
A Modeling Method and Declarative Language

for Temporal Reasoning Based on Fluid Qualities

Matei Popovici, Mihnea Muraru, Alexandru Agache, Cristian Giumale,
Lorina Negreanu, and Ciprian Dobre

POLITEHNICA University of Bucharest,
Splaiul Independentei nr. 313, sector 6, Bucuresti,

Postal Code: 060042
{pdmatei,mmihnea,alexandruag,cristian.giumale,

lorina.negreanu,cipsmm}@gmail.com

Abstract. Current knowledge representation mechanisms focus more
on providing a static description of a modeled universe and less on
capturing evolution. Ontology modeling languages, such as OWL, have
no inherent means for describing time or time-dependent properties. In
such settings, time is usually represented along with other application-
dependent concepts, yielding complex models that are difficult to main-
tain, extend, and reason about. On the other hand, in imperative
languages that allow the definition of time-dependent behavior and inter-
actions such as WS-BPEL, the emphasis is on specifying the control flow
in a service-oriented environment. In contrast, we argue that a declar-
ative approach is more suitable. We propose a modeling method and
a declarative language, designed for representing and reasoning about
time-dependent properties. The method is applicable in areas such as
ubiquitous computing, allowing the specification of intelligent device
behaviour.

Keywords: temporal representation, temporal reasoning, hypergraph,
declarative language.

1 Introduction

Traditionally, ontologies provide static descriptions of a given domain of inter-
est. That is the case of medical approaches such as [8] or semantic lexicons such
as WordNet [10]. Existing ontology modeling methods have no inherent means
for representing evolution. Also, languages such as the Ontology Web Language
(OWL) [5] lack the same feature: they have no dedicated constructs that ac-
commodate time or temporal properties. The reasoning process is focused on
taking a snapshot of the modeled universe that includes concepts, relations and
individuals, and derive additional properties such as concept subsumption and
satisfiability [5].

In many cases temporal concepts can be defined on top of existing modeling
primitives, such as in OWL-Time [12], and thus provide a high-level modeling

S. Andrews et al. (Eds.): ICCS 2011, LNAI 6828, pp. 215–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 M. Popovici et al.

layer. Time-related concepts reside on the same representational level with other
application-specific concepts. Creating such models proves difficult, lacks scala-
bility, and makes the reasoning process computationally hard. When modeling
real-life behavior, ontologies are challenged to accommodate temporal evolution.
For example, concepts such as married two times or widower are inherently de-
pendent on properties that held in the past, but are no longer valid presently.
Dedicated mechanisms for representing and reasoning about time-dependent
knowledge are required in this case.

We propose an ontology-based modeling method for time-dependent applica-
tions that accomplishes these goals. Our approach takes a static hierarchy of
concepts and relations between concepts (defined in a manner similar to the one
used in OWL), and extends it with a structure able to represent time and change.
Temporal elements are no longer represented on the application layer; they be-
come modeling primitives. Consequently, the method provides native means for
representing temporality. Unlike conventional ontologies, where the instantiation
relationship between an individual and a concept is unique, our approach allows
for multiple instantiations with respect to the same concept-individual pair, at
different moments of time. This allows individuals to be enrolled in concepts such
as single, but married two times in the past, by simply exploring past marriage
instantiations with respect to the same individual. All time-dependent instances
are stored in a dedicated structure designed to preserve temporal order. We call
such a structure a hypergraph. Temporal reasoning is accomplished by exploring
the hypergraph.

The paper is structured as follows: Section 2 describes our modeling approach
based on individuals, qualities, actions, as well as the structure responsible for
storing the ordering of concept instances: the hypergraph. Section 3 introduces a
language that allows both static and time-dependent modeling. Some similarities
and differences with respect to other declarative languages, such as CLIPS [11] and
Prolog [7], are discussed. In Section 4, a case study for intelligent device behavior
in an ubiquitous environment [3] is described. Section 5 compares our method with
other approaches. Section 6 presents conclusions, as well as future work.

2 A Modeling Method Based on Fluid Qualities

2.1 Modeling Primitives

Individuals. Concepts, together with concept instances, are useful for defining a
static universe of discourse. As an alternative to such traditional representations,
our framework relies on a modeling approach based on individuals, fluid qualities
and actions, introduced in [4]. Individuals are atomic entities, identifiable by
themselves. They are perennial : during the evolution of a model, individuals do
not disappear or suffer structural changes. Individuals can however acquire or
lose qualities.

Qualities. A (fluid) quality Q(i1, . . . , in) or Q(i) represents a time-dependent
n-ary relationship between individuals i = (i1, . . . , in). A unary quality Q(i)

A Modeling Method and Declarative Language with Fluid Qualities 217

stands for a time-dependent property associated with individual i. Qualities
hold on specific time-intervals Δt. Δt denotes the time-slice associated with
Q(i). Qualities are created by instantiating a quality prototype Q(x). Here, x
represents variables. We say that a quality was destroyed if its time-slice ended
at a certain moment in time. Once introduced in a model, a quality is never
completely erased. Qualities have similarities to property instances from OWL
[5]. One major difference is that qualities are time-dependent and thus need
not be unique. As a result, if an individual i was enrolled in Q in the past,
then Q(i) has a time-slice Δt associated with an interval from the past. If i is
enrolled in Q once more, then a new quality Q(i), with a different time-slice, will
be introduced. The time-slices of the two quality instances cannot overlap. For
example, Married(John) can be present several times in a model that describes
John’s marriages. In a similar way, qualities such as On(AirConditioner) can be
present at different moments, in a model for home devices. Quality prototypes
are equivalent to concepts and properties from conventional ontologies. They
allow the instantiation of qualities, with respect to certain individuals. Quality
prototypes can form hierarchies. We use the meta-relationship is-a to build the
hierarchy of quality prototypes. If Q1(x) is-a Q2(y), then all individuals enrolled
in a quality Q1 over a specific time slice Δt must also be enrolled in Q2, as well
as in all other qualities enforced by Q2, through the chain of its existing is-a
meta-relations. For example, assume the following quality prototype definition:
AirConditioner(x) is-a Device(x). In this case, if an individual possesses the
quality AirConditioner, then it is automatically enrolled in the quality Device.

Actions. An action a(i) represents an external stimulus that changes the state
of the modeled universe. Actions can enrol one or several individuals, and can
require the presence or absence of particular qualities. When actions occur, they
produce side-effects: the creation and/or destruction of qualities. From this point
of view, actions can be considered constructors and destructors for qualities.
With respect to time, actions are instantaneous: they occur at a particular mo-
ment and have no duration. For instance, in a model describing marital evolution,
where the qualities qj = Single(John) and qa = Single(Anne) hold, executing
the action marries(John, Anne) will terminate the qualities qj and qa and create
a new quality married(John, Anne).

2.2 Representing Time

The hypergraph. The evolution of a model is encoded in a structure H =
(A, T, Eq, Ea), where H is an oriented, acyclic graph. A is the set of action
instances, T is the set of temporal nodes, Eq is the set of qualities and Ea is the
set of preconditions.

Time is represented using actions and qualities. A moment in time is defined
as a set of actions ta = {a1, . . . , ak} that occur simultaneously. ta ∈ T is a
temporal node in a hypergraph. Action nodes are depicted in white in Fig.
1. Temporal nodes are shown in grey, and contain action nodes. There is a
distinguished temporal hypernode, Init, that refers to the starting moment of

218 M. Popovici et al.

the modeled application. It contains an implicit action denoted by ainit, which is
the constructor for all initial qualities in the model. Similarly, the Current hyper-
node denotes the current moment in the unfolding of the model evolution. It also
has an implicit acurrent action, that is considered to be a pseudo-destructor of
all existent qualities.

Time intervals are defined by pairs of actions (not necessarily consecutive).
For example assume an action a1(x′) is executed. As a result, a certain quality
Q(x) is introduced. Assume also that another action a2(x′′) destroys Q(x). Then,
if t1 is a temporal node such that a1 ∈ t1 and similarly a2 ∈ t2, then the time-
slice of Q(x) is Δt = [t1, t2]. This duration is represented as an edge between
action nodes a1 and a2. If a2 happens to be acurrent, it means that the quality
holds at the present moment. Notice that different qualities might have identical
durations, as a result of being created (and destroyed) by actions that occur
simultaneously. Also, it might be that multiple qualities are created/destroyed
by the same action.

Temporal nodes need not have specific values. In some applications, time is
relative and the focus is on event ordering only. In these situations, temporal
nodes are symbolic. In cases where measurements of time are important, tempo-
ral nodes can be assigned actual timestamps. Depending on the desired precision,
timestamps can encode minutes, seconds, miliseconds etc.

The Eq set contains edges that stand for n-ary qualities Q(x). These edges
span action nodes astart, aend ∈ A that construct and destroy Q(x), respectively.
Edges from Ea are shown as solid arrows, in Fig. 1. The Ea set contains directed
edges that designate preconditions of action nodes from A. An edge e = (q, a)
from quality q to action a designates q as a satisfied precondition of a. e actually
connects a quality edge to an action node. Precondition edges are shown as
dotted arrows in Fig. 1.

Initially, H contains only Init and Current, and all predefined qualities span
action nodes ainit and acurrent. H changes, as new stimuli are recorded by the
model. If an action (or a set of actions) is executed, and the required precondi-
tions, according to the action’s prototype, hold, then: (1) a new temporal node
is created, and inserted in H , just before Current; (2) the temporal node is

Fig. 1. The hypergraph

A Modeling Method and Declarative Language with Fluid Qualities 219

populated with all valid actions that are executed; (3) for each satisfied precon-
dition, a dedicated edge between a required quality and the current action is
added to Ea; (4a) if an action a destroys a quality, then its ending action node
is modified from acurrent to a; (4b) if an action creates a new quality q, then a
new edge (a, acurrent) corresponding to q, is added to Eq.

As an example, consider the hypergraph from Fig. 1(a). It contains two qual-
ities q1 = Q1(τ1) and q2 = Q2(τ2) that hold at the current moment of time. In
this scenario, actions a1(τ1, τ2) and a2(τ2) are signalled. a1(τ1, τ2) requires the
presence of q1 and q2, and a2(τ2) requires q2. These dependencies are shown with
dotted edges. Since all preconditions are satisfied, the action is executed. The
effects can be seen in Fig. 1(b). a1 will terminate q1, and create a new quality
q3 = Q3(τ1, τ2). a2 does not terminate any quality, but creates q4(τ2).

Temporal primitives. In the above examples, actions are solely conditioned
by the existence of qualities at the current moment of time. In this context,
the hypergraph performs as a structured log for recording events. In the fol-
lowing, we introduce temporal primitives as a mechanism for creating complex,
temporal-based constraints on action execution. A temporal primitive enrolls two
qualities, and enforces a certain temporal relation between them. In our model
we use the Region Connection Calculus (RCC) relations to express temporal
primitives. They are fully described in [9]. We shall not review the entire set of
temporal primitives and their associated RCC relations. Instead, we will focus
on some relations such as the ones shown in Table 1. These relations, as well as
their inverses will be used in the following sections. For example, a possible pre-
condition associated to an action a(x) is the existence, somewhere in the past,
of qualities q1 = Q1(x′) and q2 = Q2(x′′) such that the constraint: q1 just after
q2 is satisfied. A hypergraph exploration will attempt to find instances q1 and
q2 that satisfy the just after constraint. If such instances are found, action a
is executed, along with the entire process of edge and node insertions described
previously.

Table 1. Examples of temporal primitives

Temporal Primitive Associated RCC relation

q1 after q2 X DC Y (X and Y are disconnected)

q1 just after q2 X PO Y (X and Y are partially overlapping)

3 A Declarative Language Based on Fluid Qualities

3.1 Motivation

Assume an application that models devices in a intelligent house scenario. We
consider a simple model with two devices A and B. The device A can be turned
on if both devices A and B are off. The device B can be turned on if: (1) it is
off and (2) the device A has been off for a time period of at least T seconds.

220 M. Popovici et al.

In conventional programming or ontology-based languages, the program or
ontology encoding the above scenario must contain specific data structures and
handling mechanisms, for keeping track of time intervals associated to events.
Even if these data-structures and functions are implemented as libraries (in
the case of programming languages), or as time-related concepts (in the case
of ontology languages) the resulting program or ontology will be larger, more
cumbersome to write, modify and understand. In most existing approaches, a
model for the above scenario should encode a potentially large finite-state au-
tomaton that contains states for all possible ways of turning on the two devices.
Alternatively, a declarative language enhanced with temporal primitives would
explicitly convey the semantic content of the model. In the following, we use
the modeling method described in Section 2 in order to introduce a declarative
language for time-dependent applications.

3.2 Defining Quality Prototypes

Assume the definitions from Program 1. Variables are designated using the sym-
bol “?”, in a manner similar to that in CLIPS [11].

individual ac, p

quality Device(?d), HasPower(?d,?val), AirConditioner(?d) is-a Device(?d)

Program 1. Individuals and qualities

The simple model from Program 1 introduces two simple 1-ary quality pro-
totypes: Device, and AirConditioner, and a binary quality prototype (or rela-
tion): HasPower.

3.3 Rules

Rules are the basis for defining actions, their preconditions as well as effects.
A simple rule, such as the one from Program 2, can be read in the following
way: In order to execute action turnOn, the individual ?x must be a device,
and also off. If these preconditions are satisfied and the action is signalled from
the external environment, then the quality Off will be destroyed, and ?x will
acquire the quality On. Program 2(a) has similarities with rule definitions from
declarative languages such as CLIPS. A possible translation of Program 2(a) in
CLIPS is shown in Program 2(b).

Notice that CLIPS facts have been used to model qualities. Facts are also
a means for representing actions. This appears to correspond to our modeling
perspective: actions are external stimuli that, in temporal contexts where their
preconditions hold, produce certain effects. Nevertheless, this assumption may
cause problems, due to the instantaneous nature of actions. The following ques-
tion is raised: When is an action fact retracted in CLIPS, during the rule firing
cycle?

A Modeling Method and Declarative Language with Fluid Qualities 221

rule start_device (defrule start_device

preconditions: Device(?x), (device ?x)

Off(?x) as ?off ?off <- (off ?x)

action: turnOn(?x) (turnOn ?x)

effects: destroy ?off, On(?x) => (retract ?off)

(assert (on ?x)))

(a) (b)

Program 2. A simple turnOn rule

Take for instance the CLIPS rule start device from Program 3, where the
more general fact (turnOnAll) replaces the particular action fact (turnOn ?x).
We assume that (turnOnAll) is externally introduced, in order to trigger the
turning on of all devices. Notice that the retraction of (turnOnAll) is essential.
In its absence, a rule such as invalid would be incorrectly executed, although its
preconditions did not hold at the particular moment when (turnOnAll) was sig-
nalled. This happens because (1) the effects of the rule multiple start device,
more precisely the assertion of (on ?x), validate the preconditions of invalid
and (2) the action fact (turnOnAll) is not removed, as it should.

(defrule multiple_start_device (defrule invalid

(device ?x) (on ?x)

?off <- (off ?x) (turnOnAll)

?all <- (turnOnAll) =>

=> ...)

(retract ?off)

(retract ?all)

(assert (on ?x)))

Program 3. Rule activation

However, retracting (turnOnAll) causes other problems. In CLIPS, an activa-
tion record for the rule multiple start device is created for a particular device
in state off and selected in a nondeterministic fashion, from the set of stopped
devices. When the rule is fired for that activation record, the fact (turnOnAll)
is removed, thus inhibiting the turning on of other devices in state off. Since
activation records are created in a sequential manner, and since, for each record,
preconditions are checked, the solution is to mark the devices for which the rule
is applicable, but defer carrying on the effects until after (turnOnAll) has been
retracted. This way, newly created qualities will not be able to erroneously trig-
ger the execution of other rules, such as invalid, having unsatisfied preconditions
at the expected moment. The instantaneous nature of actions can only be mod-
eled by translating single action facts that affect multiple entities, to multiple
action facts associated with single entities.

222 M. Popovici et al.

In Program 4, (turnOnAll) is translated to multiple, particular action facts
(turnOn ?x). The salience declaration gives this rule a higher priority. When all
particular action facts have been generated, (turnOnAll) is removed by the rule
remove turnOnAll. By appending to Program 4 the rule start device from
Program 2(b), the effects of turning on all devices are added to the working
memory and the desired behavior is finally obtained.

(defrule translate (defrule remove_turnOnAll

(declare (salience 10)) (declare (salience 1))

(device ?x) ?all <- (turnOnAll)

?off <- (off ?x) =>

?all <- (turnOnAll) (retract ?all))

=>

(assert (turnOn ?x)))

Program 4. Modeling simultaneous actions

It is easy to see that, in CLIPS, actions are difficult to define. In contrast, our
approach makes a clear distinction between facts (or qualities) and actions. The
latter are equivalent to signals that remain active throughout the rule execution
cycle. As a result, the execution of one rule instance can affect other instances,
by means of quality changes only. If translated in our language, Program 3 would
execute for each device, as (turnOnAll) is an action and its removal would be
handled by the interpreter, at the end of the rule execution cycle.

Returning to Program 2(b) notice that, in the absence of (turnOn ?x), the
CLIPS rule would be executed for each entity that is a device, and that is in
state Off . As a result, all devices in state Off would be turned on. Our approach
is essentially different: qualities (and actions) are generated by actions only. It
implicitly means that there must be at least an initial action, i.e. an entry-point
in the program, that starts the model interpretation. As a consequence, the rule
start device from Program 2(a), would not be executed each time preconditions
hold, but only when a turnOn action is signalled.

3.4 Representing and Computing Values

Numeric values. Numeric values are represented using predefined individu-
als. Predefined qualities can be assigned to such individuals, in order to dis-
ambiguate their numeric types. Double(1), Integer(1), Float(1) are such
qualities. Since the modeling method does not explicitly define a mechanism
for evaluating expressions, a special behavior is defined for numeric individuals.
More precisely, their symbolic/textual representation encodes their actual value.
For example, in Double(1), 1 refers to a numeric individual that possesses the
double value 1.0. Operators are defined using predefined actions. For instance,
the arithmetic addition is an action that can be applied on, and compute, nu-
meric individuals. The expression ?x = 2 + 3.5 is a shorthand for the execution

A Modeling Method and Declarative Language with Fluid Qualities 223

of the special action +(2,3.5) that produces, as a side-effect, the binding of vari-
able ?x to individual 5.5. The action + is responsible for type casts. Since both
Float(2) and Integer(2) hold for 2, + will correctly evaluate the above expres-
sion. The hierarchy of types is internally defined using the is-a relationship as
in Integer (?x) is-a Number(?x).

Time and durations. The modeling approach described in Section 2.2 assumes
that moments of time, modeled as hypernodes, are symbolic. In many applica-
tions, moments of time require actual values, thus allowing the application to
compute durations, and make decisions based on them. As a result, the prede-
fined qualities Day, Month, Year, Time, Date are introduced. The individuals
enrolled in these predefined qualities have specific identifiers. In some cases, these
individuals can be polymorphic. For instance, Year(2010) and Number(2010) en-
roll the same individual, 2010, that acts as both a year and a number. In these
cases, qualities act as type casts that disambiguate the usage of an individual.

We introduce another predefined quality, Timestamp. It is associated auto-
matically, by the model interpreter, with every hypernode from the hypergraph.
To preserve uniformity, we consider that Timestamp is an edge having the same
action as constructor and destructor. Its time span is zero, as seen in Fig. 1(c).
As a result, timestamps can be used in preconditions, like any other quality.
For instance, in Temperature(?t) just after Timestamp(08:00/1.1.2011),
?t would hold the temperature value recorded in the hypergraph just after 08:00,
on the 1st of January. Also, primitives for selecting the timestamp of nodes are
defined. These can be applied on end-points of quality edges. current moment()
returns the timestamp associated with the Current node in the hypergraph. Also,
quality start moment(q) and quality end moment(q) returns the timestamps
associated with a quality edge end-point.

In order to compute timestamps, an alternative inspired from Haskell and from
the unification process in Prolog [7] is used. Assume that, in Q(x), x refers to an
enumeration of individuals and variables. An example is Q(i1, ?x, ?y, i2, i3). Also,
if S is a substitution, i.e. a set of bindings of variables to individuals, we denote by
Q(x)/S the replacement of variables from Q(x) with their respective individuals,
according to S. The expression Q(x) is Q(y) produces the unification of the two
qualities and, as a side-effect, the necessary variable bindings. For example, the
unification from Program 5(a) solves the problem what timestamp ?t/?d.?m.?y
incremented by 2:00/2.0.0 yields 1:00/1.1.2011?. Therefore, S = {?t = 23 :
00, ?d = 29, ?m = 12, ?y = 2010} and Timestamp(?t + 2:00, ?d + 2.?m.?y)
is Timestamp(23:00/29.12.2010). There are cases when unifications can fail,
as in Program 5(b). This happens because no such values can be assigned to ?t,
?d, ?m. Also, the are cases such as the one shown in Program 5(c), where the
unification leaves unbound variables.

4 Case Study: A Model for Intelligent Buildings

In the following, we illustrate a model for intelligent device behavior, described
using the declarative language introduced in Section 3. In order to be

224 M. Popovici et al.

(a) Timestamp(1:00/1.1.2011) is Timestamp(?t + 2:00, ?d + 2.?m.?y)

(b) Timestamp(1:00/1.1.2011) is Timestamp(?t + 2:00, ?d + 2.?m.2011)

(c) Timestamp(?x/?y.?z.2011) is Timestamp(?t + 2:00, ?d + 2.?m.2011)

Program 5. Timestamp unification

operational, the model relies on the following assumption: devices can be con-
trolled individually using an uniform interface: web services. In this setting, ac-
tions are mapped on service invocations. For instance, in order to turn on device
A, the invocation AService.turnOn() must be performed. In Program 6 we as-
sume the existence of an individual ac and three qualities: AirConditioner(ac),
CurrentTemp(20deg) and DesiredTemp(10deg).

rule get_current_temp

preconditions: CurrentTemp(?x) as ?crt

actions: newTemp(?y)

effects: destroy ?crt, CurrentTemp(?y)

rule modify_temp rule stop_cooler

preconditions: preconditions:

DesiredTemp(?x), ?x != ?y, DesiredTemp(?x), ?x == ?y,

AirConditioner(ac), Off(ac) AirConditioner(ac), On(ac)

actions: newTemp(?y) actions: newTemp(?y)

effects: turnOn(ac), setTemp(?x,ac) effects: turnOff(ac)

Program 6. A model for air conditioners

We have omitted from Program 6 basic quality and action definitions such
as On, Off and turnOn, turnOff, respectively. They were introduced previously
in Section 3.3. The model from Program 6 connects a temperature sensor with
an air conditioner. Whenever the sensor detects a temperature change, it gener-
ates an action newTemp(?y). If the environment’s temperature is different from
the desired one, the air conditioner starts, and cools or heats with the speci-
fied temperature. Notice the presence of Off(ac) as a precondition in the rule
modify temp. This prevents starting the air conditioner, if it is already on. Rule
stop cooler stops the device, once the desired temperature was reached.

As seen in Program 6, newTemp is defined in several, possibly overlapping
contexts. While stop cooler and modify temp have mutually exclusive con-
texts, the rule get current temp and either of stop cooler or modify temp do
not. As a result, the rule get current temp can be fired at the same time with
modify temp. In this particular case, the overlapping can be avoided by replac-
ing rules modify temp and get current temp with a more complex one. This
would also eliminate the necessity of a CurrentTemp quality, but would make
the model harder to read and to extend.

A Modeling Method and Declarative Language with Fluid Qualities 225

Program 6 is able to describe intelligent device behavior, but contains no
temporal constraints. In order to further restrict the behavior of devices, the
constraints from Program 7 may be used. Here, we assume that an external
action introduces the qualities CanicularDay(e), Rains(e), where e refers to
an individual representing the current environment. Program 7(a) turns on the
air conditioners exactly an hour after the CanicularDay quality was created.
Program 7(b) adds an additional constraint: the air conditioners will start in
a canicular day only if current temperature reached or exceeded 35 degrees.
Finally, Program 7(c) can be used to stop the air conditioners if, in a canicular
day, it starts raining.

(a) current_moment() is Timestamp(?t+1:00/?d.?m.?y),

CanicularDay(e) just_after Timestamp(?t/?d.?m.?y)

(b) current_moment() is Timestamp(?t+1:00/?d.?m.?y),

CanicularDay(e) just_after Timestamp(?t/?d.?m.?y),

Timestamp(?t/?d.?m.?y) during CurrentTemp(?temp), ?temp > 35deg

(c) current_moment() is ?t+1:00/?d.?m.?y,

CanicularDay(e) just_after Timestamp(?t/?d.?m.?y),

CanicularDay(e) just_before Rains(e)

Program 7. Temporal constraints

More complex models, conceptually similar to Programs 6, 7 have been sim-
ulated and tested using COOL [6], an object oriented extension for CLIPS. A
translation mechanism, from facts to web service invocations and vice-versa was
developed, in order to test real device behavior. COOL was especially useful for
encoding the hypergraph. Actions were simulated using the method presented
in Section 3.3.

5 Related Work

Most modeling methods aimed at temporal representation and reasoning fo-
cus more on formal specification, and less on actual implementations and com-
putational effort. They are rather suitable for reasoning about a static dis-
course containing temporal information. Modeling time-dependent evolution is
not straightforward in these approaches. It is the case of Description Logics (DL)
and temporal extensions of DL. For instance, OWL [5], an ontology modeling
language based on DL, focuses on representing a given state-of-the-world, us-
ing primitives such as: individuals, concepts, and properties. Here, time is not
directly addressed. However, attempts to incorporate temporality exist, and we
distinguish between two directions: (1) building time-related concepts on top of
existing primitives, thus creating meta-ontologies able to provide some temporal
reasoning, such as OWL-Time [12] and (2) extending the modeling approach
with new primitives related to time. The former approach suffers from the fol-
lowing pitfalls: complex temporal ontologies are difficult to develop, reasoning is

226 M. Popovici et al.

often intractable, and most important, evolution cannot be represented explic-
itly. Individuals are inherently (and permanently) bound to concepts or prop-
erties, and their enrollment cannot be changed. These ontologies are useful for
the disambiguation of time-dependent information, but are unable to model the
evolution of real-world processes. Temporal extensions of Description Logic’s [1]
are an example of the latter approach. They increase the dimensionality of the
representation, by adding a new temporal component. As a result, in these set-
tings, instances of a concept are seen as pairs consisting of individuals, and the
intervals on which the they are enrolled in a particular concept. The extension
of a concept becomes a Cartesian product between sets of individuals and sets
of intervals. This approach makes model creation cumbersome and reasoning
computationally difficult.

Another well known approach is the Temporal Logic of Intervals (TLI), pro-
posed by Allen [2]. It introduces an interval ontology used for the representation
of events, properties and temporal change. Allen defines seven basic relations (be-
fore, meets, overlaps, starts, during, finishes, equal) which, together with their
inverses allow a complete characterisation of intervals. An implementation of TLI
uses a graph-based algorithm for temporal reasoning [2]. In such a graph, nodes
stand for intervals, and edges represent temporal relations between intervals.
After the graph is built, temporal reasoning is done by exploring it and inferring
new interval relations. Less importance is given to the dynamic nature of the
discourse. In contrast, our approach doesn’t solely focus on a mechanism for
analysing temporal information, but provides means for modeling the desired
evolution of a particular application. The evolution is captured in the hyper-
graph, by continuously adding new instances, according to ontology definitions.

Event Calculus (EC) is a modeling method dealing with events, and the effects
they produce [2]. There are some similarities with respect to our approach: events
resemble actions, effects correspond to the creation or termination of qualities,
time-points are similar to hypernodes. EC also introduces time intervals, that
may correspond to quality edges. Temporal representation in EC is based on
clauses such as happens(event,time-point) – marking the occurrence of an event,
initiates(event, property, time-point) – marking the initiation of property, started
by event, at the moment time-point and terminates(event, property, time-point)
– which similarly terminates a property. In our approach, actions inherently
belong to nodes from the hypergraph, whereas nodes delimit the moments in time
when a quality holds. The hypergraph doesn’t contain time intervals explicitly,
but using timestamps, temporal durations can be computed. Reasoning in EC
is based on establishing the truth value of first-order predicates. Compared to a
hypergraph, where the life-span of qualities can be easily traced, the FOL-based
representation from EC makes reasoning more difficult.

In [13], a declarative language for specifying web service composition (or pro-
cesses) is introduced. The solution is based on Linear Temporal Logic (LTL).
Using LTL formulas, temporal constraints between service invocations are spec-
ified. They replace conventional control-flows specific to imperative languages.
During the execution of a process, some constraints may not be satisfied, as

A Modeling Method and Declarative Language with Fluid Qualities 227

not all services have been invoked. Nonetheless, when the process ends, all con-
straints must be satisfied. The approach from [13] uses only a subset of LTL and
thus has limited expressive capabilities.

6 Conclusions and Future Work

There are many cases when devices internally implement intelligent behavior,
but often this behavior is rigid, cannot be adjusted to more particular needs,
and cannot be extended. Most importantly, intelligent behavior comes with a
considerable increase of device cost. It is therefore more convenient to use devices
with simple hardware, and to transfer intelligence to software components that
are easier to design and update. The proposed modeling method and language
are suitable for this endeavor. Moreover, with the introduction of a hypergraph,
the approach has the advantage of reducing the temporal reasoning process to
simple graph traversals. The chosen declarative approach has several benefits:
declarative models are small in size, easy to write, and favor model checking and
verification techniques.

When using COOL to represent a hypergraph, the simulation of instanta-
neous actions proves difficult, and complicates model specification. In addition,
the unification mechanism described in Section 3.4 is not supported natively in
CLIPS. For these reasons, a specific language as well as an interpreter, are being
developed. The interpreter will interface with web services and will be able to:
(1) translate service state changes to actions and deliver them to the model, and
(2) translate actions generated by the model to web service invocations.

A current possible limitation of the proposed language with respect to CLIPS,
is the inability to have qualities introduce other qualities (as described in Section
3.3). While this behavior might be simulated using a special action (non-stop)
that is constantly calling itself, this approach is computationally inefficient. An
intelligent alternative for having qualities introduce other qualities is planned as
future work.

It is important to emphasize that the modeling method has potential advan-
tages to numerous other applications in areas not necessarily restricted to device
control or Service Oriented Architectures. Such areas remain to be further in-
vestigated.

Acknowledgment. The research presented in this paper is supported by na-
tional project: “TRANSYS Models and Techniques for Traffic Optimizing in
Urban Environments”, Contract No. 4/28.07.2010, Project CNCSIS-PN-II-RU-
PD ID: 238. The work has been co-funded by the Sectoral Operational Pro-
gramme Human Resources Development 2007-2013 of the Romanian Ministry of
Labour, Family and Social Protection through the Financial Agreement POS-
DRU/89/1.5/S/62557.

228 M. Popovici et al.

References

1. Artale, A., Franconi, E.: A survey of temporal extensions of description log-
ics. Annals of Mathematics and Artificial Intelligence 30, 171–210 (2001),
http://portal.acm.org/citation.cfm?id=590341.590357

2. Augusto, J.C.: The logical approach to temporal reasoning. Artif. Intell. Rev. 16,
301–333 (2001), http://portal.acm.org/citation.cfm?id=565277.565279

3. Carmichael, D.J., Kay, J., Kummerfeld, B.: Consistent modelling of users, devices
and sensors in a ubiquitous computing environment. User Modeling and User-
Adapted Interaction 15, 197–234 (2005),
http://portal.acm.org/citation.cfm?id=1101018.1101052

4. Giumale, C., Negreanu, L.: Reasoning with fluid qualities. In: 17th International
Conference on Control Systems and Computer Science, CSCS-17, vol. 2, pp. 197–
203 (December 2009)

5. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
Owl 2: The next step for owl. Web Semant. 6, 309–322 (2008),
http://portal.acm.org/citation.cfm?id=1464505.1464604

6. Giarratano, J.: Clips reference manual (1994)
7. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. CoRR

abs/1011.5332 (2010)
8. Juarez, J.M., Campos, M., Palma, J., Marin, R.: Computing context-dependent

temporal diagnosis in complex domains. Expert Syst. Appl. 35, 991–1010 (2008),
http://portal.acm.org/citation.cfm?id=1383655.1383743

9. Li, S., Ying, M.: Region connection calculus: its models and composition table.
Artif. Intell. 145, 121–146 (2003)

10. de Melo, G., Weikum, G.: Towards a universal wordnet by learning from com-
bined evidence. In: Proceeding of the 18th ACM conference on Information
and knowledge management. CIKM 2009, pp. 513–522. ACM, New York (2009),
http://doi.acm.org/10.1145/1645953.1646020

11. NASA: Clips website (December 2010),
http://clipsrules.sourceforge.net/WhatIsCLIPS.html

12. Pan, F.: An Ontology of Time: Representing Complex Temporal Phenomena for
the Semantic Web and Natural Language. VDM Verlag, Saarbrücken (2009)

13. Pesic, M.: Decserflow: Towards a truly declarative service flow language, pp. 1–23.
Springer, Heidelberg (2006)

http://portal.acm.org/citation.cfm?id=590341.590357
http://portal.acm.org/citation.cfm?id=565277.565279
http://portal.acm.org/citation.cfm?id=1101018.1101052
http://portal.acm.org/citation.cfm?id=1464505.1464604
http://portal.acm.org/citation.cfm?id=1383655.1383743
http://doi.acm.org/10.1145/1645953.1646020
http://clipsrules.sourceforge.net/WhatIsCLIPS.html

	A Modeling Method and Declarative Language for Temporal Reasoning Based on Fluid Qualities
	Introduction
	A Modeling Method Based on Fluid Qualities
	Modeling Primitives
	Representing Time

	A Declarative Language Based on Fluid Qualities
	Motivation
	Defining Quality Prototypes
	Rules
	Representing and Computing Values

	Case Study: A Model for Intelligent Buildings
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

