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Preface

As computers and communications technology advance, greater opportunities
arise for intelligent mathematical computation. While computer algebra, auto-
mated deduction, mathematical databases/tables and mathematical publishing
each have long and successful histories, we are now seeing increasing opportuni-
ties for synergy among them. The Conferences on Intelligent Computer Math-
ematics series hosts collections of co-located meetings, allowing researchers and
practitioners active in these related areas to share recent results and identify the
next challenges.

2011 marked the fourth in this series of Conferences on Intelligent Computer
Mathematics (CICM), held in Italy (Bertinoro). Previous conferences, all also
published in Springer’s Lecture Notes in Artificial Intelligence series, have been
held in the UK (Birmingham, 2008: LNAI 5144), Canada (Grand Bend, Ontario,
2009: LNAI 5625) and France (Paris, 2010: LNAI 6167). CICM 2011 included
two long-standing international conferences:

• 18th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning (Calculemus 2011)

• 10th International Conference on Mathematical Knowledge Management
(MKM 2011)

The more coordinated evolution of CICM has made it possible to add a new
track for brief descriptions of systems and projects that span the Calculemus
and MKM topics (the “S&P” track), along with the Calculemus and Mathe-
matical Knowledge Management (MKM) tracks. The proceedings of these three
tracks are collected in this volume. The reader comparing this volume with its
predecessors should note that Artificial Intelligence and Symbolic Computation
(AISC) is only held in even years, and hence is not present here.

CICM 2011 also contained the following activities:

• 4th Workshop Towards a Digital Mathematics Library (DML 2011)
• Demonstrations of the systems presented in the S&P track
• Less formal “work in progress” sessions

For 2011, we used the “multi-track” features of the EasyChair system, and
our thanks are due to Andrei Voronkov and his team for this and many other
features. The multi-track feature also allowed transparent handling of conflicts
of interest between the Track Chairs and submissions: these submissions were
moved to a separate track overseen by the General Chair. The EasyChair con-
ference statistics are the following.

There were 51 submissions. Each submission was reviewed by at least
2, and on average 4.1, Programme Committee members. The committee
decided to accept 30 papers.
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However, this is a conflation of tracks with different acceptance characteristics.
The track-based acceptance rates were:

Calculemus—9 acceptances out of 15 submissions
MKM—9 acceptances out of 22 submissions
Systems and Projects—12 acceptances out of 14 submissions

May 2011 James Davenport
William Farmer

Florian Rabe
Josef Urban



Organization

CICM 2011 was organized by the Conferences in Intelligent Computer Math-
ematics special interest group, which was formed at CICM 2010 as a parent
body to the long-standing Calculemus and Mathematical Knowledge Manage-
ment special interest groups. The corresponding conferences organized by these
interest groups continue as special tracks in the CICM conference. These tracks
and the new Systems and Projects track had independent Track Chairs and Pro-
gramme Committees. The newly added Systems and Projects track publishes
abstracts about systems and projects related to MKM and Calculemus topics,
and about progress on existing systems and projects. The system demonstrations
and project posters were presented in dedicated CICM sessions.

Local arrangements, the life-blood of any conference, were handled by the
Department of Computer Science of the Università di Bologna, Italy.
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The Netherlands
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Enumeration of AG-Groupoids
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Abstract. Enumeration and classification of mathematical entities is
an important part of mathematical research in particular in finite al-
gebra. For algebraic structures that are more general than groups this
task is often only feasible by use of computers due to the sheer number
of structures that have to be considered. In this paper we present the
enumeration and partial classification of AG-groupoids — groupoids in
which the identity (ab)c = (cb)a holds — of up to order 6. The results
are obtained with the help of the computer algebra system GAP and the
constraint solver Minion by making use of both algebraic techniques as
well as search pruning via symmetry breaking.

1 Introduction

The classification of mathematical structures is an important branch of research
in pure mathematics. In particular, in abstract algebra the classification of alge-
braic structures is an important pre-requisite for their goal-directed construction
to make them amenable in practical applications. For example, the classification
of finite simple groups — which was described as one of the major intellectual
achievements of the twentieth century [11] — not only allows to immediately com-
pute the number of non-isomorphic, simple groups of a particular finite order but
also gives a concrete recipe how to construct a representant for each class.

While full classification of structures is usually the goal, an important first step
towards this goal is often the enumeration of structures with particular proper-
ties. Enumeration results can be obtained by a variety of means, depending on
� The work was supported at CAUL within the projects PTDC/MAT/101993/2008

and ISFL-1-143, financed by FEDER and FCT.
�� The work was done while at the School of Computer Science, University of Birm-

ingham, with financial support by the Ramsay Research Fund.

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 1–14, 2011.
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the domain, for example by combinatorial or algebraic considerations. However,
in algebraic domains where the objects under consideration exhibit little in way
of internal structure, exhaustive generation is often the most reliable means of
obtaining useful enumeration results. As a consequence, a number of projects
have been concerned with automatic enumeration of algebraic structures that
are more general than groups.

Quasigroups and loops — two types of non-associative structures with Latin
square property — have been enumerated up to size 11 using a mixture of com-
binatorial considerations and bespoke exhaustive generation software [17,16]. In
other approaches general purpose automated reasoning technology has been em-
ployed. For instance the model generator Finder (Finite Domain Enumerator) [32]
has been used for obtaining novel enumeration results, most recently for IP-loops
up to size 13 [1], but also has been successfully employed to solve open questions
in quasigroup theory. Going beyond pure enumeration is the generation of clas-
sification theorems that provide discriminating algebraic properties for different
isomorphism and isotopism classes of quasigroups and loops up to size 7 using
a combination of theorem proving, model generation, satisfiability solving and
computer algebra [33]. For the case of associative structures, more general than
groups, the number of semigroups and monoids have been counted up to order
9 and 10, respectively, using a combination of constraint satisfaction techniques
implemented in the Minion constraint solver with bespoke symmetry breaking
provided by the computer algebra system GAP [4,5,6].

In this paper we now consider the algebraic structures of finite Abel Grass-
mann Groupoids (AG-groupoids for short). AG-groupoids were first introduced
by Naseeruddin and Kazim in 1972 [12] and have applications for example in
the physics theory of flocks. They are generally considered midway between a
groupoid and a commutative semigroup, that is, every commutative semigroup
is an AG-groupoid but not vice versa. Thus AG-groupoids can also be non-
associative, however they do not necessarily have the Latin square property.
As a consequence neither of the enumeration techniques developed for quasi-
groups and loops or for semigroups and monoids can be employed directly. Our
approach is based on the constraint solving technique developed for the enumer-
ation of monoids and semigroups presented in [6]. However, since the original
work explicitly exploited the associativity property for symmetry breaking we
now present its novel adaptation to deal with our domain. Furthermore, we go
beyond simple enumeration of the structures by the constraint solver and ob-
tain a further division of the domain into interesting subclasses of AG-groupoids
using the computer algebra system GAP. We have currently obtained enumer-
ation results for AG-groupoids up to size 6 together with enumeration of some
of the relevant subclasses. In addition, unlike in enumeration approaches using
combinatorial techniques or algebraic counting, our enumeration also produces
all multiplication tables for the structures found. These can be used both for
further, more specialised, classification as well as be included into a library for
GAP system in the future.
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As no enumeration of AG-groupoids had been attempted before we present
novel mathematical results, which are important as they give a first indication
on the domain size of AG-groupoids as well as on the growth rate for the classes
for increasing size of structures. This information can potentially be exploited
when developing applications involving AG-groupoids. Our results also help to
chart further the landscape of algebraic structures more general than groups.

The paper is organised as follows: in the next section we give an introduction
to the mathematical theory of AG-groupoids. We then present an overview of
the constraint solving techniques that we have used to enumerate AG-groupoids
in Sec. 3, with a particular emphasis on their adaptations to the new domain
and how symmetries are broken using the computer algebra system GAP. We
then discuss the classification results in Sec. 4 before concluding in Sec. 5.

2 Background

We first give a brief introduction into the mathematical theory of AG-groupoids
and especially define some of the properties we are interested in, for their
classification.

AG-groupoids were introduced by Naseeruddin and Kazim in 1972 [12] and
were originally called left almost semigroup (LA-semigroup). They have also
been studied under the names right modular groupoid [2] and left invertive
groupoid [10], before Stevanovic and Protic called the structure Abel-Grassman
groupoids (or AG-groupoids for short) [34], which is the primary name un-
der which they are known today. AG-groupoids generalise the concept of com-
mutative semigroups and have an important application within the theory of
flocks [25]. In addition to applications, a variety of properties have been studied
for AG-groupoids and related structures. Mushtaq and Yusuf studied some basic
properties of this structure [23] and introduced the notion of locally associative
AG-groupoids [22]. Stevanovic and Protic introduced the notion of AG-bands
and AG-3-bands in [34]. In [18] Mushtaq lifted the concepts of zeroids and idem-
poids from semigroups to AG-groupoids and some more weak associative laws
were added in [19]. In more recent work the cancellativity of AG-groupoids was
studied [31] and direct products of AG-groupoids have been introduced together
with the notion of ideals and M-systems on AG-groupoids [21]. Furthermore, the
structure of AG-groupoids has recently been fuzzified [14,13].

As an important subclass of AG-groupoids so called AG-groups where iden-
tified [20], which generalise the concept of Abelian groups. Some of their basic
properties have subsequently been studied in [27] and their relationship with
the algebraic structures of quasigroups and multiplication groups has been in-
vestigated in [30] and [29], respectively. AG-groups also have a geometrical in-
terpretation that gives rise to their application in the context of parallelogram
spaces [28].

However, in spite of investigations of AG-groupoids and their subclasses for
nearly four decades no progress had been made in obtaining enumeration results.
In fact, not even the exact number of non-associative AG-groupoids for the order
3, the smallest possible order, was known up to now.
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We first recall that a groupoid is defined as a non-empty set S together with
a binary operation ◦ : S × S → S. In the remainder we will generally elide the
binary operation. We now define an AG-groupoid as follows:

Definition 1. Let S be a groupoid. S is called an AG-groupoid if for all a, b, c ∈
S the following identity holds:

(ab)c = (cb)a (1)

Note that identity (1) is a reverse form of standard associativity.

Definition 2. A groupoid S is called medial if S satisfies the medial law, that
for all a, b, c, d ∈ S we have

(ab)(cd) = (ac)(bd). (2)

It has been shown in [2], that every AG-groupoid is medial. Observe that the me-
dial law is a property closely related to commutativity. Consequently, AG-
groupoids can also be viewed as a generalisation of commutative semigroups and
indeed one of our main classification of AG-groupoids will be to separate into as-
sociative and non-associative as well as commutative and non-commutative ones.

We now define a number of properties that give rise to interesting subclasses
of AG-groupoids, which we identify in our classification.

Definition 3. An AG-groupoid S is called weak associative if it satisfies the
identity (ab)c = b(ac) for all a, b, c ∈ S. We call S an AG∗-groupoid.

Definition 4. An AG-groupoid S is called an AG-monoid if S has a left iden-
tity, i.e., there exists an element e ∈ S such that for all elements a ∈ S we have
ea = a.

Observe that since AG-groupoids are not necessarily associative, the existence
of a left identity does not imply the existence of a general identity.

Definition 5. An AG-groupoid S that satisfies the identity a(bc) = b(ac) for
any a, b, c ∈ S is called an AG∗∗-groupoid.

Definition 6. A groupoid S is called paramedial if S satisfies the paramedial
law, i.e, for all a, b, c, d ∈ S we have (ab)(cd) = (db)(ca).

One can easily verify the following facts that (i) every AG-monoid is an AG∗∗-
groupoid, and that (ii) every AG∗∗-groupoid is paramedial. However, the con-
verse is generally not true.

Example 1. As example structures we consider the four AG-groupoids of order
5 below, where (i) is an AG-monoid, (ii) is an AG∗-groupoid (iii) is an AG∗∗-
groupoid and therefore also paramedial, while (iv) is a paramedial groupoid
which is not an AG∗∗-groupoid.
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(i) (ii) (iii) (iv)
◦ 0 1 2 3 4
0 0 0 0 0 0
1 0 0 3 0 1
2 0 1 2 3 4
3 0 0 1 0 3
4 0 3 4 1 2

◦ 0 1 2 3 4
0 4 1 1 2 4
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 2 1
4 4 1 1 1 4

◦ 0 1 2 3 4
0 1 0 4 4 3
1 4 3 1 1 0
2 0 1 2 3 4
3 0 1 3 3 4
4 3 4 0 0 1

◦ 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 1 0 4 4 1
3 0 1 4 4 0
4 0 0 0 0 0

Definition 7. Let S be an AG-groupoid. We call S locally associative if for all
a ∈ S a(aa) = (aa)a holds.

Definition 8. An AG-groupoid S is called an AG-2-band or simply AG-band if
for all a ∈ S the identity aa = a is satisfied. In other words in an AG-band S
every element is idempotent.

Definition 9. An AG-groupoid S is called an AG-3-band if for every a ∈ S we
have a(aa) = (aa)a = a.

Definition 10. An element a of an AG-groupoid S is called left cancellative if
ax = ay ⇒ x = y for all x, y ∈ S. Similarly an element a of an AG-groupoid S
is called right cancellative if xa = ya ⇒ x = y for all x, y ∈ S. An element a of
an AG-groupoid S is called cancellative if it is both left and right cancellative. S
is called (left,right) cancellative if all of its elements are (left,right) cancellative
and is called cancellative if it is both left and right cancellative.

This definition gives rise to the following theorem, which we state without proof:

Theorem 1. Let S be an AG-groupoid, the following is equivalent:

(i) S is left cancellative.
(ii) S is right cancellative.
(iii) S is cancellative.

Finally we define AG-groups, an important subclass of AG-groupoids, which
generalises the concept of inverses.

Definition 11. An AG-groupoid S is called an AG-group if S has a left identity
e ∈ S and inverses with respect to this identity, i.e., for all elements a ∈ S there
exists an element b ∈ S such that ab = ba = e.

It has been shown in [27], that every AG-group G with local associativity is an
Abelian group.

Example 2. As further example structures we give (i) an AG-band, (ii) an AG-
3-band, and (iii) an AG-group below. For the latter we observe that the element
3 is the left identity element and that the structure is indeed not a group as
there is no corresponding right identity.
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(i) (ii) (iii)
◦ 0 1 2 3 4
0 0 3 1 4 1
1 4 1 3 0 3
2 3 0 2 1 4
3 1 4 0 3 0
4 3 0 4 1 4

◦ 0 1 2 3 4
0 4 3 0 2 1
1 2 4 3 1 0
2 1 2 4 0 3
3 3 0 1 4 2
4 0 1 2 3 4

◦ 0 1 2 3 4
0 3 0 1 4 2
1 4 3 0 2 1
2 2 4 3 1 0
3 0 1 2 3 4
4 1 2 4 0 3

3 Constructing AG-Groupoids

To obtain all AG-groupoids up to isomorphism we adapt a method which was
introduced in [5] and [6] in the search for monoids. The idea is to combine
the advantages of a constraint solver for a fast search with that of a computer
algebra system to efficiently rule out isomorphic copies. We will give a brief
overview of the used technique. More detailed explanations and applications for
various subclasses of semigroups can also be found in [4, Chapters 4, 5].

There are a number of important differences in the approach presented here
to the one developed for enumerating semigroups and monoids. Instead of one
search for each order, several independent searches were performed in [5,4,6], and
for many of them it became far easier to avoid isomorphic solutions. These case
splits were often based on structural knowledge about monoids and semigroups
which also lead to a more efficient search in the remaining difficult, but more
specific, cases. The enumeration of monoids and semigroups also benefit hugely
from the fact that not all such objects needed to be counted. For semigroups
there exists a formula for the majority of such objects [4, Section 2.3], while most
monoids were constructed using semigroups and groups of lower order. For AG-
groupoids we performed only one search for each order, as attempts to accelerate
the search using a case split were not successful. This might change in the future,
when the mathematical understanding of AG-groupoids has deepened further.

3.1 CSP and Minion

Constraint Programming is a powerful technique for solving large-scale combi-
natorial problems. To get an overview of this area the reader might want to start
with [26]. Here we provide just basic definitions meeting our needs.

Definition 12. A constraint satisfaction problem (CSP) is a triple (V, D, C),
consisting of a finite set V of variables, a finite set D, called the domain, of
values, and a set C containing subsets of DV (that is, all functions from V to
D) called constraints.

In practice, constraints, instead of being subsets of DV , are usually formulated
as conditions uniquely defining such subsets. Intuitively it is clear that one is
looking for assignments of values in the domain of a CSP to all variables such
that no constraint is violated. This is formalised in the next definition.
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Definition 13. Let L = (V, D, C) be a CSP. A partial function f : V → D is an
instantiation. An instantiation f satisfies a constraint if there exists a function
F in the constraint, such that F (x) = f(x) for all x ∈ V on which f is defined.
An instantiation is valid if it satisfies all the constraints in C. An instantiation
defined on all variables is a total instantiation. A valid, total instantiation is a
solution to L.

The class of CSPs is a generalisation of propositional satisfiability (SAT), and
is therefore NP-complete. Solving problems using CSPs proceeds in two steps:
modelling and solving. Solvers typically proceed by building a search tree, in
which the nodes are assignments of values to variables and the edges lead to
assignment choices for the next variable. If at any node a constraint is violated,
then search backtracks. If a leaf is reached, then no constraints are violated, and
the assignments provide a solution.

For our purposes we rely on Minion [9] as solver which offers fast, scalable
constraint solving. A major feature of modern SAT solvers is their optimised use
of modern computer architecture. Using this approach, Minion has been designed
to minimise memory usage.

3.2 Symmetry Breaking and GAP

CSPs are often highly symmetric. Given any solution, there can be others which
are equivalent in terms of the underlying problem. Symmetries may be inherent
in the problem, or be created in the process of representing the problem as a
CSP. Without symmetry breaking (henceforth SB), many symmetrically equiv-
alent solutions may be found and, often more importantly, many symmetrically
equivalent parts of the search tree will be explored by the solver. An SB method
aims to avoid both of these problems.

Definition 14. Let L = (V, D, C) be a CSP.

1. Elements in the set V ×D are called literals. Literals are denoted in the form
(x = k) with x ∈ V and k ∈ D.

2. Let χ denote the set of all literals of L. A permutation π ∈ Sχ is a symmetry
of L if, under the induced action on subsets of χ, instantiations are mapped
to instantiations and solutions to solutions.

3. A variable-value symmetry is a symmetry π ∈ Sχ such that there exists an
element (τ, δ) in SV × SD with (x = k)π = (xτ = kδ) for all (x = k) ∈ χ.

The given definition of symmetry of a CSP is relatively strong. On the other
hand all symmetries are variable-value symmetries in our case and as such will
always send instantiations to instantiations. For more information on symmetries
in CSPs, including different definitions see [26, Chapter 10].

There is a general technique, called lex-leader, for generating constraints that
break symmetries [3]. The idea of lex-leader is to order solutions by defining
an order on the literals of the CSP. This allows one to define the canonical
representative in each set of symmetric solutions to be the solution which is
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smallest (or largest) with respect to the order. To define an order on solutions
of a CSP L, first fix an ordering (χ1, χ2, . . . , χ|V ||D|) of the literals χ = V × D.
Given the fixed ordering of the literals, an instantiation can be represented as a
bit vector of length |V ||D|. The bit in the i-th position is 1 if χi is contained in the
instantiation and otherwise the bit is 0. The bit vector for the instantiation I ⊆ χ
corresponding to the ordering of the literals (χ1, χ2, . . . , χ|V ||D|) will be denoted
by (χ1, χ2, . . . , χ|V ||D|)|I . Of all bit vectors corresponding to a set of symmetric
solutions of L, one is the lexicographic maximal, which shall be the property
identifying the canonical solution. If ≥lex denotes the standard lexicographic
order on vectors, extend L by adding for all symmetries π the constraint

(χ1, χ2, . . . , χ|V ||D|)|I ≥lex (χπ
1 , χπ

2 , . . . , χπ
|V ||D|)|I . (3)

Then, from each set of symmetric solutions in L, exactly those with lexicographic
greatest bit vector are solutions of the extended CSP.

To generate the constraints for symmetry breaking we use specialist software
that provides robust, efficient and extensive implementations of algorithms in
abstract algebra. GAP [8] (Groups, Algorithms and Programming) is a system for
computational discrete algebra with particular emphasis on, but not restricted
to, computational group theory. GAP provides a large library of functions that
implement algebraic algorithms.

3.3 Search

We first formulate a CSP to search for all different AG-groupoids on the set
{1, 2, . . . , n} for a positive integer n, and will subsequently add symmetry break-
ing to it.

CSP 1. For a positive integer n define a CSP Ln = (Vn, Dn, Cn). The set Vn

consists of n2 variables {Ai,j | 1 ≤ i, j ≤ n}, one for each position in an (n×n)-
multiplication table, having domain Dn = {1, 2, . . . , n}. The constraints in Cn

are
AAi,j ,k = AAk,j ,i for all i, j, k ∈ {1, 2, . . . , n}, (4)

reflecting the left-invertive law.

In Minion the constraint (4) is enforced using element constraints. The constraint
element(vector, i, val) specifies that, in any solution, vector[i] = val. We add a
new variable Ta,b,c for each triple (a, b, c). The pair of constraints

element(column(c), Aa,b, Ta,b,c) and element(column(a), Ac,b, Ta,b,c)

then enforces (4) for the triple.
As mentioned in Section 3.2, modelling a problem often introduces symme-

tries. In our case this happens by introducing identifiers, 1 up to n, for the
n elements, even though we want them to be initially indistinguishable. The
symmetries are the isomorphism between AG-groupoids, hence elements in Sn.
To find a single representative from every equivalence class we have to break
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Table 1. Solutions and timings for Ln and Ln

Order n 1 2 3 4 5 6

Ln, solutions 1 6 105 7 336 3 756 645 28 812 382 776
–, solve time ε ε ε ε 25 s 104 245 s

Ln, solutions 1 3 20 331 31 913 40 104 513
–, solve time ε ε ε ε ε 121 s

The times are rounded to seconds. They were obtained using version 0.11 of Minion on
a machine with 2.80 GHz Intel X-5560 processor. The symbol ε stands for a time less
than 0.5 s.

these introduced symmetries. We want to use the lex-leader method described
in Section 3.2 and therefore define an ordering of the literals. We use

(A1,1, A1,2, . . . , A1,n, A2,1, . . . , A2,n, . . . , An,1, . . . , An,n) (5)

as variable order and define for the literals (Ai,j = k) ≤lex (Ar,s = t) if either Ai,j

comes earlier than Ar,s in (5) or k ≤ t. The canonical table in every isomorphism
class is then defined by having the lex-largest bit vector with respect to this
ordering of literals, which corresponds to the lex-smallest table with respect to
standard row-by-row ordering. By adding for each π ∈ Sn constraint (3) to Ln

we obtain a CSP Ln which has AG-groupoids of order n up to isomorphism as
solutions.

The data from running the instances Ln and Ln for 1 ≤ n ≤ 6 is summarised
in Table 1. Further classification for non-isomorphic AG-groupoids is presented
in the following section. A computation solving L7 to enumerate AG-groupoids
of order 7 up to isomorphism is currently running and counted already more
than 3 · 1011 solutions in two weeks.

4 Classification of AG-Groupoids

To obtain our classification results we have used Minion as discussed in the pre-
vious section to enumerate the entire space of non-isomorphic AG-groupoids as
well as to produce the multiplication tables for all structures. This data is then
further exploited to perform more fine-grained division into subclasses of AG-
groupoids with respect to the properties presented in Sec. 2. This classification
task is performed in GAP using functionality built on top of GAP’s Loops li-
brary [24]. Although for large data sets (e.g, in the case of the classification of
AG-groupoids of order 6) we use some parallelisation, this is fairly trivial and
we will not present details here.

Table 2 presents our main result, the enumeration of the total number of AG-
groupoids of orders 3 to 6, which have not been known to date. These numbers are
further broken down with respect to associativity and commutativity properties
of the AG-groupoids. Observe that we only consider three classes here as it
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Table 2. General classification result for AG-groupoids of orders 3–6

Order 3 4 5 6

Total 20 331 31913 40104513

Associative & commutative 12 58 325 2143

Associative & non-commutative 0 4 121 5367

Non-associative & non-commutative 8 269 31467 40097003

can be easily shown that every AG-groupoid that is non-associative is also non-
commutative.

Tables 3, 4 and 5 then present the results of our further classification into sub-
classes. Observe that the structures in Table 5 are all commutative semigroups,
which is the type of structure generalised by the notion of AG-groupoid. As a
consequence some of the classification results are expected to be trivial as it is
know that some of the properties are exhibited by all structures in that class.
For example, every associative structure is also locally associative, and every
semigroup is paramedial.

Similarly, in Table 4 it was to be expected that some of the rows would be
empty or contain all structures in the class. However, it should be pointed out
that it was assumed that all semigroups would also be AG∗- and AG∗∗-groupoids.
Yet the result of our classification clearly shows that for order 6 there has to
exist a further class of non-commutative semigroups that are neither AG∗- nor
AG∗∗-groupoids. This is a novel, non-trivial result from our classification which
will lead to a new class of structures to be investigated in the future.

A further minimal example, which was not known before, appears in Table 3.
We see that there are two non-associative AG-3-bands of order 6 which are not
AG-bands. This is of particular interest since it concerns AG-groupoids which
are not semigroups.

Regarding the correctness of our results we are very confident that there are
no errors. We only utilised established and well-tested functionality in GAP and

Table 3. Classification of non-associative AG-groupoids

Order 3 4 5 6

Total 8 269 31467 40097003

AG-monoids 1 6 29 188

AG∗-groupoid 0 0 0 9

AG∗∗-groupoid 4 39 526 13497

Locally Associative 3 78 4482 1818828

AG-band 0 1 3 8

AG-3-band 0 1 3 10

Paramedial 8 264 31006 39963244

Cancellative 1 4 4 1

AG-groups 1 2 1 1
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Table 4. Classification of associative, non-commutative AG-groupoids

Order 3 4 5 6

Total 0 4 121 5367

AG-monoids 0 0 0 0

AG∗-groupoid 0 4 121 5360

AG∗∗-groupoid 0 4 121 5360

Locally Associative 0 4 121 5367

AG-band 0 0 0 0

AG-3-band 0 0 0 0

Paramedial 0 4 121 5367

Cancellative 0 0 0 0

AG-groups 0 0 0 0

Table 5. Classification of associative, commutative AG-groupoids

Order 3 4 5 6

Total 12 58 325 2143

AG-monoids 5 19 78 421

AG∗-groupoid 12 58 325 2143

AG∗∗-groupoid 12 58 325 2143

Locally Associative 12 58 325 2143

AG-band 2 5 15 53

AG-3-band 4 13 41 162

Paramedial 12 58 325 2143

Cancellative 1 2 1 1

AG-groups 1 2 1 1

Minion, and a more involved version of our approach has successfully been used
before [4,5,6]. Moreover, most of the results were verified using other means. For
AG-monoids we compared the numbers with a purely algebraic way of counting
developed by Sergey Shpectorov and the second author. (A publication con-
taining a description of the counting method is in preparation.) In the case of
associative AG-groupoids, that is for all results presented in Tables 4 and 5,
we obtained identical numbers from experiments with the GAP package Small-
semi [7], which contains a database of all semigroups up to order 8. Finally,
all numbers less than one million in Tables 2 to 5 were verified by one of the
reviewers using Mace4 and Isofilter (parts of the Prover9/LADR package) [15].

5 Conclusions

We have presented novel classification results for the algebraic domain of AG-
groupoids. We have produced both enumeration results for orders up to 6 and
a partial classification of the domain using additional algebraic properties. To
obtain these results we have employed a combination of the constraint solver
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Minion and the computer algebra system GAP. Thereby GAP is used on the one
hand to perform symmetry breaking during the constraint solving process and
on the other hand to perform the subsequent subclassification. While Minion
has been previously applied in the classification of Semigroups and Monoids, the
adaptation to our new application domain as discussed in Sec. 3 are both novel
and non-trivial.

One of the advantages of our classification approach over techniques that use
combinatorial or algebraic considerations for enumeration, is that it allows us to
produce the multiplication tables of the structures under consideration. These
can be further used to produce more fine-grained subclassifications as we have
done in the case of AG-groupoids via a two step approach: firstly separating
with respect to associativity and commutativity properties followed by a second
refinement step using more specialised properties. While these were primarily
motivated by mathematical considerations, the obtained results have already
stimulated further investigations into other properties that could help to fur-
ther subdivide the domain and lead to interesting, distinct classes of algebraic
structures. For example our classification results of order 6 AG-groupoids have
already yielded a heretofore unknown subclass of non-commutative semigroups
that are neither AG∗- nor AG∗∗-groupoids as well as a new subclass of non-
associative AG-groupoids that are AG-3-bands but not AG-bands. We hope to
obtain more evidence on these new classes once our classification of order 7 has
concluded and will then start its theoretical investigation.

In general, we see the work presented in this paper as an important step-
ping stone for a further more fine-grained charting for algebraic structures that
are more general than groups. Having the computational means to obtain reli-
able, non-trivial classification results will play a crucial role in this endeavour.
As a consequence we intend to collate both our data and the functionality we
have implemented in the process of our investigations into a GAP package to be
published shortly.
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Abstract. This paper presents an ongoing effort to integrate the AXIOM family
of computer algebra systems with Poly/ML-based proof assistants in the same
framework. A long-term goal is to make a large set of efficient implementations
of algebraic algorithms available to popular proof assistants, and also to bring the
power of mechanized formal verification to a family of strongly typed computer
algebra systems at a modest cost. Our approach is based on retargeting the code
generator of the OpenAxiom compiler to the Poly/ML abstract machine.

Keywords: OpenAxiom, Poly/ML-based proof assistants, runtime systems.

1 Introduction

Computer algebra systems seek efficient implementations of algebraic algorithms. As
it happens, they occasionally “cut corners”, making assumptions that are not always
obvious from official documentations. Proof assistants, on the other hand, focus on
mechanized proofs; they are uncompromising on formal correctness at the expense of
efficiency. In this paper, we report on an ongoing effort to integrate OpenAxiom [19],
a member of AXIOM family of strongly-typed computer algebra systems, with proof
assistants (notably Isabelle/HOL [12]) based on the Poly/ML [20] programming system.

A large body of work [3,5,4,11,2,6,10] exists on interfacing computer algebra sys-
tems with logical frameworks. Most establish external communication protocols, links,
and external exchange formats between proof assistants and computer algebra systems.
Many depict those communications in the model of master-slave, where the master is
the proof assistant and the slave is the computer algebra system. The work reported in
this paper is novel in several aspects and defies assumptions from previous work.

First, we are considering a strongly typed computer algebra system. For concrete-
ness, our work is done with OpenAxiom, a member of the AXIOM family. A distinctive
feature of AXIOM is that every single computation is performed in a particular environ-
ment called domain of computation. A domain provides representations for values and
operations for manipulating them. In AXIOM, and unlike in most popular computer
algebra systems, a value is essentially useless and meaningless without knowledge of
the intended domain — i.e. how to interpret that value. Domains, in turn, satisfy various
specifications defined by categories. For obvious reasons, categories are organized into
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hierarchies, mirroring development of mathematical concepts and knowledge. In prac-
tice, domains and categories are huge data structures, usually with non-trivial cyclical
dependencies. For example, the domain Integer of integer values satisfy the category
Ring that specifies a ring structure over the common addition and multiplication oper-
ators. On the other hand, the specification of Ring involves the domain Integer— if
anything, to specify the meaning of the expression n·x which denotes the addition of an
arbitrary a ring element x to itself n times, and also the natural injection of integers into
any ring structure. Furthermore, a simple computation such as factor(x^2-2*x+1)
has the OpenAxiom system load no less than 19 domains or packages, not counting the
hundreds of pre-loaded domains. Clearly, under these circumstances, devising a com-
munication protocol for externalizing enough information to faithfully reconstruct the
result of a computation, or check the validity of computational steps can be very in-
efficient in practice. Day-to-day experiences with dumping OpenAxiom domain and
category databases or debug information suggest negative impacts on other support ser-
vices such as garbage collection.

Second, this project — unlike most existing work — envisions a symbiotic coex-
istence of OpenAxiom and a Poly/ML-based proof assistant. That is, we envision a
tight integration of OpenAxiom and, say, Isabelle/HOL where both systems run in the
same address space with Isabelle/HOL calling on OpenAxiom for algebraic compu-
tation and OpenAxiom calling on Isabelle/HOL for validating computational steps or
performing logical deduction. Achieving this tight integrating requires a formal account
of both OpenAxiom program representation (Sec. 3) and the Poly/ML runtime system
(Sec. 4), and also a formal correspondence between both (Sec. 5.) The challenge is
compounded by the fact that neither the Spad programming language nor the Poly/ML
abstract machine have a formal specification. A key contribution of this paper is a step
toward formal specification of the Poly/ML abstract machine language and translation
algorithms. We anticipate that these formal accounts will provide foundation for further
scrutiny and other research projects such as an end-to-end verification of OpenAxiom
libraries, or a complete mechanical verification of the Poly/ML system — the runtime
system underlying many popular logical framework implementations.

Third, this project is also an excellent opportunity to clarify the semantics of the
AXIOM family system. Because of historical implementation artifacts, it is sometimes
mistakenly believed that AXIOM is a Lisp system. While it is true that AXIOM systems
currently use Lisp systems as base runtime systems, they actually do have type-erasure
semantics in the style of ML [7] — except for runtime queries of category satisfaction,
but the semantics of those queries are essentially intensional in nature and are compil-
able with a type-erasure semantics. This project of retargeting OpenAxiom to Poly/ML
runtime system clarifies that subtle but crucial aspect of AXIOM systems and offers a
validation of that theory.

Finally, this work enables cross-cutting technology reuse. For example, retargeting
OpenAxiom to Poly/ML makes available (at virtually no cost) the recent concurrency
work [17] done in Poly/ML that has been so beneficial to the Isabelle framework to
take advantage of multi-core machines. Furthermore, retargeting the Poly/ML platform
opens the possibility of concurrent validation of OpenAxiom computations by several
Poly/ML-based proof assistants.



Retargeting OpenAxiom to Poly/ML 17

2 The OpenAxiom and Poly/ML Systems

2.1 OpenAxiom

OpenAxiom [19] is an evolution of the AXIOM [13] computer algebra system. It is
equipped with a strongly-typed programming language (named Spad) for writing large
scale libraries, and a scripting language for interactive uses and for programming in
the small. The Spad programming language features a two-level type system to support
data abstraction and generic structures and generic algorithms.

Domain of computation. A central tenet of AXIOM philosophy is that computations
occur in a given domain of discourse or domain of computation. For instances, the
objects (X2 − 1)/(X − 1) and X + 1 are equal in Q(X), but not as functions from R
to R; see the excellent analysis of this intricate problem by Davenport [9] for further
details.

Categories as specifications. Since several domains of computations may implement
the same specification — e.g. both Integer and String implement equality
comparison — the Spad programming language provides abstraction tools to write
specifications as first class objects: categories. Here is a specification for domains of
computations that implement equality comparison:

BasicType: Category == Type with
=: (%,%) -> Boolean
~=: (%,%) -> Boolean

Categories can extend other categories, or may be parameterized, or can be composed
out of previously defined categories. For example, a semi-group is an extension of
BasicTypewith the requirement of an associative operator named *:

SemiGroup: Category == BasicType with
*: (%,%) -> %

and a left-linear set over a semi-group S is a set that is stable by “multiplication” or
dilation by values in S:

LeftLinearSet(S: SemiGroup): Category == Basictype with
*: (S,%) -> %

We similarly define the notion of right-linear. A linear set over a semi-group S is a set
that is both left-linear and right-linear over S:

LinearSet(S: SemiGroup): Category ==
Join(LeftLinearSet S, RightLinearSet S)

More complex algebraic structures are specified using similar composition and exten-
sion techniques.

2.2 Poly/ML

Poly/ML is a system originally written by the second author while he was in the Com-
puter Laboratory at Cambridge University. Poly/ML was initially developed as an ex-
perimental language, Poly, similar to ML but with a different type system. Among
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the first users was Larry Paulson who used it to develop the Isabelle theorem prover.
More recently David Matthews has continued to develop Poly/ML. The Standard Basis
Library has been implemented and the compiler converted to the 1997 Definition of
Standard ML (Revised). Poly/ML is available for the most popular architectures and
operating systems. There are native code versions for the i386 (32 and 64 bit), Power
PC and Sparc architectures. There is a byte-code interpreted version which can be used
on unsupported architectures.

3 Spad Program Representation

The Spad programming language is strongly typed. Yet, it allows for runtime
instantiation of domains and categories. Consequently, categories and domains are both
compile-time and runtime objects. From now on, we will discuss only the representa-
tion of category objects. Domains and packages are similarly represented, with some
variations to attend to data specific to domains.

0 CategoryForm
1 ExportInfoList
2 AttributeList
3 (Category )

4

0 PrincipalAncestorList
1 ExtendedCategoryList
2 DomainInfoList

5 UsedDomainList
...

...

Fig. 1. Layout of category objects

Category object layout. A category object is represented [8] as a large heterogeneous
tuple as shown in Fig. 1. Its components have the following meaning:

– slot 0 holds the canonical category form of the expression whose evaluation
produces the category object under consideration

– slot 1 holds a list of function signatures exported by the category
– slot 2 holds a list attributes and the condition under which they hold
– slot 3 always contain the form (Category ). It serves as a runtime type checking

tag
– slot 4 contains three parts:

• a list of principal ancestor category forms
• a list of directly extended category forms
• a list of domain explicitly used in that category

– slot 5 holds the list of all domain forms mentioned in the exported signatures.
– each of the slots 6 (and onwards) holds either a runtime information about a specific

exported signature, or a pointer to domain object or a category object.

Because several existing OpenAxiom libraries assume the above layout, translation
from Spad to the Poly/ML must preserve its observable behavior.
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3.1 OIL: OpenAxiom Intermediate Language

Traditionally, AXIOM compilers translate Spad programs to Lisp, then compile the
generated Lisp code. The OpenAxiom compiler has been modified to generate an in-
termediate representation that is independent of Lisp, to enable re-targeting to several
backends. The intermediate language, called OIL, is a lambda calculus with constants
and shown in Fig. 2.

Module m ::=
−→
d

Definition d ::= (def x e )

expression e ,p ::= v | l | [−→e ] | d | q | (f −→e ) | (when (−→w )) | (bind (
−−−→
(x e )) e )

| (lambda (−→x ) e ) | (store l e ) | (loop (
−→
i ) e ) | (seq −→e )

Location l ::= x | (tref x n )
Branches w ::= (p e ) | (otherwise e )
Iterators i ::= (step x e e e ) | (while p ) | (until p ) | (suchthat x e )

Domain form t ::= x | (D
−→
t )

Category form c ::= (C
−→
t ) | (Join −→c ) | (mkCategory k [

−−−→
[σ,q ]] [−→a ] [

−→
t ] nil)

Query q ::= b | (hascat t c ) | (hassig t σ) | (hasatt t a )
| (not q ) | (and q q ) | (or q q )

Constructor kind k ::= category | domain | package

Signature σ ::= [x ,t ,
−→
t ]

Builtin operator o ::= eq | and | or | not | iadd | isub | ...
Function name f ::= o | C | D | x

Literal values v ::= nil | b | n | s

Boolean literal b ::= false | true
Integer literal n

String literal s

Domain constructor D
Category constructor C

Attribute a

Identifier x

Fig. 2. OpenAxiom Intermediate Language

A module is a collection of top-level definitions. The body of a definition can be
a lambda expression, a conditional expression, or a binding of local variables in an
expression. We include some builtin operators (e.g.for addition on integers, category
composition, etc.)

Example. Here is how the intermediate representation of the BasicType category from
Sec. 2.1 looks:

(def BasicType;AL nil)

(def BasicType;
(lambda ()
(bind ((g (Join (Type)
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(mkCategory domain
’(((= ((Boolean) $ $)) true)
((~= ((Boolean) $ $)) true)
((before? ((Boolean) $ $)) true))

nil ’((Boolean)) nil))))
(store (tref g 0) ’(BasicType))
g)))

(def BasicType
(lambda ()
(when ((not (eq BasicType;AL nil)) BasicType;AL)

(otherwise (store BasicType;AL (BasicType;))))))

The compilation of a category typically produces tree top-level definitions: the defi-
nition of a cache holding instantiations of the category, the definition of a “worker”
function that actually produces a category object for first-time instantiations, and a
“wrapper” function around the worker function. The wrapper function is what the sys-
tem invokes when a category is instantiated. In this example, BasicType;AL is the
cache, BasicType; is the worker function, and BasicType is the wrapper function.

4 Poly/ML Codetrees

The front-end of the Poly/ML compiler performs syntax- and type-checking and pro-
duces an intermediate code in the form of a codetree. This untyped representation is
machine-independentand, after optimization, is used to produce the machine-dependent
code to execute. Our compilation process for Spad generates this code tree. The code-
tree is an ML data structure and does not have a canonical text representation. For the
purposes of explanation the structure can be approximated by the grammar in Fig. 3.

Variables are given numerical names. For instance, a declaration DECL(k, e) has a
number k and a codetree term e. The codetree e denotes an expression to be bound to
the variable k. This can then be referenced within the rest of the containing block by
means of a LOCAL(n, k) codetree term. The number k corresponds to the identifier
used in the declaration and n is the “nesting depth”: zero if the reference is within the
same function and non-zero if it is within an inner function. Function parameters are

Declaration d ::= DECL(k, e)
Code tree e,p ::= NIL | c | d | LIT(n) | ADDRESS(a) | BUILTIN(r) | EVAL(e, [−→e ])

| IF(p, e, e) | BLOCK([−→e ]) | INDIRECT(n, e) | RECORD([−→e ])

| BEGINLOOP([
−→
d ], e) | LOOP([−→e ]) | LAMBDA(n, e)

Coordinates c ::= PARM(n, k) | LOCAL(n, k)

Builtins r ::= amul | aminus | . . .
Integer n, k

Identifier i

Address a

Fig. 3. Poly/ML codetree language
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accessed using the PARAM(n, k) codetree term where k denotes the k-th parameter
of the function declared n levels out to the current containing function. Tuples are cre-
ated with the RECORD element and fields of a tuple are extracted with INDIRECT.
LAMBDA introduces the body of a function. A BLOCK is a sequence of codetree
terms and provides an environment for declarations. The result of evaluating a block is
the value of the final expression. Generally, every code tree term except the last will be
a DECL codetree term and these have scope over the rest of the block. It is possible
to have other kinds of terms within a block that may be executed for their side-effects.
Loops can be created using recursive functions or through use of BEGINLOOP and
LOOP. BEGINLOOP represents the start of a loop and contains a list of DECL en-
tries that represent loop index variables. The value for each DECL is the initial value
of the loop variable. The expression part of the BEGINLOOP will almost always
be a nested IF-expression with some of the branches containing LOOP-expressions.
A LOOP expression causes a jump back to the BEGINLOOP with the loop vari-
ables updated with the values in the LOOP expression. The length of the argument
list for a LOOP will always match the containing BEGINLOOP. Branches of the
IF-expression that do not end with a LOOP result in exiting the LOOP. There is also
no explicit code tree for representing function definition in Poly/ML. A function def-
inition is expressed by a DECL codetree term whose second parameter is a lambda
expression. Constants can be expressed as either LIT which represents a literal inte-
ger or ADDRESS which represents the address of some entity already present in the
ML address space. Poly/ML is an incremental compiler and it is usual to compile an
expression which makes reference to pre-existing entities.

As an example of code tree, the following factorial function in ML:

fun factorial n =
if n = 0 then 1
else n * factorial (n -1);

is compiled to the following codetree term:

DECL(1,
LAMBDA(1,

IF(EVAL(BUILTIN equala, [PARAM(0,1), LIT 0 ]),
LIT 1,
BLOCK[DECL(2,

EVAL(LOCAL(1,1),
[EVAL(BUILTIN aminus, [PARAM(0,1), LIT 1])])

),
EVAL(BUILTIN amul, [PARAM(0,1), LOCAL(0,2)])

]
)

)
)

The ML function definition is translated to a declaration codetree term which is a
DECL expression. The right hand side of the DECL expression is a LAMBDA code-
tree term representing the body of the function factorial. The body contains a con-
ditional, an IF expression whose first argument is the test. If that succeeds the result is
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the second argument, the literal value 1, and if it fails the third argument is executed.
This consists of a BLOCK. The first entry in the block is a local declaration of a re-
cursive call of factorial. The result of this is then multiplied by n. Several built-in
functions are used. equala tests the equality of two integers, and aminus does integer
subtraction.

5 Generating Poly/ML Codetree from OIL

The task of generating Poly/ML codetree from OIL starts with an OIL module m , a list
of top-level declarations. The overall strategy is to translate that cluster of declarations
into a Poly/ML codetree term that would eventually evaluate to a record value. Each
component of that record is maintained in a one-to-one correspondence with an OIL
top-level declaration through an environment of type

Env = [x 	→ c].

An environment Γ of type Env maps an OIL identifier x to a scope-and-position Γ (x ),
which is either LOCAL(n, k) for variables or PARAM(n, k) for function parameters.
For top-level declarations, n has value 0. Therefore the most important coordinate in-
formation for a top-level declaration is k, which is the slot number for x in the top-level
RECORD codetree term.
Notation. In what follows, we use �•� to enclose syntactic objects (be they OIL expres-
sions or Poly/ML codetree terms). OIL expression objects are written in this font
whereas Poly/ML codetree terms are typeset with this other font. When the meta vari-
able x designates an object from a certain syntactic category, we use the notation x̂ for
a meta variable that holds a sequence of syntactic objects from that same category.
Modules. The entry point to the translation algorithm is the function

G : [Declaration] → CodeTree × Env

which takes as input a list of OIL top-level declarations and produces a codetree-
environment pair. The first component is usually a BLOCK codetree term containing
all the codes generated for the top-level declarations and whose last term is a RECORD

codetree term that constructs the value representation of the module:

G(m ) =

let
〈
d̂, Γ

〉
= D(m , [], 0, 0)

ĉ = C(Γ, 0) −− reference all toplevel declarations

in
〈
BLOCK(d̂ + +[RECORD(ĉ)]), Γ

〉
The second component is the resulting environment. The purpose of the the function D

D : [Declaration] × Env × Integer × Integer → [CodeTree] × Env

is to translate a cluster of declarations in a given initial environment, a scope nesting
level, an initial declaration number. It returns a pair of a list of Poly/ML codetree terms
for the declarations and an updated environment. The details of code generation for
declarations are the subject of the next section. The function C take an environment Γ ,
a scope nesting level n, and returns the list of all coordinates in Γ with scope nesting
level n.
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Definitions. Generating Poly/ML code for an OIL definition is straightforward. We
allocate LOCAL coordinates for corresponding Poly/ML entity, and generate codes for
the initializer in an environment where the name of the entity being defined is bound to
its coordinates

D([], Γ, n, k) = 〈[], Γ 〉
D

(
(def x e ) :: d̂ , Γ, n, k

)
=

let Γ1 = Γ ++ [x �→ LOCAL (n, k)] −− introduce x in the scope of its initializer
〈e, Γ2, k1〉 = E (e , Γ1, n, k + 1)〈
d̂, Γ3

〉
= D

(
d̂ , Γ1 , n, k1 + 1

)
in

〈
DECL (k, e) :: d̂, Γ3

〉
That code generation strategy implements unrestricted value recursion, and in particu-
lar recursive functions. If we wanted to restrict recursion to functions only, we could
delay to the actual binding the expression translation function E . The function E with
functionality

E : Expression × Env × Integer × Integer → CodeTree × Env × Integer

takes an OIL expression, an initial environment, a scope nesting level, a variable posi-
tion, and produces a triple that consists of the Poly/ML codetree for the OIL expression,
an updated environment, and the next available variable position at the same scope. This
function E (which accepts any OIL expressions) is never called directly to generate
codetree for declarations. Its details are the subject of the next paragraphs.

Functional abstraction. Given a functional abstraction of arity k at nesting level n, we
augment the enclosing environment G with k PARAM coordinates for the parameters,
and then generate code for the body with nesting level increased by one:

E(�(lambda (x1 ...xk) e )�, Γ, n, k ′) =
let Γ1 = P(Γ, [x1 , . . . , xk ], n + 1) −− increase the nesting level for the body

〈e, Γ2, k ′′〉 = E(e , Γ1, n + 1, 0)

in 〈LAMBDA (k, e) , Γ, k ′〉

Finally we return a LAMBDA codetree term, the original environment and the original
variable position number. Allocation of coordinates for the function parameters is done
via the helper function

P : Gamma × [Identifier] × Integer → Env

defined by:

P(Γ, [], n, k) = Γ

P(Γ, x :: x̂ , n, k) = Γ ++ [x �→ PARAM (n, k)] ++ P(Γ, x̂ , n, k + 1)

Note that translation of lambda-expression is the only place where we increase the
“nesting level” of codetree coordinates.

Local declarations. Code generation for local declarations is quite similar to that of
functional abstraction:
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E(�(bind((x1 e1) . . . (xk ek)) e )�, Γ, n, k ′) =
let 〈e1 , Γ1 , k ′

1〉 = E(e1 , Γ, n, k ′)

〈e2 , Γ2 , k ′
2〉 = E(e2 , Γ1 + +[x1 �→ LOCAL (n, k ′

1)], n, k ′
1 + 1)

. . .
〈ek , Γk, k ′

k〉 = E(ek , Γk−1 + +[xk−1 �→ LOCAL (n, k ′
k−1)], n, k ′

k−1 + 1)

〈e, Γ ′, k ′′〉 = E(ek , Γk + +[xk �→ LOCAL (n, k ′
k)], n, k ′

k + 1)

in 〈BLOCK ([DECL (k ′
1, e1) , . . . , DECL (k ′

k , ek) , e]) , Γ, k ′′〉

Conditional expressions. The simplest conditional expression is the equivalent of an
if-then expression without an alternative part:

E(�(when ((p1 e1))�, Γ, n, k) =
let 〈p1 , Γ1 , k1〉 = E(p1 , Γ, n, k)

〈e1 , Γ2 , k2〉 = E(e1 , Γ1 , n, k1)

in 〈IF (p1 , e1 , NIL) , Γ2 , k2〉

As a special-case, for code-generation purpose, we accept otherwise as a predicate
with the following meaning:

E(�(when ((otherwise e ))�, Γ, n, k) =
E(e , Γ, n, k)

The most general form of a conditional expression in OIL is a multiway branch, with
an optional default case (the otherwise-branch) at the end of list of choices. This form
corresponds to a series of nested traditional if-then-else expressions:

E(�(when (p e ) :: ŵ )�, Γ, n, k) =
let 〈p, Γ1, k1〉 = E(p , Γ, n, k)

〈e1 , Γ2 , k2〉 = E(e , Γ1 , n, k1)

〈e2 , Γ3 , k3〉 = E(�(when ŵ )�, Γ2, n, k2)

in 〈IF (p1 , e1 , e2) , Γ3 , k3〉

Loops. The simplest looping structure in OpenAxiom is the infinite loop represented
in OIL as (loop () e) where e is the expression to be evaluated indefinitely. This
basic structure can be controlled by iterators. From a control structure point of view, an

iterator is semantically a 4-tuple
〈
d̂, ê, p1, p2

〉
that controls a loop:

1. a sequence d̂ of declarations (and initializations) of variables with lifetime spanning
exactly the entire execution of the loop

2. a sequence of expressions ê giving values to the variables in the first component for
the next attempt at the loop body iteration

3. a filter predicate expression p1 which controls the evaluation of the body for a
particular evaluation of the loop body

4. a continuation predicate p2 which, if false, terminates the loop

We use the translation function I

I : Control × [Iterator] × Env × Integer × Integer → Control × Env × Integer

as a helper.
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I(x, [], Γ, n, k) = 〈x, Γ, k〉

I
(〈

d̂, ê, p1 , p2

〉
, �(while p )� :: î , Γ, n, k

)
=

let 〈p, Γ, k ′〉 = E(p , Γ, n, k)

p ′
2 = EVAL(BUILTIN and, [p2 , p])

in I
(〈

d̂, ê, p1 , p ′
2

〉
, î , Γ, n, k ′

)

I
(〈

d̂, ê, p1 , p2

〉
, �(until p )� :: i, Γ, n, k

)
=

let 〈p, Γ, k ′〉 = E(p , Γ, n, k)

p ′
2 = EVAL(BUILTIN and, [p2 , EVAL (BUILTIN not, [p])])

in I
(〈

d̂, ê, p1 , p ′
2

〉
, î , Γ, n, k ′

)

I
(〈

d̂, ê, p1 , p2

〉
, �(suchthat p )� :: î , Γ, n, k

)
=

let 〈p, Γ, k ′〉 = E(p , Γ, n, k)

p ′
1 = EVAL(BUILTIN and, [p1 , p])

in I
(〈

d̂, ê, p ′
1 , p2

〉
, î , Γ, n, k ′

)

I
(〈

d̂, ê, p1 , p2

〉
, �(step x e1 e2 e3)� :: î , Γ, n, k

)
=

let 〈e1 , Γ1, k1〉 = E(e1 , Γ, n, k + 1) −− k is for the loop variable
〈e2 , Γ2, k2〉 = E(e1 , Γ1 , n, k1)

〈e3 , Γ3, k3〉 = E(e2 , Γ2 , n, k2 + 1) −− k2 is used for holding the value of e2

p = EVAL(BUILTIN int_lss, [x, LOCAL (n, k2)])

e = EVAL(BUILTIN aplus, [LOCAL (n, k) , LOCAL (n, k3 + 1)])

Γ ′ = Γ3 + +[x �→ LOCAL (n, k)]

d̂ ′ = [DECL (k, e1) , DECL (k2, e2) , DECL (k3 + 1, e3)]

ê ′ = [e, LOCAL (n, k2) , LOCAL (n, k3 + 1)]

x =
〈
d̂ + +d̂ ′, ê + +ê ′, NIL, p

〉
in I(x, i , Γ ′, k3 + 2)

The translation of an OIL loop expression to a Poly/ML codetree term first translates
the iterators to control terms, then uses the resulting environment to translate the body
of the loop::

E
(
�(loop î e )�, Γ, n, k

)
=

let
〈〈

d̂, ê, p1 , p2

〉
, Γ ′, k ′

〉
= I

(
〈[], NIL, NIL, NIL〉 , î , Γ, n, k

)
〈e, Γ ′′, k ′′〉 = E(e , Γ ′, n, k ′)

in
〈
BEGINLOOP

(
d̂, IF (p2 , BLOCK [IF (p1 , e, NIL) , LOOP ê], NIL])

)
, Γ ′′, k ′′

〉

Sequence of expressions. A sequence of OIL expressions corresponds to a BLOCK

codetree term.

E(�(seq e1 . . . en ′)�, Γ, n, k) =
let 〈e1Γ1, k1〉 = E(e1 , Γ, n, k)
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. . .
〈en ′Γn ′ , kn ′〉 = E(en ′ , Γn ′−1, n, kn ′−1)

in 〈BLOCK [e1 , . . . , en ′ ], Γn ′ , kn ′〉

Function calls. An OIL function call expression generally corresponds to an EVAL

codetree term. The operation may be a builtin operation, a “variable”, or a global func-
tion (corresponding to a constructor instantiation), or a special runtime function (e.g.
for mkCategory or Join) Arguments are evaluated from left to right.

6 Implementation

The code generation component is implemented as an OpenAxiom library. First we
compile a Spad program to the OIL intermediate representation. That representation is
then translated to Poly/ML codetree terms, written into a file. Note that, the codetree
format written to disk is slightly different from the pretty printed version of the Poly/ML
compiler. This is done so to make parsing easier, and hide redundant information. One
caveat is that the current rule is implemented for category definition without default
implementation. Currently the function Join only merges specifications from different
category objects.

7 Example

Below is the translation of the OIL representation of the category BasicType:

DECL(1,
LAMBDA(0,
BLOCK[
DECL(2,
EVAL(ADDRESS Join,

[
RECORD[

EVAL(
LAMBDA(0,

BLOCK[
DECL(2,

EVAL(ADDRESS Join,
[

RECORD[
EVAL(ADDRESS mkCategory, [ADDRESS ?]),
LIT 0

]
])

),
DECL(3,

EVAL(ADDRESS setName,
[

RECORD[LOCAL(0,2), ADDRESS ?]
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]
)

),
LOCAL(0, 3)

]
),
[LIT 0]

),
RECORD[EVAL(ADDRESS mkCategory, [ADDRESS ?]), LIT 0]

]
]

)
),

DECL(3,
EVAL(

ADDRESS setName ,
RECORD[LOCAL(0,2), ADDRESS ?]

)
),

LOCAL(0,3)
]

)
)

8 Related Work

IR based code generations in CAS. The Aldor [21] language compiler defines a first
order abstract machine (FOAM) which is an intermediate language for representing
Aldor code at a lower level [22]. FOAM is platform independent. However, we have
never been able to generate a working FOAM out of AXIOM systems. One of the
FOAM’s goal is to define data structures for program transformation, optimization at
FOAM level, as well as for generating C and Common Lisp code for Aldor programs.
Maple [16] uses inert expressions to represent a Maple program. The internal repre-
sentation supports code generation for other languages such as C, Java and Fortran, as
well as optimization functionalities provided by Maple’s CodeGeneration package. The
inert forms closely reflect the Maple internal DAG data structure representation [18].

Interfacing CAS and deduction systems. Various methods for interfacing CAS and
deduction systems have been extensively discussed in the literature. In the work of Bal-
larin and Homann [3], Maple was used as a term rewriting system for enhancing the
expression simplifier of Isabelle. Interfaces are provided in Isabelle’s ML environment
for starting and exiting a Maple session, sending expressions to Maple for evaluation,
and receiving results from Maple. The communication at lower level is through a Unix
pipe between Maple and Isabelle processes. High-level syntax translation rules are de-
fined to achieve translations between expressions in Isabelle syntax and their equiva-
lents in Maple’s syntax. The work of Calmet and Homann [5] as well as the work of
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Barendregt and Cohen [4] suggest the use of a separate language such as OpenMath [1]
to implement communication protocols between different computation and deduction
systems. Harrison and Théry combined HOL and Maple to verify results computed
by Maple [11]. The communication is based on the idea of a “software bus”. Transla-
tion between HOL and Maple terms is implemented as a third party between the two
systems. The work of Adams and Dunstan [2] integrated Maple with the automated
theorem prover PVS to validate computations in a real analysis library. Maple is ex-
tended with external C functions through Maple’s foreign function interface. The C
functions manage the communications with PVS and high-level syntax translations be-
tween different syntax. Recently, Delahaye and Mayero demonstrated a speed-up of the
field tactics in Coq with Maple’s field computation [10]. Algebraic expressions over a
field in Coq are translated to the expressions in Maple’s syntax, and sent to Maple for
computation. The results are sent back to Coq and translated back into Coq’s syntax.

Our approach differs from all the approaches mentioned above in several aspects.
The existing approaches rely mainly on defining: (1) process communication protocols
between CAS and deduction systems and (2) high-level program syntax translations.
This results in the CAS and the deduction system each having each their own address
space. Our work generates the same lower level run time instructions from programs
with different syntax. OpenAxiom programs and ML programs will share the same ad-
dress space. Translation rules in our work are defined between intermediate representa-
tions instead of high-level syntax. Furthermore, improvements to the Poly/ML system
(such as recent addition of efficient and scalable concurrency primitives) are directly
available to both OpenAxiom and Poly/ML-based engines. We consider this aspect to
be of a significant benefit. It will also help enhance and improve recent implicit paral-
lelization capabilities [14,15] added to OpenAxiom.

9 Conclusion and Future Work

This paper is a report on a work-in-progress. Obviously, much remains to be done for
runtime domain instantiations. In the long-term, we would like to obtain a complete
formal specification of the Spad programming language, including its intermediate rep-
resentation. Ideally, we would like a formally checked translation. But, that is a much
harder task that will span several years. In the near future, after the complete re-targeting
of OpenAxiom, we plan to investigate various connections between several Poly/ML
based logical systems (Isabelle in particular) and the OpenAxiom platform as comple-
tion of our initial goal.
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Abstract. Simplicial complexes are at the heart of Computational Al-
gebraic Topology, since they give a concrete, combinatorial description
of otherwise rather abstract objects which makes many important topo-
logical computations possible. The whole theory has many applications
such as coding theory, robotics or digital image analysis. In this paper
we present a formalization in the Coq theorem prover of simplicial com-
plexes and their incidence matrices as well as the main theorem that
gives meaning to the definition of homology groups and is a first step
towards their computation.

1 Introduction

Algebraic Topology is a vast and complex subject, in particular mixing Algebra
and (combinatorial) Topology. Algebraic Topology consists of trying to use as
much as possible “algebraic” methods to attack topological problems. For in-
stance, one can define some special groups associated with a topological space,
in a way that respects the relation of homeomorphism of spaces. This allows
one to study properties about topological spaces by means of statements about
groups, which are often easier to prove.

However, in spite of being an abstract mathematical subject, Algebraic Topol-
ogy methods can be implemented in software systems and then applied to
different contexts such as coding theory [23], robotics [17] or digital image anal-
ysis [13,14] (in this last case, in particular in the study of medical images [21]).
Nevertheless, if we want to use these systems in real life problems, we have to
be completely sure that the systems are correct. Therefore, to increase the re-
liability of these methods and the systems that implement them, we can use
Theorem Proving tools. In this paper we are going to focus on the verification of
some results about a mathematical structure which can be useful, among others
things, to study properties of digital images.

Simplicial complexes are topological abstract structures which provide a good
framework to apply topological methods to analyse digital images. Intuitively, a
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simplicial complex is a generalization of the notion of graph to higher dimensions.
Indeed, all the simplicial complexes of dimension less than two are graphs.

A central problem in this context consists of computing homology groups of
simplicial complexes. Homology groups characterize both the number and the
type of holes and the number of connected components of a simplicial complex.
This type of information is used, for instance, to determine similarities between
proteins in molecular biology [7].

In the context of the computation of homology groups, we can highlight the
Kenzo program [9], a successful Computer Algebra system, implemented in Com-
mon Lisp, which has obtained some homology groups not confirmed nor refuted
by any other means.

There are two different ways of computing homology groups in Kenzo depend-
ing on the type of the object. On the one hand, the task of calculating homology
groups of a finite object is translated to a problem of diagonalizing certain matri-
ces called incidence matrices, see [22]. On the other hand, in the case of non-finite
type objects, Sergeraert’s effective homology [20] theory, implemented in Kenzo,
provides a framework where this question can be handled. Roughly speaking,
the effective homology method links a non-finite type object, X , with a finite
type object, Y , with the same homology groups; then the problem of computing
the homology groups of X is reduced to the task of diagonalizing the incidence
matrices of Y .

Sergeraert’s ideas have been translated to theorem provers with the aim of
not only formalizing the effective homology theory, but also applying formal
methods to the study of Kenzo. Thus far, the main formalization efforts have
been focused on theorems which provide the connection between non-finite type
objects with finite type ones; here, we can distinguish the verification of the
Basic Perturbation Lemma in the Isabelle/HOL proof assistant, see [2], or the
formalization in Coq of the Effective Homology of Bicomplexes, see [8].

However, up to now, the question of formalizing the computation of homology
groups of finite objects has not been undertaken. In this paper we discuss the
formalization of simplicial complexes and their incidence matrices as well as the
main theorem that gives meaning to the definition of homology groups. To this
aim, we have used the proof assistant Coq [6,4] as well as the SSReflect
extension [11] and the libraries it provides.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries on Algebraic Topology. A sketch of the proof of the main theorem is
presented in Section 3. A brief introduction to SSReflect is provided in Sec-
tion 4. The main steps of the formalization are given in Section 5. The paper
ends with a section of Conclusions and Further Work, and the bibliography.

2 Mathematical Preliminaries

In this section, we briefly provide the minimal standard background needed in
the rest of the paper. We mainly focus on definitions. Many good textbooks
are available for these definitions and results about them, the main one being
maybe [18].
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The notion of simplicial complex gives rise to the most elementary method
to settle a connection between common Topology and Algebraic Topology. The
notion of topological space is too abstract to perform computations. Simplicial
complexes provide a purely combinatorial description of topological spaces which
admit a triangulation. The computability of properties, such as homology groups,
from a simplicial complex associated with a topological space is well-known and
the algorithm uses simple linear algebra [22]. Then, an algebraic topologist can
decide every sensible space (that is to say, a topological space which admit a
triangulation) is a simplicial complex, making computations easier.

Let us start with some basic terminology. Let V be an ordered set, called the
vertex set. An (abstract) simplex over V is any finite subset of V . An (abstract)
n-simplex over V is a simplex over V whose cardinality is equal to n + 1. Given
a simplex α over V , we call subsets of α faces of α.

Definition 1. An (ordered abstract) simplicial complex over V is a set of sim-
plices K over V such that it is closed by taking faces (subsets); that is to say, if
α ∈ K all the faces of α are in K, too.

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the
set made of the simplices of cardinality n + 1.

Example 1. Let us consider V = (0, 1, 2, 3, 4, 5, 6).
The small simplicial complex drawn in Figure 1 is mathematically defined as

the object:

K =
{

∅, (0), (1), (2), (3), (4), (5), (6), (0, 1), (0, 2), (0, 3), (1, 2),
(1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6), (0, 1, 2), (4, 5, 6)

}

0

1

2

3 4

5

6

Fig. 1. Butterfly Simplicial Complex

It is worth noting that simplicial complexes can be infinite. For instance if
V = N and the simplicial complex K is {(n)}n∈N ∪ {(0, n)}n≥1 , the simplicial
complex obtained can be seen as an infinite bunch of segments.

Definition 2. A facet of a simplicial complex K over V is a maximal simplex
with respect to the subset order ⊆ among the simplexes of K.

Example 2. The facets of the simplicial complex depicted in Figure 1 are:

{(0, 3), (1, 3), (2, 3), (3, 4), (0, 1, 2), (4, 5, 6)}
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To construct the simplicial complex associated with a sequence of facets, F , we
generate all the faces of the simplexes of F . Subsequently, if we perform the set
union of all the faces we obtain the simplicial complex associated with F .

Definition 3. Let K be a simplicial complex over V . Let n and i be two integers
such that n ≥ 1 and 0 ≤ i ≤ n. Then the face operator ∂n

i is the linear map
∂n

i : Sn(K) → Sn−1(K) defined by:

∂n
i ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn)

the i-th vertex of the simplex is removed, so that an (n − 1)-simplex is obtained.

Now, we are going to introduce a central notion in Algebraic Topology. We
assume as known the notions of ring, module over a ring and module morphism
(see [16] for details).

Definition 4. Given a ring R, a graded module M is a family of left R-modules
(Mn)n∈Z.

Definition 5. Given a pair of graded modules M and M ′, a graded module
morphism f of degree k between them is a family of module morphisms (fn)n∈Z

such that fn : Mn → M ′
n+k for all n ∈ Z.

Definition 6. Given a graded module M , a differential (dn)n∈Z is a family of
module endomorphisms of M of degree −1 such that dn−1 ◦dn = 0 for all n ∈ Z.

The previous definitions define a graded structure and a way of going from a level
of the structure to the inferior one. From the previous definitions, the notion of
chain complex is defined as follows.

Definition 7. A chain complex C∗ is a family of pairs (Cn, dn)n∈Z where (Cn)
n ∈ Z is a graded module and (dn)n∈Z is a differential on (Cn)n∈Z.

The module Cn is called the module of n-chains. The image Bn = im dn+1 ⊆
Cn is the (sub)module of n-boundaries. The kernel Zn = ker dn ⊆ Cn is the
(sub)module of n-cycles.

Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 are
equivalent to the inclusion relations Bn ⊆ Zn: every boundary is a cycle but the
converse is not generally true. Thus, the next definition makes sense.

Definition 8. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each
degree n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn

Once we have defined the notions of simplicial complexes and chain complexes,
we can define the link between them considering Z as the ring R; the most
common case in Algebraic Topology.
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Definition 9. Let K be a simplicial complex over V . Then the chain complex
C∗(K) canonically associated with K is defined as follows. The chain group
Cn(K) is the free Z module generated by the n-simplices of K. In addition, let
(v0, . . . , vn) be an n-simplex of K, the differential of this simplex is defined as:

dn :=
n∑

i=0

(−1)i∂n
i

In order to clarify the notion of chain complex canonically associated with a
simplicial complex, let us present an example. The chain complexes associated
with simplicial complexes are good candidates for this purpose.

Example 3. Let K be the simplicial complex defined in Figure 1. The chain
complex C∗(K) canonically associated with K is:

· · · → 0 → C2(K) d2−→ C1(K) d1−→ C0(K) → 0 → · · ·

where there are 3 associated chain groups:

– C0(K), the free Z-module on the set of 0-simplexes (vertices)
{(0), (1), (2), (3), (4), (5), (6)}.

– C1(K), the free Z-module on the set of 1-simplexes (edges)
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6)}.

– C2(K), the free Z-module on the set of 2-simplexes (triangles)
{(0, 1, 2), (4, 5, 6)}.

The elements of either of those groups Cp are linear integer combinations of
the corresponding basis (set of σi’s), i.e. elements of the form

∑
λiσi, λi ∈ Z.

The differential homomorphism is in this case:

dn((v0, . . . , vn)) :=
n∑

i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vn) (1)

For instance, d2((0, 1, 2)) = (1, 2) − (0, 2) + (0, 1).

From the previous definition, we can introduce a very useful concept for the
computation of homology groups of simplicial complexes.

Definition 10. Let K be a simplicial complex over V and let n be an integer
such that n ≥ 1. The n-th incidence matrix of K over the ring Z, denoted by
Mn(K, Z), represents the (n − 1)-simplices of K as rows and the n-simplices of
K as columns. Assuming an ordering on the simplices of the same dimension (in
the rest of the paper we assume that the simplices of the same dimension will be
ordered), Mn(K, Z) is [aj

i ] where i ranges from 1 to the cardinality of Sn−1(K),
j ranges from 1 to the cardinality of Sn(K) and the value of aj

i is the coefficient
of the i-th (n − 1)-simplex in the differential of the j-th n-simplex; then aj

i is a
value in {0,±1}.
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Example 4. If we impose a lexicographical order on the simplices of the same
dimension of the simplicial complex depicted in Figure 1 (if v = (a0, . . . , an)
and w = (b0, . . . , bn) are n-simplices of the simplicial complex, then v < w if
a0 < b0, or a0 = b0 and a1 < b1, or a0 = b0 and a1 = b1 and a2 < b2,. . . , or
a0 = b0, . . . an−1 = bn−1 and an < bn), then its first incidence matrix is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6)

(0) −1 −1 −1 0 0 0 0 0 0 0
(1) 1 0 0 −1 −1 0 0 0 0 0
(2) 0 1 0 1 0 −1 0 0 0 0
(3) 0 0 1 0 1 1 −1 0 0 0
(4) 0 0 0 0 0 0 1 −1 −1 0
(5) 0 0 0 0 0 0 0 1 0 −1
(6) 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The relevance of the incidence matrices of simplicial complexes lies in the fact
that they can be used to compute the homology groups of the simplicial complex
by means of a diagonalization process, as explained for instance in [22].

3 The Theorem Formalized and Its Context

The definitions presented in the previous section are classical definitions from
Algebraic Topology. However, since our final goal consists of working with mathe-
matical objects coming from digital images, let us show how this machinery from
algebraic topology may be used in this context.

It is worth noting that there are several methods to construct a simplicial
complex from a digital image [3]. We are going to explain one of these methods.
Roughly speaking, the chosen method consists of obtaining a sequence of facets
from a digital image. Then, as we have explained in the previous section, we can
obtain the simplicial complex associated with the facets. So, we only need to
explain how to get the facets from a digital image.

We are going to work with monochromatic two dimensional images. An image
can be represented by a finite 2-dimensional array of 1’s and 0’s in which the
black pixels are represented by 1’s and white pixels are represented by 0’s.

Let I be an image codified as a 2-dimensional array of 1’s and 0’s. Let V =
(N, N) be the vertex set, each vertex is a pair of natural numbers. Let p = (a, b)
be the coordinates of a black pixel in I. For each p we can obtain two 2-simplexes
which are two facets of the simplicial complex associated with I. Namely, for
each p = (a, b) we obtain the following facets: ((a, b), (a+ 1, b), (a+ 1, b+ 1)) and
((a, b), (a, b + 1), (a + 1, b + 1)). If we repeat the process for the coordinates of
all the black pixels in I, we obtain the facets of a simplicial complex associated
with I, let us called it KI .

Example 5. Consider the image depicted in Figure 2. This image, I, can be
codified by means of the 2-dimensional array: ((1,0),(0,1)). Then, with the previ-
ously explained process we obtain the facets of KI . The coordinates of the black
pixels are (0, 0) and (1, 1), so the facets that we obtain are:

(((0, 0), (1, 0), (1, 1)), ((0, 0), (0, 1), (1, 1)), ((1, 1), (2, 1), (2, 2)), ((1, 1), (1, 2), (2, 2)))
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(0,1)
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(1,1)

Fig. 2. A digital image and its simplicial complex representation

We have presented a method to obtain a simplicial complex associated with
a 2D-image, this process can be generalized to higher-dimensional images [19].

It is worth noting that even the bigger digital images have always a finite
number of components, hence a finite number of vertices and then our vertex
set V consists of a finite number of vertices. Therefore, the simplicial complexes
coming from digital images are always of finite type. This point will be important
in our formalization.

Moreover, instead of working with the ring Z, we consider the ring Z/2Z since
the computation of homology groups is easier working with Z/2Z. This approach
is usually followed when algebraic topology methods are applied to the study of
digital images, see [13,14].

Then, we are going to work with a different definition of the face operator and
associated incidence matrices. Indeed, since coefficients (in Z/2Z) of opposite
sign are identified, we do not have to deal with orientations of faces.

Thus, in the following K will denote a simplicial complex over a finite set V
and n an integer such that n ≥ 1. The incidence matrix is now defined by:

Definition 11. The n-th incidence matrix of K over the ring Z/2Z, denoted by
Mn(K), is a matrix of size m × p, where m is the cardinality of Sn−1(K) and p
is cardinality of Sn(K). Its coefficients [aj

i ] are 1 if the i-th (n − 1)-simplex is a
face of the j-th n-simplex and 0 otherwise.

Note that the n-th incidence matrix of K over the ring Z/2Z is the absolute
value of the n-th incidence matrix of K over the ring Z.

Using this definition of incidence matrices, it is not necessary to use chain
complexes to compute homology groups of simplicial complexes, but just apply-
ing a diagonalization process, as described in [22].

Example 6. If we impose a lexicographical order on the simplices of the same
dimension of the simplicial complex depicted in Figure 1, then its first incidence
matrix over the ring Z/2Z is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6)

(0) 1 1 1 0 0 0 0 0 0 0
(1) 1 0 0 1 1 0 0 0 0 0
(2) 0 1 0 1 0 1 0 0 0 0
(3) 0 0 1 0 1 1 1 0 0 0
(4) 0 0 0 0 0 0 1 1 1 0
(5) 0 0 0 0 0 0 0 1 0 1
(6) 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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As we have said previously, incidence matrices of simplicial complexes come
from the differentials of the chain complexes canonically associated with the
simplicial complexes. Theses differentials satisfy a nilpotency condition (dn−1 ◦
dn = 0).

Then, we can state and proof the following theorem that is analogous to this
nilpotency condition on the incidence matrices we have defined above. It should
be noted that the statement below is the immediate transcription of the one we
formalized and proved in Coq/SSReflect.

Theorem 1. The product of the n-th incidence matrix of K over the ring Z/2Z,
Mn(K), and the (n + 1)-incidence matrix of K over the ring Z/2Z, Mn+1(K) is
equal to the null matrix.

Sketch of the proof. Let Sn−1, Sn, Sn+1 be the set of (n − 1)-simplices of K, the
set of n-simplices of K and the set of (n + 1)-simplices of K respectively. Then,

Mn(K) =

⎛
⎜⎜⎜⎜⎝

Sn[1] · · · Sn[r1]

Sn−1[1] a1,1 · · · a1,r1

.

.

.

.

.

.
. . .

.

.

.
Sn−1[r2] ar2,1 · · · ar2,r1

⎞
⎟⎟⎟⎟⎠, Mn+1(K) =

⎛
⎜⎜⎜⎜⎝

Sn+1[1] · · · Sn+1[r3]

Sn[1] b1,1 · · · b1,r1

.

.

.

.

.

.
. . .

.

.

.
Sn[r1] br1,1 · · · br1,r3

⎞
⎟⎟⎟⎟⎠

where r1 = 
|Sn|, r2 = 
|Sn−1| and r3 = 
|Sn+1|. Thus,

Mn(K) × Mn+1(K) =

⎛
⎜⎝

c1,1 · · · c1,r3

...
. . .

...
cr2,1 · · · cr2,r3

⎞
⎟⎠ where ci,j =

∑
1≤k≤r1

ai,k × bk,j

To prove that Mn × Mn+1 is equal to the null matrix, it is enough to prove
that ∀i, j such that 1 ≤ i ≤ 
|Sn−1| and 1 ≤ j ≤ 
|Sn+1|, then ci,j = 0. Each of
these coefficients is written:

ci,j =
∑

1≤k≤r1

ai,k × bk,j

Since k enumerates the indices of elements of Sn, we may write:

ci,j =
∑

X∈Sn

F (Sn−1[i], X) × F (X, Sn+1[j]) with F (Y, Z) =
{

1 if Y ∈ dZ
0 otherwise (2)

dZ is the analogous in our context of the differential operator defined by (1)
and is equal to:

dZ = {Z \ {x} | x ∈ Z}

This summation can be split depending on whether X ∈ ∂Sn+1[j] or X /∈
∂Sn+1[j].
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ci,j =
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i], X) × 1 (3)

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i], X) × 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i], X) (4)

The last summation is expressed over the image of the face operator x 	→
Sn+1[j] \ {x} which, restricted to Sn+1[j], is injective. Thus, we can reindex:

ci,j =
∑

x∈Sn+1[j]

F (Sn−1[i], Sn+1[j] \ {x}) (5)

Subsequently, this summation can also be split depending on whether x ∈ Sn−1[i]
or x /∈ Sn−1[i].

ci,j =
∑

x∈Sn+1[j]|x∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) +

∑
x∈Sn+1[j]|x/∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) (6)

Let us note that if x ∈ Sn−1[i] then Sn−1[i] ⊂ Sn+1[j] \ {x}, hence the first
sum above is 0.

ci,j =
∑

x∈Sn+1[j]|x/∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) (7)

Here, we can split our proof considering two cases: Sn−1[i] ⊂ Sn+1[j] and
Sn−1[i] ⊂ Sn+1[j].

In the first case, we have: ∀x ∈ Sn−1[i], F (Sn−1[i], Sn+1[j] \ {x}) = 0, hence
the result holds.

In the second case, Sn−1[i] ⊂ Sn+1[j] implies that if x /∈ Sn−1[i] then Sn−1[i] ∈
∂Sn+1[j] \ {x}, so the terms are all 1.

ci,j =
∑

x∈Sn+1[j]|x/∈Sn−1[i]

1 (8)

= 
|Sn+1[j] \ Sn−1[i]|
= n + 2 − n = 2 = 0 mod 2

4 SSReflect Basics

To formalize Theorem 1, we have used SSReflect [11], an extension for the
Coq proof assistant [4,6]. Its development was started by G. Gonthier during
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the formal proof of the Four Color Theorem [10] and is now involved in the
formalisation of the Feit-Thompson theorem [1].

SSReflect (for Small Scale Reflection) introduces a new language for tactics
that eases the development of proof scripts. Another main feature is the generic
reflection mechanism. More details on the SSReflect tactics language and
reflection techniques are presented in its manual [11].

Moreover, SSReflect provides a set of libraries embedding definitions and
properties for a variety of mathematical structures. In our formalization, it is
worth mentioning the following libraries:

– matrix.v: this library formalizes matrix theory, determinant theory and ma-
trix decompositions. In our problem, this library is used to define incidence
matrices, and to state and prove Theorem 1.

– finset.v and fintype.v: theory of finite sets and finite types. We use these
libraries to define the basic concepts about simplicial complexes.

– bigop.v: generic indexed “big” operations, like
n∑

i=0

f(i) or
⋃
i∈I

f(i) and their

properties, which are useful to deal with the matricial product in Theorem 1.
– zmodp.v: additive group and ring Zp, together with field properties when p

is a prime. As we work with elements of the field F2, we need this library.

For more precise details on these libraries we refer to [5,12]

5 Formal Development

The SSReflect libraries include all the necessary ingredients to represent the
mathematical structures of our formalization.

First of all, we define the notions related to simplicial complexes. The vertices
are represented by a finite type V. A simplex is defined as a finite set of vertices.
Then, the definition of a simplicial complex as a set of simplices closed under
inclusion is straightforward:

Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.

Since we do not take into account the signs of the coefficients appearing in
the incidence matrices, we define a face operator as a set difference (we remove
a vertex from a simplex) and the boundary as the image of a simplex by the face
operator.

Definition face_op (S : simplex) (x : V) := S :\ x.
Definition boundary (S : simplex) := (face_op S) @: S.

We prove the correctness of our definition of boundary by showing it is equiv-
alent to a subset relation with constraints on cardinality:
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Lemma boundaryP: forall (S : simplex) (B : simplex),
reflect (B \subset S /\ #|S| = #|B|.+1) (B \in boundary S).

The statement reflect P b expresses an equivalence between a proposition
P and a boolean expression b. This allows to take advantage of the decidability of
some propositions by going back and forth from their logical expressions (useful
for reasoning) to their boolean counterparts (well suited for computations).

A key argument for our proof is the injectivity of the face operator above,
which we establish as a lemma:

Lemma face_op_inj2: forall (S : simplex),
{in S &, injective (face_op S)}.

The notation {in S &, P} performs localization of predicates: if P is of the
form forall x y, Qxy then {in S &, P} means forall x y, x \in S -> y
\in S -> Qxy. In our case, injective f stands for forall x y, f x = f y
-> x = y.

Now, before giving the definition of the n-th incidence matrix of a simplicial
complex, we can define the more generic notion of incidence matrix of two finite
sets of simplices.

Representing a matrix requires an indexing of the simplices in Left (for the
rows) and Top (for the columns). Since Left and Top are finite sets, they are
equipped with a canonical enumeration: (enum_val Left i) returns the i-th
element of the set Left. A coefficient aij of the incidence matrix will be 1 if the
i-th simplex of Left is a face (subset) of the j-th simplex of Top and 0 otherwise.

Thus we can define the incidence matrix of two finite sets of simplices as
follows:

Variables Left Top : {set simplex}.
Definition incidenceMatrix :=
\matrix_(i < #|Left|, j < #|Top|)

if enum_val i \in boundary (enum_val j) then 1 else 0:’F_2.

In the definition above, it can be noted that the first argument of enum val
is implicit and determined by the context. Indeed, the notation i < #|Left|
means that the type of i is ’I_(#|Left|), that is i is an ordinal ranging

from 0 to #|Left|−1, where #|X| denotes the cardinal of the set X. With this
type information, the system expands enum_val i to enum_val Left i, thus
resolving the ambiguity (and similarly for j).

The type annotation 0:’F_2 indicates that the 0 and 1 appearing as coeffi-
cients of the matrix are the two elements of F2, that is Z/2Z as a field.

We now define the n-th incidence matrix of a simplicial complex c, by instan-
tiating Left to the set of n− 1-simplices (of c) and Top to the set of n-simplices.
Note that n should be nonzero.

Section nth_incidence_matrix.
Variable c: {set simplex}.
Variable n:nat.
Definition n_1_simplices := [set x \in c | #|x| == n].
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Definition n_simplices := [set x \in c | #|x| == n+1].
Definition incidence_matrix_n :=
incidenceMatrix n_1_simplices n_simplices.

End nth_incidence_matrix.

Then we have all the ingredients to state Theorem 1:

Theorem incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
simplicial_complex sc ->
(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

In the statement above, *m denotes the matricial product. The type infor-
mation of each matrix includes its size. When the product operator is applied,
the typechecking ensures that the two arguments have compatible sizes. Then
the system knows the expected size of the result matrix and reads 0 as the null
matrix of this size.

The formal proof of Theorem 1 follows the schema presented in Section 3. A
large part of the proof is devoted to the work with summations, for which the
Coq/SSReflect library “bigop” has played a key role.

For instance, the first summation splitting (equation (3)) is realized by:

rewrite (bigID (mem (boundary (enum_val j)))).

where j belongs to Sn+1.
The lemma bigID states that an iterated operation using a commutative

monoidal operator can be split:∑
i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

It is also possible to split a summation (equation (6)) and at the same time
rewrite the first resulting sum to 0 as in:

rewrite (bigID (mem (enum_val i))) big1.

big1 states that, when a monoidal operator is iterated over elements that are all
equal to the neutral, then the result is also the neutral element:∑

i∈r|Pi

0 = 0

Therefore, after the last tactic, the system will require a proof that all the
terms of the first resulting summation are zero. big1 is applied to obtain equa-
tions 4 and 7 of Section 3.

Our proof relies on two main reindexations: from ordinals to n-simplices (2)
and later on from simplices to vertices (5). To perform the first reindexation,
the script has the following shape:

rewrite (reindex_onto (enum_rank_in Hx0) enum_val) ; last first.
by move=> x _ ; exact:enum_valK_in.
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Where:

– Hx0 is a proof that there exists at least one n-simplex
– enum_rank_in enumerates the n-simplices since Hx0 ensures there is at least

one
– enum_val enumerates the ordinals over which the sum is expressed
– reindex_onto reindexes from ordinals to n-simplices, given a bijection be-

tween both sets. Indeed, the second line proves that enum_val ◦ enum_rank_in
= Id

The second reindexation is based on the injectivity of the face operator:

rewrite big_imset ; last exact:face_op_inj2.

Rewriting with the lemma big_imset triggers a check that the summation is
expressed over the image of a set by a function. In our case, the system auto-
matically infers that this function is the face operator face_op, and will then
ask for a proof of its injectivity.

The lemma eq big and its variants eq bigl and eq bigr allow to rewrite the
predicate or the operand of an iterated operation. It is applied in particular to
obtain equation 8 of Section 3:

rewrite (eq_bigr (fun _ => 1)).

The system will of course require a proof that the operand is equal to 1. Then
it will rewrite the expression to a constant summation, allowing the use of the
lemma big const to replace it with a product (cardinal of the iterated set by the
constant value).

Simple arithmetic arguments on cardinals will then complete the proof. The
interested reader will find a snapshot of our development online [15].

6 Conclusions and Further Work

In this paper we have presented the formalization of simplicial complexes and
their incidence matrices as well as the main theorem that gives meaning to the
definition of homology groups. The proof assistant used has been Coq as well as
the SSReflect extension and the libraries it provides. The verified algorithm is
related to a Computer Algebra system for Algebraic Topology called Kenzo [9].
Therefore, our research is placed between the efforts to formalize mathematics
and the application of formal methods in software systems.

Some parts of the future work are quite natural. The work presented here
is solid enough to undertake the challenge of formalizing the construction of
the Smith Normal Form [22] of incidence matrices, that is the diagonalization
process which obtains homology groups of finite type objects.

Moreover, if we want to apply our Algebraic Topology methods to real life
problems, for instance the study of medical images, we must be completely sure
that our programs are safe. Therefore, the process to construct a simplicial com-
plex from a digital image, presented in Section 3, should be formalized, too.
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In addition, our proof seems generic enough to achieve the case of working
with Z-modules, instead of Z/2Z-modules, quite easily.

Another topic is related to the executability of our proofs, that is the compu-
tational capabilities of the objects we have defined (like the incidence matrices).
Two main approaches are possible: code extraction or internal computations.
The first one delivers a certified program and takes advantage of the existing
extraction machinery of the Coq system. However, technical limitations have to
be dealt with to get a usable program in our context. The second approach is
somewhat more challenging regarding efficiency. Indeed, reaching inside Coq an
execution speed on par with the one obtained by extraction and compilation is
difficult because proofs cannot safely be erased from the terms (what extraction
does). However, compilation techniques and evaluation strategies mitigating the
performance impact are currently being studied and implemented.

One advantage of this second approach lies in the fact that it would enable
the reuse of computational results in further formal developments. For instance,
the computation of the smith normal form of a matrix could be used for further
deductions, in the same system, on the topological object under study. We are
currently studying the use of both code extraction and efficient computational
techniques in the Coq/SSReflect system, applied to the objects and theories we
have presented above.
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isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

13. Gonzalez-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic Topo-
logical Analysis of Time-Sequence of Digital Images. In: Ganzha, V.G., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer,
Heidelberg (2005)

14. Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete
Applied Math. 147(2-3), 245–263 (2005)

15. Heras, J., Poza, M., Dénès, M., Rideau, L.: Incidence simplicial matrices formalized
in SSReflect (2010), http://www.unirioja.es/cu/joheras/ismfissr/

16. Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman and Company, New York
(1989)

17. Mackenzie, D.: Topologists and Roboticists Explore and Inchoate World. Science 8,
756 (2003)

18. MacLane, S.: Homology. Springer, Heidelberg (1963)
19. Orden, D., Santos, F.: Asymptotically efficient triangulations of the d-cube. Dis-

crete and Computational Geometry 30(4), 509–528 (2003)
20. Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications, Lec-

ture Notes Summer School on Mathematics, Algorithms, and Proofs. University
of Genova (2006), http://www-fourier.ujf-grenoble.fr/ sergerar/Papers/

Genova-Lecture-Notes.pdf
21. Ségonne, F., Grimson, E., Fischl, B.: Topological Correction of Subcortical Seg-

mentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp.
695–702. Springer, Heidelberg (2003)

22. Veblen, O.: Analysis Situs. AMS Coll. Publ. (1931)
23. Wood, J.: Spinor groups and algebraic coding theory. Journal of Combinatorial

Theory 50, 277–313 (1989)

http://www.unirioja.es/cu/joheras/ismfissr/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf


Proof Assistant Decision Procedures for

Formalizing Origami

Cezary Kaliszyk and Tetsuo Ida

Symbolic Computation Research Group,
University of Tsukuba

{kaliszyk,ida}@cs.tsukuba.ac.jp

Abstract. Origami constructions have interesting properties that are
not covered by standard euclidean geometry. Such properties have been
shown with the help of computer algebra systems. Proofs performed with
computer algebra systems can be accompanied by proof documents, still
they lack complete mathematical rigorousity, like the one provided by
proof assistant checked proofs. Transforming such proofs to machine
checkable proof scripts poses a number of challenges.

In this paper we describe issues that arise when proving properties
of origami constructions using proof assistant decision procedures. We
examine the strength of Gröbner Bases implementations comparing proof
assistants with each other and with the implementations provided in
computer algebra systems. We show ad-hoc decision procedures that
can be used to optimize the proofs. We show how maximum equilateral
triangle inscribed in a square construction can be formalized. We show
how a equation system solving mechanism can be embedded in a CAS
decision procedure of a proof assistant.

1 Introduction

1.1 Computational Origami

Origami is the traditional Japanese art of paper folding. In the recent years it is
becoming more popular because of its applications in science, and education. It
can also be a tool for geometrical constructions; namely it describes representing
objects using paper folds. Instead of ruler and compass in Euclidean geometry
one can use paper folding as a basis to create new points and lines on a surface.
Starting with a square area represented by four corners of an initial origami, one
can specify folds to superpose existing points or lines. Such superpositions give
rise to new lines and the intersections of the new lines with existing ones create
new points on the origami.

The traditional meaning of folds has been expressed in a rigorous way by
Huzita and Justin [7,8,11]. Their work has classified all the possible folds, creat-
ing a system of operations for origami geometry (called axioms in the literature).
They also show that the system is complete; this means that for the case of fold-
ing along one line no other operations that superpose points and lines are possi-
ble. The origami constructable points are a superset of the points constructable

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 45–57, 2011.
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with Euclidean geometry; which also means that properties of the constructions
performed with origami can be more complicated than those performed with
ruler and compass.

The term computational origami has been used to refer to the branch of com-
puter science that studies various aspects of origami. It includes representation
of origami, design of origami algorithms, visualization, and geometrical theorem
proving of computational and mathematical properties of origami. Computa-
tional origami most often refers to analyzing origami with a computer; while
origami refers to an infinite virtual paper. In this paper the most important no-
tion from computational origami used is the correspondence between geometry
and algebra that allows to express the origami axiom system logically.

Recently a system for computational origami Eos has been created [15]. This
system is capable of visualizing origami constructions based on Huzita’s axioms,
analysing the origami folds algebraically, and showing properties of the construc-
tions. During the computational origami construction, geometrical constraints
are accumulated. The symbolic representation is then transformed into algebraic
forms by constraint solving using the generalized equations which describe the
axioms. The algebraic representation is a set of polynomials, which describes
the geometrical construction in a general way. The polynomials are then used to
prove properties of the construction using the Gröbner bases method and CAD
(Cylindrical Algebraic Decomposition). The proofs performed by Eos are auto-
mated; after specifying the goal, assumptions and a coordinate system, they use
Mathematica’s symbolic expression transformations and the implementations of
the above two proof methods.

A number of constructions have been performed with Eos and certain prop-
erties of those constructions have been proved with its help:

– Trisection of an angle
– Maximum equilateral triangle
– Regular Heptagon
– Morley’s Triangle
– Crane layers and sides

In this paper we use Eos as a source of computational origami problems; to-
gether with its mechanism for gathering the properties of origami constructions.

1.2 Computer Algebra functionality in Proof Assistants

Mainstream Computer Algebra Systems, for instance Mathematica and Maple,
are weakly founded. This means that the expressions processed there do not
have precisely defined semantics. The way expressions are processed in those
systems is supposed to resemble mathematics as done on paper. But the fact
that semantics are not well defined can be a reason for errors. There are various
reasons for the mistakes found in mainstream CAS systems: assumptions can
be lost, types of expressions can be forgotten [2], the system might get confused
between branches of ‘multi-valued’ functions, and of course the algorithms of the
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system themselves may contain implementation errors [21]. Simple mistakes have
been found and fixed over the years; however mistakes made when performing
more complicated computations are still found.

In1 := vector [2; 2] - vector [1; 0] + vec 1

Out1 := vector [2; 3]

In2 := diff (diff (λx. 3 * sin (2 * x) + 7 + exp (exp x)))

Out2 := λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- 12 * sin (2 * x)

In3 := N (exp (1)) 10

Out3 := #2.7182818284 + ...

In4 := x + 1 - x / 1 + 7 * (y + x) pow 2

Out4 := 7 * x pow 2 + 14 * x * y + 7 * y pow 2 + 1

In5 := sum (0,5) (λx. x * x)

Out5 := 30

In6 := sqrt (x * x) assuming x > 1

Out6 := x

Fig. 1. Example session that shows interaction with the prototype computer algebra
input-response loop. When the user inputs expressions to be processed in the In fields,
the system produces output in Out lines together with (not displayed) HOL Light
theorems that state the equality between the inputs and the outputs. Because of the
way numbers are defined in HOL Light, working with them requires coercions. To work
with multiple types in HOL Light coercions are needed and the & symbol is necessary
for some numbers; here prioritization has been assumed and the coercions were skipped.
Similarly the rest of a numerical approximation (marked as ...) is hidden in the output.

We have built a prototype computer algebra like input-response-loop inside
HOL Light [13], with the user interface designed close to the interfaces of popular
computer algebra systems. In Figure 1 we show examples of simplifications that
it can perform automatically, for example:

– Real analysis and transcendental functions, including symbolic differentia-
tion and integration

– Simple complex computations
– Approximations, decimal approximations and rounding
– Binomials, permutations, primality
– Vectors, matrix operations

Implementing the computer algebra inside a proof assistant with all the simpli-
fications certified by the latter guarantees that the system will make no mis-
takes [13].

This architecture also has drawbacks, the two main drawbacks are the com-
plexity of the implementation and the efficiency. Every simplification that one
needs to perform has to be a proof producing simplification and every equation
needs to be accompanied with a proof. Similarly all the simplifications as seen
in Figure 1 are relatively simple; performing any more complicated operations
would become too slow in the current prototype. Also, when talking about the
efficiency of a computer algebra system has to take into account scalability.
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The formulas that show up when proving properties of origami systems can be
processed in a commercial computer algebra system; however already there it can
take a substantial amount of time. The Eos proof document describing the proof
for Morley’s theorem by Abe’s method [5] shows that the call to Mathematica’s
Gröbner bases algorithm takes 1668.12 seconds on a modern machine. Taking
into account that all operations of the prototype CAS system are much slower
than their Mathematica counterparts, and the fact that the implementations
of algorithms chosen to be certified are less efficient algorithms it is naturally
not possible to obtain the same proof performed automatically in the prototype
system.

In this paper we show tactics that allow simplifying the goals that arise in
Eos in such a way that they can be fully formally verified with the help of
decision procedures. The tactics solve (or simplify) systems of equations. We
compare the efficiency of the implementations of computer algebra algorithms
in various proof assistants and show how the goals that arise in certain origami
constructions can be proved with the help of these tools.

1.3 Contents

The rest of this paper is organized as follows. In Section 2 we describe proof
documents generated by Eos. In Section 3 we describe how the algebraic proof
of the equilateral triangle construction can be performed manually in a proof
assistant. In Section 4 we show a tactic that preprocesses the goals for the
proof assistant decision procedures. Section 5 presents related work. Finally in
Section 6 we give a conclusion and present possible future work.

2 Formalizing a Proof Document

When an origami construction is performed with the help of Eos and its prop-
erties are checked, optionally the system can create a proof document. It is an
output that includes all the operations performed within an origami construc-
tion along with all the steps of the proof. Every proof document starts with a
header and a copy of the user given program for constructing the origami. The
program always starts with a new origami and includes the performed folds and
unfolds and the new points and lines. For every new point and line the way it is
obtained is stored.

In the first stage of the proof document the points and lines are represented
in a geometrical way. This means that geometric relations between points and
lines are given, but no coordinates are assigned to the points.

In the second stage the points and lines are given variable coordinates and with
the help of the origami axiom system the geometrical properties (properties that
talk about points, lines and folds) are translated into algebraic properties. The
operations of origami constructions are expressed in terms of equations (assumed
as axioms) and this step is a substitution in these equations. During this stage
some precision is lost. The equations that talk about equal distances would be
expressed as equality between square roots. To avoid square roots that are not
handled by real arithmetic decision procedures, those equations are squared.
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There are two kinds of optimizations performed in the second stage. First,
same points and lines are assigned the same coordinates. Second, predicates that
are not relevant for the goal are removed. These two steps have been introduced
since Mathematica’s algorithm is not able to eliminate them automatically and
otherwise its complexity increases with a bigger number of variables and equa-
tions. In a formalization irrelevant assumptions and equal variables can be easily
removed (for example in Isabelle the clarify tactic removes both).

The last part of the proof document is the crucial one from our point of view.
The decision procedures built into Mathematica are used to verify the large
formula prepared in the previous steps. The computation performed in this step
is done behind the scenes and as such cannot be verified independently. This is
the reason for a formalization of this step, which we describe in the following
section.

3 Equilateral Triangle Construction

In this section we will focus on the proof of the maximal equilateral triangle
construction performed with origami, and the formalization of the computational
part of the equilateral proof. The construction as shown in Figure 2 is described
in more detail in paper [14]. The computational origami system Eos gathers the
geometrical properties of the origami lines and points and translates them to
algebraic properties. Similarly the goal (the fact that the triangle is equilateral)
is expressed in terms of an algebraic constraint. The formula to be proved at the
end of this step is given in Figure 3.

GF
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D

B

K

H

LE

Fig. 2. Equilateral triangle construction as performed by Eos. Only the final origami
state is shown. For the folds where more than one resulting line is possible, the system
interactively asks the user which of the lines is the intended one.
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a1 = 0∧ (−1+ a1) ∗ (−1+ b1) = 0∧ (−1+ b1)∗ b1 = 0∧ (−1+ a2) ∗ (−1+ b2) = 0∧ (−1+ b2) ∗ b2 =

0 ∧ (−1 + a3) ∗ (−1 + b3) = 0 ∧ (−1 + b3) ∗ b3 = 0 ∧ (−1 + a4) ∗ (−1 + b4) = 0 ∧ (−1 + b4) ∗ b4 =

0∧ (−1+ b4)∗ (b1 + c1 +2a1) = 0∧ (b1 +2∗ c1)/2 = 0∧ c1 − b1 +2∗a1 +a2
4 ∗ b1 +a2

4 ∗ c1 +(−2)∗a1 ∗
b4 +2∗a1∗a2

4 +2∗a4∗b1 +2∗b1∗b4 = 0∧(−1+b3)∗(a2+c2) = 0∧c2−a2 +a2∗a2
3 +a2

3 ∗c2+2∗a2∗
a3 +2∗a2∗b3 +2∗b2∗b3 = 0∧a3+b3 +c3 = 0∧a4+b4 +c4 = 0∧x3 = 0∧x8 = 0∧b1∗x1−a1∗y1 =

0∧c1 +(a1 ∗x1)/2+(b1 ∗y1)/2 = 0∧b1 ∗(−1+x2)−a1 ∗y2 = 0∧a2 ∗y2 +b2 ∗x1−a2 ∗y1−b2 ∗x2 =

0 ∧ c1 + a1 ∗ (1 + x2)/2 + (b1 ∗ y2)/2 = 0 ∧ (2 ∗ c2 + a2 ∗ x1 + a2 ∗ x2 + b2 ∗ y1 + b2 ∗ y2)/2 =

0 ∧ c1 + a1 ∗ x3 + b1 ∗ y3 = 0 ∧ c1 + a1 ∗ x4 + b1 ∗ y4 = 0 ∧ c2 + a2 ∗ x4 + b2 ∗ y4 = 0 ∧ −1 + y5 =

0∧c2+a2∗x5+b2∗y5 = 0∧a1∗(y5−y6)+b1∗(x6−x5) = 0∧c1+a1∗(x5+x6)/2+b1(y5+y6)/2 = 0∧y7 =

0∧c3+a3∗x7+b3∗y7 = 0∧c4+a4∗x8+b4∗y8 = 0∧−1+(x8−y8+x7(−1+y8)+(1−x8)∗y7)∗ξ1 = 0 ⇒
−((1−x7)

2)+(x7−x8)
2−(1−y7)

2+(y7−y8)
2 = 0∧(x7−x8)

2+(y7−y8)
2−(1−x8)

2−(1−y8)
2 = 0

Fig. 3. Algebraic formula to be proved. The equations arising from all the steps of the
construction have been gathered by Eos. We show it here, as an example problem to
be solved; the equation systems for other origami problems are similar, just contain of
more equations with more variables.

The computer-algebra decision procedure as presented in [13] is not able to
do any simplifications on a formula this big. Still parts of it can be simplifed
and this can be made the first part of the proof. We performed this first part
in three proof assistants to compare the available mechanisms for reasoning on
goals arizing from Eos; we also compare it with Mathematica’s simplification.
For the experiment we used HOL Light [6], Isabelle [19] and Coq [3].

The Gröbner bases algorithms present in the 3 proof assistants are too weak
to solve the goal without any preprocessing. In case of HOL Light and Isabelle
the mechanisms do not terminate in reasonable time (we tried one week on a
powerful server), in case of Coq after a few minutes the procedure exits with the
goal transformed in ring equations but not solved.

To perform the complete proof in HOL Light we first need to simplify the
equations. To do this manually we first solve some of the sub-equations using the
ring and field decision procedures. The COMPLEX_FIELD conversion will produce
the rewrite rules for solving linear equations and FIX_X_ASSUM can be used to
replace the original equation assumption with the solved one. The HOL Light
goal-state is internally a sequence of implications, where the goal is implied by
all the assumptions. To rewrite all variable occurrences in the other assumptions,
a specific solved assumption is the only one kept in the assumptions list while
all other ones are moved to the goal.

Solving linear equations and performing substitutions allows reducing the goal
to a system of 5 equations. Moving the assumptions back to the goal and gener-
alizing over the five variables creates two subgoals, which both can be solved by
HOL Light’s built in real quantifier elimination procedure. The procedure takes
18 seconds to prove the two goals on a modern computer. The HOL Light proof
script is 98 lines long.

The same proof can be performed in a similar way in Isabelle; with two im-
portant differences. The clarify tactic together with the simplifier is able to
substitute the value of a computed assumption in other ones and remove un-
necessary assumptions automatically. Similarly the algebra decision procedure
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is able to operate on a goal with variables and assumptions introduced in the
context as well as with a goal being a conjunction of two equations. This means
that the manual proof can be cleaner than the HOL Light one; still the choice
of equations to solve and the rules to apply is left to the user. The final call to
the Gröbner bases decision procedure takes 1.4 seconds to solve the simplified
goal. The Isabelle proof script is 151 lines long.

In our experiments the nsatz tactic in Coq was too weak to solve even the
goal with five equations. This result was quite surprising, as we expected the
procedure that makes use of reflection to be stronger than the ones present in
HOL Light or Isabelle. The procedure is able to solve goals involving quadratic
equations, but for more complicated goals it transforms the goal into equations
mentioning explicitly the real ring and exits.

4 Equations Solving Tactic

In this section we describe a tactic that solves or simplifies systems of equations
motivated by the manual formalization. With the help of this tactic the original
set of equations can be simplified to a much simpler formula, namely for the
problem presented in the previous section it can be simplified automatically to
the one presented in Figure 4.

a2
4 + 4 ∗ a4 + 1 = 0 ∧ a2

3 + 4 ∗ a3 + 1 = 0 ∧ 1 + a3 − a3 ∗ x7 = 0 ∧ 1 − y8 + a4 = 0 ∧−1 − xi1 ∗ y8 −
ξ1 ∗ x7 + ξ1 ∗ x7 ∗ y8 = 0 ⇒ −2 + y2

8 + x7 ∗ 2 = 0 ∧ −2 + y8 ∗ 2 + x2
7 = 0

Fig. 4. Simplified, with solved variables removed for clarity

The tactic is similar to extended Gaussian elimination; it allows the original
system to contain equations of higher degrees as well as inequalities. The sim-
plifications are performed in an order that takes into account the complexity
of symbolic transformations. Given a system of equations the tactic counts the
numbers of occurrences of variables in each equation. As the tactic is running
a threshold for a maximum number of variables is increasing. For the equations
that have less variables than the current threshold, all the occurrences are moved
to one side of the equation. Next the left side of the equation can be normalized,
and in case if the equation is a linear equation it can be solved.

In the following we will distinguish the assumptions and goal part of the HOL
Light goal-state, as described in Section 3. The tactic analyses the goal and
performs the operations according to Fig. 5:

The tactic optionally is able to remove the variables that have been solved.
Since the equations are processed together with the goal, the variables that
have been solved have also been replaced in the goal. This means that removing
equations involving those variables does not weaken the goal.

Repeating the tactic performs a simplification of the original system of equa-
tions. For a system of linear equations the procedure is equivalent to Gaussian
elimination optimized to perform fewer operations. It also accepts higher order
equations and inequalities, performing normalization of higher degree equations.
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1. Start with threshold t equal 1.
2. If t is greater than maximum threshold exit.
3. Find assumptions with number of free variables less than t. Move

those assumptions to the assumptions part of the goal-state using
DISCH_TAC and keep the other assumptions in the goal part using
UNDISCH_TAC.

4. If there are no assumptions, increase t by 1 and go to step 2.
5. If there are no variables in the assumptions, simplify all the as-

sumptions with COMPLEX_POLY_CONV, increase t and go to step 2.
6. For each equation select a variable to normalize

(a) Choose a variable that has only one linear factor equal 1
(b) If not possible choose a variable with only linear factors
(c) If not possible choose a variable with the lowest degree

7. In every equation bring all occurrences of the variable to nor-
malize to one side and the other factors on the other and call
COMPLEX_POLY_CONV to simplify both sides.

8. If there are equations where only a linear factor remains, divide
both sides by the linear factor and simplify the goal and the other
equations with it. Set t equal 1 and go to step 3.

9. Increase t by 1 and go to step 2.

Fig. 5. The simplification algorithm performed by the tactic

4.1 Evaluation

We tested the tactic on four proofs. The equilateral triangle construction gives
rise to two obligations: the proof that the triangle is indeed equilateral and
the proof that it is a maximal triangle inscribed in the original square of the
origami. We also looked Eos regular heptagon construction and the Morley’s
triangle construction proofs.

We believe these are the most relevant and interesting proofs from origami
theorem proving that can be analyzed with algebra only. There are two other
important origami proofs performed with Eos that we cannot deal with our
automatic approach, namely the proof about the sides and layers of the crane
origami construction and the proofs about angle trisection constructions. The
reason for this is that the first kind includes three dimensional properties that
cannot be easily encoded with the same kind of algebraic formulas and the second
requires trigonometry.

In all the proofs that we have tried, the tactic did reduce the number of
equations and inequalities and the number of quantified variables. In case of
the equilateral proof it was able to reduce the 35 equations to 5 equations.
For the maximal proof it reduced 37 (in)equations to 9 (in)equations. For the
regular heptagon proof it reduced 63 equations to 12 equations. In case of the
Morley’s triangle construction the tactic would only eliminate 8 simple linear
equations but would not be able to progress further because of a bit amount of
inequalities. This construction has 27 cases and only for 9 of them the triangle
is indeed a Morley’s triangle. This means that there are 6 inequalities that limit
the effectiveness of the tactic.
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For all the above examples the tactic run-time is less than one second on
a modern computer. Only in the equilateral triangle proofs the Gröbner bases
decision procedure is able to finish the proof automatically. This takes 18 seconds.

In case of the regular heptagon construction, preprocessing reduces an origi-
nal system of 63 equations to 12 equations. At this stage the Gröbner decision
procedures present in the proof assistants are still too weak to finish the goal
and additional manual solving of higher-level equations is needed. Finishing the
proof manually is complicated, since processing higher order equations manually
is cumbersome. When processing the equations in a computer algebra system,
irrational numbers and their linear factors are automatically moved from de-
nominators to numerators by multiplying the equations by appropriate factors.

4.2 Inequalities

During the construction of an origami, some of the fold operations have a num-
ber of solutions. When the user interactively requests such a fold in an Eos
construction, the system will in turn ask which of the two of three fold lines is
the intended one. This is then turned in a geometric constraint that a point is
included in a certain segment.

Similarly inequalities may come from assumptions about points being on the
origami (some approaches to computational origami assume that the original
paper is infinite; however after performing folds the area on which points can be
considered becomes bounded) or even from the property to be proved (for exam-
ple the case of a constructed triangle being the maximal one). Such constraints
are naturally easier provided as inequalities and therefore cannot be directly
used in conjunction with the Gröbner bases algorithm.

McLaughlin and Harrison [16] have implemented a proof producing CAD al-
gorithm that follows the Hörmander’s CAD algorithm. We tested the efficiency
of the algorithm for practical problems and unfortunately it is too slow to be
used; in fact we were not able to solve problems of size 3. However the procedure
comes useful when solving second order equations. Still to be useful in a man-
ual formalization, additional tactics for normalizing equations with irrational
fractions would be needed.

5 Related Work

As a part of the ForMath project, a proof producing CAD in Coq has been
implemented [4]. Its efficiency is however not enough to perform proofs as shown
in this paper. We also tried the nsatz tactic present in Coq [20]. It has the
advantage of using reflection to obtain very efficient proofs. Still many of the
origami goals require complex numbers and the tactic does not work with those;
also for the proofs that can be performed with real numbers (for example the
simplified system of 5 equations for the equilateral triangle proof) the tactic is
not able to solve the goal.

A Common-Lisp implementation of the Buchberger algorithm has been ver-
ified in ACL2 [17]. There are numerous bridges between proof assistants and
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computer algebra systems (for example [1]). Such architectures have different
degree of trust; the proof of the computer algebra is either used as an oracle or
as a hint and recomputed. In this research we aim at a complete formalization
done in a proof assistant.

There are many programs for proving geometrical properties. Certain pro-
grams are able to export goals to proof assistants to be able to formally certify
the constructions. Examples of those are GeoProof [18] or GCL [10]. We have
not known of any origami proofs performed in this way.

6 Outlook

There are many decision procedures for real and complex arithmetic present in
proof assistant libraries and extensions. They are certainly useful, but they still
require special goal shapes and are very slow in comparison with the algorithms
present in computer algebra.

We have shown how the goals that arise in origami proofs can be automati-
cally simplified and some of those can be immediately solved by proof assistant
decision procedures possibly with minor manual interaction. We compared the
efficiency of implementations of Gröbner bases algorithm in HOL Light, Isabelle
and Mathematica.

The developed equation system simplifying tactic is available as a part of
the CAS-conversion [12]. As such it is both available in the prototype certified
computer algebra system inside HOL Light, and as a part of the general CAS
simplification procedure.

6.1 Future Work

In this paper we assumed the correctness of the part of the Eos system that
gathers the geometric conditions and translates them to an algebraic formula.
Origami operations are usually expressed in terms of numbers of possible fold
lines that satisfy certain constraints. For a proof assistant development, for ev-
ery operation equivalent algebraic constraints could be proved. The original con-
straints of the operations are expressed using geometry, and it is also possible
to transform those into geometrical constraints.

The principles of folding could be formalized in a proof assistant together with
the basic properties of the fold lines that are implied by particular folds. Those
properties have been proved geometrically only on paper (for example in [9]).
Creating a development like this would be a basis for a formalized origami theory.
For operations that give rise to a single possible fold line, this is straightforward;
however certain origami fold operations are known to be equivalent to solving
higher order equations. In the Equilateral triangle construction we use two of
the Huzita’s fold principles: fold2 and fold5. The first of those superposes one
point onto a different point creating only one fold line. However the latter one
superposes one point onto a line and making the crease pass through another
point (tangent from a point to a parabola) giving two possible fold lines in the
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general case. When the user performs such a fold interactively, Eos presents the
user with a choice visually. In a proof assistant, one needs a formal statement
that will be known to limit the equation to a single solution.

In case of the equilateral triangle construction we can limit the result of a
fold operation by adding intersection constraints. With such a mechanism we
can imagine the formal statement in a proof assistant to look like on Figure 6.
Here both of the fold5 operations give rise to 2 fold lines, and an additional
intersection constraint is necessary to make the construction unique and to make
the goalstate true. In case of more complicated constructions intersection may
not always be enough to specify a unique fold line and a more elaborate mech-
anism of specifying a unique fold line will be necessary.

lemma equilateral triangle:
fixes

A B C D E F G H J K :: point
and k l m n :: line

assumes
a1: ”A = (0, 0)”

and a2: ”B = (1, 0)”
and a3: ”C = (1, 1)”
and a4: ”D = (0, 1)”
and a5: ”k = fold2 A D”
and a6: ”E = intersect k A D”
and a7: ”F = intersect k B C”
and a8: ”l = fold2 A B”
and a9: ”H = intersect l D C”
and aa: ”G = intersect l E F”
and ab: ”m ∈ fold5 D l A”
and ac: ”J = intersect m C D”
and ad: ”n ∈ fold5 B k A”
and ae: ”K = intersect n B C”

shows
”dist A J = dist J K”

and ”dist J K = dist A K”

Fig. 6. With a formalization of the origami axiom system, a sequence of unique folds
and intersections can be described in a goalstate
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Abstract. Theoretical economics makes use of strict mathematical
methods. For instance, games as introduced by von Neumann and Mor-
genstern allow for formal mathematical proofs for certain axiomatized
economical situations. Such proofs can—at least in principle—also be
carried through in formal systems such as Theorema. In this paper we de-
scribe experiments carried through using the Theorema system to prove
theorems about a particular form of games called pillage games. Each pil-
lage game formalizes a particular understanding of power. Analysis then
attempts to derive the properties of solution sets (in particular, the core
and stable set), asking about existence, uniqueness and characterization.

Concretely we use Theorema to show properties previously proved on
paper by two of the co-authors for pillage games with three agents. Of
particular interest is some pseudo-code which summarizes the results pre-
viously shown. Since the computation involves infinite sets the pseudo-
code is in several ways non-computational. However, in the presence of
appropriate lemmas, the pseudo-code has sufficient computational con-
tent that Theorema can compute stable sets (which are always finite).
We have concretely demonstrated this for three different important power
functions.

1 Introduction

Theoretical economics may be regarded as a branch of applied mathematics,
drawing on a wide range of mathematics to explore and prove properties of
stylized economic environments. Since the Second World War, one particularly
important body of theory has been game theory, as introduced by von Neumann
and Morgenstern [17] and successfully developed by John Nash.
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The game theory stemming from von Neumann and Morgenstern has be-
come known as cooperative game theory; it allows abstraction from the details
of how agents might interact, instead focusing directly on how final outcomes
may or may not dominate each other. As dominance is a binary relation, coop-
erative game theory has lent itself naturally to axiomatic analyses. The game
theory stemming from Nash has become known as non-cooperative game the-
ory; it is explicitly constructive, requiring specification of a game form that
details the set of permissible moves available to agents. Solutions to coopera-
tive games have been difficult to calculate relative to non-cooperative games,
contributing to the latter body of theory’s current preeminence within game
theory.1

In the current work, we use Theorema [19] to formalize a particular cooper-
ative game form, called pillage games, and to prove formally certain properties
of them. Pillage games, introduced in [8], form an uncountable set of coopera-
tive games, taking the two best known classes of cooperative games (those in
characteristic and partition function form) as boundary points. At the same
time, even though each is defined over an uncountable domain, their structure
has thus far been sufficient to avoid Deng and Papadimitriou’s [5] pessimistic
conclusions that whether a solution even exists may be undecidable. Thus, pil-
lage games provide a class of games for analysis that is simultaneously rich and
tractable. To our knowledge, this represents the first attempt to formally prove
properties of a cooperative game. Related is work on other axiomatic proofs
within economic theory which have been formalized. Arrow’s theorem in social
choice has attracted the most attention, including studies by Wiedijk [18] using
Mizar, Nipkow [15] using HOL, and Grandi and Endriss [6] using Prover9. Non-
cooperative game theory has also received attention, including by Vestergaard
and co-authors [16] with Coq.

The formalization of a particular game form in economics can be interesting
to computer science for at least two reasons, and to economics for at least one.
For computer science, economics is a relatively new area for automated theorem
proving and therefore presents a new set of canonical examples and problems.
Secondly, it is an area which typically involves new mathematics in the sense
that axioms particular to economics are postulated. Further, in the case of pillage
games, the concepts involved are of a level that an undergraduate mathematics
student can understand easily. That is, the mathematics is of a level that should
be much more amenable for formalizations than research level mathematics.

For economics, as in any other mathematical discipline [11], establishing
new results is typically an error-prone process, even for the most respected re-
searchers. We cite but two examples from cooperative game theory:

1. In founding game theory, von Neumann and Morgenstern [17] assumed that
one of the key concepts of the field, the so-called stable set (by them just
called the “solution”), always existed in games in characteristic function
form. This was subsequently demonstrated by Lucas [12] to be incorrect.

1 For example, Gambit [14] solves a broad class of non-cooperative games.
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2. Nobel Prize winning economist and game theorist Maskin [13] claimed that
certain properties of a game in partition function form extended from n = 3
to n > 3. However, de Clippel and Serrano [4] found counterexamples with
n > 3.

It is understandable that such problems occur since typically for any new axiom
set humans have initially no or only limited intuition. This way it is easy to as-
sume false theorems and to overlook cases in proofs. Proofs found in mathematics
in general and theoretical economics in particular, can be viewed from a logical
point of view more like proof plans. That is, not all details are given, hidden as-
sumptions may be overlooked, proof steps may be incorrect, generalizations may
not hold. Thus, any mathematical discipline, including theoretical economics,
can benefit from formalizing proofs since this will make proofs much more reli-
able. However, there are other potential benefits. For instance, in experimenting
with axiomatizations it is much easier to reuse proof efforts. Furthermore the de-
pendencies of assertions can be accessed more easily and experiments with the
computational content of theorems becomes possible which without computer
support would be time consuming and error-prone.

In this work we report on our experiments with the Theorema system which
we conducted to formalize pillage games, to prove certain properties of them,
and to exploit computational features in them. Full verification of the formal
statements is an important goal of these experiments. However, we also look at
less labour extensive ways of making use of Theorema and will discuss this.

The paper has the following structure. In the next section we give a brief intro-
duction to pillage games. In Section 3 we present the representations in Theorema
and the proofs of some formal statements which we formally proved in Theorema.
A focus of the presentation as presented in Subsection 3.4 is the pseudo-code,
which summarizes the results of the paper we formalize. This pseudo-code is
non-computational in several ways. However, a mixture of proof and computa-
tion makes it possible to evaluate it in concrete cases. In Section 4 we evaluate
the approach taken.

2 A Brief Introduction to Pillage Games

The class of games used for our experiments are called pillage games, a particu-
lar form of cooperative games, introduced by Jordan in [8]. In a nutshell, pillage
games describe how agents (n in total) can form coalitions in order to redis-
tribute all or part of the possessions of other coalitions among themselves. The
possessions are described by a so-called allocation, a vector of n non-negative
numbers which sum to one. Given two such vectors, x and y, three coalitions
are induced: the win set of a transition from x to y is {i | yi > xi }; the lose set
is {i |xi > yi }; the remaining agents are indifferent between x and y. Pillage is
possible if and only if the win set is more powerful at x than is the lose set; if
this is so, it is said that y dominates x.
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The power of a coalition is determined by a so-called power function, π, a
function which depends exclusively on the coalition members and the holdings of
all agents. A power function must satisfy three monotonicity axioms: firstly weak
coalition monotonicity (WC), whereby taking a new member into a coalition
does not decrease the coalition’s power; secondly weak resource monotonicity
(WR), whereby weakly increasing the holdings of a coalition’s members does
not decrease the coalition’s power; and thirdly, strong resource monotonicity
(SR), whereby strictly increasing the holdings of a coalition’s members strictly
increases the coalition’s power. This setting given, two sets are of interest. Firstly,
the core, the set of undominated allocations, and secondly the stable set, a set
of allocations such that none dominates another (called internal stability) but
at least one dominates each non-member allocation (called external stability).
The core always exists, and is unique, but may be empty. A stable set may not
exist since it has to satisfy two conflicting properties, on the one hand it must
contain sufficiently many elements so that any element not in it is dominated
by an element in it (e.g. the empty set is not externally stable), on the other
hand it must not contain so many elements that none dominates another (e.g.
the full set of all allocations is not internally stable in a pillage game). If a stable
set exists, it is finite and contains the core; uniqueness has been established for
some pillage games, and no counterexamples have been found as yet. If agents
are forward looking, expecting that y dominating x may allow a subsequent
comparison between z and y. Jordan [8] proved that a stable set is a core in
expectation, a set of undominated allocations given some such future expectation
(and consequent comparison of x and z, rather than x and y).

Jordan [8] proved general properties about pillage games (such as the finite-
ness of the stable set) and investigated the possibilities of three particular power
functions for arbitrarily many agents. Kerber and Rowat [10] studied an infi-
nite class of power functions for three agents. In particular they gave a com-
plete characterization of the stable set for arbitrary power functions (with three
agents) which satisfy three additional axioms. The first axiom is continuity in
the resources; although definable with an ε-δ-statement, the intermediate value
theorem is actually used. The second axiom, responsiveness, requires that a
coalition gaining a member with some power as a singleton strictly increases
the coalition’s power. The third axiom, anonymity, requires that power, dom-
inance, and—consequently—the stable set are invariant under permutations of
the agents; thus, an agent’s identity is irrelevant to a coalition’s power, merely
its presence or absence, and its holdings are relevant.

3 Formalizations in Theorema

Within this case study, we fully proved the first three lemmas from [10]. Fur-
thermore, we give a formalization of the pseudo-code that summarizes the re-
sults derived in that paper. In this section, we briefly give the main assertions,
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which we proved in Theorema input syntax.2 We begin with the definition of
a power function. In all what follows, I[n] := {1, . . . , n} stands for the set of n
agents and X [n] denotes the set of all allocations for n agents.

With these preliminaries we use Theorema to formally define weak coalition
monotonicity (WC), weak resource monotonicity (WR), strong resource mono-
tonicity (SR), and power function as follows.3

Definition. [“WC”, any[π, n], bound[allocationn[x]],
WC[π, n] :⇔ n ∈ N ∧ ∀

C1,C2
C1⊂C2∧C2⊆I[n]

∀
x

π[C2, x] ≥ π[C1, x]]
]

Definition. [“WR”, any[π, n], bound[allocationn[x], allocationn[y]],
WR[π, n] :⇔ n ∈ N ∧ ( ∀

C
C⊆I[n]

∀
x,y

(
( ∀
i∈C

yi ≥ xi) =⇒ π[C, y] ≥ π[C, x]
)
)
]

Definition. [“SR”, any[π, n], bound[allocationn[x], allocationn[y]],
SR[π, n] :⇔ n ∈ N ∧ ( ∀

C
C⊆I[n]∧C =∅

∀
x,y

(
( ∀
i∈C

yi > xi) =⇒ π[C, y] > π[C, x]
)
)
]

Definition. [“powerfunction”, any[π, n], powerfunction[π, n] :⇔ ∧

⎧⎨
⎩

WC[π, n]
WR[π, n]
SR[π, n]

]

In this formalization, we decided not to put explicit conditions on variables in
definitions assuming that defined expressions will only be used “as intended

2 The Theorema language syntax comes very close to how mathematicians are used
to write up things. In particular, two-dimensional notation can be used both in in-
put and output through Mathematica’s notebook technology, so that a Theorema
formalization can easily be read and understood by a mathematician. In this pre-
sentation, we typeset all Theorema expressions in LATEX with the aim to mimick
their appearance in Theorema as closely as possible. Formal text blocks (defini-
tions, theorems, lemmas, etc.) in Theorema, so-called environments, are of the form
‘Env [l, any[v], with[C], bound[r], form]’, where Env is the type of environment, l is
a string label used to refer to this environment, v lists the universal variables in
form, C is a formula expressing a condition on v, r specifies ranges for bound vari-
ables in form, and finally form is a single formula or a sequence of formulae. After
evaluating a formal text block in a Theorema session, it can be referred to (e.g. in
a call to a prover) by ‘Env [l]’. Concretely, e.g. in (WC), the ‘any[π, n]’ makes the
definition applicable for all π and all n and the ‘bound[allocationn[x]]’ makes the
‘for all x’ to actually range over all allocations x of length n. The real convenience
of the ‘bound’-construct will be revealed once we collect several definitions into one
‘Definition’-environment, e.g. one definition for the axioms (WC), (WR), and (SR),
where one ‘bound’-statement would suffice for all three axioms. For more details we
refer to [1].

3 For full formalizations in Theorema together with proofs see also
http://www.cs.bham.ac.uk/~mmk/economics/theorema.

http://www.cs.bham.ac.uk/~mmk/economics/theorema
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by definition.” In theorems and lemmas, of course, we explicitly list all pre-
conditions. Furthermore, we split the definitions into individual environments,
although the Theorema language would allow to collect several formulae into one
environment. We decided to proceed this way because we later want to use the
definitions on an individual basis, and the current version of Theorema allows
to access only whole environments, not single formulae.

3.1 Lemma 1: Representation

The first lemma states that the power of a coalition depends only on the holdings
of the members of the coalition, but not on the holdings of the other agents.
Lemma[“powerfunction-independent”, any[π, n, C, x, y],

with[allocationn[x] ∧ allocationn[y] ∧ C ⊆ I[n] ∧ powerfunction[π, n]],
∀

i∈C
(xi = yi) =⇒ (π[C, x] = π[C, y]) ]

In order to prove this, we call the Theorema predicate logic prover, see [2], by
Prove[Lemma[“powerfunction-independent”],

using→{Definition[“powerfunction”],Definition[“WR”], Proposition[“ref/as”]},
by → PredicateProver, SearchDepth → 100],

which uses the definition of power function, the axiom (WR), and the following
(trivial) property of the partial ordering ≥ on real numbers in its knowledge
base:4

Proposition. [“ref/as”, any[a, b], (a = b) ⇔ (a ≥ b ∧ b ≥ a) ].

With these settings the lemma is proved fully automatically. It also generates
a proof if it is given not only the axioms it needs for a proof but the full the-
ory. Theorema generates a human readable proof of the proof search, which is
ten pages long for a proof with the full theory, and five pages for the setting
used above. This proof can be automatically tidied to a three page proof, which
contains only those steps necessary for the final argument, see Fig. 1 to get an
impression of how Theorema presents a human readable proof (further informa-
tion is at http://www.cs.bham.ac.uk/~mmk/economics/theorema).

3.2 Lemma 2: Domination

The second Lemma states that when the opposing coalitions consist of one ele-
ment each and the power function is anonymous then the coalition which wins is
the one with bigger holdings. In order to formalize Lemma 2 we need in addition
to formalize the win set of a transition from an allocation x to an allocation y
(those agents which benefit from the transition) and the lose set (those agents
to whose detriment the transition is) as well as the notions of domination (x
domintates y if the coalition consisting of the win set is, in x, more powerful

4 This proposition can in turn be proven fully automatically using reflexivity of ≥ for
the part from left to right and anti-symmetry of ≥ for the opposite direction.

http://www.cs.bham.ac.uk/~mmk/economics/theorema
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Fig. 1. A human readable proof in Theorema

than the coalition consisting of the lose set) and anonymity (invariance under
permutations of agents). See also Section 2.

Definition. [“WinLose”, any[n, x, y],
W [n, x, y] :=

{
i |
i∈I[n]

yi > xi

}
“W”

L[n, x, y] :=
{
i |
i∈I[n]

xi > yi

}
“L” ]

Definition. [“domination”, any[π, n, x, y],
dominates[y, x, π, n] :⇔ n ∈ N ∧ π[W [n, x, y], x] > π[L[n, x, y], x] ]

Definition. [“anonymity”, any[π, n], bound[allocationn[x], allocationn[y]],

anonymous[π, n] :⇔ n ∈ N ∧ ∀
σ

permutation[σ,I[n]]

∀
Cx,Cy,x,y

Cx⊆I[n]∧Cy⊆I[n]

∀
i

(((i ∈ Cx) ⇐⇒ (σ[i] ∈ Cy)) ∧ (xi = yσ[i])) =⇒ (π[Cx, x] = π[Cy, y])]
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Lemma 2 can then be formulated as follows:

Lemma. [“ANdominates”, any[n, x, y], with[n ∈ N ∧ n ≥ 2 ∧ allocationn[x] ∧
allocationn[y] ∧ (W [n, x, y] = {1}) ∧ (L[n, x, y] = {2})],

∀
π

anonymous[π,n]∧powerfunction[π,n]

(dominates[y, x, π, n] ⇔ x1 > x2)
]

While this is apparently intuitively correct, a formal argument is not completely
trivial. Since anonymity involves permutations of the agents, a formal proof re-
quires auxiliary knowledge about permutations. In the concrete case, we provide
a lemma about permuted tuples, namely that when swapping the first two ele-
ments in a tuple the second element in the new tuple is equal to the first of the
original:

Lemma. [“perm swap”, any[x], perm[x, σ1,2]2 = x1 ],

where perm[x, σ] stands for the tuple x permuted by σ, and σ1,2 is the permuta-
tion swapping the first and second component while leaving the rest unchanged.
Furthermore, we use a lemma saying that the power does not change when swap-
ping agents 1 and 2, i.e.

Lemma. [“ANswap”, any[n, π, x], with[anonymous[π, n] ∧ allocationn[x]],
π[{1}, x] = π[{2}, perm[x, σ1,2]] ].

Lemma[“perm swap”] can be verified without effort based on the definitions only,
whereas Lemma[“ANswap”] needs the definitions of the concepts involved plus
idempotency of swapping, which is trivial but still automatically verified based
on the definition of σ1,2. These proofs, and all that will follow, have been gener-
ated by the Theorema set theory prover, see [20]. Equipped with Lemma[“perm
swap”] and Lemma[“ANswap”] in the knowledge base, a three page human-
understandable proof of the two directions of Lemma 2 is obtained. Note, how-
ever that the introduction of the auxiliary lemma is a eureka step, since finding
the right permutation is key to the proof of our main lemma; it is difficult to see
how Theorema—with its currently integrated theorem provers—could automat-
ically find this permutation. This shows that the main idea of the proof requires
a fairly intuitive understanding of permutations which needed to be made more
explicit when instructing Theorema.

The crucial question is, of course, how to obtain appropriate intermediate
lemmas. One approach in this kind of theory exploration is to always prove all
properties of interactions between available concepts before introducing a new
concept. This approach is advocated for instance in [3]. In the concrete case,
it would require proving many properties of permuted vectors and swaps be-
fore talking about anonymity. Theorema, however, also supports a much more
goal-oriented approach: in the case of a failing proof attempt, it displays the
partial proof, allowing a human check of where resources are used, and whether
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Theorema can be better guided. In most cases, formulating an appropriate
lemma is then a straightforward exercise, so that even this can be automated.
There is a literature on lemma speculation from failing proofs (see e.g. [7]); some
mechanisms have been implemented in the Theorema system as well (see [1]).
In this case study, these tools have not been employed.

3.3 Lemma 3: The Core

The dominion D[Y, π, n] denotes the set of all allocations that are dominated
by an allocation in Y . Using this, the core, i.e. the set of undominated alloca-
tions, can simply be defined as K[π, n] := X [n] \D[X [n], π, n]. The third lemma
specializes to the case of three agents and consists of two parts. Firstly, if the
core is empty then the tyrannical elements (one agent possesses everything) are
dominated by the half splits (e.g., 〈1/2, 1/2, 0〉 dominates 〈0, 0, 1〉):

Lemma. [“Core,n=3,a”, any[π],
(K[π, 3] = ∅) =⇒ ∀

i,j,k∈I[3]
(distinct[i, j, k] =⇒ t[i, 3] ∈ D[{s[j, k, 3]}, π, 3]) ].

On the other hand, for anonymous power functions, the half way splits are
never dominated by the tyrannical elements (e.g., 〈0, 0, 1〉 does not dominate
〈1/2, 1/2, 0〉), written in Theorema as follows:

Lemma. [“Core,n=3,b”, any[π], with[anonymous[π, 3] ∧ powerfunction[π, 3]],
∀

i,j,k∈I[3]
(distinct[i, j, k] =⇒ s[j, k, 3] /∈ D[{t[i, 3]}, π, 3]) ].

It is clear by the definitions of D and domination, that the win and lose sets
under tyrannical elements and the half splits, e.g. W [3, t[i, 3], s[j, k, 3]], will play
an essential role in the proofs. We then use the computational capabilities of
Theorema in order to get some intuition about these entities. Using the built-in
computational semantics of the Theorema language, one can do some experi-
ments like computing W [3, t[1, 3], s[2, 3, 3]] and L[3, t[1, 3], s[2, 3, 3]] resulting in
{2, 3} and {1}, respectively. After some calculations of this kind, the following
generalization can be conjectured as a lemma:

Lemma. [“s dominates t”, any[i, j, k ∈ I[3]], with[distinct[i, j, k]],
W [3, t[i, 3], s[j, k, 3]] = I[3] \ {i}
L[3, t[i, 3], s[j, k, 3]] = {i} ],

The proof of this Lemma can be done by pure computation, since the universal
quantifier over i, j, k boils down to just testing finitely many cases, namely the
six distinct choices of i, j, k ∈ I[3]. The neat integration of proving and com-
puting in the Theorema system is of great value in this kind of investigation,
because the statements need no reformulation when switching between proving
and computing.

For proving the first part of Lemma 3, instead of going back to the definition
of the core, we use a theorem of Jordan that connects the core and the power
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of tyrannical allocations, see [8]. Together with Lemma[“s dominates t”], this
proof goes through without further complications. For the second part, Theorema
comes up with an indirect proof using a variant of Lemma[“s dominates t”] with
the roles of s and t interchanged and specialized versions of the axioms (WC)
and (SR) and of Lemma[“ANswap”] (introduced in the context of Lemma 2),
for the case n = 3.

3.4 Pseudo-Code and Its Computational Content

The main result of [10] is a classification of the possibilities which a stable set can
have in three agent pillage games with continuous, responsive, and anonymous
power functions. No stable set may exist but—if one does—it may have up to
15 elements. How these elements are determined (in dependency of π) can be
summarized in form of some pseudo-code. This pseudo-code can be represented
as an algorithm in Theorema as shown in Fig. 2.

Algorithm[“StableSet2”, any[π],

stableSet[π] :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

‘‘no stable’’ ⇐ empty[R[1, π]]
where[S = dyadicSet[0, 3] ∪ ∪

i=1,...,3
S[i, π],⎧⎨

⎩
S ∪ P [π] ⇐¬fullSet[S ∪ D[S , π, 3]]
S ⇐ fullSet[S ∪ D[S , π, 3]]
‘‘unknown X’’ ⇐ otherwise

]
⇐¬empty[R[1, π]]

‘‘unknown R’’ ⇐ otherwise

⇐ (∗)

dyadicSet[1, 3]\dyadicSet[0, 3] ⇐ otherwise

]

with (∗) to be replaced by π[{1}, t[1, 3]] ≥ π[{2, 3}, t[1, 3]].

Fig. 2. Algorithm to compute a stable set written in Theorema notation

The algorithm in Fig. 2 makes use of several sets and conditions which we
explain only partly in the following, since not all details are of importance in
this context. Important is that certain sets (such as dyadicSet[1, 3]) are compu-
tational, whereas others (such as R[1, π]) are not. For details of these constructs
see [10].

This algorithm is non computational in several ways. For n = 3, however, it is
a significant improvement on the Roth-Jordan [9] algorithm to determine stable
sets, since the latter is non-computational in even more ways.5 In this section we
will discuss how the algorithm, which is written in the first place to summarize

5 First, the Roth-Jordan algorithm starts with the core without giving an effective
means for computing it. Second, for an empty core it provides no clue for finding
an initial iterate. Third, the iteration step is not computational since it involves
the computation of undominated sets, which are typically infinite. Finally, it is not
clear whether terminating at a set S which is not externally stable means that no
stable set exists, or merely that further steps must be taken independently of the
algorithm. For details, see [9] or [10].
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the results in a concise form, can be used to determine stable sets by a mixture
of proving and computing.

We have tested the implementation for the three specific power functions
introduced by Jordan [8], strength in numbers (SIN), Cobb-Douglas (CD), and
wealth is power (WIP).

If a concrete power function π is given, the algorithm has first to test condi-
tion (∗). Since we assume that π is computable, both π[{1}, t[1, 3]] ∈ [0, 1] and
π[{2, 3}, t[1, 3]] ∈ [0, 1], hence π[{1}, t[1, 3]] ≥ π[{2, 3}, t[1, 3]] can be decided. If
the condition is false the stable set is given by the last line of the algorithm.6

It is computed by Theorema as the set {〈1/2, 1/2, 0〉, 〈1/2, 0, 1/2〉, 〈0, 1/2, 1/2〉}.
This case was concretely tested for the ‘strength in numbers’ power function,
defined as

SINπν [C, x] :=
∑
i∈C

(xi + ν)

(with ν > 1) for the concrete value of ν = 2.
If the condition is true, however, the algorithm must check whether a par-

ticular set R[1, π] is empty or not. For finite R[1, π], the ad-hoc method to test
R[1, π] = ∅ is to compute R[1, π] (by enumerating its elements) and then com-
paring it to the empty set ∅, which can all be done in a Theorema computation.
Unfortunately, the set R[1, π] is defined in terms of the set M [1, π], which in
turn is defined in form of the set B[1, π] of all triples, where agent 1 on its own
is equally powerful as agents 2 and 3 together, i.e.

B[1, π] := {x ∈ X [3] | π[{1}, x] = π[I[3]\{1}, x]} .

The set M [1, π] is then a subset of B[1, π] such that the x1 are maximal, and
R[1, π] those elements in M [1, π] which are maximal from the viewpoint of agents
2 and 3. Since B[1, π] is typically infinite, testing R[1, π] = ∅ by computation as
described above would fail. Without any further knowledge on R[1, π], the algo-
rithm returns “unknown R”, which indicates that it has insufficient knowledge
on the set R and for this reason insufficient knowledge to determine the stable
set.

If, however, for the concrete power function π there is additional knowledge
that allows us to decide R[1, π] = ∅ (without actually computing R[1, π]), the
algorithm may make use of this knowledge and continue. Concretely in the al-
gorithm above, we provide the following lemma:
Lemma[“emptyR,Cobb Douglas”, any[ν], empty[R[1, CDπν ]] ],
where CDπν is the ‘Cobb-Douglas’ power function defined as

CDπν [C, x] := |C|ν
(∑

i∈C

xi

)1−ν

for 0 ≤ ν ≤ 1.

6 The allocations in which each agent has either nothing or
(

1
2

)j
for some integer j ≤ i

form a so-called dyadic set, represented as dyadicSet[i, n] (for n agents). For three
agents the previously mentioned tyrannic allocations and half-splits as well as the
ones of type 〈1/2, 1/4, 1/4〉 play an important role in determining the stable set.
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In this case, according to the algorithm, no stable set exists. Note, however, that
the knowledge must be formulated appropriately. For instance, in the algorithm
above it was not possible to use the usual Theorema notation R[1, π] = ∅ instead
of ¬empty[R[1, π]]: if R[1, π] = ∅ was given as an auxiliary lemma, the compu-
tation engine would have had to process negated equalities in an appropriate
manner, which the current version of Theorema is not capable of.

If R[1, π] is known not to be empty, further knowledge is necessary. Most
importantly, does the current iteration of the computed candidate stable set
together, with the allocations dominated by it, include all possible allocations?
Formally, is fullSet[S∪D[S, π, 3]] true or false? This will typically not be compu-
tational, since D[S, π, 3] is infinite. Hence for any particular given power function
π a corresponding lemma is necessary, which states whether the property holds
or not. In case of the ‘wealth is power’ power function, defined as

WIPπ[C, x] :=
∑
i∈C

xi,

the property does not hold since there are three points which are not dominated
by the allocations computed so far. In this case, the stable set is computed by
Theorema to S ∪P [π], which is evaluated directly, since P [π] is a set of at most
three elements explicitly defined in [10].

The algorithm presented above does not check whether a power function sat-
isfies the additional axioms (continuity, responsiveness, and anonymity), or even
whether the functions supplied are actually power functions (satisfying axioms
WC, WR, and SR). As a consequence, the algorithm may give wrong answers
if applied inappropriately. This can be remedied by adding further conditions
to the functions. While this makes the application safer on the one hand, it
increases the proof obligations on the other hand.

Note that when applying the algorithm to concrete examples, part of the
knowledge may typically be computed, certain information about sets derived
from R[1, π] must be given in form of lemmas. That is, the algorithm consists
of a mixture of proving and computing. It is conceivable that Theorema could
be extended to make use of the underlying Mathematica system to compute the
sets B[i, π] for particular power functions π.

4 Added Value—Price Paid

In this section we summarize the added value from the point of view of a re-
searcher in theoretical economics. The added value is partly due to the formaliza-
tion effort and could have been achieved with any formal system, partly, however,
it is specifically due to Theorema and its features. Furthermore we discuss the
effort necessary to do such a formalization.

An obvious point to mention is the greater precision that a formal system
requires. This is an advantage (enhanced clarity, greater reliability) and at
times a disadvantage (greater effort) at the same time. A concrete example
where the formal precision played a role was the characterization of the core as
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K = {x ∈ X |xi > 0 ⇔ π ({i} , x) ≥ π (I\ {i} , x)} . In this definition a free index
i is used. Two standard interpretations are possible, an existentially quantified
one (‘there is an i such that’), or a universally quantified one (‘for all i holds’).
When translating into Theorema first the existentially quantified translation was
chosen. However, this was later found to be the wrong one when it was used.

Another obvious advantage is that we can have much higher confidence in
lemmas and theorems which are formally proved. In addition, the system clearly
states all the knowledge used for proving a particular assertion and any hid-
den assumptions have to be made explicit. On the other hand, an automated
theorem prover will typically be inundated with too much information so that
the knowledge used to prove an assertion is typically minimal. This is useful
knowledge since it allows us to generalize statements.

There are also particular advantages of the computational aspects of Theo-
rema. They allow computation and checking particular structures for specific
examples. For instance, for a given power function π it is possible to compute
particular sets (such as R[i, π] or P [π]) and to see whether these correspond
to the intuition. If they do, this gives confidence that the formalization accu-
rately mirrors the intuition. If they do not, then either the intuition needs to
be changed or the formalization does not reflect what actually should have been
formalized and needs to be changed. Of course, also incorrect statements may
be discovered this way. For instance, it led to an adjustment of the algorithm
in Fig. 2 in which the last case was incorrectly copied from the corresponding
lemma into it. That is, a mistake in the algorithm was detected, although no
attempt was made to verify it.7

A particular advantage of using Theorema is due to the fact that some
reasoners—in particular the set theory prover used mostly for our study—use
an interface to the computation engine, so that proving and computing are well-
integrated in the Theorema system. In this case study, this feature turned out to
be useful when the whole proof of Lemma[“s dominates t”] was shifted to just
one simple computation on finite sets. In our concrete application example, we
also make use of the computational parts of the algorithm in Fig. 2 to determine
the stable set. The algorithm contains algorithmic parts but needs at two steps
an oracle which can be given in form of lemmas. These can in turn be formally
proved in Theorema. The possibility of Theorema working in a ‘compute’ mode
makes it relatively painless to combine reasoning and computation. This makes
it possible to determine the stable set for concrete power functions by a mixture
of reasoning and computation.

As mentioned in the previous section it seems feasible to allow Theorema to
move more tasks from its reasoning part into its computation part (for specialized
power functions). One way to achieve this is to represent infinite sets finitely.
More work in this direction is necessary.

Obviously using a system such as Theorema has a price. The formalization
is more labour intense than formalizing the knowledge just on paper or using

7 As the algorithm summarizes the central results in [10], we are still in the process
of verifying the proofs in paper—informally and formally.
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LATEX. However, just writing down the definitions, lemmas, and theorems in
Theorema is—after an introduction phase of a day—almost as painless as using
LATEX. Formalizing the knowledge is relatively easy, formally proving the lemmas
and theorems, however, is typically labour intense and requires knowledge which
cannot be acquired so quickly. Certain formalizations need to be changed in order
to avoid certain pitfalls of the reasoners. Additionally it is necessary to know
which integrated prover to use best and to adjust it by setting suitable options.
This requires expert knowledge. Furthermore, it may be necessary to introduce
suitable auxiliary lemmas to prove statements. This makes it currently unlikely
that there will be a big uptake in using such systems, although in balance the
extra work required—at least for the formal properties proved in this work—
does not look too huge with one to two days of work for a formal statement.
This effort may go up as the statements get more complicated as the paper
proceeds, which is partly due to the fact that typically authors acquire some
intuition about the concepts introduced in earlier sections, and this intuition is
rarely made explicit by additional lemmas or corollaries. That is, this increased
effort could be considered as a price paid by the author and an added value on
the side of the reader of a formalized paper. It should be noted that just using
Theorema for representing knowledge and making use of this knowledge, e.g. by
evaluating the algorithm for concrete power functions can uncover mistakes and
thereby improve the reliability of the results.

5 Conclusion

The true benefit of a formalization can only be obtained if it is used. Typically
you either prove something with it, or you use it in some computation. The
latter is only possible in finite domains. In the examples, for instance, it meant
that once a set is reduced to a finite set of concrete values, lemmas need not be
formally proved as their truth status can be shown by exhaustive computation
of all possible cases. This dual feature of computation and proving also allowed
us to use the algorithm for computing the stable set for power functions for
which certain features had been established (or claimed) by lemmas. Note that
Theorema does not insist on proving assertions claimed. This makes it very easy
to cite external theorems (concretely, in this example, theorems established by
Jordan previously) without reproving them. While this is very convenient, it has
a downside, namely it is easy to base a theorem on a lemma which is not proved
or is even wrong.

A very useful feature of Theorema is the possibility to generate incomplete
proofs. This allows both detection of potential problems with the formalizations
(e.g. inconsistent argument orderings) and monitoring of whether the integrated
Theorema prover used is making useful steps towards a solution. Moreover, the
study of an incomplete proof typically helps greatly in the formulation of lem-
mas that then help the prover to succeed in a subsequent run, which is quite
helpful since the integrated provers of Theorema are typically not interactive.
This means, that, if they do not find a proof fully automatically, then the only
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possibility to guide the search is to adjust suitable options (which requires good
knowledge of the inner workings of such a prover), or to introduce additional
auxiliary lemmas.

As with any other theorem proving system, applying Theorema requires good
knowledge of the system. On the positive side, the Theorema input language
is very flexible and allows—after a very brief introduction to the system—for
a natural representation which is close to a paper representation. Care should,
however, be taken, since writing down statements in Theorema does not mean
that they are correct, or can be directly used in the form they have been inputted.
The input language is untyped which makes it easy to write things down. How-
ever, it also means that it is easy to introduce mistakes, e.g., Theorema would
not complain if you defined a power function with the argument order as in
powerfunction[π, n] and later used it in form of powerfunction[n, π]. However,
proofs may not be established any more in such a case.

While proving assertions formally using the Theorema system requires typ-
ically good knowledge of the proof in the first place, the formalization effort
pays off in several ways. Above all it is possible to gain greater confidence in the
correctness of the assertions, and it is possible to make experiments—concretely
with specific instances of power functions—which otherwise are labour intense
and error-prone.
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Abstract. Data representation is an important aspect of software com-
position. It is often the case that different software components are pro-
grammed to represent data in the ways which are the most appropriate
for their problem domains. Sometimes, converting data from one repre-
sentation to another is a non-trivial task. This is the case with computer
algebra systems and type-theory based interactive theorem provers such
as Coq. We provide some custom instrumentation inside Coq to support
a computer algebra system (CAS) communication protocol known as SC-
SCP. We describe general aspects of viewing OpenMath terms produced
by a CAS in the calculus of Coq, as well as viewing pure Coq terms in a
simpler type system that is behind OpenMath.

1 Introduction

In this paper, we describe a realistic example of communication between a state-
of-art interactive prover Coq [23] and a modern computer algebra system GAP
(Groups, Algorithms, Programs) [11]. What makes this communication most
interesting is the complexity of both systems. Indeed, Coq is a constructive sys-
tem based on a variant of the predicative Calculus of Inductive and Coinductive
Constructions (CIC, for short) [23]. Coq has a powerful type system featuring
the universe of types, Type, but is not Turing-complete and does not allow ar-
bitrary non-terminating computations since any recursive function should be
defined over a decreasing measure respecting the well-founded induction princi-
ple. Therefore Coq is not a “real-world” programming language since it is not
in the custom of a mainstream programmer to provide termination guarantees
for every program they write. On the other hand, the mathematical type system
of GAP [5] originates from the object-oriented paradigm and is therefore more
conventional. Besides, GAP is a real-world imperative programming language
where any computation is allowed. There is a type of all objects, IsObject, but
it is not predicative. Hence, instead of mapping of the type system of GAP to
that of Coq, we consider a two-stage embedding: first, a partial embedding of
OpenMath terms (which are presented in XML) to a simple inductive type OM of
OpenMath object, and second, a translation of simply typed OpenMath objects
to dependently typed objects of the mathematical hierarchy of Ssreflect [13,12].
Already the first stage of our embedding is forgetful in GAP types and disregards
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GAP type system as a result of exporting mathematical objects from GAP by
means of the standard communication interface SCSCP [22,18].

SCSCP (Symbolic Computation Software Composability Protocol, [22]) is an
interface that may be used for communications between various computer alge-
bra systems or other compatible software. It has been developed as part of the
project SCIEnce (Symbolic Computation Infrastructure in Europe) which is a
major 5-year project that brings together CAS developers and experts in com-
putational algebra, OpenMath, and parallel computations. The interface aims
to provide an easy, robust and reliable way for users to create and consume ser-
vices implemented in any compatible systems, ranging from generic services (e.g.,
evaluation of a string query or an OpenMath object) to specialised (e.g., lookup
in the database; executing certain procedure). The interface is lightweight and
based on the XML container format in which both data and instructions are rep-
resented as OpenMath objects. It is a way of marshalling abstract syntax trees
corresponding to mathematical objects. OpenMath [20] is a structure-oriented
standard of twelve language elements (integers, doubles, variables, applications
etc.). It does not have a natural evaluation semantics, however, semantics can
be provided externally from a CAS by mapping symbols which are defined in
content dictionaries (CDs) to computational procedures. OpenMath has render-
ings in several different encodings, with the most commonly used one being the
XML.

SCSCP is now implemented in several computer algebra systems, including
GAP [18], KANT, Macaulay2, Maple, MuPAD, TRIP (see [9,10] for details) and
has APIs making it easy to add SCSCP interface to more systems. We reported
on earlier experiments with adding SCSCP support to Coq in [17].

Motivation. The motivation behind this work is a uniform method to view com-
puter algebra data when proving a theorem in theorem proving assistant. Rather
than writing certified decision procedures for computer algebra computation, we
follow a different approach where a CAS may be called by the theorem prover
user from a proof script as an external hint engine (an oracle, so to speak).
This allows to explore large libraries of non-certified computational algorithms
available in CASs and yet leaves a possibility to render results of computation as
terms of constructive type theory. To make a computation request to a CAS con-
cerning some proof theoretic objects, we have to remove dependent arguments
and proofs from these objects and form a simply typed term in a container
format that is used for communication between CASs. If the computation is
successful, its result is retrieved from such a simply typed term by lifting it to a
dependently typed term and supplying the missing proof arguments.

Contribution. Our main contribution is the communication plugin for Coq that
automates routine data transmission tasks while leaving the theorem proving for
the user. We also provide a high-level automation for data conversion between
dependently typed and simply typed representations of Coq and CAS respec-
tively. This high-level automation is the view mechanism that is written in Coq,
which allows custom extension without the need to recompile the communica-
tion plugin. We also provide a method to organise views in a type-theoretic
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hierarchy of packed classes [12], which allows having different views of the same
type of mathematical object. Which exact view is relevant in a given situation
can be determined by Coq by unification with implicit coercions and canonical
structures [21].

Outline. In Section 2, we describe our approach to views of computer algebra
data. In Sections 3-5 we discuss a concrete example of communication between
Coq and GAP. An example showing control elements of SCSCP is given in
Section 6. In Section 7 we discuss related work and GAP type system and why
we chose not to refer to GAP types in our approach. Finally, in Section 8 we
give our conclusions and propose future directions.

2 Views of Computer Algebra Data

Views in the sense of Wadler [24] are a method to define correspondence between
any, possibly abstract, unstructured data type and an inductive data type with
structure. By viewing an abstract type as a free inductive type we allow ourselves
to pattern-match on objects of the abstract data type. For example, we may view
built-in signed or unsigned integers as Peano numbers, and so on. We may also
view a structured data type as some other structured data type, for example, if
we need to pinpoint some type dependencies in a given simple type.

Viewing abstract types as inductive ones has its clear advantages. In pro-
gramming languages, data abstraction is a powerful mechanism supporting effi-
cient computation and allowing to generalise over concrete structure. However,
abstraction hides representation, and we need to find a representation for the
purpose of reasoning. Representing abstract data as data with free inductive
structure allows to decompose it in a chosen way by induction. Thus, in a sense,
a representation is an access strategy. Specifically for our case, computer algebra
data produced by GAP may already have some structure but, in general, this
structure does not suffice to construct an object of the corresponding type in
Coq because proofs are obviously missing.

It is not our goal to implement general views of any abstract type. Instead,
we implement views on an inductive type of OpenMath object. For that, we
split view construction in two parts using our communication systems interface
implemented as a Coq tactic plugin. First, the computer algebra object is re-
trieved from GAP by the plugin and parsed as an object of inductive type OM
of OpenMath terms. Parsing is only partial and may fail if some unexpected
language element is encountered. Second, the obtained OM object is parsed in
Coq and missing proofs are provided to construct the Coq view of the computer
algebra object.

Now we define the base type of view using a convenient natural-deduction
style notation to display inductive type definitions. Mixins are introduced as
elementary building blocks for containers such as viewType below. A mixin is an
inductive type together with projections to its constructors. Below is the base
view mixin for a type of OpenMath data called OM:
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mixin of : Type → Type

viewin : OM → option iT viewout : iT → option OM

ViewMixin viewin viewout : viewMixin of iT

Here, option is the polymorphic type of fan ordering with values either of the
kind Some of a value of a given type, or None, with the latter representing the
absence of translation. Field projections are the following:

viewin = λ (iT : Type) (m : viewMixin of iT ). let (viewin, ) := m in viewin

viewout = λ (iT : Type) (m : viewMixin of iT ). let ( , viewout) := m in viewout

The class of the base type is simply its mixin.

viewClass of = viewMixin of

In the packed type methodology, containers ∗type pack a given representation
type with given base classes and the underlying mixin. In the base case, we have
only a mixin. The container viewType is given below. The third argument U is
required for the purpose of unification.

type : Type

viewSort : Type

viewClass : viewClass of viewSort U : Type

ViewPack viewSort viewClass U : viewType

Now we have to provide a hint for the unification algorithm that allows to coerce
viewType to its representation type. This role is delegated to the field projection
viewSort.

viewSort = λ (t : viewType). let (viewSort, , ) := t in viewSort

The second field projection, viewClass, is not associated a coercion, which is made
on purpose, to prevent multiple coercion chains to the representation type.

viewClass : ∀ cT : viewType. viewClass of (viewSort cT )
viewClass cT = let ViewPack c := cT in c

Finally, we define the constructor ViewType for the type viewType, and input
and output view functions:

ViewType T m = ViewPack T m T

In = λ (iT : viewType). viewin iT (viewClass iT )
Out = λ (iT : viewType). viewout iT (viewClass iT )

Having defined the base type of view we can introduce higher-level views. The
base type of view can be extended, for example, with a notion of correctness of
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a view for the purpose of certification of computer algebra computations, or by
adding other kinds of conversion functions for extended usability. The correctness
property can be expressed as follows:

∀ (o : OM) (i : iT ), In o = Some iT i ↔ Out i = Some OM o

and illustrated by the diagram below:

OM option iT

iToption OM

In

Some Some

Out

Construction of view types given other view types is reminiscent of construction
of objects in object-oriented programming. The packed class methodology of
Ssreflect [12] helps to define multiple views as a hierarchy of structures. Like
in [24], we can have multiple views of the same object. In the following, we
discuss views in terms on a concrete example. For the purpose of explaining the
basics, we do not yet require a hierarchy of views. Therefore we skip further
details of our implementation of higher-level views which is reminicent of the
implementation of the mathematical object hierarchy in [12].

3 SCSCP and the Working Example

In our experience, communication with GAP is significantly more structured if
SCSCP [22] is used compared to communication by reading off raw output of the
GAP interpreter and more straightforward than communication involving direct
addressing to internal representation of mathematical objects in GAP. More-
over, communication by SCSCP abstracts over the concrete CAS by employing
a common OpenMath abstract syntax tree representation of a mathematical
object.

In our working example, we consider computation of the set of roots of a
polynomial over a finite field. The standard representation of a polynomial in
OpenMath involves the following OpenMath symbols:

– DMP, constructor of distributed multivariate polynomials,
– poly_ring_d, constructor of polynomial rings,
– SDMP, constructor of formal sums,
– term, constructor of monomials, such that

term(c, e1, . . . , en)

represents
c × xe1

1 × · · · × xen
n

where x1, . . . , xn are distinct variable names, and c and e1, . . . , en are ele-
ments of the given polynomial ring.
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To represent the following polynomial:

x4y6 + 3y5

one constructs a syntax tree with the following structure:

DMP(poly_ring_d(Z, 2), SDMP(term(1, 4, 6), term(3, 0, 5)))

Example 1 (Working example). Compute roots of x3 − 1 in the 3-element finite
field GF (3).

The abstract syntax tree of the computation request to GAP through SCSCP is
the following (disregarding SCSCP control elements that we discuss in Section 6):

WS_RootsOfUPol(
DMP(poly_ring_d(GFp(3), 1),
SDMP(
term(times(primitive_element(3), 2), 3),
term(times(primitive_element(3), 0), 2),
term(times(primitive_element(3), 0), 1),
term(times(primitive_element(3), 1), 0))))

Provided all the connection prerequisites are met, GAP returns the list of roots:

list(power(primitive_element(3), 0),
power(primitive_element(3), 0),
power(primitive_element(3), 0))

that is, the list containing three occurrences of 20 where 2 is the primitive ele-
ment, or, generator of the field GF (3).

Next, we show that parsing the GAP response can be defined by the user in
Coq. Although mapping of an OpenMath AST to the corresponding CIC object
is done by the plugin at the level of Ocaml, the implementation language of
Coq. The reason to choose Ocaml for this purpose is that no input-output is
possible at the level of pure functional programming in Coq. This mapping is
very simple and does not contain any intelligent steps. Our current algorithm is
not general enough to account for any possible input OpenMath term. However,
even a more general algorithm would not be able to effectively recognise all the
possible notational shortcuts used by computer algebra programmers. Therefore
a pragmatic approach can be pursued, which we do in Section 4.

4 Term Internalisation

To internalise OpenMath data in Coq, we have to provide a Coq type of Open-
Math objects. Despite some discrepancies in interpretation of the OpenMath
standard [20] in various computer algebra systems, we have to find some reliable
subtype of this possibly intangible type of all OpenMath objects. We start from
a very simple inductive type below:
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Inductive OM : Type :=
| OMInt : Z -> OM
| OMVar : string -> OM
| OMSym : string -> string -> OM
| OMApp : OM -> seq OM -> OM.

where Z and string are the standard Coq types of integer and string respectively,
and seq is the type of list used in Ssreflect:

Inductive seq (T : Type) : Type :=
| Nil : seq T
| Cons : T -> seq T -> seq T.

Thus we treat OpenMath integers, variables, symbols (which are in effect pairs of
strings) and applications. Some other commonly used kinds of OpenMath object
such as attributed objects are not in this inductive type because, for the moment,
we restrict ourselves to simple OpenMath data directly related to computation.

Next, we define some notational conventions in Fig. 1 to be used in our ex-
ample below. Underscores denote the implicit argument that can be inferred by
Coq from other arguments or from the type of the expression, that is, in this
instance, the type T of element given the type of list of T.

notation denotation

[::] Nil _

x :: s Cons _ x s

[:: x1] Cons _ x1 (Nil _)

[:: x1, x2, .., xn & s] Cons _ x1 (Cons _ x2 .. (Cons _ xn s) ..)

#i OMInt i

$v OMVar v

D$$N OMSym D N

(x1 @@ xs) OMApp x1 xs

(x1 @ x2) OMApp x1 :: [:: x2]

(x1 @ x2 ; .. ; xn) OMApp x1 (x2 :: .. [:: xn] ..)

Fig. 1. Notational definitions

Further notational shorthands for OpenMath idioms are given in Fig. 2, where
Z_of_nat is the canonical embedding of natural numbers (type nat) into integers
(type Z). Therefore OMlist is the OM version of the OpenMath list symbol, and

name definition

OMlist "list1"$$"list"

GFp n ("setname2"$$"GFp" @ #(Z_of_nat n)).

Fig. 2. Auxiliary definitions
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GFp n is the OM version of the OpenMath object representing the general field
of order n where n is prime. The latter condition of primality is not recorded
anywhere either in the OpenMath object or in its OM counterpart. In CASs,
hypothetical reasoning is not supported and, naturally, there is no need to include
proof-related data in objects. We need to recover such data by constructing
proofs during internalisation of the OpenMath object.

Given a response containing a list of polynomial roots computed by GAP and
transmitted through SCSCP, we can parse the AST using shorthand string tests
such as the ones below:

Definition is_OMlist o := is_OMsymbol o "list1" "list".

Definition is_OMpower o := is_OMsymbol o "arith1" "power".

Definition is_OMprimelt o :=

is_OMsymbol o "finfield1" "primitive_element".

where is_OMsymbol is a simple generic test on pairs of strings, and collect initial
simply-typed information from this response using the following function:

Definition rootOfUPol (o : OM) : option (nat * Z) :=

match o with

| OMApp o os =>

if is_OMpower o then

match os with

| [:: OMApp o1 [:: o2] ; o3] =>

if is_OMprimelt o1 then

match o2, o3 with

| #n, #m => Some (Z_to_nat n, m)

| _, _ => None

end

else None

| _ => None

end

else None

| _ => None

end.

The result of this function is an optional pair of numbers to allow for inputs on
which our simple data collection algorithm is undefined. If result is defined, we
have a pair of a field order and an exponent coefficient. This is the simply-typed
data to put in dependently typed mathematical objects of Ssreflect.

We need to define concrete field elements in order to define a polynomial:

Definition Fp3_0 : Fp_field 3 prime3 := Ordinal 3 0 (erefl true).

Definition Fp3_1 : Fp_field 3 prime3 := Ordinal 3 1 (erefl true).

Definition Fp3_2 : Fp_field 3 prime3 := Ordinal 3 2 (erefl true).

where prime3 is a proof of the natural number 3 being prime. This proof is
required to define the type Fp_field 3 prime3 which is a Coq representation of
the 3-element finite field GF (3). The constructor Ordinal takes three arguments:
a finite bound (a natural number), a natural number m and a proof that m is
less than the bound.



82 V. Komendantsky, A. Konovalov, and S. Linton

The primitive element of order n and exponent with base a primitive element
are declared as follows:

Definition primelt n n’ (nn’ : S n = n’) (pn’ : prime n’)

: Fp_field n’ pn’ := ...

Definition primelt_exp n n’ (nn’ : S n = n’) (pn’ : prime n’) (m : Z)

: Fp_field n’ pn’ := ...

The latter function is defined in terms of the former one. We choose to introduce
arguments for each of the primitive element and field order because inferring one
from the other can introduce unnecessary dependencies in types.

Internal representation of a polynomial root is constructed by primelt_exp
from a pairs collected using rootOfUPol by a function with the following decla-
ration:

Definition rootOfUPol_i :

(nat * Z) -> {n : nat & forall (pn : prime n), Fp_field n pn} := ...

Therefore one should solve a proof obligation, that is, provide a primality proof
pn, for every root to obtain it in the explicit form and not as a product. Since
such proof obligations arise in a systematic way, as a result of application of a
version of a map functional to rootOfUPol_i, it is a relatively straightforward
task to automate their generation at the internalisation stage (using the tactic
language of Coq).

Putting it all together, the main internalisation function that takes an OM
object and returns a sequence of roots (which is complicated by primality proof
obligations) only if it is defined on the input has the following definition:

Definition RootsOfUPol_i (o : OM) :

option (seq {n : nat & forall (pn : prime n), Fp_field n pn}) :=

match o with

| OMApp o os =>

if is_OMlist o

then

match mapo rootOfUPol os with

| None => None

| Some rs => mapo (fun s => Some (rootOfUPol_i s)) rs

end

else None

| _ => None

end.

where mapo is a stronger version of map functor: it maps a sequence to None in
case the function, to which mapo is applied, yields None if applied to any of the
elements of the given sequence. A further comment to the type of RootsOfUPol_i
is that n is in fact fixed in the result in OM. However, since this is not explicit
anywhere in the result which is a list of arbitrary pairs of numbers, a straightfor-
ward way to parse it is to assume n can vary. This creates an obligation to prove
primality of one and the same n for every element of the optional list. Never-
theless, given the optional list constructed by the function RootsOfUPol_i and
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the observation (a proof) that the first component n of every pair in the list is
one and the same number, we can construct an optional list of Fp_field n pn.
The type of the list, this time, depends on n and the proof of primality pn. In
the end, we have to provide only one instance of pn, however, for that we need
to prove that all the first projections of the list obtained by simple parsing of OM
data are in fact equal.

5 Term Externalisation

We define a function mapping a natural number, the order of the field, and a
sequence of ordinal numbers, the polynomial coefficient sequence, to a sequence
of objects of type OM. This function externalises the coefficient sequence of a Coq
polynomial and builds the corresponding OM sequence of simpler structure that
can be passed over through SCSCP to GAP:

Fixpoint polyseqFp (n : nat) (s : seq ’I_n) : seq OM :=

match s with

| [::] => [::]

| [:: c & s] =>

[:: ("polyd1"$$"term" @

("arith1"$$"times" @

("finfield1"$$"primitive_element" @ #(Z_of_nat n));

#(Z_of_nat c));

#(Z_of_nat (size s)))

& polyseqFp s]

end.

Then, we can define

Definition myseq := [:: Fp3_2; Fp3_0; Fp3_0; Fp3_1].

By standard lazy evaluation of Coq of the term polyseqFp myseq we obtain
the required sequence. Furthermore, we can construct manually the required
polynomial of type commonly used in Ssreflect as follows:

Definition mypoly : {poly (Fp_field 3 prime3)} :=

Polynomial myseq myseq_last.

where myseq_last is a proof, required by the constructor of formal polynomials,
that the last element of the sequence myseq is not the field zero.

The Coq representation of the SCSCP request is constructed by the following
function taking the field order, the primality proof and a formal polynomial
object:

Definition RootsOfUPol_e (n : nat) (pn : prime n)

(p : {poly (Fp_field n pn)}) : OM :=

("scscp_transient_1"$$"WS_RootsOfUpol" @

("polyd1"$$"DMP" @

("polyd1"$$"poly_ring_d" @

(GFp n); #1);

("polyd1"$$"SDMP" @@ polyseqFp p))).
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The term of the request is obtained by lazy evaluation of the following term in
Coq: RootsOfUPol_e _ _ mypoly. The normal form obtained by lazy evaluation
can be routinely converted into the XML format and sent as an SCSCP request
to the GAP server. The server responds with another XML term containing an
OpenMath object which is routinely converted to OM and internalised according
to Section 4. This is a phase in Coq to GAP communication.

6 An Advanced Example

Note that GAP can deal with more complicated constructions than finite fields
that are used in the previous example for the sake of simplicity of presentation.
The following GAP code constructs a polynomial from the polynomial ring over
the algebraic extension over rationals of degree four:

x:=Indeterminate(Rationals,"x");

p:=x^4+3*x^2+1;

e:=AlgebraicExtension(Rationals,p);

z:=Indeterminate(e,"z");

w:=z^3-2*z+1;

Its roots over this algebraic extension can be calculated using the command
RootsOfPolynomial(e,w). The corresponding OpenMath code may be pro-
duced using commands OMPrint(w) and OMPrint(RootsOfUPol(e,w)). Below
we provide its more readable POPCORN (Possibly Only Practical Convenient
OpenMath Replacement Notation) [15] that shows the SCSCP control elements
corresponding to procedure call and procedure result. The user of GAP defines
an external name WS_RootsOfUPol for the GAP procedure RootsOfUPol which
they put into a header file accessible to the SCSCP package of GAP. The pro-
cedure call is as follows:

scscp1.procedure_call( scscp_transient_1.WS_RootsOfUPol( polyd1.DMP(

polyd1.poly_ring_d_named(field3.field_by_poly(setname1.Q, polyd1.DMP(

polyd1.poly_ring_d_named(setname1.Q,$x):ref1,

polyd1.SDMP(polyd1.term(1, 4), polyd1.term(3, 2),

polyd1.term(1, 0)))), $z),

polyd1.SDMP(

polyd1.term(field4.field_by_poly_vector(

field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [1, 0, 0, 0]), 3),

polyd1.term(field4.field_by_poly_vector(

field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [(-2), 0, 0, 0]), 1),

polyd1.term(field4.field_by_poly_vector(

field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [1, 0, 0, 0]), 0)))))

The result is an application of the “procedure completed” symbol to the list of
roots:
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scscp1.procedure_completed(

[ field4.field_by_poly_vector(field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [1, 0, 0, 0]),

field4.field_by_poly_vector(field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [1, 0, 1, 0]),

field4.field_by_poly_vector(field3.field_by_poly(setname1.Q,

polyd1.DMP(#ref1, polyd1.SDMP(polyd1.term(1, 4),

polyd1.term(3, 2), polyd1.term(1, 0)))), [(-2), 0, (-1), 0]) ])

Structurally, both procedure call and procedure result are quite similar to our
working example in Section 3. On the other hand, finding a representation for
these in the prover might be a challenge.

7 Related Work

Communication interfaces between proof assistants and CAS were built in [7]
and in [8]. The former paper developed an approach where values computed by
the CAS-as-an-oracle were used in deductive proofs of primality in the proof
assistant. This approach has been further investigated and complemented by an
alternative approach in [14] where the values provided by the CAS were rather
used in boolean tests, which allowed more efficient proofs by computation in
Coq, and so, bigger numbers could be proved to be prime, while still retaining
the aspect of correctness-by-proof. The approach in [14] is often referred to as
proof by reflection.

Two related kinds of development have quite different aims to ours: 1) build-
ing a computer algebra system on top of a proof assistant [16,3], and 2) creating
a programing environment for development of certified computation [4]. Unlike
any of these developments, we do not approach the nature of computational algo-
rithms but rather concern ourselves with the task of representing given computer
algebra data in a way acceptable in a theorem prover.

OpenMath, with its structure-oriented notation, is related to a more general
case of abstract syntax tree (AST) appearing in programming languages research.
For example, compare OM with the type aexpr from [2,19] that gives an AST
representation to simple arithmetical expressions. This type is instrumental in
construction of the abstract semantics of the imperative language IMP. For this
sake, one has to define semantics of evaluation of instructions to states, that is,
sets of values for all the variables after execution of the instruction. Evaluation
of an AST of an arithmetic or boolean expression yields a value in the Coq type
of integers or booleans respectively.

As a result of the comparison with abstract semantics of IMP, we see that
OpenMath does not in fact provide a semantics to mathematical expressions
but rather employs XML and other container formats to encode ASTs. Indeed,
the type OM is close to aexpr apart from the constructor OMApp which has a list
argument. There is no analogue of evaluation of arithmetic expressions in the
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OpenMath standard. Semantics of mathematical objects represented by Open-
Math ASTs, their evaluation, should be defined outside the OpenMath standard,
e.g., in a CAS or a prover.

XML technology that is employed by SCSCP is also adopted in the HELM
project [1] for management of large open repositories of mathematical knowledge.
The methodology is based on a few basic rules, which is reminiscent of the
initial motivation behind OpenMath. HELM goes further in that it defines a
new distributed collaboration scenario involving various systems of computer
mathematics, without a central authority.

In [6], a method is developed to create interactive mathematical documents
based on Coq scripts. The method employs a unidirectional Coq to OpenMath
encoder in which the OpenMath primitive OMBIND is used to denote variable
bindings for λ- and Π-abstraction. Although this is probably the best certified
encoding as long as OpenMath is concerned, in our development we cannot
rely on OMBIND since we perform a bidirectional encoding, and converting from a
CAS presentation that in general has no bindings to a presentation with bindings
seems to be a redundant step.

Discussion of GAP types. GAP [11,5] is a typed programming language in the
following sense. Although GAP allows untyped programming elements such as
unityped lists, every algebraic object of GAP has type. The GAP type of an
object is the run-time information about it which has been computed and stored.
GAP types consist of a filter and a family which are described below.

A GAP filter can be defined as a three-valued run-time property: At a given
point of execution, the property is either known to GAP and is then a boolean
value or unknown. Such values are either set at the time of GAP object creation
or computed at run time by special unary GAP functions mapping GAP objects
to boolean values, with the output depending on whether or not the object lies
in the set associated with the filter. Thus such special functions are essentially
characteristic predicates. GAP filters form a lower semilattice whose zero, the
GAP filter of all GAP objects, is called IsObject. GAP filters are used for
method selection in the object-oriented procedure call scheme.

The GAP family is the relation of the object to other objects. Families form
a subset of GAP objects such that the following two conditions hold: 1) objects
that are (extensionally) equal lie in the same family; and 2) the family of the
result of an operation depends only on the families of its operands.

Consider an example application of GAP families. A polynomial ring and
its coefficients ring lie in different families, hence the coefficient ring cannot
be embedded into the polynomial ring as a subset. Nevertheless we can, for
instance, multiply an integer by a polynomial over the ring of integers. The
relation between the arguments, namely that the former is a coefficient and the
latter a polynomial, is given by the relation between their families.

There is an implementation feature [11], which does not usually interact with
computations, in the presentation of the family hierarchy which seems to collapse
all higher-order families into the family of families. While, in a system with
reasoning capabilities such as a theorem prover, this would have led to Russell’s



View of Computer Algebra Data from Coq 87

paradox of naive set theory, computer algebra algorithms are not subject to
the paradox because they never perform hypothetic reasoning. This nevertheless
means that one should avoid simple embedding of the GAP type system into
higher-order type theory such as the one of Coq. Instead, we consider taking a
suitably rich type-theoretic hierarchy of mathematical structures, Ssreflect [12],
and encode GAP objects as objects of type theory. We call such encoding an
internalisation of the mathematical object.

8 Conclusions and Possible Directions

In Section 2 we discussed our approach to organisation of views of computer
algebra data in a consistent hierarchy where multiple inheritance is allowed. At
the moment we are using just a few basic views for OpenMath primitives and
symbols. Future work should be dedicated to extending this hierarchy. This can
be performed along with more case studies in various areas of computer algebra
for which there is relevant support in the theorem prover.

In Section 4 we described our approach to OpenMath term internalisation in
Coq which employs the type OM representing a subset of the OpenMath standard.
We showed that parsing of abstract syntax trees can be done purely in Coq, for
which we have to provide some minimal input-output instrumentation at the
level of the implementation language of Coq, Ocaml. This instrumentation has
been routinely used in experiments of socket-based communication between Coq
and GAP running an SCSCP server package and is be available from the first
author’s webpage1. The parsing function can in principle be extended to handle
generic OpenMath data respecting the type OM which in turn can be extended
to account for more OpenMath primitives.

The process of inverse translation from Coq to GAP, which is also called
mathematical object externalisation, is described in Section 5. Externalisation
is simpler than internalisation as long as types are concerned because it forgets
dependently-typed parameters. There is an interesting problem of automatising
construction of ASTs of type OM, possibly by providing a contextual mapping
from Coq types to OpenMath symbols.

In Section 7 we mentioned an analogy involving OpenMath and the abstract
semantics of arithmetical expressions. Provided this analogy, one might inves-
tigate into formal evaluation of OpenMath in Coq in the manner of abstract
evaluation as in abstract semantics of the imperative language IMP. Abstract
evaluation can target the mathematical hierarchy of Ssreflect and therefore can
be a more generic approach to mathematical object internalisation in Coq.
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Computer Certified Efficient Exact Reals in Coq

Robbert Krebbers and Bas Spitters�
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Abstract. Floating point operations are fast, but require continuous ef-
fort on the part of the user in order to ensure that the results are correct.
This burden can be shifted away from the user by providing a library
of exact analysis in which the computer handles the error estimates. We
provide an implementation of the exact real numbers in the Coq proof
assistant. This improves on the earlier Coq-implementation by O’Connor
in two ways: we use dyadic rationals built from the machine integers and
we optimize computation of power series by using approximate division.
Moreover, we use type classes for clean mathematical interfaces. This
appears to be the first time that type classes are used in heavy compu-
tation. We obtain over a 100 times speed up of the basic operations and
indications for improving the Coq system.

1 Introduction

Real numbers cannot be represented exactly in a computer. Hence, in construc-
tive analysis [1] one approximates real numbers by rational, or dyadic numbers.
The real numbers are the completion of the rationals. This completion con-
struction can be organized in a monad, a familiar construct from functional
programming (Section 3). The completion monad provides an efficient combina-
tion of proving and computing [2]. In this way, O’Connor [3] implements exact
real numbers and the transcendental functions on them in Coq.

A number of possible improvements in this implementation were already sug-
gested in [4]. First, we can use Coq’s new machine integers; see Section 2. Second,
we can use dyadic rationals (that are numbers of the shape n ∗ 2e for n, e ∈ �,
also known as infinitary floats). Third, the implementation of power series can
be improved by using approximate division. Here we carry out all three opti-
mizations. Unfortunately, changing O’Connor’s implementation to use the new
machine integers was far from trivial, as he used a particular concrete repre-
sentation of the rationals. To avoid this in the future, we provide an abstract
specification of the dense set as approximate rationals; see Section 4.

In Section 4 we provide some abstract order theory culminating in the theory
of approximate rationals. Section 5 deals with computing power series using
dyadics. Section 6 describes Wolfram’s algorithm to compute the square root of
a real number. We finish with some benchmarks in Section 7.
� The research leading to these results has received funding from the European Union’s

7th Framework Programme under grant agreement nr. 243847 (ForMath).
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2 The Coq-System

The Coq proof assistant is based on the calculus of inductive constructions [5,6],
a dependent type theory with (co)inductive types; see [7,8]. In true Curry-
Howard fashion, it is both a pure functional programming language with an
expressive type system, and a language for mathematical statements and proofs.
We highlight some aspects of Coq relevant for our development.

Types and propositions. Propositions in Coq are types [9,10], which themselves
have types called sorts. Coq features a distinguished sort called Prop that one
may choose to use as the sort for types representing propositions. The distin-
guishing feature of the Prop sort is that terms of non-Prop type may not depend
on the values of inhabitants of Prop types (that is, proof terms). This regime of
discrimination establishes a weak form of proof irrelevance, in that changing a
proof can never affect the result of value computations. On a practical level, this
lets Coq safely erase all Prop components when extracting certified programs to
Ocaml or Haskell. We should note however, that in practice, Coq’s extrac-
tion mechanism [11] is still very hard to use for programs with the complexity,
in terms of depth of definitions, that we are interested in [12,13].

Equality, setoids, and rewriting. Because the Coq type theory lacks quotient
types (as it would make type checking undecidable), one usually bases abstract
structures on a setoid (‘Bishop set’): a type equipped with an equivalence rela-
tion [1,14]. This leads to a naive set theory as described by Palmgren [15]. When
the user attempts to substitute a given (sub)term using an equality, the system
keeps track of, resolves, and combines proofs of equivalence [16].

The ‘native’ notion of equality in Coq, Leibniz equality, is that of terms being
convertible, naturally reified as a proposition by the inductive type family eq with
single constructor eq refl : ∀ (T : Type)(x : T), x ≡ x, where a ≡ b is notation for
eq T a b. Since convertibility is a congruence, a proof of a ≡ b lets us substitute
b for a anywhere inside a term without further conditions. Our interest is in
more complicated equalities, so we diverge from Coq tradition and reserve = for
setoid equality. Rewriting with = does give rise to side conditions. For instance,
consider formal fractions of integers as a representation of rationals. Rewriting a
subterm using such an equality is permitted only if the subterm is an argument of
a function that has been proven to respect the equality. Such a function is called
Proper, and that property must be proved for each function in whose arguments
we wish to enable rewriting.

Type classes. Type classes have been a great success story in the Haskell
functional programming language, as a means of organizing interfaces of abstract
structures. Coq’s type classes provide a superset of their functionality, but are
implemented in a different way.

In Haskell and Isabelle, type classes and their instances are second class.
They are handled as specialized syntactic constructs whose semantics are given
specifically by the type class apparatus. By contrast, the expressivity of depen-
dent types and inductive families as supported in Coq, combined with the use
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of pre-existing technology in the system (namely proof search and implicit argu-
ments) enable a first class type class implementation [17]: classes are ordinary
record types (‘dictionaries’), instances are ordinary constants of these record
types (registered as hints with the proof search machinery), class constraints are
ordinary implicit parameters, and instance resolution is achieved by augmenting
the unification algorithm to invoke ordinary proof search for implicit arguments
of class type. Thus, type classes in Coq are realized by relatively minor syntactic
aids that bring together existing facilities of the theory and the system into a
coherent idiom, rather than by introduction of a new category of qualitatively
different definitions with their own dedicated semantics.

We use the algebraic hierarchy based on type classes and its abstract spec-
ification of �,� and � described in [18]. Unfortunately, we should note that
we have clearly met the efficiency problems connected to the current implemen-
tation of type classes in Coq. Luckily, these efficiency problems are limited to
instance resolution which is only performed at compile time. Type classes have
only a very minor effect on the computation time of type checked terms due to
the absence of code inlining; see Section 7 for timings.

Virtual machine and machine integers. Coq includes a virtual machine [19],
vm compute, based on Ocaml’s virtual machine to allow efficient evaluation.
Both the abstract machine and its compilation scheme have been proved correct,
in Coq, with respect to the weak reduction semantics. However, we still need to
extend our trusted core to a bigger kernel, as the implementation has not been
formally verified.

Machine integers were also added to the Coq system [20]. The usual evalua-
tion inside Coq (compute) uses a special inductive type for cyclic integers, but
the virtual machine uses Ocaml’s machine integers. This allows for a big speed-
up, for which we pay by having to trust (the virtual machine and) that Ocaml
treats these integers correctly. The time difference between computation with
Coq’s int and Ocaml’s Big int is about a factor of 20 [21] on primality tests.

3 Metric Spaces

Having completed our brief description of the Coq-system, we now turn to
O’Connor’s formalization of exact real numbers [2]. Traditionally, a metric space
is defined as a set X with a metric function d : X × X → �+ satisfying certain
axioms. We use a more relaxed definition of a metric space that does not require
the metric be a function; see also [22]. The metric is represented via a (respectful)
ball relation B : �+ → X → X → Prop satisfying:

msp refl : ∀x ε, Bε x x
msp sym : ∀x y ε, Bε x y → Bε y x
msp triangle : ∀x y z ε1 ε2, Bε1 x y → Bε2 y z → Bε1+ε2 x z
msp closed : ∀x y ε, (∀δ, Bε+δ x y) → Bε x y
msp eq : ∀x y, (∀ε, Bε x y) → x = y

The ball relation Bε x y expresses that the points x and y are within ε of each
other. We call this a ball relationship because the partially applied relation
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BX
ε x : X → Prop is a predicate that represents the closed ball of radius ε

around the point x. For example, the ball relation on � is B�ε x y := |x−y| ≤ ε.
We will introduce the completion of a metric space as a monad. In order to

do this we will first introduce monads.
Monads. Moggi [23] recognized that many non-standard forms of computation
may be modeled by monads1. Wadler [24] popularized their use in functional
programming. Monads are now an established tool to structure computation
with side-effects. For instance, programs with input X and output Y which have
access to a mutable state S can be modeled as functions of type X ×S → Y ×S,
or equivalently X → (Y × S)S . The type constructor MY := (Y × S)S is
an example of a monad. Similarly, partial functions may be modeled by maps
X → Y⊥, where Y⊥ := Y + () is a monad.

The formal definition of a (strong) monad is a triple (M, return, bind) consist-
ing of a type constructor M and two functions:

return : X → MX

bind : (X → MY ) → MX → MY

We will denote return x as x̂, and bind f as f̌ . These two operations must satisfy:

bind return a = a

f̌ â = f a

f̌ (ǧ a) = bind (f̌ ◦ g) a

Completion monad. The completion of a metric space X is defined by:

CX := {f : �+ → X | ∀ε1 ε2, Bε1+ε2
(f ε1) (f ε2)}.

Given metric spaces X and Y , a function f : X → Y is uniformly continuous
with modulus μf : Q+ → Q+ if:

∀ε x1 x2, Bμf ε x1 x2 → Bε (f x1) (f x2).

Completion is a monad on the category of metric spaces with uniformly continu-
ous functions. The function return : X → CX defined by λx ε, x is the embedding
of a metric space in its completion. Moreover, a uniformly continuous function
f : X → CY with modulus μf can be lifted to operate on complete metric
spaces as bind f : CX → CY defined by λx ε, f (x (μf

ε
2 )) ε

2 . In fact, the text
above contains a white lie: we need a minor restriction to prelength spaces [3].

One advantage of this approach is that it helps us to work with simple rep-
resentations. Let � := C�. Then to specify a function from � → �, we define
a uniformly continuous function f : � → �, and obtain f̌ : � → � as the
required function. Hence, the completion monad allows us to do in a structured
way what was already folklore in constructive mathematics: to work with simple,
often decidable, approximations to continuous objects.
1 In category theory one would speak about the Kleisli category of a (strong) monad.



94 R. Krebbers and B. Spitters

4 Abstract Interfaces Using Type Classes

An important part of this work is to further develop the algebraic hierarchy
based on type classes by Spitters and van der Weegen [18]. Especially, we have
formalized some order theory and developed interfaces for mathematical oper-
ations common in programming languages such as shift and power. This layer
of abstraction makes both proof engineering and programming more flexible: it
avoids duplication of code, it introduces a canonical way to refer to operations
and properties, both by names and notations, and it allows us to easily swap
different implementations of number representations and their operations. First
we will briefly recap the design decisions made in [18].

Algebraic structures are expressed in terms of a number of carrier sets, a
number of relations and operations, and a number of laws that the operations
satisfy. One way of describing such a structure is by a bundled representation:
one uses a dependently typed record that contains the carrier, operations and
laws. For example a semigroup can be represented as follows. (The fields sg car

and sg proper support our explicit handling of naive set theory in type theory.)

Record SemiGroup : Type := {
sg car :> Setoid ;
sg op : sg car → sg car → sg car ;
sg proper : Proper ((=) =⇒ (=) =⇒ (=)) sg op ;
sg ass : ∀ x y z, sg op x (sg op y z) = sg op (sg op x y) z) }

However, this approach has some serious limitations, the most important one
being a lack of support for sharing components. For example, suppose we group
together two CommutativeMonoids in order to create a SemiRing. Now awkward
hacks are necessary to establish equality between the carriers. A second problem
is that if we stack up these records to represent higher structures the projection
paths become increasingly long.

Historically these problems have been an acceptable trade-off because un-
bundled representations, in which the carrier and operations are parameterized,
introduce even more problems.

Record SemiGroup {A} (e : A → A → Prop) (sg op : A → A → A) : Prop := {
sg proper : Proper (e =⇒ e =⇒ e) sg op ;
sg ass : ∀ x y z, e (sg op x (sg op y z)) (sg op (sg op x y) z) }

There is nothing to bind notation to, no structure inference, and declaring and
passing requires too much manual bookkeeping. Spitters and van der Weegen
have proposed a use of Coq’s new type class machinery that resolves many of
the problems of unbundled representations. Our current experiment confirms
that this is a viable approach.

An alternative solution is provided by packed classes [25] which use an al-
ternative, and older, implementation of a semblance of type classes: canonical
structures. Yet another approach would use modules. However, as these are not
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fist class, we would be unable to define, e.g. homomorphisms between algebraic
structures.

An operational type class is defined for each operation and relation.

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Now an algebraic structure is just a type class living in Prop that is
parametrized by its carrier, relations and operations. This class contains all laws
that the operations should satisfy. Since the operations are unbundled we can
easily support sharing. For example let us consider the SemiRing interface.

Class SemiRing A {e : Equiv A} {plus: RingPlus A}
{mult: RingMult A} {zero: RingZero A} {one: RingOne A} : Prop := {

semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.

Without type classes it would be a burden to manually carry around the carrier,
relations and operations. However, because these parameters are just type class
instances, the type class machinery will perform that job for us. For example,

Lemma example ‘{SemiRing R} x : 1 ∗ x = x + 0.

The backtick instructs Coq to automatically insert implicit declarations, namely
e plus mult zero one. It further lets us omit a name for the SemiRing R parameter
itself as well. All of these parameters will be given automatically generated names
that we will never refer to. Furthermore, instance resolution will automatically
find instances of the operational type classes for the written notations. Thus the
above is really:

Lemma example {R e plus mult zero one} {P : @SemiRing R e plus mult zero one} x :
@equiv R e

(@ring mult R mult (@ring one R one) x)
(@ring plus R plus x (@ring zero R zero)).

The syntax :> in the definition of SemiRing declares certain fields as substruc-
tures. That means, a SemiRing can be seen as a CommutativeMonoid and each time
a CommutativeMonoid instance is needed, a SemiRing can be used instead. This
syntax should not be confused with the similar syntax for coercions in records
(e.g. in the bundled representation of a SemiGroup on p. 94).

This approach to interfaces proved useful to formalize a standard algebraic
hierarchy. Combined with category theory and universal algebra, � and � are
represented as interfaces specifying an initial SemiRing and initial Ring [18]. These
abstract interfaces for the naturals and integers make it easier to change the
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concrete representation in the future. No such simple specification for � seems
to exists, so we choose to specify it as the field of fractions of �. More precisely,
� is specified as a Field containing � that moreover can be embedded into the
field of fractions of �.

Inductive Frac R ‘{e : Equiv R} ‘{zero : RingZero R} : Type :=
frac { num : R ; den : R ; den nonzero : den �= 0 }.

Class RationalsToFrac (A : Type) := rationals to frac : ∀ B ‘{Integers B}, A → Frac B.
Class Rationals A {e plus mult zero one opp inv} ‘{U : !RationalsToFrac A} : Prop := {

rationals field :> @Field A e plus mult zero one opp inv ;
rationals frac :> ∀ ‘{Integers Z}, Injective (rationals to frac A Z) ;
rationals frac mor :> ∀ ‘{Integers Z}, SemiRing Morphism (rationals to frac A Z) ;
rationals embed ints :> ∀ ‘{Integers Z}, Injective (integers to ring Z A) }.

4.1 Order Theory

To abstract from �, �, � and � and their various implementations, we provide
a basic library for ordered algebraic structures. For example,

Class RingOrder ‘{Equiv A} ‘{RingPlus A} ‘{RingMult A} ‘{RingZero A}
(o : Order A) := {

ringorder partialorder :> PartialOrder (≤) ;
ringorder plus :> ‘(OrderPreserving (z +));
ringorder mult : ‘(0 ≤ x → ∀ y, 0 ≤ y → 0 ≤ x ∗ y) }.

To apply this to �, which is merely a semiring, we introduce the, apparently
new, notion of a SemiRingOrder. Every RingOrder is a SemiRingOrder.

Class SemiRingOrder ‘{Equiv A} ‘{RingPlus A} ‘{RingMult A} ‘{RingZero A}
(o : Order A) := {

srorder partialorder :> PartialOrder (≤) ;
srorder plus : ‘(x ≤ y ↔ ∃ z, 0 ≤ z ∧ y = x + z) ;
srorder mult : ‘(0 ≤ x → ∀ y, 0 ≤ y → 0 ≤ x ∗ y) }.

This allows us to refer by canonical names to lemmas as those shown below for
�, �, � and the dyadics.

Lemma plus compat x1 y1 x2 y2 : x1 ≤ y1 → x2 ≤ y2 → x1 + x2 ≤ y1 + y2 .
Lemma sprecedes 1 2 : 1 < 2.

For instances of �, �, � it is easy to define an order satisfying these interfaces:

Instance nat precedes ‘{Naturals N} : Order N | 10 := λ x y, ∃ z, y = x + z.

However, often we encounter an a priori different order on a structure, most likely
an order defined in Coq’s standard library (like Nle on N). Therefore we prove
that an arbitrary order satisfying these interfaces while also being a TotalOrder

uniquely specifies the order on �, � and �. For example:



Computer Certified Efficient Exact Reals in Coq 97

Context ‘{Naturals N} ‘{Naturals N2} {f : N → N2} ‘{!SemiRing Morphism f}
{o1 : Order N} ‘{!SemiRingOrder o1} ‘{!TotalOrder o1}
{o2 : Order N2} ‘{!SemiRingOrder o2} ‘{!TotalOrder o2}.

Global Instance: OrderEmbedding f.

Unfortunately Coq has no support to have an argument be ‘inferred if possible,
generalized otherwise’; see [18]. When declaring a parameter of RingOrder, one is
often in a context where most of its components are already available. Usually,
only the parameter Order has to be introduced. The current workaround in these
cases involves providing names for components that are then never referred to,
which is a bit awkward. In the above it would much nicer to write:

Context ‘{Naturals N} ‘{Naturals N2} {f : N → N2} ‘{!SemiRing Morphism f}
‘{!SemiRingOrder N} ‘{!TotalOrder N} ‘{!SemiRingOrder N2} ‘{!TotalOrder N2}.

Global Instance: OrderEmbedding f.

4.2 Basic Operations

The operation nat pow is most commonly, but inefficiently, defined as repeated
multiplication and the operation shiftl is defined as repeated multiplication by
2. Instead we specify the desired behavior of these operations. This approach
allows for different implementations for different number representations and
avoids definitions and proofs becoming implementation dependent.

We introduce interfaces that specify the behavior of the operations abs, shiftl,
nat pow and int pow. Again there are various ways of specifying these interfaces:
with Σ-types, bundled or unbundled. In general, Σ-types are convenient for
functions whose specification is easy, for example:

Class Abs A ‘{Equiv A} ‘{Order A} ‘{RingZero A} ‘{GroupInv A}
:= abs sig: ∀ (x : A), { y : A | (0 ≤ x → y = x) ∧ (x ≤ 0 → y = −x)}.

Definition abs ‘{Abs A} := λ x : A, ‘ (abs sig x).

However, for more complex operations, such as shiftl, such an interface is differ-
ent from the usual mathematical specification because we cannot quantify over
all possible input values. Now there are two ways: a bundled or an unbundled
interface. Since these interfaces are not used for hierarchies the disadvantages of
the latter do not apply. Let us first describe the former approach.

Class ShiftL A B ‘{Equiv A} ‘{Equiv B} ‘{RingOne A}
‘{RingPlus A} ‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl : A → B → A ;
shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) shiftl ;
shiftl 0 :> RightIdentity shiftl 0 ;
shiftl S : ∀ x n, shiftl x (1 + n) = 2 ∗ shiftl x n }.

Infix ”� ” := shiftl (at level 33, left associativity).

Although this interface seems reasonable, it does not work well in Coq. The simpl

tactic which is used to simplify a goal will unfold occurrences of shiftl to their
underlying definition (for example in case of BigN, the expression x � n becomes
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BigN.shiftl x n). This is rather inconvenient because Coq will then be unable to
use lemmas concerning � for rewriting. This problem is caused because shiftl is a
projection of a record, which is in fact an ι-redex (reduction of pattern-matching
over a constructed term) that will be unfolded by simpl. Currently there seems
to be no way to adjust the behavior of simpl to remove this inconvenience. A
similar problem was already observed in Ssreflect [26].

Instead we use an unbundled interface, which has a lot in common with our
interfaces for algebraic structures. Now shiftl no longer contains an ι-redex.
Class ShiftL A B := shiftl: A → B → A.
Infix ”� ” := shiftl (at level 33, left associativity).
Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} ‘{Equiv B} ‘{RingOne A}

‘{RingPlus A} ‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {
shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) (�) ;
shiftl 0 :> RightIdentity (�) 0 ;
shiftl S : ∀ x n, x � (1 + n) = 2 ∗ x � n }.

We do not specify shiftl as shiftl x n = x ∗ 2 ˆ n since on the dyadics we cannot
take a negative power while we can shift by a negative integer.

4.3 Decision Procedures

The Decision type class collects types with a decidable equality [18].

Class Decision P := decide: sumbool P (¬ P).

Using this type class we can declare a parameter ‘{∀ x y, Decision (x ≤ y)} to
describe a decider for ≤ and say decide (x ≤ y) to decide whether x ≤ y or not.
This type class allows us to easily define additional deciders, like the one for the
strict order. We have to be careful however. Consider the order on the dyadics.

Global Instance dy precedes: Order Dyadic := λ (x y : Dyadic),
ZtoQ (mant x) ∗ 2 ˆ (expo x) ≤ ZtoQ (mant y) ∗ 2 ˆ (expo y)

Now, decide (x ≤ y) is actually @decide Dyadic (x ≤ y) dyadic dec, where dyadic dec

is the computational conclusion of the decision. Due to eager evaluation, and
the absence of dead code removal, the second argument, x ≤ y, is also evaluated.
Evaluation of this argument results in a conversion of x and y into Q, as described
above. But since this argument is just a proposition it is later thrown away. We
avoid this problem introducing a λ-abstraction.

Definition decide rel ‘(R : relation A) {dec : ∀ x y, Decision (R x y)}
(x y : A) : Decision (R x y) := dec x y.

We can now define:

Context ‘{!PartialOrder (≤) } {!TotalOrder (≤) } ‘{∀ x y, Decision (x ≤ y)}.
Global Program Instance sprecedes dec: ∀ x y, Decision (x < y) | 9 := λ x y,

match decide rel (≤) y x with
| left E ⇒ right
| right E ⇒ left
end.
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4.4 Approximate Rationals

To make our implementation of the reals independent of the underlying dense
set, we provide an abstract specification of approximate rationals inspired by the
notion of approximate fields which is used in the Haskell implementation of
the exact reals by Bauer and Kavler [27]. We provide an implementation of this
interface by dyadics based on Coq’s machine integers.

Our interface describes an ordered ring containing Z that is dense in Q. Here
Z are the binary integers from Coq’s standard library, and Q are the rationals
based on these binary integers. We do not parametrize by arbitrary integer and
rational implementations because they are hardly used for computation.

Also, for efficient computation, this interface contains the operations: approx-
imate division, normalization, an embedding of Z, absolute value, power by N,
shift by Z, and decision procedures for both equality and order.

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.
Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}

{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}

‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {

aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.

O’Connor [2] keeps the size of the rational numbers small to avoid efficiency
problems. He introduces a function approx x ε that yields the ‘simplest’ ratio-
nal number between x − ε and x + ε. In our interface we modify the approx

function slightly: app approx x k yields an arbitrary element between x − 2k and
x +2k. Using this function we define the compress operation on the real numbers:
compress := bind (λ ε, app approx x (Qdlog2 ε)) such that compress x = x.

In Section 5 we will explain our choice of using a power of 2 to specify the
precision of app div and app approx. In the remainder of this section we briefly
describe our implementation by the dyadics.

The dyadic rationals are numbers of the shape n ∗ 2e for n, e ∈ �. In order to
remain independent of an integers implementation, we abstract over it. For our
eventual implementation of the approximate rationals we use Coq’s machine
integers, bigZ. Now given an arbitrary integer implementation Int it is straight-
forward to define the dyadics. Here we will just show the ring operations.
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Notation ”x � p” := (exist x p) (at level 20).
Record Dyadic := dyadic { mant : Int ; expo : Int }.
Infix ”$” := dyadic (at level 80).
Global Instance dy inject: Coerce Int Dyadic := λ x, x $ 0.
Global Instance dy opp: GroupInv Dyadic := λ x, −mant x $ expo x.
Global Instance dy mult: RingMult Dyadic := λ x y, mant x ∗ mant y $ expo x + expo y.
Global Instance dy 0: RingZero Dyadic := (’0:Dyadic).
Global Instance dy 1: RingOne Dyadic := (’1:Dyadic).
Global Program Instance dy plus: RingPlus Dyadic := λ x y,

if decide rel (≤) (expo x) (expo y)
then mant x + mant y � (expo y − expo x) � $ min (expo x) (expo y)
else mant x � (expo x − expo y) � + mant y $ min (expo x) (expo y).

In this code shiftl has type Int → Int+→ Int, where Int+ is a Σ-type describing the
non-negative elements of Int. Therefore, in the definition of dy plus we have to
equip expo y − expo x with a proof that it is in fact non-negative.

5 Power Series

Elementary transcendental functions as exp, sin, ln and arctan can be defined by
their power series. If the coefficients of a power series are alternating, decreas-
ing and have limit 0, then we obtain a fast converging sequence with an easy
termination proof. For −1 ≤ x ≤ 0,

exp x =
∞∑

i=0

xi

i!

is of this form. To approximate exp x with error ε we take the partial sum until
xi

i! ≤ ε. In order to implement this efficiently we use a stream representing the
series and define a function that sums the required number of elements. For
example, the series 1, a, a2, a3, . . . is defined by the following stream.

CoFixpoint powers help (c : A) : Stream A := Cons c (powers help (c ∗ a)).
Definition powers : Stream A := powers help 1.

Streams in Coq, like lists in Haskell, are lazy. So, in the example the multi-
plications are accumulated.

Since Coq only allows structural recursion (and guarded co-recursion) it re-
quires some work to convince Coq that our algorithm terminates. Intuitively, one
would describe the limit as an upperbound of the required number of elements
using the Exists predicate.

Inductive Exists A (P : Stream A → Prop) (x : Stream) : Prop :=
| Here : P x → Exists P x
| Further : Exists P (tl x) → Exists P x.

This approach leads to performance problems. The upperbound, encoded in
unary format, may become very large while generally only a few terms are
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necessary. Due to vm compute’s eager evaluation scheme, this unary number will
be computed before summing the series. Instead we use LazyExists [28].

Inductive LazyExists A (P : Stream A → Prop) (x : Stream A) : Prop :=
| LazyHere : P x → LazyExists P x
| LazyFurther : (unit → LazyExists P (tl x)) → LazyExists P x.

O’Connor’s InfiniteAlternatingSum s returns the real number represented by the in-
finite alternating sum over s, where the stream s is decreasing, non-negative and
has limit 0. We have extended this in two ways. First, by generalizing some of the
work to abstract structures. Second, as we do not have exact division on approx-
imate rationals, we extended his algorithm to work with approximate division.
The latter required changing InfiniteAlternatingSum s to InfiniteAlternatingSum n d

which computes the infinite alternating sum of the stream λi, ni

di
. This allows us

to postpone divisions. Also, we have to determine both the length of the partial
sum and the required precision of the divisions. To do so we find a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0. (1)

Now k is the length of the partial sum, and ε
2k is the required precision of

division. Using O’Connor’s results we have verified that these values are correct
and such a k indeed exists for a decreasing, non-negative stream with limit 0.

As noted in Section 4.4, we have specified the precision of division in powers
of 2 instead of using a rational value. This allows us to replace (1) with:

B ε
2

(app div nk dk (log ε − (k + 1)) + 1 � (log ε − (k + 1))) 0.

Here k is the length of the partial sum, and 2l, where l = log ε − (k + 1), is
the required precision of division. This variant can be implemented without any
arithmetic on the rationals and is thus much more efficient.

This method gives us a fast way to compute the infinite alternating sum, in
practice, only a few extra terms have to be computed and due to the approximate
division the auxiliary results are kept as small as possible.

Using this method to compute infinite alternating sums we have so far imple-
mented exp and arctan. Furthermore, we extend the exponential to its complete
domain by repeatedly applying the following formula.

exp x = (exp(x � 1))2 (2)

Our tests have shown that reducing the input to a value between −2k ≤ x ≤ 0
for 50 ≤ k yields major performance improvements as the series will converge
much faster. For higher precisions setting it to 75 ≤ k gives even better results.

By defining arctan on [0, 1), we can define the Machin-like formula

π := 176 ∗ arctan
1
57

+ 28 ∗ arctan
1

239
− 48 ∗ arctan

1
682

+ 96 ∗ arctan
1

12943
.

Since we do not have exact division on the approximate rationals, we see here
the purpose of parameterizing infinite sums by two streams.
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6 Square Root

We use Wolfram’s algorithm [29, p.913] for computing the square root. Its com-
plexity is linear, in fact it provides a new binary digit in each step. We aim to
investigate Newton iteration in future work.

Context ‘(Pa : 1 ≤ a ≤ 4).
Fixpoint AQroot loop (n : nat) : AQ ∗ AQ :=

match n with
| O ⇒ (a, 0)
| S n ⇒

let (r, s) := AQroot loop n in
if decide rel (≤) (s + 1) r
then ((r − (s + 1)) � (2:Z), (s + 2) � (1:Z))
else (r � (2:Z), s � (1:Z))

end.

Three easy invariants allow us to prove this series converges to the square root.

Lemma AQroot loop invariant1 (n : nat) :
snd (AQroot loop n) ∗ snd (AQroot loop n) + 4 ∗ fst (AQroot loop n) = 4 ∗ 4 ˆ n ∗ a.

Lemma AQroot loop invariant2 (n : nat) :
fst (AQroot loop n) ≤ 2 ∗ snd (AQroot loop n) + 4.

Lemma AQroot loop fst bound (n : nat) :
fst (AQroot loop n) ≤ 2 ˆ (3 + n).

Table 1. Haskell, compiled with ghc version 6.12.1, using -O2

Expression Decimals O’Connor Krebbers/Spitters

sin (sin (sin 1)) 10,000 71s 5s
cos (1050) 10,000 2.7s 0.6s

tan (
√

2) + arctanh (sin 1) 500 133s 2.2s

Table 2. Coq trunk revision 13841

Expression Decimals O’Connor Krebbers/Spitters

π 300 55s 0.8s
exp (exp (exp ( 1

2
))) 25 123s 0.23s

exp π − π 25 52s 0.1s
arctan π 25 134s 1.0s

7 Benchmarks

The first step in this research was to create a Haskell prototype based on
O’Connor’s implementation of the real numbers in Haskell [2]. The second
step was to implement this prototype in Coq. Currently, our Coq development
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contains the field operations, computation of power series, exp, arctan, π and the
square root. Apart from the square root, the correctness of these operations has
been verified in the Coq system.

In this section we present some benchmarks comparing the old and the new im-
plementation, both in Haskell and Coq. All benchmarks have been carried out
on an Intel Core Quad 2.4 GHz with 8GB of memory running
Debian GNU/Linux with kernel 2.6.32. The sources of our developments can
be found at http://robbertkrebbers.nl/research/reals.

Table 1 shows some benchmarks in Haskell with compiler optimizations en-
abled (-O2) and Table 2 compares our Coq implementation with O’Connor’s.
More extensive benchmarking shows that our Haskell implementation gener-
ally benefits from a 15 times speed up while the speed up in Coq is usually
more than a 100 times. This difference is explained by the fact that O’Connor’s
Haskell implementation already used fast integers, while his Coq implementa-
tion did not. In the same times as shown in Table 2 for the old implementation,
the new implementation is able to compute the first 2,000 decimals of π, 450
decimals of exp (exp (exp (1

2 ))), 425 decimals of exp π − π and 85 decimals of
arctan π. This is an improvement of up to 18 times of the number of decimals.

It is interesting to notice that π and arctan benefit the least from our improve-
ments, as we are unaware of an optimization similar to the squaring trick for exp

(Section 5, Equation 2).
We conclude this section with a comparison between the performance of Wol-

fram’s algorithm in Coq and Haskell. The Haskell prototype (without com-
piler optimizations) is quite fast, computing 10,000 iterations (giving 3,010 deci-
mals) of

√
2 takes 0.2s. In Coq it takes 11.6s using type classes and 11.3s without

type classes. Here we exclude the time spend on type class resolution. Thus type
classes cause only a 3% performance penalty on computations.

Unfortunately, the Coq-implementation is slow compared to Haskell. Lau-
rent Théry suggested that this is due to the representation of the fast integers,
which uses a tree with a fixed depth and when the size of the integer becomes
too big uses a less optimal representation. Increasing the size of the tree rep-
resentation and avoiding an inefficiency in the implementation of shifts reduces
this time to 7.5s.

8 Conclusions and Related Work

We have greatly improved the performance of real number computation in Coq
using Coq’s new machine integers. We produced highly structured and abstract
code using type classes with no apparent performance penalty. Moreover, Coq’s
notation mechanism combined with unicode characters gives nicely readable
statements and proofs. Type classes were a great help in our work. However, the
current implementation of instance resolution is still experimental and at times
too slow (at compile time). Canonical structures provide an alternative, and par-
tially complementary, implementation of type classes [30]. By choice, canonical
structures restrict to deterministic proof search, this makes them more efficient,

http://robbertkrebbers.nl/research/reals
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but also somewhat more intricate to use. The use of canonical structures by the
Ssreflect team [25] makes it plausible that with some effort we could have
used canonical structures for our work instead. However, the Ssreflect-library
is currently not suited for setoids which are crucial to us. The integration of
unification hints [31] into Coq may allow a tighter integration of type classes
and canonical structures.

We needed to adapt our correctness proofs to prevent the virtual machine
from eagerly evaluating them. Lazy evaluation for Prop would have allowed us
to use the original proofs.

The experimental native compute performs evaluation by compilation to native
Ocaml code. This approach uses the Ocaml compiler available and is interest-
ing for heavy compilation. Our first experiments indicate a 10 times speed up
with Wolfram iteration. Unfortunately, native compute does not work with Coq
trunk yet, so we were unable to test it with our implementation of the reals.

The Flocq project [32] formalizes floating-points in Coq. It provides a library
of theorems on a multi-radix multi-precision arithmetic and supports efficient
numerical computations inside Coq. However, the current library is still too
limited for our purposes, but in the future it should be possible to show that
they form an instance of our approximate rationals. This may allow us to gain
some speed by taking advantage of fine grained algorithms on the floats instead
of our more straightforward ones.

The encoding of real numbers as streams of ‘bits’ is potentially interesting.
However, currently there is a big difference in performance. The computation
of 37 decimals of the square root of 1/2 by Newton iteration [33], using the
framework described in [34,35], took 12s. This should be compared with our use
of the Wolfram iteration, which gives only linear convergence, but with which
we nevertheless obtain 3,000 decimals in in a similar time. On the other hand,
the efficiency of π in their framework is comparable with ours. Berger [36], too,
uses co-induction for exact real computation.

The present work is part of a larger program to use constructive mathematics
based on type theory as a programming language for exact analysis. This should
culminate in a numerical ODE-solver.
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Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidel-
berg (2008)

18. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
MSCS, special issue on Interactive theorem proving and the formalization of math-
ematics (2011)
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features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010)

21. Spiwack, A.: Verified Computing in Homological Algebra, A Journey Exploring
the Power and Limits of Dependent Type Theory. PhD thesis, INRIA (2011)

22. Richman, F.: Real numbers and other completions. Mathematical Logic Quar-
terly 54(1), 98–108 (2008)

23. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23
(1989)

24. Wadler, P.: Monads for functional programming. In: Proceedings of the
Marktoberdorf Summer School on Program Design Calculi (August 1992)



106 R. Krebbers and B. Spitters

25. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

26. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Technical Report RR-6455, INRIA (2008)

27. Bauer, A., Kavkler, I.: A constructive theory of continuous domains suitable for
implementation. Annals of Pure and Applied Logic 159(3), 251–267 (2009)

28. O’Connor, R.: Incompleteness and Completeness: Formalizing Logic and Analysis
in Type Theory. PhD thesis, Radboud University Nijmegen (2009)

29. Wolfram, S.: A new kind of science. Wolfram Media (2002)
30. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: Making ad hoc proof automa-

tion less ad hoc (2011)
31. Asperti, A., Ricciotti, W., Coen, C., Tassi, E.: Hints in Unification. In: Berghofer,

S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674,
pp. 84–98. Springer, Heidelberg (2009)

32. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point algo-
rithms in Coq. In: Proc 20th IEEE Symposium on Computer Arithmetic (2011)

33. Julien, N., Pasca, I.: Formal Verification of Exact Computations Using Newton’s
Method. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 408–423. Springer, Heidelberg (2009)

34. Bertot, Y.: Affine functions and series with co-inductive real numbers.
MSCS 17(1), 37–63 (2007)

35. Julien, N.: Certified Exact Real Arithmetic Using Co-induction in Arbitrary
Integer Base. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS,
vol. 4989, pp. 48–63. Springer, Heidelberg (2008)

36. Berger, U.: From coinductive proofs to exact real arithmetic. In: Grädel, E., Kahle,
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Abstract. The integration of reasoning and computation services across
system and language boundaries is a challenging problem of computer
science. In this paper, we use integration for the scenario where we have
two systems that we integrate by moving problems and solutions between
them. While this scenario is often approached from an engineering per-
spective, we take a foundational view. Based on the generic declarative
language MMT, we develop a theoretical framework for system integra-
tion using theories and partial theory morphisms. Because MMT permits
representations of the meta-logical foundations themselves, this includes
integration across logics. We discuss safe and unsafe integration schemes
and devise a general form of safe integration.

1 Introduction

The aim of integrating Computer Algebra Systems (CAS) and Deduction Sys-
tems (DS) is twofold: to bring the efficiency of CAS algorithms to DS (without
sacrificing correctness) and to bring the correctness assurance of the proof theo-
retic foundations of DS to CAS computations (without sacrificing efficiency). In
general, the integration of computation and reasoning systems can be organized
either by extending the internals of one system by methods (data structure and
algorithms) from the other, or by passing representations of mathematical ob-
jects and system state between independent systems, thus delegating parts of the
computation to more efficient or secure platforms. We will deal with the latter
approach here, which again has two distinct sets of problems. The first addresses
engineering problems and revolves about communication protocol questions like
shared state, distributed garbage collection, and translating input syntaxes of
the different systems. The syntax questions have been studied extensively in the
last decade and led to universal content markup languages languages for math-
ematics like MathML and OpenMath to organize communication. The second
set of problems comes from the fact that passing mathematical objects between
systems can only be successful if their meaning is preserved in the communica-
tion. This meaning is given via logical consequence in the logical system together
with the axioms and definitions of (or inscribed in) the respective systems.

We will address this in the current paper, starting from the observation that
content level communication between mathematical systems, to be effective, can-
not always respect logical consequence. On the other hand, there is the problem
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of trusting the communication itself, that boils down to studying the preser-
vation of logical consequence. Surprisingly, this problem has not received in
the literature the attention it deserves. Moreover, the problem of faithful safe
communication, which preserves not only the consequence relation but also the
intuitive meaning of a formal object, is not even always perceived as a structural
problem of content level languages.

For example, people with a strong background in first order logic tend to as-
sume that faithful and safe communication can always be achieved simply by
strengthening the specifications; others believe that encoding logical theories is
already sufficient for safe communication and do not appreciate that the main
problem is just moved to faithfulness. Several people from the interactive theo-
rem proving world have raised concerns about trusting CAS and solved the issue
by re-checking the results or the traces of the computation (here called proof
sketches). Sometimes this happens under the assumption that the computation
is already correct and just needs to be re-checked, neglecting the interesting
case when the proof sketch cannot be refined to a valid proof (or computation)
without major patching (see [Del99] for a special case).

In this paper, we first give a categorization of integration problems and solu-
tions. Then we derive an integration framework by adding some key innovations
to the MMT language, a Module system for Mathematical Theories described in
[RK11]. MMT can be seen as a generalization of OpenMath and as a formalized
core of OMDoc. Of course, any specific integration task requires a substantial
amount of work — irrespective of the framework used. But our framework guides
and structures this effort, and can implement all the generic aspects. In fact,
current integration tasks typically involve setting up an ad-hoc framework for
exactly that reason.

We sketch the MMT framework first in Sect. 2. In Sect. 3, we analyze the
integration problem for mathematical systems from a formal position. Then we
describe how integration can be realized our framework using partial MMT the-
ory morphisms in Sect. 4. Finally, Sect. 5 discusses related work and Sect. 6
concludes the paper.

2 The MMT Language

Agreeing on a common syntax like OpenMath is the first step towards system
integration. This already enables a number of structural services such as storage
and transport or editing and browsing that they do not depend on the semantics
of the processed expressions. But while we have a good solution for a joint syn-
tax, it is significantly harder to agree on a joint semantics. Fixing a semantics
for a system requires a foundational commitment that excludes systems based
on other foundations. The weakness of the (standard) OpenMath content dic-
tionaries can be in part explained by this problem: The only agreeable content
dictionaries are those where any axioms (formal or informal) are avoided that
would exclude some foundations.

MMT was designed to overcome this problem by placing it in between frame-
works like OpenMath and OMDoc on the one hand and logical frameworks
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like LF and CIC on the other hand. The basic idea is that a system’s foun-
dation itself is represented as a content dictionary. Thus, both meta and ob-
ject language are represented uniformly as MMT theories. Furthermore, theory
morphisms are employed to translate between theories, which makes MMT ex-
pressive enough to represent translation between meta-languages and thus to
support cross-foundation integration. As MMT permits the representation of
logics as theories and internalizes the meta-relation between theories, this pro-
vides the starting point to analyze the cross-foundation integration challenge
within a formal framework.
Syntax. We will work with a very simple fragment of the MMT language that
suffices for our purposes, and refer to [RK11] for the full account. It is given by
the following grammar where [−] denotes optional parts and T , v, c, and x are
identifiers:

Theory graph γ ::= · | γ, T
[T ]
= {ϑ} | γ, v : T → T

v= {σ}
Theory body ϑ ::= · | ϑ, c [: O] [= O′]
Morphism body σ ::= · | σ, c 	→ O
Objects O ::= OpenMath objects
Morphisms μ ::= v | idT | μ ◦ μ
Contexts C ::= x1 : O1, . . . , xn : On

Substitutions s ::= x1 := O1, . . . , xn := On

In particular, we omit the module system of MMT that permits imports between
theories.

T
L= {ϑ} declares a theory T with meta-theory L defined by the list ϑ of sym-

bol declarations. The intuition of meta-theories is that L is the meta-language
that declares the foundational symbols used to type and define the symbol dec-
larations in ϑ.

All symbol declarations in a theory body are of the form c : O = O′. This
declares a new symbol c where both the type O and the definiens O′ are optional.
If given, they must be T -objects, which are defined as follows. A symbol is called
accessible to T if it is declared in T or accessible to the meta-theory of T . An
OpenMath object is called a T -object if it only uses symbols that are accessible
to T .

Example 1. Consider the natural numbers defined within the calculus of
constructions (see [BC04]). We represent this in MMT using a theory CIC
declaring untyped, undefined symbols such as Type, λ and →. Then Nat is
defined as a theory with meta-theory CIC giving symbol declarations such as
N : OMS(cd = CIC, name = Type) or succ : OMA(OMS(cd = CIC, name =→
), OMS(cd = Nat, name = N), OMS(cd = Nat, name = N)).

S-contexts C are lists of variable declarations . . . , xi : Oi, . . . for S-objects Oi.
S-substitutions s for an S-context C are lists of variable assignments . . . , xi :=
oi, . . .. In an object O in context C, exactly the variables in C may occur freely;
then for a substitution s for C, we write O[s] for the result of replacing every
free occurrence of xi with oi.
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Relations between MMT theories are expressed using theory morphisms. Given
two theories S and T , a theory morphism from S to T is declared using v : S →
T

l= {σ}. Here σ must contain one assignment c 	→ O for every symbol c de-
clared in the body of S, and for some T -objects O. If S and T have meta-theories
L and M , then v must also include a meta-morphism l : L → M .

Every v : S → T
l= {σ} induces a homomorphic extension v(−) that maps S-

objects to T -objects. v(−) is defined by induction on the structure of OpenMath
objects. The base case v(c) for a symbol c is defined as follows: If c is accessible
to the meta-theory of S, we put v(c) := l(c); otherwise, we must have c 	→ O in
σ, and we put v(c) := O. v(−) also extends to contexts and substitutions in the
obvious way.

By experimental evidence, all declarative languages for mathematics currently
known can be represented faithfully in MMT. In particular, MMT uses the
Curry-Howard representation [CF58, How80] of propositions as types and proofs
as terms. Thus, an axiom named a asserting F is a special cases of a symbol a
of type F , and a theorem named t asserting F with proof p is a special case of a
symbol t with type F and definiens p. All inference rules needed to form p, are
symbols declared in the meta-theory.
Semantics. The use of meta-theories makes the logical foundation of a system
part of an MMT theory and makes the syntax of MMT foundation-independent.
The analogue for the semantics is more difficult to achieve: The central idea is
that the semantics of MMT is parametric in the semantics of the foundation.

To make this precise, we call a theory without a meta-theory foundational. A
foundation for MMT consists of a foundational theory L and two judgments for
typing and equality of objects:
– γ; C �T O : O′ states that O is a T -object over C typed by the T -object O′,
– γ; C �T O = O′ states the equality of two T -objects over C,

defined for an arbitrary theory T declared in γ with meta-theory L. In particu-
lar, MMT does not distinguish terms, types, and values at higher universes —
all expressions are OpenMath objects with an arbitrary binary typing relation
between them. We will omit C when it is empty.

These judgments are similar to those used in almost all declarative languages,
except that we do not commit to a particular inference system — all rules are
provided by the foundation and are transparent to MMT except for the rules for
the base cases of T -objects:

T
L= {ϑ} in γ c : O = O′ in ϑ

T:
γ �T c : O

T
L= {ϑ} in γ c : O = O′ in ϑ

T=
γ �T c = O′

and accordingly if O or O′ are omitted. For example, adding the usual rules for
the calculus of constructions yields a foundation for the foundational theory CIC.

Given a foundation, MMT defines (among others) the judgments
– γ � μ : S → T states that μ is a theory morphism from S to T ,
– if γ � μi : S → T , then γ � μ1 = μ2 states that �T μ1(c) = μ2(c) for all

symbols c that are accessible to S,
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– γ �S s : C states that s is a well-typed for C, i.e., for every xi := oi in s and
xi : Oi in C, we have γ �S oi : Oi,

– γ � G states that G is a well-formed theory graph.
In the sequel, we will omit γ if it is clear from the context.

The most important MMT rule for our purposes is the rule that permits
adding an assignment to a theory morphism: If S contains a declaration c : O1 =
O2, then a theory morphism v : S → T

l= {σ} may contain an assignment
c 	→ O only if �T O : v(O1) and �T O = v(O2). The according rule applies if c
has no type or no definiens. Of course, this means that assignments c 	→ O are
redundant if c has a definiens; but it is helpful to state the rule in this way to
prepare for our definitions below.

Due to these rules, we obtain that if γ � μ : S → T and �S O : O′ or
�S O = O′, then �T μ(O) : μ(O′) and �T μ(O) = μ(O′), respectively. Thus,
typing and equality are preserved along theory morphisms.

Due to the Curry-Howard representation, this includes the preservation of
provability: �T p : F states that p is a well-formed proof of F in T . And if S
contains an axiom a : F , a morphism μ from S to T must map a to a T -object
of type μ(F ), i.e., to a T -proof of μ(F ). This yields the well-known intuition
of a theory morphism. In particular, if μ is the identity on those symbols that
do not represent axioms, then � μ : S → T implies that every S-theorem is an
T -theorem.

MMT is parametric in the particular choice of type system — any type sys-
tem can be used by giving the respective meta-theory. The type systems may
themselves by defined in a further meta-theory. For example, many of our ac-
tual encodings are done with the logical framework LF [HHP93] as the ultimate
meta-theory. The flexibility to use MMT with or without a logical framework
that takes care of all typing aspects is a particular strength of MMT.

3 Integration Challenges

In this section, we will develop some general intuitions about system integration
and then give precise definitions in MMT. A particular strength of MMT is
that we can give these precise definitions without committing to a particular
foundational system and thus without loss of generality.

The typical integration situation is that we have two systems Si for i = 1, 2
that implement a shared specification Spec. For example, these systems can be
computer algebra systems or (semi-)automated theorem provers. Our integration
goal is to move problems and results between S1 and S2.

Specifications and Systems. Let us first assume a single system S implementing
Spec, whose properties are given by logical consequence relations �Spec and �S .
We call S sound if �S F implies �Spec F for every formula F in the language
of Spec. Conversely, we call S complete if �Spec F implies �S F .

While these requirements seem quite natural at first, they are too strict for
practical purposes. It is well-known that soundness fails for many CASs, which
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compute wrong results by not checking side conditions during simplification.
Reasons for incompleteness can be theoretical — e.g., when S is a first-order
prover and Spec a higher-order specification — or practical — e.g., due to re-
source limitations.

Moreover, soundness also fails in the case of underspecification: S is usually
much stronger than Spec because it must commit to concrete definitions and im-
plementations for operations that are loosely specified in Spec. A typical example
is the representation of undefined terms (see [Far04] for a survey of techniques).
If Spec specifies the rational numbers using in particular ∀x.x = 0 ⇒ x/x = 1,
and S defines 1/0 = 2/0 = 0, then S is not sound because 1/0 = 2/0 is not a
theorem of Spec.

We can define the above notions in MMT as follows. A specification Spec is
an MMT theory; its meta-theory (if any) is called the specification language. A
system implementing Spec consists of an MMT theory S and an MMT theory
morphism v : Spec → S; the meta-theory of S (if any) is called the implementa-
tion language. With this definition and using the Curry-Howard representation
of MMT, we can provide a deductive system for the consequence relations used
above: �Spec F iff there is a p such that �Spec p : F ; and accordingly for �S .

In the simplest case, the morphism v is an inclusion, i.e., for every symbol
in Spec, S contains a symbol of the same name. Using an arbitrary morphism
v provides more flexibility, for example, the theory of the natural numbers with
addition and multiplication implements the specification of monoids in two dif-
ferent ways via two different morphisms.

Example 2. We use a theory for second-order logic as the specification language;
it declares symbols for ∀, =, etc. Spec = Nat is a theory for the natural numbers;
it declares symbols N , 0 and succ as well as one symbol a : F for each Peano
axiom F .

For the implementation language, we use a theory ZF for ZF set theory; it
has meta-theory first-order logic and declares symbols for set, ∈, ∅, etc. Then
we can implement the natural numbers in a theory S = Nat declaring, e.g., a
symbol 0 defined as ∅, a symbol succ defined such that succ(n) = n ∪ {n},
and prove one theorem a : F = p in S for each Peano axiom. Note that Nat
yields theorems about the natural numbers that cannot be expressed in Spec,
for example �ZF 0 ∈ 1. We obtain a morphism μ1 : Nat → Nat using N 	→ N,
0 	→ 0 etc.

Continuing Ex. 1, we obtain a different implementation μ2 : Nat → Nat using
N 	→ N, 0 	→ 0 etc.

To capture practice in formal mathematics, we have to distinguish between the
definitional and the axiomatic method. The axiomatic method fixes a formal
system L and then describes mathematical notions in L-theories T using free
symbols and axioms. T is interpreted in models, which may or may not exist.
This is common in model theoretical logics, especially first-order logic, and in
algebraic specification. In MMT, T is represented as a theory with meta-theory
L and with only undefined constants. In Ex. 2, L is second-order logic and T is
Spec.
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The definitional method, on the other hand, fixes a formal system L together
with a minimal theory T0 and then describes mathematical notions using defini-
tional extensions T of T0. The properties of the notions defined in T0 are derived
as theorems. The interpretation of T is uniquely determined given a model of T0.
This is common in proof theoretical logics, especially LCF-style proof assistants,
and in set theory. In Ex. 2, L is first-order logic, T0 is ZF, and T is S.

Types of Integration. Let us now consider a specification Spec and two imple-
mentations μi : Spec → Si. To simplify the notation, we will write � and �i

instead of �Spec and �Si . We first describe different ways how to integrate S1

and S2 intuitively.
Borrowing means to use S1 to prove theorems in the language of S2. Thus,

the input to S1 is a conjecture F and the output is an expression �1 p : F . In
general, since MMT does not prescribe a calculus for proofs, the object p can be
a formal proof term, a certificate, proof sketch, or simply a yes/no answer.

Computation means to reuse a S1 computation in S2. Thus, the input of
S1 is an expression t, and the output is a proof p with an expression t′ such
that �1 p : t = t′. To be useful, t′ should be simpler than t in some way, e.g.,
maximally simplified or even normalized.

Querying means answering a query in S1 and transferring the results to S2.
This is similar to borrowing in that the input to S1 is a formula F . However,
now F may contain free variables, and the output is not only a proof p but also
a substitution s for the free variables such that �1 p : F [s].

In all cases, a translation I must be employed to translate the input from S1

to S2. Similarly, we need a translation O in the opposite direction to translate
the output t′ and s and (if available) p from S2 to S1.

To define these integration types formally in MMT, we first note that borrow-
ing is a special case of querying if F has no free variables. Similarly, computation
is a special case of querying if F has the form t = X for a variable X that does
not occur in t.

Spec

S1

S2

μ1

μ2

OI

To define querying in MMT, we assume a specification,
two implementations, and morphisms I and O as on the
right. I and O must satisfy O ◦ I = idS2 , O ◦ μ1 = μ2, and
I ◦ μ2 = μ1. Then we obtain the following general form of
an integration problem: Given an S2-context C and a query
C �2? : F (where ? denotes the requested proof), find a substitution �1 s : I(C)
and a proof �1 p : I(F )[s]. Then MMT guarantees that �2 O(p) : F [O(s)] so that
we obtain O(s) as the solution. Moreover, only the existence of O is necessary
but not O itself — once a proof p is found in S1, the existence of O ensures that
F is true in S2, and it is not necessary to translate p to S2.

We call the above scenario safe bidirectional communication between S1 and
S2 because I and O are theory morphisms and thus guarantee that consequence
and truth are preserved in both directions. This scenario is often implicitly as-
sumed by people coming from the first-order logic community. Indeed, if S1 and
S2 are automatic or interactive theorem provers for first-order logic, then the
logic of the two systems is the same and both S1 and S2 are equal to Spec.
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If we are only interested in safe directed communication, i.e., transferring
results from S1 to S2, then it is sufficient to require only O. Indeed, often μ2

is an inclusion, and the input parameters C and F , which are technically S2-
objects, only use symbols from Spec. Thus, they can be moved directly to Spec
and S1, and I is not needed.

Similarly, the substitution s can often be stated in terms of Spec. In that case,
O is only needed to translate the proof p. If the proof translation is not feasible, O
may be omitted as well. Then we speak of unsafe communication because we do
not have a guarantee that the communication of results is correct. For example,
let S1 and S2 be two CASs, that may compute wrong results by not checking
side conditions during simplification. Giving a theory morphism O means that
the “bugs” of the system S1 must be “compatible” with the “bugs” of S2, which
is quite unlikely.

The above framework for safe communication via theory morphisms is partic-
ularly appropriate for the integration of axiomatic systems. However, if S1 and
S2 employ different mathematical foundations or different variants of the same
foundation, it can be difficult to establish the necessary theory morphisms. In
MMT, this means that S1 and S2 have different meta-theories so that I and O
must include a meta-morphism. Therefore, unsafe communication is often used
in practice, and even that can be difficult to implement.

Our framework is less appropriate if S1 or S2 are developed using the defi-
nitional method. For example, consider Aczel’s encoding of set theory in type
theory [Acz98, Wer97]. Here S1 = Nat as in Ex. 2, and S2 = Nat as in Ex. 1.
Azcel’s encoding provides the needed meta-morphism l : ZF → CIC of O. But
because Nat is definitional, we already have O = l, and we have no freedom to
define O such that it maps the concepts of Nat to their counterparts in Nat.
Formally, in MMT, this means that the condition O ◦ μ1 = μ2 fails. Instead, we
obtain two versions of the natural numbers in CIC: a native one given by μ2

and the translation of Nat given by O ◦ μ1. Indeed, the latter must satisfy all
ZF-theorems including, e.g., 0 ∈ 1, which is not even a well-formed formula over
Nat. We speak of faithful communication if O ◦ μ1 = μ2 can be established even
when S1 is definitional. This is not possible in MMT without the extension we
propose below.

4 A Framework for System Integration

In order to realize faithful communication within MMT, we introduce partial
theory morphisms that can filter out those definitional details of S1 that need
not and cannot be mapped to S2. We will develop this new concept in general
in Sect. 4.1 and then apply it to the integration problem in Sect. 4.2.

4.1 Partial Theory Morphisms in MMT

Syntax. We extend the MMT syntax with the production O ::= �. The intended
use of � is to put assignments c 	→ � into the body of a morphism v : S →
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T
l= {σ} in order to make v undefined at c. We say that v filters c. The

homomorphic extension v(−) remains unchanged and is still total: If O contains
filtered symbols, then v(O) contains � as a subobject. In that case, we say v
filters O.

Semantics. We refine the semantics as follows. A dependency cut D for an MMT
theory T is a pair (Dtype, Ddef ) of two sets of symbols accessible to T . Given
such a dependency cut, we define dependency-aware judgments γ �D O : O′

and γ �D O = O′ as follows. γ �D O : O′ means that there is a derivation of
γ �T O : O′ that uses the rules T: and T= at most for the constants in Dtype and
Ddef , respectively. γ �D O = O′ is defined accordingly.

In other words, if we have γ′ �D O : O′ and obtain γ′ by changing the type
of any constant not in Dtype or the definiens of any constant not in Ddef , then
we still have γ′ �D O : O′. Then a foundation consists of a foundational theory
L together with dependency-aware judgments for typing and equality whenever
T has meta-theory L.

We make a crucial change to the MMT rule for assignments in a theory
morphism: If S contains a declaration c : O1 = O2, then a theory morphism
v : S → T

l= {σ} may contain the assignment c 	→ O only if the following two
conditions hold: (i) if O1 is not filtered by v, then �T O : v(O1); (ii) if O2 is not
filtered by v, then �T O = v(O2). The according rule applies if O1 or O2 are
omitted.

In [RK11], a stricter condition is used. There, if O1 or O2 are filtered, then c
must be filtered as well. While this is a natural strictness condition for filtering,
it is inappropriate for our use cases: For example, filtering all L-symbols would
entail filtering all S-symbols.

Our weakened strictness condition is still strong enough to prove the central
property of theory morphisms: If γ � μ : S → T and �D O : O′ for some
D = (Dtype, Ddef ) and v does not filter O, O′, the type of a constant in Dtype,
or the definiens of a constant in Ddef , then �T μ(O) : μ(O′). The according
result holds for the equality judgment.

Finally, we define the weak equality of morphisms μi : S → T . We define
� μ1 ≤ μ2 in the same way as � μ1 = μ2 except that �T μ1(c) = μ2(c) is only
required if c is not filtered by μ1. We say that � η : T → S is a partial inverse
of μ : S → T if � η ◦ μ = idS and � μ ◦ η ≤ idT .

Example 3. Consider the morphism μ1 : Nat → Nat from Ex. 2. We build its
partial inverse η : Nat → Nat l= {σ}. The meta-morphism l filters all symbols
of ZF, e.g., l(∅) = �. Then the symbol N of Nat has filtered type and filtered
definiens. Therefore, the conditions (i) and (ii) above are vacuous, and we use
N 	→ N in σ. Then all remaining symbols of Nat (including the theorems) have
filtered definiens but unfiltered types. For example, for 0 : N = ∅ we have
η(∅) = � but η(N) = N . Therefore, condition (ii) is vacuous, and we map these
symbols to their counterparts in Nat , e.g., using 0 	→ 0 in σ. These assignments
are type-preserving as required by condition (i) above, e.g., �Nat η(0) : η(N).
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4.2 Integration via Partial Theory Morphisms

The following gives a typical application of our framework by safely and faithfully
communicating proofs from a stronger to a weaker system:

Example 4. In [IR11], we gave formalizations of Zermelo-Fraenkel (ZFC) set
theory and Mizar’s Tarski-Grothendieck set theory (TG) using the logical frame-
work LF as the common meta-theory. ZFC and TG share the language of
first-order set theory. But TG is stronger than ZFC because of Tarski’s axiom,
which implies, e.g, the sentence I stating the existence of infinite sets (which
is an axiom in ZFC) and large cardinals (which is unprovable in ZFC). For
example, we have an axiom a∞ : I in ZFC, and an axiom tarski : T and a
theorem t∞ : I = P in TG. Many TG-theorems do not actually depend on this
additional strength, but they do depend on t∞ and thus indirectly on tarski .

Using our framework, we can capture such a theorem as the case of a TG-
theorem �D p : F where F is the theorem statement and t∞ ∈ Dtype but
t∞ ∈ Ddef and tarski ∈ Dtype. We can give a partial theory morphism v :

TG → ZFC
idLF= {. . . , t∞ 	→ a∞, . . .}. Then v does not filter p, and we obtain

�ZFC v(p) : F .

Spec

S1

S2

μ1

μ2

η1

η2

Assume now that we have two implementations μi : Spec → Si

of Spec and partial inverses ηi of μi, where Si has meta-theory
Li. This leads to the diagram on the right where (dashed) edges
are (partial) theory morphisms. We can now obtain the transla-
tions I:S2 → S1 and O:S1 → S2 as I = μ1◦η2 and O = μ2◦η1.
Note that I and O are partial inverses of each other.

As in Sect. 3, let C �2? : F be a query in S2. If η2 does not filter any symbols in
C or F , we obtain the translated problem I(C) �1? : I(F ). Let us further assume
that there is an S1-substitution �1 s : I(C) and a proof �1 p : I(F )[s] such that p
and s are not filtered by η1. Because I and O are mutually inverse and morphism
application preserves typing, we obtain the solution �2 O(p) : F [O(s)].

The condition that η2 does not filter C and F is quite reasonable in practice:
Otherwise, the meaning of the query would depend on implementation-specific
details of S2, and it is unlikely that S1 should be able to find an answer anyway.
On the other hand, the morphism η1 is more likely to filter the proof p. Moreover,
since the proof must be translated from L1 to L2 passing through Spec, the latter
must include a proof system to allow translation of proofs. In practice this is
rarely the case, even if the consequence relation of Spec can be expressed as
an inference system. For example, large parts of mathematics or the OpenMath
content dictionaries implicitly (import) first-order logic and ZF set theory.

We outline two ways how to remedy this: We can communicate filtered proofs
or change the morphisms to widen the filters to let more proofs pass.

Communicating Filtered Proofs. Firstly, if the proof rules of S1 are filtered by
η1, what is received by S2 after applying the output translation O is a filtered
proof, i.e., a proof object that contains the constant �. � represents gaps in the
proof that were lost in the translation.
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In an extreme case, all applications of proof rules become �, and the only
unfiltered parts of O(p) are formulas that occurred as intermediate results during
the proof. In that case, O(p) is essentially a list of formulas Fi (a proof sketch
in the sense of [Wie03]) such that I(F1)∧ . . .∧ I(Fi−1) �1 I(Fi) for i = 1, . . . , n.
In order to refine O(p) into a proof, we have to derive �1 Fn. Most of the time,
it will be the case that F1, . . . , Fi−1 �2 Fi for all i, and the proof is obtained
compositionally if S2 can fill the gaps through automated reasoning. When this
happens, the proof sketch is already a complete declarative proof.

Example 5. Let S1 and S2 be implementations of the rational numbers with
different choices for division by zero. In S1, division by zero yields a special
value for undefined results, and operations on undefined values yield undefined
results; then we have the S1-theorem t asserting ∀a, b, c.a(b/c) .= (ab)/c. In S2,
we have n/0 .= 1 and n%0 .= n; then we have the S2-theorems t1, t2, t3 asserting
∀m, n.n

.= (n/m) ∗ m + n%m, ∀m.m/m
.= 1, and ∀m.m%m

.= 0.
The choice in S2 reduces the number of case analyses in basic proofs. But t

is not a theorem of S2; instead, we only have a theorem t′ asserting ∀a, b, c.c  .=
0 ⇒ a(b/c) .= (ab)/c. On the other hand, S1 is closer to common mathematics,
but the ti are not theorems of S1 because the side condition m = 0 is needed.

Hence, we do not have a total theory morphism O : S1 → S2, but we can give
a partial theory morphism O that filters t. Now consider, for example, a proof p
over S1 that instantiates t with some values A, B, C. When translating p to S2,
t is filtered, but we can still communicate p, and S2 can treat O(p) as a proof
sketch. Typically, t is applied in a context where C  .= 0 is known anyway so
that S2 can patch O(p) by using t′ — which can easily be found by automated
reasoning.

Integration in the other direction works accordingly.

Spec Spec′

S1

S2

μ′
1

μ′
2

η′
1

η′
2

Widening the Filters. An alternative solution is to
use additional knowledge about S1 and S2 to obtain
a translation where O(p) is not filtered. In particular,
if p is filtered completely, we can strengthen Spec by
adding an inference system for the consequence rela-
tion of Spec, thus obtaining Spec′. Then we can extend
the morphisms μi accordingly to μ′

i, which amounts to
proving that Si is a correct implementation of Spec.
Now ηi can be extended as well so that its domain becomes bigger, i.e., the
morphism η1 and thus O filter less proofs and become “wider”.

Note that we are flexible in defining Spec′ as required by the particular choices
of L1 and L2. That way the official specification remains unchanged, and we can
maximize the filters for every individual integration scenario.

Example 6 (Continuing Ex. 3). A typical situation is that we have a theorem
F over Nat whose proof p uses the Peano axioms and the rules of first-order
logic but does not expand the definitions of the natural numbers. Moreover, if
a : A = P is a theorem in Nat that establishes one of the Peano axioms, then p
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will refer to a, but will not expand the definition of a. Formally, we can describe
this as �D p : F where 0, a ∈ Dtype but 0, a ∈ Ddef .

We can form Spec′ by extending Spec with proof rules for first-order logic and
extend η to η′ accordingly. Since η does not filter the types of 0 and a, we obtain
a proof �Spec η′(p) : η′(F ) due to the type-preservation properties of our partial
theory morphisms. Despite the partiality of η′, the correctness of this proof is
guaranteed by the framework.

Both ways to integrate systems are not new and have been used ad hoc in
concrete integration approaches, see Sect. 5. With our framework, we are able
to capture them in a rigorous framework where their soundness can be studied
formally.

5 Related Work

The MoWGLI project [MoW04] introduced the concept of “semantic markup”
for specifications in the calculus of construction as distinct from the “content
markup” in OpenMath and OMDoc. This corresponds closely to the use of
meta-theories in MMT: “content markup” corresponds to MMT theories with-
out meta-theory; and “semantic markup” corresponds to MMT theories with
meta-theory CIC.

A framework very similar to ours was given in [CFW03]. Our MMT theo-
ries with meta-theory correspond to their biform theories, except that the latter
adds algorithms. Our theory morphisms I and O correspond to their transla-
tions export and import. The key improvement of our framework over [CFW03]
is that, using MMT’s meta-theories, the involved logics and their consequence
relations can be defined declaratively themselves so that a logic-independent
implementation becomes possible. Similarly, using logic morphisms, it becomes
possible to implement and verify the trustability conditions concisely.

Integration by borrowing is the typical scenario of integrating theorem provers
and proof assistants. For example, Leo-II [BPTF08] or the Sledgehammer tactic
of Isabelle [MP08] (S2) use first-order provers (S1) to reason in higher-order logic.
Here the input translation I is partial inverse of the inclusion from first-order
logic to higher-order logic. A total translation from modal logic to first-order
logic is used in [HS00]. In all cases, the safety is verified informally on the meta-
level and no output translation O in our sense is used. But Isabelle makes the
communication safe by reconstructing a proof from the proof (sketch) returned
by the prover.

The above systems are called on demand using an input translation I. Alter-
natively a collection of S1-proofs can be translated via an output translation O
for later reuse in S2; in that case no input translation I is used at all. Examples
are the translations from Isabelle/HOL in HOL Light [McL06], from HOL Light
to Isabelle/HOL [OS06], from HOL Light to Coq [KW10], or from Isabelle/HOL
to Isabelle/ZF [KS10]. The translation from HOL to Isabelle/HOL is notable
because it permits faithful translations, e.g., the real numbers of HOL can be
translated to the real numbers of Isabelle/HOL, even though the two systems
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define them differently. The safety of the translation is achieved by recording
individual S1-proofs and replaying them in S2. This was difficult to achieve even
though S1 and S2 are based on the same logic.

The translation given in [KW10] is the first faithful translation from HOL
proofs to CIC proofs. Since the two logics are different, in order to obtain a total
map the authors widen the filter by assuming additional axioms on CIC (ex-
cluded middle and extensionality of functions). This technique is not exploitable
when the required axioms are inconsistent. Moreover, the translation is subop-
timal, since it uses excluded middle also for proofs that are intuitionistic. To
improve the solution, we could use partial theory morphisms that map case
analysis over boolean in HOL to �, and then use automation to avoid excluded
middle in CIC when the properties involved are all decidable.

In all above examples but [KW10], the used translations are not verified within
a logical framework. The Logosphere [PSK+03] project used the proof theoretical
framework LF to provide statically verified logic translations that permit inher-
ently safe communication. Here the dynamic verification of translated proofs
becomes redundant. The most advanced such proof translation is one from HOL
to Nuprl [NSM01].

The theory of institutions [GB92] provides a general model theoretical frame-
work in which borrowing has been studied extensively [CM97] and implemented
successfully [MML07]. Here the focus is on giving the morphism I explicitly and
using a model theoretical argument to establish the existence of some O; then
communication is safe without explicitly translating proofs.

Integration by computation is the typical scenario for the integration of com-
puter algebra systems, which is the main topic of the Calculemus series of confer-
ences. For typical examples, see [DM05] where the computation is performed by
a CAS, and [AT07] where the computation is done by a term rewriting system.
Communication is typically unsafe. Alternatively, safety can be achieved if the
results of the CAS — e.g., the factorization of a polynomial — can be verified
formally in a DS as done in [HT98] and [Sor00].

Typical applications of integration by querying are conjunctive query answer-
ing for a description logic. For example, in [TSP08], a first-order theorem prover
is used to answer queries about the SUMO ontology.

The communication of filtered proofs essentially leads to formal proof sketch
in the sense of [Wie03]. The idea of abstracting from a proof to a proof sketch
corresponds to the assertion level proofs used in [Mei00] to integrate first-order
provers. The recording and replaying of proof steps in [OS06] and the reconstruc-
tion of proofs in Isabelle are also special cases of the communication of filtered
proofs.

6 Conclusion

In this paper we addressed the problem of preserving the semantics in protocol-
based integration of mathematical reasoning and computation systems. We ana-
lyzed the problem from a foundational point of view and proposed a framework
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based on theory graphs, partial theory morphisms, and explicit representations
of meta-logics that allows to state solutions to the integration problem.

The main contribution and novelty of the paper is that it paves the way
towards a theory of integration. Theoretically, via filtering, this theory could be
able to combine faithfulness with static verification, which would be a major step
towards the integration and merging of system libraries. Moreover, we believe it
is practical because it requires only a simple extension of the MMT framework,
which already takes scalability issues very seriously [KRZ10].

We do not expect that our specific solution covers all integration problems
that come up in practice. But we do expect that it will take a long time to
exhaust the potential that our framework offers.
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Abstract. One of the challenging problems in the formalization of math-
ematics is a formal verification of numerical computations. Many theo-
rems rely on numerical results, the verification of which is necessary for
producing complete formal proofs. The formal verification systems are
not well suited for doing high-performance computing since even a small
arithmetic step must be completely justified using elementary rules. We
have developed a set of procedures in the HOL Light proof assistant for
efficient verification of bounds of relatively large linear programs. The
main motivation for the development of our tool was the work on the
formal proof of the Kepler Conjecture. An important part of the proof
consists of about 50000 linear programs each of which contains more than
1000 variables and constraints. Our tool is capable to verify one such a
linear program in about 5 seconds. This is sufficiently fast for doing the
needed formal computations.

1 Introduction

A trivial arithmetic step is not a problem in a traditional mathematical proof.
The situation is different when one needs to obtain a formal proof where each step
requires a complete verification using definitions, elementary logic operations,
and axioms. Nevertheless, most proof assistant systems have special automated
procedures that are able to prove simple arithmetic and logical statements. The
main drawback of universal procedures is that they are not intended for high-
performance computations. There exist theorems which require substantial com-
putations. The formalization of these theorems can be quite challenging. One
example is the four-color theorem, which was successfully formalized in Coq [1].
Another ambitious formalization project is the Flyspeck project [2]. The goal
of this project is the formal proof of the Kepler conjecture [3]. This proof relies
on extensive computer computations. An important part of the proof consists
of more than 50000 linear programs (with about 1000 variables and constraints
each). A bound of each linear program needs to be formally verified.

In our work, we present a tool for proving bounds of linear programs. The hard
computational work is done using external software for solving linear programs.
This software returns a special certificate which is used in the formal verifi-
cation procedure. There are two main difficulties in this approach. One is the
� Research supported by NSF grant 0804189 and a grant from the Benter Foundation.

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 123–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



124 A. Solovyev and T.C. Hales

precision of the computer arithmetic. Usually, results of computer floating-point
operations are not exact. Meanwhile, precise results are necessary for producing
formal proofs. The second problem is the speed of the formal arithmetic. We
successfully solved both problems and our tool is able to verify relatively large
Flyspeck linear programs in about 5 seconds.

The Flyspeck project is carried out in the HOL Light proof assistant [5].
HOL Light is written in the Objective CAML programming language [10]. It
has many convenient automated tools for proving arithmetic statements and
can prove bounds of linear programs automatically. But even for small linear
programs (10 variables and less) it can take a lot of time. Steven Obua in his
thesis [8] developed a tool for verifying a part of Flyspeck linear programs. His
work is done in the Isabelle proof assistant. We have made three significant
advances over this earlier work. First, the combinatorial aspects of the linear
programs have been simplified, as described in [4]. Second, we developed a tool
for verifying bounds of general linear programs which verifies Flyspeck linear
program much faster than Obua’s program (in his work, the time of verification
of a single linear program varies from 8.4 minutes up to 67 minutes). Third, our
work is done in HOL Light so it is not required to translate results from one
proof assistant into another. The code of our tool can be found in the Flyspeck
repository [2] at trunk/formal lp.

2 Verification of Bounds of Linear Programs

Our goal is to prove inequalities in the form cTx ≤ K such that Ax ≤ b and
l ≤ x ≤ u, where c, b, l, u are given n-dimensional vectors, x is an n-dimensional
vector of variables, K is a constant, and A is an m × n matrix. To solve this
problem, we consider the following linear program

maximize cT x subject to Āx ≤ b̄, Ā =

⎛
⎝ A

−In

In

⎞
⎠ , b̄ =

⎛
⎝ b

−l
u

⎞
⎠ .

Suppose that M = max cT x is the solution to this linear program. We require
that M ≤ K. In fact, for our method we need a strict inequality M < K because
we employ numerical methods which do not give exact solutions.

We do not want to solve the linear program given above using formal methods.
Instead, we use general software for solving linear programs which produces a
special certificate that can be used to formally verify the original upper bound.
Consider a dual linear program

minimize yT b̄ subject to yT Ā = cT , y ≥ 0.

The general theory of linear programming asserts that if the primal linear pro-
gram has an optimal solution, then the dual program also has an optimal solution
such that minyT b̄ = max cT x = M . Suppose that we can find an optimal solu-
tion to the dual program, i.e., assume that we know y such that yT b̄ = M ≤ K
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and yT Ā = cT . Then we can formally verify the original inequality by doing the
following computations in a formal way:

cTx = (yT Ā)x = yT (Āx) ≤ yT b̄ = M ≤ K.

Our algorithm can be split into two parts. In the first part, we compute a
solution y to the dual problem. In the second part, we formally prove the initial
inequality using the computed dual solution and doing all arithmetic operations
in a formal way.

2.1 Finding a Dual Solution

We impose additional constraints on the input data. We suppose that all coeffi-
cients and constants can be approximated by finite decimal numbers such that
a solution of the approximated problem implies the original inequality. Consider
a simple example. Suppose we need to prove the inequality x − y ≤

√
3 subject

to 0 ≤ x ≤ π and
√

2 ≤ y ≤ 2. In general, an approximation that loosens the
domain and tightens the range implies the original inequality. For example, con-
sider an approximation of proving x − y ≤ 1.732, subject to 0 ≤ x ≤ 3.142 and
1.414 ≤ y ≤ 2. It is easy to see that if we can prove the approximated inequality,
then the verification of the original inequality trivially follows. From now on, we
assume that entries of Ā, b̄, c, and the constant K are finite decimal numbers
with at most p1 decimal digits after the decimal point.

We need to find a vector y with the following properties:

y ≥ 0, yT Ā = cT , yT b̄ ≤ K.

Moreover, we require that all elements of y are finite decimal numbers.
In our work, we use GLPK (GNU Linear Programming Kit) software for solving

linear programs [7]. The input of this program is a model file which describes
a linear program in the AMPL modeling language [9]. GLPK automatically finds
solutions of the primal and dual linear programs. We are interested in the dual
solution only. Suppose r is a numerical solution to the dual problem. Take its
decimal approximation y(p)

1 with p decimal digits after the decimal point. We
have the following properties of y(p)

1 :

y(p)
1 ≥ 0, M ≤ b̄T y(p)

1 , ĀTy(p)
1 = c + e.

The vector e is the error term from numerical computation and decimal approx-
imation.

We need to modify the numerical solution y(p)
1 to get y(p)

2 such that ĀTy(p)
2 =

c. Write y(p)
1 = (zT ,vT ,wT )T where z is an m-dimensional vector, v and w are

n-dimensional vectors. Define y(p)
2 as follows

y(p)
2 =

⎛
⎝ z

v + ve

w + we

⎞
⎠ , ve =

|e| + e
2

, we =
|e| − e

2
.



126 A. Solovyev and T.C. Hales

In other words, if ei > 0 (the i-th component of e), then we add ei to vi, otherwise
we add −ei to wi. We obtain y(p)

2 ≥ 0. Moreover,

ĀTy(p)
2 = AT z − (v + ve) + (w + we) = ĀT y(p)

1 − e = c.

Note that elements of y(p)
2 are finite decimal numbers. Indeed, y(p)

2 is obtained
by adding some components of the error vector e = ĀT y(p)

1 − c to the vector
y(p)

1 , and all components of Ā, c, and y(p)
1 are finite decimal numbers.

If b̄T y(p)
2 ≤ K, then we are done. Otherwise, we need to find y(p+1)

1 using
higher precision decimal approximation of r and consider y(p+1)

2 . Assuming that
the numerical solution r can be computed with arbitrary precision and that
M < K, we eventually get b̄Ty(s)

2 ≤ K.
From the computational point of view, we are interested in finding an approx-

imation of the dual solution such that its components have as few decimal digits
as possible (formal arithmetic on small numbers works faster). We start from a
small value of p0 (we choose p0 = 3 for Flyspeck linear programs) and construct
y(p0)

2 ,y(p0+1)
2 , . . . until we get b̄Ty(p0+i)

2 ≤ K.
We implemented a program in C# which takes a model file with all inequalities

and a dual solution obtained with GLPK. The program returns an approximate
dual solution (with as low precision as possible) which then can be used in
the formal verification step. The current implementation of our program does
not work with arbitrary precision arithmetic, so it could fail on some linear
programs. It should be not a problem for many practical cases because standard
double precision floating-point arithmetic can exactly represent 15-digit decimal
numbers (for instance, we need at most 6 decimal digits for proving Flyspeck
linear programs).

2.2 Formal Verification

Our aim is to verify the inequality cT x ≤ K using the computed dual solu-
tion approximation yT = (zT ,vT ,wT ) (we write y for the approximation y(s)

2 ,
computation of which is described in the previous section):

cT x = zT (Ax) − vT x + wTx = yT Āx ≤ yT b̄ ≤ K.

Here x is an n-dimensional vector of variables, x = (x1, . . . , xn). We need to
verify two results using formal arithmetic: yT Āx = cTx and yT b̄ ≤ K.

The computation of yT b̄ is a straightforward application of formal arithmetic
operations. yT Āx can be computed in a quite efficient way. Usually, the matrix
Ā is sparse, so it makes no sense to do a complete matrix multiplication in order
to compute yT Āx. The i-th constraint inequality can be written in the form∑

j∈Ii

aijxj ≤ bi,

where Ii is the set of indices such that aij = 0 for j ∈ Ii, and aij = 0 for j /∈ Ii.
Also we have 2n inequalities for bounds of x: li ≤ xi ≤ ui.
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Define a special function in HOL Light for representing the left hand side of
a constraint inequality

� linf[] = &0 ∧ linf[(a1, x1); t] = a1 ∗ x1 + linf[t]

For the sake of presentation, we write HOL Light expressions in a simplified
notation. Here, � means that the definition is a HOL Light theorem; &0 denotes
the real number zero. Our function linf has the following type

linf : (real, real)list → real.

It means that linf takes a list of pairs of real-valued elements and returns a real
value. The function linf is defined recursively: we define its value on the empty
list [], and we specify how linf can be computed on a k-element list using its
value on a (k − 1)-element list.

We suppose that all constraints and bounds of variables are theorems in HOL
Light and each such theorem has the form

� α1x1 + . . . + αkxk ≤ β

We have a conversion which transforms α1x1 + . . .+αkxk into the corresponding
function linf[(α1, x1); . . . ; (αk, xk)]. Also, variables xi can have different names
(like var1, x4, y34, etc.), and after the conversion into linf, all elements in the
list will be sorted using some fixed ordering on the names of variables (usually,
it is a lexicographic ordering). For efficiency, it is important to assume that the
variables in the objective function cT x (i.e., variables for which ci = 0) are the
last one in the fixed ordering (we can always satisfy this assumption by renaming
the variables).

First of all, we need to multiply each inequality by the corresponding value
0 ≤ yi. It is a straightforward computation based on the following easy theorem

� c ∗ linf[(a1, x1); . . . ; (ak, xk)] = linf[(c ∗ a1, x1); . . . (c ∗ ak, xk)]

Note that we can completely ignore inequalities for which yi = 0 because they
do not contribute to the sum which we want to compute.

The main step is computation of the sum of two linear functions. Suppose
we have two linear functions linf[(a, xi); t1] and linf[(b, xj); t2] (t1 and t2 denote
tails of the lists of pairs). Depending on the relation between xi and xj (i.e., we
compare the names of variables), we need to consider three cases: xi ≡ xj (the
same variables), xi ≺ xj (in the fixed ordering), or xi � xj . In the first case, we
apply the following theorem

� linf[(a, x); t1] + linf[(b, x); t2] = (a + b) ∗ x + (linf[t1] + linf[t2])

In the second case, we have the theorem

� linf[(a, xi); t1] + linf[(b, xj); t2] = a ∗ xi + (linf[t1] + linf[(b, xj); t2])

In the third case, the result is analogous to the second case. After applying one
of these theorems, we recursively compute the expression in the parentheses and



128 A. Solovyev and T.C. Hales

a+ b (if necessary). Then we can apply the following simple result and finish the
computation of the sum

� a ∗ x + linf[t] = linf[(a, x); t]

Moreover, if the variables in both summands are ordered, then the variables in
the result will be ordered.

After adding all inequalities for constraints, we get the inequality zT Ax ≤ zT b
where the left hand side is computed in terms of linf. Now we need to find
the sum of this inequality and inequalities for boundaries (multiplied by the
corresponding coefficients). We do not transform boundary inequalities into the
linf representation. Each boundary inequality has one of two forms

� −xi ≤ −li or � xi ≤ ui

Again, we need to multiply these inequality by the corresponding element of
y = (zT ,vT ,wT )T and get

� −vi ∗ xi ≤ vi ∗ −li or � wi ∗ xi ≤ wi ∗ ui

If vi = 0 or wi = 0, then we can ignore the corresponding inequality. If for some
xi we have both boundary inequalities (lower and upper bounds) with non-zero
coefficients, then find the sum of two such inequalities. After that, we get one
inequality of the form rixi ≤ di for each variable xi.

Before finding the sum of the inequality zT Ax ≤ zTb and the boundary
inequalities, we sort boundary inequalities using the same ordering we used for
sorting variables in linf. We assumed that the variables in the objective function
cT x are the last ones in our ordering. Let ci = 0 for all i ≤ n0. Suppose that we
want to find the sum of r1x1 ≤ d1 and linf[(a1, x1); t] ≤ s. We know that c1 = 0,
so the first term a1x1 in the linear function and r1x1 must cancel each other,
hence we have a1 = −r1. The sum can be found using the following result

� a ∗ x + linf[(−a, x); t] = linf[t]

So we can efficiently compute the sum of all boundary inequalities for i =
1, . . . , n0. For the last n − n0 variables, we have non-vanishing terms and the
sum can be found in the standard way. Practically, the number n − n0 is small
compared to n, so most of computations are done in the efficient way.

At last, we get the inequality

� linf[(cn0+1, xn0+1); . . . ; (cn, xn)] ≤ M ′,

where M ′ = yT b ≤ K. It is left to prove that M ′ ≤ K. This can be done using
standard HOL Light procedures because we need to perform this operation only
once for each linear program.

3 Optimization

We implemented our algorithm using HOL Light elementary inference rules as
much as possible. We avoided powerful but time consuming operations (such as
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tactics, rewrites, and derived rules) everywhere. Formal arithmetic operations
play a very important role in our algorithm. The optimization of these operations
is described below.

3.1 Integer Arithmetic

Formal arithmetic operations on integers are considerably faster than operations
on rational (decimal) numbers. We want to perform all formal computations
using integer numbers only. We have the following numerical values: entries of Ā,
b̄, c, y, and the constant K. The input data Ā, b̄, c, and K can be approximated
by finite decimal numbers with at most p1 decimal digits after the decimal point.
The dual solution y is constructed in such a way that all its elements have at
most p2 decimal digits after the decimal point.

We modify the main step of the algorithm as follows. Compute

(10p1+p2cT )x = (10p2yT )
(
10p1Ā

)
x ≤ (10p2yT )(10p1b̄) ≤ 10p1+p2K.

It is clear, that the computations above can be done using integer numbers
only. In the last step, we divide both sides by 10p1+p2 (using formal rational
arithmetic only one time) and obtain the main inequality.

3.2 Faster Low Precision Arithmetic in HOL Light

We have obtained significant improvements in performance over the original im-
plementations of basic arithmetic operations on natural numbers (operations on
integers and rational numbers are derived from operations on natural numbers)
by changing the internal representation of numerals. We are mostly interested
in operations on relatively small numbers (5-20 decimal digits), so we do not
consider improved arithmetic algorithms which usually work well on quite large
numbers. Instead, we are using tables of pre-proved theorems which allow to get
the computation results quickly for not very large numbers.

Numerals in HOL Light are constructed using three constants BIT0, BIT1,
and 0 which are defined by

BIT0(n) = n + n, BIT1(n) = n + n + 1.

Here, n is any natural number (it is expected that n is already in the correct
form). With these constants, any numeral is represented by its binary expansion
with the least significant bit first:

1 = BIT1(0), 2 = 1 + 1 = BIT0(1) = BIT0(BIT1(0)), etc.

Define new constants for constructing natural numbers. Instead of base 2,
represent a number using an arbitrary base b ≥ 2. When the base is fixed, we
define constants

Di(n) = bn + i.

In HOL Light, we write D0, D1, D2, etc. For example, if b = 10, then we can
write 123 = D3(D2(D1(0))).
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We implemented arithmetic operations on numbers represented by our con-
stants in a straightforward way. As an example, consider how the addition op-
eration is implemented for our numerals. First of all, we prove several theorems
which show how to add two digits. If i + j = k < b, then we have

� Di(m) + Dj(n) = Dk(m + n)

If i + j = k ≥ b, then

� Di(m) + Dj(n) = Dk−b(SUC(m + n))

Here SUC(n) = n + 1 is another arithmetic operation which is implemented for
our numerals. Also we have two terminal cases � n + 0 = n and � 0 + n = n.

We store all these theorems in a hash table. The names of the constants are
used as key values: the theorem with the left hand side D1(m) + D2(n) has
the key value ”D1D2”. With all these theorems, the addition of two numbers
is easy. Consider an example. Suppose b = 10 and we want to compute 14 +
7 = D4(D1(0)) + D7(0). First, we look at the least significant digits D4 and
D7 and find the corresponding theorem D4(m) + D7(n) = D1(SUC(m + n)).
In our case, instantiate the variables by m = D1(0) and n = 0. We obtain
D4(D1(0)) + D7(0) = D1(SUC(D1(0) + 0)). Recursively compute D1(0) + 0 =
D1(0) (it is the terminal case). Then we apply the procedure for computing
SUC(n) and obtain SUC(D1(0)) = D2(0). Hence, the final result is obtained:
D4(D1(0)) + D7(0) = D1(D2(0)).

The multiplication of two numbers is more complicated but also straightfor-
ward. The original procedure for multiplying two natural numbers in HOL Light
is based on the Karatsuba algorithm [6]. This algorithm asymptotically faster
than a naive approach but we found that in our case (numbers with 10-30 digits)
the Karatsuba algorithm does not give a significant advantage and can even slow
computations down on small numbers.

The subtraction and division are implemented in the same way as in HOL
Light. Initially, the result of an operation is obtained using “informal” computer
arithmetic, and then simple theorems along with formal addition and multipli-
cation operations are used to prove that the computed result is indeed the right
one.

4 Performance Tests

The results of performance tests for the improved multiplication and addition
operations are given in Tables 1 and 2. These results are obtained by performing
formal operations on 1000 pairs of randomly generated integer numbers.

Table 3 contains the performance results for our verification procedure of
bounds of several Flyspeck linear programs. For each linear program, two test
results are given. In one test, the native HOL Light formal arithmetic is used;
in another test, the improved arithmetic with the fixed base 256 is utilized.

Note that most of the Flyspeck linear programs can be solved in less than 5
seconds. The linear programs in the table are selected to demonstrate a wide
range of results.
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Table 1. Performance results for 1000 multiplication operations

Size of operands Native HOL Light mult. Base 16 mult. Base 256 mult.

5 decimal digits 2.220 s 0.428 s 0.148 s
10 decimal digits 7.216 s 1.292 s 0.376 s
15 decimal digits 16.081 s 3.880 s 1.316 s
20 decimal digits 59.160 s 6.092 s 2.256 s
25 decimal digits 85.081 s 10.645 s 3.592 s

Table 2. Performance results for 1000 addition operations

Size of operands Native HOL Light add. Base 16 add. Base 256 add.

5 decimal digits 0.188 s 0.064 s 0.052 s
10 decimal digits 0.324 s 0.100 s 0.064 s
15 decimal digits 0.492 s 0.112 s 0.096 s
20 decimal digits 0.648 s 0.176 s 0.108 s
25 decimal digits 0.808 s 0.208 s 0.132 s

Table 3. Performance results for verification of linear program bounds

Linear program ID # variables # constraints Native arith. Base 256 arith.

18288526809 743 519 4.048 s 2.772 s
168941837467 750 591 5.096 s 3.196 s
25168582633 784 700 8.392 s 4.308 s
72274026085 824 773 7.656 s 5.120 s
28820130324 875 848 9.292 s 5.680 s

202732667936 912 875 9.045 s 5.816 s
156588677070 920 804 8.113 s 5.252 s
123040027899 1074 1002 11.549 s 6.664 s
110999880825 1114 1000 10.085 s 6.780 s
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Abstract. We present several steps towards large formal mathemati-
cal wikis. The Coq proof assistant together with the CoRN repository
are added to the pool of systems handled by the general wiki system
described in [10]. A smart re-verification scheme for the large formal li-
braries in the wiki is suggested for Mizar/MML and Coq/CoRN, based
on recently developed precise tracking of mathematical dependencies. We
propose to use features of state-of-the-art filesystems to allow real-time
cloning and sandboxing of the entire libraries, allowing also to extend the
wiki to a true multi-user collaborative area. A number of related issues
are discussed.

1 Overview

This paper proposes several steps towards large formal mathematical wikis. In
Section 3 we describe how the Coq proof assistant together with the CoRN
repository are added to the pool of systems fully handled by the wiki architecture
proposed in [10], i.e., allowing both web-based and version-control-based updates
of the CoRN wiki, using smart (parallelized) verification over the whole CoRN
library as a consistency guard. Because the task of large-scale library refactoring
is still resource-intensive, an even smarter re-verification scheme for the large
formal libraries is suggested for Mizar/MML and Coq/CoRN, based on precise
tracking of mathematical dependencies that we started to develop recently for
the Coq and Mizar proof assistants, see Section 4. We argue for the need of
an architecture allowing easy sandboxing and thus easy cloning of the whole
large libraries. This poses technical challenges in the real-time wiki setting, as
cloning and re-verification of large formal libraries can be both a time and space
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consuming operation. An experimental solution based on the use of modern
filesystems (Btrfs or ZFS in our case) is suggested in our setting in Section 5.
Solving the problem of having many similar sandboxes and clones despite their
large sizes allows us to use the wiki as a hosting platform for many collaborating
users. We propose to use the gitolite system for this purpose, and explain the
overall architecture in Section 6. As a corollary to the architecture based on
powerful version control systems, we get distributed wiki synchronization almost
for free. In section 7 we conduct an experiment synchronizing our wikis on servers
in Nijmegen and in Edmonton. Finally we discuss a number of issues related to
the project, and draw recommendations for existing proof assistants in Section 8.

2 Introduction: Developing Formal Math Wikis

This paper describes a third iteration in the MathWiki development.1 An agile
software development cycle typically includes several (many) loops of require-
ments analysis, prototyping, coding, and testing. A wiki for formal mathematics
is an example of a strong need for the agile approach: It is a new kind of software
taking ideas from wikis, source-code hosting systems, version control systems,
interactive verification tools and specialized editors, and strong semantic-based
code/proof assistants. Building of formal wikis seem to significantly interact with
the development of proof assistants, and their mutual feedback influences the de-
velopment of both. For example, a number of changes has already been done in
the last year to the Mizar XML and HTML-ization code, and to the MML ver-
ification scripts, to accommodate the appearing wiki functionalities. See below
for changes and recommendations to the related Coq mechanisms, and other
possibly wiki-handled proof assistants. Also, see below in Section 4 for the new
wiki functions that are allowed when precise dependency information about the
formal libraries becomes available for a proof assistant.

The previous two iterations of our wiki development were necessarily ex-
ploratory; our work then focused on implementing the reasonably recognized
cornerstone features of wikis. We used version control mechanisms suitable both
for occasional users (using web interfaces) and for power users (working typically
locally), and allowing also easy migration to future more advanced models based
on the version-controlled repositories. We supplied HTML presentations of our
content, enriched in various ways to make it suitable for formal mathematics
(e.g., linking and otherwise improved presentation of definitions and theorems,
explicit explanation of current goals of the verifier, etc.) One novel problem in
the formal mathematical context was the need to enforce validity checks on the
submitted content; for this, we developed a model of fast (parallelized) auto-
mated large-scale verification, done consistently for the largest formal library
available.

1 The first was an experimental embedding of the CoRN and MML repositories inside
the ikiwiki (http://ikiwiki.info/) system, and the second iteration is described
in our previous paper [10].

http://ikiwiki.info/
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The previous implementations already provide valuable services to the proof
assistant users, but we focused initially only on the Mizar proof assistant. While
library-scale refactoring and proof checking is a very powerful feature of the for-
mal wikis (differentiating them for example from code repositories), it is still
too slow for large libraries to allow its unlimited use in anonymous setting. We
have observed that users are often too shy to edit the main official wiki, as
their actions will be visible to the whole world and influencing the rest of the
users. A more structured/hierarchical/private way of developing, together with
mechanisms for collaboration and propagation of changes from private experi-
ments to main public branches are needed. Our limited implementation provided
real-world feedback for the next steps described in this paper:

– We add Coq with CoRN to the pool of managed systems.
– We describe a smarter and faster verification modes for the wikis, that we

started to implement within proof assistants exactly because of the feedback
from previous wiki instances.

– We add a more fine-grained way to edit formal mathematical texts, making
it easier to detect limited changes (and thus avoid expensive re-verification).

– We manage and control users and their rights, allowing the wiki to be exposed
to the world in a structured way not limited to a trusted community of users.

– A mechanism in which the users get their own private space is proposed and
tested, which turns out to be reasonably cheap thanks to usage of advanced
filesystems and its crosslinking with the version control model.

– A high-level development model is suggested for the formal wiki, designed
after a recently proposed model [6] for version-controlled software develop-
ment. We extend that model by applying different correctness policies, which
helps to resolve the tradeoffs between correctness, incrementality, and unified
presentation discussed in [10].

One aim of our work is to try to improve the visibility and usability of formal
mathematics. The field is sorely lacking an attractive, simple, discoverable way
of working with its tools. The formal mathematics wiki we describe here is one
project designed to tackle this problem.

3 The Generalized Formal Wiki Architecture, and Its
Coq and CoRN Instance

One of the goals of initially developing a wiki for one system (Mizar) was to find
out how much work is needed for a particular proof assistant so that a first-cut
formal wiki could be produced. An advantage of that approach was that as Mizar
developers we were capable to quickly develop the missing tools, and adjust the
existing ones. Another advantage of focusing on Mizar initially was that the
Mizar Mathematical Library (MML) is one of the largest formal mathematical
libraries available, thus forcing us to deal early on with efficiency issues that go
far beyond toy-system prototypes, and are seen in other formal libraries to a
lesser extent.
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The feasibility of the Mizar/MML wiki prototype suggested that our general
architecture should be reasonably adaptable to any formal proof assistant pos-
sessing certain basic properties. The three important features of Mizar making
the prototype feasible seem to be: batch-mode (preferably easily parallelizable)
verification; fast dependency extraction (allowing some measure of intelligence
in library re-compilation based on the changed dependencies); and availability of
tools for generating HTML representations of formal texts. With suitable adap-
tation, then, any proof assistant with these properties can, in principle, be added
to our pool of supported systems.

It turns out that the Coq system, and specifically the Coq Repository at
Nijmegen (CoRN) formal library, satisfies these conditions quite well, allowing
to largely re-use the architecture built for Mizar in a Coq/CoRN wiki2.

3.1 HTML Presentation of Coq Content with Coqdoc

We found that the coqdoc tool, part of the standard Coq distribution, provides
a reasonable option for enriched HTML presentation of Coq articles. With some
additional work, it can be readily used for the wiki functionalities. Note that
an additional layer (called Proviola) on top of coqdoc is being developed [8],
with the goal of eventually providing better presentation and other features for
interacting with Coq formalization in the web setting. As in the case of Mizar
(and perhaps even more with nondeclarative proofs such as those of Coq), much
implicit information becomes available only during proof processing, and such
information is quite useful for the readers: For example, G. Gonthier, a Coq
formalizer heading the Math Components project,3 asserts that his advanced
proofs are human-readable, however only in the special environment provided
by the chosen Coq user interface. This obviously can be improved, both by
providing better (declarative) proof styles for Coq (in the spirit of [5]), and by
exporting the wealth of implicit proof information in an easily consumable form,
e.g., similarly as Mizar does [9].

Unlike the Mizar HTML-ization tools (with possible exception of the MML
Query tool [4]), the coqdoc tool provides some additional functionalities like au-
tomated creation of indexes and tables of contents, see for example Figure 1 for
the CoRN wiki contents page. This can be used for additional useful presenta-
tion of the Coq wiki files, and is again a motivation (for Mizar and other proof
assistants) to supply such tools for their wikis.

3.2 Batch-Mode Processing and Dependency Analysis with Coq

Coq allows both interactive and batch-mode verification (using the coqc tool),
and also provides a special tool (coqdep) for discovering dependencies between
Coq files, suitable for Makefile-based compilation and its parallelization. A dif-
ference of CoRN to MML is that the article structure is not flat in CoRN
2 http://mws.cs.ru.nl/cwiki/
3 ttp://www.msr-inria.inria.fr/Projects/math-components

http://mws.cs.ru.nl/cwiki/
ttp://www.msr-inria.inria.fr/Projects/math-components
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Fig. 1. CoRN wiki contents page

(in Mizar, all articles are just kept in one “mml” directory), and arbitrarily
deep directory structure has to be allowed. This poses certain challenges when
adding new files to CoRN, and taking care of their proper compilation and
HTML presentation. The current solution is that the formal articles are really
allowed to live in nested subdirectories, while the corresponding HTML live in
just one (flat) directory (this is how the coqdoc documentation is traditionally
produced), and the correspondence between the HTML and the original article
(necessary for editing operations) is recovered by relying on the coqdoc names of
the HTML files basically containing the directory (module) structure in them.
This is a good example of a real-world library feature that complicates the life of
formal wiki developers: It would be much easier to design a flat-structured wiki
on the paper, however, if we want to cater for real users and existing libraries,
imperfect solutions corresponding to the real world have to be used.

Interestingly, the structure of the dependencies in the CoRN repository differs
significantly from the MML. MML can really benefit a lot from large-scale par-
allelization of the verification and HTML-ization, probably because it contains
many different mathematical developments that are related only indirectly (e.g.,
by being based in set theory, using some basic facts about set-theoretic functions
and relations, etc.). This is far from true for the CoRN library. Parallelization of
the CoRN verification helps comparatively little, quite likely because the CoRN
development is very focused. Thus, even though the CoRN library is significantly
smaller than the MML (about a quarter of the size of the MML), the library re-
verification times are not significantly different when verification is parallelized.
This is a motivation for the work on finer dependencies described in Section 4.
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3.3 New CoRN Development with SSReflect

A significant issue for wiki development turns out to be the new experimental
version of CoRN, developed at Nijmegen based on the Math Components SS-
Reflect library. This again demonstrates some of the real-world choices that we
face as wiki developers. The first issue is binary incompatibility. The SSReflect
(Math Components) project has introduced its own special version of the coqc
binary, and standard coqc is no longer usable with it. Obviously, providing a
common wiki for the Coq Standard Library and the Math Components project
(even though both are officially Coq-based) is thus (strictly speaking) a fiction.
One possible solution is that the compiled (.vo) files might still be compatible,
thus allowing us to provide some clever recompilation mechanisms for the com-
bined libraries. The situation is even worse with the developing version of CoRN,
which relies (due to its advanced exploration of Coq type classes [7]) on both a
special (fixed) version of the coqc binary, together with a special (fixed) version
of the SSReflect library. This not only makes a joint wiki with the Coq Standard
Library hard to implement, but it also prevents a joint wiki with the Math Com-
ponents project (making changes to the SSReflect library, which has to be fixed
for CoRN). To handle such real issues, the separate/private clones/branches of
the wiki, used for developing certain features and for other experiments will have
to be used. This is one of the motivations for our general proposal in Sections 5
and Section 6. It is noteworthy that older versions of CoRN also relied on their
own Coq binary, including custom ML code. However, the features implemented
by custom ML code were partly provided by newer versions of Coq, and partly
reimplemented in Coq’s LTac language. So there is a pattern there of new de-
velopments requiring custom Coq binaries which has to be taken into account
when developing real-world wikis.

4 Using Fine-Grained Dependency Information for a
Large Formal Wiki

In order to deal with the efficiency issues mentioned in previous sections, we have
started to develop tools allowing much finer dependency tracking, and thus much
finer and leaner recompilation modes, than is currently possible with Mizar and
Coq. This work is reported in [1]. To summarize, we add a special dependency-
tracking code to Coq, which can now track most of the mutual dependencies
of Coq items (theorems, definitions, etc.), and extract the direct and transi-
tive graph of dependencies between these items. Similarly, but using a different
technique, we extract such fine dependencies from the Mizar formalizations. For
Mizar this is done by advanced refactoring of the Mizar articles into one-item
micro-articles, and computing their minimal dependencies by a brute-force min-
imization algorithm. The result of the algorithm again provides us for each item
I with the precise information about which other Mizar items the item I de-
pends on. This information is again compiled into graphs of direct and indirect
dependencies. The Mizar wiki already allows viewing of fine theorem and scheme
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Fig. 2. Aggregated fine theorem and scheme dependencies for article CARD LAR

dependencies aggregated for the articles, see Figure 2 for those of the CARD LAR
article.

4.1 Speeding Up (re)verification

It turns out that such fine dependencies have the potential to provide significant
speedups for expensive library refactorings. The following Table 1 from [1] shows
the dependency statistics and comparison for the CoRN and MML (first 100
articles) libraries. For example, the number of direct dependency edges computed
by the fine-grained method in MML drops to 3% in comparison with the number
of direct dependencies assumed by the traditional coarse file-based dependencies.
This is obviously a great opportunity for the formal wiki providing very fast
(and also much more parallalizable) verification and presentation services to the
authors of formal mathematics.

4.2 Delimited Editing

The wiki now also exploits fine-grained dependency information, for the case of
Mizar, by providing delimited text editing. The idea is to present the user with
a way to edit parts of a formal mathematical text, rather than an entire article.
This is a formal analog of the “Edit this section” button in Wikipedia. The task
is to divide a text into its constituent pieces, and provide ways of editing only
those pieces, leaving other parts intact. The practical advantage of such a feature
is that we can be sure that edits to the text have been made only in a small part
of the text that can have only a limited impact on other parts. When we know
that an edit is made only to, say, the proof of a single theorem, then we do not
need to check other theorem in the text; the text as a whole is correct just in
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Table 1. Statistics of the item-based and file-based dependencies for CoRN and MML

CoRN/item CoRN/file MML-100/item MML-100/file

Items 9 462 9 462 9 553 9 553
Deps 175 407 2 214 396 704 513 21 082 287
TDeps 3 614 445 24 385 358 7 258 546 34 974 804
P(%) 8 54.5 15.9 76.7
ARL 382 2 577.2 759.8 3 661.1
MRL 12.5 1 183 155.5 2 377.5

Deps Number of dependency edges
TDeps Number of transitive dependency edges
P Probability that given two randomly chosen items, one depends (directly or indi-

rectly) on the other, or vice-versa.
ARL Average number of items recompiled if one item is changed.
MRL Median number of items recompiled if one item is changed.

Fig. 3. Delimited editing of theorem CARD LAR:2

case the new proof is correct. If the statement of a theorem itself is modified, it
is sufficient to re-check only those other parts of the article that explicitly use
or otherwise directly depend on this theorem. See Figure 3 for an example of
delimited editing of theorem CARD LAR:2.

5 Scaling Up

In Section 6 we propose a wiki architecture that caters for many users and
many related developments, using the gitolite tool, and authentication policies
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for repository clones and branches. As mentioned in Section 3, this seems to
be a pressing real-world issue, necessary for the various collaborative aspects of
formalization. Such a solution, however, forces us to deal with many versions
of the repositories, which are typically very large. The Mizar HTML itself is
several gigabytes in size, and in order to be able to quickly re-compile the formal
developments, we also have to keep all intermediate compilation files around. In
addition to that, our previous implementation needed the space for at least two
versions of all these files, so that we could quickly provide a fresh sandbox (with
all the intermediate files in it) for a recompilation of only the newly modified
articles, and so that we were able to quickly return to a clean saved state if a
re-compilation in the sandbox fails. Thus, the size of the Mizar wiki could reach
almost 20 Gigabytes.

It is clear that with these sizes, it becomes impractical to provide a pri-
vate clone or a feature clone for hundreds (or even dozens) of interested users.
Fortunately, we can solve this by using the copy-on-write capabilities of mod-
ern filesystems: these mechanisms enable us to create time- and space-efficient
copies of branches in the wiki, storing only the changes with respect to the
original branch.

Currently, there are several copy-on-write filesystems under active develop-
ment; a well-known example is the ZFS filesystem, which was first released by
Sun Microsystems in 2005. Unfortunately, although ZFS is open-source, license
incompatibilities prevent it from being distributed as part of the Linux kernel
(which we use to host the MathWiki system). More recently, work has begun
on a filesystem called Btrfs4, which aims to bring many of the features of ZFS
to Linux. Included in the mainline kernel in 2009, it is not yet as stable as tra-
ditional Linux filesystems, but its copy-on-write snapshotting is already usable
for our purposes. The functionality provided by Btrfs can be combined with the
architecture suggested in Section 6 to create a system that will scale to large
numbers of users and branches, which is described below.

The git repositories themselves are typically quite small, as they are com-
pressed, contain only the source files (not the intermediate and HTML files),
and additionally git allows reference sharing. Thus the main problem are the
working copies that need to be present on the server for browsing and fast re-
compilation. However, these copies will typically share a lot of content, because
the users typically modify only a small part of the large libraries, and typically
start with the same main branch.

Our solution is to implement the cloning of new user repositories using Btrfs
snapshots. That is, we keep a working copy of the main repository in a separate
Btrfs volume, and create a snapshot (a writeable clone) of this whenever a user
clones the repository. Due to the copy-on-write nature of Btrfs, this operation
is efficient in terms of time and space: creating a snapshot takes 0.03 seconds
(on desktop-class hardware), and 6 KB of disk space, even for cloning very
large (10G big) volumes as the one containing the Mizar wiki. Thus, we can now

4 This stands for “B-tree filesystem”.
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provide space for a very large number of clones and versions, and do it practically
instantaneously.

As the snapshot is modified, disk usage grows proportionally to the size of
the changes. Changing a file’s metadata (e.g., updating its last-modified-time,
as required for our fast recompilation feature) costs 10 KB on average (this
is a one-time cost, paid only when the user really makes the effort and does
some acceptable changes). Modifying the content of a file increases disk usage
by the amount of newly written data, plus a fixed overhead of about 12 KB. We
have found that in order to maximize the amount of sharing between related
snapshots, it is advisable to disable file-access-time updates on the filesystem.5

Each time a repository fails to compile, and needs to be restored, we can
roll back to a previous state by discarding the latest snapshot. This is also a
fast operation, typically taking less than a second, and saving us the necessity
to maintain another 10G-large sandbox for possibly destructive operations, and
peridically using (slower) file-based synchronization (rsync) with the main wiki.

The following Table 2 documents the scalability of Btrfs and its usability
in our setting. It summarizes the following experiment: The main public wiki is
populated with the whole Mizar library, which together with all the intermediate
and HTML files takes about 10G of an (uncompressed) Btrfs subvolume. Then
we emulate 10, 100, and 200 experimental wiki clones based on the main public
wiki. Each of the clones starts as a snapshot of the main public wiki, to which a
user decides to add his new development (Mizar article) depending on nontrivial
part of the library (article CARD 1 [3] was used). The article is then verified
and HTML-ized, trigerring also library-wise update of various fine-dependency
indexes and HTML indexes. This process is done by running full-scale make
process on the whole library, requiring reading of modification times of tens of
thousands of files in the newly created clone. Despite that, the whole process is
reasonably fast and real-time, and scales well even with hundreds clones. The
whole operation takes 6.9 seconds per clone on average for 10 clones, and 7.2
seconds on average when creating 200 clones in a series. The average growth in
overall filesystem consumption (for the new article, its intermediate files, and
updated indeces) is 5.22MB per clone when testing with 10 clones, and 5.26MB
when testing with 200 clones. To summarize, the total cost of providing 200
personalized 10G-big clones with a newly verified article in them is only about
1GB of storage.

Table 2. Time and space data for 10, 100, and 200 clones with a new article verification

clones time (s) disk usage (MB)
data metadata total

10 6.9 4.71 0.51 5.22
100 7.0 4.71 0.55 5.26
200 7.2 4.71 0.55 5.26

5 Using the “noatime,nodiratime” filesystem options.
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6 Many Users, Many Branches

The current system now presents one version of CoRN and the MML to the entire
community. To help make the site more attractive and useful, we would like the
wiki to be a place where one can store one’s work-in-progress; one would store
one’s own formal mathematical texts and have a mechanism for interacting with
other users and their work. One could then track one’s own progress online, and
possibly follow other people’s work as well. It would be akin to a GitHub for
formal mathematics. In this section we describe the Git-based infrastructure for
implementing multiple users.

The idea of extending a wiki such as ours from one anonymous user to a secure,
multiuser one, maintaining security while preserving time and space efficiency,
presents a fair number of technical challenges. One basic question: how do we
extend our Git-based model? Would we store one repository for everyone, with
different branches for each user, or do we give each user his own repository?
How would one deal with ensuring that different users don’t interfere with the
work of other users? How do we deal with multiple people trying to access a
repository (or repositories)? Note that this also leads to the problem of storing
many different (but only slightly different) copies of large formal corpora solved
in the previous section by using advanced filesystem.

For managing multiple users we opted for a solution based on the gitolite
system.6 gitolite adds a layer to Git that provides for multiple users to access
a pool of repositories, guarded by SSH keys. With gitolite one can even set up
fine-grained control over particular branches of repositories. One can specify that
certain repositories (or a particular branch) is unavailable to a user (or group
of users), readable but not writable, or read-writable. gitolite makes transparent
use of the SSH infrastructure; once a user has provided RSA public key to us (the
registration page is shown in Figure 4), he is able to carry out these operations
via the web page or through the traditional command-line interface to Git.

In addition to supporting multiple users, we also want to permit multiple
branches per user. The following Git branching policy described by V. Driessen [6]
provides a handful of categories of branches:

We consider origin/master to be the main branch where the source
code of HEAD always reflects a production-ready state. We consider
origin/develop to be the main branch where the source code of HEAD
always reflects a state with the latest delivered development changes for
the next release. Some would call this the “integration branch”. This is
where any automatic nightly builds are built from.

In addition to main and developer branches, we intend to support other kinds
of branches: feature (for work on a particular new feature), release (for official
releases of the formal mathematical texts), and hotfix (fixes for critical bugs).

A gitolite access implementing a Driessen-style model can be seen in Figure 5.

6 https://github.com/sitaramc/gitolite/wiki/

https://github.com/sitaramc/gitolite/wiki/
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Fig. 4. Registration page at our wiki

@all = @superusers @maintainers @developers @users @anonymous

repo main

RW+ = @superusers @maintainers

R = @developers @users @anonymous

repo devel

RW+ = @superusers @maintainers @developers

R = @users @anonymous

repo feature/[a-zA-Z0-9].*

C = @superusers @maintainers @developers

RW+ = @superusers @maintainers @developers

R = @users @anonymous

repo (release|hotfix)/[a-zA-Z0-9].*

C = @superusers @maintainers

RW+ = @superusers @maintainers

R = @developers @users @anonymous

repo user/CREATOR/[a-zA-Z0-9].*

C = @superusers @maintainers @developers @users

RW+ = CREATOR

R = @all

Fig. 5. A gitolite policy for different kinds of wiki users
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The intention of this policy is to divide users into certain classes and permit
certain kinds of operations (creating a branch, reading it, reading-and-writing
to it). The user classes have the following meaning:

– admin: can do anything, has root access to the server
– superuser: can do arbitrary operations on the wikis taking arbitrary times,

can update binaries, etc
– maintainer: can update the main stable wiki, start/close the release and

hotfix branches
– developer: can update the develop clone, start/close feature branches,
– user: limited to his userspace, and inexpensive operations
– anonymous: limited to the anonymous user space

The name of the repository is now also an argument to a Git pre-commit or
pre-receive hook, which applies a particular verification policy to the repository.
For the main and develop repositories the policy should require full verifiabil-
ity, while other branches should not have to, so that these function more like
work-in-progress notebooks. (Such branches present an interesting problem of
displaying, in a helpful way, possibly incorrect formal mathematical texts). gito-
lite also provides a locking mechanism for addressing the problem of concurrent
reads and writes.

With the registration form, the wiki users can now submit their RSA public
keys to the wiki system. Doing so adds them to gitolite’s user space, so that they
can create new (frontend) Git repositories (e.g., by cloning some already existing
repository). Doing so triggers the creation of a corresponding backend repository
(gitolite manages directly the frontends, while the backend is managed indirectly
by us via Git hooks and CGI). The backend repositories contain the full wiki
populated with the necessary intermediate files needed for fast re-comopilation,
and obviously also with the final HTML representation of the contents, exactly
as we did in the previous one-user, one-repository version of MathWiki. The
backends themselves live in a filesystem setup described in Section 5 that re-
uses space using filesystem techniques as copy-on-write. The result is quite a
scalable platform, allowing many users, many (related) developments, different
verification and authorization policies via gitolite and git hooks, and attempting
to provide as fast verification and HTML-ization services as possible for a given
proof assistant and library.

Note however that tasks such as re-verifying a whole large library from scratch
will always be expensive and this should be reflected to the users. Apart from
the many efficiency solutions mentioned so far, we are also experimenting with
the problem of queuing pending wiki operations. We should allow them to have
various superficial fast modes of verification.7 Users could have their own queues
of jobs, and would be allowed to cancel them, if they see that some other task
would invalidate the need to do the other ones. However, when committing to

7 For Mizar, one could run only the exporter, or also the analyzer, or the full verifier.
These “compiler-like” stages actually do not have to be repeated in Mizar once they
were run.
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the devel or main branches, as mentioned, full verification should always be
required.

7 Multiple Wiki Servers and Their Synchronization

Mirroring is a common internet synchronization procedure used for a number of
reasons. Mirroring increases availability by decreasing network latency in mul-
tiple geographical locations. Mirroring also helps to balance network loads and
supports backup of content. An internet mirror is live when it is changed imme-
diately after its origin changes. With custom wiki software, such as MediaWiki8

(the wiki engine behind Wikipedia), there can typically be just one central repos-
itory to which updates are made. This is no longer such a limitation with a wiki
such as our, which is built on top of a distributed version control system.

In case of the Mizar part of our wiki, the practical motivation for mirroring al-
ready exists: There are currently three reasonably powerful servers (in Nijmegen,
Edmonton, and Bialystok) where the wiki can be installed and provide all its ser-
vices. Given that re-verification of the whole formal (e.g., Mizar) library is still a
costly operation, distributing the work between these servers can be quite useful.
An obvious concern is then however the desynchronization of the developments.

This turns out to be easy to solve using the synchronization mechanism of
a distributed version control system like Git. Git already comes with its own
options for mirroring the changes in other repositories, which can be easily trig-
gered using some of its hooks (in Git terminology, we are using the post-update
hook on bare repositories). Because our wiki is “just” a Git repository (with
all other functionalities implemented as appropriate hooks) that allows pushing
into it as any other Git repository, it turns out that this mirroring functional-
ity is immediately usable for live synchronization of our wikis. The process (for
example, for two wikis) works as follows:

– The wikis are initialized over the same Git repository.
– A post-update hook is added to the frontend (bare) Git repository of each

of the wikis, making a mirroring push (pushing of all new references) to the
mirroring wiki’s frontend repository.

– Upon a successful commit/push to any of the wiki servers, the pushed server
thus automatically updates also the mirroring wiki, triggering its verification
and HTML-ization functions, exactly in the same way as a normal push to
the wiki triggers these wiki-updating functions.

Note that this is easy with distributed version control systems such as Git,
precisely because there is no concept of a central repository, so that all reposi-
tories are equal to each other and implement the same functionality. It is easy
also because from the very beginning, our wiki was designed to allow arbitrary
remote pushes, not just standard wiki-like changes coming from web editing.

This mechanism also allows us to have finer mirroring policies. For example, a
realistic scenario is that each of the wiki servers by default mirrors only changes
8 http://www.mediawiki.org/wiki/MediaWiki

http://www.mediawiki.org/wiki/MediaWiki


Large Formal Wikis: Issues and Solutions 147

to the main public wiki branches/clones, and the private user branches are kept
non-mirrored. This means that the potentially costly verification operation is
not duplicated on the mirror(s) for local developments, and is done only when
an important public change is made.

8 Conclusion and Further Issues

We have outlined a number of steps for building on our first version of a formal
mathematics wiki. Our aims naturally require us to make use of several disparate
technologies, including cutting-edge ones such as smart filesystems that can cope
with very large scale datasets.

The ultimate aim of making formal mathematics more attractive and man-
ageable to the everyday mathematician remains. Extending our idea of “research
notebooks”, we would eventually like to equip our wiki with an editor with which
one’s mathematical work could be carried out entirely on the web. Collabora-
tive tools such as etherpad9 are a natural target as well. Hooks into attractive,
useful presentations of formal proofs such as Mamane’s tmEgg and Tankink’s
Proviola [8] systems can help, and merging in powerful automation tools such
as the MizAR system [11] is another obvious next step.

At the moment, our wiki supports only Mizar and Coq. These are but two
of the actively used systems for formalized mathematics; adding Isabelle and
possibly HOL light are now within reach thanks to our experience with Mizar
and Coq. Concerning Coq, we would like to take advantage of the ongoing Math
Components project.

Finally, we note that mappings between formal mathematics and the vast
world of “informal” mathematics remains rather weak. Indeed, even links be-
tween formal repositories is rather underdeveloped. Linking formal mathematical
texts to some informal counterparts, such as to Wikipedia, PlanetMath10, Wol-
fram MathWorld11, remains to be carried out. For Mizar, this has been achieved
to some extent (providing Wikipedia-based mapping for about two hundred
MML objects), but much remains to be done. It seems especially attractive,
in the context of our wiki work, to build a well-connected corner of the World
Wide Web linking formal and informal mathematics.

References

1. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics (preprint)
(submitted)

2. Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton,
A.P. (eds.): AISC 2010. LNCS, vol. 6167. Springer, Heidelberg (2010)

3. Bancerek, G.: Cardinal numbers. Formalized Mathematics 1(2), 377–382 (1990)

9 http://etherpad.org/
10 http://planetmath.org/
11 http://mathworld.wolfram.com

http://etherpad.org/
http://planetmath.org/
http://mathworld.wolfram.com


148 J. Alama et al.

4. Bancerek, G.: Information retrieval and rendering with MML Query. In: Borwein,
J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 266–279.
Springer, Heidelberg (2006)

5. Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan,
M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84.
Springer, Heidelberg (2008)

6. Driessen, V.: A successful Git branching model,
http://nvie.com/posts/a-successful-git-branching-model/

7. Spitters, B., van der Weegen, E.: Developing the algebraic hierarchy with type
classes in Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 490–493. Springer, Heidelberg (2010)

8. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof
re-animation. In: Autexier, et al. (eds.) [2], pp. 440–454

9. Urban, J.: XML-izing mizar: Making semantic processing and presentation of mml
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006)

10. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation,
considerations, and initial prototype. In: Autexier, et al. (eds.) [2], pp. 455–469

11. Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formal-
izing mathematics in Mizar. In: Autexier, et al. (eds.) [2], pp. 132–146

http://nvie.com/posts/a-successful-git-branching-model/


Licensing the Mizar Mathematical Library

Jesse Alama1, Michael Kohlhase2, Lionel Mamane, Adam Naumowicz3,
Piotr Rudnicki4, and Josef Urban5,�

1 Center for Artificial Intelligence, New University of Lisbon
j.alama@fct.unl.pt

2 Computer Science, Jacobs University
m.kohlhase@jacobs-university.de, lionel@mamane.lu
3 Institute of Computer Science, University of Bialystok

adamn@math.uwb.edu.pl
4 Department of Computing Science, University of Alberta

piotr@cs.ualberta.ca
5 Institute for Computing and Information Sciences; Radboud University Nijmegen

josef.urban@gmail.com

Abstract. The Mizar Mathematical Library (MML) is a large corpus
of formalised mathematical knowledge. It has been constructed over the
course of many years by a large number of authors and maintainers. Yet
the legal status of these efforts of the Mizar community has never been
clarified. In 2010, after many years of loose deliberations, the commu-
nity decided to investigate the issue of licensing the content of the MML,
thereby clarifying and crystallizing the status of the texts, the text’s
authors, and the library’s long-term maintainers. The community has
settled on a copyright and license policy that suits the peculiar features
of Mizar and its community. In this paper we discuss the copyright and
license solutions. We offer our experience in the hopes that the commu-
nities of other libraries of formalised mathematical knowledge might take
up the legal and scientific problems that we addressed for Mizar.

Keywords: free culture, open data, free licensing, formal mathematics,
mizar.

1 Introduction – Formal Mathematics and Its Roots

The dream of formal thinking and formal mathematics (and its giant offspring:
computer science) has a long and interesting history that we can hardly go into
� The first author was funded by the FCT project “Dialogical Foundations of

Semantics” (DiFoS) in the ESF EuroCoRes programme LogICCC (FCT Log-
ICCC/0001/2007). The sixth author was supported by the NWO project “MathWiki
a Web-based Collaborative Authoring Environment for Formal Proofs”. The authors
have worked together as members of the SUM Licensing Committee. Special thanks
for advice to: Stephan Schulz, David Wheeler, Michael Spiegel, Petr Pudlak, Bob
Boyer, Adam Pease, Timo Ewalds, Adam Grabowski, Czeslaw Bylinski, and Andrzej
Trybulec.
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in this paper. Briefly, formal mathematics started to be produced in computer
understandable encoding in late 1960s. The first significant text of formal math-
ematics was van Benthem’s encoding of Landau’s Grundlagen der Analysis [11]
in AUTOMATH [1]. Since then, large bodies of formal mathematics have been
created within the fields of Interactive and Automated Theorem Proving (ITP,
ATP). (See [25] for an extensive overview of the systems, formal languages, and
their libraries.)

As these libraries grow and their contents get re-used in new, possibly unimag-
ined and unintended contexts, their legal status needs to be clarified and for-
malised. In this paper we discuss how this problem was tackled in the case of
the Mizar Mathematical Library. In Section 2 we discuss formal mathematical
libraries in general and the target library of interest for us, the Mizar Mathe-
matical Library (MML [14]), and the problem of classifying its content as code
vs. text. We discuss in Section 3 how some basic licensing problems were tackled
by other formal mathematics projects. In Section 4 we survey the main issues
we faced, and our (sometimes incomplete) solutions to them. We offer further
problems and future work in Section 5. Our final copyright/licensing recommen-
dation is accessible online1, and the Mizar copyright assignment and licensing
policy are now parts of the Mizar distribution2.

2 What Is a Formal Math Library?

A library of formal mathematics is a collection of “articles” that contain for-
malised counterparts of everyday informal mathematics. Our interest here is on
the Mizar Mathematical Library (MML). Here we discuss some of the historical
background of this library and the problems it poses for the license designer.

2.1 Historical Background of the MML

The year 1989 marks the start of a systematic collection of inter-referenced Mizar
articles. The first three articles were included into a Mizar data base on January 1
— this is the official date of starting the Mizar Mathematical Library — MML,
although this name appeared later.

The copyright for the MML has been owned by the Association of Mizar Users
(SUM, in Polish Stowarzyszenie Użytkowników Mizara) anchored in Białystok.
SUM is a registered Polish association whose statute3 states that the SUM’s aim
is popularizing, propagating and promoting the Mizar language. The copyright
assignment has been required from the authors (typically SUM members) by

1 https://github.com/JUrban/MMLLicense/raw/master/RECOMMENDATION
2 http://mizar.org/version/current/doc/Mizar_FLA.pdf
http://mizar.org/version/current/doc/FAQ
http://mizar.org/version/current/doc/COPYING.interpretation
http://mizar.org/version/current/doc/COPYING.GPL
http://mizar.org/version/current/doc/COPYING.CC-BY-SA

3 http://mizar.org/sum/statute.new.html

https://github.com/JUrban/MMLLicense/raw/master/RECOMMENDATION
http://mizar.org/version/current/doc/Mizar_FLA.pdf
http://mizar.org/version/current/doc/FAQ
http://mizar.org/version/current/doc/COPYING.interpretation
http://mizar.org/version/current/doc/COPYING.GPL
http://mizar.org/version/current/doc/COPYING.CC-BY-SA
http://mizar.org/sum/statute.new.html
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SUM when submitting articles to MML. This was likely related to the early
decision to build a large re-usable library of formal mathematics, which would
presumably be re-factored many times by the core MML developers. Another
reason speaking for the copyright centralization was the fact that the potential
uses of such a library were initially also quite unclear: note that MML was started
so early that it precedes the World Wide Web, Linux, Wikipedia, arXiv, and the
massive development of free software and free web resources like Wikipedia and
arXiv in the last two decades, and the related development of free licenses.

While the MML copyright owner was always clearly SUM, it was nowhere
stated what was covered by the copyright and there was no policy for licensing
the use of MML content should someone request a permission for use other than
contributing to the library. For example, Josef Urban was not sure whether it
was legal to include his translation [19] of parts of the MML into the TPTP
library, which is used also for testing/benchmarking of ATPs — a process with
some potential for commercial use. As discussed in the next section, the ATP
translation also makes MML more executable in certain sense, in a similar way
as for example Prolog program can be viewed as a database and as a program
simultaneously. Such potential uses add to the need for a clear licensing policy.

2.2 Two Aspects of Formal Mathematics: Code and Text

Formal mathematical libraries present a number of problems for the license de-
signer. One crucial question for deciding upon a license for the Mizar Mathemat-
ical Library: Is a Mizar article more like a journal article, or is it more like a
piece of computer code, or is it both? And could existing law be suboptimal in
treating code differently from mathematical texts?

Although we are focused on Mizar, we note in passing that other interactive
proof assistants, whose communities might want to take up the problem of li-
censing their content, face this issue in different ways. Definitions and proofs in
Coq, for instance, have originally been rather more like computer programs (at
least, prima facie) than Mizar texts4.

We also need to address the issue of what can be done with formal mathemat-
ical texts. There is considerable interest in extracting algorithms from proofs of
universal-existential theorems. What is the status of such extracted or derived
products? Mizar does not, on its face, permit such a straightforward, immedi-
ate extraction of algorithms from proofs. There are however several mechanisms
which bring Mizar very close to executable code:

1. Formal mathematical formulas (more precisely: clauses) immediately give
rise to very real computation in the Prolog language. For example, the Prolog
algorithm for reversing lists:

4 This is however also changing: Coq has become capable of handling mainstream
(not just constructive) mathematics recently, has gained a declarative proof mode
and one of the aspirations of the Math Components project is to make the Coq
presentations accessible to mathematicians.
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reverse_of([],[]).
reverse_of([H|T],Result):-

reverse_of(T,RevT),
append(RevT,[H],Result).

is just two mathematical clauses (formulas):

rev_of([], [])∧
∀H, T, RevT, Result : rev_of(T, RevT )∧append(RevT, list(H, []), Result)
→ rev_of(list(H, T ), Result)

The only difference between a Prolog program and a set of mathematical
clauses is that the order of clauses matters in the Prolog program.

2. In systems for automated theorem proving (ATPs), even this ordering dif-
ference typically no longer exists. Many ATPs would thus be really able to
“compute” the reverse of a particular list, just with the two formulas above,
given to them in arbitrary order. The MPTP system [20] translates all Mizar
formulas into a format usable by ATPs, and thus allows such computations
to be made.

3. Mizar itself actually contains pieces of more procedural semantics, e.g. the
“registrations” mechanisms (a kind of limited Prolog mechanism). These
mechanisms add restricted Prolog-like directed search to otherwise less di-
rected general Mizar proof search, in a similar spirit as the Prolog language
adds a particular restrictions to the order in which (Horn) clauses are tra-
versed, as opposed to ATPs that work with arbitrary clauses and regardless
of ordering. Input to these mechanisms are again Mizar formulas in special
(Horn-like) from.

4. In principle, one could extract a mangled form of constructive content from
the classical content of the Mizar Mathematical Library by applying, say, the
Gödel-Gentzen translation from classical to intuitionistic logic. After that,
the Curry-Howard isomorphism between proofs and programs could again
be used to give procedural meaning to Mizar proofs (not formulas as in the
above cases).

In short, mathematics lends itself to executable interpretation not just via the
Curry-Howard proofs-as-programs interpretation of constructive mathematics
(reasonably well-known in the formal community), and extensions of it to clas-
sical mathematics, but also by implicit formulas-as-programs interpretations,
developed by the Prolog and ATP communities. It is a well known fact that
efficient Prolog computation is just a restriction of ATP proof search, and ATP
proof search can be used as (typically less efficient than Prolog) computation
too. These mechanisms are to a certain extent present already in Mizar, and are
fully available using a number of systems via the MPTP translation.

The formal/informal distinction cannot be straightforwardly based the ability
for a machine to extract content/meaning. For example, Wikipedia is today used
for data and algorithm extraction, used in advanced algorithms by, for exam-
ple, IBM Watson system [21]. With sufficiently advanced extraction algorithms
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(which we are clearly approaching), many “documents” can become “programs”.
(For an interactive demonstration, see [10].)

Various other factors make contributions to the Mizar Mathematical Library
like computer code. An entry in Wikipedia can stand alone as a sensible con-
tribution. Mizar articles, however, do not stand alone (in general), because it
cannot be verified — or even parsed — in the absence of the background pro-
vided by other articles. With some background knowledge in mathematics, some
human-understandable meaning can be extracted from Mizar texts [15]:

reserve n,m for Element of NAT;
reserve g for Element of COMPLEX;
reserve s for Complex_Sequence;
definition
let s;
attr s is convergent means
ex g st for p be Real st 0 < p
ex n st for m st n <= m holds |.s.m-g.| < p;

end;

is evidently the conventional ∃∀∃∀-definition of a convergent sequence of complex
numbers. However, the exact meaning of this text can be specified only with
reference to the environment in which this text is evaluated. The environment
provides some type information, such as that 0 is a real number, < is a relation
among real numbers, the curious-looking |.s.m-g.| is a real number (it is the
absolute value of the difference of the nth term sn and g), etc.

Thus, libraries of formal mathematics are akin to libraries of software. Code
that calls a library function cannot function without the library. Similarly, a
formal mathematical article is not “formal” as it cannot be understood in the
absence of the other formal articles it imports. The background formal library is
used as a declarative and procedural knowledge to derive (not just “verify”) the
contents of a new formal mathematical article.

2.3 Code and Text Licenses

Because of the dual nature of the formal mathematical texts — they are both
human-readable (particularly when written in Mizar) and machine-processable —
it is possible that we are dealing with a new kind of object. The licensing situation
in the world of free works5 within the two categories (executable software code
on the one hand, and documents for human consumption on the other hand) has
clear “winners”. On the code side, statistics [16,9,24] based on web scraping of
contents of large free/open source software repositories (such as SourceForge or
freshmeat) show that slightly more than a half of FLOSS6 code is under a variant

5 “Free” refers not (only) to zero price (Latin gratis), but to freedom (Latin liber;
however, the consecrated vernacular expression is “libre”, so we will use “libre”).
That is, a work that anybody is free to use, share and improve.

6 FLOSS for free/libre/open-source software.

http://www.sf.net/
http://freshmeat.net/
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of the GNU General Public License: Data from the FLOSSmole project [4] as
of March 2011 shows that out of a total of 43 470 FLOSS projects tracked by
freshmeat, 24366 are licensed under a version of the GNU GPL7. Of the projects
hosted on SourceForge, 110 412 use a variant of the GPL, out of 174 227 that
use a license approved by the Open Source Initiative.

Onthedocumentside,althoughwewerenotable tofindcomparativeusagestatis-
tics, in our experience Creative Commons accounts for most of the mind-share, al-
though domain-specific licenses have fair success within their domain. See [6,7].

Be it only for this reason, it seemed prudent to us to allow for an eventual future
relicensing, and for this to keep central copyright ownership of the MML. But also,
the practice of licensing of free/libre electronic documents is rather younger, and
less mature, than free software licensing, thereby increasing the “risk” that relicens-
ing may be necessary in the future. For example, Wikipedia migrated from a GNU
Free Documentation license to a Creative Commons BY-SA license as recently as
in 2009, because a majority of other wikis had, by and large, settled for a Creative
Commons license, and Wikipedia wished to make interchange of content between
Wikipedia and other wikis legally possible (and easy).

An additional uncertainty arises from the fact that MML articles can be seen
both as documents and as executable code; possibly difficulties could arise at
some point from this dual nature. For example, someone wanting to make a use
of the MML that sits squarely neither on the one side nor the other, but makes
use of the duality in some way. Possibly this use would neither be clearly allowed
by a license meant for executable code, nor clearly allowed by a license meant
for documents. It is thus prudent to have a central authority that can authorise
such uses on a case-by-case basis as they arise, or revise the license of the MML
once the issues are better understood.

2.4 Patents

Restrictions arising from patents are potentially just as lethal as copyright re-
strictions for keeping a work free to use and enhance by anybody for any purpose.
The expected content of the MML is however more of an abstract nature than of
a technical nature. However, first, (theoretically) only technical ideas are subject
to patents, notwithstanding the situation concerning software patents. Second,
the kind of things that the MML is now typically used for would not infringe
on a patent, even if the idea expressed in an MML article would be covered by
a patent: a patent do not forbid the activity proper of studying or enhancing
upon the covered idea; for example, the RSA or IDEA algorithms being patented
does not forbid proving (formally or in paper mathematics) properties of these
algorithms, nor does it forbid teaching the algorithm publicly. On the contrary,
the usual justification for the modern patent system is to encourage inventors to
make descriptions of their invention public, rather than keeping them as trade

7 This count includes various versions of the GNU GPL, as well as the combination of
the GNU GPL with special linking exceptions; it does not include significantly more
liberal licenses, such as the GNU Lesser/Library GPL.

http://www.gnu.org/
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/
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secrets, so that such activities can take place, and eventually lead to a larger
and better exploitation of the idea by society as a whole. The activity forbidden
by a patent is manufacturing, selling or using an implementation of the idea, a
machine based on the idea. Eventual concrete advances in making a specification
of an algorithm in Mizar executable could create interesting legal questions, but
we are not yet at this point8 although some preliminary experiments9 were quite
encouraging. Third, in the context of free software we take our inspiration from,
how to handle patents is — by far — not as consensual as copyright licensing.
Free documents, our other inspiration, usually don’t have to deal with patent
issues. For the combination of these three reasons, we did not address any patent
issue in our initial licensing recommendation to SUM.

However it is worth noting that in GPL version 3 the FSF has started to
address the issue of software patents more concretely, inserting following into
the GPL v3 preamble:

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

Section 11 of the GPL v3 text itself contains a blanket patent license from every
contributor in addition to the usual copyright license. In other words, GPL ver-
sion 3 has the share-alike (transitive) aspect not only with respect to copyright,
but also with respect to patents. However our copyright assignment setup means
that a contributor not redistributing his MML modifications himself never agrees
to the GPL, and thus evades its patent license provisions. Additionally as the
Creative Commons license does not address patents, our dual-license model al-
lows redistributors of modified versions to avoid giving a public patent license by
choosing CC-BY-SA. Addressing patent issues (if relevant at all) is thus possible
future work for us, probably subject to some discussions with the authors of the
FSFE Fiduciary License Agreement (copyright assignment contract).

3 Related Licensing Models

For detailed overview of formal systems’ licensing, see David Wheeler’s enumer-
ation [23]. The tendency in academic institutions over the last decade seems
8 A similar question of where the boundary between “implementation” and “hu-

man speech” lies arose in the last years of the second millennium, concerning
the CSS algorithm used to scramble the contents of Video DVDs, although in
this case the problem did not originate from a patent, but from a then-new
copyright meta-protection law, the USA Digital Millennium Copyright Act. See
http://www.cs.cmu.edu/~dst/DeCSS/Gallery/ for examples.

9 Michal Michaels (http://mmitech.net/michael/cv) added computational contents
to Mizar schemes and was extracting Lisp code for binary arithmetics in his MSc
thesis, University of Alberta 1996.

http://www.cs.cmu.edu/~dst/DeCSS/Gallery/
http://mmitech.net/michael/cv
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to go from closed/non-free/non-commercial/unclear licensing terms on formal
systems, towards open/free/clear ones. Two examples are the SPASS theorem
prover from MPI Saarbrücken, and the PVS verification system from SRI. SPASS
went from a custom license allowing only non-commercial use (SPASS 1.0) to
GPL2 (SPASS 2.0) to FreeBSD license (SPASS 3.5). PVS has switched from
a former commercial license to GPL as of December 200610. One of the early
rules (since 1997) of the CADE ATP System Competition (CASC) has been that
“Winners are expected to provide public access to their system’s source code”,11
and that the systems’ sources are after the competition regularly published by
the CASC organisers. Note that the situation is quite different in the world of
more applied formal tools like SAT and SMT solvers. For example, neither the
Z3 (Microsoft Research) nor the Yices (SRI) SMT solvers are FLOSS.

However, our particular interest are not the formal systems per se, but rather
the formal libraries associated with them. As discussed in Section 2, this dis-
tinction — between the systems and the mathematics formalised inside them
— might be (im)possible to various extents. For example, the HOL (Light) for-
malizations (and thus the large mathematical Flyspeck project formalizing the
proof of the Kepler conjecture) are written directly in the ML (OCaml) program-
ming language. This is probably best captured as “proof programming” (the ML
code) over “mathematical terms” (specially parsed parts of the ML code). Obvi-
ously, arbitrary programs (ML functions) thus are part of the “procedural proofs”
written in HOL (Light)12. On the other hand, in Mizar, the distinction between
the system’s code (written in Pascal) and the formalization code (written in
Mizar) is very clear: no Pascal programming is allowed inside the declarative
mathematical proofs.

3.1 Licensing Models of Formal Libraries

All major formal libraries have so far used code licenses, while informal ones
like arXiv, PlanetMath and Wikipedia use document licenses. The GNU Free
Documentation License (GFDL) has been previously used by Wikipedia and
PlanetMath, however, as Stephan Schulz (a Wikipedia administrator) noted:

The GFDL certainly is a reasonable choice. However, it has some warts,
and large collaborative projects (in particular Wikipedia) have been
moving (with support from the Free Software Foundation) to the Cre-
ative Commons CC-BY-SA license. The CC-BY-SA license allows

10 http://pvs.csl.sri.com/mail-archive/pvs-announce/msg00007.html
11 http://www.cs.miami.edu/~tptp/CASC/14/Call.html#Conditions
12 One might of course argue that the arbitrary ML functions in HOL (Light) serve not

as “parts of proofs” but rather as “proof generators”, i.e., that the “real proof” is just
the low-level HOL proof object (checked by HOL’s LCF-like microkernel), which the
user typically never sees. This is however a bit like saying that the Lisp (or C) macro
language is not really a part of Lisp (or C) programming, or even that Lisp (or C)
is just a “program generator”, and the “real program” is just the compiled machine
code.

http://pvs.csl.sri.com/mail-archive/pvs-announce/msg00007.html
http://www.cs.miami.edu/~tptp/CASC/14/Call.html#Conditions
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Table 1. Overview of licenses of selected (formal) mathematical libraries

Library (System) License
Coq Standard Library (Coq) LGPL
Coq Repository at Nijmegen (Coq) GPL
Math Components (Coq+ssreflect) Not publicly available
Archive of Formal Proofs (Isabelle) BSD or LGPL
Isabelle Standard Libraries (Isabelle) BSD
HOL Light Standard Library (HOL Light) BSD/MIT-like license
Flyspeck (HOL Light) MIT license?
Wikipedia, PlanetMath CC-BY-SA
SUMO GPL + additional restriction
arXiv CC-BY(-NC-SA) or public domain

or only arXiv allowed to distribute

redistribution and changes, but requires maintaining the license and rec-
ognizing the contributors.

Table 1 summarises the licenses of several well-known formal mathematical li-
braries, together with some major informal ones like PlanetMath, Wikipedia,
and arXiv.

Also note that the licensing differences between the formal libraries can al-
ready now cause nontrivial problems. For example, the Coq Repository at Ni-
jmegen (CoRN) is an advanced mathematical library, which however contains
also a number of items that can be generally useful to any Coq formalization.
Thus, a credible scenario is that pieces of CoRN might be gradually moved to
the Coq Standard Library (distributed with the Coq system). That however is
not automatically possible, since CoRN is licensed under GPL, which is stronger
(more restrictive) than LGPL (used by the Coq Standard Library). Similar situ-
ation might arise when moving the LGPL-licensed entries in the Isabelle Archive
of Formal Proofs (AFP) to the Isabelle standard libraries (BSD). So while our
initial idea was to possibly optimise the MML license(s) also with respect to
possible future transfers and translations between various formal and informal
libraries, a survey of the current situation revealed that this is hardly possible
in the existing chaos. This again leads us to the necessity of copyright central-
ization, in order to be able to adapt to the likely future changes of this chaotic
global state of affairs.

4 Issues and Their Solutions

In this section we discuss some of the problems we faced when designing a license
and copyright mechanism for the MML and how we addressed them.

4.1 Features Required from the License

For the number of reasons mentioned above we wanted our solution for the MML
copyright/license to give the SUM some control over the current and future
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licensing, while at the same time not hindering legitimate “open science” use of
the MML, such as:

– translating its contents so that another proof assistant can use them;
– archiving the MML to record the state of human knowledge;
– allowing MML to be used for data-mining, mathematical search engines, and

general AI systems;
– benchmarking ATPs;
– writing formal mathematics and publishing articles about it.

At the same time, we did want the SUM to have the authority to object to
uses of the MML that do not adhere to the rules of “open science” and block the
free flow of ideas and results contained in the library.

Our solution was to adopt a fairly restrictive open license, adhering to strong
copyleft principles, with SUM as a rather powerful central copyright owner. We
lay out a policy of “ask and you shall be allowed” when it comes to certain uses
of the MML that do not adhere to our restrictive license, but are within the
rules of “open science”.

4.2 Linking and Adaptation

One consequence of viewing the MML as a collection of executable code concerns
the sensitive issue of linking. The MML is composed of a large number of items
that one can refer to, not unlike one using a subroutine defined in some external
library. Thus, if someone has proved the Jordan curve theorem in some form, one
can use this theorem to prove some consequence, such as the four-color theorem.
Likewise, one can use earlier definitions (such as the definition of the power set
operation or topological spaces) in one’s own work. Such usage is analogous to
linking by virtue of the fact that one’s text is not functional (or even meaningful)
in the absence of these earlier definitions, and constitutes a derivative work of
the used articles, thereby triggering the share-alike mechanism of the GPL.

On the document side, the CC-BY-SA version 3.0 license [2] share-alike mech-
anism is triggered by the analogous notion of adaptation.

A contribution to the MML naturally triggers the share-alike mechanism of
both licenses. However, to dispel any doubt about this, the MML licenses come
with a binding interpretation note13 that states that fact explicitly.

4.3 Why Open-Source Copyleft License?

We settled upon a dual-licensing scheme based on the GPL version 3 [5] and
CC-BY-SA version 3.0 [2].

The decision to adopt such a scheme was made with some reservation; a dual-
licensing scheme is evidently more complicated than a single license. However,
the dual-license aspect does suit our situation nicely owing to the dual nature
of the MML as code and text. The intention is that the GNU GPL, which aims
13 http://mizar.org/version/current/doc/COPYING.interpretation

http://mizar.org/version/current/doc/COPYING.interpretation
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to cover computer code, suits this aspect of the MML, whereas CC-BY-SA,
which is designed to cover texts (among other things) seems more appropriate
when the MML is considered as a collection of texts. The dual-license scheme
is good for adapting and copying parts of MML. For example, it allows to copy
a piece of an MML proof into Wikipedia or PlanetMath, which are licensed
under CC-BY-SA. In such a case, the person copying automatically chooses to
use MML under the CC-BY-SA license. In the same spirit, extraction of Prolog
(or other) programs from MML mentioned in Section 2.2 would be covered by
GPL. The disadvantage of the MML dual-licensing is that contributing to MML
gets difficult: contributors have to agree both to GPL and CC-BY-SA. This was
a difficult decision, however, once we got that far, it allowed us to think even
further and come up (after discussions with the Software Freedom Law Center14)
with copyright assignment (see Section 4.4) as the best of the bad solutions.

Our licenses feature strong copyleft protection: anything derived from one’s
contribution must be similarly freely redistributable and enhanceable. We believe
that such transitivity promotes public contribution, because a contributor can
engineer his work safe in the knowledge that his efforts, and future enhancements
to it, cannot be taken away from him (or from society), and cannot be exploited
for private gain without contributing back to the common pot.

4.4 Why Keep the Copyright Ownership with SUM?

In our licensing model, we require that contributor to the MML assign the copy-
right to their work to the SUM.

The main risk of mandatory copyright assignment is discouraging potential
contributors. But since the MML has been functioning with copyright assign-
ment since its beginnings, the risk is mitigated. The community has already
adopted this model, and probably will continue to accept it. At worst, manda-
tory copyright assignment might stunt the future growth of the community.

To assuage this fear, following the models described in [12,8,18], we recom-
mended that:15

– SUM be a relatively transparent association, and that it be open to contribu-
tors. One way in which SUM is open is through translation of its statutes into
the major languages used for science and technology (currently, English). We
also insisted that decisions taken by SUM be open to international members
(i.e., not requiring physical Polish presence).

– SUM pledges to maintain free (as in freedom) licensing of the assigned work.
– SUM pledges that any profit made by the SUM from the work be used only

for the advancement of science.
– The copyright grant to the SUM is automatically rescinded if the SUM breaks

the above pledges.

14 http://www.softwarefreedom.org/
15 Note that the last three points are now part of the Mizar Copyright Assignment.

http://www.softwarefreedom.org/


160 J. Alama et al.

4.5 Enforcing FLOSS

Free/libre licenses had, and to a degree still have, a reputation for being difficult,
if possible at all, to enforce, or the expose the licensor to abuse from the licensee.
This reputation, in our opinion, comes more from the fact that enforcement
(mainly by the FSF) used to happen behind closed doors rather than in a public
forum, and the final settlement typically would include a “no shaming” clause
that kept the polite fiction that the violator voluntarily complied with the GPL,
and never imagined doing otherwise, much less did otherwise. Eben Moglen, the
general legal counsel for the FSF, and Richard Stallman, the leader of the FSF,
used to say (publicly, during conferences) something to the effect of:

The reason the GNU GPL has not been “tested in court” is that each
time the FSF threatens to sue over a GPL violation, the offender chooses
to comply with the GPL rather than go to court. This, in essence, means
that their legal counsel estimates their losing in court too probable to
risk.

More recently, some of the enforcement has become far more public, and some-
times the public shaming is the main force behind the effort. The pioneer of
this change is gpl-violations.org, created in 2004 by Harald Welte to give
GPL enforcement a faster and more dynamic pace than the FSF’s usual way of
proceeding [22]: the FSF usually let violators continue their infringements for an
interim period of time, while the process of bringing them into compliance was
ongoing.

More strongly, far from making the contents of the MML more vulnerable to
theft, or limiting the freedom of the Mizar community, adopting a FLOSS license
such as the one we settled upon gives the community greater strength. There
are cases where having a FLOSS license made a crucial difference. One of the
earlier examples is the one of g++, the C++ compiler in GCC, the GNU Compiler
Collection [17]:

Consider GNU C++. Why do we have a free C++ compiler? Only
because the GNU GPL said it had to be free. GNU C++ was developed
by an industry consortium, MCC, starting from the GNU C compiler.
MCC normally makes its work as proprietary as can be. But they made
the C++ front end free software, because the GNU GPL said that was
the only way they could release it. The C++ front end included many
new files, but since they were meant to be linked with GCC, the GPL
did apply to them. The benefit to our community is evident.

Consider GNU Objective C. NeXT initially wanted to make this front
end proprietary; they proposed to release it as .o files, and let users link
them with the rest of GCC, thinking this might be a way around the
GPL’s requirements. But our lawyer said that this would not evade the
requirements, that it was not allowed. And so they made the Objective
C front end free software.

It is not inconceivable, as formal methods become more widely used, that analo-
gous cases could arise concerning the use of formalised mathematical knowledge.

gpl-violations.org
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4.6 What Are Reasonable Conditions for Copyright Ownership?

We settled for a copyright ownership agreement modeled on the FSFE fiduciary
license agreement (FLA) [3]. The FLA “allows one entity to safeguard all of the
code created for a project by consolidating copyright (or exclusive exploitation
rights) to counteract copyright fragmentation.” In our case, the entity is SUM.
We opted for this kind of agreement to permit possible future changes of the
open-source licenses16 and also selected commercial activities benefiting scientific
progress. There already are projects (e.g., the NICTA L4 project17) that are
sensitive to future commercial uses, while clearly benefiting the development of
formal methods. We chose the FSFE’s FLA rather than the similar paperwork
used by e.g. the FSF mainly because the FSFE’s FLA is specifically written for
European jurisdictions.

The main substantive change we made to the FLA is allowing the SUM to
sell commercial licenses to the MML, when doing so is beneficial to progress in
science and technology, subject to the restriction that proceedings must be used
to advance the SUM’s goals, namely popularising, propagating and promoting
the Mizar language. We see this way of proceeding as a tax levied on people that
want to benefit from science’s production and advancement, without playing
by the rules of science of free interchange of ideas and results. In other words,
people that want to use the results of science without contributing their further
enhancements back to the common pot. This is somewhat similar to the “pol-
luter pays” principle that is becoming widespread in European and international
environmental law.

The fact that we set things up legally so that the SUM is allowed to do so
does not mean it has to; if a majority of members (contributors) opposes it, it
won’t happen and the MML will be, by and large, unavailable to people not
willing to contribute their enhancements to the common pot.

5 Conclusion and Future Work

In order to produce a suitable copyright and licensing model for the MML, we
delved into the question of what formal mathematics truly is. We did not settle
on a definitive answer yet, and it may well be that (as often with legal con-
cepts) the existing legal concepts and preconceptions need to be updated as
scientific progress is being made. The difference between executable code and
(formal) mathematics seems to be extremely tenuous, if it exists at all. It is
safe to say that formal mathematical texts straddle a boundary between hu-
man readability/consumability and machine readability/consumability. An even
deeper question: what is formal knowledge, and what is informal knowledge?

Even when we handle this dilemma by dual licensing, there is no clear winner
with respect to the goal of making the MML compatible with as many formal and
informal mathematical libraries as possible. The situation in this field seems quite
16 The Wikipedia relicensing trouble being a strong motivation.
17 http://ertos.nicta.com.au/research/l4/

http://ertos.nicta.com.au/research/l4/
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chaotic, and we hope that this paper will be of some help to the developers of
other formal libraries. In particular, our recommendation in this chaotic situation
is to centralise the copyright ownership with trusted user associations, so that
the situation can be gradually improved by these bodies.

Although the MML has been licensed in a free way, the programs that operate
on these texts remain closed-source. Ideally, both the MML and these programs
would be free/libre. The license problem here is simpler than the problem of
licensing the MML, since we are dealing simply with programs. The process
may end up being gradual, starting with the Mizar parser. It is essential that
such a problem be tackled; the lack of any kind of open license for the whole
of Mizar (its programs and its library), from a political standpoint of scientific
research being done for the general good of humanity and available to all, can
push away some potential contributors toward other proof assistants and other
libraries18.

For reasons discussed in Section 2.4, we avoided the problem of patents. This
is largely because we are not aware now of how patents could play a role in
formal mathematics. In the future, though, we may find that the subject needs
to be revisited.
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Abstract. Mathematical knowledge is a central component in science,
engineering, and technology (documentation). Most of it is represented
informally, and – in contrast to published research mathematics – subject
to continual change. Unfortunately, machine support for change man-
agement has either been very coarse grained and thus barely useful, or
restricted to formal languages, where automation is possible. In this pa-
per, we report on an effort to extend change management to collections
of semi-formal documents which flexibly intermix mathematical formu-
las and natural language and to integrate it into a semantic publishing
system for mathematical knowledge. We validate the long-standing as-
sumption that the semantic annotations in these flexiformal documents
that drive the machine-supported interaction with documents can sup-
port semantic impact analyses at the same time. But in contrast to the
fully formal setting, where adaptations of impacted documents can be
automated to some degree, the flexiformal setting requires much more
user interaction and thus a much tighter integration into document man-
agement workflows.

1 Introduction

As the Web 2.0 age is dawning for mathematics, more and more mathematical
development is moving online; not just publications. An example of this is the
PolyMath site, where upon the recent announcement of a proof of P = NP , the
mathematics community has organized itself in a WiKi and found a significant
gap in the proof within two weeks; see [4]. The PlanetMath community which
has collaborated on 8500 graduate-level encyclopedia articles over 10 years [20]
is another, and also the Mizar community, who have formalized more than 60000
definitions, assertions, and proofs and have machine-checked them over the last
40 years. Finally, the Cornell EPrint Archive [21] has amassed over 660 000 sci-
entific articles over 20 years. The hallmark of all these efforts is that they are
massive collaborations by many individuals, distributed widely both geographi-
cally and temporally. The first three examples have another characteristic that
is becoming more and more important: the knowledge items are interdependent
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and mutable (subject to change). The sheer size of the knowledge collections
together with the fact that many authors do not even know (of) each other
induces consistency and coherence problems. In this situation, the need to inte-
grate the mechanisms for “change management” (CM) into the digital libraries
seems obvious. Typically, the documents in the libraries are flexiformal (flexibly
formal) because they contain semantic annotations at different levels of formal-
ity. A good example is an informal, but rigorous statement from a mathematical
textbook, which intermixes mathematical formulas (formal representations of
mathematical objects) with natural language (informal representations of their
relations). Change management makes use of the fact that MKM formats ex-
plicitly represent the relations between objects to compute related objects and
predict the way changes affect them; see [1, 8, 18] for recent progress in this field.

This paper reports on the experiment of integrating CM into the Planetary
system, a new flexiformal Digital library system, which we will present in the
next section. In Section 3, we describe the information present in the sources
by way of an extended example and show how these can be used for change
management. In Section 4, we present the DocTIP system and the CM procedure
it implements, so that we can show the integration from an architectural point
of view in Section 5. Section 6 revisits the example from Section 3 to show how
the information travels through the systems involved. In Section 7, we discuss
related work and Section 8 concludes the paper.

2 The Planetary System

The Planetary system (see [3, 14, 19] for an introduction) is a Web 3.0 sys-
tem1 for semantically annotated document collections in Science, Technology,
Engineering and Mathematics (STEM). The system is based on semantically
annotated documents together with semantic background ontologies (which we
call the content commons). This information can then be used by user-visible,
semantic services like program (fragment) execution, computation, visualization,
navigation, information aggregation and information retrieval. Finally a docu-
ment player application can embed these services to make documents executable.
We call this framework the Active Documents Paradigm (ADP), since doc-
uments can also actively adapt to user preferences and environment rather than
only executing services upon user request.

In our approach, documents published in the Planetary system become flex-
ible, adaptive interfaces to a content commons of domain objects, context, and
their relations. The system achieves this by providing embedded user assistance
through an extended set of user interactions with documents based on an ex-
tensible set of client- and server side services that draw on explicit (and thus
machine-understandable) representations in the content commons (see Fig. 1).

The Planetary system has been used on the course notes of a two-semester
introductory course in Computer Science [6] held at Jacobs University by one
1 We adopt the nomenclature where Web 3.0 stands for extension of the Social Web

with Semantic Web/Linked Open Data technologies.
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Fig. 1. Course Notes in the Planetary system

of the authors in the last eight years. While the basic concept of the course
stayed the same over the years, whole topics have been added/moved/deleted,
examples and results have been added, and formulations have been sharpened.
All of these changes had consequences that were sometimes difficult to foresee,
and sometimes led to problematic teaching situations (when the consequences
had not been anticipated). The course notes currently comprise 300 pages with
over 500 slides organized in over 800 files. This is at the limits of what is manually
manageable for the instructor who has authored all of the material; it would be
impossible for a new instructor to take over the material (and change it to her
liking). It becomes increasingly difficult to manage the over 1000 homework,
quiz, and exam problems that have largely been provided by the more than 30
teaching assistants that have accompanied the course over the years.

3 A Planetary Workflow

To get a better intuition for the problems involved in managing changes in
flexiformal document collections, consider the situation in Fig. 2 and Fig. 3,
which we will use as a running example. The lower part of Fig. 2 shows two
well-known definitions from the theory of binary trees and Fig. 3 a lemma that
depends on them, as they are referenced in its proof. Clearly, if one of the
definitions is changed, then we have to revisit the proof and possibly adapt it or
even the lemma to the changed situation.
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\begin{module}[id=binary−trees]
\importmodule[\KWARCslides{graphs−trees/en/trees}]{trees}
\importmodule[\KWARCslides{graphs−trees/en/graph−depth}]{graph−depth}
...
\begin{definition}[id=binary−tree.def,title=Binary Tree]

A \definiendum[binary−tree]{binary tree} is a \termref[cd=trees,name=tree]{tree}
where all \termref[cd=graphs−intro,name=node]{nodes}
have \termref[cd=graphs−intro,name=out−degree]{out−degree} 2 or 0.

\end{definition}
...
\begin{definition}[id=bbt.def]

A \termref[name=binary−tree]{binary tree} $G$ is called
\definiendum[bbt]{balanced binary tree} iff the
\termref[cd=graph−depth,name=vertex−depth]{depth} of all
\termref[cd=trees,name=leaf]{leaves} differs by at most by 1, and
\definiendum[fullbbt]{fully balanced}, iff the
\termref[cd=graph−depth,name=vertex−depth]{depth} difference is 0.

\end{definition}
...

\end{module}

Fig. 2. Two definitions and their STEX sources

For humans, it is simple to detect the underlying dependency in principle,
but there is a strong possibility that it will be overlooked in practice; espe-
cially, if the conceptional distance between a proof and the definitions is large
(e.g., because it involves many intervening definitions and assertions). There-
fore, authors need system support to keep large mutable knowledge collections
in a consistent state. In the situation of our running example, we can make use
of the fact that the two text fragments were originally written as semantically
annotated STEX course notes [6] for Planetary. As such, they contain a lot of
semantic annotations that are originally added to drive services like definition
lookup, notation adaptation, and just-in-time prerequisites delivery, which also
induce a good approximation of the semantic dependency relation that is needed
for analysing the impact of changes on definitions and proofs in this and other
knowledge items.

Let us consider these annotations in the STEX sources in Fig. 2 and Fig. 3. In
the first proof step (the STEX spfstep environment) in Fig. 3, the “definition of
a binary tree” is referenced, and this reference is marked up by a URI reference
encoded in the optional argument of the premise macro inside the justification
element. In the second proof step, the property of being “balanced” is exploited.
The fact that the word “balanced” is used as a technical term is marked up with
the \termref macro, whose optional first argument points to the \definiendum
with name bbt in the module binary−trees in Fig. 2.
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\begin{module}[id=bbt−size]
\importmodule[binary−trees]{binary−trees}
. . .

Lemma 3.1.9 Let G = 〈V, E〉 be a balanced binary tree of depth n > i, then

the set Vi := {v ∈ V : dp(v = i)} of vertexes at depth i has cardinality 2i.
Proof: by induction over the depth i

\begin{spfstep}
By the \begin{justification}[method=byDef]
\premise[uri=binary−trees,ref=binary−tree.def]{definition of a binary tree}

\end{justification}, each $\inset{v}{V {i−1}}$ is a leaf or has
two children that are at depth $i$.

\end{spfstep}
\begin{spfstep}

As $G$ is \termref[cd=binary−trees,name=bbt]{balanced}
and $\gdepth{G}=n>i$, $V {i−1}$ cannot contain leaves.

\end{spfstep}
...

\end{sproof}
\end{module}

Fig. 3. A lemma and proof that depend on the definitions in Fig. 2

Intuitively, the relations encoded in these annotations induce the dependency
that signals a possible semantic impact of a change to one of the definitions
in Fig. 2. There are at least three possible ways an author can benefit from
an automated impact analysis based on the semantic annotations in the STEX
sources.

C1 An author who wants to change something in one (or both) of the definitions
in Fig. 2 can request an estimation of the total impacts costs of a change.

C2 An author who actually changes (one of) the definitions can request an im-
mediate impact analysis, which gives a list of potentially affected knowledge
items. This list should be cross-linked to the (presentations of) the affected
items, so to simplify navigation. For every item the author will have to de-
cide whether it is really affected and how to adapt it (possibly creating new
impacts in the process).

C3 Authors or maintainers of a given knowledge item can be notified of an
impact to “their” knowledge item upon changes to elements it depends on.

Note that C1 and C2 together constitute what one could call a “push workflow
of change management” whereas C3 corresponds to a “pull workflow”. The
abundance of semantic references — 12 in this little example — already shows
that machine support is indispensable in larger collections. Note furthermore
that both of these workflows should be completely independent of the “commit
policies” of the knowledge collection. The change management subsystem should
support committing partially worked off impact lists — e.g., for the weekend or
to pass them on to other authors.
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4 DocTIP

The DocTIP system [5] provides a generic framework that combines sophisti-
cated structuring mechanisms for heterogenous formal and semi-formal docu-
ments with an appropriate change management to maintain structured relations
between different documents. It is based on abstract document models and ab-
stract document ontologies that need to be instantiated for specific document
kinds, such as OMDoc. The heart of the system is the document broker, which
maintains all documents and provides a generic update and patch-based synchro-
nisation protocol between the maintained documents and the connected compo-
nents working on these documents. Components can be authoring (and display)
systems, or analysis and reasoning systems offering automatic background pro-
cessing support, or simply a connection to a repository allowing to commit and
update the documents.

If the document broker obtains a change for some of its documents, the
changes are propagated to all connected components for that document. A con-
figurable impact analysis policy allows the system designer to define if impact
analysis is required after obtaining a change from some component. To perform
the impact analysis the document broker uses the GMoC2 tool ([1] see below)
to compute the effect of the change on all documents maintained by the docu-
ment broker. The GMoC tool returns that information as impact annotations to
each individual document, which are subsequently distributed to all connected
components by the document broker.

4.1 Change Impact Analysis

The key idea to design change impact analysis (CIA) for informal documents
is the explicit semantics method which represents both the syntax parts (i.e.,
the documents) and the intentional semantics contained in the documents in
a single, typed hyper-graph (see [1] for details). Document type specific graph
rewriting rules are used to extract the intentional semantics of documents and
the extracted semantic entities are linked to their syntax source, i.e. their origin.
That way, any change in the document results in semantic objects for which
origins have been deleted or changed, as well as syntax objects for which there
does not exist corresponding semantic entities yet. The semantic objects are
marked with this status information (“deleted”, “added”, “preserved”). This
information is then exploited by analysis rules to compute the ripple effects of
the changes on the semantics entities, which in a final stage are used to annotate
the syntax parts, that is the documents. The GMoC tool is built on top of the
graph rewriting tool GrGen.NET [10] and is parameterized over document type
specific document meta-models and graph rewriting rule systems to extract the
semantics and to analyze the impact of changes.

Document Meta-Models. To provide change impact analysis for Planetary, we
developed a document meta model and graph impact analysis rules for OMDoc.
2 GMoC: Generic Management of Change.
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The document meta model consists of a lightweight ontology of the relevant
semantic concepts in OMDoc documents, — e.g., theories, symbol declarations
and their occurrences, axioms, definitions, assertions, and their use in proofs and
proof steps — together with semantic relations between concepts — e.g., import
relations between theories, symbols and their definitions, assertions and their
proofs. Note that the OMDoc meta-model abstracts over the OMDoc surface
syntax. For instance, a definition can either be a definition-element

<symbol name=’’unit’’>
<definition xml:id=”mon−d1” for=”unit” type=”informal”>
<CMP>

A structure (M,*,e) , in which (M,*) is a semi−group with unit e is called monoid.

</CMP>
</definition>

where the symbol defined by the definition is given by the for attribute of the def-
inition (boxes abbreviate OpenMath content here). The symbol itself is declared
in a different element. This kind of definition typically occurs when OMDoc
documents are created manually or obtained from formal representations. Alter-
natively, a definition can come as a “typed” omtext such as

<omtext type=”definition” xml:id=”binary−tree.def” about=”#binary−tree.def”>
<CMP xml:id=”binary−tree.def.CMP1” about=”#binary−tree.def.CMP1”>
<p xml:id=”binary−tree.def.CMP1.p1” about=”#binary−tree.def.CMP1.p1”>
A <term cd=”balanced−binary−trees” name=”binary−tree” role=”definiendum”>
binary tree</term> is a <term cd=”trees” name=”tree”
xml:id=”binary−tree.def.CMP2.p1.term2”
about=”#binary−tree.def.CMP2.p1.term2”>tree</term> where all . . .

</p>
</CMP>

</omtext>

which typically happens, for instance, when generating the OMDoc files from
an STEX source file. Note that in this case the defined symbol is declared by
the term element with role=”definiendum”. The fact that this definition defines
that symbol comes from the structural nesting of the term inside the definition.
Similar examples are theories which can either be imported into each other by
using the explicit imports elements or simply by nesting theory-elements.

Conceptually, it does and should not matter in which form symbols and def-
initions are given, and a mixture of both forms is also desirable to support the
linking of mathematical content in OMDoc from different authoring sources.
The document meta model declares these pure concepts and relations like an
ontology. The intentional semantics of a given OMDoc document is a set of in-
stances of these concepts and relations. The used graph rewriting tool supports
hypergraphs with typed nodes and edges. The types are simple types with sub-
typing relations. This is exploited to subdivide the whole graph in a syntax and
a semantic subgraph by introducing top-level types for either part. The OMDoc
syntax elements are declared as subtypes of the syntax type and the OMDoc
document being an XML tree can then naturally be represented as (syntax)
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Fig. 4. Two Abstraction Rules and one Propagation Rule written top-down; we use
rectangles for syntax nodes, rounded rectangles for semantic nodes and ellipses for
impact nodes.

nodes and relations. Analogously, the semantic concepts and relations from the
OMDoc document meta-model are simply declared as subtypes of the semantic
types.

Abstraction Phase of CIA. The abstraction phase of the impact analysis for
OMDoc documents consists of extracting the intentional semantics from the
given OMDoc documents. This is realized by a set of graph rewriting rules which
analyse the OMDoc document to extract the semantic concepts and relations,
and mark them as being added. Examples of such rules are the two left-most rules
in Fig. 4 to extract definitions from “typed” omtext: The graph rewriting rules
are named (e.g., FindNewDefinition) and have a left-hand side (the box labelled
by L) indicating the pattern to match in a subgraph and a right-hand side (the
box labelled R) by what the instantiated subgraph pattern is replaced. Identical
graph nodes and edges are additionally labelled by names, such as x, d, p, od, . . ..
Further conditions that must be satisfied to enable the graph rewriting step are
positive application conditions (PAC), which must hold on the graph before rule
application and negative application conditions (the dashed nodes and edges in
the left-hand sides L or in extra NAC boxes—not used here) which must be false
on the graph before rule application. These conditions can be graph patterns as
well as boolean tests on attribute values. The application of the graph rewriting
rule replaces the subgraph in L with the subgraph in R and additional adaptations
can be triggered in the Apply part, such as adapting the value of attributes but
also invoking further graph rewriting rules using their name (e.g., detectCMP).

The rules for the abstraction phase always come in two variants: one variant
is for new syntactic omtexts, i.e., there does not exist yet a semantic object in
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<impacts>
<impact for=”binary−tree.def” name=”Definition changed”

select=”〈xpath-to-definition-binary-tree〉”/>
<impact for=”balanced−binary−tree.def” name=”Definition Binary Tree changed”

select=”〈path-to-definition-balanced-binary-tree〉”/>
<impact for=”size−lemma−pf.derive2.method2.proof2.derive4.CMP1.p1.term2”

name=”Definition Binary Tree changed”
select=”〈path-to-inproof-reference-to-balanced-binary-tree〉”/>

</impacts>

Fig. 5. Example Impact Annotation File

the semantic graph. For these, new semantic instances are introduced, marked
as added and the origin of the semantic concept is represented explicitly by an
Origin edge from the semantic node to the syntax node. The second variant is
for already known syntactic omtexts, i.e., there exist already a semantic object
in the semantic graph from a previous version of the document. For these, the
semantic instances are maintained and marked as preserved. Both rules invoke
further rules to analyse the “body” of a definition in order to find out whether the
definition has changed (e.g., detectCMP). All semantic objects that are neither
added nor preserved are marked as deleted by a generic rule operating over all
semantic nodes and edges. Overall we have designed 91 rules for the abstraction
phase that synchronizes OMDoc documents with their intentional semantics.

Propagation Phase of CIA. The second, so-called propagation phase, analyses
the semantic graph and exploits the information about semantics objects and
relations being marked as added, deleted or preserved to propagate the impact of
changes through the semantic graph. Impacts are a third type of nodes, different
from the syntax and semantic nodes. They contain a human-oriented description
of the impact and can only be connected to semantic nodes. For instance, we
have one marking a definition for some symbol, say f , as being changed, when its
body has changed. Furthermore, we have rules that propagate that information
further to definitions that build upon f or proofs using that definition (see right-
most rule of Fig. 4 for an example). Overall, we have 15 rules to analyse and
propagate the impacts.

Projection Phase of CIA. Finally, we have the projection phase which essentially
consists of one generic rule that projects the impact information of the semantic
nodes backwards along the origin links to the syntactic node and creates a corre-
sponding impact annotation for the syntactic part of the documents. The impact
annotations are output in a specific XML format, where an impact annotation
refers to the xml:id of the OMDoc content element in its for attribute and the
name attribute contains the human-oriented description of the impact. For our
running example we obtain the impact shown in Fig. 5.

4.2 Change Impact Analysis Workflow

The workflow inside DocTIP for the change impact analysis is to initially build
up a semantics graph for all documents that shall be watched by DocTIP. For
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our running example, the relevant parts of the initial graph are given in Fig. 6(a).
Upon a change in some document, a semantic difference analysis between the
old and the new OMDoc documents is performed, which results in a minimal
change description on an appropriate level of granularity. This is also provided
by the GMoC tool, which includes a generic semantic tree difference analysis al-
gorithm parameterized over document-type specific similarity models. The com-
puted changes are applied to the syntactic document graph. Subsequently, the
impact analysis rule systems of the three phases abstraction, propagation, and
projection are applied exhaustively in that order3. For our running example, we
obtain a graph of the form in Fig. 6(b). As a result of the impact analysis, the
DocTIP system returns the computed impacts in the XML format described be-
fore for all documents it is maintaining (not only for the document that caused
the change).

5 System Architecture

In order to add change management support for the workflows, we consider the
architecture of the Planetary system (see Fig. 7). The user interacts with the
Planetary system via a web browser, which presents the mathematical knowl-
edge items based on their XHTML+MathML presentation in a WiKi-like form.
3 Termination must be ensured by the designer of the rules systems. However, the Gr-

Gen.NET-framework comes with a strategy language, that allows for a fine-grained
control over the rule executions, which helps a lot for designing the strategies of the
different phases. It is also used to sequentialize the three phases.
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The XHTML+MathML documents are rendered from content oriented mathe-
matical knowledge items in OMDoc format. Along with the XHTML+MathML
document versions, the Planetary system maintains the original STEX docu-
ment snippets, which the author can edit in the web browser. The OMDoc doc-
uments are maintained in the TNTBase repository together with their original
STEX source snippets. Any change in the OMDoc documents in TNTBase results
in an update of the corresponding knowledge items in the Planetary system af-
ter rendering the OMDoc in XHTML+MathML. Upon edit of the STEX snippets
in the Planetary system, a new OMDoc is created from the STEX sources [7]
and pushed into TNTBase, which returns the XHTML+MathML presentation.

The TNTBase [24] is a Subversion based repository for normal files as well as
XML files. It behaves likes a normal Subversion repository, but offers special sup-
port for XML documents by storing the revisions in a XML database. By this it
allows efficient access via XQueries to XML objects. TNTBase allows the defini-
tion of document specific presentation routines, such as the XHTML+MathML
rendering of OMDoc documents. For its role as repository for the Planetary
system, it is important to note that the STEX snippets and the corresponding
OMDoc documents are stored together in the same directory in TNTBase, such
as, for instance,

– the file balanced−binary−trees.tex that contains the source of Fig. 2, and
– balanced−binary−trees.omdoc that contains the OMDoc transformation.

To add change management support, we connected DocTIP to TNTBase. Doc-
TIP returns impact information in form of annotations to the OMDoc doc-
uments, which are stored in the TNTBase as an extra file together with the
OMDoc and the STEX files, but with the extension “.imp”, such as

– balanced−binary−trees.imp (in the XML format shown in Fig. 5).

Like the change in the OMDoc file, any change in the impacts file is forwarded
as is by TNTBase to the Planetary system. The rendering of OMDoc in
XHTML+MathML preserves the xml:id. Therefore, the Planetary assigns the
impacts to the XHTML+MathML snippets using the for-attributes and presents
on the WiKi-page.

6 Example Revisited

To see how the parts of the system interact, let us revisit the example from
Section 3. Say the user found a typo in the binary trees module in Fig. 2.
She opens the web editor, corrects it and submits the changed module (see
Fig. 8; note that the user requested a change impact analysis). The system
communicates the changes to DocTIP, which determines the list of impacts
based on the semantic relations. DocTIP in turn communicates the impacts to
TNTBase, which stores them for further reference and passes them on to the
Planetary system. Moreover, it notifies the user about impacts by updating
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Fig. 8. Committing Changes in Planetary

the superscript number on the “Manage impacts” field in the top menu bar (see
Fig. 9). If the user decides to act on the impacts, she gets the impact resolution
dialog in Fig. 9, which has a tab for every module that is impacted by the change.
Note that the user gets the module in its presented form as this is the most
readable view, and, furthermore, we can use the identifiers in the impacts (see
Fig. 5) to highlight the affected objects. For each of them, the user can then either
discard the impact information if it was a spurious impact (via the checkmark
icon in the “Accept Change” box) or edit the source of the impacted object (via
the “edit” icon in the box) and mark it as resolved afterwards. Alternatively, she
can use the action links above to make changes at the level of the whole module.
Note that a conventional conflict resolution dialog via three-way merge as we
know it from revision control systems does not apply to this situation, since
we only have to deal with “long-range conflicts”, i.e., impacts between different
objects, not conflicting changes to a single object. When the user quits the
impact resolution dialog, all discarded and resolved impacts are communicated
to TNTBase together with the changes. TNTBase updates the set of tabled
impacts and communicates the changes to DocTIP for a further round of CIA.
Note that the storage of tabled impacts in TNTBase (the additional “.imp” files)
makes the change management workflow more flexible over time. The need for



176 S. Autexier et al.

Fig. 9. The Impact Resolution Dialog

this was unanticipated before the integration and triggered a re-design of the
system functionality.

7 Related Work

There exists several methods for software development that estimate the scope
and complexity of a change of a piece of software with respect to other modules
and documentation, known as software change impact analysis. The methods
are usually based on modeling data, control, and component dependency rela-
tionships within the set of source code. Such relationships can be automatically
extracted using well-known techniques such as data-flow analysis [23], data de-
pendency analysis [12], control flow analysis [16] , program slicing [15], cross
referencing and browsing [2], and logic-based defects detection and reverse engi-
neering algorithms [9]. From an abstract point of view, we have a similar set-up
as we extract and collect relevant information and their dependencies in the
semantical extension of the document. For example, the process of extracting
dependencies between definitions, axioms, and theorems and their uses in proofs
can be seen to be similar to a data-flow or dependency analysis for software.
However, on the concrete level, our approach differs because the flexiformal doc-
uments we deal with do not have a formal semantics as software artefacts. Indeed,
we cannot directly interpret the textual parts of STEX documents, but have to
rely on the STEX markup manually provided by the author. Thus, the impact
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analysis can always only be as accurate as the manual annotations are. Further-
more, not having a formal semantics at hand, we cannot automatically check if
a certain change really has an impact on other parts. In order to be “complete”,
we have to follow a possibilistic approach to propagate impacts and thus may get
false positives, i.e., spurious impacts. Since impact information for some parts
may trigger further impact propagations (due to the possibilistic approach), this
may result in many spurious impacts in principle. For this a dependency man-
agement on impacts nodes themselves can be used (by adding dependency links
between impacts in the rules) in order to propagate the deletion of spurious
impact information by the user.

Requirement tracing [11] is the process of recording individual requirements,
linking them to system elements, such as source code, and tracing them over dif-
ferent levels of refinement. Several tools have been developed to support require-
ment tracing, such as the Doors system [17]. Within our setting, the change of
an object, e.g., a definition, gives rise to an impact, such as to revise the proof of
a theorem. Similar to requirements, these impacts are linked to concrete objects
and may depend on each other. Also similar is that requirements are formulated
in natural language and the requirements tracing system has no access to the
semantics, hence also has to follow a possibilistic approach. Of course, the type
of relationships between requirements are tailored to that domain in requirement
tracing as they are in our case. The main difference is that with our approach the
relationships are not built into the tool, but can be defined externally in sepa-
rate rule files. This allows the addition of new relationships, types of impacts and
propagation rules, for instance in order to accommodate the various extensions
of OMDoc like for exercises, but also for didactic knowledge. This will enable
to add change impact analysis for E-learning systems like ActiveMath [22], that
are based on OMDoc with their own didactic extensions and that lack change
impact analysis support for the authors of course materials.

8 Conclusion

We have presented an integration of a management of change functionality into
an active document management system. The combined system uses the se-
mantic relations that were originally added to make documents interactive to
propagate impacts of changes and ultimately help authors keep the collections
of source modules consistent. The approach is based on impact analysis via
graph rewriting rule systems for a core of the OMDoc format. CIA support for
extensions of that core OMDoc can easily be added on demand and, due to the
generic nature of impact descriptions and their handling in Planetary, the
presentation module does not need to be adapted.

One limitation of the current integration that we want to alleviate in the near
future is that our integration currently assumes a single-user mode of operation,
as we have no means yet to consistently merge the three kinds of documents
(STEX, OMDoc and impacts file). Moreover, multiple users working on different
branches that are partly merged on demand are also not supported yet. One of
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the main conceptual problems to be solved here is how to deal with propagating
changes by “other authors”. For that we plan to build in the notion of versioned
links proposed in [13]. Finally, the current policy to eagerly trigger the change
impact analysis after each edit may be undesirable in situations where the author
wants to perform several small edits, which currently may result in many spurious
impacts. The impact analysis policy is pre-configured in DocTIP and we could
easily enable the author to change it via the Planetary system. However, it
requires a mechanism to enforce impact analysis eventually, in order to prevent
to just turn it off. For this we need to gather more experience what would be a
suitable policy to optimally fit into the workflows.

Acknowledgements. We would like to thank the anonymous reviewers for their
feedback and Andrea Kohlhase who semantically annotated manually an ex-
tended document corpus for discussions about the presented workflows and her
comments on earlier versions of this paper.
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Abstract. The Naproche system is a system for linguistically analysing
and proof-checking mathematical texts written in a controlled natural
language. The aim is to have an input language that is as close as pos-
sible to the language that mathematicians actually use when writing
textbooks or papers.

Mathematical texts consist of a combination of natural language and
symbolic mathematics, with symbolic mathematics obeying its own syn-
tactic rules. We discuss the difficulties that a program for parsing and
disambiguating symbolic mathematics must face and present how these
difficulties have been tackled in the Naproche system. One of these dif-
ficulties is the fact that information provided in the preceding context –
including information provided in natural language – can influence the
way a symbolic expression has to be disambiguated.

Keywords: Symbolic mathematics, mathematical formulae, Naproche,
formula parsing.

1 Introduction

In recent years, formal mathematics has seen remarkable progress. Proofs of
significant mathematical theorems like the Jordan Curve Theorem or the Prime
Number Theorem have been formalized and formally checked in powerful systems
like HOL light [10][1]. Some large scale formalization projects related to current
research mathematics are under way [11].

This creates a demand for presenting developments in formal mathematics
within the ordinary language used by mathematics. De Bruijn [3], one of the
pioneers of formal mathematics, formulated :

[...] the Automath project tries to bring communication with ma-
chines in harmony with the usual communication between people.

He describes his approach as follows:

So I got to studying the structure of mathematics by starting from
the existing mathematical language and from the need to make such lan-
guage understandable for machines. I think we might call that approach
“natural”. “Natural deduction” is a part of it. [...] the word “natural”
[...] refers to the reasoning habits of many centuries, [...]

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 180–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.naproche.net
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The Naproche project1 (NAtural language PROof CHEcking) tries to take up
some of the challenges of natural formal mathematics. Due to the tremendous
difficulties in in the deep semantic analysis of natural language and common
(mathematical) arguments, known from linguistics and artificial intelligence, at
the moment, success can only be limited: the general problem appears to be “AI-
hard”. Naproche therefore restricts itself to a kind of existence proof: to show
that one can formulate substantial mathematical texts, so that they are accept-
able texts for ordinary mathematicians, but simultaneously computer readable
and checkable for linguistic and mathematical correctness. This involves sev-
eral subtasks, in particular the development of a controlled natural language for
mathematics with corresponding parsing mechanisms, parsing of (LATEX-style)
mathematical formulae, translations into first-order formats, and the connec-
tion with strong automatic provers to supply missing “trivial” proof elements.
Currently we are in the process of reformulating parts of E. Landau’s Grundla-
gen der Analysis [16] in the Naproche controlled language and simultaneously
developing the Naproche formal mathematics system.

In this paper we address the problem of parsing mathematical formulae em-
bedded in some mathematical text. Despite the widespread assumption that
mathematical formulae are exact, they are often very ambiguous in a way that
(standard) typing does not sufficiently resolve. We study situations in which fur-
ther information, mathematical and linguistic, from the ambient text has to be
taken into account.

We demonstrate with a number of representative examples, that fairly com-
plex formulae, written in “simple LATEX”, can be correctly parsed, and we expect
to be able to parse nearly all formulae that will be coming up in the formaliza-
tion of Landau’s Grundlagen. Unfortunately, a further evaluation of our methods
appears to be problematic at this moment. Due to the many styles of writing
mathematics and coding it in LATEX we cannot hope to be able to parse arbi-
trary formulae from large repositories of mathematical material. Like with the
controlled input language we are dependent on adequate reformulations, where
adequacy has to be judged by experts in the subject. Note that reformulations
and reformalizations are ubiquitous in formal mathematics anyway, to get proofs
to work. To determine “degrees of naturality” is notoriously problematic, as is
well-known from experimental linguistics, and has to be left to the reader’s ap-
preciation.

After presenting the Naproche System in section 2, we exhibit the flexibility of
symbolic mathematics in section 3, explaining why this flexibility makes symbolic
mathematics so difficult to parse and disambiguate. In section 4, we proceed to
discuss possible approaches to tackling these difficulties. Our solution to these
problems is presented in sections 5 to 8, which are followed by a section on
related work and a conclusion.

1 Naproche is a joint initiative of Peter Koepke (Mathematics, University of
Bonn) and Bernhard Schröder (Linguistics, University of Duisburg-Essen). The
Naproche system is technically supported by Gregor Büchel from the University
of Applied Sciences in Cologne.
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2 The Naproche System

A central goal of Naproche is to develop and implement a controlled natural
language (CNL) for mathematical texts which can be transformed automati-
cally into equivalent formulae of first-order logic using methods of computational
linguistics [7]. We have developed a prototypical Naproche system, which can au-
tomatically check texts written in the Naproche CNL for logical correctness [6].
We test this system by reformulating parts of mathematical textbooks and the
basics of mathematical theories in the Naproche CNL and having the resulting
texts automatically checked.

The Naproche system transforms a given input text into a logical represen-
tation of its content, called a Proof Representation Structure (PRS). The PRS
is checked for logical correctness with the aid of automated theorem provers.
More precisely, the PRS creation and checking process is performed sentence
by sentence: For every sentence in the text, the system first parses the sentence
and updates the PRS accordingly; afterwards, it checks the logical correctness
of the additions that have been made to the PRS. The checking algorithm keeps
a list of first order formulae it considers to be true, called premises, which gets
continuously updated during the checking process, and which represents the
mathematical knowledge that a reader of the text has collected up to a given
point in the text.

3 Symbolic Mathematics

One of the conspicuous features of the language of mathematics is the way it
integrates mathematical symbols into natural language material. The mathemat-
ical symbols are combined to mathematical expressions, which are often referred
to as mathematical formulae or mathematical terms depending on whether they
express propositions or whether they refer to a mathematical object. Already at
first sight, a whole variety of syntactic rules are encountered for forming com-
plex terms and formulae out of simpler ones; a basic classification of these was
provided by Ranta [18]:

– There are infix operators that are used to combine two terms to one complex
term, e.g. the + symbol in m + n or 1

x + x
1+x .

– There are suffix operators that are added after a term to form another term,
e.g. the ! symbol in n!.

– There are prefix operators that are added in front of a term to form another
term, e.g. sin in sin x.

– There are infix relation symbols used to construct a formula out of two terms,
e.g. the < symbol in x < 2.

As noted by Ganesalingam [9], “this simple classification is adequate for the
fragment Ranta is considering, but does not come close to capturing the breadth
of symbolic material in mathematics as a whole.” It does not include notations
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like [K : k] for the degree of a field extension, it does not allow infix operators
to have an internal structure, like the ∗G in a ∗G b for denoting multiplication in
a group G, nor does it account for the common way of expressing multiplication
by concatenation, as in “a(b + c)”.

Another kind of prefix operator not mentioned by Ranta is the one that re-
quires its argument(s) to be bracketed, e.g. f in f(x). (Of course, the argument
of a prefix operator like sin might also be bracketed, but generally this is done
only if the argument is complex and the brackets are needed for making sure the
term is disambiguated correctly.) This is even the standard syntax for applying
functions to their arguments, in the sense that a newly defined function would
be used in this way unless its definition already specifies that it should be used
in another way.

The expression a(x + y) can be understood in two completely different ways,
depending on what kind of meaning is given to a: If a is a function symbol and
x+y denotes a legitimate argument for it, then a(x+y) would be understood to
be the result of applying the function a to x+ y. If on the other hand a, x and y
are – for example – all real numbers, then a(x + y) would be understood as the
product of a and x+y. Now whether a is a function or a real number should have
been specified (whether explicitly or implicitly) in the preceding text. This is why
we say that the disambiguation of symbolic expressions requires information from
the preceding text, and this information might have been provided in natural
language rather than in a symbolic way.

As one can already see from these sketches of symbolic mathematics, the task
of parsing and disambiguating symbolic expressions has a lot of aspects.

One of the issues that has to be surmounted in order to treat mathemati-
cal symbolism directly in a computer program is its two-dimensionality. Math-
ematicians extensively use superscripts and subscripts and put terms above
other terms as in the fraction notation. Naproche has already for some time
adopted LATEX for its input, so that in this paper we restrict ourselves to parsing
and disambiguating the LATEX code that is used for generating mathematical
formulae2. The reversion of a pictorial symbolic input into a LATEX input or an-
other linearisation of it is certainly an interesting undertaking, but outside the
scope of this paper.

In order to cope efficiently with the diversity of possible LATEX codes for a
given symbolic output – e.g. a^b and a^{b} both producing ab – we normalise
the LATEX input before the actual parsing process, in this case to a^{b}. For the
rest of this paper, we use this normalised LATEX code whenever it is necessary
for the explanation; when the LATEX code is not necessary for the explanation,
we use the typographic notation that depicts the mathematical symbols as they
are commonly drawn and printed.

2 We restrict ourselves to standard LATEX, i.e. without any user-defined macros. Ad-
ditionally, we in some respects require the author to use neat LATEX, e.g. to write
the sine function using \sin rather than sin in order to distinguish it from the
concatenation of the three variables s, i and n.
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4 Possible Approaches to Disambiguation

If a(x + y) is to be read as the value of a function a at x + y, then a has
to be a function. This requirement can be understood in two different ways,
which are nevertheless related and combinable: Either it is considered to be a
presupposition of the symbolic expression a(x + y); in this case, the linguistic
theory of presuppositions with all its elaborations might be considered to be
applicable to this case [13][8]. Or it is considered to be a type judgement about
a; in this case, it should be possible to formulate a type system for symbolic
mathematics and reuse existing ideas from type theory to describe and work
with this type system.

In the context of a proof checking system like Naproche, presuppositions have
to be checked for their correctness, i.e. the presuppositions of an expression
have to be checked to logically follow from the premises that are available at
the point where the expression is used [8]. One possible approach that we took
into consideration for disambiguating symbolic expressions was to check their
presuppositions already during the parsing process, so that readings which lead
to wrong presuppositions would already be blocked during the parsing process.
This approach, however, has turned out to be far too inefficient: It would involve
constantly calling automatic theorem provers during the parsing process and
waiting for their output before continuing the parsing.

Another approach is to rely on a type system rather than on presupposition
fulfillment for disambiguating symbolic mathematics. In that case, one needs
a very rich and flexible type system for symbolic mathematics. Such a type
system has been developed ingeniously by Ganesalingam [9]. However, to attain
the richness of the type system required for handling all kinds of ambiguities
that can arise, he was obliged to require the author of a text that is to be parsed
by his system to write sentences whose sole function is to create types that are
needed for certain disambiguations. Given that the goal of Naproche is to stay as
close as possible to the language that mathematicians naturally use, this aspect
of Ganesalingam’s approach made it less attractive for us.

So we decided to take up a combined approach, in which there is a rela-
tively simple type system capable of blocking most unwanted readings during
the parsing process, with the remaining readings being filtered by checking their
presuppositions.

5 A Type System for Symbolic Mathematics

In the type system that Naproche uses for handling symbolic mathematics, there
are two basic types: i for individuals and o for formulae expressing propositions.
Apart from these, there are function types of the form [t1, ...tn] → t, where
t1, . . . , tn are the types of the arguments the function takes and t is the type
of the term that we get when we apply this function to legitimate arguments.
So unlike in the Simple Theory of Types (STT) [5], we have an inherent way
of handling multi-argument functions. In STT, multi-argument functions must
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be simulated by functions whose codomain type is again a function type, e.g. +
would be considered a function from natural numbers to functions from natural
numbers to natural numbers. We, however, want to use types to describe how
mathematical formulae are structured in actual mathematical texts, and for this
purpose it is better to have multi-argument functions inherently in the type
system.

Note that formulae are also considered terms (namely terms of type o), and
that the logical connectors are considered functions of type [o, o] → o or [o] → o.
Even quantifiers are considered to be functions, namely two-place functions
whose first argument has to be a variable and whose second argument is a term
of type o that may depend on the variable. We formalise this by writing the type
of quantifiers as [var( , X), X − o] → o], where var( , X) means that the first
argument is a variable X of type (i.e. of any type), and X − o means that the
second argument is a term of type o possibly depending on X3.

5.1 Syntactic Types

As already discussed in section 3, functions can behave in syntactically different
ways. For example, + is generally used as an infix function symbol (“a + b”),
whereas the notation f(x) uses a function symbol f in prefix position with
its argument in brackets. In Naproche, we distinguish six basic ways in which
function symbols behave syntactically, and call these the syntactic types of the
corresponding function symbols:

1. infix : Two-argument function symbol placed between its arguments (e.g. +
in n + m).

2. suffix : One-argument function symbol placed after its argument (e.g. ! in
n!).

3. prefix : One-argument function symbol placed before its argument (e.g. sin
in sin x).

4. classical : Function symbol with one or more arguments preceding its argu-
ments, which are bracketed and separated by commas (e.g. f in f(x) or
f(x, y)).

5. quantifier : Two-place function symbol placed before its two arguments, where
the arguments have to have types of the form var(t1, X) and X − t2, and
where the first argument position may be filled with a variable list rather
than a single variable (e.g. ∀x, y R(x, y)).

6. circumfix : Expression for a function with one or more arguments, which are
embedded into a predefined string of symbols, with at least one symbol at
the beginning, at the end and between any two successive arguments (e.g.
the degree of a field extension, [K : k], considered as a two-place function
depending on K and k). The name of a circumfix function is this predefined
string with [arg] denoting the positions of its arguments. For example, the
name of the field extension function is [[arg]:[arg]].

3 We use Prolog-like notation, i.e. capital letters for variables and for an anonymous
variable, when describing the type system.
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Now consider an example from real analysis, namely the differentiation func-
tion, which is a function from differentiable real functions to real functions,
sending any f to its derivative f ′. When written in this ′-notation, this function
clearly has syntactic type suffix. But when we write f ′(x), we use the complex
function name f ′ as a function with syntactic type classical. Now this does not
seem to depend on the syntactic type of f : Suppose we have defined an exten-
sion of the factorial function ! to the reals (e.g. by x! := Γ (x + 1) using the
Gamma function [12]). If we then apply its derivative !′ to some real x, we would
write !′(x) and not x!′4. So it seems to be inherent in the way the differen-
tiation function symbol ′ is used that the complex function name it produces
is of syntactic type classical. We formalise this by saying that ′ is of syntactic
type [suffix,classical]. This means that its basic syntactic type is suffix, and the
syntactic type of any function name whose head is ′ is classical.

This machinery makes it possible to correctly handle many complicated no-
tations: For example, exponentiation is treated as a function of syntactic type
[circumfix,suffix] and of type [i] => ([i] => i)) (so in this case the notation we
use makes us treat this multiple-argument function in the way such functions are
treated in STT rather than using an inherent multiple-function type), where the
name of the circumfix function is ^{[arg]}. In the case of x^{y}, this function
is first applied to y, yielding ^{y}, which is considered a suffix function, so that
applying it to x yields x^{y}.

In Naproche we distinguish two different kinds of math modes: The first is
used for formulae (like x = y2) and terms that serve as definite noun phrases
(like 2x− 1). The second is used for quantified terms, like the first two symbolic
expressions in “For every x there is some f(x) such that R(x, f(x)).” Terms
of the first kind are parsed by what we call the normal formula grammar, and
terms of the second kind are parsed by what we call the quantterm grammar.

6 Normal Formula Grammar

Below we describe the normal formula grammar semi-formally by first listing
(in a formal DCG-notation with Prolog-like syntax) a list of simplified gram-
mar rules that any term must obey and then describing informally additional
constraints that any term must satisfy in order to be actually parsed by the
grammar. The constituent “term” used in the DCG rules below has an argument
specifying the syntactic type of the term (i.e. a list of basic syntactic types). We
use the variable name ST for a variable ranging over syntactic types.

Simplified normal formula grammar

term(ST) → term([classical|ST]), [’(’], term list, [’)’].
term(ST) → term( ), term([suffix|ST]).

4 Since this is a made-up example, we should add that our intuition as to what notation
would be appropriate here has been confirmed by a number of mathematicians from
the University of Bonn.
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term(ST) → term([prefix|ST]), term( ).
term(ST) → term([quantifier|ST]), variable list, term( ).
term(ST) → term( ), term([infix|ST]), term( ).
term(ST) → circumfix term(ST).
term(ST) → [’(’], term(ST), [’)’].
term(ST) → variable(ST).

term list → term( ), [’,’], term list.
term list → term( ).

variable list → quantified variable, [’,’], variable list.
variable list → quantified variable.
quantified variable → [ ].
variable → [ ].

For every predefined or accessible5 variable V of syntactic type ST, add
a rule of the following form to the grammar:
variable(ST) → V.

For every accessible circumfix function of syntactic type ST and name
S1

1 . . . Sn1
1 [arg]S1

2 . . . Sn2
2 [arg] . . . [arg]S1

m . . . Snm
m , add a rule of the fol-

lowing form to the grammar:
circumfix term(ST) →
[S1

1 ], . . . , [Sn1
1 ], term( ), [S1

2 ], . . . , [Sn2
2 ], term( ), . . . , term( ), [S1

m], . . . , [Snm
m ].

6.1 Operator Priorities

Syntactic disambiguation principles like the precedence of multiplication and
division operators over addition and subtraction operators are encoded into the
grammar using predefined operator priorities. We use the following operator
priorities (in the order of decreasing precedence):

– +, −, → and ↔
– Prefix functions
– Suffix functions
– Other infix functions

Additionally, there is a principle which overrides the above operator priorities,
namely that the operators used to form atomic formulae always have a higher
precedence than the operators used to combine atomic formulae into complex
formulae.

As an example for the functioning of these syntactic disambiguation principles,

5 Given that Naproche’s Proof Representation Structures are a variant of Discourse
Representation Structures [14], “accessible” is to be understood as in Discourse Rep-
resentation Theory. Basically, an accessible variable is a variable that was introduced
in the preceding text that we can refer to by using the same variable name.
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(1) x + yz = sin an! ∧ x = y → z − y + z = 0

is disambiguated as

(2) (((x + (yz)) = sin(a(n!))) ∧ (x = y)) → (((z − y) + z) = 0).

In all cases that we are aware of, these syntactic disambiguation principles lead
to an intuitive reading of the symbolic expression.

6.2 Defaultness of the Syntactic Type Classical

As already alluded in section 3, the syntactic type classical is the default syn-
tactic type for newly introduced functions. This principle is implemented into
the grammar by an additional constraint that in the second to fifth DCG rule
specified above, as well as in the rule “variable → [ ].”, the syntactic type of a
term may not be instantiated to infix, prefix, quantifier, suffix or circumfix. For
example, the requirement of the final term to have “suffix” as syntactic type in
the second rule means that this syntactic type must already be associated with
the term when parsing it and may not be attached to the term afterwards. There
is a limited list of predefined infix function symbol (·, +,−, ∗, ., ◦, /) for which
this constraint does not apply.

In practice, this constraint means that when you are quantifying over a func-
tion, this function may be used with classical syntactic type or, if a preferred
infix function symbol is used, with infix syntactic type, but not with prefix, suf-
fix or quantifier syntactic type. So (3) and (4) are allowed, but (5), (6) and (7)
(with z read as an infix, f as a prefix and g as a suffix function symbol) are not
allowed.

(3) ∃f f(a) = 0

(4) ∃ ∗ x ∗ x = x

(5) ∃z xzx = x

(6) ∃f fa = 0

(7) ∃g ag = 0

The defaultness of the syntactic type classical also explains why we don’t
formalise functions used in this syntactic way as circumfix functions. This would
certainly be possible: A one-argument classical function f could also be con-
sidered a circumfix function with name f([arg]). However, this way we would
not be able to account for the fact that a function that was introduced without
fixing its syntactic type can be used with syntactic type classical.
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6.3 Predefined Variables

It should be noted that we do not make the distinction between variables and
constants that is usually made in the syntax of first-order logic and many other
logical systems. In the semi-formal language of mathematics, there is a con-
tinuum between variable-like and constant-like expressions; this continuum is
captured in Naproche through the use of dynamic quantification inherent in
Discourse Representation Theory [14], so that the bivalent distinction used in
first-order logic is not needed.

However, logical constants are still treated in a special way, namely as “pre-
defined variables”. These are also given a predefined type and syntactic type as
follows:

Predefined variable Type Syntactic type
→, ↔, ∧ and ∨ [o, o] → o infix
¬ [o] → o prefix
∀ and ∃ [var( , X), X − o] → o quantifier
= [T, T ] → o6 infix
= [ , ] → o7 infix

6.4 Kinds of Variables

In the parsing process we distinguish different kinds of variables:

– Predefined variables (logical constants)
– Bound variables
– Variables that were implicitly introduced earlier on in the symbolic expres-

sion and are now reused
– Accessible variables whose antecedent is in the same sentence
– Accessible variables whose antecedent is in a preceding sentence
– Implicitly introduced variables

When trying to parse a variable, we always first try to parse it according to a
variable kind higher up in the above list before trying the kinds lower down in
the list. Once a variable has been parsed in one way, it may no longer be parsed
in such a way as to be of a kind that is mentioned later in the above list than
the kind that it has already been assigned. This means, for example, that if x
is accessible and we parse ∃x x + x = x, then all instances of x in this formula
are bound by the existential quantifier; none of the instances of x refers to the
accessible variable.

6.5 Coverage of the Formula Grammar

The formula grammar can cope with almost all terms that serve as definite noun
phrases and formulae found in mathematical texts. Here is a list of formulae that
can be correctly parsed and disambiguated by it:
6 i.e. the two arguments must be of the same type.
7 i.e. the two arguments may be of distinct types.
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x(y + z) = 0
x = y < z

x ∗G x = x
n∑

i=0

i =
n(n + 1)

2

x0 lim
x→x0

f(x2) = 2f(
xx0

0

2
) = f ′(N !)

T = m0
l2

2
((cosϕ0ϕ

′
0)2 + (−sinϕ0ϕ

′
0)2)

Of course, these formulae can only be parsed if the types and syntactic types of
the function symbols appearing in them are known in advance. This information
is created by the quantterm grammar described in section 7 when the functions
are introduced.

There are some limitations of the current implementation of the formula gram-
mar that we are aware of: Firstly our formula grammar can only handle variable
binding if the occurrence of the variable that binds the other occurrences pre-
cedes the bound occurences. Hence the formula grammar cannot handle the
integral notation of the form

∫
f(x)dx, where the first occurence of x is bound

by the final occurence of x. Furthermore, the formula grammar can currently
not cope with formula fragments like “= 0” nor with formulas containing triple
dots like “n ∈ {1, . . . , N}”. However, we believe that the approach presented in
this paper constitutes a framework for tackling even these harder cases, i.e. that
the current limitations are not due to principle limitations of our approach, but
rather due to the prototypical character of the implementation.

As already mentioned in the introduction, a quantitative evaluation of the
coverage of the formula grammar is a highly nontrivial task. It involves refor-
mulating the natural language context of the formulae in a controlled natural
language, so that a full semantic analysis of the context can be achieved. This
has so far only be accomplished for the first chapter of Landau’s Grundlagen
der Analysis, where the formula grammar parsed and correctly disambiguated
all formulae [4].

7 Quantterm Grammar

Consider the following example text from [15]:

(8) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stK(v)) ⊂ stL(g(v)). Then g is a simplicial map V (K) → V (L), and
|g| � f .

Here the natural language quantification “there is a vertex g(v)” locally intro-
duces a new vertex to the discourse; but since the choice of the vertex depends
on v and we are universally quantifying over v, it globally introduces a function
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g to the discourse. In the next sentence there is an explicit reference to this
implicitly introduced function.

Quantterms are symbolic expressions that appear in the scope of a natural
language quantification, and are either just simple variables (in which case we
call them simple quantterms), or, like in the above example, complex expressions
that implicitly introduce a function to the discourse.

In order to discuss the functioning of quantterms, consider the following three
example sentences:

(9) There is some y such that R(y).

(10) For every x there is some y such that R(x, y).

(11) For every x there is some g(x) such that R(x, g(x)).

As described in [8], the premise added to the premise list for representing
the information from (9) would not be ∃y R(y), but R(cy) for a new constant
symbol cy. The reason for this replacement of existentially quantified variables
by constant symbols is that the first-order quantifier ∃ does not have the dynamic
properties of the natural language quantification with “there is”: After stating
sentence (9), we can later use the symbol y to refer to the same object that was
introduced by this sentence. If we represented the content of the sentence by
∃y R(y), then the scope of the y would only be this formula and could thus not
include later uses of y. By using R(cy) for the content of (9) and replacing later
uses of y by cy, we do get the wanted coreference between the y in (9) and the
later y.

This replacement of an existentially quantified variable by a constant is a
special case of skolemization [2][8]. In the representation of sentence (10) we make
use of the more general kind of skolemization, which involves introducing new
function symbols rather than new constant symbols. Its representation becomes
∀x R(x, fy(x)), where fy is a newly introduced function symbol; fy(x) replaces
all occurrences of y in the scope of ∀x, where the argument x makes explicit that
the choice of y depends on the value of x.

In the case of sentence (11), g(x) can at first be considered to just be a
complex variable name, usable in this very form later on in the sentence. Just as
in the case of sentence (10), we skolemize this variable and make its dependencies
explicit; in this case g(x) depends on x. All this is the same as for sentence (10).
But now we have to take into account that the author made this dependency
explicit by writing g(x) instead of y. This makes it possible to identify g with the
skolem function that skolemization gives rise to, and to use this g as a function
outside the universally quantified sentence in which g(x) was introduced.

Now let us look at a somewhat more complex example:

(12) For all x, y there is some gx(y) such that R(x, y, gx(y)).

After this sentence, we want to be able to use a function of syntactic type
[circumfix,classical] named g_{[arg]}. So already when parsing the quantterm,
we want to identify this syntactic type and name of the head function. This is
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done by recursively allowing the head function of a quantterm to be again a
quantterm. So in the case of g(x) in (11), g may again be a quantterm, and is
actually a simple quantterm. Now in the case of (12), gx is first identified as
head function of syntactic type classical, and is further analysed as quantterm.
This further analysis recognises gx as circumfix function g_{[arg]}.

7.1 Disambiguating Quantterms

Now one problem is that the quantterm grammar finds a number of possible
readings for any input. For example, f(x, y) can be interpreted in four ways:

1. as two-place classical function f (depending on x and y)
2. as two-place circumfix function f([arg],[arg]) (depending on x and y)
3. as one-place circumfix function f([arg],y) (depending on x)
4. as one-place circumfix function f(x,[arg]) (depending on y).

Here we want to choose the first reading as the preferred reading to be used
by the program. This is done by a special algorithm for selecting the preferred
reading, which works as follows:

– Non-circumfix readings are always preferred over circumfix readings.
– Between two circumfix readings, one is preferred over the other if its cir-

cumfix name has an [arg] at a place, where the other has a symbol.
– A reading that has classical in the second position of the syntactic type list

is preferred over one that does not. (This principle is needed, for example, to
ensure that in f ′(x), ′ is interpreted as a suffix function making f ′ classical
rather than as a classical function making ′(x) a suffix function.)

– When none of the above rules decides which reading is better, we recursively
check which head function is preferred by those rules.

8 Disambiguation after Parsing

As mentioned in section 4, the type system is not capable of blocking all un-
wanted readings. This is due to the fact that our type system is not fine-grained
enough. All objects that are not functions are of the same type, namely i. So,
for example, both natural numbers and sets would be of the type i. If one has
defined that for sets A, B, the expression AB denotes the set of functions from
A to B, and one has furthermore defined that for natural numbers m, n, the
expression mn denotes the nth power of m, then one has defined two functions of
syntactic type [circumfix,suffix] and type [i] → ([i] → i), both named ^{[arg]}.
Since their name, type and syntactic type are identical, they are indistinguish-
able during the parsing process. Thus, the ambiguity arising from this notational
clash has to be resolved after the parsing process.

After updating the Proof Representation Structure with the representation of
a parsed sentence, the Naproche system checks this added representation for log-
ical correctness. This checking process involves the checking of presuppositions
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[8]. The two just mentioned functions of equal name, type and syntactic type
would trigger different presuppositions: The first would trigger the presupposi-
tion that both of its arguments are sets, whereas the second would trigger the
presupposition that both of its arguments are numbers. Since it is not possible
for both of these presuppositions to be fulfilled for a given pair of arguments,
the ambiguity can certainly be removed in the process of checking the presup-
positions8.

It is also possible that the type information needed for disambiguating a
symbolic expression is only available after the completion of the parsing process
for that expression. Suppose, for example, that a user has defined a relation “>”
on both natural numbers and functions of natural numbers, and uses the symbol
1 not only for the natural number 1, but also for the identity function. Now
consider the following sentence:

(13) For all x > 1 such that x2 + 1 is prime we have R(x).

If the exponential notation x2 is only defined for numbers and not for functions,
then this sentence can be disambiguated using type information: x has to be of
type i in “x2 + 1” and therefore also in “x > 1”, and so the “>” in “x > 1”
refers to the relation on numbers and not the one on functions. But this type-
based disambiguation of “x > 1” was not possible during the process of parsing
“x > 1”, because at that point “x2 + 1” had not yet been parsed. In order
to handle such type-based disambiguations that occur after that parsing of an
expression, we use type-dependency graphs, which specify which reading of an
expression depends on which type judgements. A detailed description of type-
dependency graphs would, however, go beyond the scope of this paper.

9 Related Work

For understandable reasons, most formal mathematics systems simplify sym-
bolic mathematics to a purely formal language, thus avoiding the issues that
our paper is intended to tackle. Even languages of systems that clearly aim at
a higher degree of naturality, like Mizar [17] and SAD [19], still largely treat
the symbolic parts of mathematical texts like a formal language. The only work
outside Naproche we are aware of that recognises the problem of parsing and
disambiguating symbolic mathematics as intertwined with the natural language
component of mathematical texts and as of a completely different kind than
parsing formal languages is Ganesalingam [9]. He has analysed the language of
mathematics – including symbolic mathematics – in much detail and developed
a very ingenious theory for “a computer language which closely resembles the
8 It is of course also possible that a user defines two clashing notations whose presup-

positions may be fulfilled by the same argument(s); this, however, is almost certainly
bad style, so that the user should get a warning from the system when this happens;
nevertheless, the system does always choose one reading as the preferred one, using
other heuristics, for example preferring notations that were defined later over ones
that were defined earlier.
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language used by human mathematicians in publications”9. We owe him a lot,
since his work has enhanced our understanding of the language of mathemat-
ics and has helped us to develop the ideas presented in this paper. There are,
however, two main differences between Ganesalingam’s approach and ours:

Firstly, he has a methodological principle that no mathematical content is
encoded directly into his theory, and he considers such syntactic disambiguation
principles as the precedence of multiplication over addition as part of mathe-
matical content10 Thus he does not encode such principles into his theory, but
requires the author to write sentences of the following form in order to get the
desired disambiguation of arithmetic expressions:

(14) If m, n and k are natural numbers, then “m + nk” means “m + (nk)”.

We on the other hand do not want to require the author to write things that
mathematicians do not normally write, and so decided to encode some basic
syntactic disambiguation principles directly into our theory.

Secondly, as already alluded in section 4, he relies much more heavily on a
type system than we do for disambiguating symbolic mathematics. This is due
to the fact that he does not include presuppositions into the disambiguation
machinery. By making use of presuppositions for disambiguation, we were able
to attain similar goals as Ganesalingam with a much more coarse type system.
One of the benefits of the coarseness of the type system is that we do not require
the author to make statements whose only goal is to influence the typing of
symbolic material.

10 Conclusion

We have presented the difficulties that a computer program for analysing math-
ematical texts faces with respect to symbolic mathematics, given that the input
language is to be as similar as possible to the language that mathematicians com-
monly use in journals and textbooks. We have described how these difficulties are
solved in the Naproche system, and compared this solution to Ganesalingam’s
solution.
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Abstract. Rewrite strategies are used to specify how mathematical ex-
ercises are solved in interactive learning environments, and to provide
feedback to students solving such exercises. We have developed a generic
strategy language with which we can specify rewrite strategies in many
(mathematical) domains. Although our strategy language is quite power-
ful, it lacks an essential component for specifying strategies, namely the
interleaving of two strategies. Often students have to perform multiple
subtasks, but the order in which these tasks are performed is irrelevant,
and steps of solutions may be interleaved. We show the need for combina-
tors that support interleaving by means of several examples. We extend
our strategy language with different combinators for interleaving, define
the semantics of the extension, and show how the interleaving combina-
tors are implemented in the parsing framework we use for recognizing
student behavior and providing hints.

Keywords: strategy language, interleaving, feedback.

1 Introduction

Strategies specify how a wide range of exercises can be solved incrementally, such
as bringing a logic proposition to disjunctive normal form, reducing a matrix,
solving a quadratic equation, or calculating with fractions. In previous work [13]
we have developed a language for rewrite strategies for exercises and a framework
for feedback services built on top of this language, which is now used in intelligent
tutoring systems such as MathDox [7], the Digital Mathematics Environment of
the Freudenthal Institute [8], and the ActiveMath system [17] to follow student
behavior, report applications of buggy rules, give hints, and show worked-out
examples.

Rewrite strategies for exercises and the strategy language in which they are
formulated should satisfy a number of requirements:

– The strategy language is generic: it can be used for any domain in which
exercises are solved by incrementally applying rules, such as logic, algebra,
programming, etc.

– It is possible to automatically calculate feedback given a strategy and actions
of a user on an exercise that is solved using the strategy.
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– Strategies satisfy the cognitive fidelity principle [3]: they reflect textbook
descriptions of procedures for solving exercises.

– Strategies are observable: we can print, inspect, adapt, and even transform
strategies, so that teachers can use variants of a strategy, and students can
customize the level of feedback when solving an exercise [12].

– Strategies are compositional : a strategy can be reused verbatim in another
strategy.

Our strategy language satisfies these requirements to a large extent, but we
have encountered a number of cases where some of the above requirements are
not fulfilled. These cases are related to the cognitive fidelity principle and the
compositionality requirement. For example, when solving the equation x 2(2x 2 −
1) = 4(2x 2−1), the textbook procedure says: apply the rule AC=BC ⇒ A=B ∨
C =0 to obtain the two quadratic equations x 2 = 4 and 2x 2 − 1 = 0, and then
solve these equations. So clearly the strategy for solving quadratic equations is
reused in the strategy for solving equations of a higher-degree. When presenting
a solution to a student, we want to first solve one quadratic equation, and then
the other. But a student may solve the two equations in any order, and even
switch halfway from one equation to the other. At the moment it is very hard to
satisfy both requirements: our strategy for higher-degree equations does reuse
the quadratic strategy, but it does not satisfy the cognitive fidelity principle. The
main cause for this is the fact that we lack a language component for expressing
that two strategies have to be solved, but the order in which they are solved
does not matter, and steps for solving the strategies may be interleaved. For
such functionality, we need an interleaving combinator for strategies.

Interleaving is a common operator in communicating sequential processes
(CSP) [14]. It also appears under the names parallel and merge [4], but we
prefer the name interleave, because it best describes the semantics of the oper-
ator we need. Parallel normally suggests that actions are performed simultane-
ously, which is not important in our case. In this paper we show how to extend
our strategy language with several constructs to interleave strategies. The main
interleave strategy combinator takes two strategies as argument, and allows a
student to take steps from either of the two strategies, and finishes whenever
both argument strategies are finished. We describe the semantics of the added
constructs, derive properties for them, and show how they are implemented in
our framework. The implementation is rather challenging because of the presence
of so-called “administrative rules”, which are rules that are silently applied (e.g.,
for navigating through a term). These rules are essential for our framework, but
are not directly derived from user actions. With the extended strategy language
we can more easily compose strategies, write strategies in a more natural fash-
ion, and provide better feedback to students. The contributions of this paper are
an explanation of the importance of adding facilities for specifying interleaving
to a rewrite strategy language for exercises, and an implementation of the ex-
tended strategy language as a parser that recognizes student behavior and gives
feedback.
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This paper is organized as follows. In Section 2 we explain the need for inter-
leaved strategies by means of several examples. Section 3 adds an interleaving
strategy combinator to our strategy language, and gives its semantics. Section 4
shows how to implement an interleaving combinator for strategies in our frame-
work, after which Section 5 discusses several design decisions about dealing with
administrative rules. Section 6 shows how the added combinators help in formu-
lating strategies for our examples. Section 7 discusses related and future work,
and concludes.

2 Examples

For many exercises it is essential that we can specify that two (or more) strategies
should be interleaved. This section gives examples, and discusses why existing
strategy language constructs are not sufficiently expressive for these exercises.

Example: applying tautologies. In many courses on logic students are asked to
rewrite logic expressions to some normal form, such as the disjunctive normal
form (DNF). There are several procedures for rewriting a logic expression to
DNF: one is to propagate all occurrences of the constants true and false , then
replace implications and equivalences by their definitions, push negations top-
down inside to the leaves of the logic expression using the rules for negation, and,
finally, distribute ∧ over ∨ to reach DNF. Furthermore, whenever a tautology or
contradiction appears, simplify the formula by turning it into a constant. The
first four steps are nicely captured in a strategy, but we need special machin-
ery to model the last step for tautologies and contradictions. We could replace
every rule that appears in the first four steps by the choice of that rule and
the rules for tautologies and contradictions. However, such a transformation is
not compositional, and bloats up strategies into huge artifacts that are hard to
understand and maintain.

Example: solving polynomial equations of higher-degree. Suppose a student solves
higher-degree equations in an interactive learning environment. Some higher-
degree equations can be solved by applying the rule AC=BC ⇒ A=B ∨ C=0,
where the equations in the right-hand side of the rule have at most degree two.
Of course, it does not matter in which order the student solves the resulting
equations A = B and C = 0, and she might even switch between solving the
equations halfway. However, when we present a solution to a student, we prefer
not to switch between solving the two equations. How do we describe a strategy
that accepts this student behavior, and still gives hints to the student when she
asks for it? We can easily express that a student should first solve the first equa-
tion and then the second, or vice versa, but this disallows switching between
the two equations halfway. At the moment, we use a flexible strategy to solve
these equations, which expresses that any rule from the quadratic strategy can
be applied anywhere in the two equations. Since this leads to many choices, we
have specified an order on the rules, and preferred rules are applied first. As a
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consequence, our worked-out solution interleaves steps in solving the two equa-
tions, but sometimes in a non-intuitive way. The strategy violates the cognitive
fidelity principle because not all solutions reflect the textbook description. The
fact that we use a flexible strategy which accepts any rule from a particular set of
rules violates the compositionality requirement: although we instruct students to
apply the rule AC=BC ⇒ A=B ∨ C=0 and then solve the resulting quadratic
equations, we do not reuse the strategy for quadratic equations because that
would disallow some student behavior. In this case, it was possible to relax the
strategy for solving quadratic equations, such that students are allowed to switch
between multiple equations that come from a single higher-degree equation. In
more complicated situations, this approach might no longer be feasible.

More examples. We have used our strategy framework to develop an intelligent
tutoring system for learning functional programming [10]. The tool supports the
gradual refinement of programs until a program is determined to be equivalent to
a model solution. Programs under development may contain one or more “holes”
that need to be further refined. A student can refine these holes in any order,
and a refinement step can introduce new holes. Again, to follow and support
this behavior, we need a way to specify that an exercise consists of a number of
strategies that can be solved in an interleaving fashion.

Other example applications which would profit from an interleaving construct
for strategies are found in specifying rules for cleaning up expressions after a
rewrite rule has been applied, and in tools for teaching theorem proving [16]. If
such a tool has to follow the actions of a student and allow her to work on any of
the subtrees to be proven, then interleaved strategies are needed for exactly the
same reasons as for the functional programming tutor. Interleaving also solves
the simpler problem of specifying a strategy that requires a number of rules to
be applied once, but the order is irrelevant. At the moment we specify this by
repeating the rules until they cannot be applied anymore, which often amounts
to the same thing, but which will not work in more complicated situations.

Until now we have developed our strategies without interleaving constructs for
strategies. This has led to strategies that are less precise or too strict, and harder
to maintain, reuse, and adapt. Sometimes, this leads to problems in using our
tools. For example, the “applying tautologies” example described above appears
at the top of the list of suggested improvements to our tool for rewriting logic
expressions to DNF. It is possible to specify the interleaving of strategies ex-
plicitly, but this would give huge strategies: the text size of explicitly specifying
the interleaving of two strategies is more than exponential in the text size of the
two argument strategies. Concluding, we need to add an interleaving strategy
combinator to our strategy language.

3 Interleaving and Rewrite Strategies

In this section we show how to add interleaving to our strategy language. We will
first explore the concepts of interleaving and atomicity, after which we extend
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the strategy language. The notation we adopt, for interleaving and for rewrite
strategies, is inspired by the algebra of communicating processes (ACP) [4]. The
concise syntax makes it suitable for the type of specifications found in this paper
(compared to the implementation-oriented syntax used in other papers [13,12]).
Although we use a mathematical notation in the rest of this paper, the defi-
nitions directly correspond to programs in a functional programming language
like Haskell [19], and we use Haskell’s semantics for recursive equations defining
functions.

3.1 Interleaving Sentences

We use a, b, c, ... to denote symbols, and x , y, z for sentences (sequences) of
such symbols. As usual, we write ε for the empty sequence, and xy (or ax ) for
concatenation. We start by defining the interleaving of two sentences (x ‖ y):
this operator can be defined conveniently in terms of left-interleave (denoted by
x   y, and also known as the left-merge operator [4]), which expresses that the
first symbol should be taken from the left-hand side operand. ACP traditionally
defines interleave in terms of left-interleave (and “communication interleave”) to
obtain a sound and complete axiomatization for the algebra of communicating
processes [9].

ε ‖ x = {x }
x ‖ ε = {x }
x ‖ y = x   y ∪ y   x (x = ε ∧ y = ε)

ε   y = ∅
ax   y = {az | z ∈ x ‖ y }

For example, the result of interleaving the sentences abc and de (that is, abc ‖ de)
results in the following set:

{abcde, abdce, abdec, adbce, adbec, adebc, dabce, dabec, daebc, deabc}

The set abc   de only contains the six sentences that start with symbol a. It
is worth noting that the number of interleavings for two sentences of lengths
n and m equals (n+m)!

n!m! . This number grows quickly with longer sentences. An
alternative definition of interleaving two sequences, presented by Hoare in his
influential book on CSP [14], is by means of three laws:

ε ∈ (y ‖ z ) ⇔ y = z = ε
x ∈ (y ‖ z ) ⇔ x ∈ (z ‖ y)

ax ∈ (y ‖ z ) ⇔ (∃ y ′ : y = ay ′ ∧ x ∈ (y ′ ‖ z ))
∨ (∃ z ′ : z = az ′ ∧ x ∈ (y ‖ z ′))

3.2 Interleaving Sets

The operations for interleaving sentences can be lifted to work on sets of sen-
tences by considering all combinations of elements from the two sets. Let X , Y ,
and Z be sets of sentences. The lifted operators are defined as follows:

X ‖ Y =
⋃

{x ‖ y | x ∈ X , y ∈ Y }
X   Y =

⋃
{x   y | x ∈ X , y ∈ Y }
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For instance, {a, ab } ‖ {c, cd } yields a set containing 14 elements:

{abc, abcd, ac, acb, acbd, acd, acdb, ca, cab, cabd, cad, cadb, cda, cdab}

From these definitions, it follows that the lifted operator for interleaving is com-
mutative, associative, and has {ε} as identity element. The left-interleave oper-
ator is not commutative nor associative, but has the interesting property that
(X   Y )   Z is equal to X   (Y ‖ Z ).

3.3 Atomicity

In the case of rewrite strategies, it is useful to have a notion of atomic blocks
within sentences. In such a block, no interleaving should occur with other sen-
tences. We write 〈x 〉 to make sequence x atomic: if x is a singleton, the angle
brackets may be dropped. Atomicity obeys some simple laws:

〈ε〉 = ε (the empty sequence is atomic)
〈a〉 = a (all primitive symbols are atomic)

〈x 〈y〉z 〉 = 〈xyz 〉 (nesting of atomic blocks has no effect)

In particular, it follows that 〈〈x 〉〉 = 〈x 〉. Atomic blocks nicely work together with
the definitions given for the interleaving operators, including the lifted operators:
sentences now consist of a sequence of atomic blocks, where each block itself is
a non-empty sequence of symbols. For instance, a〈bc〉 ‖ 〈de〉f will return:

{a〈bc〉〈de〉f , a〈de〉〈bc〉f , a〈de〉f 〈bc〉, 〈de〉a〈bc〉f , 〈de〉af 〈bc〉, 〈de〉fa〈bc〉}

In the end, when no more interleaving takes place, the blocks have no longer any
meaning, and can be discarded.

Permuting sentences (i.e., enumerating all different orderings of a list of sen-
tences, and concatenating these sentences) can be thought of as a simpler form
of interleaving. More specifically, the sentences themselves should not be inter-
leaved, which can be done by making the sentences atomic. Hence, we define
permute [x1, ..., xn ] as 〈x1〉 ‖ ... ‖ 〈xn〉. For example,

permute [ab, cde, f ] = {abcdef , abfcde, cdeabf , cdefab, fabcde , fcdeab }

3.4 Interleaving Strategies

A rewrite strategy is a context free grammar with rewrite rules as terminal
symbols. A rewrite strategy is defined in terms of strategy combinators, and is
described by the following grammar:

σ ::= 0 | 1 | r | σ + σ | σ · σ | μ fσ | � σ

The basic components (symbols) of our language are rewrite rules r . Two (sub)-
strategies can be combined into a strategy using the choice (+) or sequence (·)
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combinator, with 0 (always fails) and 1 (always succeeds) as its unit element,
respectively. The main purpose of our strategy language is to track student
behavior, and to automatically calculate feedback based on the strategy and the
current term. For this purpose we need to mark positions in the strategy, for
which we use labels (�). Such a label can, for example, be associated with a
feedback text related to its particular position in the strategy.

Strategies can have recursive parts, at arbitrary positions. We use the fixpoint
operator μ fσ = fσ (μ fσ) for this, where fσ is a function that takes a strategy
and returns one. With this operator, numerous derived combinators can be added
to the strategy language, such as many σ = μx .1 + σ · x .

The language (or semantics) of a strategy is a set of sentences, where each
sentence is a sequence of (atomic blocks of) rewrite rules. Function L generates
the language of a strategy, by interpreting it as a context-free grammar.

L (0) = ∅
L (1) = {ε}
L (r) = {r }

L (σ1 + σ2) = L (σ1) ∪ L (σ2)
L (σ1 · σ2) = {xy | x ∈ L (σ1), y ∈ L (σ2)}
L (μ fσ) = L (fσ (μ fσ))
L (� σ) = {Enter(�) x Exit(�) | x ∈ L (σ)}

With this semantics, it is easy to verify that the combinators (+) and (·) form
a semiring, as one would expect. This interpretation introduces the special rules
Enter and Exit (parameterized by some label �) that show up in sentences.
These rules are used to trace positions in strategies. In Section 5 we discuss the
subtleties of labels in strategies.

We extend the strategy language with new constructs for atomicity, interleav-
ing, and left-interleaving:

σ ::= ... | 〈σ〉 | σ ‖ σ | σ   σ

The semantics for the new constructs is defined in terms of the lifted operators:

L (〈σ〉) = {〈x 〉 | x ∈ L (σ)}
L (σ1 ‖ σ2) = L (σ1) ‖ L (σ2)
L (σ1   σ2) = L (σ1)   L (σ2)

Of course, more variations of interleaving can be added to the strategy language
in a similar fashion, such as a combinator for permuting strategies. A second
example is a variant of interleave that always takes steps from the left-hand side
strategy if this is possible (and only if this fails, steps from the right operand),
and finishes when no more steps can be done on either side.

The interleaving strategy combinator inherits the properties of the lifted in-
terleaving operator that works on sets: it is commutative and associative, and
has 1 as identity element. Because interleaving distributes over choice (that is,
σ1 ‖ (σ2 + σ3) = (σ1 ‖ σ2) + (σ1 ‖ σ3)), we have a second semiring. Also left-
interleave distributes over choice. The operator that makes a strategy atomic
is idempotent, and distributes over choice 〈σ1 + σ2〉 = 〈σ1〉 + 〈σ2〉. Many more
properties can be found in the literature on ACP [4]. We use the properties of
the strategy combinators for several purposes:
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– Our implementation can be tested against these properties, and we have
done so using the QuickCheck tool [6].

– The properties help strategy writers to reason about their strategies, and it
provides insight into how the combinators behave.

– They will prove useful in defining the strategy recognizer, which is the topic
of the next section.

4 Implementing Interleaving Strategies

Section 3 defines a language to specify rewrite strategies for exercises, extended
with interleaving combinators. The definition of the semantics of this language is
not suitable for implementing feedback services such as following the behavior of
students, and giving hints and worked-out examples. For this, we need to develop
a parser that can recognize student actions, give the next expected symbol when
a student asks for a hint, or generate a complete worked-out example.

For recognizing sentences, it is sufficient to define the functions empty and
firsts [13]. With these functions, input symbols can be consumed one after an-
other, from left to right. Before we discuss how to implement the functions for the
extended strategy language, we first have a look at an alternative specification
for the interleaving combinator from an “operational” perspective.

We have three scenarios for parsing the strategy σ1 ‖ σ2: start with input for
σ1 (represented by σ1   σ2), start with σ2, or test for the empty sentence.

L (σ1 ‖ σ2) = L (σ1   σ2) ∪ L (σ2   σ1) ∪ {ε | ε ∈ L (σ1) ∩ L (σ2)}
In this definition interleaving stops only when both strategies have the empty
sentence, which is what the first law in Hoare’s definition expresses.

4.1 Defining Empty

The function empty tests whether or not the empty sentence is generated by a
strategy: empty (σ) = ε ∈ L (σ). The direct translation of this specification of
empty to a functional program, using the definition of language L, gives a very
inefficient program. Instead, we derive the following recursive function from this
characterization, by performing case analysis on strategies:

empty (0) = false
empty (1) = true
empty (r) = false
empty (μ fσ) = empty (fσ 0)
empty (� σ) = false

empty (σ1 + σ2) = empty σ1 ∨ empty σ2

empty (σ1 · σ2) = empty σ1 ∧ empty σ2

empty (〈σ〉) = empty σ
empty (σ1 ‖ σ2) = empty σ1 ∧ empty σ2

empty (σ1   σ2) = false

These equations follow almost directly from the specification of L. There is no
need to visit the recursive parts to determine the empty property for a strategy.
The definition makes explicit that the left-interleave combinator never yields the
empty sentence. The new definition for L (σ1 ‖ σ2) shows that both σ1 and σ2

need to have the empty property, otherwise ε /∈ L (σ1 ‖ σ2). Interpreting these
equations for empty as a Haskell program gives an efficient program that is linear
in the size of the argument strategy.
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4.2 Defining Firsts

Given some strategy σ, the function firsts returns every rule that can start a sen-
tence for σ, paired with a strategy that represents the remainder of that sentence.
This is made more precise in the following specification (where r represents a
rule, and x a sequence of rules):

∀r, x : rx ∈ L (σ) ⇔ ∃σ′ : (r , σ′) ∈ firsts (σ) ∧ x ∈ L (σ′)

As for the function empty , the direct translation of this specification into a
functional program is infeasible. We derive an efficient implementation for firsts
by performing a case analysis on strategies. The firsts set for the left-interleave
case is somewhat challenging: this is exactly where we must deal with interleaving
and atomicity. For a strategy σ1   σ2, we split σ1 into an atomic part and a
remainder, i.e., 〈σ′

1〉 · σ′′
1 . After σ′

1 without the empty sentence, we can continue
with σ′′

1 ‖ σ2. This approach is summarized by the following property, where the
use of rule r takes care of the non-empty condition:

(〈r · σ1〉 · σ2)   σ3 = 〈r · σ1〉 · (σ2 ‖ σ3)

Function split transforms a strategy into alternatives of the form 〈r · σ1〉 · σ2:

split (0) = ∅
split (1) = ∅
split (r) = {〈r · 1〉 · 1}
split (σ1 + σ2) = split σ1 ∪ split σ2

split (σ1 · σ2) = {〈r · x 〉 · (y · σ2) | 〈r · x 〉 · y ∈ split σ1}
∪ if empty σ1 then split σ2 else ∅

split (μ fσ) = split (fσ (μ fσ))
split (� σ) = split (Enter(�) · σ · Exit(�))
split (〈σ〉) = {〈r · (x · y)〉 · 1 | 〈r · x 〉 · y ∈ split σ}
split (σ1 ‖ σ2) = split (σ1   σ2) ∪ split (σ2   σ1)
split (σ1   σ2) = {〈r · x 〉 · (y ‖ σ2) | 〈r · x 〉 · y ∈ split σ1}

We briefly discuss the definitions for the new constructs:

– Case 〈σ〉: because atomicity distributes over choice, we can consider the
elements of split σ (the recursive call) one by one. The transformation
〈〈r · x 〉 · y〉 = 〈r · (x · y)〉 · 1 is proven by first removing the inner atomic
block, and basic properties of sequence.

– Case σ1 ‖ σ2: expressing this strategy in terms of left-interleave is justified
by the definition of L (σ1 ‖ σ2) given in this section. For function split , we
only have to consider the non-empty sentences.

– Case σ1   σ2: left-interleave can be distributed over the alternatives. Fur-
thermore, (〈r · x 〉 · y)   σ2 = 〈r · x 〉 · (y ‖ σ2) follows from the definition of
left-interleave on sentences (with atomic blocks).

With the function split , we can now define the function firsts needed for most
of our feedback services:

firsts (σ) = {(r , x · y) | 〈r · x 〉 · y ∈ split σ}
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5 Dealing with Administrative Rules

Our strategy framework uses administrative rules to change the context of an
expression, but not the expression itself. Students cannot observe the applica-
tion of administrative rules. Examples of such rules are tracking the labels in a
strategy, keeping a focus (on a subexpression), and reading (or writing) a value
from an environment. This section describes practical issues with administrative
rules that arise when adding interleaving to the strategy language. We discuss
how to deal with labels and navigation actions for moving the point in focus.

5.1 Labels in Strategies

Consider the sentences generated by the following strategy:

�1 (r1 · �2 (r2 · r3) ‖ �3 (r4 · r5))

When ignoring labels, this strategy generates 10 (= 5!
2!3! ) sentences. For each

labeled (sub)strategy, we insert administrative rules to mark where we enter or
leave that strategy: � σ thus becomes Enter(�) ·σ ·Exit(�). These markings tell
the framework where a student is in a strategy, and allows us to give appropriate
feedback based on the labels. However, the extra steps also significantly increase
the number of sentences ( 11!

4!7! = 330). This explosion in the number of sentences
quickly makes the strategy unusable for the purpose of generating feedback and
tracking student behavior: there are too many possibilities to choose from.

Since users cannot observe administrative rules, the sentences with the admin-
istrative rules do not add interleavings that are interesting for a user. It does not
make sense to switch to another interleaved strategy right after an enter or exit
step, and before a major (non-administrative) step is detected. Hence, we allow
the prefixes Enter(�1)r1 and Enter(�3)r4, but we disallow Enter(�1)Enter(�3)

and Enter(�3)Enter(�1). This gives us again 10 sentences.
As a consequence of the administrative rules, we need variants of empty and

firsts that skip over these rules and behave properly in the presence of interleaved
parts, along the lines of the big step operator defined by Gerdes et al. [11]. For
administrative rule r we have that r · 〈σ〉 can be transformed into 〈r · σ〉. This
property can be used to refine the split function for the left-interleave case.

5.2 Navigation Actions

Many rewrite strategies in mathematics rely on navigation combinators that
move the focus to a particular subexpression. For this, we use the zipper data-
structure [15], and its operations such as moving up and down in a tree. In our
strategies, we use the administrative rules Up and Downs. The rule for moving
downwards returns multiple (zero or more) alternatives with a new focus, one for
each child. With these navigation rules, we can define the somewhere combinator:

somewhere σ = μx .σ + (Downs · x · Up)
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Again, interleaving poses an additional challenge when dealing with administra-
tive rules, this time for navigation. Consider the strategy (somewhere σ1) ‖ σ2,
and assume that the rules in σ2 take the current focus into account. It is unde-
sirable to interleave the navigation actions from the left-hand side strategy with
σ2. This gives highly unpredictable behavior, especially when σ2 also performs
navigation actions. Therefore, we make the result of somewhere atomic by de-
fault. When moving the focus down, all interleaved strategies are blocked until
the matching up action is recognized. We do the same for the other navigation
combinators (e.g., topDown, which applies a strategy at the highest possible po-
sition in a tree). Note that a somewhere combinator that does allow interleaving
(for instance, because the other strategy is known to ignore the focus) can still
be defined if desired.

Besides navigation, there are other ways in which rules of interleaved strategies
can interfere. Examples are rules that read and write values to an environment,
or a rule that assumes a certain invariant to hold when it is executed. For such
cases, the strategy developer has to make parts of the strategy atomic, or take
other measures to ensure non-interference. This sometimes makes developing
strategies significantly more complex, which is not uncommon when concurrency
is involved.

6 Examples Revisited

This section revisits the examples given in Section 2, and shows how we can
define strategies for these examples using the interleaving combinators.

6.1 Applying Tautologies

Figure 1 presents a collection of rules for rewriting logical expressions. We assume
that these rules are applied from left to right. Rules for expressing the associa-
tivity of conjunction and disjunction are missing: instead, we assume that the
given rules are applied modulo the associativity of these operators. The rule set
should also be completed by adding commutative variations of the presented
rewrite rules (e.g., F ∨ φ = φ for OrFalse).

The rules in Figure 1 are grouped into categories (such as “negations”), and
we use this grouping to combine the rules and categories into strategies:

negations = NotNot + DeMorganAnd + DeMorganOr

basics = constants + definitions + negations + distribution
additionals = tautologies + contradictions

A straightforward approach to reach disjunctive normal form (DNF) is to apply
the basic rules exhaustively (the repeat combinator), where somewhere makes
sure that the rules can also be applied to subexpressions:

dnfExhaustive = repeat (somewhere basics)
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Basic Rules:
Constants: AndTrue: φ ∧ T = φ

OrTrue: φ ∨ T = T
NotTrue: ¬T = F

AndFalse: φ ∧ F = F
OrFalse: φ ∨ F = φ
NotFalse: ¬F = T

Definitions: ImplDef: φ → ψ = ¬φ ∨ ψ
EquivDef: φ ↔ ψ = (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

Negations: NotNot: ¬¬φ = φ
DeMorganAnd: ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ
DeMorganOr: ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ

Distribution: AndOverOr: φ ∧ (ψ ∨ χ) = (φ ∧ ψ) ∨ (φ ∧ χ)

Additional Rules:
Tautologies: ImplTaut: φ → φ = T

EquivTaut: φ ↔ φ = T
OrTaut: φ ∨ ¬φ = T

Contradictions: AndContr: φ ∧ ¬φ = F EquivContr: φ ↔ ¬φ = F

Fig. 1. Rules for logical expressions

This strategy is very liberal, and also generates derivations that are less intuitive.
The following refined strategy proceeds in four steps, and makes more precise
which rule should be applied when, and where.

dnfSteps = label "constants" (repeat (topDown constants ))
· label "definitions" (repeat (somewhere definitions ))
· label "negations" (repeat (topDown negations ))
· label "distribution" (repeat (somewhere distribution))

For example, consider applying strategy dnfSteps to ¬((p ∨ q) → p). This results
in the following derivation (and for this logical proposition, no other derivation):

¬((p ∨ q) → p) = ¬(¬(p ∨ q) ∨ p) (ImplDef)
= ¬¬(p ∨ q) ∧ ¬p (DeMorganOr)
= (p ∨ q) ∧ ¬p (NotNot)
= (p ∧ ¬p) ∨ (q ∧ ¬p) (AndOverOr)

If we would have used strategy dnfExhaustive, many more derivations would have
been allowed, including derivations where ¬¬(p ∨ q) is rewritten into ¬(¬p ∧
¬q), giving seven steps in total (instead of just four).

Suppose that we want to extend our strategies for reaching DNF, and also
want to use rules for tautologies and contradictions. In the case of dnfExhaustive ,
this can be accomplished by changing its definition into:

dnfExtra = repeat (somewhere (basics + additionals))
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Changing the original strategy is not always possible, for instance if you want
to have the original strategy (without the extra rules) but also the extended
strategy (with the extra rules). An alternative approach is to reuse dnfExhaustive
verbatim, and define dnfExtra as follows:

dnfExtra = repeat (dnfExhaustive + somewhere additionals)

This definition has some disadvantages too. First of all, the strategy differs con-
siderably from the informal description, and violates the cognitive fidelity prin-
ciple. Such a difference also influences feedback. Secondly, during the execution
of strategy dnfExhaustive , this strategy disallows applications of the additional
rules. For instance, consider the proposition p ∨ ¬(p ∧ ¬q). After one step
(taken from dnfExhaustive) this is rewritten into p ∨ ¬p ∨ ¬¬q. At this point,
dnfExhaustive is not yet finished (because of the double negation), and as a re-
sult, the strategy disallows the step with rule OrTaut to T ∨ ¬¬q. Extending
strategy dnfExhaustive using the interleaving combinator is straightforward:

dnfExtra = label "extra" (repeat (somewhere additionals)) ‖ dnfExhaustive

The label in the strategy specification is not necessary, but it provides extra
information that can be used for the generation of hints. We return to our earlier
example, for which the extended strategy generates two more steps:

¬((p ∨ q) → p) = . . .
= (p ∧ ¬p) ∨ (q ∧ ¬p) (AndOverOr)
= F ∨ (q ∧ ¬p) (AndContr)
= q ∧ ¬p (OrFalse)

Observe the interleaving of steps in this derivation: AndOverOr and OrFalse

originate from the dnfExhaustive strategy, whereas AndContr comes from the
part labeled “extra”. Note that this strategy also permits other derivations.

Interestingly, our last definition of dnfExtra with interleaving is equivalent to
the simpler strategy repeat (somewhere (basics + additionals)), and this equiv-
alence can be shown using basic properties of our strategy combinators. To be
precise, we need a property explaining how two interleaved repetitions behave1:
repeat σ1 ‖ repeat σ2 = repeat (σ1 + σ2). Likewise, we use that somewhere dis-
tributes over choice: somewhere (σ1 +σ2) = somewhere σ1 +somewhere σ2. This
emphasizes once more the need for having a clear semantics for the combinators.

Strategy dnfSteps can also be extended with rules for tautologies and contra-
dictions. Constants are removed in the first step, but the constants introduced
by the new rules have to be propagated as well. Hence, the extension to the
dnfSteps strategy not only adds the new rules, but it also takes care of deal-
ing with the newly introduced constants. The following code fragment shows a
possible definition:

1 Since we have not defined repeat , we do not prove this property here. The property
also holds for many (see Section 3.4).
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extension = repeat (somewhere (additionals + constants))
dnfExtension = label "extension" extension ‖ dnfSteps

Note that this definition is ambiguous in how the constants are removed, because
dnfSteps can do this (in the first step), but also the extension. This ambiguity has
no consequences for the feedback services we offer. The definition gives no priority
to the extra rules: they may be used (if possible), but this is not mandatory. Also,
it is not required to remove the constants that are introduced by a tautology or
contradiction before continuing with bringing the logic expression to DNF.

Our strategy language is expressive enough to specify that constants have to
be propagated immediately, including the ones from tautologies and contradic-
tions. For this, we use the atomic combinator in the extension:

extension = repeat 〈somewhere additionals · repeat (somewhere constants)〉

6.2 Solving Polynomial Equations of a Higher-Degree

Now that we have interleaving of strategies available, we can adapt the strategy
for solving higher-degree equations to make it possible to:

– reuse the strategy for solving quadratic equations;
– follow student behavior even when a student switches from solving one equa-

tion to the other;
– give hints about the equation the student is currently solving; and
– show worked-out solutions in which first one of the two quadratic equations

is solved, and then the other.

For the latter two points, strategies need to be labeled. The labels are used to
determine where in a strategy a student is, and what the corresponding first step
would be. Labeling a strategy can either be done automatically, or we can leave
this to the strategy developer.

7 Conclusions and Related Work

We have shown how we can add interleaving combinators to our language for
specifying rewrite strategies for exercises. We have implemented these combina-
tors in our framework, such that we can follow student behavior, give hints, and
show worked-out examples. The implementation of the new combinators, dis-
cussed in Section 4, can be translated almost literally to executable Haskell code,
the programming language of our choice. The upcoming release of our framework
on Hackage2 will contain the new combinators. Using the interleaving combina-
tors, we can specify strategies closer to textbook description of strategies, allow
for more natural student behavior, specify more strategies compositionally, and
give various kinds of feedback for strategies using the interleaving combinators.
This makes it easier to develop, use, maintain, and reuse strategies.
2 http://hackage.haskell.org/package/ideas

http://hackage.haskell.org/package/ideas
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Our strategy language [13] is similar to strategy languages used in computer
science and theorem proving [21,5,1] extended with constructs that support giv-
ing feedback, such as labels (also present in [1]) and navigation. An interleav-
ing combinator for tactics is easily implemented in a theorem prover such as
Isabelle [18]. The interleaving combinators are inspired by the work on commu-
nicating sequential processes (CSP) and the algebra of communicating processes
(ACP) [14,4], but our goal is to model interactive exercises and to give feedback,
instead of modeling concurrent processes. The differences between the ACP ap-
proach and our work is the interpretation of a strategy as a parser, which can
deal with administrative rules, and the introduction of an operator for specifying
atomicity. In contrast with ACP and CSP, we have found no need for adding
a communication operator to our language. Our implementation can be seen as
an “interleaving parser”, which adds an extra level of (interleaving) complexity
on top of “permutation parsers” [2], which can be used to parse a number of
elements in any order. Current parsing combinator libraries do not offer parser
combinators for interleaving parsers3.

We have implemented interleaving in our framework, but we have yet to gain
large-scale experience with the combinators. We will include the interleaving
combinator in several of our strategies used within the Math-Bridge project4,
and evaluate the results.
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2. Baars, A.I., Löh, A., Swierstra, S.D.: Parsing permutation phrases. Journal of
Functional Programming 14, 635–646 (2004)

3. Beeson, M.J.: Design principles of MathPert: Software to support education in
algebra and calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic
Computation, pp. 89–115. Springer, Heidelberg (1998)

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science 37, 77–121 (1985)

5. Bundy, A.: The use of explicit plans to guide inductive proofs. In: International
conference on automated deduction, pp. 111–120 (1988)

6. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: ICFP 2000, pp. 268–279 (2000)

3 After discussing our work with Doaitse Swierstra, he implemented a (rather involved)
interleaving combinator for parsers on top of his parser combinator library [20].

4 http://service.math-bridge.org/

http://service.math-bridge.org/


Interleaving Strategies 211

7. Cohen, A., Cuypers, H., Reinaldo Barreiro, E., Sterk, H.: Interactive mathematical
documents on the web. In: Algebra, Geometry and Software Systems, pp. 289–306.
Springer, Heidelberg (2003)

8. Doorman, M., Drijvers, P., Boon, P., van Gisbergen, S., Gravemeijer, K.: Design
and implementation of a computer supported learning environment for mathemat-
ics. In: Earli 2009 SIG20 invited Symposium Issues in designing and implementing
computer supported inquiry learning environments (2009)

9. Fokkink, W.: Introduction to Process Algebra. Springer, Heidelberg (2000)
10. Gerdes, A., Heeren, B., Jeuring, J.: Constructing Strategies for Programming. In:

Cordeiro, J., et al. (eds.) Proceedings of the First International Conference on
Computer Supported Education, pp. 65–72. INSTICC Press (March 2009)

11. Gerdes, A., Heeren, B., Jeuring, J.: Properties of Exercise Strategies. In:
Proceedings of IWS 2010: 1st International Workshop on Strategies in Rewrit-
ing, Proving, and Programming. Electronic Proceedings in Theoretical Computer
Science (2011)

12. Heeren, B., Jeuring, J.: Adapting mathematical domain reasoners. In: Autexier, S.,
Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.)
AISC 2010. LNCS, vol. 6167, pp. 315–330. Springer, Heidelberg (2010)

13. Heeren, B., Jeuring, J., Gerdes, A.: Specifying rewrite strategies for interactive
exercises. Mathematics in Computer Science 3(3), 349–370 (2010)

14. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Engle-
wood Cliffs (1985)

15. Huet, G.: The zipper. Journal of Functional Programming 7(5), 549–554 (1997)
16. Lodder, J., Heeren, B.: A teaching tool for proving equivalences between logical

formulae. In: Soler-Toscano, F. (ed.) TICTTL 2011. LNCS, vol. 6680, pp. 154–161.
Springer, Heidelberg (2011)

17. Melis, E., Siekmann, J.: ActiveMath: An intelligent tutoring system for mathe-
matics. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 91–101. Springer, Heidelberg (2004)

18. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

19. Peyton Jones, S., et al.: Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, A special issue of the Journal of Functional Program-
ming, (2003), http://www.haskell.org/

20. Swierstra, S.D.: Combinator parsing: A short tutorial. In: Bove, A., Barbosa, L.S.,
Pardo, A., Pinto, J.S. (eds.) Language Engineering and Rigorous Software Devel-
opment. LNCS, vol. 5520, pp. 252–300. Springer, Heidelberg (2009)

21. Visser, E., Benaissa, Z.A., Tolmach, A.: Building program optimizers with rewriting
strategies. In: ICFP 1998, pp. 13–26 (1998)

http://www.haskell.org/


Combining Source, Content, Presentation,

Narration, and Relational Representation

Fulya Horozal, Alin Iacob, Constantin Jucovschi,
Michael Kohlhase, and Florian Rabe

Computer Science, Jacobs University, Bremen
{f.horozal,a.iacob,c.jucovschi,m.kohlhase,f.rabe}@jacobs-university.de

Abstract. In this paper, we try to bridge the gap between different di-
mensions/incarnations of mathematical knowledge: MKM representation
formats (content), their human-oriented languages (source,
presentation), their narrative linearizations (narration), and relational
presentations used in the semantic web. The central idea is to transport
solutions from software engineering to MKM regarding the parallel in-
terlinked maintenance of the different incarnations. We show how the
integration of these incarnations can be utilized to enrich the authoring
and viewing processes, and we evaluate our infrastructure on the LATIN
Logic Atlas, a modular library of logic formalizations, and a set of com-
puter science lecture notes written in STEX – a modular, semantic variant
of LATEX.

1 Introduction

Within the Mathematical Knowledge Management (MKM) community, XML-
based content representations of mathematical formulae and knowledge have
been developed that are optimized for machine processing. They serve as archiv-
ing formats, make mathematical software systems and services interoperable and
allow to develop structural services like search, documentation, and navigation
that are independent of mathematical foundations and logics.

However, these formats are by their nature inappropriate for human process-
ing. Therefore, community uses languages that are less verbose, more mnemonic,
and often optimized for a specific domain for authoring. Such human-oriented
languages (we call them source languages) are converted — via a complex com-
pilation process — into the content representations for interaction with MKM
services, ideally without the user ever seeing them. In addition, we have designed
presentation-oriented languages that permit an enriched reading experience com-
pared to the source language.

This situation is similar to software engineering, where programmers write
code, run the compiled executables, build HTML-based API documentations,
but expect, e.g., the documentation and the results of debugging services in
terms of the sources. In software engineering, scalable solutions for this problem
have been developed and applied successfully, which we want to transfer to
MKM.
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The work described here originates from our work on two large collections of
mathematical documents: our LATIN Logic Atlas [KMR09] formalized in the
logical framework LF; and our General Computer Science lecture notes written
in STEX [Koh08] – a modular, semantic variant of LATEX. Despite their different
flavor, both collections agree in some key aspects: They are large, highly struc-
tured, and extensively inter-connected, and both authoring and reading call for
machine support.

Moreover, they must be frequently converted between representation dimen-
sions optimized for different purposes: a human-friendly input representation
(source), a machine-understandable content markup (content), interactive doc-
uments for an added-value reading experience (presentation-content parallel
markup), a linearized structure for teaching and publication (narration), and
a network of linked data items for indexing and integration with the semantic
web (relational).

Therefore, we see a need for a representation and distribution format that
specifies these dimension and enables their seamless integration. In this paper,
we present one such format and evaluate it within our system and document
collections. In Sect. 2, we first give an overview over the document collections
focusing on the challenges they present to knowledge management. Then we
design our representation format in Sect. 3. In Sect. 4 and 5, we show how we
leverage this methodology in the authoring and the viewing process.

2 Structured Document Collections

2.1 The LATIN Logic Atlas

The LATIN Logic Atlas [KMR09] is a library of formalizations of logics and
related formal systems as well as translations between them. It is intended as a
reference and documentation platform for logics commonly used in mathematics
and computer science. It uses a foundationally unconstrained logical framework
based on modular LF and its Twelf implementation [HHP93, PS99, RS09] and
focuses on modularity and extensibility.

The knowledge in the Logic Atlas is organized as a graph of LF signatures
and signature morphisms between them. The latter are split into inheritance
translations (inclusions/imports) and representation theorems, which have to be
proved. It contains formalizations of type theories, set theories, logics and math-
ematics. Among the logic formalizations in the Logic Atlas are, for example, the
formalizations of propositional (PL), first (FOL) and higher-order logic (HOL),
sorted (SFOL) and dependent first-order logic (DFOL), description logics (DL),
modal (ML) and common logic (CL) as illustrated in Fig. 1. Single arrows (→)
in this diagram denote translations between formalizations and hooked arrows
(↪→) denote imports.

All logics are designed modularly formed from orthogonal theories for individ-
ual connectives, quantifiers, and axioms. For example, the classical ∧ connective
is only declared once in the whole Logic Atlas, and the axiom of excluded middle
and its consequences reside in a separate signature.
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Fig. 1. Logical Languages in the LATIN Logic Atlas

As a running example, we introduce a very simple fragment of the formaliza-
tion of the syntax of propositional logic.

Example 1 (Propositional Logic) The formalization of propositional logic syntax
consists of the LF signatures illustrated in Fig. 2. We focus on the structural as-
pects and omit the details of LF. We define four signatures living in two different
namespaces. BASE declares a symbol for the type of propositions. It is imported
into CONJ and IMP which declare conjunction and implication, respectively, and
these are imported to PROP.

%namespace = "http://cds.omdoc.org/logics"

%sig BASE = {

o : type. %% Type of propositions

}

%namespace = "http://cds.omdoc.org/logics/propositional "

%sig CONJ = {%include BASE. ...}

%sig IMP = {%include BASE. ...}

%sig PROP = {%include CONJ. %include IMP.}

Fig. 2. Formalization of Propositional Logic Syntax in Twelf

Overall, the Logic Atlas contains over 750 LF signatures, and their highly
modular structure yields a large number of inheritance edges. Additionally, it
contains over 500 signature morphisms that connect the nodes. This leads to
a highly interlinked non-linear structure of the Logic Atlas. Moreover, it is de-
signed highly collaboratively with strong interdependence between the develop-
ers. Therefore, it leads to a number of MKM challenges.

Firstly, the LF modules are distributed over files and these files over directo-
ries. This structure is semantically transparent because all references to modules
are made by URIs. The URIs are themselves hierarchical grouping the modules
into nested namespaces. It is desirable that these namespaces do not have to
correspond to source files or directories. Therefore, a mapping between URIs
and URLs has to be maintained and be accessible to all systems.

Secondly, LF encodings are usually highly concise, and a complex type recon-
struction process is needed to infer additional information. Twelf can generate
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an OMDoc-based content representation of the sources, but this semantically
enriched version is currently not fed back into the editing process.

Thirdly, encodings in LF are often difficult to read for anybody but the author.
In a collaborative setting, it is desirable to interact with the Logic Atlas not
only through the LF source syntax but also through browsable, cross-referenced
XHMTL+MathML. These should be interactive and for example permit looking
up the definition of a symbol or displaying the reconstructed type of a variable.
While we have presented such an interface in [GLR09] already, the systematic
integration into the authoring process, where the state of the art is a text editor,
has so far been lacking.

Finally, to understand and navigate the Logic Atlas, it is necessary to visualize
its multi-graph structure in an interactive graphical interface.

2.2 Computer Science Lecture Notes in Planetary

The GenCS corpus consists of the course notes and problems of a two-semester
introductory course in Computer Science [Gen11] held at Jacobs University by
one of the authors in the last eight years. The course notes currently comprise
300 pages with over 500 slides organized in over 800 files; they are accompanied
by a database of more than 1000 homework/exam problems. All course materials
are authored and maintained in the STEX format [Koh08], a modular, semantic
variant of LATEX that shares the information model with OMDoc; see Fig. 3 for
an example.

\begin{module}[id=trees]
\symdef[name=tdepth]{tdepthFN}{\text{dp}}
\symdef{tdepth}[1]{\prefix\tdepthFN{#1}}
\begin{definition}[id=tree-depth.def]
Let $\defeq{T}{\tup{V,E}}$ be tree, then the {\definiendum [tree-depth]{depth}}
$\tdepth{v}$ of a node $\inset{v}{V}$ is defined recursively: $\tdepth{r}=0$ for
the root $r$ of $T$ and $\tdepth(w)=1+\tdepth(w)$ if $\inset{\tup{v,w}}E$.

\end{definition}
...
\end{module}

\begin{module}[id=binary-trees]
\importmodule[\KWARCslides{graphs-trees/en/trees}]{trees}
...
\begin{definition}[id=binary-tree.def,title=Binary Tree]
A \definiendum[binary-tree]{binary tree} is a \termref[cd=trees,name=tree]{tree}
where all \termref[cd=graphs-intro,name=node]{nodes}
have \termref[cd=graphs-intro,name=out-degree]{out-degree} 2 or 0.

\end{definition}
...

\end{module}

Fig. 3. Semiformalization of two course modules

In our nomenclature, STEX is used as a source language that is transformed
into OMDoc via the LATEXML daemon [GSK11]. For debugging and high-quality
print the STEX sources can also be typeset via pdflatex, just as ordinary LATEX
documents. The encoding makes central use of the modularity afforded by the
theory graph approach; knowledge units like slides are encoded as “modules”
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(theories in OMDoc) and are interconnected by theory morphisms (module im-
ports). Modules also introduce concepts via \definiendum and semantic macros
via \symdef, these are inherited via the module import relation.

The challenges discussed for the LATIN Logic Atlas apply to the GenCS cor-
pus and the Planetary system analogously. Moreover: (i) The development of
the corpus proceeds along two workflows: drafting of the content via the classi-
cal pdflatex conversion (in a working copy via make) and via the web interface
in the Planetary system. (ii) The LATEXML conversion process needs interme-
diate files (the STEX module signatures), all of which have to be kept in sync.
(iii) Importing legacy STEX materials into the Planetary system is nontrivial.
For example, the contents of http://planetmath.org contain many (semantic)
cross-links and metadata. Rather than a set of individualized import scripts at
the level of the repositories and databases underlying Planetary, it is desirable
to have a file (set) that can be imported uniformly.

3 A Multi-dimensional Knowledge Representation

3.1 Dimensions of Knowledge

In order to address the knowledge management challenges outlined above, we
devise a methodology that permits the parallel maintenance of the orthogonal di-
mensions of the knowledge contained in a collection of mathematical documents.
It is based on two key concepts: (i) a hierarchic organization of dimensions and
knowledge items in a file-system-like manner, and (ii) the use of MMT URIs
[RK11] as a standardized way to interlink both between different knowledge
items and between the different dimensions of the same knowledge item.

The MMT URI of a toplevel knowledge item is of the form g?M where g is the
namespace and M the module name. Namespaces are URIs of the form 〈〈scheme〉〉
://[〈〈userinfo〉〉@]D1.. . . Dm[:〈〈port〉〉]/S1/. . ./Sn where the Di are domain labels
and the Si are path segments. Consequently, g?M is a well-formed URI as well.
〈〈userinfo〉〉, and 〈〈port〉〉 are optional, and 〈〈userinfo〉〉, 〈〈scheme〉〉, and 〈〈port〉〉 are
only permitted so that users can form URIs that double as URLs — MMT URIs
differing only in the scheme, userinfo, or port are considered equal.

We arrange a collection of mathematical documents as a folder containing the
following subfolders, all of which are optional:
source contains the source files of a project. This folder does not have a prede-

fined structure.
content contains a semantically marked up representation of the source files in

the OMDoc format. Every namespace is stored in one file whose path is de-
termined by its URI. Modules with namespace D1. . . . .Dm/S1/.../Sn reside
in an OMDoc file with path content/Dm/ . . . /D1/S1/ . . . /Sn.omdoc. Each
module carries an attribute source="/PATH?colB:lineB-colE:lineE" giv-
ing its physical location as a URL. Here PATH is the path to the containing
file in the source, and colB, lineB, colE, and lineE give the begin/end
column/line information.

http://planetmath.org
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presentation contains the presentation of the source files in the XHTML+
MathML format with JOBAD annotations [GLR09]. It has the same file
structure as the folder content. The files contain XHTML elements whose
body has one child for every contained module. Each of these module has
the attribute jobad:href="URI" giving its MMT URI.

narration contains an arbitrary collection of narratively structured documents.
These are OMDoc files that contain narrative content such as sectioning and
transitions, but no modules. Instead they contain reference elements of the
form <mref target="MMTURI"/> that refer to MMT modules. It is common
but not necessary that these modules are present in the content folder.

relational contains two files containing an RDF-style relational representation
of the content according to the MMT ontology. Both are in XML format with
toplevel element mmtabox and a number of children. In individuals.abox,
the children give instances of unary predicates such as
<individual type="IsTheory" uri="MMTURI" source="PATH"/>.
In relations.abox, the children give instances of binary predicates such as
<relation subject="MMTURI1" predicate="ImportsFrom" object=
"MMTURI2" source="PATH"/>. Usually, the knowledge items occurring in
unary predicates or as the subject of a binary predicate are present in the
content. However, the object of a binary predicate is often not present,
namely when a theory imports a remote theory. In both cases, we use an
attribute source to indicate the source that induced the entry; this is im-
portant for change management when one of the source files was changed.

Example 2 (Continuing Ex. 1) propositional-syntax
source
base.elf
modules.elf
prop.elf

content
org
omdoc
cds
logics.omdoc
logics
propositional
syntax.omdoc

presentation
org
omdoc
cds
logics.xhtml
logics
propositional
syntax.xhtml

narration
base.omdoc
modules.omdoc
prop.omdoc

relational
individual.abox
relations.abox

Fig. 4. Folder Structure

The directory structure for the signatures
from Ex. 1 is given in Fig. 4 using a root
folder named propositional-syntax. Here
we assume that the subfolder source con-
tains the Twelf source files base.elf which
contains the signature BASE, modules.elf
which contains CONJ and IMP, and prop.elf
which contains PROP.

Based on the MMT URIs of the signa-
tures in the source files, their content rep-
resentation is given as follows. The signature
BASE has the MMT URI http://cds.omdoc.
org/logics?BASE. The other signatures have
MMT URIs such as http://cds.omdoc.
org/logics/propositional/syntax?CONJ.
The content representation of the signa-
ture BASE is given in the OMDoc file
content/org/omdoc/cds/logics.omdoc.
The other content representations reside
in the file content/org/omdoc/cds/logics/
propositional/syntax.omdoc.

http://cds.omdoc.org/logics?BASE
http://cds.omdoc.org/logics?BASE
http://cds.omdoc.org/logics/propositional/syntax?CONJ
http://cds.omdoc.org/logics/propositional/syntax?CONJ
content/org/omdoc/cds/logics/propositional/syntax.omdoc
content/org/omdoc/cds/logics/propositional/syntax.omdoc
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The subfolder presentation contains the respective XHTML files,
logics.xhtml and syntax.xhmtl. All files in Fig. 4 can be downloaded at
https://svn.kwarc.info/repos/twelf/projects/propositional-syntax.

Our methodology integrates various powerful conceptual distinctions that have
been developed in the past. Firstly, our distinction between the source and the
content representation corresponds to the distinction between source and binary
in software engineering. Moreover, our directory structure is inspired by software
projects, such as in Java programming. In particular, the use of URIs to identify
content (binary) items corresponds to identifiers for Java classes. Therefore,
existing workflows and implementations from software engineering can be easily
adapted, for example in the use of project-based IDEs (see Sect. 4).

Secondly, the distinction between content and presentation has been well
studied in the MKM community and standardized in MathML [ABC+03]. In
particular, the cross-references from presentation to content correspond to the
interlinking of content and presentation in the parallel markup employed in
MathML, which we here extend to the level of document collections.

Thirdly, the distinction between content and narrative structure was already
recognized in the OMDoc format. The general intuition there is that narra-
tive structures are “presentations” at the discourse level. But in contrast to the
formula level, presentations cannot be specified and managed via notation defi-
nitions. Instead we add narrative document structure fragments, i.e. document-
structured objects that contain references to the content representations and
transition texts as lightweight structures to the content commons; see [Mül10]
for details and further references.

Finally, the distinction between tree-structured content representation and
the relational representation corresponds to the practice of the semantic web
where RDF triples are used to represent knowledge as a network of linked data.

3.2 A Mathematical Archive Format

We will now follow the parallelism to software engineering developed in the
previous section: We introduce mathematical archives — mar files — that cor-
respond to Java archives, i.e., jar files [Ora]. We define a mathematical archive
to be a zip file that contains the directory structure developed in Sect. 3.1. By
packaging all knowledge dimensions in a single archive, we obtain a convenient
and lightweight way of distributing multi-dimensional collections of interlinked
documents.

To address into the content of a mar archive, we also define the following URL
scheme: Given a mar whose URL is file:/A and which contains the source file
source/S, then the URL mar:/A/S resolves to that source file. We define the
URL mar:/A/S?Pos accordingly if Pos is the position of a module given by its
line/column as above.

Similar to the compilation and building process that is used to create jar files,
we have implemented a building process for mar files. It consists of three stages.
The first stage (compilation) depends on the source language and produce one

https://svn.kwarc.info/repos/twelf/projects/propositional-syntax
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OMDoc file for every source file whose internal structure corresponds to the
source file. This is implemented in close connection with dedicated tools for the
source language. In particular, we have implemented a translation from LF to
OMDoc as part of the Twelf implementation of LF [PS99, RS09]. Moreover, we
have implemented a translation from STEX to OMDoc based on the LATEXML
daemon [GSK11].

The second stage (building) is generic and produces the remaining knowl-
edge dimensions from the OMDoc representation. In particular, it decomposes
the OMDoc documents into modules and reassembles them according to their
namespaces to obtain the content representation. The narrative dimension is
obtained from the initial OMDoc representation by replacing all modules with
references to the respective content item. We have implemented this as a part
of the existing MMT API [RK11]. Finally, the API already includes a rendering
engine that we use to produce the presentation and the relational representation.

Then the third stage (packaging) collects all folders in a zip archive. For LF,
we integrate all three stages into a flexible command line application.

Example 3 (Continuing Ex. 2) The mathematical archive file for the running ex-
ample can be obtained at https://svn.kwarc.info/repos/twelf/projects/
propositional-syntax.mar

3.3 Catalog Services

The use of URIs as knowledge identifiers (rather than URLs) is crucial in or-
der to permit collaborative authoring and convenient distribution of knowledge.
However, it requires a catalog that translates an MMT URIs to the physical
location, given by a URL, of a resource. Typical URLs are those in a file system,
in a mathematical archive, or a remote or local repository. It is trivial to build
the catalog if the knowledge is already present in content form where locations
are derived from the URI.

But the catalog is already needed during the compilation process: For example,
if a theory imports another theory, it refers to it by its MMT URI. Consequently,
the compilation tool must already be aware of the URI-to-URL mapping before
the content has been produced. However, the compilation tool is typically a
dedicated legacy system that natively operates on URLs already and does not
even recognize URIs. This is the case for both Twelf and LATEX.

Therefore, we have implemented standalone catalog services for these two
tools and integrated them with the respective system. In the case of Twelf, the
catalog maintains a list of local directories, files, and mar archives that it watches.
It parses them whenever they change and creates the URI-URL mapping. When
Twelf encounters a URI, it asks the catalog via HTTP for the URL. This parser
only parses the outer syntax that is necessary to obtain the structure of the
source file; it is implemented generically so that it can be easily adapted to
other formal declarative languages. In this sense, it is similar to the HTTP
Getter service of the HELM library [ASPC+03].

https://svn.kwarc.info/repos/twelf/projects/propositional-syntax.mar
https://svn.kwarc.info/repos/twelf/projects/propositional-syntax.mar
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An additional strength of this catalog is that it can also handle ill-formed
source representations that commonly arise during authoring. Moreover, we also
use the catalog to obtain the line/column locations of the modules inside the
source files so that the content-to-source references can be added to the content
files.

In the case of STEX, a poor man’s catalog services is implemented directly in
TEX: the base URIs of the GenCS knowledge collection (see \KWARCslides in
Fig 3) is specified by a \defpath statement in the document preamble and can
be used in the \importmodule macros. The module environments induce inter-
nal TEX structures that store information about the imports (\importmodule)
structure and semantic macros (\symdef), therefore these three STEX primitives
have to be read whenever a module is imported. To get around difficulties with
selective input in TEX, the STEX build process excerpts a STEX signature module
〈〈module〉〉.sms from any module 〈〈module〉〉.tex. So \importmodule〈〈module〉〉.
sms simply reads 〈〈module〉〉.sms.

4 The Author’s Perspective

The translation from source to a content-like representation has been well-
understood. For languages like LF, it takes the form of a parsing and type re-
construction process that transforms external to internal syntax. The translation
from internal syntax to an OMDoc-based content representation is conceptually
straightforward. However, it is a hard problem to use the content representation
to give the author feedback about the document she is currently editing. A more
powerful solution is possible if we always produce all knowledge dimensions us-
ing the compilation and building process as described in Sect. 3.2. Then generic
services can be implemented easily, each of them based on the most suitable
dimension, and we give a few examples in Sect. 4.2.

Note that this is not an efficiency problem: Typically the author only works
on a few files that can be compiled constantly. It is even realistic to hold all
dimensions in memory. The main problem is an architectural one, which is solved
by our multi-dimensional representation. Once this architecture is set up and
made available to IDE developers, it is very easy for them to quickly produce
powerful generic services.

4.1 Multi-dimensional Knowledge in an IDE

In previous work, we have already presented an example of a semantic IDE [JK10]
based on Eclipse. We can now strengthen it significantly by basing it on our
multi-dimensional representation. Inspired by the project metaphor from soft-
ware engineering, we introduce the notion of a mathematical project in Eclipse.

A mathematical project consists of a folder containing the subfolder from
Sect. 3.1. The author works on a set of source files in the source directory.
Moreover, the project maintains a mathpath (named in analogy to Java’s class-
path) that provides a set of mar archives that the user wishes to include.
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The IDE offers the build functionality that runs the compilation and building
processes described in Sect. 3.2 to generate the other dimensions from the source
dimension. The key requirement here is to gracefully degrade in the presence of
errors in the source file. Therefore, we provide an adaptive parser component
that consists of three levels:

The regex level uses regular expressions to spot important structural proper-
ties in the document (e.g. the namespace and signature declarations in the
case of LF). This compilation level never fails, and its result is an OMDoc
file that contains only the spotted structures and lacks any additional infor-
mation of the content.

The CFG parser level uses a simple context-free grammar to parse the source.
It is able to spot more complicated structures such as comments and nested
modules and can be implemented very easily within Eclipse. Like the pre-
vious level, it produces an approximate OMDoc file, but contrary to the
previous level, it may find syntax errors that are then displayed to the user.

The full parser level uses the dedicated tool (Twelf or LATEX). The resulting
OMDoc file includes the full content representation. In particular, in the
case of Twelf, it contains all reconstructed types and implicit arguments.
However, it may fail in the case of ill-typed input.

The adaptive parser component tries all parser in stages and retains the file
returned by the last stage that succeeds. This file is then used as the input to
produce the remaining dimensions.

4.2 Added-Value Services

In this section we present several services that aim at supporting the author-
ing process. We analyze each of these services and show that they can can be
efficiently implemented by using one or several dimensions of knowledge.

project explorer is a widget giving an integrated view on a project’s content
by abstracting from the file system location where the sources are are de-
fined. It groups objects by their content location, i.e., their MMT URI. To
implement this widget, we populate the non-leaf nodes of the tree from the
directory structure of the content dimension. The leaf nodes are generated
by running simple XPath queries on the OMDoc files.

outline view is a source level widget which visualizes the main structural com-
ponents. For LF, these include definitions of signatures and namespaces as
well as constant declarations within signatures. Double-clicking on any such
structural components opens the place in the source code where the compo-
nent is defined. Alternatively, the corresponding presentation can be opened.

autocompletion assists the user with getting location and context specific sug-
gestions, e.g., listing declarations available in a namespace. Fig. 5a) shows
an example. Note how the namespace prefix base is declared to point to a
certain namespace, and the autocompletion suggests only signatures names
declared in that namespace. The implementation of this feature requires in-
formation about the context where autocompletion is requested, which is
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obtained from the interlinked source and content dimensions. Moreover, it
needs the content dimension to compute all possible completions. In more
complicated scenarios, it can also use the relational dimension to compute
the possible completions using the relational queries.

hover overlay is a feature that shows in-place meta-data about elements at the
position of the mouse cursor such as the full URIs of a symbol, its type or
definitions, a comment, or inferred types of variables. Fig. 5b) shows an ex-
ample. The displayed information is retrieved from the content dimension. It
is also possible to display the information using the presentation dimension.

definition/reference search makes it easy for a user to find where a certain
item is defined or used. Although the features require different user inter-
faces the functionality is very similar, namely, finding relations. Just like in
the hover overlay feature, one first finds the right item in the content repre-
sentation and then use the relation dimension to find the requested item(s).

theory-graph display provides a graphical visualization of the relations among
knowledge items. To implement this feature we apply a filter on the multi-
graph from the relations dimension and use 3rd party software to render it.

Fig. 5. a) Context aware Auto-Completion b) Metadata information on hover

5 The Reader’s Perspective

We have developed the Planetary system [KDG+11] as the reader’s complement
to our IDE. Planetary is a Web 3.0 system1 for semantically annotated document
collections in Science, Technology, Engineering and Mathematics (STEM). In our
approach, documents published in the Planetary system become flexible, adaptive
interfaces to a content commons of domain objects, context, and their relations.

We call this framework the Active Documents Paradigm (ADP), since
documents can also actively adapt to user preferences and environment rather
than only executing services upon user request. Our framework is based on se-
mantically annotated documents together with semantic background ontologies
(which we call the content commons). This information can then be used
by user-visible, semantic services like program (fragment) execution, compu-
tation, visualization, navigation, information aggregation and information re-
trieval [GLR09].
1 We adopt the nomenclature where Web 3.0 stands for extension of the Social Web

with Semantic Web/Linked Open Data technologies.
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Planetary TNTBase

STEX

XHTML

Active Documents Content Commons

Fig. 6. The Active Documents Architecture

The Planetary system directly uses all five incarnations/dimensions of math-
ematical knowledge specified in Sect 3.1. In the content incarnation, Planetary
uses OMDoc for representing content modules, but authors create and maintain
these using STEX in the source dimension and the readers interact with the ac-
tive documents encoded as dynamic XHTML+MathML+RDFa (the source in-
carnation of the material). We use the LATEXML daemon
[Mil, GSK11] for the transformation from STEX to OMDoc, this is run on every
change to the STEX sources. The basic presentation process [KMR08] for the
OMDoc content modules is provided by the TNTBase system [ZK09b].

But Planetary also uses the narrative dimension: content modules are used
not only for representing mathematical theories, but also for document struc-
tures: narrative modules consist of a mixture of sectional markup, inclu-
sion references, and narrative texts that provide transitions (narrative glue)
between the other objects. Graphs of narrative modules whose edges are the
inclusion references constitute the content representations of document frag-
ments, documents, and document collections in the Planetary system, wich gen-
erates active documents from them. It uses a process of separate compilation
and dynamic linking to equip them with document (collection)-level features
like content tables, indexes, section numbering and inter-module cross-references;
see [DGK+11] for details.

As the active documents use identifiers that are relative to the base URI of
the Planetary instance, whereas the content commons uses MMT URIs, the se-
mantic publishing map which maintains the correspondence between these
is a central, persistent data structure maintained by the Planetary system.

This is one instance of the relational di-
mension, another is used in the For instance,
the RDFa embedded in the presentation of a
formula (and represented in the linking part
of the math archive) can be used for defi-
nition lookup as shown on the left. Actually
the realization of the definition lookup service
involves presentation (where the service is

embedded) and content (from which the definition is fetched to be presented
by the service) incarnations as well.
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In the future we even want
to combine this with the source
dimension by combining it with
a \symdef-look service that
makes editing easier. This can
be thought of as a presentation-
triggered complement to the
editor-based service on the right that looks up \symdefs by their definienda.

6 Discussion

Our approach of folder-based projects is inspired by practices from software en-
gineering. However, while it is appealing to port these successful techniques to
mathematics, mathematical knowledge has more dimensions with a more com-
plex inter-dependence than software. In particular, where software IDEs can be
optimized for a work flow of generating either binaries or documentation from
the sources, the build process for our mathematical projects must employ mul-
tiple stages. Moreover, the narrative dimension that is central to mathematics
has no direct analog in software engineering.

Therefore, we cannot expect to be able to adapt all software engineering prac-
tices directly. We have been very successful with authoring-based services, where
the IDE can utilize the various dimensions for added-value services. Contrary to
software projects, this often requires the integration of information from multi-
ple dimensions. Archive-based packaging and distribution work flows can also be
adapted successfully, and we expect that the same holds for dependency man-
agement and — along the lines of [DGK+11] — linking.

More difficulties are posed by authoring work flows that depend on the math-
ematical semantics of the content such as generating content (e.g., theorem prov-
ing) or highlighting errors while typing. The necessary integration of the user
interface with a deduction system is very difficult, and only few systems real-
ize it. For example, the Agda [Nor05] emacs mode can follow cross-references
and show reconstructed types of missing terms. The Isabelle jEdit user interface
[Wen10] can follow cross-references and show tooltips derived from the static
analysis. In general, we believe that a data model like ours is one ingredient in
the design of a comprehensive and scalable solution for this problem.

Various domain-specific systems have adopted ad hoc implementations of
multi-dimensional representations. For example, the Mizar workflow [TB85] can
be understood as a build process that transforms the source dimension into
various content and relational dimensions, which are then used to assemble an
enriched content (.abs) and a presentation dimension (.html). Similar to our
format, the dimensions are spread over several folders. The Archive of Formal
Proofs [KNe04] uses a source and two narrative dimensions (proof outline and
document in pdf format) along with an HTML-based presentation dimension.
The dimensions are not systematically separated into folders, and projects can
be distributed as tar.gz archives.
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“Mathematica Applications” distinguish dimensions for mathematical algo-
rithms (kernel), notations (notebooks with palettes front-end), and narration
(narrative notebooks in the documentation). They also allow pre-generating
XHTML representations of the documentation (without giving it a separate di-
mension). The documentation notebooks can contain (non-semantic) links. The
algorithm aspect — that is at the center of Mathematica — is missing from
our math archives as content representations of mathematical computation are
largely unstandardized in MKM. Conversely, the separation of the source, con-
tent, and presentation dimensions are missing from Mathematica Applications
because they are conflated.

We have so far evaluated our infrastructure using our own corpora and sys-
tems: two corpora in two source languages with the respective compilation pro-
cesses (LATIN in Twelf and lecture notes in STEX), our semantic IDE [JK10],
and our semantic publishing system [KDG+11]. Despite the close collaboration
of the respective developers and users, we have found that a representation for-
mat like ours is a key prerequisite for scalable system integration: We use a
mathematical archive as a central knowledge store around which all systems are
arranged — with each system producing and/or using some of the knowledge
dimensions. For example, the navigation of the LATIN Logic Atlas involves four
distinct processes that can only be connected through our format: converting
source to content, generating relational from content, using relational to com-
pute and display the graph, using the cross-references to switch focus in the
source editor based on the user interaction with the graph.

Our choice of dimensions is not final — we have focused on those that we
found most important. Other dimensions can be added to our format easily, for
example, discussions and reviews or additional presentation dimensions like pdf.
Planetary already allows discussions of individual content items, and STEX al-
ready permits the creation of pdf. A more drastic extension is the use of multiple
source dimensions, e.g., for a specification in STEX, a formalization in a proof as-
sistant, and algorithms implemented in a programming language. Here the MMT
URIs will be particularly useful to realize cross-references across dimensions.

Our emphasis on file systems and zip archives is not without alternative. In
fact, even our own LATIN Logic Atlas is stored in a custom XML database with
SVN interface [ZK09a]; Planetary uses a custom database as well. However, a
file system-based infrastructure is the easiest way to specify a multi-dimensional
representation format and represents the lowest hurdle for system integration.
Moreover, we believe that more sophisticated mathematical databases should
always be able to import and export knowledge in a format like ours.

7 Conclusion

We have presented an infrastructure for creating, storing, managing, and dis-
tributing mathematical knowledge in various pragmatic forms. We have iden-
tified five aspects that have to be taken into account here: (i) human-oriented
source languages for efficient editing of content, (ii) the modular content repre-
sentation that has been the focus of attention in MKM so far, (iii) interactive
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presentations of the content for viewing, navigation, and interaction, (iv) narra-
tive structures that allow binding the content modules into self-contained docu-
ments that can be read linearly, and (v) relational structures that cross-link all
these aspects and permit keeping them in sync.

These aspects are typically handled by very different systems, which makes
system integration difficult, often leading to ad-hoc integration solutions. By
designing a flexible knowledge representation format featuring multiple inter-
connected dimensions, we obtained a scalable, well-specified basis for system
integration. We have evaluated them from the authoring and reading perspec-
tives using two large structured corpora of mathematical knowledge.

In the future, we want to combine these systems and perspectives more tightly.
For example, we could use Planetary to discuss and review logic formalizations
in Twelf, or write papers about the formalizations in STEX. This should not
pose any fundamental problems as the surface languages are interoperable by
virtue of having the same, very general data model: the OMDoc ontology. By
the same token we want to add additional surface languages and presentation
targets that allow to include other user groups. High-profile examples include
the Mizar Mathematical Language and Isabelle/Isar.
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Abstract. This paper surveys approaches and systems for searching mathemati-
cal formulae in mathematical corpora and on the web. The design and architecture
of our MIaS (Math Indexer and Searcher) system is presented, and our design de-
cisions are discussed in detail. An approach based on Presentation MathML using
a similarity of math subformulae is suggested and verified by implementing it as
a math-aware search engine based on the state-of-the-art system, Apache Lucene.

Scalability issues were checked based on 324,000 real scientific documents
from arXiv archive with 112 million mathematical formulae. More than two
billions MathML subformulae were indexed using our Solr-compatible Lucene
extension.
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I do not seek. I find.
Pablo Picasso

1 Introduction

The solution to the problem of mathematical formulae retrieval lies at the heart of build-
ing digital mathematical libraries (DML). There have been numerous attempts to solve
this problem, but none have found widespread adoption and satisfaction within the
wider mathematics community. And as yet, there is no widely accepted agreement on
the math search format to be used for mathematical formulae by library systems or by
Google Scholar.

MathML standard by W3C has become the standard for mathematics exchange be-
tween software tools. Almost no MathML is written directly by authors—they typically
prefer a compact notation of some TEX flavour such as LATEX or AMS-LATEX. The de-
signer of a search system for mathematics is thus faced with the task of converting data
to a unifying format, and allowing DML users to use their prefered notation when pos-
ing queries. [AMS]LATEX or other TEX flavour are the typical preferences; Presentation
MathML or Content MathML are used only when available as outputs of a software
system.

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 228–243, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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During the integration of existing DMLs into larger projects such as EuDML [15],
the unsolved math search problem becomes evident—DML without math search sup-
port is an oxymoron. As our subject matter search has not lead to a satisfactory solution,
we have designed and implemented [7] new robust solutions for retrieval of mathemati-
cal formulae.

Section 2 explores published facts about research done in the area of mathematics
retrieval. Pros and cons of existing approaches are outlined, most of them being neither
applicable nor satisfactory for digital library deployment. In Section 3 we present our
design of scalable and extensible system for searching mathematics, taking into account
not only inherent structure of mathematical formulae but also formula unification and
subformulae similarity measures. Our evaluation of prototypical implementation above
the Apache Lucene open source full-featured search engine library is presented in Sec-
tion 4. The paper closes listing future work directions in Section 5 and a conclusion is
summarised in Section 6.

Computers are useless. They can only give you answers.
Pablo Picasso

2 Approaches to Searching Mathematics

A great deal of research on has been already undertaken on searching mathematical for-
mulae in digital libraries and on the web. Several such Mathematical Search Engines
(MSE) have been designed in the past: MathDex, EgoMath, LATEXSearch, LeActive-
Math or MathWebSearch. In this section, we will briefly comment on each of these.

MathDex1 (formerly MathFind [9]) is a result of a NSF-funded project headed by
Robert Miner of Design Science2. It encodes mathematics as text tokens, and uses
Apache Lucene as if searching for text. Using similarity with search terms, ranked re-
sults are produced by the search algorithm, matching n-grams of presentation MathML.
The creators of MathDex report that most of the work was due to a necessary and
extensive normalization of MathML—because of the fact that it uses several convert-
ers and filters to convert to XHTML + MathML—HTML (jtidy), TEX/LATEX (blahtex,
LATEXML, Hermes), Word (Word+MathType), PDF (pdf2tiff+Infty). The algorithm of
n-gram ranking has several drawbacks. For one thing, it cannot take many kinds of ele-
mentary mathematical equivalences into account, and it puts undue weight on variable
names.

Contrary to its intentions, MathDex has not become a sustainable service to the math-
ematical community, although it has fueled research in the area of mathematics search-
ing [16,17,1].

EgoMath3 is being developed by Josef Mišutka as an extension of a full text websearch
core engine Egothor (by Leo Galamboš, MFF UK Prague) [8] licenced under GPL. It
uses presentation MathML for indexing and develops generalization algorithms and

1 www.mathdex.com/
2 www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Miner-Robert/index.html
3 egomath.projekty.ms.mff.cuni.cz/egomath/

http://eudml.eu/
http://lucene.apache.org/java/docs/index.html


230 P. Sojka and M. Líška

relevancy calculation to cope with normalization. As part of EgoThor evaluation, an
MSE evaluation dataset is also being developed4.

LATEXSearch5 is a search tool offered by Springer in SpringerLink. It searches directly
in the TEX math string representations as provided by the authors of papers submitted
to Springer in LATEX sources. Some kind of text similarity matching is probably used.
Since it is not open source, one can only guess the strategy for posing queries. Our
experiments typically lead to a very low precision. Neither is there any definition of the
article dataset available.

LeActiveMath6 search has been developed as part of the ActiveMath-EU project. It
is Lucene based, indexing string tokens from OMDoc with an OpenMath semantic no-
tation. The document database format is internal since only documents authored for
LeActiveMath learning environments are indexed.

MathWebSearch7 is an MSE developed in Bremen/Saarbrücken by Kohlhase et al. [2]
It is not based on full text searching, rather it adopts a semantic approach: it uses substi-
tution trees in memory. Both presentation and content MathML is supported, together
with OpenMath. It is exceptional in the fact that it primarily deals with semantics and
uses its own engine, not being built on the Lucene engine, for math. Further develop-
ment is now being pursued under LaMaPun architecture [6].

The comparison of math search systems is summarized in Table 1. All of the MSEs
reviewed had some drawbacks regarding their employment in a digital mathematical li-
brary such as EuDML. This was our main motivation for designing a new one, primarily
for the use in large scale libraries, such as EuDML or ArXiv.

Everything you can imagine is real.
Pablo Picasso

3 Design of MIaS

We have developed a math-aware, full-text based search engine called MIaS (Math
Indexer and Searcher). It processes documents containing mathematical notation in
MathML format. MIaS allows users to search for mathematical formulae as well as
the textual content of documents.

Since mathematical expressions are highly structured and have no canonical form,
our system pre-processes formulae in several steps to facilitate a greater possibility of
matching two equal expressions with different notation and/or non-equal, but similar
formulae. With an analogy to natural language searching, MIaS searches not only for
whole sentences (whole formulae), but also for single words and phrases (subformulae
down to single variables, symbols, constants, etc.). For calculating the relevance of the
matched expressions to the user’s query, MIaS uses a heuristic weighting of indexed
terms, which accordingly affects scores of matched documents and thus the order of
results.

4 egomath.cythres.cz/dataset.py
5 www.latexsearch.com/
6 devdemo.activemath.org/ActiveMath2/
7 search.mathweb.org/index.xhtml

http://www.activemath.org/eu/
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3.1 System Workflow

The top-level indexing scheme is shown in Figure 1. A detailed view of the mathemati-
cal part is shown in Figure 2 on the next page.

Fig. 1. Scheme of the system workflow

3.2 Indexing

MIaS is currently able to index documents in XHTML, HTML and TXT formats. As
Figure 1 shows, the input document is first split into textual and mathematical parts.
The textual content is indexed in a conventional way.

Mathematical expressions, on the other hand, are pre-analyzed in several steps to
facilitate searches not only for exact whole formulae, but also for subparts (tokeniza-
tion) and for similar expressions (formulae modifications). This addresses the issue of
the static character of full-text search engines and creates several representations of
each input formula all of which are indexed. Each indexed mathematical expression has
a weight (relevancy score) assigned to it. It is computed throughout the whole index-
ing phase by individual processing steps following this basic rule of thumb—the more
modified a formula and the lower the level of a subformula, the less weight is assigned
to it.
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Fig. 2. Scheme of the MIaS workflow of math processing

At the end of all processing methods, formulae are converted from XML nodes to
a compacted linear string form, which can be handled by the indexing core. Start and
end XML tags are substituted by the tag name followed by an argument embraced
by opening and closing parentheses. This creates abbreviated but still unambiguous
representation of each XML node. For example, formula a + b2, in MathML written as:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>a</mi>
<mo>+</mo>
<msup> <mi>b</mi><mn>2</mn></msup>

</mrow>
</math>

is converted to “math(mrow(mi(a)mo(+)msup(mi(b)mn(2))))” and this string is
then indexed by Lucene.

3.3 Tokenization

Tokenization is a straightforward process of obtaining subformulae from an input for-
mula. MIaS makes use of Presentation MathML markup where all logical units are
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enclosed in XML tags which makes obtaining all subformulae a question of tree traver-
sal. The inner representation of each formula is an XML node encapsulating all the
member child nodes. This means the highest level formula—as it appears in the input
document—is represented by a node named “math”. All logical subparts of an input
formula are obtained and passed on to modification algorithms.

3.4 Formulae Modifications

MIaS performs three types of unification algorithms, the goal of which is to create
several more or less generalized representations of all formulae obtained through the
tokenization process. These steps allow the system to return similar matches to the user
query while preserving the formula structure and α-equality.

3.5 Ordering

Let us take a simple example: a + 3 and the query 3 + a. This would not match even
though it is perfectly equal. This is why a simple ordering of the operands of the com-
mutative operations, addition and multiplication, is used. It tries to order arguments
of these operations in the alphabetical order of the XML nodes denoting the operands
whenever possible—it considers the priority of other relevant operators in the formula.
The system applies this function to the formula being indexed as well as to the query
expression. Applied to the example above, the XML node denoting variable a is named
“mi”, the node denoting number 3 is named “mn”. “mi”<“mn” therefore 3+a would be
exchanged for a + 3 and would match.

3.6 Unification of Variables

Let us take another example: a + ba and x + yx. Again, these would not match even
though the difference is only in the variables used. MIaS employs a process that unifies
variables in expressions while taking bound variables into account. All variables are sub-
stituted for unified symbols (ids) in both the indexing and searching phases. Applied to
the example, both expressions would unify to id1 + idid1

2 and would match. This process
is not applied to single symbols—this would lead to the indexing of millions of ids and
searching for any symbol would end up matching all of the documents containing it.

3.7 Unification of Constants

This is a strightforward process of substituting all the numerical constants for one uni-
fied symbol (const). This obviates the need for the exact values of constants in user
queries. In some situations however, this can be too much of a generalization. As well
as in the case of the variables, stand-alone numerical constants are not unified for the
same obvious reason.

3.8 Formulae Weighting

During the searching phase, a query can match several terms in the index. However one
match can be more important to the query than another, and the system must consider
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this information when scoring matched documents. For mathematical formulae the sys-
tem makes use of the processing operations described above since they all produce
expressions more generalized than the input ones.

It is impossible to assemble a weighting function that is exactly right. Such a function
should consider a document base on which the system will run as well as the established
customs in a particular scientific field. We tried to create a complex and robust weight-
ing function that would be appropriate to many fields.

The original unchanged untokenized formula should of course have the greatest
weight, but the precision of the ordered representation is not compromised at all, so
it should have the same weight. In fact, if the ordering process changes the order of
some members in an expression, the original formula is not indexed at all. The starting
weight for such a representation is 1.

The tokenization process should naturally lower the weight of the subformulae since
they are deeper in the structure and therefore less important to the overall formula.
When a user who is searching for a + b finds two documents, the first containing a + b
and the second containing 2

a+b , the first should score more and appear higher in the
results, as it matches in higher level of MathML expression tree. Hence the tokenization
process reduces the weight of the subformulae according to the level coefficient l < 1.

Both unification algorithms produce representations that are more generalized than
their input expressions. They have a higher probability of matching, and should there-
fore score less. The unification of variables alters the weight of the result formula by
coefficient v < 1, unification of number constants uses coefficient c < 1.

Theoretically, two equally unified subformulae matched on the same level of differ-
ently complex parent formulae would have the same score. For example

a + b3+a

and ∞∫

0

25b2 db

3 + a
+

d − e
b
+ 100ab

with the query 3+a. Both matches are not unified, and both are found on the third level.
Analogously to conventional full-text engines which discriminate documents with more
tokens than others, we use information about the complexity of parent formulae. More
specifically, an initial weight of 1 is multiplied by the inverse number of nodes of a
whole parent expression.

According to this model, each formula has a weight attribute indexed alongside itself,
which belongs to the interval (0, 1〉. Weight w of the subformula contained on a certain
level in a parent formula with the number of nodes (n) can be calculated in particular
situations as follows:

– no changes made: w = llevel(1+v+c+vc)
n

– unified variables: w = llevel (v+vc)
n

– unified constants: w = llevel (c+vc)
n

– unified both variables and constants: w = llevel(vc)
n .
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a b2 c , 0.125

a bc 2 , 0.125

“mi”  “mn” 2 <-> c

a , 0.0875 , 0.0875 bc 2 , 0.0875

b , 0.06125 c 2, 0.06125

c , 0.042875

, 0.042875

2, 0.042875

id 1 2, 0.0343

c const , 0.030625

id 1 const , 0.01715

id 1
id 2 2 , 0.07

bc const , 0.04375

id 1
id 2 const , 0.035

id 1 id 2
id 3 2 , 0.1

a bc const , 0.0625

id 1 id 2
id 3 const , 0.05

Fig. 3. Example of formula preprocessing. Ordered pairs are (<expression written naturally>,
<it’s weight>). All expressions as shown are indexed, except for the original one.

See Section 3.9 for details.
To fine tune the weighting parameters, we developed a tool with verbose output in

which the behavior of the model can be observed and tested. A sample from the tool
mentioned above is shown in Table 2 on the next page.

We have come to the conclusion that the unification of variables interferes less with
original formula meaning than the unification of number constants. For this reason, its
coefficient should be higher—i.e., less discriminating. The main question then became,
how discriminating the level coefficient should be. Our empirical deduction is that going
deeper in a structural tree should be discriminating, the precise match on a lower level
should still score more than any unified formula on the level above, as could be seen in
Table 2: 1

a+3 (row 5) is an exact match on the second level and its score is higher than
unified expressions matched on the first level (rows 2, 3 and 4).

This led us to the valuation of level weighting coefficient l = 0.7, unification weight-
ing coefficient v = 0.8 and constant weighting coefficient c = 0.5.

In Figure 3 the whole formula preprocessing process is illustrated together with its
subformulae weightings.

3.9 Searching

In the search phase, user input is again split into mathematical and textual parts. Formu-
lae are then reprocessed in the same way as in the indexing phase, except for
tokenization—which we doubt that users are likely to query, for example a+b

c want-
ing to find documents only with occurrences of variable c. That means the queried



Indexing and Searching Mathematics in Digital Libraries 237

Table 2. Example of weighting function on several formulae. Original query is a + 3—all
queried expressions are a + 3, id1 + 3, a + const, id1 + const.

Formula Indexed Expressions Score Matched

a + 3
0.25=[a + 3], 0.2=[id1 + 3], 0.175=[a, 3,
+], 0.125=[a + const], 0.1=[id1 + const]

2.7
0.1[id1 + const] + 0.25[a + 3] +
0.2[id1 + 3] + 0.125[a + const]

b + 3
0.25=[b+ 3], 0.2=[id1 + 3], 0.175=[b,+, 3],
0.125=[b + const], 0.1=[id1 + const]

1.2 0.1[id1 + const] + 0.2[id1 + 3]

a + 5
0.25=[a+ 5], 0.2=[id1 + 5], 0.175=[a,+, 5],
0.125=[a + const], 0.1=[id1 + const]

0.9 0.1[id1 + const] + 0.125[a + const]

c + 10
0.25=[c + 10], 0.2=[id1 + 10],
0.175=[c,+, 10], 0.125=[c + const],
0.1=[id1 + const]

0.4 0.1[id1 + const]

1
a+3

0.16667=[ 1
a+3 ], 0.13334=[ 1

id1+3 ],
0.11667=[1, a + 3], 0.09334=[id1 + 3],
0.08334=[ const

a+const ], 0.08167=[+, 3, a],
0.06667=[ const

id1+const ], 0.05833=[a + const],
0.04667=[id1 + const]

1.26
0.04667[id1 + const] + 0.11667[a +
3] + 0.09334[id1+3] + 0.05833[a+
const]

1
b+3

0.16667=[ 1
b+3 ], 0.13334=[ 1

id1+3 ],
0.11667=[b + 3, 1], 0.09334=[id1 + 3],
0.08334=[ const

b+const ], 0.08167=[b, 3,+],
0.06667=[ const

id1+const ], 0.05833=[b + const],
0.04667=[id1 + const]

0.56
0.04667[id1+const] + 0.09334[id1+

3]

1
a+5

0.16667=[ 1
a+5 ], 0.13334=[ 1

id1+5 ],
0.11667=[1, a + 5], 0.09334=[id1 + 5],
0.08334=[ const

a+const ], 0.08167=[a, 5,+],
0.06667=[ const

id1+const ], 0.05833=[a + const],
0.04667=[id1 + const]

0.42
0.04667[id1 + const] + 0.05833[a +
const]

1
c+10

0.16667=[ 1
c+10 ], 0.13334=[ 1

id1+10 ],
0.11667=[1, c + 10], 0.09334=[id1 + 10],
0.08334=[ const

c+const ], 0.08167=[+, c, 10],
0.06667=[ const

id1+const ], 0.05833=[c + const],
0.04667=[id1 + const]

0.19 0.04667[id1 + const]

expressions are first ordered, then unified. This produces several representations which
are connected to the final query by the logical OR operator.

Textual query terms are connected to the final query by the logical AND operator.
Therefore by specifying a text term we can narrow down the results, because each re-
turned document must have the term contained. When more than one text term is speci-
fied, they are implicitly connected to the text query by the OR operator which means at
least one term should occur in the result. We can also explicitly state preferences about
each text term—whether it needs to occur in the result or not.

As stated above, the final query, without having explicitly stated occurrences of text
terms, is in the logical form of (formula1 ∨ . . .∨ formulan) ∧ (term1 ∨ . . .∨ termn).

In order to counterbalance the weight of the textual and mathematical parts of the
query, the score of the matched formulae are additionally multiplied by number of nodes
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the matching query consists of. This results in more complex mathematical queries
scoring more.

A very positive value has its price in negative terms. . .
the genius of Einstein leads to Hiroshima.

Pablo Picasso

4 Evaluation

For large scale evaluation, we needed an experimental implementation and a corpus of
mathematical texts.

4.1 Implementation

The Math Indexer and Searcher is written in Java. The role of full-text indexing and
searching core is performed by Apache Lucene 3.1.0. The mathematical part of docu-
ment processing can be seen as a standalone pluggable extension to any full-text library,
however it would need custom integration for each one. In the case of Lucene, a custom
Tokenizer (MathTokenizer) has been implemented.

For the textual content of documents, Lucene’s StandardAnalyzer is employed. In
MathTokenizer, TermAttributes are used for carrying strings of math expressions and
PayloadAttribute for storing weights of formulae.

The question now is, how should the weights of formulae be taken into consideration
in the overall score of matched documents. Lucene’s practical scoring function for every
hit document d by query q with each query term t is as follows:

score(q, d) = coord(q, d) · queryNorm(q) ·
∑

t in q

(
tf (t in d) · idf (t)2 · t.getBoost() · norm(t, d)

)

It is described in detail at http://lucene.apache.org/java/3_1_0/api/core/
index.html?org/apache/lucene/search/Similarity.html.

When searching for mathematical formulae, their weights need to be considered in
the final score of the document. The resulting MIaS scoring function adds another pa-
rameter to the basic function—weight w of one matched formula:

score(q, d) = coord(q, d) · queryNorm(q) ·
·
∑

t in q

(
tf (t in d) · avg(w) · idf (t)2 · t.getBoost() · norm(t, d)

)
(1)

If a document contains the same formula more than once (each occurrence can have dif-
ferent weight assigned), the average value of all the weights is taken into consideration
(avg(w)).

Let’s take a simplified version of the function (1). Specifically, let us not to consider
normalization factor queryNorm(q), inverse document frequency idf (t)2 and document/
field boost and length factor norm(t, d):

score(q, d) = coord(q, d) ·
∑

t in q

(tf (t in d) · avg(w) · t.getBoost()) (2)

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html
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and follow the example in Table 2 on page 237. Let’s consider we query a document
containing only two formulae b + 3 and 1

a+3 (rows 2 and 5). During indexing time,
preprocessing creates several more representations, all of which are indexed (shown
in the second column). The query is a + 3 which is expanded by query preprocessing
to the final query that takes the form of a + 3 ∨ id1 + 3 ∨ a + const ∨ id1 + const.
Column 4 shows which actual expressions will match the query for each particular
input formula. coord(q, d) will be 4

4 because all four of the four query terms found a
match. Query terms a + 3 matched only one indexed term and its weight is 0.11667;
query term a+ const also matched only one indexed term and its weight 0.05833; query
term id1 + 3 matched two indexed terms with weights 0.2 and 0.09334 so its average is
0.14667; finally the last query term id1 + const matched two indexed expressions with
weights 0.1 and 0.04667 so its average is 0.07335. t.getBoost() is a query time boosting
factor and as stated in Section 3.9, we use the number of XML nodes of the original
query formula—in this example it is 4. The resulting score of the whole document is
then

4
4
·
(
(1 · 0.11667 · 4) + (1 · 0.05833 · 4) + (2

1
2 · 0.14667 · 4) + (2

1
2 · 0.07335 · 4)

)

4.2 Corpus of Mathematical Documents MREC

A document corpus MREC with 324,060 scientific documents (version 2011.3.324) was
initially used to evaluate the behaviour of the system we modelled. The documents come
from the arXMLiv project that is converting document sets from arXiv into XHTML +
MathML (both Content and Presentation) [13]. At the time of testing, our system was
not yet able to process mixed MathML markup so preprocessing in the sense of filtering
out unwanted markup was needed. The resulting corpus size was 53 GB uncompressed,
6.7 GB compressed. Documents contained 112,055,559 formulae in total, of which
2,129,261,646 mathematical expressions were indexed. The resulting index size was
approx. 45 GB.

We were able to gather even greater amount of documents in MREC corpus ver-
sion 2011.4.439 to test our indexing system. This corpus consists of 439,423 arXMLiv
documents containing 158,106,118 mathematical formulae. 2,910,314,146 expressions
were indexed and the resulting size of the index is 63 GB. Sizes of uncompressed and
compressed corpora size are 124 GB and 15 GB, respectively.

Mentioned MREC corpora are available to the community for download from MREC
web page http://nlp.fi.muni.cz/projekty/eudml/MREC/ so that other math in-
dexing engines could be compared with MIaS on the same data.

4.3 Results

Math Indexer and Searcher demonstrated the ability to index and search a relatively vast
corpus of real scientific documents. Its usability is highly elevated thanks to its prepro-
cessing functions together with formulae weighting model. The ability to search for ex-
act and similar formulae and subformulae, more so with customizable relevancy compu-
tation, demonstrates an unquestionable contribution to the whole search
experience.

http://kwarc.info/projects/arXMLiv/
http://nlp.fi.muni.cz/projekty/eudml/MREC/
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Table 3. Scalability test results (run on 32 GB RAM, quad core AMD OpteronTM Processor 850
driven machine)

Documents Input formulae Indexed formulae Indexing time [min] Average query time [ms]

10,000 3,450,114 65,194,737 39.15 32
50,000 17,734,342 334,078,835 201.68 178

200,000 70,102,960 1,316,603,055 889.28 576
324,060 112,055,559 2,129,261,646 1,292.16 789

It is very difficult, if not impossible, to completely verify the correctness of the the-
oretical considerations made in the previous sections and thus correctness of search
results. For this purpose, a sufficiently large corpus of documents with fully controlled
content would be needed. For any assembled query, there should exist beforehand a
complete list of the documents ordered by their relevance to the query to compare the
actual results to.

We have applied an empirical approach to the evaluation so far. For these purposes
we have created a demo web interface WebMIaS which is publicly available on the
MIaS web page http://nlp.fi.muni.cz/projekty/eudml/mias/. It works over
MREC corpora discussed in the Section 4.2 Additionally, for the latest MREC corpus
we have implemented and added demanded snippet generation and mathematical match
highlighting in hit list. Preliminary version of this functionality is available.

Our WebMIaS interface supports queries in two different notations—inAMS-LATEX
and MathML. Mathematical queries are additionally canonized using XSLT transfor-
mations from UMCL library [4,3] to improve the query and to avoid notation flaws
restraining proper results retrieval. Portability of the interface is increased by using
MathJax for rendering of mathematical formulae in snippets.

4.4 Scalability Testing and Efficiency

We have devised a scalability test to see how the system behaves with an increasing num-
ber of documents and formulae indexed. Subsets containing 10,000, 50,000, 200,000
and the complete 324,060 documents were gradually indexed and several values were
measured: the number of input formulae, the number of indexed formulae, the indexing
time and the average query time.

The number of input formulae indicate how rich a particular subset was in for-
mulae; the number of indexed formulae should illustrate their complexity. Moreover
both should indicate whether indexing and query time are dependent on the number
of documents or specially on the formulae they contain. For measuring the average
query time, we queried each created index with the same set of differently complex
queries (mixed, non-mixed, more/less complex single/multiple formulae) computing
the average time. The results are shown in Table 3 and in the form of diagrams in Fig-
ure 4 on the next page.

MREC version 2011.4.439 was indexed using improved and optimised algorithms
and ran on a different machine. Therefore it cannot be compared to measured values

http://nlp.fi.muni.cz/projekty/eudml/mias/
http://mathjax.org
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(a) Number of input formulae vs. indexing
time

(b) Number of input formulae vs. query time

(c) Number of documents vs. query time (d) Number of formulae vs. number of
documents

Fig. 4. Scalability diagrams

shown in tables 3 on the facing page and 4. Indexing time of this corpus was 1378.82 ms,
e.g. almost 23 hours.

He can who thinks he can, and he can’t who thinks he can’t.
This is an inexorable, indisputable law.

Pablo Picasso

5 Open Issues, Future Work

We are now awaiting heterogeneous MathML data collected by the EuDML project,
that has been generated from born-digital [meta]data [10], from born-digital PDFs [5]
or from math OCR [14].

It is evident that some kind of normalization of MathML will be a necessity. We have
opted for Canonical MathML [4,3] as normalization MathML format and are using
software library UMCL supporting it. Our latest experiments with canonical form of
MathML generated by UMCL shows that it not only increases fairness of similarity
ranking, but also helps to match a query against the indexed form of MathML. We are
also working hard on snippets generation and on matched formulae visualization.

Another area of long-term research planned is supporting Content MathML, in a
way similar to the current handling of Presentation MathML. The architectural design

http://sourceforge.net/projects/umcl/
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is open to it, but as most of math within EuDML will be in Presentation MathML taken
from PDFs, this is not currently a high priority.

I am always doing that which I can not do, in order that I may learn how to do it.
Pablo Picasso

6 Conclusions

We have presented an approach to mathematics searching and indexing—the architec-
ture and design of the MIaS system. The feasibility of our approach has been verified
on large corpora of real mathematical papers from arXMLiv. Scalability tests have con-
firmed that the computing power needed for fine math similarity computations is read-
ily available; this would allow the use of this technology for projects on a European or
world-wide scale.
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Abstract. Proof assistants in the LCF tradition, such as Coq, Isabelle,
and the HOL family, are notorious for old-fashioned command-line inter-
action with input and output of plain text. Established prover interfaces
like Proof General merely add a thin layer on top of the read-eval-print
loop in the background. More sophisticated mathematical editors, Web-
services, Wiki-servers for mathematical content do exist, but any project
that aims at fully formal proof-checking struggles with recurrent prob-
lems posed by ancient prover engines.

Taking the perspective of Isabelle, we discuss common problems and
solutions that have emerged in the past few years, to fit the prover
smoothly into a document-oriented environment with rich semantic an-
notations for formal sources. For example, this enables a conventional
editor framework to present formal content provided by the prover, with-
out having to understand logic itself (or re-implement a prover). This can
be achieved with minimal changes on the editor and prover side, but the
combination is able to support the usual metaphors of squiggly underline,
tooltips, popups etc. that are now commonplace in browsers or IDEs.

Many of these document-oriented traits of current Isabelle are suffi-
ciently general to be transferred to other provers. If such principles are
becoming routinely available in LCF-style provers, building combined
mathematical assistants should become more feasible.

1 Introduction

Isabelle has been centered around some notion of formal proof document ever
since the introduction of the Isar proof language around 1999 (see also the
overview [12]). This philosophical notion of “document” emphasizes an idea of
primary presentation of machine-checked proofs in human-readable form. To
accompany the abstract principles with concrete implementations, Isabelle/Isar
provides some means to produce pretty-printed versions based on superficial ob-
servations on the structure of source text that is known to have passed through
formal checking. Thus the traditional Isabelle document preparation system can
present theories with good typesetting quality in PDF-LATEX, such as the present
paper. Little of the formal content that the prover has accumulated in checking
the text is available in the resulting PDF, though.

In the past few years, Isabelle has started to provide more substantial access
to internal prover content. This was motivated by the requirements of formal

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 244–259, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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theory repositories and the user agents to access the content (via Web-interfaces,
Wikis, Prover IDEs). The general question is how aspects of sophisticated formal
processing of sources can be represented externally, without front-ends having
to understand logic or re-implement provers, and without provers having to
implement their own front-end technology. Some of this advanced document-
oriented functionality of Isabelle is already accessible to users in the experimental
Isabelle/jEdit Prover IDE [13]: results of proof checking are visualized as squiggly
underlines, tooltips, or hyperlinks in the source. This is only the beginning of
many more possibilities, based on the same document-oriented architecture.

These new concepts of Isabelle are sufficiently general to be applicable to other
proof assistants, such as Coq or variants of HOL. Although not a prover, the
former command-line compiler of Poly/ML (by David Matthews) has already
been integrated: Isabelle/ML sources that are embedded into the formal context
benefit from content revealed by Isabelle and the static analysis of SML. This
makes Isabelle/jEdit also an IDE for Poly/ML.

Cultural Side-conditions and Programming Paradigms. We need to re-
spect some cultural side-conditions, if old-school provers shall become native
participants in a larger world that typically speaks XML instead of λ-calculus.

Major interactive theorem provers are implemented in some functional pro-
gramming language. For systems from North America this usually means LISP,
e.g. see ACL2 [16, §8] or PVS [16, §3]. For European systems it often means a
descendant of ML [6]: Standard ML for Isabelle [16, §6] and some HOL variants,
OCaml for Coq [16, §4] and other HOL variants [16, §1], or Haskell for some
newer implementations such as Agda [16, §7].

This cultural background impacts our problem of document-oriented theorem
provers. Implementors of proof assistants routinely use higher-order datatypes
and Hindley-Milner polymorphism, but the outside world might only speak of
XML and event-dispatch objects for SAX parsing. The Haskell community has
managed to adopt significant parts of the XML world as libraries like HaXml,
but less is available in ML. Our general attitude is to retain the established
prover programming culture of ML, and extend our repertoire by a few elements
that help to integrate smoothly with XML-based document markup. In Isabelle,
the general prover integration problem is further materialized by the following
bilingual approach:

Isabelle/ML represents the pure symbolic programming environment for so-
phisticated logical concepts implemented in the prover. Isabelle happens to
use Standard ML (notably the Poly/ML implementation), which is also em-
bedded into the logical context [15].

Isabelle/Scala provides an external API for prover integration on the Java
VM, where many useful IDE or Web frameworks already exist. Scala/JVM
[7] is sufficiently flexible to support the received ML programming style.
Sometimes it goes beyond that, e.g. via typed views on untyped data.

Our document-oriented concepts are reflected both in Isabelle/ML and
Isabelle/Scala. The main ideas are already present in ML, and can be re-used
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without subscribing to the bilingual architecture. Conceptually, our Scala library
provides a simplified programming model, without exposing the full details of
document-oriented prover protocols to front-ends as was done in PGIP [4].

Scala is able to express the sublime programming style of Isabelle/ML, with
parameterized types, higher-order combinators, pattern matching etc. It also
provides direct access to existing Java frameworks at the JVM bytecode level.
Although it is hard to imagine sophisticated provers implemented in Java, one
might seriously consider doing it in Scala. For us the latter is a theoretical
question, since we aim at re-use of provers in ML, not re-writing from scratch
in Scala. There are also some inherent limitations of the JVM that make it
hard to work with large symbolic structures as effectively as in existing ML
implementations.

Overview. This paper is structured as follows. §2 introduces principles for
robust support of text that is annotated by markup. This makes the prover
speak XML natively with minimal impact on the existing code base. §3 presents
some common uses of XML content in the prover for data representation and
physical rendering. §4 describes a general scheme that can reconstruct content
of the conceptual prover document model in external form.

2 Text with Markup

Proof assistants are traditionally based on text for input and output. We remain
faithful to this principle, but add markup information in a conservative manner.
Making this work smoothly for existing provers turns out to be surprisingly
difficult: it might explain retrospectively why this is not yet established prover
technology. We first need to answer questions like “What is text?” and “What is
markup?” precisely, and keep in mind various fine points for our implementation.

2.1 Text Encoding and Rendering

Proof assistants have a natural demand for mathematical symbols, beyond tra-
ditional ASCII art. In recent years, Unicode has become sufficiently wide-spread
to be considered, although it is not as universal and uniform as ASCII. Unicode
standards are still evolving, and even within a given version there are variations.

Unicode defines tables of codepoints (represented as small integers) that are
associated with names and visual appearance of glyphs. Physical representation
in memory is defined separately by encodings : most common are now UTF-8 and
UTF-16, both available in several variants. Thus the correspondence of bytes in
memory to glyphs is not immediately obvious, and moving between different
platforms such as ML (UTF-8) and JVM (UTF-16) requires some care.

For example, A (codepoint U+1D49C, MATHEMATICAL SCRIPT CAPITAL A) cor-
responds to 4 bytes in UTF-8 (due to its regular multi-byte encoding), and 4
different bytes in UTF-16 (due to “surrogate characters” that are used to work



Isabelle as Document-Oriented Proof Assistant 247

around limitations of classic 16 bit Unicode). Some intermediate program mod-
ule that is unaware of UTF-16 surrogates might recode the two wide characters
behind A separately and arrive at yet another (wrong) byte sequence.

This illustrates some subtleties that need to be taken into account for robust
representation of mathematical source text inside our provers. Even though the
“supplementary codepoints” outside the 16 bit range provide interesting math-
ematical symbols and mathematical alphabets in the spirit of TEX math mode
(variations of latin, greek, calligraphic, bold, italics), we need to be careful about
depending on such corner cases of the Unicode standards.

Further uncertainty is caused by semantic alternatives in the collection of
codepoints. For example, the visual appearance of φ (\phi) vs. ϕ (\varphi) in
TEX is defined by Knuth’s Metafonts, but Unicode symbol fonts often disagree.
The official entry1 for codepoint U+03C6 says “the ordinary Greek letter, show-
ing considerable glyph variation”, and refers to the alternative codepoint U+03D5
among others. Taking mathematical typesetting seriously, we should probably
use codepoint U+1D711 MATHEMATICAL ITALIC SMALL PHI to imitate math ital-
ics in TEX, but the front-end would need a font that implements that glyph2.

Problems

– Robust encoding of text that is suitable for long-term storage (avoiding
recoding every few years to accommodate new Unicode standards).

– Robust rendering of symbols, potentially depending on the capabilities of
the front-end encoding (e.g. 16 bit limit) and fonts (e.g. missing glyphs).

Solutions: We propose variants (a), (b), (c) as follows.

(a) Trusting that UTF-8 actually manages to represent Unicode text adequately
in the next decades, prover sources are directly encoded using this particular
standard. Semantic dilemmas in the official Unicode tables are resolved by
our own internal standardization, judging glyph variants wrt. availability in
important font families (such as DejaVu or STIX) and selecting codes for ϕ
etc. once and for all.

(b) We are conservative about ASCII as main physical representation of text,
but add explicitly named entities in the spirit of TEX. Already since 1998,
Isabelle has supported the notation \<name> for that purpose, where name
follows usual alphabetic identifier syntax. This provides an infinite collection
of non-ASCII symbols that is independent of encoding.

Extra tables define the rendering of a finite subset of Isabelle symbols.
For example, \<forall> can be mapped to \forall in TEX and U+2200
in Unicode. Such tables can be fine-tuned over time to adjust to coming

1 http://www.unicode.org/charts/PDF/U0370.pdf
2 After many years of delay, the STIX project http://www.stixfonts.org has managed

to release version 1.0 of its free mathematical fonts in 2010. So fairly complete
coverage of mathematical glyphs may be become more commonplace in the near
future, although its rendering quality for screen resolution is not ideal.

http://www.unicode.org/charts/PDF/U0370.pdf
http://www.stixfonts.org
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trends in Unicode and availability of mathematical fonts, without changing
the main body of formal sources. Users can augment the tables by domain-
specific notation for their own applications.

(c) Careful combination of (a) + (b). The formal language prefers named sym-
bols of the form \<name> but the user is allowed to refer to UTF-8 Unicode,
say in informal text. Since UTF-8 is conservative over 7-bit ASCII byte
streams anyway, this hardly requires any change of the prover. Even though
the prover never uses genuine Unicode in the standard libraries, users can
write text in foreign scripts like Cyrillic or Chinese.

Although the re-mapping of (b) introduces some technical inconveniences in
the implementation, such adjustments have been part of Proof General [3] for
many years, re-using older packages for TEX. The JVM also allows to register
character encodings defined in user space. The combination of (c) is already
officially recognized in Isabelle2011 [14, §1.2.1]: it mainly refines the 1998 version
of (b) by precise of addressing Unicode text positions as explained in §2.2.

In summary, we essentially use Unicode for poor man’s rendering of mathe-
matical text, using those parts of the technology that are known to work reliably.

2.2 Markup via Text Addressing

We define markup as any information that is adjoined with the original source
text. In XML the markup elements happen to consist of a name and property list
(called attributes in XML terminology). We take care to coincide with such public
standards when delivering documents to external tools, although internally the
exact structure of markup does not matter. In Isabelle/Scala many operations on
markup are either parameterized over some arbitrary type A or use the universal
union type Any.

There are two interchangeable ways to represent text together with nested
markup:

1. Explicit trees that alternate markup nodes with body text (in the spirit of
XML trees, see also §3).

2. Implicit annotations for the text as separate mapping from text intervals to
markup nodes (maintained as side-result of formal checking, see also §4).

The second variant is not immediately obvious, but turns out very convenient
for the prover in most situations: it can continue to digest text as before, but
occasionally reports annotations about its internal state, in correspondence to
precise source positions. So the markup problem is reduced to robust addressing
of text positions, to anchor the attached semantic information in its proper place
(e.g. inferred type information, or warnings and errors that refer to parts of text).

Problem: Robust physical addressing of text offsets that is suitable for persis-
tent storage and stable under change of encodings or rendering (cf. §2.1).

Solution: Given a byte stream, individual symbols are identified as follows:
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– a single ASCII character (byte 0. . . 127)
– a codepoint according to UTF-8 (byte 128. . . 255 followed by the longest

possible sequence of bytes 128. . . 191)
– a named symbol \<name> where name consists of ASCII letters and digits
– a malformed symbol \< that cannot be extended to a named symbol

This defines a total scan function on packed symbol sequences, which is avail-
able as Symbol.explode: string -> string list in Isabelle/ML. Totality is
achieved by tolerating malformed symbols (including illegal UTF-8, which hap-
pens to be self-synchronizing). Further syntax layers can reject those, e.g. in
lexical analysis. Positions gained from counting symbols are passed through the
syntax hierarchy as intervals of logical offsets. Raw byte addressing is not used.

Isabelle/Scala is subject to UTF-16 on the JVM, but the same notion of sym-
bols can be accommodated. We provide some iterator in Scala that enumerates
the symbols as consecutive intervals over JVM strings. The handling of surrogate
UTF-16 characters is also included here, to ensure that logical codepoints are
counted in the same way as the corresponding UTF-8 sequences in Isabelle/ML.

2.3 YXML Transfer Syntax

Proof assistants prefer to output plain text, but we would like to augment that
by markup information. It is unrealistic to expect that existing ML code for
thousands of messages in the prover and add-on tools are reworked to use XML
trees instead of strings. Here is a typical example from the Isabelle sources, which
composes literal text and formatted output of pretty-printed formal entities:

error ("Unbound schematic variable: " ^ Syntax.string_of_term ctxt t)

Error messages are particularly delicate, since they only occur in exceptional
situations. It would take a long time to discover the mistakes that are inevitably
introduced by forcing XML onto the prover in a crude manner.

Problem: Robust presentation of markup for plain text, such that markup is
orthogonal to the text (with its encoding of symbols, cf. §2.1) and markup can
be nested safely (applied to text that might have been marked before).

Solution: First we observe that text produced by the prover never contains
low-ASCII control characters, except for white-space. Second we observe exactly
the same for regular text characters in the XML standard3. Third we check old
ASCII control tables, and choose X = chr 5 and Y = chr 6, which are unlikely
to have any special meaning in current computer systems. We can now define
our own YXML transfer syntax for XML documents as follows:

XML YXML
open tag <name attribute=value . . .> XYnameYattribute=value. . .X
close tag </name> XYX

3 http://www.w3.org/TR/xml/#charsets

http://www.w3.org/TR/xml/#charsets
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Note that there is no special case for elements with empty body text, i.e. <foo/>
is treated like <foo></foo>. Body text is represented literally, without escapes.

Unlike official XML syntax, our format has some nice properties:

– YXML can be inlined directly into the string representation of text messages.
It is orthogonal to UTF-8 encoding (since X and Y are part of 7-bit ASCII),
orthogonal to Isabelle symbol notation (since it avoids <>), and independent
of previous markup (marking text does not alter it, no escaping of <>\&"’).

– YXML parsing is straight-forward: first split the text into chunks separated
by X, then split each chunk into sub-chunks separated by Y. Markup tags
start with an empty sub-chunk, and a second empty sub-chunk indicates a
close tag. Any other non-empty chunk consists of literal text.
Thus efficient YXML parsers can be implemented in the programming lan-
guage of choice in one afternoon, e.g. by taking the 1-page implementations
in Isabelle/ML or Isabelle/Scala as blueprints.

Isabelle/ML already provides some library functions to inline YXML markup
into text, using Markup.markup: Markup.T -> string -> string like this:

ML 〈〈
warning ("Potential problem:\n" ^ Markup.markup Markup.malformed

("bad variable variable " ^ Markup.markup Markup.hilite "x"))

〉〉

JVM-based front-ends that receive Isabelle messages can use Isabelle/Scala li-
brary operations to parse the YXML representation, and work directly with
XML trees. The above example results in the following structured message (in
XML syntax), which also includes a header provided by the warning function:

<warning serial="409542" offset="1" end_offset="3" id="31">Potential problem:
<malformed>bad variable variable <hilite>x</hilite></malformed></warning>

Adding occasional markup to prover messages is adequate, but we do not even
need this in most practical situations. Provers already provide standard library
functions to produce string representations of formal entities (types, terms, theo-
rems), such as our Syntax.string_of_term seen before. Since YXML is inlined
into the ML string type, we can easily augment the standard operations to add
markup transparently, without affecting user code that is well-behaved (refrains
from analyzing formatted prover output).

Likewise, the ML function Position.str_of: Position.T -> string that
prints text positions can be modified to include its own markup. Thus we get
machine-readable positions in messages, and front-ends can easily display prover
output with clickable spots or attach messages directly to the source view.

The following example illustrates such implicitly enhanced messages produced
by existing text-oriented application code.

ML 〈〈
warning ("Term: " ^ Syntax.string_of_term ctxt t ^ Position.str_of pos)

〉〉
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Here the printed term t is x + y: it contains some undeclared variables that
Isabelle highlights to warn the user. There is also some reference to the logical
constant behind the “+” notation. The front-end receives the following output:

<warning serial="409564" offset="1" end_offset="3" id="37"Term:
<term><block indent="0"><block indent="0"><hilite><block
indent="0"><free><block indent="0">x</block></free></block></hilite>
<const name="Groups.plus_class.plus"><block
indent="0">+</block></const><break width="1"> </break><hilite><block
indent="0"><free><block
indent="0">y</block></free></block></hilite></block></block></term><position
offset="79" end_offset="82" id="-35"/></warning>

This means the prover now speaks XML natively, without changing the ap-
plication code. Further markup content can be provided gradually, using XML
as data language to represent certain aspects of the prover state, see also §3.

In retrospect, the re-use of text characters <>\&"’ in official XML syntax
(inherited from SGML) turns out as big obstacle for adoption in old-school
applications. Earlier attempts of Isabelle/PGIP implementation [4] suffered from
the difference of escaped vs. unescaped text in prover messages: the “polarity” of
marked strings was often wrong, resulting in display errors or protocol crashes.

YXML can easily and efficiently repair the problems of concrete XML syntax.
In a sense, our format returns to the original idea of “markup” before SGML
and XML: information is attached to some text without altering it. One can also
think of a physical text marker, which does not “escape” any text it touches.

3 XML Content

Stripped of its concrete syntax, what is the essence of XML and how can we use
it to represent content of the prover adequately? At the bottom of the enormous
XML standard documents, there is the bare tree structure consisting of text and
markup elements (with name and attributes). This is specified in 3 lines of ML:

datatype tree =

Elem of (string * (string * string) list) * tree list

| Text of string

The same is specified in 3 lines of Scala using case classes [7]:

sealed abstract class Tree

case class Elem(markup: (String, List[(String, String)], body: List[Tree])

extends Tree

case class Text(content: String) extends Tree

This is naked, untyped XML — no more no less. Add-on standards for typed
XML documents do exist (e.g. DTD, XML Schema, Relax NG), but there is no
universal agreement, and availability in ML or Scala is limited. Nonetheless, the
prover and its front-ends need to assign some meaning to XML trees.
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Problem: Select suitable mechanisms to interpret raw XML documents and
define concrete meaning for various prover document markup elements.

Solutions: From the many possibilities, we subsequently present schemes that
are already used in Isabelle.

3.1 Typed Views on Untyped Data

We can think of XML trees as the raw material to represent content in memory,
transport it between provers and front-ends, or store it in persistent databases
and repositories. This is similar, to frugal s-expressions in LISP, although XML
provides even less explicit data formats, basing everything on plain strings.

In ML and Scala we prefer to work with typed trees, following the tradition of
algebraic datatypes. In practice there is a slight asymmetry: ML functions of the
prover usually produce XML trees (by direct inlining of YXML, cf. §2.3), while
the Scala/JVM front-ends consume them (parsing some tree content). Luckily
each programming language provides sufficient means to represent these notions
in simple manners, without requiring a full framework of “meta-programming”
for externally specified XML datatypes.

ML constructor functions encode typed data as untyped markup, which can be
inlined into YXML text.

Scala extractor functions analyse the content of untyped XML trees, after
YXML parsing. This works via customized unapply methods of some Scala
objects that model the notions of document content. (Symmetrically, it is
also possible to define constructors via apply methods.)

For example, the ML function Markup.proof_state: int -> Markup.T
encodes the number of pending sub-goals (of integer type) as textual
markup node: Markup.proof_state 42 is received by the JVM front-end as
<proof_state subgoals="42"/> where the tree can be matched in Scala via
tree match { case Proof_State(i) => i } to recover the integer 42.

To make such pattern matching work, Scala requires object Proof_Statewith
some unapply method defined beforehand (e.g. in the prover library):

object Proof_State {

def unapply(tree: XML.Tree): Option[Int] =

tree match {

case XML.Elem(Markup("proof_state",

List(("subgoals", Markup.Int(i)))), Nil) => Some(i)

case _ => None

}

}

More ambitious ML/Scala connectivity could augment the Scala compiler
by some plugin to produce these definitions from concise specifications. Such
sophisticated meta-programming is outside our present scope, though.
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Note that these data views are inherently partial: dynamic type mismatch
can occur, and indicate some fault of the protocol infrastructure of the prover.
User code usually works with statically-typed Markup.proof_state in ML and
Proof_State.unapply in Scala, to minimize programming errors.

3.2 Augmented Oppen Pretty-Printing

Proof assistants mainly operate on symbolic term structures, which are eventu-
ally displayed to the user via pretty printing. This often works by some variant
of Pretty-Printing according to Oppen [8]: text atoms and potential line breaks
are arranged as nested blocks (with optional indentation). The resulting pretty
tree can be formatted to match a given margin: the pretty printing algorithm
inserts physical spaces and newlines as required.

The initial indication of breaks and blocks already constitutes a physical
markup language, which can be augmented for our document-oriented archi-
tecture as follows.

1. Pretty blocks may also carry logical markup. The Isabelle/ML func-
tion Pretty.markup: Markup.T -> Pretty.T list -> Pretty.T inserts
markup information into pretty trees, analogous to Markup.markup on plain
text as seen before (§2.3).

2. In ML the pretty formatting is made symbolic. Instead of former physical lay-
outing, the information about breaks and blocks is turned into XML markup
elements <break width="N"/> and <block indent="N">...</block>, re-
spectively. Together with the logical markup this constitutes an XML docu-
ment, which is inlined into prover output by YXML encoding.

3. In Scala the physical formatting is now done directly on XML trees. Break
and block markup elements are expanded to produce appropriate spaces and
newlines within the body text; the remaining XML tree only contains the
logical markup. The formatting algorithm imitates the former ML implemen-
tation closely, using typed views Break(width) and Block(indent, body)
to recognize symbolic breaks and blocks in raw XML trees.

4. Final rendering works via XHTML/CSS, using the JVM-based Lobo/Cobra
Web browser, for example. Markup elements <foo>...</foo> are turned
into <span class="foo">...</span> (ignoring attributes) and then given
to the browser together with an XHTML header and prover-specific style
sheet. The XHTML text is essentially treated as preformatted, to retain the
indentation and line breaking performed before.

Presently, Isabelle merely uses this XHTML rendering scheme to produce tra-
ditional highlighting of certain entities within printed terms, e.g. global variables
in blue, local variables in brown, bound variables in green, undeclared variables
with yellow background. Much more can be done by exploiting the full potential
of XHTML/CSS, with boxes and table layouts, for example.

Since the Web browser allows to attach program code to HTML elements
(either as JavaScript or JVM code, which can be produced in Scala), we could
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interpret certain prover markup to fold/unfold sub-terms, or produce popups
that reveal information about the formal entities at that point (the place of def-
inition, documentation etc.). Using HTML input forms, one could also support
simple interaction schemes based on prover output: the proof assistant presents
some templates that the user can complete and insert into the source text.

4 Document Reconstruction

With the text markup and content infrastructure of §2 and §3 available, we can
now look deeper into semantic prover information. Classic command-line provers
only produce output in the form of messages, but in a document-oriented setting
we can attach valuable information to the input via markup.

Conceptually, the sources define the true meaning of the text. By process-
ing the sources, the prover explores the meaning incrementally, as represented
by some internal configuration. Aspects of this semantic information can be at-
tached to the original sources to help the user understand the text, or support
tools that operate on the text systematically (e.g. via “refactoring”).

This means, an approximation of the true semantic prover content is recon-
structed as externally readable document. The prover as the only instance that
can really analyze the formal text reveals important aspects about its content,
without requiring front-ends to imitate substantial parts of the prover itself.

Inherent Complexity of Prover Syntax. Presenting sources of formal lan-
guages with rich semantic annotations is nothing new. For example, an IDE for
Java understands the syntax and static semantics of the language (with scopes
and type information for identifiers) in order to support systematic refactoring
of the program text. Frameworks like Eclipse already provide powerful libraries
(such as Xtext) to implement such functionality for user-defined languages.

Unfortunately, hardly anything like this works for common proof assistants.
Apart from some lexical analysis and superficial parsing, there are many more
syntax layers until fully typed λ-terms emerge internally. Some of these phases
are well-defined, like Hindley-Milner type-inference over the order-sorted alge-
bra of type-classes in Isabelle. Other phases are open-ended, providing compu-
tationally complete plugin-mechanisms: recent Isabelle allows to (re)define the
type-discipline in user space, based on arbitrary ML code. The symmetric sit-
uation happens for output of λ-terms, until some printable text is eventually
produced. Any of these mechanisms can depend on local declarations according
to the scoping rules of the formal language.

The latter is illustrated by the following trivial example in Isabelle/Isar, with
local mixfix declarations that modify some notation within proof blocks:
notepad
begin
fix foo :: ′a ⇒ ′a ⇒ ′a
fix bar :: ′a ⇒ ′a ⇒ ′a
{ write foo (infix · 70) have x · x = foo x x .. }
{ write bar (infix · 70) have x · x = bar x x .. }

end
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Even more, Isabelle allows to transform arbitrary declarations by morphisms,
to move between different formal contexts. We conclude that any prover IDE or
theory browser that attempts to analyze the text directly is bound to fail!

Interestingly, the situation in Coq is similar. For example, there have been
approaches to direct structural manipulation via “proof by pointing” [5], with
strong assumptions about the content of Coq syntax trees. These were violated
later as the prover evolved, causing the PCoq front-end [1] to break eventually.

Builders of standard IDE syntax plugins might shake their heads and demand
that provers are restricted to decidable syntax, or deliver abstract syntax trees
with full information. We argue that this is unrealistic: existing theory libraries
with sophisticated notation would have to be reduced or discontinued. Moreover,
current provers like Coq or Isabelle do not even address the full complexity of
mathematical notation yet, and the trend is towards even more complex nota-
tional devices as can be seen in Matita [2], for example.

Problem: Find ways to transport semantic information through many sophis-
ticated layers of prover syntax. Avoid strong assumptions about prover syntax
trees. Observe the matter of fact that the prover cannot provide complete infor-
mation, only some important aspects.

Solution: Careful inspection of the syntax hierarchy of sophisticated provers
like Isabelle leads to the following observations:

1. Plain text is clearly observable by external tools, and the prover can agree
with front-ends about precise addressing of text positions (cf. §2.2).

2. The main elements of the theory and proof language (called “commands” in
Isabelle terminology) can be understood as transactions, which define clearly
delimited updates on internal state. Assuming that execution of a transaction
proceeds linearly (with monotonic increase of internal state information and
without back-tracking) we can collect a trace of it as part of the result.

3. Trace information can be assembled into an external markup tree that is
associated with the original piece of text in the transaction context.

Reporting of markup for certain positions generalizes the idea of printing text
messages to the user. The Isabelle/ML message channels of error, warning
etc. are extended by Position.report: Position.T -> Markup.T -> unit
for maintaining the implicit markup tree of the current transaction. The prover
merely needs to pass precise positions through to a point where certain formal
content is discovered, and report an externalized version back to the sources.

Figure 1 illustrates why this makes an important conceptual difference: in-
stead of demanding full information about sophisticated phases of parsing
f 1;f 2;f 3;f 4;f 5 and printing g1;g2;g3;g4;g5, we merely preserve position infor-
mation up to the point of certain reports after f 1;f 2 and f 1;f 2;f 3, for example.

This means less information is passed through some of the input phases only.
With this conceptual simplification in place, we now need to rework some central
prover syntax modules, in order to provide useful reports. It might require extra
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Fig. 1. Full content of input/output phases versus reports on some input phases

tricks to preserve precise position information in particular phases, e.g. the move
from quoted “outer syntax” to “inner syntax” in Isabelle, where we revive the
ancient ASCII DEL character (127) for padding.

In Isabelle the number of syntax phases is not 5, but approximately 12. For
the inner syntax of terms and types this includes computationally complete
mechanisms like so-called “translation functions”, which are used for example
to implement derived binders or implicit state-dependence as in Hoare logic no-
tation. The regular type-checking phase has its own plugin-in concept, which
typically includes extensions of Hindley-Milner type-inference, with “type im-
provement” and optional “coercion functions”. It is unrealistic to expect that
fully annotated syntax trees can be passed through all these phases, but position
reports according to our scheme of figure 1 are quite feasible, after some minor
reworking of the existing code base.

Document Markup for Prover IDEs. Isabelle2011 already reports about its
“outer syntax” of tokens and command spans, including various binding posi-
tions that are directly accessible (e.g. the points where foo and bar were fixed in
the previous example). The “inner syntax” of types and terms is more complex:
tokens, raw parse trees, scopes of free versus bound variables are already accessi-
ble for reports, but type-information and sub-expression markup is still missing.
The key idea for non-trivial term annotations, which is partially implemented in
Isabelle repository versions after official Isabelle2011, is as follows: source posi-
tions within the raw term language are disguised as type constraints, and passed
through the main syntax translation layers (where many user-defined transfor-
mations exist), until the point where Hindley-Milner type-inference happens. By
construction of traditional lambda calculus with optional type-constraints, old
syntax operations are expected to handle such extra annotations (but in practice
it often means to repair a few omissions in user code).

The Poly/ML 5.4 compiler (by David Matthews) that is used with
Isabelle2011 also produces significant reports about the results of static analysis
of Standard ML. The following ML snippet inside Isabelle/Isar illustrates this,
although the results are unavailable in the classic PDF version of this document.

ML 〈〈
fun foo th = Thm.prems_of (th RS @{thm refl})

〉〉
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Processing these sources with the experimental Isabelle/jEdit Prover IDE of
Isabelle2011 (see also figure 2), the document markup is presented as boxed sub-
expressions, tooltips for inferred types, and hyper-links for referenced identifiers
(such as the local th and the global RS operator from the Isabelle/ML library).

The syntax highlighting for tokens etc. is also based on precise semantic infor-
mation from Isabelle: the editor merely retrieves it from the universal document
markup tree.

Fig. 2. IDE presentation of formal document content of these sources

Many more possibilities are conceivable, e.g. indicating variable scopes by
highlighting binding and referencing positions simultaneously (as in common
IDEs), or popup menus pointing to other formal documents that explain the
referenced concepts (Isabelle manuals already provide suitable formal markup).

5 Conclusion and Related Work

We have shown how to augment old-school proof assistants to support text doc-
uments with rich semantic information, while minimizing the changes to the
existing code base. The cultural background of provers implemented in ML (or
Haskell) is preserved, we refrain from pervasive “XML-ization” of the program-
ming style. Moreover, the increasingly popular Scala language on the JVM helps
to extend the scope of the prover into a greater world.

This work can be seen as a continuation of earlier approaches to overcome
the plain-text attitude of proof assistants: CtCoq/Pcoq [5], PLATΩ [11] and
especially PGIP [4]. The efforts around PGIP and its (partial) implementation in
Isabelle2004/2005 posed many problems that are now addressed quite differently
than first anticipated: our problem statements and proposed solutions are best
understood in the context of former struggles with PGIP. For example, PGIP
demands to implement “proof-script parsing” on the spot without any further
context. In contrast, our present approach lets the prover report information
incrementally whenever it becomes available.

Matita [2] is probably the best-known proof assistant that was designed with
some IDE support (based on Gtk) and advanced presentation formats (MathML)
from the ground up. Thus it had the privilege of a fresh start, without a huge
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existing code base to take care of. Nonetheless, the Matita authors report signif-
icant efforts to re-build basic infrastructure for rich mathematical output (such
as their own MathML rendering engine in OCaml/GTk). Even after substan-
tial efforts, the Matita front-end still resembles traditional Proof General [3]. In
contrast, our general approach is to maximize re-use, by augmenting existing
provers with minimal effort and simplifying connectivity to powerful front-ends
(IDEs, browsers, Web frameworks), especially on the JVM. Moreover, our docu-
ment model of annotated prover sources goes beyond the basic IDE functionality
of Matita, which is more concerned about output of mathematical formulae than
annotating input sources.

Earlier work on “XML-izing Mizar” [10] is based on the assumption that com-
plete syntax trees in XML are feasible, in contrast to our observation of “inherent
complexity of prover syntax” as discussed before. Despite its own builtin com-
plexity, Mizar is a closed language and defining fixed XML formats for its tool
chain turned reasonably easy. It also allows users to implement derivative tools,
using XSLT for example. This more conventional way to externalize prover con-
tent would be hardly possible for the more complex and open-ended LCF family,
notably Isabelle, Coq, and HOL.

Proviola [9] shares our goals to extract document content from prover runs.
This is done for Coq, without modifying the prover itself (due to lack of access
to its inner circle of developers). This limits the document content to traditional
proof state and message output, for example. Our work can be understood as
providing the missing link on the prover side: it could simplify projects like Provi-
ola (and its greater perspective of prover Web clients and Wikis for formalized
mathematics), and also provide more interesting content.

Ultimately, only the prover itself can reveal substantial document content,
derived from its true semantic state. We have shown how this can be achieved
in a profound manner, without rewriting major proof assistants from scratch. In
the future we hope to see more proof assistants re-use these concepts, and more
front-ends exploiting the content delivered by such document-oriented provers.

References

1. Amerkad, A., Bertot, Y., Pottier, L., Rideau, L.: Mathematics and proof presenta-
tion in Pcoq. In: Proceedings of Proof Transformation and Presentation and Proof
Complexities, PTP 2001 (2001)

2. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Journal of Automated Reasoning 39(2) (2007)

3. Aspinall, D.: Proof General: A generic tool for proof development. In: Graf, S. (ed.)
TACAS 2000. LNCS, vol. 1785, p. 38. Springer, Heidelberg (2000)
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Towards Formal Proof Script Refactoring
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Abstract. We propose proof script refactorings as a robust tool for
constructing, restructuring, and maintaining formal proof developments.
We argue that a formal approach is vital, and illustrate by defining and
proving correct a number of valuable refactorings in a simplified proof
script and declarative proof language of our own design.

1 Introduction

Theorem proving in-the-small is popular for investigating small domain-specific
logics and for teaching logic. With maturing technology, theorem proving in-the-
large is becoming more common, with big formalisations built in both industry
and academia. Notable examples in verification include a specification of the
IP stack [15] and functional correctness of a microkernel [9]. Formalised mathe-
matics is also feasible: Gonthier formalised the proof of the Four Colour Theorem
(FCT) [7] and Hales has an ongoing project to formally prove the Kepler Con-
jecture [8]. The completed proof scripts (theorem prover inputs) range in length
from around 10,000 lines to 200,000 lines, each proving hundreds or thousands
of lemmas and representing several person-years of work.

It is encouraging that large developments are possible, but they are far from
easy. Writing proofs is often harder than writing programs. Formal proofs are
more complex, dense, and interdependent than similarly sized programs. Yet
they are developed with primitive tools akin to those used for programming in
the 1960s: often little more than basic text editors, with no high-level means of
rapid construction, easy modification or browsing. Lack of modern support for
proof construction and maintenance is a main reason that interactive provers
are not used more widely; it makes them incredibly tedious to learn and use.

By contrast, maintenance of large programs is well supported by modern
Software Engineering (SE) tools. Software systems of hundreds of thousands of
lines of code can be managed with relative ease. One important SE technique
is refactoring. A refactoring is a semantics-preserving transformation of code
which improves design, structure or readability [6,12]. It may be pervasive, but
routine. Ideally refactorings are tool-assisted: an algorithm checks safety pre-
conditions before making global changes in one go. Many refactorings are simple
operations with complex pre-conditions, e.g., Rename and Move. Our hypothesis
is that by adapting and extending refactoring techniques from SE we can make
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development and maintenance of formal proof scripts easier and more accessible
to new users, as well as more productive for expert users. As anecdotal evidence
to motivate our work, we note that Gonthier mentions, in [7], having to spend
a number of months refactoring his FCT development by hand.

Ensuring correctness of proof refactorings is vital because proof scripts can
take arbitrarily long to re- check, and unexpected changes to lemma statements
can change the meaning of a development. It is also non-trivial; for example, com-
plex tactics make analysis of dependencies difficult, as noted in [13], and notions
of semantics for fully-blown proof scripts have not been well studied compared
with programming language semantics. Even refactoring tools for programming
languages, which have been studied for almost 20 years, are full of bugs [5].

In this work we study refactoring formally in a simple, generic proof script
language of our own design in order to understand and overcome the main chal-
lenges. In particular, we use Hiproofs [4] as a generic notion of proof as it provides
a clean theoretical base on which to build; furthermore, we believe the hierarchy
offers opportunities for refactoring and proof understanding. We do not intend
to cover all aspects of a practical implementation from the outset, but use it as
an exploratory study into the viability, applicability, and challenges associated
with refactoring.

Contributions. Our two main contributions are a generic proof script language,
with a declarative proof language, and a formal treatment of a number of proof
refactorings. Firstly, we give a formal semantics to the proof scripts and prove
that declarative proofs construct valid proofs. In particular, we formalise a notion
of gaps in a proof. Secondly, we define what we mean by proof script refactoring,
and the appropriate notion of semantics preservation, and define several valuable
refactorings, including rename lemma and backward to forward, which transforms
a backwards-style proof into a forward-style one. Finally we prove that these
refactorings are correct in a meaningful sense.

Outline of paper. In the next section, we introduce Hiproofs, as a representation
for proof, and Hitac as an idealised tactic language on which we base our work.
In Section 3 we introduce the proof script language, its semantics, and give a
formal definition of proof script refactoring. We then, in Section 4, describe the
declarative proof language and give an example of our proof scripts in Section 5.
Section 6 describes a number of refactorings and we conclude in Section 7.

2 Background

Hiproofs are a hierarchical representation of the proof trees constructed by
tactics. The hierarchy makes explicit the relationship between tactic calls and
the proof tree constructed by these tactics. Hiproofs were first investigated by
Denney et al in [4] and can be given a denotational semantics as a pair of forests,
viewed as posets. One partial order provides a notion of hierarchy, the other of
sequential composition. An abstract example of a Hiproof is given in Figure 1,
where a, b, and c are called atomic tactics i.e. black boxes.
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Fig. 1. A Hiproof Fig. 2. The skeleton Fig. 3. INTROS

Figure 1 reads as follows: at the top, the abstract tactic l first applies an
atomic tactic a. The tactic a produces two subgoals, the first of which is solved
by the atomic tactic b within the application of l. Thus, the high-level view is
that tactic l produces a single subgoal, which is then solved by the tactic m.
The underlying proof tree, called the skeleton, is shown in Figure 2. Conditions
placed upon construction of Hiproofs ensure that they can always be unfolded
into the skeleton. More concretely, Figure 3 shows the application of an INTROS
tactic as a Hiproof; the trailing edges are goals that must be solved by composing
other Hiproofs. In [1], Aspinall et al gave an operational account of Hiproofs,
based on derivation systems. They also introduced a tactic language, Hitac,
which constructs Hiproofs. We describe this work now, as it provides the basis
for what follows.
Derivation Systems. In this work we will not commit to a specific logical system;
instead, we work within a derivation system, which can be thought of as a simple
logical framework. It defines sets of atomic goals γ ∈ G and atomic tactics a ∈ A.
What we call an atomic goal is a judgement form in the underlying derivation
system, and what we call an atomic tactic is an inference rule schema:

γ1 . . . γn

γ a ∈ A

stating that the atomic tactic a, given subgoals γ1, . . . , γn, produces a proof of
γ. We do not formalise how the rule schemata and instances are related.

Hiproofs. The concrete syntax of Hiproofs is defined by the grammar:

s ::= a | id | [l]s | s ; s | s ⊗ s | 〈〉

Sequencing (s ; s) corresponds to composing boxes by arrows, tensor (s ⊗ s)
places boxes side-by-side, and labelling ([l]s) introduces a new labelled box.
Identity (id) and empty (〈〉) are units for ; and ⊗ respectively. Labelling binds
weakest, then sequencing with tensor binding most tightly. We can now give a
syntactic description of the Hiproof in Figure 1: ([l ]a ; b ⊗ id) ; [m] c.

We say that a Hiproof is valid if it is well-formed and if atomic tactics are ap-
plied correctly. This notion is formalised with a validation relation s � g1 −→ g2,
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where gi are lists of goals. This relation, defined below, states that the Hiproof s
is a proof of g1 with remaining subgoals g2. Thus, Hiproofs can represent partial
proofs. The γi are single goals and @ is list append.

γ1 . . . γn

γ a ∈ A

a � [γ] −→ [γ1, . . . , γn]
(V-Atomic)

s � [γ] −→ g

[l]s � [γ] −→ g
(V-Label)

〈〉 � [] −→ []
(V-Empty)

s1 � g1 −→ g s2 � g −→ g2

s1 ; s2 � g1 −→ g2

(V-Seq)

s1 � g1 −→ g ′
1 s2 � g2 −→ g ′

2

s1 ⊗ s2 � g1@g2 −→ g ′
1@g ′

2

(V-Tens)

id � [γ] −→ [γ]
(V-Id)

Hitac. We extend the Hitac grammar from [1] with lemma application:

t ::= a | id | [l]t | t ; t | t ⊗ t | 〈〉
| assert γ
| t | t
| name (t, . . . , t)
| X

| lem l

In addition to the standard Hiproof constructs, goal assertions (assert γ) can
control the flow; alternation (t | t) allows choice; and, defined tactics (name (t,
. . . , t)) and variables (X) allow us to build recursive tactic programs. Tactic
evaluation is defined relative to a proof environment : (T ,L). The lemma envi-
ronment, L : name → (goal × s), is a map from lemma names to a goal and
Hiproof pair; the tactic environment, T : name → (X, t), maps tactic names to
their parameter list and Hitac tactic.

Evaluation of a tactic is defined as a relation 〈g, t〉 ⇓t
(T ,L) 〈s, g ′〉, which should

be read as: ‘the tactic t applied to the list of goals g returns a Hiproof s and
remaining subgoals g ′, under (T ,L)’. We give the evaluation rules for tensor,
lemma application, and defined tactics below, where we write X as shorthand
for the list [X1, . . . , Xn]. For a full presentation of the semantics and a proof of
Theorem 1, please refer to [1].

〈g1, t1〉 ⇓t
(T ,L)

〈s1, g ′
1〉 〈g2, t2〉 ⇓t

(T ,L)
〈s2, g ′

2〉
〈g1@g2, t1 ⊗ t2〉 ⇓t

(T ,L) 〈s1 ⊗ s2, g
′
1@g ′

2〉

T (name ) = (X, t) 〈g, t[t1/X1, . . . , tn/Xn]〉 ⇓t
(T ,L) 〈s, g

′〉
〈g,name (t1, . . . , tn)〉 ⇓t

(T ,L)
〈s, g ′〉

L(l) = (γ, s) s � γ −→ []

〈γ, lem l〉 ⇓t
(T ,L)

〈[lem l]s, []〉

Theorem 1 (Correctness of big-step semantics). If 〈g1, t〉 ⇓t
(T ,L) 〈s, g2〉

then s � g1 −→ g2.
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3 Proof Scripts

Proof scripts allow us to build and extend proof environments. For simplicity,
proof scripts consist of only tactic definitions and lemmas although real systems
need other elements (e.g., definitions, syntax, comments). The grammar for proof
scripts is:

proofscript ::= script name
scriptobj ∗

end

scriptobj ::= begin
| tacdef name (X1, . . . , Xn) := t
| lemma name : goal

prf

Proof scripts essentially consist of a sequence of lemmas and tactics, within
begin and end tags. Lemmas are named and consist of a goal and a formal proof
prf ; parameterised tactics can be defined, where the Xi are the tactic variables
occurring within t and must be instantiated when the tactic is used.

Top level evaluation of proof scripts is defined by:

� scriptobjs ⇓ 〈T ,L〉
� script name scriptobjs end ⇓ 〈T ,L〉

(PS-Script)

where the judgement � scriptobjs ⇓ 〈T ,L〉, which operates on a sequence of
script objects, is defined in Figure 4. The evaluation relation states that the
script proofscript can be evaluated resulting in an environment 〈T ,L〉. When
we do not need to explicitly refer to the environment, we will write � proofscript
to mean ∃ T L. � proofscript ⇓ 〈T ,L〉. We say a proof script is well-formed
iff � proofscript . Well-formedness does not imply that the proofs are complete:
there may be gaps; proof checking is a low-level process that would ensure the
Hiproofs constructed have no trailing edges. For brevity, we often use P to refer
to proof scripts.

The rule PS-Begin ensures scripts start with a begin and initialises an empty
environment. Tactics (or lemmas) extend T (or L) as long as they satisfy the
preconditions. The functions names and variables are defined recursively on
scripts and tactics and the relation scriptobjs � t checks for well-formedness of

� begin ⇓ 〈{}, {}〉 (PS-Begin)

� scriptobjs ⇓ 〈T ,L〉 n /∈ names(scriptobjs ) 〈γ, prf 〉 ⇓p
(T ,L) 〈s〉

� scriptobjs lemma n: γ prf ⇓ 〈T ,L[n �→ (γ, [n]s)]〉
(PS-Lem)

� scriptobjs ⇓ 〈T ,L〉 n /∈ names(scriptobjs ) variables(t) ⊆X scriptobjs � t

� scriptobjs tacdef n(X) := t ⇓ 〈T [n �→ (X, [n]t)],L〉
(PS-Tac)

Fig. 4. Proof script evaluation
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tactics: ensuring that only tactics and lemmas defined above it in the script can
be used. The notation T [n 	→ (X, [n]t)] means extending the map, T , by adding
an element. For a lemma, the important precondition is that 〈γ, prf 〉 ⇓p

(T ,L) 〈s〉.
This is the proof relation, which states that when you apply prf to the goal
γ it results in a Hiproof, s. We will instantiate prf in the next section, but it
could be any proof language associated with a valid proof relation i.e. one that
constructs valid Hiproofs. Both lemmas and tactics are labelled with their name
when added to the environment allowing us to see, in the hierarchy, where tactics
and lemmas have been applied.

3.1 Proof Script Refactoring

We first define a more general notion of proof script transformation as follows:

Definition 1 (Proof Script Transformation). A pair (P ,O), where P is a
predicate, called the precondition, and O : proofscript → proofscript , is a proof
script transformation if, for all scripts P, such that � P and P(P), we have
� O(P).

That is, applying a proof script transformation, as long as the precondition P
holds, guarantees that it preserves well-formedness.

We take the view that the statements proved within lemmas are the key
semantics objects in a script, motivating the following definition:

Definition 2 (Statement Preservation). A proof script transformation,
(P ,O), is statement preserving if for all scripts P such that P(P) and �
P ⇓ 〈T ,L〉 then � O(P) ⇓ 〈T ′,L′〉 and we have:

∀ l if L(l) = (γ, s) then ∃ l ′ s ′ s.t. L′(l ′) = (γ, s ′).

That is, we prove at least the same statements after a transformation as before.
Thus, we have:

Definition 3 (Proof Script Refactoring). A proof script refactoring is
a proof script transformation that is statement preserving.

4 A Declarative Proof Language

To explore the refactoring possibilities within proofs, we describe a declarative
proof language and give it a semantics which constructs valid Hiproofs. We de-
scribe prf with the following grammar:

prf ::= proof( rule )
stmt∗

qed
| gap

rule ::= t

stmt ::= 〈〉
| [name ]:{ prf }
| apply rule
| show name : goal prf
| have name : goal prf
| from name∗ show goal by rule
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The core component of the language is a proof block : proof(rule) stmts qed.
Proof blocks operate on a single goal, applying the initial rule before solving the
resulting subgoals by the statements inside it. The key statement is show, which
solves the goal it is applied to. The empty statement 〈〉 operates on an empty list,
finishing off a proof; tactics can be applied directly with apply; forward proof
is possible by using have to extend the environment then the from...show...by
construct to perform the forward step. Hierarchy can be added, using the la-
belling construct: [name ]:{ prf }; finally, goals can be skipped with the gap
command. Syntactic conveniences, for example, by rule ≡ proof(rule) 〈〉 qed
can be introduced. In Figure 5, we give a big-step semantics to declarative proofs
with the relation 〈g, prf 〉 ⇓p

(T ,L) 〈s〉. A proof prf applied to a list of goals g will
result in a Hiproof s. Top level prf evaluations always operate on a single goal,
and the evaluation rules in Figure 5 reflect this. Statement lists are evaluated
one at a time; the statement being operated on directly is highlighted. We use
:: to refer to the cons list constructor.

Proof blocks operate on singleton goal lists and are evaluated by executing the
initial tactic, then feeding the resulting subgoals into the enclosed statements.
The gap proof construct also operates on singleton goals, placing an identity

〈[γ], t〉 ⇓t
(T ,L)

〈s1, g〉 〈g, stmts 〉 ⇓p
(T ,L)

〈s2〉

〈[γ], proof(t) stmts qed 〉 ⇓p
(T ,L) 〈s1 ; s2〉

(B-Prf-Block)

〈[γ], gap 〉 ⇓p
(T ,L) 〈id〉 (B-Prf-Gap)

〈[], 〈〉 〉 ⇓p
(T ,L) 〈〈〉〉 (B-Prf-Empty)

〈[γ], prf 〉 ⇓p
(T ,L) 〈s1〉 〈g, stmts 〉 ⇓p

(T ,L) 〈s2〉

〈γ :: g, [l]:{ prf } stmts 〉 ⇓p
(T ,L) 〈([l]s1) ⊗ s2〉

(B-Prf-Lab)

〈g1, t〉 ⇓t
(T ,L)

〈s1, g2〉 〈g2, stmts 〉 ⇓p
(T ,L)

〈s2〉

〈g1, apply t stmts 〉 ⇓p
(T ,L)

〈s1 ; s2〉
(B-Prf-App)

〈[γ], prf 〉 ⇓p
(T ,L) 〈s1〉 〈g, stmts 〉 ⇓p

(T ,L) 〈s2〉

〈γ :: g, show name : γ prf stmts 〉 ⇓p
(T ,L) 〈s1 ⊗ s2〉

(B-Prf-Show)

〈[γ], prf 〉 ⇓p
(T ,L) 〈s1〉 name /∈ names(T ) ∪ names(L)

〈g, stmts 〉 ⇓p
(T ,L[name �−→(γ,s1)])

〈s〉

〈g, have name : γ prf stmts 〉 ⇓p
(T ,L) 〈s〉

(B-Prf-Have)

L(n1) = (γ1, s1) . . . L(nn) = (γn, sn)
〈[γ], t〉 ⇓t

(T ,L) 〈s, [γ1, . . . , γn]〉 〈g, stmts 〉 ⇓p
(T ,L) 〈s

′〉

〈γ :: g, from n1 . . . nn show name : γ by t stmts 〉 ⇓(T ,L)

〈(s ; (s1 ⊗ . . . ⊗ sn)) ⊗ s ′, []〉

(B-Prf-From)

Fig. 5. Declarative proof language big-step semantics
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Hiproof to feed the goal out. In B-Prf-Have, we see that the intermediate step
is added to the proof environment. We enforce the new name to be unique, but
this is not necessary: if we drop this restriction we can have local overloading in
the current proof block. This does, however force us to provide more complex
preconditions and transformation rules for the refactorings.

The rule B-Prf-From is the most complicated. The first set of preconditions
check that the names used exist in the lemma environment; the next ensures
that the tactic justification returns exactly the stated goals that the names refer
to; the third simply evaluates the remaining statements. Finally the Hiproof is
constructed by tensoring together all of the Hiproofs for each individual subgoal
and placing them after the Hiproof resulting from the tactic application. In order
to ensure that valid Hiproofs are constructed, we prove:

Theorem 2 (Soundness of big-step semantics). If 〈γ, prf 〉 ⇓p
(T ,L) 〈s〉 then

s � γ −→ g for some g. Moreover, if prf is gap-free then s � γ −→ [].

Proof: We proceed by induction on the height of the derivations. For empty,
the rule B-Prf- Empty matches V-Empty directly with g = []. Gaps are vali-
dated with V-Id and g = [γ]. For B-PRf-Block, Theorem 1 and the induction
hypothesis allow us to apply V-Seq. Similarly, with B-Prf-Show we use the
induction hypothesis twice and V-Tens, with g being the concatenation of both.
The other cases are similar. When the proof is gap-free, we note that B-Prf-
Gap is the only base case to introduce a discrepancy between Hiproof validation
and tactic evaluation, thus g must be []. In fact, g is exactly the ‘gapped’ goals.

Theorem 3 (Completeness of big-step semantics). If s � γ −→ [] for a
given environment (T ,L) then there exists a gap- free prf such that 〈γ, prf 〉 ⇓p

〈s〉(T ,L).

Proof: If s is a Hiproof such that s � γ −→ [] then, trivially, ‘by s’ works when
we consider the Hiproof as a Hitac tactic.

5 Example

In order to make these languages more concrete, we provide a small example
proof script. Space restrictions require any such example is necessarily trivial
but we hope it conveys some of the main features. We instantiate a derivation
system with first order logic, with atomic tactics given by the well-known natural
deduction rules, a few of which are given below:

Γ,P � Q

Γ � P → Q
impI

Γ � P Γ, Q � R

Γ, P → Q � R
impE

Γ,P � P
ax

Γ,P ,Q � R

Γ, P ∧ Q � R
conjE

Γ � P Γ � Q
Γ � P ∧ Q

conjI
Γ � P[x := x0]

Γ � ∀ x.P allI
Γ,P[x := t] � Q

Γ, ∀ x.P � Q
allE

An example script, defining two tactics and proving two lemmas is given in
Figure 6. Note that we elide the empty statement in both lemmas.
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script example begin
tacdef REPEAT (X ) := X ; (REPEAT (X ) | id)
tacdef intros := REPEAT (impI | allI | conjI )

lemma lemma1 : � P ∧ Q → Q ∧ P
proof(intros)
show q : {P ∧ Q} � Q by (conjE ; ax )
show p : {P ∧ Q} � P by (conjE ; ax)
qed

lemma lemma2 : � (∀ x. P x → Q x) → (∀ x. P x) → (∀ x. Q x)
proof(intros)
show {∀ x. P x → Q x, ∀ x. P x} � Q x
proof(REPEAT (allE ))
show {P x → Q x, P x} � Q x by impE ; (ax ⊗ ax)
qed
qed

end
Fig. 6. Example proof script

6 Refactorings

We are now ready to refactor proof scripts. We describe rename lemma, swap
objects, transform proof, backward proof to forward proof, and extract subproof in
some detail. We summarise, in Figure 7, the main refactorings we have considered
thus far. Finally in Section 6.6 we show how Figure 6 could be refactored.

6.1 Rename Lemma

Renaming a lemma may seem like a trivial action but, if that lemma has been
applied multiple times in a proof development, the new name must be propagated
and must not clash with any other names in the development. This makes it a

Generalise Tactic Replace a subtactic with a var, creating a more general tactic.

Fold/Unfold Proof Declarative proofs can be collapsed into raw tactic applica-
tions and vice-versa.

Fold/Unfold Tactic Fold or unfold a defined tactic.

Fill Gap Replace a gap with a proof that solves the goal.

Add/Rem Hierarchy Introduce or remove labelled boxes to a proof.

Safe Delete Delete a lemma or tactic as long as it is not used.

Copy Copy a lemma or tactic.

Rename Rename a lemma or tactic.

Backward to Forward Convert a backward proof into a forward proof.

Have to Lemma Lift a have statement up to the status of lemma.

Extract Subproof Extract a subproof of a goal into a lemma.

Fig. 7. Summary of refactorings
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tedious and error-prone task for humans. The refactoring takes three parameters:
a script to operate on, an old lemma name, o, and a new lemma name, n.

Preconditions. In common with all other refactorings that we are currently con-
sidering, rename lemma has the precondition that the proof script P that it acts
on must be well-formed i.e. � P. We must also ensure that there are no name
clashes with the new name: n /∈ names(P).

Transformation rules. We define this transformation on the structure of proof
scripts. There are three classes of rules operating on: a proofscript , a prf , and
a t. We give some cases of the action on proofscript and t in Figures 8 and 9.
The rename tactic refactoring is analagous, except we must take into account
possibly recursive tactics.

Correctness. We want to prove that this operation is indeed a refactoring:

Theorem 4 (Rename Lemma Correctness). If, for a proof script P and
old name o and new name n that satisfy the preconditions above and

P
rl(o,n)−−−−→ P ′ and � P ⇓ 〈T ,L〉 then � P ′ ⇓ 〈T ′,L′〉

and we have: ∀ l if L(l) = (γ, s) then ∃ l ′ s ′ s.t. L′(l ′) = (γ, s ′).

scriptobjs
rl(o,n)−−−−→ scriptobjs ′

script name scriptobjs end
rl(o,n)−−−−→ script name scriptobjs ′ end

begin
rl(o,n)−−−−→ begin

scriptobjs lemma o: γ prf
rl(o,n)−−−−→ scriptobjs lemma n: γ prf

scriptobjs
rl(o,n)−−−−→ scriptobjs ′ prf

rl(o,n)−−−−→ prf ′ o �= ln

scriptobjs lemma ln: γ prf
rl(o,n)−−−−→ scriptobjs ′ lemma ln: γ prf ′

scriptobjs
rl(o,n)−−−−→ scriptobjs ′ t

rl(o,n)−−−−→ t ′

scriptobjs tacdef tn(X) := t
rl(o,n)−−−−→ scriptobjs tacdef tn(X) := t ′

Fig. 8. Script level transformations

Proof. We prove that � P ′ ⇓ 〈T ′,L′〉 by induction on the transformation rules.
For each rule, we show that if the script evaluates before the rule is applied,
then it evaluates to an equivalent environment afterwards; this motivates our
need for the precondition as it is required as a premiss for one of the evaluation
rules. We can then see that L′ satisfies the statement preservation property.
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t1
rl(o,n)−−−−→ t ′1 t2

rl(o,n)−−−−→ t ′2

t1 ; t2
rl(o,n)−−−−→ t ′1 ; t ′2

l �= o

lem l
rl(o,n)−−−−→ lem l

lem o
rl(o,n)−−−−→ lem n

Fig. 9. Tactic level transformations

6.2 Swap Objects

We can swap two adjacent objects if they have no dependency. In Figure 6 we
can swap the two lemmas, but not the definitions of intros and REPEAT. We
can repeat this refactoring to get the more general move object refactoring. To
simplify presentation, we assume that we are swapping two adjacent lemmas
(although the general refactoring covers all four cases). Swap object takes two
parameters: the name of a lemma, x and the script P. We take the convention
that the named lemma is to be moved up one place.

Preconditions. Given posn(x , P) = n, objAt(n − 1 , P) = y, and envAt(n, P) =
(T ,L). If proof (x ) = prf , L(x) = (γ, s), and 〈γ, prf 〉 ⇓p

(T ,L) 〈s〉 then we must
have 〈γ, prf 〉 ⇓p

(T ,del(y, L)) 〈s〉.
That is, the lemma x can still be proved in an environment without y. This

formulation of the preconditions simplifies the correctness proof, but it could also
be described purely syntactically for our language; however, for languages with
sophisticated tactics like auto, we would need to use the semantic information.
All the functions used here are easily defined on scripts.

Transformation. We only show two of the transformation rules:

obj2 objs
swap(x)−−−−−→ objs ′ nameOf (obj2 ) �= x

obj1 obj2 objs
swap(x)−−−−−→ obj1 objs ′

obj1 lemma x: γ prf objs
swap(x)−−−−−→ lemma x: γ prf obj1 objs

Correctness. We elide the proof that this is indeed a refactoring.

6.3 Transform Proof

This refactoring is an enabling refactoring for the ones to follow. Essentially, it
takes a proof transformation, R : prf → prf , and a lemma name, n, as parame-
ters and applies R to the proof of that lemma, leaving everything else untouched.
The precondition for this refactoring is that the proof transformation preserves
provability. We do not give the transformation rules here as they are straightfor-
ward. This is clearly a refactoring: the provability precondition matches directly
with the premiss for PS-Lem.
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6.4 Backward Proof to Forward Proof

This refactoring transforms a proof prf that is in the form of Figure 10 to the
form of Figure 11.

proof( t )
show goal1 : γ1 prf 1

...
show goaln : γn prf n

qed

Fig. 10. Before

proof
have goal1 : γ1 prf 1

...
have goaln : γn prf n

from goal1 . . . goaln show γ by t
qed

Fig. 11. After

Preconditions. We have one precondition: there are no ‘apply t’ steps within
the proof block. Rather than a technical limitation, it simplifies the presentation
of the rules below. In order to remove it, we would have to convert any apply
steps into a declarative proof format, which is another refactoring.

Transformation rules. We describe the refactoring using a set of transformation
rules, a subset of which is given below:

stmts
b2f−−→ stmts ′ [n1, . . . , nn] = shows(stmts )

proof(t) stmts qed
b2f−−→ proof stmts ′ from n1 . . . nn show γ by t qed

stmts
b2f−−→ stmts ′

show name : γ prf stmts
b2f−−→ have name : γ prf stmts ′

This time, the transformation rules work only on a prf . In order to apply
the refactoring at the script level, we use transform proof. The function shows
constructs a list of all the goals.

Correctness. Since this refactoring applies only to the proof and the precondition
for transform proof is that backward to forward preserves provability, we only
need to show:

Theorem 5 (Provability Preservation of Backward Proof to Forward
Proof). If prf is a declarative proof of γ satisfying the preconditions of backward
to forward then

prf
b2f−−→ prf ′ and 〈γ, prf ′〉 ⇓p

(T ,L) 〈s ′〉
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Proof. Since show statements get transformed to have statements by the refac-
toring, and by the precondition that the names are fresh in the environment, we
can guarantee that all the names are in the environment when the from...show...
by is executed. This succeeds because the names map directly to the subgoals
produced by t initially.

6.5 Extract Subproof

In this more complex refactoring, we show how a proof of a subgoal within a
lemma can be extracted as a lemma in its own right. It is, in fact, a composition
of two simpler refactorings:

Show to Have: transforms a show statement into a have statement and re-
places the proof of the show statement with a ‘by lem n’, where n is the
user supplied name for the have statement.

Have to Lemma: moves a have statement up to the top level of the script:
there are no preconditions and no change is required to the rest of the proof.
This refactoring would be useful if an intermediate lemma is more widely
applicable.

Figures 12 to 14 show how this refactoring proceeds. We do not give a more for-
mal description here. It is worth noting that we can compose these refactorings
because Have to Lemma does not have any preconditions; however, in general,
to ensure that two refactorings can be composed to form another correct refac-
toring we must be able to prove that the preconditions for the second refactoring
are always satisfied. In future work, we intend to investigate composition using
postconditions of refactorings.

6.6 Example Refactoring

Finally, using rename lemma, fold tactic, backward proof to forward proof, and
swap lemma we can transform the proof script in Figure 6 into Figure 15. In
particular, we rename lemma1 to conj comm and lemma2 to all mp, which bet-
ter reflect their meaning, and swap their position. We have used backward proof

lemma lname : γ
proof
...
show gi : γi

prf i

...
qed

Fig. 12. Before

lemma lname : γ
proof
...
have n : γi prf i

show gi : γi by lem n
...

qed

Fig. 13. Step one

lemma n : γi

prf i

lemma lname : γ
proof
...
show gi : γi by lem n
...

qed

Fig. 14. After
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script example begin
tacdef REPEAT (X ) := X ; (REPEAT (X ) | id)
tacdef intros := REPEAT (impI | allI | conjI )
tacdef conjEax := conjE ; ax

lemma all mp : � (∀ x. P x → Q x) → (∀ x. P x) → (∀ x. Q x)
proof(intros)
show {∀ x. P x → Q x, ∀ x. P x} � Q x
proof(REPEAT (allE ))
show {P x → Q x, P x} � Q x by impE ; (ax ⊗ ax)
qed
qed

lemma conj comm : � P ∧ Q → Q ∧ P
proof
have q : {P ∧ Q} � Q by conjEax
have p : {P ∧ Q} � P by conjEax
from q p show {P ∧ Q} � Q ∧ P by intros
qed

end

Fig. 15. Refactored example proof script

to forward proof to transform conj comm and also fold tactic to replace the
identical applications of conjE ; ax with a named tactic called conjEax .

7 Related Work and Conclusions

This paper introduces proof script refactoring as a way to make structured
changes to a proof development. We describe a number of valuable refactor-
ings including rename lemma, and extract subproof for a simple proof script
and declarative proof language. We believe that the formal approach we take
is necessary: the time required for proof-checking and the risk of changing the
meaning of a lemma makes the correctness of refactorings vital. While we be-
lieve our work on proof script refactoring is unique, there is a large literature
in the domain of programming language refactoring. Fowler takes a test-based
approach to refactoring in [6]; this book, widely considered to be the ‘handbook
of refactoring’, consists of over 70 refactorings with a detailed description of the
motivation for each refactoring and how to carry it out safely. We note that
refactoring has benefited from formal study in prototypical languages: Cornélio
et al specify refactorings for a subset of Java, called ROOL [3] and prove seman-
tics preservation using a set of basic algebraic laws, expressing equivalences be-
tween objects. In [10], Li and Thompson discuss a formal specification of Haskell
refactorings based on an abstract representation of a program and provide a
proof that the semantics of the program are preserved during the refactoring.
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Mens and Tourwe give a much more detailed survey of programming language
refactoring in [11]. There is also an interest in refactoring formal specifications.
For example, in [16], the authors suggest refactorings for Z specifications based
on experience on several large- scale projects. The effects of refactorings in Z are
closely related to those in a formal proof script as, when schemas are refactored,
this has an effect on all proofs relying of properties of these definitions. Schairer
and Hutter describe a transformation framework for formal specifications in [14].
Although they do not consider semantics preservation, their approach is similar
to our own, working independent of any logical system.

Declarative proof languages were pioneered by the Mizar system [17]. Our
declarative language is designed to incorporate many of the core features of
popular derivative languages, such as Isar for Isabelle [18], and C-zar for Coq [2].
However, due to our abstract approach, we do not have declarative statements
that refer to the logical structure of a goal. For example, we only have show
instead of the Isar-style fix...assume...show or the direct mapping between
inference rules and C-zar statements such as assume. Our semantic approach
to gaps is more closely related to Isar, where lemmas can be proved with gaps;
C-zar, by comparison, does not allow a final ‘qed’ with unproven subgoals.

Further work. There are a number of extensions to our language we wish to
consider. We would like to investigate a simple module system and define refac-
torings that operate at the module level. We could, for example, merge modules
or move lemmas from one module to another. A more sophisticated logical frame-
work would enable us to refactor statements directly, allowing us, for example,
to remove assumption, if it is unused. Our proof script language also needs to be
extended: we have yet to deal with definitions and axioms, both of which come
with refactorings. On the practical side, we would like to create an implemen-
tation of a refactoring tool for our prototype language instantiated with a real
derivation system. From the refactorings we have looked at so far, we have no-
ticed that many can be built from smaller, atomic refactorings. The move object
refactoring can be built from repetitions of the simpler swap object refactoring.
We would like to investigate this further, perhaps coming up with a refactoring
calculus. Fowler, in [6], discusses bad smells in code that indicate that a refactor-
ing would be desirable. Typical examples are duplicated code and long method.
These translate nicely into duplicated proof steps and long proofs. We are in-
terested in discovering more, proof-specific smells. One particular methodology
would be to analyse the version history of large development under Subversion
or CVS control.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their helpful suggestions. The first author was supported by Microsoft
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mizar-items: Exploring Fine-Grained

Dependencies in the Mizar Mathematical Library
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The MML is one of the largest collection of formalized mathematical knowledge
that has been developed with various interactive proof assistants. It comprises
more than 1100 “articles” summing to nearly 2.5 million lines of text, each
consisting of a unified collection of mathematical definitions and proofs. Seman-
tically, it contains more than 50000 theorems and more than 10000 definitions
expressed using more than 7000 symbols. It thus offers a fascinating corpus on
which one could carry out a number of experiments. This note discusses a system
for computing fine-grained dependencies among the contents of the MML. For an
overview of Mizar, see [3]; for a discussion of some successful initial experiments
carried out with the help of mizar-items, see [1,2].

We say that a definition, or a theorem, φ depends on some definition, lemma
or other theorem ψ, (or equivalently, that ψ is a dependency of φ) if φ “needs” ψ
to exist or hold. The main way such a “need” arises is that the well-formedness
or the justification of provability does not hold in the absence of ψ. Other senses
of mathematical “dependency” are available that are related to what we de-
scribe here, but which mizar-items does not treat (at present). One might be
interested, for example, in the space of all logically possible proofs of a certain
result. Our interest is, to put it philosophically, intensional rather than exten-
sional: we are interested in computing what minimally accounts for the success
of a specific mathematical proof that has been formalized in the Mizar language.
The extensional problem is what we are after, in the long run, but since we must
work with specific formalizations of mathematical knowledge, we need to take
an intensional approach.

The primary motivation behind mizar-items was the lack of a tool for giving a
complete answer to the question of what, precisely, a Mizar text depends upon.
This turns out to be rather non-trivial task. The difficulty stems primarily from
various mechanisms (such as type inference) for making Mizar texts “smoother”
for the author and human consumer because these mechanisms, by suppressing
inferences—sometimes trivial, other times mathematically significant—can be
“exposed” only through much computation.
� The author was supported by the FCT project “Dialogical Foundations of Se-

mantics” (DiFoS) in the ESF EuroCoRes programme LogICCC (FCT Log-
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Naturally, not all items in the vast Mizar library are equally interesting. mizar-
items and its accompanying website (see below) was motivated by the problem of
discovering dependency information not for arbitrary Mizar items, but specifically
for those with substantial mathematical or foundational value, such as the Jordan
curve theorem, the axiom of choice, the existence of strongly inaccessible cardinal
numbers, or Euler’s polyhedron formula (to name only a biased handful of exam-
ples). The fine-grained dependency data exposed by mizar-items could also be used
in theory exploration and reverse mathematics [5] or Lakatos-style [4] investiga-
tions of necessary and sufficient conditions for mathematical theorems.

We compute the fine-grained dependency graph for the MML by starting
with an over-approximation of what is known to be sufficient for an item to be
Mizar-verifiable and then successively refining this over-approximation toward a
minimal set of sufficient conditions. The method can be fairly characterized as
brute-force: for each Mizar item, we successively hide implicit information nor-
mally kept hidden from a human Mizar formalizer, then see whether Mizar can
still verify it. It turns out that this approach is rather slow; we needed to develop
various heuristics to make the brute-force computation smarter.

mizar-items is accompanied by a website,

http://mizar.cs.ualberta.ca/mizar-items/

for exploring these dependencies. With the site one can view any particular Mizar
item and see precisely what it depends upon (and what depends on the item).
With the dependency graph, one can ask such queries as: Is there a path between
two given items? Do all paths from one item to another pass through a given
intermediate node? Are there any paths between two given items that do not pass
through a given node?

To facilitate exploration, one can start by visiting a list of selected interesting
entry points into the vast Mizar library.

mizar-items is a collection of programs in Common Lisp, Perl, Pascal, as well
as shell scripts. The code is available online at

https://github.com/jessealama/mizar-items

(The Pascal sources are not included here: They are part of the Mizar code base,
which, at present, is not publicly available.)

References

1. Alama, J., Kuehlwein, D., Tsivtsivadze, E., Urban, J., Heskes, T.: Premise selection
for mathematics by corpus analysis and kernel methods (preprint, submitted)

2. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics (preprint,
submitted)

3. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010),
http://jfr.cib.unibo.it/article/view/1980/1356

4. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)
5. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in

Mathematical Logic. Springer, Heidelberg (2009)

http://mizar.cs.ualberta.ca/mizar-items/
https://github.com/jessealama/mizar-items
http://jfr.cib.unibo.it/article/view/1980/1356


Formalization of Formal Topology by Means of

the Interactive Theorem Prover Matita

Andrea Asperti1, Maria Emilia Maietti2, Claudio Sacerdoti Coen1,
Giovanni Sambin2, and Silvio Valentini2

1 Department of Computer Science, University of Bologna
{asperti,sacerdot}@cs.unibo.it

2 Department of Mathematics, University of Padova
{maietti,sambin,silvio}@math.unipd.it

The project entitled “Formalization of Formal Topology by means of the interac-
tive theorem prover Matita” is an official bilateral project between the Universi-
ties of Padova and Bologna, funded by the former, active from March 2008 until
August 2010. The project aimed to bring together and exploit the synergic col-
laboration of two communities of researchers, both centered around constructive
type theory: on one side the Logic Group at the University of Padova, focused
on developing formal, pointfree topology within a constructive and predicative
framework; on the other side, the Helm group at the University of Bologna, devel-
oping the Matita Interactive Theorem Prover [2], a young proof assistant based
on the Calculus of Inductive Constructions as its logical foundation. The idea of
the project was to formalize and check the new approach to formal topology be-
ing developed in Padova by means of Matita, with the aim on one side to assess
the truly foundational nature of the theoretical framework (i.e. its reduction to
notions so elementary to be easily understood by an automatic device), and on
the other to drive the development of Matita, testing the tool on a non trivial
set of mathematical results, and addressing from an orginal theoretical perspec-
tive some key problems of constructive interactive proving (general recursion,
extensionality, quotients, . . .).

The project is a rare example of a significant collaboration between mathe-
maticians and computer scientists in handling mathematical knowledge.

It is worth to emphasize that the interest in the formalization from the math-
ematical perspective is not in the automatic verification of the results (on which
mathematicians are already largely confident with) but in the phenomenological
goal to investigate the most natural way to organize a new foundational frame-
work in a coherent set of interconnected components, their mutual relations and
dependencies, our interaction with these representations, and their influence on
the concrete mathematical experience (see [1]). Formalization is neither a goal
nor a technique, but first and foremost a methodology.

The formalization work was mainly focused on Overlap Algebras [4,3], new al-
gebraic structures designed to ease reasoning about subsets within intuitionistic
logic. The main result checked in Matita [5] is the embedding of a suitable cat-
egory of topological spaces into a category of generalized point-free topologies,
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which is an improvement on the usual adjunction between topological spaces
and locales. The formalization of this result drove several major improvements
of Matita, discussed in [5].

A major feature of type theory (and proof checking systems based on this
framework) is that functions are live entities, in the sense that they can be effec-
tively computed. However, in presence of dependent types and for consistency
reasons, one has to restrict to a subset of total computable funtions (typically
based on some well founded recursion principle), that prevents from program-
ming in a truly natural functional style. For this reason, the encoding of general
recursion and its (simulated) behaviour is a major topic for interactive proving.
In [6], a new approach to this problem based on the use of inductively gener-
ated formal topologies is proposed. The work is based on previous results in [9],
relating the notion of covering with that of well-founded part of a relation.

Another challenging problem in type theory/interactive proving is extension-
ality, and especially an extensional treatment of set theory with quotients. In [7],
a two-level theory to formalize constructive mathematics is presented, develop-
ing ideas already outlined in [8]. One level is given by an intensional type theory,
called Minimal Type Theory. This theory extends a previous version with col-
lections. The other level is given by an extensional set theory that is interpreted
in the first one by means of a quotient model. This two-level theory has two
main features: it is minimal among the most relevant foundations for construc-
tive mathematics; it is constructive thanks to the way the extensional level is
linked to the intensional one which fulfills the ”proofs as programs” paradigm
and acts as a programming language. The possibility to integrate this two level
approach in Matita is still under investigation.

The code of the formalization developed in the project can be found on-line
at the address http://matita.cs.unibo.it/library.shtml, under the section
“The Basic Picture”.
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Abstract. This demonstration describes the results of the first year of the Eu-
DML project, an initiative building a new multilingual service for searching and
browsing the content of existing European portals of mathematical content. We
demonstrate the first versions and proofs of concept of the EuDML portal, its
contents’ aggregator, and a toolset for added value.

AboutEuDML. — EuDML, theEuropean DigitalMathematicsLibrary(www.eudml.eu),
is a project that will build a new multilingual service for searching and browsing the con-
tent of existing European mathematical portals [5,1]. It will be based on a rich metadata
repository, aggregating metadata and full text of heterogeneous and multilingual collec-
tions of digitised and born digital content (articles, books, theses, etc.). The service will
merge and augment the information about each document from each collection, and
also will match documents and references across the entire combined library. Entities
such as authors, bibliographic references and mathematical concepts will be singled out
and linked to matching items in the collections; similar mechanisms will be provided as
public web-services so that end-users or other external services will be able to discover
and link to EuDML items. This way, EuDML will be a new major international player in
the emerging landscape of scientific information discovery services, enabled for reuse
in new added value chains. EuDML is partially funded by the Competitiveness and In-
novation Framework Programme of the European Commission (CIP ICT PSP Digital
Libraries), grant agreement no. 250.503.

The EuDML Service Architecture. — The EuDML system can be summarised by the
use cases represented in Figure 1. The ultimate purpose will be to serve End Users, who
can search and browse anonymously, or can register for personalised services. A set of
Business Workers are intended to maintain the services and content, while external
business partners contribute their content (bibliographic data and full texts for indexing
and added value services).

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 281–284, 2011.
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The EuDML Portal. — The first version of the EuDML portal can be accessed from
the EuDML website.1 So far, there are no access restrictions, as all the services are
available for anonymous users. This demonstration contains approximately 55,000 doc-
uments, provided by a group of partners (CEDRAM, DML-CZ, DML-E, ELibM, GDZ,
NUMDAM, Portugaliæ Mathematica, and RusDML).

Fig. 1. The EuDML Use Cases

EuDML Content Aggregation. — One
of the first project’s result was a de-
tailed analysis of the existing con-
tent formats and metadata schemas
used throughout partnering projects
and content providers. Informed by
this study, a specification for a Eu-
DML schema, heavily based on NLM
JATS2, was written down.

REPOX is a framework to manage
data sets. It comprises multiple chan-
nels to import data from providers,
services to transform data between
schemas according to specified rules,
and services to expose the results to
the exterior. REPOX allows to moni-
tor OAI-PMH3 servers and schedule
data ingests.

Instances of REPOX for EuDML
are currently running at Instituto
Superior Técnico (Lisbon) and Cel-
lule MathDoc (Grenoble). These in-
stances aggregate the bibliographic

metadata collected up to now, converted to EuDML format, and exploited partially
within the portal.

REPOX is complemented by the EuDML Profile Report, a service to inspect and
create statistics and metrics on data quality, including whether the data conforms to
particular standards or patterns. All these can be accessed from the page set-up in the
EuDML website.4

The EuDML Enhancer and Association Toolsets. — This demonstration also comprises
tools gathered or produced by EuDML partners as building bricks of enhancer tools,
whose functionality should check, normalize and enhance metadata collected from part-
ners, including Zentralblatt MATH, or extracted from the analysis of the full text of

1 Go to http://www.eudml.eu/first-year-demos#system
2 Journal Archiving and Interchange Tag Suite from the US National Library of Medicine,

cf. http://dtd.nlm.nih.gov/
3 The Open Archives Initiative Protocol for Metadata Harvesting, cf.
http://www.openarchives.org/

4 Go to http://www.eudml.eu/first-year-demos#aggregation

http://www.eudml.eu/first-year-demos#system
http://dtd.nlm.nih.gov/
http://www.openarchives.org/
http://www.eudml.eu/first-year-demos#aggregation
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items in the EuDML collections. Demonstration web pages allow testing and evalua-
tion of prototypes of thirteen tools.5

This toolset consists of solutions for OCR, information extraction, content analysis,
data conversion and document refinement. At this stage, more tools are being developed
and tested mostly at the technology providers’ sites, with well defined interfaces allow-
ing further integration into subsystems of the EuDML core system site. As a next step,
these tools will be merged into bigger components and installed in the central EuDML
system, together with recently developed search of mathematical formulae [4].

Another set of tools targets tasks as interlinking scientifically related items in Eu-
DML: turning citations into links [2], computing semantically similar papers or plagia-
rism candidate paper pairs [3]. Similar tools for linking to items in external services
such as reviewing databases will be developed.

The EuDML User Interface Design and Tools. — The success of the project depends
not only on the amount of aggregated data, but on the user experience as well. During
the interface design process, a usability study has been performed. The study identified
typical usage patterns, so it was possible to design an interface oriented toward scholar’s
productivity. The initial version of the portal covers the basic functionality of the digital
library: searching and browsing collections, downloading the content, etc. Next step
of the project is to add Web 2.0 functionalities, allowing to annotate and comment
documents, and to share them with others, using both internal mechanisms and external
services. The user interface design is also focused on providing efficient support for the
mathematical content, both in presentation and user input (search or annotations).

The user interface is developed in Java, and is based on Spring framework6. Both
EuDML repository services and web interface are based on the Yadda toolkit developed
in ICM7, customised and extended for required functionality.

Final Note. — The services described here are expected to evolve rapidly during the
remaining project’s lifetime. Up-to-date services and documentation will be linked from
the resources page on our web site.8
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System Description

We consider the problem of enriching a dynamic geometry system with new
features from the field of Automated Deduction in Geometry. A prototype based
on Sage, sagemath.org, that extends the current capabilities of the interactive
environment GeoGebra, geogebra.org, is presented. The prototype provides
a deeper knowledge of the different geometric objects in a construction. More
precisely, an algebraic symbolic approach based on Groebner Bases is followed
to implement a substitute for the numerical approach for property checking and
locus plotting used by GeoGebra. As a result the system provides a certified
answer in the case of a geometric query or the algebraic equation of the locus
in the case of a locus construction. Note that knowing the equation of a locus is
necessary to derive new geometric objects from the locus.

The prototype works only in connection with GeoGebra in its current form,
but it can be easily adapted to any system allowing open access to a textual
representation of its constructions. This includes in particular the case of systems
exporting their constructions in Intergeo File Format, standard supported by
most European dynamic geometry software.

The system automates two common tasks in the dynamic geometry paradigm:
proving and locus discovery. GeoGebra was chosen as test tool for our parametric
approach [1] due to its increasing relevance in the world of dynamic geometry,
making it a de facto standard in the field. Roughly, given a GeoGebra construc-
tion with a locus or a boolean command checking some mathematical relation
between elements, the system reads its XML description, and translates it to
a parametric setting. The key point of this parametric representation of the
construction is that the description of dependent elements is not given by their
current positions, but by their algebraic relations. The system algebraically pro-
cess this parametric representations to return the locus equation or a statement
about the truth of the query. See [2] for the algorithm followed to obtain the
locus equation and [3] for the one followed to test the truth of a statement.

Regarding the scope of admissible GeoGebra constructions, the system can
currently process constructions involving the following elements: Free Point,
Midpoint, Point, Segment, Line, OrthogonalLine, Circle, Intersect, Locus and
Relation between Two Objects (parallelism, perpendicularity).
� Partially supported by the Spanish MICINN, grant MTM2008-04699-C03-03/MTM.
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Using the System

The system can be used in two different (web–based) ways. We consider first the
method recommended for testing the tool. One has to login into a Sage server
(http://{alpha.}sagenb.org or https://193.146.36.205:9011) as cicm11,
password test. Once logged in, one just has to open one of the provided work-
sheets and follow the instructions there. The second way of using the tool in-
volves what is known as simple Sage server which is included in the system to
demonstrate the feasibility of allowing remote computations in an interactive
geometric system. Since our system uses the friendly environment offered by
Sage and also makes an extensive use of Singular functions, it is not currently
possible to import the system as a Python library (although Sage developers
plan to incorporate it in the near future). In that case, the simple server would
be available as a temporal remote access solution for GeoGebra users.

Finally, at http://webs.uvigo.es/fbotana/CICM11/, all necessary files to
test and use the system, including the worksheet files for standalone use and a
5’ tutorial video, are available.

Examples

To facilitate the tool testing, two GeoGebra constructions are provided in the
URL above as examples for each task. In the case of Pascal’s limaçon, the system
finds the appropriate quartic curve plus a circle as an extra degenerated part
of the locus. For the second locus, a conchoid, it provides both branches of the
locus. It must be noted that the followed elimination based approach does not
return the exact locus, but its Zariski closure. So, the result equation f = 0
must be understood as in the sentence “the locus is, or is contained, in the affine
variety f = 0”.

The examples involving the proof task show identical results to those pro-
vided by GeoGebra. However, due to the algebraic techniques used, they are
mathematically correct while the GeoGebra statements are based on numeric
computations (as explicitly stated in GeoGebra 4.0) and hence are prone to
inaccuracies.
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The mission of mechanized mathematics is to develop software systems that
support the process people use to create, explore, connect, and apply mathe-
matics. Working mathematicians routinely leverage a powerful synergy between
deduction and computation. The artificial division between (axiomatic) theorem
proving systems and (algorithmic) computer algebra systems has broken this
synergy. To significantly advance mechanized mathematics, this synergy needs
to be recaptured within a single framework. MathScheme [6] is a long-term
project being pursued at McMaster University with the aim of producing such
a framework in which formal deduction and symbolic computation are tightly
integrated. In the short-term, we are developing tools and techniques to support
this approach, with the long-term objective to produce a new system.

Towards this aim, we have already developed several techniques, with some
laying the theoretical foundations of our framework, while others are implemen-
tation techniques. In particular, we rely on biform theories and an expressive
logic (Chiron) for grounding. We rely on various meta-programming techniques
as well as the increased safety offered by a modern statically typed programming
language (Objective Caml [8]) to greatly simplify our implementation burden.

A biform theory [1,3] is a combination of an axiomatic theory and an al-
gorithmic theory. It is the basic unit of mathematical knowledge that consists
of a set of concepts, transformers, and facts. The concepts are symbols that de-
note mathematical values and, together with the transformers, form a language
L for the theory. The transformers are programs whose input and output are
expressions of L. Transformers represent syntax-manipulating operations such
as inference and computation rules. The facts are statements expressed in L
about the concepts and transformers. In a typical biform theory, the concepts
are classified as primitive or defined, the transformers as primitive or derived,
and the facts as axioms, definitions, or theorems. A pure axiomatic theory is a
biform theory with no transformers, and a pure algorithmic theory is a biform
theory with no facts or only facts about the transformers.

Since transformers manipulate the syntax of expressions, biform theories are
difficult to formalize in a traditional logic without the means to reason about
syntax. Chiron [4,5] is a derivative of von-Neumann-Bernays-Gödel (nbg) set
theory that is intended to be a practical, general-purpose logic for mechanizing
mathematics. It is equipped with a type system that includes dependent types,
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subtypes, and possibly empty types. It handles undefined expressions according
to the traditional approach to undefinedness. Its most noteworthy component is a
facility for reasoning about the syntactic structure of expressions using quotation
and evaluation à la Lisp. We have an implementation [7] of Chiron which uses the
Objective Caml type system to track most of the invariants of Chiron expressions
statically. It includes a convenient foreign function interface (to facilitate building
of biform theories out of existing libraries) and a sophisticated set of pretty-
printers for rendering Chiron in ASCII, MathML, and LaTeX.

We also have an implementation of the MathScheme Language, which has
a user-oriented, high-level syntax (unlike Chiron), influenced by our work on
high-level theories [1]. The MathScheme Library is an experimental formal-
ization of the theories of abstract algebra, basic data-structures, and structured
type constructors. The library is organized by the tiny theories method in which
knowledge is distributed over a network of theories that are built up one con-
cept at a time. Much of the structure of the library resides in theory morphisms
instead of in the theories themselves. We have an expander (to see what our
theories correspond to in traditional notation), a type-checker, pretty-printing
facilities similar to Chiron’s, as well as an experimental translator to Chiron.

Eventually, the library will form a network of biform theories interconnected
by theory morphisms. Some biform theories are implementations for developers
while others are interfaces for users. Meta-programming techniques [2] will be
used to generate efficient implementations from the MathScheme Language.

We are actively working on MathScheme. Current work is first focusing on
further leveraging the structure already present in our library to automatically
generate as much information as possible, rather than implementing all of this
by hand, as is traditionally done.
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LATIN aims at developing methods, techniques, and tools for interfacing logics
and related formal systems. These systems are at the core of mathematics and
computer science and are implemented in systems like (semi-)automated theo-
rem provers, model checkers, computer algebra systems, constraint solvers, or
concept classifiers. Unfortunately, these systems have differing domains of ap-
plications, foundational assumptions, and input languages, which makes them
non-interoperable and difficult to compare and evaluate in practice.

The LATIN project develops a foundationally unconstrained framework for the
representation of logics and translations between them [9,1]. The LATIN frame-
work (i) subsumes existing proof theoretical frameworks such as LF and model the-
oretical frameworks such as institutions [3] and (ii) supplants them with a uniform
knowledge representation language based on OMDoc. Special attention is paid to
generality, modularity, scalability, extensibility, and interoperability.

LSynBase

LPf

LMod

F

Lmod

Lpf

M

Ltruth

Lsound

Logics are represented as theories
and translations as theory morphisms.
Logic representations formalize the syn-
tax, proof theory, and model theory of
a logic within the LATIN framework.
The representations of the model the-
ory are parametric in the foundation of
mathematics, which is represented as a
theory itself; then individual models are
represented as theory morphisms into the
foundation. This can be represented in a
diagram such as the one above, where the syntax of a logic L is represented as
a theory LSyn, which is then extended with the representation of proof rules
to represent the proof theory as Lpf . Moreover, the model theory of the logic
can be represented as a theory LMod, based on the representation of a foun-
dation F which is included the model theory; the models are represented by
the arrow M . The Base theory represents the type of formulas and the notion
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of truth for them. Moreover, we can represent soundness proofs as a morphism
Lsound from the proof theory to the model theory of L. Similarly, logic transla-
tions formalize the translations of syntax, proof theory, and model theory. This
“logics-as-theories” approach makes system behaviors as well as their represented
knowledge interoperable and thus comparable at multiple levels.

The LATIN framework has been implemented generically within the Hetero-
geneous Tool Set Hets [7] and instantiated with the logical frameworks LF, Is-
abelle, and Maude. Hets is a general institution-based framework for integration
of formal methods and heterogeneous specification and proof management. While
Hets implements a large number of logics and translations, their semantics and
correctness had previously been determined only by model theoretic arguments.
Within the LATIN project, Hets has been extended to support adding logics semi-
automatically using a logic specification in one of the supported logical frame-
works. This brings the advantage that the logics of Hets are represented fully for-
mally and verified mechanically, and that new logics can be added dynamically.

To evaluate the developed framework and provide a service to the community,
the project builds an atlas of logics used in automated reasoning, mathematics,
and software engineering. The concrete logic representations span over 1000 the-
ories and morphisms and can be found at the project web site, they include
(i) Type theory, including a modular development of the lambda cube, Martin-
Löf Type Theory, and Isabelle, (ii) Logics, including first-order, higher-order,
modal, and description logics, (iii) Set theory including ZFC and the Mizar vari-
ant of Tarski-Grothendieck set theory. The atlas also includes a growing number
of logic translations including, e.g., the relativization translations from modal,
description, and sorted first-order logics to unsorted first-order logic, the inter-
pretation of type theory in set theory, the negative translation from classical to
intuitionistic logic, and the translation from first to higher-order logic. Elabo-
rate case studies were documented in [4,5,10]. The LATIN atlas is extensible,
and new logics can be added easily — including the reuse of already formalized
logic features — and related to the existing logics via translations.

To make the logic atlas scalable, we base it on the knowledge representation
language MMT [11]. MMT refines the markup language for structured theo-
ries that is part of OMDoc and provides a formal semantics for it. Moreover,
MMT comes with a scalable infrastructure [6] centered around a flexible and
foundation-independent API.

In the authoring work flow of LATIN, representations are written in Twelf
[8] using our module system for it [12]. Twelf converts the content into OM-
Doc/MMT, which indexes and stores it in the SVN+XML database TNTBase
[13]. In the application work flow, these OMDoc/MMT documents are imported
into Hets. In the presentation work flow, the MMT web server uses XQueries
to retrieve LATIN content and user-defined notations from TNTBase, which are
used to render the content as JOBAD-enabled [2] XHTML+MathML. All stages
of this pipeline are semantics-aware so that, for example, the web server can offer
interactive dynamic services such as definition lookup or toggling the display of
inferred types.
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The browsable version of the atlas is available at the project web site. When
browsing it, keep in mind that the logical framework, the formalizations in it,
and the whole infrastructure processing them are ongoing work and thus subject
to both constant improvement and temporary failures.
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Introduction. The language of the TEX/LATEX typesetting system has become
all-pervasive in scientific publications and has proven its stability, convenience
and expressivity in its three-decade history. With the advent of the Web 2.0
paradigm, it has also become the primary choice of various technical and sci-
entific social platforms, most prominently online encyclopedias (e.g. Planet-
Math [Pla]) and question-answer forums (e.g. MathOverflow [Mat]). On the
other hand, the standardization of MathML and OpenMath and the adop-
tion of the former in HTML5, have opened the floodgates for scientific content
native to the browser.
LATEX on the Web. The efforts of bringing LATEX to the web are numerous and
have varied in number and approach. Classical scenarios provide hooks to ei-
ther LATEX itself or a LATEX daemon(e.g. [Uni]), incorporating formulas as PDF
or PNG, while newer applications pursue a fully native output of XHTML+
MathML (see [Sta+09] for an overview). The LaTeXML [Mil] system, and par-
ticularly its enhanced branch maintained for the arXMLiv [Sta+10] project,
belongs to the second category. It is currently the only system with experimen-
tal Content MathML support and is also prepared for further linguistic and
semantic analysis of the document contents, as it not only expands TEX macros,
but also allows for the definition of custom bindings that preserve and enhance
the semantic information encoded by the authors. Moreover, it takes the effort
one step further, being able to already create XHTML+MathML+RDFa and
remains easily extensible to other output formats, such as HTML5+RDFa.
A Daemon. In this abstract we present an extension, the LaTeXML daemon,
which drastically widens the applications of the LaTeXML system, addressing
the problems of efficient, scalable and on-the-fly processing. The daemon enhance-
ments avoid the overhead of startup time and LATEX package initialization, achiev-
ing close to instant conversion times, and easily scale to multi-threaded setups. This
provides a great boost to conversion times not only in the processing of large-scale
corpora, but also when employed as a backend for web services using LATEX as a
frontend language. Maturity has been exhibited by converting one and a half mil-
lion abstracts from the ZentralblattMATH [Zbl] database, coupled with a stable
performance in various installations of the Planetary [Koh+11] system.
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Next, we equip our system with the capabilities of operating as a web ser-
vice independent of a file system and of recognizing resources via web-accessible
URIs1. Furthermore, we add native support for user-embedded metadata, with
an outlet for Semantic Web target representations, such as RDFa. When these
features are employed in unity, our system acts as a capable conversion backend
for web-based authoring systems, also scalable to exporting user-defined meta-
data for add-on semantic services. Prominently, the high conversion speeds allow
for on-the-fly preview of the authored content and enable real-time collaborative
setups, where multiple authors can write simultaneously – a setting explored in
depth by services such as Etherpad [Inc] and Google Docs [Goo], but lacking
native mathematical content.
Implementation. An emphasis has been placed on flexibility, versatility and ease
of use, in both the setup and the deployment phases. A large range of cus-
tomization options and a pair of intuitive server-client executables with detailed
documentation, enable out-of-the-box use for a wide range of applications. The
system implementation is based entirely on open web standards and has the full
expressivity of the original TEX engine. Additionally, correctness and robustness
are ensured respectively, via the powerful scoping system of LaTeXML and
Perl’s mastery in localizing both variables and processing flows. The daemon
communication is based on sockets, allowing an easy coupling with both local
and Internet services.

LaTeXML is Public Domain software, and the daemon remains consistently
under that license. Currently the software is hosted on the arXMLiv branch
of the LaTeXML repository [Gin], to be merged with the trunk of LaTeXML
upon reaching a release candidate. Also, a demo page [Arx] has been set up, in
order to showcase the features claimed.
Future Work. Our next steps would be to address reducing the memory and
processing footprints in the short term, plus ensuring ironclad security when
deployed on the web, in the mid-term. We are simultaneously developing a num-
ber of custom libraries that further build on the capabilities discussed, trying to
fully realize the potential of the framework in introducing LATEX as a frontend
language for the Collaborative Web. They range from supporting special input
methods, e.g. Wikipedia style markup, to providing a stronger integration with
the World Wide Web, e.g. by increasing the expressivity in writing metadata
and supporting direct reuse of LATEX content available online.
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Abstract. In this paper we present the fKenzo system, an integral as-
sistant for teaching and research in (a subset of) Algebraic Topology.
The fKenzo system provides a friendly graphical user interface which
allows the user to interact with both the Kenzo and GAP Computer
Algebra systems and, also, with the ACL2 Theorem Prover by means of
an intermediary layer based on XML technology.

System Description

Algebraic Topology is a mathematical subject which studies topological spaces
using algebraic means, in particular through algebraic invariants (groups or rings,
usually). This allows one to study interesting properties about topological spaces
using statements about groups which are often easier to prove.

The fKenzo system [6] has been developed with the aim of being an integral
assistant for research and teaching in (a subset of) Algebraic Topology. The “in-
tegral” adjective means that this assistant not only provides a graphical interface
for using computational kernels, but also guides the user in his interaction with
the system, and as far as possible, produces certificates about the correctness of
the computations performed.

The fKenzo system provides a friendly front-end allowing the interoperability
among different sources for computation and deduction by means of an interme-
diary layer based on XML technology.

The main computational kernel of our system is Kenzo [2], a Common Lisp
program devoted to Symbolic Computation in Algebraic Topology which was
developed by F. Sergeraert, which allows an fKenzo user to compute homology
and homotopy groups of spaces. In addition, GAP [1], a Computer Algebra
system well-known for its contributions in the area of Computational Group
Theory, and its HAP package [3], an homological algebra library developed by
G. Ellis, have been integrated in fKenzo allowing computations related to group
homology. From the theorem proving side, ACL2 [7], a first order logic theorem
prover tool, is the core for verifying the correctness of statements.

In addition, we can say that the final aim of fKenzo has consisted not only in
integrating several Computer Algebra systems and Theorem Prover tools, and
� Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-

C02-01.

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 295–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



296 J. Heras, V. Pascual, and J. Rubio

use them individually by means of a common GUI, but also in making them
work in a coordinate and collaborative way to obtain new tools and results not
reachable if we use individually each system.

As an example of this interoperability among systems, inspired by the work
presented in [8], Kenzo and GAP have been combined in fKenzo to construct
some spaces, namely Eilenberg MacLane spaces of type K(G, 1) where G is a
cyclic group, which are instrumental in the computation of homotopy groups.
The methodology presented in [8] to compute the homology groups of those
Eilenberg MacLane spaces can be summed up as follows:

1. Load the necessary packages and files in GAP and Kenzo,
2. build the cyclic group G in GAP,
3. build a resolution of the cyclic group G using the HAP package,
4. export from GAP the resolution into a file using the OpenMath format,
5. import the resolution to Kenzo,
6. build the cyclic group G in Kenzo (thanks to a new Kenzo module developed

in [8]),
7. assign the resolution to the corresponding cyclic group G in Kenzo,
8. build the space K(G, 1) where G is the cyclic group in Kenzo,
9. compute the homology groups of K(G, 1).

This approach has some drawbacks. First of all, the user must install several
programs and packages: GAP, its HAP package, the OpenMath package for
GAP [9], an extension for this OpenMath package developed in [8], the Kenzo
system and the new module developed in [8]. In addition, of course, the user
must know how to mix all the ingredients in order to obtain the desired result.
Moreover, some of the steps could be performed automatically by a computer
program; for instance, the importation/exportation of the resolution from GAP
to Kenzo.

On the contrary, the procedure that the user must follow using fKenzo is:

1. Load the GAP fKenzo module,
2. build the cyclic group G,
3. build the space K(G, 1),
4. compute the homology groups of K(G, 1).

As can be seen, this is a much simpler approach than the one presented in [8]
from the user point of view. To deal with the importation/exportation of the
resolution from GAP to Kenzo, the SCSCP protocol [4] has been used.

Moreover, the reliability of such construction is increased by means of the
ACL2 Theorem Prover. Namely, ACL2 is invoked from fKenzo to generate a
certificate of the correctness of the implementation of the cyclic group G which
is used as input to construct the Eilenberg MacLane space K(G, 1). Therefore,
we can claim that Kenzo, GAP and ACL2 work together to provide a powerful
and reliable tool thanks to the fKenzo system.

We urge the interested reader to consult [5] where he can find several demos,
related papers and a complete system description of fKenzo.
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Abstract. In recent years, large corpora of formally expressed knowl-
edge have become available in the fields of formal mathematics, software
verification, and real-world ontologies. The Learning2Reason project
aims to develop novel machine learning methods for computer-assisted
reasoning on such corpora. Our global research goals are to provide good
methods for selecting relevant knowledge from large formal knowledge
bases, and to combine them with automated reasoning methods.

Introduction

In recent years, large corpora of formally expressed knowledge have become
available in the fields of formal mathematics, software verification, and real-
world ontologies. Examples of such formal mathematical libraries are the Mizar
Mathematical Library1, the Constructive Coq Repository at Nijmegen2, the
Flyspeck project3, the The Archive of Formal Proofs4, and the Mathematical
Components project5. Real-world ontologies include for example the Cyc Knowl-
edge Base6, the Suggested Upper Merged Ontology (SUMO)7, and the YAGO
semantic knowledge base8. To derive new knowledge from them, one uses
computer-assisted and automated reasoning methods, which typically use one-
problem-at-a-time approaches (e.g., resolution and tableaux proving). This sym-
bolic (or deductive) approach typically does not consider the knowledge contained
in previous proofs, and it suffers from a fast-growing search space.

This makes computer-assisted reasoning a suitable domain for complemen-
tary heuristic (or inductive) AI approaches, like machine learning, which rely on

� We acknowledge support from the Netherlands Organization for Scientific Research,
in particular Learning2Reason and a Vici grant (639.023.604).

1 http://www.mizar.org
2 http://c-corn.cs.ru.nl/
3 http://code.google.com/p/flyspeck/
4 http://afp.sourceforge.net/
5 http://www.msr-inria.inria.fr/Projects/math-components
6 http://cyc.com/cyc/cycrandd/technology/whatiscyc_dir/whatsincyc
7 http://www.ontologyportal.org/
8 http://www.mpi-inf.mpg.de/yago-naga/yago/
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learning from the large amount of previous knowledge to heuristically control the
search space, e.g., by estimating the usefulness of existing lemmas for proving
a new result. We propose to use state-of-the-art machine learning techniques,
especially kernel-based methods that are ideally suited to take into account the
structure of formulas and proofs (given as graphs or trees).

Project Goals

The Learning2Reason project aims to propose a theoretical framework and
to develop novel machine learning algorithms suitable for formal, computer-
assisted, and automated reasoning in the presence of large amount of previous
knowledge. The main advantage of our approach is its ability to learn and predict
structural dependencies between theorems and axioms.

For ordinary users of formal systems, software developed in Learning2Reason
will provide improved mathematical advice using learned dependencies mined
from the large knowledge bases. For developers of automated reasoning methods,
the Learning2Reason project will provide learning algorithms that help the
process of proof discovery and verification.

Tasks

Our focus so far has been on the following tasks:

1. Developing suitable (structural, semantic) kernels for classification in the
formal mathematical domain [3].

2. Formulating the learning task as an instance of different paradigms (binary
or multi-class classification, (multi-output) ranking).

3. Developing multi-output rankers for the domain.
4. Defining and creating suitable representations of the mathematical data, and

obtaining precise datasets and benchmarks for learning from mathematical
libraries.

5. Defining proper machine learning evaluation metrics.
6. Plugging the newly developed machine learning tools into reasoning meta-

systems like the Machine Learner for Automated Reasoning (MaLARea) [4].
7. Evaluation of the combined learning/deductive systems on standard large-

theory benchmarks like the MPTP Challenge9.

First Results

We conducted first experiments on a subsets of the Mizar mathematical li-
brary10. We compared a regression based kernel with two other ranking algo-
rithms: SNoW [1] in näıve Bayes mode and APRILS, a ranking method which is
9 http://www.tptp.org/MPTPChallenge/

10 Available at http://www.mizar.org

http://www.tptp.org/MPTPChallenge/
http://www.mizar.org
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based on Latent Semantic Analysis [2]. On the test datasets, our kernel algorithm
outperforms both methods11.

As an example, we present a comparison of our newly developed MOR algo-
rithm with SNoW’s näıve Bayes on the MPTP Challenge12 problems. We exper-
imentally plugged the MOR algorithm into the MaLARea system, and compare
its speed and precision with MaLARea running with näıve bayes (SNoW) as a
learning algorithm. Only eight MaLARea iterations are run, in order to remove
the gradual effect of using many different specifications, which can with sufficient
time equalize any advice algorithm with a random one. The comparison is given
in figure 1.

Run Time Limit Axiom Limit Solved Total MOR Solved Total SNoW

1 1 sec 0 57 58

2 1 sec 256 79 74

3 1 sec 256 83 74

4 1 sec 4 90 84

5 1 sec 8 117 99

6 1 sec 16 135 119

7 1 sec 32 140 127

8 1 sec 64 141 129

Fig. 1. Comparison between MaLARea-MOR and MaLARea-SNoW

Even though the MOR algorithm started with one problem less solved, it con-
verges faster and solved 141 problems after eight iterations. With the same num-
ber of iterations, MaLARea with SNoW’s näıve Bayes solved only 129 problems.
The number of problems solved by the system after the sixth fast one-second run
using the MOR-based premise selection outperforms any other non-learning sys-
tem run in 21 hours on the MPTP Challenge problems. Further information and
results can be found on our website http://www.fnds.cs.ru.nl/fndswiki/
Research/Learning2Reason.
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Abstract. We recently started the Formalin project to create a formal
version of the C99 standard for the C programming language. We are
writing three matching formalizations for the interactive theorem provers
HOL4, Isabelle/HOL and Coq, that all closely follow the existing C99
standard text. The project runs from 2011 to 2015, and involves a full
time PhD student, a half time researcher and several scientific advisors.

The project differs from existing work in that our aim is to formalize
the full C99 standard. This means that we treat the C preprocessor, the
C standard library, floating point arithmetic, and ‘dirty’ C features like
signal handling and volatile variables. Importantly, this means we also
treat embedded C programs without explicit input/output.

The Formalin project [14], with website http://ch2o.cs.ru.nl/, runs from
May 2011 to May 2015. The research team consists of the following people:

Robbert Krebbers PhD student
Freek Wiedijk project leader
Herman Geuvers promotor
James McKinna
Erik Poll
Michael Norrish HOL advisor NICTA, Australia
Andreas Lochbihler Isabelle advisor KIT, Germany
Jean-Christophe Filliâtre Coq advisor CNRS, France

The first five people are from the Radboud University in The Netherlands. The
first two people are the developers, while the other six are advising.

The C programming language [8] is one of the most popular in the world. It
is among the two currently most popular languages [9,13], and is a dominant
language from the smallest microcontroller with only a few hundred bytes of
RAM to the largest supercomputer that runs at petaflops speeds. C is especially
used for embedded software, but it is also the native language of most modern
operating systems due to its tight connection to Unix.

The current official description of the syntax and semantics of the C language
– the C99 standard [5], issued by ANSI and ISO together – is written in English
and does not use a mathematically precise formalism. This makes it inherently

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 301–303, 2011.
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incomplete and ambiguous. Our project is to create a mathematically precise ver-
sion of the C99 standard. We formalize the standard using interactive theorem
provers (proof assistants) and develop the C99 formalization in three matching
versions, for the interactive theorem provers HOL4 [7], Isabelle/HOL [11] and
Coq [4]. These formalizations will all be derived from a common master for-
malization, which will either be written for one of the three systems or using
a fourth system like for instance the Ott tool [12]. Ott is a tool designed for
defining language definitions, which can generate formalizations for all three of
our systems. The whole formalization suite will be published as open source,
under a BSD-style license. For dissemination, we will also use MKM tools like
the ones that currently are being developed in the MathWiki project [6].

The formalizations that we create closely follow the existing C99 standard
text. Specifically we treat the C preprocessor, the C standard library, and fea-
tures that in a formal treatment are often left out: unspecified and undefined
behavior due to unknown evaluation order, casts between pointers and integers,
alignment requirements, floating point arithmetic, non-local control flow (goto
statements, setjmp/longjmp and signal handling) and volatile variables. Most
importantly, to make our work relevant for verification of embedded software,
we include the part of the standard referring to C programs that run in a ‘free-
standing environment’ (Section 5.1.2.1 of [5]).

A formal version of the full C standard is an important artifact. When estab-
lishing a property of a C program, it is very attractive to be able to claim that
it has been proved with respect to the full official standard. This kind of ‘knowl-
edge’ about the C semantics in the current state of the art is mostly implicit in
various tools.

A formalization of the C99 standard has three main applications:

– The C99 formalization makes the C99 standard utterly precise. This is useful
for compiler writers, who will get the means to establish how the standard
needs to be understood without having to deal with the ambiguities of the
English language. Programmers writing C programs get the same benefit.

– There already are various projects to prove C compilers correct, like the
Compcert project of Xavier Leroy [2]. These projects need a semantics of a
version of C. These currently are subsets of full C, with names like Clight
or C0. With a formal version of the C99 semantics, the correctness of the
compiler becomes provable with respect to the full official standard.

– Currently people proving C programs correct with proof assistants use tools
like VCC [3] and Frama-C [10] which generate verification conditions from
C source annotated in the style of Hoare logic. These tools implicitly ‘know’
about the semantics of C, but this knowledge is not explicit. A more thorough
approach is to have such a tool not just generate the verification conditions,
but to also have it synthesize formal proofs about the properties of the
program.

Our three formalizations each consist of two parts. The first part defines a space
of all possible C semantics as a type C_semantics. (‘Semanticses’ is not cor-
rect English, but we mean the plural of semantics here.) Points in this space
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correspond to various variants of C like the C99 standard, the upcoming C1X
standard, and the behavior of specific C compilers on specific machines. The
definition of this space will be as short as we can make it, to have it as clear as
possible what our formalized C99 standard amounts to. This space also addresses
the observation from page 70 of [1] that ‘the C language does not exist’. The
second part is a small step structured operational semantics of C. It corresponds
to a point in the space of C semantics, which means that the second and main
part of our formalizations will be a formal definition of an element

C99 : C_semantics
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1 Problem Statement: No Math on the Web of Data Yet

An increasing amount of scientific knowledge is being contributed to the emerg-
ing Web of [Linked] Data, where it is made available in a machine-comprehensible
way and interlinked with other related datasets. This already powers distributed
query answering engines and intelligent semantic mashups enriching web pub-
lications – however, it still largely lacks mathematical functionality.1 There are
e-science datasets – with mathematical model descriptions opaque to machines.
There are statistical datasets, e.g. from e-government – without explicit descrip-
tions of how values have been derived. There are digital libraries and databases
of scientific publications – with information about who cited your paper, but not
who is building on your mathematical ideas.

2 The Krextor XML→RDF Extraction Library

In contrast to the document-oriented, often XML-based content markup of
MKM, the graph-based RDF data model is most widely used for representing
knowledge on the Web of Data. Therefore, in order to contribute mathemati-
cal knowledge to the Web of Data, we have developed the Krextor [3] library,
and, on top of that, extraction modules that translate the structural outlines of
OpenMath, OMDoc, and other content markup to RDF. Krextor is an XSLT
library that aims at facilitating the repetitive task of implementing translations
from several XML input languages. It does so by offering convenience templates
and functions for frequently occurring patterns in XML→RDF translation, such
as creating RDF resources for things represented by XML elements, generat-
ing (“minting”) linked data compliant URIs for these resources, and translating
XML text nodes or attribute to properties of these resources. Krextor allows
for flexible integration into applications by supporting multiple output serial-
izations of the RDF extracted, including callbacks to Java application code –
whereas traditional hard-coded XSLT implementations would rather translate
1 For a review of the state of the art of linked data, we refer to [2], and for further

background about the potential of mathematical linked data to [6].
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from exactly one XML input language to exactly one RDF output serialization
(e.g. RDF/XML). Besides OpenMath and OMDoc2, we have developed extrac-
tion modules for special MKM applications, such as encoding semantic web
ontologies in OMDoc, and external developers have adopted Krextor outside of
MKM [3].

3 Publishing the OpenMath CDs as Linked Data

In contrast to previous work [5], the current focus of Krextor development is
on expanding the coverage of the OpenMath 2 CD language (and proposed
extensions beyond that), in order to prepare the publication of the official CDs
at openmath.org as linked open data [7]. The official OpenMath CDs have
a great potential for bootstrapping a mathematical Web of Data, as they are
widely in use, e.g. in that they define the semantics of Content MathML 3 [1].

Krextor has been used with OpenMath CDs before, but specifically for main-
taining the (then) experimental collection of “OpenMath/MathML 3 CDs” in-
side a closed semantic wiki [8], which pre-processed them in a special way.
The current focus is on making most out of the official OpenMath CDs as
they are, which means:3 (i) Supporting the maintenance of links from concepts
in the OpenMath CDs to semantically equivalent concepts in related datasets
– such as the Digital Library of Mathematical Functions (DLMF [9]) or the
PlanetMath encyclopedia [11]. As the reference encoding of the OpenMath
CD model [12] does not currently have annotation facilities, this is done as
standoff markup in separate RDF files next to the CDs.4 An example is the
definition of the sine function in terms of the exponential function (sin z =
eiz−e−iz

2i ); the correspondence between its OpenMath and DLMF representa-
tions is expressed by the RDF triple <http://dlmf.nist.gov/4.14.E1>
owl:sameAs <http://www.openmath.org/cd/transc1#sin.prop0>.
(ii) A prerequisite for that: Giving stable identifiers to mathematical properties
of symbols – even though the reference CD encoding does not provide such iden-
tifiers. This is important as, for example, the DLMF entries mainly correspond
to OpenMath mathematical properties [7]. (iii) Utilizing existing XSLT code
for translating OpenMath objects into Content MathML and other machine-
comprehensible representations [10], so that interested applications can retrieve
them right from the same dataset.

2 cf. [4, chapter 3] for a detailed description of the target RDF vocabularies/ontologies
that we have developed for capturing mathematical knowledge, or for mappings to
existing RDF vocabularies that we reused, e.g. for metadata.

3 Seehttp://trac.kwarc.info/krextor/wiki/OpenMathExtractionModule
for a technical documentation and examples.

4 These links have to be maintained manually for now; automatically identifying such
correspondences between would require advanced linguistic methods.

openmath.org
http://trac.kwarc.info/krextor/wiki/OpenMathExtractionModule
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4 Coverage of the System Demo

The demo will focus on (i) the OpenMath CD extraction module, but also on
(ii) Krextor’s possibilities for implementing extraction modules for new MKM

languages. Regarding (i), I will particularly explain how to create new links
between the OpenMath CDs and external datasets, and how RDF- and/or
OpenMath-aware client applications can utilize the OpenMath CD linked
dataset. Regarding (ii), I am prepared for a “hacking session” with any visitors
who are interested in extracting RDF from their XML-based MKM language,
in order to contribute their mathematical knowledge collections to the Web of
Data.
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1 Introduction

EgoMath is a full text search engine focused on digital mathematical content with
little semantic information available. Recently, we have decided that another
step towards making mathematics in digital form more accessible was to enable
mathematical searching in one of the world’s largest digital libraries - Wikipedia.
The library is an excellent candidate for our mathematical search engine because
the mathematical notation is represented by TEX fragments which do not contain
semantic information.

The key issue in mathematical searching is the retrieval of mathematically
equal formulae. We regard this issue as a similarity search problem where the
similarity function is strongly dependent on the mathematical model. EgoMath2
and its predecessor use the same idea but different implementation for the sim-
ilarity function, indexing and searching. The idea is to use content-based anno-
tation - different textual representations of one formula which are mathemati-
cally similar in our definition - for allowing similarity search. The similarity of
mathematical formulae in EgoMath2 is based on the mathematical equality in a
predefined mathematical model and preferring operations to operators in their
formula parse trees. The later characteristic is used in generalising the formula
representation e.g. formula a + 7 is generalised to id + 7. Currently used model
consists of several rules e.g. commutative property of addition. One possible
definition of similarity can be found in [1]. The similarity search is hidden in
multiple queries which can be performed while searching for one formula in the
space of equal and similar representations in the index.

A textual representation of a mathematical formula is a TEX-like flattened
symbol representation by words e.g. a2 is represented by three words: a, ˆ, 2,
internally represented in postfix notation to avoid parenthesis issues. There are
two important algorithms used during the content-based annotation. The aug-
mentation algorithm exploits the biggest advantage of full text search engines
- fast searching in a huge set of words. Consequently, for each formula the al-
gorithm produces several representations consisting of ordered words which are

� This work was supported by the grant SVV-2011-263312.

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 307–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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indexed like normal text. Each textual representation of a formula is equal to or
less similar than the previous one.

The ordering algorithm converts each representation to a canonical one. The
ordering algorithm guarantees that two mathematically equal formulae with the
same but permuted operands have the same unique canonical representation.
Two similar (but not equal) formulae have a similar textual representation.

Semantically rich mathematical formulae cannot be represented by a full text
search engine without losing the semantic information in general. The augmen-
tation and ordering try to minimise this disadvantage.

2 New Features and Architecture Changes in EgoMath2

EgoMath2 is based on the newest version of the Java full text search engine
Egothor (http://www.egothor.org). Strongly decoupled architecture of the math-
ematical extension and the full text indexer made the update straightforward.
Learning from our experience with the first version, the augmentation process in
EgoMath2 was made easily extensible and configurable using XML configuration
files. Both the algorithms which are applied during the augmentation and the
ambiguous symbol meaning can be configured to take advantage of additional
knowledge about the underlying document set. Architectural changes were made
allowing for ranking the query results.

The graphical user interface(UI) had been completely rewritten [2], thus the
mathematical support had to be implemented from scratch. The connection
between indexer and the UI was simplified, a new text element for mathemat-
ical input was added, snippets showing matched formula representations were
introduced and debugging capabilities were also improved. The new UI has ad-
ministration features which can be useful in online mathematical systems. Ego-
Math2 supports roles with different privileges offering different search indexes.
The indexer web administration has proven itself useful for quick document set
inspection. The performance of the mathematical indexer was improved (Ego-
Math2 is 3x faster in indexing Wikipedia dataset than the previous version) by
caching formulae string representations and by small optimisations and cleanup
of code.

3 Adjusting Wikipedia for EgoMath2 and vice versa

Preparing Wikipedia for indexing by EgoMath2 means to download articles from
Wikipedia.org, sort out non-mathematical articles, convert mathematical nota-
tion into supported format and create HTML pages which are fed to EgoMath2.
A dump of English articles from January 2011 (30GB) was downloaded from
the official website [3]. One by one, all types of articles were extracted. The
mathematical articles were identified by looking for the string ”&lt;math&gt;”.
28, 376 mathematical articles (425MB dump) have been found with more than
240, 000 mathematical elements from more than 10 million articles. We tried to
convert each element to semantically richer MathML using latex2mathml web
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service developed by the KWARC group [4] to improve the semantic information.
EgoMath2 then uses both the LATEX and the MathML format of the formula if
available. More than 300 new symbols (e.g. Invisible Separator U+2063) have
been added into our XML symbol configuration to improve the semantic quality
of the extracted mathematical formula. Several modifications had to be made
because of incorrect conversions of complex formulae. The error checking had
to be relaxed. The parser heuristics had to be improved because TEX fragments
misused symbols and operators e.g. fˆ{’} denotes derivation. A maximum depth
limit was introduced into one of the algorithms which computed canonical dis-
tributivity because independent tables and other structures were put into one
TEX fragment and the algorithm complexity grew rapidly with the number of
operators.

4 Conclusion and Availability

There are many digital scientific repositories with little semantic information
available. We think that focusing on these repositories is very important be-
cause they will still prevail in the near future. We showed that mathematical
searching in one of the world’s most important one is feasible at least from the
technical point of view. The focus was mainly on recall so the next step is to
focus on precision and preferring more similar result. This means to start using
the built-in ranking algorithm and gathering feedback from the users. The online
version with additional description can be found at [5]. Administration creden-
tials, sources to Wikipedia converters, dumps and document set are available
upon request.
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