) appears to be optimal for some small input sizes.

In the formulas below, expressions of the form x log2 x are extended (continu-
ously but not differentiably) to 0 at x = 0. For example, the expression P log2 P
means 0 if P = 0.

Success probability. We repeatedly invoke the standard asymptotic formula
for binomial coefficients, namely

1
n

log2

(
(α + o(1))n
(β + o(1))n

)
→ α log2 α− β log2 β − (α− β) log2(α− β),

to compute the asymptotic exponent of the success probability of a single itera-
tion of ball-collision decoding:

B(P, Q, L) = lim
n→∞

1
n

log2

((
n

w

)−1(
n−k−�1−�2

w−p1−p2−q1−q2

)(
k1

p1

)(
k2

p2

)(
�1

q1

)(
�2

q2

))
= W log2 W+(1−W) log2(1−W)

+(1−R−2L) log2(1−R−2L)−(W−2P−2Q) log2(W−2P−2Q)
−(1−R−2L−(W−2P−2Q)) log2(1−R−2L−(W−2P−2Q))
+R log2(R/2)−2P log2 P−(R−2P) log2(R/2−P)
+2L log2 L−2Q log2 Q−2(L−Q) log2(L−Q).

Smaller Decoding Exponents: Ball-Collision Decoding 755

The success probability of a single iteration is asymptotically 2n(B(P,Q,L)+o(1)).

Iteration cost. We similarly compute the asymptotic exponent of the cost of
an iteration:

C(P, Q, L)

= lim
n→∞

1
n

log2

((
k1

p1

)(
�1

q1

)
+

(
k2

p2

)(
�2

q2

)
+

(
k1

p1

)(
�1

q1

)(
k2

p2

)(
�2

q2

)
2−�1−�2

)
= max{(R/2) log2(R/2)− P log2 P − (R/2− P) log2(R/2− P)

+ L log2 L−Q log2 Q− (L −Q) log2(L−Q),
R log2(R/2)− 2P log2 P − (R− 2P) log2(R/2− P)
+ 2L log2 L− 2Q log2 Q− 2(L−Q) log2(L −Q)− 2L}.

The cost of a single iteration is asymptotically 2n(C(P,Q,L)+o(1)). Note that we
have simplified the iteration cost to

(
k1
p1

)(
�1
q1

)
+

(
k2
p2

)(
�2
q2

)
+

(
k1
p1

)(
�1
q1

)(
k2
p2

)(
�2
q2

)
2−�1−�2 .

The cost is actually larger than this, but only by a factor ≤ poly(n), which we
are free to disregard since 1

n log2 poly(n)→ 0. We also comment that the bounds
are valid whether or not qi = 0.

Overall attack cost. The overall asymptotic ball-collision-decoding-cost expo-
nent is the difference D(P, Q, L) of the iteration-cost exponent C(P, Q, L) and
the success-probability exponent B(P, Q, L), thus

D(P, Q, L) = max{−(R/2) log2(R/2)+P log2 P+(R/2−P) log2(R/2−P)
−L log2 L+Q log2 Q+(L−Q) log2(L−Q),−2L}

−W log2 W−(1−W) log2(1−W)
−(1−R−2L) log2(1−R−2L)+(W−2P−2Q) log2(W−2P−2Q)
+(1−R−2L−(W−2P−2Q)) log2(1−R−2L−(W−2P−2Q)).

Example: Take W = 0.04 and R = 1 + W log2 W + (1 −W) log2(1 −W) =
0.7577078109 Choose P = 0.004203556640625, Q = 0.000192998046875, and
L = 0.017429431640625; we use very high precision here to simplify verification.
The success-probability exponent is −0.0458435310 . . ., and the iteration-cost
exponent is 0.0348588632 . . ., so the overall cost exponent is 0.0807023942
Ball-collision decoding with these parameters thus costs 2(0.0807023942...+o(1))n to
correct (0.04 + o(1))n errors in a code of rate 0.7577078109 . . .+ o(1).

Collision-decoding cost and the lower bound. Traditional collision decod-
ing is the special case p1 = p2, k1 = k2, �1 = �2, q1 = q2 = 0 of ball-collision
decoding. Its asymptotic cost exponent is the case Q = 0 of the ball-collision
decoding exponent stated above.

Consider again W = 0.04 and R = 1 + W log2 W + (1 −W) log2(1 −W).
Choosing P = 0.00415087890625, Q = 0, and L = 0.0164931640625 achieves
decoding exponent 0.0809085120 We partitioned the (P, L) space into small
intervals and performed interval-arithmetic calculations to show that Q = 0

756 D.J. Bernstein, T. Lange, and C. Peters

cannot do better than 0.0809; ball-collision decoding therefore has a slightly
smaller exponent than collision decoding in this case.

We performed similar calculations for other pairs (W, R) and in each case
found that the infimum of all collision-decoding-cost exponents was beaten by
a ball-collision-decoding-cost exponent. Ball-collision decoding therefore has a
smaller exponent than collision decoding, as stated in the introduction of this
paper.

The case Q = 0 is always suboptimal. The interval-arithmetic calculations
described above are proofs of the suboptimality of Q = 0 for some specific pairs
(W, R). These proofs have the advantage of computing explicit bounds on the
collision-decoding-cost exponents for those pairs (W, R), but the proofs have two
obvious disadvantages.

The first disadvantage is that these proofs do not cover all pairs (W, R); they
leave open the possibility that ball-collision decoding has the same exponent
as collision decoding for other pairs (W, R). The second disadvantage is that
the proofs are much too long to verify by hand. The first disadvantage could
perhaps be addressed by much more extensive interval-arithmetic calculations,
partitioning the space of pairs (W, R) into boxes so small that, within each
box, the ball-collision-decoding exponent is uniformly better than the minimum
collision-decoding exponent; but this would exacerbate the second disadvantage.

To address both of these disadvantages we give, in the full version of this
paper [9], a hand-verifiable proof that Q = 0 is always suboptimal: for every
(W, R), ball-collision decoding has a smaller asymptotic cost exponent than col-
lision decoding. Specifically, we prove the following theorem about the overall
asymptotic cost exponent:

Theorem 7.1. For each R, W it holds that

min{D(P, 0, L) : 0 ≤ P ≤ R/2, 0 ≤W−2P ≤ 1−R−2L}
> min{D(P, Q, L) : 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, 0 ≤W−2P−2Q ≤ 1−R−2L}.

Note that {(P, 0, L)} and {(P, Q, L)} are compact sets, and D is continuous,
so we are justified in writing “min” rather than “inf”. The proof strategy ana-
lyzes generic perturbations of D and combines all necessary calculations into a
small number of elementary inequalities in the proofs in the full version of this
paper [9].

8 Choosing McEliece Parameters

The traditional approach to selecting cryptosystem parameters is as follows:

– Consider the fastest known attacks against the system. For example, in the
case of RSA, consider the latest refinements [35] of the number-field sieve.

– Restrict attention to parameters for which these attacks take time at least
2b+δ. Here b is the desired security level, and δ is a “security margin” meant
to protect against the possibility of further improvements in the attacks.

Smaller Decoding Exponents: Ball-Collision Decoding 757

– Within the remaining parameter space, choose the most efficient parameters.
The definition of efficiency depends on the target application: it could mean
minimal key size, for example, or minimum decryption time.

This approach does not make clear how to choose the security margin δ. Some
applications have ample time and space for cryptography, and can simply in-
crease δ to the maximum value for which the costs of cryptography are still
insignificant; but in some applications cryptography is an important bottleneck,
and users insist on minimizing δ for the sake of performance.

Finiasz and Sendrier in [28] identified a bound on “future improvements” in
attacks against the McEliece cryptosystem, and suggested that designers use
this bound to “choose durable parameters”. The general idea of identifying bot-
tlenecks in any possible attack, and of using those bottlenecks to systematically
choose δ, is quite natural and attractive, and has been used successfully in many
contexts. However, as discussed in Section 6, ball-collision decoding disproves
the specific bound in [28], violating one of the assumptions in [28] and raising
the question of how many more assumptions can be violated.

We propose replacing the bound in [28] with the simpler bound

min

{
1
2

(
n

w

)(
n− k

w − p

)−1(
k

p

)−1/2

: p ≥ 0

}
;

i.e., choosing the code length n, code rate k/n, and error fraction w/n so that this
bound is at least 2b. As usual, implementors can exploit the remaining flexibility
in parameters to optimize decryption time, compressed key size k(n − k), or
efficiency in any other metric of interest.

This bound has several attractive features. It is easy to estimate via standard
binomial-coefficient approximations. It is easy to compute exactly. It covers a
very wide class of attacks, as explained in the full version [9] of this paper. It
is nevertheless in the same ballpark as the cost of known attacks: for example,
it is 249.69 for the original parameters (n, k, w) = (1024, 524, 50), and 2236.49 for
(n, k, w) = (6624, 5129, 117). Note that these numbers give lower bounds on the
cost of the attack. Parameters protecting against this bound pay only about a
20% performance penalty at high security levels, compared to parameters that
merely protect against known attacks.

The reader can easily verify that parameters (n, k, w) = (3178, 2384, 68)
achieve 128-bit security against this bound. For 256-bit security (n, k, w) =
(6944, 5208, 136) are recommended.

References

[1] Adams, C.M., Meijer, H.: Security-related comments regarding McEliece’s
public-key cryptosystem. In: Crypto’87 [46], pp. 224–228 (1987); See also newer
version [2]; Citations in this document: §4

[2] Adams, C.M., Meijer, H.: Security-related comments regarding McEliece’s
public-key cryptosystem. IEEE Transactions on Information Theory 35, 454–455
(1988); See also older version [1]; Citations in this document: §1, §4

758 D.J. Bernstein, T. Lange, and C. Peters

[3] Al Jabri, A.: A statistical decoding algorithm for general linear block codes.
In: IMA 2001 [31], pp. 1–8 (2001); Citations in this document: §4

[4] Ashikhmin, A.E., Barg, A.: Minimal vectors in linear codes. IEEE Transactions
on Information Theory 44, 2010–2017 (1998); Citations in this document: §4

[5] Barg, A., Krouk, E.A., van Tilborg, H.C.A.: On the complexity of minimum dis-
tance decoding of long linear codes. IEEE Transactions on Information Theory 45,
1392–1405 (1999); Citations in this document: §4, §4, §4, §4, §4, §4

[6] Batten, L., Safavi-Naini, R. (eds.): Information security and privacy: 11th
Australasian conference, ACISP 2006, Melbourne, Australia, July 3–5, 2006,
proceedings. LNCS, vol. 4058. Springer, Heidelberg (2006); See [43]

[7] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-quantum cryptography.
Springer, Heidelberg (2009); See [44]

[8] Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: PQCrypto 2008 [14], pp. 31–46 (2008),
http://eprint.iacr.org/2008/318;
Citations in this document: §1, §1, §3, §3, §4, §4, §6

[9] Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding (full version) (2010), http://eprint.iacr.org/2010/585;
Citations in this document: §7, §7, §8

[10] Bernstein, D.J., Lange, T., Peters, C., van Tilborg, H.C.A.: Explicit bounds for
generic decoding algorithms for code-based cryptography. In: WCC 2009 (2009);
Citations in this document: §5

[11] Berson, T.A.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In: Crypto ’97 [33], pp. 213–220 (1997);
Citations in this document: §1

[12] Blaum, M., Farrell, P.G., van Tilborg, H.C.A. (eds.): Information, coding and
mathematics. Kluwer International Series in Engineering and Computer Science,
vol. 687. Kluwer, Dordrecht (2002); See [53]

[13] Brent, R.P., Kung, H.T.: The area-time complexity of binary multiplication.
Journal of the ACM 28, 521–534 (1981),
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html;
Citations in this document: §6

[14] Buchmann, J., Ding, J. (eds.): Post-quantum cryptography, second international
workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17–19, 2008, proceed-
ings. LNCS, vol. 5299. Springer, Heidelberg (2008); See [8]

[15] Camion, P., Charpin, P., Harari, S. (eds.): Eurocode ’92: proceedings of the
international symposium on coding theory and applications held in Udine,
October 23–30, 1992. Springer, Heidelberg (1993); See [20]

[16] Canteaut, A., Chabanne, H.: A further improvement of the work factor in an
attempt at breaking McEliece’s cryptosystem. In: EUROCODE ’94 [21] (1994),
http://www.inria.fr/rrrt/rr-2227.html; Citations in this document: §4

[17] Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44, 367–378 (1998),
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz; Citations in this
document: §3, §4

[18] Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem.
In: Asiacrypt ’98 [42], pp. 187–199 (1998); Citations in this document: §3, §4

[19] Chabanne, H., Courteau, B.: Application de la méthode de décodage itérative
d’Omura à la cryptanalyse du système de McEliece. Université de Sherbrooke,
Rapport de Recherche, number 122 (1993); Citations in this document: §4

http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2010/585
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://www.inria.fr/rrrt/rr-2227.html
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz

Smaller Decoding Exponents: Ball-Collision Decoding 759

[20] Chabaud, F.: Asymptotic analysis of probabilistic algorithms for finding short
codewords. In: [15], pp. 175–183 (1993); Citations in this document: §4

[21] Charpin, P.(ed.): Livre des résumé — EUROCODE ’94. Abbaye de la Bussière
sur Ouche, France, October 1994 (1994); See [16]

[22] Clark Jr., G.C., Bibb Cain, J.: Error-correcting coding for digital communication.
Plenum, New York (1981); Citations in this document: §4

[23] Coffey, J.T., Goodman, R.M.: The complexity of information set decoding. IEEE
Transactions on Information Theory 35, 1031–1037 (1990); Citations in this
document: §4

[24] Coffey, J.T., Goodman, R.M., Farrell, P.: New approaches to reduced complexity
decoding. Discrete and Applied Mathematics 33, 43–60 (1991); Citations in this
document: §4, §5

[25] Cohen, G.D., Wolfmann, J. (eds.): Coding theory and applications. LNCS,
vol. 388. Springer, Heidelberg (1989); See [50]

[26] Dumer, I.I.: Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii 25, 24–32 (1989); Citations in this document: §4

[27] Dumer, I.I.: On minimum distance decoding of linear codes. In: [32], pp. 50–52
(1991); Citations in this document: §4

[28] Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosys-
tems. In: Asiacrypt 2009 [40] (2009), http://eprint.iacr.org/2009/414;
Citations in this document: §1, §4, §4, §4, §4, §6, §2, §8, §8, §8, §8

[29] Goldwasser, S. (ed.): Advances in cryptology — CRYPTO ’88, proceedings of the
conference on the theory and application of cryptography held at the University
of California, Santa Barbara, California, August 21–25, 1988. LNCS, vol. 403.
Springer, Heidelberg (1990); See [51]

[30] Günther, C.G. (ed.): Advances in cryptology — EUROCRYPT ’88, proceedings
of the workshop on the theory and application of cryptographic techniques held in
Davos, May 25–27, 1988. LNCS, vol. 330. Springer, Heidelberg (1988); See [38]

[31] Honary, B. (ed.): Cryptography and coding: proceedings of the 8th IMA interna-
tional conference held in Cirencester, December 17–19. LNCS, vol. 2260. Springer,
Heidelberg (2001); See [3]

[32] Kabatianskii, G.A. (ed.): Fifth joint Soviet-Swedish international workshop on
information theory, Moscow, 1991 (1991); See [27]

[33] Kaliski Jr., B.S. (ed.): Advances in cryptology — CRYPTO ’97: 17th annual
international cryptology conference, Santa Barbara, California, USA, August
17–21, 1997, proceedings. LNCS, vol. 1294. Springer, Heidelberg (1997); See[11]

[34] Kim, K. (ed.): Public key cryptography: proceedings of the 4th international work-
shop on practice and theory in public key cryptosystems (PKC 2001) held on
Cheju Island, February 13–15, 2001. LNCS, vol. 1992. Springer, Heidelberg (2001);
See [36]

[35] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zim-
mermann, P.: Factorization of a 768-bit RSA modulus. In: Crypto 2010 [48], pp.
333–350 (2010), http://eprint.iacr.org/2010/006 ;
Citations in this document: §8

[36] Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems —
conversions for McEliece PKC. In: PKC 2001 [34], pp. 19–35 (2001); Citations in
this document: §1

[37] Krouk, E.A.: Decoding complexity bound for linear block codes. Problemy
Peredachi Informatsii 25, 103–107 (1989); Citations in this document: §4, §4

http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2010/006

760 D.J. Bernstein, T. Lange, and C. Peters

[38] Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Eurocrypt ’88 [30], pp. 275–280 (1988),
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF ;
Citations in this document: §4

[39] Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34, 1354–1359
(1988); Citations in this document: §4

[40] Matsui, M. (ed.): Advances in cryptology — ASIACRYPT 2009, 15th international
conference on the theory and application of cryptology and information secu-
rity, Tokyo, Japan, December 6–10, 2009, proceedings. LNCS, vol. 5912. Springer,
Heidelberg (2009); See [28]

[41] McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report 114–116 (1978),
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF ;
Citations in this document: §1, §4

[42] Ohta, K., Pei, D. (eds.): Advances in cryptology — ASIACRYPT’98: proceedings
of the international conference on the theory and application of cryptology and
information security held in Beijing. LNCS, vol. 1514. Springer, Heidelberg (1998);
See [18]

[43] Overbeck, R.: Statistical decoding revisited. In: ACISP 2006 [6], pp. 283–294
(2006); Citations in this document: §4

[44] Overbeck, R., Sendrier, N.: Code-based cryptography. In: [7], pp. 95–145 (2009);
Citations in this document: §2, §4

[45] Peters, C.: Information-set decoding for linear codes over Fq. In: Post-Quantum
Cryptography [49], pp. 81–94 (2010); Citations in this document: §1, §4, §2

[46] Pomerance, C. (ed.): Advances in cryptology — CRYPTO ’87, proceedings of
the conference on the theory and applications of cryptographic techniques held
at the University of California, Santa Barbara, California, August 16–20, 1987.
LNCS, vol. 293. Springer, Heidelberg (1987),
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF ;
See [1]

[47] Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory IT-8, S5–S9 (1962); Citations in this document: §4

[48] Rabin, T. (ed.): Advances in cryptology — CRYPTO 2010, 30th annual cryptology
conference, Santa Barbara, CA, USA, August 15–19, 2010, proceedings. LNCS,
vol. 6223. Springer, Heidelberg (2010); See [35]

[49] Sendrier, N. (ed.): Post-quantum cryptography, third international workshop,
PQCrypto, Darmstadt, Germany, May 25–28, 2010, proceedings. LNCS, vol. 6061.
Springer, Heidelberg (2010); See [45]

[50] Stern, J.: A method for finding codewords of small weight. In: [25], pp. 106–113
(1989); Citations in this document: §1, §3, §3, §4, §4

[51] van Tilburg, J.: On the McEliece public-key cryptosystem. In: Crypto ’88 [29],
pp. 119–131 (1990); Citations in this document: §4

[52] van Tilburg, J.: Security-analysis of a class of cryptosystems based on linear
error-correcting codes. Ph.D. thesis, Technische Universiteit Eindhoven (1994);
Citations in this document: §4

[53] Verheul, E.R., Doumen, J.M., van Tilborg, H.C.A.: Sloppy Alice attacks! Adap-
tive chosen ciphertext attacks on the McEliece public-key cryptosystem. In: [12],
pp. 99–119 (2002); Citations in this document: §1

 http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF

McEliece and Niederreiter Cryptosystems That Resist
Quantum Fourier Sampling Attacks

Hang Dinh1, Cristopher Moore2,�, and Alexander Russell3,��

1 Indiana University South Bend
hdinh@cs.iusb.edu

2 University of New Mexico, and Santa Fe Institute
moore@cs.unm.edu

3 University of Connecticut
acr@cse.uconn.edu

Abstract. Quantum computers can break the RSA, El Gamal, and elliptic curve
public-key cryptosystems, as they can efficiently factor integers and extract dis-
crete logarithms. This motivates the development of post-quantum cryptosystems:
classical cryptosystems that can be implemented with today’s computers, that will
remain secure even in the presence of quantum attacks.

In this article we show that the McEliece cryptosystem over rational Goppa
codes and the Niederreiter cryptosystem over classical Goppa codes resist pre-
cisely the attacks to which the RSA and El Gamal cryptosystems are vulnerable—
namely, those based on generating and measuring coset states. This eliminates
the approach of strong Fourier sampling on which almost all known exponential
speedups by quantum algorithms are based. Specifically, we show that the natu-
ral case of the Hidden Subgroup Problem to which McEliece-type cryptosystems
reduce cannot be solved by strong Fourier sampling, or by any measurement of a
coset state. To do this, we extend recent negative results on quantum algorithms
for Graph Isomorphism to subgroups of the automorphism groups of linear codes.

This gives the first rigorous results on the security of the McEliece-type cryp-
tosystems in the face of quantum adversaries, strengthening their candidacy for
post-quantum cryptography. We also strengthen some results of Kempe, Pyber,
and Shalev on the Hidden Subgroup Problem in Sn.

1 Introduction

If and when quantum computers are built, common public-key cryptosystems such as
RSA, El Gamal, and elliptic curve cryptography will no longer be secure. Given that
fact, the susceptibility or resistance of other well-studied public-key cryptosystems to
quantum attacks is of fundamental interest. We present evidence for the strength of
McEliece-type cryptosystems against quantum attacks, demonstrating that the quantum
Fourier sampling attacks that cripple RSA and El Gamal do not apply to the McEliece
or Niederreiter cryptosystems as long as the underlying code satisfies certain algebraic

� This work was supported by the NSF under grants CCF-0829931, 0835735, and 0829917 and
by the DTO under contract W911NF-04-R-0009.

�� This work was supported by the NSF under grants 1117427 and 0835735 and by the DTO
under contract W911NF-04-R-0009.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 761–779, 2011.
© International Association for Cryptologic Research 2011

762 H. Dinh, C. Moore, and A. Russell

properties. While there are known classical attacks on these systems for the case of ratio-
nal Goppa codes, our results also apply to the Niederreiter cryptosystem with classical
Goppa codes, which to our knowledge is still believed to be classically secure. While
our results do not rule out other quantum (or classical) attacks, they do demonstrate se-
curity precisely against the types of quantum algorithms that have proven so powerful
for number-theoretic problems. We also strengthen some results of Kempe et al. [9] on
subgroups of Sn reconstructible by Fourier sampling.

McEliece-type cryptosystems. The McEliece cryptosystem is a public-key cryptosys-
tem proposed by McEliece in 1978 [13], conventionally built over Goppa codes. A dual
variant of the system, proposed by Niederreiter [16], can provide slightly improved
efficiency with equivalent security [10]. This dual system can additionally be used to
construct a digital signature scheme [2], a shortcoming of the original system.

There are two basic types of attacks known against the McEliece-type cryptosys-
tems: decoding attacks, and direct attacks on the private key. The former appears chal-
lenging, considering that the general decoding problem is NP-hard; indeed, historical
confidence in the security of the McEliece system relies on the idea that this hardness
can be retained for scrambled version of specific codes. This same intuition applies
to quantum attacks: NP-hard problems are believed to be intractable, in general, for
quantum computers and no significant quantum algorithmic developments appear to be
directly relevant to these decoding problems. The latter—direct attacks on the key—can
be successful on certain classes of linear codes, and is our focus. In a McEliece-type
cryptosystem, the private key of a user Alice consists of three matrices: a k× n matrix
M over a finite field Fq� , a k×k invertible matrix S over the field Fq, and an n×n permu-
tation matrix P. In the McEliece version, M is a generator matrix of a q-ary [n,k]-linear
code (hence, � = 1), while in Niederreiter’s dual system, M is a parity check matrix of
a q-ary linear code of length n. The matrices S and P are selected randomly. Alice’s
public key consists of the matrix M∗ = SMP. An adversary may attack the private key,
attempting to recover the secret row “scrambler” S and the secret permutation P from
M∗ and M, assuming he already knew M.1 As pointed out in [4], it crucial to keep S and
P secret for the security of the McEliece system.

The security of these McEliece-type systems have received considerable attention
in the literature, often focusing on particular choices for the underlying codes. Various
classes of Goppa codes have received the greatest attention: along these lines, Sidel-
nokov and Shestakov’s attack [23] can efficiently compute the matrices S and MP from
the public matrix M∗ = SMP if the underlying code is a generalized Reed-Solomon
code.2 While this attack can reveal the structure of an alternative code, it does not re-
veal the secret permutation. An attack in which the secret permutation is revealed was
proposed by Loidreau and Sendrier [11], using the Support Splitting Algorithm [21].
However, this attack only works with a very limited subclass of classical binary Goppa
codes, namely those with a binary Goppa polynomial.

1 Recovering the secret scrambler and the secret permutation is different from the Code Equiv-
alence problem. The former finds a transformation between two equivalent codes, while the
latter decides whether two linear codes are equivalent.

2 We remark that the class of generalized Reed-Solomon codes is essentially equal to the class
of rational Goppa codes.

McEliece and Niederreiter Cryptosystems 763

Although the McEliece-type cryptosystems are efficient and still considered classi-
cally secure, at least with classical binary Goppa codes [4], they are rarely used in
practice because of their comparatively large public key (see remark 8.33 in [14]). The
discovery of successful quantum attacks on RSA and El Gamal, however, has changed
the landscape: as suggested by Ryan [20] and Bernstein et al. [1], if “post-quantum”
security guarantees can be made for the McEliece cryptosystem, this may compensate
for its comparatively expensive computational demands.

Quantum Fourier sampling. Quantum Fourier Sampling (QFS) is the key ingredi-
ent in nearly all known efficient quantum algorithms for algebraic problems, includ-
ing Shor’s algorithms for factorization and discrete logarithm [22] and Simon’s algo-
rithm [24]. Shor’s algorithm relies on quantum Fourier sampling over the cyclic group
ZN , while Simon’s algorithm uses quantum Fourier sampling over Zn

2. In general, these
algorithms solve instances of the Hidden Subgroup Problem (HSP) over a finite group
G. Given a function f on G whose level sets are left cosets of some unknown subgroup
H < G, i.e., such that f is constant on each left coset of H and distinct on different left
cosets, they find a set of generators for the subgroup H.

The standard approach to this problem treats f as a black box and applies f to a
uniform superposition over G, producing the coset state |cH〉= (1/

√|H |)∑h∈H |ch〉 for a
random c. We then measure |cH〉 in a Fourier basis {|ρ , i, j〉} for the space C[G], where
ρ is an irrep3 of G and i, j are row and column indices of a matrix ρ(g). In the weak form
of Fourier sampling, only the representation name ρ is measured, while in the strong
form, both the representation name and the matrix indices are measured, the latter in a
chosen basis. This produces probability distributions from which classical information
can be extracted to recover the subgroup H. Moreover, since |cH〉 is block-diagonal in
the Fourier basis, the optimal measurement of the coset state can always be described
in terms of strong Fourier sampling.

Understanding the power of Fourier sampling in nonabelian contexts has been an
ongoing project, and a sequence of negative results [6, 15, 7] have suggested that the
approach is inherently limited when the underlying groups are rich enough. In particular,
Moore, Russell, and Schulman [15] showed that over the symmetric group, even the
strong form of Fourier sampling cannot efficiently distinguish the conjugates of most
order-2 subgroups from each other or from the trivial subgroup. That is, for any σ ∈ Sn

with large support, and most π ∈ Sn, if H = {1,π−1σπ} then strong Fourier sampling,
and therefore any measurement we can perform on the coset state, yields a distribution
which is exponentially close to the distribution corresponding to H = {1}. This result
implies that GRAPH ISOMORPHISM cannot be solved by the naive reduction to strong
Fourier sampling. Hallgren et al. [7] strengthened these results, demonstrating that even
entangled measurements on o(logn!) coset states yield essentially no information.

Kempe and Shalev [8] showed that weak Fourier sampling of single coset states in Sn

cannot distinguish the trivial subgroup from larger subgroups H with polynomial size
and non-constant minimal degree.4 They conjectured, conversely, that if a subgroup
H < Sn can be distinguished from the trivial subgroup by weak Fourier sampling, then

3 Throughout the paper, we write “irrep” as short for “irreducible representation.”
4 The minimal degree of a permutation group H is the minimal number of points moved by a

non-identity element of H.

764 H. Dinh, C. Moore, and A. Russell

the minimal degree of H must be constant. Their conjecture was later proved by Kempe,
Pyber, and Shalev [9].

Our contributions. To state our results, we say that a subgroup H < G is indistin-
guishable by strong Fourier sampling if the conjugate subgroups g−1Hg cannot be dis-
tinguished from each other (or from the trivial subgroup) by measuring the coset state
in an arbitrary Fourier basis. A precise definition is presented in Section 3.2. Since the
optimal measurement of a coset state can always be expressed as an instance of strong
Fourier sampling, these results imply that no measurement of a single coset state yields
any useful information about H. Based on the strategy of Moore, Russell, and Schul-
man [15], we first develop a general framework, formalized in Theorem 1, to determine
indistinguishability of a subgroup by strong Fourier sampling. We emphasize that their
results cover the case where the subgroup has order two. Our principal contribution is
to show how to extend their methods to more general subgroups.

We then apply this general framework to a class of semi-direct products (GLk(Fq)×
Sn)
Z2, bounding the distinguishability for the HSP corresponding to the private-key
attack on a McEliece-type cryptosystem, i.e., the problem of determining a secret scram-
bler S and a secret permutation P from M∗ = SMP and M. Our bound, given in Corol-
lary 1 of Theorem 4, depends on the column rank5 of the matrix M as well as the mini-
mal degree and the size of the automorphism group Aut(M), where Aut(M) is defined in
Subsection 4.2 as the set of all permutations P on the columns of M such that M = SMP
for some S ∈ GLk(Fq). In general, our result indicates that McEliece-type cryptosys-
tems resist known attacks based on strong Fourier sampling if M has column rank at
least k−o(

√
n)/�, and the automorphism group Aut(M) has minimal degree Ω(n) and

size eo(n). In particular, generator matrices of rational Goppa codes and canonical par-
ity check matrices of classical Goppa codes have good values for these quantities (see
Lemma 3). The result is most interesting for classical Goppa codes, which are consid-
ered classically secure; the McEliece system over rational Goppa codes is subject to
the Sidelnokov-Shestakov [23] attack.

While our main application is the security of the McEliece cryptosystem, we show
in addition that our general framework is applicable to other classes of groups with
simpler structure, including the symmetric group and the finite general linear group6

GL2(Fq). For the symmetric group, we extend the results of [15] to larger subgroups
of Sn. Specifically, we show that any subgroup H < Sn with minimal degree m ≥
Θ(log |H|) +ω(logn) is indistinguishable by strong Fourier sampling over Sn. This
partially extends the results of Kempe et al. [9], which apply only to weak Fourier sam-
pling.

Remark 1. Our results show that the natural reduction of McEliece to a hidden sub-
group problem yields negligible information about the secret key. Thus they rule out
the direct analogue of the quantum attack that breaks, for example, RSA. Of course, our
results do not rule out other quantum (or classical) attacks. Neither do they establish that
a quantum algorithm for the McEliece cryptosystem would violate a natural hardness

5 The column rank of M is understood to be over the field Fq� . Recall that the entries of the
matrix M are in Fq� .

6 The case of GL2(Fq) is omitted in this version for lack of space.

McEliece and Niederreiter Cryptosystems 765

assumption, as do recent lattice cryptosystem constructions whose hardness is based on
the Learning With Errors problem (e.g. Regev [18]). Nevertheless, they indicate that
any such algorithm would have to involve significant new ideas beyond than those that
have been proposed so far.

Summary of technical ideas. Let G be a finite group. We wish to establish general
criteria for indistinguishability of subgroups H < G by strong Fourier sampling. We
begin with the general strategy, developed in [15], that controls the resulting probability
distributions in terms of the representation-theoretic properties of G. In order to handle
richer subgroups, however, we have to overcome some technical difficulties. Our princi-
pal contribution here is a “decoupling” lemma that allows us to handle the cross terms
arising from pairs of nontrivial group elements.

Roughly, the approach (presented in Section 3.2) identifies two disjoint subsets,
SMALL and LARGE, of irreps of G. The set LARGE consists of all irreps whose dimen-
sions are no smaller than a certain threshold D. While D should be as large as possible,
we also need to choose D small enough so that the set LARGE is large. In contrast, the
representations in SMALL must have small dimension (much smaller than

√
D), and

the set SMALL should be small or contain few irreps that appear in the decomposition
of the tensor product representation ρ ⊗ρ∗ for any ρ ∈ LARGE. In addition, any irrep
ρ outside SMALL must have small normalized character |χρ(h)|/dρ for any nontrivial
element h ∈ H. If two such sets exist, and if |H| is sufficiently small, we establish that
H is indistinguishable by strong Fourier sampling over G.

In the case G = Sn, as in [15] we define SMALL as the set Λc of all Young diagrams
whose top row or left column has length at least (1− c)n, and define LARGE by setting
D = ndn, for appropriate constants 0 < c,d < 1. We show that any irrep outside SMALL

has large dimension and therefore small normalized characters.
For the case G= (GLk(Fq)×Sn)
Z2 corresponding to McEliece-type cryptosystems,

the normalized characters on the hidden subgroup K depend on the minimal degree of
the automorphism group Aut(M) < Sn. If we choose SMALL as the set of all irreps
constructed from tensor product representations τ × λ of GLk(Fq)× Sn with λ ∈ Λc,
then the “small” features of Λc will induce the “small” features of this set SMALL.
Finally, |K| depends on |Aut(M)| and the column rank of M. When M is a generator
matrix of a rational Goppa code or a canonical parity check matrix of a classical Goppa
code, Aut(M) lies inside the automorphism group of a rational Goppa code, which can
be controlled using Stichtenoth’s Theorem [25].

2 Hidden Subgroup Attacks on McEliece-type Cryptosystems

As mentioned in the Introduction, we consider an attack attempting to recover the secret
scrambler S and permutation P from M and M∗. We frame the problem such an attacker
needs to solve as follows:

Definition 1 (Scrambler-Permutation Problem). Given two k×n matrices M and M∗
with entries in a finite field containing Fq such that M∗ = SMP for some S ∈ GLk(Fq)
and some n× n permutation matrix P, find such a pair (S,P).

766 H. Dinh, C. Moore, and A. Russell

In the case where the matrix M is a generator matrix of a linear code over Fq, the deci-
sion version of this problem is known as the CODE EQUIVALENCE problem, which is at
least as hard as GRAPH ISOMORPHISM, although it is unlikely to be NP-complete [17].
This problem can be immediately recast as a Hidden Subgroup Problem (described be-
low). We begin with a presentation of the problem as a Hidden Shift Problem:

Definition 2 (Hidden Shift Problem). Let G be a finite group and Σ be a finite set.
Given two functions f0 : G → Σ and f1 : G → Σ with the promise that there is an
element s ∈ G for which f1(x) = f0(sx) for all x ∈ G, the problem is to determine such
s by making queries to f0 and f1. An element s with this property is called a left shift
from f0 to f1 (or, simply, a shift).

The Scrambler-Permutation Problem can be immediately reduced to the Hidden Shift
Problem over the group G=GLk(Fq)×Sn by defining functions f0 and f1 on GLk(Fq)×
Sn so that for all (S,P) ∈ GLk(Fq)× Sn,

f0(S,P) = S−1MP , f1(S,P) = S−1M∗P . (1)

Here and from now on, we identify each n×n permutation matrix with its corresponding
permutation in Sn. Evidently, SMP = M∗ if and only if (S−1,P) is a shift from f0 to f1.

Next, following the standard approach to developing quantum algorithms for such
problems, we reduce this Hidden Shift Problem on a group G to the Hidden Subgroup
Problem on the wreath product G
Z2 = G2 � Z2. Given two functions f0 and f1 on G,
we define the function f : G
Z2→ Σ ×Σ as follows: for (x,y) ∈ G2 and b ∈ Z2,

f ((x,y),b)
def
=

{
(f0(x), f1(y)) if b = 0

(f1(y), f0(x)) if b = 1
(2)

Now we would like to see that the Hidden Shift Problem is equivalent to determining
the subgroup whose cosets are distinguished by f . Recall that a function f on a group G
distinguishes the right cosets of a subgroup H < G if for all x,y ∈G, f (x) = f (y) ⇐⇒
yx−1 ∈ H .

Definition 3. Let f be a function on a group G. We say that f is injective under right
multiplication if for all x,y ∈ G, f (x) = f (y) ⇐⇒ f (yx−1) = f (1) . Define the subset
G| f ⊆ G as the level set containing the identity,

G| f def
= {g ∈ G | f (g) = f (1)} .

Proposition 1. Let f be a function on a group G. If f distinguishes the right cosets of
a subgroup H < G, then f must be injective under right multiplication and G| f = H.
Conversely, if f is injective under right multiplication, then G| f is a subgroup and f
distinguishes the right cosets of the subgroup G| f .

Hence, the function f defined in (2) can distinguish the right cosets of some subgroup
if and only if it is injective under right multiplication.

Lemma 1. The function f defined in (2) is injective under right multiplication if and
only if (1) f0 is injective under right multiplication and (2) f1(x) = f0(sx) for some s.

McEliece and Niederreiter Cryptosystems 767

The proof of this lemma is straightforward, so we omit it here.

Proposition 2. Assume f0 is injective under right multiplication. Let H0 = G| f0 and s
be a shift. Then the function f defined in (2) distinguishes right cosets of the following
subgroup of G
Z2:

G
Z2| f =
(
(H0,s

−1H0s),0
)∪ ((H0s,s−1H0),1

)
,

which has size 2|H0|2. The set of all shifts from f0 to f1 is H0s.

If we can determine the hidden subgroup K = G
Z2| f , we can find a shift by select-
ing an element of the form ((g1,g2),1) from K. Then g1 must belong to H0s, and so is
a shift from f0 to f1.

Application to the Scrambler-Permutation problem. Returning to the Hidden Shift
Problem over G = GLk(Fq)× Sn corresponding to the Scrambler-Permutation problem,
it is clear that the function f0 defined in (1) is injective under right multiplication, and
that

H0 = GLk(Fq)× Sn| f0 =
{
(S,P) ∈ GLk(Fq)× Sn | S−1MP = M

}
.

The automorphism group of M is the projection of H0 onto Sn, i.e.,

Aut(M) =
{

P ∈ Sn | ∃S : S−1MP = M
}
.

Note that each P ∈ Aut(M) has the same number of preimages S ∈ GLk(Fq) in this
projection.

3 Quantum Fourier sampling (QFS)

3.1 Preliminaries and Notation

Fix a finite group G, abelian or non-abelian, and let Ĝ denote the set of irreducible
unitary representations, or “irreps” for short, of G. For each irrep ρ ∈ Ĝ, let Vρ denote a
vector space over C on which ρ acts so that ρ is a group homomorphism from G to the
general linear group over Vρ , and let dρ denote the dimension of Vρ . For each ρ , we fix
an orthonormal basis Bρ =

{
b1, . . . ,bdρ

}
for Vρ . Then we can represent each ρ(g) as a

dρ × dρ unitary matrix whose jth column is the vector ρ(g)b j.
Viewing the vector space C[G] as the regular representation of G, we can decom-

pose C[G] into irreps as the direct sum
⊕

ρ∈Ĝ V
⊕dρ
ρ . This has a basis {|ρ , i, j〉 : ρ ∈

Ĝ,1 ≤ i, j ≤ dρ}, where {|ρ , i, j〉 | 1 ≤ i ≤ dρ} is a basis for the jth copy of Vρ . Up to
normalization, |ρ , i, j〉 corresponds to the i, j entry of the irrep ρ .

Definition 4. The Quantum Fourier transform over G is the unitary operator, denoted
FG, that transforms a vector in C[G] from the point-mass basis {|g〉 | g ∈ G} into the
basis given by the decomposition of C[G]. For all g ∈ G,

FG |g〉= ∑
ρ ,i, j

√
dρ

|G| ρ(g)i, j |ρ , i, j〉 ,

where ρ(g)i j is the (i, j)-entry of the matrix ρ(g). Alternatively, we can view FG |g〉 as
a block diagonal matrix consisting of the block

√
dρ/|G|ρ(g) for each ρ ∈ Ĝ.

768 H. Dinh, C. Moore, and A. Russell

Notation. For each subset X ⊆ G, define |X〉= (1/
√|X |)∑x∈X |x〉, which is the uniform

superposition over X . For each X⊆G and ρ∈Ĝ, define the operator Π ρ
X

def
= 1
|X | ∑x∈X ρ(x) ,

and let X̂(ρ) denote the dρ × dρ matrix block at ρ in the quantum Fourier transform of
|X〉, i.e.,

X̂(ρ) def
=

√
dρ

|G||X | ∑x∈X
ρ(x) =

√
dρ |X |
|G| Π ρ

X .

Fact. If X is a subgroup of G, then Π ρ
X is a projection operator. That is, (Π ρ

X)
† = Π ρ

X
and (Π ρ

X)
2 = Π ρ

X .

Quantum Fourier Sampling (QFS) is a standard procedure based on the Quantum
Fourier Transform to solve the Hidden Subgroup Problem (HSP) (see [12] for a survey).
An instance of the HSP over G consists of a black-box function f : G→ {0,1}∗ such
that f (x) = f (y) if and only if x and y belong to the same left coset of H in G, for some
subgroup H ≤G. The problem is to recover H using the oracle Of : |x,y〉 �→ |x,y⊕ f (x)〉.
The general QFS procedure for this is the following:

1. Prepare a 2-register quantum state, the first in a uniform superposition of the group
elements and the second with the value zero: |ψ1〉= (1/

√|G|)∑g∈G |g〉 |0〉 .
2. Query f , i.e., apply the oracle O f , resulting in the state

|ψ2〉= O f |ψ1〉= 1√|G| ∑g∈G

|g〉 | f (g)〉= 1√|T | ∑
α∈T
|αH〉 | f (α)〉

where T is a transversal of H in G.
3. Measure the second register of |ψ2〉, resulting in the state |αH〉 | f (α)〉 with proba-

bility 1/|T | for each α ∈ T . The first register of the resulting state is then |αH〉 for
some uniformly random α ∈ G.

4. Apply the quantum Fourier transform over G to the coset state |αH〉 observed at
step 3:

FG |αH〉= ∑
ρ∈Ĝ,1≤i, j≤dρ

α̂H(ρ)i, j |ρ , i, j〉 .

5. (Weak) Observe the representation name ρ . (Strong) Observe ρ and matrix indices
i, j.

6. Classically process the information observed from the previous step to determine
the subgroup H.

Probability distributions produced by QFS. For a particular coset αH, the probabil-
ity of measuring the representation ρ in the state FG |αH〉 is

PαH(ρ) = ‖α̂H(ρ)‖2
F =

dρ |H|
|G| Tr

(
(Π ρ

αH)
†Π ρ

αH

)
=

dρ |H|
|G| Tr

(
Π ρ

H

)
where Tr(A) denotes the trace of a matrix A, and ‖A‖F :=

√
Tr(A†A) is the Frobenius

norm of A. The last equality is due to the fact that Π ρ
αH = ρ(α)Π ρ

H and that Π ρ
H is an

orthogonal projector.

McEliece and Niederreiter Cryptosystems 769

Since there is no point in measuring the rows [6], we are only concerned with mea-
suring the columns. As pointed out in [15], the optimal von Neumann measurement
on a coset state can always be expressed in this form for some basis Bρ . Conditioned
on observing ρ in the state FG |αH〉, the probability of measuring a given b ∈ Bρ is

‖α̂H(ρ)b‖2. Hence the conditional probability that we observe the vector b, given that
we observe the representation ρ , is then

PαH(b | ρ) = ‖α̂H(ρ)b‖2

PαH(ρ)
=
‖Π ρ

αHb‖2

Tr
(
Π ρ

H

) =
‖Π ρ

Hb‖2

Tr
(
Π ρ

H

)
where in the last equality, we use the fact that as ρ(α) is unitary, it preserves the norm
of the vector Π ρ

Hb.
The coset representative α is unknown and is uniformly distributed in T . However,

both distributions PαH(ρ) and PαH(b | ρ) are independent of α and are the same as
those for the state FG |H〉. Thus, in Step 5 of the QFS procedure above, we observe
ρ ∈ Ĝ with probability PH(ρ), and conditioned on this event, we observe b ∈ Bρ with
probability PH(b | ρ).

If the hidden subgroup is trivial, H = {1}, the conditional probability distribution on
Bρ is uniform,

P{1}(b | ρ) =
‖Π ρ
{1}b‖2

Tr
(

Π ρ
{1}
) =

‖b‖2

dρ
=

1
dρ

.

3.2 Distinguishability by QFS

We fix a finite group G and consider quantum Fourier sampling over G in the basis given
by {Bρ}. For a subgroup H < G and for g ∈ G, let Hg denote the conjugate subgroup
g−1Hg. Since Tr

(
Π ρ

H

)
= Tr

(
Π ρ

Hg

)
, the probability distributions obtained by QFS for

recovering the hidden subgroup Hg are

PHg(ρ) =
dρ |H|
|G| Tr

(
Π ρ

H

)
= PH(ρ) and PHg(b | ρ) = ‖Π

ρ
Hgb‖2

Tr
(
Π ρ

H

) .

As PHg(ρ) does not depend on g, weak Fourier sampling can not distinguish con-
jugate subgroups. Our goal is to point out that for certain nontrivial subgroup H < G,
strong Fourier sampling can not efficiently distinguish the conjugates of H from each
other or from the trivial one. Recall that the distribution P{1}(· | ρ) obtained by perform-
ing strong Fourier sampling on the trivial hidden subgroup is the same as the uniform
distribution UBρ on the basis Bρ . Thus, our goal can be boiled down to showing that
the probability distribution PHg(· | ρ) is likely to be close to the uniform distribution
UBρ in total variation, for a random g ∈G and an irrep ρ ∈ Ĝ obtained by weak Fourier
sampling.

Definition 5. We define the distinguishability of a subgroup H (using strong Fourier
sampling over G), denoted DH, to be the expectation of the squared L1-distance between
PHg(· | ρ) and UBρ :

DH
def
= Eρ ,g

[‖PHg(· | ρ)−UBρ‖2
1

]
,

770 H. Dinh, C. Moore, and A. Russell

where ρ is drawn from Ĝ according to the distribution PH(ρ), and g is chosen from
G uniformly at random. We say that the subgroup H is indistinguishable if DH ≤
log−ω(1) |G|.

Note that if DH is small, then the total variation distance between PHg(· | ρ) and UBρ
is small with high probability due to Markov’s inequality: for all ε > 0,

Prg
[‖PHg(· | ρ)−UBρ‖t.v. ≥ ε/2

]
= Prg

[‖PHg(· | ρ)−UBρ‖2
1 ≥ ε2]≤DH/ε2 .

In particular, if the subgroup H is indistinguishable by strong Fourier sampling, then
for all constant c > 0,

‖PHg(· | ρ)−UBρ‖t.v. < log−c |G|
with probability at least 1− log−c |G| in both g and ρ . Our notion of indistinguishabil-
ity is the direct analogue of that of Kempe and Shalev [8]. Focusing on weak Fourier
sampling, they say that H is indistinguishable if ‖PH(·)−P{1}(·)‖t.v. < log−ω(1) |G|.

Our main theorem below will serve as a general guideline for bounding the distin-
guishability of H. For this purpose we define, for each σ ∈ Ĝ, the maximal normalized
character of σ on H as

χσ (H)
def
= max

h∈H\{1}
|χσ (h)|

dσ
.

For each subset S⊂ Ĝ, let

χS(H) = max
σ∈Ĝ\S

χσ (H) and dS = max
σ∈S

dσ .

In addition, for each reducible representation ρ of G, we let I(ρ) denote the set of irreps
of G that appear in the decomposition of ρ into irreps.

Theorem 1. (MAIN THEOREM) Suppose S is a subset of Ĝ. Let D> d2
S and L=LD⊂ Ĝ

be the set of all irreps of dimension at least D. Let

Δ = ΔS,L = max
ρ∈L

∣∣S∩ I(ρ⊗ρ∗)
∣∣ . (3)

Then the distinguishability of H is bounded by DH ≤ 4|H|2
(

χS(H)+Δ d2
S

D + |L|D
2

|G|
)
.

Intuitively, the set S consists of irreps of small dimension, and L consists of irreps of
large dimension. Moreover, we wish to have that the size of S is small while the size
of L is large, so that most irreps are likely in L. In the cases where there are relatively
few irreps, i.e., |S| �D and |Ĝ| � |G|, we can simply upper bound Δ by |S| and upper
bound |L| by |Ĝ|.

We discuss the proof of this theorem in Section 5. Most details are relegated to the
Appendix A.

4 Applications of the Main Theorem

In this section, we present applications of Theorem 1 to analyze strong Fourier sampling
over certain non-abelian groups, including the symmetric group and the wreath product
corresponding to the McEliece-type cryptosystems. Another application to the HSP
over the groups GL2(Fq) is omitted for lack of space.

McEliece and Niederreiter Cryptosystems 771

4.1 Strong Fourier Sampling over Sn

We focus now on the case where G is the symmetric group Sn. Recall that each irrep of
Sn is in one-to-one correspondence to an integer partition λ = (λ1,λ2, . . . ,λt) of n often
given by a Young diagram of t rows in which the ith row contains λi columns. The conju-
gate representation of λ is the irrep corresponding to the partition λ ′ = (λ ′1,λ ′2, . . . ,λ ′t′),
obtained by flipping the Young diagram λ about the diagonal.

As in [15], we shall apply Roichman’s upper bound [19] on normalized characters:

Theorem 2 (Roichman’s Theorem [19]). There exist constant b > 0 and 0 < q < 1 so
that for n > 4, for every π ∈ Sn, and for every irrep λ of Sn,∣∣∣∣χλ (π)

dλ

∣∣∣∣≤ (max

(
q,

λ1

n
,

λ ′1
n

))b·supp(π)

where supp(π) = #{k ∈ [n] | π(k) �= k} is the support of π .

This bound works well for unbalanced Young diagrams. In particular, for a constant
0 < c < 1/4, let Λc denote the collection of partitions λ of n with the property that

either λ1
n ≥ 1−c or λ ′1

n ≥ 1−c, i.e., the Young diagram λ contains at least (1−c)n rows
or contains at least (1− c)n columns. Then, Roichman’s upper bound implies that for
every π ∈ Sn and λ �∈Λc, and a universal constant α > 0,∣∣∣∣ χλ (π)

dλ

∣∣∣∣≤ e−α ·supp(π) . (4)

On the other hand, both |Λc| and the maximal dimension of representations in Λc are
small, as shown in the following Lemma of [15].

Lemma 2 (Lemma 6.2 in [15]). Let p(n) denote the number of integer partitions of n.
Then |Λc| ≤ 2cn · p(cn), and dμ < ncn for any μ ∈Λc.

To give a more concrete bound for the size of Λc, we record the asymptotic formula

for the partition function [5, pg. 45]: p(n)≈ eπ
√

2n/3/(4
√

3n) = eO(
√

n)/n as n→ ∞ .
Now we are ready to prove the main result of this section, an application of Theo-

rem 1.

Theorem 3. Let H be a nontrivial subgroup of Sn with minimal degree m, i.e., m =
minπ∈H\{1} supp(π). Then for sufficiently large n, DH ≤ O(|H|2e−αm).

Proof. Let 2c < d < 1/2 be constants. We will apply Theorem 1 by setting S = Λc and
D = ndn. By Lemma 2, we have dS ≤ ncn. Hence, the condition 2c < d guarantees that
D > d2

S . First, we need to bound the maximal normalized character χS(H). By (4), we
have χμ(H) ≤ e−αm for all μ ∈ Ŝn \ S. Hence, χS(H) ≤ e−αm. To bound the second
term in the upper bound of Theorem 1, as Δ ≤ |S|, it suffices to bound:

|S| · d
2
S

D
≤ 2cn · p(cn) · n

2cn

ndn ≤ eO(
√

n) ·n(2c−d)n ≤ n−γn/2

772 H. Dinh, C. Moore, and A. Russell

for sufficiently large n, so long as γ < d− 2c. Now bounding the last term in the upper
bound of Theorem 1: Since |LD| ≤ |Ŝn|= p(n) and n! > nne−n by Stirling’s approxima-
tion,

|LD|D2

|Sn| ≤
p(n)n2dn

n!
≤ eO(

√
n)n2dn

nne−n ≤ eO(n)n(2d−1)n ≤ n−γn/2

for sufficiently large n, so long as γ < 1− 2d. By Theorem 1, DH ≤ 4|H|2(e−αm +
n−γn) .

Theorem 3 generalizes Moore, Russell, and Schulman’s result [15] on strong Fourier
sampling over Sn, which only applied in the case |H| = 2. To relate our result to the
results of Kempe et al. [9], observe that since log |Sn| = Θ(n logn), the subgroup H is
indistinguishable by strong Fourier sampling if |H|2e−αm ≤ (n logn)−ω(1) or, equiva-
lently, if m≥ (2/α) log |H|+ω(logn).

4.2 Applications to McEliece-type Cryptosystems

Our main application of Theorem 1 is to show the limitations of strong Fourier sam-
pling in attacking the McEliece-type cryptosystems. Throughout this section, we fix
parameters n,k,q of a McEliece-type cryptosystem, and fix the underlying k×n matrix
M of the system. Here, M can be a generator matrix or a parity check matrix of the q-
ary linear code used in the cryptosystem. Note that the entries of M are in a finite field
Fq� ⊃ Fq (when M is a generator matrix of a q-ary linear code, we must have �= 1).

Recall that the canonical quantum attack against this McEliece cryptosystem in-
volves the HSP over the wreath product group (GLk(Fq)×Sn)
Z2; the hidden subgroup
in this case is

K = ((H0,s
−1H0s),0)∪ ((H0s,s−1H0),1) (5)

for some hidden element s ∈ GLk(Fq)× Sn. Here, H0 is a subgroup of GLk(Fq)× Sn

given by
H0 =

{
(A,P) ∈ GLk(Fq)× Sn | A−1MP = M

}
. (6)

To understand the structure of the subgroup H0, we define the automorphism group of
M as Aut(M)

def
=

{
P ∈ Sn | SMP = M for some S ∈ GLk(Fq)

}
. Note that Aut(M) is

a subgroup of the symmetric group Sn and each element (A,P) ∈ H0 must have P ∈
Aut(M). This allows us to control the maximal normalized characters on K through the
minimal degree of Aut(M). Then applying Theorem 1, we show that

Theorem 4. Assume qk2 ≤ nan for some constant 0 < a < 1/4. Let m be the minimal
degree of the automorphism group Aut(M). Then for sufficiently large n, the subgroup
K defined in (5) has DK ≤ O(|K|2e−δm) , where δ > 0 is a constant.

The proof of Theorem 4 follows the technical ideas discussed in the Introduction.
The details can be found in [3].

As qk2 ≤ nan, we have log
∣∣(GLk(Fq)× Sn)
Z2

∣∣ = O(logn!+ logqk2
) = O(n logn) .

Hence, the subgroup K is indistinguishable if |K|2e−δm ≤ (n logn)−ω(1). The size of the
subgroup K is given by |K| = 2|H0|2, and |H0| = |Aut(M)| × |Fix(M)|, where

McEliece and Niederreiter Cryptosystems 773

Fix(M)
def
=

{
S ∈ GLk(Fq) | SM = M

}
is the set of scramblers fixing M. To bound the

size of Fix(M), we record an easy fact which can be obtained by the orbit-stabilizer
formula:

Fact. Let r be the column rank of M. Then |Fix(M)| ≤ q�k(k−r) .

Proof. WLOG, assume the first r columns of M are Fq�-linearly independent, and each
remaining column is an Fq�-linear combination of the first r columns. Let N be the k×r
matrix consisting of the first r columns of M. Then we can decompose M as M = (N |
NA), where A is an r× (n− r) matrix with entries in Fq� . Clearly, Fix(M) = Fix(N).
Consider the action of GLk(Fq�) on the set of k× r matrices over Fq� . Under this action,
the stabilizer of N contains Fix(N), and the orbit of the matrix N, denoted Orb(N),
consists of all k× r matrices over Fq� whose columns are Fq�-linearly independent.

Thus, |Orb(N)| = (q�k− 1)(q�k− q�) . . . (q�k− q�(r−1)). By the orbit-stabilizer formula,
we have

|Fix(N)| ≤ |GLk(Fq�)|
|Orb(N)| =

(q�k− 1)(q�k− q�) . . . (q�k− q�(k−1))

(q�k− 1)(q�k− q�) . . . (q�k− q�(r−1))

= (q�k− q�r)(q�k− q�(r+1)) · · · (q�k− q�(k−1))≤ q�k(k−r) .

Corollary 1. Assume qk2 ≤ n0.2n and the automorphism group Aut(M) has minimal
degree Ω(n). Let r be the column rank of M. Then the subgroup K defined in (5) has
DK ≤ |Aut(M)|4q4�k(k−r)e−Ω(n). In particular, the subgroup K is indistinguishable if,
further, |Aut(M)| ≤ eo(n) and r ≥ k− o(

√
n)/�.

The constraint qk2 ≤ n0.2n implies log |GLk(Fq)| = O(n logn), so Alice only needs to
flip O(n logn) bits to pick a random S from GLk(Fq). Thus she needs only O(n logn)
coin flips overall to generate her private key.

Application to the McEliece cryptosystem. Consider a McEliece cryptosystem using
a q-ary linear [n,k]-code C, with parameters satisfying qk2 ≤ n0.2n. Since the automor-
phism group of the code C equals the automorphism group of its generator matrix, we
can conclude that this McEliece cryptosystem resists the standard quantum Fourier sam-
pling attack if the code C is (i) well-scrambled, i.e., it has a generator matrix of rank
at least k− o(

√
n), and is (ii) well-permuted, i.e., its automorphism group has minimal

degree at least Ω(n) and has size at most eo(n). Recall that in terms of security, the
Niederreiter system using (n− k)×n parity check matrices over Fq of the same code C
is equivalent to the McEliece system using the code C [10].

Application to Goppa codes. We would like to point out that if M is a generator matrix
of a rational Goppa code or a canonical parity check matrix of a classical Goppa code,
it will give good bounds in Corollary 1. Specifically, we consider a matrix M over a
finite field Fq� ⊃ Fq of the following form:

M =

⎛⎜⎜⎜⎝
v1 f1(α1) v2 f1(α2) · · · vn f1(αn)
v1 f2(α1) v2 f2(α2) · · · vn f2(αn)

...
...

. . .
...

v1 fk(α1) v2 fk(α2) · · · vn fk(αn)

⎞⎟⎟⎟⎠ (7)

774 H. Dinh, C. Moore, and A. Russell

where v1, . . . ,vn are nonzero elements in the field Fq� , (α1, . . . ,αn) is a list of distinct
points in the projective line Fq� ∪{∞}, and f1, . . . , fk are Fq�-linearly independent poly-

nomials in Fq� [X] of degree less than k (by convention, fi(∞) is the Xk−1-coefficient of
fi(X)). Note that such a matrix M is a generator matrix of a rational Goppa [n,k]-code
over the field Fq� , and is also a parity check matrix of a classical Goppa [n,≥ n− �k]-
code over Fq. To apply Corollary 1, we show the following properties of the matrix
M:

Lemma 3. The matrix M in the form of (7) has full rank (i.e., its column rank equals
k), and Aut(M) has minimal degree at least n− 2, and |Aut(M)| ≤ q3�.

Proof. We can show that M has full rank directly by decomposing M as M = AVD,
where A= (ai j) is an k×k invertible matrix with entry ai j being the the X j−1-coefficient
of polynomial fi(X); V is a k×n Vandermonde matrix with (i, j)-entry being α i−1

j ; and
D is an n× n diagonal matrix with vi in the (i, i)-entry. Then the rank of M equals the
rank of the Vandermonde matrix V , which has full rank.

Now we can view M as a generator matrix of a rational Goppa [n,k]-code R over the
field Fq� . Then we have Aut(M) ⊂ Aut(R), where Aut(R) is the automorphism group

of the code R, that is, Aut(R) =
{

P ∈ Sn | SMP = M for some S ∈ GLk(Fq�)
}

. Now we

can apply Stichtenoth’s Theorem [25] to control the automorphism group Aut(R).

Theorem 5 (Stichtenoth [25]). Let 2≤ k≤ n−2. Then the automorphism group of any
rational Goppa [n,k]-code over a field F is isomorphic to a subgroup of Aut(F(x)/F).

On the other hand, we also have the useful fact that Aut(F(x)/F) � PGL2(F). Hence,
Aut(R) is isomorphic to a subgroup of the projective linear group PGL2(Fq�), which

implies that |Aut(M)| ≤ |Aut(R)| ≤ |PGL2(Fq�)| ≤ q3� .
To show that the minimal degree of Aut(M) is at least n− 2, we view Aut(M) ⊂

PGL2(Fq�), and observe that any transformation in PGL2(Fq�) that fixes at least three
distinct projective lines must be the identity. Q.E.D.

Hence, classical Goppa codes or rational Goppa codes are good choices for the security
of McEliece-type cryptosystems against standard quantum Fourier sampling attacks.
Since the rational Goppa codes are broken (classically) by the Sidelnokov-Shestakov
[23] structural attack, we shall focus on the classical Goppa codes, which remain secure
given suitable choice of parameters.

Application to Neiderreiter systems with classical Goppa codes. Consider a classi-
cal q-ary Goppa code C constructed by a support list of distinct points α1, . . . ,αn ∈ Fq�

and a Goppa polynomial g(X)∈Fq� [X] of degree k. This code has dimension k′ ≥ n−�k.
More importantly, it has k× n parity check matrices in the form of (7) in which v j =
1/g(α j) (see [26]), we refer to those matrices as canonical parity check matrices of the
classical Goppa code C. By Corollary 1 and Lemma 3, the Niederreiter cryptosystem
using k× n canonical parity check matrices of this code C resists the known quantum
attack, provided qk2 ≤ n0.2n and q3� ≤ eo(n). As pointed out in [4], this Niederreiter
system is secure under the Sidelnokov-Shestakov attack. We remark, however, that the

McEliece and Niederreiter Cryptosystems 775

security of this Niederreiter cryptosystem may not be equivalent to that of the McEliece
cryptosystem using the same code C (unless k′ = n− �k as discussed below), since the
equivalence showed in [10] only applies to the Niederreiter cryptosystem using a parity
check matrix over the subfield Fq.

Setting the parameters. We discuss the parameters for classical Goppa codes that
meet our security requirement. Traditionally, the code length is chosen as n = q�, then
our parameter setting requires only one constraint, k2 ≤ 0.2n�, which imposes that the
code C must have large dimension, i.e., k′ ≥ n− �k≥ n−√0.2n(logq n)3/2.

Now we compare our parameter setting with practical parameters suggestion. In most
McEliece cryptosystems considered in practice, classical binary Goppa codes are used,
that is q = 2 and n = 2�. The code is also designed so that it has dimension k′ = n− �k
and minimal distance d ≥ 2t + 1, where t� n is a predetermined parameter indicating
the number of errors the code can correct. For those systems, the original parameters
suggested by McEliece were (n = 1024,k′ ≥ 524, t = 50), which would meet our re-
quirement as long as the dimension k′ is chosen to be slightly larger (k′ ≥ 572). The
parameters (n = 1024,k′= 524, t = 50), which can be broken in just 7 days by a cluster
of 200 CPUs under Bernstein et al.’s attack [1], clearly do not meet our requirement.
An optimal choice of parameters for the Goppa code which maximizes the adversary’s
work factor was recommended to be (n= 1024,k′ ≥ 644, t = 38) (see Note 8.32 in [14]).
Bernstein et al. [1] suggested two other sets of parameters, (n= 2048,k′= 1751, t = 27)
and (n = 1632,k′ = 1269, t = 34), that achieve the standard security against all known
(classical) attacks. All of these parameters meet our requirement. Well, of course, these
parameters were recommended for the original McEliece, or for the equivalent Neider-
reiter system that uses parity check matrices over the subfield F2 with n− k′ = �k rows.
However, if we view each element in Fq� as a vector of dimension � over the subfield
Fq, then a k×n canonical parity check matrix over Fq� can be viewed as a �k×n parity
check matrix over Fq.

5 Bounding Distinguishability

We now sketch the proof for the main theorem (Theorem 1). Fixing a nontrivial sub-
group H < G, we want to upper bound DH . Let us start with bounding the expectation
over the random group element g ∈ G, for a fixed irrep ρ ∈ Ĝ:

EH(ρ)
def
= Eg

[‖PHg(· | ρ)−UBρ‖2
1

]
.

Obviously we always have EH(ρ)≤ 4. More interestingly, we have

EH(ρ) = Eg

⎡⎣(∑
b∈Bρ

∣∣∣∣PHg(b | ρ)− 1
dρ

∣∣∣∣
)2
⎤⎦

≤ Eg

[
dρ ∑

b∈Bρ

(
PHg(b | ρ)− 1

dρ

)2
]

(by Cauchy-Schwarz)

= dρ ∑
b∈Bρ

Varg[PHg(b | ρ)] (since Eg[PHg(b | ρ)] = 1
dρ

)

776 H. Dinh, C. Moore, and A. Russell

=
dρ

Tr(Π ρ
H)

2 ∑
b∈Bρ

Varg
[‖Π ρ

Hgb‖2] . (8)

The equation Eg[PHg(b | ρ)] = 1/dρ can be shown using Schur’s lemma.
From (8), we are motivated to bound the variance of ‖Π ρ

Hg b‖2 when g is chosen
uniformly at random. We provide an upper bound that depends on the projection of
the vector b⊗ b∗ onto irreducible subspaces of ρ ⊗ ρ∗, and on maximal normalized
characters of σ on H for all irreps σ appearing in the decomposition of ρ⊗ρ∗. Recall
that the representation ρ⊗ρ∗ is typically reducible and can be written as an orthogonal
direct sum of irreps ρ ⊗ρ∗ =

⊕
σ∈Ĝ aσ σ , where aσ ≥ 0 is the multiplicity of σ . Then

I(ρ ⊗ρ∗) consists of σ with aσ > 0, and we let Π ρ⊗ρ∗
σ denote the projection operator

whose image is aσ σ , that is, the subspace spanned by all copies of σ . Our upper bound
given in Lemma 4 below generalizes the bound given in Lemma 4.3 of [15], which only
applies to subgroups H of order 2.

Lemma 4. (DECOUPLING LEMMA) Let ρ be an irrep of G. Then for any vector b∈Vρ ,

Varg
[‖Π ρ

Hgb‖2]≤ ∑
σ∈I(ρ⊗ρ∗)

χσ (H)
∥∥∥Π ρ⊗ρ∗

σ (b⊗b∗)
∥∥∥2

.

Back to our goal of bounding EH(ρ) using the bound in Lemma 4, the strategy will
be to separate irreps appearing in the decomposition of ρ ⊗ρ∗ into two groups, those
with small dimension and those with large dimension, and treat them differently. If dσ
is large, we shall rely on bounding χσ (H). If dσ is small, we shall control the projection

given by Π ρ⊗ρ∗
σ using the following lemma which was proved implicitly in [15]:

Lemma 5. For any irrep σ , we have ∑b∈Bρ

∥∥∥Π ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2 ≤ d2
σ .

The method discussed above for bounding EH(ρ) is culminated into Lemma 6 below.

Lemma 6. Let ρ ∈ Ĝ be arbitrary and S ⊂ Ĝ be any subset of irreps that does not
contain ρ . Then

EH(ρ)≤ 4|H|2
(

χS(H)+ |S∩ I(ρ⊗ρ∗)| d
2
S

dρ

)
.

To apply this lemma, we should choose the subset S such that d2
S � dρ , that is, S

should consist of small dimensional irreps. Then applying Lemma 6 for all irreps ρ of
large dimension, we can prove our general main theorem straightforwardly.

The detailed proofs of the main theorem and the decoupling lemma are put in Ap-
pendix A. The proof for Lemma 6 is omitted for lack of space. See [3] for a full technical
version.

References

1. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mcEliece cryptosystem.
In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer,
Heidelberg (2008)

McEliece and Niederreiter Cryptosystems 777

2. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital signature
scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer,
Heidelberg (2001)

3. Dinh, H., Moore, C., Russell, A.: The McEliece cryptosystem resists quantum Fourier sam-
pling attacks, preprint (2010), http://arxiv.org/abs/1008.2390

4. Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosystems and
their security. J. Math. Crypt. 1, 151–199 (2007)

5. Fulton, W., Harris, J.: Representation Theory - A First Course. Springer-Verlag, New York
Inc., Heidelberg (1991)

6. Grigni, M., Schulman, J., Vazirani, M., Vazirani, U.: Quantum mechanical algorithms for the
nonabelian hidden subgroup problem. Combinatorica 24(1), 137–154 (2004)

7. Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of quantum coset
states for graph isomorphism. In: STOC 2006: Proceedings of the Thirty-Eighth Annual
ACM Symposium on Theory of Computing, pp. 604–617 (2006)

8. Kempe, J., Shalev, A.: The hidden subgroup problem and permutation group theory. In:
SODA 2005: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1118–1125 (2005)

9. Kempe, J., Pyber, L., Shalev, A.: Permutation groups, minimal degrees and
quantum computing. Groups, Geometry, and Dynamics 1(4), 553–584 (2007),
http://xxx.lanl.gov/abs/quant-ph/0607204

10. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McElieces and Niederreiters public-
key cryptosystems. IEEE Transactions on Information Theory 40(1), 271–273 (1994)

11. Loidreau, P., Sendrier, N.: Weak keys in the McEliece public-key cryptosystem. IEEE Trans-
actions on Information Theory 47(3), 1207–1212 (2001)

12. Lomont, C.: The hidden subgroup problem - review and open problems (2004),
http://arXiv.org:quantph/0411037

13. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN
Progress Report, 114–116 (1978)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC
Press, Boca Raton (1996)

15. Moore, C., Russell, A., Schulman, L.J.: The symmetric group defies strong quantum Fourier
sampling. SIAM Journal of Computing 37, 1842–1864 (2008)

16. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of
Control and Information Theory. Problemy Upravlenija i Teorii Informacii 15(2), 159–166
(1986)

17. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on Informa-
tion Theory 43(5), 1602–1604 (1997), doi:10.1109/18.623157

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 84–93 (2005)

19. Roichman, Y.: Upper bound on the characters of the symmetric groups. Invent. Math. 125(3),
451–485 (1996)

20. Ryan, J.A.: Excluding some weak keys in the McEliece cryptosystem. In: Proceedings of the
8th IEEE Africon, pp. 1–5 (2007)

21. Sendrier, N.: Finding the permutation between equivalent linear codes: the support splitting
algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203 (2000)

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing 26, 1484–1509 (1997)

23. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized
Reed-Solomon codes. Discrete Mathematics and Applications 2(4), 439–444 (1992)

http://arxiv.org/abs/1008.2390
http://xxx.lanl.gov/abs/quant-ph/0607204
http://arXiv.org:quantph/0411037

778 H. Dinh, C. Moore, and A. Russell

24. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483
(1997)

25. Stichtenoth, H.: On automorphisms of geometric Goppa codes. Journal of Algebra 130, 113–
121 (1990)

26. van Lint, J.H.: Introduction to coding theory, 2nd edn. Springer, Heidelberg (1992)

Appendix A Proofs for the Main Theorem

Proof of the Decoupling Lemma

Proof (Proof of Lemma 4). Fix a vector b ∈ Vρ . To simplify notations, we shall write
Πg as shorthand for Π ρ

Hg , and write gb for ρ(g)b. For any g ∈ G, we have

‖Πgb‖2 =
〈
Πgb,Πgb

〉
=
〈
b,Πgb

〉
=

1
|H|

(
〈b,b〉+ ∑

h∈H\{1}

〈
b,g−1hgb

〉)
.

Let Sg = ∑h∈H\{1}
〈
b,g−1hgb

〉
. Then

Varg
[‖Πgb‖2]= Varg[Sg]

|H|2 =
Eg
[
S2

g

]−Eg[Sg]
2

|H|2 .

To bound the variance, we upper bound S2
g for all g ∈ G. Since Sg is real, applying

Cauchy-Schwarz inequality, we have

S2
g =

∣∣∣∣∣ ∑
h∈H\{1}

〈
b,g−1hgb

〉∣∣∣∣∣
2

≤ (|H|− 1)

(
∑

h∈H\{1}

∣∣〈b,g−1hgb
〉∣∣2) .

As in Lemma 4.2 of [15], one can express the second moment of the inner product〈
b,g−1hgb

〉
in terms of the projection of b⊗b∗ into the irreducible constituents of the

tensor product representation ρ⊗ρ∗. Specifically, for any h ∈ G, we have

Eg
[|〈b,g−1hgb

〉 |2]= ∑
σ∈I(ρ⊗ρ∗)

χσ (h)
dσ

∥∥∥Π ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
.

It follows that

Varg
[‖Π ρ

Hgb‖2]≤ |H|− 1
|H|2 ∑

h∈H\{1}
Eg

[∣∣〈b,g−1hgb
〉∣∣2]

≤ Eh∈H\{1}

[
∑

σ∈I(ρ⊗ρ∗)

χσ (h)
dσ

∥∥∥Π ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
]

≤ ∑
σ∈I(ρ⊗ρ∗)

χσ (H)
∥∥∥Π ρ⊗ρ∗

σ (b⊗b∗)
∥∥∥2

.

McEliece and Niederreiter Cryptosystems 779

Proof of the Main Theorem

Proof (Proof of Theorem 1:). For any ρ ∈ L, since dρ ≥ D > d2
S , we must have ρ �∈ S.

By Lemma 6,

EH(ρ)≤ 4|H|2
(

χS(H)+Δ
d2

S

D

)
for all ρ ∈ L .

Combining this with the fact that EH(ρ)≤ 4 for all ρ �∈ L, we obtain

DH = Eρ [EH(ρ)]≤ 4|H|2
(

χS(H)+Δ
d2

S

D

)
+ 4Prρ [ρ �∈ L] .

To complete the proof, it remains to bound Prρ [ρ �∈ L]. Since Tr(Π ρ
H)≤ dρ , we have

P(ρ) =
dρ |H|
|G| Tr(Π ρ

H)≤
d2

ρ |H|
|G| .

Since dρ < D for all ρ ∈ Ĝ\L, it follows that

Prρ [ρ �∈ L] = ∑
ρ �∈L

P(ρ)≤ |L|D
2|H|
|G| ≤ |L|D

2|H|2
|G| .

Author Index

Abdelraheem, Mohamed Ahmed 206
Abe, Masayuki 649
AlKhzaimi, Hoda 206
Asharov, Gilad 240

Baecher, Paul 21
Barak, Boaz 1
Barthe, Gilles 71
Beimel, Amos 277
Bellare, Mihir 610
Benabbas, Siavosh 111
Bernstein, Daniel J. 743
Boldyreva, Alexandra 578
Bouillaguet, Charles 169
Brakerski, Zvika 505, 543
Brassard, Gilles 391
Brzuska, Christina 51
Buhrman, Harry 429

Cascudo, Ignacio 685
Chandran, Nishanth 429
Chenette, Nathan 578
Chung, Kai-Min 151
Coron, Jean-Sébastien 487
Cramer, Ronald 685

Derbez, Patrick 169
Ding, Jintai 724
Dingledine, Roger 485
Dinh, Hang 761
Dodis, Yevgeniy 1
Dziembowski, Stefan 335

Fehr, Serge 429
Fischlin, Marc 21, 51
Fouque, Pierre-Alain 169

Garg, Sanjam 297, 630
Gelles, Ran 429
Gennaro, Rosario 111
Goyal, Vipul 429
Grégoire, Benjamin 71
Groth, Jens 649
Guo, Jian 222

Halevi, Shai 132
Hallgren, Sean 411
Hanrot, Guillaume 447
Haralambiev, Kristiyan 649
Heraud, Sylvain 71
Hiwatari, Harunaga 706
Hodges, Timothy J. 724
Høyer, Peter 391

Ishai, Yuval 667

Jain, Abhishek 297

Kalach, Kassem 391
Kalai, Yael Tauman 151, 373
Kanukurthi, Bhavana 373
Kaplan, Marc 391
Katzenbeisser, Stefan 51
Kazana, Tomasz 335
Keelveedhi, Sriram 610
Krawczyk, Hugo 1
Kushilevitz, Eyal 667

Lange, Tanja 743
Laplante, Sophie 391
Leander, Gregor 206
Lee, Jooyoung 561
Lindell, Yehuda 132, 240, 259, 277
Liu, Feng-Hao 151

Mahmoody, Mohammad 39
Mandal, Avradip 487
Micciancio, Daniele 465
Mol, Petros 465
Moore, Cristopher 761
Moran, Tal 39

Naccache, David 487
Naya-Plasencia, Maŕıa 188

Ohkubo, Miyako 649
Omri, Eran 277
O’Neill, Adam 525, 578
Orlov, Ilan 277
Ostrovsky, Rafail 429, 667
Oswald, Elisabeth 316
Oxman, Eli 259

782 Author Index

Papamanthou, Charalampos 91
Peikert, Chris 525
Pereira, Olivier 1
Peters, Christiane 743
Peyrin, Thomas 222
Pietrzak, Krzysztof 1
Pinkas, Benny 132, 259
Poschmann, Axel 222
Prabhakaran, Manoj 667
Pujol, Xavier 447

Rabin, Tal 240
Rao, Vanishree 630
Raz, Ran 151
Russell, Alexander 761

Sahai, Amit 297, 373, 630, 667
Sakumoto, Koichi 706
Salvail, Louis 391
Schaffner, Christian 429
Schröder, Dominique 630
Schröder, Heike 51
Segev, Gil 543
Shirai, Taizo 706
Smith, Adam 411
Song, Fang 411
Stam, Martijn 561

Standaert, François-Xavier 1, 354
Stehlé, Damien 447
Steinberger, John 561

Tamassia, Roberto 91
Tibouchi, Mehdi 487
Triandopoulos, Nikos 91

Unruh, Dominique 630

Vadhan, Salil 39
Vahlis, Yevgeniy 111
Vaikuntanathan, Vinod 505
Veyrat-Charvillon, Nicolas 354

Waters, Brent 525
Whitnall, Carolyn 316
Wichs, Daniel 335
Wullschleger, Jürg 667

Xing, Chaoping 685

Yasuda, Kan 596
Yu, Yu 1

Zanella Béguelin, Santiago 71
Zenner, Erik 206

	Titlepage
	Preface
	CRYPTO 2011
	Table of Contents
	Randomness and Its Use
	Leftover Hash Lemma, Revisited
	Introduction
	Reducing the Entropy Loss
	Reducing the Seed Length
	Related Work

	Standard Leftover Hash Lemma
	Reducing the Entropy Loss
	Improved LHL for Key Derivation
	A Generic Key Derivation Function

	Reducing the Seed Length
	Counter-Example: Expanding Seeds Is Insecure in General
	Expanding Seeds Is Safe When Extracting Few Bits
	Expanding Seeds Is Safe in Minicrypt

	References

	Random Oracle Reducibility
	Introduction
	Random Oracle Reducibility
	Basic Results
	Example: Hashed ElGamal
	Reductions among Signature Schemes
	References

	Time-Lock Puzzles in the Random Oracle Model
	Introduction
	Our Results
	Related Work

	Negative Results for Time-Lock Puzzles
	Intuition for Theorem 1
	Proof of Theorem 2

	A Time-Lock Puzzle with a Linear Difficulty Gap
	Increasing the Computation/Communication Ratio

	Discussion and Open Questions
	References

	Physically Uncloneable Functions in the Universal Composition Framework
	Introduction
	Physically Uncloneable Functions
	PUFs and the UC Framework
	PUF-Based Protocols in the UC Framework

	Physically Uncloneable Functions
	Defining PUFs
	Security of PUFs
	PUFs and Fuzzy Extractors

	Universally Composable Security and PUFs
	Modeling PUFs in UC
	Non-programmability

	Oblivious Transfer with PUFs
	The Oblivious Transfer Ideal Functionality
	Oblivious Transfer Scheme
	Oblivious Transfer with Sender-PUF

	PUF-Based Commitment Scheme
	The Commitment Scheme Ideal Functionality
	PUF-Based Commitment Scheme
	Adaptively Secure Commitments

	Key Exchange with PUFs
	The Key Exchange Ideal Functionality
	Minimal Requirements
	PUF-Based Key Exchange Scheme

	References

	Computer-Assisted Cryptographic Proofs
	Computer-Aided Security Proofs for the Working Cryptographer
	Introduction
	Introductory Example: Hashed ElGamal Encryption
	An Overview of EasyCrypt
	Advanced Application: Cramer-Shoup Cryptosystem
	Limitations and Extensions
	Comparison with CertiCrypt

	Conclusion
	References

	Outsourcing and Delegating Computation
	Optimal Verification of Operations on Dynamic Sets
	Introduction
	Preliminaries
	Construction and Algorithms
	Setup and Updates
	Authenticity of Accumulation Values
	Queries and Verification

	Security, Protocols and Applications
	Conclusion
	References

	Verifiable Delegation of Computation over Large Datasets
	Introduction
	Related Work

	Assumptions
	Verifiable Computation
	Algebraic Pseudorandom Functions
	Small Domain Algebraic PRFs from Strong DDH
	Small Domain Algebraic PRFs from DDH

	Verifiable Delegation of Polynomials
	Construction Based on Algebraic PRFs

	Verifiable Database Queries with Efficient Updates
	References

	Secure Computation on the Web: Computing without Simultaneous Interaction
	Introduction
	Our Contributions
	Some Related Work

	One-Pass Decompositions
	Minimum-Disclosure Decompositions
	Some Functions with Minimum-Disclosure Decompositions

	Server-Based One-Pass Protocols
	Practical Optimal Protocols
	Protocols for Symmetric Functions
	Selection Functions

	Securely Computing any Decomposition
	Our Construction, Semi-Honest Model
	The Malicious Model

	Extensions and Open Problems
	References

	Memory Delegation
	Introduction
	Our Results
	Previous Work

	Preliminaries
	Low Degree Extension
	Delegation Schemes
	Merkle Tree Commitments

	Overview of Our Constructions
	Overview of Our Memory Delegation Scheme
	Overview of Our Streaming Delegation Scheme
	Additional Technicalities

	References

	Symmetric Cryptanalysis and Constructions
	Automatic Search of Attacks on Round-Reduced AES and Applications
	Introduction
	Preliminaries
	A preliminary Tool for Guess-And-Determine Attacks
	Automatic Search for a Minimal Number of Guesses
	Limitations

	A Tool for Meet-In-The-Middle Attacks
	Solving Subsystems Recursively
	Automatic Search for Recursive Combinations of Solvers
	Usage

	Applications
	Improved Attacks on Reduced-Round Rijndael
	Improved Forgery Attacks on Pelican-MAC
	Improvement to the Piret-Quisquater Fault Attack

	References

	How to Improve Rebound Attacks
	Introduction
	When t is Group-Wise
	Basic Algorithm for Solving Problem 1: Instant Matching
	Solving Problem 1 When Pt2zs > 2lA: Gradual Matching
	Time-Memory Trade-Offs When Pt2zs >2lA: Parallel Matching
	Example 2: Gradual Matching vs Parallel Matching

	Stop-in-the-Middle Algorithms
	Algorithm for Lane-256
	Algorithm for ECHO-256

	How to Improve the Best Known Attacks on Five SHA-3 Candidates
	Conclusion
	References

	A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack
	Introduction
	Our Contribution
	Related Work

	The Invariant Subspace Attack
	General Idea
	Attack against PRINTcipher
	Other Attack Profiles
	Protecting Against the Attack

	Truncated Differential Attacks
	Rephrasing the Attack in Terms of Truncated Differentials

	Statistical Saturation Attacks and Multidimensional Linear Attacks
	Necessary Background Information
	On the Choice of the Values of the Fixed Bits
	On the Existence of Highly Biased Approximations

	Conclusions
	References

	The PHOTON Family of Lightweight Hash Functions
	Introduction
	Design Choices
	Extended Sponge Functions
	An AES-like Internal Permutation

	The PHOTON Hash-Function Family
	The Domain Extension Algorithm
	The Internal Permutations

	Performances and Comparison
	Design Flow
	Hardware Architectures
	Hardware Results and Comparison
	Software Implementation

	Conclusion
	References

	Secure Computation
	Perfectly-Secure Multiplication for Any t < n/3
	Introduction
	Preliminaries and Tools
	Verifying That a Shared Polynomial is of Degree t
	The Verification Protocol
	Complaint Verification – The Fevalj Functionality

	Efficient Multiplication Using Bivariate VSS
	$F_VSS^subshare$ for Free
	Transformation from Univariate to Bivariate – F_extend
	Bivariate Complaint Verification – The F_eval^k Functionality
	The F_VSS^mult Functionality for Sharing a Product of Shares
	Wrapping Things Up – Perfectly-Secure Multiplication

	References

	The IPS Compiler: Optimizations, Variants and Concrete Efficiency
	Introduction
	The IPS Compiler
	Optimizations of the IPS Compiler
	Variants of the IPS Compiler for Covert Adversaries
	The Concrete Efficiency of the IPS Protocol

	Optimizations of the IPS Compiler
	Efficient Watchlist Setup
	Securely Realizing Multi-sender k-out-of-n Oblivious Transfer
	Flexibility of the Outer Protocol

	IPS Variants Using Covert Adversaries
	Secure Computation for Malicious from Covert Adversaries
	Secure Computation for Covert from Semi-Honest Adversaries
	The Semi-honest Cost of Malicious Oblivious Transfer

	The Concrete Efficiency of IPS
	An Analysis of the Building Blocks
	Instantiating the Parameters
	Setting Concrete Values

	References

	1/p-Secure Multiparty Computation without Honest Majority and the Best of Both Worlds
	Introduction
	Our Results

	Background and the Model of Computation
	Feasibility Results for 1/p-Secure Multiparty Computation
	Protocols with Less Than Two-Thirds Corrupt Parties
	The Protocol for Polynomial-Size Domain with a Dealer
	Eliminating the Dealer of the Protocol
	A 1/p-Secure Protocol for Polynomial Range

	The 3-party Protocol Tolerating Two Corrupt Parties
	Best of Both Worlds – The 1/p Way
	Best of Both Worlds – The 1/p-(full)-Security Variant

	Impossibility of 1/p-secure Computation with Non-constant Number of Parties
	Impossibility of Achieving ``The Best of Both Worlds" for General Functionalities

	References

	Leakage and Side Channels
	Leakage-Resilient Zero Knowledge
	Introduction
	Our Results
	Our Techniques

	Leakage-Resilient Zero Knowledge: Interactive Case
	Our Protocol

	Leakage-Resilient NIZK
	Our Result

	Applications of Leakage-Resilient Zero Knowledge
	UC with Leaky Tokens
	Fully Leakage-Resilient Signatures

	Conclusions
	References

	A Comprehensive Evaluation of Mutual Information Analysis Using a Fair Evaluation Framework
	Introduction
	DPA Attacks
	Reasoning about the Success and Efficiency of DPA Attacks
	Distinguishers for DPA Attacks

	A Comprehensive Evaluation Framework
	Results
	Hamming-Weight Leakage
	Hamming-Distance Leakage
	Theoretical vs. Practical Success

	Conclusions
	References

	Key-Evolution Schemes Resilient to Space-Bounded Leakage
	Introduction
	Leakage Resilient Key Evolution: Theory vs. Practice
	Our Model: Space-Bounded Leakage
	Our Results
	Some Implementation Details
	Organization
	Related Work

	Random-Oracle Labeling of a Graph.
	Our Key-Evolution Scheme
	Games on Tower Graphs
	Model of Computation
	Pebbling Games on Tower Graphs
	Auxiliary Lemmata
	The Impossibility of Pebbling
	Connection between RO Labeling and the Pebbling Game

	Proof of Theorem
	References

	Generic Side-Channel Distinguishers: Improvements and Limitations
	Introduction
	Side-Channel Analysis
	The New Generic Test
	Specification
	Pros and Cons

	Experiments
	Conclusion and Open Problems
	References

	Cryptography with Tamperable and Leaky Memory
	Introduction
	Our CTL Model
	Our Results
	Previous Work

	Overview
	OurCTL Model
	Main Lemma
	Encryption Scheme in the CTL Model
	Signature Schemes in the CTL Model
	Signature Scheme in the Continual Tampering and Bounded Leakage Model
	References

	Quantum Cryptography
	Merkle Puzzles in a Quantum World
	Introduction
	Merkle's Original Scheme and How to Break and Partially Repair It
	Quantum Attack and Partial Remedy

	Improved Key Distribution Scheme
	Quantum Attack
	Lower Bound

	Fully Classical Key Distribution Scheme
	Quantum Attack
	Lower Bound

	Conclusion, Conjectures and Open Questions
	References
	Quantum Query Complexity

	Classical Cryptographic Protocols in a Quantum World
	Introduction
	Our Contributions
	RelatedWork

	Preliminaries
	Quantum Stand-Alone Security and Modular Composition
	Security Definition
	Modular Composition

	Quantum Stand-Alone-Secure ZK Arguments of Knowledge
	Classical Protocols with Quantum UC Security
	Classical Proofs for Quantum Adversaries: Simple Hybrid Argument

	Equivalence between GZK and GCF
	Applications and Discussions
	References

	Position-Based Quantum Cryptography: Impossibility and Constructions
	Introduction
	Background
	Our Approach and Our Results
	Related Work
	Our Attack and Our Schemes in More Detail

	Preliminaries
	Notation and Terminology

	Setup and the Task of Position Verification
	The Security Model
	Secure Position Verification

	Instantaneous Nonlocal Quantum Computation
	Impossibility of Unconditional Position Verification
	Secure Position-Verification in the No-PE Model
	Other Position-based Cryptographic Tasks
	Conclusion and Open Questions
	References

	Lattices and Knapsacks
	Analyzing Blockwise Lattice Algorithms Using Dynamical Systems
	Introduction
	Reminders
	Terminating BKZ
	Analysis of BKZ’ in the Sandpile Model
	The Model and Its Dynamical System Interpretation
	Solutions of the Dynamical System
	Speed of Convergence of the Dynamical System

	AnalysisofBKZ’
	A Dynamical System for (Genuine) BKZ’ Tours
	Analysis of the Updated Dynamical System

	Applications to LLL-Reduction
	References

	Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions
	Introduction
	Preliminaries
	Probability
	Groups and Knapsack Function Families
	Fourier Analysis and Learning

	Pseudorandomness of Knapsack Functions
	From Predictability to Invertibility
	From Distinguishability to Predictability

	Implications and Applications
	Specific Groups and Input Distributions
	Applications to LWE

	OpenProblems
	References

	Invited Talk
	Tor and Circumvention: Lessons Learned
	References

	Public-Key Encryption
	Fully Homomorphic Encryption over the Integers with Shorter Public Keys
	Introduction
	The DGHV Scheme over the Integers
	Our Variant of the DGHV Scheme
	Description
	Constraints on the Parameters
	Correctness

	Security of our Variant
	Overview
	Leftover Hash Lemma
	Proof of Pairwise Independence
	Semantic Security

	Making the Scheme Fully Homomorphic
	The Squashed Scheme
	Bootstrapping

	Attacks
	Brute Force Attack on the Noise
	Approximate-GCD Attack on the Public Key
	Lattice Attack on the Sparse Subset-sum Problem

	Implementation of the Fully Homomorphic Scheme
	Recryption
	Optimization of the Decryption Circuit
	Compression of Encrypted Secret Key Bits
	Smaller Dimension for Knapsack Encryption
	Concrete Parameters

	References

	Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages
	Introduction
	Our Results and Techniques
	Other Related Works
	Notation

	The Ring LWE Problem, and Variants
	Choice of Parameters

	A Somewhat Homomorphic Encryption Scheme
	The Symmetric Scheme
	Public-Key Encryption

	Key Dependent Message (Circular) Security
	$KDM^(v)$ Security

	References

	Bi-Deniable Public-Key Encryption
	Introduction
	Our Contributions
	Discussion
	Other Related Work

	Preliminaries
	Bideniable Encryption
	Bideniable Encryption from Simulatable Encryption
	A ``Coordinated'' Scheme
	Correctness and Security

	Bideniable Encryption from Bitranslucent Sets
	Lattice-Based Bitranslucent Set
	References

	Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting
	Introduction
	Our Contributions
	Related Work
	Overview of Our Approach

	Hard-to-Invert Auxiliary Inputs
	Modeling Security in the Auxiliary-Input Setting
	A Scheme Based on the d-Linear Assumption
	A Scheme Based on Subgroup Indistinguishability Assumptions
	References

	Symmetric Schemes
	The Collision Security of Tandem-DM in the Ideal Cipher Model
	Introduction
	Definitions
	The FGL Collision Resistance Proof
	Main Result: Collision Resistance of Tandem-DM
	Conclusion
	References

	Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions
	Introduction
	Preliminaries
	New Security Definitions
	One-Wayness of a Random OPF
	Further Security Considerations for ROPFs

	Achieving Stronger Security
	Committed Efficiently-Orderable Encryption
	Modular OPE and Analysis of an Ideal MOPE Scheme

	References

	A New Variant of PMAC: Beyond the Birthday Bound
	Introduction
	Preliminaries
	PMAC_Plus: Specification and Security
	Proofs of Security
	Basic Ideas
	Bounding the Probability of Each Winning Event
	Summing Up the Probabilities

	Discussion
	References

	Authenticated and Misuse-Resistant Encryption of Key-Dependent Data
	Introduction
	Definitions
	Impossibility Results
	Universal-Nonce Insecurity
	Header Insecurity
	Remarks

	The RHtE Transform and Its Security
	Implementation Results
	References

	Signatures
	Round Optimal Blind Signatures
	Introduction
	Our Contribution

	Blind Signatures and Their Security
	Towards a Secure Construction
	Required Primitives
	Construction and Security Proofs
	Construction
	Security
	Security Proofs

	References

	Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Bilinear Groups
	Secure Signature Schemes
	Structure-Preserving Signature Schemes

	Lower Bounds on Structure-Preserving Signatures
	Impossibility of One Verification Equation
	Impossibility of Unilateral Signatures
	Impossibility of Signatures with 2 Group Elements

	Minimal Structure-Preserving Signatures
	Other Aspects of Structure-Preserving Signatures
	Strong One-Time Signatures Based on Standard Assumptions
	Non-interactive Assumptions
	Rerandomizable Signatures

	References

	Oblivious Transfer and Secret Sharing
	Constant-Rate Oblivious Transfer from Noisy Channels
	Introduction
	Our Results
	Overview of Techniques
	Related Work

	Preliminaries
	Statistical Security to Perfect Security
	A Constant-Rate OT Protocol
	A Constant-Rate String-OT Protocol
	Error-Tolerant Protocol for FOT over FBSC
	An Extension to the IPS Compiler

	References

	The Torsion-Limit for Algebraic Function Fields and Its Application to Arithmetic Secret Sharing
	Introduction
	Preliminaries
	Torsion Point Limits
	Proof Theorem 1(ii)
	Proof of Theorem 1(iii)
	Proof of Theorem 2

	Riemann Roch Systems of Equations
	Application to Arithmetic Secret Sharing
	References

	Multivariate and Coding-Based Schemes
	Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials
	Introduction
	Preliminaries
	A 3-pass Identification Scheme
	A 5-pass Identification Scheme
	Security and Efficiency
	Security of the Identification Schemes
	Efficiency

	On the Security against Active Attack in Parallel Repetition
	Extensions of Our Scheme
	Conclusion
	References

	Inverting HFE Systems Is Quasi-Polynomial for All Fields
	Introduction
	HFE Systems
	Quadratic Operators
	HFE Systems
	Gröbner Basis Attacks

	Degree of Regularity
	Bounding the Degree of Regularity Using Q-Rank
	Conclusion
	References

	Smaller Decoding Exponents: Ball-Collision Decoding
	Introduction
	Review of the McEliece Cryptosystem
	The Ball-Collision-Decoding Algorithm
	Relationship to Previous Algorithms
	Complexity Analysis
	Concrete Parameter Examples
	Asymptotic Complexity of Ball-Collision Decoding
	Choosing McEliece Parameters
	References

	McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks
	Introduction
	Hidden Subgroup Attacks on McEliece-type Cryptosystems
	Quantum Fourier sampling (QFS)
	Preliminaries and Notation
	Distinguishability by QFS

	Applications of the Main Theorem
	Strong Fourier Sampling over Sn
	Applications to McEliece-type Cryptosystems

	Bounding Distinguishability
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

