

Computational Fluid and Solid Mechanics

Series Editor

K.J. Bathe

Massachusetts Institute of Technology, Cambridge, MA, USA

For other titles published in this series, go to

http://www.springer.com/series/4449

.

Vladimir Buljak

Inverse Analyses with
Model Reduction

Proper Orthogonal Decomposition
in Structural Mechanics

Vladimir Buljak
Politecnico di Milano
Dipartimento di Ingegneria
Strutturale
Piazza Leonardo da Vinci 32
20133 Milano
Italy
buljak@stru.polimi.it

ISSN 1860-482X e-ISSN 1860-4838
ISBN 978-3-642-22702-8 e-ISBN 978-3-642-22703-5
DOI 10.1007/978-3-642-22703-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941196

Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protec-
tive laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The methodology of inverse analysis, the origins of which may be regarded as

remote and deeply rooted in the history of structural mechanics, has in relatively

recent times, emerged as a modern and fast growing area of engineering sciences. In

several technological fields, evident are importance and usefulness of reliable

transition from experimental data on systems, structures “in primus”, to quantitative

assessments of crucial properties and possible damages in those systems. Such a

kind of assessment means accurate estimations of parameters hidden in mathemati-

cal models at present available to simulate and predict the system behavior in

service.

The achievement of such ambitious task clearly requires a synergistic conver-

gence of diverse scientific fields: mathematics, usually with their traditional con-

cepts and solution methods (e.g., ill-posedness of problems; minimization/

maximization of nonconvex functions), experimental developments in terms of

suitable devices, computational techniques and relevant tools.

The growth of computers according to “Moore’s law” in the last four-five

decades has been, and still is, essential also for the expansion of the inverse analysis

developments and applications. Such a link was evidenced in 1986 by Richard

Feynman through his celebrated warning on computers (“garbage in, garbage out”)

after the disaster of the Challenger.

The role of mathematics (specifically, mathematical programming and soft-

computing methods, stochastic approaches including Kalman filters, et alia) in

inverse analyses is widely important and turns out to be consistent with authorita-

tive recommendations in the engineering history (e.g.: Leonardo da Vinci: “no

human investigation is true science if not based on mathematical demonstrations”;

Eduardo Torroja: “in the art of building without a mathematical background the

designer has no success”).

Experiments and measurements, suitably selected by sensitivity assessments,

clearly represent the basis of inverse analyses, in full agreement with memorable

warnings by great engineers (let us remember Leonardo da Vinci again: “our

evaluations may fail, experiments do not”; and Eugène Freyssinet: “when

v

experiment and computation disagree, always computation is wrong”; and also Dan

Drucker: “design to design structures is still in large measure based on experience

and tests”).

The present trends towards synergy of experiments, mathematics and computa-

tions, turn out to concern more and more frequently research, engineering practice

and scientific education. Popular is becoming at present the following statement by

John von Neumann: “science mainly makes models; the justification of such

construct is solely that it is expected to work”.

This author provides a remarkable contribution to inverse analysis applications

in the field of structural mechanics and engineering problems. Peculiar features of

this book are the attention paid to the computer implementation of timely proce-

dures for parameter identification and the availability in various chapters of several

routines related to popular software like MATLAB and to a widely employed

commercial finite element code.

Readers are likely to appreciate detailed treatment of selected inverse problems

in structural mechanics and accurate description and employment of representative

innovative procedures, practically useful in terms of operative economy (particu-

larly “proper orthogonal decomposition” and “radial basis functions” interpola-

tion). It is desirable that, in future editions of this book, treatments of inverse

problems by the same criteria be devoted also to supplementary meaningful

subjects and related issues, such as stochastic approaches and relevant computa-

tional procedures: these issues are worth of further research efforts and broader

applications.

To the study of inverse analysis methodology and to its applications in real life

problems, this young author has successfully dedicated his doctoral thesis and his

first two years of “post-doc” research and teaching activities in a university

environment.

This Foreword ends with cordial, warm wishes to the author for success in his

scientific research and teaching career and in future amplifications of this book,

dedicated to the growing attractive and productive area of inverse analysis in

engineering and technologies.

Giulio Maier

vi Foreword

Preface

The goal of this book is to present a modern approach to inverse analyses (IA) that

combines traditional framework with numerical techniques used for model reduc-

tion. In the main focus are parameter characterization problems in structural

mechanics, although most of the material is applicable with slight modifications

also to other scientific and engineering fields. The book is intended for engineers

and scientist who would like to learn, up to the very details, how to bring together

all the necessary pieces into working programs that will solve given inverse

problem.

Since the main emphasis was on the implementation, selected algorithms are

described into the details required for their implementation, and for all of them

practical codes within MATLAB programming language are given with full list-

ings. The codes are written in general way, so it shouldn’t be difficult to translate

them into any other programming language.

An inverse analyses procedure puts together experimental mechanics, numerical

modeling and mathematical programming. For a successful IA procedure one needs

to tackle all of these problems. In the structural context discussed in this book, with

a traditional approach, simulations of the experiments are done by finite element

modeling (FEM), and most frequently commercial codes are used for this purpose.

In the problems, tackled within the book, that used this approach to IA a commer-

cial code ABAQUS was selected, while the routines that are written to automati-

cally modify FE models and run the simulations are presented and discussed.

As far as mathematical programming is concerned, given the objective of the

book, the most popular optimization algorithms are selected and described up to the

details of their successful implementation, while detailed theoretical background

descriptions were omitted. Nevertheless, an attempt was made to guide interested

readers for useful further readings on the given topics. Optimization algorithms are

treated in Chap. 2, and the material in this chapter should serve for the reader to

become familiar with all the main concepts of iterative optimization algorithms.

The author strongly believes that, after reading this chapter, a careful reader will be

vii

able to write his own program that solves numerically an optimization problem by

using any of the algorithms discussed in the chapter.

Model reduction technique presented in this book is based on Proper Orthogonal

Decomposition (POD) and Radial Basis Functions (RBF). In Chap. 3 it is explained

up to very details how these two mathematical techniques are combined into a

powerful computing tool that can have an accurate computation of system

responses in a computing times shorter by few orders of magnitude with respect

to traditional numerical modeling techniques used in structural context (e.g. FE

modeling). The construction of proper orthogonal basis in the discreet theory

approach was discussed in details, and three different derivations are presented

and illustrated with simple examples. The objective of this chapter was to connect

the ideas behind the POD theory to the present context and to show how the basic

principles developed in different fields can be successfully used also in structural

mechanics, and by author’s opinion in many other computational problems.

The other mathematical tool used in this reduced basis model, namely RBF

interpolation is also described in detailed manner and covered by numerical exam-

ples that should serve for a better understanding. Finally, in the last part of Chap. 3,

it was demonstrated how the two techniques can be combined into a reduced model

used for the computation of system responses in structural mechanics context. This

chapter is written with the intentions to explain all the concepts on which reduced

basis model here presented is built. The author’s opinion is that the careful reader

should be capable to, by applying the analogy, employ the described model also to

other physical phenomena.

In the last two chapters it was demonstrated how all the previous pieces are put

together into a fully working inverse analysis procedure. Chap. 4 showed all the

necessary steps for building a so-called traditional IA procedure, where FE simula-

tions are used for the prediction of the system responses. Even though the book

presented a modern approach to the inverse analyses, where a reduced basis models

should be used for the prediction of system responses, by author’s opinion also the

traditional approach is very important as it anyhow should be used in some stages of

the development. Since the main accent of the book was on the implementation,

also in this chapter a detailed description of all the necessary programs was

discussed and the developed codes are given in full listings. The material presented

in this chapter should be enough for the reader to become familiar with all the

elements of practical IA procedure. In the chapter two different case studies are

considered that should be used as guidelines for any other similar problem. From

this chapter readers should learn how to write from the very beginning a fully

working inverse analyses procedure in the structural context by coupling MATLAB

routines with commercial FEM code ABAQUS.

Finally, in Chap. 5 of the book it was shown how to incorporate the developed

reduced basis model into an inverse analysis procedure. With a fast computational

tool like the one developed in Chap. 3, inverse analysis becomes fast and robust.

This feature was demonstrated in the examples treated in this chapter. It is shown

how to build standalone software which, once that it is calibrated for a given

experiment, can be further routinely used on a fast and effective way.

viii Preface

Author believes that the selected material presented in this book should be

enough to introduce the readers to the problems encountered in the inverse analysis

field. The examples treated in the book should help for a better understanding of all

the presented concepts. Author hopes that the book will serve also as inspiration for

many different applications of this fast growing scientific field.

Vladimir Buljak

Preface ix

.

Acknowledgments

I would like to take this opportunity to thank Professor Giulio Maier from Structural

Department at Politecnico di Milano, for passing an interest of inverse analyses to

me during my Ph.D. work and later, during my “post-doc” phase. His charisma,

inexhaustible spirit, dedication to the research, enthusiasm, wide knowledge and

above all, friendship have been a great help and inspiration for me.

Special thanks go to Professor Ryszard Białecki from Silesian University of

Technology, Gliwice, for his time spent with me during long discussions about

Proper Orthogonal Decomposition, on a number of occasions on different confer-

ences. I feel deeply honored for having opportunity to meet and discuss with such a

great scientist like Professor Białecki.

I owe my gratitude to Dr. Ziemowit Ostrowski, who I had a fortune to meet. His

excellent work was a valuable resource of information for me.

I believe that a significant contribution to this book cames from my colleagues

and friends: Dr. Fabrizio Cacchione, Dr. Gabriele Della Vecchia, Dr. Riccardo

Rossi, Carlo Guerini, Mohammad Reza Mahini, Dr. Tomasz Garbowski and many

others. If this book is written in an understandable way, then it is a merit of these

people, who were always finding time for discussions about the topics treated in this

book, and who were always asking the right questions that served me as guidelines

for the better presentation of the material.

Vladimir Buljak

xi

.

Contents

1 Inverse Analysis: Introduction . 1

1.1 Inverse Problems in Science and Engineering . 2

1.2 Classification of Inverse Problems and Their Application 3

1.3 Parameter Identification Problems in Structural Analyses:

Setting Up the Problem . 6

1.4 Summary . 16

References . 18

2 Optimization Algorithms . 19

2.1 Least Squares Problems . 20

2.2 Line Search Method . 21

2.2.1 Line Search with Steepest Descend Direction 22

2.2.2 Line Search with Newton Direction . 29

2.2.3 Line Search in Least Squares Problems . 32

2.3 Trust Region . 45

2.3.1 Trust Region Algorithm Based on Cauchy Point 47

2.3.2 Dog-Leg Trust Region . 54

2.3.3 Two-Dimensional Subspace Minimization . 59

2.4 Genetic Algorithms . 71

2.5 Summary . 82

References . 83

3 Proper Orthogonal Decomposition and Radial Basis Functions

for Fast Simulations . 85

3.1 Short History of Proper Orthogonal Decomposition 85

3.2 Approximation . 86

3.2.1 POD Approximation . 87

3.3 Discrete POD Theory . 88

3.3.1 PCA Derivation by Minimizing the Error

of Approximation . 90

xiii

3.3.2 PCA Derivation Based on Correlation Matrix 96

3.3.3 Construction of POD Basis: Singular Value Decomposition

Approach . 101

3.4 Approximation of Discrete Fields Using POD . 105

3.5 Radial Basis Functions for Scattered Data Interpolation 111

3.6 POD-RBF Procedure . 120

3.7 On Sources of Error in Low-Dimensional POD-RBF

Approximation . 127

3.8 Examples of the Use of POD-RBF Procedure for Fast

Simulation . 130

3.8.1 Example 1: Two Cylinders in Radial Contact 130

3.8.2 Example 2: Plate with Circular Whole . 132

3.8.3 Example 3: Indentation Test . 134

3.9 Summary . 137

References . 138

4 Inverse Analyses in Structural Problems: Putting All the Pieces

Together . 141

4.1 Case Study: Assessment of Two Elastic Parameters for the

Sandwich Cantilever . 142

4.1.1 FE Model of the Experiment . 143

4.1.2 Reading Results from “dot-fil” File . 147

4.1.3 Building Discrepancy Function . 149

4.1.4 Solving the Optimization Problem . 154

4.1.5 Results of Inverse Analyses . 159

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 161

4.2.1 FE Model of the Experiment . 163

4.2.2 Reading the Results from “dot-fil” File . 168

4.2.3 Building Discrepancy Function . 171

4.2.4 Solving the Optimization Problem . 175

4.2.5 Results of Inverse Analyses . 180

4.3 Summary . 182

References . 184

5 Modern Approach to Inverse Analyses . 185

5.1 On-Line Off-Line Approach . 186

5.2 The Use of Pod-RBF Within Inverse Analysis Context 187

5.3 Example of the Use of Pod-RBF in Inverse Analyses 188

5.3.1 Design of Software for the Assessment of Parameters 188

5.3.2 Detailed Pseudo-Experimental Testing of Inverse Analyses

Procedure . 197

5.4 Summary . 200

References . 201

Index . 203

xiv Contents

Chapter 1

Inverse Analysis: Introduction

Numerical simulations have been established as a powerful tool used in practically

all fields of engineering and science. A large number of commercial codes is

developed to solve the, so-called direct problems (or forward problems), which
consist of finding the solution in terms of response fields when a complete set of

input data defining uniquely the solution is known. Since these codes require the

knowledge of some parameters on which the solution depends, sometime in engi-

neering practice it is required to solve an inverse problem, defined as the one where
some of the “effects” (responses) are known but not some of the “causes” leading to

them, namely parameters on which the system depends. These problems are tackled

within, relatively young and still growing scientific branch which in modern litera-

ture (e.g. [1–3]) is found under the name of Inverse Analyses.
The name “inverse” comes from the assumption that the logical path in

reasoning (or solving the problems) goes from the causes to the effects. Therefore,

solving the problem in opposite direction can be identified as inverse (Fig. 1.1).

In the scientific and engineering practice, some observed phenomena are usually

represented by models. These models are further used for, hopefully successful,

prediction of responses, for a given input parameters. In this context, an inverse

problem can be defined as the one in which some model parameters need to be

obtained from the given observed data. This definition already anticipates, what in

general holds, that to solve an inverse problem is more difficult than to solve the

forward one. These difficulties arise from the fact that inverse problems are

typically ill-posed, meaning that usually some of the conditions of the uniqueness

of the solution do not exist. Certain types of ill-posedness will be discussed in more

details later in this chapter.

This book deals with inverse problems that emerge in the structural engineering

field. The main idea is to present just the small portion of theory needed to be

understood for a successful implementation of a fully working inverse analyses

procedure in the present context. This chapter should serve to make the reader

familiar with the main concepts and all the necessary parts that one needs to put

together in order to solve an inverse problem.

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5_1,
Springer-Verlag Berlin Heidelberg 2012

1

1.1 Inverse Problems in Science and Engineering

We already anticipated that the term inverse problem refers to any general situation

in which it is required to solve the problem in the opposite direction, starting from

“effects” as known and identifying “causes” that lead to them. Inverse problems are

inherently connected to direct problems. This connection is established through the

model used to simulate a given phenomenon. To solve a direct problem, in scientific

or engineering context, means to find analytical or numerical solution for ordinary

or partial differential equations that are describing it. On the other hand, an inverse

problem is the one in which the solution is known and the objective is to determine

the complete forward problem for which that solution is possible.

In order to solve the direct problem there should be known a minimum set of

information describing it, referred to as the condition of uniqueness. Therefore,
when we talk about the solution of differential equations, the uniqueness condition

should include the following information:

• The description of geometry under consideration

• Boundary conditions

• Initial conditions

• Properties of all involved materials (i.e. constants entering into differential

equations)

Inverse problem is the one in which some of these data are missing and they

should be identified from the known solution of the problem. Already at this stage

some of the problems connected with the inverse analyses can be foreseen. For

example it may be possible to face the situation where not only just one set of

missing parameters makes the solution possible. It practically means that the

inverse problems may not satisfy the uniqueness condition.

This can be illustrated on the following example. Let us consider a simple case in

which the model is represented with an analytical equation given by y ¼ ax2þ
bxþ c. Let the forward solution be the one that uses the value of x to compute y. It is
obvious that when the problem is solved as forward, to one value of x corresponds
only one value of y (Fig. 1.2). On the other hand the associated inverse problem is

not unique, since the solution y1 can be produced by a given model for two different

values of x. This lack of uniqueness is common for some inverse problems and

as such represents a significant drawback. Further in the book it will be shown

how these types of problems are tackled within the inverse analyses in the

present context.

Fig. 1.1 Scheme of solving

forward/inverse problems

2 1 Inverse Analysis: Introduction

Inverse analyses presented in this book deal with the numerical models. What

makes this group of problems particularly interesting and challenging from the

engineering and scientific point of view is that they represent a synergic combina-

tion between experimental mechanics, numerical simulations and mathematical

programming. This combination may be anticipated from the above definition of

inverse problems. As mentioned before, the inverse analysis procedure is in general

designed in order to assess some of the missing information about the system. The

system of interest needs to be modeled by the use of the appropriate technique

(in the context presented in this book usually numerical). This model depends on

some information (e.g. geometry, boundary condition, parameters, etc.) some of

which are known, others should be identified from the known solution. The solution

is known as a result of the previously preformed experiment. Finally, a discrepancy

function is constructed that quantifies the difference between measured quantities

and their computed counter-parts, which is subsequently minimized by the use of

optimization algorithms coming from mathematical programming.

1.2 Classification of Inverse Problems and Their Application

There are many ways to classify inverse problems. Going back to their definition,

as the problems in which the goal is to identify some missing information, a logical

classification could follow based on the type of the missing data. Therefore we can

distinguish:

• Backward problems: represent problems where the initial conditions are

unknown;

• Boundary inverse problems: in which the goal is to determine boundary

conditions;

Fig. 1.2 Uniqueness of the solution: existing for the direct problem (left) and missing for the

associated inverse problem (right)

1.2 Classification of Inverse Problems and Their Application 3

• Shape design: problems where the shape and the size of the domain need to be

determined;

• Force determination: problems in which the external action, i.e. forces are

unknown;

• Parameter identification problems: where constants that are entering into

governing equation, primarily into the constitutive models, are to be found.

There are many successful applications of inverse analyses of a different kind.

The first two groups of inverse problems cited here are very frequently applied in

thermo problems. Using the inverse analyses procedure it is possible to determine

both temperatures and heat fluxes on inaccessible surfaces by performing

measurements in more appropriate zones (see e.g. [4, 5]). Within Computational

Fluid Mechanics (CFD) there are a lot of examples of aerodynamic shape optimi-

zation by the use of inverse analyses approach (see e.g. [6, 7]). Force identification

problems, are another example of successful application of inverse analyses theory

in order to assess, for instance unknown impact or contact forces (e.g. [8]) usually

by the measurements of displacements.

In general, inverse analyses are applied in all those fields of science and

engineering where the quantities of interest are not directly measurable, and they

are therefore assessed through other measured values. Very well established

examples of this type can be found in geotechnical engineering considering

measurements based on electrical resistivity tomography. This technique provides

the measure of conductivity of specimen that is further, through inverse analysis

procedure, related to various parameters of soils such as porosity, degree of satura-

tion and hydraulic conductivity (see e.g. [9, 10]).

The last example leads us to, probably the most dispersed group of inverse

analyses problems, namely the parameter identification problems. This book will

give a particular focus to the parameter identification problems, even though most

of the material presented here is applicable also to other groups of inverse problems.

In the last years a big effort was made in the direction of developing numerical

models that can reproduce the mechanical behavior of different materials and

structures. Nowadays it is possible to use rather complicated material models that

are usually already implemented in the commercial codes. These models are

capable to capture different physical phenomena (e.g. plasticity, viscoplasticity,

damage, fracturing) some times even on different scales. Assuming that they can

correctly describe the behavior of the real phenomenon, their accuracy still depends

very much on correct identification of the constants (parameters) entering into the

governing equation. Sometimes, these parameters are not directly measurable in the

laboratories, and so their quantification becomes an important issue. For some

simple cases the transition between measured responses in the experiment and

required model parameter values can be established relatively easy (like for exam-

ple construction of a stress–strain curve from measured force and elongation in the

uniaxial tensile test). For more complicated material models the link between

experiments and computational models is not that trivial. This gap between

4 1 Inverse Analysis: Introduction

measured material and structural responses and required constitutive model

parameters by the computational models is bridged by the inverse analyses theory.

Applying the general concept previously discussed to the parameter identifica-

tion problems let us denote by S (Fig. 1.3) a certain system, that actually represents

an experiment performed on some structure or material specimen. This is the first

phase of the inverse analysis procedure that should provide some meaningful

measurable quantities. The same process is further modeled (traditionally in the

structural context by finite element method) in order to produce a numerical counter

part of the system, denoted by S’.

If a perturbation is applied on a real system S (i.e. the system is subjected to

a certain load) it will react by giving a response which may be represented by

a number of measurable quantities collected in vector uexp. For structural mechanics

problems, these can be forces, displacements, crack openings etc. On the other

hand, the numerical model is designed to compute the response of the system

subjected to the same perturbation, for any given model parameter vector p’,

collecting the sought parameters within inverse analysis procedure. The response

of numerical model of the system represents the calculated values of exactly the

same quantities as those measured in the experiment, which are stored in vector

unum. The results from the experiment are put together with their computed counter-

part in order to form a discrepancy function that should quantify the difference

between the two responses (Eq. 1.1)

f ¼ uexp � unum
�
�

�
� (1.1)

This function is further minimized with respect to sought parameters. For the

minimization a well established algorithms from mathematical programming are

usually used, that within some iterations are capable to find parameter values that

are minimizing the objective function. In other words the solution of the inverse

problem should result with the parameter values for which the adopted numerical

model is giving the closest results to those that were measured in the experiment. If

the numerical model is done very well, and if the experimental measurements are

Fig. 1.3 Schematic representation of the inverse analysis procedure

1.2 Classification of Inverse Problems and Their Application 5

performed with precise tool with a low level of noise, then at the end of this

minimization procedure the numerical result should match exactly the experimental

one. In more realistic cases, there will always be a small discrepancy between the

two responses, but in any case for well posed inverse problems a result of the

minimization should provide parameter values that produce the minimum possible

difference for the given measurements and used numerical model.

In order to better understand the main problems one is facing within parameter

identification problems let us give a closer look on how an inverse analysis problem

is set within the scope of structural mechanics.

1.3 Parameter Identification Problems in Structural

Analyses: Setting Up the Problem

Parameter identification problems in material and structural mechanics are used

usually in order to characterize the material properties. The approach of inverse

analyses gives the possibility to keep the experiment relatively complicated making

possible to capture more complex material models described with large number of

parameters.

A popular experiment that is used to characterize materials is an instrumented

indentation test that originates in the traditional hardness test. It represents the

process in which the tip of indenter, usually conical, spherical or pyramidal, is

forced into the surface of testing specimen in order to leave a permanent deforma-

tion. Unlike the traditional hardness test, in the instrumented one, there is a constant

monitoring of applied force and obtained penetration, and so the result of the test is

a so-called indentation curve like the one visualized in Fig. 1.4.

The information of material response taken from the indentation curve proved to

be rather useful to characterize both elastic and plastic properties. Several authors

(see e.g. [11, 12]) have proposed some semi-empirical approaches to correlate the

data provided by indentation curves with the Young modulus and yield strength of

the material. Using this test within inverse analyses framework turned out to be very

much useful making possible to characterize more complicated material models.

As the first improvement with respect to semi-empirical formulae, an inverse

analyses procedure can characterize more accurately material parameters just from

the indentation curve itself. Since the indentation test can be simulated, with

nowadays available commercial FE software, rather accurately, it gives a possibil-

ity to compare computed indentation curve with the measured one, without a need

to measure contact area and therefore introduce additional potential error of experi-

mental measurements (like in the semi-empirical approach proposed by Oliver and

Pharr [11]). A number of successful inverse analyses procedures based on

instrumented indentation can be found in the literature: application in characteriza-

tion of functionally graded materials [13], characterization of thin films [14]

assessment of quasi-brittle fracture properties [15], and so on.

6 1 Inverse Analysis: Introduction

Another interesting field of the application of parameter identification proce-

dures is in the assessment of damages in structures that are in service. Since the

main concept of inverse analyses is to combine simulation with the experiment, it is

evident that the experiment can be rather complicated and performed even in situ

directly on the structure. One of the typical examples of this is the assessment of

possible deterioration of existing concrete dams due to alkali silica reaction or, in

general, due to extreme loadings such as earthquakes and floods. For this purpose

a so-called “flat-jack” test is used that consists of performing cuts in the struc-

ture (which, considering the size of the dam, are considered as practically non-

destructive test); in created slots a flat-jack is inserted that is further pressurized and

the resulting displacements are measured. Combining the experiment with numeri-

cal modeling of the test a practical inverse analyses procedure can be designed in

order to assess the elastic properties of the concrete (see e.g. [16, 17]).

From previous discussion it is obvious that the very first phase in setting the

inverse analyses problem for the parameter characterization is to choose the

experiment. The experiment should be selected to be as simple as possible but at

the same time it needs to activate all the parameters that needs to be assessed. This

part is verified usually in a numerical simulation of the experiment.

The parameter identification problems in the context of structural analyses are

starting form the assumption that the material model is known and they should

result in a calibration of the constants entering into it (e.g. assessment of Young

modulus, yield limit, exponent of hardening, etc.). Using the numerical simulation

with the adopted material model, it is possible to perform an optimization of

experiment in order to find the most appropriate perturbation (i.e. loading pattern

of the specimen or structure) and to select those measurements that are the most

sensitive to changes of sought parameters.

Fig. 1.4 Indentation curve resulting from an instrumented indentation test

1.3 Parameter Identification Problems in Structural Analyses: Setting Up the Problem 7

After the configuration of experiment is decided, the numerical phase is taken a

step further in order to perform a so-called sensitivity analyses. Sensitivity analysis

is usually carried out over some range of parameter values (the range is adopted

based on the expected values of sought parameters for a given problem), and it

should result with quantitative information (namely the derivatives of measurable

quantities with respect to each of south parameters) about how sensitive

measurements are to the perturbations on each of the sought parameters.

Once that the previous numerical study is performed, resulting in the experi-

mental setup from which the measurable quantities with satisfying sensitivity to

sought parameters are selected, a subsequent phase proceeds, in which the discrep-

ancy function is formed that represents some norm of a difference between experi-

mental and computed results. It should be mentioned that it is very important to

include the uncertainty of the measurements into the objective function. In the form

given by Eq. 1.1 if we denote by R residual vector that represents the difference

between the measured quantities and computed ones, namely

R ¼ uEXP � uCOMðpÞ (1.2)

then the objective function (to be minimized) denoted by o should have the

following form

oðpÞ ¼ RT �M � R (1.3)

whereM is a weight matrix that should somehow take into account uncertainties of

the measurements. For example, matrix M can be a diagonal matrix assigning to

each component of the residual vector R a weight inversely proportional to the

corresponding measurement scattering. Another possibility could be to represent

matrix M as the inverse of the (symmetric and positive definite) covariance matrix

(diagonal in case of uncorrelated quantities) when each experimental data is

provided together with a standard deviation, expressing the uncertainty typical of

the measurement device.

To illustrate the importance of weighting the experimental data in the presence

of numerical noise, let us consider the following example. Let us assume that the

results of some experimental measurements of a certain state variable (e.g. temper-

ature, velocity, etc.) over a space coordinate has the form like the one presented in

Fig. 1.5. Let us assume that we would like to predict the distribution of this quantity

with an analytical model given by

q ¼ p1 � sin p2 � xð Þ (1.4)

The analytical model is governed by two parameters: p1 and p2 while x is a

spatial coordinate, and q is a quantity of interest. Now we would like to calibrate

this model by solving an inverse problem in order to find values of parameters that

minimize the difference between experimental data visualized in Fig. 1.5 and those

computed by Eq. 1.4. The inverse analyses procedure gives the following values of

8 1 Inverse Analysis: Introduction

parameters that minimize the objective function: p1 ¼ 1.013 and p2 ¼ 1.003
(Fig. 1.6).

Let us assume now that we carry out the same experiment, but this time in the

zone where space coordinate is larger than 4 the measurements are performed with

larger mistake. Using the objective function that doesn’t weight differently the data

(say the one defined by Eq. 1.4 with M being identity matrix), the procedure

converges to different set of parameters, namely p1 ¼ 0.828 and p2 ¼ 1.037
(Fig. 1.7).

As it can be noticed from the figure, the inverse analyses procedure converged to

analytical curve that tries to fit both the zone with more accurate measurements and

the one with the larger noise. If both of these zones are of equal importance (i.e. no

weighting is introduced) resulting parameters that minimize the function are assessed

Fig. 1.5 Example of

experimental measurements

of one quantity in one-

dimensional space

Fig. 1.6 Experimental data

and analytical curve that

minimizes the objective

function

Fig. 1.7 Experimental data

with different noise level in

different zones, and analytical

curve that minimizes

objective function without

weighting coefficients

1.3 Parameter Identification Problems in Structural Analyses: Setting Up the Problem 9

with larger error. If we solve now the same problem but this time giving different

weighting coefficients to the measurements in the zone x > 4 (say three times less

weight due to approximately three times larger scattering in that zone) the procedure

converges to the following parameter values: p1 ¼ 0.960 and p2 ¼ 1.016 (Fig. 1.8).
Comparing the results it can be noticed that when the experimental data are not

weighted, the assessment procedure results in larger errors in estimates, since the

function minimizes the difference in an average, least square sense, which can lead

to relatively large errors in sought parameters.

Taking into account also the measurement uncertainties is an important issue in

all those situations in which the experimental data are not measured with the same

accuracy in all zones. This is frequently encountered in the inverse analyses based

on instrumented indentation, when the residual imprint is used as experimental

data, which is mapped after the removal of the indenter. These measurements are

affected with different errors in diverse zones, usually due to optical interferences

or other obstacles. In such cases, defining the objective function as a simple

difference between measured and computed quantities could result in significant

errors on parameter estimates.

Once that the discrepancy function is formulated (namely the measurable

quantities are selected and appropriate weighting coefficients are employed) in a

subsequent phase, the goal is to minimize this function with respect to sought

parameters. In the problems considered in this book the optimization algorithms

used for this purpose are numerical, and are not providing the solution in closed

form. These algorithms are traditionally iterative and they seek the minimum of the

objective function by a successive approaching within a sequence of calculations.

The minimization problems dealt within the context discussed here are always

constrained, since the parameters are representing some physical quantities (i.e.

Young modulus, yield limit, etc.) and therefore cannot take any arbitrary values.

What makes the optimization problem even more complicated is that the objective

function, in most of the cases is not convex, and sometimes even not continuous.

There are many different algorithms that one may employ to solve the

constrained minimization problem. The choice of appropriate algorithm for the

given problem may have a crucial effect on the overall effectiveness of the whole

inverse analyses procedure. Without entering into a detailed survey of all possible

Fig. 1.8 Experimental data

with different noise level in

different zones, and analytical

curve that minimizes

objective function with

weighting coefficients

associated to experimental

scattering

10 1 Inverse Analysis: Introduction

choices with their advantages and drawbacks at this stage let us just point out some

more important features that need to be verified.

Among many possible classifications of optimization algorithms let us for a

moment focus our attention to the classification based on the information on the

objective function required by the algorithm. Taking this criterion into account all

the algorithms can be classified in the following groups: zero order algorithms,

which are involving only calculations of the objective functions (e.g. direct search

by Nelder-Mead algorithm, Genetic Algorithms etc.); first order algorithms that

need first derivatives of the objective function (e.g. steepest descent method, trust

region method) and second order alogrithms requiring information on the Hes-

sian, namely second derivatives of the objective function (e.g. Newton method).

Considering that the function to be minimized in our case is not analytically

defined, it means that the computation of the derivatives is performed numerically,

usually by finite differences. It implies that to compute the first derivatives of the

objective function that depends on two parameters, it is required to perform three

computations of system responses (namely three simulations): one for the reference

values of the parameters, and remaining two for the separate perturbations of the two

parameters. The fact that the derivatives are computed numerically already penalizes

the second order methods, since using finite differences to computed full Hessian

matrix for the two parameter case will involve six computations (with respect to three

needed for first derivatives). Due to the increased computing times connected with

second derivatives usually the second order methods are not used, since their

potentially better behavior is penalized by the increased computing times.

In general, first order methods are less costly computationally than zero order

methods (namely they involve fewer simulations). These algorithms start from

some initial guess for the parameters, and then in each iteration they compute the

first derivatives of the objective function. Based on these computations an evalua-

tion of the parameter values for the next iteration is performed. The general scheme

for first order algorithms is presented in Fig. 1.9.

Relaying on first derivatives only, these methods are incapable of distinguishing

between the local and global minima. In other words the first order methods will

converge to any mathematical minimum of the function (namely the one for which

the first derivatives are equal to zero). The fact that the minimum is not a global one

can be easily verified since the computed response for the converged parameters

will differ from the expected one. In such cases the optimization procedure should

be repeated starting from different initialization (i.e. different guess parameters).

The fact that algorithm converged to the local minimum doesn’t mean that the

parameter estimate procedure doesn’t work. Since it can be easily verified it

practically represents only a loss of computational time. However, if the objective

function for the given problem turns out to have a large number of local minima,

then the approach with the use of first order algorithms will result as ineffective

since the solution will depend on the initialization point. Even though the local

minima can be verified as such, and therefore it may be confirmed that the set of

parameters is not the solution we were looking for, still the presence of large

1.3 Parameter Identification Problems in Structural Analyses: Setting Up the Problem 11

number of local minima makes the procedure not very effective since it may require

a large number of initializations until it finally finds the global minimum.

If it turns out that the objective function to be minimized has a large number of

local minima, then it is more appropriate to use a zero order optimization

algorithms, like for example Genetic Algorithms (GA). These algorithms belong

to a so-called soft computing group and will be discussed in more details in the

following Chapter. At the moment let us just anticipate that GA, in general, avoid

stacking in the local minima and are therefore much more effective if the objective

function has a multiple local minima. This nice feature however, comes for the

price of increased computing times and therefore the use of GA is justifiable only in

the optimization problems with a large number of local minima. In other situations

it is more convenient to use first or second order algorithms.

More serious problem which can be encountered within the inverse analysis

procedure is the presence of more global minima in terms of two or more parameter

sets that produce the same response of the system. In the shape optimization

problems this doesn’t represent a serious malfunction of the procedure since the

goal is to find the shape that optimizes given requirements. An example of this can

be a shape optimization problem with the goal of overall weight minimization

under constrain of prescribed admissible stresses. If the objective function turns out

to have two or more global minima in this case it means that the same weight can be

Fig. 1.9 General scheme of

first order optimization

algorithms

12 1 Inverse Analysis: Introduction

obtained by different shapes and then it is on the designer to choose the one, so the

optimization problem is considered to be solved.

In the material characterization problems the presence of two or more global

minima represents a serious drawback of the procedure since it practically means

that there are two possible material parameter sets which can produce the same

response to the selected experiment. Typical example of this is a response to the

indentation test in terms of the indentation curve. Figure 1.10 visualizes the

simulation of the indentation test of two different materials with stress–strain

curves visualized on the right-hand side of the figure. The left-hand side graph

shows that the indentation curves are practically the same. This unpleasant feature

of the indentation test is evidenced in the literature (see e.g. [18]) where the authors

addressed this problem, and labeled materials as “mystical”, since they appear to be

undistinguishable.

From the inverse analyses point of view this represents a typical problem of ill-

posedness with the discrepancy function having two (or more) global minima.

Unlike the case with local minima, that can be solved by changing the optimization

algorithm, in the case of more global minima nothing can be improved by changing

the optimization algorithm, since, from mathematical point of view both parameter

sets minimizes the function and it’s not possible to distinguish which one is a

solution for the inverse problem. The core of the problem is in the objective

function itself, or to be more precise, in the selection of measurable quantities

used to construct it. The only way to change it is to take into account additional

measurements (or even additional experiment) in order to enrich the experimental

information. This usually helps since in general, it is unlikely that two different

materials will have the same response in terms of all the measurable field variables,

or to two different experiments.

In the context of previously discussed undistinguishable materials in terms of

response to the indentation test, Bolzon et.al. in [19] showed that this problem is

regularized if also the residual imprint is measured and added to the objective

function. Physically this means that even though the two materials (like those in

Fig. 1.10) can produce the same indentation curve, there will be a difference in

Fig. 1.10 The same response to the indentation test (left) of two different materials with different

stress–strain curves (right)

1.3 Parameter Identification Problems in Structural Analyses: Setting Up the Problem 13

terms of residual imprint geometry. This intervention changed the objective func-

tion which became more regular and doesn’t have anymore multiple global minima.

The problem of more than one global minimum is produced by the compensation

of influences between some of the parameters (like in the example of indentation

test between yield stress and exponent of hardening). As such, it cannot be

identified in the sensitivity analyses phase. The sensitivity analysis is done in

order to verify that the selected measurements are influenced by the changes on

the parameters. However, even if they are influenced by the parameter perturbations

it may occur that some of the effects can be compensated producing therefore more

than one set of parameters that minimize to the same level the objective function.

This suggests that, after all of the previously described steps are performed, a

final check of the whole procedure should be performed. This part is done using the

so-called pseudo-experimental data.

The only way to confirm that the inverse problem is set well and that it is capable

of finding the sough parameters, is by solving it for the case where the solution is

known. Therefore we should provide the system response for which the parameters

are know. Since for this purpose truly experimental data with known parameters

may not be available, it is more convenient to use pseudo-experimental data.

Pseudo-experimental data represent computer generated data, resulting from the

simulation with known parameters. When such data are used as inputs to the inverse

analyses, the solution is known, and if the procedure is set well it should result with

the same parameters as those used to generate pseudo-experimental data.

Furthermore, such verification should be performed for various parameter

combinations, spread around the zone of interest, to confirm that the problem is

well-posed not only just in one zone. It is important to do so since, the previously

discussed problems of compensation between parameters may occur for some

parameter combinations and not for others. As a result of these checks usually

graphs of the type presented in Fig. 1.11 are designed for each of the parameters to

evidence the error on estimates.

The result visualized in Fig. 1.11 represents an output of well set inverse

problem. It shows that the parameter 1 is identified with relatively uniform error,

for 50 different parameter combinations (presented in the abscissa). The error is

uniform practically in all of the zones and it doesn’t exceed the level of 1%

(ordinate).

Fig. 1.11 Typical

representation resulting from

pseudo-experimental testing

14 1 Inverse Analysis: Introduction

This first pseudo-experimental check was dealing with “clean” numerical data

used in the form resulting from the numerical simulations. Since the real experi-

mental data are always subjected to a certain measurement error, it is important to

check how the inverse procedure will behave in the presence of noise. Some times

inverse problems don’t have the same stability of the solution as direct problems

(namely to the small perturbation of inputs there is a corresponding small variation

of outputs, see Fig. 1.12). Since these perturbations are expected to occur due to

errors in measurements it is important to check how the procedure reacts to them.

This check should be performed with pseudo-experimental data, by subjecting the

inputs, resulting from previously performed simulations, to a random “noise” that

should imitate the excepted measurement error. After this intervention, the same

study is performed which results in the graphs of the type given in Fig. 1.11,

constructed for the different noise levels. From this test, it should be confirmed

that the perturbation of the inputs of the certain level should result with more or less

the same level or error of the estimated parameters. This study should provide

valuable information on the required level of accuracy of the measured quantities.

Another possible resource of error in the identification procedure can come from

the numerical simulation. Even when all the quantities are known for given

experiment (namely, geometry, loads, constants entering into material models

etc.) there will always be an error in modeling resulting in slightly different

simulated response from the one measured in the experiment. This modeling

error is rather systematic and within inverse analysis procedure can produce the

same, systematic, type of error on the estimates.

To illustrate the influence of modeling error let us consider a simple case in

which an experiment is performed on a cantilever, of the unknown elastic

properties, with the concentrated load at the end. The discrepancy function is

formed using, say ten measured displacements along the upper surface. Let us

assume that the goal is to design an inverse analysis procedure that should minimize

this function in order to assess the Young modulus. If the cantilever is modeled with

the coarse FE mesh with a small number of elements over the thickness (see

Fig. 1.13), the numerical model will be more rigid than the actual one, resulting

Fig. 1.12 Stabile solution for the direct problem (left) and not stable for the associated inverse

problem (right)

1.3 Parameter Identification Problems in Structural Analyses: Setting Up the Problem 15

in smaller displacements. Using such model within inverse analyses procedure will

produce a systematic error on estimated Young modulus resulting in smaller value

than it should be, since the procedure searches the parameter for which the result

will match the measured one. An over-stiff behavior is therefore compensated by a

softer material. This brings a systematic error to the identification procedure

resulting in underestimation of the parameters even when the experimental

measurements are performed precisely.

The only way to check how good numerical model is would be to perform the

experiment on the specimen with known material parameters and to compare it with

the simulation. In the cases when such experimental data are not available, similar

check, at least in qualitative terms, can be performed using pseudo-experimental

data. It is done by perturbing the simulated data with a certain percentage, but this

time with systematic error (i.e. on one side, like increase or decrease computed

values resulting from the simulations). Using such data puts in evidence how the

modeling error of given magnitude will affect the estimates of the parameters. If

they remain within acceptable range it means that no further improvements are

necessary on the numerical model. In opposite case it means that there is no

significant stability of the given inverse problem and so the accuracy of the

numerical model plays an important role. In such circumstance the modeling

error should be verified before using the model in the context of inverse analyses.

1.4 Summary

In this Chapter a brief introduction to the inverse problems was given. A general

classification and some of the applications in engineering and science are men-

tioned. A bit more detailed description of the parameter identification problems, as

they are the main topic of this book, is then presented.

Fig. 1.13 Scheme of cantilever experiment, and numerical model with the coarse mesh

16 1 Inverse Analysis: Introduction

In the context of structural problems, it was shown which main ingredients need

to be put together in order to design a fully operative identification procedure. For

this purpose, a sequence of steps and procedures one needs to perform, together

with the main possible problems which can be faced, is presented. This sequence

can be summarized as follows:

1. The first step of each parameter identification procedure is the selection of the

experiment. The experiment should be simple enough in order to be easily

executed, but at the same time complicated enough to activate all the sought

parameters for which the procedure is designed;

2. In the second step a numerical model of the experiment is build. Traditionally

the FEM is used in the structural context. Numerical model should represent a

compromise between the required level of accuracy, and the computing time

having in mind the repetitive simulations required by the optimization

algorithms;

3. Once that a reliable numerical model is constructed, it should be used to perform

sensitivity analyses to verify that the selected measurable quantities are sensitive

to the variation of parameters. If they turn out to be not sensitive enough they

should be changed, or the experiment should be replaced with another one;

4. After the experiment setup is fixed, the objective function is designed that should

quantify the discrepancy between the measured quantities and their computed

counter-parts. It is important to apply the correct weighting coefficients that

should account for measurable uncertainties. Further, an adequate optimization

algorithm should be selected for the given problem with primer focus on the

possible presence of local minima.

5. Finally, the whole procedure should be tested using pseudo-experimental, com-

puter generated data. This step should put in evidence a possible ill posedness of

the inverse problem in terms of the existence of more than one parameter set that

minimize to the same extent the objective function (more global minima). If this

turns out to be the case the experimental measurements should be enriched, or

even an additional experiment should be considered. The pseudo-experimental

testing should also be performed using different levels of “noise” (both ran-

domly distributed, to simulate the expected error of measurements, and system-

atic one, to account for possible modeling errors). The test with noisy data

should show how stabile the solution is with respect to the small perturbations

of the inputs.

From this chapter it should be clear that one of the crucial parts of any inverse

analysis procedure that determines to a large extent the overall success of the whole

process is the optimization algorithm. Therefore, subsequent chapter will give a

more detailed survey of different optimization algorithms which can be used in the

present context.

1.4 Summary 17

References

1. Groetsch, C.W.: Inverse Problems: Activities for Undergraduates. The Mathematical Associa-

tion of America, Washington, D.C. (1999)

2. Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC

Press, Boca Raton (2003)

3. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society

for Industrial and Applied Mathematics, Philadelphia (2005)

4. Ostrowski, Z., Bialecki, R.A., Kassab, A.J.: Estimation of constant thermal conductivity by use

of proper orthogonal decomposition. Comput. Mech. 37(1), 52–59 (2005)

5. Yu, G., Wen, P.A., Wang, H.: An inverse method to determine boundary temperature and heat

flux for a 2D steady state heat conduction problem. Proceedings of the ASME International

Design Engineering Technical Conferences and Computers and Informational in Engineering

Conference (IDETC/CIE 2008), New York. Paper number DETC2008-49811, pp. 1087–1093

(2008)

6. Li, W., Krist, S.A., Compabell, R.: Transonic airfoil shape optimization in preliminary design

environment. Proceedings of 10th AIAA/ISSMOMultidisciplinary Analysis and Optimization

Conference, Albany. Paper number AIAA 2004-4629, pp. 3650–3671 (2004)

7. Sobieczky, H.: Knowledge based aerodynamic optimization. Proceedings of 4th SST CFD

Workshop, Tokyo, pp. 1–6 (2006)

8. Wang, B.T., Chiu, C.H.: Determination of unknown impact force acting on a simply supported

beam. Mech. Syst. Signal Process. 17(3), 683–704 (2003)

9. Borsic, A., Comina, C., Foti, S., Lancellotta, R., Musso, G.: Imaging heterogeneities with

electrical impedance tomography: laboratory results. Geotechnique 55(7), 539–547 (2005)

10. Damasceno, V., Fratta, D.: Monitoring chemical diffusion in a porous media using electrical

resistivity tomography. ASCE Geotech. Spec. Publ. (GSP) 149, 174–181 (2006)

11. Oliver, W.C., Pharr, G.M.: An improved techniques for determining hardness elastic modulus

using load and displacement sensing indentation experiments. J. Mater. Res. 7, 176–181

(1992)

12. Jager, A., Lackner, R., Eberhardsteiner, J.: Identification of viscoelastic properties by means of

nanoindentation taking the real tip geometry into account. Int. J. Theor. Appl. Mech. AIMETA

42(3), 293–306 (2007)

13. Nakamura, T., Wang, T., Sampath, S.: Determination of properties of graded materials by

inverse analysis and instrumented indentation. Acta Mater. 48, 4293–4306 (2000)

14. Van Vliet, K.J., Gouldstone, A.: Mechanical properties of thin films quantified via

instrumented indentation. Surf. Eng. 17(2), 140–145 (2001)

15. Maier, G., Bocciarelli, M., Bolzon, G., Fedele, R.: Inverse analyses in fracture mechanics. Int.

J. Fract. 138, 47–73 (2006)

16. Fedele, R., Maier, G.: Flat-jack test and inverse analysis for the identification of stress and

elastic properties in concrete dams. Meccanica 42, 387–402 (2007)

17. Fedele, R., Maier, G., Miller, B.: Identification of elastic stiffness and local stresses in concrete

dams by in situ tests and neural networks. Struct. Infrastruct. Eng. 1(3), 165–180 (2005)

18. Chen, X., Ogasawara, N., Zhao, M., Chiba, N.: On the uniqueness of measuring elastoplastic

properties from indentation: the indistinguishable mystical materials. J. Mech. Phys. Solids 55

(8), 1618–1660 (2007)

19. Bolzon, G., Maier, G., Panico, M.: Material model calibration by indentation, imprint mapping

and inverse analysis. Int. J. Solids Struct. 41, 2957–2975 (2004)

18 1 Inverse Analysis: Introduction

Chapter 2

Optimization Algorithms

This chapter will give a survey of some of the most commonly used optimization

algorithms within the context of parameter characterization. The idea is not to give

any detailed mathematical description of numerical optimization, since, on that

topic one can found a decent number of great books (e.g., [1–3]). As the main topic

of this book are the inverse analyses in structural engineering context, the goal is to

present, to a reasonable extent, mathematical theory behind most commonly used

optimization algorithms, so that they can be understood and easily implemented

into a practical inverse analysis procedure.

Mathematically speaking, optimization is the minimization or maximization of

a function subjected or not to constraints on its variables (parameters). In order

to solve any optimization problem numerically, nowadays there is a wide variety

of algorithms at our disposal. As we already saw in the previous chapter, these

algorithms are starting from some initial guess of the parameters, and then they

generate sequence of iterates which terminates, when either no more progress can be

made, or when it seems that a solution point has been approximated with sufficient

accuracy. Within each iteration, certain information on objective function are gath-

ered (i.e. the value of objective function, the values of first derivatives, the values of

second derivatives), and based on these computations the new iterate with a lower

function value is estimated. It should bementioned however, that there also exist non-
monotone algorithms that do not insist on a decrease in the objective function at every
step. No matter if the algorithm leads to a monotone decrease of the objective

function of not, the main difference between the optimization algorithms is the way

on which they pass from one iteration to another. This characteristic of the algorithm

determines to a large extent its performance for a given optimization problem.

In the following pages two different strategies for computing next iteration from

the previous one will be presented in more details, as they are used most frequently

in nowadays available optimization algorithms. The first one is the line search
strategy in which the algorithm chooses a direction pk and then searches along this

direction for the lower function value. The second strategy is called the trust region
in which the information gathered about the objective function is used to construct a

model function whose behavior near the current iterate is trusted to be similar

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5_2,
Springer-Verlag Berlin Heidelberg 2012

19

enough to the actual function. Then the algorithm searches for the minimizer of the

model function inside the trust region.

The last part of this chapter is devoted to a brief description of Genetic

Algorithms, as they can be very useful in the problems when the objective function

has a lot of local minima.

Before describing above mentioned optimization algorithms let us first say

couple of words about least squares problems, or the problems in which the

objective function has a form of summation of the squares of differences. As it

was shown in Chap. 1, the function to be minimized that emerges form the inverse

analyses (Eq. 1.1) is of this type.

2.1 Least Squares Problems

In least squares problems the objective function to be minimized has the following

form

f ðxÞ ¼ 1

2

Xm

i¼1

r2j ðxÞ (2.1)

where rj are called residuals.

The objective function of the least squares type emerges from many problems, and

probably represents the most frequent optimization problem. In any engineering

or scientific field where a parameterized models are used to fit the actual data, the

function of the type (2.1) is used to measure discrepancy of the computed quantities

and those that are measured.

If we compare function (2.1) with (1.1) from the previous chapter we can notice

that it is of the same type. In this case, each residual represents the difference

between computed quantities and their measured counter-part, and therefore repre-

sent the function of sought parameters.

To see why this special form of the objective function usually makes the least

squares problems easier to solve than the general ones, let us first collect all the

individual components into a residual vector R, namely

RðxÞ ¼ r1ðxÞ; r2ðxÞ; :::; rmðxÞ½ �T (2.2)

Using this notation, the objective function can be written as

f ðxÞ ¼ 1

2
RðxÞk kL2 (2.3)

The derivatives of the objective function can be expressed in terms of the

Jacobian matrix J, which, in the case when x is n-dimensional vector will be

m�n matrix, namely

20 2 Optimization Algorithms

http://dx.doi.org/10.1007/978-3-642-22703-5_1
http://dx.doi.org/10.1007/978-3-642-22703-5_1
http://dx.doi.org/10.1007/978-3-642-22703-5_1

JðxÞ ¼ @R

@x

� �

¼

@r1
@x1

@r1
@x2

:::
@r1
@xn

@r2
@x1

@r2
@x2

:::
@r2
@xn

::: ::: ::: :::
@rm
@x1

@rm
@x2

:::
@rm
@xn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

(2.4)

The gradient of the objective function can be written in terms of the Jacobian as

rf ðxÞ ¼
Xm

i¼1

ri
@ri
@x

¼
Xm

i¼1

ri

@ri
@x1
@ri
@x2
:::
@ri
@xn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼ JT � R (2.5)

Hessian matrix of second derivatives of the objective function can be written as

r2f ðxÞ ¼
Xm

i¼1

@ri
@x

� @ri
@x

� �T

þ
Xm

i¼1

ri
@2ri
@x2

¼ J xð ÞT � J xð Þ þ
Xm

i¼1

ri
@2ri
@x2

(2.6)

What can be observed from the Eq. 2.6 is that the part of the second derivatives

can be expressed by the Jacobian matrix. It practically means that, once the first

derivatives are computed, we can also compute part of the Hessian matrix for the

same computational cost. The possibility to compute “for free” the Hessian matrix

once the Jacobian is available represents a distinctive feature of least squares

problems. Since near the solution the residuals are close to zero, it also means

that the contribution of the second part of Hessian matrix is very small. Therefore, it

is reasonable to approximate the Hessian matrix with the first part only.

r2f ðxÞ � J xð ÞT � J xð Þ (2.7)

This approximation is adopted in many applications as it provides an evaluation

of the Hessian matrix without computing any second derivatives of the objective

function.

2.2 Line Search Method

Within the line search method, in each iteration it is required to find the direction,

say pk and then to decide how far to go along that direction. Therefore, if the current

iteration is denoted by vector xk, the new iteration is given by

2.2 Line Search Method 21

xkþ1 ¼ xk þ akpk (2.8)

The new iteration is thus uniquely defined by the direction pk and by a positive

scalar ak called the step length. The success of a line search method depends

on effective choices of both the direction and the step length. Based in the adopter

strategy of solving for the two abovementioned quantities, we can distinguish

between different lines search algorithms.

2.2.1 Line Search with Steepest Descend Direction

Most of the line search algorithms are implemented so that they have a monotone

decrease of objective function. This means that the direction pk needs to be a

descending direction. Therefore the most logical direction to move along would

be the steepest descent direction or the one that defines direction pk as

pk ¼ � rfk
rfkk k (2.9)

The advantage of this choice is that it involves the calculation of only first

derivatives.

After the direction is fixed, the algorithm needs to compute the step length. In the

step length selection we are facing a tradeoff. Obviously we would like to have as

good as possible reduction of the objective function, but at the same time we don’t

want to spend a lot of time in searching for it. The ideal case would be to find a step

length as a global minimizer of the following function

fðakÞ ¼ f xk þ akpkð Þ (2.10)

However, it may be computationally too expensive to identify this value.

Because of that, most practical strategies that use the line search approach are

finding an inexact minimizer of (2.10) for the acceptable computational cost. This

minimizer should satisfy some criteria for the function reduction but without a

guarantee that it is the global minimizer of the function along that direction. Typical

line search algorithms try a sequence of candidate values for the step length and

then select the best of them.

In order to see how the step length influences the performance of line search

method let us consider a simple example. Let the objective function be given by

f ðxÞ ¼ x21 þ x22 (2.11)

The function to be minimized is convex and has only one minimum

corresponding to coordinates x ¼ [0,0]T. Figure 2.1 visualizes the function on the

domain�2 to 2.

22 2 Optimization Algorithms

In the following MATLAB code a simple strategy with three trial step lengths is

implemented. Within this strategy the three trial steps are: the reference step length,

one-quarter of it, and two times reference length. The algorithm starts in the first

iteration with some initial step length, taken as a reference one, and for each of the

three trial steps it computes the reduction of the function. It further picks up the step

with the largest reduction of the function and in the following iteration adopts it as a

reference one. This simple strategy allows for continuous elongation (or shortening)

of the step length with respect to the starting value, in order to make better use of the

selected direction.

Listing given in the following page includes three MATLAB codes. The first one

is the main optimization routine, the second one is used to plot the results and the

third one is a MATLAB function that computes the value of the objective function

for given parameters.

In the main routine the initial step length, together with other options, is chosen

by the user at the beginning of the code. The optimization is terminated when the

residual is smaller than a given value. The optimization path is recorded in the

matrix itiner that has the number of rows equal to the number of iterations. The

first derivatives are computed my finite differences, even though in this simple case

they can be computed analytically. In more general cases, that will be discussed

further in the book, the objective function will not be given in analytical form and

therefore the derivatives will always be computed by finite differences.

Second MATLAB code serves for the visualization of the optimization results as

mentioned previously. One optimization result is given in Fig. 2.2 that shows the

convergence after 8 iterations starting from the point given by x ¼ [1.1, 1.5]T, for

the initial step length equal to 0.1. It may be observed from the figure that, from the

first to the fourth iteration the algorithm constantly enlarges the step length after

which it starts to shorten it as it approaches the solution. The selection of the initial

step is not influencing very much the performance of the optimization algorithm as

long as it is selected within a reasonable range for the given problem. Table 2.1

shows the optimization path for this problem for the two different initial step

lengths: aIN ¼ 0.1 and aIN ¼ 0.5. It may be observed that, even though the steps

Fig. 2.1 The objective

function given by Eq. 2.11 on

the domain x1; x2 2 �2; 2½ �

2.2 Line Search Method 23

% Optimization algorithm based on line search method.
% Step length identification by three trial steps

% Setting the options for the optimization
guess=rand(2,1)*2-ones(2,1); % Initial vector of parameters
pert=0.001; % Perturbation for the first derivatives
length=0.1; % Initial step length
resMIN=1e-6; % The value of residual at the termination

% Optimization cycle
res=10;
iter=0;
while res>resMIN

itiner(iter+1,1:2)=guess';
e=exfun(guess);
itiner(iter+1,3)=e;
iter=iter+1;
for i=1:size(guess,1)

guessp=guess;
 guessp(i)=guessp(i)+pert;

e1=exampl2(guessp);
 grad(i,1)=(e1-e)/pert;
end
stpdsc=-grad/norm(grad);
% Trying different step lengths
guess1=guess+length*stpdsc;
guess2=guess+(length/4)*stpdsc;
guess3=guess+(length*2)*stpdsc;
e1tr=exfun(guess1);
e2tr=exfun(guess2);
e3tr=exfun(guess3);
best=min([e1tr,e2tr,e3tr]);
if e1tr==best

guess=guess1; step=1;
end
if e2tr==best

guess=guess2; step=2; length=length/4;
end
if e3tr==best

guess=guess3; step=3; length=length*2;
end
res=guess'*guess; % Computing residual

 itiner(iter+1,1:2)=guess';
 itiner(iter+1,3)=eTR;
end

24 2 Optimization Algorithms

were different, both optimizations were terminated practically at the same

result, after the same number of iterations. Since it is easy to change this parameter

it may be verified that the algorithm will have the same performance (in terms of

number of iterations) also for different values of initial step lengths within the

range [0,1].

A disadvantage of this approach is that every trial step length requires one

computation of the function. In this particular case, for the number of parameters

% Plotting the results of the optimization
N=0;
for i=-1.2:0.01:1.2
 N=N+1;
 M=0;
 for j=-1.2:0.01:1.2
 M=M+1;
 fun(N,M)=exfun([i;j]);
 end
end
i=-1.2:0.01:1.2; j=-1.2:0.01:1.2;
figure(1)
surf(i,j,fun,'LineStyle','none')
grid on
hold on
plot3(itiner(:,1),itiner(:,2),itiner(:,3),'MarkerSize',10,'Mar
ker','o','LineWidth',3,'LineStyle','--','Color',[0 0 0])
view([-1,1,3])
hold off

% Objective function
function e=exfun(x);
e=x(1)^2+x(2)^2;

Fig. 2.2 Result of

optimization – objective

function and the itinerary of

the optimization

2.2 Line Search Method 25

to identify being equal to 2 and with 3 trial steps each iteration included 6 evalua-

tions of function. Considering that the number of iterations was 8, it resulted in total

of 48 function evaluations.

Some algorithms that are using inexact line search approach are introducing

different criteria that need to be satisfied for the approximated minimization of

Eq. 2.10. For example one criterion that can be used is that the step length should

give a sufficient reduction of the objective function. This can be measured by the

inequality that is found in the literature as Armijo criterion ([4, 5]), namely

f xk þ akpkð Þ � f ðxkÞ þ c1akrf Tk pk (2.12)

where c1 is some small scalar constant. The right-hand side of the inequality (2.12)

is a linear function of step length and it has a negative slope. It lies above the

objective function (or at least it is the case in close proximity of the current iterate)

which is guaranteed with c1 being a small positive number.

It is of course evident that for any sufficiently small value of step length, the

Armijo criterion is satisfied. Therefore the goal should be to find the largest possible

ak for which it is satisfied.

A possible implementation of this approach is given in the following MATLAB

code. Here the algorithm starts from some initial value of step length and then

continues doubling it, until it finds the largest values of ak that satisfies the

inequality. This value is accepted as a reference one for the next iteration. In the

case when it violates the inequality (2.12) the step length is divided by 2.

Table 2.1 Optimization results for two different initial step lengths

x1 x2 f (x) x1 x2 f (x)

Iteration aIN ¼ 0.1 aIN ¼ 0.5

1 1.1000 1.5000 3.4600 1.1000 1.5000 3.4600

2 0.9817 1.3387 2.7560 0.5086 0.6936 0.7398

3 0.7452 1.0162 1.5879 �0.0828 �0.1127 0.0196

4 0.2720 0.3711 0.2117 0.0650 0.0889 0.0121

5 0.1537 0.2098 0.0677 0.0281 0.0385 0.0023

6 0.0355 0.0485 0.0036 �0.0089 �0.0119 0.0002

7 0.0059 0.0082 0.0001 0.0059 0.0082 0.0001

8 �0.0015 �0.0019 0.0001 �0.0015 �0.0019 0.0001

26 2 Optimization Algorithms

% Optimization algorithm based on line search method.
% Step length identification by Armijo condition

% Setting the options
length=5; % Starting test length for the first iteration
c1=1e-4; % Coefficient for Armijo criterion
pert=0.001; % Perturbation for the first derivatives
guess=rand(2,1)*2-ones(2,1); % Initial vector of parameters
resMIN=1e-6; % The value of residual at the termination

% Optimization cycle
res=10;
iter=0;
while res> resMIN
 itiner(iter+1,1:2)=guess';
 e=exfun(guess);
 itiner(iter+1,3)=e;
 iter=iter+1;
 for i=1:size(guess,1)
 guessp=guess;
 guessp(i)=guessp(i)+pert;
 e1=exfun(guessp);
 grad(i,1)=(e1-e)/pert;
 end
 stpdsc=-grad/norm(grad);
 % Armijo criterion
 foundlenght=0;
 shrt=0; % Total number of eshortening
 while foundlenght==0
 guessTR=guess+length*stpdsc;
 eTR=exfun(guessTR);
 if eTR>e+c1*length*grad'*length*stpdsc;
 length=length/2; % Getting back to previous length
 guessTR=guess+length*stpdsc;
 eTR=exfun(guessTR);
 if eTR<e+c1*length*grad'*length*stpdsc;
 foundlenght=1;
 else
 length=length/2;
 shrt=shrt+1;
 end
 else
 if shrt>0
 break
 end
 length=length*2;
 end
 end
 % Updating values
 guess=guess+length*stpdsc;
 best=eTR;
 res=guess'*guess;
 itiner(iter+1,1:2)=guess';
 itiner(iter+1,3)=eTR;
end

2.2 Line Search Method 27

The remaining two routines are the same as in previous case and can be used also

for this optimization. Figure 2.3 visualizes the results of the optimization starting

from the same initial point as in previous case, using Armijo criterion for quit large

initial step length (equal to 5).

In this case the optimization was terminated after six iterations instead of eight in

the previous one visualized in Fig. 2.2. With the adopted strategy however the total

number of step lengths that will be tried is not fixed. It means that also the number

of function evaluations within the iteration is not limited. Unlike the previous case

where in each iteration there were only three candidates, in this one the trials will be

repeated until the violation of Armijo criterion. This fact makes the presented

implementation more dependent on the initial step length. Repeating the optimiza-

tion it can be verified that for the initial step length equal to 1, the optimization is

terminated after only five iterations, while the starting value of 0.2 involves nine

iterations. Some improvements of the approach are of course possible, like for

example the one that will put a limitation of the number of increments of the step

length in order to avoid waste of computing time in the case when the initial step

length is chosen to be quit small.

Satisfying Armijo criterion is not enough by itself to ensure that the algorithm

makes reasonable progress since, as previously mentioned, the inequality (2.12) is

satisfied for any sufficiently small ak. This criterion is therefore sometimes com-

bined with the curvature condition which requires that the step length satisfies the

following condition

rf xk þ akpkð ÞT � pk � c2rf Tk � pk (2.13)

where c2 is some scalar constant with the value within the range [c1,1]. The
curvature criterion practically means that the slope of Eq. 2.10 (a function that

we are approximately minimizing) at the ak is c2 times larger than the initial slope at

xk. Since the initial slope is negative it means that the requirement states that the

slope at acceptable step length should be less negative. This is a reasonable require-

ment since strong negative slope would indicate a possible significant reduction of

the objective function by moving further along the chosen direction.

Fig. 2.3 Result of the

optimization with Armijo

criterion

28 2 Optimization Algorithms

The sufficient decrease and curvature condition are known collectively asWolfe
conditions. It represents a strategy for selection of stopping criterion which should

provide better trials than Armijo condition alone, but since they require additional

gradient computation, as the left-hand side of (2.13) is the derivative of (2.10) at ak,
it may involve even larger number of function evaluations in some cases.

The implementation of the two strategies given here should serve to put in evidence

that the step length for the steepest descent plays an important role in overall

performance of the optimization algorithm. Both of the two discussed strategies

showed some oscillatory behavior around the solution which leads to overall increase

in the iterations. Figure 2.3 puts in evidence that already third iteration is located quit

close to the result. This suggests that the steepest descend algorithm can be combined

with some other method once that it approaches the solution.

2.2.2 Line Search with Newton Direction

Another important search direction is the Newton direction. This direction is

derived from the second-order Taylor series approximation of the objective func-

tion. Using this series to approximate the real objective function around current

iterate, and truncating it after the second derivative term will give the following

model function

f xk þ pkð Þ � mk pkð Þ ¼ f xkð Þ þ pTkrf xkð Þ þ 1

2
pTkr2f xkð Þ � pk (2.14)

Assuming thatr2f xkð Þ is positive definite, Newton direction can be obtained by
finding pk that minimizes the model function mk(pk). Finding the first derivatives of

mk with respect to direction and simply setting it to zero will give us the minimizer

of the model function, namely

pk ¼ � r2fk
� ��1rfk (2.15)

Unlike the steepest descent direction, where as we already saw an additional

computational effort needs to be made to further identify the step length, Newton

direction has a “natural” step length equal to 1. This can be seen from the way the

direction is derived. Since it is determined by setting the first derivative of the

model function to zero, it means that the Newton direction computed by (2.15) will

be exact minimizer of model function. It further implies that the reliability of this

direction depends on how much the true objective function differs from the model

function. If they are almost the same, Newton direction can provide minimizer in

one step only.

Let us now consider the same optimization problem as before where objective

function is given by (2.11), and let us use the followingMATLAB code to solve this

problem using Newton direction.

2.2 Line Search Method 29

% Optimization algorithm based on line search method.
% That uses Newton direction with the step size equal to 1

% Setting the options
guess=rand(2,1)*2-ones(2,1); % Initial vector of parameters
pert=0.001; % Perturbation for the first derivatives
resMAX=1e-6; % Residual at termination

% Optimization cycle
res=10;
iter=0;

while res>resMAX
 e=exfun(guess);
 itiner(iter+1,1:2)=guess';
 itiner(iter+1,3)=e;
 iter=iter+1;
 % Computing first derivatives
 for i=1:size(guess,1)
 guessp=guess;
 guessp(i)=guessp(i)+pert;

e1=exfun(guessp);
 grad(i,1)=(e1-e)/pert;

end
 % Computing Hessian matrix
 HESS=comhess(@exfun,point,pert)
 newton=-inv(HESS)*grad; % Newton direction
 length=1; % Natural length
 guess1=guess+length*newton;
 e1tr=exfun(guess1);
 itiner(iter+1,1:2)=guess1';
 itiner(iter+1,3)=e1tr;
 guess=guess1;
 res=guess'*guess;
end

function HESS=comhess(FUNNAME,point,pert)
% Computing the Hessian matrix
pointp=point;
e0=FUNNAME(pointp);
for i=1:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;

e1=FUNNAME(pointp);
 pointp(i)=pointp(i)+pert;

30 2 Optimization Algorithms

Note that the second routine given in the listing is a MATLAB function used to

compute Hessian matrix. This function will be also used later in other optimization

algorithms.

The optimization problem was solved starting from the same initial point as in

previous cases and the result is visualized in Fig. 2.4.

The real power of Newton direction is evidenced in this example since the

algorithm converged in one iteration only. Unlike steepest descend approach,

which selects the direction, and then, depending on the strategy of the step length

search, the algorithm may take couple of iterations to reach the solution, Newton

direction immediately finds the step that exactly minimizes the model function. In

this case the objective function was practically the same as the model function, and

so the optimization terminated after only one iteration.

 e2=FUNNAME(pointp);
 Usnd(i)=(e0-2*e1+e2)/(pert^2);
end
% mixed derivative
pointp=point;
pointp(1)=pointp(1)+pert;
U112=FUNNAME(pointp); % term i+1,j
pointp=point;
pointp(2)=pointp(2)+pert;
U121=FUNNAME(pointp); % term i,j+1
pointp=point;
pointp(1)=pointp(1)+pert;
pointp(2)=pointp(2)+pert;
U1121=FUNNAME(pointp); % term i+1,j+1
mixed=1/pert*((U1121-U112)/pert-(U121-e0)/pert);
HESS(1,1)=Usnd(1);
HESS(1,2)=mixed;
HESS(2,1)=mixed;
HESS(2,2)=Usnd(2);

Fig. 2.4 Result of the

optimization with Newton

direction – convergence after

one step only

2.2 Line Search Method 31

The example considered here have simple, smooth and convex objective func-

tion that is suitable to be modeled by second-order Taylor series. It can be shown

that it is the case, even farther from the solution. Figure 2.5 shows the result of the

optimization when the initialization point was quit far from the solution being equal

to [15,15]T. Still however, the Newton direction provided the solution in one

iteration.

In this code, derivatives are computed by finite differences. This represents a

disadvantage in terms of computing times. However, if the objective function, like

in this case can, with acceptable accuracy, be represented by a second-order model,

this drawback is acceptable since, as we saw, the Newton direction, with respect to

steepest descend, provides a significant reduction in the number of iterations.

More serious problem of Newton direction is that, when Hessian is not positive

definite, the Newton direction may not be defined, or if it is defined it may not be

a descending direction. In order to overcome this problem there are different

approaches in which the Hessian matrix is modified in order to make it positive

definite and thereby yield a descent direction. These problems will arise in the

situations where the objective function is more complicated than the one studied in

this example. Therefore in the following pages the behavior of both steepest descent

and Newton direction method will be analyzed on the least squares type objective

function.

2.2.3 Line Search in Least Squares Problems

Let us consider the following analytical function

yðtÞ ¼ t � sinðtÞ � ffiffi

t
p

(2.16)

which, at the domain t∈[0,3] is visualized in Fig. 2.6. Now let us imagine that this

expression represents the distribution of a certain physical value (here y) at some

Fig. 2.5 Newton direction

optimization starting far from

the solution

32 2 Optimization Algorithms

time or spatial coordinate t. Let us further suppose that we have some model

function that represents a computed counter-part of this experiment given by

yCOMðt; xÞ ¼ x1 � t � sinðtÞ �
ffiffiffiffiffiffiffiffiffi
x2 � t

p
(2.17)

The model function is function of two parameters collected in vector x.

Let us assume that we would like to identify the two parameters x1 and x2 for
which the model function (2.17) will match the “target” one given by (2.16).

Obviously, the target function exists within the family of model functions and it

is obtained for x ¼ [1,1]T. In order to design the inverse analysis procedure that

will identify these two parameters the first step is to build the objective function

that will quantify the discrepancy between the target and model function. This can

be done using the discrepancy function in the least squares form that will represent

a summation of squares of differences between the two function values for some

grid over t, as shown in Fig. 2.7. The objective function will have the following

form

Fig. 2.6 Graph of analytical

function (2.16), used as

“target” function

Fig. 2.7 Model and “target”

function with the distances

between the two curves over

some grid of points

2.2 Line Search Method 33

f xð Þ ¼ 1

2

XNp

i¼1

yðtiÞ � y ti; xð Þ½ �2 (2.18)

where Np is the number of grid points over t used to compute the distance between

the two curves. It should be mentioned that this is a typical formulation in any

situation where parameterized models are used to predict some phenomenon.

In such cases the discrepancy between model prediction and observed behavior is

usually measured by the function of the type given by Eq. 2.18. In this case we

simplified the situation by considering as observation “clean” analytical data so that

the exact solution will exist within our model, in order to study only the behavior of

different optimization approaches in the situation in which we know exactly what

the solution is.

The objective function defined in this way has more complicated shape than in

previously studied case and its form is visualized in Fig. 2.8.

Following MATLAB code can be used to minimize objective function (2.18)

using steepest descend approach. The code is practically the same as previously

given for optimization of function (2.11) except that here additional lines for

different convergence criteria are inserted. Here the optimization is terminated

not only in the case when residual is smaller than some prescribed value, but also

if the changes of the parameters are smaller than certain value and if the number of

iterations is larger than given number NUMIT. This is a common practice in more

complicated optimizations since there, a single criterion is not enough and may

even lead to the optimization that will never be terminated.

Fig. 2.8 Discrepancy

function as summation of

squares of differences

between the two curves

34 2 Optimization Algorithms

% Optimization algorithm based on Line search with steepest
% descend, with Armijo condition
clear

% Setting the options
minchg=1e-5; % Min change in parameters between two iterations
guess=rand(2,1)*2;
minRES=1e-6; % Residual at termination
NUMIT=70; % Max number of iteration allowed
pert=0.001; % Perturbation for the derivatives
length=0.01; % Starting test length for the first iteration
c1=1e-2; % Coefficient for Armijo criterion

% Optimization cycle
res=10;
iter=0;
while res>minRES

itiner(iter+1,1:2)=guess';
e=funLSQ(guess);
itiner(iter+1,3)=e;
iter=iter+1;
for i=1:size(guess,1)

 guessp=guess;
 guessp(i)=guessp(i)+pert;

 e1=funLSQ(guessp);
 grad(i,1)=(e1-e)/pert;
end
stpdsc=-grad/norm(grad);
% Armijo criterion
foundlenght=0;
while foundlenght==0

 guessTR=guess+length*stpdsc;
 eTR=funLSQ(guessTR);

 if eTR>e+c1*length*grad'*length*stpdsc;
 length=length/2; % Getting back to previous lenght
guessTR=guess+length*stpdsc;

 eTR=funLSQ(guessTR);
 if eTR<e+c1*length*grad'*length*stpdsc;
 foundlenght=1;

 else
 length=length/2;

 end
 else

 length=length*2;
 end
end
% Updating values
guess=guess+length*stpdsc;

2.2 Line Search Method 35

The second MATLAB code is used to compute the discrepancy function

between model curve and “experimental” one. Here the “experimental” curve is

placed in the file lsqexp.txt that is actually the graph of Eq. 2.16 (Fig. 2.6).

The result of the optimization is visualized in Fig. 2.9. Setting the total allowed

number of iterations to 70 and other convergence criteria quite strict (minimum

change in parameters 1E-5 and minimum residual at the termination 1E-6) the

optimization terminates after reaching 70th iteration, at parameter values of

x ¼ [0.998, 0.995]T.

This objective function is a typical example which demonstrates that the steepest

descend is not the best direction to go along. As it can be observed from the figure,

best=eTR;
res=best;
itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=best;
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||

abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end
if iter> NUMIT % Terminated after the iteration reach NUMIT

res=0;
end

end

function e=funLSQ(x);
exper=load('lsqexp.txt');
A=x(1);
B=x(2);
cnt=0;
for i=0:0.01:3

cnt=cnt+1;
 y(cnt)=A*sin(i)*i-sqrt(B*i);
end
e1=y'-exper(:,2);
e=e1'*e1;

Fig. 2.9 Itinerary of steepest

descend optimization of least

squares discrepancy function

given by Eq. 2.18

36 2 Optimization Algorithms

practically in all intermediate points within the optimization the steepest descend

direction is not matching the direction of global minimum. Therefore, only the

small steps can be achieved with which the optimization slowly approaches the

minimum, which causes large number of iterations. Since the reason for poor

performance is the direction itself, no improvements can be obtained with different

strategies for step length selection.

The same problem can be solved using Newton direction. For this purpose a

previously given MATLAB code with the same modifications as those for the

steepest descend can be used.

The Newton direction approach turns out to be much more effective. Using the

same tolerances as for the steepest descend the algorithm converges after only

seven iterations but practically already the forth one is in the vicinity of the solution.

Figure 2.10 visualizes the itinerary and Table 2.2 lists all the parameter values and

corresponding objective function values.

The last example proved the superiority of the Newton direction in the cases

when it can be computed, and when it is a descending direction. However, using

this direction in the line search approach is not that effective all the time. Apart

from being computationally more expensive with respect to steepest descend by

involving the computation of second derivatives, there are two main problems

connected with the successful implementation of Newton direction.

The first one is that, as already evidenced, the Newton direction minimizes exactly

the model function which is a quadratic form of a real objective function around the

current iterate. This is a good approximation in the vicinity of the current iterate but

by going farther it starts to worsen. It may happen, when the minimizer of the model

function is far from the current iterate, that it will be a poor minimizer of the real

Fig. 2.10 Itinerary of

Newton direction

optimization of least squares

discrepancy function given by

Eq. 2.18

Table 2.2 Optimization

results for Newton direction

and LS function

Iteration x1 x2 f(x)

1 1.5000 1.5000 38.3040

2 1.1337 1.2926 0.9928

3 0.9847 0.9450 0.0975

4 0.9966 0.9923 0.0008

5 0.9994 0.9987 0.0000

6 0.9994 0.9988 0.0000

7 0.9994 0.9988 0.0000

2.2 Line Search Method 37

function, or it can even increase its value. This can be encountered especially in the

cases when iterate is quite far from the global minimum point of the real objective

function. An alternative approach that overcomes this problem is Trust Region
approach and it will be discussed in more details further in this chapter.

The second problem is connected with the fact that Hessian matrix may not be

positive definite which means that the Newton direction computed by Eq. 2.15 may

not be a descent direction. This problem may be solved in the line search context by

modifying the Hessian matrix in order to force it to be positive definite. Unlike the

first abovementioned problem, where the difference between the model function

and the real one can be verified only after the value of the objective function is

evaluated for the next iteration (computed by adding Newton direction to the

current iterate) tackling of the second problem is not that time consuming. After

the Hessian matrix is computed, if it runes out not to be positive definite, there is no

need to use this step to evaluate the objective function as it is not guaranteed that it

will reduce the objective function. Instead, an appropriate modification of Hessian

matrix can be adopted in order to yield a descending direction. Implementing such

modification in the algorithm is not computationally “expensive”, as it is not

involving any further evaluation of the objective function.

The Hessian matrix modification is usually obtained by adding either a positive

diagonal matrix or full matrix to the true Hessian. However the step computed by

modified Hessian matrix looses its “natural” length of 1, as it is not anymore the

exact minimizer of the model function. If the modified Hessian is positive definite,

the direction computed using it will be a descending one but the step length may

have to be adjusted to ensure a reasonable decrease of the objective function like in

the line search approach with steepest descent direction. Usually in the line search

algorithms that use modified Newton direction, the step length 1 is tried first and

then some stopping conditions like those discussed previously are checked. If they

are not satisfied, the algorithm should modify the step length, otherwise it may

proceed to the next iteration.

Even though the fact that Hessian is not positive definite can be verified a priori

avoiding a useless objective function evaluation, still the need to evaluate the step

length makes the approach a bit more time consuming with respect to the classical

Newton direction line search. However, with this modification, as it is usually not

performed at each iteration, the Newton direction line search usually tends to keep

good convergence rate, and in general is more effective than the steepest descend.

In order to illustrate the effect of modification of Hessian matrix let us consider

the following numerical example. Let us assume that the target distribution of some

physical value on the domain t∈[0, 3], that in this context represents “experimen-

tal” data, is given by the following equation (Fig. 2.11)

y ¼ 2:5 � sin tþ ecos 2:5tð Þ (2.19)

Like in previously discussed case, let us suppose that the computed counter-part

of the “experimental” values is given with the following model function

yCOM t; xð Þ ¼ x1 � sin tþ ecos x2tð Þ (2.20)

38 2 Optimization Algorithms

which depends on two parameters collected in vector x.

The goal is to identify the two model parameters by constructing a procedure

that will minimize the discrepancy function in the least squares form, like the one

given by Eq. 2.18. The objective function to be minimized is visualized in Fig. 2.12.

The following MATLAB code can be used to minimize this objective function

using both classical Newton direction and modified one. Here, the modification is

performed by adding a diagonal matrix that for this particular case turned out to be

good enough. In general, a wide variety of types of modifications can be used, and

the reader is referred to the reference [2] for more details on this topic. As

mentioned earlier, after the Hessian modification, it is also needed to check for

the step length, as it cannot be anymore a priori assumed as equal to 1. In the code

given here the first tried value was 0.5, and then it is further reduced if necessary.

The objective function studied here is characterized with large number of local

minima when the parameters are changing in wider ranges. In order to avoid

trapping into one of those, as the tackling of local minima is not an issue at this

stage, the goal was to avoid large steps along the descending directions. Therefore

the maximum allowed step length for modified Newton direction was assumed to be

0.5 unlike the common practice where it is usually 1.

In order to evidence the advantage of least squares method in terms of easy

approximation of Hessian matrix by computing only first derivative, the following

Fig. 2.12 The objective

function to be minimized

Fig. 2.11 Graph of analytical

function (2.19), used as “target”

function

2.2 Line Search Method 39

code has an option either to compute full Hessian matrix, or to approximate it by

using just Jacobian (Eq. 2.7). This option is set by the variable Hessapp. By
attributing value 1 to it, Hessian approximation will be used, otherwise, also second

derivatives will be computed. Both of the functions used for this computation are

given at the bottom of the code. Note that with respect to the case presented in

Sect. 2.2.2, also the routine for computing Hessian matrix is modified in order to

take into account function that gives vector-value (i.e. vector of residuals).

% Line search algorithm with Newton direction with possibility
% of Hessian matrix modification and approximation
clear

% Setting the options
minchg=1e-4; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.5;2.9];
pert=1e-6; % Perturbation for the first derivatives
res=10;
HessMod=0; % Indication for Hessian modification
Hessapp=0; % Approximating Hessian matrix

% Optimization cycle
iter=0;
while res>1e-6
eV=funLSQ1(guess);
e=0.5*eV'*eV;
itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=e;
iter=iter+1;
for i=1:size(guess,1)
 guessp=guess;
guessp(i)=guessp(i)+pert;

 eV=funLSQ1(guessp);
 e1=0.5*eV'*eV;
grad(i,1)=(e1-e)/pert;

end
guessp=guess;
eV=funLSQ1(guessp);
e0=eV'*eV;
if Hessapp==1
 HESS=comhessapp(@funLSQ1,guess,pert);

else
 HESS=comhess(@funLSQ1,guess,pert);

end
newton=-inv(HESS)*grad;
length=1;
lambdas=eigs(HESS);
if HessMod==0
 lambdas=abs(lambdas); %Trick to avoid Hessian

modification
end

% Checking if Hessian is positive definite
if lambdas(1)>0 && lambdas(2)>0
 hessmod=0;

else
 coeff=mean(abs(lambdas));

40 2 Optimization Algorithms

posdef=0;
 while posdef<1
 HESSm=HESS+coeff*eye(2); % Adding diagonal matrix
 hessmod=1; % Indication of modified HESSIAN
 lmb=eigs(HESSm);
if lmb(1)>0 && lmb(2)>0
 posdef=1;

 else
 coeff=coeff*1.5;
 end

 end
end

% Computing next iterate
if hessmod==0
 guess1=guess+length*newton;

 eV=funLSQ1(guess1);
 e1tr=0.5*eV'*eV;

else
 foundstep=0;
length=0.5;

 while foundstep==0
 mnewton=-inv(HESSm)*grad; % Modified Newton

direction
 guess1=guess+length*mnewton;
 PQN=length*mnewton; % Step for quasi newton

direction
 modf=e0+PQN'*grad+PQN'*HESS*PQN;
 if modf<e0
 foundstep=1;

 else
 length=length/1.5;
 end

 end
 eV=funLSQ1(guess1);

 e1tr=0.5*eV'*eV;
end
itiner(iter+1,1:2)=guess1';
itiner(iter+1,3)=e1tr;
guess=guess1;
res=guess'*guess;
if iter>MAXIT % Terminated after the iteration reaches MAXIT
 res=0;

end
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||

abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end

end

2.2 Line Search Method 41

function e=funLSQ1(x);
exper=load('lsqexp1.txt');
A=x(1);
B=x(2);
cnt=0;
for j=0:0.01:3
 cnt=cnt+1;

y(cnt)=A*sin(j)+exp(cos(B*j));% *j+B*j^2;
end
e1=y'-exper(:,2);

function HESS=comhess(FUNNAME,point,pert)
% Computing the Hessian matrix
pointp=point;
eV=FUNNAME(pointp);
e0=0.5*eV'*eV;
for i=1:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;
 eV=FUNNAME(pointp);
 e1=0.5*eV'*eV;
 pointp(i)=pointp(i)+pert;

eV=FUNNAME(pointp);
 e2=0.5*eV'*eV;
 Usnd(i)=(e0-2*e1+e2)/(pert^2);
end
% mixed derivative
pointp=point;
pointp(1)=pointp(1)+pert;
eV=FUNNAME(pointp); % term i+1,j
U112=0.5*eV'*eV;
pointp=point;
pointp(2)=pointp(2)+pert;
eV=FUNNAME(pointp); % term i,j+1
U121=0.5*eV'*eV;
pointp=point;
pointp(1)=pointp(1)+pert;
pointp(2)=pointp(2)+pert;
eV=FUNNAME(pointp); % term i+1,j+1
U1121=0.5*eV'*eV;
mixed=1/pert*((U1121-U112)/pert-(U121-e0)/pert);
HESS(1,1)=Usnd(1);
HESS(1,2)=mixed;
HESS(2,1)=mixed;
HESS(2,2)=Usnd(2);

42 2 Optimization Algorithms

In the code listed above, whether, in each iteration, a true Newton direction is

used, or it is modified in order to enforce descending step, is chosen by variable

HessMod.
The optimization problem was solved two times using as initialization point

x ¼ [1.5, 2.9]T. First time it was solved without Hessian modification. The result is

visualized in Fig. 2.13. Upper graph shows how the parameters are changing during

the iterations, while the down one shows the changes in the objective function. It

may be observed that from second to third iteration there is a large jump in the value

of the objective function. It is due to the fact that the Hessian matrix computed at

this iteration is not positive-definite. At this point, the eigenvalues of Hessian

matrix are equal to: l1 ¼ 251.7 and l2 ¼ �8.7. As a consequence to that, the

computed Newton step is not descending even for the model function. Without

modifying Hessian matrix, and by accepting this step, third iteration goes far from

the solution, and eventually finishes in the local minimum.

The same problem can be solved using given code by setting the variable

HessMod equal to 1, which will introduce the modification of Hessian matrix in

the cases when it is not positive definite. The results are visualized in Fig. 2.14. It

may be observed that in this case there is a continuous reduction of the function. In

the second iteration the Hessian matrix was modified and the step was descending.

After this iteration there was no need to perform any modification and the algorithm

finished with true Newton directions showing a very fast rate of convergence and

finding the parameters after only five iterations.

Finally, in order to verify that for least squares problems, especially not very far

from the solution, also Hessian approximation can be used almost with the same

efficiency the problem is once again solved but having set variable Hessapp equal

to 1. Figure 2.15 visualizes the results, from which it may be confirmed that in this

particular case there was no degradation in performance of the optimization

function HESS=comhessapp(FUNNAME,point,pert)
% Computing the Hessian matrix
pointp=point;
e0=FUNNAME(pointp);
% Computing Jacobian
for i=1:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;

e1=FUNNAME(pointp);
 J(:,i)=(e1-e0)/pert;
end
% Hessian approximation
HESS=J'*J;

2.2 Line Search Method 43

algorithm even when Hessian approximation is used. This particular feature can

give a significant savings in computing times when the function evaluation involves

possibly time consuming FE analyses.

The same problem can be solved using previously given MATLAB code for

steepest descend. If for example the one with three trial steps is employed, for this

particular case it turns out to be more effective than in the optimization of objective

function given by Eqs. 2.16–2.18, and it converges after 24 iterations. The results

are given in Fig. 2.16. It can be noticed that the algorithm with modified Newton

direction is overall more effective than steepest descend, as it involves less

evaluations of function.

Previous example showed that, even though the use of true Newton direction can

lead sometimes to steps with increase of the objective function, this malfunction

can be overcame relatively easy by implementing Hessian modification. With this

approach the algorithm preserves a fast convergence rate and in most of the cases

can be more effective than the steepest descend direction.

Another problem connected with Newton direction is that in some cases, espe-

cially far from the solution the model function can be quit different from the real

one. It may result that, the Newton direction will provide a step that successfully

minimizes the model function but which is not minimizing enough or even not at all

Fig. 2.13 Results of

optimization without

modifying Hessian matrix

44 2 Optimization Algorithms

the real function. To tackle this problem a logical approach is to use the model

function only in the vicinity of the current iterate. This is approach adopted in the

Trust Region method.

2.3 Trust Region

Both line search with Newton direction and trust region are using the quadratic

model of objective function, but they differ however in the way they make the use

of this model. Line search starts by fixing the direction and then identifies an

appropriate distance, namely the step length. Trust region on the other hand, first

chooses the maximum distance – the trust region radius Dk – and then seeks both the

direction and the step length that makes the best possible improvement of the

function inside the trust region. This approach helps dealing with the situations

when the quadratic model is quite different from the actual function as it may occur

far from the solution. The model function will be close to the objective function in

the vicinity of the current point, so restricting the minimization just to that area is a

reasonable strategy.

Fig. 2.14 Results of

optimization with Hessian

modification

2.3 Trust Region 45

One of the main issues of the trust region approach, that to a large extent

determines the success and the performance of this algorithm, is the decision

strategy of how large the trusted region should be. Allowing it to be too large can

make the algorithm facing the same problem as the classical Newton direction line

search, when the minimizer of model function is quite far from the minimizer of the

actual objective function. On the other hand using too small region the algorithm

misses an opportunity to take a substantial step that could move it much closer

to the solution. Some approaches on how to control this important issue will be

discussed later.

Each step in the trust region algorithm is obtained by solving the sub-problem

defined by

minmk pkð Þ ¼ f xkð Þ þ pTkrf xkð Þ þ 1

2
pTkr2f xkð Þ � pk

pkk k � Dk (2.21)

where Dk is the trust region radius.

Fig. 2.15 Results of

optimization with Hessian

approximation

46 2 Optimization Algorithms

From previous discussion it may be observed that there are essentially two

important parts of any trust region algorithm. The first one, already anticipated, is

the way the algorithm controls the radius of trust region. The second one is how

efficiently it solves the sub-problem defined by (2.21). In what follows it will be

shown how both of these problems are tackled and implemented within different

optimization algorithms.

2.3.1 Trust Region Algorithm Based on Cauchy Point

As previously demonstrated on steepest descend line search approach, the algo-

rithm can have global convergence characteristic even when the optimal step length

is not used at each iteration. A similar reasoning applies also in trust region

methods. Although it is convenient to find optimal solution of the sub-problem

(2.21), for global convergence it is enough to find an approximate solution that lays

within the trust region and gives a sufficient reduction of the model function.

Fig. 2.16 Results of

optimization with steepest

descend and three trial steps

2.3 Trust Region 47

This approach can be obtained by the use of so-called Cauchy point, which is a

point that minimizes the model function along the steepest descent direction

subjected to the trust region bound. However, the presence of model function

makes the minimization of sub-problem a lot easier than in the steepest descend

line search procedure. After choosing the search direction, the problem becomes

one-dimensional but in the Cauchy point trust region algorithm it can be solved

more effectively than in the steepest descent line search since here it is applied to

the model function. Therefore, the evaluation of the function is computationally

inexpensive.

Considering that the step length anyhow cannot exceed the trust region radius, a

simple strategy for finding the Cauchy point can be used. First the value of model

function can be computed for the values of steps equal to radius Dk, 0.75Dk and

0.5Dk. Based on these values it is easy to see in which zone the minimum is located.

In the second iteration algorithm computes the value of model function for the

intermediate point between the two boundary points and once again identifies the

zone of the solution. While the algorithm propagates the zone of minimum shrinks

and already after couple of iterations it is reasonably close to the solution. After the

last iteration one of the two boundary points with lower value of model function is

taken as a solution. Figure 2.17 shows schematically one case of the Cauchy point

identification based on this strategy.

As it can be seen from the figure, in fourth iteration the Cauchy point is identified

with an error of about 0.015Dk. However, considering that these iterations involve

only the computation of model function it is computationally inexpensive to repeat

this procedure for additional couple of iterations that would practically find the

exact minimizer of the model function along steepest descent direction.

Apart from the adopted strategy to solve the sub-problem an important issue of

any trust region algorithm is the way it controls the trust region radius Dk. In most

practical algorithms the choice of size of the region is performed according to

performance of the algorithm during previous iteration. In particular the choice is

Fig. 2.17 Finding a Cauchy

point approximately with four

iterations

48 2 Optimization Algorithms

made based on the agreement between the model function and the objective

function. This agreement is quantified by the following ratio

rk ¼
f xkð Þ � f xk þ pkð Þ
mð0Þ � m pkð Þ (2.22)

The denominator represents what is called predicted reduction, while the

numerator is called actual reduction obtained with the computed step on the

objective function. Therefore, the closer this ratio is to 1, the better agreement

between the objective function and the model is. Since predicted reduction will

always be a positive number, as this is a condition in solving the sub-problem,

if the ratio (2.22) turns out to be negative, it means that there was a significant

disagreement between model function and the objective function. In such case the

step should be rejected since it increases the objective function and the trust

region should be shrank.

The ratio (2.22) can be computed only after an additional evaluation of the

objective function, which therefore represents a wasted computing time if the step

is rejected. To avoid this possible inconvenience, this ratio is used as an indicator of

how accurately model function describes the real one. Therefore, in most practical

algorithms, if the ratio (2.22) is close to zero, the trust region radius should be

reduced for the next iteration in order to avoid possible step rejection. On the other

hand if it is close to 1 it is a signal that the trust region can be enlarged for the

next iteration and therefore allow for possible larger and more ambitious steps.

In general however, the trust region radius is not enlarged if the minimizer is found

strictly inside the region as in such case it is not interfering with the progress of the

algorithm.

Implementation of trust region algorithm that uses Cauchy point approach to

solve the sub-problem is given in the following MATLAB code. The listing

contains two separate routines – the main one, and an additional function that

computes Cauchy point using the strategy schematically presented in Fig. 2.17.

The value of initial trust region radius can be selected together with other options.

As addition to these also the previously given MATLAB function funLSQ1 is

used. During the optimization if the ratio (2.22) is smaller than 0.2 the algorithm

reduces the step by 20%. In the case when this ratio is larger than 0.6 the radius is

enlarged by 20%. Otherwise, it remains unaltered.

2.3 Trust Region 49

% Trust region algorithm with Cauchy point approach for
% sub-problem
clear

% Setting the options
minchg=1e-4; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.7;2.9];
pert=1e-6; % Perturbation for the first derivatives
res=10;
TRrad=0.8;

% Optimization cycle
iter=0;
while res>1e-6
 eV=funLSQ1(guess);
e0=0.5*eV’*eV
itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=e0;
iter=iter+1;
for i=1:size(guess,1)
 guessp=guess;
guessp(i)=guessp(i)+pert;
eV=funLSQ1(guess);
e1=0.5*eV’*eV;
grad(i,1)=(e1-e0)/pert;

end

end

% Computing Hessian matrix
HESS=comhess(@funLSQ1,guess,pert);
% Computing steepest descent direction
stpdsc=-grad/norm(grad);
% Determining TR step
accepted=0;
while accepted<1
 % Finding Cauchy point
pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);

 predred=-(pc'*grad+0.5*pc'*HESS*pc);
 guess1=guess+pc; % Next iterate

 eV=funLSQ1(guess);
 e1tr=0.5*eV’*eV;

actualred=e0-e1tr;
 ratio=actualred/predred;
 if ratio<0
 TRrad=TRrad/1.2;
else

 accepted=1;
 if ratio<0.2
 TRrad=TRrad/1.2;

50 2 Optimization Algorithms

if ratio>0.6
 TRrad=TRrad*1.2;

 end
 end

end
itiner(iter+1,1:2)=guess1';
itiner(iter+1,3)=e1tr;
guess=guess1;
res=e1tr;
% Checking convergence options
if iter>MAXIT % Terminate if reaching MAXIT

 res=0;
end
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||

abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;

end
end

function pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad)
% Function that computes Cauchy point

lenC1=TRrad; % point 1
lenC2=0.75*TRrad; % point 2
lenC3=0.5*TRrad; % point 3
pc1=lenC1*stpdsc;
pc2=lenC2*stpdsc;
pc3=lenC3*stpdsc;
modfun1=e0+pc1'*grad+0.5*pc1'*HESS*pc1;
modfun2=e0+pc2'*grad+0.5*pc2'*HESS*pc2;
modfun3=e0+pc3'*grad+0.5*pc3'*HESS*pc3;
if modfun1<modfun2
 lenC(1)=lenC1; % result between point 1 and 2
 lenC(2)=lenC2;
else
 if modfun3<modfun2
 lenC(1)=lenC2; % result between point 2 and zero
 lenC(2)=0;
 else
 if modfun1<modfun3
 lenC(1)=lenC1; % result between point 1 and 2
 lenC(2)=lenC2;

 else
 lenC(1)=lenC2; % result between point 2 and 3
 lenC(2)=lenC3;
 end
 end
end

2.3 Trust Region 51

Using given routines optimization problem defined by Eqs. 2.19 and 2.20

can be solved. In order to demonstrate the capability of trust region approach to

tackle the problems when quadratic model function is quite different from the

objective function we can solve the optimization problem starting from the point

[1.7, 2.9]T.

The same optimization problem can be solved by using routines given before

that use Newton line search approach with Hessian modification. Starting from the

same point we can notice that in the second iteration algorithm arrived to the

parameter values of [2.45, 2.05]T. Hessian matrix at this point is positive definite so

the algorithm proceeds with the exact Newton step. Computed Newton step for this

iteration is [�0.747, 1.552]T. Even though this step minimizes the model function,

it produces the increment in the actual objective function due to the significant

difference between the model and objective function. It represents a classical

example where Newton line search method with Hessian modification is ineffec-

tive resulting in increase of the objective function, as this increase results not

because the Hessian matrix is not positive definite, but because the minimizer of

the model function differs significantly from the minimizer of the objective

function.

As already anticipated, the trust region approach can keep this problem under

control by restricting the search for the minimizer of the model function within the

ic=0;
for NR=1:8
 ic=ic+2;
 pc1=lenC(ic-1)*stpdsc;
 pc2=lenC(ic)*stpdsc;
 modfun1=e0+pc1'*grad+0.5*pc1'*HESS*pc1;

modfun2=e0+pc2'*grad+0.5*pc2'*HESS*pc2;
lenC(ic+1)=0.5*(lenC(ic)+lenC(ic-1));
if modfun1<modfun2

 lenC(ic+2)=lenC(ic-1);
 else
 lenC(ic+2)=lenC(ic);
 end
end
IC=size(lenC,2);
pc1=lenC(IC-1)*stpdsc;
pc2=lenC(IC)*stpdsc;
modfun1=e0+pc1'*grad+0.5*pc1'*HESS*pc1;
modfun2=e0+pc2'*grad+0.5*pc2'*HESS*pc2;
if modfun1<modfun2 % Identifying Cauchy point
 pc=pc1;
else
 pc=pc2;
end

52 2 Optimization Algorithms

trust region zone. The result of the optimization by trust region is visualized in

Fig. 2.18.

It may be observed from Fig. 2.18b that the trust region algorithm provided a

monotone decrease of the objective function throughout the whole optimization.

The implemented strategy for reduction or increase of trust region radius based

on the ratio (2.22) turns out to be effective as there was no step rejection in the

optimization. In this case starting value of radius was taken to be equal to 0.8. This

value was reduced in second iteration and afterwards, as the algorithm started to

approach the solution in the fourth iteration it started to be increased in each

subsequent iteration.

Previous example showed that the Cauchy point trust region is effective in

solving minimization problems in the situations where line search with Newton

direction may fail. Trust region has the global convergence property even when the

sub-problem is solved only approximately since the Cauchy point doesn’t have to

be an absolute minimizer of the model function within the trust region.

Fig. 2.18 Results of

optimization with Cauchy

point trust region

2.3 Trust Region 53

Since the Cauchy point provides a sufficient reduction of the model function

within trust region, and we showed that this is enough for the global convergence,

the logical question that arises is why to use any other strategy to solve the sub-

problem? The answer is that, if we are using at every iteration Cauchy point we

are practically implementing the steepest descend approach on slightly more

effective way since the use of model function allowed us to find the minimizer

along steepest descend direction more accurately. But as we saw in previous

examples the efficiency of steepest descent usually is not connected to the

accuracy of finding the minimizer along this direction (e.g., example given in

Fig. 2.9). Cauchy point does not depend on the Hessian matrix and it uses it only

to compute the value of model function along the steepest descend direction.

Rapid convergence can be expected only if Hessian matrix plays an important role

in determining also the direction (like in Newton direction line search). There are

many trust region algorithms that compute the Cauchy point and then try to

improve it. One of them is a so-called dog-leg method originally proposed by

Powell [6].

2.3.2 Dog-Leg Trust Region

We already saw that in the cases when model function is a good approximation of

the objective function and when Hessian is positive definite Newton direction

provides quadratic convergence (e.g. result given in Table 2.2). We also saw that

similar convergence can be achieved also by modifying Hessian matrix when it is

not positive-definite and using Newton or modified Newton direction, where

needed, within line search algorithm (result visualizes in Fig. 2.14).

To incorporate fast quadratic convergence rate offered by full Newton step and

global convergence feature of steepest descent into a single trust region algorithm

an approach called dog-leg method for solving the sub-problem can be used. This

method finds a compromise between steepest descent step and Newton’s step based

on the size of the trust region.

Let xSDkþ1 and xNkþ1 be steepest descend and Newton step respectively. If the

Hessian matrix is positive definite then Newton step is actual minimizer of model

function. If this point lays inside the trust region than it should be taken as

the solution of the sub-problem. Otherwise, the piecewise linear curve defined by

the line segments joining xk to xSDkþ1 and xNkþ1 called dog-leg trajectory is taken

(Fig. 2.19). The point in which this trajectory intersects trust region, xDLkþ1 is taken as

the minimizer of the sub-problem.

The dog-leg trajectory can be implemented quit easy. In the first step using the

gradient and Hessian matrix a steepest descent direction pSDk and Newton direction

54 2 Optimization Algorithms

pNk are computed. For the case when Newton step lays outside the trust region, an

intersection point that corresponds to dog-leg step is found solving the following

equation

pSDk þ a pNk � pSDk
� �	

	
	
	 ¼ Dk (2.23)

This is an effective strategy since both the Cauchy point (guarantying the global

convergence) and the full Newton step (ensuring the possibility to have faster rate

of convergence) are incorporated into the possible step. It is obvious that the

solution will be closer to the Cauchy point for small trust regions while for large

enough trust region it will be reduced to Newton’s method.

The following listing shows a MATLAB code with the implementation of dog-

leg strategy.

Fig. 2.19 Dog-leg trajectory

2.3 Trust Region 55

% This is a Trust region algorithm
% A dog-leg approach for sub-problem
Clear

% Setting the options
minchg=1e-4; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.7;2.9]; % Initial guess of parameters
pert=1e-6; % Perturbation for the first derivatives
res=10;
TRrad=1; % Initial trust region radius
HessMod=0; % Indication for Hessian modification

% Optimization cycle
iter=0;
while res>1e-6

eV=funLSQ1(guess);
 e0=0.5*eV’*eV;

itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=e0;
iter=iter+1;
for i=1:size(guess,1)

 guessp=guess;
 guessp(i)=guessp(i)+pert;

 eV=funLSQ1(guessp);
 e1=0.5*eV’*eV;

 grad(i,1)=(e1-e0)/pert;
end
% Computing Hessian matrix
HESS=comhess(@funLSQ1,guess,pert);
% Ensuring that Hessian is positive-definite
if HessMod==1
lambdas=eigs(HESS);
if lambdas(1)>0 && lambdas(2)>0

 hessmod=0;
else
 coeff=mean(abs(lambdas));

 posdef=0;
 while posdef<1

 HESSm=HESS+coeff*eye(2);
 hessmod=1; % Indication of modified HESSIAN

 lmb=eigs(HESSm);
 if lmb(1)>0 && lmb(2)>0

 posdef=1;
 else

 coeff=coeff*1.5;
 end
 end
end

56 2 Optimization Algorithms

else
 hessmod=0;
end
stpdsc=-grad/norm(grad);
if hessmod==0
 newton=-inv(HESS)*grad;
else
 newton=-inv(HESSm)*grad;
end
accepted=0;
while accepted<1
if norm(newton)<TRrad
 pDL=newton; % Dog Leg step
else
 % Finding the Cauchy point
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 % Finding minimizer within trust region (Dog Leg step)
 diff=newton-pc;
 dimV=size(newton,1);
 cf=[0,0,-TRrad^2];
 for ii=1:dimV

 cf(1)=cf(1)+diff(ii)^2;
 cf(2)=cf(2)+2*pc(ii)*diff(ii);

 cf(3)=cf(3)+pc(ii)^2;
 end

 alfa=max(roots(cf)); % Taking the positive root
 pDL=pc+alfa*diff;

end
 predred=-(pDL'*grad+0.5*pDL'*HESS*pDL);

 guess1=guess+pDL; % Next iterate
 eV=funLSQ1(guess1);

 e1tr=0.5*eV’*eV;
 realred=e0-e1tr;

 ratio=realred/predred;
 if ratio<0

 TRrad=TRrad/1.2;
 else

 accepted=1;
 if ratio<0.2

 TRrad=TRrad/1.2;
 end
 if ratio>0.6

 TRrad=TRrad*1.2;
 end

 end
end
itiner(iter+1,1:2)=guess1';
itiner(iter+1,3)=e1tr;
guess=guess1;
res=e1tr;
if iter>MAXIT % Terminated after the iteration reach MAXIT
 res=0;
end

2.3 Trust Region 57

% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||

abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
res=0;

end
end

As addition to this MATLAB routine, functions cauchypnt, funLSQ1 and

comhess with listings given previously need to be used.

The results of the optimization using dog-leg trust region, starting from the

same initialization point like for the Cauchy point are visualized in Fig. 2.20.

The algorithm proved to be more effective than Cauchy point and it reaches the

convergence after seven iterations. It is interesting to note that, dog-leg shows more

effective behavior particularly in the zone of the solution as then it uses the full

Newton step and therefore is not experiencing the slow approaching to the solution

characteristic for steepest descend direction (for example this can be notice in

Fig. 2.18 from iteration 8 to iteration 13).

Fig. 2.20 Results of optimization with dog-leg trust region

58 2 Optimization Algorithms

The implementation given in the above listing takes also into account possibility

of modifying Hessian matrix if it is not positive definite on the same way like

previously presented for the Newton line search direction. It should be mentioned

however that this might not be necessary for the trust region strategy as it introduces

its own modification by constraining the minimization of sub-problem. In fact, if we

use the same optimization problem starting from parameter set x ¼ [1.5, 2.9]T, the

one which with the Newton direction line search faced the problem of non-positive

definite Hessian (Fig. 2.13), with dog-leg trust region it works even without Hessian

modification (parameter HessMod set to 0) with initial trust region radius set to 1.

Since in all steps the dog-leg algorithm makes a combination between steepest

descent direction and the Newton direction, this already regularizes the step to be

descending in each iteration even without Hessian modification.

The dog-leg method can be made slightly more sophisticated by widening the

search for p to the entire two-dimensional subspace spanned by gradient direction

and Newton direction. This approach is described in what follows.

2.3.3 Two-Dimensional Subspace Minimization

By writing the unknown direction as a linear combination of Newton and steepest

descend direction, the sub-problem will obtain the following form

minmk pkð Þ ¼ f xkð Þ þ a1pSD þ a2pN

 �Trf xkð Þ

þ 1

2
a1pSD þ a2pN

 �T � r2f xkð Þ � a1pSD þ a2pN

 �

(2.24)

under the constrain

a1pSDk þ a2pNk
	
	

	
	 � Dk (2.25)

The problem now becomes two dimensional and it is solved for the unknown

coefficients a1 and a2.
This represents a more general version of dog-leg method, since the solution

provided by the dog-leg approach is a part of this 2D sub-space minimization

problem.

The reduction of model function achieved by the two-dimensional sub-space

minimization strategy is often very close to the reduction achieved by exact

solution of (2.21). Since Cauchy point is a feasible solution, the reduction achieved

will be at least as the one obtained by Cauchy point, resulting in global conver-

gence. On the other hand, wider search for the minimizer with respect to dog-leg

method often provides better reduction.

The solution of two-dimensional sub-problem (2.24) and (2.25) represents a

constrained minimization problem. We should recall that within dog-leg approach,

2.3 Trust Region 59

the sub-problem is not solved like constrained minimization problem. Even though

the solution satisfies the trust region constrain, the problem is solved in two steps,

using geometrical approach in which it is reduced to Eq. 2.23. Here on the other

hand, we will solve the sub-problem as a classical minimization problem with

inequality constrain.

This minimization problem, defend by (2.24), with one inequality constrain

given by (2.25) can be solved with Lagrange multipliers technique. As a first step

we should write the minimization function together with its constrain in the

following form

‘ðpk; l1Þ ¼ mk pkð Þ � l1 � c1 pkð Þ (2.26)

Last equation represents a so-called Lagrangian function, where

c1 pkð Þ ¼ Dk � a1pSDk þ a2pNk
	
	

	
	 � 0 (2.27)

is called a constrain function, and scalar l1 represents a Lagrange multiplier. The

solution of this constrained minimization problem is found as a stationary point

of the Lagrangian function. Therefore, if we write the Lagrangian function in

the general form for an arbitrary number of constrain functions it will adopt the

following form

‘ pk; lið Þ ¼ m pkð Þ �
XN

i¼1

lici pkð Þ (2.28)

A general condition that p	k needs to satisfy in order to represent a local solution of

this minimization problem with inequality constrains is defined as follows

rPk
‘ p	k ; l

	� � ¼ 0 (2.29a)

ci p
	
k

� � � 0; i ¼ 1; ::N (2.29b)

l	i � 0; i ¼ 1; :::N (2.29c)

l	i ci p
	
k

� � ¼ 0 (2.29d)

This set of conditions is also known as Karush-Kuhn-Tucker condition, or KKT
condition. This condition practically states, that the solution of the minimization

problem should satisfy stationary condition taking the partial derivatives with

respect to all the components of vector pk and all Lagrange multipliers. Derivatives

of Lagrangian with respect to components of vector pk results in algebraic

equation (2.29a), while partial derivatives of Lagrangian with respect to multipliers

60 2 Optimization Algorithms

are resulting in constrain inequalities (2.29b). Equation 2.29c state that only

non-negative Lagrange multipliers should be taken into account, while (2.29d)

are complementarity conditions which imply that, either ith constrain is active or

otherwise l	i should be zero. The Lagrange multipliers corresponding to inactive

inequalities are zeros, and they can be omitted when writing the general problem

with (2.28).

A practical procedure of applying the KKT condition to the present problem

defined by (2.26) and (2.27) can proceed as follows. In the first step one should first

check if there is a minimizer of the model function mk within the trust region. It

practically means that one should find the unconstrained minimizer, which is found

from the condition rpk
mk ¼ 0, namely finding the first derivatives only of model

function with respect to unknown direction. The solution of this problem is obvi-

ously Newton step. If Hessian is positive definite, it means that the Newton step is

minimizer of model function and if it is inside the TR than it should be taken as

a result of minimization problem and the constrain (2.27) is not active, so

the conditions (2.29a - 2.29d) are actually reduced to the unconstrained problem

solution. It is consistent with the KKT condition since, by having the constrain not

active, imposes zero value to Lagrange multiplier which automatically means that

the compatibility condition are satisfied.

If Hessian is not positive definite it means that the Newton direction is not

pointing to the minimum and it is not the solution of the minimization problem. In

this case the minimizer of the constrained problem should be searched on the

boundary, meaning that the constrain is active. In this case the problem is solved

as minimization with equality constrain, by taking all the partial derivatives with

respect to vector pk components and Lagrange multipliers and solving the obtained

system of algebraic equations for non-negative Lagrange multipliers and vector

components pk simultaneously.

In the case where Newton direction doesn’t exist, the constrain is also active and

the problem is solved in the same way as mentioned above.

To illustrate this last case let us assume that the function we would like to

minimize has the following form

f xð Þ ¼ x1 þ x2 (2.30)

Les us assume that we are at the point defined by xk ¼ [1,1]T, and that the

trust region radius is equal to 1. The minimization sub-problem is therefore

defined by

minm pkð Þ ¼ 2þ p1 þ p2; c1 pð Þ ¼ 1� p21 � p22 � 0 (2.31)

Obviously, since in this case Hessian matrix is zero, the Newton direction

doesn’t exist. In fact, the objective function is monotonely decreasing and it doesn’t

have any minimum in the unconstrained domain. The problem therefore should

be solved with the active constrain, and the minimizer should be found on the

2.3 Trust Region 61

boundary, which in this case is a circle. Applying KKT condition, (2.29a) and

(2.29b) are resulting in the following algebraic equations

1þ 2l1p1 ¼ 0

1þ 2l1p2 ¼ 0

p21 þ p22 ¼ 1 (2.32)

Expressing from the first two equations p1 and p2 as functions of l1 and

substituting to the third one, it results in a quadratic equation that should be solved

for the positive values of l1. It is easy to see that the solution of this quadratic

equation gives

l1 ¼
 1
ffiffiffi

2
p (2.33)

Taking just the positive value in order to satisfy (2.29c) the resulting minimizer

of the constrained problem is equal to

pk ¼ �
ffiffiffi

2
p

2
;�

ffiffiffi

2
p

2

� �

(2.34)

that is the point on the circle with unit radius with the center in [1,1]T for which the

function (2.30) has its minimum value.From the above discussion it can be

summarized that the minimizer of the constrained sub-problem that arises within

trust region algorithm is taken to be the Newton step in the case when Hessian is

positive definite, and when Newton step lays within the trust region. If this is not

the case, it means that, either the model function doesn’t have the minimum (it

monotonely decreases) or the minimizer is found outside of the trust region. In both

of these cases the solution should be found on the boundary itself. As demonstrated

in previous simple example this will lead us to the system of algebraic equations,

like those given in (2.32), where from the first set of equations all the components of

unknown direction should be expressed as a function of l1, which after introducing
to the last equation will result in a polynomial equation, that is further solved for the

positive roots.

Two-dimensional sub-problem defined by (2.24) and (2.25) obviously represent

a special case of the presented strategy, where the unknown direction is uniquely

defined with two scalars, a1 and a2, that are used as coefficients of linear combina-

tion of two known directions (steepest descend and Newton direction). Using the

same approach as previously summarized, we should first compute steepest descend

and Newton direction using (2.9) and (2.15) respectively. If the Hessian is positive

definite, it means that the Newton step is the minimizer of the model function and

then, we should check whether it lays inside the trust region. If this is the case, it is

62 2 Optimization Algorithms

taken as the solution of the sub-problem. In the opposite case, we should proceed

with the solution of constrained problem. For general multidimensional case (when

the number of parameters is N), Lagrangian will take the following form

‘ pk; lið Þ ¼ f xkð Þ þ a1pSDi þ a2pNi

 �T � gi½ � � þ 1

2
a1pSDi þ a2pNi

 �T � hij

 �

� a1pSDi þ a2pNi

 �T þ l1 D2 �

XN

i¼1

a1pSDi þ a2pNi
� �

 !

(2.35)

whew [gi] is gradient vector, [hij] is Hessian matrix and [pSDi] and ½pNi � are steepest
descend and Newton direction vectors respectively. Writing the first derivatives

with respect to a1, a2 and l1 will lead us to the following system of algebraic

equations

C11a1 þ C12a2 þ 2L11a1l1 þ L12a2l1 ¼ F1 (2.36a)

C21a1 þ C22a2 þ L21a1l1 þ 2L22a2l1 ¼ F1 (2.36b)

L11a21 þ L12a1a2 þ L22a22 ¼ D2 (2.36c)

where the coefficients are given by

C11 ¼
XN

i¼1

pSDi
XN

j¼1

hij p
SD
j (2.37a)

C12 ¼ C21 ¼ 1

2

XN

i¼1

pSDi
XN

j¼1

hij p
N
j þ

XN

i¼1

pNi
XN

j¼1

hij p
SD
j

 !

(2.37b)

C22 ¼
XN

i¼1

pNi
XN

j¼1

hij p
N
j (2.37c)

F1 ¼ �
XN

i¼1

gip
SD
i (2.37d)

F2 ¼ �
XN

i¼1

gip
N
i (2.37e)

L11 ¼
XN

i¼1

pSDi
� �2

(2.37f)

2.3 Trust Region 63

L12 ¼ L21 ¼ 2
XN

i¼1

pSDi � pNi (2.37g)

L22 ¼
XN

i¼1

pNi
� �2

(2.37h)

Further, the procedure is the same as previously shown. From the first two equations

a1 and a2 are expressed as functions of l1, which after being introduced to the third
one results in polynomial equation that is solved for positive values of l1. Since in
general, depending on the values of Hessian matrix and gradient this polynomial

can be of higher order, it may have larger number of positive real roots. However,

once they are identified it is computationally inexpensive to check which value

corresponds to a1 and a2 that minimize the objective function.

The reduction of the model function achieved by two-dimensional subspace

minimization is often very close to the exact solution of (2.21). The solution of dog-

leg method is obviously included in two-dimensional subspace method so at the

limit case the performance should match those achieved by the former approach.

Usually the advantage of two-dimensional sub-space approach is evidenced in

larger reduction of model function in each step. More details of this approach can

be found in [7] and [8].

Expressing the polynomial from the system (2.36a - 236c) only in terms of

Lagrange multipliers results in rather complicated equation and the implementation

is relatively long. In order to shown the abovementioned benefits that are achieved

by this approach we can focus on simpler case where the number of parameters to

identify is equal to 2. In this case, by considering derivatives directly with respect to

components of vector pk, the general form of the solution is somewhat simpler, and

it leads to the same solution as the one achieved by the two-dimensional sub-

problem approach.

Adopting the same notation as in previous case, the model function will take the

following form

m pð Þ ¼ fk þ p1 p2½ � g1
g2

� �

þ 1

2
p1 p2½ � h11 h12

h21 h22

� �

p1
p2

� �

(2.38)

with the constrain function given by

c pð Þ ¼ D2 � p21 � p22 � 0 (2.39)

After the matrix multiplication in (2.38) is performed, and considering that Hessian

is symmetric, Lagrangian function can be written as follows

‘ ¼ fk þ g1p1 þ g2p2 þ 1

2
h11p

2
1 þ h12p1p2 þ 1

2
h22p

2
2 � l 1� p21 � p22

� �

(2.40)

64 2 Optimization Algorithms

Stationary point of Lagrangian results in the following system of algebraic

equations

@‘

@p1
¼ g1 þ h11p1 þ h12p2 þ 2lp1 ¼ 0 (2.41a)

@‘

@p2
¼ g2 þ h12p1 þ h22p2 þ 2lp2 ¼ 0 (2.41b)

@‘

@l
) p21 þ p22 ¼ D2 (2.41c)

From (2.41b) we can express p2 as a function of p1 and l resulting in

p2 ¼ � h12p1 þ g2
2lþ h22

(2.42)

Combining (2.42) with (2.41a) we can obtain expression of p1 only as a function
of l

p1 ¼ � 2g1lþ g1h22 � h12g2

4l2 þ 2h11 þ 2h22ð Þlþ h11h22 � h212
(2.43)

Finally, combining the last two equations also p2 component can be expressed

only as a function of l resulting in

p2 ¼ �4g2l
2 þ 2g1h12 � 2h11g2 � 2h22g2ð Þlþ g1h12h22 � g2h11h22

2lþ h22ð Þ 4l2 þ 2h11 þ 2h22ð Þlþ h11h22 � h212

 � (2.44)

Equations 2.43 and 2.44 are substituted back in (2.41c) to obtain polynomial of l.
In a view of easier implementation we can group the coefficients in the following

way. Considering that both p1 and p2 are polynomial functions of lwe can write the

(2.41c) in the following way

b1lþ a1ð Þ2
c2l

2 þ b2lþ a2
� �2

þ c3l
2 þ b3lþ a3

� �2

b4lþ a4ð Þ2 c2l
2 þ b2lþ a2

� �2
¼ D2 (2.45)

where the introduced coefficients are computed using the following equations

b1 ¼ 2g1 (2.46a)

a1 ¼ g1h22 � h12g2 (2.46b)

2.3 Trust Region 65

c2 ¼ 4 (2.46c)

b2 ¼ 2h11 þ 2h22 (2.46d)

a2 ¼ h11h22 � h212 (2.46e)

c3 ¼ �4g2 (2.46f)

b3 ¼ 2g1h11 � 2h11g2 � 2h22g2 (2.46g)

a3 ¼ g1h11h22 � g2h11h22 (2.46h)

b4 ¼ 2 (2.46i)

a4 ¼ h22 (2.46j)

After multiplication, 2.45 is transformed into a single polynomial equation of sixth

order

�Db24c
2
2l

6� 2D2c2b2b
2
4þ 2D2a4b4c

2
2

� �

l5

þ b21b
2
4þ c23�D2b22b

2
4� 2D2a2c2b

2
4� 4D2c2b2a4b4�D2a24c

2
2

� �

l4

þð2b21b4a4þ 2b1a1b
2
4þ 2c3b3� 2D2a2b2b

2
4� 2D2a4b4b

2
2� 4D2a2c2a4b4

�2D2a24c2b2Þl3þðb21a24þ 4b1a1b4a4þ a21b
2
4þ b23þ 2c3a3�D2a22b

2
4� 4D2a2b2a4b4

�D2a24b
2
2� 2D2a24a2c2Þl2þð2b1a1a24þ 2a21b4a4þ 2a3b3� 2D2a4b4a

2
2

�2D2a24a2b2Þlþ a21a
2
4þ a23�D2a24a

2
2 ¼ 0 ð2:47Þ

The resulting polynomial is sixth order, but in general not all the roots are real

positive numbers. Therefore, in the practical implementation, we will first compute

the values of coefficients using Eq. 2.46, and then we will compute roots of

polynomial (2.47). Afterwards, only those that are positive real numbers will be

considered to compute resulting direction components p1 and p2 using (2.43) and

(2.44) respectively. In most of the cases there will be more than one pair of

components corresponding to real positive Lagrange multipliers. However, once

they are computed, by using Eq. 2.38. it is computationally inexpensive to verify

which one of the computed directions minimizes the model function.

66 2 Optimization Algorithms

The implementation of presented procedure is given in the listing below.

% This is a Trust region algorithm
% with minimization for components of vector p

clear
% Setting the options
minchg=1e-4; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.7;2.9];
pert=1e-6; % Perturbation for the first derivatives
res=10;
TRrad=0.8;
HessMod=1; % Indication for Hessian modification

% Optimization cycle
iter=0;
while res>1e-6
eV=funLSQ1(guess);
e0=0.5*eV’*eV;
itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=e0;
iter=iter+1;
for i=1:size(guess,1)
 guessp=guess;
 guessp(i)=guessp(i)+pert;

eV=funLSQ1(guessp);
 e1=0.5*eV’*eV;
 grad(i,1)=(e1-e0)/pert;
end
% Computing Hessian matrix
HESS=comhess(@funLSQ1,guess,pert);
% Ensuring that Hessian is positive-definite
if HessMod==1
lambdas=eigs(HESS);
if lambdas(1)>0 && lambdas(2)>0
 hessmod=0;
else
 coeff=mean(abs(lambdas));
 posdef=0;
 while posdef<1
 HESSm=HESS+coeff*eye(2);
 hessmod=1; % Indication of modified HESSIAN
 lmb=eigs(HESSm);
 if lmb(1)>0 && lmb(2)>0
 posdef=1;
 else
 coeff=coeff*1.5;
 end
 end
end
else
 hessmod=0;

2.3 Trust Region 67

end
stpdsc=-grad/norm(grad);
if hessmod==0
 newton=-inv(HESS)*grad;
else
 newton=-inv(HESSm)*grad;
end
accepted=0;
while accepted<1
 % Solving for vector p that minimizes the quadratic form
 if norm(newton)<TRrad
 pfnd=newton;
 else
 % Constrain should be active
 % Coefficients for components of vector p

B1=2*grad(1);
 A1=grad(1)*HESS(2,2)-HESS(1,2)*grad(2);

C2=4;
 B2=2*HESS(1,1)+2*HESS(2,2);
 A2=HESS(1,1)*HESS(2,2)-HESS(1,2)^2;

C3=-4*grad(2);
 B3=2*grad(1)*HESS(1,1)-2*HESS(1,1)*grad(2)-
2*HESS(2,2)*grad(2);
 A3=grad(1)*HESS(1,1)*HESS(2,2)-
grad(2)*HESS(1,1)*HESS(2,2);

B4=2;
 A4=HESS(2,2);
 % Coefficients for polynomial for Lagrange multiplier
 CF(1)=-TRrad^2*B4^2*C2^2;
 CF(2)=-2*TRrad^2*C2*B2*B4^2-2*TRrad^2*A4*B4*C2^2;
 CF(3)=B1^2*B4^2+C3^2-TRrad^2*B2^2*B4^2-
2*TRrad^2*A2*C2*B4^2-4*TRrad^2*C2*B2*A4*B4-TRrad^2*A4^2*C2^2;
 CF(4)=2*B1^2*B4*A4+2*B1*A1*B4^2+2*C3*B3-
2*TRrad^2*A2*B2*B4^2-2*TRrad^2*A4*B4*B2^2-
4*TRrad^2*A2*C2*A4*B4-2*TRrad^2*A4^2*C2*B2;
 CF(5)=B1^2*A4^2+4*B1*A1*B4*A4+A1^2*B4^2+B3^2+2*C3*A3-
TRrad^2*A2^2*B4^2-4*TRrad^2*A2*B2*A4*B4-TRrad^2*A4^2*B2^2-
2*TRrad^2*A4^2*A2*C2;
 CF(6)=2*B1*A1*A4^2+2*A1^2*B4*A4+2*A3*B3-
2*TRrad^2*A4*B4*A2^2-2*TRrad^2*A4^2*A2*B2;
 CF(7)=A1^2*A4^2+A3^2-TRrad^2*A4^2*A2^2;
 LAMBDAS=roots(CF);
 rr=0;
 clear LMB
 for i=1:6
 if isreal(LAMBDAS(i))==1
 rr=rr+1;
 LMB(rr)=LAMBDAS(i);
 end
 end
 % Computing vector p components
 accp=0;

clear p

68 2 Optimization Algorithms

 for i=1:rr
 accp=accp+1;
 p(1,accp)=-(B1*LMB(i)+A1)/(C2*LMB(i)^2+B2*LMB(i)+A2);

p(2,accp)=(C3*LMB(i)^2+B3*LMB(i)+A3)/
((B4*LMB(i)+A4)*(C2*LMB(i)^2+B2*LMB(i)+A2));
 if norm(p(:,accp))>(TRrad+0.01)
 accp=accp-1;
 end
 end
 % Checking which solution gives minimum of model function

minMOD=e0+(p(:,1)'*grad+0.5*p(:,1)'*HESS*p(:,1));
pfnd=p(:,1);

 for i=2:accp
 modP=e0+(p(:,i)'*grad+0.5*p(:,i)'*HESS*p(:,i));
 if modP<minMOD
 pfnd=p(:,i);
 minMOd=modP;
 end
 end
 end
 predred=-(pfnd'*grad+0.5*pfnd'*HESS*pfnd);
 guess1=guess+pfnd; % Next iterate

eV=funLSQ1(guess1);
 e1tr=0.5*eV’*eV;
 realred=e0-e1tr;
 ratio=realred/predred;
 if ratio<0
 TRrad=TRrad/1.2;
 else
 accepted=1;
 if ratio<0.2
 TRrad=TRrad/1.2;
 end
 if ratio>0.6
 TRrad=TRrad*1.2;
 end
 end
end
itiner(iter+1,1:2)=guess1';
itiner(iter+1,3)=e1tr;
guess=guess1;
res=e1tr;
if iter>MAXIT % Terminated after the iteration reaches MAXIT
 res=0;
end
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||
abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end
end

2.3 Trust Region 69

This algorithm is used to solve the same optimization problem as the one already

solved with dog-leg approach (visualized in Fig. 2.20). The results of the optimi-

zation are visualized in the same manner as previously in Fig. 2.21. It may be

observed that the latter algorithm turned out to be more effective, as expected, and

the optimization terminated after six iterations (one less with respect to dog-leg

approach).

Comparing the two figures it may be observed that the gain is not significant.

In fact, the only thing in which the second approach is more effective is the

minimization of the model function under each step. However, also the dog-leg

approach is not far from the solution and so the steps are not much different.

This difference can be illustrated if we compare what are the values of model

function in the resulting step within each iteration for both algorithms. However,

this comparison is fair to make only at the beginning of the optimization if both

algorithms are starting from the same point, since, as they will produce different

steps in every second iteration the two algorithms will not be at the same point and

therefore will not have the same model function to minimize. These differences are

given in Table 2.3, referring to the first iteration of three different initialization

points.

Fig. 2.21 Results of

optimization with direct

minimization on direction

vector components

70 2 Optimization Algorithms

It may be observed from the table that the second approach indeed is obtaining

lower values of model function in most of the cases. Since the solution by dog-leg

strategy is part of the second approach the latter should perform at least like the

former one, which was the case in the third initialization reported in the table, where

the reduction of model function achieved by both algorithms was the same. This

small advantage of more precise minimization of the model function in some of the

cases may result in less iterations. Example of this is the third initialization given in

Table 2.3, that converged by dog-leg approach after 8 iterations with respect to

7 obtained by the second approach.

However, in most of the cases the differences are not so large, and also the dog-

leg approach manages to minimize the model function almost to the same extent as

the minimization with respect to direction vector, so it can be used with almost the

same efficiency.

The optimization algorithms presented up to now are some times in the literature

found under the name of derivative based algorithms, as they rely on the computa-

tion of derivatives. This circumstance makes them rather ineffective if the objective

function has a large number of local minima, since they are identifying as a solution

any mathematical minimum (i.e. first derivative equal to zero and second derivative

larger than zero). As a remedy, in these situations Genetic Algorithms can be used

as an alternative.

2.4 Genetic Algorithms

The objective functions arising in inverse analyses of structural problems some-

times can be complicated and extremely non-convex. As previously mentioned, in

these situations algorithms relying on classical mathematical theory of optimization

are behaving rather poor, since they can identify as a solution of the problem also

the local minimum.

Using any of derivative based algorithms in order to minimize the function of the

type visualized in Fig. 2.22, depending on the initialization point it may occur that

the optimization terminates after the point B is reached. Since in point B the first

derivative is equal to zero and the second derivative is larger than zero this point

represents mathematical minimum, and the algorithm doesn’t have information that

Table 2.3 Values of model function at the beginning and the end of the first iterations obtained by

two different optimization algorithms referring to three different initializations

Dog–leg Minimization with respect to p

Initialization mk at the beginning mk at the

end of step

mk at the beginning mk at the

end of step

[1.7, 2.9] 103.1 �35.3 103.1 �39.9

[1.3, 2.8] 133.4 16.8 133.4 14.4

[1.4, 2.95] 155.8 �33.8 155.8 �33.8

2.4 Genetic Algorithms 71

somewhere within the range of interest there might be a point with lower value of

the objective function. Since derivative based algorithms are stopping when the

minimum of the objective function within a certain zone is found, the only way to

confirm that it also represents a global minimum of the function is to perform the

minimization procedure couple of times starting from different initialization points.

If for a given problem it turns out that the result of minimization doesn’t depend on

initialization point then there is a large probability that the identified minimum is an

absolute minimum of the function. For example, minimizing the objective function

of the type visualized in Fig. 2.22, by the use of any of derivative based algorithms,

starting from point B1, the algorithm would most likely terminate by identifying

point B as a minimum. On the other hand, repeating the same procedure but starting

from a different point, say A1, the algorithm would probably identify point A as a

solution. By comparing the values of the objective functions between the two points

it’s easy to verify which one of the two is the solution of the problem. In fact,

common practice in inverse analyses when derivative based algorithms are used is

to perform minimization couple of times and to take as the solution parameter set to

which procedure converged three or four times starting from different initialization

points.

Using this strategy, problems like the one visualized in Fig. 2.22 can still be

relatively effectively solved by derivative based algorithms, as the number of local

minima is small. If the objective function is characterized by a presence of large

number of local minima, then the use of derivative based algorithms is not effective

as the solution becomes extremely dependant on the initialization point, and

therefore it is difficult to identify what is the absolute minimum of the function.

In these situations it is more appropriate to use Genetic Algorithms to solve the

minimization problem.

The Genetic Algorithms (GA) represent a methodology for solving both

constrained and unconstrained optimization problems. They belong to a so-called

soft-computing family as they are not solving in mathematical sense the minimiza-

tion problems. The approach adopted by GA consists in repeated modification of

Fig. 2.22 Objective function

with one local and one global

minimum

72 2 Optimization Algorithms

“population” of individual solutions, based on the concept of “natural” selection.

Over successive generations, the population “evolves” toward an optimal solution.

GA can be used in general optimization problems, but their real advantage

comes to the play in optimizing discontinuous, non-differentiable, stochastic, or

highly nonlinear objective functions.

In order to understand the way GA works let us describe the main concept and

notions of GA within the present context. Each population consists of a certain

number of individuals. For the given optimization problem, the number of members

is fixed and is usually about 50–100. Each member is represented by a set of

parameters, which are called genes in the jargon of GA. To each of the individuals

it is attributed some score which is further used as a selection criterion. This score

represents a value of fitness function which in the present context is the value of the
objective function for the parameters that are defining a certain individual.

Optimization by GA starts by a random selection of individuals that are covering

some region of interest. The first step consists of computing the values of objective

function for each of the individuals. After these computations are performed, all the

individuals are sorted according to their value of the objective function. In the

subsequent step, a new generation is created by making a use of the existing one.

There are many different types of GA that differ based on a way how they form

the new generation. For a more detailed description on GA readers should refer to

[9] and [10]. In what follows, some of more frequently used criteria for building a

new generation from the current one will be explained.

All of the GA are using some individuals from the current generation, called

parents, who contribute their genes (i.e. parameter values) to their children.
Algorithms are usually selecting individuals with better values of the fitness

function as parents.

An easy to implement scheme of forming the next generation is described in

what follows. This scheme works very well with the problems studied in this book.

GA of this type turns out to be capable of solving the problems with multiple

minima objective functions, as it will be demonstrated on the examples that will

follow.

Within this scheme, every new generation is formed by three groups of children:

• Elite children

• Cross-over children

• Mutation children

Elite children represent the individuals with best fitness function within the

present generation. These children are directly passed to the next generation

without any modification. Of course, the number of elite children represents an

optimization parameter to be adjusted but for a successfully working GA it should

not be very large. Usually it is about 2–5% of the population size. The existence of

elite children is important for the preservation of the individuals with already good

value of fitness function

Cross-over children represent individuals that are formed by combining genes

of two parents from the current generation. This group is formed by applying an

2.4 Genetic Algorithms 73

adopted cross-over rule on the selected individuals called parents. As parents

usually the individuals from best to intermediate values of the fitness function

are selected (i.e. the group takes into account both elite members, but also those

with somewhat weaker fitness function result). The number of individuals used

as parents represents additional optimization parameter, and it is usually about

50–70% of the population size. Two parents are usually combined to reproduce two

children so that the total size of the population would be preserved. After the pairs

of parents are randomly coupled from previously selected individuals, cross-over

rule is applied in order to form children. The idea of crossing over existing

individuals is important as it mixes the parameters of existing individuals. There-

fore with this operation by combining already assessed parameters in a different

way, possibly improved individuals could be formed, as it may occur for certain

individuals that the error on some of the parameters is smaller than for the others.

A very simple cross-over rule is the one that uses two random vectors of the

same size as the number of parameters, with only zeroes and ones as entries.

Applying this rule to the parent pair, the two children are constructed using these

two vectors, where entry 1 means taking the corresponding parameter from the fist

parent, while entry 0 means taking it from the second one.

This scheme of crossing-over is illustratively presented in Fig. 2.23. The figure

shows optimization problem with 4 parameters. Parameters of one parent are

represented by xi while those of the other one by yi. The two children in this case

are created by the use of two randomly generated cross-over vectors. It should be

mentioned that, in the case of smaller number of optimization parameters (e.g,. 3)

the scheme can work only with one random extraction and taking the other one as

the opposite (e.g,. two cross-over vectors can be [1,1,0] for the first child and [0,0,1]

for the second one).

Mutation children are created by introduction a random mutation (i.e. changes)

to the parameters applied on the selected individuals from the current population.

For this operation usually the worst individuals are taken, as they anyhow represent

those that should be wasted, so it is reasonable to try on them a fully random

modification as it may produce better individuals. The number of individuals that

will be subjected to this operation is what remains when previous two groups are

excluded. Apart of the total number of mutated individuals this process is also

controlled by the parameter that sets the amount of mutation.

Fig. 2.23 Cross-over scheme

with four parameter

optimization problem

74 2 Optimization Algorithms

Existence of mutation children is very important for the development of GAwith

the capability to avoid trapping in the local minima. The success of this feature

becomes very much dependant on the proper selection of the mutation amount.

Figure 2.24 illustrates the influence of this parameter for the one-dimensional

case with a local minimum visualized in Fig. 2.22. Obviously by setting a small

amount of mutation, the algorithm will not have capability to “jump” out of the

local minimum zones.

Applying previously described scheme, next generation is produced that substi-

tutes the current one. This process iteratively continues until the convergence

criteria are met.

Genetic algorithms are randomly driven optimization procedure, and in order

to have them working properly they need to involve relatively large number of

computations. As previously mentioned, in the structural problems here of interest,

a successful GA are usually having population of about 50 members, while the

number of generations up to the convergence to the global minimum is usually

about 100. GA represent a soft computing technique, and so the convergence

criteria are also defined in rather loose manner. In most of the cases it is enough

to introduce two stopping criteria for a successful implementation of GA. The first

one puts an upper bound to the maximum allowed number of generations, while

the second one puts a limit to the so-called “stalling” number of generations that

represents the number of consecutive generations in which no improvement is

obtained in terms of individuals with the lowest value of the objective function.

The latter one usually has the value of about 20–40% of the former.

Within presented scheme, the first two rules (i.e. selection for the elite children

and cross-over) are contributing to better exploration of the zone that the present

generation is currently occupying. On the other hand, mutation rules are

contributing to the exploration of the rest of the region for potentially improved

individuals.

In order to explain this mechanism let us consider example in which the

objective function is of Rastrigin’s type defined by the following equation

Fig. 2.24 The influence of

amount of mutation to the

capability of the algorithm to

avoid trapping in local

minima

2.4 Genetic Algorithms 75

f xð Þ ¼ 20þ 5x21 þ 5x22 � 10 cos 2px1 þ cos 2px2ð Þ (2.48)

The graph of this function for the domain x1, x2∈[�2,2] is visualized in

Fig. 2.25. The function is characterized by a large number of local minima, and

only one global minimum defined for the coordinate x ¼ [0,0]T. This function is

frequently used to test GA’s capability of optimization of extremely non convex

functions.

Let us imagine that the optimization by GA starts with initial population which

covers one relatively restricted zone of one of the local minima (see Fig. 2.26). As

the optimization starts, driven by first two mechanisms (i.e. selection of the elite

children and crossing-over of the existing individuals), the individuals will first start

to group in the zone of local minima, as for the present range it offers the lowest

value of the objective function. On the other hand at each generation there is a set of

individuals to whom a random mutation (i.e. perturbation of the parameter values)

is attributed, and therefore within couple of generation there is a strong probability

that eventually some of them will “jump” out of this zone of local minima.

Fig. 2.25 Analytical

function with large number

of local minima

Fig. 2.26 Initial population

for GA optimization of

analytical function given by

Eq. 2.48

76 2 Optimization Algorithms

Figure 2.27 visualizes some of the later generations of the same optimization.

From the figure it may be noticed that even though most of the individuals are

grouped in the zone of local minima where the initial population was concentrated,

there are two individuals that “jumped” in the zone with smaller values of the

objective function. In the following ranking, these will be moved to the elite

children and then further by applying cross-over rules they will contribute to the

grouping of the individuals in this zone in the following generations.

With this mechanism GA manages to minimize the objective function without

mathematically solving the problem. Furthermore, as demonstrated on this exam-

ple, GA can effectively tackle the problems of multiple local minima as they don’t

base computation on derivatives and therefore are not terminating the optimization

when mathematical minimum is found.

This nice feature of GA however comes for the price of increased computational

cost. The total number of objective function evaluations is equal to the product

between number of individuals and the total number of generations reached within

the optimization procedure. As previously anticipated in structural problems dis-

cussed in this book usually these numbers are about 50 members in each population,

while the number of generations is usually between 50 and 100. Clearly, the total

number of objective function evaluations is at least one order of magnitude larger

than what is required when traditional derivative based algorithms are employed.

This contributes to the conclusion that it is numerically justifiable to apply GA only

in those situations when the objective function is characterize by a large number of

local minima, and so the traditional derivative based algorithms would perform

poorly.

Fig. 2.27 One of the later generations from GA optimization of the analytical function given by

Eq. 2.48

2.4 Genetic Algorithms 77

The following listing presents a possible implementation of discussed GA.

clear
clc
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% SETTING THE OPTIONS
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Basic parameters
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
population=100;
elite=2; % Number of individuals that are considered as elite
cross=0.8; % Cross-over ratio
crossP=0.5; % Ratio of individuals to consider as c-o parents
mutR=0.3; % Ratio of individuals to consider for mutation
mutrange=2.5; % Interval of mutation (0.2 means +-0.1)
TOTGEN=200; % Total number of generations
TOTSTALL=80; % Total number of stalling generations
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Computed parameters
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Needed number of the parents to produce next generation
crossN=round(cross*(population-elite));
crsP=round(population*crossP);
mutRN=round(mutR*population);
% Setting the range
npar=2;
range1=[0.5,2];
range2=[0.5,2];
populOld=rand(population,npar);
populOld(:,1)=range1(1)+populOld(:,1)*(range1(2)-range1(1));
populOld(:,2)=range2(1)+populOld(:,2)*(range2(2)-range2(1));
generation=1;
genstl=0;
BEST=1e5;
%~~~
% beggining of iterations
while generation<TOTGEN
% Calculating fitness values
for i=1:population
 fitness(i,1)=objrastr([populOld(i,1),populOld(i,2)]);
end
% Scoring the result
result(generation,1)=mean(fitness);
result(generation,2)=min(fitness);
% Sorting the population based on value of fitness function
popsort=[fitness,populOld];
popsort=sortrows(popsort,1);
% Checking if the population stalls
if popsort(1,1)<BEST

BEST=popsort(1,1);
 genstl=0;
else
 genstl=genstl+1;
end

78 2 Optimization Algorithms

if genstl>TOTSTALL
 break
end
% Moving the best ones to the elite
eliteKids=popsort(1:elite,2:3);
% Parents for crossover
parX=round(1+(crsP)*rand(crossN,2));
% Individuals for mutation
parMBCK=round(mutRN*rand(population-elite-crossN,1));
parM=population-parMBCK;
% Generating cross-over kids
for i=1:crossN
 first=round(rand(2,1)); % Vector saying which genes will
be taken from the first parent
 second=[1;1]-first;

xKids(i,1)=first(1)*populOld(parX(i,1),1)+second(1)*populOld(p
arX(i,2),1);

xKids(i,2)=first(2)*populOld(parX(i,1),2)+second(2)*populOld(p
arX(i,2),2);
end
% Generating mutation kids
for i=1:population-elite-crossN
 mut=mutrange*rand(2,1)-mutrange/2;

mKids(i,1)=populOld(parM(i),1)+mut(1);
 mKids(i,2)=populOld(parM(i),2)+mut(2);

end
generation=generation+1;
populOld=[eliteKids;xKids;mKids];
end
% end of iterations
%~~~
plot(result(:,1))
hold on
plot(result(:,2))
hold off
grid on

function omg=objrastr(x)
omg=20+5*x(1)^2+5*x(2)^2-10*(cos(2*pi*x(1))+cos(2*pi*x(2)));

In the GA implementation presented in the above listing, previously discussed

operations are implemented in the following way.

The number of elite children is directly given (not as ratio), and those individuals

are passed to the successive generation without any modification.

To control cross-over children two variables are used. Variable cross
represents a ratio between cross-over children and overall population number.

2.4 Genetic Algorithms 79

This number needs to be even as it will form number of couples, representing

parents, which will cross their genes (parameters) in order to form new children. In

order to keep the number of individuals in the population constant during the

evolution, from each couple two children are generated. Second variable used to

control the crossing-over rule is crossP that represents the number of individuals

(expressed in ratio of the overall population number) that will be considered as

potential parents for crossing over. For example, if this ratio is defined as 0.4, it

means that first 40% of the individuals will be considered as potential parents (i.e.

the best 40% in terms of fitness function value). From these individuals a number of

couples defined by the other variable is randomly selected. Obviously with this

implementation repetition of the same individuals in different couples is possible.

The number of individuals that will mutate is already defined and is equal to

what remains from the total number of individuals when previous two groups are

subtracted. The rest of the mutation process is controlled by additional two

variables: mutR and mutrange. The former one defines ratio of individuals that

will be considered as those to whom a random mutation will be applied, while the

latter represents a range of “jump” attributed to the parameters. For example if the

mutR if set to 0.3 it means that from last 30% of the individuals (i.e. last in terms of

fitness function value) a number of individuals will be selected according to

previously calculated number of mutation children. This implies that also here the

individuals may be repeated as they are selected randomly. On the other hand,

mutrange refers to the maximum amount of mutation that can be attributed to

each of the individuals. As previously illustrated this variable represents an impor-

tant quantity as it directly influences the performance of the generic algorithm in the

presence of local minima.

As for the stopping criteria in the present GA implementation only two of them

are implemented, namely the total number of allowed generations is prescribed

(variable TOTGEN) and the number of stalling generations is given (variable

TOTSTALL), or number of consecutive generations in which any improvement in

the objective function value is not achieved. With this stopping criteria the optimi-

zation will be terminated not later than TOTGEN generation, or even earlier if

during the optimization for more than TOTSTALL generations there will be no

improvement in the objective function.

During the optimization cycle matrix result serves to store the objective

function value from the best individual, and the mean value of the objective

function for each generation. These results are plotted at the end of the optimization

in the graphical representation that is characteristic for the genetic algorithm

optimizations.

Implemented GA can be used to solve optimization problem defined by Eq. 2.48

in order to verify the capability of the algorithm to solve difficult cases in terms of

the number of local minima. This optimization problem is solved by prescribing the

number of individuals in each simulation to be equal to 100, while the stopping

criteria are defined by maximum allowed number of generations equal to 200,

and stalling generation number equal to 80. By purpose, the initial population is

generated in the zone of local minima (i.e. both parameters within the range

80 2 Optimization Algorithms

[0.5, 2]). The amount of mutation prescribed (that also turned out to be sufficient

given the performance of the algorithm) was equal to 2.5.

Figure 2.28 visualizes the result of this optimization. From the graph it may be

observed how the value of objective function from the best individual in each

generation descends monotonely, while keeping its value unchanged for some

number of generations. On the other hand, the mean value of the objective function

for each population fluctuates, as a result of random nature of the process which not

necessarily improves the result of all the individuals. Nevertheless there is also a

global descending nature of this graph which indicates the tendency of grouping the

individuals in the zone of global minimum. The fact that mean value remains a bit

detached from the minimum value shows a certain scattering of the individuals.

Even though our goal is not to bring all of the individuals to the global minimum

value, since the result of optimization is anyhow represented by the best individual,

still the following modification may contribute to overall improvement of the

algorithm performance. Instead of having a constant value for the mutation amount,

an alternative implementation can start with some larger value attributed to it (e.g.

like 2.5 in this case), but at certain point changing it to somewhat smaller number.

The reasoning behind this modification consists in the fact that this variable helps

the algorithm to “jump” out of possible local minima, but after a certain number of

generations it is reasonable to expect that most of the individuals would find

themselves in the global minimum zone. Therefore, in order to have all the GA

operations (i.e. elite selection, crossing-over and random mutation) working in the

direction of improving the objective function within the present zone, a mutation

range amount can be decreased.

By implementing a simple modification to previous code that will reduced

mutation amount to one fourth of its initial value after the generation reaches

number 50, the performance of the algorithm in fact are improved.

Result of the GA optimization with variable mutation amount is visualized in

Fig. 2.29. For this particular case the improvement achieved by this modification is

not large since the reduction in overall number of generations is not significant. The

influence of this modification is evidenced also in the mean value of the objective

Fig. 2.28 Result of the GA

optimization of Rastrigin’s

type function

2.4 Genetic Algorithms 81

function. At the end of the optimization, the mean value of the objective function

for the last generation is smaller than in previous case, a circumstance that points

out more dense distribution of the individuals in the zone of global minimum. This

feature of the algorithm extends the probability of finding the individuals with

smaller value of the objective function faster by the applied GA processes resulting

therefore in potentially more effective optimization.

2.5 Summary

In this chapter some of the most frequently used optimization algorithms are

discussed and their implementation into MATLAB codes is presented. These

codes will be used further in this book as a part of inverse analysis procedures

designed for the parameter identification.

First part of the chapter showed traditional, derivative based, optimization

procedures. In particular two different strategies are discussed: Line search

methods, and trust region methods. All of these algorithms have some strong and

some weak points, and the text presented in this chapter attempted to point them

out. For example, steepest descend line search algorithm has a good feature of being

robust as with this approach a global convergence is guaranteed. However, as we

could see, in some situations it can perform rather poor involving significantly

larger number of function evaluations with respect to other algorithms. Newton

direction line search is extremely powerful provided that Hessian matrix is positive

definite, and that model function represents a good approximation of real objective

function.

Trust region algorithms on the other hand use a different philosophy and at each

step they minimize the model function subjected to a trust region constrain. This

approach is particularly efficient if the objective function to be minimized is

complicated, and therefore cannot be very accurately approximated by a quadratic

Fig. 2.29 Result of the GA

optimization with variable

mutation amount

82 2 Optimization Algorithms

form. The minimization is therefore restricted only to a nearby zone where it is

trusted that the approximation is good enough.

Both of these groups of algorithms are solving minimization problem mathe-

matically and therefore are sensitive to a presence of local minima (i.e. they cannot

distinguish between local and global minimum). If the problem under consideration

turns out to have a large number of local minima, all of these algorithms are

ineffective. For these situations it is more convenient to use Genetic Algorithms.

A brief description on main principles together with a possible GA implementa-

tion is given in the second part of this chapter. In general, GA are involving more

evaluations of the objective function. Within the problems of interest presented in

this book, the evaluation of the objective function usually involves one simulation

of the system response, so sometimes it may be a time consuming task. Therefore, it

is computationally unjustifiable to use GA for problems that can be relatively

successfully solved by traditional derivative based algorithms.

Optimization algorithm represents one part of the inverse analysis procedure.

When it is required to design some parameter characterization procedure, an

important issue is its robustness and stability. Examples treated in the chapter

should serve to have an idea about the potentialities and limitations of particular

optimization algorithms. The behavior of any algorithm depends strongly on the

type of the function which should be optimized. Therefore, a general suggestion in

selection of the particular algorithm that should be used within the procedure is to

keep it as simple and robust as possible for the problem under consideration.

References

1. Giannessi, F.: Metodi matematici della programmazione. Problemi lineari e non lineare,

Bologna (1982)

2. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

3. Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.A.: Numerical Optimization –

Theoretical and Practical Aspects. Springer, New York (2000)

4. Dussault, J.P.: Convergence of Implementable Descent Algorithms for Unconstrained Optimi-

zation. J Optimiz Theory App 104(3), 739–745 (2000)

5. De Leone, R., Guadioso, M.: Stopping Criteria For Line Search Methods Without Derivatives.

Math Program 30(3), 285–300 (1984)

6. Powell, M.J.D.: A new algorithm for unconstrained optimization. Non-linear programming –

Academic press: 34–65, New York (1970)

7. Branch, M.A., Coleman, T.F., Li, Y.: A Subspace, Interior, and Conjugate Gradient Method

for Large-Scale Bound-Constrained Minimization Problems. SIAM J Sci Comput 21(1), 1–23

(1999)

8. Byrd, R.H., Schnabel, R.B.: Approximate Solution of the Trust Region Problem by Minimiza-

tion over Two-Dimensional Subspaces. Math Program 40, 247–263 (1988)

9. Konar, A.: Artificial Intelligence and Soft Computing – Behavioral and Cognitive Modeling of

Human Brain. CRC Press, New York (2000)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via

http://lulu.com and freely available at http://www.gp-field-guide.org.uk, (With contributions

by J. R. Koza (2008)

References 83

http://lulu.com
http://www.gp-field-guide.org.uk

Chapter 3

Proper Orthogonal Decomposition and Radial

Basis Functions for Fast Simulations

Proper Orthogonal Decomposition (POD) is a powerful method for low-order

approximation of some high dimensional processes. It is widely used in the situa-

tions where model reduction is required. The most favorable feature of the method

is its optimality: it provides the most efficient way of capturing the dominant

components of high-dimensional processes with, sometimes surprisingly small

number of “modes”. This chapter will present an algorithm that combines POD

with Radial Basis Functions (RBF) used for the interpolation of the data with

previously reduced dimensionality by the POD.

3.1 Short History of Proper Orthogonal Decomposition

In the scientific community it is generally accepted that the Proper Orthogonal

Decomposition was originally developed by Pearson [1] about 100 years ago as

a tool for graphical analyses. However, there are actually some earlier examples of

the development of this mathematical technique. Independently, Beltrami in 1873

and Jordan in 1874 derived the Singular Value Decomposition (SVD) which, as it

will be shown later, reflects the same theory. This is a good example that, already in

its early stages of the development, the technique showed its feature of attracting

the attention of scientists from different fields, which will follow it throughout the

century. This peculiar characteristic has as a consequence that the method seemed

to be re-developed throughout the time by different authors under the different

names. Hotelling in [2] developed the method in statistical data processing

and probability theory, known as Hotelling transformation. Later, during 1940s,

Karhunen [3] and Loeve [4] independently developed a theory regarding optimal

series expansions of continuous-time stochastic processes, nowadays known as

Karhunen-Loeve decomposition. Lumley [5] traced the idea of POD to the inde-

pendent investigation not only of Karhunen and Loeve, but also Kosambi (1943),

Pougachev (1953) and Obukhov (1954).

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5_3,
Springer-Verlag Berlin Heidelberg 2012

85

Among many different names that this method bears, the most frequently used

are the following:

• Principal Component Analyses (PCA)

• Karhunen-Loeve Decomposition (KLD)

• Singular Value Decomposition (SVD)

Recently, Liang et al. [6] showed the connections and equivalence of all the

three methods, proving that all these names are practically refereeing to the same

mathematical procedure.

Since its introduction the method has received much attention as a tool to

analyze complex physical systems. During the years of development, POD has

been used in variety of fields in science and engineering. Some of the most interest-

ing examples are mentioned here

• Transient thermal analysis [7]

• Description of turbulent fluid flows [8]

• Structural dynamics [9]

• Signal processing and control theory [10]

• Damage detection [11]

• Human face recognition [12]

• Unsteady aerodynamics [13]

What makes this method so popular in applications where low-dimensional

high-accuracy approximations are needed is its optimality. POD provides a basis

for the modal decomposition of an ensemble of data, such as those obtained in

the experiments or numerical simulations. Properties of POD suggest that it is

a preferable basis in a sense that it is constructed to maximize the accuracy of

the approximation. Therefore for the given set of data and for the given number

of modes used to approximate the data there is no other basis which can give

better approximation in a least square sense, as it will be shown later. In order

to show how this goal is achieved, let us first see what is the main idea behind the

approximation procedures.

3.2 Approximation

Let us suppose that we wish to approximate a function UðxÞover some domain

of interest denoted by O. The function can be written as a linear combination of

some basis functions wiðxÞ

UðxÞ �
XM

i¼1

ai � wiðxÞ (3.1)

86 3 Proper Orthogonal Decomposition and Radial Basis Functions

with the reasonable expectation that the approximation becomes exact in the limit

case as M approaches the infinity. The coefficients denoted by ai are representing

the unknown amplitudes of the expansion. Once the basis functions are chosen, the

amplitudes’ values are obtained by a minimization process, which, for the approxi-

mation in the least square sense is defined as

UðxÞ �
XM

i¼1

ai w
iðxÞ

�
�
�
�
�

�
�
�
�
�

L2

! min (3.2)

where �k kL2denotes L2-norm defined by

f ðxÞk kL2 ¼
ð

O

f ðxÞj j2dO (3.3)

Clearly, the representation of (3.1) is not unique for the same function. The

choice of functions wiðxÞ to form the “basis” for UðxÞ is arbitrary, and to each

selected basis, a different set of amplitudes is corresponding. In standard approxi-

mation approach it is left to the user to choose the basis functions. Usually from

the experience one can say if for a certain function the basis should be constructed

from the polynomial functions, trigonometric, exponential, or any other type of

functions. In most cases the target accuracy of approximation (3.1) can be achieved

when M is large enough, but there is no proof that the selected basis is the best one

for the given function. Therefore, it is natural to seek the basis that, for the given

number M (possible relatively small) will approximate the function UðxÞ at the

best possible way. The POD deals particularly with the choice of the

functions wiðxÞ, and offers a tool to construct an optimal basis for the function in

question.

3.2.1 POD Approximation

There is a considerable freedom in selecting the set of basis functions wiðxÞ,
provided that it is complete and linearly independent. Taking the orthonormal set

with the following property

ð

O

wk1ðxÞ � wk2ðxÞdx ¼ 1 k1 ¼ k2
0 k1 6¼ kk

�

(3.4)

gives some advantages. In this case, the determination of the amplitudes becomes

relatively simple as then

3.2 Approximation 87

ai ¼
ð

O

UðxÞ � wiðxÞdO (3.5)

This means that the amplitude ai depends only on function wiðxÞ and not on the
others. Should the basis function be non-orthogonal, the determination of the

amplitudes would require a solution of a set of linear equations.

Furthermore, this basis needs to be optimal, in a sense that for each value of M,

the approximation should be as good as possible in terms of least square error

(Eq. 3.2). In other words, the goal is to find a sequence of orthonormal functions

such that the first two of these functions give the best possible two-term approxi-

mation, the first three the best possible three-term approximation and so on. Once

found, these special ordered orthogonal functions are called the proper orthogonal
nodes for the function UðxÞ and the Eq. 3.1 is called the Proper Orthogonal

Decomposition of UðxÞ.

3.3 Discrete POD Theory

Having in mind that the applications treated in this book are of numerical nature

(or experimental one) only the discrete version of the POD theory will be presented.

The discrete POD theory is usually found in the literature under the name of Principal

Component Analyses (PCA), which would be the name used in this book, although

some authors are also calling it discrete Karhunen-Loeve decomposition.

PCA is a method originally developed in statistics [1], which deals with random

variables, and so themethod itself is naturally of a discrete nature. The central idea of

PCA is to reduce the dimensionality of a data set consisting of a large number of

correlated variables, while retaining as much as possible of the variation present in

the data set. This task is achieved by transforming the data to a new set of variables,

called the Principal Components (PCs), which are uncorrelated, and which are

ordered so that the first few retain most of the variation present in all of the original

variables. Conversely, the last few PCs identify directions in which there is very

little variation; that is, they identify near-constant linear relationship among the

original variables. Once the PCs are identified, it is possible to reduce the dimension-

ality of the original space of variables, by keeping just the first few PCs, with still

good accuracy of the approximation since PCA had ordered these new variables in

such way that first components retain most of the variation of the original set.

If we consider relatively unrealistic, but simple case, where the original number

of variables is equal to 2, it will allow us to have an easy to visualize geometrical

interpretation of PCA. Treating the variables as components of vectors, each pair

of variables will indicate one vector in 2D space. In such case, the term “correlated

variables” would indicate that the vectors are parallel. Therefore, randomly distri-

buted vectors, without any preferable orientation, like those visualized in Fig. 3.1a,

represent visualization of uncorrelated variables.

88 3 Proper Orthogonal Decomposition and Radial Basis Functions

In this simple example, the reduction of dimensionality means that we would

like to express our vectors just with one component (to cut-down the dimensionality

from two to one). Let us imagine that we have a set of closely correlated vectors

(almost parallel) like those visualized in Fig. 3.2. Considering the orientation of the

vectors, it is quit obvious that this, one component approximation in original

coordinate system will introduce a significant error, since both components of

all the vectors have comparable magnitudes. On the other hand it is possible to

introduce a new coordinate system with axes rotated by approximately 450 (Fig. 3.2

right-hand side). Obviously, this new coordinate system has been chosen in such

way, that one coordinate is dominant, and therefore in this system, by neglecting the

other component the loss of data will be much less. In the limit case when all the

vectors are fully correlated (parallel), by choosing axis x’ to be parallel to the

vectors, the lost data would be zero, since all the vectors in the new coordinate

system are parallel to one axis, having the projection to the other one equal to zero.

In all other cases, the approximation would introduce some error, since at least

some of the vectors will have a projection to the other axis.

PCA defines the new coordinate system in order to minimize this loss of the data

in average, least square sense for all the vectors. Therefore, if the axis x’ is chosen in
such way that for the given vector set it will give the best possible one component

approximation, then this new basis represents a Proper Orthogonal Basis for the

vectors in set.

The Principal Component Analysis therefore in 2D space can be interpreted

as a rotation of the coordinate system to be as parallel as possible to the set of

vectors. This concept can be extended to the vectors of arbitrary dimensionality.

Fig. 3.1 Uncorrelated

(a) and closely correlated

(b) vectors

Fig. 3.2 One component

approximation of closely

correlated vectors in original

and new coordinate basis

3.3 Discrete POD Theory 89

As analogy to the continuous POD theory, where the goal is to find special

ordered orthogonal functions (called the proper orthogonal nodes), here, the goal is
to find orthogonal directions in N-dimensional space (where N is the original

dimensionality of the vectors in set). Also here these directions need to be specially

ordered in a way that, the first one will give the best possible one component

approximation of vectors, the first two the best possible two component approxi-

mation and so on. Once found, they provide a favorable basis for reduction of the

dimensionality of vectors in set, due to their optimal property, guaranteeing that

there cannot be any other basis that can have better approximation for any selected

number of reduced components.

There are different ways to construct POD basis for the vectors in set, and in

what follows three of them will be presented in details.

3.3.1 PCA Derivation by Minimizing the Error of Approximation

The derivation of PCA presented both in this and subsequent sections will refer to

an arbitrary case of vectors with dimensionality N > 2, as this is the case of

practical interest both in the applications presented in this book and in general

applications of reduction of dimensionality.

The derivation of PCA can proceed starting directly from the definition, namely

from minimizing the error of approximation. Let us assume that we have a set of

N-dimensional vectors (say, M of them), collected in matrix U. Our goal is to find

the most accurate representation in some subspaceW with the dimension of K < N.
If we denote by w1, w2,. . .,wK the orthonormal basis ofW, then each vector from the

original set can be written as

ui �
XK

j¼1

�aij � wj; i ¼ 1; :::N (3.6)

where �aij are amplitudes corresponding to ith vector in new subspace W, and �F is

matrix that collects all the orthonormal basis of the subspace wj. Note that here both

amplitudes and matrix of basis are marked with the bar, which will be used

throughout the book for the symbols corresponding to the subspace of the reduced

dimensionality. This can be written in the matrix form as

ui � �F � �ai; i ¼ 1; :::N (3.7)

where symbol � suggest that it represents an approximation of the vector ui. The

error of this approximation in least square sense can be written as

error ¼ ui �
XK

j¼1

�aij � wj

�
�
�
�
�

�
�
�
�
�

L2

(3.8)

90 3 Proper Orthogonal Decomposition and Radial Basis Functions

Geometrically, this error can be interpreted as a squared perpendicular distance

of ui from the subspace W (Fig. 3.3).

Equation 3.8 represents the error just for ith vector. To have the overall error for

all the vectors we need to make a summation over all of them. Denoting with E the

total error we can write

E ¼
XN

i¼1

ui �
XK

j¼1

�aij � wj

�
�
�
�
�

�
�
�
�
�

L2

(3.9)

Therefore, the total error represents summation of the squared perpendicular

distances of all the vectors from the subspace W. Now the goal is to find the set of

orthonormal basis w1, w2,. . .,wK that minimizes this error. In order to minimize E we

need to take the first derivatives with reference to the all unknowns that are

uniquely defining the approximation, namely with respect to both orthonormal

basis and amplitudes. Before doing that, let us first write Eq. 3.9 in a slightly

different way.

E ¼
XN

i¼1

uik k2 � 2
XN

i¼1

uTi �
XK

j¼1

aij � wj

 !

þ
XN

i¼1

XK

j¼1

a2ij ¼

¼
XN

i¼1

uik k2 � 2
XN

i¼1

XK

j¼1

aiju
T
i wj þ

XN

i¼1

XK

j¼1

a2ij

(3.10)

Now we can find partial derivatives, first with respect to alm

@E

@alm
¼ �2uTl wm þ 2alm (3.11)

From (3.11) follows that the optimal value for alm is equal to

alm ¼ uTl wm (3.12)

Substituting the optimal value back to (3.10) it becomes

E ¼
XN

i¼1

uik k2 � 2
XN

i¼1

XK

j¼1

uTi wj

� �

uTi wj þ
XN

i¼1

XK

j¼1

uTi wj

� �2
(3.13)

Fig. 3.3 Geometrical

interpretation of the error

of approximation

3.3 Discrete POD Theory 91

Equation 3.13 can be written in a different way. Since the value of scalar that

results from vector product of two vectors can be written in two ways, namely

uTi wj ¼ wT
j ui (3.14)

mid-term of (3.13) can be rewritten as

2
XN

i¼1

XK

j¼1

uTi wj

� �

uTi wj ¼ 2
XN

i¼1

XK

j¼1

wT
j uiu

T
i wj (3.15)

On the other hand, the last term of (3.13) can be expressed as

XN

i¼1

XK

j¼1

uTi wj

� �2 ¼
XN

i¼1

XK

j¼1

uTi wj

� �T
uTi wj

� � ¼
XN

i¼1

XK

j¼1

wT
j uiu

T
i wj (3.16)

Substituting (3.15) and (3.16) back to (3.13) the total error to be minimized

obtains the following form

E ¼
XN

i¼1

uik k2 �
XN

i¼1

XK

j¼1

uTi wj

� �2
(3.17)

or, once again rewritten in the form like (3.15) it becomes

E ¼
XN

i¼1

uik k2 �
XK

j¼1

wT
j

XN

i¼1

uiu
T
i

 !

wj ¼
XN

i¼1

uik k2 �
XK

j¼1

wT
j Cwj (3.18)

where C is, so-called covariance matrix defined as

C ¼ UUT (3.19)

By observing the equation of total error to be minimized expressed by (3.18) it is

obvious that it has the following form

E ¼ b�
XK

j¼1

wT
j Cwj (3.20)

where scalar b is a constant depending on original set of vectors (not on the choice

of the new basis). Recalling that the goal here was to find a new basis with reduced

space that minimizes the error of the approximation for the given dimensionality K,
obviously scalar b is uninfluenced by the selection of this new basis, therefore it

follows that in order to minimize the error, the second term in (3.20) needs to be

maximized

92 3 Proper Orthogonal Decomposition and Radial Basis Functions

XK

j¼1

wT
j Cwj ! max (3.21)

under the constraint of orthonormaility of the new basis

wT
j wj ¼ 1; j ¼ 1; :::K (3.22)

In order to solve this constrained maximization problem, one can use Lagrange

multipliers method which converts the problem into

XK

j¼1

wT
j Cwj �

XK

j¼1

lj wj
Twj � 1

� �! max (3.23)

Now let us compute the derivatives of (3.23) with respect to wj. If x is a vector,

f is some function of x, denoting the first derivative with respect to x by

d

dx
f xð Þ ¼

@f
@x1
:::
@f
@xd

2

4

3

5 (3.24)

it can be shown that

d

dx
xTx
� � ¼ 2x (3.25)

and that for any symmetric matrix A it holds

d

dx
xTAx
� � ¼ 2Ax (3.26)

Having this in mind, since matrix C is symmetric, by equalizing the first

derivatives of (3.23) with respect to wj with zero we have

d

dwj

XK

j¼1

wjCwj �
XK

j¼1

lj wj
Twj � 1

� �

 !

¼ 2Cwj � 2ljwj ¼ 0 (3.27)

The last equation is satisfied if wj is eigenvector and lj is corresponding

eigenvalue of matrix C since it requires that

Cwj ¼ ljwj (3.28)

3.3 Discrete POD Theory 93

Substituting (3.28) into (3.18) overall error of the approximation becomes

E ¼
XN

i¼1

uik k2 �
XK

j¼1

wT
j Cwj ¼

XN

i¼1

uik k2 �
XK

j¼1

wT
j ljwj

¼
XN

i¼1

uik k2 �
XK

j¼1

lj (3.29)

Recalling that the first term is a constant it results that the error of approximation

is minimized if the new basis is constructed of K eigenvectors that are corres-

ponding to the first K largest eigenvalues of covariance matrix C

�F ¼ wj

� �

; j ¼ 1; :::K (3.30)

In a trivial case when all the eigenvectors of matrix C are taken to construct the

subspace W, there will be no error of the approximation. In fact, there will be no

approximation at all, since in that case all the vectors ui are just expressed in a

different coordinate basis. Approximation in any other subspace, that uses smaller

number of directions will introduce an error, and from (3.29) it is obvious that the

introduce error is directly proportional to the summation of the eigenvalues

corresponding to the neglected directions
PN

i¼Kþ1

lj. Usually the error of approxima-

tion is expressed using the ratio between kept eigenvalues and all of them, namely

PK

i¼1

li

PM

i¼1

li

(3.31)

Example 3.1. Consider a set of four three dimensional vectors that are

collected in a matrix

U ¼
1 5 3 3

1 4 4 3

1 5 5 4

2

4

3

5

Construct POD basis and compare the accuracy between one-component

and two-component approximations with the original set of vectors

Solution:

First we need to compute covariance matrix C that is equal to

C ¼
1 5 3 3

1 4 4 3

1 5 5 4

2

4

3

5 �
1 1 1

5 4 5

3 4 5

3 3 4

2

6
6
4

3

7
7
5
¼

44 42 53

42 42 53

53 53 67

2

4

3

5

(continued)

94 3 Proper Orthogonal Decomposition and Radial Basis Functions

The solution of eigenvalue problem gives us eigenvectors and
corresponding eigenvalues of matrix C equal to

F ¼
0:5325 0:8462 �0:0183
0:5255 �0:3135 �0:3135
0:6636 �0:4308 �0:6116

2

4

3

5; l1 ¼ 151:49; l2 ¼ 1:46; l3 ¼ 0:045

Note that there is fast trend in dropping of the magnitudes of eigenvalues
that suggest strong correlation between the vectors (since vectors in this set
are close to parallel)

Now let us compute the amplitudes in this new basis. Having in mind
orthonormality of the new basis, the matrix of amplitudes A is computed by

A ¼ FTU ¼
0:5325 0:5255 0:6636

0:8462 �0:3135 �0:4308

�0:0183 0:7909 �0:6116

2

6
4

3

7
5

1 5 3 3

1 4 4 3

1 5 5 4

2

6
4

3

7
5 ¼

¼
1:7215 8:0822 7:0172 5:8282

0:1019 0:8232 �0:8693 �0:1250

0:1610 0:0142 0:0508 �0:1285

2

6
4

3

7
5

As it was suggested by fast drop of eigenvalues, vectors are correlated,
and the new coordinate basis is oriented such that its first direction is similar
to the direction of the vectors. This can be seen from the amplitudes, since all
of the vectors have the first amplitude one order of magnitude larger than the
second one. It can be also seen that some of the vectors from original matrix
U, for instance the first one, have the third amplitude larger than the second
one. It means that this vector alone would actually have better two-component
approximation if the first and the third direction should be used. Nevertheless,
criterion for error minimization is derived to be satisfied in average least
square sense for all the vectors in set, and of course it doesn’t have to be
satisfied for all vectors separately.

One component approximation is constructed by keeping just the first
direction and corresponding amplitudes, namely

U � �F1
�A1 ¼

0:5325

0:5255

0:6636

2

6
4

3

7
5 1:7215 8:0822 7:0172 5:8282½ �

¼
0:9167 4:3037 3:7366 3:1034

0:9046 4:2468 3:6872 3:0625

1:1424 5:3633 4:6566 3:8676

2

6
4

3

7
5

while the two-component approximation is equal to
(continued)

3.3 Discrete POD Theory 95

3.3.2 PCA Derivation Based on Correlation Matrix

PCA is oriented to reduce dimensionality of the correlated data. In fact the more

correlated the vectors are, the larger reduction of the space can be obtained, as we

already have seen. Therefore, an alternative way to derive the PCs could be by using

correlation, rather than covariance matrix. In [14] Jolliffe showed a set of

advantages and disadvantages of the derivation based on the correlation matrix

over the one that uses covariance matrix. However, most of the discussions given

there are considering statistical framework, which is not the scope of this book.

Here we will limit ourselves just on showing that this alternative approach leads to

exactly the same POD basis, for sometimes smaller computational cost.

Let us recall that the goal is to reduce the dimensionality of a data set by deriving

a small number of linear combinations (called principal components) of a set of

variables that retain as much of the variation in the original variables as possible.

Assuming that the matrix U collects original set of M, N-dimensional vectors ui, in

terms of the requirements of PCA let the first principal component be a linear

combination of each of them

w1 ¼ U � v1 (3.32)

where the unknown coefficients of this combination are forming anM-dimensional

vector v1.

By assuming that the vector v1 is a unit vector, namely

v1½ �T � v1 ¼ 1 (3.33)

the direction along which there is the largest variance of all the vectors collected in

matrix U will maximize the length of vector w1

w1½ �T � w1 ! max (3.34)

U � �F2
�A2 ¼

0:5325 0:8462

0:5255 �0:3135

0:6636 �0:4308

2

6
4

3

7
5

1:7215 8:0822 7:0172 5:8282

0:1019 0:8232 �0:8693 �0:1250

� 	

¼
1:0029 5:0003 3:0009 2:9976

0:8726 3:9887 3:9598 3:1016

1:0985 5:0087 5:0311 3:9214

2

6
4

3

7
5

Comparing the approximations to the starting matrix U a small difference
can be noticed.

96 3 Proper Orthogonal Decomposition and Radial Basis Functions

This criterion is quit obvious, since the unknown direction is defined as a linear

combination of all the vectors collected in matrix U. Therefore, for fixed matrix U,

the unknown direction is uniquely defined with the set of coefficients collected in

vector v1. Changing these coefficients under the constraint that they should form a

unit vector will obviously change not only the direction of w1, but also its length.

The direction that matches the one with the largest variance of all the vectors from

the set will have the biggest length of vector w1. Substituting (3.32) into (3.34) we

have

v1½ �T � UT � U � v1 ! max (3.35)

which becomes maximization problem with the constraint given by (3.33). To solve

this constrained problem, once again the Lagrange multipliers method can be used.

With this, the new formulation of the problem is defined by

v1½ �T � D � v1 þ l1 1� v1½ �T � v1

 �

! max (3.36)

where

D ¼ UT � U (3.37)

is so-called modified correlation matrix. It is called modified, since in general

vectors collected in matrix U don’t have to be unit vectors. In the case when all

the columns of matrix U are normalized to be a unit vectors, matrix D will be

exactly the correlation matrix of vectors ui (namely its element dij will be a

correlation coefficient between column i and column j of matrix U). The correlation

coefficient is within the range –1 to 1. Value 1 means that the two vectors are

fully correlated (linearly dependant). Value –1 means that the two vectors are fully

correlated and opposite by the sign. Value 0 means that the vectors are uncorrelated

(they are orthogonal). All the values in between are giving quantitative information

about the correlation between the two vectors. The diagonal elements of the

correlation matrix are of course 1, since they give correlation coefficients for

vectors ui with themselves. The correlation matrix is symmetric since the correla-

tion of column i with column j is the same as the correlation of column j with
column i. In more general case, when vectors ui are not unit vectors, modified

correlation matrix will not have elements within the range –1 to 1, but it will be still

symmetric and positive-semi-definite.

The maximization problem given by (3.36) needs to be solved for unknown

coefficients collected in vector v1, that are uniquely defining the unknown direction.

Differentiation of (3.36) with respect to the unknown coefficients collected in

vector v1 leads to

D � v1 � l1 � v1 ¼ 0 (3.38)

3.3 Discrete POD Theory 97

This shows that the solutions of the constrained problem (3.35) and (3.33) are the

eigenvalue and the corresponding eigenvector of the matrix D. It is known from the

linear algebra that the eigenvectors form a set of orthonormal vectors

vi½ �T � vj ¼ dij (3.39)

where dij is a Kronecker delta. Having in mind this orthonormality, multiplying

Eq. 3.38 by v1½ �Tgives

v1
� �T � D � v1 ¼ l1 (3.40)

Comparing the last equation with (3.35) it is obvious that the solution of the

maximization problem is obtained by taking the largest eigenvalue and the

corresponding eigenvector.

The next direction can be found in an analogous manner, which will lead to the

following equation

D � v2 � l2 � v2 ¼ 0 (3.41)

and the second direction should be computed as

w2 ¼ U � v2 (3.42)

Finally, the general expression to construct the ith optimal direction can be

written as

D � vi � l2 � vi ¼ 0 (3.43)

and

wi ¼ U � vi (3.44)

with the eigenvalues taken in decreasing order.

This derivation however is not leading to normalized basis wi. Up to know, only

vector vi was constrain to be a unit vector, and so the maximization procedure in

general case will result with basis vectors wi of arbitrary length. Since it is

convenient to work with orthonormal basis, the entries of vectors vi should be

scaled

v
_

i ¼ vi � zi (3.45)

where zi is an unknown normalizing factor.

The general formula for ith optimal orthonormal direction is now given in the

following form

w
_

i ¼ U � v_i ¼ U � vi � zi (3.46)

98 3 Proper Orthogonal Decomposition and Radial Basis Functions

where terms with the hat are corresponding to normalized unit length directions.

Therefore, the unknown normalizing parameter is obtained by forcing the fulfill-

ment of the criterion

w
_

i

h iT
w
_

i ¼ 1 (3.47)

Substituting (3.46) into (3.47) the criterion becomes

U � vi � zi½ �TU � vi � zi ¼ 1 (3.48)

After regrouping we will have

vTi ziU
TUvizi ¼ z2i v

T
i Dvi ¼ 1 (3.49)

By using (3.43), (3.49) can be further written as

z2i v
T
i livi ¼ z2i liv

T
i vi ¼ 1 (3.50)

Since vector vi is a unit vector the last equation finally becomes

z2i li ¼ 1 (3.51)

which is now giving the value of normalization factor equal to

zi ¼ l�1=2
i (3.52)

It was already mentioned that matrix D [M � M] is symmetric positive semi-

definite so all M eigenvalues are non-negative, real numbers.

Finally, we can write that the orthonormal POD basis has columns defined by

w
_

i ¼ U � vi � l�
1
2

i (3.53)

and sorted in descending order of eigenvalues li in a matrix

F ¼ w
_

i

h i

; i ¼ 1 ; ::: M (3.54)

It should be emphasized that the number of columns is not necessary equal toM.

The number of columns will be equal to the number on non-zero eigenvalues of

matrix D. Matrix D is of the size M � M, but it’s rank can be lower than M. In the

case when N < M the rank of matrix D will be N (or even lower) and therefore, the

new basis will be of N � N size. In the case of linearly dependant columns the rank

will be even lower than N. This feature will be illustrated in the following example.

3.3 Discrete POD Theory 99

Example 3.2. Consider the same set of vectors as the one given in Example

3.1. Show that derivation of the POD basis starting from modified correlation

matrix D leads to the same results as the one that uses covariance matrix.

Solution:
Let us first compute matrix D that is equal to

C ¼
1 1 1

5 4 5

3 4 5

3 3 4

2

6
6
4

3

7
7
5
�

1 5 3 3

1 4 4 3

1 5 5 4

2

4

3

5 ¼
3 14 12 10

14 66 56 47

12 56 50 41

10 47 41 34

2

6
6
4

3

7
7
5

The solution of eigenvalue problem for matrix D gives the eigenvectors
(collected as columns of matrixV) and corresponding eigenvalues (given in a
diagonal matrix L)

V ¼

0:1399 �0:0844 �0:7572 0:6325

0:6566 �0:6814 �0:0669 �0:3162

0:5701 0:7196 �0:2390 �0:3162

0:4735 0:1035 0:6042 0:6325

2

6
6
6
4

3

7
7
7
5

L ¼

151:49 0 0 0

0 1:46 0 0

0 0 0:045 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5

It may be observed that the eigenvalues are the same as in the example 3,
and that, even though matrix D is 4�4 matrix, it’s rank is 3 since the fourth
eigenvalue is equal to zero. In the present context this is expectable since the
original size of the vector space was 3 and therefore also the new space can
have maximum size equal to 3. Consequently, the fourth eigenvalue needs to
be equal to zero.

Considering just the first three eigenvalues and corresponding
eigenvectors, the POD basis is constructed using (3.53) which written in a
matrix form is equal to

F ¼ UVZ ¼
1 5 3 3

1 4 4 3

1 5 5 4

2

6
4

3

7
5

0:1399 �0:0844 �0:7572
0:6566 �0:6814 �0:0669
0:5701 0:7196 �0:2390
0:4735 0:1035 0:6042

2

6
6
4

3

7
7
5

�
0:081 0 0

0 0:828 0

0 0 4:702

2

4

3

5

¼
0:5325 �0:8462 0:0183
0:5255 0:3135 �0:7909
0:6636 0:4308 0:6116

2

4

3

5

(continued)

100 3 Proper Orthogonal Decomposition and Radial Basis Functions

As already anticipated, the two methods are resulting in the same POD basis and

therefore, in the same approximations. Which one of the two will be used is left on

the user to choose. However, it can be noted that matrix C is of N � N size, while

matrix D is M � M. Since it is always better to work on smaller matrix, it is

therefore reasonable to choose approach based on matrix C in the cases when

N < M and the approach based on matrix D in the opposite case.

3.3.3 Construction of POD Basis: Singular Value
Decomposition Approach

The third method of derivation of the POD basis that will be presented here is the

Singular Value Decomposition (SVD). SVD can be viewed as the extension of the

eigenvalue decomposition for the case of non-square matrices. For more detailed

discussion on SVD, reader may refer to [15]. In general, this decomposition states,

that for any real rectangular N � M matrix U, there exists orthogonal matrices,

N � N V1 and M � M V2 such that

V1
� �T

UV2 ¼ S (3.55)

where S is rectangular N � M matrix with all the elements equal to zero except

those on the main diagonal, which are equal to

sii ¼ si; s1 > s2 > ::: > sr > 0; r ¼ minðM;NÞ (3.56)

si are called singular values of matrix U, while columns of matrix V1 are called

left singular vectors, and columns of matrix V2 right singular vectors. A non-

negative number s is called a singular value of real rectangular matrix U if

where matrix Z is the diagonal matrix with normalization factors given by
(3.52).

Having in mind orthonormality of the new basis, the matrix of amplitudes
A is computed by

A ¼ FTU ¼
0:5325 0:5255 0:6636

�0:8462 0:3135 0:4308

0:0183 �0:7909 0:6116

2

6
4

3

7
5

1 5 3 3

1 4 4 3

1 5 5 4

2

6
4

3

7
5

¼
1:7215 8:0822 7:0172 5:8282

�0:1019 �0:8232 0:8693 0:1250

�0:1610 �0:0142 �0:0508 0:1285

2

6
4

3

7
5

3.3 Discrete POD Theory 101

and only if there exist a unit-length N-dimensional vector v1 and a unit-length

M-dimensional vector v2 such that

Uv2 ¼ sv1 and UTv1 ¼ sv2 (3.57)

The rank of matrix U equals the number of non-zero singular values. However,

in the presence of numerical or experimental noises, the determination of matrix

rank becomes not a trivial task. SVD helps tackling with this problem by

introducing a so-called numerical rank of matrix. Namely, if matrix U is obtained

by experimental measurements, knowing that the accuracy of measurements is, say

�0.01, then the numerical rank of matrix U is equal to r if sr+1 < 0.01. In other

words, singular value indicates how close given matrix is to a matrix with the lower

rank. Using this feature, SVD can also be used to construct low-order approxima-

tion of matrix U.

Since both V1 and V2 are orthogonal matrices it is evident from (3.55) that

matrix U can be expressed as

U ¼ V1S V2
� �T

(3.58)

Now let us suppose that we would like to find matrix with lower rank to

approximate matrix U. By keeping just the first K singular values into a square

K � K diagonal matrix SK and collecting the corresponding columns from V1 and

V
2, the KTH approximation of U is given by

U � V1
KSK V2

K

� �T
(3.59)

The optimality of this approximation lays in the fact that no other rank K matrix

can be closer to U in the least square sense (square root of the sums of squares of all

the elements). This is practically the same thing as to seek for K-dimensional

subspace for which the mean square distance of the points, from the subspace, is

minimized, which indicates the connection between SVD and previously discussed

methods for derivation of POD basis.

Unlike orthogonal decomposition, SVD can be applied on rectangular matrices.

However, there is a strong connection between the two decompositions. This can be

seen by pre-multiplying (3.58) by U
T, having in mind orthogonality of V1 it will

read

UTU ¼ V1S V2
� �T

 �T
V1S V2

� �T ¼ V2 V1S
� �T

V1S V2
� �T

(3.60)

Using notation introduced in section 3.2, namely, D ¼ UT � U, and once again

taking into account orthogonality of V1 we can write

D ¼ V2ST V1
� �T

V1S V2
� �T ¼ V2STS V2

� �T ¼ V2S2 V2
� �T

(3.61)

102 3 Proper Orthogonal Decomposition and Radial Basis Functions

Matrix S2 ¼ STS is also a diagonal N � M matrix except that its elements are

squares of singular values, namely with only the elements on main diagonal

different from zero and equal to

s2ii ¼ s2i (3.62)

Finally, taking into account orthogonality of matrix V2 it can be written

DV2 ¼ V2S2 (3.63)

The last equation shows, that columns ofV2 are eigenvectors of matrix D, earlier

called modified correlation matrix, and that singular values of matrix U are square

roots of eigenvalues of matrix D (which are equal to eigenvalues of covariance

matrix C, as we have already seen).

Multiplying Eq. 3.58 by U
T from the right side and following the similar

procedure it can be shown that the columns of V1 are eigenvectors of, earlier

introduced covariance matrix C ¼ UUT .

Therefore, there is a full equivalence between approximation given by SVD

(Eq. 3.59) and the one previously derived based on POD basis, namely

U � V1
KSK V2

K

� �T ¼ �F�A (3.64)

Furthermore, the equivalence between two previously discussed methods for

derivation of PCs (the one that starts from covariance matrix, and the one that starts

from modified correlation matrix) is embedded in the SVD. Starting from the

definition of singular value, and writing (3.57) for the first singular value and

corresponding singular vectors, taking into account the connection between singu-

lar values and eigenvalues of matrices D and C we have

Uv21 ¼ s1v11¼
ffiffiffiffiffi

l1
p

v11 (3.65)

which gives

Uv21
1
ffiffiffiffiffi
l1

p ¼ v11 (3.66)

Recalling that we have shown that vector v2 is eigenvector of matrix D, and

vector v1 is eigenvector of matrix C we can confirm that the left-hand side of the

equation is exactly what we have derived for the first POD direction starting from

modified correlation matrix (Eq. 3.53), while the approach based on covariance

matrix showed that the first POD direction is actually first eigenvector of matrix C,

here given on the right-hand side of the equation.

3.3 Discrete POD Theory 103

Example 3.3. Consider the same set of vectors as the one given in Example

3.1. Show that SVD approximation of rank 1 and rank 2 are giving exactly the

same results as the one obtained by PCA achieved in examples 3.1 and 3.2

Solution:

Singular value decomposition of U is resulting in the following
matrices:

V1 ¼
�0:5325 0:8462 0:0183
�0:5255 �0:3135 �0:7909
�0:6636 �0:4308 0:6116

2

4

3

5

S ¼
12:308 0 0 0

0 1:208 0 0

0 0 0:213 0

2

4

3

5

V2 ¼
�0:1399 0:0844 �0:7572 0:6325
�0:6566 0:6814 �0:0669 �0:3162
�0:5701 �0:7196 �0:2390 �0:3162
�0:4735 �0:1035 0:6042 0:6325

2

6
6
4

3

7
7
5

Note that V1 matrix corresponds exactly to eigenvectors of matrix C and
V2 correspond exactly to eigvectors of matrix D

Rank one approximation is obtained by taking just the first eigenvectors
and corresponding singular value (Eq. 3.64), namely

U1 �
0:5325

�0:5255

�0:6636

2

6
6
4

3

7
7
5
� 12:308 � �0:1399 �0:6566 �0:5701 �0:4735½ � ¼

¼
0:9167 4:3037 3:7366 3:1034

0:9046 4:2468 3:6872 3:0625

1:1424 5:3633 4:6566 3:8676

2

6
4

3

7
5

Rank two approximation is obtained on analogous way, taking into
account the first two eigenvectors, namely

(continued)

104 3 Proper Orthogonal Decomposition and Radial Basis Functions

3.4 Approximation of Discrete Fields Using POD

The main topic of this book are inverse analyses in structural context, that, as it was

anticipated in Chap. 1, are combining simulations with experiments within an

optimization procedure apt to the identification of some unknown parameters

(or in general, some other missing data to formulate the forward problem, i.e.

boundary conditions, initial conditions, etc.). Therefore, the final goal is to connect

previously presented methodology with structural simulations. In what follows it

will be shown how on a very effective way POD can be used to construct high

accuracy, low-dimensional approximations of discrete fields like those resulting

from numerical simulations.

Numerical techniques, like finite element method, used for structural simulations

are solving continuum problems on discretized domains, having as resulting

responses discrete fields represented by the values in nodes and integration points

(e.g. nodal displacements, values of stresses in Gauss quadrature points, etc.). This

fact already suggests that the results from these simulations can easily be treated by

discrete POD theory.

In order to establish the connection with what was previously discussed, let

us introduce the concept of snapshots which is a fundamental notion within the

POD theory. In general, one snapshot represents some output of a certain system

U2 �
�0:5325 0:8462

�0:5255 �0:3135

�0:6636 �0:4308

2

6
4

3

7
5

12:308 0

0 1:208

� 	

� �0:1399 �0:6566 �0:5701 �0:4735

0:0844 0:6814 �0:7196 �0:1035

� 	

¼
1:0029 5:0003 3:0009 2:9976

0:8726 3:9887 3:9598 3:1016

1:0985 5:0087 5:0311 3:9214

2

6
4

3

7
5

Comparing the matrices here computed it can be noted that both of them
(rank 1 and rank 2 approximations) gave exactly the same results as those
previously calculated in examples 3.1 and 3.2 using just the first, and the
first two POD directions.

Fig. 3.4 Snapshot as an

output of a system

3.4 Approximation of Discrete Fields Using POD 105

http://dx.doi.org/10.1007/978-3-642-22703-5_1

corresponding to some input (Fig. 3.4). In the context presented in this book, in

more concrete terms, a snapshot will be a collection of N discrete values of a certain

state variable resulting from a simulation (which represents a system) collected in

vector ui, corresponding to some input parameters (collected in vector pi) on which

the solution depends. Therefore, one snapshot can for instance be a vector of nodal

displacements that corresponds to a certain combination of material parameters

entering into the constitutive model used in the simulation. It should be noted that,

in general, the system can also be represented by an experiment, where the snapshot

would be a collection of measurements taken from it.

Further, a set of M different snapshots, corresponding to different input para-

meters, can be collected in a rectangular N � M matrix U, called the snapshot
matrix. Therefore, a snapshot matrix represents a collection of responses of one

system, under given conditions, corresponding to different values of parameters on

which the solution depends. This snapshot matrix can be interpreted as a set of M,
N-dimensional vectors. Each vector corresponds to one parameter combination. It is

reasonable to expect that there will be a strong correlation between these vectors

since they represent the outputs of the same system where just some parameters are

changed. The expected correlation suggests that previously presented POD theory

can be effectively applied on the snapshot matrix, allowing to construct a new basis

in which the dimensionality can be drastically cut-down to K<<N.
To make the things more concrete, let us imagine that the field of interest is

a displacement field of some solid body. The system is then represented by

a numerical model of this body, and the resulting nodal displacements from the

simulations collected in vectors ui are representing snapshots. The inputs to the

system, that are changing from one snapshot to another, are some parameters

entering into the constitutive model of material, while all the boundary conditions

and initial conditions are the same for all of the snapshots. Snapshot matrix can

be generated using this numerical model, and the process will involve a set of

M simulations, in which the parameters are changing within some specified range

while keeping both boundary conditions and loads fixed (Fig. 3.5). All the snapshots

are collected in rectangular matrix U, such that different columns are corresponding

to discretized displacement fields (represented by nodal displacements) of solid

bodies of the same geometry, subjected to the same constraints and loads, built of

Fig. 3.5 Generation of

snapshot matrix using

numerical simulations

106 3 Proper Orthogonal Decomposition and Radial Basis Functions

different materials. In the most trivial case when the analyses are linear (for instance

the only parameter that changes form one snapshot to another is Young modulus)

there will be a full linear dependence between the snapshots. In such case, it would

be possible to express all the snapshots, without any loss of accuracy, in the reduced

space of just one dimension.

The process of building the snapshot matrix and further construction of the POD

basis will be illustrated on the following structural example.

Example 3.4. Consider the truss structure presented on the figure below.

Keeping fixed boundary conditions and forces equal to F1 ¼ 5,000 N and

F2 ¼ 2,000 N, generate the snapshot matrix of nodal displacements for the

given structure, by varying the following two parameters: Young’s modulus

from 125 GPa to 200 GPa, with the step 25 GPa, and area of cross-section of

the trusses from 6 mm2 to 12 mm2 with the step 2 mm2. Construct the POD

basis of the snapshot matrix and show that in this case the dimensionality can

be reduced to 1 without any loss of accuracy.

Solution:
First, we need to build a numerical model for a given structure. For this

purpose, a two simple MATLAB codes can be used. The first one is the main
MATLAB routine that solves structural problem using truss finite elements,
and the second one is a MATLAB function that computes stiffness matrix of
single truss element, called by the main routine.

(continued)

3.4 Approximation of Discrete Fields Using POD 107

% Main program for truss structure (file name truss_str.m)
% Coordinates - units L[mm]
COO=[0,0;2,0;4,0;1,1;3,1;-1,1;5,1];
COO=1000*COO;
DOF=size(COO,1)*2;
% Elements
ELM=[1,2;2,3;6,4;4,5;5,7;1,6;1,4;2,4;2,5;3,5;3,7];
% Properties (units F[N], L[mm])
E=125000; A=6;
% Assembling of stiffness matrix
MSTF(1:DOF,1:DOF)=0;
for i=1:size(ELM,1)

X(1,:)=COO(ELM(i,1),:);
 X(2,:)=COO(ELM(i,2),:);
 STF=trstiff(X,E,A);
 MSTF(2*ELM(i,1)-1:2*ELM(i,1),2*ELM(i,1)-
1:2*ELM(i,1))=MSTF(2*ELM(i,1)-1:2*ELM(i,1),2*ELM(i,1)-
1:2*ELM(i,1))+STF(1:2,1:2);
 MSTF(2*ELM(i,1)-1:2*ELM(i,1),2*ELM(i,2)-

1:2*ELM(i,2))=MSTF(2*ELM(i,1)-1:2*ELM(i,1),2*ELM(i,2)-
1:2*ELM(i,2))+STF(3:4,1:2);
 MSTF(2*ELM(i,2)-1:2*ELM(i,2),2*ELM(i,1)-
1:2*ELM(i,1))=MSTF(2*ELM(i,2)-1:2*ELM(i,2),2*ELM(i,1)-
1:2*ELM(i,1))+STF(1:2,3:4);
 MSTF(2*ELM(i,2)-1:2*ELM(i,2),2*ELM(i,2)-
1:2*ELM(i,2))=MSTF(2*ELM(i,2)-1:2*ELM(i,2),2*ELM(i,2)-
1:2*ELM(i,2))+STF(3:4,3:4);
end
% Constrains
con=[12,13,14,15]; % constrained DOF
CDOF=size(con,2);
% Forces;
dF(DOF,1)=0;dF(2)=-5000;dF(6)=-2000;
% Reduced stiffness matrix and force vector
RSTF=MSTF(1:DOF-CDOF,1:DOF-CDOF);
dFR=dF(1:DOF-CDOF);
% Solving for displacements
d=inv(RSTF)*dFR;
% End of main program

function STF=trstiff(coo,E,A)
% Function that computes stiffness matrix for truss element
% (file name trstiff.m)
L=sqrt((coo(2,1)-coo(1,1))^2+(coo(2,2)-coo(1,2))^2);
C=(coo(2,1)-coo(1,1))/L;
S=(coo(2,2)-coo(1,2))/L;
% Stiffness matrix
STF=E*A/L*[C^2,S*C,-C^2,-S*C;
 S*C,S^2,-S*C,-S^2;

-C^2,-S*C,C^2,S*C;
-S*C,-S^2,S*C,S^2];

(continued)

108 3 Proper Orthogonal Decomposition and Radial Basis Functions

Note that the program uses reduced stiffness matrix, and therefore as
a result gives the displacements of just those nodes that are not constrained,
having therefore the displacement vector of the dimension 10 � 1

In the listing of program the parameters are specified to coincide with the
first values from the ranges for E and A. The program should be run for each
of 16 pairs of values for the parameters within the specified range. The
resulting displacement vector should be collected in the snapshot matrix.
Note that this part doesn’t have to be done manually, but within another
MATLAB routine with the listing given below (and by ereasing two lines in
the main program in which the values are prescribed to the parameters E and
A, since here this is done outside of the main program.

cnt=0;
for E=125000:25000:200000
 for A=6:2:12
 cnt=cnt+1;
 truss_str;
 U(:,cnt)=d;
 end
end

The resulting snapshot matrix is collecting responses of these 16 different
structures:

U¼

�11:56 �8:67 �6:93 �5:78 �9:63 �7:22 �5:78 �4:81 �8:25

�28:53 �21:39 �17:12 �14:26 �23:77 �17:83 �14:26 �11:89 �20:38

�0:89 �0:67 �0:53 �0:44 �0:74 �0:56 �0:44 �0:37 �0:63

�31:87 �23:90 �19:12 �15:93 �26:55 �19:92 �15:93 �13:28 �22:76

7:11 5:33 4:27 3:56 5:93 4:44 3:56 2:96 5:08

�16:54 �12:40 �9:92 �8:27 �13:78 �10:34 �8:27 �6:89 �11:81

�2:67 �2:00 �1:60 1:33 �2:22 �1:67 �1:33 �1:11 �1:90

�35:53 �26:65 �21:32 �17:76 �29:61 �22:21 �17:76 �14:80 �25:38

�2:67 �2:00 �1:60 �1:33 �2:22 �1:67 �1:33 �1:11 �1:90

�28:20 �21:15 �16:92 �14:10 �23:50 �17:63 �14:10 �11:75 �20:14

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

�6:19 �4:95 �4:13 �7:22 �5:42 �4:33 �3:61

�15:28 �12:23 �10:19 �17:83 �13:37 �10:70 �8:91

�0:48 �0:38 �0:32 �0:56 �0:42 �0:33 �0:28

�17:07 �13:66 �11:38 �19:92 �14:94 �11:95 �9:96

3:81 3:05 2:54 4:44 3:33 2:67 2:22

�8:86 �7:09 �5:91 �10:34 �7:75 �6:20 �5:17

�1:43 �1:14 �0:95 �1:67 �1:25 �1:00 �0:83

�19:03 �15:23 �12:69 �22:21 �16:65 �13:32 �11:10

�1:43 �1:14 �0:95 �1:67 �1:25 �1:00 �0:83

�15:11 �12:09 �10:07 �17:63 �13:22 �10:58 �8:81

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(continued)

3.4 Approximation of Discrete Fields Using POD 109

Now we should construct POD basis for the snapshot matrix. We can use
first approach, since matrix C in this case is 10�10, while matrixD is 16�16.
Solving eigenvalue problem in MATLAB is possible by the use of already
implemented command, namely

[V,L]=eigs(U*U',10)

which as a result gives 10�10 matrix V, whose columns are eigenvectors of
matrix C (C ¼ UUT) and 10�10 matrix L, whit only diagonal elements
different from zero and equal to eigenvalues of matrix C.

It may be observed that only the first eigenvalue of matrix C has finite
value and is equal to 2.458E þ 4, while already second one is equal to
4.663E-12, which is a numerical zero. This proves that the responses of the
system are fully correlated and therefore, they can be interpreted without any
loss of accuracy in the new one-dimensional basis. The vector of this new
basis coincides with the first eigenvector of matrix C, and is equal to:

�F¼ 0:175 0:013 0:483 �0:108 0:250 0:040 0:538 0:040 0:427
h iT

The amplitudes in the reduced space are computed by

�A¼ �FT
U¼ �66:027 �49:520 �39:616 �33:013 �55:022 �41:267 �33:013

h

�27:511 �47:162 �35:372 �28:297 �23:581 �41:267 �30:950 �24:760 �20:633
i

With this, the dimensionality of the problem was cut-down from 10 to just 1.
In the new basis, the response (i.e. snapshot) of each of 16 previous structures
(defined by different values of E and A) is given by just one number
(corresponding amplitude from vector �A). Since the correlation was full
due to the linearity of the problem, no error was introduced by this trunca-
tion. To reconstruct back the response of any of the snapshots it is enough to
make a simple multiplication between reduced basis and corresponding
amplitude, for instance nodal displacements of first structure are equal to

u ¼ �66:027

0:175

0:432

0:013

0:483

�0:108

0:250

0:040

0:538

0:040

0:427

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

�11:56

�28:53

�0:89

�31:87

7:11

�16:54

�2:67

�35:53

�2:67

�28:20

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(continued)

110 3 Proper Orthogonal Decomposition and Radial Basis Functions

Last exercise showed how the discrete POD theory can be used to construct low

dimensional approximation of structural problems. In the linear example treated

here, due to the full correlation between the responses, the dimensionality was

reduced to just one component. However, this formulation is still not very useful

for the substitution of simulations since actually what we did up to now is just

expressed the existing responses of the system (previously computed by “full”

numerical model) in new basis where they can be, in this particular case, represented

by just one number. But this “light” model obviously can give the responses of the

system for just a discrete number of parameter combinations, those that were

previously used to generate the snapshot matrix. Since within inverse analyses, a

multiple system responses computations are usually performed, therefore a required

formulation needs to be capable of computing an approximate response of the

system for any arbitrary combination of parameters (like finite element simulations

are doing).

This can be done following the procedure, first introduced by Bialecki et al. in

[7] and [16], in thermal problems, and then later applied in structural problems by

Buljak et al. in [17–19]. This technique combines POD with Radial Basis Functions

(RBF) to interpolate previously generated results. Before coming to details on how

the method is implemented in the present context, let us first see how RBF are used

for scattered data interpolation.

3.5 Radial Basis Functions for Scattered Data Interpolation

Radial Basis Functions (RBF) are frequently used when it is needed to construct an

approximation of a certain multivariable function by interpolation between the

existing data. This section will give a very brief description of the method to

make the reader familiar with main principles and to show how it can be effectively

combined with previously described POD theory in the structural context here of

interest. For more detailed description on RBF reader should refer to [20].

Let us assume that we wish to approximate some function f xð Þ, where x is an

M-dimensional vector, for which the only information that we have is a set of,

say N values xi, called “nodes”, for which the values of the function are known.

In classical, local methods of interpolation, the problem is solved locally in the

neighborhood of the point x for which the value of the function is required. In this

case it doesn’t exist just one continuous function defined over the whole domain

Comparing the result with the original snapshot matrix, it is evident that
the displacements are completely the same. This can easily be verified for any
other snapshot.

3.5 Radial Basis Functions for Scattered Data Interpolation 111

where the data are situated. Instead, for any arbitrary value of x the interpolation

is performed involving just a few nearby data.

The approach of RBF is different, and it seeks for one continuous function

defined over the whole domain and that depends on the entire data set defined by

the pairs of given N nodes and their values of the function. Therefore, the approxi-

mation of the function is written as a linear combination of some functions gi, that
in general case can be non-linear functions, namely

f ðxÞ �
XN

i¼1

ai � giðxÞ (3.67)

where ai are coefficients of this combination. The last equation is completely

defined once the basis functions gi are selected and the coefficients ai are known.

Choosing a set of any radial basis functions for the basis, like for instance Euclidian

distance

giðxÞ ¼ g x� xik kð Þ; i ¼ 1; 2; :::;N (3.68)

all that remains is to determine coefficients ai. This is done from the known

N values of the function in the nodes xi. The condition from which unknown

coefficients are determined states, that the interpolation needs to be exact in all

N nodes, therefore, the approximation (3.67) needs to be written for all N nodes

which gives a system of N linear equations defined by

f ðxjÞ ¼ yj ¼
XN

i¼1

ai � giðxjÞ; j ¼ 1; :::;N (3.69)

where yj are known values of the function in the nodes. Introducing the following

matrix notation

G ¼
g1ðx1Þ ::: gNðx1Þ
::: ::: :::

g1ðxNÞ ::: gNðxNÞ

2

6
4

3

7
5;

a ¼ a1; a2;:::; an½ �T ;Y ¼ y1; y2; :::; yN½ �T
(3.70)

the system (3.69) can be written as

a �G ¼ Y (3.71)

Matrix equation (3.71) can be solved for unknown interpolation coefficients ai.
After this, it is possible by the use of (3.67) to obtain the approximation of the

function in any given point. Considering the way how the interpolation coefficients

are determined, (3.67) will give exact results in the nodes, and some form of

112 3 Proper Orthogonal Decomposition and Radial Basis Functions

interpolated value for any other value of x. The interpolation coefficients are

computed once for all, and they obviously involve all known values of functions

which represents already anticipated difference with respect to the classical, local

interpolation techniques. Therefore RBF through Eq. 3.67 are giving one approxi-

mation valid for the whole domain where original data were situated. Another

advantage of RBF is that the distribution of nodes in their space needs not to be

regular like in some other interpolations (for instance Lagrangian interpolation

[21]), but it can also be scattered. Of course the distribution of nodes is influencing

the error of interpolation which can be easier kept under control when a regular grid

is used, it is important to note that this is not a necessary condition for the method.

Apart of the number of nodes and their distribution, the error of interpolation is

influenced also by the choice of RBF. The most frequently used examples are listed

below [22]

Thin� platesplines; x� xj
�
�

�
� ln x� xj

�
�

�
�

� �

(3.72)

Linearsplines; x� xj
�
�

�
� (3.73)

Cubicspline; x� xj
�
�

�
�
3

(3.74)

Gaussian; exp � x� xj
�
�

�
�

c2j

 !

(3.75)

Multiquadric

ffi

1þ x� xj
�
�

�
�
2

c2j

v
u
u
t (3.76)

Previous equations are written for the case when the value of the function is

a scalar. However, the interpolation can also be performed when the value of the

functions is a vector, say S-dimensional one. In this case (3.69) becomes

a11
a21
:::
aS1

2

6
6
4

3

7
7
5
� g1 xið Þ þ

a12
a22
:::
aS2

2

6
6
4

3

7
7
5
� g2 xið Þ þ :::þ

a1N
a2N
:::
aSN

2

6
6
4

3

7
7
5
� gN xið Þ ¼

yi1
yi2
:::
yiS

2

6
6
4

3

7
7
5

(3.77)

As it may be observed, here the coefficients of interpolation are forming S�N
matrix instead of vector like in previous case. Equation 3.77, for one pair of xi and

yi, can be written as S algebraic equations in the following form

aj1 � g1ðxiÞ þ aj2 � g2ðxiÞ þ :::þ ajN � gNðxiÞ þ ajNþ1 ¼ yij

i ¼ 1; 2; :::N; j ¼ 1; 2; :::; S
(3.78)

3.5 Radial Basis Functions for Scattered Data Interpolation 113

Equation 3.78 is practically the same one as (3.69), except that here it is written

for each component of the vector yi. Writing (3.78) for each N pairs of xi and yi
a system of N � S equations is obtained that should be solved for the unknown

interpolation coefficients aij. Let us use the generic formula given by (3.78) for the

simple case where S ¼ 2 and N ¼ 3, just to show how the system is transformed to

a matrix equation. Using notation given by (3.77) and (3.78) the resulting system of

algebraic equations is given by

a11g1 x1ð Þ þ a12g2 x1ð Þ þ a13g2 x1ð Þ ¼ y11

a21g1 x1ð Þ þ a22g2 x1ð Þ þ a23g2 x1ð Þ ¼ y12

a11g1 x2ð Þ þ a12g2 x2ð Þ þ a13g2 x2ð Þ ¼ y21

a21g1 x2ð Þ þ a22g2 x2ð Þ þ a23g2 x2ð Þ ¼ y22

a11g1 x3ð Þ þ a12g2 x3ð Þ þ a13g2 x3ð Þ ¼ y31

a21g1 x3ð Þ þ a22g2 x3ð Þ þ a23g2 x3ð Þ ¼ y32 (3.79)

First two equations are corresponding to the first pair of x and f xð Þ ¼ y, the

second two correspond to the second pair, and the last two to the last pair. Writing

the system (3.79) in a matrix form it will become

g1ðx1Þ g2ðx1Þ g3ðx1Þ 0 0 0

0 0 0 g1ðx1Þ g2ðx1Þ g3ðx1Þ
g1ðx2Þ g2ðx2Þ g3ðx2Þ 0 0 0

0 0 0 g1ðx2Þ g2ðx2Þ g3ðx2Þ
g1ðx3Þ g2ðx3Þ g3ðx3Þ 0 0 0

0 0 0 g1ðx3Þ g2ðx3Þ g3ðx3Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

�

a11
a12
a13
a21
a22
a23

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼ y11 y21 y31
y12 y22 y32

� 	

(3.80)

After regrouping the last equation can be written as

a11 a12 a13
a21 a22 a23

� 	

�
g1ðx1Þ g1ðx2Þ g1ðx3Þ
g2ðx1Þ g2ðx2Þ g2ðx3Þ
g3ðx1Þ g3ðx2Þ g3ðx3Þ

2

4

3

5 ¼ y11 y21 y31

y12 y22 y32

" #

(3.81)

Denoting by A the matrix with the coefficients and matrix with the values of the

function by Y we can write

A �G ¼ Y (3.82)

which is identical to (3.71) except that here A and Y are matrices and not vectors.

The last equation is solved for the unknown matrix A.

114 3 Proper Orthogonal Decomposition and Radial Basis Functions

Once the coefficients are determined, the interpolation is obtained by the

following equation

f ðxÞ �
a11 a12 ::: a1N
a21 a22 ::: a2N
::: ::: ::: :::
aS1 aS2 ::: aSN

2

6
6
4

3

7
7
5
�

g1ðxÞ
g2ðxÞ
:::

gNðxÞ

2

6
6
4

3

7
7
5

(3.83)

It should be noted that the number of nodes N can be in general case relatively

large, involving therefore a large system of linear equations to be solved in order to

determine interpolation coefficients. However, this process is done once-for-all,

and after that, the interpolation is performed directly by matrix multiplication given

by (3.83).

Let us consider a following simple numerical example where the function is

given in analytical form. This will allow us to have a direct comparison between

interpolated values and computed ones in order to see the error of interpolation.

In this example we saw that there is a considerable influence of the choice of the

type of RBF to the error of interpolation. However, there is no single rule to use as

a guideline for this choice and in practical examples it will depend on the case.

Example 3.5. Argument of the function is defined as two-component vector

x ¼ x1 x2½ �T , while value of the function is given as three-component

vector defined by y ¼ ffiffiffiffiffi
x1

p
x22 x1 þ x2

� �T
. Use as nodes values of the

function in the following nine points:

X ¼ 1 2 3 1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

� 	

which are forming regular grid over domain [1, 3] for both components. Build

RBF interpolation for the following three points

1:5 1:1 2:5
1:5 1:2 2:5

� 	

Compare the results using linear spline (3.73) and cubic spline (3.74) as a

basis functions. Compare both interpolations with the analytical solution.

Solution:

First, we should compute the solution in all 9 nodes and collect the results
in matrix Y

Y ¼
1:00 1:41 1:73 1:00 1:41 1:73 1:00 1:41 1:73
1:00 1:00 1:00 4:00 4:00 4:00 9:00 9:00 9:00
2:00 3:00 4:00 3:00 4:00 5:00 4:00 5:00 6:00

2

4

3

5

(continued)

3.5 Radial Basis Functions for Scattered Data Interpolation 115

Second, we should compute matrices G1 and G2 that are using RBF of the
types given by (3.73) and (3.74) respectively. In this case, this will be 9�9
matrices, since there is total of 9 nodes for which the values of the function
are known.

G1 ¼

0:00 1:00 2:00 1:00 1:41 2:24 2:00 2:24 2:83
1:00 0:00 1:00 1:41 1:00 1:41 2:24 2:00 2:24
2:00 1:00 0:00 2:24 1:41 1:00 2:83 2:24 2:00
1:00 1:41 2:24 0:00 1:00 2:00 1:00 1:41 2:24
1:41 1:00 1:41 1:00 0:00 1:00 1:41 1:00 1:41
2:24 1:41 1:00 2:00 1:00 0:00 2:24 1:41 1:00
2:00 2:24 2:83 1:00 1:41 2:24 0:00 1:00 2:00
2:24 2:00 2:24 1:41 1:00 1:41 1:00 0:00 1:00
2:83 2:24 2:00 2:24 1:41 1:00 2:00 1:00 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

G2 ¼

0:00 1:00 8:00 1:00 2:83 11:18 8:00 11:18 22:63
1:00 0:00 1:00 2:83 1:00 2:83 11:18 8:00 11:18
8:00 1:00 0:00 11:18 2:83 1:00 22:63 11:18 8:00
1:00 2:83 11:18 0:00 1:00 8:00 1:00 2:83 11:18
2:83 1:00 2:83 1:00 0:00 1:00 2:83 1:00 2:83
11:18 2:83 1:00 8:00 1:00 0:00 11:18 2:83 1:00
8:00 11:18 22:63 1:00 2:83 11:18 0:00 1:00 8:00
11:18 8:00 11:18 2:83 1:00 2:83 1:00 0:00 1:00
22:63 11:18 8:00 11:18 2:83 1:00 8:00 1:00 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

Note that matricesG1 andG2 are symmetric. This is always the case, since

giðxjÞ ¼ xi � xj
�
�

�
� ¼ gjðxiÞ ¼ xj � xi

�
�

�
�

Next, we should solve Eq. 3.82 for matrix A, namely

AG ¼ Y) GTAT ¼ YT) A ¼ GT
� ��1

YT

 �T

¼ Y GT
� ��1

 �T

which is here resulting with two matrices with interpolation coefficients
corresponding to two different types of RBF

A1 ¼
0:37 �0:04 0:15 0:06 �0:22 �0:03 0:37 �0:04 0:15
1:73 0:16 1:73 0:82 �0:13 0:82 �0:62 �0:93 �0:62
1:30 0:13 0:71 0:13 �0:57 �0:15 0:71 �0:15 0:13

2

4

3

5

A2 ¼
0:28 �0:33 0:21 �0:38 0:07 �0:32 0:28 �0:33 0:21
0:98 �0:97 0:98 �1:05 0:10 �1:05 0:32 �0:28 0:32
0:86 �1:04 0:69 �1:04 0:19 �0:86 0:69 �0:86 0:52

2

4

3

5

(continued)

116 3 Proper Orthogonal Decomposition and Radial Basis Functions

Now, for each of the three required points interpolation is performed using
(3.83), which means that a vector g with values of RBF for the particular point
needs to be computed. Denoting by g1 vector of RBF given by (3.73)

g1 xð Þ ¼

x� x1k k
x� x2k k
x� x3k k
x� x4k k
x� x5k k
x� x6k k
x� x7k k
x� x8k k
x� x9k k

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

) g11
1:5

1:5

" # !

¼

0:71

0:71

1:58

0:71

0:71

1:58

1:58

1:58

2:12

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

g21

1:1

1:2

" # !

¼

0:22

0:92

1:91

0:81

1:20

2:06

1:80

2:01

2:62

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; g31
2:5

2:5

� 	 �

¼

2:12

1:58

1:58

1:58

0:71

0:71

1:58

0:71

0:71

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Interpolated result for the first point is obtained by matrix multiplication:

f
1:5

1:5

" # !

�
0:37 �0:04 0:15 0:06 �0:22 �0:03 0:37 �0:04 0:15

1:73 0:16 1:73 0:82 �0:13 0:82 �0:62 �0:93 �0:62

1:30 0:13 0:71 0:13 �0:57 �0:15 0:71 �0:15 0:13

2

6
6
4

3

7
7
5 �

0:71

0:71

1:58

0:71

0:71

1:58

1:58

1:58

2:12

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1:138

2:077

2:757

2

6
6
6
6
4

3

7
7
7
7
5

(continued)

3.5 Radial Basis Functions for Scattered Data Interpolation 117

and for the remaining two points using the corresponding vectors g, we
have

f
1:1
1:2

� 	 �

�
1:018

1:407

2:204

2

6
4

3

7
5; f

2:5
2:5

� 	 �

�
1:530

6:357

4:897

2

6
4

3

7
5

Further, values of g2 vectors for RBF given by (3.74) for the three points of
interest are

g2ðxÞ ¼

x� x1k k3
x� x2k k3
x� x3k k3
x� x4k k3
x� x5k k3
x� x6k k3
x� x7k k3
x� x8k k3
x� x9k k3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

) g12
1:5

1:5

� 	 �

¼

0:35

0:35

3:95

0:35

0:35

3:95

3:95

3:95

9:54

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

g22
1:1

1:2

� 	 �

¼

0:01

0:78

6:97

0:52

1:75

8:76

5:86

8:15

17:93

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; g32
2:5

2:5

� 	 �

¼

9:54

3:95

3:95

3:95

0:35

0:35

3:95

0:35

0:35

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Interpolated results are obtained by multiplying matrix A2 with the
corresponding vector g2, namely:

f
1:5
1:5

� 	 �

�
1:292

2:584

3:251

2

6
4

3

7
5; f

1:1
1:2

� 	 �

�
1:137

1:811

2:593

2

6
4

3

7
5; f

2:5
2:5

� 	 �

�
1:623

6:205

5:061

2

6
4

3

7
5

Finally, the exact values of the function for the three points are given in the
following matrix

f
1:5
1:5

� 	 �

f
1:1
1:2

� 	 �

f
2:5
2:5

� 	 �� 	

¼
1:225 1:049 1:581
2:250 1:440 6:250
3:000 2:300 5:000

2

4

3

5

118 3 Proper Orthogonal Decomposition and Radial Basis Functions

Generally, one should try couple of functions and compare the error in order to

choose the one that works the best for the given example. RBF approximation, as

previously mentioned, gives exact results in the nodes for which the data existed.

This can be simple proved on the previous numerical example, using computed

matrices in one of the nodal points. This also suggests that the error of interpolation

is influenced by how far the desired point is situated from some of the nodal points.

This featurewas also evidenced in the example and can be seen by comparing the error

for the first two points. For example the differences between interpolated value and

analytical one in the case of linear spline RBF and the analytical one for the first two

points are equal to

f
1:5

1:5

� 	 �

� y1 ¼
1:138

2:077

2:757

2

6
6
4

3

7
7
5
�

1:225

2:250

3:000

2

6
6
4

3

7
7
5
¼

�0:086

�0:173

�0:243

2

6
4

3

7
5

f
1:1

1:2

� 	 �

� y2 ¼
1:018

1:407

2:204

2

6
6
4

3

7
7
5
�

1:049

1:440

2:300

2

6
6
4

3

7
7
5
¼

�0:031

�0:032

�0:096

2

6
4

3

7
5 (3.84)

Clearly, the error is much lower for the second point since this point is closer to

the nodal point [1,1]T. In order to demonstrate how the error of interpolation

changes with the distance from nodes, let us define the error of interpolation as

the length of the vector that is equal to the difference between the analytical

solution and the interpolated one, namely in this particular case:

error ¼ f xð Þ �
ffiffiffiffiffi
x1

p
x22

x1 þ x2

2

4

3

5

�
�
�
�
�
�

�
�
�
�
�
�

(3.85)

Figure 3.6 visualizes the error of interpolation when linear spline RBF is used. It

is visible that the error is “pinned” to zero for all the nodes and that it gradually

increases with the increase of the distance from them. Clearly the potential maxi-

mum of the error of interpolation can be found in the points that are farthest from

the nodes. However, depending on the nature of the function the error doesn’t have

to be the same in all the zones even if the distance from the nearest nodes is the

same. In this case, the point with the coordinates 2:5; 2:5½ � has somewhat larger

error than the point 1:5; 1:5½ � even though both are placed on equal distances from

the nodes but in different zones of the domain. This behavior is also connected with

3.5 Radial Basis Functions for Scattered Data Interpolation 119

the type of RBF used for the basis. The same error distribution for the previous

example is computed for the cubic spline and it is visualized in Fig. 3.7.

The behavior of this type of RBF is quit opposite to the previous one, and shows

much better results in the zone of x1 > 2 than in the zone x1 < 2.

Generally it can be concluded that the error of RBF interpolation certainly

decreases by the increase of the number of nodes for which the value of the function

is available.Once the number of nodes is chosen, the error can be furtherminimized by

the right choice of the RBF typewhich should result from some comparative analyses.

3.6 POD-RBF Procedure

Up to know we have seen how on very effective way the set of previously generated

responses of a certain system can be compressed using the discrete POD theory.

This compression allows for a significant reduction of the dimensionality, preserv-

ing at the same time accuracy of the approximation. The approximation achieved in

this way, refers only to a discrete number of system responses that are already

computed using the “full” model (like for instance, FE model). A further step in

order to make a continuous approximation of the system over certain parameter

Fig. 3.7 Error of

interpolation over the domain

x1 ¼ [1,3], x2 ¼ [1,3], with

cubic spline RBF

Fig. 3.6 Error of

interpolation over the domain

x1 ¼ [1,3], x2 ¼ [1,3], with

spline RBF

120 3 Proper Orthogonal Decomposition and Radial Basis Functions

domain can be achieved if the POD is combined with the RBF interpolation. This

brings a needed generalization to the low-order approximation, by building one

function that approximates the response of the system.

To make the things more concrete, let us recall that our goal is to define an

approximation that should be used instead of FE simulations. Therefore, we whish

to find a function that depends on some parameters collected in vector p such that

f ðpÞ ¼ u (3.86)

In the last equation vector u collects required output of the system. Since the

function (3.86) should replace FE simulation, u can represent for example vector of

nodal displacements, or any other value of interest resulting form FE simulations.

This function is approximating the system response over some domain in parameter

space. This practically means that for any arbitrary combination of parameters

within this specified domain, in order to have approximation of system response,

we can use function (3.86) instead of FE simulation.

The short description of RBF in the previous section suggested that this tech-

nique can be used for continuous approximation over some domain. In the view of

applying RBF to the present purpose, let us recall that the snapshot matrix was

generated using a certain number of input vectors pi, that here will represent nodes

in the parameter space, for which the values of the function are known and are

collected in the snapshot matrix U. However, since we already constructed a low-

order approximation of these responses, they can be represented in the new,

truncated system by the matrix of amplitudes �A. This practically means that RBF

can be applied in already reduced dimensionality where responses are expressed as

the amplitudes, and so the function we are seeking for is the following one

fa pð Þ ¼ �a (3.87)

Previously defined connection between the responses expressed in the reduced

and full dimensionality which is given by (3.7), holds also for the values of func-

tions f and fa so we can write

f pð Þ ¼ �F � fa pð Þ ¼ u (3.88)

Applying the RBF technique the approximation of fa is written as a linear

combination of some basis functions gi, namely

fa pð Þ ¼
b11
b21
:::
bK1

2

6
6
4

3

7
7
5
� g1 pð Þ þ

b12
b22
:::
bK2

2

6
6
4

3

7
7
5
� g2 pð Þ þ :::þ

b1N
b2N
:::
bKN

2

6
6
4

3

7
7
5
� gN pð Þ ¼

�ai1
�ai2
:::
�aiK

2

6
6
4

3

7
7
5

(3.89)

or written in matrix form

3.6 POD-RBF Procedure 121

fa pð Þ ¼
b11 b12 ::: b1M
b21 b22 ::: b2M
::: ::: ::: :::
bK1 bK2 ::: bKM

2

6
6
4

3

7
7
5
�

g1 pð Þ
g2 pð Þ
:::

gM pð Þ

2

6
6
4

3

7
7
5
¼ B � g pð Þ (3.90)

Like in other examples of RBF interpolation, after the basis functions are

chosen, we need to solve for the interpolation coefficients collected in matrix B.

Having in mind that the values of the function fa to be approximated are collected in

the matrix of amplitudes A in the reduced space, Eq. 3.82 in this case has the form

B �G ¼ �A (3.91)

Last equation is solved for unknownmatrix B, and then finally, combining (3.90)

with (3.88) we arrive to the required general formula for the approximation of the

system response for arbitrary parameter combination which reads

u � �F � B � g pð Þ (3.92)

To sum up, Eq. 3.92 represents an RBF approximation of the system response in

the reduced space, which is transformed back to the original space (of full

dimensionality). It was derived by performing the RBF interpolation of the system

responses in the reduced space (represented by amplitude matrix �A) and further

transformed by pre-multiplying it by reduced POD basis �F. Further in the book, this
approximation will be called a POD-RBF approximation of the system response.

The response computed like this has the original dimensionality, as the one com-

puted by a “full” numerical model (i.e. FE model). It is obvious that (3.92) repre-

sents computationally “light” formulation since it involves the simple matrix

multiplication. The accuracy of this approximation, as it will be demonstrated

in the numerical examples that will follow, is practically on the level of FE

simulations, but computed in a time shorter by several orders of magnitude.

For any arbitrary combination of parameters one only needs to compute vector g

as a function of them, since matrices �F and B, are collecting constants computed

once-for-all. The computation of these constants, hereafter called “training” of the

model, involves a series of FE simulations but it is done only once. Figure 3.8

summarizes in the form of flow-chart all the operations needed to be performed

within this process of training.

Previous example showed that, once trained, POD-RBF procedure can give

results of practically the same accuracy as those computed by FEM. In this simple

linear problem, only 16 analyses were enough to train POD-RBF procedure that

gives an error of about 2%. Obviously adding additional analyses would reduce this

difference, and could easily achieved values significantly smaller than 1%, as it will

be demonstrated in further examples.

What should be emphasizes is that within POD-RBF procedure, the system

response corresponding to any arbitrary values of parameters, is computed by a

122 3 Proper Orthogonal Decomposition and Radial Basis Functions

Fig. 3.8 Flow-chart of the operations needed to be performed in order to “train” POD-RBF model

3.6 POD-RBF Procedure 123

Example 3.6. Consider the truss structure given in example 3.4. Train POR-

RBF model that uses previously generated snapshot matrix for the nodal

displacements and compare the results with those obtained by FE solution

for another set of parameters (e.g. E ¼ 135 GPa and A ¼ 11 mm2).

Solution:

To solve this problem apart of truncated POD basis and corresponding
vector of amplitudes (here the basis was truncated to just one component) as
additional information to compute the coefficients of interpolation collected
in matrix B we also need matrix P collecting parameter combinations used to
generate snapshot matrix.

Considering the range used in the example 3.4, we should first generate
this matrix by the following loop in MATLAB

cnt=0;
for E=125000:25000:200000
 for A=6:2:12
 cnt=cnt+1;
 P(:,cnt)=[E;A];
 end
end

Note that this can also be done in the same loop in which the snapshot
matrix is created in the listing given in Example 3.4

Using previously computed vector of amplitudes, we can compute matrix
B. For this purpose the following MATLAB routine should be written and
executed

function [B]=podBmtx(A,p)
% Interpolation by the use of RBFs (Linear splines type)
% Normalization of P [0 1]
for j=1:size(p,1)

minP(j,1)=min(p(j,:));
 maxP(j,1)=max(p(j,:));
 for i=1:size(p,2)
 x(j,i)=(p(j,i)-minP(j))/(maxP(j)-minP(j));

end
end
N=size(x,2);
for i=1:N
 for j=1:N

G(i,j)=sum((x(:,i)-x(:,j)).^2).^0.5;
end

end
Bt=inv(G')*A';
B=Bt';

124 3 Proper Orthogonal Decomposition and Radial Basis Functions

When calling last routine as a function in MATLAB environment, as its
arguments, vector of amplitudes A and matrix of parameters P should be
given, and the function will return matrix B.

With this the training of procedure is finished, since the coefficients of
matrices F and B are determined. For any further computation of system
response, Eq. 3.92 can be used, where the only part that changes as a function
of parameters is vector g which should be computed using the same type of
RBF that was used to determine matrix B. This part is done within another
routine listed below

function G=podGvec(p,pX)
% Function that constructs G vector as function of given
% parameters

N=size(p,2); % The number of generated snapshots
% Normalization of p
for j=1:size(p,1)

minP(j,1)=min(p(j,:));
 maxP(j,1)=max(p(j,:));

 for i=1:size(p,2)
 x(j,i)=(p(j,i)-minP(j))/(maxP(j)-minP(j));

end
end
gi=inline('(sum((x-y).^2).^0.5)');
value=pX;
for k=1:N
 G(k,1)=gi(value,x(:,k));
end

Note that since the function works with normalized values of parameters
(within the range of 0–1), also the parameters here given as pX should be
normalize in the same manner. Therefore, in this particular case, when the
response needs to be computed for E ¼ 135 GPa, and A ¼ 11 mm2, having in
mind the range of training, vector of normalized parameters to be used as
input to the function podGvec is computed by:

pX ¼
135� 125

200� 125
11� 6

12� 6

2

6
4

3

7
5 ¼ 0:133

0:833

� 	

The function gives as a result vector g that can be finally used to compute
the system response, which in this case is equal to:

3.6 POD-RBF Procedure 125

u � �F � B � g pð Þ ¼

�5:707

�14:087

�0:439

�15:737

3:512

�8:168

�1:317

�17:546

�1:317

�13:927

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The response of the same system (i.e. for the same values of E and A) is
computed by FEM using the listing given in the example 3.4. The resulting
vector of nodal displacements is given below

uFEM ¼

�5:836

�14:407

�0:449

�16:094

3:591

�8:353

�1:347

�17:944

�1:347

�14:244

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Comparing the two results in may be observed that the maximum differ-
ence is equal to 0.39 mm, it occurs on the 8th degree of freedom and it
represents approximately 2%.

The following figure visualizes the resulting displacements of the structure
computed by POD-RBF procedure, and FEM. The displacements are
magnified 10 times and the zoom is given for the node with the largest differ-
ence between the two methods.

126 3 Proper Orthogonal Decomposition and Radial Basis Functions

simple matrix multiplication. In previous, rather trivial example, there was no

significant savings in the computing time. For more complicated models computing

times by FEM can be extremely elevated, while the POD-RBF procedure, after the

training, is always represented by a “light” computation, which can be just slightly

longer due to the larger sizes of the matrices (i.e. for the systems with large number

of degrees of freedom). Therefore the real advantage of this approach is visible on

more complicated models and it grows with the complicity of the model.

3.7 On Sources of Error in Low-Dimensional POD-RBF

Approximation

When we are talking about any low-dimensional approximations an important issue

is also how accurate they are. In previous example we saw that the difference

between full numerical model (FEM) and “light” one (POD-RBF) was about 2%.

This section will summarize some general remarks on the estimation of error valid

in general for POD-RBF approximation.

Considering the way it is built, POD-RBF procedure has two different sources of

error. The approximation is based on a set of analyses previously performed, but the

results of these analyses are not used directly in the low-order model. Taking

advantage of the correlation of the responses (snapshots) the results are first

transferred to another reference system, the POD basis, where their dimensionality

is reduced by expressing them just with a few components. In the case of full

correlation, as we already saw, they can be expressed without any loss of accuracy

3.7 On Sources of Error in Low-Dimensional POD-RBF Approximation 127

just with one component. In more realistic cases, there won’t be a full correlation of

the snapshots, meaning that any truncation will introduce an error of the approxi-

mation. This error however, can be easily controlled and kept on very low level

using as criterion for truncation the ratio given by Eq. 3.31.

In practice, it is useful to construct the graph like the one visualized in Fig. 3.9,

and to use it to determine the number of POD directions to be included in the

reduced model. This graph gives the information about how the ratio changes when

new directions are added. In the case visualized here, there is a strong correlation

between the snapshots, since the summation practically reaches value 1 when just

five directions are included, but there is no significant difference even when the

low-dimensional model with three directions is used. In the case when snapshot

matrix collects the velocities, it can be shown that (see [8] and [23]) eigenvalue li is
equal to the kinetic energy transferred by the ith PODmode. In this case there is also

a physical meaning of the graph given in Fig. 3.9, since then, the ordinate is

showing what is the amount of kept kinetic energy of the low-order model with

respect to the full one. Consequently, the summation of neglected eigenvalues

corresponds to the loss of energy introduced by the approximation. This is the

reason why sometimes in the literature the eigenvalues are also called energies of
the POD modes. For other cases there is no physical meaning of the eigenvalues,

but in any case the ratio (3.31) provides quantitative information about the accuracy

of the approximation, since in the case when it equals one, there is no error and the

snapshots are expressed without any loss of information. Therefore, to control this

part of the error one should use the number of directions for which the ratio (3.31) is

almost 1 (e.g. equal to 0.999). It means that this part of error can actually be totally

eliminated since one can always choose the number of directions large enough for

the reconstruction of the snapshots without practically any loss.

Up to this stage, the approximation can be achieved only for the set of parameters

for which the results of the full model are previously computed. In order to have

a formulation that can be compared to the FE simulations, it is required to attribute

Fig. 3.9 Fast convergence of the summation of kept eigenvalues with the number of included

POD directions

128 3 Proper Orthogonal Decomposition and Radial Basis Functions

a so-called generalization feature to the approximation. This practically means that

it is required to have a procedure capable of computing system responses also for

those parameter combinations that were not used in the phase or training. This is

achieved, as we already saw, by implementing an RBF interpolation of the data in

the space of reduced dimensionality.

Applying this technique, we will have one function (given by Eq. 3.92) that

approximates the system response. From this stage, no further references will be

made to the original snapshot matrix, or its amplitude matrix corresponding to the

reduced space. The system response can now be calculated for any parameter

combination, including those previously used in the training by Eq. 3.92. However,

having in mind that interpolation coefficients within RBF technique are determined

such that the approximation of the function is exactly satisfied in the “nodes” (here

parameter combination used in the training) the approximation (3.92) can therefore

reconstruct the responses exactly in the training points. This means that the further

approximation introduced by RBF is not altering the previously established level of

error in these points, and it still will be controlled by the ratio (3.31). Therefore the

second source of error, due to the RBF interpolation will be visible only in those

points that are not coinciding with the training points. Further, this error will be

directly proportional to the distance, in the parameter space, between the point

for which the response is approximated and the nearest training points (like it is

visualized in Figs. 3.6 and 3.7). It implies that the error will be minimized by

keeping the distance between the training points small.

In practical problems, the easiest way to control an interpolation error is to use,

where possible, the regular grid of nodes in parameter space to perform the training.

Nevertheless, a good feature of this approximation is that anyhow the zone of

maximum error can be evidenced. Of course this error can be always further

reduced by enriching the set of analyses used for the training. However the choice

of the total number of analyses required to be performed in order to calibrate

POD-RBF procedure of acceptable accuracy is connected with the problem itself,

and there are no specific guidelines for its selection. Nevertheless following

examples will demonstrate that with the reasonable number of training analyses,

also in non-linear problems, good results can be achieved with this procedure.

Fig. 3.10 FE model of two

cylinders in radial contact

3.7 On Sources of Error in Low-Dimensional POD-RBF Approximation 129

3.8 Examples of the Use of POD-RBF Procedure for Fast

Simulation

This section will present some numerical examples in which previously presented

techniquewill be trained and used for different problems. The results will be compared

to those obtained by traditional FEM simulations. In all of the examples, POD-RBF

procedures were trained using the commercial code ABAQUS for FE simulations.

3.8.1 Example 1: Two Cylinders in Radial Contact

In this example the POD-RBF procedure is trained and used to compute nodal

displacements of 2Dmodel of two cylinders in radial contact. Cylinders are made of

different materials, both of them assumed to deform only in the elastic range.

Bigger cylinder is fixed at the bottom, while the smaller one is pushed against

it by the load applied on its top surface, as indicated in Fig. 3.10.

The snapshot matrix collects the nodal displacement of both cylinders, and is

constructed by varying both Young’s moduli (E1 of the smaller cylinder and E2 of

the bigger one) in the range from 50 to 200 GPa with the step of 10 GPa. For

the training points a regular grid was used, with the total number of them being

equal to 256. The simulations were performed using a FE model with 818 degrees

of freedom.

Even though to both cylinders it was attributed linear elastic behavior, due to the

presence of the unilateral contact, the response of the structure is non-linear.

Moreover, the snapshots are expected to be less correlated than in previous example

since the range of training includes passing of the structure from the situation when

the bigger cylinder is much stiffer (having the response like the one presented in

Fig. 3.11a) to the situations with much stiffer smaller cylinder (Fig. 3.11b).

After the set of 256 analyses was performed the POD basis of the snapshot

matrix was computed. The magnitudes of the eigenvalues associated with POD

directions turned out to decrease rapidly. The values of the first five of them were:

9:391 � 107, 1:441 � 104, 15:169, 0:215 and 0:066. Even though as expected the

snapshots were not fully correlated, still the fast drop of the magnitudes confirmed

that there was a strong correlation of them. The basis was truncated keeping just the

Fig. 3.11 Different resulting displacements depending on the stiffness of two cylinders

130 3 Proper Orthogonal Decomposition and Radial Basis Functions

first three components, and the ratio between sum of all neglected eigenvalues and

the sum of all of them was smaller than 10�8, a quantity that is giving information

about the accuracy of low-dimensional approximation of originally computed

snapshots. All 256 snapshots previously computed by a full FE model, can be

expressed practically without any loss. At the same time the dimensionality is

reduced from original 818 (that equals number of degrees of freedom of used FE

model) to just three components.

Further interpolation of thus prepared data was performed by adopting a cubic-

spline RBF defined by Eq. 3.74. Therefore, the training process resulted in two

matrices, a [818�3] POD basis matrix �F and a [3�256] matrix B. These matrices

are collecting constants, while the vector g is a function of parameters, and is

computed each time when the response for arbitrary values of parameters is

required. Their multiplication according to (3.92) results in nodal displacements

of a full structure consisting of two cylinders.

In order to check the overall error of the approximation nodal displacements are

computed for the pair of parameters that was not considered in the training phase.

Parameter values are chosen to be equal to E1 ¼ 185 GPa and E2 ¼ 65 GPa.

This choice intended to maximize the part of the error due to RBF interpolation

by selecting the farthest parameters from grid nodes used in the training (recall that

a regular grid with a step 10 GPa was used).

The same problem is solved by FE method in order to compare the results

obtained by full and reduced model. Figure 3.12 visualizes the difference in

nodal displacements between the two models

As it can be seen from the figure, in most parts of the model there is practically

no difference at all in the displacements as most of the structure is in yellow-colored

zone. The largest difference occurs in the zones where the absolute displacement is

of the order of couple of millimeters, and even there it is three orders of magnitudes

smaller, being equal to about 5 mm, that corresponds to about 0.1%. This practically

confirmed that the error of approximation was negligible and that POD-RBF

Fig. 3.12 Difference between nodal displacements computed by reduced model (POD-RBF) and

full model (FEM)

3.8 Examples of the Use of POD-RBF Procedure for Fast Simulation 131

procedure could produce the same results as FE model. Comparing the computing

times in this particular case since FE model was not complicated the difference

was about 1,000 times. Already here it is evidenced that the efficiency of low-

dimensional POD-RBF procedure becomes more noticeable by growing comple-

xity of the model.

3.8.2 Example 2: Plate with Circular Whole

It was already mentioned that the POD-RBF procedure can be used to approximate

any physical field. The previous example showed the approximation of displace-

ment field, but also other values can be considered. Since the training process

requires a set of simulations, after they are performed practically any field of

possible interest can be approximated by the POD-RBF procedure with the same

numerical “cost”. The following example will show the approximation of the stress

field together with the displacement-force curve of one particular structure.

Consider the structure shown in Fig. 3.13 that represents one quarter of rectan-

gular plate with the circular hole in the center. The behavior of material is assumed

to be elastic-perfectly plastic according to von Mises criterion. In this example two

different POD-RBF approximations were constructed. The first one computes von

Mises stress distribution in the Gauss points, while the second provides the reaction

force at constrained edge versus the displacement of moving edge. The parameters

that were changed across the training process are: Young’s modulus E within the

range of 100–200 GPa with the step of 10 GPa, and the yield limit sy in the range

between 250 and 450 MPa, with the step of 10 MPa. A regular grid of training

points in the parameter space is used, having the total number of them equal to 231.

Fig. 3.13 One-quarter of

plate with circular hole

132 3 Proper Orthogonal Decomposition and Radial Basis Functions

In every analysis the same FE model was used, with exactly the same boundary

conditions.

The first constructed snapshot matrix U1 was the one containing the stresses.

Since the model was discretized with 801 four-node quadrilateral elements with

four Gauss points used for numerical integration, the size of this matrix was

3,204 � 231. The first five eigenvalues of corresponding matrix D1 have the

following magnitudes: 2:118 � 1011, 1:215 � 107, 1:0571 � 106, 4:415 � 104 and

1:137 � 104. Truncated model consisted of just first three directions. The ratio

between sum of neglected eigenvalues and sum of all of them was less than 10�5.

The second POD-RBF approximation was trained to give as an output the

relationship of reaction force versus imposed displacement. For that purpose,

a snapshot matrix U2 was constructed collecting as columns 50 pairs of coordinates

(displacements and forces) used to defined displacement vs. force curve. This matrix

was therefore of the size 100 � 231. The magnitudes of first six eigenvalues of

the corresponding matrix D2 turned out to have the following values: 7:338 � 1012,
1:242 � 1010, 4:627 � 108, 4:767 � 107, 9:218 � 106 and 2:415 � 106. Truncating the

basis to the first five directions the same level of error as forU1 matrix was achieved.

Fig. 3.14 Distribution of

equivalent von Mises stresses

computed by reduced

POD-RBF model

Fig. 3.15 Difference

between POD-RBF

and FEM results

3.8 Examples of the Use of POD-RBF Procedure for Fast Simulation 133

Also in this example a cubic-spline was used to perform RBF interpolation.

After the interpolation constants are determined the whole training process was

finished resulting in four matrices with constants: two for the approximation of

stress distributions �F1 [3,204�3] and B1 [3�231], and two for the force vs.

displacement curve �F2 [100�5] and B2 [5�231]. For any arbitrary combination

of parameters, after the vector g is computed, system response is approximated

according to (3.92) by a straightforward matrix multiplication. The response con-

sidering parameter values, E ¼ 185 GPa and sY ¼ 310 MPa was computed with

reduced and full model, and the results are visualized in the Figs. 3.14–3.16.

Figure 3.15 demonstrated that the difference between “full” and “reduced”

numerical model in most of the structure is equal to zero. The largest difference

is equal to about 4 MPa, which occurs in the zones with absolute values of stress

about 300 MPa (Fig. 3.14), therefore corresponding to a bit more than 1%. On the

other hand, Fig. 3.16 shows that both models produced practically the same force-

displacement curves.

3.8.3 Example 3: Indentation Test

In this example a numerical model of indentation test is considered. This, nowadays

very popular test in engineering practice, is a process in which the tip of an indenter,

usually with conical, spherical or pyramidal shape, is quasi-statically forced against

the surface of the material specimen to leave a permanent imprint.

From the numerical point of view its modeling represents a challenging task

since it involves practically all resources of non-linearity (material non-linearity,

large strains and displacements and the presence of contact). Using available

commercial FE codes the modeling of this test can be done fairly well, but usually

with relatively elevated computing times. In this section we will show that a fast

POD-RBF procedure can be trained to predict the response from such a test with

practically the same accuracy as FEM.

Fig. 3.16 Force Vs

displacement curve computed

by POD-RBF and FEM

134 3 Proper Orthogonal Decomposition and Radial Basis Functions

Indentation test with standard Rockwell conical indenter was modeled. The

indenter is considered deformable with the following elastic properties: Young

modulus of 1,170 GPa and Poisson ratio equal to 0.07. FE model used to perform

the training consisted of 1,715 four-node quadrilateral elements (Fig. 3.17). Mate-

rial model attributed to the indented specimen was elastic, perfectly plastic with von

Mises yield criterion. While Poisson ratio is a priori assumed, n ¼ 0.3, the Young

modulus E and the yield stress sY are varied in the phase of training within the

following ranges: from 140 to 220 GPa and from 300 to 500 MPa with the steps of

10 GPa and of 10 MPa respectively. The training therefore resulted in the total of

189 analyses.

The fields of interest that are approximated by POD-RBF model are the com-

ponents of the stresses s11, s22, equivalent von Mises stress and nodal displace-

ments. Snapshots corresponding to these fields are collected in the following four

matrices: 6,860�189 U11, 6,860�189 U22, 6,860�189 Uvm and 3,556�189 UD.

For the truncation the criterion was adopted of reducing to less than 10�6 the

ratio between summation of neglected eigenvalues and summation of all of them.

This criterion led to a different number of POD directions preserved for each one of

the four above specified snapshot matrices. The most correlated data turn out to be

those collecting nodal displacements. In this case only the first four new reference

axes were sufficient to satisfy the above specified accuracy criterion. For stress

fields, this number was slightly larger and the bases are truncated after the 14th,

10th and 12th directions, for von Mises stress sM,
, for stress component s11 and

stress component s22 respectively. Considering that the original dimensionality

was 3,556 for the displacement field, and 6,860 for the stress fields, it is obvious that

in all of the cases the reduction was significant.

As for the RBF interpolation, here the inverse multiquadric function was

adopted given by the following formula

Fig. 3.17 FE model of

conical indentation test

3.8 Examples of the Use of POD-RBF Procedure for Fast Simulation 135

giðpÞ ¼ 1
ffi

p� pik k2 þ r2
q (3.93)

where r is a “smoothing coefficient”, which has been assumed herein equal to 0.5.

Note that also in this example parameters (i.e. entries of vector p) are normalized to

be in the range 0–1 (where 0 corresponds to the lower bound and 1 corresponds to

the upper bound).

The verification of the accuracy of reduced model is performed on the couple of

parameters not considered in the training, specifically E ¼ 195 GPa and sY ¼ 405

MPa. For these parameters the test was simulated by both FEM and POD-RBF

model. Figure 3.18 visualizes comparative results.

From the figure it may be observed that the differences in the distribution of the

stresses just in some small zones have the value of about 4 MPa. Considering that

these zones are in the region where the material yields (for this example yield limit

was 405 MPa) it is obvious that this difference is less than 1%. As for the

displacements (Fig. 3.18a), the maximum difference is less than 1 mm.

Fig. 3.18 Differences between displacement fields and distribution of stresses computed by FEM

and POD-RBF

136 3 Proper Orthogonal Decomposition and Radial Basis Functions

For this model the reduction of computing time was huge, since the FEM was

already complicated enough. In this particular case POD-RBF procedure was about

30,000 times faster. This practically means that, once that the long phase of training

is finished, the results of the simulation of indentation test can be computed

practically in real-time.

3.9 Summary

In this chapter it was shown how to construct a POD approximation of a discrete

data. Three different methods of building a POD basis for the given data set were

presented evidencing that they are leading to exactly the same results. It was shown

how to use this mathematical tool for the approximation of discrete fields, like those

computed by numerical models in structural analyses.

Since the goal here was to develop a general formulation that could be used as

a replacement for the standard numerical models (like FEM), an RBF interpolation

was performed on data with previously reduced dimensionality by POD. This non-

local type of interpolation provides a single matrix equation that is a function of

some parameters for which it is “trained”. It was shown how to derive a general

formulation that combines these two mathematical procedures to be used for

a prediction of system responses. This POD-RBF model was referred to as

low-dimensional or “reduced” model and it is represented by a simple matrix

multiplication where one of the vectors involved in it is a function of parameters.

This practically means that in order to predict the system response for any arbitrary

values of parameters, instead of using “full” and costly numerical model (like FEM)

one can use this, computationally light formulation. The exercises presented in the

last part of the chapter showed that “reduced” model is capable to produce almost

the same results as the “full” one.

All of the examples showed a strong correlation of the snapshots which allowed

for significant reduction of the dimensionality without practically any loss of

accuracy. This can be explained by the fact that the snapshots represent the outputs

of the same system when just some of the parameters are changed. For instance, the

last example showed the prediction of the indentation test of the same specimen

size, same indenter geometry, same load and same boundary conditions corres-

ponding to different materials (same material model but different constants). This

similarity between the simulations expressed itself in a strong correlation between

the results and so the POD approximation could be effectively applied.

It should be emphasizes however that in order to calibrate the reduced model

a set of costly analyses needs to be performed. Some of the examples treated in this

chapter involved couple of hundreds of analyses. Therefore, it is quite obvious that

it is not computationally justifiable to “train” the POD-RBF model and to use it

afterwards for a single computation.

3.9 Summary 137

On the other hand, parametric studies and identification problems based

on inverse analyses require performing repeated numerical analyses, where only

a few parameters are varied among those that are uniquely defining the problem.

This class of problems can gain significant advantages of the use of such a fast

computational tool like the one presented in this chapter.

References

1. Pearson, K.: On lines planes of closes fit to system of points in space. The London, Edinburgh

Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

2. Hotelling, H.: Analyses of complex statistical variables intro principal components. J. Educ.

Psychol. 24, 417–441 (1933)

3. Karhunen, K.: Uber linear Methoden fur Wahrscheiniogkeitsrechnung. Ann. Acad. Sci.

Fennicae Series Al Math. Phys. 37, 3–79 (1946)

4. Loeve, M.M.: Probabilty Theoiry. Van Nostrand, Princeton (1955)

5. Lumley, J.L.: Stochastic Tools in Turbulence. Academic, New York (1970)

6. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal

decomposition and its applications: part I – theory. J. Sound Vib. 252(3), 527–544 (2002)

7. Bialecki, R.A., Kassab, A.J., Fic, A.: Proper orthogonal decomposition and modal analysis for

acceleration of transient FEM thermal analysis. Int. J. Numer. Meth. Eng. 62, 774–797 (2005)

8. Holmes, P., Lumley, J.L., Berkoz, G.: The proper orthogonal decomposition in the analysis of

turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

9. Kerschen, G., Ponceletm, F., Golinval, J.C.: Physical interpretation of independent component

analysis in structural dynamics. Mech. Syst. Signal Process 21, 1561–1575 (2007)

10. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal

decomposition. Math. Comput. Model 33, 223–236 (2001)

11. Ruotolo, R., Surace, C.: Using SVD to detect damage in structures with different operational

conditions. J. Sound Vib. 226(3), 425–439 (1999)

12. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces.

J. Opt. Soc. Am. 4, 519–524 (1987)

13. Tang, D., Kholodar, D., Juang, J.N., Dowell, E.H.: System identification and proper orthogonal

decomposition method applied to unsteady aerodynamics. AIAA J. 39(8), 1569–1575 (2001)

14. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

15. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press,

Baltimore/London (1993)

16. Ostrowski, Z., Bialecki, R.A., Kassab, A.J.: Solving inverse heat conduction problems using

trained POD-RBF network. Inverse Probl. Sci. Eng. 16(1), 705–714 (2008)

17. Buljak, V.: Assessment of material mechanical properties and residual stresses by indentation

simulation and proper orthogonal decomposition. Ph.D. thesis, Politecnico di Milano, Milano

(2009)

18. Buljak V., Maier G.: Proper orthogonal decomposition and radial basis functions in material

characterization based on instrumented indentation. J. Eng. Struct. (2009, submitted)

19. Bolzon, G., Buljak, V.: An indentation-based technique to determine in-depth residual stress

profiles by surface treatment of metal components. Fatigue Fract. Eng. Mater. Struct. (2010, in

press)

20. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

21. Aoki, S., Amaya, K., Sahashi, M., Nakamura, T.: Identification of Gurson’s material constants

by using Kalman filter. Comput. Mech. 19, 501–506 (2007)

138 3 Proper Orthogonal Decomposition and Radial Basis Functions

22. Kansa, E.J.: Motivations for using radial basis functions to solve PDEs. http://rbf-pde.uah.edu/

kansaweb.pdf, pp. 1–8 (2001)

23. Holmes, P., Lumley, J.L., Berkoz, D.: Turbulence, coherent structures, dynamical systems and

symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge,

UK (1996)

References 139

http://rbf-pde.uah.edu/kansaweb.pdf
http://rbf-pde.uah.edu/kansaweb.pdf

Chapter 4

Inverse Analyses in Structural Problems: Putting

All the Pieces Together

Inverse analyses procedures in structural problems are usually designed in order to

assess some of the unknown parameters. Up to now we already saw that, for a

successful development of fully operative inverse analysis procedure, it is required

to put together three different elements: experimental technique, numerical simula-

tion of it, and an optimization algorithm. The most traditional approach to the

inverse analyses procedures, when structural problems are in focus, assumes that

the simulation of the experiment is done by finite element modeling. It is classical,

and the most common way of proceeding since nowadays there are well developed

FE techniques at our disposal which can be used to simulate even complicated

phenomena that may take place in a selected experiment. Given the required

repeatability of the simulations enforced by the adopted optimization algorithm,

this approach may not be the most convenient for the routine use, as it can be time

consuming. Therefore, a modern approach to inverse analyses goes in the direction

of avoiding a need to perform FE simulations every time when the inverse problem

needs to be solved. One of the possible solutions of this problem is based on POD-

RBF algorithm described in Chap. 3. Its implementation within an inverse analyses

procedure will be discussed in the subsequent chapter. This chapter will focus on a

traditional approach relaying on FE simulations, as it is anyhow very important at

least in some of the phases of procedure development.

Numerically speaking, in order to develop an inverse analyses procedure, one

needs to write a code to solve minimization problem, to develop a numerical model

to simulate the test, and to make these two communicating. As for the first part,

codes developed in Chap. 2 can be used rather successfully for the structural

problems here of interest.

Within traditional approach as mentioned above, the numerical simulations are

performed by the use of FE method, and in most of the cases it is convenient to use a

commercial code. In order to use optimization algorithms developed in Chap. 2, it is

required also to code a so-called objective function in a least squares form that will

quantify the discrepancy between experimental and numerical data. As we already

saw in the simple problems tackled in Chap. 2, these codes need to load data form

the experiment, to compute their numerical counter-part, and to construct vector of

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5_4,
Springer-Verlag Berlin Heidelberg 2012

141

http://dx.doi.org/10.1007/978-3-642-22703-5_3
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2

residuals. Therefore for the structural problems here of interest, when the experi-

ment is simulated by a commercial FEM software, the developed objective function

code needs to be able to modify FE model by changing the parameters (that are

arguments of the objective function), to run a FE simulation, and afterwards to load

the results and to compare them with experimental ones in order to form vector of

residuals.

For the case studies that will be presented in what follows a commercial code

ABAQUS [1] is selected to perform FE simulations. This code has a possibility to

define completely numerical model for the analyses by a human readable ASCII

file. This feature is rather useful for the present purpose as here it is needed to

perform series of different analyses in which just some of the parameters need to be

modified (e.g. parameters entering into the constitutive model). It is therefore easy

to make a MATLAB code (or code in any other programming language) that will

load this text file, change what needs to be changed and save it for the further

analyses. Therefore, for the following case studies, a listing of MATALB code will

be given that solves the inverse problem completely automatically, without any

intervention of the user once the FE model is built.

4.1 Case Study: Assessment of Two Elastic Parameters

for the Sandwich Cantilever

Let us imagine that we need to build an inverse analysis procedure in order to assess

Young’s moduli of two different materials forming the sandwich cantilever like the

one presented in Fig. 4.1. Let us further imagine that it needs to be done in the form

already embedded together in a single structure like the one visualized in the figure.

The first step, as explained in Chap. 1, is to establish the experiment that we

would like to use. For this very simple problem it is possible to think of a simple

experiment in which en external edge of the cantilever will be loaded with known

force, and the resulting displacements, say at the upper edge of the structure, can be

Fig. 4.1 Sandwich cantilever built of two different materials

142 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

http://dx.doi.org/10.1007/978-3-642-22703-5_1

measured. The problem can be expressed as two dimensional, and schematic

representation of the adopted experiment is given in Fig. 4.2.

For this simple example it is quit intuitive to see that the proposed measurable

quantities are influenced by the parameters and so there is no need to perform

sensitivity analyses in order to verify that the experimental setup is adequate for the

required task.

Adopting this experiment as the resource of information that will be further

exploited by the inverse analyses procedure, a second step is to construct a

numerical model of it. As mentioned above, within this case study a commercial

code ABAQUS will be used to perform simulations of the experiment.

4.1.1 FE Model of the Experiment

The problem can be considered as 2D plane stress. The adopted mesh is visualized

in Fig. 4.3. For this simple case only elastic material behavior is assumed, as the

parameters of interest are the elastic constants, and therefore, the experiment should

introduce loads that will keep the structural response within the elastic range.

In order to establish easier connection between MATLAB surrounding and

ABAUQS we will work only on input file. Furthermore, to make our job easier,

input file for the FE analysis will be divided in couple of parts, so that the

information considering material constitutive model will be in a separate files. In

such way MATLAB procedure that we will further design will load and change

only these files.

Fig. 4.2 Schematic

representation of the

adopted experiment

Fig. 4.3 FE mesh for

the sandwich cantilever

experiment

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 143

The main input file to the analyses has the following form:

*Heading
** Job name: cant1_cae Model name: Model-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=cantilever
*End Part
**
**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=cantilever-1, part=cantilever
*Node
*Include, input=nodes.inp
*Element, type=CPS4
*Include, input=elements.inp
*Nset, nset=_PickedSet4, internal
 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249
*Elset, elset=_PickedSet4, internal, generate
 101, 210, 1
*Nset, nset=_PickedSet5, internal
 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52,53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170, 171
*Elset, elset=_PickedSet5, internal, generate
 1, 100, 1
** Region: (mat1:Picked)
*Elset, elset=_PickedSet5, internal, generate
 1, 100, 1

144 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

** Section: mat1
*Solid Section, elset=_PickedSet5, material=material1
1.,
** Region: (mat2:Picked)
*Elset, elset=_PickedSet4, internal, generate
 101, 210, 1
** Section: mat2
*Solid Section, elset=_PickedSet4, material=material2
1.,
*End Instance
**
*Nset, nset=_PickedSet37, internal, instance=cantilever-1
 1, 6, 7, 10, 60, 61, 62, 63, 64, 65, 66, 97, 98, 99
*Elset, elset=_PickedSet37, internal, instance=cantilever-1
 1, 26, 51, 76, 110, 120, 130, 140, 150, 151, 166, 181,
196
*Nset, nset=_PickedSet38, internal, instance=cantilever-1
 3,
*Nset, nset=upper, instance=cantilever-1
 4, 5, 9, 10, 51, 52, 53, 54, 55, 56, 57, 58, 59, 83, 84, 85
 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96
*Elset, elset=upper, instance=cantilever-1
 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 196, 197,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
210
*End Assembly
**
** MATERIALS
**
*Material, name=material1
*Include, input=material1.inp
*Material, name=material2
*Include, input=material2.inp
**
** BOUNDARY CONDITIONS
**
** Name: clamped Type: Displacement/Rotation
*Boundary
_PickedSet37, 1, 1
_PickedSet37, 2, 2
** ---
**
** STEP: load
**
*Step, name=load, nlgeom=YES
*Static
0.1, 1., 1e-05, 1.
**
** LOADS
**
** Name: force Type: Concentrated force
*Cload

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 145

_PickedSet38, 2, -100.
**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
**
** FIELD OUTPUT: F-Output-1
**
*Output, field, variable=PRESELECT
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=PRESELECT
* NODE FILE,nset=upper ,frequency=99999
COORD
*FILE FORMAT, ASCII
*End Step

As addition to this file, there are also input files nodes.inp with nodal

coordinates, elements.inp with connectivity matrix, and two input files for the

material information that have the following simple form:

material1.inp
*Elastic
20000, 0.3

material2.inp
*Elastic
5000, 0.3

With these input files a FE model with mesh visualized in Fig. 4.3 is constructed.

The load is applied in one step and is represented by a concentrated vertical fore of

the intensity 100 N directed downwards. As a structural response to this load a

deformed shape of upper edge is taken. For this purpose a node-set that collects

these nodes is created with the name upper. The deformed coordinates of these

nodes are further written in the external ASCII file. This is achieved by adding

following lines at the end of input file:

* NODE FILE,nset=upper ,frequency=99999
COORD
*FILE FORMAT, ASCII

This command tells ABAQUS to save coordinates of the node-set with the name

upper, into the external file that should be in ASCII format. Frequency of writing

refers to the increments within the step. As in our case we actually need this

information only at the end of the step, a large frequency number is given in

order to ensure that it will be written only once.

In the present context, all the information that are not changeable within inverse

analysis procedure are in the main input file and in the other two that provide

146 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

information about nodal coordinates and element connectivity. The part that should

be continuously changed during the optimization procedure is put into the two input

files material1.inp and material2.inp.
With this structuring, an easy to manipulate FE model is created that will be

further implemented within a MATLAB discrepancy function code that should

compare computed response to the experimental one. In order to write this routine,

first the results from ASCII file written by ABAQUS need to be extracted. For this

purpose an additional MATLAB routine is written.

4.1.2 Reading Results from “dot-fil” File

ABAQUS has an option to write all the results from the computation into a human

readable ASCII file, with the extension fil. In the present context this is a very

valuable feature as it represents an easyway to transfer the computed system response

into a form which can be used within MATLAB to build a discrepancy function.

The following MATLAB function can be used to read deformed coordinates

from the result file that is specified as argument of the function.

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 147

function [nodes]=readfil1(file)
% Routine for reading *.fil file from ABAQUS in ASCII format.
% It gets back matrix of deformed coordinates
format long
tic
nodes=[];
%~~~
% Reading .fil file
f_fil=fopen(file);
s1=textscan(f_fil,'%c'); % Reading will get back one string
fclose(f_fil); % data, without any spaces in
s=s1{1}'; % between
clear s1;
sizeS1=size(s);
sizeS=sizeS1(1,2); % Size of character vector
%~~~
% Specifying key words of interest in ABAQUS .fil file
coord_string='I15I3107I'; % Code for coordinates
incr_string='I223I42000D'; % Code for increament
%~~~
% Finding places of interest within .fil file
INCRM=strfind(s,incr_string);
firstINC=min(INCRM);
num=firstINC;
nod=0;
%~~
% Writing coordinates into NODES matrix
while num<sizeS-8
 if s(num:num+8)==coord_string;
 digit=str2num(s(num+9));

nod=nod+1;
 nodes(nod,1)=str2num(s(num+10:num+10+digit-1));

num=num+8+1+digit+1+1;
 foundStar=0;
 coordnum=1;
 while 1-foundStar
 foundD=0;
 begg=num;
 while 2-foundD-foundStar
 if s(num)=='D'
 foundD=foundD+1;
 end
 if s(num)=='*'
 foundStar=foundStar+1;
 end

 num=num+1;
 end
 endd=num-2;

148 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

 coordnum=coordnum+1;
 nodes(nod,coordnum)=str2num(s(begg:endd));
 end
 else
 num=num+1;
 end
end
toc

This routine loads an ASCII file as a string data intoMATLAB surrounding. Since

this file contains a lot of other information that are not of any use for the present

purpose, the goal of the above listed routine is to extract the needed data. After the

ABAQUS analysis is executed, there will be a file with the same name as the name of

“job file” with an extension fil. For the example given in this case study, the resulting

file has more than 400 lines. The information we need considers coordinates, and

these are placed after the code I 15I 3107I. This code is somewhat general, in a

sense that number at the end, namely 3107, indicates that the information which

follows concerns coordinates. Number 15 means that it is a 2D model. For example

code I 16I 3107I indicates that the data that follow will be a 3D coordinates. With

this information it is easy to modify above given routine to be used also for 3D

models. Codes of all data which can be written in the resulting dot-fil file can be

found in ABAQUS help [1]. Note that within specified options used for command

textscan in MATALB routine, the string will be loaded without any spaces in

between. Therefore, also the code for the coordinates is defined in the same way.

Another important code that is used in the above MATLAB routine is I 223I
42000D. This code indicates the beginning of the increment for which the results

are written. Since dot-fil file from the beginning contains a lot of information that

are not of interest for our purpose, routine is written in the way that it immediately

jumps over the first part and positions itself at the beginning of the required data

before the process of extracting the coordinates starts. This strategy is very impor-

tant for complicated models that may produce large dot-fil files. With this approach

extracting of data is much shorter.

Finally the cycle of extracting coordinates starts, and the matrix nodes is

formed that is given back as a result of MATLAB function. For 2D case this will

be a [NN�3] matrix, where NN is the number of nodes for which the coordinates are

written. Each line of matrix has as inputs first the number of node for which the

coordinates are given, followed by coordinate values (X and Y respectively).

4.1.3 Building Discrepancy Function

After the numerical model is written in the form ready to be easily modified, and by

having a MATLAB function for extracting the results of interest from the ASCII

file, it is possible to put these two things together within one routine which will

compute the discrepancy between experimental and numerical data.

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 149

The following MATLAB function is written to compute vector of residuals by

comparing the experimental results, stored in an external file, with their numerical

counter-part, computed by the use of an ABAQUS FE model.

150 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

function e=disfunfem(x)
% Function that quantifies the difference between numerically
% computed response and experimental one (placed in txt file)
parE1=x(1)*10000
parE2=x(2)*10000
load exper.txt % Load experimental results
sortedR=sortrows(exper,1);
%~~
% Changing the input files
%~~
f_fil=fopen('material1.inp');
s=fscanf(f_fil,'%c');
fclose(f_fil);
position=strfind(s,'Elastic');
begg=position+9;
num=begg;
endd=1;
while endd<begg
 if s(num)==','

endd=num-1;
 end
 num=num+1;
end
% Replacing the modulus of elasticity
oldE=s(begg:endd);
putE=num2str(parE1);
s1=strrep(s,oldE,putE);
f_fil=fopen('material1.inp','w');
fprintf(f_fil,s1);
fclose(f_fil);
% Second input file
f_fil=fopen('material2.inp');
s=fscanf(f_fil,'%c');
fclose(f_fil);
position=strfind(s,'Elastic');
begg=position+9;
num=begg;
endd=1;
while endd<begg
 if s(num)==','

endd=num-1;
 end
 num=num+1;
end
% Replacing the modulus of elasticity
oldE=s(begg:endd);
putE=num2str(parE2);
s1=strrep(s,oldE,putE);
f_fil=fopen('material2.inp','w');
fprintf(f_fil,s1);

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 151

fclose(f_fil);
%~~
% ABAQUS run
%~~
! abaqus j=cant1_inp interactive
%~~
% Reading .fil file
%~~
[nodes]=readfil1('cant1_inp.fil');
def=nodes(:,2:3);
sorted=sortrows(def,1);
%~~
% Calculating the difference between the deformed shapes
%~~
minC=sorted(1,1);
minR=sortedR(1,1);
minABS=max(minC,minR);
maxC=max(sorted(:,1));
maxR=max(sortedR(:,1));
maxABS=min(maxC,maxR);
NOP=100;
intPOINTS=minABS:(maxABS-minABS)/NOP:maxABS;
calR=interp1(sortedR(:,1),sortedR(:,2),intPOINTS);
calC=interp1(sorted(:,1),sorted(:,2),intPOINTS);
for i=1:size(calR,2)
 e(i,1)=(calR(i)-calC(i));
end
%~~~

As an input to the above listed MATLAB function a vector of normalized

parameters x is given. This vector has the length of two, and its inputs represent

normalized values of elasticity moduli of the two materials. The normalization is a

useful practice, as then perturbations for the computation of derivatives can be kept

rather small like in previous examples. For this case parameter value 1 means

10,000 MPa, as it can be seen in the first two lines of the code. It means that the

perturbation of 1E-4 will result in the changes in modulus of elasticity of 1 MPa. Of

course without normalization the perturbations should be performed with larger

numbers, as it is not expectable to have some difference in the model response if the

modulus of elasticity changes by 1E-4 MPa.

The normalization is of special importance when the sought parameters repre-

sent different physical properties. Let us imagine the case in which the two sought

parameters are Young’s modulus and yield limit of some steel. Both quantities are

measured by the same unit (i.e. Pa) but there is a difference of three orders of

magnitude between them. Performing sensitivity analysis without normalization,

and adopting the perturbation value to be the same and equal to, say 1 MPa, will

result in much larger sensitivity of measurable quantities to the changes in yield

limit than to the changes in elastic modulus since this perturbation represents

approximately 1% of the nominal value of the former, while it is about 0.001% of

the latter. Such a small change is practically unnoticeable on the measurable

152 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

quantities resulting in false message that the measurable quantities are not sensitive

to the changes of this parameter. Therefore it is very important to normalize sought

parameters, and usual practice is to do it in a way that their expected target values

are approximately equal to 1.

Within the first few lines input parameters are transferred to their values in MPa

(i.e. multiplying them by 10,000), and the experimental data are loaded, which are

stored in an external file with the name exper.txt represented by a matrix of X-

Y coordinates. It is irrelevant if the number of points within this matrix matches or

not the number of nodes of the FE mesh, as the code will anyhow perform

interpolation when it computes the difference between the two responses. This

issue will be commented in more details in the following pages.

The rest of the code is divided into three major parts. First part performs

necessary changes on the two input files, namely material1.inp and mate-
rial2.inp. Already existing input files are first loaded as strings into MATLAB

and ‘old’ values of Young’s moduli are replace by the ‘new’ ones, that are given as

inputs to the MATLAB function. After these changes, new versions of input files

are saved to the hard drive.

Second part of the code performs FE simulation by calling the ABAQUS using

the command:

! abaqus j ¼ cant1_inp interactive

Word interactive at the end means that the further execution of MATLAB code

will be suspended until FE analysis is not finished. Once the analyses is finished,

code proceeds by reading the results from the dot-fil file using the routine

readfil1.m given in previous section, which is returning as a result matrix of

deformed coordinates of the node-set defining the upper surface (i.e. line) of the

cantilever model (see Fig. 4.2).

The third and final part of the code is computing the difference between the two

responses. The result of this comparison is a vector of residuals which represents

the difference between Y-coordinate of the two curves over a certain grid of

equidistant points. Figure 4.4 shows an example of the two responses (numerical

and experimental one) and the way the vector of residuals is constructed over a

given fixed grid along X-axis.

Fig. 4.4 Residuals for

discrepancy function that

quantifies the difference

between the two curves

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 153

The number of points along which the coordinates are computed is fixed in the

code by the variable NOP. The corresponding Y-coordinates are then interpolated

from both resources of data (i.e. experimental and computed) in order to have the

amplitudes at exactly the same abscise. This interpolation takes also care that the

grid of points should be placed over the range in which both of the curves exist.

Before proceeding to the final step in which an optimization algorithm will be

constructed it is needed also to have some representation of experimental results to

feed the discrepancy function. At this stage it can be done with pseudo-experimental

data, as mentioned earlier in Chap. 1. For this purpose, a FE simulation can

be executed once by attributing to the parameters some values, say in this case

for Young’s modulus of material 1 value 20,000 MPa, and for material 2 value

5,000 MPa, and resulting deformed shape of the upper edge can be saved in file

exper.txt.
After performing this step a MATALB code that computes discrepancy between

the two responses for the experiment studied here is fully prepared and we can

proceed by writing a code to solve the optimization problem. It should be men-

tioned that a useful practice is to use a different numerical model to generate

pseudo-experimental data (e.g. by changing FE mesh of the model). With this

approach target parameter values with the numerical model used in the inverse

analysis procedure will not produce exactly the same results as pseudo-experimen-

tal one, which is always the case when dealing with the real experimental data.

4.1.4 Solving the Optimization Problem

In order to solve the resulting optimization problem we will use a dog-leg trust

region algorithm presented in Chap. 2. Considering that the discrepancy function is

in least squares form we will make a use of approximated Hessian matrix in order to

avoid numerous FE simulations required to compute second derivatives. However,

in order to keep the generality of the code, an option to use full Hessian matrix is

implemented, and at the beginning of the program user selects together with other

options which one will be used.

In what follows a listing of MATLAB code that minimizes previously created

discrepancy function by a trust region dog-leg method is given.

154 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

http://dx.doi.org/10.1007/978-3-642-22703-5_1
http://dx.doi.org/10.1007/978-3-642-22703-5_2

% Trust region algorithm with dog-leg approach for sub-problem
clear
clc
%~~
% Setting the options
minchg=1e-5; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.5;1.5]; % Initial guess of parameters
pert=1e-4; % Perturbation for the first derivatives
res=10;
TRrad=0.8; % Initial Trust Region radius
HessMod=1; % Indication for modification of Hessian
Hessapp=1; % Indication for Hessian approximation
mingrad=1e-6; % Gradient value at which to terminate optim.
%~~~
% Computing for the first time value of function
iter=0;
eV=disfunfem(guess);
e0=0.5*eV'*eV;
%~~~
% Optimization cycle
while res>1e-6
itiner(iter+1,1:2)=guess';
itiner(iter+1,3)=e0;
iter=iter+1;
if Hessapp==1
 [HESS,grad]=comhessapp(@disfunfem,guess,pert,eV);
else
 [HESS,grad]=comhess(@disfunfem,guess,pert,eV);
end
% Checking the gradient
if grad'*grad<mingrad
 break
end
% Ensuring that Hessian is positive-definite
if HessMod==1
lambdas=eigs(HESS);
if lambdas(1)>0 && lambdas(2)>0
 hessmod=0;
else
 coeff=mean(abs(lambdas));
 posdef=0;
 while posdef<1
 HESSm=HESS+coeff*eye(2);
 hessmod=1;
 lmb=eigs(HESSm);
 if lmb(1)>0 && lmb(2)>0
 posdef=1;
 else
 coeff=coeff*1.5;

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 155

 end
 end
end
else
 hessmod=0;
end
stpdsc=-grad/norm(grad);
if hessmod==0
 newton=-inv(HESS)*grad;
else
 newton=-inv(HESSm)*grad;
end
%~~~
% Computing step
accepted=0;
rejected=0;
while accepted<1
if norm(newton)<TRrad
 pDL=newton; % Dog Leg step
else
 % Finding the Cauchy point
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 % Finding minimizer within trust region (Dog Leg step)
 diff=newton-pc;
 dimV=size(newton,1);
 cf=[0,0,-TRrad^2];
 for ii=1:dimV
 cf(1)=cf(1)+diff(ii)^2;
 cf(2)=cf(2)+2*pc(ii)*diff(ii);
 cf(3)=cf(3)+pc(ii)^2;
 end
 alfa=max(roots(cf)); % Taking the positive root
 pDL=pc+alfa*diff;
end
 predred=-(pDL'*grad+0.5*pDL'*HESS*pDL);
 guess1=guess+pDL; % Next iterate
 eV=disfunfem(guess1);

e1tr=0.5*eV'*eV;
 realred=e0-e1tr;

ratio=realred/predred;
 if ratio<0
 TRrad=TRrad/1.2;
 rejected=rejected+1;

 disp('Step is rejected!!!')
 else
 accepted=1;
 itiner(iter+1,1:2)=guess1';
 itiner(iter+1,3)=e1tr;
 if ratio<0.2
 TRrad=TRrad/1.2;
 end
 if ratio>0.6
 TRrad=TRrad*1.2;
 end

end

156 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

 if rejected==3
 accepted=1;
 guess1=guess; % Since there was no improvement
 end
end
if rejected==3
 break
end
iterscr=['Iteration: ',num2str(iter)];
disp(iterscr)
dfscr=['Current value of objective function: ',num2str(e1tr)];
disp(dfscr)
guess=guess1;
res=e1tr;
e0=e1tr;
if iter>MAXIT % Terminate after iterations reach MAXIT
 res=0;
end
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||
abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end
end

function [HESS,grad]=comhessapp(FUNNAME,point,pert,e0)
% Computing the Approximated Hessian matrix
eS0=0.5*e0'*e0;
% Computing Jacobian
for i=1:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;

e1=FUNNAME(pointp);
 eS1=0.5*e1'*e1;

grad(i,1)=(eS1-eS0)/pert;
J(:,i)=(e1-e0)/pert;

end
HESS=J'*J;

function [HESS,grad]=comhess(FUNNAME,point,pert,eV)
% Computing the Hessian matrix
e0=0.5*eV'*eV;
for i=1:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;

eV=FUNNAME(pointp);
 e1=0.5*eV'*eV;
 grad(i,1)=(e1-e0)/pert;

pointp(i)=pointp(i)+pert;
eV=FUNNAME(pointp);

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 157

e2=0.5*eV'*eV;
 HESS(i,i)=(e0-2*e1+e2)/(pert^2);
end
% mixed derivative
for i=1:size(point,1)-1
 for j=2:size(point,1)
 pointp=point;
 pointp(i)=pointp(i)+pert;
 eV=FUNNAME(pointp);
 e1=0.5*eV'*eV;
 pointp=point;

pointp(j)=pointp(j)+pert;
eV=FUNNAME(pointp);

 e2=0.5*eV'*eV;
 pointp=point;
 pointp(i)=pointp(i)+pert;
 pointp(j)=pointp(j)+pert;

eV=FUNNAME(pointp);
 e11=0.5*eV'*eV;

HESS(i,j)=1/pert*((e11-e1)/pert-(e2-e0)/pert);
HESS(j,i)=HESS(i,j);

end
end

The above listing includes three different routines. The first one is the main

program that solves the inverse problem, while the remaining two are MATLAB

functions used to compute full Hessian matrix, or approximated one. These latter

two are slightly modified with respect to those listed in Chap. 2, in order to reduce

the number of simulations performed. Therefore, both of the functions are receiving

as inputs vector of residuals for the current point, and so just the analyses for

perturbed parameters are computed. Further, both of the functions are returning as a

result also gradient vector together with Hessian matrix, so it is not computed

anymore within the main program of trust region optimization. As addition to these

two MATLAB functions, program requires also function disfunfem listed in

previous section, and function cauchypnt for Cauchy point solution listed in

Chap. 2.

The optimization algorithm is very similar to the one presented in Chap. 2. At the

beginning of the program, where the main options are set, it is also added the one

that prescribes the value of gradient at which the optimization should be terminated

(i.e. to be considered as zero-gradient). It represents an additional stopping criterion

added to those previously discussed in the examples listed in Chap. 2. Result of the

optimization is stored in itiner matrix where each line collects values of

parameters together with the corresponding value of the objective function.

158 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2

4.1.5 Results of Inverse Analyses

After the whole inverse analysis procedure is designed it is time to test it using

pseudo-experimental data. As mentioned above, pseudo-experimental data are

produced for the parameter values of E1 ¼ 20,000 MPa and E2 ¼ 5,000 MPa.

Keeping the parameters normalized around value 1 (i.e. target value for the first

Young’s modulus is 2, and for the second one is 0.5) perturbation of 1E-4 turned out

to be a good value which produces a reliable response. In some more complex

objective functions (usually in optimization problems with larger number of

parameters) the selection of this parameter may become more important issue as

then the discrepancy function is usually less smooth.

The inverse analysis should be solved different times starting from various

initialization points. Figure 4.5 visualizes result of one optimization starting from

inverted values of parameters (i.e. attributing to E1 target value of E2 and vice

versa). The convergence was quit fast and already after five iterations the

parameters were close to their target values. Optimization was terminated after

the gradient was smaller than the value specified within the options. Initial value of

trust region radius was set to 0.8, and it turned out to be rather large as it led to the

Fig. 4.5 Result of

optimization: initialization 1 –

reduction of the objective

function (up) and changes of

parameters through iterations

(down)

4.1 Case Study: Assessment of Two Elastic Parameters for the Sandwich Cantilever 159

rejection of the step in iteration 2. After this rejection, the trust region was reduced

according to the algorithm and there were no further step rejections up to the

convergence.

Figure 4.6 visualizes in the same manner optimization results for different

initialization point. Also in this case the optimization was terminated after seven

iterations, when gradient reached value smaller than the one prescribed by the

options. Converged parameters were practically matching target values in both

optimizations.

Since the first optimization resulted in one step rejection, quit “early” in the

optimization (i.e. in the second iteration), it suggested that its value was a bit too-

large. In fact, by attributing to the initial trust region radius value of 0.4 in the

second initialization, the optimization was fully executed without any step rejec-

tion. Although this value is not crucial from the global convergence point of view, it

is affecting slightly the overall performance of the optimization algorithm as it may

increase the total number of analysis involved.

As announced in Chap. 1, once that the whole procedure is designed it is highly

desirable to make more profound tests. Apart of the analyses with results visualized

in Figs. 4.5 and 4.6 it is also useful to perform further numerical exercises by adding

Fig. 4.6 Result of

optimization: initialization

2 – reduction of the objective

function (up) and changes of

parameters through iterations

(down)

160 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

http://dx.doi.org/10.1007/978-3-642-22703-5_1

an artificial noise to the pseudo-experimental data, in order to understand how much

measuring error is influencing the accuracy of the measurements. Finally, the same

computation should be performed also for different parameter combination used as

target values in order to verify that the problem is well-posed not only in some

parameter range. This part is left to the reader to be done as an exercise.

4.2 Case Study 2: Assessment of Plastic Parameters

of Thin Plate

In the second case study we will consider a thin steel plate with anisotropic plastic

behavior. Sheet metal forming, that is frequently used e.g. in car industry, usually

produces plates with anisotropic properties. In order to model this behavior often

Hill’s yield criterion is used (see e.g. [2, 3]). In the case of orthotropic sheets this

criterion has the following form

fh ¼ Gþ Hð Þs211 þ Fþ Hð Þs222 � 2Hs11s22 þ 2Ns212 � 1 ¼ 0 (4.1)

where F, G, H and N are anisotropic constants, and s11, s22 and s12 are stress

components in the plane of the sheet. Traditionally reference system is adopted

such that the axis 1 coincides with rolling direction, axis 2 is perpendicular in the

plane of the sheet, and axis 3 is through-thickness direction.

Above anisotropic constants are usually expressed in terms of yield limits

corresponding to different directions by the following relations

F ¼ 1

2

1

R2
22

þ 1

R2
33

� 1

R2
11

� �

(4.2a)

G ¼ 1

2

1

R2
33

þ 1

R2
11

� 1

R2
22

� �

(4.2b)

H ¼ 1

2

1

R2
11

þ 1

R2
22

� 1

R2
33

� �

(4.2c)

N ¼ 3

2R2
12

(4.2d)

where Rij are anisotropic yield stress ratios, namely

R11 ¼ �s11
s0

;R22 ¼ �s22
s0

;R33 ¼ �s33
s0

;R12 ¼ �s12
t0

; with t0 ¼ s0
ffiffiffi

3
p (4.3)

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 161

With the above definition, Hill’s yield surface for the plane stress case is defined

by one nonzero stress component s0 and additional two ratios (i.e. R11 can be set to

1 and so the yielding for this direction is directly given by s0, and assuming the

same value for through thickness direction, namely R33 ¼ R11), allowing therefore

to have three different values for yielding stresses for direction 1, direction 2 and

shearing.

As addition to these three parameters also hardening can be considered. The

simplest approach of introducing hardening to an anisotropic yield criterion is to

assume that the yield surface doesn’t change in shape as the material hardens.

Assuming an exponential hardening, the above scalar value s0 is not constant

anymore, but an exponential function of equivalent plastic strain, namely

s0 ¼
Eeeqp
sY

� �n

(4.4)

with n being an exponent of hardening, and eeqcomputed according to Hill’s yield

criterion (see e.g. [3]).

As the plastic deformation evolves, yield surface expands, by changing the yield

limit in direction 1 according to Eq. 4.4, while keeping all the ratios (4.3)

unchanged, preserving therefore the shape as previously mentioned.

With this definition, plastic behavior for thin plate material is defined by four

constants: three yield limits (direction 1, direction 2 and shearing), and one expo-

nent of hardening.

In order to calibrate these constants a biaxial tests can be used (see e.g. [4, 5]).

Sometimes a circular hole is introduce to the plate sample, or a cruciform shape is

used (or both cruciform with a circular hole) in order to make the distribution of the

stresses less uniform, and therefore the experimentally measured response more

sensitive to the variation of the material parameters.

For this case study let us consider a simple thin plate with the circular hole

subjected to a biaxial test (see Fig. 4.7). Let us imagine that the objective is to

design an inverse analyses procedure that will use a biaxial test in order to assess

four plastic parameters: three yield limits and one exponent of hardening. Let us

further assume that elastic parameters are known in advanced and that the material

in elasticity is isotropic, defined therefore by two constants: one elastic modulus

and Poisson’s ratio.

As an experimental data two curves will be taken: applied force versus obtained

displacement for horizontal direction, and the same for vertical direction. This is the

most traditional approach, as most of the machines that are used for the biaxial test

are supplying this information. Additionally, also the displacement field can be

used e.g. provided by the use of Digital Image Correlation (see e.g. [6]), but it

requires additional equipment to be involved in the experiment.

After the experiment is adopted we will proceed with the second step of the

procedure, namely with building of a numerical model of it.

162 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

4.2.1 FE Model of the Experiment

Like in previous case, also for this case study we will use a commercial code

ABAQUS in order to simulate the experiment. In order to reduce computing times,

we will make a use of symmetry and build therefore only one quarter of the

specimen, applying symmetry conditions along cut lines. The model is 2D plane

stress and the adopted mesh is visualized in Fig. 4.8.

In the same manner as previously, input file that defines numerical model will be

divided in couple of files. The only file that needs to be changed is the one that gives

Fig. 4.7 Thin plate with

circular hole subjected to

biaxial test

Fig. 4.8 FE model of one-

quarter of thin plate with

circular hole

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 163

the information about material, namely material1.inp. The main input file is

given below

*Heading
** Job name: bi_ax1 Model name: Model-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=plate
*End Part
**
**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=plate-1, part=plate
*Node
*Include, input=nodes.inp
*Element, type=CPS4
*Include, input=elements.inp
*Nset, nset=_PickedSet8, internal, generate
 1, 1106, 1
*Elset, elset=_PickedSet8, internal, generate
 1, 1036, 1
*Nset, nset=_PickedSet9, internal, generate
 1, 1106, 1
*Elset, elset=_PickedSet9, internal, generate
 1, 1036, 1
*Orientation, name=Ori-3
1., 0., 0., 0., 1., 0.
1, 0.
** Region: (solid:Picked), (Material Orientation:Picked)
*Elset, elset=_PickedSet8, internal, generate
 1, 1036, 1
** Section: solid
*Solid Section, elset=_PickedSet8, orientation=Ori-3,
material=steel
1.,
*End Instance
**
*Nset, nset=_PickedSet6, internal, instance=plate-1
 7, 8, 9, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129
*Elset, elset=_PickedSet6, internal, instance=plate-1
 46, 68, 90, 112, 134, 156, 178, 200, 222, 244, 266, 288,
289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300,
301, 302, 303, 304, 305, 306, 307, 308, 309, 310
*Nset, nset=_PickedSet12, internal, instance=plate-1
 9, 10, 11, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182

164 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

*Elset, elset=_PickedSet12, internal, instance=plate-1
 310, 332, 354, 376, 398, 420, 442, 464, 486, 508, 530, 552,
574, 596, 618, 640, 662, 684, 706, 728, 750, 772, 773, 774,
775, 776, 777, 778, 779, 780, 781, 782, 783, 784
*Nset, nset=_PickedSet19, internal, instance=plate-1
 1, 2, 11, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203
*Elset, elset=_PickedSet19, internal, instance=plate-1
 1, 784, 796, 808, 820, 832, 844, 856, 868, 880, 892, 904,
916, 928, 940, 952, 964, 976, 988, 1000, 1012, 1024, 1036
*Nset, nset=_PickedSet20, internal, instance=plate-1
 5, 6, 7, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76
*Elset, elset=_PickedSet20, internal, instance=plate-1,
generate
 24, 46, 1
*Nset, nset=bottom, instance=plate-1
 5, 6, 7, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76
*Elset, elset=bottom, instance=plate-1, generate
 24, 46, 1
*Nset, nset=left, instance=plate-1
 1, 2, 11, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203
*Elset, elset=left, instance=plate-1
 1, 784, 796, 808, 820, 832, 844, 856, 868, 880, 892, 904,
916, 928, 940, 952, 964, 976, 988, 1000, 1012, 1024, 1036
*Elset, elset=__PickedSurf22_S2, internal, instance=plate-1,
generate
 310, 772, 22
*Elset, elset=__PickedSurf22_S1, internal, instance=plate-1,
generate
 773, 784, 1
*Surface, type=ELEMENT, name=_PickedSurf22, internal
__PickedSurf22_S2, S2
__PickedSurf22_S1, S1
*Elset, elset=__PickedSurf23_S2, internal, instance=plate-1,
generate
 46, 288, 22
*Elset, elset=__PickedSurf23_S1, internal, instance=plate-1,
generate
 289, 310, 1
*Surface, type=ELEMENT, name=_PickedSurf23, internal
__PickedSurf23_S2, S2
__PickedSurf23_S1, S1
*End Assembly
**
** MATERIALS
**
*Material, name=steel
*Elastic

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 165

200000., 0.3
*Include, input=material.inp
** ---
**
** STEP: load
**
*Step, name=load, nlgeom=YES
*Static
0.02, 1., 1e-05, 0.05
**
** BOUNDARY CONDITIONS
**
** Name: bottom Type: Displacement/Rotation
*Boundary
_PickedSet20, 2, 2
** Name: left Type: Displacement/Rotation
*Boundary
_PickedSet19, 1, 1
** Name: rigth Type: Displacement/Rotation
*Boundary
_PickedSet6, 1, 1, 0.2
** Name: up Type: Displacement/Rotation
*Boundary
_PickedSet12, 2, 2, 0.2
**
** OUTPUT REQUESTS
**
** FIELD OUTPUT: F-Output-1
**
*Output, field, variable=PRESELECT
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=PRESELECT
* NODE FILE,nset=left
RF
* NODE FILE,nset=bottom
RF
*FILE FORMAT, ASCII
*End Step

The biaxial test is modeled as displacement controlled. Therefore, within one

loading step the displacements prescribed to two edges (the upper one and the one

on the right) are applied simultaneously. Note that, in order to use anisotropic

material model, a local orientation was introduced to the model, with axes 1

coinciding with horizontal one, 2 with vertical, and axis 3 coinciding with a through

thickness direction (orientation with name Ori-3 in the input file).

As in previous case study, additional input files to the main one are nodes.inp
with nodal coordinates, elements.inp with connectivity matrix (both not

presented here) and input file for material information that has the following form:

166 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

material1.inp
*Plastic
400,0
416.5519,0.001
428.7094,0.002
438.3833,0.003
446.4493,0.004
453.3846,0.005
459.4793,0.006
464.9232,0.007
469.8476,0.008
474.3471,0.009
478.4925,0.01
508.3926,0.02
542.3528,0.04
563.8923,0.06
579.8803,0.08
592.6755,0.1
603.3829,0.12
612.6125,0.14
620.7382,0.16
628.0065,0.18
634.1884,0.2
*Potential
1, 0.8,1,0.99593,1,1

Separate input file for the material information consists only of changeable data.

Since for this case study elastic parameters are known, the information about them

remained in the main input file, to keep therefore changeable file as small as

possible. This should be a general practice when preparing ABAQUS input files

for inverse analysis.

Hill yield criterion is introduced in ABAQUS by the following command:

*Potential

which is followed by ratios given in Eq. 4.3. All six ratios need to be specified also

for 2D models, like plane stress in our case. To other ratios that are not playing any

role is attributed value 1, and are not changed throughout the inverse analyses

procedure. Apart of ratios, as the model has also hardening, the relationship

between s0 and equivalent plastic strain needs to be supplied, and this part is

done in the tabular form, right after the command

*Plastic

giving first the information about stress and then about equivalent plastic strain.

This table in general can proceed up to a very large values of plastic strain, and

ABAQUS assumes perfectly-plastic behavior after the last specified line. For

instance, in the example of input file visualized here, for the equivalent plastic

strains larger than 0.2 stress will be constant and equal to the last specified value,

namely 634.

Since we need to have force-displacement curves as experimental information,

unlike the previous example, here we are not only interested in final deformed shape

(corresponding to fully applied prescribed loads), but we need also to follow

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 167

intermediate solutions. Therefore, it is useful to fixed also maximum possible

increment during iterative solution. It is done at the beginning of the step with the

following commands:

*Step, name=load, nlgeom=YES
*Static
0.02, 1., 1e-05, 0.05

First number after the word *Static gives the value for initial increment size

with which ABAQUS will start calculations. However, if during the calculation

there are strong indications that the step can be enlarged, ABAQUS will increase it,

in order to speed up computation, but not above the last specified number in the line

that follows after the word *Static (here 0.05). With this constrain we keep the

increments small enough in order to have a reasonable number of intermediate

equilibrium solutions for construction of force-displacement curves.

Finally at the end of calculation we need to extract these curves, and therefore

reaction forces of nodes that are belonging to vertical line of symmetry and

horizontal line of symmetry needs to be written down in the external file. This is

done in a similar way as in previous case study, namely:

* NODE FILE,nset=left
RF
* NODE FILE,nset=bottom
RF
*FILE FORMAT, ASCII

Since we need the result after each increment, the frequency of writing is not

specified. In such cases, ABAQUS by default writes the result after each increment.

The two lines specified above write the reaction forces for two node-sets named

“left” and “bottom”. Naturally, these needs to be first created which is done within

the main input file. Nodes with numbers that follow after the lines:

*Nset, nset=bottom, instance=plate-1
*Nset, nset=left, instance=plate-1

represent members of these node-sets.

This completes the preparation of numerical model. Constructed numerical

model can be used within the discrepancy function that we will further write.

However, since the needed results in this case study are different from those in

previous (i.e. here we need force-displacement curves) some modifications of

previously given MATLAB function readfil1.m need to be implemented.

4.2.2 Reading the Results from “dot-fil” File

For this case study, the data we need to extract from the simulation are two force-

displacement curves in two perpendicular directions. The simulation is done under

168 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

the control of displacements, as we earlier saw, and the resulting reaction forces for

the two node-sets of interest are written in the external dot-fil file.

To extract these data from the resulting ASCII file a MATLAB function is used

with the listing given below

function [disp,incr]=readfil2(file)
% Routine for reading *.fil file from ABAQUS in ASCII format.
% It gets back vector of increments and matrix of reaction
% forces for every single node for which it is written.
tic
disp=[];
incr=[];
%~~
% Reading .fil file
f_fil=fopen(file);
s1=textscan(f_fil,'%c'); % This reading will get back one
fclose(f_fil); % string data, without any spaces in
s=s1{1}'; % between, stored in s
clear s1;
sizeS1=size(s);
sizeS=sizeS1(1,2); % Size of character vector
%~~
% Defining strings codes
force_string='I15I3104I'; % Code for reaction force
incr_string='I223I42000D'; % Code for increment string
%~~
% Finding places of interest within .fil file
INCRM=strfind(s,incr_string);
firstINC=min(INCRM);
num=firstINC;
curve=0;
%~~
% Writing Increment vector
while num<sizeS-10
 if s(num:num+10)==incr_string
 curve=curve+1;
 num=num+11;
 begg=num;
 foundD=0;
 while 2-foundD
 if s(num)=='D'

 foundD=foundD+1;
 end
 num=num+1;
 end
 endd=num-2;
 reldisp=str2num(s(begg:endd));
 incr(curve,1)=reldisp;
 end
 num=num+1;
end
%~~
% Writing displacements into DISP matrix
num=firstINC;
nod=0;

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 169

while num<sizeS-8
 if s(num:num+8)==force_string;
 digit=str2num(s(num+9));
 nod=nod+1;
 disp(nod,1)=str2num(s(num+10:num+10+digit-1));

 num=num+8+1+digit+1+1;
 foundStar=0;
 entnum=1;
 while 1-foundStar
 foundD=0;
 begg=num;
 while 2-foundD-foundStar
 if s(num)=='D'
 foundD=foundD+1;

 end
 if s(num)=='*'
 foundStar=foundStar+1;
 end
 num=num+1;
 end
 endd=num-2;
 entnum=entnum+1;
 disp(nod,entnum)=str2num(s(begg:endd));
 end

 else
 num=num+1;
 end
 end
toc

Structuring of the MATLAB routine is very similar to the one given in previous

case study, with the necessary modifications in order to be adjusted for the problem

studied here. Since the simulation is done as displacement controlled and the

prescribed displacements (in both directions) are not parameters that are change-

able from one simulation to another, it is enough to read from result file just the

values of the increments. ABAQUS indicates them with values from 0 to 1, where 1

means application of full prescribed external action (in this case displacement). It is

therefore enough to multiple this vector by the prescribed value of displacement at

the boundary in order to obtain the history of displacements through the simulation.

MATLAB function readfil2.m listed above stores information about increments

in vector incr that is computed as one output of the function.

Second part of the information that we need to extract from dot-fil file considers

reaction forces. ABAQUS input file is written in order to store the reaction force for

each node belonging to node-sets with the names “left” and “bottom”, after every

increment. Both reaction components will be written (since RF key word is used in

the input file, and therefore not any particular component is specified, in such cases,

ABAQUS by default writes all the components). The above MATLAB function is

written in such way that these results will be stored in the matrix DISP, in the order of
their appearance. Each line of the matrix has the node number, followed by the two

170 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

components of reaction, since the problem is two-dimensional. The number of lines

of this matrix will be equal to the total number of nodes in both node-sets multiplied

by number of increments (i.e. the number of times the reaction forces are written in

the file). In order to find the resulting reaction force it is enough to make a summation

of all the nodal components belonging to one node set for each increment. This

operation will be done inside discrepancy function MATLAB routine.

4.2.3 Building Discrepancy Function

Next step in building of Inverse Analysis procedure is to write a MATLAB

discrepancy function that will be later minimized combining previously developed

pieces. The goal of this function is to quantify the discrepancy between experimen-

tal and computed data, in this case the two force-displacement curves.

Here below is given a listing of MATLAB function that solves this problem

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 171

function e=disfunfem(x)
% Function that quantifies the difference between numerically
% computed response and experimental one(placed in txt file)
parY=x(1)*400
parY2=x(2)*320
parY12=x(3)*230
parN=x(4)/10
parE=200000; % Young's modulus is unchanged
load exphor.txt % Load experimental curves
load expver.txt
%~~
% Changing the input file
%~~
% Preparing the table for stress-strain curve (ssc)
br=0;
elstrain=parY/parE;
for plstrain=0:0.001:0.01
 br=br+1;
 ssc(br,1)=parY^(1-
parN)*parE^parN*(elstrain+plstrain)^parN;
 ssc(br,2)=plstrain;
end
for plstrain=0.02:0.02:0.2
 br=br+1;
 ssc(br,1)=parY^(1-
parN)*parE^parN*(elstrain+plstrain)^parN;
 ssc(br,2)=plstrain;
end
% Preparing potential
R2=parY2/parY;
R4=parY12/(parY/sqrt(3));
% Making changes in the input file
f_fil=fopen('material.inp'); % Loading the input file
s=fscanf(f_fil,'%c');
fclose(f_fil);
position=strfind(s,'Plastic');
linebreak=s(position+7:position+8);
begg=position+9;
num=begg;
newPL=[num2str(ssc(1,1)),',',num2str(ssc(1,2)),linebreak];
for i=2:size(ssc,1)
 line=[num2str(ssc(i,1)),',',num2str(ssc(i,2))];
 newPL=[newPL,line,linebreak];
end
newPOT=['*Potential',linebreak,'1,
',num2str(R2),',1,',num2str(R4),',1,1'];
s1=[s(1:begg-1),newPL,newPOT];
f_fil=fopen('material.inp','w');
fprintf(f_fil,s1);
fclose(f_fil);

172 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

%~~~
% ABAQUS run
%~~~
% ! abaqus j=bi_ax_inp interactive
%~~~
% Reading .fil file
%~~~
[disp,indcur]=readfil2('bi_ax_inp.fil');
NINC=size(indcur);
for i=1:NINC
 hor(i,1)=indcur(i)*0.2;

ver(i,1)=indcur(i)*0.2;
 hor(i,2)=sum(disp(i*48-47:i*48-24,2));
 ver(i,2)=sum(disp(i*48-23:i*48,3));
end
hor(:,2)=-hor(:,2);
ver(:,2)=-ver(:,2);
%~~~
% Calculating the difference between the curves
%~~~
NOP=50;
minR=exphor(1,1);
minC=hor(1,1);
minABS=max(minR,minC);
maxR=max(exphor(:,1));
maxC=max(hor(:,1));
maxABS=min(maxC,maxR);
intPOINTS=minABS:(maxABS-minABS)/NOP:maxABS;
calR=interp1(exphor(:,1),exphor(:,2),intPOINTS);
calC=interp1(hor(:,1),hor(:,2),intPOINTS);
for i=1:size(calR,2)
 e1(i,1)=(calR(i)-calC(i))/1000;
end
NOP=50;
minR=expver(1,1);
minC=ver(1,1);
minABS=max(minR,minC);
maxR=max(expver(:,1));
maxC=max(hor(:,1));
maxABS=min(maxC,maxR);
intPOINTS=minABS:(maxABS-minABS)/NOP:maxABS;
calR=interp1(expver(:,1),expver(:,2),intPOINTS);
calC=interp1(ver(:,1),ver(:,2),intPOINTS);
for i=1:size(calR,2)
 e2(i,1)=(calR(i)-calC(i))/1000;
end
e=[e1;e2];

Input to the above MATLAB function is a vector of parameters x. The vector

collects four entries representing normalized values of sought parameters. The first

lines of the code are used to transform normalized values into those that will be used

in input files. Note that Young’s modulus doesn’t belong to the sought parameters,

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 173

and it’s kept fixed and considered as known parameter, so its value is given within

the code as it is needed to compute stress–strain curve.

The routine further needs the existence of two external files with experimental

results. In this case they represent two curves written in two separate files: one for

the horizontal direction and another one for the vertical direction.

Further step is to transform the input file. For this case study, as previously

mentioned, it is necessary to compute stress–strain curve defined by Eq. 4.4 in the

tabular form, as a function of exponent of hardening (one of the sought parameters),

and yield limit for the direction 1, as another sought parameter. This curve obvi-

ously depends also on Young’s modulus that is unchangeable as previously men-

tioned. Since exponential hardening defined by Eq. 4.4 involves larger gradient of

changes in first phase right after the yield limit, the tabular computation is divided

in two steps: the first one is valid for the equivalent plastic strains between 0 and

0.01, where denser grid is used (i.e. with step 0.001). For larger values of equivalent

plastic strains, the stress gradient drops down (it is the case for moderate values of

hardening exponent) and therefore, in order to avoid large number of tabular values

less dense grid is used for this range (i.e. with the step of 0.02).

Second part of the input file that we need to change considers the ratios (4.3). In

particular, we need to compute only R2 and R4, since the first one is kept fixed and

equal to 1, having therefore defined the yield limit for the first direction by a

parameter s0. As already mentioned Hill’s yield function definition in ABAQUS

needs the values for all six ratios, so they are written into the new input file with

values 1.

After the input file is changed and written on hard disk, the numerical simulation

is performed by calling the ABAQUS solver. The numerical model is organized in

such a way that the results are written into the external ASCII file. After the analysis

is finished function readfil2 is called in order to load results into MATLAB

surrounding. The argument of the function is the name of ASCII file with the

results, and its outputs are one vector and one matrix as discussed in Sect. 4.2.2.

These results are further transformed into required force-displacement curves

stored in matrices hor and ver. First column of the two matrices represents the

displacements that are simply obtained by multiplying increment with prescribed

displacement in the analyses. Second column represents the corresponding reaction

forces. These are computed by a summation of all the components corresponding to

one increment. In this case, both node-sets have 24 nodes which means that first 48

lines of the resulting matrix disp represent values of the reaction forces after the

first increment, second 48 after the second one and so on. Each line has the reaction

forces in both directions. However, considering the constrains, nodes belonging to

node-set “left” will have only first component different from zero, since the other

one is free to move, while those belonging to node-set “bottom” will have the

second one different from zero. Therefore, the reaction force for the horizontal

curve corresponding to ith increment represents a summation of the members of

matrix disp placed in the second column with the following indexes:

disp(i*48-47:i*48-24,2)

174 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

while the one for the vertical curve is given by a summation of the third column of

the members with the following indexes:

disp(i*48-23:i*48,3)
The final part of the routine quantifies the differences between the two curves

and builds the vector of residuals. In this case the response to the experiment

consists of two force-displacement curves that are confronted to their computed

counterpart. The residuals are computed on the same way as in previous case,

namely they represent the difference in the reaction forces computed for the number

of grid points fixed over displacement range. This is illustrated in Fig. 4.9. The

number of grid points is defined within the program by the variable NOP.
In order to perform the testing of the whole process, also for this case study, we

will need pseudo-experimental curves that are created for some given set of

parameters. For the exercise here we will create numerical results for the following

values of the parameters:s1 ¼ 400MPa, s2 ¼ 320MPa, t12 ¼ 230MPa and

n ¼ 0.1. The resulting two curves are saved in two ASCII files: exphor.txt
and expver.txt.

After this preparative work we can proceed to the final step by writing an

optimization routine that will solve the resulting minimization problem. Consider-

ing that we know exactly the target values for the parameters we can perform the

test of the overall accuracy of the inverse analyses procedure.

4.2.4 Solving the Optimization Problem

As a final part of inverse analysis procedure we need to write a routine that

will solve resulting optimization problem. Also in this case we will make a

use of Hessian approximation and avoid computing second derivatives. In this

Fig. 4.9 Residuals for discrepancy function that quantifies the difference between two pairs of

curves

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 175

problem discrepancy function is less convex, which is usually the case when

experimental data are more numerous (here we have two force-displacement

curves). It means that the number of local minima, maxima or saddle points is

elevated, and in these regions it is rather difficult to find a Newton direction

computed by modified Hessian matrix that would lead to a reasonable function

reduction.

The problem originates in the type of modification of the Hessian matrix that is

used. When a true Hessian matrix is used, in the situations in which it is not

positive-definite it can be modified by some of the procedures described in Chap. 3

in order to ensure its positive definitiveness and therefore yield the descending

step. It is also important to know how much the Hessian differs from positive-

definitiveness. In the two variable space, if for example one eigenvalue is positive

and the other one is negative it indicates a saddle point, so still the direction that can

be followed as it is minimizing the function. On the other hand, if both eigenvalues

are negative it indicates maximum of the function, and modified Newton direction

in this case doesn’t have much sense, since the true one is pointing to a local

maximum.

With the approach used for least squares, Hessian matrix is approximated by

(2.7) that is a quadratic form, which means that the modified Hessian will be always

positive-semi-definite. Using this modification instead of the real Hessian, valuable

information on how much Hessian matrix defers from positive-definitiveness is

lost. This information otherwise can be used as an indication whether to use

modified Newton direction, or to adopt some other possibility (e.g. steepest

descend). Therefore, in the algorithms that relay on modified Hessian matrix

there is no sense in implementing a modification of Hessian in order to force it to

be positive-definite (parts of the program that we saw in earlier implementation of

different optimization algorithms given in this book). However, the direction

computed with Hessian modified in this way (i.e. by Eq. 2.7) may be ineffective

or may even not decrease the function.

In order to overcome previous problem a modified version of dog-leg algorithm

is used. The procedure is the same as in a standard algorithm except that, in the case

of potential step rejection (i.e. if the ratio (2.22) is negative for the dog-leg

solution), before actual rejection the algorithm computes first the reduction of

real objective function for the Cauchy point. If it reduces the function, the step is

accepted and the algorithm proceeds to the next iteration. This scheme is presented

in Fig. 4.10, where dark grey fields are representing computationally “expensive”

parts of the procedure, as they involve numerical simulations.

Form the figure it is clear that this scheme, once that it faces previously discussed

problem, performs an additional simulation in order to compute function reduction

for Cauchy point. In case when also this step is not producing reduction of the

function it may be argued that it’s an additional waste of time for the step that

should be rejected. However, this modification is inserted to tackle problems when

Newton direction computed by modified Hessian matrix is not leading to the

reduction of the function and so reducing of trust region will lead to further step

rejections as the size of the region is not the cause of the problem. The logic of this

176 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

http://dx.doi.org/10.1007/978-3-642-22703-5_3
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_2

scheme is to use in these situations solution along steepest descent and to obtain

some reduction of the function if not the best one. If this reduction is much smaller

than what is predicted still, the trust region will be reduced for next iteration. With

this approach, optimization algorithm avoids being trapped in the loop of continues

reduction of trust region and repeatable step rejections when modified Newton

direction is a misleading one. Instead it takes a Cauchy point solution and moves on

in the optimization.

Implementation of this algorithm is given in the MATLAB listing below.

Fig. 4.10 Schematic representation of modified dog-leg algorithm

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 177

% Trust region algorithm with modified dog-leg approach for
% sub-problem
clear
clc
%~~
% Setting the options
minchg=1e-8; % Minimum change in parameters
MAXIT=30; % Maximum allowed number of iterations
guess=[1.40;1.35;0.7;0.4];
pert=1e-4; % Perturbation for the first derivatives
res=10;
TRrad=0.2;
mingrad=1e-6; % Gradient value at which to terminate optim.
%~~~
% Computing for the first time value of function
eV=disfunfem(guess);
e0=0.5*eV'*eV
%~~~
% Optimization cycle
iter=0;
while res>1e-6
itiner(iter+1,1:4)=guess';
itiner(iter+1,5)=e0;
iter=iter+1;
if iter==60
 pert=5e-5;
end
[HESS,grad]=comhessapp(@disfunfem,guess,pert,eV);
% Checking the gradient
if grad'*grad<mingrad

break
end
stpdsc=-grad/norm(grad);
newton=-inv(HESS)*grad;
accepted=0;
rejected=0;
%~~~
% Computing step
while accepted<1
if norm(newton)<TRrad
 pDL=newton; % Dog Leg step
else
 % Finding the Cauchy point
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 % Finding minimizer within trust region (Dog Leg step)
 diff=newton-pc;
 dimV=size(newton,1);
 cf=[0,0,-TRrad^2];

178 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

 for ii=1:dimV
 cf(1)=cf(1)+diff(ii)^2;
 cf(2)=cf(2)+2*pc(ii)*diff(ii);
 cf(3)=cf(3)+pc(ii)^2;
 end
 alfa=max(roots(cf)); % Taking the positive root
 pDL=pc+alfa*diff;
end
 predred=-(pDL'*grad+0.5*pDL'*HESS*pDL);
 guess1=guess+pDL; % Next iterate
 eV=disfunfem(guess1);

e1tr=0.5*eV'*eV;
 realred=e0-e1tr;

ratio=realred/predred;
 if ratio<0
 TRrad=TRrad/1.2;
 disp('Step is rejected but trying Cauchy point!!!')
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 guess1=guess+pc;
 eV=disfunfem(guess1);

e1tr=0.5*eV'*eV;
 realred=e0-e1tr;

ratio=realred/predred;
 if ratio<0
 rejected=rejected+1;
 disp('Step is rejected!!!')
 else

 accepted=1;
 end
 else
 accepted=1;
 if ratio<0.2
 TRrad=TRrad/1.2;
 end
 if ratio>0.75
 TRrad=TRrad*1.2;
 end
 end
 if rejected==6
 accepted=1;
 guess1=guess; % Since there was no improvement
 end
end
itiner(iter+1,1:4)=guess1';
itiner(iter+1,5)=e1tr;
e0=e1tr;
guess=guess1;
res=e1tr;
if iter>MAXIT % Terminated after MAXIT iteration

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 179

 res=0;
end
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||
abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end
end

This main routine uses also previously listed MATLAB function that computes

the value of discrepancy function together with routines for Hessian approximation

(comhessapp) and computation of Cauchy point (cauchypnt). The rest of the
routine is organized in the similar way as other already given programs. The

changeable optimization portions are set at the beginning while the result is stored

in the itiner matrix in the same manner as in previous case study.

4.2.5 Results of Inverse Analyses

With the last written code the inverse problem is fully prepared. Phase of testing the

whole procedure proceeds using previously created pseudo-experimental data.

The inverse problem should be solved starting from different initialization

points. Optimization parameters are set as follows: initial Trust Region is set to

0.2; perturbation for derivates are set to 1E-4, the optimization should be terminated

when gradient is smaller than 1E-5, when minimum change in parameters between

two iterations is less than 1E-8 (for normalized parameters) or when the number of

iterations exceeds 30.

The first initialization started from the following parameter values:

s1 ¼ 560MPa,s1 ¼ 432MPa, t12 ¼ 161MPaand n ¼ 0.04. The optimization was

terminated after nine iterations since the changes in parameter values from eighth to

ninth iteration was less than what was specified by tolerance. Largest error was on

the assessed yield limit t12, which was evaluated as 234 instead of 230, that

corresponds to less than 2% of difference. Graphs in Fig. 4.11 are visualizing the

monotone drop of the objective function together with normalized parameter values

within the iterations.

Trust region radius at the beginning of the optimization was 0.2 and at the end it

was enlarged to 0.228. There were totally two step rejections, where resulting step

was actually increasing the objective function: in the iteration 7 and 8. In both cases

Cauchy point solution computed afterwards was obtaining the reduced function

value and was therefore accepted as a solution.

An optimization problem should be solved couple of times starting from differ-

ent initialization values for parameters in order to verify that the same solution is

obtained independently from the starting point. As a usual practice, converged set

180 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

of parameters can be treated as a solution of to problem if it is repeated for at least

three different initializations.

Inverse problem here considered is solved another time, starting from different

initial parameter values with respect to those used in the first optimization. In the

second optimization parameters had the following starting values: s1 ¼ 320MPa,

s1 ¼ 512MPa, t12 ¼ 276MPa and n ¼ 0.06. Also in this case initial values were

quit far from the target – more than 50% difference as an average. Tolerances were

set to the same values as in the previous case, and the optimization was terminated

after ninth iteration, converging to the following parameter set: s1 ¼ 399MPa,

s1 ¼ 319:3MPa, t12 ¼ 233:3MPa and n ¼ 0.1005 Fig. 4.12.

The example treated in this Case study proved to be well posed, as the solution is

not dependant on the initialization point. This can be also checked for some other

set of parameters used as targets, which is usually the practice in full verification of

the inverse problem. This part is left to the reader as an additional exercise.

Fig. 4.11 Result of optimization: initialization 1 – reduction of the objective function (up) and
changes of normalized parameters through iterations (down)

4.2 Case Study 2: Assessment of Plastic Parameters of Thin Plate 181

4.3 Summary

In this chapter we saw how to design a fully working Inverse Analyses procedure in

order to assess some needed parameters. The problem was solved here by writing a

set of MATLAB programs that are eventually put together into one fully automatic

procedure.

Within two different case studies treated here, we saw all the steps needed to be

put together in order to build required procedure. The first step was to select

experiment and some measurable quantities that will be taken as a quantification

of the response to the experiment. These should be selected in a way so that

measurable quantities are sensitive to the changes in sought parameters. In more

complicated identification procedures, when it is not that trivial to select measur-

able quantities and the experiment, it is useful to perform a sensitivity analyses in

Fig. 4.12 Result of optimization: initialization 2 – reduction of the objective function (up) and
changes of normalized parameters through iterations (down)

182 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

order to quantify the sensitivity of measured quantities with respect to sought

parameters, and, if necessary to change experiment and/or measurable quantities.

In the two examples studied here, it was quit intuitive to assume that selected

measurable quantities are sensitive to sought parameters. This assumption proved to

be good since in both procedures all of the parameters were well identified.

Second step consisted in building of numerical model that will simulate the

experiment. In the two examples treated in this chapter, a commercial code

ABAQUS was used for the purpose. This code has, for the present purpose a very

suitable feature, that the model can be completely defined (and changed) by a

human readable ASCII file. This feature makes the interaction with MATLAB

easier. An input file that defines numerical model was divided in couple of parts, in

a way that changeable part of the model is isolated within a single (and simple) text

file.

Third step consists of writing a MATLAB function that will quantify discrep-

ancy between experimental and computed data. Within this function experimental

data are loaded from external file, an input file for ABAQUS model is loaded and

required parameters are changed, the FE analysis is performed, and resulting data

are loaded in MATLAB in order to be compared with experimental ones. For this

purpose, another useful feature of ABAQUS is exploited, namely the needed results

are written within an ASCII file so that they can be easily loaded in MATLAB

surrounding. An additional MATLAB function was written and listed above that

can be used to extract needed data from resulting ASCII file.

Fourth part consisted in writing the optimization algorithm that is used to solve the

resulting minimization problem. For this purpose, algorithms presented in Chap. 2 are

adopted, and their full listings are given in the chapter.

Finally, the whole procedure is tested by the use of pseudo-experimental data.

This data, as we saw in the chapter, represent a computer generated responses to the

experiment, which are treated as truly experimental data within inverse analysis

procedure. The advantage of their use is that we know exactly the solution of the

problem as it should match the parameters previously used to generate pseudo-

experimental data. It is therefore easy to evaluate the overall accuracy of the

procedure.

Further test, which are usually performed as part of the verification should

consider influence of the measuring noise. With the checks performed in the case

studies presented in this chapter we could see that the procedure is well posed and

that selected measurable quantities are enough for accurate estimates of sought

parameters. Since with the real experiment there will be always some measuring

error it is important to understand to which extent it influences the error on assessed

parameters. A few words on this topic will be given in the following chapter.

This chapter presented what is nowadays called traditional approach to inverse

problems when test simulations are performed by FE models. However an inverse

problem based on FE simulations can be sometimes time consuming as the

simulations are performed many times. A modern approach to inverse analysis

will be discussed in the subsequent chapter, where soft computing methods

presented in Chap. 3 will be employed for the present purpose. It is important to

4.3 Summary 183

http://dx.doi.org/10.1007/978-3-642-22703-5_2
http://dx.doi.org/10.1007/978-3-642-22703-5_3

mention that, traditional approach given in this chapter still represents an important

part, as it is anyhow used at least in some phases of the design of inverse analyses

procedures.

References

1. HKS Inc, Pawtucket, RI, USA. ABAQUS/Standard, Theory and User’s Manuals, release 6.2-1

(1998)

2. Lubliner, J.: Plasticity Theory. Dover, Mineola (2008)

3. Crisfield, M.A.: Non-linear Finite Element Analyses of Solids and Structures. Wiley, Chichester

(1997)

4. Green, D.E., Neale, K.W., MacEwen, S.R., Makinde, A., Perrin, R.: Experimental investigation

of the biaxial behavior of an aluminum sheet. Int. J. Plast. 20, 1677–1706 (2004)

5. Hannon, A., Tiernan, P.: A review of planar biaxial tensile test systems for sheet metal. J. Mater.

Process. Technol. 198, 1–13 (2008)

6. Hild, F., Roux, S.: Full Field Measurements and Identification in Solid Mechanics Volume 1.

KMM-NoE, Warsaw (2007)

184 4 Inverse Analyses in Structural Problems: Putting All the Pieces Together

Chapter 5

Modern Approach to Inverse Analyses

By surveying the scientific literature, it can be observed that inverse problems are

nowadays becoming more and more popular. Today, there are couple of interna-

tional journals with high impact factors devoted to this class of problems. Apart of

them there are many recently published books that are dealing with mathematical

programming in the context of inverse analyses, several are cited within bibliogra-

phy in previous chapters of this book.

The field of application of this fast growing scientific branch is vast. Some of

them are listed in Chap. 1, but in general, this theory can have a successful

application in any problem in which the knowledge of parameters, boundary

conditions, initial conditions, or commonly speaking some not measurable infor-

mation of the system are needed, while the results (or effects) are known.

An important group of inverse problems are parameter identification problems in

structural engineering. Today there are many successful examples of applying this

theory in material characterization and structural diagnosis. In engineering practice

quite frequently occurs a need to characterize materials of a working components in

order to assess the level of accumulated damage. In these satiations it is important that

the test is non-destructive and that it can be applied on a working component in-situ.

Combining for example instrumented indentation test, mentioned in Chap. 1,

with inverse analyses theory, material characterization can be performed on more

sophisticated way with respect to semi empirical approaches (i.e. using formulae to

compute reduced Young’s modulus based on the indentation curve). The need

however, to solve resulting inverse problem fast and in situ (i.e. on a “small”

computer) makes the approach challenging from the computational point of view.

Obviously for this class of problems a traditional approach based on finite element

simulations is not an adequate one.

The use of FEM in the contexts of inverse analysis for structural problems is

suitable for laboratory based problems as they involve time consuming analysis

and, depending on a problem can even last for days. When there is a need to solve

inverse problem fast and in-situ, alternative strategies should be used. This chapter

will describe one possible approach, which uses POD-RBF algorithm presented in

Chap. 3, in this context.

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5_5,
Springer-Verlag Berlin Heidelberg 2012

185

http://dx.doi.org/10.1007/978-3-642-22703-5_1
http://dx.doi.org/10.1007/978-3-642-22703-5_1
http://dx.doi.org/10.1007/978-3-642-22703-5_3

5.1 On-Line Off-Line Approach

Examples treated in previous chapter showed that the main “bottle-neck” in terms

of computing time involved for solving the inverse problem is a need to perform

finite element simulations. The rest of the computations are fast and are practically

done immediately, in no time at all. The iterative nature of the optimization

algorithms requires recurrent simulations, with total number which can reach

order of magnitude of 100, when number of sought parameters is moderate

(e.g., four or more). However numerical models used in these simulations are

quite similar one to another, with only couple of parameters varying (namely sought

parameters). This fact suggests that in this field quite effectively some model

reduction techniques can be applied, in order to make the problem much faster

and more robust.

Today model reduction techniques represent quite popular research subject.

There are many successful applications of POD used in so-called a priori model

reduction procedures (see e.g., [1]). Interesting examples of application of such

methodology can be found in simulations of real-time deformable models of non-

linear tissues [2]. Building of reliable deformable numerical models of soft tissues

represents a challenging task in computational mechanics. It has a wide applicabil-

ity in design of haptic simulators used in virtual surgery. The physical phenomena

simulated in these problems are extremely non-linear (namely, non linear visco-

elastic material behavior combined with large deformations and large displace-

ments) and as such represent a computationally demanding task that practically

cannot be tackled by traditional FEM approaches if it should be done in a real-time.

Similar methods based on Proper Generalized Decomposition (PGD) are developed

and applied in computational fluid dynamics and in computational fracture mechan-

ics (see e.g., [3, 4]).

Most of these techniques have the two computational phases: off-line and on-

line phase. In the off-line phase some relatively heavy computation are performed

but usually they are done once-for-all. Later, in on-line phase, previous results are

used in a smart way, and some lighter computations are performed in order to have

the results fast, practically in a real-time.

Applying this off-line on-line approach to the inverse problems similar strategy

can be developed. Considering that within parameter identification procedures, as

previously mentioned, simulations that need to be performed are very similar one to

another, as they differ only by a few parameters, it is possible to think of an

approach in which within a first phase (off-line phase) a set of these simulations

should be performed, in order to use obtained results in s latter, on-line phase.

This approach is essentially the same as the one when Artificial Neural Networks

are applied to solve inverse problem. Without entering into the detailed description

of neural networks, which can be found in some other excellent books (see e.g.,

[5, 6]), let us just say couple of words about main principles of their work. Artificial

Neural Networks (ANN) represent an interpolation tool which can be used for the

prediction of system responses. Calibration of ANN, in jargon called “training”, is

186 5 Modern Approach to Inverse Analyses

the phase in which coefficients of this interpolation are determined (called weights

and biases). For the training phase it is necessary to have a certain number of

input–output pairs, called “patterns”. After the training phase is performed network

has a so-called generalization feature which means that it can provide outputs also

for those inputs that were not present within the training patterns.

In order to apply ANN to solve inverse problems in parameter characterization it

is necessary to produce first a required number of training patterns. It practically

means that we need first to perform a set of FE simulations in which the sought

parameters will be varied within some reasonable range, usually selected by the

nature of the problem for which the ANN is designed. After these “heavy”

computations are executed, the network is ready to be used for any further identifi-

cation procedure. The training of the network is time consuming but it is done once-

for-all and represents an off-line phase. Later on, identification procedure that is

done on-line, involves only a simple matrix multiplication and it is therefore

computationally “light”. Examples of the application of ANN in parameter identi-

fication for structural problems can be found in [7] and [8].

Alternative strategy of using the results previously generated by FE simulations,

could be by calibrating a POD-RBF model which can be later used in on-line phase

within iterative optimization algorithms.

5.2 The Use of Pod-RBF Within Inverse Analysis Context

Numerous examples of parameter identification in structural context that can be

found in scientific literature evidence that inverse analysis can be used rather

successfully in this context. However, as mentioned above, they are not applicable

for fast computations due to the extended time required by FE simulations.

A logical path of overcoming this problem is to replace the system response

computations by some other faster technique and to preserve the rest of the

structure.

From the examples treated in Chap. 3 it is quite clear that this task can be

fulfilled with forward operator based on POD-RBF algorithm. This strategy

guarantees all the robustness and applicability of traditional Inverse Analyses

approach already evidenced in vast literature, provided that within the inverse

analyses procedure, FE simulations are replaced with some other tool with the

same accuracy. The scheme of this strategy is visualized in Fig. 5.1.

The advantage of present approach with respect to, for example ANN is that, for

the same cost in terms of computing time needed for generating a set of snapshots

by FE simulations, a more controllable identification procedure can be obtained. If

the inverse problem is well designed in terms of optimization of experiment and

measurable quantities, optimization algorithms discussed in previous chapters are

guaranteeing the convergence to the solution (e.g., those based on Cauchy point

since they have a global convergence property). On the other hand, examples shown

in Chap. 3 proved that reduced model based on POD-RBF can have controllable

5.2 The Use of Pod-RBF Within Inverse Analysis Context 187

http://dx.doi.org/10.1007/978-3-642-22703-5_3
http://dx.doi.org/10.1007/978-3-642-22703-5_3

error and for the practical purposes the difference between system responses

computed by it, and the one computed by FEM can be negligible. All this

contributes to the conclusion that inverse analyses procedure based on this

approach can be fast and robust with effective control of error on estimates.

Combining previous elements it is relatively easy to enclose all of the parts into a

simple software, which can be trained for a given characterization problem, and

further routinely used.

5.3 Example of the Use of Pod-RBF in Inverse Analyses

5.3.1 Design of Software for the Assessment of Parameters

We will show now how, an easy to use software, based on inverse analyses and

POD-RBF model as forward operator, can be designed for characterization of

anisotropic plastic parameters based on bi-axial test of thin plate (example treated

in previous chapter).

At the beginning we will perform, as a part of off-line process, a generation of

snapshots by varying parameters in order to cover some range of interest. For

example we can generate total number of 875 snapshots over a regular grid of

points in parameter space with the following limits: s1 from 300 to 460 MPa with

step 40 MPa; s2 from 300 to 460 MPa with step 40 MPa; s12 from 180 to 260 MPa

with step 20 MPa. For this purpose a simple MATLAB code can be used that

automatically updates the input parameters, runs analyses and stores resulting

vector into a snapshot matrix. The listing of such MATLAB routine is given below

Fig. 5.1 Schematic

representation of IA

procedure based on

POD-RBF

188 5 Modern Approach to Inverse Analyses

% Program that generates a snapshot matrix
clear
points=0.02:0.02:1;
numAN=0;
for sig1=300:40:460
for sig2=300:40:460
for sig12=180:20:260
for N=0.05:0.025:0.2
parY=sig1;
parY2=sig2;
parY12=sig12;
parN=N;
parE=200000;
numAN=numAN+1;
kpar(:,numAN)=[parY;parY2;parY12;parN];

% Changing the input file
%~~

br=0;
elstrain=parY/parE;
for plstrain=0:0.001:0.01
br=br+1;
ssc(br,1)=parY^(1-

parN)*parE^parN*(elstrain+plstrain)^parN;
ssc(br,2)=plstrain;

end
for plstrain=0.02:0.02:0.3
br=br+1;
ssc(br,1)=parY^(1-

parN)*parE^parN*(elstrain+plstrain)^parN;
ssc(br,2)=plstrain;

end
R2=parY2/parY;
R4=parY12/(parY/sqrt(3));
f_fil=fopen('material.inp');
s=fscanf(f_fil,'%c');
fclose(f_fil);
position=strfind(s,'Plastic');
linebreak=s(position+7:position+8);
begg=position+9;
num=begg;

newPL=[num2str(ssc(1,1)),',',num2str(ssc(1,2)),linebreak];
for i=2:size(ssc,1)
line=[num2str(ssc(i,1)),',',num2str(ssc(i,2))];
newPL=[newPL,line,linebreak];
end
newPOT=['*Potential',linebreak,'1,

',num2str(R2),',1,',num2str(R4),',1,1'];
s1=[s(1:begg-1),newPL,newPOT];
f_fil=fopen('material.inp','w');
fprintf(f_fil,s1);

5.3 Example of the Use of Pod-RBF in Inverse Analyses 189

fclose(f_fil);
% ABAQUS run
%~~
! abaqus j=bi_ax_inp interactive
% Reading .fil file
%~~
 [disp,indcur]=readfil1('bi_ax_inp.fil');
 NINC=size(indcur);
 for i=1:NINC
 hor(i,1)=indcur(i);
 ver(i,1)=indcur(i);
 hor(i,2)=sum(disp(i*48-47:i*48-24,2));
 ver(i,2)=sum(disp(i*48-23:i*48,3));

 end
 hor(:,2)=-hor(:,2);
 ver(:,2)=-ver(:,2);
 snapHOR=interp1(hor(:,1),hor(:,2),points);
 snapVER=interp1(ver(:,1),ver(:,2),points);
 snapH(:,numAN)=snapHOR';
 snapV(:,numAN)=snapVER';
 end

end
end

end

The structuring of the file is very similar to the one already presented in Chap. 4.

Some of the things needed to be performed are exactly the same like there, namely

changing of input file, running analysis and reading results. The rest of the routine

consist of placing the resulting vector into a snapshot matrix.

After this off-line computing phase is finished, it is possible to create POD-RBF

model that gives as output force-displacement curves. In this example, we have

calibrated two different models: One for the horizontal curve and second one for the

vertical curve. In order to fully define a curve it is needed to have a set of pairs of

displacement and corresponding reaction forces. However, as all the simulations

are done with the same prescribed maximal displacement, it is therefore possible to

have a fixed grid of points over displacement axis, and to take corresponding forces

as measured quantities that will be entries of snapshots. In this exercise, a grid of 50

points is adopted for the displacements between 2% and 100% of maximum applied

displacement with the step of 2%. As far as the RBF type is concern, also in this

example inverse multiquadric one is used (Eq. 3.93 with r ¼ 1.) Resulting two

POD bases are both truncated after fifth direction with the ratio of the summation of

all the neglected eigenvalues, and all of them, less than 10�6. This calibration

process therefore resulted in four matrices: B1, B2, F1 and F2. Any further system

response is obtained by performing two matrix multiplication using (3.92) – one for

the horizontal curve and another one for vertical curve.

Using MATLAB Graphical User Interface (GUI) it is possible to design an easy

to use software that can be used to determine plastic parameters based on bi-axial

test just by loading the two resulting curves from the test. Listing bellow serves for

that purpose.

190 5 Modern Approach to Inverse Analyses

http://dx.doi.org/10.1007/978-3-642-22703-5_4
http://dx.doi.org/10.1007/978-3-642-22703-5_3
http://dx.doi.org/10.1007/978-3-642-22703-5_3

function varargout = biaxial(varargin)
% BIAXIAL M-file for biaxial.fig
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @biaxial_OpeningFcn, ...
 'gui_OutputFcn', @biaxial_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State,
varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% Executes just before biaxial is made visible.
function biaxial_OpeningFcn(hObject, eventdata, handles,
varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);

% Outputs from this function are returned to the command line.
function varargout = biaxial_OutputFcn(hObject, eventdata,
handles)
varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)
fileH=get(hObject,'String');
curH=char(fileH);
curhor=load(curH);
axes(handles.axes1);
plot(curhor(:,1),curhor(:,2),'LineWidth',2);
grid on
title('Force-displacement curve for horizontal direction')

% Executes during object creation, after setting all
properties.
function edit1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

5.3 Example of the Use of Pod-RBF in Inverse Analyses 191

function edit2_Callback(hObject, eventdata, handles)
fileV=get(hObject,'String');
curV=char(fileV);
curver=load(curV);
axes(handles.axes2);
plot(curver(:,1),curver(:,2),'LineWidth',2);
grid on
title('Force-displacement curve for vertical direction')

% Executes during object creation, after setting all
% properties.
function edit2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% Executes on button press in pushbutton1.
% function pushbutton1_Callback(hObject, eventdata, handles)
% Optimizaiton by DOG-LEG Trust Region
clear
global fh bh fv bv kpar
load fh.txt
load bh.txt
load fv.txt
load bv.txt
load kpar.txt
% Setting the options
minchg=1e-8;
MAXIT=30;
guess=[1.40;1.35;0.7;0.4];
guess=rand(4,1);
pert=1e-4;
res=10;
TRrad=0.2;
eV=disfunpod(guess);
e0=0.5*eV'*eV;
% Optimization cycle
iter=0;
while res>1e-6
itiner(iter+1,1:4)=guess';
itiner(iter+1,5)=e0;
iter=iter+1;
if iter==60
 pert=5e-5;
end
[HESS,grad]=comhessapp(@disfunpod,guess,pert,eV);
stpdsc=-grad/norm(grad);
newton=-inv(HESS)*grad;
accepted=0;

192 5 Modern Approach to Inverse Analyses

rejected=0;
while accepted<1
if norm(newton)<TRrad
 pDL=newton;
else
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 diff=newton-pc;
 dimV=size(newton,1);
 cf=[0,0,-TRrad^2];
 for ii=1:dimV
 cf(1)=cf(1)+diff(ii)^2;
 cf(2)=cf(2)+2*pc(ii)*diff(ii);
 cf(3)=cf(3)+pc(ii)^2;
 end
 alfa=max(roots(cf));
 pDL=pc+alfa*diff;
end
 predred=-(pDL'*grad+0.5*pDL'*HESS*pDL);
 guess1=guess+pDL;
 eV=disfunpod(guess1);

e1tr=0.5*eV'*eV;
 realred=e0-e1tr;

ratio=realred/predred;
 if ratio<0
 TRrad=TRrad/1.2;
 pc=cauchypnt(e0,stpdsc,grad,HESS,TRrad);
 guess1=guess+pc;
 eV=disfunpod(guess1);

e1tr=0.5*eV'*eV;
 realred=e0-e1tr;

ratio=realred/predred;
 if ratio<0
 rejected=rejected+1;
 else
 accepted=1;
 end
 else
 accepted=1;
 if ratio<0.2

 TRrad=TRrad/1.2;
 end
 if ratio>0.75
 TRrad=TRrad*1.2;
 end
 end
 if rejected==6
 accepted=1;
 guess1=guess;
 end
end
itiner(iter+1,1:4)=guess1';

5.3 Example of the Use of Pod-RBF in Inverse Analyses 193

itiner(iter+1,5)=e1tr;
e0=e1tr;
guess=guess1;
res=e1tr;
if iter>MAXIT
 res=0;
end
% Checking convergence options
if abs(itiner(iter+1,1)-itiner(iter,1))<minchg ||
abs(itiner(iter+1,2)-itiner(iter,2))<minchg;
 res=0;
end
end
save itiner.txt -ascii -double itiner

% Executes on selection change in popupmenu1.
% function popupmenu1_Callback(hObject, eventdata, handles)
contents={get(hObject,'Value')};
global kpar
load itiner.txt;
itiner(:,1)=itiner(:,1)*(max(kpar(1,:))-
min(kpar(1,:)))+min(kpar(1,:));
itiner(:,2)=itiner(:,2)*(max(kpar(2,:))-
min(kpar(2,:)))+min(kpar(2,:));
itiner(:,3)=itiner(:,3)*(max(kpar(3,:))-
min(kpar(3,:)))+min(kpar(3,:));
itiner(:,4)=itiner(:,4)*(max(kpar(4,:))-
min(kpar(4,:)))+min(kpar(4,:));
selected=cell2mat(contents);
ITER=size(itiner,1);
if selected==1
 axes(handles.axes3);
 plot(1:ITER,itiner(:,1),'LineWidth',2);
 grid on
 title('Force-displacement curve for horizontal direction')
end
if selected==2
 axes(handles.axes3);
 plot(1:ITER,itiner(:,2),'LineWidth',2);
 grid on
 title('Force-displacement curve for horizontal direction')
end
if selected==3
 axes(handles.axes3);
 plot(1:ITER,itiner(:,3),'LineWidth',2);
 grid on
 title('Force-displacement curve for horizontal direction')
end
if selected==4
 axes(handles.axes3);
 plot(1:ITER,itiner(:,4),'LineWidth',2);

194 5 Modern Approach to Inverse Analyses

 grid on
 title('Force-displacement curve for horizontal direction')
end

% Executes during object creation, after setting all
% properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

As addition to previous listing also a MATLA fig file with the same name is

needed in which the outline of the developed GUI will be designed. Here we are not

going to describe the way GUI is designed in MATLAB and readers should refer to

MATLAB help for this issue [9].

The outline of designed GUI is visualized in Fig. 5.2. Above listed MATLAB

routine programs the behavior of all existing elements in it. Therefore, in the code

we have two functions connected with two text input fields that are used to supply

the file names where horizontal and vertical curves are stored. Further, within these

functions resulting curves are plotted on graphs 1 and 2 that are placed on the left

side of the window.

Fig. 5.2 The outline of GUI for plastic parameter estimation

5.3 Example of the Use of Pod-RBF in Inverse Analyses 195

After the input files are inserted and graphs are visualized program has every-

thing that is needed to perform optimization in order to find four plastic parameters

that are minimizing the difference between the experimental curves and those

numerically computed. For this purpose a very similar function to the one already

listed in Chap. 4 is associated to push-button “Find Parameters”. The main differ-

ence in this function with respect to the one given in Chap. 4 is that here the system

response is computed by POD-RBF model, not by calling ABAQUS.

After clicking on “Find Parameters” button, the optimization problem is solved

and resulting parameters can be visualized one by one by selecting them from the

drop-down menu placed bellow “Find Parameters” button. For this purpose, part of

the code is associated with the drop-down menu that identifies which of the

parameters is selected, and plots its values in each iteration on the third graph

placed in lower right corner of the window.

Initialization of the optimization process is done randomly, and therefore it is

easy to repeat the process in order to verify that the assessed parameter values are

independent on starting point. After the optimization the resulting window will look

like it is visualized in Fig. 5.3.

Optimization problem solved was the same as in Chap. 4, with target values

specified there, and graph 3 in this case visualizes the changes of the yield limit in

direction 2. Figure shows that the value of this parameter converged to the target

one practically after five iterations.

Fig. 5.3 Resulting window after the optimization is terminated

196 5 Modern Approach to Inverse Analyses

http://dx.doi.org/10.1007/978-3-642-22703-5_4
http://dx.doi.org/10.1007/978-3-642-22703-5_4
http://dx.doi.org/10.1007/978-3-642-22703-5_4

By having such a simple software the identification of parameters becomes easy,

and immediate, since in this case one identification lasts for about 1 s. Furthermore,

the identification procedure becomes a trivial matter since everything that one

needs to do is to give the names of the two input files and to click on one button.

All other work connected with computation of system responses and mathematical

programming is enclosed inside this simple program and the user doesn’t have to

know anything about it. Of course, this program is calibrated for one type of

experiment (in this case bi-axial test) and it requires some off-line computational

work, but it is done once-for-all, and after that, an on-line phase is rather simple and

can be routinely and repetitively used.

Applying this strategy to some other types of test (e.g. indentation test) it is

rather easy to develop a simple software which can be used for fast assessment of

parameters. Together with portable testing equipment it becomes a powerful tool

for diagnostic analysis in situ on working components since the present approach in

its on-line phase doesn’t involve any heavy computation.

5.3.2 Detailed Pseudo-Experimental Testing of Inverse
Analyses Procedure

With previous exercise we wanted to demonstrate how by the use of POD-RBF fast

system response computation in the context of inverse analyses, the material

characterization becomes an easy task. Having such a fast computing tool provides

also some other advantages.

Already in Chap. 1 we were mentioning the need to test the identification

procedure with pseudo-experimental data. This test should serve us to verify that

the designed inverse analyses problem is well posed and that it can be successfully

solved by selected optimization algorithm. In order to have a full control over the

whole procedure, we are deliberately selecting what is called pseudo-experimental

data, or data generated by a computer simulation for which we know exactly what is

the solution in terms of sought parameters. However, even if the result of this

preliminary test is positive, it may happen that, for some other parameter combina-

tion, we may encounter an ill-posed problem. This can happen with the indentation

tests when only the indentation curve is used as experimental information. This

problem is already emphasized earlier in the book when plastic parameters can be

compensated and therefore the two different parameter sets can produce the same

indentation curve. This compensation may be more evidenced for certain

parameters and less for others. In other words by performing a test for only one

parameter set, chosen as target, it is not guaranteed that the abovementioned

compensation problem will be evidenced, and so the false conclusion of a well-

posed inverse analyses problem can be derived. It is therefore very useful to

perform a more detailed verification of the procedure to verify that it is well

posed for different sets of parameters taken as target values.

More detailed investigation of the designed inverse analyses procedure are of

course time consuming since it means that the problem needs to be solved for

5.3 Example of the Use of Pod-RBF in Inverse Analyses 197

http://dx.doi.org/10.1007/978-3-642-22703-5_1

different pseudo-experimental results corresponding to different parameter sets. On

the other hand, once that we have trained POD-RBF model for selected experiment

it is relatively inexpensive to perform many different test in order to verify whether

it’s well posed in all zones of possible interest in the parameter space.

Let us focus on the problem of anisotropic plastic parameter characterization

previously discussed. Once the snapshot matrix is computed we can compute

matrices B1, B2, F1 and F2 that can be further used for fast computation of system

responses. We can further test the accuracy of the whole procedure for different

parameter sets as target values. In order to do that, we can generate another snapshot

matrix, corresponding to parameter sets different from those used for the generation

of POD basis. Resulting snapshots can be further used as pseudo-experimental data

for the inverse analyses procedure. Assessed parameters are directly compared

to their target values in order to see the overall error of the whole procedure.

Considering that the whole procedure is easily enclosed in the same program-

ming surrounding (e.g., in MATLAB like in the examples treated here), the whole

process can be fully automated. Algorithm for the possible solution of this testing is

given in Fig. 5.4.

Fig. 5.4 Algorithm for

testing of the whole

TR + POR-RBF procedure

198 5 Modern Approach to Inverse Analyses

Implementation of previous algorithm into a MATLAB code can be done by

combining all previously given codes with slight modification. The listing of

possible code is not given here and is left to the reader to be done as an exercise.

As a result of this test usually graphs of a type visualized in Fig. 5.5 are given for

each parameter.

Figure 5.5 gives results obtained on a bi-axial test when the testing procedure is

done on 15 different parameter sets. The graph shows that the maximum error on

the assessed yield limit in direction 1 was less than 2 MPa. The result of this type

is very good one, and if the similar one is obtained also for the other parameters,

then it can be concluded that the inverse analyses procedure is well-posed for the

whole tested range of parameters.

Considering computing times involved in such numerical test, we should note

that the problem solved here involved 45 different inverse problems (15 different

parameter sets and each inverse problem is solved three times starting from different

initialization points). There were four parameters to assess, and by using a dog-leg

trust region algorithm with Hessian approximation each iteration had five system

response predictions. Finally taking as an average that each optimization had about

10 iterations, it gives a total number of system predictions equal to 45 � 5 � 10

¼ 2,250. Performing such a test with traditional approach where system responses

are computed by FEM, for this simple problem it would require about 10 h on an

average computer. On the other hand using previously calibrated POD-RBF proce-

dure the same result is obtained in a bit more than 5 s. It’s important to emphasize

that the calibration of reduced POD-RBFmodel included 875 simulations, a number

that is smaller than what is otherwise required for even this small test if it should be

performed with traditional approach, the fact that already for this simple case

justifies a time consuming off-line phase. In more complicated examples, this type

of test is more detailed and usually involves much more than only 15 material

parameter sets. Furthermore, the same test is performed considering different levels

Fig. 5.5 Absolute error of assessed yield limit in direction 1 for 15 different parameter sets

5.3 Example of the Use of Pod-RBF in Inverse Analyses 199

of artificial noises introduced to the pseudo-experimental data in order to test the

stability of the procedure. It is therefore clear that significantly more profound tests

can be performed on the overall procedure once that the reduced model is calibrated.

At the end it is important to underline that the type of the test discussed here

which results in graphs like the one visualized in Fig. 5.5, considers the overall

accuracy of the procedure. The pseudo-experimental data in the exercise performed

here are created by FE model, while the characterization procedure used POD-RBF

reduced model for the system response computation. The fact that in all tested

parameter sets the procedure converged practically to the same target values

confirms the capability of the reduced model to give high accuracy results that

are practically the same as what is computed by full FE numerical model.

5.4 Summary

This chapter gave an overview of a modern approach to the inverse analyses, where

by concentrating some heavy computation in a priori phase (called off-line), fast

and robust procedure can be designed to be executed routinely in on-line phase. The

approach presented here combines reduced numerical model based on proper

orthogonal decomposition and radial basis functions presented in Chap. 3, with

iterative optimization algorithms. With such strategy, the core of the identification

procedure is essentially the same as the one used in a traditional approach, except

that the simulations required by optimization algorithm, are done with reduced

model instead of FE one. This circumstance contributes to the huge acceleration of

the whole procedure since, as we saw in Chap. 3, once that it is trained POD-RBF

model computes the system response in a time shorter by about five orders of

magnitude with respect to FEM.

This acceleration contributes to the overall robustness of the procedure, and in

practical terms brings the methodology down to industrial level. The example

treated in this chapter served to show that by implementing this strategy it is

possible to build small stand-alone software which can be optimize for a given

experiment and further routinely used in industrial practice.

Another big advantage of having such a fast computing tool, as we demonstrated

in second example of this chapter, is the possibility to performe more profound tests

of the whole inverse analysis procedure. When the inverse analyses procedure is

designed in order to assess certain parameters, or in general some missing informa-

tion, it is required to test its performance in many different rangers of parameters

and for different levels of noises. We saw that this task usually involves the number

of simulations that usually exceeds the number of simulations needed to train the

POD-RBF model. This circumstance contributes to the justification of time con-

suming training of the procedure.

Finally, it should be underlined that, not by any means the purpose of this

chapter was to show that FE simulations are obsolete since the same results can

be obtained by much faster reduced models like POD-RBF. On the contrary, what

200 5 Modern Approach to Inverse Analyses

http://dx.doi.org/10.1007/978-3-642-22703-5_3
http://dx.doi.org/10.1007/978-3-642-22703-5_3

we saw here and in Chap. 3 is that anyhow this reduced model needs a full

numerical model for calibration and as a reference to check the accuracy level. It

should be pretty clear by now that there is absolutely no sense in training a reduced

model like the one presented here in order to use it further a few times since then

there is no justification of the computing time spent for the training. On the

contrary, in the situations in which it is needed to repeat many times simulations

of numerical models that are very similar to each other and differ just by a few

parameters it is reasonable to make a use of time savings provided by reduced

numerical models. This is the case that we are facing in the inverse analysis in

structural context and the goal of this chapter was to demonstrate which advantages

can be gained when they are combined with POD-RBF procedure.

References

1. Ruckelynck, D., Chinesta, F., Cueto, E., Ammar, A.: On the a priori model reduction: overview

and recent developments. Arch Comput Meth Eng 13(1), 91–128 (2006)

2. Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Real-time deformable models of non-linear

tissues by model reduction techniques. Comput Meth Prog Biomed 91, 223–231 (2008)

3. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error

estimation for affinely paramerized elliptic coefcive partial differential equations – application

to transport and continuum mechanics. Arch Comput Meth Eng 15(3), 229–275 (2008)

4. Nouy, A.: A priori model reduction through proper generalized decomposition. Comput. Meth.

Appl. Mech. Eng. 199, 1603–1626 (2010)

5. Hagan, M., Demut, H., Beale, M.: Neural Network Design. PWS Publishing, Boston (1996)

6. Waszczyszyn, Z.: Neural Networks in the Analysis and Design of Structures. Springer, Wien

(1999)

7. Maier, G., Bolzon, G., Buljak, V., Miller, B.: Assessment of elastic-plastic material parameters

comparatively by three procedures based on indentation test and inverse analyses. Accepted for

publication in Inverse Probl. Sci. Eng. (January 2011)

8. Fedele, R., Maier, G., Miller, B.: Identification of elastic stiffness and local stresses in concrete

dams by in situ test and neural networks. Struct. Infrastruct. Eng. 1(3), 165–180 (2005)

9. The MathWorks Inc. Natick, USA. MATLAB 7 – Creating Graphical Users Interfaces (2007)

References 201

http://dx.doi.org/10.1007/978-3-642-22703-5_3

Index

A

Actual reduction, 49

Algorithms

first order, 11, 12

second order, 11, 12

zero order, 11, 12

Amplitudes, 87, 88, 90, 91, 95, 101, 110, 121,

122, 124, 125

Anisotropic

constants, 161

material model, 166

plastic parameters, 188, 193

yield criterion, 162

yield stress, 161

ANN. See Artificial Neural Networks
Armijo criterion, 26–28, 35

Artificial Neural Networks (ANNs), 186, 187

ASCII, 142, 146–149, 166, 168, 169, 174,

175, 183

B

Backward problems, 3

Bi-axial, 188, 190, 192, 194

C

Children

cross-over, 73, 74, 79

elite, 73, 75, 79

mutation, 73–75, 79, 80

Curvature condition, 28, 29

D

Damages, 7, 86

Decomposition

Karhunen-Loeve, 85, 86, 88

proper generalized, 186

proper orthogonal, 85–138

singular value, 85, 86, 101–105

Digital image correlation, 162

Direct problems, 1, 2, 15

F

Finite differences, 23, 32

Fitness function, 73, 74, 78, 80

Forward problems, 1

G

Generalization, 121, 129, 187

Genes, 73, 79, 80

Graphical user interface (GUI), 190, 191

H

Hardening, 162, 167, 174

exponent of, 162, 174

Hardness, 6

Hessian

approximation, 39, 40, 43, 44

modified, 32, 38, 41, 43, 56, 67, 176

Hotelling transformation, 85

I

Ill-posed, 1, 193

Impact, 4

Imprint, 10, 13, 14, 134

Indentation

curve, 6, 7, 13

instrumented, 6, 7, 10

V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid

and Solid Mechanics, DOI 10.1007/978-3-642-22703-5,
Springer-Verlag Berlin Heidelberg 2012

203

Indentation (cont.)
test, 6, 7, 13

Indenter, 6, 10, 134, 135, 137

Individuals, 73–82

Initial guess, 19, 56

Input files, 146, 151, 153, 166, 167, 172, 173

In-situ, 7, 185

Interactive, 152, 153, 173

Inverse multiquadric, 136

J

Job file, 149

K

Karush-Kuhn-Tucker (KKT) condition, 61, 62

L

Lagrange multipliers, 60, 61, 66, 97

correlation, 97

Lagrangian, 60–61, 63–65

Local orientation, 166

M

Mathematical programming, 3, 5

Matrix

covariance, 8, 92, 94, 96, 100, 103–105

Jacobian, 20, 21

snapshot, 106, 107, 109–111, 121, 124,

128–130, 133, 135

Metal forming, 161

properties, 161

N

Nodes, 88, 90, 105, 109, 111–113, 115, 116,

119–121, 129, 131

Node-set, 146, 153, 167, 168, 170, 171, 174

Noises

artificial, 161, 186, 195

experimental, 102

measuring, 183

numerical, 8

Non-destructive, 7, 185

Numerical rank, 102

P

Parents, 73, 74, 78–80

Patterns, 187

Pearson, 85

Plastic strain, 162, 167, 174

Positive-definite, 43, 54, 56, 67

Potential, 167, 172, 176

Predicted reduction, 49

Principal components, 88, 96

Pseudo-experimental, 14–17, 154, 159, 161,

175, 180, 183, 193–196

R

Random, 15

noise, 15

Residual vector, 8, 20

S

Sensitivity analysis, 8, 14, 17

Shape design, 4

Smoothing coefficient, 136

Snapshots, 106, 107, 110, 111, 125, 127, 128,

130, 131, 135, 137

Soft computing, 12, 72

Spline

cubic, 115, 120, 131, 134

linear, 115, 119, 124

Step length, 22–29, 31, 37–39, 45, 47, 48

natural, 29

Strings, 153, 169

Sub-problem, 46–50, 53, 54, 56, 59–63

Subspace, 90, 91, 94, 102

T

Textscan, 148, 149, 169

Tomography, 4

Training, 122, 125, 127, 129–137, 186,

187, 196

Truss structure, 107, 108, 124

U

Uniqueness, 1–3

condition of, 2

V

von Mises, 132, 133, 135

W

Well posed, 6, 14, 193, 195

Wolfe conditions, 29

204 Index

	Inverse Analyses with Model Reduction
	Proper Orthogonal Decompositionin Structural Mechanics
	Foreword
	Preface
	Acknowledgments
	Contents
	Chapter 1: Inverse Analysis: Introduction
	Chapter 2: Optimization Algorithms
	Chapter 3: Proper Orthogonal Decomposition and Radial Basis Functions for Fast Simulations
	Chapter 4: Inverse Analyses in Structural Problems: Putting All the Pieces Together
	Chapter 5: Modern Approach to Inverse Analyses
	Index

