


Lecture Notes in Artificial Intelligence 6822

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Mehdi Dastani Amal El Fallah Seghrouchni
Jomi Hübner João Leite (Eds.)

Languages, Methodologies,
and Development Tools
for Multi-Agent Systems

Third International Workshop, LADS 2010
Lyon, France, August 30 – September 1, 2010
Revised Selected Papers

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Mehdi Dastani
Utrecht University, Intelligent Systems Group
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: mehdi@cs.uu.nl

Amal El Fallah Seghrouchni
LIP6 – University Pierre and Marie Curie
104 Avenue du Président Kennedy, 75016 Paris, France
E-mail: amal.elfallah@lip6.fr

Jomi Hübner
Federal University of Santa Catarina, Dept. of Automation and Systems Engineering
P.O.Box 476, Florianópolis, SC 88040-900, Brazil
E-mail: jomi@das.ufsc.br

João Leite
CENTRIA, Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: jleite@di.fct.unl.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22722-6 e-ISBN 978-3-642-22723-3
DOI 10.1007/978-3-642-22723-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935119

CR Subject Classification (1998): I.2.11, I.2, I.6, H.3.5, D.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book contains the proceedings of the Third International Workshop on
Languages, Methodologies and Development Tools for Multi-agent Systems
(LADS 2010), which took place at the Domaine Valpré in Lyon, France, from
August 30 to September 1, 2010. As in the previous two editions, this work-
shop was a part of MALLOW, a federation of workshops on Multi-Agent Logics,
Languages, and Organizations.

The LADS 2010 workshop addressed both theoretical and practical issues
related to developing and deploying multi-agent systems. It constituted a rich
forum where leading researchers from both academia and industry could share
their experiences on formal approaches, programming languages, methodologies,
tools and techniques supporting the development and deployment of multi-agent
systems. From a theoretical point of view, LADS 2010 aimed at addressing issues
related to theories, methodologies, models and approaches that are needed to
facilitate the development of multi-agent systems ensuring their predictability
and verification. Formal declarative models and approaches have the potential of
offering solutions for the specification and design of multi-agent systems. From
a practical point of view, LADS 2010 aimed at stimulating research and dis-
cussion on how multi-agent system specifications and designs can be effectively
implemented and tested.

This book is the result of a strict selection and review process. From 11 papers
originally submitted to LADS 2010, together with 2 invited submissions, after
2 rounds of reviews we selected 8 high-quality papers covering important topics
related to multi-agent programming technology.

We would like to thank all authors, Programme Committee members, and
additional reviewers for their outstanding contribution to the success of LADS
2010. We would also like to thank all the sponsors. We are particularly grate-
ful to Olivier Boissier, Salima Hassas, Nicolas Maudet and all the MALLOW
Organizing Committee for their technical support and for hosting LADS 2010.

May 2011 Mehdi Dastani
Amal El Fallah Seghrouchni

Jomi Hübner
João Leite



Organization

Workshop Chairs

Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
Jomi Hübner Federal University of Santa Catarina, Brazil
João Leite Universidade Nova de Lisboa, Lisbon, Portugal

Programme Committee

Marco Alberti Universidade Nova de Lisboa, Portugal
José Júlio Alferes Universidade Nova de Lisboa, Portugal
Matteo Baldoni Univesità degli Studi di Torino, Italy
Juan Botia Universidad de Murcia, Spain
Lars Braubach University of Hamburg, Germany
Yves Demazeau CNRS - Laboratoire LIG, France
Juergen Dix Clausthal University of Technology, Germany
Paolo Giorgini University of Trento, Italy
Koen Hindriks Delft University of Technology,

The Netherlands
Shinichi Honiden National Institute of Informatics, Japan
Wojtek Jamroga University of Luxembourg
Peep Küngas University of Tartu, Estonia
Brian Logan University of Nottingham, UK
Alessio Lomuscio Imperial College London, UK
Viviana Mascardi Università degli Studi di Genova, Italy
John-Jules Meyer Utrecht University, The Netherlands
Alexander Pokahr University of Hamburg, Germany
Alessandro Ricci University of Bologna, Italy
Patrick Taillibert Thales Aerospace Division, France
Paolo Torroni University of Bologna, Italy
Leon van der Torre University of Luxembourg
M. Birna van Riemsdijk Delft University of Technology,

The Netherlands
Pinar Yolum Bogazici University, Turkey
Yingqian Zhang Erasmus University Rotterdam,

The Netherlands



VIII Organization

Additional Reviewers

Natasha Alechina
Cristina Baroglio
Tristan Behrens
Francesco Belardinelli
Akin Gunay
Ozgur Kafali
Elisa Marengo
Yasuyuki Tahara

LADS Steering Committee

Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
João Leite Universidade Nova de Lisboa, Portugal
Paolo Torroni University of Bologna, Italy



Table of Contents

OperettA: Organization-Oriented Development Environment . . . . . . . . . . 1
Huib Aldewereld and Virginia Dignum

Towards Efficient Multi-agent Abduction Protocols . . . . . . . . . . . . . . . . . . . 19
Gauvain Bourgne, Katsumi Inoue, and Nicolas Maudet

Validation of Agile Workflows Using Simulation . . . . . . . . . . . . . . . . . . . . . . 39
Kai Jander, Lars Braubach, Alexander Pokahr, and
Winfried Lamersdorf

Augmenting Agent Platforms to Facilitate Conversation Reasoning . . . . . 56
David Lillis and Rem W. Collier

Exploiting Agent-Oriented Programming for Developing Future
Internet Applications Based on the Web: The JaCa-Web Framework . . . . 76

Mattia Minotti, Alessandro Ricci, and Andrea Santi

JaCa-Android: An Agent-Based Platform for Building Smart Mobile
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Andrea Santi, Marco Guidi, and Alessandro Ricci

An Alternative Approach for Reasoning about the Goal-Plan Tree
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Patricia Shaw and Rafael H. Bordini

Intention Change via Local Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Hans van Ditmarsch, Tiago de Lima, and Emiliano Lorini

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



OperettA: Organization-Oriented Development

Environment�

Huib Aldewereld and Virginia Dignum

1 Utrecht University, The Netherlands
huib@cs.uu.nl

2 Delft University of Technology, The Netherlands
m.v.dignum@tudelft.nl

Abstract. The increasing complexity of distributed applications requires
new modeling and engineering approaches. Such domains require rep-
resenting the regulating structures explicitly and independently from
the acting components (or agents). Organization computational mod-
els, based on Organization Theory, have been advocated to specify such
systems. In this paper, we present the organizational modeling approach
OperA and a graphical environment for the specification and analysis of
organizational models, OperettA. OperA provides an expressive way for
defining open organizations distinguishing explicitly between the organi-
zational aims, and the agents who act in it. That is, OperA enables the
specification of organizational structures, requirements and objectives,
and at the same time allows participants to have the freedom to act ac-
cording to their own capabilities and demands. OperettA takes a Model
Driven Engineering approach combining different formal methods and
enables model validation.

1 Introduction

The engineering of applications for complex and dynamic domains is an increas-
ingly difficult process. Requirements and functionalities are not fixed a priori,
components are not designed nor controlled by a common entity, and unplanned
and unspecified changes may occur during runtime. There is a need for repre-
senting the regulating structures explicitly and independently from the acting
components (or agents). Organization computational models, based on Orga-
nization Theory, have been advocated to specify such systems. Comprehensive
analysis of several agent systems has shown that different design approaches are
appropriate for different domain characteristics [4]. In particular, agent orga-
nization frameworks are suitable to model complex environments where many
independent entities coexist witing explicit normative and organizational struc-
tures and global specification of control measures is necessary.
� This work has been performed in the framework of the FP7 project ALIVE IST-

215890, which is funded by the European Community. The authors would like
to acknowledge the contributions of their colleagues from ALIVE Consortium
(http://www.ist-alive.eu).

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 H. Aldewereld and V. Dignum

A reason for creating organizations is efficiency; that is, to provide the means
for coordination that enables the achievement of global goals in an efficient
manner. This indicates distribution of functions and coordination of activity
such that ‘the right agent is doing the right thing’ [3].

Organization models comprise structural and behavioral aspects [16,11]. Struc-
tural aspects include the formal patterns of relationships between groups and
individuals, and the norms that govern their interactions, while behavioral as-
pects include processes, rules, activities, and operational methods.

Comprehensive models for organizations must, on the one hand, be able to
specify global goals and requirements but, on the other hand, cannot assume that
participating actors will always act according to the needs and expectations of
the system design. Concepts as organizational rules [23], norms and institutions
[7], [8], and social structures [15] arise from the idea that the effective engineering
of organizations needs high-level, actor-independent concepts and abstractions
that explicitly define the organization in which agents live [24]. These are the
rules and global objectives that govern the activity of an organization.

In this paper, we present a graphical environment for the specification and
analysis of organizational models, based on the OperA formalism [2]. This or-
ganization specification tool builds heavily on mechanisms from Model Driven
Engineering (MDE), which enables the introduction and combination of differ-
ent formal methods hence enabling the modeling activity through systematic
advices and model design consistency checking.

The paper is organized as follows: first, in section 2 we introduce and briefly
explain the OperA framework. In section 3 the specification of organizational
models in OperA is detailed. In section 4 we introduce the OperettA Environ-
ment, which is an MDE-based graphical editor for the specification and valida-
tion of OperA organizational models. Finally, section 6 gives some conclusions.

2 Organization Modeling: The OperA Framework

Organization models, combining global requirements and individual initiative,
have been advocated to specify open systems in dynamic environments [9,2]. We
take formal processes and requirements as a basis for the modeling of complex
systems that regulate the action of the different agents. Organizational models
must enable the explicit representation of structural and strategic concerns and
their adaptation to environment changes in a way that is independent from the
behavior of the agents.

The deployment of organizations in dynamic and unpredictable settings brings
forth critical issues concerning the design, implementation and validation of their
behavior [16,11,22], and should be guided by two principles.

– Provide sufficient representation of the institutional requirements so that the
overall system complies with the norms.

– Provide enough flexibility to accommodate heterogeneous components.



OperettA: Organization-Oriented Development Environment 3

Therefore, organizational models must provide means to represent concepts and
relationships in the domain that are rich enough to cover the necessary contexts
of agent interaction while keeping in mind the relevance of those concepts for
the global aims of the system.

The OperA model [2] proposes an expressive way for defining open organiza-
tions distinguishing explicitly between the organizational aims, and the agents
who act in it. That is, OperA enables the specification of organizational struc-
tures, requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands.
At an abstract level, an OperA model describes the aims and concerns of the
organization with respect to the social system. These are described as organi-
zation’s externally observable objectives, that is, the desired states of affairs for
the organization.

The OperA framework consists of three interrelated models. The Organiza-
tional Model (OM) is the result of the observation and analysis of the domain
and describes the desired behavior of the organization, as determined by the
organizational stakeholders in terms of objectives, norms, roles, interactions and
ontologies. The OM will be described in more detail in section 3, using as exam-
ple the conference organization scenario taken from [6].

The OM provides the overall organization design that fulfills the stakeholders
requirements. Objectives of an organization are achieved through the action of
agents, which means that, at each moment, an organization should employ the
relevant agents that can make its objectives happen. However, the OM does not
specify how to structure groups of agents and constrain their behavior by social
rules such that their combined activity will lead to the desired results. The So-
cial Model (SM) maps organizational roles to agents and describes agreements
concerning the role enactment and other conditions in social contracts. Finally,
the Interaction Model (IM) specifies the interaction agreements between role-
enacting agents as interaction contracts. IM specification enable variations to
the enactment of interactions between role-enacting agents. In section 4.2 we
describe the use of MDE principles to implement this framework.

3 The Organization Model

A common way to express the objectives of an organization is in terms of its
expected functionality, that is, what is the organization expected to do or pro-
duce.In OperA, the Organization Model (OM) specifies the means to achieve
such objectives. That is, OM describes the structure and global characteristics
of a domain from an organizational perspective, where global goals determine
roles and interactions, specified in terms of its Social and Interaction Structures.
E.g., how should a conference be organized, its program, submissions, etc.

Moreover, organization specification should include the description of concepts
holding in the domain, and of expected or required behaviors.Therefore, these
structures should be linked with the norms, defined in Normative Structure, and
with the ontologies and communication languages defined in the Communication
Structure.



4 H. Aldewereld and V. Dignum

3.1 The Social Structure

The social structure of an organization describes the roles holding in the organi-
zation. It consists of a list of role definitions, Roles (including their objectives,
rights and requirements), such as PC-member, program chair, author, etc.; a list
of role groups’ definitions, Groups ; and a Role Dependencies graph.

Abstract society objectives form the basis for the definition of the objectives
of roles. Roles are the main element of the Social Structure. From the society
perspective, role descriptions should identify the activities and services necessary
to achieve society objectives and enable to abstract from the individuals that
will eventually perform the role. From the agent perspective, roles specify the
expectations of the society with respect to the agent’s activity in the society. In
OperA, the definition of a role consists of an identifier, a set of role objectives,
possibly sets of sub-objectives per objective, a set of role rights, a set of norms
and the type of role. An example of role description is presented in table 1.

Table 1. PC member role description

Id PC member

Objectives paper reviewed(Paper,Report)

Sub-objectives {read(P), report written(P, Rep),
review received(Org, P, Rep)}

Rights access-confmanager-program(me)

Norms & PC member is OBLIGED to understand English
Rules IF paper assigned THEN PC member is OBLIGED

to review paper BEFORE given deadline
IF author of paper assigned is colleague
THEN PC member is
OBLIGED to refuse to review asap

Groups provide means to collectively refer to a set of roles and are used to
specify norms that hold for all roles in the group. Groups are defined by means
of an identifier, a non-empty set of roles, and group norms. An example of a
group in the conference scenario is the organizing team consisting of the roles
program chair, local organizer, and general chair.

The distribution of objectives in roles is defined by means of the Role Hierar-
chy. Different criteria can guide the definition of Role Hierarchy. In particular,
a role can be refined by decomposing it in sub-roles that, together, fulfill the
objectives of the given role.

This refinement of roles defines Role Dependencies. A dependency graph rep-
resents the dependency relations between roles. Nodes in the graph are roles
in the society. Arcs are labelled with the objectives for which the parent role
depends on the child role. Part of the dependency graph for the conference so-
ciety is displayed in figure 1. For example, the arc between nodes PC-Chair and
PC-member represents the dependency between PC-Chair and PC-member con-
cerning paper-reviewed (PC − Chair �paper reviewed PC − Member). The way



OperettA: Organization-Oriented Development Environment 5

Fig. 1. Role dependencies in a conference

objective g in a dependency relation r1 �g r2 is actually passed between r1 and
r2 depends on the coordination type of the society, defined in the Architectural
Templates. In OperA, three types of role dependencies are identified: bidding,
request and delegation.

3.2 The Interaction Structure

Interaction is structured in a set of meaningful scenes that follow pre-defined
abstract scene scripts. Examples of scenes are the registration of participants in
a conference, which involves a representative of the organization and a potential
participant, or paper review, involving program committee members and the PC
chair. A scene script describes a scene by its players (roles), its desired results
and the norms regulating the interaction. In the OM, scene scripts are specified
according to the requirements of the society. The results of an interaction scene
are achieved by the joint activity of the participating roles, through the realiza-
tion of (sub-)objectives of those roles. A scene script establishes also the desired
interaction patterns between roles, that is, a desired combination of the (sub-)
objectives of the roles. Table 2 gives an example of a scene script.

OperA interaction descriptions are declarative, indicating the global aims of
the interaction rather than describing exact activities in details. Interaction ob-
jectives can be more or less restrictive, giving the agent enacting the role more
or less freedom to decide how to achieve the role objectives and interpret its

Table 2. Script for the Review Process scene

Scene Review Process

Roles Program-Chair (1), PC-member(2..Max)

Results r1 = ∀ P ∈ Papers: reviews done(P, rev1, rev2)

Interact. Pattern PATTERN(r1): see figure 2

Norms & Rules Program-Chair is PERMITTED to assign papers
PC-member is OBLIGED to review papers assigned
before deadline



6 H. Aldewereld and V. Dignum

start

assign
paper
PC1

end

assign
paper
PC2

Assign
deadline

receive
review
PC1

receive
review
PC2

Review
deadline

Fig. 2. Landmark pattern for Review Process

Send Call
for Papers

Form PC

Send Call for
Participation

Paper
Submission

Review
Process

Registration

Paper
Acceptance

Conference
onsite

registration

Conference
Sessions

M

start end

Workshops
N

Fig. 3. Interaction Structure in the conference scenario

norms. Following the ideas of [17,13], we call such expressions landmarks, de-
fined as conjunctions of logical expressions that are true in a state. Landmarks
combined with a partial ordering to indicate the order in which the landmarks
are to be achieved are called a landmark pattern. Figure 2 shows the landmark
pattern for the Review Process. Several different specific actions can bring about
the same state, that is, landmark patterns actually represent families of proto-
cols. The use of landmarks to describe activity enables the actors to choose the
best applicable actions, according to their own goals and capabilities. The re-
lation between scenes is represented by the Interaction Structure (see figure 3).
In this diagram, transitions describe a partial ordering of the scenes, plus even-
tual synchronization constraints. Note that several scenes can be happening at
the same time and one agent can participate in different scenes simultaneously.
Transitions also describe the conditions for the creation of a new instance of
the scene, and specify the maximum number of scene instances that are allowed
simultaneously. Furthermore, the enactment of a role in a scene may have con-
sequences in following scenes. Role evolution relations describe the constraints
that hold for the role-enacting agents as they move from scene to scene.

3.3 The Normative Structure

At the highest level of abstraction, norms are the values of a society, in the
sense that they define the concepts that are used to determine the value or util-
ity of situations. For the conference organization scenario, the desire to share
information and uphold scientific quality can be seen as values. However, val-
ues do not specify how, when or in which conditions individuals should behave



OperettA: Organization-Oriented Development Environment 7

appropriately in any given social setup. In OperA, these aspects are defined in
the Normative Structure. For example, the information sharing value can be
described as D(share(info)). However, besides a formal syntax, this does not
provide any meaning to the concept of value.

In OperA, norms are specified using a deontic logic that is temporal, rela-
tivized (in terms of roles and groups) and conditional. For instance, the follow-
ing norm might hold: “The authors should submit their contributions before the
deadline”, which can be formalized as: Oauthor(submit(paper) ≤ Deadline).

Furthermore, in order to check norms and act on possible violations of the
norms by the agents within an organization, abstract norms have to be translated
into actions and concepts that can be handled within such organizations. To do
so, the definition of the abstract norms are iteratively concretized into more
concrete norms, and then translated into specific rules, violations and sanctions.

Concrete norms are related to abstract norms through a mapping function,
based on the counts-as operator as developed in [1]. For example, in the con-
text of Org, submit(paper) can be concretized as:send mail(organizer, files)∨
send post(organizer, hard copies) →Org submit(paper).

3.4 The Communication Structure

Communication mechanisms include both the representation of domain knowl-
edge (what are we talking about) and protocols for communication (how are we
talking). Both content and protocol have different meanings at the different lev-
els of abstraction (e.g. while at the abstract level one might talk of disseminate,
such action will most probably not be available to agents acting at the imple-
mentation level). Specification of communication content is usually realized using
ontologies, which are shared conceptualizations of the terms and predicates in a
domain. Agent communication languages (ACLs) are the usual means in MAS
to describe communicative actions. ACLs are wrapper languages in the sense
that they abstract from the content of communication.

In OperA, the Communication Structure describes both the content and the
language for communication. The content aspects of communication, or domain
knowledge, are specified by Domain Ontologies and Communication Acts define
the language for communication, including the performatives and the protocols.

4 OperettA Environment

In order to support developers designing and maintaining organization models,
tools are needed that provide an organization-oriented development environ-
ment. The requirements for such a development environment are the following.

1. Organizational Design: The tool should provide means for designing orga-
nizational models in an ‘intuitive’ manner. The tool should allow users to
create and represent organizational structures, define the parties involved in
an organization, represent organizational and role objectives, and define the
pattern of interactions typically used to reach these objectives.



8 H. Aldewereld and V. Dignum

2. Organizational Verification: The tool should provide verification means and
assistance in detecting faults in organizational designs as early as possible,
to prevent context design issues from being translated to the other levels of
system specification.

3. Ontology Design: The tool should to be able to specify, import, and maintain
domain ontologies. Domain ontologies specifying the knowledge for a specific
domain of interaction should be able to be represented, existing ontologies
containing such information should be able to be included (and provide in-
puts for organizational concepts, such as role or objective names). Included
or earlier created ontologies should be maintainable and updatable.

4. Connectivity to System Level: The output of the organizational design tool
is intended for use by system level tools, namely MAS environments and
agent programming languages. The output of the tool thus needs to provide
easy integration and connection between the organization and system level.

5. User-Friendly GUI: A user-friendly graphical interface is to be provided for
users to create and maintain organizational models easily. Help and guide-
lines are useful for beginners to use the tool.

6. Availability: The tool should be available under open source license and for
use by other projects.

We have developed the OperettA development environment as an open-source
solution on the basis of these requirements. OperettA enables the specifica-
tion of OperA OMs, which satisfies the first requirement. OperettA combines
multiple editors into a single package. It provides separate editors on differ-
ent components of organizational models; i.e., it has different (graphical) edi-
tors for each of the main components of an organizational model as defined in
the OperA framework. These specialized editors correspond to the OperA OM
structures: social, interaction, normative and communicative. OperettA (as well
as additional documentation, examples and tutorials) can be downloaded from
http://www.cs.uu.nl/research/projects/opera/.

The OperettA tool is a combination of tools based on the Eclipse Modeling
Framework (EMF) [18] and tools based on the Graphical Modeling Framework
(GMF) integrated into a single editor. Developed as an Eclipse plug-in, OperettA
is fully open-source and follows the MDE principles of tool development. In
the following we look at the editors provided by OperettA, and how OperettA
connects to MAS solutions, thus satisfying requirement 4.

4.1 OperettA Components

The main element of OperettA (see figure 4 for an overview of the tools in
OperettA and their provided functionalities) is the OperA Meta-Model. The
meta-model, created with the EMF tools, provides the (structural) definition
of what organizational models should look like. This meta-model is extended
with the default EMF edit and editor plug-ins to provide model accessors and
the basic tree-based editor for the creation and management of OperA models.
This basic editor has been extended with graphical interfaces for editing parts of

http://www.cs.uu.nl/research/projects/opera/


OperettA: Organization-Oriented Development Environment 9

Fig. 4. OperettA tool components

the organization model: the social diagram editor, and the interaction diagram
editor. A third extention is provided in the partial state description editor which
allows for the inputting and editing of formulas (e.g., as part of the specification
of a norm).

Next to the (graphical) editing extensions, OperettA contains three other
plug-ins for additional functionality. The Validation Framework provides an im-
provement over the default validation of EMF-based tools to provide validation
of additional restrictions. An ontology managing plug-in is included as well to
allow the ontology developed with OperettA to be exported to OWL, as well as
allowing for importing existing ontology into the organization to boot-strap the
organization design. Finally, OperettA contains a Model Tracker plug-in that can
generate re-organization descriptions based on changes made in the OperettA
organization editors.

We discuss the graphical editors and additional plug-ins in more details in the
following.

Social Diagram Editor. This graphical editor provides a view of the Social
Structure element of OMs. It allows the graphical creation of organizational
Roles and Dependencies, thus specifying the social relations between important
parties that play a part in the organization. The Social Diagram Editor also
provides editing capabilities to specify and manage Role related Objectives, to
provide context for the different Roles in an organization. Figure 5 depicts the
Social Diagram Editor of OperettA that is used to enter organizational roles
and dependencies between roles. Role objectives are created and managed via
the objectives editor shown in the bottom part of the figure.



10 H. Aldewereld and V. Dignum

Fig. 5. OperettA social diagram editor

Interaction Diagram Editor. Similar to the Social Diagram Editor, the In-
teraction Diagram Editor provides a graphical view of the Interaction Structure
element of OMs. This editor allows for the specification and management of the
interaction elements of the organization; that is, it is for the specification and
management of the different interactions that take place in the organization in
order to achieve the different (role) objectives specified in the social part of the
OM. The specification of the interaction is done in terms of scenes and tran-
sitions (the connection and synchronization points between scenes). Together,
these define the order in which objectives are to be reached and how the orga-
nization works (though specified on a high level of abstraction). Moreover, the
Interaction Diagram Editor allows for the specification and management of the
Landmark Pattern within scenes. The Landmark Pattern of a scene describes
how the scene is to be played, on the basis of the important states of the organi-
zation (called landmarks) and a specification of the order in which these are to
be achieved (thus, defining a partial ordering over the landmarks). Figure 6 gives
an overview of the Interaction Diagram Editor, with one of the scenes “opened”
to show its landmark pattern.

Ontology Manager. The Ontology Manager part of the OperettA tool is
a plug-in for importing and exporting (domain) ontologies. The creation and



OperettA: Organization-Oriented Development Environment 11

Fig. 6. OperettA interaction diagram editor

maintenance of ontologies is done by external tools (like, for example, Protégé).
Parts of the functionality of organizational ontology editing is included in the
OperettA editors:

– Automatic creation of organizational ontology while designing the organi-
zation. As the designer is inputting the organizational model in OperettA,
OperettA maintains an ontology of role names, objective names, and logical
atoms that the designer uses to define the organization.

– Using an included (existing) ontology for the naming of organizational model
elements; that is, if an (external) ontology is present in the organizational
model it can be used to pick concept names for different parts of an orga-
nizational model (e.g., the name of a role can be picked from an existing
ontology included in the model). The addition of the (external) ontology to
an organizational model is done via the ontology manager.

The functionality of ontology editing in the OperettA tools is limited to organi-
zational ontologies. The Ontology manager plug-in extends OperettA with the
following capabilities:

– Importing an ontology from a file (e.g., rdf or owl [21]). Ontologies about the
domain or organization that is to provide the context of a system might be



12 H. Aldewereld and V. Dignum

already available. These ontologies tend to be stored in some conventional
ontology file-format. The Ontology Manager allows OperettA to import and
use such ontologies.

– Exporting (generated) organizational ontologies to file. In order to align an
use the organizational ontology created by OperettA, the Ontology Manager
extends the OperettA tool with the capability to export the default ontology
(the ontology that is automatically created by OperettA) to an owl file.

The organizational ontology created by OperettA is stored in the Organizational
Model. The ontological elements need to be available to the system level of de-
sign, and thus need to be included in the domain ontology. The integration of
organizational concepts in a domain ontology is not trivial, as it should respect
the structure of the domain ontology while adding organizational concepts as
roles, objectives, etc. and the instances of these concepts; role names, objective
names, etc. The alignment between the exported ontology and the domain on-
tology will have to be done by hand in an external editor, which is a discussion
out of the scope of this paper. The inclusion of the ontology manager satisfies
requirement 3.

Model Tracker. To support reorganization, OperettA is extended with a model
tracker. This model tracker allows a designer to view the changes made on the
organizational model since a last save (but not necessarily the previous one).
By storing the changes to the organizational model in a history file, the model
tracker can be used to generate scripts that express how an organization is
changed. Reorganization scripts capture changes in a precise and concise manner,
and can be used to communicate organizational changes to the system level.

Validation Framework. The validation plug-in of OperettA overwrites the
basic validation provided by the EMF framework. Instead of just verifying con-
straints specified in the OperA meta-model, the validation has been extended
with additional verification constraints to minimize organizational design mis-
takes. The overall purpose of the validation plug-in is to provide OM designers
meaningful feedback to eliminate design errors as early as possible (in the de-
sign process). The validation plug-in is installed separately from OperettA, but
after installation it can be invoked from within each of the different OperettA
editing views. The validation plug-in seamlessly overwrites the standard EMF
validation, making it the new default manner of validating OperettA models.

The validation plug-in works directly on the model instance to verify vari-
ous modeling constraints, accessing the model via the meta-model definitions.
Some examples of the constraints validated are checking that roles have a name,
checking that role names are unique, checking that all roles have an objective,
and so on. Less stringent constraints are checked as well, like, for example,
whether roles are connected to other roles via dependencies; i.e., while it does
not hold for every OM, in most models roles should be connected to other roles
(that is, it should be depending upon (an)other role(s) or being depended upon
by (an)other role(s)). Such “soft” constraints are presented to designer as a



OperettA: Organization-Oriented Development Environment 13

Fig. 7. Example validation constraints

Fig. 8. A norm in OperettA

warning, intended to have the designer rethink their model and update if appro-
priate. The validation plugin fulfills requirement 2.

The validation framework uses OCL constraint language to specify the checks
to be made on the OperA model. Figure 7 shows two example constraints from
the validation framework. The first constraint is similar to the kind of constraints
checked by the EMF framework, that is, checking whether the model is correctly
filled according to the meta-model specifications. In the case shown, it is checked
that Roles have a Name.

The other constraint shown in figure 7 is checking a methodological con-
straint, that is, whether the model is specified correctly according to OperA
requirements. In the case shown below, it is checked that the landmarks in a
landmark pattern are connected, that is, that a landmark pattern does not con-
tain disconnected parts. This sort of constraints cannot be expressed in EMF,
but can be expressed and validated with the validation framework.

Partial State Description Editor. Formulas are an important part of the
organizational model, as they provide the necessary semantics of the elements.
Formulas are located in several places, such as in the specification of Objectives,
Landmarks and Norms. The norms are particularly important as they provide
guidelines on a high level of abstraction for the participants to follow. An example
norm in OperettA is shown in figure 8. Norms in OperettA are expressed in a
formalization similar to [14] The norm shown in this figure describes that the
paper submission scene should end within 24 days after the call for papers scene
has ended. The norm is input using several logical formulas; one for the activation
condition expressing when the norm is active (the send call for paper scene has
ended), one for the expiration condition expressing when the norm is no longer



14 H. Aldewereld and V. Dignum

Fig. 9. OperettA partial state description editor

active (the paper submission scene has ended), one for the maintenance condition
expressing the formula to be checked when the norm is active to see if violations
have happened (the paper submission happens within 24 days of the call for
papers), and one for the deadline expressing an explicit state of affairs when the
norm should have been acted upon (the norm conditions are supposed to be all
filled, except for the deadline, which may be omitted).

Inputting the various logical formulas contained in a norm (or in the objec-
tives or landmarks) is done in a straightforward manner via the Partial State
Description Editor. The Partial State Description Editor allows users to enter
the formula by either typing or clicking. The editor automatically parses the
formula being input and colors the elements to highlight the various elements
and provide immediate feedback on whether the norm is parsed as intended by
the user. Figure 9 shows the Partial State Description Editor in operation.

The top field of the editor allows the user to input the formula by typing
(hovering over the operator buttons gives a hint about the commands that can
be used to type the operators). The middle two lists give an overview of the
concepts available in the model (left list) and the concepts that will be added
when the formula is added (right list). The bottom view provides a preview of
the formula presented in its EMF format, which can be used to check whether
the elements are parsed in the correct manner.

This extension, with the graphical editors for the social and interaction struc-
tures, fulfills requirement 5.

4.2 Connectivity to System Level

The OperettA tool has only off-line functionalities; it is used by designers to
create the context of the system and their linked ontologies. It provides de-
sign and validation functionalities for the creation and management of OperA
organizational models. The models generated by the OperettA tool are XML



OperettA: Organization-Oriented Development Environment 15

specifications that comply with the OperA meta-model, a fragment of this meta-
model is depicted in Figure 10. The meta-model is used to validate OperA models
(as mentioned in the Validation Framework earlier). The OperA models created
by OperettA support the specification of Multi Agent Systems (MAS) and can
be used in different ways, both during the design phase of MAS as well as at
runtime. During the design phase, the OperA model guides the definition of the
MAS architecture and provides a basis for the specification of agents and their
interactions. In fact, role specifications can be used as a skeleton for agents tailor-
made to enact that role. This results in MAS that comply with the organization
model described by the OperA specification. However, OperA assumes the sep-
aration between organization and agent specification which means that OperA
models should be ‘interpretable’ by agents that have been developed elsewhere.
In this sense, OperA models can be used by existing agents at execution time to
evaluate their possibilities of enacting that organization. That is, agents could
request information about the organization, evaluate how their participation in
that organization would benefit their goals and decide to take up a role in the
organization, hence accepting the responsibility to fulfill that role’s objectives.

The design phase approach uses Model Driven Engineering (MDE) principles
based on meta-model transformation. MDE refers to the systematic use of models
as primary artifacts throughout the Software Engineering lifecycle. The defining
characteristics of MDE is the use of models to represent the important aspect of
the system, be it requirements, high-level designs, user data structures, views,
interoperability interfaces, test cases, or implementation-level artifacts such as
code. The Model Driven Development promotes the automatic transformation

Fig. 10. OperA meta-model (fragment)



16 H. Aldewereld and V. Dignum

OperA
Meta Model

OperA
Model

MAS
Meta Model

MAS 
Model

Domain 
Independent

Domain
Specific

transforms

instantiates

generates

conforms

OperA
Meta Model

OperA
Model

MAS
Meta Model

MAS 
Model

instantiates

uses/compliesunderstands

Domain 
Independent

Domain
Specific

Fig. 11. MDE to generate agents (left) and for use by organisation-aware agents (right)

of abstracted models into specific implementation technologies, by a series of
predefined model transformations.

Following this approach, depicted in Figure 11 (left), a transformation is de-
fined between the OperA meta-model and the meta-model of a specific MAS
architecture. Using this transformation and a domain specific OperA model, a
MAS can be generated that complies to the particular MAS meta-model and im-
plements the organization model defined in the OperA model. This approach was
followed in the ALIVE project for the generation of AgentScape systems from
OperA models [10]. In the same way, agent-based simulations can be developed.

The execution phase approach requires agents that are able to understand the
OperA meta-model such that they can enact roles in an organization, defined as
a domain specific OperA model (cf. Figure 11 (right)). Agents who want to enter
and play roles in an organization are expected to understand and reason about
the organizational specification, if they are to operate effectively and flexibly
in the organization. This implies that agents should have reflective capabilities
with respect to their own goals, beliefs, perceptions and action potential. Agents
that are capable of such organizational reasoning and decision making are called
organization-aware agents [20]. In [19] we investigate how GOAL [12] agents can
determine whether it has the necessary capabilities to play roles in an OperA
organization.

5 Design Guidelines

In the previous we introduced organizational modeling and the OperettA En-
vironment to support this. In this section we present a small overview on how
one goes about designing an organization. After identifying that an organization
presents the solution to the problem:

1. Identify (functional) requirements: First one determines the global function-
alities and objectives of the society.

2. Identify stakeholders: The analysis of the objectives of the stakeholders iden-
tifies the operational roles in the society. These first two steps set the basis
of the social structure of the OperA model.



OperettA: Organization-Oriented Development Environment 17

3. Set social norms, define normative expectations: The analysis of the require-
ments and characteristics of the domain results in the specification of the
normative characteristics of the society. This results in the norms in the
normative structure.

4. Refine behavior: Using means-end and contribution analysis, a match can be
made between what roles should provide and what roles can provide. This
aspect contributes to refinement of role objectives and rights.

5. Create interaction scripts: Using the results from steps 3 and 4, one can
now specify the patterns of interaction for the organization, resulting in the
interaction structure.

More details about the methodological steps taken to create organizational mod-
els can be found in [5].

6 Conclusions

In this paper, we present an organization-oriented modeling approach for system
development. The OperA modeling framework can be used for different types
of domains from closed to open environments and takes into consideration the
differences between global and individual concerns. The OperettA tool supports
software and services engineering based on the OperA modeling framework. It
has been used in the European project ALIVE [10] that combines cutting edge
coordination technology and organization models to provide flexible, high-level
means to model the structure of inter-actions between services in an environment.

References

1. Aldewereld, H., Álvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J.: Engineer-
ing social reality with inheritance relations. In: Aldewereld, H., Dignum, V., Picard,
G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 116–131. Springer, Heidelberg (2009)

2. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1. Utrecht University, PhD Thesis (2004)

3. Dignum, V.: The role of organization in agent systems. In: Dignum, V. (ed.) Hand-
book of Research on Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models, pp. 1–16. Information Science Reference (2009)

4. Dignum, V., Dignum, F.: Designing agent systems: State of the practice. Interna-
tional Journal on Agent-Oriented Software Engineering 4(3) (2010)

5. Dignum, V., Dignum, F., Meyer, J.J.: An agent-mediated approach to the sup-
port of knowledge sharing in organizations. Knowledge Engineering Review 19(2),
147–174 (2004)

6. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure,
norms and ontologies into agent organizations. In: Bordini, R.H., Dastani, M.M.,
Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346,
pp. 181–198. Springer, Heidelberg (2005)

7. Dignum, V., Dignum, F.: Modelling agent societies: Co-ordination frameworks
and institutions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 191–204. Springer, Heidelberg (2001)



18 H. Aldewereld and V. Dignum

8. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
pp. 348–366. Springer, Heidelberg (2002)

9. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: ICMAS 1998, pp. 128–135. IEEE, Los Alamitos
(1998)

10. European Commission FP7-215890. ALIVE (2009), http://www.ist-alive.eu/
11. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational

structures in multiagent systems. In: AAMAS 2005: Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 690–697. ACM, New York (2005)

12. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming:
Languages, Tools and Applications. Springer, Berlin (2009)

13. Kumar, S., Huber, M., Cohen, P., McGee, D.: Towards a formalism for conversation
protocols using joint intention theory. Comp. Intelligence 18(2) (2002)

14. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a formalisation of electronic contracting environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428,
pp. 156–171. Springer, Heidelberg (2009)

15. Van Dyke Parunak, H., Odell, J.J.: Representing social structures in UML. In:
Wooldridge, M., Weiss, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
p. 1. Springer, Heidelberg (2002)

16. Penserini, L., Grossi, D., Dignum, F., Dignum, V., Aldewereld, H.: Evaluating
organizational configurations. In: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IAT 2009 (2009)

17. Smith, I., Cohen, P., Bradshaw, J., Greaves, M., Holmback, H.: Designing con-
versation policies using joint intention theory. In: ICMAS-1998. IEEE, New York
(1998)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Eclipse Series. Addison-Wesley Professional, London (2008)

19. van Riemsdijk, B., Dignum, V., Jonker, C., Aldewereld, H.: Programming role
enactment through reflection (2010) (under Submission)

20. van Riemsdijk, M.B., Hindriks, K. V., Jonker, C. M.: Programming organization-
aware agents. In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS,
vol. 5881, pp. 98–112. Springer, Heidelberg (2009)

21. W3C. Owl-s (2004), http://www.w3c.org/Submission/OWL-S
22. Weigand, H., Dignum, V.: I am autonomous, you are autonomous. In: Nickles, M.,

Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp.
227–236. Springer, Heidelberg (2004)

23. Zambonelli, F.: Abstractions and infrastructures for the design and development
of mobile agent organizations. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.)
AOSE 2001. LNAI, vol. 2222, pp. 245–262. Springer, Heidelberg (2002)

24. Zambonelli, F., Jennings, N., Wooldridge, M.: Organizational abstractions for the
analysis and design of multi-agent systems. In: Ciancarini, P., Wooldridge, M.J.
(eds.) AOSE 2000. LNCS, vol. 1957, pp. 235–251. Springer, Heidelberg (2001)

http://www.ist-alive.eu/
http://www.w3c.org/Submission/OWL-S


Towards Efficient Multi-agent Abduction Protocols

Gauvain Bourgne1, Katsumi Inoue1, and Nicolas Maudet2

1 National Institute of Informatics
Tokyo, Japan

{bourgne,ki}@nii.ac.jp
2 LAMSADE,

Paris Dauphine University, France
nicolas.maudet@lamsade.dauphine.fr

Abstract. What happens when distributed sources of information (agents) hold
and acquire information locally, and have to communicate with neighbouring
agents in order to refine their hypothesis regarding the actual global state of this
environment? This question occurs when it is not possible (e. g. for practical
or privacy concerns) to collect observations and knowledge, and centrally com-
pute the resulting theory. In this paper, we assume that agents are equipped with
full clausal theories and individually face abductive tasks, in a globally consis-
tent environment. We adopt a learner/critic approach. We present the Multi-agent
Abductive Reasoning System (MARS), a protocol guaranteeing convergence to a
situation “sufficiently” satisfying as far as consistency of the system is concerned.
Abduction in a full clausal theory has however already a high computational cost
in centralized settings, which can become much worse with arbitrary distribu-
tions. We thus discuss ways to use knowledge about each agent’s theory language
to improve efficiency. We then present some first experimental results to assess
the impact of those refinements.

1 Introduction

In multi-agent systems, the inherent distribution of autonomous entities, perceiving and
acting locally, is the source of many challenging questions. To overcome the limitation
of their own knowledge, usually local and incomplete, agents are driven to form some
hypotheses and share information with other agents. Especially, abductive reasoning
is a form of hypothetical reasoning deriving the possible causes of an observation. It
can be used to complete an agent’s understanding of its environment by explaining its
observations, or, more pro-actively, for planning, as one can try to find the possible
actions that might cause the completion of a goal. However reasoning in a sound man-
ner with distributed knowledge rises interesting problems, as one cannot ensure locally
the consistency of an information. Moreover, the system often comes with severe com-
munication restrictions, due to physical (e. g. the limited scope of a communication
device) or reasoning (e. g. the mere impossibility to consider all the potential commu-
nications) limitations of agents populating it. For such situations, we presented in [5]
a sound mechanism that is guaranteed to find an abductive hypotheses with respect to
distributed full clausal theories whenever one exists. This Multi-agent Abductive Rea-
soning System, MARS, is based on a consequence finding tools named SOLAR [14],
that serves as a main reasoning engine. To be able to use such mechanism in classical

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 19–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



20 G. Bourgne, K. Inoue, and N. Maudet

agent applications, it is important to define it in term of protocols and strategies. This
paper first propose such a description, providing a detailed account of the communi-
cations between the agents which was lacking from the previous version. We are then
concerned here with the efficiency of this mechanism, and thus want to evaluate and
improve its average computational and communicational cost.

Distributed abduction has been considered in recent years in the ALIAS system [6].
They distribute the abductive programming algorithm of [10], using abductive logic
program to represent each agent’s theory. More recently, DARE [12] addressed a simi-
lar problem, but consider possible dynamicity of the system by allowing agents to enter
or exit some proof cluster. In none of these works however is the issue of communi-
cation constraints explicitely raised. Studies of ALP with runtime addition of integrity
constraint [2] is also of interest for distributed abduction as it can be applied to ne-
gotiations in which an agent shares its integrity constraints as needed. Another related
work is the peer-to-peer consequence finding algorithm DeCA [1]. Based on a different
method (splitting clauses), it is to our knowledge the only other work in this domain tak-
ing into account restrictions of communication between peers. It is however restricted
to propositional theories. The work on partition-based logical reasoning presented [3] is
of particular interest for our present study as it investigates efficient theorem proving in
partitioned theories. It relies on communication languages describing the common sym-
bol in the individual languages of pairs of agents. However, this approach and the pre-
vious one explore all the consequences of the distributed theories, whereas we are only
concerned with some new consequences of the theories with respect to some knowl-
edge (namely the negated observations when computing a hypothesis through inverse
entailment, or the hypothesis itself when ensuring its consistency). As a result, while
inspirational to improve the efficiency, they cannot be directly applied to our approach.

The rest of this paper is as follows. Section 2 gives the necessary background on
abduction and consequence finding. Then, Section 3 describe formally a multi-agent
abduction problem, and present the MARS protocol, giving details about the communi-
cations exchanged over its execution. Efficiency is then discussed, and we describe two
improvements on the previous protocol. These variants are then experimentally tested
in Section 4, and we conclude in Section 5.

2 Abductive Reasoning

2.1 Preliminaries

First, we review some notions and terminology to represent our problem in a logical
setting. An atom is given as P (t1, . . . , tn) where P is a predicate symbol of arity n and
t1, . . . , tn are terms (variables or constants). A literal is an atom or the negation of an
atom. A clause is a disjunction of literals, and is often denoted by a set of literals. A
clause {A1, . . . , Am,¬B1, . . . ,¬Bn}, where Ai and ¬Bj are respectively positive and
negative atoms, can also be written as A1∨ . . .∨Am ← B1∧ . . .∧Bn. Any variable in
a clause is assumed to be universally quantified at the front. A Horn clause is a clause
that contains at most one positive literals (the rest being negative literals), otherwise it
is non-Horn. A clausal theory is a finite conjunction of clauses which is usually written
as a set of clauses.



Towards Efficient Multi-agent Abduction Protocols 21

Let S and T be clausal theories. S entails T , denoted as S |= T , if and only if for
every interpretation I such that S is true under I , T is also true under I . |= is called the
entailment relation. For a clausal theory T , a consequence of T is a clause entailed by
T . We denote by Th(T ) the set of all consequences of T . Let C and D be two clauses.
C subsumes D, denoted C � D, if there is a substitution θ such that Cθ ⊆ D1. C
properly subsumes D if C � D but D 	� C. For a clausal theory T , μT denotes the set
of subsumption-minimal clauses of T , that is the clauses in T which are not properly
subsumed by any clause in T .

We can now introduce the notion of characteristic clauses, which represents “inter-
esting” consequences of a given problem [7]. Each characteristic clause is constructed
over a sub-vocabulary of the representation language called a production field, and rep-
resented as 〈L〉, where L is a set of literals closed under instantiation2. A clause C
belongs to P = 〈L〉 if every literal in C belongs to L. For a clausal theory T , the
set of consequences of T belonging to P is denoted ThP(T ). Then, the characteristic
clauses of T wrt to P are defined as Carc(T ,P) = μThP(T ), where, as said before,
μ represents subsumption minimality.

When a set of new clauses S is added to a clausal theory, some consequences are
newly derived with this additional information. The set of such clauses that belong to
the production field are called new characteristic clauses of S wrt T and P ; they are
defined as Newcarc(T , S,P) = Carc(T ∪ S,P) \ Carc(T ,P).

2.2 Abductive Hypothesis

The logical framework of hypothesis generation in abduction for the centralized case
can be expressed as follows. Let T be a clausal theory, which represents the background
theory, and O be a set of literals, which represents observations. Also let A be a set of
literals representing the set of abducibles, which are candidate assumptions to be added
to T for explaining O. Given T , O and A, the abduction problem is to find a hypothesis
H such that:

(i) T ∪ H |= O (accountability),
(ii) T ∪ H 	|= ⊥ (consistency), and

(iii) H is a set of instances of literals from A (bias).

In this case, H is also called an explanation of O (with respects to T and A). A hypoth-
esis is minimal if no proposer subset of H satisfies the above three conditions (which
is equivalent to subsumption minimality for ground clauses). A hypothesis is ground
if it is a set of ground literals (literals containing no variable). This restriction is often
employed in applications whose observations are also given as ground literals. In the
following, we shall indeed assume that observations are grounded, and that we are only
searching for minimal ground hypotheses.

2.3 Computation through Hypothesis Finding

Given the observations O, each hypothesis H of O can be computed by the princi-
ple of inverse entailment [7,13], which converts the accountability condition (i) to

1 Meaning that for all literals of Cθ, Li are also literals of D.
2 Usually, a production field also includes a condition Cond and is thus written 〈L, Cond〉, but

we skip it here to simplify the presentation.



22 G. Bourgne, K. Inoue, and N. Maudet

T ∪ {¬O} |= ¬H, where ¬O =
∨

L∈O ¬L and ¬H =
∨

L∈H ¬L. Note that both
¬O and ¬H are clauses since O and H are sets of literals. Similarly, consistency con-
dition (ii) is equivalent to T 	|= ¬H . Hence, for any hypothesis H , its negated form
¬H is deductively obtained as a “new” theorem of T ∪ {¬O} that is not an “old”
theorem of T alone. Moreover, to respect the bias condition (iii), every literal of ¬H
has to be an instance of a literal in Ā = {¬L|L ∈ A}. Then the negation of minimal
hypotheses are the new characteristic clauses of O with respect to T and Ā, that is,
Newcarc(T , {¬O}, Ā).

SOLAR [14] is a sophisticated deductive reasoning system based on SOL-resolution
[7], which is sound and complete for finding minimal consequences belonging to a
given language bias (a production field). Consequence-finding by SOLAR is performed
by skipping literals belonging to a production field P instead of resolving them. Those
skipped literals are then collected at the end of a proof, which constitute a clause as a
logical consequence of the axiom set. Using SOLAR, we can implement an abductive
system that is complete for finding minimal explanations due to the completeness of
consequence-finding.

Although many abductive procedures have been implemented by augmenting a res-
olution based top-down proof procedure [9], they are mainly designed for Horn clauses
of normal logic programs. SOLAR is designed for full clausal theories containing non-
Horn clauses, and is based on a connection tableau format [11]. In this format, many re-
dundant deductions are avoided using various state-of-the-art pruning techniques [14],
thereby hypothesis-finding is efficiently realized.

Once possible hypotheses have been computed, a ranking process can be applied to
select a preferred hypothesis (e.g. hypothesis ranking such as in [8]). We will not dwell
on this part here, and instead assumed that a preference relation ≥p over the hypothesis
is given as a total order between sets of grounded literals.

3 Distributed Abduction

3.1 Problem Setting

We propose here a new formalization of our problem as a multi-agent abductive sys-
tem, before defining acceptable solution for such problems, and discussing the relation
between local and group consistency and accountability.

Definition 1 (Multi-agent abductive system). A multi-agent abductive system is de-
fined as a tuple 〈S, {Γt},A,≥p〉, where:

– S = {a0, . . . , an−1} is a set of agents. Each agent ai has its own individual theory
Ti and its own observations Oi. It will also form its own preferred hypothesis Hi,
though it can also adopt it from other agents. In fact, in the end of the process, all
agents will share the same hypothesis.

– Γt = 〈S, Et〉 is the communicational constraint graph at time t, an undirected
unlabeled graph whose nodes are the agents in S and whose edges Et represent
the communicational links between the agent. An agent ai can only communicate
with another agent aj at time t if (ai, aj) ∈ Et.



Towards Efficient Multi-agent Abduction Protocols 23

– A is the common set of abducibles that represents the language bias of the abduc-
tive process.

– ≥p is the common preference relation, a total order over hypotheses.

Theories and observations are considered to be certain knowledge. As such, they are
assumed to be consistent, meaning that

⋃
i<n Ti∪

⋃
i<n Oi 	|= ⊥. To ensure termination,

it will also be assumed that Carc(
⋃

i<n Ti, 〈L〉) is finite, and that both hypotheses and
observations are ground (i.e. contain no variable). Moreover, the system will be assumed
to be temporally connected, meaning that at any time t, the graph Γt+ = 〈S,

⋃
t′≥t Et′〉

is a connected graph.

Problem Statement. Our aim is then to ensure the formation of an abductive explanation
of

⋃
i<n Oi with respects to

⋃
i<n Ti and A. Given a group of agents G = {ai, i ∈

J} ⊂ S, we shall say that a hypothesis H is group-consistent with G iff it is consistent
with the union of all the individual theory of the agents of the group, that is, iff

⋃
i∈J Ti∪

H 	|= ⊥. Likewise, we shall say that H ensures group-accountability for G iff it can
explains all observations of the agents of the group when it is associated with the union
of their theories, that is iff

⋃
i∈J Ti ∪ H |=

⋃
i∈J Oi. If G = S, we shall say that the

hypothesis is mas-consistent or that it ensures mas-accountability. Finally we shall say
that a set of literals is acceptable for a group G iff it is a set of grounded literals of A
that is group-consistent with G and ensures group-accountability for G. The objective
of a multi-agent abductive system is thus to find a hypothesis that is acceptable for the
whole system.

While consistency or accountability of a hypothesis with respect to both (Ti, Oi)
and (Tj , Oj) is not equivalent to consistency or accountability wrt (Ti ∪ Tj , Oi ∪ Oj),
we still can ensure some relation between them in classical logic. Specifically, group-
inconsistency of H with G implies group-inconsistency of H with any superset of G,
which ensures that hypothesis inconsistent with a sub-group of agents (possibly a single
agent) can be ruled out as a potential solution. Moreover, group-accountability of H for
both G and G′ implies group-accountability of H for G ∪ G′ (but not reciprocally),
which ensures that accountability can be checked locally.

In order for a learner agent to propose a hypothesis to a critic, it is necessary that his
agent can produce such a hypothesis. However, given only a few clauses of the whole
clausal theory, it might not be able to find an explanation for the observations using
only abducibles. Therefore, we shall allow an agent to build partial hypothesis, which
contains some non-abducible literals. Those literals might be the unexplained observa-
tions, or preferrably some other literals of the language that would explain it. While
interacting with other agents, they will share knowledge to expand these hypotheses
in order to progressively build a fully abducible one. Note that of course, a hypothesis
respecting the bias condition will always be favored over one who does not.

We shall now present MARS, a mechanism for solving multi-agent abductive prob-
lems based on SOLAR.

3.2 Bilateral Interaction

To deal with distributed hypothesis formation in multi-agent systems, we take a learner-
critic approach, in which learner agents aim at producing a globally adequate hypothesis



24 G. Bourgne, K. Inoue, and N. Maudet

through internal computations and local interactions with other agents acting as critics.
In our abductive setting, however, critic agent cannot ensure the consistency of the
hypothesis by itself, and needs to interact with the learner in order to find incoherence
(computing the context of a hypothesis) and produce complete hypotheses (exchanging
useful information by justifying partial hypotheses). As the critic agent might have
better grounds to built a good hypothesis, we will also allow it to reverse the roles by
acting in turn as learner.

The underlying mechanism was presented and proved correct in [5]. Here, we shall
introduce the actual protocol based on that procedure, recapitulating its main steps while
giving an exact account of the communications involved. Such formalization in term of
interaction protocol and strategies should indeed ease the incorporation of this mecha-
nism in other agent system. Provided that agents are equipped with the proper strategies
to deal with this protocol, it can then be consistently integrated in classical agent archi-
tecture. Our protocol is designed in such a way that whenever an agent sends a message
to another, it gets an answer before sending another message. We compactly describe
the specifications of the interaction protocol using a statechart [15]. Fig. 1 illustrate the
biateral protocol driving local interactions between two agents. Nodes indicate states
of the agents (steps of the mechanism), with superscript L or C indicating whether it
concerns the Learner agent or the Critic agent. Note that states 13 and 14 indicate a
switching of the roles, as the critic becomes the learner. Labeled arcs indicate that a
given message can be sent by an agent in a given state, making the other agent go to
the target state upon reception. Dashed arcs indicate an internal change of state without
communication. This mechanism is divided in four main steps that we shall now detail.

Hypothesis Selection. An interaction is initiated by a learner agent a0, in state 1L,
proposing its hypothesis and its validity context to a critic agent a1 (propose(H0)).
If learner’s information has changed since it last computed its possible hypotheses, it
will recompute them through inverse entailment, using Ā as a production field. In case
it cannot find a hypothesis this way, it will compute a partial hypothesis by using an
extended set of abducibles (possibly the whole language). If the proposed hypothesis
h0 is a new one, the first context Ctx0 will be computed as the new consequences
of h0 ∪ T0 wrt h0, that is Newcarc(T0, h0,PL) where PL = 〈L〉. Otherwise, the
previously computed context will be used as initial context Ctx0. Then, when receiving
such proposal, a1 will start its critic, which consists of three steps: consistency check,
accountability check and admissibility check.

As the interaction continues, new hypotheses might have to be proposed. If the cur-
rent learner cannot propose a hypothesis (which can only happens if it has blocked all
its possible hypotheses during previous admissibility checks), it will send noHyp to the
other agent to switch the roles (state 14). If this one has also exhausted all its hypothe-
ses, then it will unblock all its hypotheses and propose again the best one (repropose).
Note that the new critic agent will also unblock all its hypotheses when receiving
such a message.

Consistency check. When receiving a proposed hypothesis and context, the first step
of the critique is to check the group-consistency of the hypothesis with both agents
involved. A context is progressively built for a given hypothesis H to compute the new
consequences of H ∪T0 ∪T1 wrt to T0 ∪T1. If the hypothesis is incoherent, then it will



Towards Efficient Multi-agent Abduction Protocols 25

1L

2C

3L 4C

5L

6L

7C 8L

9C 10L

12C

13C→L14C→L

11L

Hypothesis selection

propose

noHyp

propose

repropose

Consistency check

checkCtx checkCtx

incons

incons

ackinc

withdraw

okCtx

okCtx

ackCtx

Accountability check

uncovered

argue

withdraw

Acceptability check

deny

hasBetterHyp

ack

accept

ack

Fig. 1. Multi-Agent Learner-Critic Abductive Protocol

have ⊥ as a consequence. The occurence of a contradiction between the context and the
agents’ theories will thus enable detection of incoherent hypotheses. This relies on the
fact that the global theory itself is assumed to be consistent, so any inconsistency can
only arise from the hypotheses. Indeed, if T is consistent and T ∪ H is inconsistent,
then Newcarc(T , U,PL) = {⊥}. The process is as follow:

1. First, remember that during the hypothesis selection step, learner agent a0 retrieve
context Ctx0 of its hypothesis. If no context have been memorized from previous
iteraction, then a new one is computed as Newcarc(T0, H0,PL) (note that we
should thus have H0 ∈ Ctx0).

2. When receiving H0 and Ctx0 (state 2C), a1 first check if it already has some
context Ctx′ for this given hypothesis. If it is the case, then it replaces Ctx0 by
Ctx′

0 = Ctx0∪Ctx′. Context Ctx1 is then computed as Newcarc(T1, Ctx′
0,PL),

and sent back to a0 with message CheckCtx(Ctx1) (unless a contradiction is
found).

3. The process continues. At each step Ctxi is computed by agent aα as the new
consequences Newcarc(Tα, Ctxi−1,PL), where α = 0 if i is odd (state 3L), and
α = 1 otherwise (state 2C ), and sent with a checkCtx message.



26 G. Bourgne, K. Inoue, and N. Maudet

4. This computation stops when either a contradiction is found or Ctxi is included in
either Ctxi−1 or Ctxi−2, in which case all new consequences have been computed.

– If an inconsistency is discovered, the part p0 of the hypothesis responsible for it
is sent to the other agents with message incons(p0). leading eventually to state
5L. Both agents rule out p0 (and any hypothesis containing it) by adding its
negation to their theory. The learner agent then move on to its next hypothesis
and propose it, trigerring a new critic phase (states 12C and 1L).

– Otherwise, the end of the computation is acknowledged by sending okCtx.
Both agents memorize the final context Ctxf = Ctxi ∩Ctxi−1 (where i is the
final step) of this hypothesis. Any element in respectively Ctxi \ Ctxi−1 and
Ctxi−2 \ Ctxi−1 are added to T1−α and Tα where again α = 0 is i is odd and
1 otherwise. Indeed an element will only be removed from the context if it is
a direct consequence of one of the agent’s theory. The critic phase move to the
next step (state 7C).

This process guarantees that all new consequences of H0 with respect to the theories
of both the learner and critic agents are computed. This context can then be memorized
for future interactions. Indeed our aim is ultimately to check the new consequences
of the hypothesis with the union of all theories. Using the previously computed con-
texts as initialization of this process (by learner and critic) ensures that we can achieve
that through series of local interactions in spite of possible communicational constraint
(given that the communication graph is temporally connected).

Accountability check. In this step, the critic agent checks if all its observations are ex-
plained by H0∪T1. If an unexplained observation o is found, the message uncovered(o)
is sent to the learner agent, now in state 8L. We then have two possibilities.

– If o is not explained by H0∪T0, it is a true counter-example. The learner agent then
computes a new hypothesis that will also cover o, and proposes it, triggering a new
critic phase (states 12C and 1L).

– If o is already explained by H0 ∪ T0, then the learner agent will notify the critic
of this fact with argue(p0), where p0 is the part of the hypothesis that is used in
explaining o with T0. The critic agent will add the clause {o ∨ ¬p0} in its theory3.
This new information will ensure that the critic agent can find the hypothesis on its
own in further steps, or build up upon it. It will then proceed to the next unexplained
observation. It is especially useful when no acceptable hypothesis can be found as
sharing the rules for forming partial hypotheses might enable the formation of an
acceptable one.

If there is no unexplained observation, the critic proceeds to the next step (state 9C ).

Acceptability Check. Any hypothesis that reaches this step is consistent and accounts
for the observations, but it might include some non-abducible literals, or unnecessary
parts. This step ensures that alternative hypotheses are explored if needed.

1. If the critic has a hypothesis Hc that is prefered to H0 (according to ≥p), it will
reverse roles (hasBetterHyp) and submit it. This will finally either result in the

3 Note that since p is a conjonction of literals, ¬p0 is indeed a clause.



Towards Efficient Multi-agent Abduction Protocols 27

acceptation of a better hypothesis (e.g. if the learner agent lacked the proper rules
to build it), or cause the former critic agent to learn why its hypothesis cannot be
used (e.g. if the critic agent did not have some observation that should be explained,
or if he did not have information invalidating its current hypothesis).

2. Otherwise, if the hypothesis contains non-abducibles (partial hypothesis), the critic
agent will temporarily block it, and ask the other agent to do the same (deny). I will
then also switch roles (state 13C→L). This ensures that all partial hypotheses that
could provoke information exchange leading to building an abducible hypothesis
are explored if needed.

3. If the hypothesis is acceptable, or if a partial hypothesis has been reproposed (mean-
ing the exploration is complete), then the critic send an accept message. The fi-
nal outcome of the interaction is thus chosen. Hypotheses that were temporarily
blocked are unblocked, and the best hypothesis is chosen as the final hypothesis. It
is adopted and memorized by both agents, ending the interaction.

3.3 Group of Agents

Each interaction allows the participants to refine their hypotheses and augment their
knowledge concerning their consequences. The protocol described before is enough
to allow two agents to form a hypothesis that is group-consistent and ensures group-
accountability for the pair of agents. Moreover, since all partial hypotheses are explored
if needed (and the knowledge to form them shared), it ensures that an acceptable hy-
pothesis for the pair of agents will be found if it can be done with the union of their
theories. When more agents are involved, it is possible to chain such interactions to
converge towards a consistent state of the system. To take into account possibly variable
communication constraints in the system, we propose a rumor-like approach, ensuring
the local behaviour and interactions of the agents make the system converges to a state
in which all agents have a mas-consistent hypothesis ensuring mas-accountability.

An agent is motivated by the will to ensure it has an explanation with respect to
its neighours. As such, it will attempt to have local interactions with them whenever
needed to ensure that, memorizing the result of their last interaction with each of their
neighbours. In practice, an agent ai will engage in a local interaction with a neighbour
aj whenever its hypothesis and context (hi, Ctxi) differ from those obtained during
its last interaction with aj . The choice of the interlocutor can affect the speed of the
process and the redundancy, as illustrated in a dynamic situation in [4], where agents
try to abduce the origin of a fire that is spreading in their premises. In that experiment
however, the agents shared most of their background knowledge, and could thus use a
much simpler protocol for local interactions. For our evaluation, we shall consider that
agents chose interlocutors among their neighbours randomly. When a local interaction
is proposed to an agent, this one puts the request in a queue, will accept this interaction
as soon as it is available.

In [5], this process was proved to be sound, and to guarantee that a solution is found
if there is one (which means completeness can be ensured by running the system several
time, adding the negation of the final hypothesis after each step). We do not repeat the
proofs here, and just give a sketch of it. Soundness of the process is proved by contra-
diction by proving that if there is an inconsistency, then there would be a finite proof of



28 G. Bourgne, K. Inoue, and N. Maudet

⊥ from the hypothesis and the theory that would necessarily have been discovered by
the consistency (by induction on the length of a minimal proof). Likewise, we can show
that a solution will be found if it exists by proving that if there is an acceptable hypoth-
esis, then there would be a finite proof of it, and, unless another acceptable hypothesis
is found first, we can build a sequence of partial hypotheses (steps of that proofs) that
would lead to sharing the necessary rule for building it locally. Convergence is ensured
thanks to the preference relation, ensuring that an agent will only change its hypothesis
or context if it is invalidated or if a better one is proposed. Then we can prove that this
can only happens a finite number of time given our assumptions, which ensures that the
system will eventually stabilize.

Note that, though we chose a rumor-based approach, it would be possible to general-
ize our bilateral protocol for n agents. There would then be 1 learner and n− 1 critic at
any time. Hypothesis selection would be very similar (with an order between the agent
defining which agent should become learner if the current learner ask to change roles).
Then during consistency check, the learner would first build a context with the first
critic, then propose it to the next one, starting again from the first critic whenever a new
consequence would be proposed, until a given context has been proposed to all critic
without generating any new consequence. Accountability check can be done in turn by
each of the critic (until the hypothesis is deemed consistent and accountable by all of
them, or an unaccounted observation is found). As for acceptability check, reaching
this step means that the hypothesis is group-consistent and group-accountable. Critic
will first check that none of them has a better hypothesis, and then, either deny the hy-
pothesis (if partial) or they will all accept it. Interactions with the critic could be done
sequentially or in parallel, but in the later point, the learner agent will act to resolve
any concurrency problem. While such a n agent protocol could be interesting in a fully
connected system, we consider that such process can be simulated by sequences of lo-
cal interactions and will thus focus our study on this latter case, which allows more
flexibility with communicational constraints.

3.4 Improving Efficiency

The main computational cost of our mechanism lies in the multiple calls to a
consequence-finding tools, which is used in the various steps to conduct the logical
reasoning, especially for computing possible hypotheses through inverse entailment,
computing the context of these hypotheses, and checking their accountability. To im-
prove efficiency, it is thus crucial to reduce as much as possible the computational cost
of each of these calls, as well as to reduce their number.

The tools we are using in our implementation, SOLAR, is based on tableaux meth-
ods. We assess the computational cost of a call by counting the number of inferences
performed during it. Without entering in the details of the procedure, we will discuss
here the factors that influence the cost of the computation of Newcarc(F, T ,PL). The
number of inferences is directly related to the number of clauses used in the proce-
dure. Used claused are clauses which can resolved with one of the top clauses (ele-
ments of F ), or with a consequence of them. Thus, reducing the number of clauses in
T and more importantly in F can both help to reduce the computations steps. Note
that Carc(T ,PL) is in practice computed as Newcarc(T , ∅,PL), so computing new



Towards Efficient Multi-agent Abduction Protocols 29

consequences rather than all consequences is already a good step to ensure better ef-
ficiency. Reducing the number of literals of the top clauses also helps as it limits the
number of clauses they can be resolved with. Then, another factor that can affect the
computations is the size of the production field. A small production field limits the
number of options to be explored and as a results, the number of inferences to be done.

With respects to our mechanism, these considerations means that we should keep
each agent’s individual theory as small as possible, which is ensured by adding single
clauses with just the necessary parts of the hypothesis to memorize inconsistencies
(when sending or receiving incons.(p0) or accountability arguments (when sending
argue(o∨¬p0) in state 8L). Moreover, during consistency check, we should minimize
the computations for the context. We shall see in next subsection how to reduce size of
top clauses during this step by doing incremental computations. Then, we should also
find ways to minimize the number of consequences computed during this consistency
step by focusing on consequences that could lead to a contradiction, and even more
importantly, to limit the number of partial hypotheses computed by focusing on those
partial hypotheses that could trigger information exchanges leading to the formation
of an acceptable hypothesis (as it would also reduce the number of applications of
SOLAR).

3.5 Incremental Consistency Check

During consistency check, context is progressively computed until it does not evolve
anymore, but sending the whole context at each step of the computation and using it
as top clause for computing the next step. To avoid redundant communications and
computations, we propose to communicate only the new consequences of the context,
pruning consequence discovered in previous step. It does not change the computation
and sending of Ctx0 and Ctx1, but after computing Ctx1, the learner agent will only
send back ctxStep1 = Ctx1 \ Ctx0 (note that we use the original Ctx0 here, and not
Ctx′

0).
Then, when receiving checkContext(ctxStepi), agent aα first computes NCi+1 =

NewCarc(ctxStepi, Tα ∪ Ctxi−1). It can then use it to compute the current context
Ctxi+1 = Ctxi−1 ∪ NCi+1, and send the update ctxStepi+1 = NCi+1 \ ctxStepi.
If there is a clause c than is in ctxStepi that is not subsumed by any clause of NCi+1,
it means that it is a consequence of Tα. It should then be sent to the other agent (with
message inform(c)) to ensure that both agents will have the same final context. This
replaces the theory adjustment with Ctxi \ Ctxi−1 and Ctxi−2 \ Ctxi−1 that were
made before. Note that the termination condition becomes much simpler, as the context
can be confirmed as soon as ctxStepi is empty.

3.6 Language Focus

Languages. We first introduce some vocabulary and notations to depicts the differents
languages that can be useful to describe the system. Given a clausal theory T, we denote
by L(T ) the set of non-logical symbols that occur in T , and by L(T ) the language
formed upon them. Each agent has its own theory Ti, from which we can define its
individual language L(Ti). We can then compute for each pair of agent ai, aj (i 	=
j), in the manner of [3], the communications language Li,j = L(Ti) ∩ L(Tj). It can



30 G. Bourgne, K. Inoue, and N. Maudet

be used to direct the focus of bilateral communications. If it is empty, ai and aj do
not need to communicate together. However, it may be the case that ai and aj are
never connected while Li,j is not empty. For the sake of simplicity we will assume
that the communicational links are static 4. We shall then adapt the communications
languages by choosing a minimal path for all such pair of unconnected agents (ai,aj),
and add the Li,j to the communication language of each pair of agent in this path. In
the following, when referring to the communication language Li,j , we will assume that
this modification has been done. Then the restricted individual language of an agent ai

is defined as Li =
⋃

j∈Ni
Li,j , where Ni is the set of the indexes of the neighbours

of ai. At last, the common language is the language C =
⋃

i<n Li, that is the union of
all restricted individual languages (which is also .the union of all the communication
languages).

Context Narrowing. When computing context, we want to ensure that any new con-
sequence of the hypothesis that can be derived from the union of the agent’s theories
is indeed found. It means a0 need to send any consequence of H wrt T0 that could
resolved with a clause of T1. In pratice, a0 compute its context using its restricted indi-
vidual language as a production field, and then retain in Ctx0 only the one that contains
at least a literal of the concerned communication language (here L0,1). Upon receiving
it, a1 will then temporarily add L(Ctx0) to L0,1, and if it already has a context Ctx′,
a1 will use the same pruning before adding it to get Ctx′

0 and compute Ctx1 (with his
restricted individual language as a production field). The pruning (with updated lan-
guage) is applied to Ctx1 (or ctxStep1) before sending it, and the process continue.
Each time, contexts are pruned to exclude any clauses that do not have literals in the
current communication language before being sent to the other agent. Note that since we
compute only new consequences, we cannot directly use the communication language
as a production field,as shown by the following example:

Example 1. Let’s take T0 = {¬h∨a∨b,¬h∨o}, T1 = {¬a} and T2 = {¬b}, all agents
being connected. We have L0,1 = L({a}), and L0,2 = L({b}), so L0 = L({a, b}). We
assume a0 has observation o and wants to check hypothesis h with a1. If Ctx0 was
computed with L0,1, it would be empty, and no contradiction would be found when
a0 checks later with a2. However, using L0 as a production field, we get consequence
a ∨ b that contains literal a ∈ L0,1. It is thus sent to a1 that will give in return b. When
proposing this context to a2 later on, a0 will thus be able to derive a contradiction.

Choice of Partial Hypotheses. For computing partial hypotheses, and deciding
whether to propose a given one to a neighbour or not, the same principles can be used.
When no admissible hypothesis can be found, inverse entailment is performed again
with an extended set of abducibles. To ensure that at least one solution can be found, the
manifestations are added to the abducibles, enabling trivial explanations for some part
of the hypothesis. Then, the idea is to use literals that can act as links between the theo-
ries. In practice, it means that we should include in the extended abducibles the literals
in the restricted individual language of the agent. This should also be augmented with

4 Otherwise, since the system is assumed to be temporally connected, it is possible to find a
connected subgraph that is included in Γt+ for all t and use it as a guaranteed basis.



Towards Efficient Multi-agent Abduction Protocols 31

literals obtained through the arguments of other agents (when receiving argue(o∨p0) in
state 7C ). This allow us to compute all potentially useful partial hypothesis. For a given
exchange, however, it is sufficient to propose those partial hypotheses that contains at
least one literal of the communication language of the interacting agents.

4 Experiments

We describe here preliminary experimental results on a set of different problems, test-
ing our two improvements of the MARS protocol (namely, incremental context com-
putation and language focus). Though it might be useful to assert the validity of our
conclusions on a broader number of problems, we believe that the small problems used
for evaluation highlight the main difficulties that can be encountered in a distributed
abduction system. We first give a case study on a given problem for which we vary
the topology and number of agents, while keeping regularities in the distribution. Then
we describe a few other test problems, and analyze the results for computational and
communicational efficiency.

4.1 Case Study

We first describe a case study with a class of propositional problem designed to show a
kind of worst case for distribution : the chain n problems. It consists of three chains
of implications linking respectively h1 to o1 (through kn−2, . . . , k0), h1 to o2 (through
mn−2, . . . , m0) and h2 to o1 (through ln−2, . . . , l0). Moreover, one agent (agent an/2)
has a constraint ¬o1 ∨ ¬o2, which makes h1 inconsistent. The aim is then to explain
o1 with abducibles {h1, h2}. Each agent knows 3 rules, one from each chain, with a
different offset for each: ki[n] ∨¬k(i−1)[n], l(i+1)[n]∨¬li[n] and m(i+2)[n]∨¬m(i+1)[n]

where x[n] represents x modulo n and kn−1, ln−1 and mn−1 are interpreted as respec-
tively o1, o1, o2 if positive, or h2, h1, h1 if negative. Moreover, agent a0 initially has
observation o1.

We shall use this problem with n = 8 to study the behaviour of the protocol and the
impacts of the presented improvements when the theories of the agents are really mixed
together. Figure 2 depicts this problem. Nodes are literals, and each arrow corresponds
to a rule, labeled by the agent who has it in its own theory. This problem was tested with
either a line topology (from a0 to a7) or a circuit topology (as the line, with an additional
link between a0 and a7). To check the influence of the number of agent, we also used a
version of this problem with 4 agents, chain 8.4, in which a0, a1, a2, a3 are merged
with respectively a4, a5, a6 and a7, and a version with 2 agents, chain 8.2, in which
a0 are merged with respectively even and odd indexed agents.

With 8 agents in a line and problem chain n, we get the following unfolding. First,
a0 has no way to explain o1, and this observation is propagated by local interactions to
agent a6. Each of these interaction can only propose o1 as a partial hypothesis, and o1 is
given to each agent in the line during accountability check as they counter-propose the
empty hypothesis. Then a6 gets observation o1, and can start proposing partial hypothe-
sis l6. This partial hypothesis is propagated back to agent a0, and at each interaction, by
justifying its partial hypothesis lk, the learner ak allows the critic ak−1 to build partial
hypothesis lk−1. During this propagation of lk, if language focus is not used, each agent



32 G. Bourgne, K. Inoue, and N. Maudet

o1

h1

h2

h1

h2

k0k1k2k3k4k5k6

l0l1l2l3l4l5l6

m0m1m2m3m4m5m6o2

¬o2o1

a0
a1a2a3a4a5a6

a7

a7a0a1a2a3a4a5
a6

a6
a7a0a1a2a3a4a5

a4

Fig. 2. Chain 8 problem

has to propose every partial hypothesis l6 to lk, whereas language focus allows the agent
to forego the proposal of useless partial hypotheses. Then, a0 can propose partial hy-
pothesis l0. Since a7 also has l0 in its theory, this partial hypothesis has to be proposed
to it also, and is conveyed to a7 through a series of interactions with all agents in the
line. Concurrently, each time a new partial hypothesis is discovered, unless language
focus is used to avoid it, it has to be propagated also toward a7. In any case, a7 gets
o1 while lk partial hypotheses are explored, and start a new series of partial hypothesis
starting with k6. This eventually reach a0 who can thus at last make hypothesis h2 and
starts checking its consistency with the other agents. Around the same time, the fact
that l0 can explain o1 reaches a7 and allows the proposition of h1, and the computation
of its context. Then, while h2 is propagated from a0 towards a7, h1 is propagated from
a7 towards a0, with their context growing at each step. When the two hypotheses meet
in some interaction, h1 is favored because of the preference relation, and continues to
spread towards a0. Finally h1 is proposed to a0 with a context taking into account input
form all other agents, and a contradiction is found. h2 becomes the new hypothesis, and
is spread again towards a7 with the contradiction of h1. At last, h2 reaches a7 and its
context is complete. It is propagated back to a0 without modification along the way, and
the system is then homogeneous. The process stops with the correct hypothesis.

As we can see from this unfolding, we have several kinds of propagation: propaga-
tion of new partial hypotheses, as information shared lead to new proposals which are
shared with all agents including them in their communication language (if the agents
are not connected, such hypothesis are propagated to them along the path in which
the relevant literal was added to the communication language), propagation of inter-
esting hypotheses with progressive growth of their associated contexts, and of course,
propagation of discovered inconsistencies. Each time an hypothesis (partial or not) is
proposed, a context is computed for it, and it is thus helpful to reduce the cost of this
computation (though language restriction and incremental context). But restricting the
proposition of partial hypotheses to cases in which it might lead to a new one is also
quite important, as it can entirely avoid this step and the propagation to the whole sys-
tem of irrelevant hypotheses. Thus, if there is an acceptable hypothesis, it is better to
propagates partial hypotheses, together with the rule allowing their formation, only to
the agents who can use this information to build a better hypothesis.



Towards Efficient Multi-agent Abduction Protocols 33

Fig. 3. Efficiency results for Chain 8 with different number of agents and topology

This advantage of language focus is clearly visible on the results for all these prob-
lems (see fig 3). In this problem, incremental context computations is also visibly more
efficient, though the ratio is not as high. In term of communications, incremental con-
text computations greatly improves performances in almost all cases. One good point is
that those two improvements can benefit from being used together, as indeed, in almost
the cases presented here, the best performances are given by using both improvements
(for both communications and computations).

The distribution and the topology of the communicational constraints also affect the
efficiency, but not in a straightforward way. For 8 agents, adding the link between a0

and a7 clearly helps, as we saw in the unfolding that several information would other-
wise have to be propagated at some cost from one extremity to the other. While a lot of
computations and communications are avoided by this, the link between a0 and a7 also
means that some non-crucial informations might be propagated from a0 to a7 while it
would not have happened otherwise, especially when language focus is not used. This
causes some redundancy as an hypothesis will be checked along more paths. This over-
heard depends on the structure of the theory, but might counter balance the benefits of
avoiding propagation critical information along a long path. This is a priori what hap-
pens with 4 agents. In fact a more connected topology favors the quick discovery of an
acceptable hypothesis (avoiding the redundancies of exploring each partial hypothesis
and propagating an important partial hypothesis through numerous interactions), but in



34 G. Bourgne, K. Inoue, and N. Maudet

the same time, it allows more redundancies in computations and communications while
building contexts as it might for instance propagate for longer an hypothesis that is dis-
covered to be inconsistent in some distant interaction. Using a more controlled way of
chaining the local interactions might avoid some of those redundancies, but it would
require to choose a single first learner to initiate the sequence instead of relying on a
anytime self stabilizing behaviour.

Likewise, the number of agents is not a key factor for efficiency if language focus
is used. In this problem, the size of the global theory stays the same, and the number
of agents only impacts the way knowledge is distributed. While more agents seems to
imply more communications, a proper distribution combined with language focus can
keep the communications in relatively low levels and be computationally efficient. In
the original problem, each agent is close to another that owns complementary rules, and
language focus performs well in directing the computations. The results for 4 agents
shows that merging several agents might it fact worsen both the computational and
communicational efficiency.

4.2 Other Problems

We also tested our methods with some other different problems, chose to ensure a vari-
ety of difficulties.

The first problem, pb-1, is taken from [5], where it was used as a running example.
It contains 10 clauses, some of them non-Horn, distributed among 2 or 3 agents. With
3 agents, we tested two communicational constraint topologies: a line (a0 ↔ a1 ↔ a2)
and a completely connected system. This problem was designed to illustrated the
MARS protocol, and thus make it go throught all the possible states during its en-
folding, which ensures that it is both small and not trivial. It is given by:
T ={r1 : ¬g(X)∨b(X), r2 : ¬a(c1), r3 : ¬k(X)∨b(X), r4 : ¬h(X)∨e(X), r5 : f(X, Y ),¬h(Y )∨¬g(X),

r6 : ¬e(X) ∨ ¬c(X), r7 : a(X) ∨ c(X) ∨ ¬d(Y, X), r8 : k(X) ∨ ¬i(X), r9 : h(c1), r10 :

¬f(X, Y ) ∨ d(X, Y )}
with only one observation o1 : [b(c2)] given to agent a0 in all distributions, and
abducibles are i(X) and g(X). These clauses are divided among 2 agents as fol-
lows : T 2ag

0 = {r1, r2, r3, r4, r5} and T 2ag
1 = {r6, r7, r8, r9, r10}. The distribu-

tion among 3 agents is given by T 3ag
0 = {r2, r7, r8, r10}, T 3ag

1 = {r1, r4, r5} and
T 3ag

2 = {r3, r6, r9}.
The second problem, pb-fvar, is a first order toy problem with two observations

and 34 clauses, that contains some clauses with unlinked variables. It also contains
non-Horn clauses. We pruned out hypotheses that contains variables in the resolution
to respect our language bias. It is distributed among 3 agents, and here again, we tested
it with line and completely connected graph topologies. We give below the theories of
each agents. Note that they all possess 3 rules in common (denoted by TC ).
TC={¬hyp(1, X, Y ) ∨ ¬hyp(3, Y, X), fact(5, 1, 2, 1), fact(4, 5, 1, 5)}.

T0 = TC ∪ { ¬o(X) ∨ r(X), ¬m(X, Y ) ∨ ¬n(Y, X) ∨ o(X), ¬hyp(3, X, Y ) ∨ m(X, Y ),

¬hyp(1, X, Y )∨p(X, Y ), ¬hyp(2, X, Y )∨n(Y, X), ¬p(X, Y )∨¬q(Y )∨r(X),¬fact(Y, 2, X, X)∨q(Y ),

¬fact(X, Y, X, Y ) ∨ m(X, Y ) }.

T1 = TC ∪{ ¬hyp(3, X, X)∨g(X), ¬m(X, Y )∨ i(Y )∨ l(X), ¬b(X, Y, X)∨¬e(X, Y ), ¬g(X)∨¬i(Y )∨
e(X, Y ), ¬e(X, Y )∨¬l(Z)∨ f(X, Y, Z), ¬f(X, 6, X)∨¬fact(4, Y, X, X), ¬fact(X, 3, Y, Z)∨¬i(Y )∨



Towards Efficient Multi-agent Abduction Protocols 35

b(X, Z, Y ), ¬fact(1, X, Z, X) ∨ l(X), fact(1, 2, 5, 2), fact(4, 2, 6, 6), fact(2, 3, 6, 3) }.

T2 = TC ∪ { ¬hyp(1, Y, Y ) ∨ c(Y ), ¬hyp(2, X, Y ) ∨ d(X, Y ), ¬d(X, X) ∨ ¬l(X), ¬d(X, Y ) ∨ ¬c(Y ) ∨
b(X, Y, X), ¬b(X, Y, X)∨a(Y,X), f(X, Y, X)∨¬a(Y,X), ¬fact(X, Y, Z, X)∨c(Y ), ¬fact(2, 3, X, Z)∨
d(X, X), fact(6, 4, 5, 6), fact(2, 3, 3, 5) }.

Observation o1 : r(6) is given to agent a0, and observation o2 : a(3, 6) is given to agent
a2. Abducibles are literals hyp(N, X, Y ).

At last, we used a more practical problem, schedulevar, which is an adaption
from a scheduling problem presented in [12], with 8 agents. scheduledir is a direct
translation of the same problem from its original formalization as an abductive logic
program (negation by default is dealt with by using additional abducibles). We give
below the theories of schedulevar:
TConvener = {conveneMeeting(date) ∨ ¬day1(D) ∨ ¬ansDay(D) ∨ ¬tutorName(T ) ∨
¬ansTutor(T ) ∨ ¬lecturerName(L) ∨ ¬ansLecturer(L) ∨ ¬studentName(S) ∨ ¬ansStudent(S),

day1(tuesday), day1(wednesday), day1(thursday), day1(friday) }.

TTutorP at = {tutorName(pat), ¬ansDay(T ) ∨ ¬ansTutor(pat) ∨ ¬busy2(T ), busy2(X) ∨
nursery(X), ¬ansTutor(pat) ∨ ¬ansStudent(dan), ¬ansTutor(pat) ∨ ¬ansLecturer(joe) }.

TStudentBen = {¬ansDay(T )∨¬ansStudent(ben)∨¬busy3(T ), studentName(ben), busy3(tuesday),

busy3(wednesday) }.

TStudentDan = {¬ansDay(T ) ∨ ¬ansStudent(dan) ∨ ¬busy4(T ), studentName(dan),

busy4(tuesday), busy4(thursday), busy4(friday) }.

TNursery = {¬nursery(monday), ¬nursery(tuesday), nursery(wednesday), ¬nursery(thursday),

nursery(friday) }.

TLecturerJoe = {lecturerName(joe), ¬ansDay(T )∨¬ansLecturer(joe) ∨¬hasTeaching(T, joe) }.

TTimetabler = {hasTeaching(T, N) ∨ ¬teachingJuniors7(T, N), hasTeaching(T, N)∨
¬teachingSeniors7(T, N),teachingSeniors7(thursday, joe),teachingJuniors7(wednesday, rob)}.

TLecturerRob = {lecturerName(rob), ¬ansDay(T ) ∨ ¬ansLecturer(rob) ∨ ¬hasTeaching(T, rob),

¬ansDay(T ) ∨ ¬ansLecturer(rob) ∨ ¬tired8(T ), tired8(thursday) }.

4.3 Results

Tables 1 gives the results for the four variants of our mechanism, while figure 4 gives a
more graphical view of the computational results. Computational cost is given by the
total number of operations performed by the consequence finding tool over the course
of the protocol, whereas communicational cost is expressed as the total number of bits
exchanged by the agents during the process. ¿From these results, it is obvious that
using individual communication languages does indeed greatly reduce both costs It is
especially true for the most complex problems, and the gain ratio is more important
when there are a greater number of communicational links. Incremental computation
of context is however in the end less convincing, as it only helps when there are several
context computations step, which is not such a common occurence, unless theories are
really mixed (it is the case for pb-1 and all chain 8 problems, which do benefit from
this improvement). In the end, this improvement is useful, but only marginally so in
situations where the knowledge of the agents is not heavily mixed (for example in case
when agents do not share most of their literals together). While more experiment would
be required to say anything more definite, the present results give us some hint about the



36 G. Bourgne, K. Inoue, and N. Maudet

Fig. 4. Comparison computational efficiency of the basic protocol with its variants on 12 problems
(logarithmic scale). Each dot represent a problem, and it is below the solid line if the variant it
represents performs better than the original protocol on this problem.

influence of topology and “encoding”. As discussed in the case study, having a topology
with cycle can lead to redundant computations, but can also provide easier exchange of
information by avoiding the extra cost of bringing back a crucial fact or rule. Overall,
using individual communication language allows us to reduce the cost of redundant
computations, so that we can take more benefit from situations where additional links
are helpful. Our conjecture is that the cost is lower when the topology is scarce while
still ensuring that 2 agents sharing common litterals are not too far apart. Moreover,
reducing the number of agents can be either detrimental (in chain 8) or benificial (in
pb-1): the size of the communication languages seem to be a more relevant factor.

At last, the huge difference between schedulevar and scheduledir seems to
indicate that our protocol is much more efficient for finding whether an abducible hy-
pothesis is consistent than it is for finding an abducible hypothesis by exploring all par-
tial hypotheses. When formalizing a given problem, it is thus more efficient to ensure
one agent can easily generate candidate hypotheses, and express rules that constrain

Table 1. Experimental results

Computations Communications
Language focus no no yes yes no no yes yes
Incremental ctx comp. no yes no yes no yes no yes
Pb-1 2 ag. 711 666 711 666 617 552 617 552
Pb-1 (line) 3 ag. 1 602 1 454 1 548 1 390 1 832 1 700 1 624 1 511
Pb-1 (clique) 3 ag. 2 216 2 003 1 713 1 673 2 540 2 373 2 115 2 064
Pb-fvar (line) 3 ag. 11 890 11 818 8 019 7 959 3 177 3 080 2 659 2 622
Pb-fvar (clique) 3 ag. 13 680 14 126 6 457 6 415 3 568 3 494 2 139 2 106
Chain 8.2 2 ag. 31 171 21 330 12 438 8 675 12 230 8 924 5 746 4 238
Chain 8.4 (line) 4 ag. 57 406 45 803 29 844 24 285 25 606 14 312 22 278 12 620
Chain 8.4 (circ.) 4 ag. 81 998 70 168 23 999 21 075 35 072 12 576 35 531 11 883
Chain 8 (line) 8 ag. 133 696 103 219 22 450 18 600 65 582 57 305 14 625 13 383
Chain 8 (circ.) 8 ag. 92 986 75 146 9 015 8 639 50 749 47 317 6 509 6 627
Schedulevar 8 ag. 53 607 50 571 39 391 39 725 28 774 27 171 20 448 20 752
Scheduledir 8 ag. 381 992 372 998 95 909 94 963 219 335 209 398 77 638 76 238



Towards Efficient Multi-agent Abduction Protocols 37

it. Current implementation should however be made more efficient for exploring par-
tial hypotheses. Keeping a more detailed memory of previous interactions should allow
to prune a lot of redundant computations for an increased memory cost. Then, current
information sharing is not well-suited for dealing with sub-goals (when a observation
can be explained by a conjunction of causes, each of them having causes known by
different agents). An interesting lead would thus be to replace the empirical argumenta-
tion o ∨ ¬p0 by a slightly more complex proof using the literals of the communication
languages as intermediate conclusions.

5 Conclusion

We presented in this paper a formalization of a multi-agent abduction problem, and pro-
posed a sound mechanism for computing an abductive explanation that is guaranteed
to find a solution whenever one exists. We then discussed way to improve the average
efficiency of this protocol, called Multi agent Abductive Reasoning System (MARS).
Two improvements were proposed. The first one reduce the costs of building a com-
plex context by doing the computation incrementally. It only helps when several steps
are needed and was therefore shown to have only a limited impact on efficiency by
experimental results. The main improvement consist of using informations about the
individual language of each agent to focus the exchanges on what can really advance
the search for a hypothesis (or the inconsistence of a candidate hypothesis). Contrar-
ily to [3], we do not need the communication graph to be made cycle-free. While our
approach use a similar idea of using communication language, we are only interested
in the new consequences of some formulas, and thus want to avoid computing all con-
sequences of a theory. As a result, we showed that we needed to allow the exchanges
of clauses that belong only partially to the communication language. Nonetheless, it
is still an important efficiency improvement compared to the more naive approach of
using only the common language for all exchanges. Experimental results showed that
it substantially reduces the number of computations as well as the size of the commu-
nications. More improvements should however be brought to the search of hypotheses
that can only be produced by using the theories of several agents. The learner-critic
assumption that hypothesis are produced locally might be unadapted in such situations.
It might thus be better to design a collaborative hypothesis formation, though another
lead could be to refine the current information exchange to ensure a better treatment of
“sub-goals”.

References

1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed reasoning in a
peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res (JAIR) 25, 269–314
(2006)

2. Alberti, M., Gavanelli, M., Lamma, E.: Runtime addition of integrity constraints in an ab-
ductive proof procedure. In: Hermenegildo, M.V., Schaub, T. (eds.) ICLP (Technical Com-
munications), LIPIcs, vol. 7, pp. 4–13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2010)



38 G. Bourgne, K. Inoue, and N. Maudet

3. Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and propositional
theories. AI 162(1-2), 49–88 (2005)

4. Bourgne, G., Hette, G., Maudet, N., Pinson, S.: Hypotheses refinement under topological
communication constraints. In: AAMAS, IFAAMAS, p. 239 (2007)

5. Bourgne, G., Inoue, K., Maudet, N.: Abduction of distributed theories through local inter-
actions. In: Proc. of the 19th European Conference on Artificial Intelligence, ECAI 2010
(August 2010)

6. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and competition in
ALIAS: a logic framework for agents that negotiate. Annals of Math. and AI 37(1–2), 65–91
(2003)

7. Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2-3), 301–353 (1992)
8. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypothe-

ses using an em algorithm on bdds. In: Proc. of IJCAI 2009, pp. 810–815 (2009)
9. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Hand-

book of Logic in Artificial Intel. and Logic Progr., vol. 5, pp. 234–324. Oxford Univ. Press,
Oxford (1998)

10. Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proc. of VLDB 1990,
pp. 650–661. Morgan Kaufmann Pub., San Francisco (1990)

11. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection tableau
calculi. JAR 13, 297–338 (1994)

12. Ma, J., Russo, A., Broda, K., Clark, K.: DARE: a system for distributed abductive reasoning.
JAAMAS 16-3, 271–297 (2008)

13. Muggleton, S.: Inverse entailment and progol. New Generation Comput. 13(3&4), 245–286
(1995)

14. Nabeshima, H., Iwanuma, K., Inoue, K.: Solar: A consequence finding system for advanced
reasoning. Autom. Reas. with Analytic Tableaux and Rel. Meth., 257–263 (2003)

15. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction protocols
in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 121–140. Springer, Heidelberg (2001)



Validation of Agile Workflows Using Simulation

Kai Jander, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{jander,braubach,pokahr,lamersd}@informatik.uni-hamburg.de

Abstract. Increasing automation of business processes and industrial
demand for complex workflow features have led to the development of
more flexible and agile workflow concepts. One of those concepts is the
use of goal-oriented workflows, which rely on ideas derived from agent
technology like describing the workflows based on a goal hierarchy. While
this reduces the gap between business view and IT view and allows for
easy implementation of contengencies, the concepts have greater concep-
tual abstraction obscuring the control flow and reducing the ability of
workflow engineers to identify specification flaws in the workflow. This
paper shows an approach to address this problem by presenting a system
for testing and validating workflows within a specified parameter space.
The system allows the definition of test cases (scenarios), each of which
contains parameter states applied during workflow execution. The work-
flow engineer can define a set of scenarios for a workflow testing specific
situation that are likely to occur during operation or are otherwise in-
teresting corner cases, allowing automated tests and correction of faults
before deployment of the workflow in production environments.

1 Introduction

Business process management (BPM) is considered a very promising strategy
that helps in aligning companies towards effective and efficient business opera-
tion [1]. This is mainly achieved by completely thinking in terms of processes,
which means that even the structure of organizations has to follow the processes
and cannot be kept in a functional orientation. The vision of BPM assumes that
processes can at least partially be automated, monitored according to key per-
formance indicators (KPI) and continually improved or even renewed according
to the measurement and defined KPI targets. It becomes clear that this vision
heavily depends on adequate IT means supporting these tasks, which e.g. man-
ifests in the development of workflow notations and management solutions.

One fundamental problem with existing solutions that has been experienced
in practice is that modelling notations like event process chains (EPCs) or the
business process modelling notation (BPMN) are activity oriented and thus fo-
cus heavily on the ordering and conditions of activity execution. This leads to a
particular neglect of the underlying process motivations, which are only implic-
itly existing during workflow elicitation. Without this so called workflow context

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 39–55, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



40 K. Jander et al.

perspective [2] it becomes e.g. difficult to optimize the processes because it can-
not be easily afforded why specific activities in the workflow exist and if they e.g.
could be completely cut out. These observations led to the development of more
abstract, flexible and agile workflow concepts. While these concepts contribute
to closing the gap between business view and IT view, the greater conceptual
abstraction also partially hides the complexities of all possibilities of the ex-
act runtime control flow and reduces the ability of workflow engineers to easily
identify specification flaws in the workflow.

In order to equip a workflow modeller with a toolset to better understand the
possible runtime behaviour of more abstract workflows, simulation and validation
gain importance. In this paper a new concept and implementation for a simu-
lation based validation approach of workflows is presented. It allows to specifiy
execution scenarios and automatically evaluate them with respect to expected
process outcomes. The approach does not depend on the concrete workflow no-
tation in which processes are described but only assumes that specific workflow
management facilities are available. Thus, the approach is viable for validating
traditional e.g. BPMN based workflows as well.

The rest of the paper is structured as follows. In Section 2 related work with
respect to verification and validation approaches of workflows is discussed. There-
after, in Section 3 the concept of the new simulation based validation approach
is presented. Its implementation and usage is explained in Section 4 and the
usefulness of the approach is further illustrated by an example application taken
from our industry cooperation partner Daimler AG. The paper concludes with
a summary and a short outlook on possible future enhancements.

2 Related Work

Literature and practical application contains a large variety of validation and
verification approaches for workflows. They can roughly be divided into two cat-
egories. The first category consists of formal static analysis of the workflow model
to identify conceptual or implementation flaws. The second category comprises
of validation using simulation-based execution of the workflows.

Formal verification approaches of workflows apply a number of techniques,
such as propositional logic [3], model verification [4] and graph reduction [5].
The approaches are usually either based on a formally well-defined represen-
tation like petri nets [6] or attempt to translate workflows implemented in
different representation like EPCs or BPMN into a more approachable form
from a formal perspective [7]. While formal verification has the distinct ad-
vantage of guaranteeing correctness within the given constraints of the verifi-
cation approach, translation of workflow models weakens this guarantee unless
the translation itself is formally proven correct. Verification also requires a well-
defined language with well-known properties, however, some languages used in
practices lack these criteria. For example, many parts of BPMN in its current
form are left ambiguous and underspecified. The reason for this usually is not



Validation of Agile Workflows Using Simulation 41

negligence but an attempt to bridge the gap between the technical side and
the business side of workflows. Parts of the specification are deliberately left
fuzzy with ambiguous semantics which enables the use of the specification in
informal and non-technical settings. However, some of the issues of ambiguity
are currently addressed in the upcoming version 2.0 of the BPMN specification.

Furthermore, verification approaches are often quite limited on what they
can guarantee. For example, while there are excellent approaches to guarantee
correctness of the workflow diagram like ensuring that branches in the workflow
are terminated with a correct join element, they are generally unable to verify
non-trivial semantics like task instructions written in a programming language
or complex runtime behavior.

This problem can be approached by the validation techniques in the second
category. Instead of statically analyzing the workflow models, the workflow is ex-
ecuted in a simulated environment which attempts to imitate the environment
in which the workflow is planned to be deployed. Examples of this approach in-
clude a variety of tools like LSIM [8], iGrafx Process [9], the Corporate Modeler
Suite [10] and the ARIS Toolset [11]. The tools generally target specific work-
flow notations such as BPMN to combine static analysis described above with
simulation. Furthermore, the focus of the tools tend to be performance measure-
ment and optimization. For example, the ARIS Toolset offers a large number
of features used to measure operating and performance figures of the workflow
during simulation.

In contrast, the focus of our approach has primarily been the validation of
the workflow using predefined test cases centering around expected real world
scenarios. The disadvantage of this approach compared to verification is that
the correctness can only be ensured within the given conditions of the test.
Since the number of configurations in any non-trivial workflow is very large,
exhaustive search becomes infeasible. This means the approach can only validate
the workflow to a certain degree and may not detect all errors present. The
advantage of the approach is that the complexity of the workflow language is
irrelevant to the test as long as there is a workflow engine capable of executing
the workflow. Furthermore, the current approach uses few assumptions about the
workflow itself allowing the system to be useful for different kinds of workflow
notations. While the focus has been on validation of workflows, the approach
can be extended to include simulation of the environment in which the workflow
is running but which is, by itself, not part of the workflow. This includes logistic
operations, production machinery, behavior of workflow participants and market
influences. This allows additional applications beyond workflow validation like
workflow optimization similar to the tools mentioned above.

In the following we will present this simulation-based testing approach which
uses simulation of workflow participants to validate the correctness of workflows.
The focus will be on goal-oriented and agile workflows, however, as mentioned,
the approach itself can at least partially be applied to any workflow which relies
on interaction with participants.



42 K. Jander et al.

3 Validation Approach

Due to its application in industry and business automation and intense research
interest, a great variety of workflow approaches and notations are available.
While our validation approach is designed to be generic, two kinds of notations
in particular were the focus of the project. The first is the well-known Business
Process Modeling Notation (BPMN, see [12]), which has been extended with task
and edge annotations, allowing it to be directly executed by an interpreter. While
BPMN does not strictly define semantics and contains certain ambiguities, most
BPMN elements can be interpreted in a straightforward fashion. Furthermore,
the updated standard BPMN 2.0 specifically aims to provide execution seman-
tics. Eventually, the interpreter aims to support these semantics, however, for
now it supports a restricted set of BPMN where the semantics appear to be clear
and are ultimately defined by the implementation of the interpreter as included
in the Jadex platform.

In addition, an additional notation called Goal-oriented Process Modeling No-
tation (GPMN, see [13]) has been developed, which allows the description of goal-
oriented workflows using goal hierarchies. Workflows implemented using GPMN
are converted into BDI agents at runtime. BDI agents are based on the Belief-
Desire-Intention model where beliefs represents the agent’s current knowledge
about the world, goals represent its abstract desires of what should be accom-
plished and plans represent concrete intents of the agent with explicit actions
the agent follows (see [14]). The goals used in GPMN workflows are directly con-
verted to goals of the resulting agents while the plans that are on the leaf nodes
of the goal hierarchy are represented by small workflow fragments implementing
the concrete steps in BPMN. During execution, the GPMN-derived BDI agent
employs a BPMN interpreter to execute the fragments as plans of the agent.

In addition, GPMN workflows contain a context which represents the current
workflow state. This context is used as the belief base of the converted BDI
agent at runtime. This context may be changed during execution of the workflow,
either directly by the workflow itself or by effects outside the workflow. Changes
in the context can directly affect the workflow and thus the agent behavior by
influencing adoption, persuit and rejection of goals.

3.1 Goals of the Test System

In practice, workflow engineers currently often validate workflows by manually
performing tests of common scenarios which represent typical business cases
for the workflow. For example, if the workflow involves production preparation
for a new vehicle line at Daimler, the workflow engineer executes the workflow
and then plays out the scenario as it is typically expected to occur at Daim-
ler. This involves providing various production issues such as faulty parts. The
information is provided to the workflow in the usual fashion as if the workflow
is used during production. The behavior of the workflow is then monitored and
irregularities are noted and addressed during reengineering.

As a first step to provide better testing facilities for GPMN, we aim to provide
a test system which automates the process the workflow engineers are used to and



Validation of Agile Workflows Using Simulation 43

enable them, through automation, to increase test coverage and test a greater
number of test cases which would usually be omitted due to time constraints.
The general idea is to make workflows executable in a similar way as test cases
for a normal programming language. As such a normal test case, also a workflow
test case needs to be specified in terms of inputs and expected outcomes. Given
these information are available, a test system can automatically executed the
worfklow and validate its results. In addition, workflows in the real world may
last a considerable time hindering the efficient execution as test case. In order to
alleviate this problem, the test system will employ simulation techniques for an
execution that is ’as fast as possible’, i.e. the processing power and not waiting
times in the process determine its execution speed.

The goal of the current system is neither to provide a full formal verifica-
tion through model checking nor is it to include complete test coverage since
the complexity explosion with non-trivial workflows would impede its usefulness
in practice. Since the system is part of a system dealing with business process
management, it needs to be accessible to people without a technical or formal
background such as business users. It allowss business users to test identified
domain scenarios in a sensible way and in this helps increasing the test cov-
erage of the workflows. The system is therefore more closely resembling other
test techniques for general purpose programming languages such as unit tests.
However, it is more specifically focused on aspects of workflow management and
the workflow language GPMN.

3.2 Requirements for Automated Testing

Both GPMN and BPMN offer language features which allow the workflow engi-
neer to implement different execution paths or branches. In the case of BPMN
workflows, this is accomplished using the gateway element, which can split the
control flow into either multiple paths executed concurrently or diverts the flow
towards one of multiple possible control flow edges. The implementation of ex-
ecution paths in GPMN workflows is more subtle and indirect. Depending on
the state of the workflow context, different goals may become active resulting
in the execution of different BPMN plans. This control flow subtlety of implicit
control flow paths in GPMN workflows increases the difficulties of a workflow en-
gineer to accurately predict possible runtime execution paths and is the primary
motivation for our validation approach.

The core idea of our approach towards validating such workflows is the use
of automated tests. This implies that the system should be able to execute such
workflows without user intervention once the test has started. Since only the
most trivial workflows can be automatically executed merely using a workflow
engine and since most workflows require interaction with workflow participants
or automated systems while running, additional system components are neces-
sary beyond the workflow engine itself. Moreover, while most workflows specify
a range of possible responses by workflow participants, they generally do not
specify which responses will influence workflow behavior, thus necessitating the
specification of additional information by the workflow engineer before the test.



44 K. Jander et al.

Fig. 1. Structure of the proposed test system

Consequently from a simulation perspective, a workflow engine executing a
workflow is not a viable simulation model for validation workflows since it lacks
sufficient detail even for simple automated execution, much less being a real-
istic representation of a production environment using workflows. Therefore it
is necessary to add additional components to the system which are equivalent
or at least sufficiently similar to their production counterparts to represent an
adequate model of a workflow in production use (see Figure 1).

3.3 Workflow Management System

One component which is routinely part of workflow systems in businesses is a
workflow management system (WfMS). The task of a WfMS among other things
is to facilitate interaction between workflows and workflow participants. This is
generally done by providing work items, which are packages generated by the
WfMS on behalf of the workflow containing all the information needed by the
workflow participant to accomplish their part of the workflow. The WfMS then
distributes the work items among the workflow participants using a variety of
approaches such as roles. As a result, the simulation model of a realistic test
system needs to include a WfMS which accurately represents a WfMS used in
production.

Work items generated by the WfMS not only include information for the
workflow participant but often ask the participant to gather and provide external
information like customer data or processed documents for the workflow. This
is defined in the workflow with the specification of typed parameters in tasks
which generate work items. This information often influence further behavior
of the workflow at critical junctions like BPMN gateways or goal deliberation.
Since real workflow participants are not available during test runs, it is necessary
to simulate their actions, including the supply of external information.

Work items are generally retrieved and processed by the workflow participant
using a workflow application client interacting with the WfMS. The work items
are retrieved, processed by the workflow participant and finally comitted back
to the workflow management system, thus allowing the workflow to continue
executing. In order to simulate this behavior, the workflow client application used
by the workflow participant needs to be replaced with an automated workflow
client application which simulates its behavior and the behavior of the workflow
participant.



Validation of Agile Workflows Using Simulation 45

3.4 Client Application

The simulated workflow application client is required to provide the information
which is normally provided by the workflow participant. As a first step, the
client identifies the workflow tasks which generate work items and require the
workflow participant to provide information in the form of work item parameters
by examining the workflow model and the models of possible subprocess, such as
BPMN workflow fragments in case of GPMN workflows. Parameters are typed
and thus already have a limited parameter space. However, this parameter space
in cases such as string types is extremely large, precluding an exhaustive test of
the full parameter space. Since a complete verification of the process using this
approach would also require to test the cartesian product of the parameter space
of all parameters provided by the workflow participant, the complexity of such
a verification exceeds the limits for a practical test and cannot be considered a
useful approach.

As a result, it is necessary to restrict the scope of the test to only include the
part of the parameter space which includes the most promising cases, such as cor-
ner cases of branching decisions and validating the workflow only for those cases.
Since the test cases cannot be identified automatically, the workflow engineer has
to define the parameter space that needs to be tested. This is accomplished by
the system by allowing the workflow engineer to define test scenarios. Scenar-
ios represent a subset of the full parameter space of the workflow participant
interaction with the workflow. For each parameter in the process the workflow
engineer can define a set of parameter values which are used to process work
items while the workflow is executing. If the workflow engineer defines multiple
values for each parameter within the same scenario, the cartesian product of
those values is tested at runtime.

The workflow engineer can define multiple scenarios for each workflow. When
the test is started, the first scenario is selected and the workflow is started
repeatedly, once for every element of the cartesian product of the parameter
values in that scenario. Once the scenario finishes, the next scenario is selected
until all scenarios have been tested. An event log is kept during each execution,
recording notable events occuring at runtime for later analysis. The workflow
engineer can use this log to identify errors in the workflow and correct them
before the workflow is used in a production system. In addition, a test report is
generated and can be reviewed.

Errors in the workflow can be unrecoverable states of the workflow like a
raised exception during execution or unintended behavior of the workflow such
as performing a faulty execution order of tasks. In additions, it is also considered
to be an error if the workflow returns the wrong results or reaches the wrong
internal state. Since the workflow engineer has to be informed about such errors
occuring, monitoring of the workflow is required. On raised exceptions, executed
steps of the workflow and state changes the workflow engine can generate a
workflow event which is passed through the WfMS to the client application for
review by the workflow engineer. It would also be desirable to allow the workflow
engineer to define a validation function which receives the information provided



46 K. Jander et al.

Fig. 2. The workflow tree model used on the client side of the testing system

to the workflow and the final state and result of the workflow allowing the system
to automatically evaluate whether a test was successful.

The following section will elaborate on the individual parts of the testing
system. It will include an overview of the workflow management system and
provide details about the simulated workflow client application and how the
workflow engineer can define the parameter space subset for each scenario.

4 Simulation System Components

As mentioned in the previous section, the testing system requires a minimum
of three components. In order to execute the workflows themselves, a workflow
engine is needed, a workflow management system is needed for work item man-
agement and user interaction and finally there needs to be a special workflow
application client which simulates user behavior.

Since GPMN workflows are translated into BDI agents with BPMN plans and
thus require a workflow engine which can execute both, the Jadex Active Compo-
nents Platform [15] has been chosen as the execution environment for the work-
flows. The platform is not only capable of executing GPMN-derived BDI agents
but also includes a BPMN interpreter which allows the execution of BPMN
processes alongside agents. While the platform is able to execute standalone
BPMN processes as active components, BPMN workflow fragments which rep-
resent GPMN plans are executed with a special BPMN plan interpreter, which
allows the BPMN workflow fragments to access the GPMN context in the form
of the agent belief base.

4.1 Workflow Management System Architecture

A primary function of a workflow management system is the generation and dis-
tribution of workitems which is triggered by user tasks in workflows. Workitems



Validation of Agile Workflows Using Simulation 47

instruct a workflow participant, such as an employee involved in the process, to
perform a certain task for the workflow. The workitem itself does not always
specify the exact person performing the task in the workflow model since such
a specification is not always necessary if the task can be performed by multiple
people. In fact, such a direct assignment of tasks can be problematic due to
dynamically changing conditions with regard to the status of persons, such as
vacations and employee fluctuations. Therefore the assignment is usually done
at runtime using specific criteria. A common way of solving the problem is to
assign the task to a specific role in the workflow model and letting either the
WfMS or the employees themselves do the final assignment to a specific person
depending the person being able to fulfill that role.

Since workitem assignment is part of the runtime behavior of workflows, this
aspect alone requires the inclusion of the WfMS in the simulation model to
accurately reflect that behavior during simulation. Additionally, there are further
WfMS runtime behavior that should be included in the simulation model, such
as workitem access rules and workflow instantiation.

The implemented WfMS is implemented largely based on the reference model
of the Workflow Management Coalition [16]. It uses the Jadex platform with
Jadex platform services implementing the services required for the system which
will be explained in further detail in this section. In addition, the system includes
three interface agents which realize a message-based interface with workflow
application clients.

The services of the WfMS are divided into internal and external services, the
former implementing the actual functionality of the WfMS while the latter, rep-
resented by the agents, act as an interface which can be used by workflow client
applications to connect with the WfMS. The Jadex platform itself represents the
workflow engine and enactment service of the WfMS by providing the necessary
support for instantiation of workflow models.

Workflow models are managed by the WfMS using a process model repository
service. This service supports the addition and removal of process models by
employing the Jadex library service which allows Jadex to dynamically load new
models, resources and executable code by linking directories or jar-archives. In
addition, it offers access to workflow models for workflow client software, which is
a necessity for the testing system since the simulated workflow client application
requires the workflow model in order to identify tasks in the workflow which
require interaction with a workflow participant.

The Authentication, Access Control and Accounting (AAA) Service of the
WfMS provides additional workflow participant-centric services. This includes
access control to workflow services and a role management system which allows
the WfMS to associate work items with workflow participants. Each task which
generates work items can assign a role to the work item, restricting this work
item to workflow participants who represent that role. Work items without a
designated role become available to any workflow participant connected to the
system.



48 K. Jander et al.

Fig. 3. Procedure for testing workflows

The external services of the WfMS consist of three parts. The first service is
the workflow client interface, which manages the work item queue and distributes
work items to connected clients. The second service is the process definition in-
terface, which provides access to the process model repository by allowing clients
to add and remove workflow models and accepting requests for workflow models.
Finally, the administration and monitoring service offers access Vto administra-
tive and monitoring functions. The monitoring functions are especially critical
for the testing system since they provide feedback regarding events happening
during workflow execution.

This system provides a similar functionality to a workflow system in produc-
tion use. In addition to this basic system, a workflow application client which
simulates the behavior of workflow participants is needed to create an automated
testing system which can execute tests of workflows without user intervention.
This client is implemented as a BDI agent which connects to the three external
service agents to the WfMS. The agent provides a user interface to the work-
flow engineer, which allows them to open the desired workflow model which is
retrieved from the WfMS.

As a result the WfMS forms an integral part of the simulation model by
simulating the WfMS used in a production system. This is especially impor-
tant if a specific workitem assignment based on roles or similar concepts is part
of the validation parameters for the workflow. In addition, potential effects of
workitem processing such as multiple available workflow, workitem access rules
and communication delays can be tested.

4.2 Client-Side Workflow Model

Since it is desirable for the workflow engineer to gain an overview of the parts of
the workflow which are relevant to interaction with workflow participants, the
client agent uses the workflow model to generate a tree representation of the
workflow model which can be seen in Figure 2. The tree consists of a workflow
node as the root node, which represents the workflow originally opened by the
workflow engineer. If a workflow contains sub-workflows like BPMN plans, the
children of its workflow node can include further workflow nodes representing
those sub-workflows.

The sub-workflow graph of a workflow can contain cycles, for example, when
a sub-workflow uses its parent as a sub-workflow. This would suggest a graph



Validation of Agile Workflows Using Simulation 49

representation to be the natural form for representing the workflow structure.
However, cycles in the workflow graph are rare in practice and a workflow en-
gineer would expect a tree form rather than a graph. Therefore the tree repre-
sentation is more desireable, nevertheless the special case of a cyclic workflow
structure should be supported. This problem is solved with the use of link nodes.
If a particular sub-workflow is found again after having been found before, it is
represented as a link node in the tree. This link node is a simple reference to the
first occurance of the sub-workflow in the structure and no further expansion of
the tree is done beyond this reference to avoid endless expansion.

If a workflow node is a BPMN workflow or workflow fragment its child nodes
can, in addition to sub-workflow nodes, contain task nodes which represent tasks
containing interaction with workflow participants. Lastly, the children of task
nodes are parameter nodes, which represent typed parameters which would or-
dinarily be provided by a workflow participant.

4.3 Scenarios

The tree structure of a modelled workflow is presented to the workflow engineer
in graphical form in the user interface. This allows them to define scenarios.
Scenarios consist of sets of input values for each parameter of the workflow, defi-
nition of data collected from the workflow during the simulation and a validation
function which is used to evaluate the success of the test and generate a report
for the workflow engineer. Figure 3 demonstrates the use of scenarios in the full
test procedure.

For each of the input parameters, the workflow engineer can add multiple
values depending on the type of the parameter. The cartesian product of the
input values in the scenario is used to create tests for the workflow which means
that a minimum of a single value for each parameter is required for the scenario
to generate at least a single viable test.

The workflow engineer can also select what is monitored during execution.
This can include output values of the workflow, its final internal state, exceptions
and the task executed. These values are passed to the validation function after
execution to determine whether the test was a success and to generate a useful
report. The validation function is also defined by the workflow engineer and
included in the scenario.

Multiple scenarios can be defined for each workflow which can be automat-
ically executed in succession. The total number of required test runs of the
workflow are reported to the workflow engineer while assembling the scenarios.
Since the cartesian product of multiple parameter values in a scenario quickly
increases the complexity of the whole test, the workflow engineer has to carefully
chose the tests and carefully balance between adding additional scenarios for the
test run or adding additional parameter values to a single scenario.

The results of a test run can be reviewed in the report generated by the
validation functions of the scenarios and is displayed to the workflow engineer in
the client application. In addition, several tools provided by the Jadex platform
can be used during the simulation as well. This includes an introspector tool for



50 K. Jander et al.

F
ig

.4
.
T

he
go

al
hi

er
ar

ch
y

of
th

e
A

ct
iv

e
C

ha
ng

e
M

an
ag

em
en

t
w

or
kfl

ow



Validation of Agile Workflows Using Simulation 51

investigated the state of the workflow and a message center tool for monitoring
messages between workflows and their support systems like the WfMS and the
client application.

The next section will present an example use case for an industrialworkflowused
for changemanagement as envisionedbyDaimlerAGandwill demonstrate howthe
test system can be used to find implementation errors in advance of deployment.

5 Example Use Case

This section will present how the system can be used to validate a workflow. The
workflow was developed by Daimler Group Research and represents an industrial
workflow used for change management (see [17]). Change management workflow
coordinate the process of developing and implementing changes for an existing
product and ensures that production line changes and adaptions of the physical
geometry of the product are performed in order to allow a smooth introduction
of the changed product.

Since the workflow is very large and complex, this section will focus on a
smaller subset of this workflow (cf. Figure 4). This subset involves the gather-
ing of information about the planned change to the product, designating key
personnel and assigning required resources. The final result of this part of the
process is a description of the change request and requirements which will be
used in the later part of the workflow to perform the change.

The process fragment contains a single goal for defining the change request.
This goal is decomposed into subgoals, some of which contain context conditions
which suspend their execution until the context has the required state for the
goal to be adopted. Goals without further subgoals are associated with plans
which are implmented by BPMN workflow fragments.

After implementation, one of the BPMN workflow fragments contained an
error. The BPMN fragment containing the error was the fragment determining
the parts affected by the change in the product. During the execution of the
fragment, the leading developer responsible for the change request is required to
enter the parts of the product which are affected by the change. The developer
has the choice to do this using three different ways of providing this list of
parts. The first way is to provide a list of serial numbers of the affected parts.
The second way is to provide a drawing which is processed for part information
and finally, the developer can give a structured description of the components
affected by the change.

The first task lets the developer choose between those three ways of providing
the part list (cf. Figure 5). The first task in this fragment generates a work item
containing a list of three strings which represent the choices of the developer.
The developer can select one of the strings and commits the work item. The
string is then passed to the gateway, and compared to strings provided by the
edges behind the gateway branch. If the string matches, the process continues
executing using that path and provides the developer with a new work item
which contains the information for the chosen method of entry.



52 K. Jander et al.

Fig. 5. The leading developer of the change has three ways of providing a list of affected
parts

The implementation error in this part of the process was that one of the strings
provided by the edges did not match with the corresponding string generated
by the entry type selection task. Since none of the edges on the gateway branch
are marked as default edge which would be taken if no other edge matches, the
workflow will terminate with an exception if the developer selects the faulty
choice.

This error was found using the test system. A scenario had been created test
each of the branches leaving the gateway in this workflow fragment. For every
parameter in the workflow except the entry method choice of the developer
a single value was added to the scenario. All three possible strings were then
added to the parameter concerning the entry choice resulting in a scenario which

Fig. 6. The scenario for testing the entry choice branch contains all three possible
parameter values used



Validation of Agile Workflows Using Simulation 53

specifically target this branch in the workflow (cf. Figure 6). In addition, example
entries for the part specification had been added in order to verify the correct
function of the workflow in identifying the parts affected by the change, test
corner case entry such as empty strings for parts and test another branch in the
workflow where the developer has to confirm the list of parts or otherwise cause
a restart of the workflow fragment. The test complexity of the scenario required
972 test runs which were executed on an Intel i5 CPU clocked at 2.67GHz in
less than a minute.

During one test run, the faulty string was selected as part of the scenario. This
resulted in an exception and the termination of the workflow. This event was
noted in the simulation log, including the parameter configuration used when
the error occured. This result allowed the workflow engineer to locate the fault
in the workflow and correct the problem.

6 Summary and Future Enhancements

This paper has presented a simulation-based validation approach for workflows.
The approach allows specifying execution scenarios in form of test cases, which
include ranges of input values to be tested and defined output states to be
reached for a successful execution. The approach is especially well-suited for
agile process descriptions with abstract specification means, such that possible
process execution paths cannot easily be predicted. Nevertheless, the approach
also works well with traditional process specification languages like BPMN. The
implementation of the validation approach is based on the process execution
facilities of the Jadex active component platform and provides additional tools
for the specification, execution and validation of scenarios. The applicability of
the approach has been exemplified by a case study from our project partner
Daimler AG. It has been shown how the validation approach allows testing a
modeled process to find and resolve existing problems in the process description.

Two interesting areas for future work are envisaged. First, the approach can
be extended towards being used not only for process validation, but also for pro-
cess analysis and optimization. Extending the simulation engine with elaborated
analysis tools would allow measuring the quality of processes and benchmarking
alternative processes against each other. Second, instead of using pre-specified
test cases as scenarios, complex simulation models could be used to dynamically
produce realistic test data. E.g. for logistics management processes, a simulation
model of a supply chain could be connected to the process engine and provide
input data for the workflow application to be tested.

In addition, while initial feedback from our industry partner has been positive,
a full evaluation of the system is desirable. However, the test system is part of
a larger package of software tools which aim to provide a full Business Process
Management Suite, eventually supporting a full BPM lifecycle. The scope of
the evaluation should therefore include the full lifecycle of which the test system



54 K. Jander et al.

is an integrated part. However, a number of components of the suite are still
in development. Once these components have reached a sufficient state, a full
evaluation of the suite, including the test system, will be conducted to assess the
usefulness of the system in practice.

Acknowledgement. We would like to thank the DFG for supporting the tech-
nology transfer project Go4Flex.

References

1. Schmelzer, W.S.H.J.: Geschäftsprozessmanagement in der Praxis. Hanser Fach-
buchverlag (2008)

2. List, B., Korherr, B.: An evaluation of conceptual business process modelling lan-
guages. In: SAC 2006: Proceedings of the 2006 ACM symposium on Applied com-
puting, pp. 1532–1539. ACM, New York (2006)

3. Bi, H.H., Zhao, J.L.: Applying propositional logic to workflow verification. Infor-
mation & Software Technology 5, 293–318 (2004)

4. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web ser-
vice compositions. In: 18th IEEE International Conference on Automated Software
Engineering, Montreal, Canada (2003)

5. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. In: The 11th International Conference on Advanced Information System
Engineering., vol. 25(2), pp. 117–134 (2000)

6. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg
(2000)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in bpmn. Information & Software Technology 50(12), 1281–1294 (2008)

8. Enstone, L.J., Clark, M.F.: BPMN and Simulation, Lanner Group Limited (2006),
http://www.dynamic.co.kr/Witness_Training_Center/Articles/
Bpmn%20-%%20simulation.pdf

9. iGrafx Process Corel Inc. (2009),
http://www.igrafx.de/products/process/index.html

10. Corporate Modeler Suite Casewise Ltd. (2009),
http://www.casewise.com/Products/CorporateModelerSuite/

11. Scheer, A.-W., Nüttgens, M.: ARIS architecture and reference models for business
process management. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 376–509. Springer, Heidelberg
(2000)

12. Business Process Modeling Notation (BPMN) Specification, Object Management
Group (OMG) (February 2008),
http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf

13. Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W.: Go4Flex: Goal-oriented
process modelling. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent Dis-
tributed Computing IV. SCI, vol. 315, pp. 77–87. Springer, Heidelberg (2010)

14. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

http://www.dynamic.co.kr/Witness_Training_Center/Articles/Bpmn%20-%%20simulation.pdf
http://www.dynamic.co.kr/Witness_Training_Center/Articles/Bpmn%20-%%20simulation.pdf
http://www.igrafx.de/products/process/index.html
http://www.casewise.com/Products/CorporateModelerSuite/
http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf


Validation of Agile Workflows Using Simulation 55

15. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts. In:
Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS, vol. 6251, pp. 100–112. Springer,
Heidelberg (2010)

16. Workflow Reference Model, Workflow Management Coalition (WfMC) (January
1995), http://www.wfmc.org/reference-model.html

17. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: Bdi-agents for agile goal-
oriented business processes. In: AAMAS 2008: Proceedings of the 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems,
pp. 37–44 (2008)

http://www.wfmc.org/reference-model.html


Augmenting Agent Platforms to Facilitate

Conversation Reasoning

David Lillis and Rem W. Collier

School of Computer Science and Informatics
University College Dublin

{david.lillis,rem.collier}@ucd.ie

Abstract. Within Multi Agent Systems, communication by means of
Agent Communication Languages (ACLs) has a key role to play in the
co-operation, co-ordination and knowledge-sharing between agents. De-
spite this, complex reasoning about agent messaging, and specifically
about conversations between agents, tends not to have widespread sup-
port amongst general-purpose agent programming languages.

ACRE (Agent Communication Reasoning Engine) aims to comple-
ment the existing logical reasoning capabilities of agent programming
languages with the capability of reasoning about complex interaction
protocols in order to facilitate conversations between agents. This paper
outlines the aims of the ACRE project and gives details of the function-
ing of a prototype implementation within the Agent Factory multi agent
framework.

1 Introduction

Communication is a vital part of a Multi Agent System (MAS). Agents make use
of communication in order to aid mutual cooperation towards the achievement of
their individual or shared objectives. The sharing of knowledge, objectives and
ideas amongst agents is facilitated by the use of Agent Communication Lan-
guages (ACLs). The importance of ACLs is reflected by the widespread support
for them in agent programming languages and toolkits, many of which have ACL
support built-in as core features.

In many MASs, communication takes place by way of individual messages
without formal links between them. An alternative approach is to group related
messages into conversations: “task-oriented, shared sequences of messages that
they observe, in order to accomplish specific tasks, such as a negotiation or an
auction” [1].

This paper presents the Agent Conversation Reasoning Engine (ACRE). The
principal aim of the ACRE project is to integrate interaction protocols into
the core of existing agent programming languages. This is done by augmenting
their existing reasoning capabilities and support for inter-agent communication
by adding the ability to track and reason about conversations. Currently at
the stage of an initial prototype, ACRE has been integrated with several agent
programming languages running as part of the Common Language Framework

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 56–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Augmenting Agent Platforms to Facilitate Conversation Reasoning 57

of the Agent Factory platform [2]. The longer-term goals of ACRE include its
use within other mainstream agent frameworks and languages.

The principal aim of this paper is to outline the goals of the ACRE project
and to discuss its integration into Agent Factory.

This paper is laid out as follows: Section 2 outlines some related work on
agent interaction. Section 3 then provides an overview of the aims and scope of
the ACRE project. The model used to reason about conversations is presented
in Section 4. ACRE protocols are defined in an XML format that is outlined in
Section 5, followed by an example of a conversation in execution in Section 6.
Details of the integration of ACRE into the Agent Factory framework are given
in Section 7. Finally, Section 8 outlines some conclusions along with ideas for
future work.

2 Related Work

In the context of Agent Communication Languages, two standards have found
widespread adoption. The first widely-adopted format for agent communication
was the Knowledge Query and Manipulation Language (KQML) [3]. An alterna-
tive agent communication standard was later developed by the Foundation for
Intelligent Physical Agents (FIPA). FIPA ACL utilises what it considers to be a
minimal set of English verbs that are necessary for agent communication. These
are used to define a set of performatives that can be used in ACL messages [4].
These performatives, along with their associated semantics, are defined in [5].

Recognising that one-off messages are limited in their power to be used in
more complex interactions, FIPA also defined a set of interaction protocols [6].
These are designed to cover a set of common interactions such as one agent
requesting information from another, an agent informing others of some event
and auction protocols.

Support for either KQML or FIPA ACL communication is frequently included
as a core feature in many agent toolkits and frameworks, native support for in-
teraction protocols is less common. The JADE toolkit provides specific imple-
mentations of a number of the FIPA interaction protocols [7]. It also provides
a Finite State Machine (FSM) behaviour to allow interaction protocols to be
defined. Jason includes native support for communicative acts, but does not
provide specific tools for the development of agent conversations using interac-
tion protocols. This is left to the agent programmer [8, p. 130]. A similar level
of support is present within the Agent Factory framework [9].

There do exist a number of toolkits, however, that do include support for
conversations. For example, the COOrdination Language (COOL) uses FSMs
to represent conversations [10]. Here, a conversation is always in some state,
with messages causing transitions between conversation states. Jackal [11] and
KaOS [12] are other examples of agent systems making use of FSMs to model
communications amongst agents. Alternative representations of Interaction Pro-
tocols include Coloured Petri Nets [13] and Dooley Graphs [14].



58 D. Lillis and R.W. Collier

3 ACRE Overview

ACRE is aimed at providing a comprehensive system for modelling, managing
and reasoning about complex interactions using protocols and conversations.
Here, we distinguish between protocols and conversations. A protocol is defined
as a set of rules that dictate the format and ordering of messages that should be
passed between agents that are involved in prolonged communication (beyond
the passing of a single message). A conversation is defined as a single instance of
multiple agents following a protocol in order to engage in communication. It is
possible for two agents to engage in multiple conversations that follow the same
protocol.

Such an aim can only be realised effectively if a number of features are already
available. These include:

– Protocol definitions understandable by agents: Interaction protocols
must be declared in a language that all agents must be able to understand
and share. This also has the advantage that the protocol definition is sep-
arated from its implementation in the agent, thus providing a programmer
with a greater understanding of the format the communication is expected
to take. ACRE uses an XML representation of a finite state machine for this
purpose. This representation is further discussed in Section 5. The separation
of protocol definitions from agent behaviours also facilitates the development
of external tools to monitor communication between agents.

– Shared ontologies: A shared vocabulary is essential to agents understand-
ing each other’s communications. A shared ontology defines concepts about
which agents need to be capable of reasoning.

– Plan repository: With the two above features in place, an agent may reason
about the sequence of messages being exchanged, as well as the content of
those messages. This reasoning will typically result in an agent deciding to
perform some action as a consequence of receiving certain communications.
In this case, it is useful to have available a shareable repository of plans that
agents may perform so that new capabilities may be learned from others.
Clearly, the use of shared plans will be dependent on the agent programming
language(s) being used.

The presence of these features aid greatly in the realisation of ACRE’s aims.
The principal aims are as follows:

– External Monitoring of Interaction Protocols: At its simplest level,
conversation matching and recognition of interaction protocols allows for a
relatively simple tool operating externally to any of the agents. This can
intercept and read messages at the middleware level and is suitable for an
open MAS in which agents communicate via FIPA ACL. This is a useful
tool for debugging purposes, allowing developers to monitor communication
to ensure that agents are following protocols correctly. This is particularly
important where conversation management has been implemented in an ad-
hoc way, with incoming and outgoing messages being treated independently



Augmenting Agent Platforms to Facilitate Conversation Reasoning 59

and without a strong notion of conversations. In this case, the protocol def-
initions can be formalised after the implementation of the agents without
interfering with the agent code itself until errors are identified.

– Internal Conversation Reasoning: On receipt of a FIPA ACL message,
it should be possible for an agent to identify the protocol being followed by
means of the protocol parameter defined in the message (for the specifica-
tion of the parameters available in a FIPA ACL message see [15]). Similarly,
the initiator of a conversation should also set the conversation-id param-
eter, which is a unique identifier for a conversation. By referring to the the
protocol identifier, an agent can make decisions about its response by con-
sulting the protocol specification. Similarly, the conversation identifier may
be matched against the stored history of ongoing conversations.

ACRE provides an agent with access to information about the conver-
sations to which it is a party. This allows the agent to reason about this
according to the capabilities of the agent programming language being used.
One example of this is the use of this information to analyse the status of
conversations and generate appropriate goals for the agent to successfully
continue the conversation along the appropriate lines for the protocol that is
specified. This has previously been done with the AFAPL2 agent program-
ming language [16], following the use of goals in [17]. Goals represent the
motivations of the participants in a conversation. Thus the agents’ engage-
ment in a particular conversation is decoupled from the individual messages
that are being exchanged, allowing greater flexibility in reasoning about their
reactions and responses.

– Organisation of Incoming Messages: It is possible that an agent com-
municating with agents in another system may receive messages that do not
specify their protocol and/or conversation identifier. In this case, it is useful
for the agent to have access to definitions of the protocols in which it is
capable of engaging so as to match these with incoming messages so as to
categorise the messages.

In this situation, message fields such as the sender, receiver, message con-
tent and performative can be compared against currently active conversa-
tions to ascertain if it matches the expectations of the next step of the
underlying protocol.

– Agent Code Verification: The ultimate aim of ACRE is to facilitate the
verification of certain aspects of agent code. In particular, given integration
of conversation reasoning into a programming language, it should be possible
to verify whether or not an agent is capable of engaging in a conversation
following a particular protocol.

4 Conversation Management

ACRE models protocols as FSMs, with the transitions between states triggered
by the exchange of messages between agents participating in the conversation.
Messages, protocols and conversations are represented by tuples. As a FSM,
each protocol is made up of states and transitions, which are also represented by



60 D. Lillis and R.W. Collier

tuples. This section presents these representations and also provides an informal
description of the conversation management algorithm used within ACRE.

A message is represented by the tuple (s, r, c, φ, p, x), where s is the agent
identifier of the message’s sender, r is the agent identifier of the recipient, c is the
conversation identifier, φ identifies the protocol, p is the message performative
and x is the message content.

Each protocol is represented by a tuple (φ, S, T, i, F ) where φ is the protocol’s
unique identifier, S and T are sets of states and transitions respectively, i is the
name of the initial state and F is a set of names of final (terminal) states.

Within these conversations, each state is represented by the tuple (n, s, φ)
where n is the name of the state, s is the status of the state (whether it is a
start, end or intermediate state) and φ is the identifier of the protocol it belongs
to. A transition is represented by (σ, ε, s, r, p, x). Here, σ and ε are the names
of the start and end states respectively, s and r are the agent identifiers of the
sending and receiving agents respectively, p is the performative of the message
triggering the transition and x is the message content.

As a FSM, a protocol can easily visualised as shown in Figure 1. This figure
shows a FSM for a simple, one-shot Vickrey-style auction. It shows the states and
transitions associated with this protocol. Transitions are triggered by comparison
with messages exchanged between the participating agents.

Fig. 1. FSM representation of the Vickrey Auction protocol

Finally, a conversation may be represented by (φ, A, s, c, B, ψ) where φ is the
protocol identifier, A is the set of participating agents, s is the name of the
conversation’s current state, c is the conversation identifier, B is the current set
of variable/value bindings and ψ is the conversation status (active, completed
or failed).

The values permitted in the tuples shown here are based on first-order logic,
meaning that all values are constants, variables or functions. When considering
whether a message is capable of advancing a conversation, its fields are compared
with the corresponding elements of the conversation’s available transitions.

When comparing values, the following rules apply:

– Constant values match against other identical constant values (e.g. in Fig-
ure 1, the first transition can only be triggered by a message with the per-
formative cfp).



Augmenting Agent Platforms to Facilitate Conversation Reasoning 61

– Variables match against any value.
– Functions match other functions that have the same functor, have the same

number of arguments and whose arguments in turn match.

In the pseudocode that follows in Figures 2, 3 and 4, this is encapsulated by
the function matches(a,b).

The bindings associated with the conversation (B) is a set of key/value pairs
that binds variables to constants or functions against which that they have been
matched in triggering a transition. Any variables that have been matched against
a constant or function in a triggering message are given a binding that is stored
in B. In the example from Figure 1, the sender of the initial message will have
their agent identifier bound to the ?initiator variable, so any further messages
must be sent by/to that same agent, whenever the ?initiator variable is used.
This is an example of a variable being used in immutable context. Once the
variable has been bound to a value, that value may not change for the duration
of the conversation.

An alternative approach is to use a variable in a mutable context. In this
situation, a variable may acquire a binding to a new value regardless of whether
it has been previously bound. Further explanation (and examples) of the different
variable contexts is presented in Section 5.2. One special-case variable also exists.
The anonymous variable (denoted by “?”) may not acquire any binding. Thus
it acts as a wildcard match that will match against any values.

The following sections outline the three key stages of the conversation man-
agement algorithm. By convention, elements of tuples are denoted by using sub-
scripts (e.g. the initial state (i) of a protocol (p) is shown as pi).

4.1 Identifying Candidate Conversations

The first stage of the conversation management algorithm is carried out whenever
a message is exchanged and is shown in Figure 2. This identifies any active
conversations that may be advanced by a message that has been exchanged. If
the message contains a defined conversation identifier (which are unique), then
only a conversation bearing that identifier may be advanced by the message. In
the event that a message is exchanged without a conversation identifier being
present, any conversation with an available transition that may be triggered by
the message will be considered a candidate.

A conversation can be advanced by a message if the elements of the message
match against the corresponding elements of any available transitions (i.e. that
begin at the current state of the conversation). If the message contains a de-
fined conversation identifier, but that conversation cannot be advanced by the
message, the status of the conversation must be changed to failed.

The apply(B,a) function is used to apply a set of bindings (B) to a term (a).
If a is a variable used in an immutable context for which a binding exists in B,
then the bound value is returned. Otherwise, a is returned unaltered.



62 D. Lillis and R.W. Collier

C ← ∅ to store candidate conversations
m ← message sent/received
for each active conversation (c) do

if mc = cc or mc = ⊥ then
for each transition (t) where tσ = cs do

if matches(ms, apply(cB, ts)) and matches(mr, apply(cB, tr))
and matches(mx, apply(cB, tx)) and matches(mp, tp) then

Add c to C
end if

end for
end if
if mc = cc and c /∈ C then

cψ ← failed
end if

end for

Fig. 2. Identifying candidate conversations

4.2 Identifying Candidates for New Conversations

If no active conversations may be advanced by the given message, the second
stage is to identify whether the message is capable of initiating a conversation
using a known protocol. This procedure is shown in Figure 3.

if |C| = 0 then
for each protocol (p) do

if mφ = pφ or mφ = ⊥ then
for each transition (t) where tσ = pi do

if matches(ms, ts) and matches(mr, tr) and matches(mx, tx) then
if mc = ⊥ then

Add (pφ, {ms, mr}, pi, nextid(), ∅, active) to C
else

Add (pφ, {ms, mr}, pi, mc, ∅, active) to C
end if

end if
end for

end if
end for

end if

Fig. 3. Identifying candidate protocols for new conversations

If the message contains a protocol identifier, then only the protocol with
that identifier is considered. Otherwise, the message is compared against the
initial transition of each available protocol. On finding a suitable protocol, a
new conversation is created and added to the set of candidate conversations (C).
If the message contained a conversation identifier, this is used as the identifier
for the new conversation. Otherwise, a new unique conversation identifier is
generated (by means of the nextid() function).



Augmenting Agent Platforms to Facilitate Conversation Reasoning 63

4.3 Advancing the Conversation

Having identified conversations that match against the given message, the system
must advance a conversation, as appropriate. This is shown in Figure 4. At this
stage, events are raised to the agent layer to inform the agent of the outcome
of the process. If the message was not capable of advancing or initiating any
conversation, an “unmatched” event is raised. If there were multiple candidate
conversations (which cannot be the case if conversation identifiers are defined
for all messages), an “ambiguous” event is raised.

If one candidate conversation was identified, this is advanced to the next ap-
propriate state. Its bindings must be updated (using the getBindings(m,t)
function) to include bindings for variables in the transition that were matched
against values in the message. The anonymous variable may not acquire a bind-
ing. This function does not discriminate between variables based on the context
in which they are used. Both mutable and unbound immutable variables are free
to acquire new bindings. If an immutable context variable has previously been
bound to a value, it is this value that is used in matching the message to the
transition (by means of the apply(B,a) function shown in Figure 2). As the
message content is frequently a function of first order logic, any variables within
that function that match against corresponding parts of the message content
will also acquire bindings in the same way as standalone variables.

if |C| = 1 then
c ← the matched conversation in C
t ← the transition matched by the message m
cs ← tε

cB ← cB ∪ getBindings(m, t)
if cs is an end state then

cψ ← completed
raiseEvent(completed, c)

else
raiseEvent(advanced, c)

end if
else if |C| = 0 then

raiseEvent(unmatched,m)
else

raiseEvent(ambiguous,m)
end if

Fig. 4. Advancing the conversation

5 The ACRE XML Format

In ACRE, interaction protocols are modelled using an XML file that follows the
ACRE XML protocol schema definition 1. A sample of an XML representation
1 http://acre.lill.is/protocol.xsd



64 D. Lillis and R.W. Collier

of a Vickrey Auction Interaction Protocol is given in Figure 5 (this is the same
protocol as the FSM in Figure 1). Each protocol is identified by a name, a name
and a version number (contained in the <namespace>, <name> and <version>
tags respectively). The version number is intended to prevent multiple agents
attempting to communicate using different protocol implementations (e.g. if an
error is discovered in an earlier attempt at modelling a particular protocol). The
use of a namespace helps to avoid conflicts whereby various developers implement
different models of similar protocols using the same name.

Each protocol is represented by a number of states and transitions, defined us-
ing <state> and <transition> tags respectively. Each state has only a “name”
attribute, so that it can be referred to in the transitions. The type of state each
represents (i.e. terminal, initial or other) can be found on the fly when the pro-
tocol is loaded. A state at which no transition ends is considered a start state.
States at which no transitions begin are terminal states. The reason these are
not expressly marked in the protocol definition is because of the ability to import
other protocols, which is discussed in Section 5.1.

Transitions are more complex, as these are required to match messages so
as to trigger a change in the state of a conversation. Each <transition> tag
contains up to six attributes, many of which attempt to match against one field
of a FIPA message. The attributes in this file correspond with the values in
the tuple representing a transition in Section 4. In addition to these message
fields, the ACRE conversation manager will also examine the protocol-id and
conversation-id fields to match messages to particular conversations.

The attributes allowable in a <transition> tag are as follows:

– Performative: This is a mandatory field that specifies the performative
that a message must have in order to trigger this transition. The attribute
value must be exactly equal to the performative contained in the message
for this transition to be triggered. Variables are not permitted in this field.

– From State: Another mandatory field, this indicates the state from which
this transition may be triggered. If the conversation is in another state then
this rule cannot match. In the majority of cases, the attribute value must
be the same as the name of a state that is contained either in the protocol
itself or in an imported protocol.

In addition to exact state names, regular expression matching is also per-
mitted. If a regular expression is provided (indicated by beginning and end-
ing the value with a forward slash), then this transition will be triggerable
from any state that matches this regular expression. In practice, the protocol
interpreter will duplicate this transition for each state name that matches,
thus fitting with the model outlined in Section 4.

– To State: This is another mandatory field and is used to indicate the state
that the conversation will be in upon successful triggering of this transition.
As with the “From State” attribute, this should match the name of a state
that is either part of the protocol or is imported. However, it may not contain
a regular expression, as the conversation state after the sending of a message
must be clearly defined.



Augmenting Agent Platforms to Facilitate Conversation Reasoning 65

– Sender: This indicates which agent should be the sender of the message.
Although it is allowable to use a constant value for this attribute, this is
unusual as it specifically restricts the protocol to an agent with a a particular
identifier. Generally, this will use a variable to refer to particular agents.
The same variable may be used throughout the protocol to indicate that
particular messages should be sent by the same agent, as it will have acquired
a bound value the first time it matches against an agent identifier.

– Receiver: This attribute functions in a similar way to “Sender”, with the
exception that it is the recipient of the message that is being matched.

– Content: This attribute relates to the actual content of the message. It
may be a constant, a variable or a function that possibly combines the two.
Figure 5 illustrates the use of a function in the content field in each of the
transitions.

The “Sender”, “Receiver” and “Content” attributes are optional in a protocol
definition. In each case, the default value if one is not supplied is the anonymous
“?” variable that matches any value.

5.1 Importing Protocols

One other feature of the ACRE XML format is the ability to import from other
protocols. When this occurs, all of the states and transitions from the imported
protocol are added to those of the protocol containing the <import> tag. This
means that transitions in a protocol may refer to states that are not in the
protocol itself but rather are in the imported protocol.

One example of a use for this is the “Cancel” meta-protocol that is included in
all of the standard FIPA Interaction Protocols. This protocol always works in an
identical way, regardless of what the main protocol being followed is: at any non-
terminal stage of the conversation, the initiator of the original conversation may
terminate the interaction by means of a cancel message. This meta-protocol
can be extracted into a separate ACRE protocol that is imported by all other
protocols that support it.

5.2 Variable Bindings

As mentioned in Section 4, the definition of protocols in ACRE allows the use
of three types of variable. The anonymous variable “?” is an unnamed variable
that is capable of matching against any value. As such, it can be considered to
be a wildcard match. A transition whose content attribute is set to “?” can
be triggered by a message with any content (assuming the other fields in the
message match the specified transition).

Two types of named variable are permitted: immutable named variables, which
have ”?” as a prefix followed by the variable name (e.g. ?item) and mutable
named variables that are prefixed with “??” (e.g. ??amount).

Each named variable is in scope for the duration of a conversation and is
associated with values as it is matched against the actual fields in messages that
trigger transitions. Whenever a named variable is used in an immutable context,



66 D. Lillis and R.W. Collier

<?xml version="1.0"?>

<protocol xmlns="http://acre.lill.is"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://acre.lill.is http://acre.lill.is/proto.xsd">

<namespace>is.lill.acre</name>

<name>acre-vickreyauction</name>

<version>0.1</version>

<states>

<state name="start"/>

<state name="awaiting_bid" />

<state name="bid" />

<state name="nobid"/>

<state name="accepted"/>

<state name="rejected"/>

</states>

<transitions>

<transition performative="cfp"

from-state="start"

to-state="awaiting_bid"

sender="?initiator"

receiver="?bidder"

content="bidfor(?item)" />

<transition performative="propose"

from-state="awaiting_bid"

to-state="bid"

sender="?bidder"

receiver="?initiator"

content="bid(?item,?amount)" />

<transition performative="propose"

from-state="awaiting_bid"

to-state="nobid"

sender="?bidder"

receiver="?initiator"

content="nobid(?item)" />

<transition performative="accept-proposal"

from-state="bid"

to-state="accepted"

sender="?initiator"

receiver="?bidder"

content="bid(?item,?amount)" />

<transition performative="reject-proposal"

from-state="bid"

to-state="accepted"

sender="?initiator"

receiver="?bidder"

content="bid(?item,?amount)" />

</transitions>

</protocol>

Fig. 5. ACRE XML Representation of the Vickrey Auction Protocol



Augmenting Agent Platforms to Facilitate Conversation Reasoning 67

it may match any content if has not already acquired a value. However, once it
has been matched to a value, it may only match that value for the duration of
the conversation. For example, Figure 5 uses ?initiator to denote the agent
that begins the Vickrey Auction with the sending of the initial call for proposals.
Initially this variable does not have a value associated with it, so it may match
the name of the relevant agent (e.g. “agent1”). However, once this has been done,
the variable ?initiator may only match the value “agent1” for the remainder
of the conversation.

In some situations it is desirable to have variables whose values may change as
the conversation progresses. For that reason, mutable named variables are also
facilitated. The difference between a mutable and immutable named variable
is that a mutable named variable can match against any content, regardless
of whether it previously has a value associated with it. When this occurs, the
existing value is overwritten with the new value that has been matched.

The motivation behind the use of mutable variables can be seen by examin-
ing the Vickrey Auction protocol shown above. This is a one-shot auction, so
immutable variables are sufficient. However, implementing an iterated auction
is made far more complex if all variables are immutable. The second transi-
tion shown in Figure 5 would be unsuitable for this, as the ?amount variable
is restricted to match only whatever the first value it is matched against. By
changing the content field of this transition to bid(?item,??amount), the vari-
able relating to the amount is used in mutable context and so its value may
change (although the item being bid for must remain the same). Thus each time
this transition is triggered, the amount variable acquires a new value: namely
the amount of the latest bid that was submitted. This can later be referred to
using texttt?amount by the other agent that wishes to accept or reject the bid.
A similar usage can be seen in the example presented in Section 6.

6 ACRE Conversation Example

This section presents an example of how an ACRE conversation may progress.
The example is based on the “Process Documents” protocol shown in Figure 6.
This protocol is designed for a system where text documents must undergo some
form of processing. The Initiator of the protocol is capable of performing this
processing, though it must be made aware of which documents to work on by
the Respondent.

Initially, the Initiator informs the Respondent that it is ready to process doc-
uments, to which the Respondent replies with a request to process a particular
document. The Initiator may either process the document and inform the Re-
spondent of this, or refuse to carry out this processing. In the former case, the
Respondent will send the next document for processing and continue to do this
until the Initiator eventually refuses.

Here, the Agent UML description shown to the left of Figure 6 is converted
to the FSM shown on the right. The dashed line surrounding the “Start” state
indicate that this is the current state initially.



68 D. Lillis and R.W. Collier

Fig. 6. Process Documents Protocol

The first transition contains constant values for both the performative and
the content. This means that any message matching that transition must have
those exact values in those fields. The message sender and receiver are variables,
and since there are not yet any bindings associated with the conversation, these
will match any agent identifiers in those fields in the message.

A message that will trigger this initial transition may look as follows (some
unimportant fields have been omitted for clarity):

(inform
:sender processor
:receiver manager
:content ready

)

This results in the state of the conversation changing to “Waiting”, as shown
in Figure 7. Because the ?initiator and ?respondent matched against the
constants “processor” and “manager” respectively in the message, these bindings
are associated with the conversation. As these variables are used in immutable
context throughout, they must match their exact bound values for the remainder
of the conversation. This is indicated in Figure 7 by replacing the variables with
these values. Angle brackets have been placed around each of the replacement
values in order to emphasise this.

The transition from the “Waiting” state can now only be triggered by a
message sent by the manager agent to the processor agent with the “request”



Augmenting Agent Platforms to Facilitate Conversation Reasoning 69

Fig. 7. Process Documents protocol in the
“Waiting” state

Fig. 8. Process Documents protocol in the
“Requested” state

performative. The content must also match the transition, though with the use of
the ??docid variable, there is some flexibility in the values that can be matched.

In the next stage, the manager asks the processor to process the document
with the identifier “doc123”. This is done by means of the following message:

(request
:sender manager
:receiver processor
:content process(doc123)

)



70 D. Lillis and R.W. Collier

As this message matches the transition, the conversation moves from the
“Waiting” state to the “Requested” state, as shown in Figure 8.

Fig. 9. Process Documents protocol in the
“Waiting” state for the second time

Fig. 10. Process Documents protocol in
the “Requested” state for the second time

At this point, the ?docid variable has also acquired a binding, so this is re-
placed in all transitions using it in an immutable context. Again, this is indicated
by the value being contained within angle brackets in Figure 8. At this point,
the processor agent must either inform the manager that document “doc123”
has been processed (thus returning the conversation to the “Waiting” state) or
refusing to process that document. In each case, it is only the document identifier
that has previously been bound to the ?docid variable that may be used. Re-
fusing to process a different document identifier would result in the conversation
failing as the message could not match an available transition.



Augmenting Agent Platforms to Facilitate Conversation Reasoning 71

If the processor agrees to process the document and informs the manager
of its completion, the conversation returns to the “Waiting” state, as shown in
Figure 9. Unlike the first time the conversation was in this state, this time the
?docid variable has got a binding associated with it. However, the transition
between “Waiting” and “Requested” uses this variable in a mutable context,
meaning that it can match against any value contained in the next message.
Thus the manager can ask the processor to process any document it wishes.
In contrast, as noted previously, when moving from the “Requested” state, the
processor is restricted to only discussing the identifier of the last document it
was asked to process.

If the manager requests that the processor processes document “doc124”, the
conversation returns to the “Requested” state, as shown in Figure 10. The?docid
variable has now acquired an updated binding that is now applied to all the tran-
sitions using that variable in an immutable context. At this stage, the processor
agent may repeat the cycle by processing the document and informing the man-
ager of this, or it may end the conversation by refusing to perform the processing,
thus entering the “End” state.

7 Language Integration in Agent Factory

Agent Factory is an extensible, modular and open framework for the develop-
ment of multi agent systems [2]. It supports a number of agent programming
languages, including AFAPL/ALPHA [18,19], AFAPL2 [20], AF-TeleoReactive
(based on [21]) and AF-AgentSpeak (an implementation of AgentSpeak(L) [8]).
The specific use of ACRE from within AFAPL2 agents has been discussed in a
previous paper [16].

Agent Factory’s implementation of these agent programming languages are
based on its Common Language Framework (CLF) whereby the way in which
sensors, actions and modules are implemented have been standardised across the
various languages. This greatly facilitates the integration of additional services
into each language, as the core components will be shared. This is the case for
ACRE, where minimal effort is required to add support for further languages
once one integration has been completed.

The ACRE Architecture consists of a number of components, some of which
are platform-independent and some of which require some work to be ported to
other platforms and agent programming languages.

7.1 Protocol Manager

The Protocol Manager (PM) is a platform-independent component that is tasked
with making protocols available to agents. When an agent identifies the URL
of an ACRE protocol definition it will send this to the PM, which will load
the protocol, verify it against the appropriate schema and make it available for
interested agents to use. It is also capable of accessing online ACRE reposito-
ries that may contain multiple protocol definitions in a centralised location. A



72 D. Lillis and R.W. Collier

repository definition file lists the protocols that it has available. Typically, one
PM will exist on an agent platform, so any protocol located by any agent will
be shared amongst all agents on the platform (within Agent Factory, the PM is
a shared Platform Service). However, there is no technical barrier to individual
agents having their own PMs if desired. Previously loaded protocols are also
stored locally so that they can be recovered in the event of a platform failure or
restart.

7.2 Conversation Manager

Whereas the PM is shared amongst agents, each agent has its own Conversation
Manager (CM), which is used to keep track of the conversations the agent is
involved in. The CM monitors both incoming and outgoing communication and
matches each message to an appropriate conversation, following the algorithm
outlined in Section 4. By monitoring the CM, an agent can gain data that can
be used to reason about ongoing conversations and the messages it sends and
receives. The CM is also platform-independent.

7.3 Agent/ACRE Interface

The Agent/ACRE Interface (AAI) is specific to the platform and agent pro-
gramming language being used. This is designed to facilitate the interaction
between the agents and the ACRE components mentioned above. The AAI has
two distinct principal roles:

– To enable an agent to inform the PM and CM of information it holds.
– To provide the agent with information about the status and activity of the

CM and PM.

In the former case, an agent must be capable of informing the PM of the
location of any protocols that it wishes to use. This information may originally
come from another agent with which it wishes to communicate. The CM requires
access to the inbox and outbox of the agent also, so the AAI must provide this
service also.

The key role of the AAI is making information about its own communication
available to agents. Within Agent Factory, this is done in two complementary
ways: knowledge sensors and event sensors.

A knowledge sensor is a sensor that runs on each interpreter cycle of the agent,
and provides information on the current state of conversations and protocols.
This information currently consists of:

– What protocols are already loaded (PM).
– For each conversation in which the agent is a participant:
– The protocol each conversation is following (CM)
– The identity of the other participating agent in each conversation (CM)
– The current state of each conversation (CM)
– The current status of each conversation (CM)



Augmenting Agent Platforms to Facilitate Conversation Reasoning 73

In addition to these, event sensors inform the agent whenever events are raised
by the PM or the CM. Events currently handled include:

– A new protocol has been loaded (PM)
– A new conversation has begun (CM)
– A conversation has advanced (CM)
– A conversation has ended (CM)
– An error has occurred in a conversation (CM)

In addition to the basic role of information passing, an AAI may augment the
capabilities of a language by leveraging the data available from the CM or the
PM. For instance, the AAI built for the Agent Factory CLF provides an action
of the form advance(conversation-id,performative,content) whereby an
agent can advance a specific conversation while providing minimal information.
The details about the other participating agent (including its address) are taken
from the CM, along with the protocol identifier and content language. Further
features in this vein are left for future work.

8 Conclusions and Future Work

This paper presents an outline of the ACRE conversation reasoning system, how
it models protocols and conversations, and how it is integrated into the Agent
Factory multi agent framework. Although currently only used with Agent Fac-
tory, it is intended that ACRE will be used in conjunction with several other
agent programming frameworks and the languages they support. ACRE has
been designed to be as language-independent and platform-independent as pos-
sible. Despite this, it will be necessary to adapt the system to frameworks and
languages other than Agent Factory and the agent programming languages it
supports.

Aside from the integration of ACRE into other platforms, future focus will
be on the reasoning about conversations at the agent deliberative level and the
information that ACRE will need to provide in order to facilitate this. One are
of focus will be to allow the grouping of conversations into related groups. As
ACRE protocols are limited to two participants, it is necessary to allow agents
to relate conversations to each other. One such example will be in a situation
where an agent is conducting an auction and has issued a call for proposals
to multiple agents. At present, each of these initiates a separate conversation
that must be managed by the agent using its own existing capabilities. However,
grouping conversations at the Conversation Manager level would allow events to
be raised to inform the agent that all conversations in the group had reached
the state where a proposal had been received, or left the state where a proposal
had been solicited. The key point is the provision of sufficient information for
agents to use their deliberative reasoning capabilities in conjunction with the
information emanating from the Conversation and Protocol Managers.

In addition, it is intended to explore the ways in which having access to an
ACRE layer will add to the native messaging capabilities of other programming



74 D. Lillis and R.W. Collier

languages. This includes the ability to directly advance a conversation, as alluded
to in Section 7, as well as specifically initiating conversations (rather than relying
on message matching on the part of the Conversation Manager). The possibilities
are likely to vary with different agent programming languages and it is intended
to add these features as appropriate.

The availability of cross-platform communication tools such as ACRE can only
aid interoperability between distinct agent platforms, toolkits and programming
languages.

References

1. Labrou, Y.: Standardizing agent communication. Multi-Agents Systems and Ap-
plications (Advanced Course on Artificial Intelligence), 74–97 (2001)

2. Collier, R.W., O’Hare, G.M.P., Lowen, T., Rooney, C.: Beyond Prototyping in the
Factory of Agents. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS
2003. LNCS (LNAI), vol. 2691, p. 383. Springer, Heidelberg (2003)

3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communi-
cation Language. In: Proceedings of the Third International Conference on Infor-
mation and Knowledge Management, Gaithersburg, MD, pp. 456–463 (1994)

4. Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS Agent Platform: Open Source
for Open Standards. In: Proceedings of the 5th International Conference and Exhi-
bition on the Practical Application of Intelligent Agents and Multi-Agents (PAAM
2000), Manchester, p. 368 (2000)

5. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library
Specification (2002)

6. Foundation for Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification (2000)

7. Bellifemine, F., Caire, G., Trucco, T., Rimass, G.: Jade Programmer’s Guide (2007)
8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems

in AgentSpeak using Jason. Wiley Interscience, New York (2007)
9. Collier, R.W., Ross, R., O’Hare, G.M.P.: A Role-Based Approach to Reuse in

Agent-Oriented Programming. In: AAAI Fall Symposium on Roles, an Interdisci-
plinary Perspective (Roles 2005), Arlington, VA, USA (2005)

10. Barbuceanu, M., Fox, M.S.: COOL: A language for describing coordination in multi
agent systems. In: Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS-1995), pp. 17–24 (1995)

11. Cost, R.S., Finin, T., Labrou, Y., Luan, X., Peng, Y., Soboroff, I., Mayfield, J.,
Boughannam, A.: Jackal: a Java-based Tool for Agent Development. Working Pa-
pers of the AAAI 1998 Workshop on Software Tools for Developing Agents, AAAI
Press, Menlo Park (1998)

12. Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: Toward an
industrial-strength open agent architecture. Software Agents, 375–418 (1997)

13. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Modeling agent conversa-
tions with colored petri nets. In: Workshop on Specifying and Implementing Con-
versation Policies, Third International Conference on Autonomous Agents (Agents
1999), Seattle, pp. 59–66 (1999)

14. Parunak, H.: Visualizing Agent Conversations: Using Enhanced Dooley Graphs for
Agent Design and Analysis. In: Proceedings of the Second International Conference
on Multi-Agent Systems (ICMAS) (1996)



Augmenting Agent Platforms to Facilitate Conversation Reasoning 75

15. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation (2002)

16. Lillis, D., Collier, R.W.: ACRE: Agent Communication Reasoning Engine. In: 3rd
International Workshop on Languages, Methodologies and Development Tools for
Multi Agent SystemS (LADS 2010), Lyon (2010)

17. Braubach, L., Pokahr, A.: Goal-Oriented Interaction Protocols. In: Petta, P.,
Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI),
vol. 4687, pp. 85–97. Springer, Heidelberg (2007)

18. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. Phd thesis, University College Dublin (2001)

19. Collier, R., Ross, R.J., O’Hare, G.M.P.: Realising Reusable Agent Behaviours with
ALPHA. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N.
(eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 210–215. Springer, Heidelberg
(2005)

20. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Towards Pervasive In-
telligence: Reflections on the Evolution of the Agent Factory Framework, vol. ch.6,
pp. 187–212. Springer US, Boston (2009)

21. Nilsson, N.J.: Teleo-Reactive Programs for Agent Control. Journal of Artificial
Intelligence Research 1, 139–158 (1994)



Exploiting Agent-Oriented Programming for

Developing Future Internet Applications Based
on the Web: The JaCa-Web Framework

Mattia Minotti, Alessandro Ricci, and Andrea Santi

DEIS, University of Bologna
Via Venezia 52, Cesena (FC), Italy

{a.ricci,a.santi}@unibo.it

Abstract. Besides being suitable for tackling Distributed Artificial In-
telligence problems, we argue that agent-oriented programming lan-
guages and multi-agent programming technologies provide an effective
level of abstraction for tackling the design and programming of com-
plex software systems in general. Internet applications based on the Web
are an important example of such systems. Following the cloud comput-
ing perspective, these kinds of applications will more and more replace
desktop applications, exploiting the Web infrastructure as a common
distributed operating system. We argue that the development of these
applications raises challenges that cannot be effectively tackled by main-
stream programming paradigms, such as the object-oriented one, and
could be effectively faced – instead – by an agent-oriented approach. Ac-
cordingly, in this paper we describe JaCa-Web, a framework that allows
for applying agent-oriented programming technologies – in particular
JaCa, which integrates Jason agent programming language and CArtAgO
environment technology – to the development of advanced Web client
applications.

1 Introduction

The value of Agent-Oriented Programming (AOP) [23], including multi-agent
systems technology, is often remarked and evaluated in the context of Artificial
Intelligence (AI) and Distributed AI problems. This is evident, for instance, by
considering existing agent programming languages (see [4,6] for comprehensive
surveys) – whose features are typically demonstrated by considering AI toy prob-
lems such as block worlds and alike. Besides this view, we argue that the level
of abstraction introduced by AOP is effective for organising and programming
software applications in general, starting from those programs that involve as-
pects related to reactivity, asynchronous interactions, concurrency, up to those
involving different degrees of autonomy and intelligence.

In that context, an important example is given by future Internet applica-
tions based on the Web. The Web has witnessed an extraordinary evolution
in recent years, starting from being a distributed infrastructure for producing
and accessing to hyper-text documents and becoming nowadays more and more

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 76–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Exploiting AOP for Developing Future Internet Applications 77

the reference platform for running distributed Internet-based applications. Rich
Internet Applications [7] are a result of such an evolution, being web-based ap-
plications which share more and more features with desktop applications, com-
bining their better user experience with all the benefits provided by the Web,
such as distribution, openness and accessibility. These kinds of applications are
a fundamental brick for the cloud computing perspective [15], whereby shared
resources, software and information are provided to computers and other de-
vices on demand through the network, typically exploiting the Web – a simple
example is given by the Google apps1. A main point in this evolution is the role
of the client (browser), which is no more restricted to getting inputs from the
user and visualising HTML pages only, but supporting the execution of part of
the applications, which continuously interact with the server side and – more
generally – services on the network. This change however brings also a substan-
tial enhancement of the complexity in the development of the Web applications,
and it is clear that basic enabling mechanisms (such as AJAX technology or
JavaScript scripting language) are not enough when we deal with applications
in the large.

We argue that agent-orientation provides a suitable level of abstraction to
design and develop these kinds of applications. In this paper we show this idea
in practice by describing an agent-oriented framework called JaCa-Web that al-
lows for programming and executing Internet applications based on the Web,
focussing in particular on the client side. JaCa-Web is based on the JaCa plat-
form, which integrates the Jason agent programming language and CArtAgO
environment programming framework. Besides describing the platform, our aim
here is to discuss the key points that make JaCa and – more generally – agent-
oriented programming a suitable paradigm for tackling main complexities of
software applications, advanced Web applications in this case, that – we argue
– are not properly addressed by mainstream programming languages, such as
object-oriented ones. In that, this work can be considered an extension of a
previous one [13], where a Java-based agent framework called simpA [22] is used.

The remainder of the paper is organised as follows. First, we provide a brief
overview of JaCa (Section 2) programming model and platform. Then, we discuss
the use of JaCa for developing Web client applications (Section 3), remarking
the advantages compared to existing state-of-the art approaches. To evaluate the
approach we describe the design and implementation of a case study (Section 4).
Finally, we present related and future works (Section 5) and concluding remarks
(Section 6).

2 Agent-Oriented Programming with JaCa

An application in JaCa is designed and programmed as a set of agents which work
and cooperate inside a common environment. Following the A&A conceptual
model [14,21], the environment is organised as a set of workspaces – possibly
distributed over the network – populated by a dynamic set of artifacts, that are
1 http://www.google.com/apps/

http://www.google.com/apps/


78 M. Minotti, A. Ricci and A. Santi

the environment basic building blocks representing resources and tools shared
and used by agent to do their work. Programming the application means then
programming the agents on the one side, as goal-oriented entities encapsulating
the logic of control of the tasks that must be executed, and the artifacts on
the other side, as first-class environmental abstraction providing the actions and
functionalities exploited by the agents to do their tasks. It is worth remarking
that, differently from traditional agent-oriented programming technologies, the
environment here plays a key role as a programmable part of the system [20],
useful to encapsulate those non-autonomous services that can be used by agents
at runtime – which include also the interaction with the external environment.
In this approach, agents can interact and communicate both directly, through
speech acts and ACL, and indirectly, through the use of the shared environment.

2.1 Programming the Agents

In JaCa, Jason [5] is adopted as the programming language to implement and
execute the agents. Being a concrete implementation of an extended version of
AgentSpeak(L) [18], Jason adopts a BDI (Belief-Desire-Intention)-based compu-
tational model and architecture to define the structure and behaviour of individ-
ual agents. In that, agents are implemented as reactive planning systems: they
run continuously, reacting to events (e.g., perceived changes in the environment)
by executing plans given by the programmer. Plans are courses of actions that
agents commit to execute so as to achieve their goals. The pro-active behaviour
of agents is possible through the notion of goals (desired states of the world)
that are also part of the language in which plans are written. Besides interacting
with the environment, Jason agents can communicate by means of speech acts.

2.2 Programming the Environment

On the environment side, CArtAgO [20] is adopted as a framework to program
and run the artifact-based environments. Artifacts are, on the one side, a first-
class programming abstraction for the environment developer to modularise the
environment functionalities, by programming the different kinds of artifacts that
can be instantiated and used at runtime by the agents; on the other side, they are
first-order entities from the agent view point, i.e. the basic bricks that populate
the agent world and that agents typically exploit as resources and tools – possibly
shared – to do their job.

In order to be used by the agents, each artifact provides of a usage interface
composed by a set of operations and observable properties. Operations corre-
spond to the actions that the artifact makes it available to agents to interact
with such a piece of the environment. Operations are executed by the artifact
transactionally, and only one operation can be in execution at a time, like in
the case of monitors in concurrent programming. Complex operations, however,
can be structured in multiple transactional steps that can be interleaved, so as
to allow for the concurrent execution of operations. Observable properties define
the observable state of the artifact, which is represented by a set of information



Exploiting AOP for Developing Future Internet Applications 79

items whose value (and value change) can be perceived by agents as percepts.
Besides observable properties, the execution of operations can generate signals
perceivable by agents as percepts, too. Finally, as a principle of composability,
artifacts can be assembled together by a link mechanism, which allows for an
artifact to execute operations over another artifact.

The notion of workspace – as a logical cointainer of agents and artifacts – is
used to define the topology of complex environments, that can be organised as
multiple sub-environments (workspaces), possibly distributed over the network.
By default, each workspace contains a predefined set of artifacts created at boot
time, providing basic functionalities: examples are the workspace artifact, which
provides operations (actions) to create, lookup, link together artifacts, the node
artifact, providing operations to join multiple workspaces, the console artifact,
to print message on the console. An agent can work simultaneously in multiple
workspaces, which may reside both in the same network node and in remote
(distributed) nodes.

CArtAgO provides a Java-based API to program the types of artifacts that
can be instantiated and used by agents at runtime. So an object-oriented data-
model is adopted to define the data structures in actions, observable properties
and events.

2.3 Multi-agent System View: Putting Agents and Artifacts
Together

JaCa integrates Jason and CArtAgO so as to make it seamless the use of artifact-
based environments by Jason agents.

To this purpose, first, the overall set of external actions that a Jason agent can
perform is determined by the overall set of artifacts that are actually available in
the workspaces where the agent is working. So, the action repertoire is dynamic
and can be changed by agents themselves by creating, disposing artifacts.

Then, the overall set of percepts that a Jason agent can observe is given by
the observable properties and observable events of the artifacts available in the
workspace at runtime. Actually an agent can explicitly select which artifacts
to observe, by means of a specific action called focus. By observing an artifact,
artifacts’ observable properties are directly mapped into beliefs in the belief-
base, updated automatically each time the observable property changes its value.
So a Jason agent can specify plans reacting to changes to beliefs that concern
observable properties or can select plans according to the value of beliefs which
refer to observable properties. Artifacts’ signals instead are not mapped into the
belief base, but processed as non persistent percepts possibly triggering plans—
like in the case of message receipt events.

Finally, the Jason data-model – essentially based on Prolog terms – is extended
to manage also (Java) objects, so as to work with data exchanged by performing
actions and processing percepts.



80 M. Minotti, A. Ricci and A. Santi

count

inc

println

console
counteruser

agents

observer
agents

default workspace

Fig. 1. A simple JaCa program with some user and observer agents which interact by
using and observing a shared Counter artifact

// MAS main
MAS example {

environment:
c4jason.CartagoEnvironment

agents:
user user agentArchClass

c4jason.CAgentArch #4;
observer observer agentArchClass

c4jason.CAgentArch #2;
}

// Counter artifact template
public class Counter extends Artifact {
void init(){

defineObsProperty("count",0);
}
@OPERATION void inc(){

ObsProperty prop = getObsProperty("count");
prop.updateValue(prop.intValue()+1);
signal("tick");

}
}

// user agent code
!create_and_use.

+!create_and_use : true
<- !setupTool(Id);

inc;
inc [artifact_id(Id)].

+!setupTool(C): true
<- makeArtifact("c0",

"Counter",[],C).
-!setupTool(C): true

<- lookupArtifact("c0",C).

// observer agent code
!observe.

+!observe : true
<- ?myTool(C); // discover the tool

focus(C).
+count(V)
<- println("observed new value: ",V).

+tick [artifact_name(Id,"c0")]
<- println("perceived a tick").

+?myTool(CounterId): true
<- lookupArtifact("c0",CounterId).

-?myTool(CounterId): true
<- .wait(10); ?myTool(CounterId).

Fig. 2. The complete source code of the JaCa program, including the Jason MAS main
file, the source code of the Counter artifact template and the source code of the user
and observer agents

Just to have a taste of the approach, a toy example of JaCa program is depicted
in Fig. 1, in which four agents users interact with two agents observer by means
of a shared counter artifact, instance of the Counter artifact template. Each
user agent tries to create the counter artifact by means of the makeArtifact
action – which is an operation provided by the workspace artifact, available in
every workspace – and then to use it by executing twice the inc action – which
corresponds to the inc artifact operation. Actually only one user agent would
succeed in creating the artifact: the other user agents simply retrieve the artifact



Exploiting AOP for Developing Future Internet Applications 81

(A) (B) (C)

Fig. 3. Evolution of the architecture of Web Applications

identifier in the repair plan -!setupTool <- ..., which is executed as soon as
the +!setupTool <- ... fails2. Each observer agent first discovers the counter
artifact, then starts observing it: as soon as the count observable property of
the artifact is changed or a tick observable event is generated, observers react
and print on the console artifact a message.

A full description of Jason language/platform and CArtAgO framework – and
their integration – is out of the scope of this paper: the interested reader can find
details in literature [20,19] and on Jason and CArtAgO open-source web sites34.

3 Applying JaCa to the Web: The JaCa-Web Framework

In this section, we describe how the features of JaCa can be exploited to program
complex Web client applications, providing benefits over existing approaches.
First, we sketch the main complexities related to the design and programming
of next-generation Web applications; then, we describe how these are addressed
by JaCa-Web, which is a framework on top of JaCa to develop such a kind of
applications.

3.1 Developing Future Internet Web-Based Applications:
Challenges

As mentioned in the introduction, since its conception the role of the Web has sub-
stantially evolved, starting from being a distributed infrastructure for producing
and accessing to hyper-text documents and becoming nowadays the standard de
facto platform for running distributed Internet-based applications. Even as a plat-
form for developing and deploying applications, it is possible to devise in the
2 For these user agents, since it is not possible to create multiple artifacts with the

same logic name, the makeArtifact action fails.
3 http://jason.sourceforge.net
4 http://cartago.sourceforge.net

http://jason.sourceforge.net
http://cartago.sourceforge.net


82 M. Minotti, A. Ricci and A. Santi

state-of-the-art an evolution of Web application architectures, as depicted in
Fig. 3. In the first architectural model – still used in Web 1.0 applications – all
the application logic is on the server side: the client side – represented by the
browser – is responsible of visualising HTML pages and get inputs from the user.
By referring to the MVC (Model View Controller) architecture, both the Model
and the Controller parts are on the server side, leaving only the View part on
the client side. Every user input action causes the execution of a new HTTP
synchronous request, processed on the server side by the controller (such as a
Servlet) accessing to the Model (a data-base or some components in a component
container) and generating a new HTML page to be sent back to the client.

A first extension to this model (point B in the figure) is given by the intro-
duction of proper set of technologies – AJAX is a main example – that allow
for executing asynchronous calls from the client to the server, so as to realise
applications with a more reactive user interface, more similar to the one adopted
by desktop applications. In particular, such Web applications allow the client to
send multiple concurrent requests asynchronously, avoiding complete page reload
and keeping the user interface live and responding. Periodic activities within the
client-side of the applications can be performed in the same fashion, with clear
advantages in terms of perceived performance, efficiency and interactivity. So
the application logic is still on the server side, however the model of interaction
radically changes, so that both on the server side and the client side applications
need to manage asynchronous events and concurrent computations.

The next final step (point C) extends and generalises the previous one by
distributing the application logic between the client and the server, bringing
then part of the Controller and the Model on the client side and exploiting the
synchronous plus asynchronous model of interaction to glue the parts together,
besides the goal of a better UI. So the more complex Web apps are considered,
the more the application logic put on the client side becomes richer, eventually
including asynchronous interactions – with the user, with remote services – and
possibly also concurrency – due to the concurrent interaction with multiple re-
mote services. This step requires the availability on the client side – inside the
browser – of proper technologies that would allow for the execution of full-fledged
applications, which need to flexibly interact with both the user locally and with
the Web server and services remotely.

The direction of decentralising responsibilities to the client, and eventually
improving the capability of working offline, is evident also by considering the
new HTML standard 5.0, which enriches the set of API and features that can
be used by the Web application on the client side5. Among the others, some
can have a strong impact on the way an application is designed: it is the case
of the Web Worker mechanism6, which makes it possible to spawn background
workers running scripts in parallel to their main page, allowing for thread-like
operation with message-passing as the coordination mechanism. Another one is

5 http://dev.w3.org/html5/spec/
6 http://www.whatwg.org/specs/web-workers/current-work/

http://dev.w3.org/html5/spec/
http://www.whatwg.org/specs/web-workers/current-work/


Exploiting AOP for Developing Future Internet Applications 83

cross-document messaging7, which defines mechanisms for communicating be-
tween browsing contexts in HTML documents.

Besides devising enabling mechanisms, a main issue is then how to design and
program of these kinds of applications. A basic and standard way to realise the
client side of Web app is to embed in the page scripts written in some script-
ing language – such as JavaScript. Originally such scripts were meant just to
perform check on the inputs and to create visual effects. The problem is that
scripting languages – like JavaScript – have not been designed for programming
in the large, so using them to organise, design, implement complex programs is
hard and error-prone. To address the problems related to scripting languages,
higher-level approaches have been proposed, based on frameworks that exploit
mainstream object-oriented programming languages. A main example is Google
Web Toolkit (GWT)8, which allows for developing client-side apps with Java.
This choice makes it possible to reuse and exploit all the strength of mainstream
programming-in-the-large languages that are typically not provided by scripting
languages—an example is strong typing. However it does not provide significant
improvement for those aspects that are still an issue for OO programming lan-
guages, such as concurrency, asynchronous events and interactions, and so on.
The same comment applies to solutions such as Microsoft Silverlight technology9,
which allows for developing Web client apps on top of the .NET Object-Oriented
framework.

We argue then that these aspects can be effectively captured by adopting an
agent-oriented level of abstraction and programmed by exploiting agent-oriented
technologies such as JaCa: in next section we discuss this point in detail.

3.2 An Agent-Oriented Programming Approach Based on JaCa

By exploiting JaCa, we directly program the Web client application as a nor-
mal JaCa agent program, composed by a workspace with one or multiple agents
working within an artifact-based environment including a set of pre-defined type
of artifacts specifically designed for the Web context domain (see Fig. 4). Gener-
ally speaking, agents are used to encapsulate the logic of control and execution
of the tasks that characterise the Web client app, while artifacts are used to
implement the environment needed for executing the tasks, including those co-
ordination artifacts that can ease the coordination of the agents’ work. As soon
as the page is downloaded by the browser, the application is launched – creating
the workspace, the initial set of agents and artifacts.

Among the pre-defined types of artifact available in the workspace, two main
ones are the Page artifact and the HTTPService artifact. Page provides a twofold
functionality to agents: (i) to access and change the Web page, internally ex-
ploiting specific low-level technology to work with the DOM (Document Object
Model) object, allowing for dynamically updating its content, structure, and

7 http://dev.w3.org/html5/postmsg/
8 http://code.google.com/webtoolkit/
9 http://www.silverlight.net/

http://dev.w3.org/html5/postmsg/
http://code.google.com/webtoolkit/
http://www.silverlight.net/


84 M. Minotti, A. Ricci and A. Santi

Web AppHTTP

Jason CArtAgO

Java Virtual Machine

Browser

Web tech
(JavaScript, 

LiveConnect, ...)

JaCa-Web Artifacts

Web-app workspace

SOAP/Rest

Page
Artifact

HTTP
Service
Artifact

Service
Artifact

Web Services
Web Resources

B
row

ser
G

U
I

User

Fig. 4. An abstract overview of a JaCa-Web application

visualisation style; (ii) to make events related to user’s actions on the page ob-
servable to agents as percepts. An application may either exploit directly Page
or define its own extension with specific operations and observable properties
linked to the specific content of the page. HTTPService provides basic function-
alities to interact with a remote HTTP service, exploiting and hiding the use of
sockets and low-level mechanisms. Analogously to Page, this kind of artifact can
be used as it is – providing actions to do HTTP requests – or can be extended
providing a higher-level application specific usage interface hiding the HTTP
level.

So the artifact-based environment plays an important role here in situating
the agents in the Web environment, so providing all the means to change the
DOM, to interact with HTTP remote server and services, to perceive events
produced by the user acting on the HTML page, and so on, but at a proper level
of abstraction (actions and perceptions), hiding the low level mechanisms that
concern the integration with the legacy technology.

To exemplify the description of these elements and of JaCa-Web programming
in the overall, in the following we consider a toy example of Web client app, in
which two agents are used to search for prime numbers up to a maximum value
which can specified and dynamically changed by the user through the Web page.
As soon as an agent finds a new prime number, a field on the the Web page
reporting the total number of values is updated. Fig. 5 shows an overview of the
main components of the program: the environment includes a Page artifact called
myPage, an artifact called numGen, functioning as a number generator, shared and
used by agents to get the numbers to verify, and two artifacts, primeService1
and primeService2, providing the (same) functionality that is verifying if a



Exploiting AOP for Developing Future Internet Applications 85

nextNum

8

checkPrime

100maxnum

4nprimes

incPrimes

current

myPage

PrimeSearcher

PrimeSearcher

primeService1

primeService2

checkPrime

User

HTTP

RemotePrimeServicenumGen

prime-app-workspace

checkPrime

Fig. 5. An abstract overview of the JaCa-Web toy example described in the paper

number is prime. myPage is an instance of MyPage extending the basic Page
artifact so as to be application specific, by: (i) defining an observable property
maxnum whose value is directly linked to the related input field on the web page;
(ii) generating start and stop signals as soon as the page button controls
start and stop are pressed; (ii) defining an operation incPrimes that updates
the output field of the page reporting the actual number of prime numbers
found. numGen is an instance of the NumGen artifact (see Fig. 5), which provides
an action getNextNum to generate a new number – retrieved as output (i.e.
action feedback) parameter. The two prime number service artifacts provide the
same usage interface, composed by a checkPrime(num: integer) action, which
generates an observable event is prime(num: integer) if the number is found
to be prime. One artifact does the computation locally (LocalPrimeService);
the other one, instead – which is an instance of RemotePrimeService, extending
the pre-defined HTTPService artifact – provides the functionality by interacting
with a remote HTTP service.

Fig. 6 shows the source code of one of the two prime searcher agents (on
the right). After having set up the tools needed to work, the agent waits
to perceive a start event generated by the page. Then, it starts working,
repeatedly getting a new number to check – by executing a getNextNum –
until the maximum number is achieved. The agent knows such a maximum
value by means of the maxnum page observable property—which is mapped
onto the related agent belief. The agent checks the number by perform-
ing the action checkPrime and then reacting to is prime(Num: integer)
event, updating the page by performing incPrimes. If a stop event is per-
ceived – which means that the user pressed the stop button on the Web
page – the agent promptly reacts and stops working, dropping its main intention.

3.3 Key Points

We have identified three key points that, in our opinion, represent main bene-
fits of adopting agent-oriented programming and, in particular, the JaCa-Web
programming model, for developing these kinds of applications.



86 M. Minotti, A. Ricci and A. Santi

public class MyPage extends PageArtifact {

protected void setup() {
defineObsProperty("maxnum",getMaxValue());
linkEventToOp("start","click","startClicked");
linkEventToOp("stop","click","stopClicked");
linkEventToOp("maxnum","change","maxnumChange");

}
@OPERATION void incPrimes(){
Elem el = getElementById("primes_found");
el.setValue(el.intValue()+1);

}
@INTERNAL_OPERATION private void startClicked(){
signal("start");

}
@INTERNAL_OPERATION private void stopClicked(){
signal("stop");

}
@INTERNAL_OPERATION private void maxnumChange(){
updateObsProperty("maxnum",getMaxValue());

}
private int getMaxValue(){
return getElementById("maxnum").intValue();

}
}

public class RemotePrimeService extends HTTPService {

@OPERATION void checkPrime(double n){
HTTPResponse res =

doHTTPRequest(serverAddr,"isPrime",n);
if (res.getElem("is_prime").equals("true")){

signal("is_prime",n);
}

}
}

public class NumGen extends Artifact {

void init(){
defineObsProperty("current",0);

}
@OPERATION
void nextNum(OpFeedbackParam<Integer> res){
int v = getObsProperty("current").intValue();
updateObsProperty("current",++v);
res.set(v);

}
}

// Prime searcher agent

!setup.

+!setup
<- lookupArtifact("MyPage",Page);

focus(Page);
makeArtifact("primeService1",

"RemotePrimeService");
makeArtifact("numGen","NumGen").

+start
<- lookupArtifact("primeService1",S);

focus(S);
lookupArtifact("numGen",G);
focus(G);
!!checkPrimes.

+!checkPrimes
<- nextNum(Num);

!checkNum(Num).

+!checkNum(Num) :
maxnum(Max) & Num <= Max

<- checkPrime(Num);
!checkPrimes.

+!checkNum(Num) :
maxnum(Max) & Num > Max.

+is_prime(Num)
<- incPrimes.

+stop
<- .drop_intention(checkPrimes).

Fig. 6. (Left) Artifacts’ definition in CArtAgO: MyPage and RemotePrimeService ex-
tending respectively PageArtifact and HTTPService artifact types which are available
by default in JaCa-Web workspaces, and NumGen to coordinate number generation and
sharing. (Right) Jason source code of a prime searcher agent.

First, agents are first-class abstractions for mapping possibly concurrent tasks
identified at the design level, so reducing the gap from design to implementation.
The approach allows for choosing the more appropriate concurrent architecture,
allocating more tasks to the same kind of agent or defining multiple kind of agents
working concurrently. This allows for easily programming Web client concurrent
applications, that are able to exploit parallel hardware on the client side (such as
multi-core architectures). In the example, two agents are used to fairly divide the



Exploiting AOP for Developing Future Internet Applications 87

overall job and work concurrently, exploiting the number generator artifact as
a coordination tool to share the sequence of numbers. Changing the solution by
using a single agent or more than two agents would not require any substantial
change in the code.

Indeed, this simple example could be easily developed also using Java with
flat threads. Threads, however, are a low-level OS mechanism notoriously not
effective for hiding concurrency complexity when developing complex concur-
rent programs. The adoption of an agent level of abstraction makes it possible
to reason, design and program using higher level concepts such as tasks and
plans, which are provided as first-class programming constructs. The impor-
tance of having a proper level of abstraction is clearly manifested also by recent
works about extending the Java concurrency library with proper general-purpose
frameworks to hide as much as possible the use of threads. An example is given
by the executor framework, available in the java.util.concurrent library since
the 1.5 version of the Java Development Kit (JDK), where a logical notion of
task is introduced.

Compared to existing OO concurrency frameworks, the computational model
adopted by the Jason agent programming language – which is BDI based –
provides a far richer support to task management, and – in particular – pro-
vides a clear model about how to integrate task-oriented behaviours and reactive
event-driven behaviours—which is a well-known problem in concurrent program-
ming [9]. This is the second key point. Agent architectures based on BDI-like
reasoning cycle make it possible to straightforwardly integrate the management
of asynchronous events generated by the environment – such as the input of the
user or the responses retrieved from remote services – and the management of
workflows of possibly articulated activities, which can be organised and struc-
tured in plans and sub-plans. This makes it possible to avoid the typical problems
concerning the inversion of control [8] – caused by the use of callbacks to manage
events – within multi-threaded programs. These problems are often referred ad
asynchronous spaghetti code, that accounts for a lack of modularity in callback-
based source code where the overall business logic concerning the execution of
some task is fragmented into multiple call-back handlers that maybe executed
asynchronously and possibly concurrently. In that case the programmer must
(i) keep track of the overall task state by hand, using proper shared variables,
and (ii) using low level mechanisms – such as locks – to avoid interferences in
the case of concurrent handlers. In our case, these aspects can be designed and
programmed at a higher-level of abstraction, in terms of reactive and pro-active
structured plans.

In the prime searcher agent shown in the example, for instance, on the one
hand we use a plan handling the checkPrimes goal to pro-actively search for
prime numbers. The plan is structured then into a subgoal checkNum to process
the number retrieved by interacting with the number generator. Then, the plan
executed to handle this subgoal depends on the dynamic condition of the system:
if the number to process is greater than the current value of the maxnum page
observable property (i.e. of its related agent belief), then no checks are done



88 M. Minotti, A. Ricci and A. Santi

and the goal is achieved; otherwise, the number is checked by exploiting a prime
service available in the environment and the a new checkPrimes goal is issued
to go on exploring the rest of the numbers. The user can dynamically change
the value of the maximum number to explore, and this is promptly perceived
by the agents which can change then their course of actions accordingly. On
the other hand, reactive plans are used to process asynchronous events from the
environment, in particular to process incoming results from prime services (plan
+is prime(Num) <- ...) and user input to stop the research (plan +stop <-
...).

Finally, the third key point concerns the strong separation of concerns which is
obtained by exploiting the environment as first class abstraction. Jason agents,
on the one side, encapsulate solely the logic and control of tasks execution;
on the other side, basic low-level mechanisms to interact and exploit the Web
infrastructure are wrapped inside artifacts, whose functionalities are seamlessly
exploited by agents in terms of actions (operations) and percepts (observable
properties and events). So the environment – represented by artifacts, in this
case – is an effective mean to reuse and integrate object-oriented technologies,
keeping the agent level of abstraction. Also, application specific artifacts – such
as NumGen – can be designed to both encapsulate shared data structures useful for
agents’ work and regulate their access by agents, functioning as a coordination
mechanism.

3.4 JaCa-Web: Implementation Details

In order to run JaCa-Web framework on existing Web clients, we exploited Java
Applet technology, which provides a full-fledged Java Virtual Machine to exe-
cute the JaCa runtime. We could not use JavaScript, due to its single-threaded
nature. Applets allow to transfer code from a server to a browser and have it
executed within a controlled secure environment known as sandbox; in partic-
ular, signed applets drop much of the security constraints of the sandbox, for
instance allowing Java classes to open their own connections towards multiple
servers. Furthermore, the Java Virtual Machine invoked by the browser does not
force any restriction on the number of threads that a program may spawn, thus
providing a truly concurrent environment where to execute our application.

Since our model defines some client-side persistent entities and requires Jason
+ CArtAgO platforms, we also adopted Java download extensions10 architecture
for a one-time deployment of these parts of the Web application. This mechanism
provides a simple, standard and scalable way to make custom APIs available to
all applications running on the Java platform, therefore also applets executed on
browser JVM. To exploit it, Web application dependencies, such as Jason and
CArtAgO, have to be written in the manifest file of the main applets jar, along
with references to URLs where these dependencies can be solved.

Concerning the access to the page DOM representation in the browser – which
is provided by Page artifacts – we exploited the LiveConnect,11 library that can
10 http://java.sun.com/docs/books/tutorial/ext/basics/download.html
11 https://jdk6.dev.java.net/plugin2/liveconnect/

http://java.sun.com/docs/books/tutorial/ext/basics/download.html
https://jdk6.dev.java.net/plugin2/liveconnect/


Exploiting AOP for Developing Future Internet Applications 89

be both used from the JVM multi-threaded execution context to invoke Javasc-
tipt methods and, vice versa, from scripts to Java objects inside applet context.
Liveconnect is included in Java Plug-in and it has been recently rewritten to
provide an interoperability layer with improvements in terms of reliability, per-
formance and cross-browser portability.

Finally, the HTTP Channel artifact does not exploit the HTTP protocol
support provided by the browser, but relies instead on the functionalities offered
by the Java standard library.

4 A Case Study

To stress the features of agent-oriented programming and test-drive the capabil-
ities of the JaCa-Web framework, we developed a real-world Web application –
with features that go beyond the ones that are typically found in current Web
client app. The application is about searching products and comparing prices
from multiple services, a “classic” problem on the Web.

We imagine the existence of N services that offer product lists with features
and prices, codified in some standard machine-readable format. The client-side
in the Web application needs to search all services for a product that satisfies a
set of user-defined parameters and has a price inferior to a certain user-defined
threshold. The client also needs to periodically monitor services so as to search
for new offerings of the same product. A new offering satisfying the constraints
should be visualised only when its price is more convenient than the currently
best price. The client may finish its search and monitoring activities when some
user-defined conditions are met—a certain amount of time is elapsed, a product
with a price less than a specified threshold is find, or the user interrupts the
search with a click on a proper button in the page displayed by the browser.
Finally, if such an interruption took place, by pressing another button it must
be possible to let the search continue from the point where it was blocked.

The characteristics of concurrency and periodicity of the activities that the
client-side needs to perform make this case study a significant prototype of the
typical Web client application. Typically these applications are realised by im-
plementing all the features on the server side, without – however – any support
for long-term searching and monitoring capabilities. In the following, we describe
a solution based on JaCa-Web, in which responsibilities related to the long-term
search and comparison are decentralised into the client side of the application,
improving then the scalability of the solution – compared to the server-side
solution – and the user experience, providing a reactive user interface and a
desktop-like look-and-feel.

4.1 Application Design

The solution includes two kinds of agents (see Fig. 7): a UserAssistant agent –
which is responsible of setting up the application environment and manage inter-
action with the user – and multiple ProductFinder agents, which are responsible



90 M. Minotti, A. Ricci and A. Santi

Fig. 7. The architecture of the client-side Web application sample in terms of agent,
artifacts, and their interactions. UA is the UserAgent, PFs are the ProductFinder agents,
PD is the ProductDirectory artifact and finally Services are the ProductService artifacts

to periodically interact with remote product services to find the products sat-
isfying the user-defined parameters. To aggregate data retrieved from services
and coordinate the activities of the UserAssistant and ProductFinder we intro-
duce a ProductDirectory artifact, while a MyPage page artifact and multiple
instances of ProductService artifacts are used respectively by the UserAssistant
and ProductFinder to interact with the user and with remote product services.

More in detail, the UserAssistant agent is the first agent booted on the client
side, and it setups the application environment by creating the ProductDirectory
artifact and spawning a number of ProductFinder agents, one for each service to
monitor. Then, by observing the MyPage artifact, the agent monitors user’s ac-
tions and inputs. In particular, the Web page provides controls to start, stop the
searching process and to specify and change dynamically the keywords related to
the product to search, along with the conditions to possibly terminate the process.
Page events are mapped onto start and stop observable events generated by My-
Page, while specific observable properties – keywords and termination conditions
– are used to make it observable the input information specified by the user.

The UserAssistant reacts to these observable events and to changes to ob-
servable properties, and interacts with ProductFinder agents to coordinate the
searching process. The interaction is mediated by the ProductDirectory artifact,
which is used and observed by both the UserAssistant and ProductFinders.
In particular, this artifact provides a usage interface with operations to: (i)
dynamically update the state and modality of the searching process – in partic-
ular startSearch and stopSearch to change the value of a searchState ob-
servable property – useful to coordinate agents’ work – and changeBasePrice,
changeKeywords to change the value of the base price and the keywords describ-
ing the product, which are stored in a keyword observable property; (ii) aggre-
gate product information found by ProductFinders – in particular addProducts,
removeProducts, clearAllProducts to respectively add and remove a product,
and remove all products found so far.



Exploiting AOP for Developing Future Internet Applications 91

Besides searchState and keywords, the artifact has further observable prop-
erties, bestProduct, to store and make it observable the best product found so
far.

Finally, each ProductFinders periodically interact with a remote product ser-
vice by means of a private ProductService artifact, which extends a HTTPService
artifact providing an operation (requestProducts) to directly perform high-
level product-oriented requests, hiding the HTTP level.

4.2 Implementation

The source code of the application can be consulted on the JaCa-Web web site12,
where the interested reader can find also the address of a running instance that
can be used for tests. Here we just report a snippet of the ProductFinder agents’
source code (Fig. 8), with in evidence (i) the plans used by the agent to react
to changes to the search state property perceived from the ProductDirectory
artifact - adding and removing a new search goal, and (ii) the plan used to
achieve that goal, first getting the product list by means of the requestProducts
operation and then updating the ProductDirectory accordingly by adding new
products and removing products no more available. It is worth noting the use
of the keywords belief – related to the keywords observable property of the
ProductDirectory artifact – in the context condition of the plan to automatically
retrieve and exploit updated information about the product to search.

// ProductFinder agent

...

+searchState("start")
<- lookupArtifact("service1",Service); focus(Service); !!search.

+!search: keywords(Keywords)
<- requestProducts(Keywords,ProductList);

!processProducts(ProductList, ProductsToAdd, ProductsToRemove);
addProducts(ProductsToAdd);
removeProducts(ProductsToRemove);
.wait({+keywords(_)},5000,_);
!search.

+searchState("stop")
<- .drop_intention(search).

Fig. 8. A snippet of ProductFinder agent’s plans.

5 Related and Future Work

Several frameworks and bridges have been developed to exploit agent technolo-
gies for the development of Web applications. Main examples are the Jadex
Webbridge [16], JACK WebBot [1] and the JADE Gateway Agent [11]. The

12 http://jaca-web.sourceforge.net

http://jaca-web.sourceforge.net


92 M. Minotti, A. Ricci and A. Santi

Webbridge Framework enables a seamless integration of the Jadex BDI agent
framework [17] with JSP technology, combining the strength of agent-based
computing with Web interactions. In particular, the framework extends the the
Model 2 architecture – which brings the Model-View-Controller (MVC) pattern
in the context of Web application development – to include also agents, replacing
the controller with a bridge to an agent application, where agents react to user
requests. JACK WebBot is a framework on top of the JACK BDI agent platform
which supports the mapping of HTTP requests to JACK event handlers, and
the generation of responses in the form of HTML pages. Using WebBot, you can
implement a Web application which makes use of JACK agents to dynamically
generate Web pages in response to user input. Finally, the JADE Gateway Agent
is a simple interface to connect any Java non-agent application – including Web
Applications based on Servlets and JSP – to an agent application running on
the JADE platform [2].

All these approaches explore the use of agent technologies on the server side
of Web Applications, while in our work we focus on the client side. So – roughly
speaking – our agents are running not on a Web server but inside the Web
browser, so in a fully decentralised fashion. Indeed, these two views can be com-
bined together so as to frame an agent-based way to conceive next generation
Web applications, with agents running on both the client and server side. Accord-
ingly, this is a first important future work for JaCa-Web, extending the framework
also on the server side. Indeed, further work is needed to identify then what to
put on the client side and on the server side – i.e. which part of the agent ap-
plication – by evaluating criteria such as portability, network/client/server load,
etcetera.

Then, the use of agents to represent concurrent and interoperable compu-
tational entities already sets the stage for a possible evolution of Web client
applications into Semantic Web applications [3]. From the very beginning [10],
research activity on the Semantic Web has always dealt with intelligent agents
capable of reasoning on machine-readable descriptions of Web resources, adapt-
ing their plans to the open Internet environment in order to reach a user-defined
goal, and negotiating, collaborating, and interacting with each other during their
activities. So, a main future work accounts for extending the JaCa-Web plat-
form with Semantic Web technologies: to this purpose, existing works such as
JASDL [12], will be main references.

6 Conclusion

In this paper we investigated the application of agent-oriented programming
technologies to the development of future Internet applications based on the
Web, introducing the JaCa-Web framework. Following the cloud computing per-
spective, these kinds of applications will play more and more an important role in
the future, replacing in many cases desktop applications and becoming the stan-
dard de facto approach – along with service oriented architectures – to develop
distributed systems in general. In this context, we believe that agent-orientation



Exploiting AOP for Developing Future Internet Applications 93

can play an important role both as enabling technology for realising smart ap-
plications and as a level of abstraction to uniformly and straightforwardly deal
with the main complexities that the design and development of such applications
imply. JaCa-Web then provides a first concrete framework to bridge the gap be-
tween the theory and the practice, allowing for experimenting the use of BDI
agents – supported by proper artifact-based environments - for the development
of Web client applications.

References

1. Agent Oriented Software Pty. JACK intelligent agents webbot manual
(1999-2008), http://www.aosgrp.com/documentation/jack/webbot_manual_web/
index.html#thejackwebbotarchitecture

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester (2007)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

4. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming:
Languages, Platforms and Applications, vol. 1. Springer, Heidelberg (2005)

5. Rafael, B., Jomi, H., Mike, W.: Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd, Chichester (2007)

6. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications, vol. 2. Springer, Heidelberg
(2009)

7. Fraternali, P., Rossi, G., Sanchez-Figueroa, F.: Rich Internet Applications. IEEE
Internet Computing 14, 9–12 (2010)

8. Haller, P., Vetta, A.: Event-based programming without inversion of control. In:
Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22. Springer,
Heidelberg (2006)

9. Haller, P., Vetta, A.: Actors that unify threads and events. In: Murphy, A.L.,
Ryan, M. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

10. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2), 30–37
(2001)

11. JADE gateway agent (JADE 4.0 api) , http://jade.tilab.com/doc/api/jade/
wrapper/gateway/jadegateway.html

12. Klapiscak, T., Bordini, R.H.: JASDL: A practical programming approach combin-
ing agent and semantic web technologies. In: Baldoni, M., Son, T.C., van Riems-
dijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110.
Springer, Heidelberg (2009)

13. Minotti, M., Piancastelli, G., Ricci, A.: An agent-based programming model for
developing client-side concurrent web 2.0 applications. In: Filipe, J., Cordeiro, J.
(eds.) Web Information Systems and Technologies. Lecture Notes in Business In-
formation Processing, vol. 45. Springer, Heidelberg (2010)

14. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17 (3) (2008)

15. Pallis, G.: Cloud computing: The new frontier of internet computing. IEEE Internet
Computing 14, 70–73 (2010)

http://www.aosgrp.com/documentation/jack/webbot_manual_web/index.html#thejackwebbotarchitecture
http://www.aosgrp.com/documentation/jack/webbot_manual_web/index.html#thejackwebbotarchitecture
http://jade.tilab.com/doc/api/jade/wrapper/gateway/jadegateway.html
http://jade.tilab.com/doc/api/jade/wrapper/gateway/jadegateway.html


94 M. Minotti, A. Ricci and A. Santi

16. Pokahr, A., Braubach, L.: The webbridge framework for building web-based agent
applications. In: Dastani, M.M., El Fallah Seghrouchni, A., Leite, J., Torroni, P.
(eds.) LADS 2007. LNCS (LNAI), vol. 5118, pp. 173–190. Springer, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-85058-8_11

17. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent Pro-
gramming, Kluwer, Dordrecht (2005)

18. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

19. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating
artifact-based environments with heterogeneous agent-programming platforms. In:
Proceedings of 7th International Conference on Agents and Multi Agents Systems,
AAMAS 2008 (2008)

20. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications, vol. 2,
pp. 259–288. Springer, Heidelberg (2009)

21. Ricci, A., Viroli, M., Omicini, A.: The A&A programming model and technology for
developing agent environments in MAS. In: Dastani, M.M., El Fallah Seghrouchni,
A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908,
pp. 89–106. Springer, Heidelberg (2008)

22. Ricci, A., Viroli, M., Piancastelli, G.: simpA: An agent-oriented approach for pro-
gramming concurrent applications on top of Java. Science of Computer Program-
ming 76(1), 37–62 (2011)

23. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

http://dx.doi.org/10.1007/978-3-540-85058-8_11


JaCa-Android: An Agent-Based Platform

for Building Smart Mobile Applications

Andrea Santi, Marco Guidi, and Alessandro Ricci

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47521 Cesena, Italy
{a.santi,a.ricci}@unibo.it,
marco.guidi7@studio.unibo.it

Abstract. Mobile applications are getting a strong momentum given
the larger and larger diffusion of powerful mobile systems and related
application platforms. A main example of such an application platform
is given by Android, an open-source Java-based framework developed by
Google for building and running applications on mobile devices.

On the other hand we do really believe that Agent-Oriented Program-
ming (AOP) provides an effective level of abstraction for tackling the
programming of mainstream software applications, in particular those
that involve complexities related to concurrency, asynchronous events
management and context-sensitive behaviour. Accordingly in this paper
we support this claim in practice by discussing the use of a platform
integrating two main agent programming technologies for the develop-
ment of advanced mobile applications1. In detail this two technologies
are: (i) Jason an agent programming language rooted on a strong no-
tion of agency and (ii) CArtAgO environment programming framework.
Here then we discuss the features of JaCa-Android, which makes it pos-
sible to exploit Jason and CArtAgO for straightforwardly programming
smart applications on top of the Android platform using agent-based
technologies.

1 Introduction

The value of Agent-Oriented Programming (AOP) [25] – including Multi-Agent
Programming (MAP) – is often remarked and evaluated in the context of Arti-
ficial Intelligence (AI) and Distributed AI (DAI) problems. This is evident, for
instance, by considering existing agent programming languages (see [5,7] for com-
prehensive surveys) – whose features are typically demonstrated by considering
toy problems such as block worlds and alike.

Besides this view, we argue that the level of abstraction introduced by AOP is
effective for organizing and programming software applications in general, start-
ing from those programs that involve aspects related to reactivity, asynchronous
interactions, concurrency, up to those involving different degrees of autonomy
1 In literature it is also usual to refer to this kind of applications with the term no-

madic: i.e. applications that follow the user in her everyday life.

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 95–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



96 A. Santi, M. Guidi, and A. Ricci

and intelligence. Following this view, one of our current research lines inves-
tigates the adoption and the evaluation of existing agent-based programming
languages and technologies for the development of applications in some of the
most modern and relevant application domains. In this context, a relevant one
is represented by next generation mobile applications. Applications of this kind
are getting a strong momentum given the diffusion of mobile devices which are
more and more powerful, in terms of computing power, memory, connectivity,
sensors and so on. Main examples are smart-phones such as the iPhone and
Android-based devices. On the one side, smart mobile applications share more
and more features with desktop applications, and eventually extending such fea-
tures with capabilities related to context-awareness, reactivity, usability, and
so on, all aspects that are important in the context of Internet of Things and
Ubiquitous Computing scenarios. All this increases – on the other side – the com-
plexity required for their design and programming, introducing aspects that – we
argue – are not suitably tackled by mainstream programming languages such as
the object-oriented ones.

So, in this paper we discuss the application of an agent-oriented programming
platform called JaCa for the development of smart mobile applications. Actually
JaCa is not a new platform, but simply the integration of two existing agent
programming technologies: Jason [6] agent programming language and platform,
and CArtAgO [22] framework, for programming and running the environments
where agents work. JaCa is meant to be a general-purpose programming plat-
form, so useful for developing software applications in general. In order to apply
JaCa to mobile computing, we developed a porting of the platform on top of
Google Android, which we refer as JaCa-Android. Google Android is an open-
source software stack for mobile devices provided by Google that includes an
operating system (Linux-based), middleware, SDK and key applications.

The remainder of the paper is organised as follows: in Section 2 we provide a
brief overview of the JaCa platform – which we consider part of the background
of this paper; then, in Section 3 we introduce and discuss the application of
JaCa for the development of smart mobile applications on top of Android, and
in Section 4 we describe some practical application samples useful to evaluate the
approach. Then in Section 5 we report the related works while in Section 6 we
briefly discuss: (i) some open issues related to JaCa-Android and, more generally,
to the use of current agent-oriented programming technologies for developing
applications and (ii) related future works. Finally Section 7 concludes the paper.

2 Agent-Oriented Programming for Mainstream
Application Development – The JaCa Approach

An application in JaCa is designed and programmed as a set of agents which
work and cooperate inside a common environment. Programming the application
means then programming the agents on the one side, encapsulating the logic of
control of the tasks that must be executed, and the environment on the other side,
as a first-class abstraction providing the actions and functionalities exploited by



JaCa-Android 97

agents to do their tasks. It is worth remarking that this is an endogenous notion
of environment, i.e. the environment here is part of the software system to be
developed [23].

More specifically, in JaCa Jason [6] is adopted as programming language to im-
plement and execute the agents and CArtAgO [22] as the framework to program
and execute the environments.

Being a concrete implementation of an extended version of AgentS-
peak(L) [20], Jason adopts a BDI (Belief-Desire-Intention)-based computational
model and architecture to define the structure and behaviour of individual
agents. In that, agents are implemented as reactive planning systems: they run
continuously, reacting to events (e.g., perceived changes in the environment)
by executing plans given by the programmer. Plans are courses of actions that
agents commit to execute so as to achieve their goals. The pro-active behaviour
of agents is possible through the notion of goals (desired states of the world)
that are also part of the language in which plans are written. Besides interacting
with the environment, Jason agents can communicate by means of speech acts.

On the environment side, CArtAgO – following the A&A meta-model [18,24] –
adopts the notion of artifact as first-class abstraction to define the structure and
behaviour of environments and the notion of workspace as a logical container
of agents and artifacts. Artifacts explicitly represent the environment resources
and tools that agents may dynamically instantiate, share and use, encapsulating
functionalities designed by the environment programmer. In order to be used by
the agents, each artifact provides a usage interface composed by a set of oper-
ations and observable properties. Operations correspond to the actions that the
artifact makes it available to agents to interact with such a piece of the environ-
ment; observable properties define the observable state of the artifact, which is
represented by a set of information items whose value (and value change) can
be perceived by agents as percepts. Besides observable properties, the execution
of operations can generate signals perceivable by agents as percepts, too. As a
principle of composability, artifacts can be assembled together by a link mech-
anism, which allows for an artifact to execute operations over another artifact.
CArtAgO provides a Java-based API to program the types of artifacts that can
be instantiated and used by agents at runtime, and then an object-oriented data-
model for defining the data structures used in actions, observable properties and
events.

The notion of workspace is used to define the topology of complex environ-
ments, that can be organised as multiple sub-environments, possibly distributed
over the network. By default, each workspace contains a predefined set of arti-
facts created at boot time, providing basic actions to manage the overall set of
artifacts (for instance, to create, lookup, link together artifacts), to join multiple
workspaces, to print messages on the console, and so on.

JaCa integrates Jason and CArtAgO so as to make the use of artifact-based
environments by Jason agents seamless. To this purpose, first, the overall set of
external actions that a Jason agent can perform is determined by the overall set of
artifacts that are actually available in the workspaces where the agent is working.



98 A. Santi, M. Guidi, and A. Ricci

So, the action repertoire is dynamic and can be changed by agents themselves by
creating, disposing artifacts. Then, the overall set of percepts that a Jason agent
can observe is given by the observable properties and observable events of the
artifacts available in the workspace at runtime. Actually an agent can explicitly
select which artifacts to observe, by means of a specific action called focus.
By observing an artifact, artifacts’ observable properties are directly mapped
into beliefs in the belief-base, updated automatically each time the observable
properties change their value. So a Jason agent can specify plans reacting to
changes to beliefs that concern observable properties or can select plans according
to the value of beliefs which refer to observable properties. Artifacts’ signals
instead are not mapped into the belief-base, but processed as non persistent
percepts possibly triggering plans—like in the case of message receipt events.
Finally, the Jason data-model – essentially based on Prolog terms – is extended
to manage also (Java) objects, so as to work with data exchanged by performing
actions and processing percepts.

A full description of Jason language/platform and CArtAgO framework – and
their integration – is out of the scope of this paper: the interested reader can find
details in literature [22,21] and on Jason and CArtAgO open-source web sites2,3.

3 Programming Smart Mobile Applications with JaCa

In this section we describe how JaCa’s features can be effectively exploited to
program smart mobile applications, providing benefits over existing non-agent
approaches. First, we briefly sketch some of the complexities related to the design
and programming of such a kind of applications; then, we describe how these are
addressed in JaCa-Android—which is the porting of JaCa on Android, extended
with a predefined set of artifacts specifically designed for exploiting Android
functionalities.

3.1 Programming Mobile Applications: Complexities

Mobile systems and mobile applications have gained a lot of importance and
magnitude both in research and industry over the last years. This is mainly
due to the introduction of mobile devices such as the iPhone4 and the most
modern Android5-based devices that changed radically the concept of smart-
phone thanks to: (i) hardware specifications that allow to compare these devices
to miniaturised computers, situated – thanks to the use of practically every kind
of known connectivity (GPS, WiFi, bluetooth, etc.) – in a computational network
which is becoming more and more similar to the vision presented by both the
Internet of Things and ubiquitous computing, and (ii) the evolution of both the
smart-phone O.S. (Apple iOS, Android, Meego6) and their related SDK.
2 http://jason.sourceforge.net
3 http://cartago.sourceforge.net
4 http://www.apple.com/iphone/
5 http://www.android.com/
6 http://meego.com

http://jason.sourceforge.net
http://cartago.sourceforge.net
http://www.apple.com/iphone/
http://www.android.com/
http://meego.com


JaCa-Android 99

These innovations produce a twofold effect: on the one side, they open new per-
spectives, opportunities and application scenarios for these new mobile devices;
on the other side, they introduce new challenges related to the development of
the mobile applications, that are continuously increasing their complexity [2,15].
These applications – due to the introduction of new usage scenarios – must
be able to address issues such as concurrency, asynchronous interactions with
different kinds of services (Web sites/Services, social-networks, messaging/mail
clients, etc.) and must also expose a user-centric behaviour governed by specific
context information (geographical position of the device, presence/absence of
different kinds of connectivity, events notification such as the reception of an
e-mail, etc.).

To cope with these new requirements, Google has developed the Android
SDK7, which is an object-oriented Java-based framework meant to provide a
set of useful abstractions for engineering mobile applications on top of Android
mobile devices. Among the main coarse-grain components introduced by the
framework to ease the application development we mention here:

– Activities: an activity provides a GUI for one focused endeavor the user can
undertake. For example, an activity might present a list of menu items users
can choose, list of contacts to send messages to, etc.

– Services: a service does not have a GUI and runs in the background for
an indefinite period of time. For example, a service might play background
music as the user attends to other matters.

– Broadcast Receiver: a broadcast receiver is a component that does nothing
but receive and react to broadcast announcements. Many broadcasts orig-
inate in system code—for example, announcements that the timezone has
changed, that the battery is low, etc.

– Content providers: a content provider makes a specific set of the application’s
data available to other applications. The data can be stored in the file system,
in an SQLite database, etc.

In Android, interactions among components are managed using a messaging
facility based on the concepts of Intent and IntentFilter. An application can re-
quest the execution of a particular operation – that could be offered by another
application or component – simply providing to the O.S. an Intent properly char-
acterised with the information related to that operation. So, for example, if an
application needs to display a particular Web page, it expresses this need cre-
ating a proper Intent instance, and then sending this instance to the Android
operating system. The O.S. will handle this request locating a proper compo-
nent – e.g. a browser – able to manage that particular Intent. The set of Intents
manageable by a component are defined by specifying, for that component, a
proper set of IntentFilters.

Generally speaking, these components and the Intent-based interaction model
are useful – indeed – to organise and structure applications; however – being
the framework fully based on an object-oriented virtual machine and language
7 http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/index.html


100 A. Santi, M. Guidi, and A. Ricci

such as Java – they do not shield programmers from using callbacks, threads,
and low-level synchronisation mechanisms as soon as applications with complex
reactive behaviour are considered. For instance, in classic Android applications
asynchronous interactions with external resources are still managed using polling
loops or some sort of mailbox; context-dependent behaviour must be realised
staining the source code with a multitude of if statements; concurrency issues
must be addressed using Java low-level synchronisation mechanisms. So, more
generally, we run into the problems that typically arise in mainstream program-
ming languages when integrating one or multiple threads of control with the
management of asynchronous events, typically done by callbacks.

In the next section we discuss how agent-oriented programming and, in par-
ticular, the JaCa programming model, are effective to tackle these issues at a
higher-level of abstraction, making it possible to create more clear, terse and
extensible programs.

3.2 An Agent-Oriented Approach Based on JaCa

By adopting the JaCa programming model, a mobile Android application can
be realised as one or multiple workspaces in which Jason agents are used to
encapsulate the logic and the control of tasks involved in the mobile application,
and artifacts are used as tools for agents to seamlessly exploit available Android
device/platform components and services.

From a conceptual viewpoint, this approach makes it possible to keep the
same level of abstraction – based on agent-oriented concepts – both when de-
signing the application and when concretely implementing it using Jason and
CArtAgO. The design phase is rooted on the A&A meta-model [18,24] which
allows to conceive an application: (i) defining its topology by introducing one
or more workspaces, (ii) choosing the set of agents to include on the base of
the application needs and (iii) by properly identifying the set of artifacts (i.e.
tools and resources) to introduce in order to facilitate the agents’ work. Then,
during the implementation phase the developer can realise the application she
has previously conceived using a set of first-class abstractions that directly re-
fer the ones used in the design phase: agents are implemented in Jason while
workspaces and artifacts can be realised using the CArtAgO framework. In this
way we are able to provide developers a uniform guideline – without conceptual
gaps between the abstractions used in the analysis and implementation phases
– that drives the whole engineering process of a mobile application.

From a programming point of view, the agent paradigm makes it possible to
tackle quite straightforwardly some of the main challenges mentioned in previous
sections. In particular, the adoption of an agent-based programming language
like Jason which promotes – being based on the BDI architecture – a strong
notion of agency easily allows to address the following issues:

– Task and activity oriented behaviours can be directly mapped onto agents,
possibly choosing different kinds of concurrent architectures according to the
needs—either using multiple agents to concurrently execute tasks, or using
a single agent to manage the interleaved execution of multiple tasks.



JaCa-Android 101

– Asynchronous interactions can be managed by properly specifying the
agents’ reactive behaviour in relation to the reception of particular percepts
(e.g. the reception of a new e-mail).

– It is possible to realise applications that seamlessly integrate pro-active and
reactive behavior thanks to the agents’ control architecture. As explained
above realise such an integration is an important programming issue [12,11].
In standard Android applications to make Android components aware of
the occurrence of a certain event, it is necessary to register proper callbacks
that encapsulate the source code that manages such event. This leads to: (i)
inversion of control in programs and (ii) the proliferation of so-called asyn-
chronous spaghetti-code. Using JaCa instead this issue can be easily solved:
events generated by artifacts are automatically translated in percepts that
Jason agents can observe and then use for autonomously choosing – in forth-
coming reasoning cycles – the best actions to do in order to perform some
kind of task.

– Agents’ capability of adapting the behaviour on the basis of the current
context information can be effectively exploited to realise context-sensitive
and context-dependent applications.

It is worth remarking that we decided to adopt Jason as our reference agent
programming language because it allows us to easily solve the issues just pre-
sented – mainly thanks to the adoption of the BDI architecture – and also
because it is one of the most mature, most used, and most well documented
existing open-source BDI-based agent programming languages. However other
BDI-based agent programming languages or even other agent-based languages
rooted on a strong notion of agency can be used as well.

A large body of MAS literature has remarked the key role that the notion of
environment can play as first-class abstraction to design and develop MAS [27].
CArtAgO is a computational framework suited to play such a key role by pro-
viding to MAS developers another programming dimension, the environment
dimension, for engineering a MAS system [22]. The environment dimension, and
in particular CArtAgO, can play an important role also in the context of mobile
applications, for example: (i) from an agent point of view environment resources
(i.e. artifacts) can be used for bringing at the agent level proper tools that wrap
any kind of functionality provided by the underlying mobile application platform
hiding low level implementations details, and (ii) thanks to artifacts architecture
model, it is provided a built-in support for the realization of proper coordination
and synchronization mechanisms [19]—an important issue when distributed and
concurrent applications are of concerns.

To see all this issues in practice, we developed a porting of JaCa on top of
Android – referred as JaCa-Android – available as open-source project8. Fig. 1
shows an abstract representation of the levels characterising the JaCa-Android
platform and of a generic application running on top of it.

The platform includes a set of predefined types of artifacts (Broadcast
ReceiverArtifact, ActivityArtifact, ServiceArtifact, ContentProvider
8 http://jaca-android.sourceforge.net

http://jaca-android.sourceforge.net


102 A. Santi, M. Guidi, and A. Ricci

JaCa 
(Jason+CArtAgO)

Android Framework
(Dalvik Virtual Machine + Libraries)

Linux kernel

JaCa Android artifacts

JaCa-services 
shared workspace

JaCa-Android app

SMSManager

Calendar

GPSArtifact

ActivityGUI
MyArtifact

Fig. 1. Abstract representation of the JaCa-Android platform – with in evidence the dif-
ferent agent technologies on which the platform is based – and of a generic applications
running on top of it

Artifact) specifically designed to build compliant Android components. So,
standard Android components become fully-fledged artifacts that agents and
agent developers can exploit without worrying and knowing about infrastruc-
tural issues related to the Android SDK. This makes it possible for developers
to conceive and realise mobile applications that are seamlessly integrated with
the Android SDK, possibly interacting/re-using every component and applica-
tion developed using the standard SDK. This integration is fundamental in order
to guarantee to developers the re-use of existing legacy – i.e. the standard An-
droid components and applications – and for avoiding the development of the
entire set of functionalities required by an application from scratch.



JaCa-Android 103

Besides, the platform also provides a set of artifacts that encapsulate some of
the most common functionalities used in the context of smart mobile applica-
tions. In detail these artifacts are:

– SMSManager/MailManager, managing sms/mail-related functionalities (send
and receive sms/mail, retrieve stored sms/mail, etc.).

– GPSManager, managing gps-related functionalities (e.g. geolocalisation of the
device).

– CallManager, providing functionalities for handling – answer/reject – phone
calls.

– ConnectivityManager, managing the access to the different kinds of con-
nectivity supported by the mobile device.

– CalendarArtifact, providing functionalities for managing the built-in
Google calendar.

These artifacts, being general purpose, are situated in a workspace called jaca-
services (see Fig. 1) which is shared by all the JaCa-Android applications—being
stored and executed into a proper Android service installed with the JaCa-
Android platform. More generally, any JaCa-Android workspace can be shared
among different applications—promoting, then, the modularisation and the reuse
of the functionalities provided by JaCa-Android applications.

In next section we discuss more in detail the benefits of the JaCa program-
ming model for implementing smart mobile applications by considering some
application samples that have been developed on top of JaCa-Android.

4 Evaluation through Practical Examples

Just to have a taste of the approach a first simple example is provided. Table 1
shows a snippet of an agent playing the role of smart user assistant, with the
task of managing the notifications related to the reception of SMS messages:
as soon as an SMS is received, a notification must be shown to the user. The
SMSManager artifact described above is used to manage SMS messages, in partic-
ular this artifact generates an observable event sms_received each time a new
SMS is received. A ViewerArtifact artifact is used to show SMS messages on
the screen and to keep track – by means of the state observable property – of the
current status of the viewer, that is if it is currently visualised by the user on the
smart-phone screen or not. Finally, a StatusBarArtifact artifact is used instead
to show messages on the Android status bar, providing a showNotification op-
eration to this end. Depending on what the user is actually doing and visualising,
the agent shows the notification in different ways. The behavior of the agent,
once completed the initialization phase (lines 00-04), is governed by two reactive
plans. The first one (lines 6-10) is applicable when a new message arrives and the
ViewerArtifact is not currently visualised on the smart-phone’s screen. In this
case, the agent performs a showNotification action to notify the user of the ar-
rival of a new message using the status bar (Fig. 2, (a)). The second plan instead
(lines 12-14) is applicable when the ViewerArtifact is currently displayed on



104 A. Santi, M. Guidi, and A. Ricci

Table 1. Source code of the Jason agent that manages the SMS notifications

00 !init.
01
02 +!init
03 <- focus("SMSManager");
04 focus("ViewerArtifact").
05
06 +sms_received(Source, Message)
07 : not (state("running") & session(Source))
08 <- showNotification("jaca.android:drawable/notification",
09 Source, Message, "jaca.android.sms.SmsViewer", Id);
10 +session(Source, Id).
11
12 +sms_received(Source, Message)
13 : state("running") & session(Source)
14 <- append(Source, Message).

screen and therefore the agent could notify the SMS arrival by simply appending
the SMS to the received message list showed by the viewer (Fig. 2, (b)): this is
done by executing the append operation provided by ViewerArtifact.

From the example, it should be clear that for a developer able to program
using the JaCa programming model realise a JaCa-Android application is a quite
straightforward experience. Indeed, following the JaCa approach, she can con-
tinue to engineer the business logic of the applications by suitably defining the
Jason agent’s behavior, and it only need to acquire the ability to work with the
artifacts that are specific of the mobile application context.

The second example starts to be more significant, and it aims to show how the
approach allows to easily realise context-sensitive mobile applications. For this
purpose, we consider a JaCa-Android application inspired to Locale9, one of the
most famous Android applications and also one of the winners of the first Android
Developer Contest10. This application (JaCa-Locale) can be considered as a sort
of intelligent smart-phone manager realised using a simple Jason agent. The agent
during its execution uses some of the built-in JaCa-Android artifacts described in
Section 3.2 and two application-specific artifacts: a PhoneSettingsManager ar-
tifact used for managing the device ringtone/vibration and the ContactManager
used for managing the list of contacts stored into the smart-phone (this list is an
observable property of the artifact, so directly mapped into agents beliefs). The
agent manages the smart-phone behaviour discriminating the execution of its
plans on the basis of a comparison among its actual context information and a
set of user preferences that are specified into the agent’s plans contexts. Table 2
reports a snippet of the Jason agent used in JaCa-Locale, in particular the plans
shown in Table 2 are the ones responsible of the context-dependent management
of the incoming phone calls.

The behaviour of the agent, once completed the initialisation phase (lines
00-07), is governed by a set of reactive plans. The first two plans (lines 9-15)
are used for regulating the ringtone level and the vibration for the incoming
calls on the basis of the notifications provided by the CalandarArtifact about

9 http://www.twofortyfouram.com/
10 http://code.google.com/intl/it-IT/android/adc/

http://www.twofortyfouram.com/
http://code.google.com/intl/it-IT/android/adc/


JaCa-Android 105

Fig. 2. The two different kinds of SMS notifications: (a) notification performed
using the standard Android status bar, and (b) notification performed using the
ViewerArtifact

the start or the end of an event stored into the user calendar. Instead, the
behaviour related to the handling of the incoming calls is managed by the
two reactive plans incoming_call (lines 17-28). The first one (lines 17-19)
is applicable when a new incoming call arrives and the phone owner is not
busy, or when the incoming call is considered critical. In this case the agent
normally handles the incoming call – the ringtone/vibration settings have
already been regulated by the plans at lines 9-15 – using the handle_call
operation provided by the CallManager artifact. The second plan instead (lines
21-28) is applicable when the user is busy and the call does not come from a
relevant contact. In this case the phone call is automatically rejected using the
drop_call operation of the CallManager artifact (line 24), and an auto-reply
message containing the motivation of the user unavailability is sent back to
the contact that performed the call. This notification is sent – using one of the
handle_auto_reply plans (lines 30-34) – via sms or via mail (using respectively
the SMSManager or the MailManager) depending on the current availability
of the WiFi connection on the mobile device (availability checked using the
wifi_status observable property of the ConnectivityManager). It is worth
remarking that busy and is_call_critical refer to rules – not reported in the
source code – used for checking respectively: (i) if the phone owner is busy – by
checking the belief related to one of the CalendarArtifact observable properties



106 A. Santi, M. Guidi, and A. Ricci

Table 2. Source code snippet of the JaCa-Locale Jason agent

00 !init.
01
02 +!init
03 <- focus("SMSManager"); focus("MailManager");
04 focus("CallManager"); focus("ContactManager");
05 focus("CalendarArtifact");
06 focus("PhoneSettingsManager");
07 focus("ConnectivityManager").
08
09 +cal_event_start(EventInfo) : true
10 <- set_ringtone_volume(0);
11 set_vibration(on).
12
13 +cal_event_end(EventInfo) : true
14 <- set_ringtone_volume(100);
15 set_vibration(off).
16
17 +incoming_call(Contact, TimeStamp)
18 : not busy(TimeStamp) | is_call_critical(Contact)
19 <- handle_call.
20
21 +incoming_call(Contact, TimeStamp)
22 : busy(TimeStamp) & not is_call_critical(Contact)
23 <- get_event_description(TimeStamp,EventDescription);
24 drop_call;
25 .concat("Sorry, I’m busy due
26 to", EventDescription, "I will call you back
27 as soon as possible.", OutStr);
28 !handle_auto_reply(OutStr).
29
30 +!handle_auto_reply(Reason) : wifi_status(on)
31 <- send_mail("Auto-reply", Reason).
32
33 +!handle_auto_reply(Reason): wifi_status(off)
34 <- send_sms(Reason).

(current_app) – or (ii) if the call is critical – by checking if the call comes from
one of the contact in the ContactManager list considered critical: e.g. the user
boss/wife.

Generalising the example, context-sensitive applications can be designed and
programmed in terms of one or more agents with proper plans that are executed
only when the specific context conditions hold.

The example is useful also for highlighting the benefits introduced by artifact-
based endogenous environments: (i) it makes it possible to represent and exploit
platform/device functionalities at an agent level of abstractions – so in terms
of actions and perceptions, modularised into artifacts; (ii) it provides a strong
separation of concerns, in that developers can fully separate the code that defines
the control logic of the application (into agents) from the reusable functionalities
(embedded into artifacts) that are need by the application, making agents’ source
code more dry.

The third application sample – called SmartNavigator (see Fig. 3 for a screen-
shot) – aims at showing the effectiveness of the approach in managing asyn-
chronous interactions with external resources, such as – for example – Web Ser-
vices. This application is a sort of smart navigator able to assist the user during
her trips in an intelligent way, taking into account the current traffic conditions.



JaCa-Android 107

Fig. 3. Screenshot of the SmartNavigator application that integrate in its GUI some of
the Google Maps component s for showing: (i) the user current position, (ii) the road
directions, and (iii) the route to the designed destination

The application is realised using a single Jason agent and four different
artifacts: (i) the GPSManager used for the smart-phone geolocalisation, (ii) the
GoogleMapsArtifact, an artifact specifically developed for this application, used
for encapsulating the functionalities provided by Google Maps (e.g. calculate
a route, show points of interest on a map, etc.), (iii) the SmartNavigatorGUI,
an artifact developed on the basis of the ActivityArtifact and some other
Google Maps components, used for realizing the GUI of the application and



108 A. Santi, M. Guidi, and A. Ricci

(iv) an artifact, TrafficConditionsNotifier, used for managing the interac-
tions with a Web site11 that provides real-time traffic information.

Table 3 shows a snippet of the agent source code. The agent main goal
assist_user_trips is managed by a set of reactive plans that are structured
in a hierarchy of sub-goals – handled by a set of proper sub-plans. The agent
has a set of initial beliefs (lines 00-01) and an initial plan (lines 5-9) that man-
ages the initialisation of the artifacts that will be used by the agent during its
execution. The first plan, reported at lines 11-12, is executed after the recep-
tion of an event related to the modification of the SmartNavigatorGUI route
observable property – a property that contains both the starting and arriving
locations provided in input by the user. The handling of this event is managed
by the handle_navigation plan that: (i) retrieves (line 15) and updates the
appropriate agent beliefs (line 16 and 19), (ii) computes the route using an op-
eration provided by the GoogleMapsArtifact (calculate_route lines 17-18),
(iii) makes the subscription – for the route of interest – to the Web site that
provides the traffic information using the TrafficConditionsNotifier (lines
20-21), and finally (iv) updates the map showed by the application (using the
SmartNavigatorGUI operations set_current_position and update_map, lines
22-23) with both the current position of the mobile device (provided by the
observable property current_position of the GPSManager) and the new route.

In the case that no meaningful changes occur in the traffic conditions and
the user strictly follows the indications provided by the SmartNavigator, the
map displayed in the application GUI will be updated, until arriving to the de-
signed destination, simply moving the current position of the mobile device us-
ing the plan reported at lines 34-38. This plan, activated by a change of the
observable property current_position, simply considers (using the sub-plan
check_position_consistency instantiated at line 36, not reported for simplic-
ity) if the new device position is consistent with the current route (retrieved from
the agent beliefs at line 35) before updating the map with the new geolocation in-
formation (line 37-38). In the case in which the new position is not consistent – i.e.
the user chose the wrong direction – the sub-plan check_position_consistency
fails. This fail is handled by a proper Jason failure handling plan (lines 40-42) that
simply re-instantiate the handle_navigation plan for computing a new route
able to bring the user to the desired destination from her current position (that
was not considered in the previous route).

Finally, the new_traffic_info plan (lines 25-32) is worth of particular atten-
tion. This is the reactive plan that manages the reception of the updates related to
the traffic conditions. If the new information are considered relevant with respect
to the user preferences (sub-plan check_info_relevance instantiated at line 28
and not shown) then, on the basis of this information, the current route (sub-plan
update_route instantiated at lines 29-30), the Web site subscription (sub-plan
update_subscription instantiated at line 31), and finally the map displayed on
the GUI (line 32) are updated.

11 http://www.stradeanas.it/traffico/

http://www.stradeanas.it/traffico/


JaCa-Android 109

Table 3. Source code snippet of the SmartNavigator Jason agent

00 preferences([...]).
01 relevance_range(10).
02
03 !assist_user_trips.
04
05 +!assist_user_trips
06 <- focus("GPSManager");
07 focus("GoogleMapsArtifact");
08 focus("SmartNavigatorGUI");
09 focus("TrafficConditionsNotifier").
10
11 +route(StartLocation, EndLocation)
12 <- !handle_navigation(StartLocation, EndLocation).
13
14 +!handle_navigation(StartLocation, EndLocation)
15 <- ?relevance_range(Range); ?current_position(Pos);
16 -+leaving(StartLocation);-+arriving(EndLocation);
17 calculate_route(StartLocation,
18 EndLocation, OutputRoute);
19 -+route(OutputRoute);
20 subscribe_for_traffic_condition(OutputRoute,
21 Range);
22 set_current_position(Pos);
23 update_map.
24
25 +new_traffic_info(TrafficInfo)
26 <- ?preferences(Preferences);
27 ?leaving(StartLocation); ?arriving(EndLocation);
28 !check_info_relevance(TraffincInfo,Preferences);
29 !update_route(StartLocation, EndLocation,
30 TrafficInfo, NewRoute);
31 !update_subscription(NewRoute);
32 update_map.
33
34 +current_position(Pos)
35 <- ?route(Route);
36 !check_position_consistency(Pos, Route);
37 set_current_position(Pos);
38 update_map.
39
40 -!check_position_consistency(Pos, Route)
41 : arriving(EndLocation)
42 <- !handle_navigation(Pos, EndLocation).

So, this example shows how it is possible to seamlessly integrate the reactive
behaviour of a JaCa-Android application – in this example the asynchronous
reception of information from a certain source – with its pro-active behaviour—
assisting the user during her trips. This integration allows to easily modify and
adapt the pro-active behaviour of an application after the reception of new events
that can be handled by proper reactive plans: in this example, the reception of
the traffic updates can lead the SmartNavigator to consider a new route for the
trip on the basis of the new information.

5 Related Works

Other works in literature discuss the use of agent-based technology on mobile
devices. A good part of these works is not so recent and mainly considers the



110 A. Santi, M. Guidi, and A. Ricci

issue of porting agent technologies on limited capability devices and platforms—
the only ones existing at that particular time. Noteworthy examples include
AgentFactory Mirco Edition [17], 3APL-M [14], JADE [4]. A good survey of
this kind of works can be found here [9]. Differently from these works, in this
paper our target is the new generation of smartphones produced by the industry.
Indeed, as described in Section 3.1, in the last few years the mobile scenario is
drastically changed. So, a big part of the problems faced in these works – e.g.
low computing power, very low memory availability – are no more issues, or at
least are not so constraining when engineering an agent-based platform for the
new generation of mobile devices.

Besides facing the porting of JaCa in the Android context, in our work a key
issue concerns the investigation of the advantages brought by the adoption of
agent-oriented programming level of abstraction for the development of complex
mobile applications. Indeed our claim is that the agent paradigm has to offer
several benefits for the development of these applications. For this purpose we
aim at the developing of mature programming models and platforms – starting
from JaCa and JaCa-Android – wherewith realise agent-based applications for
supporting our claim in practice.

A part of more recent literature describes the porting of agent-based models
and technologies to the Android platform. In [26] is presented a new specialisa-
tion of the Jade-Leap platform for the Android context. This article discusses
the port of agent-based technologies to the Android world but the proposed solu-
tion is still centered on the problematics related to old mobile devices—so again
devices with low computing capabilities. The authors promote an approach in
which a Jade container is split in a back-end – typically residing on a desktop
machine – and a front-end – where the mobile application actually lives. The
agent-based application in the front-end communicates with its back-end in or-
der to delegate a big part of the computational workload related to the business
logic of the application. We argue that, due to current specifications of mobile
devices, this approach is over-constraining and restrictive. Indeed now it is pos-
sible to conceive an agent-based mobile platform that exploits the full power of
the new generation of devices: this is the approach that we promote in this arti-
cle. Finally [1] discusses how the authors’ agent-model could be implemented on
top of the Android SDK. The porting issue assumes a key role also in this paper
at the expense of the more visionary aspects related to the impacts of adopting
agent-based technologies in the mobile context—which is instead a core part of
this paper.

6 Open Issues and Future Work

JaCa-Android is just a prototype, however even as it is it allows to realise appli-
cations that are quite fast and responsive. Indeed, during our firsts experiments
and tests on the platform, also concerning the applications described in this arti-
cle, we have noticed no particular problems. JaCa-Android applications run quite
smoothly, without experiencing lags or latency issues, and their execution do not



JaCa-Android 111

compromise the execution of other applications on the device (so JaCa-Android
applications do not use too much CPU). These are just the firsts experimental
results and they relevance is merely qualitative, however they represent:

– A good starting point for future platform improvements.
– A first positive feedback for both the real usability of JaCa-Android as a

platform for developing mobile application, and for future comparisons with
the classical Android development platform.

As remarked before JaCa-Android is still in early development phases and it
needs further developments for stressing more in depth the benefits related to
the adoption of agent-oriented programming for realising new generation mobile
applications, especially in comparisons with mainstream non-agent platforms.
Therefore, in future works we aim at improving JaCa-Android in order to tackle
some other important features of modern mobile applications such as the smart
use of the battery and the efficient management of the computational work-
load of the device. These improvements are indeed fundamentals in order to
promote further analysis and comparisons between applications realised with
JaCa-Android and the standard Android platform:

– Which are the differences in performances between the two platforms?
– How many different applications can be concurrently executed in each plat-

form?
– Which are the differences in battery consumption and CPU-use?

These are just a part of the questions that we would like to answer in future
works.

Besides the advantages described in previous section, the application of cur-
rent agent programming technologies to the development of concrete software
systems such as mobile applications have been useful to focus some main weak-
nesses that these technologies currently have to this end. Here we have identified
three main general issues that will be subject of future work:

(i) Devising of a notion of type for agents and artifacts—current agent pro-
gramming languages and technologies lack of a notion of type as the one found
in mainstream programming languages and this makes the development of large
system hard and error-prone. This would make it possible to detect many er-
rors at compile time, allowing for strongly reducing the development time and
enhancing the safety of the developed system. In JaCa we have a notion of type
just for artifacts: however it is based on the lower OO layer and so not ex-
pressive enough to characterise at a proper level of abstraction the features of
environment programming.

(ii) Improving modularity in agent definition—this is a main issue already
recognised in the literature [8,10,13], where constructs such as capabilities have
been proposed to this end. Jason still lacks of a construct to properly modularise
and structure the set of plans defining an agent’s behaviour—a recent proposal
is described here [16].

(iii) Improving the integration with the OO layer – To represent data struc-
tures, Jason – as well as the majority of agent programming languages – adopts



112 A. Santi, M. Guidi, and A. Ricci

Prolog terms, which are very effective to support mechanisms such as unifica-
tion, but quite weak – from an abstraction and expressiveness point of view – to
deal with complex data structures. Main agent frameworks (not languages) in
Agent-Oriented Software Engineering contexts – such as Jade [3] or JACK12 –
adopt object-oriented data models, typically exploiting the one of existing OO
languages (such as Java). By integrating Jason with CArtAgO, we introduced a
first support to work with an object-oriented data model, in particular to access
and create objects that are exchanged as parameters in actions/percepts. How-
ever, it is just a first integration level and some important aspects – such as the
use of unification with object-oriented data structures – are still not tackled.

7 Conclusion

To conclude, we believe that agent-oriented programming – including multi-agent
programming – would provide a suitable level of abstraction for tackling the de-
velopment of complex software applications, extending traditional programming
paradigms such as the Object-Oriented to deal with aspects such as concurrency,
reactiveness, asynchronous interaction managements, dynamism and so on. In
this paper, in particular, we showed the advantages of applying such an approach
to the development of smart mobile applications on the Google Android plat-
form, exploiting the JaCa-Android integrated platform. However, we argue that
in order to stress and investigate the full value of the agent-oriented approach to
this end, further works are needed. These future works should concern on the one
side extensions and improvements of the proposed platform, and on the other
side extensions of current agent languages and technologies – or the realisation
of new ones – tackling main aspects that have not been considered so far, being
not related to AI but to the principles of software development. This is the core
of our current and future work.

References

1. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Does Android Dream with
Intelligent Agents? In: International Symposium on Distributed Computing and
Artificial Intelligence 2008 (DCAI 2008), pp. 194–204. Springer, Heidelberg (2008)

2. Battestini, A., Rosso, C.D., Flanagan, A., Miettinen, M.: Creating next genera-
tion applications and services for mobile devices: Challenges and opportunities. In:
EEE 18th Int. Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 1–4, 3-7 (2007)

3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester (2007)

4. Berger, M., Rusitschka, S., Toropov, D., Watzke, M., Schlichte, M.: Porting dis-
tributed agent-middleware to small mobile devices. In: AAMAS Workshop on Ubiq-
uitous Agents on Embedded, Wearable and Mobile Devices (2002)

5. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming:
Languages, Platforms and Applications, vol. 1. Springer, Heidelberg (2005)

12 http://www.agent-software.com



JaCa-Android 113

6. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd, Chichester (2007)

7. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications, vol. 2. Springer, Heidelberg
(2009)

8. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Bordini, R.H., Dastani, M.M., Dix, J., El
Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–
155. Springer, Heidelberg (2006)

9. Carabelea, C., Boissier, O.: Multi-agent platforms on smart devices: Dream or
reality? In: Proceedings of the Smart Objects Conference (SOC 2003), Grenoble,
France, pp. 126–129 (2003)

10. Dastani, M., Mol, C., Steunebrink, B.: Modularity in agent programming lan-
guages: An illustration in extended 2APL. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.)
PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 139–152. Springer, Heidelberg (2008)

11. Haller, P., Odersky, M.: Event-based programming without inversion of control.
Modular Programming Languages, 4–22 (2006)

12. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

13. Hindriks, K.: Modules as policy-based intentions: Modular agent programming in
GOAL. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI),
vol. 5357, pp. 156–171. Springer, Heidelberg (2008)

14. Koch, F., Meyer, J.-J.C., Dignum, F.P.M., Rahwan, I.: Programming delibera-
tive agents for mobile services: The 3APL-M platform. In: Bordini, R.H., Dastani,
M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI),
vol. 3862, pp. 222–235. Springer, Heidelberg (2006)

15. König-Ries, B.: Challenges in mobile application development. IT - Information
Technology 51(2), 69–71 (2009)

16. Madden, N., Logan, B.: Modularity and compositionality in jason. In: Braubach, L.,
Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 237–253.
Springer, Heidelberg (2010)

17. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Agent factory micro
edition: A framework for ambient applications. In: Int. Conference on Computa-
tional Science, vol. (3), pp. 727–734 (2006)

18. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17 (3) (2008)

19. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems AAMAS 2004, pp. 286–293. IEEE, Los Alamitos (2005)

20. Rao, A.S.: AgentSpeak(l): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

21. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating
artifact-based environments with heterogeneous agent-programming platforms. In:
Proceedings of 7th International Conference on Agents and Multi Agents Systems,
AAMAS 2008 (2008)

22. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications, vol. 2,
pp. 259–288. Springer, Heidelberg (2009)



114 A. Santi, M. Guidi, and A. Ricci

23. Ricci, A., Santi, A., Piunti, M.: Action and perception in multi-agent programming
languages: From exogenous to endogenous environments. In: Proceedings of the
Int. Workshop on Programming Multi-Agent Systems (ProMAS 2010), Toronto,
Canada (2010)

24. Ricci, A., Viroli, M., Omicini, A.: The A&A programming model & technology
for developing agent environments in MAS. In: Dastani, M., Seghrouchni, A.E.F.,
Ricci, A., Winikoff, M. (eds.) Programming Multi-Agent Systems. LNCS (LNAI),
vol. 4908, pp. 91–109. Springer, Heidelberg (2007)

25. Soham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92 (1993)
26. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mo-

bile applications on ANDROID with JADE. In: The Second International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services and Technologies, UBI-
COMM 2008, pp. 287–294. IEEE, Los Alamitos (2008)

27. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 4(1), 5–30
(2007); Special Issue on Environments for Multi-agent Systems



An Alternative Approach for Reasoning about

the Goal-Plan Tree Problem

Patricia Shaw1 and Rafael H. Bordini2

1 University of Durham, UK
p.h.shaw@durham.ac.uk

2 Federal University of Rio Grande do Sul, Brazil
r.bordini@inf.ufrgs.br

Abstract. Agents programmed in BDI-inspired languages have goals
to achieve and a library of plans that can be used to achieve them,
typically requiring further goals to be adopted. This is most naturally
represented by a structure that has been called a Goal-Plan Tree. One of
the uses of such structure is in agent deliberation (in particular, deciding
whether to commit to achieving a certain goal or not). In previous work, a
Petri net based approach for reasoning about goal-plan trees was defined.
This paper presents a constraint-based approach to perform the same
reasoning, which is then compared with the Petri net approach.

Keywords: Agent Reasoning, Constraints, Goal-Plan Tree.

1 Introduction

Agents programmed in BDI-inspired languages have goals to achieve and a li-
brary of plans that can be used to achieve them, typically requiring further
goals to be adopted. This is most naturally represented by a structure that has
been called a Goal-Plan Tree. Whilst no planning takes place in such agents,
a certain type of reasoning – done over such representation of agents’ commit-
ments towards goals to be achieved and the known courses of actions to achieve
them – can significantly impact the agent’s performance by judicious scheduling
of the plan execution. More importantly, it can significantly improve delibera-
tion, in the sense that an agent can make reasoned choices on whether to commit
to achieving a new goal or not.

In the work by Thangarajah et al. [8,9,10], a goal-plan tree is used to represent
the structure of the various plans and subgoals related to each goal for an indi-
vidual agent. At each node of the tree, summary information is used to represent
the various constraints under consideration. This is similar to previous work by
Clement and Durfee [1,2,3], using summary information with Hierarchical Task
Network (HTN) planning to co-ordinate the actions of multiple agents.

When using summary information, the amount of summary information to
handle could potentially grow exponentially with the size of the goal-plan tree [3],
which could have a significant impact on the performance of the agent for larger
problems. A different approach was introduced by Shaw and Bordini [5], where

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 115–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



116 P. Shaw and R.H. Bordini

a goal-plan tree is mapped into a Petri net in such a way as to avoid the need
for summary information.

The work in [5] considered reasoning about both positive and negative effects
of a plan on other plans using a Petri net based technique, while in [6] the focus
is on reasoning about resources using Petri nets, which are then combined into a
coherent reasoning process encompassing the reasoning about positive and neg-
ative interactions from [5]. These were evaluated based on an abstract scenario
as well as a more concrete scenario using a simplified mars rover scenario.

In this paper, we present an alternative specific implementation of an ap-
proach to reasoning about positive, negative and resource interactions using a
constraint logic programming approach developed in GNU Prolog to define a
set of constraints that are eventually solved to generate a successful execution
ordering of the plans to achieve an agent’s goals. These are evaluated against
the Petri net model using a common abstract scenario. While the approach de-
scribed here is based on a specific implementation, the concepts and processes
could be reapplied in other constraint (logic) programming or even constraint
optimisation settings. However, the aim of this paper is to present an approach
to solving a problem and experimentally compare it to another approach in order
to identify situations where it may be preferable to apply one approach over the
other.

The remainder of the paper is organised as follows. Section 2 shows the
constraint-based approach with each of the three forms of reasoning incorpo-
rated. Section 3 shows the experimental results and analysis of the comparison
of that approach to the Petri net approach for reasoning about the goal-plan
tree problem. Section 4 concludes the paper.

2 Constraint-Based Approach

2.1 Goal-Plan Trees

A goal-plan tree consists of a top-level goal at the root, with one or more plans
available to achieve that goal. Each of these plans may themselves include fur-
ther subgoals forming the next level in the tree, followed by additional plans to
achieve these subgoals1. All subgoals for a plan must be achieved for a plan to be
successful, while only one plan option needs to be executed for a goal or subgoal
to be successful. The simplest plans at the leaves of the tree will just contain a
sequence of actions and no further subgoals. An example of a goal-plan tree is
shown in Figure 1, which shows the goal-plan tree representation of a goal for
a Mars Rover to collect a soil sample from a location then transmit the results
back to Earth via the base station.

An agent will most likely have multiple top-level goals to achieve, each with
its own goal-plan tree. While it is often straightforward for these to be achieved
in sequence, it may be possible for the agent to achieve better performance by
1 The term subgoals will always be used when referring to subgoals, while top-level

goals will either be referred to as goals or top-level goals.



An Alternative Approach for Reasoning about the GPT Problem 117

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Fig. 1. Goal-plan tree for a Mars rover as used by Thangarajah et al. The goals and
subgoals are represented by rectangles while the plans are represented by ovals.

attempting to achieve them in parallel. This can of course lead to problems
where the goals interfere with each other and where resources are limited, so
reasoning about that can help an agent succeed in achieving its goals and do
so more efficiently. The three types of reasoning considered here are based on:
(i) the limited availability of consumable resources, (ii) the potential for positive
interactions between goals, and (iii) the risk of negative interference between
goals, which are discussed in more detail in the following sections.

The approach developed here for reasoning about goals applies constraint
satisfaction to find a solution to instances of the goal-plan tree problem. While
the Petri net approach applied in [6] provided a natural representation of an
agent’s goal-plan tree into which the reasoning could be added, this approach
provides a natural representation of the constraints to be handled by the agent
in the form of resource constraints and interaction constraints. The constraints
are represented using GNU Prolog2.

2.2 Modelling a Goal-Plan Tree

The idea surrounding the model used for representing the goal-plan tree rea-
soning problem as a set of constraints is to find an ordering of the plans for all
of the goals such that all the goals adopted are achieved and as many goals as
possible are adopted.

To start with, the plans and goals are both defined as facts using a Pro-
log functor node, with the plans being represented by 5-tuples 〈Pl, S, Pr, E, R〉
where Pl is a unique identifier for each plan; S is the list of subgoals for achiev-
ing the plan; Pr is a list of preconditions and E is a list of effects caused by
the plan; R is a list of pairs showing the resource requirements for the different
resources that a plan uses. The plans at the bottom of the goal-plan tree that

2 The shorthand notation V1/V2 is used in GNU Prolog to represent pairs of values.



118 P. Shaw and R.H. Bordini

form the leaves of the tree will not have any subgoals listed in S, and not all
plans will have preconditions, effects or resource requirements.

A series of “variables” is used to represent resources and the effects on the
environment. The representation of available resources make use of dynamic facts
that can be updated as the resources are consumed, (e.g. resource(r1,50)). In
the plan definitions, the preconditions, effects and resources are all represented
as pairs of values, for example r1/5 represents the requirement of 5 units of
resource r1. The preconditions and effects referring to various properties of the
environment that can be modified are represented in a similar way with effect
e1/7 stating that the plan changes the variable representing the environment
property e1 so that it has the value 7. Sections 2.4 and 2.5 describe how these
are used to identify plans that can either be safely “merged” or that could
interfere (thus needing to be scheduled accordingly).

Goals and subgoals require less details, so they are simply represented as pairs
〈G, P 〉, where G is a unique identifier for the goal or subgoal and P is a non-
empty list of plans that can be used to achieve G. The following Prolog sample
from a goal definition shows a top-level goal node and a plan node that achieves
this goal, itself using 1 unit of resource r1 and causing the effect of assigning the
value 7 to variable e3, while having no preconditions required for it to start.

node(g1,[p1]). % Goal node
node(p1,[sg2,sg3],[],[e3/7],[r1/1]). % Plan node

In order to reason about the tree structure, various predicates are defined to
help query a goal-plan tree representation. These include listing all the plans in
the sub-tree of a goal or plan, finding all the plan options for achieving a goal
or subgoal, and querying the plan hierarchy within the goal-plan tree.

Where there is a choice of plans to achieve a goal or subgoal, only one of
these needs to be used in order for the goal to be successful. The surplus plans
can therefore be dropped from consideration, reducing the number of plans that
need to be considered later on. When the plan being dropped contains subgoals,
these are also removed from consideration. This is illustrated in Figure 2, where
the plan and its sub-tree inside the dashed line is being dropped in preference
of the alternative plan for achieving the subgoal.

In Prolog, this is defined as a series of predicates to “strip” the tree of the
branch options:

branchOptions:-
findall(O,option(_,O),All),
branchStrip(All).

The clause above uses the option(Goal,OptionList) predicate to generate
a list of all the sets of options for subgoal branches. O is a list of plans from
which just one plan needs to be selected, so the variable All, the result of the
findall, equates to a list of plan lists. Each of these lists of plans then needs
to be considered, selecting one plan to keep and the remainder to disregard. By
default, the plan that is kept is the first plan in the list. However, when resource



An Alternative Approach for Reasoning about the GPT Problem 119

... ... ... ... ...

Subgoal

Plan 1 Plan 2

Subgoal Subgoal Subgoal Subgoal Subgoal

Fig. 2. Removal of surplus sub-trees where there is a choice of plans

reasoning is incorporated, the summary resource requirements for each branch is
considered so the plan with the lowest summary resource requirements is kept.

branchStrip([]).
branchStrip([[H | T2] | T]):-

rmBranch(T2),
branchStrip(T).

rmBranch([]).
rmBranch([P|T]):-

strip(P),
rmBranch(T).

When removing plans, it is important to remember to remove the sub-tree
formed from any subgoals that were required by the plan. This is handled by a
final recursive predicate to iterate through the list ensuring each of the members
of the sub-tree are removed. As it is possible for plans within the subtree of an
optional plan to also contain branches, it is possible for plans and subgoals to
have already been removed. To prevent this from causing the retraction to fail
a disjunction finishing with true is included as shown below.

strip(P):-
subtree(P,T),!,
stripTree(T),
retract(node(P,_,_,_,_)).

stripTree([]).
stripTree([H|T]):-

(((retract(node(H,_,_,_,_))); retract(node(H,_))); true),
stripTree(T).

An evaluation of the Constraint Satisfaction Problem (CSP) gives each plan
that is considered a number that can be used to sequence the plans. A global



120 P. Shaw and R.H. Bordini

finite-domain variable is created for each of the plans to store a value in the
domain of plans, ranging from 0 to the number of plans. A solution is a
valid sequence where the goals adopted would be achieved if the plans were
executed in the order specified by the evaluation. A tree scheduling predicate,
treeScheduler defined below, is applied to the plan variables to ensure the tree
structure is maintained when considering the order in which to execute plans,
forming the basis of any scheduling over the plans. This includes preconditions
and effects of plans between different branches within a tree to ensure a plan is
not scheduled to execute before the plan producing the necessary preconditions
has been scheduled to execute.

treeScheduler([]).
treeScheduler([[P1,P2]|T]):-

g_read(P1,I),
g_read(P2,J),
I#<#J,
g_assign(P1,I),
g_assign(P2,J),
treeScheduler(T).

In many cases, the ordering between subsets of the plans is not important as
they will not affect each other in any way, so these plans can safely be given
the same sequence number. When executing the plans, this could be seen as
either executing them in parallel or executing them in sets, such that all the
plans with sequence number 1 are executed before those with sequence number
2, and so forth. By not specifying an exact ordering of the plans, the agent is
able to maintain a lot of its autonomy when selecting which plan to execute next.
Essentially the “ordering” of plans indicates to the agent which plans are safe to
execute together, grouping them into “safe” sets. Provided the agent completes
all the plans within one group before moving on to the next, there should be
no interference between the various goals. In the worst case, where there was a
lot of interference between all of the goals, each plan could be assigned a unique
number from their domain of values, specifying the exact ordering in which the
plans must be executed for the agent to be successful.

When searching for valid solutions to the goal-plan tree problem, the query is
directed from the reasoning predicate shown below. When a solution is found,
each of the parameters in the head of the predicate is unified with part of the
solution or details about the solution for evaluation purposes. This includes
counting the number of plans used, the number of goals achieved and the time
taken for the solution to be found. The Prolog predicate real time(Time) is used
to obtain start and end timings for the evaluation of a goal-plan tree model.

reasoning(Schedule, Plans, PlanCount, TimeTaken,
GoalsSet, GoalsAchieved):-
real_time(Start), % start timing the reasoning

findall(G,root(G),Goals),



An Alternative Approach for Reasoning about the GPT Problem 121

length(Goals, GoalsSet),

branchOptions,
% positive interaction reasoning

findall([Pa,Pb],pos(Pa,Pb),Merge),
posScheduler(Merge),

% resource reasoning
branchList(Goals,SumList),
sort(SumList,SortedSumList),
resReasoning(SortedSumList),

findall(P,node(P,_,_,_,_),Plans),
length(Plans,PlanCount),
varSetup(Plans,PlanCount),

findall([Px,Py],tree(Px,Py),A),
reverse(A,A2),
treeScheduler(A2),

% negative interference reasoning
findall([Pc,Pd,Pe],neg(Pc,Pd,Pe),Neg),
negScheduler(Neg),

varResult(Plans,Schedule),
fd_labeling(Schedule,[variable_method(standard)]),

real_time(End), % reasoning finished
TimeTaken#=End-Start,
findall(G2,root(G2),Goals2),
length(Goals2,GoalsAchieved).

The first step in the clause unifies the variable Goals with a list of all the
top-level goals. The length of this list is queried to identify how many goals
have been defined at the start. When reasoning about consumable resources, it
is likely that not all goals will be achieved, so a repeat of this is performed to
count the number of goals after the actual reasoning and scheduling components
of this predicate have been completed. Once the list of goals has been unified,
the reduction of the goal-plan trees can start by removing the branch options as
described above. The predicates for the three types of reasoning as shown above
can be added or removed as necessary, depending on the types of reasoning
desired.

Once all the plans that are not required have been removed, either because of
branch options, positive interactions or limited resources restricting the number
of goals that can be adopted, the finite domain variables for each of the remain-
ing plans are asserted as global variables. This is contained within a varSetup
predicate that iterates through the list of all the remaining plans asserting the
global variables with the domain ranging from 0 to the number of plans now



122 P. Shaw and R.H. Bordini

being considered, i.e. the length of the list of plans. After this has been success-
fully completed, it is then possible to start applying the constraints that restrict
the assignment of the values from the domains to the variables. This starts with
the scheduling based on the tree structure and finishes with the negative in-
terference reasoning (Section 2.5), when this is incorporated into the types of
reasoning being performed. At this point, the labelling of variables with values
is to be performed, so the varResult predicate simply collects all of the finite
domain variables back into a list which is then passed on to the finite domain
labelling predicate (fd labeling). This predicate is part of the prolog library
for solving finite domain constraint satisfaction problems, and provides a selec-
tion of heuristics for ordering the variables; the heuristic selection is given as a
parameter to the predicate along with the list of variables.

While this design achieves the objectives of representing and reasoning about
the goal-plan tree, it may still be possible to optimise some of the constraints in
order to improve their efficiency, thereby reducing the length of time taken for
a solution to be found.

2.3 Consumable-Resource Reasoning

The reasoning described here is limited to that of consumable resources rather
than reusable resources. The purpose of the reasoning is to restrict the number
of goals adopted to those that can be achieved with the amount of consumable
resources available and to endeavour to make the best use of those resources
through the careful selection of plans when there is a choice between which plans
to use in order to achieve the desired result. The reasoning about consumable
resources makes use of a small amount of generated summary information to
perform this reasoning.

As described in the section above, the resource requirements for each plan are
represented by a list of pairs consisting of resource type and quantity required.
The total available resources for each type are each defined using a resource
predicate. This predicate is defined to be dynamic so that when reasoning about
resources the quantity available can be updated with the new quantities as they
are consumed.

The first part of the resource reasoning is incorporated into the constraint
reasoning for the selection between lists of plan options for achieving a goal
or subgoal. For each of the plans listed as being an option, a summary of the
resource requirements for the sub-tree with the plan at its root is generated.
At this point, a single number for all the resource quantities required regardless
of resource type is used to decide which plan to use. It is possible to extend
the reasoning here to incorporate weightings into the summation of resource
requirements in order to indicate preference for the use of certain resources over
others.

When this type of reasoning is included, the definition of the branchStrip
predicate shown above is extended to refer to a predicate that pairs the summary
resource requirement with each plan in the list of options. The list of plan options
is sorted so that the subgoal branches nearest the leaves at the bottom of the tree



An Alternative Approach for Reasoning about the GPT Problem 123

are considered first. This is to reduce the number of plans being considered at
each iteration through the list and to allow for simpler predicates summing the
resource requirements as they do not need to consider branches at lower subgoals.
Once the list of plan options paired with resource requirements is formed, it is
then sorted into order of increasing resource requirements so the first element in
the list is the preferred plan and the remaining plans can again be retracted.

branchStrip([]).
branchStrip([H|T]):-

branchList(H,L),
sort(L,[_|T2]),
rmBranch(T2),
branchStrip(T).

branchList([],T):-T=[].
branchList([P|T],T1):-

branchList(T,T2),
subtree(P,X),
resAll(S,X),
append([S/P],T2,T1).

The resAll predicate starts by producing a single long list of the resource re-
quirements for each plan. For each plan, this takes the pairs representing the type
of resource and quantity required and appends them to a list of all the resource re-
quirements for the sub-tree being considered. Once all the resource requirements
have been compiled into one list, this is sent to a summing predicate to simply
add together all the quantities to produce a total resource requirement. It is in
this final predicate where weightings could be included, if necessary, to indicate
any preferences for which types of resources should be saved or used the most.

resAll(S,Ps):-
resourceList(L,Ps),
resSum(S,L),!.

resourceList(L,[]):-L=[],!.
resourceList(L,[SG|T]):- % Only interested in plans

node(SG,_),
resourceList(L,T).

resourceList(L,[P|T]):-
node(P,_,_,_,R),
resourceList(L1,T),
append(L1,R,L).

resSum(S,[]):- S=0,!.
resSum(S,[_/X|T]):-

S#=X+S1,
resSum(S1,T).



124 P. Shaw and R.H. Bordini

After the plan options have been removed, the resource reasoning is next used
to consider which goals can be safely adopted given the quantity of each resource
available. The reasoning is performed in this order firstly to reduce the number of
plans being considered and secondly to allow the summary information generated
for reasoning about goal adoption to represent the actual requirements of the
goal.

The list of top-level goals can be sorted in the same manner as the list of plan
options for selecting the plans or, in this case, goals with the lowest resource
requirements. To do this, the first step, as before, is to generate the list of plans
in the tree for each goal. This can be performed using the branchList predicate
with a list of the top-level goals. This will pair up each of the goals with a number
representing the sum of resource requirements regardless of type. It is possible to
apply different orderings to the list of goals to indicate the importance of a goal,
thereby preferring to complete less goals of greater importance than to achieve
more goals of less importance. If the order in which the goals are considered for
adopting is not important, or if the order is predefined as the order in which the
goals were defined, this step can be skipped. This will also provide a decrease in
the number of steps and hence the length of time taken to evaluate the problem
each time a solution is to be found. In the evaluation of this approach, both
sorting and ordering were included in the reasoning.

The main reasoning about resources for goal adoption requires summary in-
formation broken down by the different types of resources required. This is so
that the reasoning can check that there is actually sufficient resources available
for each goal to be adopted. For each goal in the list, the summary information
separating the different types of resource information is generated. While the
resAll predicate produces a combined summary of each of the resource types
into one number, the resType predicate used here keeps the different types of
resources separate when generating the summary information. The summary in-
formation produced by the predicate resType is an unsorted list containing each
of the resource types and the quantity of it required by the goal, for example
S = [r3 / 6, r2 / 5, r1 / 7, r5 / 0, r4 / 0]. From this list, each of the
types of resource is extracted and compared to the available quantity of that
resource.

resReason(G):-
goalPlans(G,P),
resType(S,P), % generate resource summary by type
member(r1/A,S), % unify the resource values
member(r2/B,S),
...
resource(r1,RA), RA#>=A, % check sufficiently available
resource(r2,RB), RB#>=B,
... % reserve resources
retract(resource(r1,RA)),
NewRA #= RA-A, asserta(resource(r1,NewRA)),
retract(resource(r2,RB)),



An Alternative Approach for Reasoning about the GPT Problem 125

NewRB #= RB-B, asserta(resource(r2,NewRB)),
...

If each type of resource has sufficient resources available then the predicate
resReason will succeed and the quantity of each of the resources available will
be lowered accordingly. If one or more types of resource has as insufficient quan-
tity available then the predicate will fail and the if-then-else construct from
which the predicate was queried (resReason(G) -> true; strip(G)) will step
to the else component where the whole goal will be dropped in the same way
as for removing the sub-tree of a plan that is not required. After all the goals
have been considered, adopting those that are safe to start, and removing those
which are not, the reasoning then returns to the core part of the goal-plan tree
representation to schedule the plans for the goals that have been adopted.

2.4 Positive Interaction Reasoning

The positive interaction reasoning attempts to identify plans in different goal-
plan trees that can be “merged”, as they produce the same effects. When refer-
ring to plan merging, it is actually possible to achieve the effects by only using
one of the two plans. By doing this, the number of plans required to achieve
all the goals adopted can be significantly reduced, especially as the sub-trees of
the plans that are not used are also removed when the two plans are merged.
If the interaction between the goals occurs at high levels of the goal-plan trees,
i.e. near the root with each plan itself having a large sub-tree, then the impact
of the merging is particularly significant. Figure 3 illustrates where two plans
will achieve the same effect, so only one of the plans is need to reach the desired
state.

Px

Py

set effect A

Environment
Properties

set effect A

Fig. 3. Illustration of positive interaction

To perform the reasoning in Prolog, a predicate is defined that identifies pairs
of plans that produce the same effects by checking that the lists of effects for the
two plans are equivalent. This starts by unifying two plans and the list of effects
generated by each of the plans, checking that the two plans are not the same
plan. The reasoning cycle in Prolog when requested for all pairs of positively
interacting plans will iteratively test every pair of plans. For pairs of different
plans, the effects of the plans are considered to identify if there is any possibility
of merging them. Firstly, it is checked that the list of effects for the first plan
is not empty, otherwise all plans that themselves do not achieve effects could



126 P. Shaw and R.H. Bordini

be included for merging. Where an effect is produced by Px, the list of effects
for the two plans are compared to see if they are equivalent. If so, then with
all the constraints satisfied, the pair of plans is returned as a pair of positively
interacting plans that can be merged. If the effects are not equivalent, then the
solver backtracks to try another pairing until all possible pairings have been
tested.

pos(Px,Py):-
node(Px,_,_,XEffects,_),
not(XEffects=[]),
node(Py,_,_,YEffects,_),
Px\=Py,
seteq(XEffects,YEffects).

The findall([Px,Py], pos(Px,Py), Merge) predicate is used to generate
a list all the pairs of plans where it is possible for them to be merged. The
template used to form the list from the solutions to the pos(Px,Py) predicate
creates a sublist for each solution pair of plans. The complete list of positively
interacting plans is then used to select and remove plans that are not needed as
the effects they produce are duplicated by other plans. By default, the second
plan in the pair of interacting plans is retracted, however this is not always the
case.

While in the positive interaction reasoning considered here all the effects in
the list must match for the plans to be considered for merging, it is also possible
to consider a weaker version of positive interaction where only some of the effects
match. In this case, in order to ensure that a plan that is kept from the merging
with another plan is not then deleted by a later merging, the plan is “marked”.
This is done by asserting the predicate mark(Plan) for each of the plans that
have been kept from a merged pair. When a pair is first considered, it is checked
to see if either plan is already marked. If both plans are already marked, then
neither plan can be safely removed as it is possible that the intersecting effect
that was used to identify the two plans as positively interacting is different to the
intersecting effects from the interactions where they have already been “merged”.

As the reasoning here checks that the effects are equivalent, it is not necessary
to check if one or both plans are already marked. This is because if one plan is
marked, and has appeared in more than one positive interaction then the effects
of three or more plans must all be equivalent, therefore only one plan is still
needed to achieve the effects on behalf of all of the plans. However, as merges
could have occurred within the sub-tree of one or both of the interacting plans,
it is still necessary to mark the plan kept from a merge to ensure it does not get
removed as part of a sub-tree.

The posScheduler predicate defined below starts by checking that the two
plans both still exist, i.e. that one or both have not already been removed by
other merges. The sub-trees of each plan are then generated to check for any
marked plans within the sub-trees that could prevent one of the plans from being
removed in a merge. If just one of the plan’s sub-trees contains a marked plan,



An Alternative Approach for Reasoning about the GPT Problem 127

then that plan can be kept while the other is retracted, otherwise neither plan
and their sub-trees can be removed.

posScheduler([]).
posScheduler([[P1,P2] | T ]):-

node(P1,_,_,_,_), node(P2,_,_,_,_),
subtree(P1,X), subtree(P2,Y),
not((member(XP,X), mark(XP));

(member(YP,Y), mark(YP))),
((not(member(XP,X), mark(XP)), asserta(mark(P1)), strip(P2));
(not(member(YP,Y), mark(YP)), asserta(mark(P2)), strip(P1))),
posScheduler(T).

When the reasoning about positive interactions is combined with that of rea-
soning about consumable resources, then the selection for which plan to keep
and which plan to drop is influenced by the summary resource requirements for
the sub-tree of each plan. In this case the predicate resAll is used to produce
the summary information for the sub-tree of each of the two plans. The plan
with the lower resource requirements is then kept when there is a free choice
between the two plans as neither sub-tree contains any marked plans.

The positive interaction reasoning is incorporated into the set of constraints
after the branch options have been removed. This is to reduce the number of
matches as the branches provide different sets of plans for achieving the same
effects within a goal-plan tree.

2.5 Negative Interference Reasoning

While the reasoning about positive interaction identifies plans that produce the
same effects, the reasoning about negative interference identifies sets of three
plans where one plan generates the effect required by the second plan, and the
third plan produces an opposite effect that if it were executed between the first
two would cause interference. This can be thought of as a causal link between
the first two plans, which the third plan would break. Figure 4 illustrates a case
of negative interference.

In Prolog, in order to identify the negative interactions between plans, the
neg(Px,Py,Pz) predicate is defined to find pairs of plans that have causal links
and the plans that can interfere with those links. Px is the plan that starts the
causal link by producing the desired effect required as a precondition for plan Py.
Once Py has executed, it is assumed that the effect is no longer required, so can

Px Py

Pz

set effect A Environment
Properties

use effect A

set effect ¬A

Fig. 4. Illustration of negative interference



128 P. Shaw and R.H. Bordini

be safely altered by other plans such as Pz. If however Pz attempts to execute
between Px and Py, then this will cause interference, possibly leading to plan
and then goal failure. As with the positive interaction reasoning, it is important
to check that the plans are all different before comparing the preconditions
and effects of the plans. To compare the effects, it is important to split up
the pair notation for representing the effects of plans into the two component
parts, the factor identifier and the value representing its current state (e.g. e1/7).
The member(Element, List) predicate, in the reasoning predicate shown below,
unifies properties of the environment that are common to all three plans but
where the value assigned to that property is different in the interfering plan to
the value used by the linked plans.

neg(Px,Py,Pz):-
node(Px,_,_,XEffects,_),
node(Py,_,YPrecon,_,_), Px\=Py,
node(Pz,_,_,ZEffects,_),
Px\=Pz,Py\=Pz,
member(V/N1,YPrecon),
member(V/N1,XEffects),
member(V/N2,ZEffects),
N1#\=N2.

This predicate is again queried with the findall([Px,Py,Pz],
neg(Px,Py,Pz),Neg) predicate to generate a list of all the possible in-
stances of the interference so they can be scheduled to ensure the interference
is avoided. For this, the interfering plan either needs to be scheduled to execute
before the other plans or after both have executed so the effect is no longer
required. This is handled by the negScheduler predicate shown below.

negScheduler([]).
negScheduler([[Px,Py,Pz]|T]):-

g_read(Px,A),
g_read(Py,B),
g_read(Pz,C),
A#<#B,(C#<#A;C#>#B),
g_assign(Px,A),
g_assign(Py,B),
g_assign(Pz,C),
negScheduler(T).

The negScheduler predicate refers to the finite domain global variables that
have been defined for representing the domain of values that can be assigned
to each of the variables representing the plans for generating a schedule. The
plan producing the effect (Px) must always occur before the plan using the effect
(Py). However, it is possible to schedule the interfering plan (Pz) to either execute
before Px or after Py, as long as it does not execute between the two plans.

The reasoning about negative interference is incorporated into the set of con-
straints after the tree scheduling has been performed. This is to ensure the



An Alternative Approach for Reasoning about the GPT Problem 129

minimum number of plans are considered as the evaluation of the neg(Px,Py,Pz)
predicate considers all the possible combinations of three plans. In addition, the
main purpose of the negative reasoning is to schedule potentially interfering
plans to ensure they do not interfere, rather than reducing the number of plans,
so this “scheduling” is performed after all the surplus plans have been removed
and the schedule refined based on the constraints in the tree structure.

3 Experimental Results

To compare the performance of the three types of reasoning under different
conditions, three different tree structures were used; a deep tree, a broad tree and
a tree that is part way between the two (referred to as the general tree structure).
The results presented here are a subset of a large set of experiments comparing
a wide range of variables covering goal-plan tree size, goal interaction levels
and resource availability amongst others. The aim of the experiments was to
stress test the approach described here and compare it to the approach described
in [5,6], to identify settings where one approach was able to perform better than
the other. Each of the types of reasoning was considered independently before
combining all three together. The performance of the two reasoning approaches
was also compared to the performance without any reasoning, simulated by a
Petri net model with the reasoning removed. An example of a more concrete
application to which this reasoning could be applied is presented in [5], where a
simplified Mars Rover is modelled. While the approach here can be applied to
this example, the results presented here are aimed at illustrating performance
under highly constrained conditions with a large number of substantially sized
goals.

In order to fully evaluate the performance of this approach and compare it
to other approaches, a set of large goal-plan trees has been designed with high
levels of interactions between them and heavy resource requirements. The goals
were designed to test different properties of the reasoning, for example there is a
deep tree structure that has very little branch options, and was designed to test
the effect of depth and size of sub-trees on the reasoning. Conversely, a broad
tree structure containing a lot of branch options has been designed to test the
ability of the two approaches to handle branches and select the best options
where appropriate. A third tree structure was also used to test the scalability of
the two models, so it contained nearly 100 plans and was used in experiments
focused on increasing the number of goals.

An overview of the results are presented below, summarising results across
the different tree structures. The graphs below combine the results for common
settings in each of the tree structures for each type of reasoning, individually
and combined. They show the results for experiments using a medium-sized deep
and broad tree (∼50 plans) or a large tree (∼100 plans) from the general tree
structure, 20 goals, low level resource availability, positive interaction at a high
level in the goal-plan tree, negative interference over a long duration and high
goal interaction. When showing the timings, the load timings for both models



130 P. Shaw and R.H. Bordini

Petri net
Random
Constraints

Fig. 5. Legend for graphs comparing performance over the three different tree
structures

are included in the graphs, as well as the run times for the two approaches, as
the run time for the Petri net model was very short, but the load time was quite
long. The legend for the graphs is shown in Figure 5.

3.1 Reasoning about Consumable Resources

While the Petri net model was able to match the number of goals achieved by the
constraint model in the deep tree, the performance in the broad and general trees
was much worse, see Figure 6. In comparison, the random Petri net model was
able to achieve more goals in the broad and general trees than in the deep tree.
The timings for the Petri net model were greater than those for the constraint
model when including loading times, especially in the large-sized general tree
structure experiments. Overall, the constraint model gave better results both in
terms of time and number of goals achieved when there is limited availability
of consumable resources, especially in trees where there is a large amount of
branching.

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n
 S

e
c
o

n
d

s

Tree Structure

(a) Res. Timing

0

2

4

6

8

10

Deep Broad General

N
u
m

b
e
r 

o
f 

G
o

a
ls

Tree Structure

(b) Res. Goals

0

80

160

240

320

400

Deep Broad General

N
u
m

b
e
r 

o
f 

P
la

n
s
 U

s
e
d

Tree Structure

(c) Res. Plans

Fig. 6. Comparison results for reasoning about resources across the three tree
structures

3.2 Reasoning about Positive Interaction

When reasoning about positive interaction, the Petri net was able to generate
better results based on the reduction in the number of plans used in each of the
tree structures, see Figure 7. Comparing the timings here shows that while the
time taken between the Petri net and the constraint models was the same for
the deep tree, the Petri net model took longer to load in the experiments for
the other two tree structures, especially the large tree size of the general tree
structure. When the number of plans used is the key criteria, then the Petri net



An Alternative Approach for Reasoning about the GPT Problem 131

0

260

520

780

1040

1300

Deep Broad General

T
im

e
 i
n
 S

e
c
o

n
d

s

Tree Structure

(a) Pos. Timing

0

160

320

480

640

800

Deep Broad General

N
u
m

b
e
r 

o
f 

P
la

n
s
 U

s
e
d

Tree Structure

(b) Pos. Plans

Fig. 7. Comparison results for reasoning about positive interaction across the three
tree structures

model performs better; however, if time is critical then the constraint model
can produce results slightly faster when reasoning about positive interaction is
applied.

3.3 Reasoning about Negative Interference

While the reasoning about negative interference was the most time consuming
of all the three types of reasoning, it is perhaps the most critical when com-
paring the results achieved to those produced when no reasoning is included, as
illustrated in Figure 8. In this case, the time taken by the Petri net even when
the load times are included is much shorter for the experiments on the deep and
broad tree structures. However, the loading time on the large-sized tree for the
general tree structure does take longer than the constraint model in this setting.
Overall, the Petri net model offers better results here, especially with the small
and medium tree structures.

3.4 Combined Reasoning

When combining the three types of reasoning together, the number of goals
achieved increased, especially in the deep tree where a large number of plans
were saved by the positive interaction reasoning, as shown in Figure 9. The
resources that would have been consumed by these plans were then available for
use in achieving other goals. This combined effect is less noticeable in the broad
and general trees. However, the constraint model was generally able to make the
most optimisations here. The exception to this is that as the availability of the
resources was increased in the general tree structure, the number of goals started
and hence the plans interacting increased, resulting in more plans not being used
so more resources being saved for use in achieving further goals. In the high level
resource availability for the general tree, this lead to all goals being achieved by
the Petri net model.



132 P. Shaw and R.H. Bordini

0

300

600

900

1200

1500

Deep Broad General

T
im

e
 i
n
 S

e
c
o

n
d

s

Tree Structure

(a) Neg. Timing

0

4

8

12

16

20

Deep Broad General

N
u
m

b
e
r 

o
f 

G
o

a
ls

Tree Structure

(b) Neg. Goals

0

180

360

540

720

900

Deep Broad General

N
u
m

b
e
r 

o
f 

P
la

n
s
 U

s
e
d

Tree Structure

(c) Neg. Plans

Fig. 8. Comparison results for reasoning about negative interference across the three
tree structures

In the experiments for the deep tree, the Petri net timings even when including
the loading times were quite similar to those for the constraint model, however
in the experiments for the other two tree structures, especially the large-sized
general tree, the time taken for loading the Petri net model was greater than the
time taken for the constraint model to find a solution. Despite the additional
time taken for the reasoning in both models, the benefits gained from performing
the reasoning over those shown in the random Petri net model indicate that it
is worth considering taking the time to find a good solution. In highly dynamic
environments, there may not be the time available to consider this as too much
would have changed by the time a simulation had finished.

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure

(a) Combi. Timing

0

4

8

12

16

20

Deep Broad General

N
u

m
b

e
r 

o
f 

G
o

a
ls

Tree Structure

(b) Combi. Goals

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r 

o
f 

P
la

n
s
 U

s
e
d

Tree Structure

(c) Combi. Plans

Fig. 9. Comparison results for combined reasoning across the three tree structures

When increasing the number of goals used in the general tree structure from 20
to 50, the Petri net model became too large for the Petri net editor (Renew [4]) to
load the model, while the constraint-model was able to continue to reason about
up to 75 goals. However, it took 9hrs to find a solution, so further increases in
the number of goals were not tested. It should be noted that in current agent
applications, the size and number of goals tends to be significantly less than
those tested here. This means that the time taken for the reasoning can be
within acceptable ranges for practical purposes, at least in some applications.



An Alternative Approach for Reasoning about the GPT Problem 133

4 Conclusions and Future Work

In this paper we have presented a specific Prolog implementation (with con-
straint solving) that could be used to solve the goal-plan tree problem, which
has then been compared to a second specific implementation based on Petri nets.
While these two approaches are both capable of solving the same problems, the
techniques they use are different and as a result the solutions they offer can
vary. For example, the approach here controls the sequence in which goals and
plans are considered. If a set of goals is evaluated again, it will be evaluated in
the same order and give the same answer each time. However, in the Petri net
approach, no exact order in which goals and plans are evaluated is set, so in
each evaluation the order can vary. This can lead to differences in the results
returned, particularly when resources are constrained. It is possible that varia-
tions in the used of the underlying techniques would offer different advantages,
however further experimental comparisons such as the one performed here would
be needed.

The approach presented here has been experimentally compared to the Petri
net approach described in [6]. The complete results from the comparison can be
found in [7]. The aim of these experiments was to test the two approaches under
highly constrained conditions and to identify situations where one approach may
be better suited over the other. The differences between these two approaches
can be beneficial in different situations and conditions where some properties of
one or the other approach may be preferable.

The results presented here show that while the Petri net model has faster
running times, it also has the slowest loading times with the greatest memory
usage once loaded. One of the side effects of this is that, as the size of the
goal-plan trees or the number of top-level goals increases, the load times rapidly
increase until the application running the Petri net simulations is no longer able
to load the Petri net goal-plan tree representation. Refinements and changes
in the way the goals are represented may reduce the problem allowing greater
numbers of goals to be handled in the Petri net model. Similarly, it is possible
that refinements in the efficiency of the Prolog constraints used in the constraint-
based model may improve the performance of this model as well.

In some cases the Petri net model can give better results over the constraint-
based model. In particular, when reasoning about positive interactions between
the goals, the Petri net model gives better results in terms of the number of
plans used, and when reasoning about negative interference, the Petri net model
also gives faster results for successfully achieving all goals, even when including
the loading times. The structure of the tree also affected the performance of the
two reasoning models, with the constraint-based model performing better when
applied to reasoning about the limited availability of resources in trees where
there is a large amount of branching and little depth.

Where the ability to reason about large numbers of goals is required, especially
for large sized trees, the constraint model demonstrated that it was able to scale
and find solutions to larger problems. However, the trade-off comes at the time
taken, for example taking 9 hours to reason about 75 goals in one setting.



134 P. Shaw and R.H. Bordini

The approach described here has been compared based on the individual types
of reasoning and the combined reasoning. While in most cases it makes sense to
combine all three types of reasoning, there may be application areas where only
one is needed. For example, in applications where there is limited availability of
consumable resources but very little interaction between the goals it may only
make sense to use the resource reasoning. Similarly, in applications where there
are a lot of common goals to achieve the same effects, and abundant resources
it may be better to use only the positive interaction reasoning. In applications
where there is likely to be a lot of conflict between the goals or where it is more
critical that all the goals are achieved, but again with abundant resources, it
may be sufficient to just apply the negative interference reasoning.

In conclusion, the following recommendations can be made to agents
about which model they may wish to consider depending on their specific
circumstances:

– When just considering resource reasoning, if the goal-plan trees contain a lot
of branching then the constraint-based model gives better results in terms
of goals achieved.

– When just considering positive interaction reasoning, the Petri net model
gives better results for all goal-plan tree structures in terms of the reduction
in plans used.

– When just considering negative interaction reasoning, the Petri net model
gives better results for all goal-plan tree structures in terms of the time taken
to perform the reasoning.

– When considering the combination of all three types of reasoning, the
constraint-based model gives better results in terms of goals achieved ex-
cept when there is high resource availability, in which case the Petri net
model performs better.

– When there are a large number of large goals (i.e. 50 or more goals containing
more than 100 plans), only the constraint-based approach is able to perform
the reasoning, although it will take considerable time to find a solution.

The reasoning about resources that has been considered here has focused on
consumable resources that are limited in their availability. Another type of re-
source that is often used are reusable resources, such as communication channels.
A model was shown in [6] of how this could be incorporated into the Petri net
model, and constraints could be added into the constraint-based approach to
prevent two plans attempting to use the same reusable resource at the same
time. This was not initially included as the use of these resources can be easily
scheduled, while the use of consumable resources has greater restrictions applied
to it. The reasoning about consumable resources is also the more difficult of
the two types of resources to implement, being possible to later incorporate the
reasoning for reusable resources easily. In addition, when considering consum-
able resources, all the goals are currently assumed to consume resources without
any goals to recharge them or to create more resource instances. The Petri net
approach and to some extent the constraint-based approach are however robust



An Alternative Approach for Reasoning about the GPT Problem 135

enough to handle this, at least in a simplistic manner. However, further work
to extend both approaches to allow for more generic maintenance goals rather
than only achievement goals is required.

References

1. Clement, B.J., Durfee, E.H.: Identifying and resolving conflicts among agents with
hierarchical plans. In: Proceedings of AAAI Workshop on Negotiation: Settling
Conflicts and Identifying Opportunities, Technical Report WS-99-12, pp. 6–11.
AAAI Press, Menlo Park (1999)

2. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical plan-
ning agents using summary information. In: AAAI 1999/IAAI 1999: Proceedings of
the Sixteenth National Conference on Artificial Intelligence and the Eleventh Inno-
vative Applications of Artificial Intelligence Conference Innovative Applications of
Artificial Intelligence, pp. 495–502. American Association for Artificial Intelligence,
Menlo Park (1999)

3. Clement, B.J., Durfee, E.H.: Performance of coordinating concurrent hierarchical
planning agents using summary information. In: Proceedings of 4th International
Conference on Multi-Agent Systems (ICMAS), pp. 373–374. IEEE Computer So-
ciety, Boston (2000)

4. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – the Reference Net Workshop,
Release 2.1 (May 2006)

5. Shaw, P.H., Bordini, R.H.: Towards alternative approaches to reasoning about
goals. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2007. LNCS (LNAI), vol. 4897, pp. 104–121. Springer, Heidelberg (2008)

6. Shaw, P., Farwer, B., Bordini, R.H.: Theoretical and experimental results on the
goal-plan tree problem. In: Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1379–1382 (2008)

7. Shaw, P.H.: Reasoning about Goal-Plan Trees in Autonomous Agents: Develop-
ment of Petri net and Constraint-Based Approaches with Resulting Performance
Comparisons. PhD thesis, School of Engineering and Computing Sciences, Univer-
sity of Durham, UK (January 2010)

8. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of 18th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 721–726. Morgan Kaufmann,
Acapulco (2003)

9. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and exploiting positive goal
interaction in intelligent agents. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 401–408. ACM
Press, New York (2003)

10. Thangarajah, J., Winikoff, M., Padgham, L.: Avoiding resource conflicts in intelli-
gent agents. In: Proceedings of 15th European Conference on Artifical Intelligence
(ECAI 2002), IOS Press, Amsterdam (2002)



Intention Change via Local Assignments�

Hans van Ditmarsch1���, Tiago de Lima2, and Emiliano Lorini3

1 University of Sevilla, Spain
2 CRIL, University of Artois and CNRS, France

3 IRIT, CNRS, France

Abstract. We present a logical approach to intention change. Inspired by Brat-
man’s theory, we define intention as the choice to perform a given action at a
certain time point in the future. This notion is modeled in a modal logic con-
taining a temporal modality and modal operators for belief and choice. Intention
change is then modeled by a specific kind of dynamic operator, that we call ‘local
assignment’. This is an operation on the model that changes the truth value of
atomic formulae at specific time points. Two particular kinds of intention change
are considered in some detail: intention generation and intention reconsideration.

1 Introduction

According to Bratman’s planning theory of intention [6], rational agents build complex
plans and organize their life on the basis of sequences of actions. They intend to perform
certain actions and plans because they have reasons to perform them, and they write
these actions and plans on their mental agenda, in order to remember when to perform
them. In other terms, rational agents settle themselves in advance on plans for the future.
That is, they have future-directed intentions. But also, they intend to do things here and
now. That is, they have present-directed intentions. In such situations, they initiate the
intended action and sustain it until its completion. As the time goes on, rational agents
keep their future-oriented intentions unless they have no more reason to perform in the
future what they intend to do. Hence, they reconsider their plans and possibly change
them.

So, a future-directed intention has its own life in the mind of an agent. There is
an initial moment in which it is generated. As time goes on, it may be reconsidered
and eventually dropped. But, it may also last until it transforms into a present-directed
intention, which is responsible for initiating the agent’s action.

Since the seminal work of Cohen & Levesque [9] aimed at implementing Bratman’s
theory of intention, many formal logics for reasoning about intentions and plans, and for
describing their dynamics have been developed (see, e.g. [23,27,22,29,20,2,7,10,18,15]).
Most of them are based on dynamic logic extended by doxastic modal operators, and
by modal operators for motivational attitudes, such as preferences, goals and intentions.
These logics are traditionally called BDI (belief, desire, intention) logics. But, although

� This paper is an extended version of [21].
�� Hans van Ditmarsch is also aÆliated to the Institute of Mathematical Sciences Chennai

(IMSC), as associated researcher.

M. Dastani et al. (Eds.): LADS 2010, LNAI 6822, pp. 136–151, 2011.
c� Springer-Verlag Berlin Heidelberg 2011



Intention Change via Local Assignments 137

logical analysis of intention and plan dynamics are available in the literature, the issue
of a formal semantics for the dynamics of intentions and plans has received much less
attention. Indeed, all previous approaches are mostly interested in characterizing in the
object language the epistemic conditions under which an agent’s intention persists over
time, and the epistemic conditions under which an agent’s intention is generated. How-
ever, they do not provide a semantic characterization of the process of generating an
intention and of the process of reconsidering an intention.

The aim of this work is to shed light on this unexplored area by proposing a formal
semantics of intention and plan dynamics based on the notion of local assignment.
The function of a local assignment is to change the truth value of a given proposition
at a specific time point along a history. We combine a static modal logic including a
temporal modality and modal operators for mental attitudes belief and choice with three
kinds of dynamic modalities and corresponding three kinds of local assignments: local
assignments operating on an agent’s beliefs, local assignments operating on the agent’s
choices and local assignments operating on the physical world. An agent’s intention is
defined in our approach as the agent’s choice to perform a given action at a certain time
point in the future, and two operations on intentions called intention generation and
intention reconsideration are defined as specific kinds of local assignments on choices.

The rest of the paper is organized as follows. The first part (Section 2) introduces
a static logic of time, action, belief, choice and intention. In the second part (Section
3), we move from a static perspective on agents’ attitudes to a dynamic perspective,
by adding the notion of local assignment to the logic of Section 2. We first present the
syntax and semantics of three kinds of assignments: on beliefs, on choices and on the
physical world. Then, in Section 4, we focus on two specific kinds of local assignment
which allow to model the processes of plan generation and plan reconsideration. In
Section 5, we apply our logical framework to a concrete example. Finally, in Section 6,
we discuss some related work.

2 A logic of Time, Action and Mental Attitudes

We introduce a modal logic called L which supports reasoning about time, action and
three di�erent kinds of mental attitudes: beliefs, choices (or chosen goals), and inten-
tions.

2.1 Syntax

Let � � �0� 1� 2� � � � � be the set of nonnegative integers. Let ATMFact � � f1� f2� � � � � be
a nonempty finite set of atoms denoting facts (or state of a�airs). And let ATMAct �

��� �� � � � � be a nonempty finite set of atoms denoting actions. The atom � stands for
‘the agent performs a certain action �’. We define ATM � ATMFact � ATMAct to be the
set of atomic formulae. We denote p� q� � � � the elements in ATM.

The language � of the logic L is the set of formulae defined by the following BNF:

� ::� � � p � �� � � � � � [�]� � [�]� � 	�

where p ranges over ATM. The other Boolean constructions
, �, � and
 are defined
from �, � and � in the standard way.



138 H. van Ditmarsch, T. de Lima, and E. Lorini

The three modal operators of our logic have the following reading: [�]� means ‘the
agent believes that �’, [�]� means ‘the agent has chosen �’ (or ‘the agent wants �

to be true’), and 	� means ‘� will be true in the next state, if no event a�ecting the
world occurs’. The operator	 describes the passive (or inertial) evolution of the world.
That is, how the world evolves over time when no event a�ecting it occurs (this point
will be better clarified in Section 3.4). 1 Operator [�] is used to denote the agent’s
choices. That is, the state of a�airs that the agent has decided to pursue. Similar oper-
ators have been studied in [9,20,23]. We write 	n� to indicate that the sentence � is

subject to n iterations of the modality 	, where n � �. More formally, 	0�
def
� �,

and 	n�1�
def
� 		n�. The following abbreviation defines the concept of intention for

every � � ATMAct and n � �:

�
n(�)

def
� [�]	n�

�
n(�) stands for ‘the agent intends to do action � in n steps from now’. Note that, if the

agent has the intention to do � only once n steps from now, then after n steps �n(�) does
not hold anymore. That is, the intention is dropped once n steps have passed.

2.2 Semantics

Definition 1 (L-model). Models of the logic L (L-models) are tuples M��H�B�C �V �,
where:

– H � �h� h�� � � � � is a nonempty set of possible histories;
– B and C are two total functions with signature H �� 2H such that for every

h � H:
(C1) if h� � B(h) then B(h�) � B(h),
(C2) if h� � B(h) then C (h�) � C (h);

– V is a valuation function with signature ATM �� 2H��.

For every history h, B(h) is the set of histories that are compatible with the agent’s
beliefs at history h (or belief accessible histories at h), and C (h) is the set of histories
that are compatible with the agent’s choices at history h (or choice accessible histories
at h). Constraint C1 (resp. C2) expresses that the agent’s beliefs (resp. choices) are
positively and negatively introspective.

Relations C and B are defined on histories instead of on points on histories. If
the latter approach had been taken, it would be possible that the agent chooses, resp.
believes, to be at a di�erent time point than the actual one. To avoid this, it would
be necessary to add restrictions to the model in order to “synchronize” choices and
believes. The resulting class of models would validate the same formulae as the one we
use here.

We call ‘pointed model’ a pair M� h(n), where M is a model as defined above, h � H
and n � �.

1 The logic presented up till here could easily be extended with other temporal operators, such
as “until”. But, this would make the axiomatization of its extension, presented in Section 3.3,
more complicated. We prefer to leave it for future work.



Intention Change via Local Assignments 139

Definition 2 (Truth of L-formulae). The satisfaction relation ��, between formulae in
L and pointed models, is defined recursively as follows:

M� h(n) �� �

M� h(n) �� p i� (h� n) � V (p)

M� h(n) �� �� i� not M� h(n) �� �

M� h(n) �� � � � i� M� h(n) �� � or M� h(n) �� �

M� h(n) �� 	� i� M� h(n � 1) �� �

M� h(n) �� [�]� i� M� h�(n) �� � for all h� � C (h)

M� h(n) �� [�]� i� M� h�(n) �� � for all h� � B(h)

We write ��L � to denote that � is valid (i.e. � is true in all L-pointed models). We
say that � is satisfiable if and only if �� is not valid.

2.3 Axiomatization

Fig. 1 (on page 140) contains the axiomatization of the logic L. We have Axioms K,
D, 4 and 5 for beliefs and Axioms K and D for choices (as in [9]). Thus, we assume
that if an agent believes (resp. does not believe) that � then he believes this (Axioms
4 and 5 for [�]), and we also assume that an agent cannot have inconsistent beliefs
(Axiom D for [�]). We assume that an agent cannot have inconsistent choices (Axiom
D for [�]). And we also assume that if an agent wants (resp. does not want) � to be
true then he believes this (Axioms PIntr[�] and NIntr[�]). Similar principles of positive
and negative introspection for choices are given in [13]. At the current stage, these are
the only interaction principles between beliefs and choices. We postpone to future work
a refinement of the logic L by interaction principles like [�]� � [�]� (if the agent
believes that � then he wants � to be true) or [�]� � [�]� (if the agent wants � to be
true then he believes that �). Similar principles have been studied for instance in [9,23].

We also have a basic principle for the temporal next operator (Axiom Funct�): �
will be true in the next state if and only if it is not the case that � will be false in the
next state.

Finally, we have interaction principles between time and beliefs, and between time
and goals. These are called perfect recall (Axioms PR[�] and PR[�]) and no learning
(Axioms NL[�] and NL[�]) [14]. According to these four axioms, if the agent believes
(resp. wants) that � will be true in the next state if no event a�ecting the world occurs
then, if no event a�ecting the world occurs, in the next state the agent will believe (resp.
want) that � and vice-versa.

We call L the logic axiomatized by the principles in Fig. 1, and we write �L � if � is
a L-theorem. For example, the following is provable using Axiom 4, Necessitation rule
for [�] and Axiom PR[�]:

�L [�]	� 
 [�]	[�]�

Theorem 1. The logic L is completely axiomatized by the principles in Fig. 1.



140 H. van Ditmarsch, T. de Lima, and E. Lorini

All principles of classical propositional calculus(PC)

All principles of modal logic KD45 for [�](KD45[�])

All principles of modal logic KD for [�](KD[�])

All principles of modal logic K for �(K�)

[�]�� [�][�]�(PIntr[�])

�[�]�� [�]�[�]�(NIntr[�])

��� ����(Funct�)

[�]����[�]�(PR[�])

[�]����[�]�(PR[�])

�[�]�� [�]��(NL[�])

�[�]�� [�]��(NL[�])

Fig. 1. Axiomatization of L

Proof. First, we provide an alternative semantics for L, in terms of standard Kripke
frames. An alternative model is a tuple of the form M� � �W�R��R[�]�R[�]�V�, where
W is a non-empty set of possible worlds, R� is a serial and deterministic accessibility
relation over W, R[�] is a serial, transitive and Euclidean accessibility relation over W,
R[�] is a serial accessibility relation over W, V is a valuation function with signature
ATM � 2W , and where the following interaction constraints are satisfied:

if wR[�]w
� and w�R[�]w

�� then wR[�]w
��;(PIntr[�])

if wR[�]w
� and wR[�]w

�� then w�R[�]w
��;(NIntr[�])

if w(R� Æ R[�])w� then w(R[�] Æ R�)w�;(PR[�])

if w(R� Æ R[�])w� then w(R[�] Æ R�)w�;(PR[�])

if w(R[�] Æ R�)w� then w(R� Æ R[�])w�;(NL[�])

if w(R[�] Æ R�)w� then w(R� Æ R[�])w
��(NL[�])

Alternative pointed models are tuples of the form �M��w� where M� is as defined
above and w � W. The alternative satisfaction relation ���, as well as validity, are defined
as usual.

Second, it is easy to see that the axiomatic system in Fig. 1 is sound and complete
with respect to the class of alternative models, via the Sahlqvist theorem, cf. [5, Th.
2.42]. Indeed all axioms in Fig. 1 are in the so-called Sahlqvist class [25]. Thus, they
are all expressible as first-order conditions on Kripke models and are complete with
respect to the defined model classes.

Third, we show that for every alternative pointed model �M��w�, there is a pointed
model �M� h�, where M � �H�B�C �V �, such that for every formula � � �, M��w ��� �

if and only if M� h(0) �� �. The construction of �M� h� is performed in three steps:
Step 1: Unravel the alternative pointed model �M��w�, in such a way that it becomes

an infinite tree with root w and which is bisimilar [5] to the original model M�. Call this
new tree-shaped model M��.



Intention Change via Local Assignments 141

Step 2: Label each world v in M�� with a natural number L(v), as follows: (a) L(w) � 0.
(b) L(v�) � L(v), if v� � (R[�] � R[�])(v). (c) L(v�) � L(v) � 1, if v� � R�(v). Re-
mark 1. Because M� satisfy constraints NL[�] PR[�] (resp. NL[�] and PR[�]), model M��

constructed in steps 1 and 2 has the following property: Let (v� v�)� (u� u�) � R�
�

(the
transitive closure of R�) such that L(v) � L(u) and L(v�) � L(u�). Then, (v� u) � R[�]

(resp. R[�]) if and only if (v�� u�) � R[�] (resp. R[�]).

Step 3: Construct the model M � �H�B�C �V � from model M��, as follows: (a) H
is the set of branches h � (v0� v1� v2� � � � ) of the tree such that (vi� vi�1) � R�, for all
i � 0. (b) B (resp. C ) is the set of pairs of branches (h� h�) of H such that there
is an arrow labeled by R[�] (resp. R[�]) from a world in h to a world in h�, and (c)
V (p) is the set of pairs (h� n) such that h � H, v is in the branch h, L(v) � n and
v � V(p).

Remark 2. It follows from the construction of M�� that, if (h� h�) � B (resp. C ) then
there is a pair of worlds (v� v�) such that L(v) � L(v�) and (v� v�) � R[�] (resp. R[�]).

Fourth, we show that �M���w� and �M� h(0)� are, in some sense, bisimilar.

Forth condition : It is easy to see that, by construction of M, if (v� v�) � R� then
L(v�) � L(v) � 1. Moreover, let v be in branch h � H, and v� in branch h� � H.
Then, if (v� v�) � R[�] (resp. R[�]) then, again by construction, (h� h�) � B (resp.
C ).

Back condition : Analogously, it is easy to see that if L(v�) � L(v) � 1 then (v� v�) � R�.
Moreover, if (h� h�) � B (resp. C ) then, by Remark 1, there is a pair of worlds (v� v�)
in M�� such that L(v) � L(v�) and (v� v�) � R[�] (resp. R[�]). Moreover, by Remark 2, for
every pair of worlds (u� u�) such that u is in branch h � H, u� is in branch h� � H and
L(u) � L(u�), we have that (u� u�) � R[�] (resp. R[�]).

Fifth, with an induction on the structure of � we show that �M��� v� ��� � if and only
if �M� h(L(v))� �� �, where v is in branch h � H.

The induction base has two cases. Case 1 is � � �, and Case 2 is � � p for some
atomic formula p. Both are straightforward. There are five cases in the induction step,
one for each operator of the logic. The cases for the boolean operators � and � are
straightforward.

Case 3 is � � 	�1. �M��� v� ��� 	�1 i� �M��� v�� ��� �1, for all v� � R�(v) i�
�M� h(L(v�) � 1)� �� �1 (by the forth and back conditions above and the induction hy-
pothesis) i� �M� h(L(v))� �� 	�.

Case 4 is � � [�]�1. �M��� v� ��� [�]�1 i� �M��� v�� ��� �1, for all v� � R[�](v) i�
�M� h�(L(v))� �� �1, for all h� � R[�](h), and where v� is in the sequence h�. (again, by
the forth and back constructions above and the induction hypothesis) i� �M� h(L(v))� ��
[�]�1.

Case 5 is analogous to case Case 4.
Sixth, the converse can be done as well. That is, for every pointed model �M� h� it

is possible to construct an alternative pointed model �M��w� that satisfies the same for-
mulae of �. This is straightforward, and left to the reader.

��



142 H. van Ditmarsch, T. de Lima, and E. Lorini

3 Local Assignments

In this section, we extend the logic L of Section 2 by modal operators for physical world
change and mental attitude change. We distinguish two kinds of mental attitude change:
belief change and choice change. We call L� the extended logic. Logic L� is based on
the notion of local assignment. The function of a local assignment is to associate the
truth value of a certain formula � to a propositional atom p at a specific time point n
along a history.

3.1 Syntax

We write ASG to denote the set of all partial functions� with signature (ATM��) � �.
The elements in ASG are called local assignments, or simply assignments. We write
CASG to denote the set of all triples � � (�B� �C� �W ) such that �W � �B� �C � ASG.
The elements in the set CASG are called complex local assignments, or simply com-
plex assignments. Every complex assignment � � (�B� �C� �W ) is composed by a be-
lief assignment �B (an assignment responsible for belief change), a choice assignment
�C (an assignment responsible for choice change), and a world assignment �W (an
assignment responsible for world change). When spelling out the elements of �B �

�(p1� n1� �1)� � � � � (pm� nm� �m)�, we write it as �(p1�n1)
B
�� �1� � � � � (pm�nm)

B
�� �m�, and

analogously for �C and �W .

Definition 3 (��). Let � � (�B��C ��W ). We define �� as the triple (��B� ��C� ��W)
such that, for all p � ATM and n � �:

– ��B(p� n) � �B(p� n � 1),
– ��C(p� n) � �C(p� n � 1), and
– ��W (p� n) � �W (p� n � 1).

This means that the belief�choice�world assignments ��B���C ���W are obtained by,
respectively, shifting one step forward the belief�choice�world assignments �B��C��W .

The language �� of the logic L� is defined by the BNF:

� ::� p � �� � � � � � [�]� � [�]� � 	� � [�:W]� � [�:B]� � [�:C]�

where p ranges over ATM and � ranges over CASG.
The formula [�:W]� stands for: ‘� holds in the physical world after the occurrence

of the event �’. The formula [�:B]� stands for: ‘� holds in the context of the agent’s
beliefs after the occurrence of the event �’. (This does not mean that the agent believes
� after �. See Theorem 3 for precision.) The formula [�:C]� stands for: ‘� holds in the
context of the agent’s choices after the occurrence of the event �’.

3.2 Semantics

For every L-model M, every n � � and every � � (�B� �C� �W ), we define the model
M�

n which results from the update of M at the time point n by the complex assignment
�.



Intention Change via Local Assignments 143

Definition 4 (Updated model M�
n ). For every L-model M � �H�B�C �V � and every

n � �, M�
n is the tuple �H�

n �B
�
n �C

�
n �V

�
n �, where:

H�

n ��hW �h � H� 	 �hB�h � H� 	 �hC �h � H�;

B�

n (hW ) ��h�B�h
� � B(h)�;

B�

n (hB) ��h�B�h
� � B(h)�;

B�

n (hC) ��h�C �h
� � B(h)�;

C �

n (hW ) ��h�C �h
� � C (h)�;

C �

n (hB) ��h�C �h
� � C (h)�;

C �

n (hC) ��h�C �h
� � C (h)�;

V �

n (p) ��(hW � k)�k 
 n and M� h(k) �� �W (p�k�n)�	

�(hW � k)�k � n and M� h(k) �� p�	

�(hB� k)�k 
 n and M� h(k) �� �B(p�k�n)�	

�(hB� k)�k � n and M� h(k) �� p�	

�(hC � k)�k 
 n and M� h(k) �� �C(p�k�n)�	

�(hC � k)�k � n and M� h(k) �� p��

M�
n is obtained by creating three copies of each history of the original model M (a

copy for the physical world, a copy for belief, a copy for choice). Moreover, for every
atom p and for every k � � such that k � n, the e�ect of updating model M at the
time point n by the event � is to assign the truth value of �B(p� k � n) to the atom p
at the time point k of all belief copies of the original histories, to assign the truth value
of �C(p� k � n) to the atom p at the time point k of all choice copies of the original
histories, and to assign the truth value of �W (p� k � n) to the atom p at the time point
k of all world copies of the original histories. For example, suppose that k � n. Then,
the e�ect of updating model M at the time point n by the event �, is to assign the truth
value of �B(p� 0) (resp. �C(p� 0), resp. �W (p� 0)) to the atom p at the time point n of all
belief copies (resp. choice copies, resp. world copies) of the original histories.

For every world copy hW , at hW the agent considers possible all belief copies of
those histories that he considered possible before the event �, and he chooses all choice
copies of those histories that he chose before the event �.

For every belief copy hB, at hB the agent considers possible all belief copies of those
histories that he considered possible before the event �, and he chooses all choice copies
of those histories that he chose before the event �.

For every choice copy hC , at hC the agent considers possible all choice copies of
those histories that he considered possible before the event �, and he chooses all choice
copies of those histories that he chose before the event �.

This construction of the updated model M�
n ensures that the agent is aware that his

choices have been changed accordingly so that the properties of positive and negative
introspection over the agent’s choices (Constraint C2 in Definition 1) are preserved after
the occurrence of the event �.

Theorem 2. If M is an L-model then M�
n is an L-model.

Proof. It is just trivial to prove that our operation of model update preserves Constraint
C1 in Definition 1. Let us prove that it also preserves Constraint C2.



144 H. van Ditmarsch, T. de Lima, and E. Lorini

Assume h�B � B�
n (hW) and h��C � C �

n (h�B). It follows that h� � B(h) and h�� � C (h�).
Then, by constraint C2, we have h�� � C (h). Therefore, h��C � C �

n (hW). In a similar
way we can prove that if h�B � B�

n (hB) and h��C � C �
n (h�B) then h��C � C �

n (hB), and if
h�C � B�

n (hC) and h��C � C �
n (h�C) then h��C � C �

n (hC).
Now, assume h�C � C �

n (hW) and h��B � B�
n (hW). It follows that h� � C (h) and h�� �

B(h). Then, by constraint C2, we have h� � C (h��). Therefore, h�C � C �
n (h��B). In a

similar way we can prove that if h�C � C �
n (hB) and h��B � B�

n (hB) then h�C � C �
n (h��B), and

if h�C � C �
n (hC) and h��C � B�

n (hC) then h�C � C �
n (h��C). ��

Definition 5 (Truth of L�-formulae). The satisfaction relation ��, between formulae
in L� and pointed models, is defined by the conditions in Definition 2 together with the
following three conditions:

– M� h(n) �� [�:W]� i� M�
n � hW(n�1) �� �;

– M� h(n) �� [�:B]� i� M�
n � hB(n�1) �� �;

– M� h(n) �� [�:C]� i� M�
n � hC(n�1) �� �.

Note that, according to the previous definition, the occurrence of the event � takes
time. That is, an event � is a transition from a time point n along a history h of a model
M to the successor of time point n along the world copy (or belief copy, or choice copy)
of history h in the updated model M�

n .

3.3 Axiomatization

We have reduction axioms for the three operators [�:W], [�:B] and [�:C]. They are called
reduction axioms because, read from left to right, they reduce the complexity of those
operators in a formula.

Theorem 3. Suppose � � (�B��C ��W ). Then, the following schemata are valid in L�:

R1a. [�:W]p � �W (p�1) R4a. [�:W]��� �[��:W]�

R1b. [�:B]p � �B(p�1) R4b. [�:B]��� �[��:B]�

R1c. [�:C]p � �C(p�1) R4c. [�:C]��� �[��:C]�

R2a. [�:W]��� �[�:W]� R5a. [�:W][�]�� [�][�:B]�

R2b. [�:B]��� �[�:B]� R5b. [�:B][�]�� [�][�:B]�

R2c. [�:C]��� �[�:C]� R5c. [�:C][�]�� [�][�:C]�

R3a. [�:W](� 
 �) � ([�:W]� 
 [�:W]�) R6a. [�:W][�]�� [�][�:C]�

R3b. [�:B](� 
 �) � ([�:B]� 
 [�:B]�) R6b. [�:B][�]�� [�][�:C]�

R3c. [�:C](� 
 �) � ([�:C]� 
 [�:C]�) R6c. [�:C][�]�� [�][�:C]�

Proof. We prove only R4a as an example.
M� h(n) �� [�:W]	�

IFF M�
n � hW(n�1) �� 	�

IFF M�
n � hW((n�1)�1) �� �

IFF M��

n�1� hW((n�1)�1) �� � (because M�
n � M��

n�1)
IFF M� h(n�1) �� [��:W]�
IFF M� h(n) �� 	[��:W]�. ��



Intention Change via Local Assignments 145

Theorem 4. The logic L� is completely axiomatized by principles in Fig. 1 together
with the schemata of Theorem 3 and the rule of replacement of proved equivalence.

Proof. Using the reduction axioms R1a-R6c in Theorem 3, and the rule of replacement
of proved equivalence, every L� formula can be reduced to an equivalent L formula.
Hence, the completeness of L� is a straightforward consequence of Theorem 1. ��

In the rest of the paper we write �L� � if � is a L�-theorem.

3.4 Discussion

The present approach o�ers two di�erent temporal perspectives on world evolution,
where the world includes both the physical world and the mental world (i.e. the agent’s
beliefs and choices).

In order to describe the passive (or inertial) evolution of the world (i.e. how the world
evolves over time when there are no occurrences of events which a�ect the physical
world and the agent’s beliefs and choices), we use the next operator 	 in the static
framework L. Note that the operator 	 corresponds in the semantics to a transition
from a state in the current model M to the unique successor state in the same model M.

In order to describe the active evolution of the world (i.e. how the world evolves
over time when there are occurrences of events which a�ect the physical world and the
agent’s beliefs and choices), we use the dynamic operators [�:W], [�:B] and [�:C] in the
dynamic framework L�. We consider all possible transitions from the current model M
to a new model which corresponds to the update of M through an event � a�ecting the
physical world and the agent’s beliefs and choices.

In other terms, in order to describe the active evolution of the world a branching
time perspective is adopted in our approach. That is, we suppose that the world might
actively evolve in many di�erent ways depending on the event � which occurs and
which a�ects it. On the contrary, in order to describe the inertial evolution of the world
a linear time perspective is adopted in our approach, that is, we suppose that the world
passively�inertially evolves in a deterministic way.

4 Intention and Plan Dynamics in L�

Two basic operations on an agent’s intentions can be defined in L�: the operation of
generating an intention to do an action � n steps from now, noted gen(��n); and the
operation of reconsidering (or erasing) an intention to do an action � n steps from
now, noted rec(��n). These two operations are defined as follows by means of choice
assignments: 2

gen(��n)
def
� (��n)

C
�� �

rec(��n)
def
� (��n)

C
�� 


2 The generalization to conjunctive intentions can be done with simultaneous assignments. For

instance, operation gen(� 
 	�n)
def
� (��n)

C
�� �� (	�n)

C
�� �, i.e. a partial local assignment

function with domain �(�� n)� (	� n)�.



146 H. van Ditmarsch, T. de Lima, and E. Lorini

The following are L�-theorems which highlight some interesting properties of
intention generation and intention reconsideration. For every n�m � � and for every
�� � � ACT we have:

�L� [(���gen(��n�1)���):W]�n(�)(1)

�L� [(���rec(��n�1)���):W]��n(�)(2)

�L� [(���gen(��n�1)���):C]	n�(3)

�L� [(���rec(��n�1)���):C]�	n�(4)

�L� ��m(�) � [(���gen(��n)���):W]��m�1(�)(5)

if � � � or m � n

�L� �
m(�) � [(���rec(��n)���):W]�m�1(�)(6)

if � � � or m � n

Proof. We prove theorem (1) as an example. Formula [(���gen(��n�1)���):W]�n(�) is
equivalent to [�][(���gen(��n�1)���):C]	n� (by R6a and rule of replacement of proved
equivalences). The latter is equivalent to [�]	n[(���gen(��1)���):C]� (by repeated appli-
cation of R4c and rule of replacement of proved equivalence) which in turn is equivalent
to [�]	n� (by R1c and rule of replacement of proved equivalence). The latter is equiv-
alent to �. ��

According to theorem (1), after generating the intention to do � n�1 steps from now, in
the physical world the agent intends to do � n steps from now. According to theorem (2),
after reconsidering the intention to do � n�1 steps from now, in the physical world the
agent does not intend to do � n steps from now. In Definition 5 we have supposed that
the occurrence of a local assignment takes time (one time unit). Consequently, also the
processes of generating�reconsidering an intention takes time. This is the reason why,
as stated by theorems (1) and (2), the process of generating�reconsidering the intention
to do � n�1 steps from now generates�reconsiders an intention to � n steps from now,
and not an intention to do � n�1 steps from now.

Note that the two processes of intention generation and intention reconsideration
comply with temporal precedence, that is, the process of reconsidering a certain inten-
tion cancels the e�ects of a previous process of generating the same intention, and the
process of generating a certain intention cancels the e�ects of a previous process of
reconsidering the same intention. More formally, by theorems (1) and (2), we have:

�L� [(���gen(��n�2)���):W][(���rec(��n�1)���):W]��n(�)

�L� [(���rec(��n�2)���):W][(���gen(��n�1)���):W]�n(�)

Theorems (3) and (4) express the corresponding e�ects of the processes of intention
generation and of intention reconsideration in the context of the agent’s choices: after
generating (resp. reconsidering) the intention to do � n�1 steps from now, in the context
of the agent’s choices it is the case that the agent will perform (resp. will not perform)
action � n steps from now.

Theorems (5) and (6) express that the operations of intention generation and of inten-
tion reconsideration are characterized by partial modifications of an agent’s plan. That



Intention Change via Local Assignments 147

is, the process of generating�reconsidering a plan does not a�ect the other plans of the
agent: if � and � are di�erent actions or m and n are di�erent, and the agent intends
(resp. does not intend) to do � m steps from now then, after reconsidering (resp. gener-
ating) the intention do � n steps from now, the agent will intend (resp. not intend) to do
� m�1 steps from now.

Intention generation (gen(��n)) and reconsideration (rec(��n)) are mental events
which have to be distinguished from the processes of starting an action (or trying to
do an action) and stopping an action which are events operating on the physical world.
The latter are defined by means of world assignments as follows:

start(�)
def
� (��1)

W
�� �

stop(�)
def
� (��1)

W
�� 


The following are two L�-theorems which highlight the basic properties of the pro-
cesses of starting an action and stopping an action. For every � � ACT we have:

�L� [(�����start(�)�):W]�(7)

�L� [(�����stop(�)�):W]��(8)

According to theorem (7), after starting action �, the agent performs action �. Ac-
cording to theorem (8), after stopping action �, the agent does not perform action �.

5 Application

Before concluding, we illustrate through an example how L� can be concretely used to
model intention dynamics.

Executability of intention generation. We denote with ��Gen(��n)��� the fact ‘it is pos-
sible that the agent will generate the intention to do action � n steps from now, and
� will be true afterwards’. Consequently, ��Gen(��n)��� just means ‘the agent will
possibly generate the intention to do action � n steps from now’. The construction
��Gen(��n)��� is defined as follows.

��Gen(��n)���
���
� ��n(�) � [�]	ngood��

[(���gen(��n)���):W]�

According to this definition, the executability of the process of generating the in-
tention to do � n steps from now is determined by two conditions: the agent does not
have already this intention (i.e. ��n(�)) and he believes that, n steps from now, doing
action � will be something good for him (i.e. [�]	ngood�), where good� is a special
atom in ATMFact expressing that ‘performing action � is good for the agent’. Indeed,
��Gen(��n)��� and ��n(�) � [�]	ngood� are logically equivalent. Note that the con-
dition [�]	ngood� corresponds to the notion of reasons for intending or reasons for
acting. This notion has been extensively studied in the philosophical literature on ac-
tion and intention (see, e.g. [28,20]). A reason for intending is a belief that the agent uses
as premise of a practical argument (viz. the argument that concludes in an intention).



148 H. van Ditmarsch, T. de Lima, and E. Lorini

Executability of intention reconsideration. The notion of executability of the process
of intention reconsideration is defined in a similar way as follows:

��Rec(��n)���
���
� �

n(�) � [�]	n�good��

[(���rec(��n)���):W]�

��Rec(��n)��� denotes the fact ‘it is possible that the agent will reconsider his inten-
tion to do action � n steps from now, and � will be true afterwards’. Consequently,
��Gen(��n)��� just means ‘the agent will possibly reconsider his intention to do action
� n steps from now’. According to this definition, the executability of the process of re-
considering the intention to do � n steps from now is determined by two conditions: (1)
the agent has this intention (i.e. �n(�)) and (2) he believes that, n steps from now, doing
action � will be something bad for him (i.e. [�]	n�good�). 3 Indeed, ��Rec(��n)���
and �

n(�) � [�]	n�good� are logically equivalent.

Executability of action. The notion of executability of the process of starting an action
is defined as follows:

��Start(�)���
���
� �

1(�) � [�]	good��

[(�����start(�)�):W]�

��Start(�)��� denotes the fact ‘it is possible that the agent will start action �, and � will
be true afterwards’. Consequently, ��Gen(��n)��� just means ‘the agent will possibly
start action �’. According to this definition, the executability of the process of starting
action � is determined by two conditions: (1) the agent has intention to perform action �

in the next step (�1(�)) and (2) he believes that, in the next state, doing action � will be
something good for him (i.e. [�]	good�). Indeed, ��Start(�)��� and �1(�)�[�]	good�
are logically equivalent.

An example. We suppose that the agent wants to reach a certain place called Utopia in
n steps from now, with n � 4. He can go to Utopia either by train or by car. That is,
ATMAct � �train� car�. The agent has decided to go by train. Thus, he has the intention
to go to Utopia by train and does not have the intention to go to Utopia by car:

H. �
n(train) � ��n(car).

Now, suppose the agent is informed that there is a train strike that day and, n steps from
now, there will be no train going to Utopia. Thus, the agent learns that going to Utopia
by train is a bad solution, whereas going to Utopia by car is a good solution. How are the
agent’s intentions and plans a�ected by this new information? The following theorem
clarifies this point.

�L� H �[(�(goodtrain�n)
B
�� 
� (goodcar�n)

B
�� ������):W](9)

��Rec(train�n�1)����Gen(car�n�2)��

	n�4��Start(car)��car

3 We here suppose that the agent believes that doing � will be something bad for him if and only
if, he believes that doing � will be something not good for him.



Intention Change via Local Assignments 149

According to theorem (9), hypothesis H ensures that, after having learnt that going to
Utopia by train is a bad solution and going to Utopia by car is a good solution:

– the agent will possibly reconsider its intention to go to Utopia by train n�1 steps
from now and,

– after that, it will possibly generate the intention to go to Utopia by car n�2 steps
from now and,

– n�4 steps later, if the world will evolve passively�inertially, the agent will possibly
start to go to Utopia by car and,

– as a consequence, he will go to Utopia by car.

Thus, theorem (9) shows that L� concretely models intention dynamics in this example.

6 Related Work and Perspectives

Assignments were studied before in the literature on logic for information dynamics.
However they were only applied to the dynamics of belief and knowledge [12,3], and
there is still no application of this notion to the theory of intention. Furthermore, pre-
vious works in the area of Dynamic Epistemic Logic (DEL) [11] have only focused on
assignments at a specific moment in time, and have not considered delayed assignments,
that can operate locally, i.e. on specific future points in a model. In this paper we have
shown that local assignments are well-suited to model intention and plan dynamics.

It has also to be noted that complex assignments restricted to n � 0 correspond to a
three-event BMS action model [1]. Given a future point n in time, one can in principle
again construct an action model from the composition of complex assignments and
next operators in a sequence of length n (where the next operators correspond to ‘clock
ticks’, so-called ‘nothing happens’ action models).

In [4,19] a logic of knowledge and preference dynamics is provided. In van Benthem
& Liu’s approach knowledge dynamics are modeled by means of announcements (or up-
dates), whereas preference dynamics are modeled by means of operations on accessibil-
ity relations called upgrades. We think that local assignments, rather than announcements
and upgrades, are more suited to model intention dynamics. Indeed, intention dynamics
are obtained by partial modifications of an agent’s plan and not necessarily by global
modifications, and local assignments are a natural candidate to formalize these kinds of
operations. This aspect of intention dynamics has been discussed in Section 3.3.

In [16], van der Hoek et al. present a formal model of intention revision strongly
inspired by [9]. In this model an agent’s mental state (which includes the agent’s be-
liefs, desires and intentions) changes because the agent has made observations of his
environment. In particular, observations cause change in beliefs and, indirectly, may
produce change in the agent’s intentions. The treatment of beliefs, desires, intentions
and their dynamics proposed by van der Hoek et al. is rather syntactical (i.e. an agent’s
beliefs, desires and intentions are just sets of sentences and there are no modalities for
these mental attitudes interpreted by means of model structures). This is the main dif-
ference with our approach whose objective is to provide a model-theoretic semantics of
intentions and intention dynamics.



150 H. van Ditmarsch, T. de Lima, and E. Lorini

In [26], Shoham discusses the interaction of belief revision and intention revision. He
treats belief revision more in the traditional AGM sense than in the dynamic epistemic
modal sense. The paper has the character of a requirements analysis. A prior paper
on belief and intention interaction in the AGM tradition, however without intention
dynamics, is [8]. Work by Icard, Pacuit and Shoham [17] employs a dynamic modal
approach for intention revision.

Rodenhäuser [24] associates an intention with a protocol, a sequence of planned
actions that may also involve factual change—but not the local change as in our case;
he also does not employ choice modalities.

Directions for future research are manifold. In this paper we only considered the
single-agent case. We plan to extend our approach to the multi-agent setting in which
agents can act in parallel and communicate their choices, beliefs and intentions to other
agents. As anticipated in Section 2.3, we also plan to refine our logical framework by
adding more interaction principles between the belief operator and the choice operator.

References

1. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge
and private suspicions. In: Proceedings of TARK 1998, pp. 43–56. Morgan Kaufmann, San
Francisco (1998)

2. Bell, J., Huang, Z.: Dynamic goal hierarchies. Intelligent Agent Systems Theoretical and
Practical Issues, 88–103 (1997)

3. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information
and Computation 204(11), 1620–1662 (2006)

4. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied Non-
Classical Logics 17(2), 157–182 (2007)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

6. Bratman, M.: Intentions, plans, and practical reason. Harvard University Press, Cambridge
(1987)

7. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4), 431–450 (2002); special issue on Desires, goals,
intentions, and values: Computational architectures

8. Cleaver, T.W., Sattar, A.: Intention guided belief revision. In: Proceedings of AAAI 2007,
pp. 36–41. AAAI Press, Menlo Park (2007)

9. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42,
213–261 (1990)

10. Dignum, F., Kinny, D.: From desires, obligations and norms to goals. Cognitive Science
Quarterly 2(3-4), 407–430 (2002)

11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library
Series, vol. 337. Springer, Heidelberg (2007)

12. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In: Logic and
the Foundations of Game and Decision Theory (LOFT 7)., pp. 87–117. Texts in Logic and
Games, Amsterdam University Press (2008)

13. Dunin-Keplicz, B., Verbrugge, R.: Collective intentions. Fundamenta Informaticae 51(3),
271–295 (2002)

14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)



Intention Change via Local Assignments 151

15. George�, M.P., Rao, A.S.: The semantics of intention maintenance for rational agents. In:
Proceedings of IJCAI 1995, pp. 704–710 (1995)

16. Van der Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention revision.
Synthese 155(2), 265–290 (2007)

17. Icard, T., Pacuit, E., Shoham, Y.: Joint revision of beliefs and intention. In: Proceedings of
KR 2010, pp. 572–574 (2010)

18. Khan, S.M., Lesperance, Y.: A logical framework for prioritized goal change. In: Proceedings
of AAMAS 2010, pp. 283–290 (2010)

19. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. Ph.D. thesis,
University of Amsterdam (2008)

20. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77 (2008)
21. Lorini, E., van Ditmarsch, H., de Lima, T.: Logical model of intention and plan dynamics. In:

Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of ECAI 2010, pp. 1075–1076.
IOS Press, Amsterdam (2010)

22. Meyer, J.J.C., van der Hoek, W., van Linder, B.: A logical approach to the dynamics of
commitments. Artificial Intelligence 113(1-2), 1–40 (1999)

23. Rao, A.S., George�, M.P.: Modelling rational agents within a BDI-architecture. In: Proceed-
ings of KR 1991, pp. 473–484. Morgan Kaufmann, San Francisco (1991)

24. Rodenhäuser, B.: Intentions in interaction. In: Proceedings of LOFT 2010 (2010)
25. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for

modal logics. In: Proceedings of the 3rd Scandinavian Logic Symposium 1973, Studies in
Logic, vol. (82) (1975)

26. Shoham, Y.: Logics of intention and the database perspective. Journal of Philosophical
Logic 38(6), 633–647 (2009)

27. Singh, M., Asher, N.: A logic of intentions and beliefs. Journal of Philosophical Logic 22,
513–544 (1993)

28. Von Wright, G.H.: On so-called practical inference. The Philosophical Review 15, 39–53
(1972)

29. Wooldridge, M.: Reasoning about rational agents. MIT Press, Cambridge (2000)



Author Index

Aldewereld, Huib 1

Bordini, Rafael H. 115
Bourgne, Gauvain 19
Braubach, Lars 39

Collier, Rem W. 56

de Lima, Tiago 136
Dignum, Virginia 1

Guidi, Marco 95

Inoue, Katsumi 19

Jander, Kai 39

Lamersdorf, Winfried 39
Lillis, David 56
Lorini, Emiliano 136

Maudet, Nicolas 19
Minotti, Mattia 76

Pokahr, Alexander 39

Ricci, Alessandro 76, 95

Santi, Andrea 76, 95
Shaw, Patricia 115

van Ditmarsch, Hans 136


	Title
	Preface
	Organization
	Table of Contents
	OperettA: Organization-Oriented Development Environment
	Introduction
	Organization Modeling: The OperA Framework
	The Organization Model
	The Social Structure
	The Interaction Structure
	The Normative Structure
	The Communication Structure

	OperettA Environment
	OperettA Components
	Connectivity to System Level

	Design Guidelines
	Conclusions
	References

	Towards Efficient Multi-agent Abduction Protocols
	Introduction
	Abductive Reasoning
	Preliminaries
	Abductive Hypothesis
	Computation through Hypothesis Finding

	Distributed Abduction
	Problem Setting
	Bilateral Interaction
	Group of Agents
	Improving Efficiency
	Incremental Consistency Check
	Language Focus

	Experiments
	Case Study
	Other Problems
	Results

	Conclusion
	References

	Validation of Agile Workflows Using Simulation
	Introduction
	Related Work
	Validation Approach 
	Goals of the Test System
	Requirements for Automated Testing
	Workflow Management System
	Client Application

	Simulation System Components 
	Workflow Management System Architecture
	Client-Side Workflow Model
	Scenarios

	Example Use Case 
	Summary and Future Enhancements 
	References

	Augmenting Agent Platforms to Facilitate Conversation Reasoning
	Introduction
	Related Work
	ACRE Overview
	Conversation Management
	Identifying Candidate Conversations
	Identifying Candidates for New Conversations
	Advancing the Conversation

	The ACRE XML Format
	Importing Protocols
	Variable Bindings

	ACRE Conversation Example
	Language Integration in Agent Factory
	Protocol Manager
	Conversation Manager
	Agent/ACRE Interface

	Conclusions and Future Work
	References

	Exploiting Agent-Oriented Programming for Developing Future Internet Applications Based on the Web: The JaCa-Web Framework
	Introduction
	Agent-Oriented Programming with JaCa
	Programming the Agents
	Programming the Environment
	Multi-agent System View: Putting Agents and Artifacts Together

	Applying JaCa to the Web: The JaCa-Web Framework 
	Developing Future Internet Web-Based Applications: Challenges
	An Agent-Oriented Programming Approach Based on JaCa 
	Key Points
	JaCa-Web: Implementation Details

	A Case Study
	Application Design
	Implementation

	Related and Future Work
	Conclusion
	References

	JaCa-Android: An Agent-Based Platform for Building Smart Mobile Applications
	Introduction
	Agent-Oriented Programming for Mainstream Application Development – The JaCa Approach
	Programming Smart Mobile Applications with JaCa 
	Programming Mobile Applications: Complexities
	An Agent-Oriented Approach Based on JaCa

	Evaluation through Practical Examples
	Related Works
	Open Issues and Future Work
	Conclusion
	References

	An Alternative Approach for Reasoning about the Goal-Plan Tree Problem
	Introduction
	Constraint-Based Approach
	Goal-Plan Trees
	Modelling a Goal-Plan Tree
	Consumable-Resource Reasoning
	Positive Interaction Reasoning
	Negative Interference Reasoning

	Experimental Results
	Reasoning about Consumable Resources
	Reasoning about Positive Interaction
	Reasoning about Negative Interference
	Combined Reasoning

	Conclusions and Future Work
	References

	Intention Change via Local Assignments
	Introduction
	A logic of Time, Action and Mental Attitudes
	Syntax
	Semantics
	Axiomatization

	Local Assignments
	Syntax
	Semantics 
	Axiomatization
	Discussion

	Intention and Plan Dynamics in L+
	Application
	Related Work and Perspectives
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




