>
-
.m m
v =
I =
o
Qo £
& o IR
e | o
S ok
. (¢F]
: Z Sl
© v S
< w = EE .
o 7 N S O)
b QD A= m o0
< 2 S EE £
: S £ C
< © BN o
s — o Y P
D [l O = O
@) Vol (-l = O RS @

ETSIN 0599 SONT
t<-m.£.“_o-3mum

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6650

Oded Goldreich et al.

Studies in Complexity
and Cryptography

Miscellanea on the Interplay
between Randomness and Computation

In Collaboration with

Lidor Avigad, Mihir Bellare, Zvika Brakerski

Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin
Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan

Salil Vadhan, Avi Wigderson, David Zuckerman

@ Springer

Volume Editor

Oded Goldreich

Weizmann Institute of Science

Faculty of Mathematics and Computer Science
76100 Rehovot, Israel

E-mail: oded.goldreich@weizmann.ac.il

Cover illustration: Artwork by Harel Luz, Tel Aviv, Israel.

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-22669-4 e-ISBN 978-3-642-22670-0
DOI 10.1007/978-3-642-22670-0

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011932979
CR Subject Classification (1998): F.1, E.3, E.1, F4.1,G.2.2, G.1

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a collection of studies in the areas of complexity theory and
foundations of cryptography. These studies were conducted at different times
during the last couple of decades. Although many of these studies have been
referred to by other works, none of them was formally published before.

Indeed, this volume is quite unusual, and it raises two opposite questions
regarding the publication of the foregoing studies: (1) why were these studies
not published (formally) before, and (2) why are they being published now?

Let me start with the second question. In the years that have elapsed since
the completion of many of these individual studies, I have occasionally looked at
them for some reason. On these occasions, I felt that it is somewhat inappropriate
that these works were never published formally (although many of them were
posted on forums such as ECCC). The current volume is aimed at amending
this situation somewhat.

Turning to the first question, the answer varies according to the case. Re-
garding the surveys and the programmatic and/or reflective articles, the answer
is quite straightforward: The standard publication venues for research in com-
plexity and/or cryptography do not welcome such articles, which may reflect the
unfortunate fact that our community does not hold such articles in high esteem.
Regarding the articles that describe research contributions, the answer varies
from the non-existence of an adequate venue (at least at the relevant time), to
unjustified (in retrospect) timidness regarding the work.

The late publication of some of these articles also raises questions regarding
the relation of the current versions to the original ones. These questions are
addressed at the beginning of each individual article, where the original posting
is stated and the nature of the revision is outlined. In general, all articles were
revised (based on their last posted version), but the revision attempts to preserve
the spirit of the original work. In the few cases that later developments suggest
a different perspective and/or technical improvements, this is stated explicitly
while comparing the original perspective and/or results with the current one.

The compilation of this volume led me to complete the writing of a couple of
surveys. In addition, I decided to also include in this volume a few rather recent
research contributions.

The studies in this volume are arranged in three parts. Part I contains 20
research contributions, Part II contain 12 surveys (and one overview essay on
“Randombess and Computation”), and Part III contains three programmatic
and/or reflective articles. Most studies in Part I (and a couple of the studies in
Part IT) were conducted by me in collaboration with other researchers.

The topics addressed in the various studies include average-case complexity,
complexity of approximation, derandomization, expander graphs, hashing func-
tions, locally testable codes, machines that take advice, NP-completeness, one-

VI Preface

way functions, probabilistically checkable proofs (PCPs), proofs of knowledge,
property testing, pseudorandomness, randomness extractors, sampling, trapdoor
permutations, zero-knowledge and non-interative zero-knowledge (NIZK). In-
deed, one may say that most of these works belong to the interplay between
randomness and computation.

Part I: Research Contributions

The Shortest Move-Sequence in the Generalized 15-Puzzle Is NP-Hard
Proofs of Computational Ability

On Constructing 1-1 One-way Functions

On the Circuit Complexity of Perfect Hashing

Collision-Free Hashing from Lattice Problems

Another Proof that BPP Is Contained in PH (and More)

Strong Proofs of Knowledge

Simplified Derandomization of BPP Using a Hitting Set Generator
On Testing Expansion in Bounded-Degree Graphs

A Candidate One-Way Functions Based on Expander Graphs

© 0N U=

=
— O

. The FGLSS-Reduction and Minimum Vertex Cover in Hypergraphs
. The GGM Construction Does NOT Yield Correlation Intractability
. On Logarithmic Versus Single-Bit Advice

. On Proofs Of Knowledge: Probabilistic Versus Deterministic Provers
. On the Average-Case Complexity of Property Testing

. A Candidate Counterexample to the Easy Cylinders Conjecture

. From Absolute Distinguishability to Positive Distinguishability

. Testing Graph Blow-Up

. Proximity Oblivious Testing and the Role of Invariances

. In a World of P=BPP

S e e e e
O © 00 3 O U i W N

Part II: Surveys

On Levin’s Theory of Average-Case Complexity

On Three XOR-Lemmas

On Yao’s XOR-Lemma

A Sample of Samplers — A Computational Perspective on Sampling
Short Locally Testable Codes and Proofs

Bravely, Moderately: A Common Theme in Four Recent Results

On the Complexity of Computational Problems Regarding Distributions
On Basing Non-Interactive Zero-Knowledge on Trapdoor Permutations
Average Case Complexity, Revisited

Basic Facts About Expander Graphs

. A Brief Introduction to Property Testing

. Introduction to Testing Graph Properties

© 0N Uk W=

[
N = O

Preface VII

Part III: Programmatic and Reflective Articles

1. On Security Preserving Reductions — A Suggested Terminology
2. Contemplations on Testing Graph Properties
3. Another Motivation for Reducing the Randomness Complexity of Algorithms

I am grateful to all of my co-authors of the papers included in the current
volume: Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai
Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, and David Zuckerman. In addi-
tion, I wish to thank all researchers who have contributed to the research being
surveyed in this volume.

Oded Goldreich

Table of Contents

Research Contributions

Finding the Shortest Move-Sequence in the Graph-Generalized
15-Puzzle Is NP-Hard i
Oded Goldreich

Proving Computational Ability i
Mihir Bellare and Oded Goldreich

On Constructing 1-1 One-Way Functions.
Oded Goldreich, Leonid A. Levin, and Noam Nisan

On the Circuit Complexity of Perfect Hashing
Oded Goldreich and Avi Wigderson

Collision-Free Hashing from Lattice Problems
Oded Goldreich, Shafi Goldwasser, and Shai Halevi

Another Proof That BPP C PH (and More),
Oded Goldreich and David Zuckerman

Strong Proofs of Knowledge i i i
Oded Goldreich

Simplified Derandomization of BPP Using a Hitting Set Generator
Oded Goldreich, Salil Vadhan, and Avi Wigderson

On Testing Expansion in Bounded-Degree Graphs....................
Oded Goldreich and Dana Ron

Candidate One-Way Functions Based on Expander Graphs............
Oded Goldreich

Using the FGLSS-Reduction to Prove Inapproximability Results for
Minimum Vertex Cover in Hypergraphs.........
Oded Goldreich

The GGM Construction Does NOT Yield Correlation Intractable
Function Ensembles
Oded Goldreich

From Logarithmic Advice to Single-Bit Advice............
Oded Goldreich, Madhu Sudan, and Luca Trevisan

X Table of Contents

On Probabilistic versus Deterministic Provers in the Definition of
Proofs of Knowledge 114
Mihir Bellare and Oded Goldreich

On the Average-Case Complexity of Property Testing 124
Oded Goldreich

A Candidate Counterexample to the Easy Cylinders Conjecture. 136
Oded Goldreich

From Absolute Distinguishability to Positive Distinguishability 141
Zvika Brakerski and Oded Goldreich

Testing Graph Blow-Up. i 156
Lidor Avigad and Oded Goldreich

Proximity Oblivious Testing and the Role of Invariances 173
Oded Goldreich and Tali Kaufman

In a World of P=BPP e 191
Oded Goldreich

Surveys

Notes on Levin’s Theory of Average-Case Complexity 233
Oded Goldreich

Three XOR-Lemmas — An Exposition 248
Oded Goldreich

On Yao’s XOR-Lemma i 273
Oded Goldreich, Noam Nisan, and Avi Wigderson

A Sample of Samplers: A Computational Perspective on Sampling 302
Oded Goldreich

Short Locally Testable Codes and Proofs............. 333
Oded Goldreich

Bravely, Moderately: A Common Theme in Four Recent Works 373
Oded Goldreich

On the Complexity of Computational Problems Regarding
Distributionso 390
Oded Goldreich and Salil Vadhan

Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor
Permutations: The State of the Art 406
Oded Goldreich

Table of Contents

Average Case Complexity, Revisited
Oded Goldreich

Basic Facts about Expander Graphs
Oded Goldreich

A Brief Introduction to Property Testing............................
Oded Goldreich

Introduction to Testing Graph Properties
Oded Goldreich

Randomness and Computation
Oded Goldreich
Programmatic and Reflective Articles

On Security Preserving Reductions — Revised Terminology
Oded Goldreich

Contemplations on Testing Graph Properties
Oded Goldreich

Another Motivation for Reducing the Randomness Complexity of
Algorithms o
Oded Goldreich

About the Authors

Finding the Shortest Move-Sequence in the
Graph-Generalized 15-Puzzle Is NP-Hard

Oded Goldreich

Abstract. Following Wilson (J. Comb. Th. (B), 1975), Johnson (J. of
Alg., 1983), and Kornhauser, Miller and Spirakis (25th FOCS, 1984), we
consider a game that consists of moving distinct pebbles along the edges
of an undirected graph. At most one pebble may reside in each vertex
at any time, and it is only allowed to move one pebble at a time (which
means that the pebble must be moved to a previously empty vertex). We
show that the problem of finding the shortest sequence of moves between
two given “pebble configuations” is NP-Hard.

Keywords: NP-Completeness, Games’ Complexity, Computational Group
Theory.

This work was completed in July 1984, and later appeared as Technical Report
No. 792 of the Computer Science Department of the Technion (Israel). The
current revision is quite minimal.

1 Problem’s Definition
The following generalization of the “15-Puzzle” appeared in [4J2lf3]:

Board: The game is played on a finite, undirected, simple graph. The graph will
be denoted by G(V, E).

Legal Board Configuration: Every vertex contains at most one pebble, and one
vertex is empty. That is, BC: V — {0,1,2,...,|V| — 1} is a legal board config-
uration if it is one-to-one and onto. The board configuration is interpreted as
follows: if BC(v) # 0, then vertex v contains pebble BC(v), and if BC(v) = 0, then
vertex v is empty.

Legal Moves: A legal move consists of moving a single pebble, along one of the
edges of the graph to an empty vertex. A legal move is a transformation on
the set of legal configurations. Let BC(:) be a legal configuration and BC'(-) be
the configuration that results from BC(:) after a legal move. Then, there exist
two adjacent vertices, u,v € V (i.e., (u,v) € E), such that BC'(u) = BC(v),
BC/(v) = BC(u) = 0, and BC'(w) = BC(w) for all w € V' \ {u,v}. In this move the
pebble BC(v) is moved from vertex v to vertex w.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 1-p] 2011.
© Springer-Verlag Berlin Heidelberg 2011

2 O. Goldreich

A sequence of Moves: A sequence of ¢ moves is a sequence of legal board con-
figurations, denoted BCy(+),BCy(+),BCa(-),...,BCs(-), such that for i = 1,... ¢t it
holds that BC;(+) is the result of applying a legal move to BC;_1(-). The configu-
ration BCy(+) is called the beginning configuration of the above sequence, and the
configuration BC;(-) is called the finishing configuration of the above sequence.

Solutions: A pair of legal board configurations is said to have a solution if there
exists a sequence of moves beginning at the first and finishing at the second.

2 Prior Work

Kornhauser, Miller and Spirakis [3] showed that, for any nonseparable graph
G(V,E), if a pair of legal board configurations has a solution, then it has a
solution by O(|V|?) moves. Furthermore, they showed that such a solution (by
O(|V|?) moves) can be found in O(|V|?) time. A natural algorithmic question
arises:

Given a pair of legal board configurations that does have a solution, Is it
feasible to find the shortest solution?

We answer this question negatively, proving that finding such a solution is
NP-Hard.

3 The NP-Completeness Result

In order to discuss the problem of finding the shortest solution to a solvable
pair of legal board configurations, we introduce the following decision problem,
herafter referred to as the Shortest Move Sequence (SMS) Problem:

Input: A nonseparable, simple, undirected graph G(V, E); a pair, B(-) and F(-),
of legal board configuration; and an integer K.

Question: Is there a sequence of K (or less) legal moves beginning at B(-) and
finishing at F(-)?

We prove the following result.
Theorem: The Shortest Move Sequence (SMS) problem is NP-Complete.

Proof: First note that SMS is in NP (since, w.l.o.g., K = O(|V[?)). We prove
that SMS is complete by reducing 3-Exact-Cover (3XC) to it. Recall that the
3XC is defined as follows:

Input: A set U = {ei}le and a collection S = {sj};nzl of 3-element subsets
(3-subsets) of U.

Question: Is there a subcollection, S’ C S, such that every element in U occurs
in exactly one member of S’?
If existing, such a collection, S’, is called an ezact cover. (Also, |S| = n.)

Shortest Move-Sequence in the 15-Puzzle Is NP-Hard 3

Recall that Karp has proved that 3XC is NP-complete (see [I]). Now, given an
instance of 3XC, denoted (U = {62'}le 8 = {sj};.nzl), we construct the following
SMS instance:

— Let V=U%UU'USU/{t}, where U? = {e° : ecU} for o € {0,1}.
The vertices € and e! will be associated with the element e € U. The vertices
in S will be associated with the corresponding 3-subsets. The vertex ¢ will
be called the temporary vertex.

— Let E = Esxc U{(t,s) : s€S}U{(ee!) : ecU}, where

Esxc ={(e?,8): 0€{0,1} NecU Ae€s}.

The edges in Esxc encode the description of the 3XC instance. Note that
(e, s) € Esxc iff the element e € U appears in the 3-subset s € S.

— Let B(e) =2i—1+4o0, for 1 <i<3nando € {0,1}, and B(s;) =6n+j,
for 1 < j <m. Let B(t) = 0.
In the begin configurations ¢ is empty while the pebbles are placed in a
“canonical” order. In particular, the pebbles 2¢ — 1 and 2¢, which are asso-
ciated with the element e; (for 1 < i < 3n), are placed in vertices e and e},
respectively. The pebble 6n+ j, which is associated with the 3-subset s; (for
1 <j <m), is placed in vertex s;.

— Let F(el) =2i— o0, for 1 <i<3nand o € {0,1}, and F(s;) = 6n+ j, for
1<j<m.Let F(t)=0.
In the finish configurations ¢ is still empty and the pebbles in the vertices
that are associated with the 3-subsets remain invariant w.r.t the begin con-
figuration. The pebbles associated with each element of U are switched w.r.t
the begin configuration.

— Finally, let K = 11n.

Having presented our reduction it remains to show that it is indeed valid.

Assume that the 3XC instance has an exact cover, denoted S’ = {sij };:1'
Let f : {1,2,...,n} x {1,2,3} — {1,2,...,3n} such that ez is the k-th
element in the 3-subset s;, (where the order on the elements in each 3-subset
is induced by an ordering of U). Note that s;; = {ef(;1),€f(;2):€r(j,3)} and
U = {ef(j’k) :1 <j<nAl<k <3} Then, following is a solution to the
corresponding SMS instance:

for 5 =1ton do begin

move pebble 6n + i; from s;; to ¢;

for k=1 to 3 do begin
move pebble 2f(j,k) — 1 from 6(}(j’k) to 54,3
move pebble 2f(j, k) from 6}(3‘,1@ to e(}(j,k);
move pebble 2f(j, k) — 1 from s;; to e}(j’k);
[Comment: At this stage, for every k € {1, 2,3},
the pebbles 2f(j, k) — 1 and 2f(j, k) are switched.]

end

move pebble 6n + i; from ¢ to s;;;

4 O. Goldreich

[Comment: At this stage all pebbles associated to elements in si, are
switched and all the pebbles associated with 3-subsets are back in place.]
end

One can easily verify that the foregoing procedure transforms the begin config-
uration into the finish configuration in (1+3-3+41)-n = K moves

Assume, on the other hand, that the SMS instance has a solution in no more
than K = 11n moves. Let us denote this solution (i.e., sequence of moves) by
Q. Recall that in each move a single pebble is moved (to an empty vertex). The
following facts concerning () can be easily verified:

Fact 1: Switching pebble 2¢ — 1 with pebble 2i (1 < ¢ < 3n) requires
at least two moves of one of these pebbles and at least one move of the
other pebble. Furthermore, this switching requires that at least one of
these pebbles passes through a vertex associated with a 3-subset that
contains the element e¢;.

The main part follows from the fact that each move must be to a
previously empty vertex, and the furthermore part follows by the graph’s
structure.

Fact 2: If some pebble passes through a 3-subset vertex s; (1 < j < m)
during @, then the pebble 6n 4+ j must have been moved during Q.

Let M denote the set of pebbles that are associated with 3-subsets that moved
during @. Using Facts 1 and 2, we get.

Fact 3: The number of moves in @ is at least 3-3n+2-|M]|.
Recall the number of moves (in @) is at most K = 11n. Thus:
Fact 4: | M| < n.

Fact 5: The collection C' = {s; : 6n + j € M} constitutes a cover of the
set U. That is, for every element e € U, there exists a 3-subset s € C
such that e € s.

Note that 27 — 1 has been switched with 2i, for each 1 < i < 3n, and
by Facts 1 and 2 this implies that for some j such that e; € s; it holds
that 6n +j € M.

Combining Facts 4 and 5, we conclude that C is an exact cover of the 3XC
instance. This completes the proof of the theorem.

Acknowledgements. I am grateful to Shimon Even, Dan Kornhauser, Silvio
Micali and Gary Miller for very helpful discussions.

Shortest Move-Sequence in the 15-Puzzle Is NP-Hard 5

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, p. 221. Freeman, San Francisco (1979)

2. Johnson, D.S.: The NP-Completeness Column: An Ongoing Guide. J. of Algo-
rithms 4, 397-411 (1983)

3. Kornhauser, D.M., Miller, G., Spirakis, P.: Coordinating Pebble Motion on Graphs,
the Diameter of Permutation Groups, and Applications. In: Proc. of the 25th FOCS,
pp. 241-250 (1984)

4. Wilson, R.W.: Graphs, Puzzles, Homotopy, and Alternating Groups. J. of Comb.
Th. (B) 16, 86-96 (1974)

Proving Computational Ability

Mihir Bellare and Oded Goldreich

Abstract. We investigate extending the notion of a proof of knowledge
to a proof of the ability to perform some computational task. We provide
some definitions and protocols for this purpose.

Keywords: Proofs of Knowledge, Zero-Knowledge, Cryptographic
Protocols.

This work was completed in August 1992, and earlier versions of it were posted
on the authors’ webpages. The current revision is intentionally minimal.

1 Introduction

We extend the idea of proving “knowledge” of a string to encompass a notion
of proving the “ability to perform some task.” Specifically, we wish to formalize
what it means to “prove the ability to compute a function f on some instance
distribution D.”

Motivation. The aforementioned notion might have many uses, and two of them
are described here. Suppose Alice possess a trapdoor, t(z), to a (publically
known) trapdoor permutation f, and wishes to identify herself to Bob, by demon-
strating ability to invert f,. The proof of ability should be zero-knowledge so to
prevent Bob from latter impersonating Alice. Admittingly, in this case Alice
can establish her identity by directly proving, in a zero-knowledge manner, her
knowledge of the trapdoor t(z) (which corresponds to the index = of f;). Still
it may be cheaper to prove ability to invert f, (e.g., by using a trivial proto-
col in which the prover inverts f, on instances chosen by the verifier). This is
particularly valid in case Alice posseses special purpose hardware, in which the
trapdoor is hard-wired, making it very easy for her to invert the function on
inputs of her choice. A second application is for a party to prove possesion of
vast computing power by conducting very difficult tasks (e.g., inverting one-way
functions).

Related Work. This is an extension of our previous work on proofs of knowledge
[1] in which we try to generalize those ideas to the setting of proving computa-
tional ability. Proofs of knowledge are first mentioned in [5] and have been seeing
definitional refinements [36/2] culminating in the notions of [14]. We assume the
reader is somewhat familiar with the notion.

Proofs of computational ability were first discussed by Yung [7]. We adhere to
the same basic and natural idea (namely, that computational ability of a prover is

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 6-[[3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Proving Computational Ability 7

certified if some extractor can use the prover as a black box to solve the problem
itself) but our approach is more general. For example whereas an assumption
on the problem hardness is made in [7] it is not made here; we consider notions
of distribution-free and distribution-dependent ability; following [I] we define
an analogue of “knowledge error”; and following [I] we avoid some weaknesses
inherited from earlier definitions of proofs of knowledge.

2 Definitions

For greater generality, we will consider relations rather than functions. By a fam-
ily of relations we mean a sequence {R;},e{0,1}+, Where R, C {0, 1}=l % {0,1}*
for each x. For simplicity we restrict our attention to polynomially bounded
families; that is, we assume there is a polynomial p such that (z,y) € R, im-
plies |z| = |z| and |y| < p(|z|). Following the notation used in [I], we denote
R;(z) def {y:(z,y) € Ry } and Lp, def { z : Jy such that (z,y) € R, }. Prover
and verifier will interact on common input z, with the goal of the interaction
being for the prover to “convince” the verifier that he has the “ability to solve
R,

We need to address the meaning of both of the phrases in quotes above. We
will first define what it means for a machine to “solve a relation” (or a family of
relations), and only next will we define what is a “proof of ability” to do so.

The standard meaning of efficiently solving a relation, S C {0,1}* x {0,1}*, is
the existence of an efficient algorithm that, on input z, outputs y € S(z), called
a solution to z, if such exists. This is a notion of worst case. Instead, we adopt
a notion of average case by which we consider a probability distribution on the
inputs and require that the algorithm is efficient on the average (with respect
to the input distribution). An even more liberal notion is derived by allowing
the solver to ask for alternative inputs, which are generated according to the
same distribution (and independently of previous inputs), until it can present a
solution to any of the inputs.

Notation: Let S C {0,1}* x {0,1}*. Then, dom(S) def {z€{0,1}*: S(z) #0}
is the domain of S.

Definition 2.1 (solving relations): Let S C {0,1}* x {0,1}* be a relation, and
D be a distribution on dom(S). Suppose t € N and let M(-) be a machine.

e We say that machine M (-) solves S under D in expected t steps if, on input
(21,22, ..., 2t), with each z; drawn independently according to D, machine M
halts within expected t steps and outputs a pair (z;,y) so thaty € S(z;). (The
expectation here is over the random choices of M as well as the t-product of
the distribution D.)

e We say that machine M (-) strongly solves S under D in expected ¢ steps if,
on input z, drawn according to D, machine M halts within expected t steps
with output y € S(z). (The expectation here is over the random choices of
M as well as the distribution D.)

8 M. Bellare and O. Goldreich

Conventions: If a machine has several inputs, we may fix some of them to obtain
a machine on the remaining inputs. Likewise, for an oracle machine, we may fix
the oracle and consider the resulting machine. Specifically, suppose that the
oracle machine M (-, -,-) has three inputs, then M“(z,v,-) denotes the machine
with one input whose output on input z is M4(z,y, 2).

Let R = {Rz}sefo,1}+ be a family of relations. We say that D = {D. },eq0,1}~
is an input distribution for R if for every x, it holds that D, is a distribution
on dom(R,;). We are now ready to define proofs of ability to solve (repectively,
ability to strongly solve) a family of relations under a family of distributions.

Definition 2.2 (proof of ability): Let R = { Ry },ec10,13+ be a family of relations,

and D & {Dz}zeo,13+ be an input distribution for R. Let x: {0,1}* — [0, 1].
We say that an interactive function, V, is a verifier of the ability to solve (resp.,
strongly solve), R under D with error if the following two conditions hold.

e non-triviality: There exists an interactive function P* so that for all x, all
possible interactions of V. with P* on common input © are accepting; that
is, Pr[trp. yp. (x) € ACCy (x)] = 1, where tra p(x) denotes B’s view of the
interaction with P on common input x, and ACCg(x) denotes the views that
convince B (i.e., make it accept).

e validity: There exists a constant ¢ > 0 and a probabilistic oracle machine
K(-,-,-) such that for every interactive function P, every xz € {0,1}* and
every v E€ACCy (), machine K =(x,,) satisfies the following condition:

if p(x) def Prltrpyo. (z) EACCy ()] > k() then machine K= (z,, ")
solves (resp., strongly solves) R, under D, in an expected number of
steps bounded by
||
p(z) — r(z)
The oracle machine K is called an ability extractor (resp., strong ability
extractor) under D.

Hence an ability extractor is given a sequence of instances, each independently
selected according to D,, and is supposed to output a solution to one of these
instances within the specified (expected) time bound. A strong ability extractor
is given a single instance, selected according to D,, and is supposed to output a
solution to this instances within the specified (expected) time bound. (In both
cases, solutions are with respect to R;.)

Relation to Proofs of Knowledge. We note that proofs of knowledge (as per [,
Def. 3.1]) are a special case of proofs of ability. To justify this claim, given a
binary relation R we define the family of relations R = {R,} so that R, =
{(z,y) : (z,y) € R }. Clearly, dom(R,) is the singleton {z} if R(z) # 0 and
() otherwise. Let D, be the distribution on dom(R,) which, in the former case,
assigns the entire probability mass to z (and is undefined in the latter case).
Clearly D = {D,} is an input distribution for R. It is easy to see that if V
is a verifier of the ability to solve R under D (with error) then V is also a
knowledge verifer for R (with knowledge error).

Proving Computational Ability 9

On the Dependence on the Distribution D,. Definition refers to a specific
input distribution. Clearly, both the ability-verifier and the ability-extractor may
depend on this distribution, and this dependency seems inevitable. However, the
dependency on the input distribution can be “uniform” in the sense that both
verifier and extractor can be fixed machines with access to a random source that
generates the input distribution. We call such a proof of ability distribution-free.

The foregoing notion is defined as follows. Let D be a family of distributions
for some R, and let M be an (interactive and/or oracle) probabilistic machine. A
D-source augmentation of machine M is a machine that, on input z, in addition
to the standard behaviour of M can obtain elements draw independently from
distribution D, (at the cost of reading them).

Definition 2.3 (distribution-free proof of ability): Let R = {R;},c(0,1}- be a
family of relations, and let k: {0,1}* — [0,1].
o We say that an interactive machine, V', is a distribution-free verifier of the
ability to solve R with error k if for every input distribution, denoted D, for
R, the D-source augmentation of machine V constitutes a verifier of the
ability to solve R under D with error k.
o We say that a distribution-free verifier of the ability to solve R (with error
k) has a distribution-free ability extractor if there exists an oracle machine,
K, such that the D-source augmentation of machine K constitutes a ability
extractor under D.

A definition of a distribution-free strong ability extractor is derived analogously.

3 Examples

To demonstrate the above definitions we consider two natural examples. Both
examples refer to a familty of one-way permutations, {fs}ze{0,13+- The string =
is called the index of the permutation f, : {0, 1}/*l — {0,1}/*!, and there exists
an efficient algorithm that, on input index x and argument y, returns the value
fz(y). We shall consider proofs of ability to invert {f,}; intuitively, such ability
requires either super-polynomial computational resources or knowledge of some
trapdoor information (in case the collection has such trapdoors).

Example 1: Consider a verifier that, on common input z, sends the prover
a single uniformly selected string v € {0, 1}|$|7 and accepts if and only if the
prover answers with the inverse of v under f, (i.e., with y satisfying f.(y) = v).
We show (below) that the foregoing verifier is an ability-verifier for inverting f,
under the uniform distribution.

Example 2: Consider a verifier that, on common input z € {0,1}" (n € N),
sends the prover 2n uniformly and indepedently selected strings, vy, ...,v2, €
{0,1}™, and accepts if and only if the prover answers with the inverse of each of
these v;’s under f, (i.e., with y1, ..., yo,, satisfying f.(y;) = v;, for every i). We
show (below) that the foregoing verifier is a strong ability-verifier for inverting
f« on at least one out of 2|x| of uniformly selected instances.

10 M. Bellare and O. Goldreich

Proposition 3.1. The program described in Example 1 is an ability-verifier
(with error zero) for solving R = {R,} under D = {D,}, where

o R, = {(v,y) U= fz(y)};

e D, is uniform over the set of all strings of length |z|.

Furthermore, if the verifier in Example 1, selects v according to an arbitrary
distribution D, , then the system described constitutes a distribution-free proof of
ability.

Proof sketch: We present here only the case of uniform distribution, and focus
on the validity condition. Consider an arbitrary, fixed prover, and let p, denote
the probability that the verifier is convinced by this prover on common input
xz. Here the probability space is over all choices of both the verifier and prover.
Assume, without loss of generality, that p, > 271%|, otherwise the extractor
satisfies the requirement merely by exhaustive search. Also, we may assume
that the ability-extractor “knows” p, since it may estimate p, in expected time
poly(|z|)/ps. by repeated experiments. Let g, (v) denote the probability that the
verifier is convinced conditioned on the event that it chose and sent v to the
prover. Here the probability distribution is merely over the prover’s random
coins (in case it is probabilistic). Let V(i) be the set of v’s for which ¢ (v) is
greater than 27% and smaller/equal to 271, Clearly, there exists an i < |z| such
that

‘Vx(2)| > Pz - Qi
21z n

(1)

We are now ready to present the ability-extractor. Formally speaking, the ex-
tractor gets as input an index, x, and a sequence of independently and uniformly
selected |z|-bit long strings, and its task is to invert f, on one of them. However,
to simplify the exposition, we prefer to think of these strings as being chosen by

the extractor. Hence, on input z, the extractor executes m def [logs(1/ps)] copies
of the following procedure, each with a different value of i € {1,...,m}. The i*}

copy consists of uniformly and independently selecting M def poly(n)/(ps - 29)
values, v1, ..., var € {0,1}", and executing the following sub-procedure on each of
them. The sub-procedure with value v; invokes the prover’s program (as oracle),
on input z and message v;, for poly(n)-2¢ times, each time checking whether the
prover’s answer is the inverse of v; under f,. Once a positive answer is obtained,
the extractor halts with the corresponding value-inverse pair.

The extractor’s expected running-time is bounded above by

m
poly(n) » _ poly(n)
5~ (poly(n)-2') =
i=1 Dz - Dz
(2
To evaluate the performace of the above extractor, consider the i*" copy, where i
satisfies Equation ([IJ). With overwhelmingly high probability (i.e., greater than
1 —27™), one of the v;’s chosen in this copy satisfies g,(v;) > 27 In this
case, with overwhelmingly high probability, the extractor inverts f, on this v;.

Proving Computational Ability 11

The exponentially small error probabilities can be eliminated by running an
exhaustive search algorithm (for inverting f,) in parallel to the entire algorithm
described above. The proposition follows.

Proposition 3.2. The program described in Example 2 is a strong ability-verifier
(with error zero) for solving R = {R,} under D = {D,}, where

o Ry ={(v1,.s V25, y) : Fi 5.t vy = fo(y)};
e D, is uniform over the set of strings of length 2|z|*.

Proof sketch: As in the proof of Proposition Bl we consider an arbitrary fixed
prover and let p, denote the probability that the verifier is convinced on common
input x. As before, we may assume that p, > 271*l and that the ability-extractor

has a good estimate of p,. Let n def |z|, and consider an 2n-dimentional table
in which the dimensions correspond to the 2n values chosen by the verifier. The
(v1, ..., van)-entry in the table equals the probability that the prover convinces
the verifier (i.e., successfuly inverts f, on v; through vs,) conditioned on the
event that the verifier sent message (v1, ..., v2,) to the prover. The probability
here is merely on the prover’s random choices. As in the proof of Proposition [3.1]
we consider a partition of these probabilities to clusters of similar magnitude. It

follows that there exists an 7 < 2n such that at least a py ; def ps - 2¢/2n fraction
of the entries have value greater than 27¢. We call these entries admisible. It
follows that there exists a dimention k such that at least a "”{/ Daif2 > é fraction
of the rows in the k™ dimention contain at least Dz,i/2n admisible entries. We
call such a (4, k) pair good.

We are now ready to present the strong ability-extractor. The extractor gets as
input an index, x, and a uniformly chosen 2|z|?-long string v= (vy, ..., V2,), where
vj € {0,1}"™ and n=|z|. The extractor is suppose to find a solution to v, and this
amounts to inverting f, on one of the v;’s. To this end the extractor executes
8n3 copies of the following procedure, each with a different triples (i, k,), where
1<i,k,j<2n. The (i, k, j)'" copy of the procedure tries to invert f, on vj, using
the parameters i and k. Specifically, the (i, k, j)** copy consists of repeatedly
invoking the sub-procedure A;j on input v;, for at most |poly(n)/pe:| times
(where p; ; = p,-2%/2n). On input v, the sub-procedure A; j, proceeds as follows.

1. Selects uniformly 2n strings of length n each. These strings are denoted
ULy --ey U2n 3

2. Invokes the (oracle to the) prover poly(n) - 2¢ times, each time with input z
and verifier’s message (1, ..., Uk—1, U, Ugt1, ---, U2y). The message consist of
the sequence selected at Step 1, except that uy is replaced by v.

3. If in one of these invocations, the prover answers with a 2n-tuple (y1, ..., yan)
such that f,(yx) = v, then the extractor halts with output (v, yx).

Clearly, the expected running-time of the foregoing extractor is at most
S22 poly(|2])27 /ps.i = poly(|z])/pz. To evaluate the performance of this ex-
tractor, consider a good pair (i, k). By definition of a good pair, it follows that at

least one half of the rows in the k'!' direction contain at least p,.; &f pe-2¢/(2n)?

12 M. Bellare and O. Goldreich

entries on which the prover convinces the verifier with probability at least 27%.
Let us denote the set of n-bit strings corresponding to these rows by S, k. It
follows that for every v € S; i, the sub-procedure A; j, inverts f, on v with prob-
ability at least p; ; —2~™. Hence, when invoking A; , on v € Sy i, for poly(n)/pz.;
times, with overwhelming probability (i.e., probability greater than 1 —27"), we
invert f, on v. The final observarion is that, since | Sy x| > é -2™, the probability
that none of 2n indepedently and uniformly selected n-bit strings hits S 1 is ex-
ponentially vanishing (i.e., smaller than 27"). As in the proof of Proposition Bl
this exponentially small error can be elliminated. It follows that the extractor
strongly solve R, under D,.

Acknowledgements. Work done while the first author was at the IBM
T.J. Watson Research Center (New York), and the second author was at the
Techion (Israel).

References

1. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidelberg (1993)

2. Brassard, G., Crépeau, C., Laplante, S., Léger, C.: Computationally Convincing
Proofs of Knowledge. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS,
vol. 480, Springer, Heidelberg (1991)

3. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of Cryp-
tology 1, 77-94 (1988)

4. Feige, U., Shamir, A.: Witness Indistinguishability and Witness Hiding Protocols. In:
Proceedings of the Twenty Second Annual Symposium on the Theory of Computing,
pp. 416-426. ACM, New York (1990)

5. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. on Computing 18(1), 186-208 (1989) (Preliminary Version
in the 7th STOC, 1985)

6. Tompa, M., Woll, H.: Random Self-Reducibility and Zero-Knowledge Interactive
Proofs of Possession of Information. University of California (San Diego) Computer
Science and Engineering Dept. Technical Report Number CS92-244 (June 1992)
(Preliminary Version in the 27th FOCS, pp. 472-482, 1987)

7. Yung, M.: Zero-knowledge proofs of computational power. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 196-207. Springer,
Heidelberg (1990)

On Constructing 1-1 One-Way Functions

Oded Goldreich, Leonid A. Levin, and Noam Nisan

Abstract. We show how to construct length-preserving 1-1 one-way
functions based on popular intractability assumptions (e.g., RSA, DLP).
Such 1-1 functions should not be confused with (infinite) families of (fi-
nite) one-way permutations. What we want and obtain is a single (infi-
nite) 1-1 one-way function.

Keywords: One-Way Functions, RSA, Discrete Logarithm Problem.

This work was conducted in the summer of 1994. An early version of it appeared
as TR95-029 of ECCC. Section 4 has been revised and improved by relying
on subsequent advances regarding primality testing [I]. Specifically, we replace
the randomized primality tester of [3] (which builds upon [I3/T7]) by the deter-
ministic primality tester of Agrawal, Kayal, and Saxena [I]. Various footnotes
indicate these (as well as other significant) deviations from the aforementioned
early version.

1 Introduction

Given any one-way permutation (i.e., a length preserving 1-1 one-way function),
one can easily construct an efficient pseudorandom generator. The construction
follows the scheme given by Blum and Micali [4], using the fact that every
one-way function has a hard-core bit [8]. Specifically, assume that f is such

a function and let b be a hard core-bit for it (e.g., starting with a function

1’y we may define f(z,r) def (f'(z),r) and b(x,r) as the inner-product mod

2 of the strings = and r when viewed as binary vectors of length |z| = |r]|).
Then, on input a seed s, the pseudorandom generator outputs the sequence
b(s), b(F(5)), bLF (£ (), b(F3(5)), .

Pseudorandom generators can be constructed also based on arbitrary one-
way functions [I2]; yet, the known construction is very complex and inefficient [
In fact, it is of no practical value. The construction in [J], which uses arbitrary
regular one-way functions is more attractive in these respects, yet it is far less at-
tractive than the simple construction outlined above. A similar situation occurs
with respect to the construction of digital signature schemes (cf., [14] vs [19]).
In general, 1-1 one-way functions currently offer simpler and more practical
constructions (of more complex primitives) than offered by general one-way
functions.

! The same applies also to subsequent improvements, currently culminating in [11].

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 13-B3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

14 O. Goldreich, L.A. Levin, and N. Nisan

These facts were our initial motivation for trying to construct length-
preserving 1-1 one-way functions. Such functions should not be confused with
what is commonly referred to (especially in the “Crypto Community”) as
“one-way permutations”, which are actually infinite sets of finite functions —
see definitions below. What we want is a single infinite function that is both
length-preserving and 1-1 (and needless to say one-way). We show how to con-
struct such 1-1 one-way functions based on popular intractability assumptions
such as the intractability of DLP and inverting RSA.

Indeed, some (but not all) of the constructions that use length-preserving
1-1 one-way functions can be modified such that families of one-way permuta-
tions can be used instead. Still the question of whether the former (i.e., length-
preserving 1-1 one-way functions) exists is of both theoretical and practical
importance.

2 One-Way Functions and Families

We start by recalling the standard definitions.

Definition 2.1 (one-way functions): Let f:{0,1}* — {0,1}* be a length pre-
serving function that is polynomial-time computable.

— (strongly one-way): f is called (strongly) one-way if for any probabilistic
polynomial-time algorithm A, any positive polynomial p and all sufficiently
large n, it holds that

1

Prob[A(f(z)) € f~ f(z)] < p(n)

where the probability is taken uniformly over x € {0,1}", and the internal
coin tosses of algorithm A.

— (weakly one-way): f is called weakly one-way if there exists a positive poly-
nomial p such that for any probabilistic polynomial-time algorithm A and all
sufficiently large n, it holds that

ProblA(f(z i) >
AS@) ¢ £ @] >
where the probability is as above.

Recall that f:{0,1}* —{0,1}* is 1-1 if f(z) # f(y) for all z # y. In the case

that f(z) # f(y) for all but a negligible fraction of the pairs (z,y) we say that

f is almost 1-1. Namely, an almost 1-1 function f satisfies, for every positive
polynomial p and all sufficiently large n, it holds that

1
Problf(r)=f)] <

where the probability is taken uniformly and independently over all z,y €
{o,13™

On Constructing 1-1 One-Way Functions 15

Definition 2.2 (family of one-way permutations — simplified version): An in-

finite set of finite permutations, ¥ = {f; : D; Lt D;}ier, is called a family of
one-way permutations if the following conditions hold

— (efficient evaluation): There exists a polynomial-time algorithm that on input
an indez (of a permutation) ¢ € I and a domain element x € D; returns
fi(=).

— (efficient index selection): There exists a probabilistic algorithm S that on
input n, runs for poly(n) time and returns a uniformly distributed index of
length n (i.e., an ¢ uniformly distributed in 7 N {0,1}").

— (efficient domain sampling): There exists a probabilistic polynomial-time al-
gorithm D that on input an index ¢ € I, returns a uniformly distributed
element of D;.

— (one-wayness): For any probabilistic polynomial-time algorithm A, any
positive polynomial p and all sufficiently large n, it holds that

Prob[A(i, fi(x)) = z] < p(n)

where the probability is taken uniformly over i € IN{0,1}", x € D;, and the
internal coin tosses of algorithm A.

In the non-simplified version, both the aforementioned probabilistic algorithms
(i.e., S and D) are allowed to produce output with only noticeable probability
(i.e., probability at least 1/poly(n)). Furthermore, given these algorithms have
produced an output, the output is allowed to be wrong (i.e., out of the target set
or non-uniformly distributed) with negligible probability (e.g., with probability
at most 27™). Our transformations will take advantage of the first relaxation,
but not of the second

Analogously to Definition 2] families of permutations can be defined to be
weakly one-way, rather than (strongly) one-way.

3 Transforming One-Way Families into Functions

Clearly, any family of one-way permutations can be converted into a single one-

way function; namely, f(r,s) def fi(x), where i = S(n,r) is the index selected
using coin-tosses r and x = D(i,s) € D, is the element selected on input ¢ and
coin-tosses s. (Padding can be applied, if necessary, to make f length preserving.)
However, this procedure does not necessarily yield a 1-1 function; furthermore,
for most natural examples such as RSA, DLP, etc., the resulting function will
be many-to-one.

2 In the earlier version of this work, we also took advantage of the second relaxation.
This was done in order to account for the probability of error that was present in
the probabilistic primality tests that we used. The need to accommodate error is
currently eliminated by using the deterministic primality test of [1].

16 O. Goldreich, L.A. Levin, and N. Nisan

An alternative construction, which does yield a 1-1 one-way function, is
possible under some additional conditions, as demonstrated below. In fact, the
conditions are defined to make this natural construction work and the thrust of
this paper is in demonstrating that these conditions can be met under reasonable
and popular assumptions (see next section).

3.1 The Conditions

Let F be a family of one-way permutations and that let ¢(n) denote the number
of coins flipped by the index-selection algorithm S on input n. We consider the
following conditions that F may satisfy.

Definition 3.1 (additional conditions)

— Augmented one—waynessﬁ For any probabilistic polynomial-time algorithm A,
any positive polynomial p and all sufficiently large n, it holds that

Prob[A(r, fs(n,r (7)) = 2] < p(n)

where the probability is taken uniformly over r € {0, 1}‘1("), r € Dg(n,py, and
the internal coin tosses of algorithm A.

(Namely, the permutations are hard to invert even when the inverting algo-
rithm is given the random coins used to generate the index of the
permutation.)

— Canonical domain samplingH The domain-sampling algorithm may consist of
uniformly selecting a string of specific (easy to determine) length and testing
whether the string resides in the domain. In other words, we require

e (recognizable domain): There exists a polynomial-time algorithm that on
mnput an index © € I and a string x decides if x € D;.

e (noticeable domain): There exists a polynomial-time computable function
1:N — N and a positive polynomial p(-) so that D; C {0,1}'™) and
|D;| > p(ln) . 9l(n)

3.2 The Construction

Given a family of one-way permutations that satisfies the additional conditions,
we explicitly construct a 1-1 one-way function as follows.

3 Note that this condition is different from the notion of enhanced one-wayness as
defined in [0, Apdx. C.1]. Specifically, here the inverting algorithm gets the coins
that were used by the index selection algorithm, whereas in [6, Apdx. C.1] the
inverting algorithm gets the coins that are used by the domain sampling algorithm.

* Interestingly, this condition was rediscovered in [I0] as an alternative to the enhanced
one-wayness condition of [6, Apdx. C.1]. Actually, Haitner [I0] only requires notice-
able domains (and refers to collections of permutations that satisfy this condition
by the term collections having dense domains).

On Constructing 1-1 One-Way Functions 17

Construction 3.1 (simple version): Let F be a family of permutations with an
index-selection algorithm S that uses q(-) coins and having domains D;’s that
are subsets of {0, 1} for some function 1(-). We construct the function f as
follows

£(r,9) def { (r, fi(s)) if s € D;, where i o S(n,r)

(r,s) otherwise
where r € {0,139 and s € {0,1}1(™),

Proposition 3.1 (analysis of Construction BI): The function [is 1-1 and
length preserving. If F is a family of one-way permutations satisfying the ad-
ditional conditions of Definition[31], then f is weakly one-way. The latter holds
even if F is only weakly one-way (as long as it satisfies the additional conditions).

Proof: By definition f is length-preserving. Let G,, be the set of pairs (r,s) €
{0,139 x {0, 1}'™ such that s € Dg(n,ry holds and let B, be the set of the
other pairs (i.e., B,, = ({0,1}9(x {0,1}!(™)\ G,,). The key observation is that
if (r,s) € Gy, then for i = S(n,r) it holds that s € D,. Furthermore, in that
case, fi(s) € D; and f(r,s) = (r, fi(s)) € G, follows. On the other hand, if
(r,s) € By, then f(r,s) = (r,s) € B,. Thus, f maps G, (resp., B,) to itself
and furthermore the mapping induced on G,, (rep., By,) is 1-1. It follows that f
is 1-1.

The function f is polynomial-time computable by virtue of the first two ef-
ficiency conditions of F and the additional ‘recognizable domain’ condition. By
the additional ‘noticeable domain’ condition we know that G,, forms a noticeable
fraction of G,, U B,, and by the ‘augmented one-wayness’ condition we infer that
f is hard to invert on G,,. Thus, we conclude that f is weakly one-way. In fact,
the latter conclusion remain valid even if the family of permutations F is only
weakly one-way. g

Remark: The function f (constructed above) may be only weakly one-way, since
it equals the identity transformation for a part of its domain (and this part may
have a noticeable measure). To get a (strongly) one-way function, one may apply
the transformation in [7] (cf. |5l Sec. 2.6]) to the function f. (In fact, degenerate
versions of the transformation in [7] suffice for this purpose; see Section 5.)

Handling the non-simplified version of Definition[2.3. The above construction is
stated with respect to the simplified definition of a family of one-way permuta-
tions. Recall that in the non-simplified version, the index-selecting algorithm, S,
is only required to have an output with noticeable probability (i.e., the probabil-
ity is at least 1/p(n), where p is some fixed positive polynomial). Furthermore,
S is allowed to err (i.e., have output not in I) with a negligible probability. For
the general case, we redefine the function f as follows.

Construction 3.2 (general version): Let F = {f; : D; L D;}ier be a family
of permutations with an index-selecting algorithm, S, that produces output with

18 O. Goldreich, L.A. Levin, and N. Nisan

noticeable probability and errs with negligible probability. We construct the
function f as follows

(r,s) otherwise

f(r,s) def { (r, fi(s)) if i def S(n,r)# L and s € D;

where the convention is that if on input n and coin tosses r € {0,1}4™) the
algorithm S halts with no output, then S(n,r) Ly ¢ {0,1}*.

Proposition 3.2 (analysis of Construction B.2): The function f is length pre-
serving and almost 1-1. Furthermore, f is 1-1 if S never errs. If F is a family
of one-way permutations satisfying the additional conditions of Definition [3.1],
then f is weakly one-way. The latter holds even if F is only weakly one-way (and
satisfies the additional conditions).

Proof: In case algorithm S never errs, the proof is similar to the proof of Proposi-

tionBJl(i.e., G, is redefined as the set of all pairs (r, s) such that ¢ def S(n,r) # L
and s € D;). Otherwise, we observe that the collision probability of f is bounded
above by the probability that S errs (and outputs a string not in I). Since this
happens with negligible probability, we are done. a

4 Applying the Transformation

Using the transformation specified in the previous section, we show how to con-
struct a 1-1 one-way function based on one of several popular intractability
assumptions. To this end, we use these intractability assumptions in order to
construct families of one-way permutations satisfying the additional conditions
of Definition [3.Jl Before presenting these constructions, we wish to stress an
important aspect regarding them; namely, their (quantified) level of “security”
(see next).

Security

The security of a one-way function f is a function, s : N — N, specifying the
amount of “work” required to invert f on inputs of given length. The work of
an algorithm is defined as the product of the running-time (of the inverting
algorithm) and the inverse of its success probability; namely, wa(n) def 4 a(n) -
pAl(n) , where t 4 (n) is the running time of A on f-images of length n and p4(n) def
Probyeqo,13n[A(f(x)) € f~ f(x)] is its success probability.

Typical cryptographic constructions, and in particular our constructions, trans-
form one object (in our case, a family of one-way permutations) of security s(-)
into another object (in our case, a single 1-1 one-way function) of related security
s'(+). The relation between s and s’ is of key importance. A weak relation, which
is usually easier to obtain, is that s’(poly(n)) > s(n)/poly(n). Although this rela-

tion translates any super-polynomial security s into a super-polynomial security

On Constructing 1-1 One-Way Functions 19

s’, it is of limited practical value. In order to use the resulting object of security
s’ one may needs to use very big instances. For example, if s'(n°) = s(n) and the
original object is “secure in reality” for instance size 100 (bits), then the resulting
object (of security s’) will be “secure in reality” only for instances of size 10°
(and is thus unlikely to be of practical value). Thus, stronger relation between
the security s of the original object and the security s’ of the resulting object
are of more value. In particular, it is desirable to have s'(O(n)) > s(n)/poly(n),
in which case we say that the transformation preserves the security.

Getting back to the constructions of the previous section, we note that the
security of the resulting one-way 1-1 function f, on f-images of length ¢(n) +
I(n), is closely related to the security of the family of one-way permutations
on f;-images of length I(n). (Recall, n denotes the length of the index of the
permutation, [(n) the length of the description of elements in the domain of
the permutation, and ¢(n) the randomness complexity of the index-selecting
algorithm.) Thus, s'(q(n)+1(n)) > s(l(n))/poly(n), where s denotes the security
of the family F and s’ the security of the function f. Therefore, the smaller the
polynomial q(-) is, the better security one gets. It is particularly desirable to
keep ¢(n) linear in I(n). All the constructions presented below achieve this goal.
Consequently, the one-way functions constructed below preserve the security of
the intractability assumption on which they are based. We remark that the (weak
to strong one-way) transformation of [7] (mentioned in the Remark in Section 3)
preserves security too.

Preliminaries: Selecting Prime Numbers

Prime numbers play a key role in all our constructions, and so efficient algo-
rithms for selecting such numbers are of key importance to us. We will use two
algorithms, the first being being the celebrated deterministic polynomial-time
primality tester of Agrawal, Kayal, and Saxena [I],

Theorem 4.1 (primes are in P): There exists a deterministic polynomial-time
primality tester; that is, an algorithm that decides whether a given integer is a
prime number.

The second algorithm is Bach’s probabilistic polynomial-time algorithm that
on input 1™ uniformly generates an n-bit long composite number along with
its factorization [2]. A straightforward implementation of Bach’s algorithm re-
quires a super-linear number of coin tosses (i.e., a number of coin tosses that is
super-linear in the length of the composite being generated). Here we claim an
approximate version that uses a linear number of coin tosses. We say that a dis-
tribution X on n-bit long strings is almost uniformly distributed over S C {0, 1}"
if the variation distance between X and the uniform distribution over S is
negligible (as a function of n).

20 O. Goldreich, L.A. Levin, and N. Nisan

Theorem 4.2 (randomness efficient generation of integers with known prime
factorization): There exists a probabilistic polynomial-time algorithm that, on
input 1™, uses O(n) coin tosses to select a random number N almost uniformly
in the interval [27~1,2™ — 1], and outputs the prime factorization of N.

Proof: While it is possible to present a direct implementation of an approximate
version of Bach’s algorithm that uses only a linear number of coin tosses, the
details are quite tedious. Hence, we prefer to invoke a general result of Nisan and
Zuckerman [I5] that asserts that any probabilistic polynomial-time algorithm that
uses linear space has an approrimated version that uses a linear number of coin
tosses, where in our context approximation means that the output distribution
of the new algorithm (on any fixed input) is statistically close to the output
distribution of the original algorithm (i.e., the variation distance is negligible)ﬁ
It is easy to see that Bach’s algorithm utilizes linear space, and the theorem
follows. O

4.1 A Construction Based on RSA

The standard presentation of RSA [I8] yields a family of permutations, which
is believed to be one-way, but is certainly not one-way in the augmented sense
of Definition Bl Here we refer to a family in which the indices are pairs (IV, e),
where N is the product of two primes of equal length and e is relatively prime
to ¢(N). The index is generated by randomly selecting these two primes, mul-
tiplying them and next selecting a proper e. Thus, giving these random choices
away compromises the security of RSA, since given the prime factors it is easy
to invert the function.

We consider, instead, the following family of weak one-way permutations.
The indices in this family are pairs of integers (NN, P) such that P is a prime and
|P| = | N|. For each such pair we define a permutation over Z%, the multiplicative

group modulo N; specifically, fy p(z) 4f P mod N. Note that we do not insist
that N is a product of two primes of the same length. Yet, a noticeable fraction of
the possible N’s will have this form. Thus, if the standard RSA family is strongly
one-way (for random exponent) then it is also (strongly) one-way for a prime
exponent, and consequently the foregoing (non-standard) family of functions will
be weakly one-way (due to the noticeable fraction of composites of the standard
form). Since P is relatively-prime to ¢(N), the functions in this family are in
fact permutations over Zy . (Note that the index-selecting algorithm does not
know ¢(N), and so relative-primality of P and ¢(NN) is imposed by requiring
that P is prime.)

We now show that the foregoing family satisfies the non-simplified require-
ments (from a family of one-way permutations) as well as the additional condi-
tions in Definition Bl Among the efficiency conditions of Definition only the

5 The original result is stated for algorithms that output a single bit, but it extends
trivially to algorithms to algorithms that output a linear number of bits, which is
the case in our application (i.e., the aforementioned “context”).

On Constructing 1-1 One-Way Functions 21

one referring to the index selection is problematic, yet it does hold when only re-
quiring that output is produced merely with noticeable probability; specifically,
we select two n-bit integers at random and check whether the second is prime,
producing an output only if the answer is affirmative. Furthermore, Z7}; is easily
recognizable and has noticeable density with respect to {0, 1}|N |, This family
is one-way in the augmented sense (under the “RSA assumption”), since the
modulus is generated via an identity transformation from the coins of the index-
selecting algorithm (and thus these coins add no knowledge to the inverter). It
follows that we can apply Proposition and derive a length-preserving 1-1
one-way function.

Definition 4.1 (standard RSA Assumption): We say that inverting RSA is in-
tractable with security s(-) if any algorithm for the inverting task uses work greater
than s(+). The inverting task consists of finding x such that y = x° mod N, when
given N, e and y, where N is uniformly selected among all composites that are
the product of two (n/2)-bit long primes, e is uniformly selected among the el-
ements of the multiplicative group modulo ¢(N), and y is uniformly selected
among the elements of the multiplicative group modulo N .

To justify our claim that the security (of the RSA Assumption) is preserved,
we note that pairs (IV, P) as required can be selected using O(|(NV, P)|) random
bits[Thus, we get

Corollary 4.1 (a length-preserving 1-1 one-way function based on RSA): Sup-
pose that inverting RSA is intractable with security s(n). Then, there exists a

length-preserving 1-1 one-way function with security s'(O(n)) ef s(n)/poly(n).

4.2 A Construction Based on a Restricted DLP

Here we rely on the assumption that the Discrete Logarithm Problem (DLP) in
the multiplicative group modulo P is hard also for the special case of primes of
the form P = 2Q + 1, where @Q is a prime. We also use the assumption that such
primes form a noticeable fraction of the integers of the same length. Based on
these assumptions, the following family of permutations is one-way. The indices
in the family are pairs (P, g), where P is a prime of the above form and g is
a primitive element modulo P. The index is selected by first selecting a prime
of the above form and next using the known factorization of ¢(P) = 2Q to
test candidates for primitivity (see details below). For each index, (P,g), we
define a permutation over Z}, the multiplicative group modulo P; specifically,

frg(x) def g® mod P. Noting that Z% is both ‘noticeable’ and easy to recognize,

5 Currently, the random bits are merely used to select (N, P) uniformly among all
pairs of n-bit long integers. Indeed, checking primality is done by using the deter-
ministic algorithm guaranteed in Theorem] (whereas in the earlier versions Bach’s
randomness-efficient algorithm [3] was used for that purpose, which only resulted in
an almost 1-1 function).

22 O. Goldreich, L.A. Levin, and N. Nisan

we can apply Proposition [3.2] provided that the index-selection process satisfies
the augmented one-way condition.

To address the last concern as well as justify our claim that the resulting
1-1 one-way function preserves the security of the family, we need to specify
the way in which the pairs (P, g) are selected. On input n we uniformly select
an (n — 1)-bit integer, @, and test @ and P = 2Q + 1 for primality. In case
we are successful, we uniformly select g € Z} and test if it is primitive (mod
P) by computing ¢” ! mod P, g® mod P and g% mod P. (If the first expression
evaluates to 1 whereas the other two do not, then g is a primitive element modulo
P.)E Thus, we use | (P, g)| random bits to generate pairs (P, g), and these coins are
identical to the pairs themselves. Combining this with the foregoing assumption
regarding the density of primes of the desired form and the fact that in this case
approximately half the elements of Z} are primitive, we get

Corollary 4.2 (a length-preserving 1-1 one-way function based on restricted
DLP): Suppose that the restricted DLP is intractable with security s(n) (as in
Definition [2), and that the set of n-bit primes, P, for which ¢(P)/2 is prime,

constitute a 1/poly(n) fraction of the n-bit long integers. Then, there exists a
def

length-preserving 1-1 one-way function with security s'(O(n)) = s(n)/poly(n).

Definition 4.2 (restricted DLP Assumption): We say that the restricted DLP
is intractable with security s(-) if any algorithm for the following inverting task
uses work greater than s(-). The inverting task consists of finding x such that
y = ¢® mod P, when given P, g and y, where P is uniformly selected among
all n-bit primes for which ¢(P)/2 is prime, g is uniformly selected among the
primitive elements modulo P, and y is uniformly selected among the elements of
the multiplicative group modulo P.

4.3 A Construction Based on the General DLP

Here we rely on a alternative assumption concerning the DLP. Specifically, we
assume that the Discrete Logarithm Problem (DLP) in the multiplicative group
modulo a prime P is hard also when given the factorization of ¢(P). (Note that
for primes of the special form P = 2Q + 1 the factorization of ¢(P) = 2 - Q is
always known.) Furthermore, we shall assume that this DLP problem remains
hard when given any O(|P|) bits of information regarding P; that is, we assume
that there are no trapdoors (of linear length) for the DLP in the multiplicative
group modulo a prime. Making this assumption, we can waive the assumption
made in the previous subsection concerning the density of primes of special form
P =2Q + 1, where @ is a prime.

Based on the foregoing intractability assumption, the following family of
permutations is one-way. The indices in the family are pairs (P,g), where P

" Again, checking primality is done by using the deterministic algorithm guaranteed
in Theorem Il Indeed, this allows to obtain a 1-1 function (rather than an almost
1-1 function, as in earlier versions).

On Constructing 1-1 One-Way Functions 23

is a prime and g is a primitive element modulo P. The index is chosen by
first generating a random prime P with known factorization of ¢(P) (see de-
tails below), and next using this factorization to test candidates for primitiv-
ity. For each index, (P,g), we define a permutation over Z} as before (i.e.,

frg(x) def ¢g® mod P). Again, we shall apply Proposition to the current
family.

We have postponed the discussion of how to randomly generate primes P with
known factorization of ¢(P). Here is where we use Theorem 2] which asserts
the existence of an adequate algorithm and furthermore one that uses a linear
number of coin tosses. This yields an index-selection algorithm that selects pairs
(P, g) using O(|(P, g)|) random bits, which is instrumental to our claim that the
resulting 1-1 one-way function preserves the security of the family. The fact that
the coins used by this index-selection algorithm provide additional information
on P is “covered” by the assumption formulated in Definition Thus, we get:

Corollary 4.3 (a length-preserving 1-1 one-way function based on general
DLP): Suppose that DLP is intractable with security s(n), even when the factor-

ization of the order of the group is given (as in Definition B3)). Then, there exists
def

a length-preserving 1-1 one-way function with security s'(O(n)) = s(n)/poly(n).
Definition 4.3 (DLP Assumption): We say that the DLP is intractable with
security s(-) if, for every randomized mapping II such that |II(z)] = O(|z|),
any algorithm for the following inverting task uses work greater than s(-). The
inverting task consists of finding x such that y = g* mod P, when given II(P)
and a pair (g,y), where P is uniformly selected among all n-bit primes, g is
uniformly selected among the primitive elements modulo P, and y is uniformly
selected among the elements of the multiplicative group modulo P.

The randomized mapping IT captures possible trapdoor information that may as-
sist in inverting fp 4, and the assumption asserts that the inverting task remains
hard also in the presence of such information i In particular, the randomized
mapping II may yield the coins used by the factored-number generating algo-
rithm of Theorem .2l Thus, inverting fp 4 is hard also in the augmented sense
of Definition Bl

5 Conclusions and Open Problems

We have presented a method for constructing (strongly) one-way permutations.
The method consists of three steps.

Step (1): Using well-known intractability assumptions to construct families
of one-way permutations satisfying the additional properties specified in
Definition Bl

8 Indeed, the fact that IT is applied only to P and that |IT(P)| = O(|P|) makes the
assumption potentially weaker. On the other hand, the fact that I7(P) may contain
P allows us to omit P from the list of inputs to the inverting task.

24 O. Goldreich, L.A. Levin, and N. Nisan

Step (2): Using such a family to construct a weak one-way function.
Step (3): Transforming the resulting function into a strongly one-way function.

We consider the identification of the conditions in Definition Bl and the con-
struction of families of one-way permutations satisfying these conditions to be
the most important contributions of the current paper. Thus, most of the paper
is dedicated to the implementation of Step (1), whereas Step (2) is obtained by
Construction 32 and Step (3) is obtained by referring to [7].

Regarding Step (3), we remark that applying the general (“weak to strong”)
transformation of [7] seems an over-kill, since in our case the weakly one-way
function f has a special structure (e.g., it is hard to invert almost on all points
on which it is not the identity transformation). However, in our attempts to
avoid using [7], we were not able to avoid using random walks on expander
graphs (for the repeated attempts to generate a valid index and/or a sample in
the corresponding domain). Since expander graphs are the only non-elementary
component of [7], we see no point in presenting these alternatives here. Certainly,
it will be better to avoid the use of expander graphs and perform Step (3) in a
more efficient manner.

Another obvious open problem is to construct length-preserving 1-1 one-way
functions based on the conjectured intractability of factoringﬁ To achieve this
goal using our method one will need to construct a family of one-way permuta-
tions satisfying the additional properties specified in Definition Bl (The stan-
dard construction of a family of one-way permutations based on factoring [16]
does not satisfy the augmented one-wayness condition.)

Acknowledgments. We would like to thank Eric Bach and Hugo Krawczyk for
helpful discussions and comments.

References

1. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics 160(2),
781-793 (2004)

2. Bach, E.: Analytic Methods in the Analysis and Design of Number-Theoretic Al-
gorithms (ACM Distinguished Dissertation 1984). MIT Press, Cambridge (1985)

3. Bach, E.: Realistic Analysis of some Randomized Algorithms. In: 19th STOC, pp.
453-461 (1987)

4. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J. on Computing 13, 850-864 (1984)

5. Goldreich, O.: Foundation of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

6. Goldreich, O.: Foundation of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

9 We comment that, using Theorem EI] one can obtain a 1-1 function based on fac-
toring, alas this function is not length preserving. Specifically, consider the function
that maps a pair of integers of the form (z,y) to their multiple if © < y and both
numbers are prime, and maps it to (z,y) otherwise. Using an adequate encoding
that distinguishes the two cases, this mapping is 1-1, but not length preserving.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

On Constructing 1-1 One-Way Functions 25

. Goldreich, O., Impagliazzo, R., Levin, L., Venkatesan, R., Zuckerman, D.: Security

Preserving Amplification of Hardness. In: 31st FOCS, pp. 318-326 (1990)

. Goldreich, O., Levin, L.: A Hard-Core Predicate for any One-way Function. In:

21st STOC, pp. 25-32 (1989)

. Goldreich, O., Krawczyk, H., Luby, M.: On the Existence of Pseudorandom Gen-

erators. SIAM J. on Computing 22, 1163-1175 (1993)

Haitner, I.: Implementing Oblivious Transfer Using Collection of Dense Trap-
door Permutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394-409.
Springer, Heidelberg (2004)

Haitner, I., Reingold, O., Vadhan, S.: Efficiency Improvements in Constructing
Pseudorandom Generator from any One-way Function. In: 42nd STOC, pp. 437-
446 (2010)

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudorandom Generator
from any One-way Function. SICOMP 28(4), 1364-1396 (1990); Combines papers
of Impagliazzo, Levin, and Luby (21st STOC, 1989) and J. Hastad (22nd STOC,
1990)

Miller, G.L.: Riemann’s Hypothesis and tests for primality. JCSS 13, 300-317
(1976)

Naor, M., Yung, M.: Universal Hash Functions and their Cryptographic Applica-
tions. In: 21st STOC, pp. 33-43 (1989)

Nisan, N., Zuckerman, D.: Randomness is Linear in Space. JCSS 52(1), 43-52
(1996); Preliminary version in 25th STOC (1993)

Rabin, M.O.: Digitalized Signatures and Public Key Functions as Intractable as
Factoring. MIT/LCS/TR-212 (1979)

Rabin, M.O.: Probabilistic algorithm for testing primality. Jour. of Number The-
ory 12, 128-138 (1980)

Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. CACM 21, 120-126 (1978)

Rompel, J.: One-way Functions are Necessary and Sufficient for Secure Signatures.
In: 22nd STOC, pp. 387-394 (1990)

Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM Jour. on
Computing 6, 84-85 (1977)

On the Circuit Complexity of Perfect Hashing

Oded Goldreich and Avi Wigderson

Abstract. We consider the size of circuits that perfectly hash an arbi-
trary subset S C{0,1}" of cardinality 2* into {0,1}™. We observe that,
in general, the size of such circuits is exponential in 2k —m, and provide
a matching upper bound.

Keywords: Perfect Hashing, Circuit Complexity.

An early version of this work appeared as TR96-041 of ECCC. We later found out
that, in contrast to our previous impression, the lower bound has been known. In
fact, our lower bound argument is analogous to the one presented in [0, pp. 128-
129]. The current revision is quite minimal.

Summary

We consider the problem of perfectly hashing an arbitrary subset S C {0, 1}"™ of
cardinality 2* into {0,1}™, where k& < m. That is, given an arbitrary subset
S C {0,1}" of cardinality 2¥, we seek a function h:{0,1}" — {0,1}™ so that
h(xz) # h(y) for every two distinct « # y in S. Clearly, such a function always
exists, the question is what is its complexity; that is, what is the size of the
smallest circuit computing h. Two obvious upper bounds follow.

1. For every SC{0,1}", there is a circuit of size |S| - n that perfectly hashes S
into {0, 1} o2 1511,
(The circuit is merely a look-up table for S.)

2. For every S C{0,1}", there is a circuit of size poly(n) that perfectly hashes
S into {0, 1}2Moe21SI1,
(The circuit implements a suitable function from a family of Universals
Hashing [2]. Such a family always contains perfect hashing functions for

S 1)
We show that these upper bounds are the best possible. That is:
Theorem 1 (lower bound): For every n,k and m < n — 1, there exists a subset
S C{0,1}" of cardinality 2% such that perfectly hashing S into {0,1}™ requires

a circuit of size 2(228=™ /n).

Interestingly, this lower bound is tight for all values of m € [k,2k] (and not
merely for m € {k,2k}). That is:

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 26-9, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On the Circuit Complexity of Perfect Hashing 27

Theorem 2 (matching upper bound) For every n,m, k where k < m < 2k,
and every subset S C {0,1}" of cardinality 2*, there exists a circuit of size
22k=m . noly(n) that perfectly hashes S into {0,1}™.

1 Proof of Theorem [T

The proof follows by a simple counting argument, combining an upper bound
on the number of circuits of given size with a lower bound on the size of a
family of functions that can perfectly hash all subsets of size 2¢. Improved lower
bounds for the latter appears in [BJ5l[7]. For sake of completeness, we prove a
weaker bound, which is sufficient for our purposes, and present the argument in
probabilistic terms.

Suppose, in contrary to Theorem [I] that for every subset S C{0,1}" of car-

dinality K 4f 9k there exists a circuit of size o(2%=m /(2k —m)) that perfectly
hashes S into {0, 1}*. We will show that each circuit can serve as a perfect hash-
ing for too few K-subsets, and hence there are too few circuits to perfectly hash
all possible K-subsets. The main observation follows:

Lemma 1.1 (the fraction of sets that are perfectly hashed by any function):
For any m < n—1, let C:{0,1}" — {0,1}™ be an arbitrary circuit, and let
S C {0,1}"™ be a uniformly selected subset of cardinality K = 2. Then, the
probability that C perfectly hashes S into {0,1}™ is at most 2= 22,

Proof: Let N % 27 and M & om, Clearly, we may assume that k& < m (as

otherwise the probability is zero). Let c1, ..., cpr denote the sizes of the preimages
of the various m-bit strings under C (i.e., ¢; = |[C1(s;)|, where s; denotes the
i*" (m-bit long) string by some order). Then, the probability we are interested
in is
i M
ZIQ[M]:|I|:K Iier (7) < (%) (
N = N
() ()

which for M < N/2 yields 2~ 2(K*/M)_The lemma follows.

1 We stress that the circuits guaranteed here cannot, in general, be simply described;
that is, this result is inherently nonuniform.

28 O. Goldreich and A. Wigderson

Deriving Theorem [I. Adding up the contribution of all possible circuits, while
applying Lemma [[.T] to each of them, we conclude that if too few circuits are
considered then not all K-subsets can be perfectly hashed. Specifically, there are
s90) possible circuits of size s, and so we need s Q=R > 1. Theorem[l
follows.

2 Proof of Theorem

We consider two cases. In the case that m < k + log, n, the theorem follows by
constructing an obvious circuit that maps each string in S to its rank (in 5)
represented as an m-bit long string. This circuit has size |S|-n < 22k=m . p?2
(since k < 2k —m + logy n), and the theorem follows.

The less obvious case is when m > k + log, n. Here we use a family of n-
wise independent functions mapping {0, 1}" onto {0, 1}¥, where ¢ def o — log, n.
Function in such a family can be evaluated by poly(n)-size circuits (cf. [1]). We
consider the collisions caused by a uniformly chosen function from this family
applied to S. Specifically,

Lemma 2.1 (hashing by n-wise independence functions): Let H be a family of
functions {h:{0,1}" —{0,1}¢} such that Probpem Al h(e;) = Bi] = 27, for
every n distinct ay, ..., o, € {0,1}" and for every B, ..., Bn € {0,1}*. Then, for
every S C{0,1}" of cardinality 2% < 2°, there exists h € H such that

1. No value has more than n preimages under h; that is, |h=1(3) N S| < n, for
every 8 € {0,1}%.

2. At most 22~ walues have more than one preimage under h; that is, |{3 €
{0,1}¢: |~ 1(B) N S| > 1}] < 22k,

Proof: Fixing an arbitrary 2F-subset, S, and uniformly selecting h € H, we
consider the probability that the two items (above) hold. Firstly, we consider
the probability that h maps n elements of S to the same image. Using the n-
wise independence of the family H, the probability of this event is bounded

by
2k 2kn 1
. 27577, < . 27kn <
n n! 2

where the first inequality uses ¢ = m — logyn > k. Thus, the probability that
Item (1) does not hold is less than 1/2. Next, we consider the probability that
Item (2) does not hold. We start by using the pairwise independence of H to
note that the collision probability is 27¢ (i.e., Probue g [h(a1) =h(ag)] = 27¥, for
any a; # as € {0,1}™). It follows that the expected number of h-images that
have more than a single preimage in S is bounded above by the expected number
of collisions; that is, by (2;) 27t < é - 22k=t - Applying Markov’s Inequality, we
conclude that the probability that Item (2) does not hold is less than 1/2. The
lemma follows.

On the Circuit Complexity of Perfect Hashing 29

Deriving Theorem [2. Fixing an arbitrary 2*-subset, S C {0,1}", and using
Lemma 2Tl we present a circuit that perfectly hashes S into {0,1}™ (where
m > k 4 logy n). Our construction uses the double hashing paradigm (see, e.g.,
[]). Let h:{0,1}"—{0,1}™~182" he as guaranteed by the lemma (w.r.t the set
S). We define a perfect hashing function f:{0,1}™—{0,1}"™ for S by letting

def
fla) = h(a) o rankgnp—1(n(ay) ()

where rankg () is an log, n-bit long string representing the rank of « among the
elements of R. A circuit computing the function f is constructed as follows. For
each (§ having more than a unique h-preimage in S, we maintain a table ranking
these preimages in S. By Item (1) of Lemma 2] such a table need only contain
n entries, whereas by Item (2) we only need 22~ such tables. (If a string, a,
does not appear in any of the tables, then f(a) = h(a)00°22".) The size of the
circuit is poly(n) 4+ 22#=¢ . n2 = poly(n) + 22*=™ . n3, and so Theorem B follows.

References

1. Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for the
Maximal Independent Set Problem. J. of Algorithms 7, 567-583 (1986)

2. Carter, L., Wegman, M.: Universal Classes of Hash Functions. J. Computer and
System Sciences 18, 143-154 (1979)

3. Fredman, M., Komlés, J.: On the Size of Separating Systems and Perfect Hash
Functions. SIAM J. Algebraic and Discrete Methods 5, 61-68 (1984)

4. Fredman, M., Komlds, J., Szemerédi, E.: Storing a Sparse Table with O(1) Worst
Case Access Time. Journal of the ACM 31, 538-544 (1984)

5. Korner, J., Marton, K.: New Bounds for Perfect Hashing via Information Theory.
Europ. J. Combinatorics 9, 523-530 (1988)

6. Mehlhorn, K.: Data Structures and Algorithms. EATCS Monographs on Theoretical
Computer Science, vol. 1 (1984)

7. Nilli, A.: Perfect Hashing and Probability. Combinatorics, Probability and Comput-
ing 3, 407-409 (1994)

Collision-Free Hashing from Lattice Problems

Oded Goldreich, Shafi Goldwasser, and Shai Halevi

Abstract. In 1995, Ajtai described a construction of one-way functions
whose security is equivalent to the difficulty of some well known approxi-
mation problems in lattices. We show that essentially the same construc-
tion can also be used to obtain collision-free hashing. This paper contains
a self-contained proof sketch of Ajtai’s result.

Keywords: Integer Lattices, One-EWay Functions, Worst-Case to
Average-Case Reductions, Collision-Resistent Hashing.

An early version of this work appeared as TR96-042 of ECCC. The current
revision is intentionally minimal.

1 Introduction

In 1995, Ajtai described a problem that is hard on the average if some well-known
lattice problems are hard to approximate in the worst case, and demonstrated
how this problem can be used to construct one-way functions [I]. We show
that Ajtai’s method can also be used to construct families of collision-free hash
functions. Furthermore, a slight modification of this construction yields families
of functions which are both universal and collision-free.

1.1 The Construction

The construction is very simple. For security parameter n, we pick a random
n X m matrix M with entries from Z,, where m and g are chosen so that nlog g <
m < ,I, and ¢ = O(n®) for some constant ¢ > 0 (e.g., m = n%q = n").
See Section [3 for a discussion of the choice of parameters. The hash function
har = {0, 1} — Zy is then defined, for s = 51535, € {0,1}™, as

hy(s) = Msmod g = ZsiMi mod ¢, (1)

where M; is the i*® column of M.

Notice that hps’s input is m-bit long, whereas its output is nlogq bits long.
Since we chose the parameters such that m > nloggq, there are collisions in h ;.
As we will argue below, however, it is infeasible to find any of these collisions
unless some well known lattice problems have good approximation in the worst
case. It follows that, although it is easy to find solutions for the equations Ms = 0
(mod q), it seems hard to find binary solutions (i.e., a vector s € {0,1}™ in the
solution space).

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 30-B9] 2011.
© Springer-Verlag Berlin Heidelberg 2011

Collision-Free Hashing from Lattice Problems 31

Remark. Using our notation, the candidate one-way function introduced by Ajtai

is f(M,s) ef (M, har(s)). We note that this function is regular (cf., [3]); that

is, the number of preimage of any image is about the same. (Furthermore, for
most M’s the number of pre-images under hj; of almost all images is about the
same.) To the best of our knowledge, it is easier (and more efficient) to construct
a pseudo-random generator based on a regular one-way function than based on
an arbitrary one-way function (cf., [3] and [4]).

1.2 A Modification

A family of hash functions is called universal if a function uniformly selected in
the family maps every two images uniformly on its range in a pairwise indepedent
manner [2]. To obtain a family of functions that is both universal and collision-
free, we slightly modify the foregoing construction. First we set ¢ to be a prime
of the desired size. Then, in addition to picking a random matrix M € Zg*™,
we also pick a random vector r € Zy. The function has, : {0,1}™ — Zjy is then

q
defined, for s = s1 -+ s, € {0,1}™, as

hy(s)=Ms+r modq:rJrZsiMi mod q. (2)

The modified construction resembles the standard construction of universal hash
functions [2], with calculations done over Z, instead of over Zs.

2 Formal Setting

In this section we give a brief description of some well known lattice problems,
outline Ajtai’s reduction, and our version of it.

2.1 Lattices

Definition 1. Given a set of n linearly independent vectors in R™, denoted V =
(v1,---,vp), we define the lattice spanned by V' as the set of all possible linear
combinations of the v;’s with integral coefficients; that is,

L(V) def {Z a;v; : a; € Z for all 2} (3)

We call V' the basis of the lattice L(V'). We say that a set of vectors, L C R", is
a lattice if there is a basis V' such that L = L(V).

It is convenient to view a lattice L in R™ as a “tiling” of the space R™ using small
parallelepipeds, with the lattice points being the vertices of these parallelepipeds.
The parallelepipeds themselves are spanned by some basis of L. We call the
parallelepiped that are spanned by the “shortest basis of L” (the one whose
vectors have the shortest Euclidean norm) the basic cells of the lattice L. See
Figure [l for an illustration of these terms in a simple lattice in R2.

32 O. Goldreich, S. Goldwasser, and S. Halevi

A lattice in R’

Tiling using the "basic-cells" Tiling using some other basis

Fig. 1. Tiling of a simple lattice in R? with two different bases

Computational Problems Regarding Lattices. Finding “short vectors” (i.e., vec-
tors with small Euclidean norm) in lattices is considered a hard problem. There
are no known efficient algorithms to find, given an arbitrary basis of a lattice,
either the shortest non-zero vector in the lattice, or another basis for the same
lattice whose longest vector is as short as possible. No efficient algorithms are
known for approximation versions of these problems as well. The approximation
versions being considered here are the following:

(W1) Given an arbitrary basis B of a lattice L in R™, approximate (up to a
polynomial factor in n) the length of the shortest vector in L.

(W2) Given an arbitrary basis B of a lattice L in R™, find another basis of L
whose length is at most polynomially (in n) larger than that of the smallest
basis of L (where the length of a basis is the length of its longest vector).

We choose ‘W’ for the foregoing notation to indicate that we will be interested
in the worst-case complexity of these problems. The best known algorithms for
these problems are the L? algorithm and Schnorr algorithm. The L3 algorithm,
due to Lenstra, Lenstra and Lovész [5] approximates these problems to within
a ratio of 2"/2 in the worst case, and Schnorr’s algorithm [6] improves this
to (14 &)" for any fixed € > 0. Another problem, which can be shown to be
equivalent to the above approximation problems (cf. [I]), is the following:

(W3) Given an arbitrary basis B of a lattice L, find a set of n linearly inde-
pendent lattice vectors, whose length is at most polynomially (in n) larger

Collision-Free Hashing from Lattice Problems 33

than the length of the smallest set of n linearly independent lattice vectors.
(Again, the length of a set of vectors is the length of its longest vector.)

A few remarks about (W3) are in order:

1. Note that not every linearly independent set of n lattice points is a basis for
that lattice. For example, if V = {v1,v2} span some lattice in R?, then the
set {2v1,v2} is a linearly independent set of 2 vectors that does not span
L(V), since we cannot represent v; as an integral linear combination of 2v;
and vs.

2. In the sequel we reduce the security of our construction to the difficulty of
solving Problem (W3). It will be convenient to use the following notation:
For a given polynomial Q(-), denote by (W3)g the problem of approximating
the smallest independent set in an n-dimensional lattice up to a factor of

Q(n).

2.2 Ajtai’s Reduction

In his paper Ajtai described the following problem:

Problem (A1): For parameters n,m,q € N such that nlogg < m < ,7, and
g = O(n®), for some constant ¢ > 0.

Input: A matrix M € Zg*™.
Output: A vector x € Z7* \ {0™} such that Mz =0 (mod ¢) and [[z]| < n
(where ||z|| denotes the Euclidean norm of z).

Here, we used ‘A’ (in the notation) to indicate that we will be interested in the
average-case complexity of this problem. Ajtai proved the following theorem,
reducing the worst-case complexity of (W3) to the average-case complexity of

(A1).

Ajtai’s Theorem [I]: Suppose that it is possible to solve a uniformly se-
lected instance of Problem (A1) in expected T (n,m,q)-time, where the expec-
tation is taken over the choice of the instance as well as the coin-tosses of
the solving algorithm. Then, it is possible to solve Problem (W3) in expected
poly(|Z]) - T'(n, poly(n), poly(n)) time on every n-dimensional instance I, where
the expectation is taken over the coin-tosses of the solving algorithm.

Remark. Ajtai [I] has noted that the theorem remain valid also when Prob-
lem (Al) is relaxed so that the desired output is allowed to have Euclidean
norm of up to poly(n) (i.e., one requires ||z|| < poly(n) rather than ||z| < n).

2.3 Our Version

We observe that one can use essentially the same proof to show that the following
problem is also hard on the average.

34 O. Goldreich, S. Goldwasser, and S. Halevi

Problem (A2): For parameters n,m,q € N as in (Al).

Input: A matrix M € Z"X’”
Output: A vector z € { 1,0,1}™\ {0™} such that Mz =0 (mod q).

Theorem 1: Suppose that it is possible to solve a uniformly selected instance of
Problem (A2) in expected T'(n, m, q)-time, where the expectation is taken over the
choice of the instance as well as the coin-tosses of the solving algorithm. Then,
it s possible to solve Problem (W3) in expected poly(|I]) - T'(n, poly(n), poly(n))
time on every n-dimensional instance I, where the expectation is taken over the
coin-tosses of the solving algorithm.

Proof: By the foregoing Remark, Ajtai’s Theorem holds also when modify-
ing Problem (A1) such that the output is (only) required to have Euclidean
norm of up to m. Once so modified, Problem (A1) becomes more relaxed than
Problem (A2) and so the current theorem follows.

For the sake of self-containment we sketch the main ideas of the proof of Ajtai’s
Theorem (equivalently, of Theorem [I]) in Section @l The reader is referred to [I]
for further details.

3 Constructing Collision-Free Hash Functions

The security of our proposed collision-free hash functions follows directly from
Theorem [Il Below, we spell out the argument and discuss the parameters.

3.1 The Functions and Their Security
Recall our construction of a family of collision-free hash functions:

Picking a hash-function
To pick a hash-function with security-parameters n,m,q (where nlogg <
m < ,%, and ¢ = O(n°)), we pick a random matrix M € Z;*™.
Evaluating the hash function
Given a matrix M € Zy*™ and a string s € {0, 1}™, compute

ha(s) = Msmod ¢ = ZSLML mod gq.

The collision-free property is easy to establish assuming that Problem (A2) is
hard on the average. That is:

Theorem 2: Suppose that given a uniformly chosen matriz, M € ngm, it
is possible to find in (expected) T'(n,m,q)-time two vectors x # y € {0,1}™
such that Mz = My (mod q). Then, it is possible to solve a uniformly selected
instance of Problem (A2) in (expected) T'(n,m, q)-time.

Proof: If we can find two binary strings s; # sa € {0,1}™ such that
Msy = Mss (mod q), then we have M(s1 — s2) =0 (mod gq). Since s1, 52 €

{0,1}™, we have z def (s1 — s2) € {—1,0,1}™, which constitutes a solution to
Problem (A2) for the instance M.

Collision-Free Hashing from Lattice Problems 35

3.2 The Parameters

The proof of Theorem [Il imposes restrictions on the relationship between the
parameters n, m and q. First of all, we should think of n as the security parameter
of the system, since we derive the difficulty of solving Problem (A2) by assuming
the difficulty of approximating some problems over n-dimensional lattices.

The condition m > nlogq is necessary for two reasons. The first is simply
because we want the output of the hash function to be shorter than its input. The
second is that when m < nlogg, a random instance of problem (A2) typically
does not have a solution at all, and the reduction procedure in the proof of
Theorem [falls apart.

The conditions ¢ = O(n¢) and m < ¢/2n* also come from the proof of
Theorem [Il Their implications for the security of the system are as follows:

— The larger q is, the stronger the assumption that needs to be made regard-
ing the complexity of problem (W3). Namely, the security proof shows that
(A2) with parameters n,m,q is hard to solve on the average, if the prob-
lem (W3)gns) is hard in the worst case, where (W3)(gne) is the problem of
approximating the shortest independent set of a lattice up to a factor of ¢nS.
Thus, for example, if we worry (for a given n) that an approximation ratio
of n'% is feasible, then we better choose ¢ < n. Also, since we know that
approximation within exponential factor is possible, we must always choose
q to be sub-exponential in n.

— By the above, the ratio R def q{s ! must be strictly bigger than 1 (above, for
simplicy, we stated R > 2). The larger R is, the better the reduction becomes:
In the reduction from (W3) to (A2) we need to solve several random (A2)
problems to obtain a solution to one (W3) problem. The number of instances
of (A2) problem which need to be solved depends on R. Specifically, this
number behaves roughly like n?/log R. This means that when q/n* = 2m
we need to solve about n? instances of (A2) per any instance of (W3), which
yields a ratio of O(n?) between the time it takes to break the hashing scheme
and the time it takes to solve a worst-case (W3) problem. On the other hand,
when R approaches 1 the number of iterations (in the reduction) grows
rapidly (and tends to infinity).

Notice also that the inequalities nlogg < m < % implies a lower bound on g,
namely logq > n®, which means that ¢ = £2(n°logn).

4 Self-contained Sketch of the Proof of Theorem [l

At the heart of the proof is the following procedure for solving (W3): It takes as

inputs a basis B = (by,---,b,) for a lattice and a set of n linearly independent
lattice vectors V' = (v, -+, vy,), with |v1]| < |ua] < -+ < |op|. The procedure
produces another lattice vector w, such that |w| < |v,|/2 and w is linearly
independent of vy,---,v,—1. We can then replace the vector v, with w and

repeat this process until we get a “very short independent set”. When invoking

36 O. Goldreich, S. Goldwasser, and S. Halevi

this procedure, we denote by S the length of the vector v, (which is the longest
vector in V).

In the sequel we describe this procedure and show that as long as S is more
than n° times the size of the basic lattice-cell (for some constant ¢ > 0), the
procedure succeeds with high probability. Therefore we can repeat the process
until the procedure fails, and then conclude that (with high probability) the
length of the longest vector in V' is not more that n¢ times the size of the basic
lattice-cell. For the rest of this section we will assume that S is larger than n®
times the size of the basic lattice-cell.

The procedure consists of five steps: We first construct an “almost cubic”
parallelepiped of lattice vectors, which we call a pseudo-cube. Next, we divide
this pseudo-cube into ¢" small parallelepipeds (not necessarily of lattice vectors),
which we call sub-pseudo-cubes. We then pick some random lattice points in the
pseudo-cube (see Step 3) and consider the location of each point with respect
to the partition of the pseudo-cube into sub-pseudo-cubes (see Step 4). Each
such location is represented as a vector in Zg and the collection of these vectors
forms an instance of Problem (A2). A solution to this instance yields a lattice
point that is pretty close to a “corner” of the pseudo-cube. Thus, our final step
consists of using the solution to this (A2) instance to compute the “short vector”
w. Below we describe each of these steps in more details.

1. Constructing a “pseudo-cube”. The procedure first constructs a paral-
lelepiped of lattice vectors that is “almost a cube”. This can be done by taking
a sufficiently large cube (say, a cube with side length of n3S), expressing each of
the cubes’ basis vectors as a linear combination of the v;’s, and then rounding the
coefficients in this combination to the nearest integers. Denote the vectors thus
obtained by f1,-- -, fn and the parallelepiped that is spanned by them by C. The
fi’s are all lattice vectors, and their distance from the basis vectors of the “real
cube” is very small compared to the size of the cubell] Hence the parallelepiped
C' is very “cube-like”. We call this parallelepiped a pseudo-cube.

2. Dividing the pseudo-cube into “sub-pseudo-cubes”. We then divide
C into ¢" equal sub-pseudo-cubes, each of which can be represented by a vector
in Z; as follows:

tq
t; t; +1
for every T'= | : GZZ, define C’Tdef{Zaifi : qlgal-< 2; }
tn ‘

For each sub-pseudo-cube Cr, we call the vector o, = ZZ t[;' fi the origin of Cp
(i.e., o, is the vector in Cp that is closest to the origin). We note that any vector
in v € Cr can be written as v = o, + ¢ where ¢ is the location of v inside the
sub-pseudo-cube Cr. See Figure 2 for an illustration of that construction (with
n=24q=3).

! The f;’s can be as far as Sn/2 away from the basis vectors of the real cube, but this
is still much smaller than the size of the cube itself.

Collision-Free Hashing from Lattice Problems 37

,,,,,,,,,,,, Lattice vectors

€75 ¢ The "real cube"

f;.f, The pseudo-cube

Fig. 2. The basic construction in the proof of Theorem [(for ¢ = 3)

The parameter ¢ was chosen such that each Cr is “much smaller” than S.
That is, the side-length of each sub-pseudo-cube Cr is Sn®/q < S/2nm. On the
other hand, with this choice, each Cr is still much larger than the basic lattice
cell (since S is much bigger than the size of the basic cell). This, together with
the fact that the Cp’s are close to being cubes, implies that each C'1 contains
approximately the same number of lattice points.

3. Choosing random lattice points in C. We then choose m random lattice
points w1, - uy € C. To do that, we use the basis B = {by,---,b,} of the
lattice. To choose each point, we take a linear combination of the basis vectors
b; with large enough integer coefficients (say, in the range [0,2"" - max(S, | B|)]
for some constant ¢). This gives us some lattice point p.

We then “reduce p mod C”. By this we mean that we look at a tiling of
the space R™ with the pseudo-cube C', and we compute the location vector of
p in its surrounding pseudo-cube. Formally, this is done by representing p as a

38 O. Goldreich, S. Goldwasser, and S. Halevi

linear combination of the f;’s, and taking the fractional part of the coefficients
in this combination. The resulting vector is a lattice point, since it is obtained
by subtracting integer combination of the f;’s from p, whereas the f;’s are lattice
vectors. Also, this vector must lie inside C, since it is a linear combination of the
fi’s with coefficients in [0, 1). It can be shown that if we choose the coefficients
from a large enough range, then the distribution induced over the lattice points
in C is statistically close to the uniform distribution.

4. Constructing an instance of Problem (A2). After we have chosen m lat-
tice points uy, - -, um, we compute for each u; the vector T; € Zy that represent
the sub-pseudo-cube in which w; falls. That is, for each ¢ we have u; € Cr,.
Since, as we said above, each sub-pseudo-cube contains approximately the
same number of points, and since the u;’s are distributed almost uniformly in C,
then the distribution induced on the C7,’s is close to the uniform distribution,
and so the distribution over the T}’s is close to the uniform distribution over Zg.
We now consider the matrix whose columns are the vectors Tj, that is, M =
(Th|Ts| - -+ |Ty). By the foregoing argument, it is an “almost uniform” ran-
dom matrix in Zy*™, and so, it is an “almost uniform” random instance of

Problem (A2).

5. Computing a “short lattice vector”. We now have a random instance M
of Problem (A2), and so we can use the algorithm whose existence we assume
in Theorem [I] to solve this instance in expected T'(n,m, q) time. The solution is
a vector = {x1, -+, xm} € {—1,0,1}™ such that Ma =), ;T; is congruent
to 0 mod gq.

Once we found z, we compute the lattice vector w’' = 27;1 x;u;. Let us

examine the vector w’: Recall that we can represent each wu; as the sum of

0; & o,, (the origin vector of Cr;) and J; (the location of u; inside Cr;). Thus,

m m m
i=1 i=1 =1

A key observation is that since Y, z;7; = 0 (mod ¢), “reducing the vector
(>, ®io;) mod C” yields the all-zeros vector; that is, (3, z;0;) mod C' = 0. To
see why this is the case, recall that each o; = o, has the form Zj tiéj) fi
where t;(j) € {0,...,q — 1} is the j*' component of T;. Now, the hypothesis
Yo xiti(j) =0 (mod q) for j =1,..,n, yields that

where all ¢;’s are integers. Since reducmg the vector), z;0,, mod C” means
subtracting from it an integer linear combination of f;’s, the resultlng vector is
0. Thus, “reducing w’ mod C” we get Zz:l x;0;; that is,
m
w’ mod C' = Zmldl

i=1

Collision-Free Hashing from Lattice Problems 39

Since each §; is just the location of some point inside the sub-pseudo-cube Cr,,
the size of each §; is at most n - S/2mn = S/2m. Moreover as x; € {—1,0,1} for
S

all ¢ we get
- - - - 2m 2.
S

This means that the lattice vector w’ mod C is close up to 5 to one of the
“corners” of C. Thus, all we need to do is to find the difference vector between
the lattice vector w’ mod C and that corner (which is also a lattice vector). Doing
that is very similar to reducing w’ mod C: We express w’ as a linear combination
of the f;’s, but instead of taking the fractional part of the coefficients, we take
the difference between these coefficients and the closest integers. This gives us
the “promised vector” w, a lattice vector whose length is at most S/2.

The only thing left to verify is that with high probability, w can replace the
largest vector in V' (i.e., it is linearly independent of the other vectors in V). To
see that, notice that the vector x does not depend on the exact choice of the
u;’s, but only on the choice of their sub-pseudo-cubes Cr;’s. Thus, we can think
of the process of choosing the u;’s as first choosing the Cr,’s, next computing
the z;’s and only then choosing the d;’s.

Assume (w.l.o.g.) that we have x1 # 0. Let us now fix all the §;’s except d1
and then pick d; so as to get a random lattice point in Cp, . Thus, the probability
that w falls in some fixed subspace of R™ (such as the one spanned by the n — 1
smallest vectors in V'), equals the probability that a random point in Cp, falls
in such subspace. Since C';, is a pseudo-cube that is much larger than the basic
cell of L, this probability is very small.

Acknowledgments. We thank Dan Boneh and Jin Yi Cai for drawing our
attention to an error in a previous version of this note.

References

1. Ajtai, M.: Generating Hard Instances of Lattice Problems. In: 28th ACM Sympo-
sium on Theory of Computing, Philadelphia, pp. 99-108 (1996)

2. Carter, L., Wegman, M.: Universal Classes of Hash Functions. J. Computer and
System Sciences 18, 143-154 (1979)

3. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom genera-
tors. SIAM J. on Computing 22(6), 1163-1175 (1993)

4. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudorandom Generator from
any One-way Function. STAM J. on Computing 28(4), 1364-1396 (1990); Combines
papers of Impagliazzo et al. (21st STOC, 1989) and Hastad (22nd STOC, 1990)

5. Lenstra, A.K., Lenstra, H.W., Lovéasz, L.: Factoring Polynomials with Rational Co-
efficients. Mathematische Annalen 261, 515-534 (1982)

6. Schnorr, C.P.: A more efficient algorithm for a lattice basis reduction. Journal of
Algorithms 9, 47-62 (1988)

Another Proof That BPP C PH (and More)

Oded Goldreich and David Zuckerman

Abstract. We provide another proof of the Sipser—Lautemann Theorem
by which BPP C MA (C PH). The current proof is based on strong
results regarding the amplification of BPP, due to Zuckerman (1996).
Given these results, the current proof is even simpler than previous ones.
Furthermore, extending the proof leads to two results regarding M.A:
MA C ZPPNP (which seems to be new), and that two-sided error M.A
equals MA. Finally, we survey the known facts regarding the fragment
of the polynomial-time hierarchy that contains M.A.

Keywords: BPP, The Polynomial-Time Hierarchy, Interactive Proof
Systems (AM and MA), Randomness—Efficient Error Reduction (Am-
plification).

An early version of this work appeared as TR97-045 of ECCC. The current
revision is quite minimal.

1 Introduction

Non-trivial results, showing containment of fundamental complexity classes in
one another, are quite rare. One of the first such results is Sipser’s Theorem [14]
by which BPP is contained in the Polynomial-Time Hierarchy. A simpler proof,
placing BPP even lower in this hierarchy, was presented by Lautemann [11]. Al-
though not stated in these (subsequently introduced) terms, Lautemann’s proof
actually establishes the following:

Theorem 1 (The Sipser-Lautemann Theorem): BPP C MA.

See definitions in next section.

The contents of this note, In this note, we present an alternative proof of
the Sipser—Lautemann Theorem. Our proof relies on powerful results regard-
ing randomness—efficient error reduction (a.k.a amplification) for BPP. Given
these powerful results, our proof is almost a triviality.

Using similiar arguments, we show that MA C ZppNF (re-establishing a
theorem of Zachos and Heller [16] by which BPP € ZPPVNP). It follows that
NPBPP C zpPNP_ To the best of our knowledge, these results were not known
before.

In summary, the purpose of this note is three-fold: Firstly to demonstrate
the power of the currently known results regarding randomness—efficient error
reduction. We believe that these results have not been fully assimilated into

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 40-F3] 2011.
© Springer-Verlag Berlin Heidelberg 2011

Another Proof That BPP C PH (and More) 41

complexity theory and are yet to be exploited by it. Secondly we wish to focus
attention on the fragment of the polynomial-time hierarchy that contains M.A.
It seems that this fragment gives rise to some challenges which may be within
our current reach. Finally, we take the oppertunity to prove the aforementioned
new result.

Organization. The core of this work (i.e., the alternative proof of the Sipser—
Lautemann Theorem) is presented in Sections [and Il This alternative proof
is further discussed in Section [3:2] and applied in the context of two-sided MA
in Section B3l The same proof strategy is then applied to show that MA is
contained in ZPPNP (see Section [). Finally, we conclude with a brief survey
of the complexity classes around MA (see Section ().

2 Background

(For further background, see Section [0l)

2.1 BPP and Randomness-Efficient Error Reduction

Definition 1 (the class BPP): For any set S, we denote by xs the characteristic
function of the set; that is, xs(x) =1 if x € S and xs(x) = 0 otherwise. A set
S is in BPP if there exists a probabilistic polynomial-time machine M such that
for every x € {0,1}*

Prob[M(x) # xs(r)] <
where the probability is taken uniformly over the internal coin tosses of M.
The error probability in the foregoing procedure can be reduced by repetitions
(a process hereafter referred to as amplification). The obvious way of doing
so transforms a machine (as above) that, on input z, uses p(|z|) coins into
a machine having error probability at most 27*(21) that uses O(t(|z|) - p(|z|))
coins (for any polynomial t). More efficient amplification procedures, utilizing
Expander Random Walks, yield the same error bound while using only p(|z|) +
(4 + o(1)) - t(Jz|) coins (see survey [6]). In particular, for any constant ¢ > 4,
using a sufficiently large polynomial ¢, we get a procedure that uses c-t(|x|) coins
and has error probability at most 2~*1#D)_ An alternative construction due to
Zuckerman [I7] provides, for any constant ¢ > 1 and sufficiently large polynomial
t, a procedure that uses c-t(|x|) coins and has error probability at most 2-*(1=1),
What is remarkable in the last procedure is that the number of coins used is
essentially the logarithm of the error bound. Put in other words, the number of
“bad” coin sequences can be made any (constant) root of the total number of
coin sequences. In particular,

Theorem 2 (Zuckerman’s randomness-efficient amplification of BPP [I7]): For
any set S in BPP, there exists a polynomial-time recognizable binary relation R
and a polynomial p such that

{r € {0, 13700 : R(z,r) # yg(x)}| < 2p0=D/3,

42 O. Goldreich and D. Zuckerman

2.2 The Complexity Class MA

Definition 2 (the class MA): A set S is in MA if there exists a polynomial-
time recognizable 3-ary relation V' and polynomials p,q such that

— Ifx €8, then there exists w € {0,1}202D) such that for every r € {0, 1}r(=))
it holds that V(z,w,r) = 1.
— Ifx &S, then for every w € {0, 1}(1('“"') it holds that

1

Prob, [V (z,w,r) =1] <)

where the probability is taken uniformly over all r € {0, 1}”('@').

The class MA, introduced by Babai [I], consists of sets having a Merlin-Arthur
proof system: The prover (Merlin) sends a certificate (denoted w above) to the
verifier (Arthur) who assesses it probabilistically (by tossing coins r and ap-
plying the predicate V'). Merlin—Arthur proof systems are a degenerate type of
interactive proof systems (introduced by Goldwasser, Micali and Rackoff [8] and
Babai [1]). Actually, in a Merlin—Arthur proof system there is no real interaction.
Instead, it is instructive to view MA as the randomized version of N'P: Here
the “certificates” (for membership) can be verified via a randomized procedure
and errors may occur (yet with bounded probability).

3 A Proof of the Sipser-Lautemann Theorem

3.1 The Proof Itself

Using Zuckerman’s efficient amplification of BPP, we present the following MA
proof system. Specifically, we will refer to the relation R and the polynomial p
guaranteed in Theorem

The protocol. On input x, both parties compute m = p(|z|), and proceed as
follows.

1. Merlin tries to select 7/ € {0,1}™/2 such that R(z,r'r") = 1 for all 7" €
{0,1}™/2. Merlin sends 7 to Arthur.

2. Upon receiving ’, Arthur selects 7 € {0,1}”/2 uniformly and accepts if
and only if R(z,r'r") = 1.

Analysis of the foregoing protocol. If x € S, then there are at most 2™/3 possible
s for which R(z,7) = 0. Thus there are at most 2™/3 prefixes ' € {0,1}™/2
for which some " exists so that R(z,r'r"”) = 0. Merlin may just select any of
the other 27/2 — 2™/3 prefixes and make Arthur always accept. On the other
hand, if ¢ S, then there are at most 2”/3 possible 7’s for which R(z,r) = 1.

Thus, for each v € {0,1}™/2, it holds that

Prob,c(g1ym2 [R(z,r'r") = 1] < <

Another Proof That BPP C PH (and More) 43

3.2 Discussion

Let us review our proof strategy. Starting with Theorem 2] we partitioned the
space of all (2™) possible coin-tosses outcomes into (2/2) subsets of equal size.
We then used the following two facts:

1. The number of bad outcomes is smaller than the number of subsets (and so
there exists a subset with no bad outcomes). This was used to analyze the
case x € S.

2. The number of bad outcomes is much smaller than the size of each subset
(and so each subset contains a majority of good outcomes). This was used
to analyze the case x &€ S.

Thus, what we have used is the fact that number of bad outcomes is much
smaller than the square root of the total number of outcomes. We stress that
the fact that any BPP-machine can be transformed into a machine for which
the foregoing holds (i.e., Theorem []) is highly non-trivial. We believe that this
fact (or known generalizations of it) may find further applications in complexity
theory.

Comparison to Lautemann’s proof. Recall that Lautemann’s proof has the prover
send the verifier t = m/log, m strings, si,...,s:, and the verifier tosses coins
r € {0,1}™ and accepts iff R(xz,r & s;) = 1 holds for some i. The existence
of an appropriate sequence of strings is proven by an elementary probabilistic
argument. Actually, s may be any fixed string (e.g., 0™) and so needs not be
sent (by the prover). We observe that IF we start with R as guaranteed by Theo-
rem[2] then ¢ = 2 suffices. This gets us very close to the proof above. In fact, the
probabilistic argument of Lautemann reduces to the trivial counting argument
above. Thus, using Theorem [Pl allows also a simplification of Lautemann’s argu-
ment, although the proof presented earlier is believed to be simpler: Technically
speaking, we have the prover send only m/2 bits (rather than m required in
the simplified Lautemann’s argument), the verifier tosses only m/2 coins (again,
rather than m), and the predicate R is evaluated only once (rather than twice).

3.3 Two-Sided Error Equals One-Sided Error for MA

Both Lautemann’s proof and our proof can be extended to show that a two-sided
error version of M.A equals the one-sided error defined above. (This provides an
alternative proof to the one presented in [I5].) We mention that interactive proof
systems with zero error collapse to NP, whereas for all (higher than MA) levels
of the interactive proof hierarcy, the two-sided error version equals the one-sided
one [5].

Definition 3 (two-sided version of MA): A set S is in MAy if there exists a
polynomial-time recognizable 3-ary relation V' and polynomials p,q such that
— Ifx €8, then there exists w € {0, 1}(1('“"') such that

2

Prob,[V(z,w,r) =1] > 3

44 O. Goldreich and D. Zuckerman

— Ifx &S, then for every w € {0,1}902D) it holds that

2

3.

In both cases, the probability is taken uniformly over all r € {0, 1}p(|“"|).

Theorem 3 [15, Thm 2(i)]: MA = MA,.

Proof: Clearly, MA C MAs,, and so we focus on showing that MAs C MA.
Let S be an arbitrary set in MWUs. For every x € S, we consider w as guar-
anteed by the first condition of Definition B whereas for © ¢ S we consider
any w € {0, 1}(1('“"'). Both Lautemann’s proof and our proof extend to promise
problems in BPP, and in particular to the following BPP promise problem,
II = (Ilygs, IIno), where

Prob, [V (z,w,r) = 0] >

o 2
Iyps {(x,w) : Prob, [V(z,w,r) = 1] > 3}

IIyo & {(z,w) :x &S}

c {(x,w):Probr[V(x,w,T) =0] > ?,,}

In particular, the amplification technique of Zuckerman applies also to this case
and so we obtain a predicate V' and a polynomail ¢’ such that

V(z,w) € Mygs |{r € {0,130 V/(z, w,r) = 0}] < 29 (1273 (1)
V(z,w) € Ino {r € {0,1}90%D V(2 w,r) = 1} < 27 (=D/3 (2)
Thus, we augment the MA-protocol of Section 3] as follows. On input z, with
m = ¢'(|z]), Merlin sends (w, '), where |r'| = m/2, and Arthur uniformly selects
" € {0,1}™/? and accepts if and only if V'(x,w, ") = 1. As before, in case
x € S, by sending an adequate (w,r’), Merlin can make Arthur accept for every

choice of r”’; whereas, in case ¢ S, for any choice of (w,r’), Arthur accepts
with negligible probability. It follows that S € MA.

4 MA Is Contained in ZPP with an NP-Oracle

The machines in the following definition may halt with a non-Boolean output
(which may be interpreted as abstaining from a decision regarding membership).

Definition 4 (the class ZPP): A set S is in ZPP if there exists a probabilistic
polynomial-time machine M such that for every x € {0,1}*
1
Prob[M(x) = xs(x)] >
Prob[M(z) =1—xs(z)]=0
where the probability is taken uniformly over the internal coin tosses of M.

Thus, the ZPP machine either gives the correct answer or gives no answer at
all (i.e., a non-Boolean output is interpreted as no output). Clearly ZPP =
RP NcoRP (actualy, ZPP is sometimes defined this way).

Another Proof That BPP C PH (and More) 45

4.1 BPP Is Contained in ZPP with an NP-Oracle

We start by providing an alternative proof to a result of Zachos and Heller.
Theorem 4 [I6, P. 132, Cor. 3]: BPP C ZPPVF.

Proof: Using the same amplification and notations as in Section [3.I we con-
struct a probabilistic polynomial-time oracle machine, M, that on input x
operates as follows (where m = p(|z])):

1. Selects o € {0,1} uniformly (as guess for xs(z));
2. Selects ' € {0,1}™/2 uniformly;
3. Queries the oracle on whether (z,0,7’) is in the following coN'P set

{(y:mu) s Yo € {0, 1}, R(y,uv) = 7}. 3)

4. If the oracle answers YES, then the machine outputs o. Otherwise it halts
with no output.

Recall that by the foregoing amplification, for any z, the following holds:
— For each 7/, it holds that
" € {0,112 R(wr'n") # xs(@)}] < 272,

and so the oracle never answers YES on query (z,1 — xs(z),r’). Thus, the
machine never outputs the wrong answer.
— On the other hand, it holds that

1
Prob, [vr” € {Ov 1}m/2’ R(xarlrﬂ) = Xs(ﬂf)] > 2

and so with probability at least 1/4, over the choices of o and 7/, the oracle
answers YES (and the machine produces a (correct) 0-1 output).

Using straightforward amplification, the theorem follows.

4.2 Extension to MA
Combining ideas from the last two proofs, we obtain.
Theorem 5 (scemingly new): MA C ZPPNP,

Observing that NPEPP C M A, (see Fact [l), and using Theorems Bl and B, we
conclude that N'PEPP C zppNP.

Fact 6 (folklore): NP7 C MA, .

46 O. Goldreich and D. Zuckerman

Proof: Let S € NPPPP. Then, for every z € S, we instruct Merlin to send a
transcript of an accepting computation of the non-deterministic polynomial-time
oracle-machine, and instruct Arthur to verify the validity of transcript as well
as the correctness of the the oracle answers (by running a probabilistic decision
procedure of negligible two-sided error).

Proof of Theorem [Bt Let S € MA and consider the same promise problem
IT = (Ilygs, IIno) as in the proof of Theorem Bl Furthermore, consider the set
I, C ITyps that consists of all pairs (z,w) such that for all » € {0,1}r(=)
it holds that V(z,w,r) = 1, and recall that for every x € S there exists w €
{0,1}9U=D such that (z,w) € ITpg.

We construct a probabilistic polynomial-time oracle machine, M, that on in-
put = and access to an NP-oracle, first attempts to find w such that (z,w) €
ITyggs, and next verifies that (z,w) € ITygs indeed holds. Following is a detailed
description of the operation of M (as well as key observations towards its anal-
ysis). On input z, where n = ¢(|z|) and & = p(]z|), machine M proceeds as
follows.

Step 1: Attempting to find a good w. The machine uniformly selects rq, ..., 72, €

{0,1}*, and queries the NP-oracle on whether there exists a w € {0,1}" such
that A2% V(z,w,r;) = 1. If the answer is NO, then M halts with output 0,
otherwise M iteratively recovers the bits of such a string w (by |w| additional
queries) and proceeds to the next step. Specifically, all queries have the form
(x,w',r1,...,72,), and each such query is answered by a YES if and only if
there exists a w” € {0,111l such that A2,V (z,w'w”, ;) = 1.
Note that if 2 € S, then a string w such that A2% V(z,w,r;) = 1 exists
(e.g., consider w such that (r,w) € IT{yg), and so Step 1 must be completed
while finding such a string w. On the other hand, for each (z,w) ¢ IIygs,
the probability that A2% V (z,w,r;) = 1 holds, where 71, ..., 72, are selected
uniformly in {0, 1}*, is at most (2/3)?", and it follows that

Proby,, .. . [Bw s.t. (z,w) & ITygs and A2V (z,w,r;) = 1]] < 2"-(2/3)%",

which is exponentially vanishing (in n).

Step 2: Verifying that w is good (i.e., (z,w) € IIygs). The machine treats (z,w)
as an input to the promise problem I and proceeds as in the proof of
Theorem Ml Specifically, by using the same amplification as in the proof
of Theorem [B] we obtain a verification procedure V' that satisfies Eq. (d)-
@). Letting m = ¢’(]x|), machine M selects an m/2-bit long random prefix
r’, and queries the NP-oracle on whether all m/2-bit long suffixes make

the predicate V' evaluate to 1 (i.e., whether for every 7" it holds that

V'(z,w,r'r") = 1). If the oracle answers YES, then M halts with output 1;

otherwise, M halts with no output. (We stress that we never output 0 in

this step.)

If x € S, then Step 1 never halts but rather always yields a string w (for
Step 2). Furthermore, with overwhelmingly high probability, the string w satis-
fies (z,w) € IIygs. Thus, with overwhelmingly high probability, Step 2 accepts.

Another Proof That BPP C PH (and More) 47

On the other hand, if ¢ S, then with overwhrlmingly high probability Step 1
halts (with output 0). Furthermore, if the procedure continued to Step 2 with
some string w, then (z,w) € Ixo (since x & S). In this case, the oracle will al-
ways answer NO, and M will halt with no output. Thus, for any x, the machine
never errs, and with overwhelmingly high probability it produces the correct
output.

5 The Bigger Picture: Complexity Classes around MA

(For a wider perspective on interactive proofs, see [7, Sec. 9.1].)

5.1 Definitions

All the (binary and 3-ary) relations that are mentioned in the following defi-
nitions are only satisfied by arguments of polynomially related length (i.e., all
tuples in a relation have arguments that are of length that is polynomial in the
length of the first argument). Likewise, all quantifiers range over arguments of
such lengths.

Definition 5 (traditional classes — classes of the 1970’s):

— A set S is in X = NPNP (resp., I = coN'PNT) if there exists a
polynomial-time recognizable 3-ary relation R such that

S ={z:3Vz R(z,y,2z) =1}
(resp., S ={x:Vy3z R(x,y,z) =1}).
— A set S is in AV = PNP if there exists a deterministic polynomial-time
oracle machine M and a set S’ € N'P such that x € S iff M (z) = 1 (Vz).

— A set S is in RP if there exists a probabilistic polynomial-time machine M
such that

z €8S = Prob[M(z)=1] > ;
x ¢S = Prob[M(z)=1] = 0

For any class C, we define coC ef {{0,1}*\ S: S eC}.

Definition 6 (AM [I] - a class of the 1980’s): A set S is in AM if there exists
a polynomial-time recognizable 3-ary relation V' and polynomials p,q such that

— Ifx €8, then for every r € {0,1}*U=D) there exists w € {0,1}90=D) such that
V(z,r,w) =1.
— Ifx € S, then it holds that
1

Prob,[Fw s.t. V(z,r,w) =1] < 9

where the probability is taken uniformly over all r € {0,1}P(=D,

48 O. Goldreich and D. Zuckerman

In other words, the class AM, introduced by Babai [I], consists of sets having
an Arthur-Merlin proof systems: The verifier (Arthur) challenges the prover
(Merlin) with a random query, denoted r, and given the prover’s answer (denoted
w) makes a decision using the predicate V. Thus, in contrast to Merlin—-Arthur
systems (where Arthur just (probabilistically) evaluates the validity of a “written
proof”), in Arthur—Merlin systems we have a real interaction between the prover
and the verifier. The class AM coincides with the class of sets having constant-
round interactive proof systems [1J9]. Thus, it is the lowest level of the hierarchy
of “real” interactive proofs [II8] (i.e., interactive proofs that, unlike NP and
MA, are really interactive).

Definition 7 (S [I13] — a class of the 1990s): S is in SI if there exists a
polynomial-time recognizable 3-ary relation R such that for every x € {0,1}*

Jyvz R(.’IJ, Y, Z) = XS(:E) (4)
JzVy R(.’IJ, Y, Z) = XS(:E) (5)

The class S was introduced independently by Canetti [4] and Russell and Sun-
daram [I3] with the motivation of providing a low “symmetric alternation class”
that contains BPP. Indeed, Canetti [4] has extended Lautemann’s proof to show
that BPP C SY, whereas Russell and Sundaram [I3] showed that MA C SI
(and thus BPP C SF).

5.2 Known Inclusions

We recall some known inclusions between the aforementioned classes. For sake
of self-containment, we present proofs as well. Recall that, BPP C MA, by
Theorem [[l We start with some simple syntactical facts:

PCRPCNPCMA.

RP C BPP.

RP C coMA (equiv., coRP € MA)[]

NP UcoNP C PNP.

AM C 1Y

st cxPnot.

(Actually, the transparent syntactical facts are the inclusion S C XF and
the closure of SI” under complement.)

7. 2PPNP Cc xPn k.

(Here the transparent facts are ZPPN? € RPNP ¢ NPNP = 5P)

S

We now turn to three non-trivial results.
Proposition 7 [I]: MA C AM.

Proof: We use a naive amplification to reduce the error probability in the
Merlin—Arthur game so to obtain error that is substantially smaller than the
reciprocal of the number of possible Merlin messages. Specifically, we obtain a
polynomial-time recognizable 3-ary relation V' and polynomials p, ¢ such that

! This syntactical fact can also be derived from RP C BPP, by using BPP C MA.

Another Proof That BPP C PH (and More) 49

1. If 2 € S, then there exists wg € {0,1}20%D such that for every r € {0, 1}z
it holds that V(z,wo,r) = 1.
2. If 2 ¢ S, then for every w € {0,1}2(*D it holds that

1
Probr[V(m,w,r) = 1] <) .9—a(lz])
Thus,

Prob,[3w € {0,1}2070 : V(2 w,r) = 1] < Z Prob, [V (x,w,r) = 1]
we{0,1}allzh)
1

<
2.

We construct an Arthur—Merlin proof system (defined by a new predicate V)

by merely reversing the order of moves in the foregoing proof system, and using

essentially the same decision predicate as above: That is, we let V' (z,r, w) def

V(z,w,r). This potentially makes the task of Merlin easier, and so we need only
worry about the case x ¢ S (which we handle easily using the above bound).
Specifically, for the case x € S, we may use the string wg (guaranteed in Item 1)
as Merlin’s response to any challenge r (and so V'(x,r,wo) = V(z,wo,r) =1
for all r’s). For the case x ¢ S we use the bound in Item 2 and so Prob,[Fw €
{0,1}90=D) - V' (2,7, w) = 1] < 0.5. The proposition follows.

Proposition 8 [13]: MA C SY.

Proof: We use the same amplification as in the previous proof. Here we write
the case of x ¢ S as

vw € {0, 1}q(|z|) |{r € {0, 1}p(lfr|) Vi(z,w,r) =1} < or(lzh)—a(l=]) _q

We define a relation R (for the class SI') such that R(z,y,2) = 1if |y| = |z| =
q(Jz|) and at least one of the following two conditions holds:

1. y = worleh=ale) and V(z,w,z) = 1.
2. z = woPleD=a(z) and V(z, w,y) = 1.

Clearly, this predicate is symmetric with respect to y and z; that is, condition (1)
holds iff condition (2) holds. Thus, we only show, for any z, the existence of a
string y such that, for all 2’s, R(z,y, 2) = xs(z). Let us shorthand m = p(|z|)
and n = ¢(|z|). For z € S there exists w € {0,1}" such that for all r € {0,1}™
it holds that V' (x,w,r) = 1. Thus, there exists y = w0™ " € {0,1}™ such that
for all z € {0,1}™ it holds that R(z,y,z) = 1. We now turn to the case where
x ¢ S: In this case,

Hr: 3w st. V(z,w,r) =1} < Z Hr:V(z,w,r) =1}
we{0,1}"
< 2n . (2n—m _ 1)
— 2m _ 2n.

50 O. Goldreich and D. Zuckerman

Thus, there exists r € {0,1}™ \ {0,1}"0™ ™ such that for every w € {0,1}" it
holds that V' (z,w, r) = 0. Given such an r, we prove that for all z’s R(x,r, z) = 0.
This holds since R(z,r,z) = 1 requires either r ending with 0™~" (which does
not hold by our choice) or z = w0 ™ with V(z,w,r) = 1 (which again cannot
hold).

Proposition 9 [I3]: PVP C SF.

Proof: Let S be an arbitrary set in PNP and let M be a (deterministic)
polynomial-time oracle machine recognizing S when given access to the NP-
complete set S’. We say that a string 7 is a valid transcript of M (z) if there
exists some oracle such that 7 describes the computation of M on input x and
access to this oracle. Note that the oracle’s answers in a valid transcript of M (x)
do mot necessarily agree with the set S’. A valid transcript is said to be sup-
ported by a sequence of pairs s if for each oracle query ¢ in the transcript 7
that was answered by 1 there is a pair (¢, w) in s, where w is an NP-witness for
membership of ¢ in S’. A valid transcript is said to be consistent with a sequence
of pairs s if for each oracle query ¢ in the transcript 7 that was answered by 0
there is no pair (¢, w) in s, where w is an NP-witness for membership of ¢ in 5’
We consider a fixed parsing of strings into pairs (7, s), where s is a sequence of
pairs.

We are now ready to define a relation R (for the class SF): For y = (7, s) and

z= (7,5, we let R(z,y,2) 4f 5 if at least one of the following two conditions

holds:

1. 7 is a valid transcript of M (z) with output o, supported by s and consistent
with s’

2. 7' is a valid transcript of M (z) with output o, supported by s’ and consistent
with s.

In case none of the conditions hold, R(z,y,z) may be defined arbitrarily. In-
tuitively, the quantification JyVz guarantees that the transcript contained in
y records correct oracle answers (since positive answers must be supported by
NP-witnesses, whereas negative answers must be unrefutable by NP-witnesses
to the opposite). Formally, we have to prove that R is well-defined, and that the
actual execution transcript is both supportable and unrefutable (i.e., consistent
with all valid sequences).

We first show that R is well-defined (i.e., it can not be the case that 7 and
7' are both valid, supported and consistent but with different outputs). Here
we use the fact that M is deterministic and so given the same oracle answers it
must yield the same output. Also, if two valid transcripts differ on some oracle
answer, then it cannot be that both transcripts are supported and consistent
with respect to the same two sequences of pairsE Finally, observe that for every

2 Consider the first conflicting answer and suppose, without loss of generality, that in
transcript 7 the answer is 1. Since 7 is supported by a sequence of pairs s, it cannot
be the case that 7’ (in which the answer to the same query is 0) is consistent with s.

Another Proof That BPP C PH (and More) 51

x, there exists a pair (7, s) with output xg(z) such that 7 is a valid transcript of
M (z), supported by s and consistent with any possible sequence of pairs.

5.3 Conjectured Separations

Below we list some well-known conjectures.
Conjecture 1 (the leading conjecture of TOC): P # NP.

(
Conjecture 2 (most widely believed): NP & BPP.
Conjecture 3 (most widely believed): NP # coNP.
(

Conjecture 4 (widely believed): The Polynomial-Time Hierarchy does not col-
lapse.

Conjecture @] implies the following (see [3]):
Conjecture 5 (widely believed): coN'P € AM.

We believe that Conjecture [l is interesting on its own; indeed, it is a natural
extension of Conjecture 3l

5.4 Conjectured Inclusions

What we know combined with what is widely believed is depicted in Figure 1. We
note that some of the inclusions that were not conjectured to be separations are
believed to be equalities or “close to it”. In particular, it is widely believed that
BP7P is very close to P. This belief is supported, among other things, by the con-
jecture that (uniform) exponential-time cannot be computed by subexponential-
size (non-uniform) circuits [2[T0]. We note that the latter conjecture holds
provided there exist strong one-way functions (i.e., polynomial-time computable
functions that cannot be inverted on typical images by subexponential-sized
circuits).

Fig.1. Arrows indicate containment between classes, with C; — Cz indicating that
C1 C Cs. Bolder (and bigger) arrows indicate conjectured gaps between the classes.
The symbol X is a placeholder for either 8 or ZPPN? (and we do not know how
these two classes are related).

52 O. Goldreich and D. Zuckerman

The Derandomization of BPP wversus the Derandomization of MA. We note
that results about derandomization of BPP are likely to imply results on the
derandomization of M. This holds provided that the former results extend
also to the generalization of BPP to promise problems. We note that all known
derandomization results have this feature. In the next proposition coRP denotes
the class of promise problems of the form II = (IIygs, IIno), where there exists
a probabilistic polynomial time machine M such that

x € ITygs = Prob[M(z) =1] =1
1
x € IIno = Prob[M(z) =1] <

Proposition 10 (folklore): Suppose that coRP C DTIME(t(n)), for a time
constructible function t : N—N. Then, MA C U;enNTIME(¢(n?)).

Proof: Each set L € MA gives rise to a promise problem II = (IIygs, IINo),
where

Iygs def {(z,w) : Vr € {0, 1}1’('“”') V(z,w,r) =1}

Ino < {(z,w) 1 ¢ L}

with V and p as in Definition 2l Note that, for every z € L there exists w €
{0,1}9UD such that (z,w) € ITygs, whereas for every x ¢ L and every w €
{0, 1}9U=D it holds that (x,w) € IIxo. Also, for every (x,w) € IIxo it holds that

1

PrObTe{O’l}P“T/D[V(x7w7r) = 1] S 2

We conclude that IT € coRP. Now, using the hypothesis, we have II €
DTIME(t(n + ¢(n))), and so L € NTIME(¢(n + g(n))). The proposition
follows.

On the Derandomization of MA (a comment added in revision). In light of recent
derandomization results regarding AM (cf. [12]), one may question the conjec-
ture MA # AM (which is suggested by Figure 1). We note, however, that the
aforementioned derandomization of AM seem to require stronger intractability
assumptions than the ones used in the derandomization of BPP (and MA).

Challenges. Indeed, all our challenges call for establishing some appealing
inclusions (rather than separations).

Try to put BPP in PMP. (Recall that BPP in in ZPPNP.)
Try to put M.A in PNP. (This certainly implies (1).)

Try to put RP in coNP. (Recall that RP is in coM.A.)
Try to put AM in X N IIF.

LSS

Another Proof That BPP C PH (and More) 53

References

10.

11.

12.

13.

14.

15.

16.

17.

. Babai, L.: Trading Group Theory for Randomness. In: 17th STOC, pp. 421-429

(1985)

. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has Subexponential Time

Simulations unless EXPTIME has Publishable Proofs. Complexity Theory 3, 307—
318 (1993)

. Boppana, R., Hastad, J., Zachos, S.: Does Co-NP Have Short Interactive Proofs?

IPL 25, 127-132 (1987)

. Canetti, R.: On BPP and the Polynomial-time Hierarchy. IPL 57, 237241 (1996)
. Fiirer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On Completeness and

Soundness in Interactive Proof Systems. In: Micali, S. (ed.) Advances in Computing
Research (Randomness and Computation), vol. 5, pp. 429-442 (1989)

. Goldreich, O.: A Sample of Samplers — A Computational Perspective on Sampling.

This volume. See also ECCC, TR97-020, TR97-020 (May 1997)

. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge

University Press, Cambridge (2008)

. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge Complexity of Interactive

Proofs. STAM J. on Computing 18(1), 186-208 (1989)

. Goldwasser, S., Sipser, M.: Private Coins versus Public Coins in Interactive Proof

Systems. In: Micali, S. (ed.) Advances in Computing Research (Randomness and
Computation), vol. 5, pp. 73-90 (1989)

Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In: 29th STOC, pp. 220-229 (1997)

Lautemann, C.: BPP and the Polynomial Hierarchy. IPL 17, 215-217 (1983)
Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin Games us-
ing Hitting Sets. Computational Complexity 14(3), 256-279 (2005); Preliminary
version in 40th FOCS (1999)

Russell, A., Sundaram, R.: Symmetric Alternation Captures BPP. Journal of Com-
putational Complexity (1995) (to appear); Preliminary version in Technical Report
MIT-LCS-TM-54

Sipser, M.: A Complexity Theoretic Approach to Randomness. In: 15th STOC, pp.
330-335 (1983)

Zachos, S., Fiirer, M.: Probabilistic Quantifiers vs. Distrustful Adversaries. In:
Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 443-455. Springer, Heidelberg
(1987)

Zachos, S., Heller, H.: A decisive characterization of BPP. Information and Con-
trol 69(1-3), 125-135 (1986)

Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorith-
mica 16, 367-391 (1996)

Strong Proofs of Knowledge

Oded Goldreich

Abstract. The concept of proofs-of-knowledge, introduced in the semi-
nal paper of Goldwasser, Micali and Rackoff, plays a central role in vari-
ous cryptographic applications. An adequate formulation, which enables
modular applications of proofs of knowledge inside other protocols, was
presented by Bellare and Goldreich. However, this formulation depends
in an essential way on the notion of expected (rather than worst-case)
running-time. Here we present a seemingly more restricted notion that
maintains the main feature of the prior definition while referring only to
machines that run in strict probabilistic polynomial-time (rather than to
expected polynomial-time).

Keywords: Proof of Knowledge, Zero-Knowledge.

This work was completed in May 1998, and was integrated in the author’s work
Foundation of Cryptography as [1, Sec. 4.7.6]. The current text is based on a
private memo from May 1998, whereas the postscript section (Sec. 4) is recent
(and confirms speculations raised in the original memo).

1 Introduction

The reader is referred to [3] for a discussion of the intuitive notion of a proof-of-
knowledge (cf., [I1]), and the previous attempts to define it [4J13], cumlinating
in the definition presented in [3]. We also assume that the reader is familiar with
the definition given in [3].

The definition given in [3] relies in a fundamental way on the notion of expected
running-time. Throughout the years we remained bothered by this feature, and
while working on [6] we decided to look for an alternative. Specifically, we present
a more stringent definition in which the knowledge extractor is required to run in
strict polynomial-time (rather than in ezpected polynomial-time). We call proof
systems for which this more stringent definition holds, strong proofs of knowledge
(in contrast to ordinary proofs of knowledge as defined in [3]).

There are two reasons to prefer strong proofs of knowledge over ordinary
ones. Firstly, we feel more comfortable with the notion of strict polynomial-time
than with the notion of expected polynomial-time. For example, it is intuitively
unclear why a machine which runs for time 2" on an 27" fraction of its coin-tosses
(and in linear time otherwise) should be considered fundamentally different than
a machine which runs for time 2" on the same fraction. Secondly, it seems much
more convinient to work (i.e., to compose) strict polynomial-time computations
rather than expected polynomial-time ones. (For further discussion of this issue,
the interested reader is directed to [9].)

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 54-F8] 2011.
© Springer-Verlag Berlin Heidelberg 2011

Strong Proofs of Knowledge 55

Unfortunately, there seems to be a loss in going from ordinary proofs of knowl-
edge to strong ones: Not all proofs of knowledge are known to be strong proofs
of knowledge. Furthermore, we conjecture that there are proofs of knowledge
that are not strong proofs of knowledge (see Section M). Still, zero-knowledge
strong-proofs-of-knowledge do exist for all NP-relations, provided that one-way
functions exist.

2 The Definition

We assume that the reader is familiar with the definition of a proof of knowledge
(as presented in [3]) as well as with the underlying motivation.

Definition 1 (System of strong proofs of knowledge): Let R be a binary relation.
We say that an efficient strategy V' is a strong knowledge verifier for the relation
R if the following two conditions hold.

— Non-triviality: There exists an interactive machine P such that for every
(z,y) € R all possible interactions of V with P on common-input x and
auziliary-input y are accepting.

— Strong Validity: There exists a negligible function u : N — [0,1] and a
probabilistic (strict) polynomial-time oracle machine K such that for every
strategy P and every x,y,r € {0,1}*, machine K satisfies the following

condition:
Let Py y .+ be a prover strategy, in which the common input x, auxil-

iary input y and random-coin sequence v have been fixed, and denote
by p(x) the probability that the interactive machine V accepts, on
input x, when interacting with the prover specified by Py, . Now,
if p(x) > p(|z]) then, on input x and access to oracle Py, with
probability at least 1 — p(|z|), machine K outputs a solution s for x.
That is:

If p(z) > p(|z]), then Pr[(z, KP=vr(2))eR] > 1— u(|z]). (1)
The oracle machine K is called a strong knowledge extractor.

An interactive pair (P, V') so that V is a strong knowledge verifier for a relation
R and P is a machine satisfying the non-triviality condition (with respect to V
and R) is called a system for strong proofs of knowledge for the relation R.

Thus, it is required that whenever p(z) > p(|x|) (i.e., whenever the prover con-
vinces the verifier with non-negiligible probability), the extractor fails with neg-
ligible probability. Our choice to bound the failure probability of the extractor
by the specific negligible function g (which serves mainly as bound on p(x))
is rather arbitrary. What is important is to have this failure probability be a
negligible function of |z|. Actually, in case membership in the relation R can
be determined in polynomial-time, one may reduce the failure probability from
1-— pol}ll(n) to 27Po¥(") while maintaining the polynomial running-time of the
extractor. Finally, we note that the extractor presented in the next section has
failure probability 0.

56 O. Goldreich

3 On the Existence of Strong Proofs of Knowledge

Some zero-knowledge proof (of knowledge) systems for NP are in fact strong
proofs of knowledge. In particular, consider n sequential repetitions of the fol-
lowing basic proof system for the Hamiltonian Cycle (HC) problem (which is
NP-complete). We consider directed graphs (and the existence of directed Hamil-
tonian cycles), and employ a commitment scheme {C),} as above.

Construction 2 (Basic proof system for HC):

— Common Input: a directed graph G = (V, E) with n e [V].

— Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

— Prover’s first step (P1): The prover selects a random permutation, w, of
the vertices of G, and commits to the entries of the adjacency matriz of the
resulting permuted graph. That is, it sends an n-by-n matriz of commitments
such that the (7 (i), 7(§))™ entry is C,,(1) if (i,5) € E, and C,,(0) otherwise.

— Verifier’s first step (V1): The verifier uniformly selects o € {0,1} and sends
it to the prover.

— Prover’s second step (P2): If o = 0, then the prover sends w to the verifier
along with the revealing (i.e., preimages) of all n? commitments. Otherwise,
the prover reveals to the verifier only the commitments to the n entries that
correspond to C; that is, it reveals the (m(i),w(j))™ entry if and only if
(i,4) € C. (By revealing a commitment ¢, we mean supply a preimage of ¢
under Cy; i.e., a pair (o,r) so that ¢ = Cy(o,7).)

— Verifier’s second step (V2): If o = 0, then the verifier checks that the revealed
graph is indeed isomorphic, via 7, to G. Otherwise, the verifier just checks
that all revealed values are 1 and that the corresponding entries form a simple
n-cycle. (Of course in both cases, the verifier checks that the revealed values
do fit the commitments.) The verifier accepts if and only if the corresponding
condition holds.

The reader may easily verify that sequentially repeating the basic protocol for
n times yields a zero-knowledge proof system for HC, with soundness error 27 ™.
We argue that the resulting system is also a strong proof of knowledge of the
Hamiltonian cycle. Intuitively, the key observation is that each application of
the basic proof system results in one of two possible situations depending on the
verifier’s choice, 0. In case the prover answers correctly in both cases, we can
retrieve an Hamiltonian cycle in the input graph. On the other hand, in case the
prover fails in both cases, the verifier will reject regardless of what the prover
does from this point on. This observation suggests the following construction of a
strong knowledge extractor (where we refer to repeating the basic proof systems
n times and set p(n) =27").

Strong Knowledge Extractor for Hamiltonian Cycle: On input G and access to
the prover-strategy oracle P*, we proceed in n iterations, starting with ¢ = 1.
Initially, T' (the transcript so far), is empty.

Strong Proofs of Knowledge 57

1. Obtain the matrix of commitments, M, from the prover strategy (i.e., M «—
P*(T)).

2. Obtain the prover’s answer to both possible verifier moves; that is, for every
o € {0, 1}, obtain the corresponding answer A, « P*(T, o). Each of these
answers may be correct (i.e., passing the corresponding verifier check) or not.

3. If both answers are correct, then we recover a Hamiltonian cycle. In this case
the extractor outputs the cycle and halts.

4. In case a single answer, say the one for value o, is correct and i < n, we let
T «— (T,0), and proceed to the next iteration (i.e., ¢ < i + 1). Otherwise,
we halt with no output.

Note that we reach iteration 7 only if and only if in each of the prior i—1 iterations
a single verifier choice is answered correctly (and we have appended this choice
in 7). Hence, if the extractor halts with no output in iteration i < n, then the
verifier (in the real interaction) accepts with probability zero (since in iteration
i both verifier choices yield incorrect answers). Similarly, if the extractor halts
with no output in iteration n, then the verifier (in the real interaction) accepts
with probability at most 27" (since at most one choine is answered correctly).
Thus, whenever p(G) > 27", the extractor succeeds in recovering a Hamiltonian
cycle (with probability 1).

4 Postscript

This section was added in the current revision and provides some support for
conjectures made explicitly or implicitly in the original text.

Regarding our conjecture that there exist proofs-of-knowledge that are not
strong proofs-of-knowledge, partial evidence is provided by subsequent work
of Barak, Lindell, and Vadhan [II2]. Both work refer to constant-round zero-
knowledge protocols (for sets outside BPP), and the seperation relies on the
existence of such protocols (under standard computational assumptions) that
are (ordinary) proofs of knowledge for NP-relations.

1. Barak and Lindell [I] show that such protocols cannot have a strict proba-
bilistic polynomial-time black-box extractor, which implies that they cannot
be proven to be strong proofs-of-knowledge in a black-box manner. (Still,
recall that non-black-box extractors may exist.)

2. Barak, Lindell, and Vadhan [2] show that if (exponentially) strong one-way
permutations exist, then such prtotocols cannot have a strict probabilistic
polynomial-time extractor, which implies that they cannot be strong proofs-
of-knowledge.

The existence of constant-round zero-knowledge protocols that are (ordinary)
proofs of knowledge for NP-relations can be based on standard intractability
assumptions: See Feige and Shamir [5] for the case of argument systems and
Lindell [T2] for the case of proof systems.

58

O. Goldreich

References

10.

11.

12.

13.

. Barak, B., Lindell, Y.: Strict Polynomial-Time in Simulation and Extraction. STAM

J. on Comput. 33(4), 783-818 (2004)

. Barak, B., Lindell, Y., Vadhan, S.: Lower Bounds for Non-Black-Box Zero-

Knowledge. J. of Comp. and Sys. Sci. 72(2), 321-391 (2006)
Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidelberg (1993)

. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. J. of Crpto. 1,

77-94 (1988)

Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526-544. Springer, Heidel-
berg (1990)

Goldreich, O.: Secure Multi-Party Computation. Unpublished manuscript (1998),
Superseded by (8, Chap. 7),
http://www.wisdom.weizmann.ac.il/7oded/foc.html

Goldreich, O.: Foundation of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

Goldreich, O.: Foundation of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

Goldreich, O.: On Expected Probabilistic Polynomial-Time Adversaries — A sug-
gestion for restricted definitions and their benefits. J. of Crypto. 23(1), 1-36 (2010)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but their Va-
lidity or All Languages in NP Have Zero-Knowledge Proof Systems. J. of the
ACM 38(1), 691-729 (1991); Preliminary Version in 27th FOCS (1986)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. on Comput. 18, 186-208 (1989); Preliminary Version in
27th FOCS (1986)

Lindell, Y.: Constant-Round Zero-Knowledge Proofs of Knowledge. ECCC, TR11-
003 (January 2011)

Tompa, M., Woll, H.: Random Self-Reducibility and Zero-Knowledge Interactive
Proofs of Possession of Information. University of California (San Diego), Computer
Science and Engineering Department, Technical Report Number CS92-244 (June
1992); Preliminary version in 28th FOCS, pp. 472482 (1987)

http://www.wisdom.weizmann.ac.il/?oded/foc.html

Simplified Derandomization of BPP Using a
Hitting Set Generator

Oded Goldreich, Salil Vadhan, and Avi Wigderson

Abstract. A hitting-set generator is a deterministic algorithm that gen-
erates a set of strings such that this set intersects every dense set that
is recognizable by a small circuit. A polynomial time hitting-set gener-
ator readily implies RP = P, but it is not apparent what this implies
for BPP. Nevertheless, Andreev et al. (ICALP’96, and JACM 1998)
showed that a polynomial-time hitting-set generator implies the seem-
ingly stronger conclusion BPP = P. We simplify and improve their (and
later) constructions.

Keywords: Derandomization, RP, BPP, one-sided error versus two-
sided error.

This work is considered the final version of [7]. An early version of this work
appeared as TR00-004 of ECCC. The current revision is quite minimal.

1 Introduction

The relation between randomized computations with one-sided error and ran-
domized computations with two-sided error is one of the most interesting ques-
tions in the area. Specifically, we refer to the relation betwen RP and BPP. In
particular, does RP =P imply BPP =P?

1.1 An Affirmative Partial Answer

The breakthrough paper of Andreev et al. [2] (and its sequel [3]) gave a natural
setting in which the answer to the foregoing question is YES. The setting is a
specific natural way to prove RP = P, namely via “hitting-set generators” (see
exact definition below). Informally, such a generator outputs a set of strings that
hits every large efficiently-recognizable set (e.g., the witness set of a positive
input of an RP set). Having such a generator that runs in polynomial time
enables a trivial deterministic simulation of an RP algorithm by using each of
the generator’s outputs as the random pad of the given algorithm.

The main result of [2] was that such a generator (which immediately yields
deromization of 1-sided error algorithms) actually suffices for derandomizing 2-
sided error algorithms. In particular, the existence of polynomial-time hitting
set generators implies BPP = P.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 59-F7] 2011.
© Springer-Verlag Berlin Heidelberg 2011

60 O. Goldreich, S. Vadhan, and A. Wigderson

Definition 1 (hitting set generator)@ An algorithm, G, is called a hitting set
generator for circuits if, on input n,s € N (given in unary), it generates as output
a set of n-bit strings, G(n, s), such that every circuit of size s (on n input bits)
that accepts at least half its inputs, accepts at least one element from the set
G(n,s).

Since s is the essential complexity parameter (n < s), we let tg(s) denote the
running time of the generator G on input (n,s), and Ng(s) denote the size of
its output set. Clearly Ng(s) < tg(s). The result of Andreev et al. [2] is the
following:

Theorem 2 (derandomization via hitting sets [2]): If there exists a hitting-set
generator G running in time tg, then BPP C DTIME(poly(ta(poly(n))).

Indeed, the most important special case (i.e., tg(s) = poly(s)) is the following:

Corollary 3 (Theorem [2 specialized [2]): If G runs in polynomial time, then
BPP ="P.

1.2 In Quest of Simplifications

Our main result is a simple proof of Theorem 2l Explaining what “simple” means
is not so simple. We start by explaining how the given generator (assumed in
the hypothesis of Theorem [2) is used in [2] (and in subsequent works [34]) to
derandomize BPP. Indeed, later proofs (of [3] and then [4]) were much simpler
than [2], but while proving Corollary Bl they fell short of proving Theorem 21A

Warning: The following discussion is carried out on an intuitive (and somewhat
vague) level. Readers who do not like such discussions may skip the rest of the
introduction, and proceed directly to the formal proof (presented in Sections

and [3]).

The Two Different Uses of the Hitting Set Generator in [2]. The proof in [2] uses
the generator in two ways. The first use is literally as a producer of a hitting set
for all sufficiently dense and efficiently recognized sets. The second use (which
is more subtle) is as a hard function. Indeed, observe that the existence of such

! In other settings, (pseudorandom) generators are defined as outputting a single
string. In terms of Definition[Ilthis means that, on input an index i € {1, ..., |G(n, s)|}
(viewed as a seed), the generator outputs the i*" string in G(n, s). However, in the
current context, the current convention (which in the standard terms means con-
sidsering the set of all possible outputs of the generator) seems simpler to work
with.

We note, however, that both [3] and [4] use their techniques to study other aspects of
the relationship between one-sided and two-sided error (i.e., aspects not addressed by
Theorem [2). In particular, Buhrman and Fortnow [4] resolve the promise-problem
analogue of the question “Does RP = P imply BPP = P?” in the positive. See
Section [[L3

Simplified Derandomization of BPP via Hitting Sets 61

a generator G immediately implies the existence of a function on O(logtg(s))
bits that is computable in time tg(s) but cannot be computed by circuits of size
s (or else a contradiction is reached by considering a circuit that that accepts a
vast majority of the strings that are not generated by G)E‘ These two uses of G
are combined in a rather involved way for the derandomization of BPP.

It is interesting to note that for the case of te(s) = poly(s), the aforementioned
hard function can be plugged into the pseudorandom generator of [8], to yield
BPP = P as in Corollary Bl (Note, however, that [8] was not available to the
authors of [2] at the time (the two papers are independent).) Moreover, [§] is far
from “simple”, it does use the computational consequence (which we are trying
to avoid), and anyhow it is not strong enough to yield Theorem

The Two-Level Use of the Hitting Set Generator in [J]. A considerably sim-
pler proof was given in [3]. There, the generator is used only in its “original
capacity” as a hitting set generator, without explicitly using any computational
consequence of its existence. In some sense, this proof is more clearly a “black-
box” use of the output set of the generator. However, something was lost. The
running time of the derandomization is replaced by poly(tc(tg(poly(n))).

On the one hand, this is not too bad. For the interesting case of tg(s) =
poly(s) (which implies RP = P), they still get the consequence BPP = P, as in
Corollary [3 (since iterating a polynomial function twice results in a polynomial).
On the other hand, if the function tg grows moderately such that tg(tg(n)) = 2,
then we have as assumption a highly nontrivial derandomization of RP, but the
consequence is a completely trivial derandomization of BPP.

In our opinion, the best way to understand the origin of the iterated appli-
cation of the function tg in the aforementioned result is explained in the recent
paper of [], which further simplifies the proof of [3]. They remind the reader
that the proofs [9/10] putting BPP in £2NII? actually gives much more. In fact,
viewed appropriately, it almost begs (with hindsight) the use of hitting sets!

The key is, that in both the V3 and 3V expressions for the BPP set, the
“witnesses” for the existential quantifier are abundant. Put differently, BPP C
RPPRP where prRP is the promise-problem version of RP. But if you have a
hitting set, you can use it first to derandomize the “oracle” part of the right-hand
side. This leaves us with an R7ZME(tq(poly(n)) machine, which can again be
derandomized (using hitting sets for tg(poly(n)) size circuits).

In short, the “two quantifier” representation of BPP leads to a two-level
recursive application of the generator. It seems hopeless to reduce the number
of quantifiers to one in the BPP C X2 N IT? result. So another route has to be
taken in order to prove Theorem[2lin a similar “direct” (or “black-box”) manner,
but without incurring the penalty arising from this two-level recursion.

Our Proof. We eliminate the two-level recursion, obtaining a single application
of the hitting set generator, by “increasing the dimension to two” in the following

3 For example, consider a circuit C' that accepts a (2log, tc(s))-bit string, z, if and
only if z is not a prefix of any string in G(n, s).

62 O. Goldreich, S. Vadhan, and A. Wigderson

sense. Inspired by Lautemann’s proof [9] of BPP C X2 N II?, we consider, for
each input to a given BPP algorithm that uses £(n) random coins, a 2¢(™)-
by-2¢") Boolean matrix such that the (a,b)!" entry represents the decision of
the algorithm when using the random pad a & b[n this matrix, the fraction
of incorrect answers in each row (resp., column) is small. The hitting set is
used to select a small subset of the rows and a small subset of the columns,
and the entries of this submatrix determine the result. Specifically, we will look
for “enough” (yet few) rows that are monochromatic, and decide accordingly.
The correctness and efficiency of the test are spelled out in Lemma [6 which is
essentially captured by the following simple Ramsey-type result.

Proposition 4 (log-size dominating sets): For every n-vertex graph, either the
graph or its complement has a dominating set of size [log,(n+1)]. Furthermore,
such a set can be found in polynomial time.

(Proposition [is seemingly new and may be of independent interest.E

We end by observing that (like the previous results) our result holds in the
context of promise problems. Hence, the existence of hitting set generators pro-
vides an efficient way for approximately counting the fraction of inputs accepted
by a given circuit within additive polynomial fraction.

1.3 Perspective

As described above, Buhrman and Fortnow [4] prove that BPP C prRPPRP.
and actually prBPP = prRPPRP. It follows immediately that prRP = prP
implies prBPP = prP, resolving the main question of this area for promise
classes! This result suggests two natural extensions that remain open. The first is
to obtain an analogue of their result for the standard classes of decision problems,
RP and BPP. (In [4], it is shown that such an extension cannot relativize.)
The second possible extension is to “scale” the result upwards. In fact, from
the hypothesis prRP C DTZME(t(n)), they obtain the conclusion prBPP C
DTIME (poly(t(t(poly(n))))). Theorem [as proved in [2] and in this paper,
replaces the composition ¢(¢(-)) with a single ¢(-) for the (very) special case
when the derandomization of prRP is via a hitting-set generator.

2 The Derandomization Procedure

Given L € BPP, consider a probabilistic polynomial-time algorithm A for L. Let
£ ={(n) be a fixed polynomial denoting the number of coin tosses made by A on

4 In a preliminary version of this work [7], we considered a different matrix such that
its (a, b)th entry represents the decision of the algorithm when using the random pad
aob. For that matrix to have the desired properties, it was necessary to first perform
drastic error reduction (using extractors) on the BPP algorithm, where this strategy
was inspired by [6]. The main simplification here is in avoiding this strategy.

5 Proposition @] corresponds to the special case of Lemma [f] that refers to symmetric
matrices. Note that this special case actually suffices for our application.

Simplified Derandomization of BPP via Hitting Sets 63

inputs of length n; similarly, define s = s(n) such that the computation of A on
inputs of length n can be implemented by circuits of size s(n). We assume that
A has error probability at most 1/2¢(n); this can be achieved by straightforward
amplification of any BPP algorithm for L.

Let A(x,r) denote the output of algorithm A on input z € {0,1}" and
random-tape contents r € {0, 1}6(”). Our derandomization procedure, described
next, utilizes a hitting-set generator G as defined earlier (i.e., in Definition [II).

Derandomization procedure: On input « € {0,1}", let A, ¢, and s be as above.

1. Invoking the hitting-set generator G, obtain H «— G(¢, £ - s). That is, H is
a hitting set for circuits of size £ - s and input length ¢. Denote the elements
of H by eq,...,eN, where N def Ng(s) and each e; is in {0, 1}

2. Construct an N-by-N matrix, M = (v; j), such that v; ; = A(x,e; De;). That
is, run A with all possible random-pads composed by XORing each of the
possible pairs of strings in H. (We merely use the fact that a @ b is easy to
compute and that for any a the mapping b — a @ b is 1-1, and similarly for
any b and a — a @ b.)

3. Using the procedure guaranteed by Lemma [B (of Section Bl (below)), de-
termine whether for every ¢ columns there exists a row on which all these
columns have 1-value. If this procedure accepts, then accept, else reject. That
is, accept if and only if

Ver, e € IN] 3r € [N] site AL (v = 1). (1)
We first show that if € L, then Eq. () holds; and, analogously, if x ¢ L, then
V71, .y € [N] 3e € [N] st Al (vp,.0 = 0). (2)

Note that the foregoing description, by itself, does not establish the correctness
of the procedure. Neither did we specify how to efficiently implement Step [3],
To that end we use a general technical lemma (indeed Lemma [G]) that implies
that it cannot be the case that both Eq. {l) and Eq. () hold. Furthermore, this
lemma asserts that one can efficiently determine which of the two conditions
does not hold. These aspects are deferred to the next section. But first we prove
the foregoing implications.

Proposition 5 (on the matrix constructed in Step 2l): If x € L (resp., = & L),
then Eq. @) (resp., Eq. @) holds.

Proof: We shall prove a slightly more general statement. Let xr be the charac-
teristic function of L (i.e., xr(z) =1 if z € L and xr(x) = 0 otherwise). Then,
we next prove that, for every x € {0,1}", for every £ rows (resp., columns) there
exists a column (resp., row) on which the value of the matrix is xr(z).

Fixing the input « € {0,1}" to algorithm A, we consider the circuit C, which
takes an ¢-bit input r and outputs A(x,r) (i.e., evaluates A on input x and coins
r). By our hypothesis regarding the error probability of A, it holds that

Pricfo1y[Ca(r) # xr(2)] < 216.

64 O. Goldreich, S. Vadhan, and A. Wigderson

It follows that for every yi, ..., y¢ € {0,1}%, it holds that

Prcqony[(V) Colyi ® 2) = x1(2)] >

>, Q9

Let y = (y1, .., y¢), and consider the circuit Cy ,(2) e N (Co(yi®2) = x1 ().

Then, by the Eq. @), it holds that Pr,[Cy () = xr(z)] > 1/2. On the other
hand, the size of C, , is merely ¢ times the size of C,, which was at most s.
Thus, by definition of the hitting-set generator G, the set H = G(¢, £ - s) must
contain a string z such that C; ,(2) = xr(x).

The foregoing holds for any y = (y1,...,y¢). Thus, for every yi,...,y¢e € H C
{0,1}¥, there exists z € H such that A(x,y; ® z) = C.(y; ® z) = x1(x) holds for
every i € [¢]. Thus, we have proved that, for every ¢ rows in M, there exists a
column (in M) on which the value of the matrix is x,(z).

A similar argument applies to sets of £ columns in M. Specifically, for every
21, ..., 20 € {0,1}%, it holds that

Pryeoay(9) Coly & 2) = xule)] = (4)

Again, we conclude that, for every z1,...,z; € H, there exists y € H such that
C(y ® z;) = xr(x) holds for every i € [£]. Thus, for every £ columns in M there
exists a row (in M) on which the value of the matrix is xr(z). The proposition
follows. O

Digest. The foregoing procedure is a simplified version of the procedure given in
the preliminary version of this work [7]. Specifically, inspired by [6], the argument
in [7] relies on the explicit constructions of extractors for drastic error reduction
of the BPP algorithm. Here, we only use a mild (and trivial) error reduction.
This difference stems from the fact that the matrix considered in [7] is different
(i.e., the (a,b)*™™ entry in the matrix considered in [7] represents the decision of
the algorithm when using the random pad aob (rather than a ®b)). In contrast,
Steps [l and [3 of the foregoing derandomization procedure are identical to the
steps in [7], and so is Lemma [Bl Thus, our argument relies on two essential
ingredients: The first ingredient, adopted from [3], is the use of auxiliary circuits
(depending on C, but not identical to it), in order to argue that a hitting-set
must have certain strong properties with respect to C,. The second ingredient
is the constructive combinatorial result given by Lemma[6l (A third ingredient,
which consists of using extractors as in [7], is eliminated here.)

3 Correctness and Efficiency of the Derandomization

PropositionBlshows that for every x either Eq. () or Eq. () holds. But, as stated
before, it is not even clear that Eq. () and Eq. (@) cannot hold simultaneously.
This is asserted next.

Simplified Derandomization of BPP via Hitting Sets 65

Lemma 6 (a generic technical lemma): For every k > logy(n+1), every n-by-n
Boolean matrix either has k rows whose bit-wise disjunction is the all 1’s row, or
k columns whose bit-wise conjunction is the all 0’s column. Moreover, there is a
(deterministic) polynomial-time algorithm that given such a matriz find such a
set.

We prove the lemma momentarily. But first let use show that Eq. (1) and Eq. (@)
cannot hold simultaneously. We first note that in our case n = N = Ng(s) and
k = ¢, and furthermore n < 2¢ (since there is no point in having G(¢,-) contain
more than 2°~! + 1 < 2° strings of length ¢ > 1). The claim then follows by
applying the following corollary to Lemma

Corollary 7 (corollary to Lemma [B): For every n-by-n Boolean matriz and
every k > logy(n + 1), it is impossible that both the following conditions hold:

1. For every k rows, there exists a column such that all the k rows have a
0-entry in this column.

2. For every k columns, there exists a row such that all the k columns have a
1-entry in this row.

Furthermore, assuming one of the foregoing conditions holds, deciding which one
holds can be done in (deterministic) polynomial-time.

Proof (of Corollary[7]): Suppose Item (1) holds. Then, the bit-wise disjunction
of every k rows contains a 0-entry, and so it cannot be the all 1’s row. Likewise,
if Ttem (2) holds then the bit-wise conjenction of every k columns contains a
l-entry, and so it cannot be the all 0’s column. Thus, the case in which both
items holds stands in contradiction to Lemma [fl Furthermore, finding a set as
in the lemma indicates which of the two items does not hold. O

Proof of Lemma 6t Let B = (b, .) be an arbitray n-by-n Boolean matrix, and
consider the following iterative procedure, initiated with Cy = [n] and R = 0.
For i =1,2, ..., take a row r not in R that has at least |C;_1|/2 1’s in C;_; (i.e.,

r € [n] \ R such that |[{ce Ci_1 : by.=1}| > |C;—1]/2). Add r to R, and let C;

be the part of C;_; that had 0’s in row r (i.e., C; def {ceCi_1 : b, .=0}). We

get stuck if for any ¢, no row in the current set [n] \ R has at least |C;_1]/2 1’s
in C;_1. Otherwise, we terminate when C; = ()

If we never get stuck, then we generated at most log,(n + 1) < k rows (since
|Ci| < |Ci-1]/2, which implies that [Cfieg, (nt1)7] < 1). Furthermore, the bit-wise
disjunction of these rows is the all 1’s row (i.e., for the final R and every ¢ € [n],
it holds that V,ecgb, . = 1), since the i*" row in R has l-entries in every column
in C;—1 \ C;, and the last C; is empty.

On the other hand, if we got stuck at iteration ¢, then we let S = C; and note
that every row of B has at least |S|/2 0’s in the columns S. (This includes the
rows in the current R, which each have 0’s in all the columns in S C C;_1 C

- C Cp.) In this case, an argument analogous to Adlemam’s proof [I] that

66 O. Goldreich, S. Vadhan, and A. Wigderson

RP C P/poly implies that there exist a set of k columns C that contains a
O-entry in every row (i.e., for every r € [n], it holds that Ac.ccbr . = 0
Turning to the algorithmics, note that the foregoing procedure for construct-
ing R, S and C is implementable in polynomial-time. Thus, in case the “row”
procedure was completed successfully, we may output the set of rows R, and
otherwise the set C' of columns. g

Proof of Theorem Proposition Bl shows that for every x either Eq. ()
or Eq. (@) holds, and furthermore that the former (resp., latter) holds whenever
x € L (resp., ¢ ¢ L). As mentioned above, by applying Corollary[d it follows that
only one of these equations may hold. Using the decision procedure guaranteed by
Corollary[7l we implement StepBlin our derandomized procedure, and Theorem 2]
follows. O

A Finer Analysis. For a BPP algorithm that uses ¢ coin tosses and can be
implemented by circuits of size s, our derandomization only invokes the hitting-
set generator with parameters (¢, s-¢), and otherwise it runs in polynomial time.
However, if the algorithm only has constant error probability, we must first
reduce the error to 1/2¢, which increases these parameters somewhat. Using
standard error reduction (running the algorithm O(log¢) times independently
and ruling by majority), we obtain the following more quantitative version of
our result:

Theorem 8 (Theorem [2 refined): Suppose there is a hitting set generator G
such that G(£, s) is computable in time t(L, s). Let L be a problem with a constant-
error BPP algorithm that, on inputs of length n, uses £ = £(n) coin tosses and
can be implemented by circuits of size s = s(n). Then,

L e DTIME(poly(t(l',s- 1)),
where £ = O(Llog?).

We comment that, by using random walks on expanders for error reduction, one
can replace t(¢', s - ") by t(¢",s-£"), where £ = ¢+ O(log () < ¢'.

Acknowledgments. The second author thanks Adam Klivans for explaining [7]
to him.

5 Let us spell out the argument in the current setting. We initiate an iterative process
of picking columns from S such that at each iteration we pick a column that covers
the largest number of 0’s in the remaining rows. That is, we initialize Ro = [n] and
C =0, and for 7 = 1,2, ..., take a column ¢ not in C that has a maximal number of

0’sin R;_1, add c to C, and let R; be the part of R;_1 that has 1’s in column ¢ (i.e.,

R; def {r€R;_1 : brc.=1}). The point is that, by our hypothesis, for the current C,

the submatrix R;_1 x (S'\ C) contains at least |R;_1|-|S|/2 0’s, and therefore there
exists a column ¢ € S\ C such that [{reR;—1 : b =0} > |Rj_1]/2.

Simplified Derandomization of BPP via Hitting Sets 67

References

10.

11.

. Adleman, L.: Two theorems on random polynomial-time. In: 19th FOCS, pp. 75-83

(1978)

. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P.: A new general derandomization

method. Journal of the Association for Computing Machinery (J. of ACM) 45(1),
179-213 (1998); Hitting Sets Derandomize BPP. In: XXIII International Collo-
quium on Algorithms, Logic and Programming, ICALP 1996 (1996)

. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak Random

Sources, Hitting Sets, and BPP Simulations. To appear in SICOMP (1997); Pre-
liminary version in 38th FOCS, pp. 264-272 (1997)

. Buhrman, H., Fortnow, L.: One-sided versus two-sided randomness. In: Proceed-

ings of the 16th Symposium on Theoretical Aspects of Computer Science. LNCS,
Springer, Berlin (1999)

. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with

Applications to Public-Key Cryptography. Inform. and Control 61, 159-173 (1984)

. Goldreich, O., Zuckerman, D.: Another proof that BPP C PH (and more). In:

Goldreich, O., et al.: Studies in Complexity and Cryptography. LNCS, vol. 6650,
pp. 40-53. Springer, Heidelberg (1997)

. Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting

set generator. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.)
RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 131-137. Springer,
Heidelberg (1999)

. Impagliazzo, R., Wigderson, A.: P=BPP unless E has Subexponential Circuits:

Derandomizing the XOR Lemma. In: 29th STOC, pp. 220-229 (1997)

. Lautemann, C.: BPP and the Polynomial Hierarchy. Information Processing Let-

ters 17, 215-217 (1983)

Sipser, M.: A complexity-theoretic approach to randomness. In: 15th STOC, pp.
330-335 (1983)

Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorith-
mica 16, 367-391 (1996)

On Testing Expansion in Bounded-Degree
Graphs

Oded Goldreich and Dana Ron

Abstract. We consider testing graph expansion in the bounded-degree
graph model. Specifically, we refer to algorithms for testing whether the
graph has a second eigenvalue bounded above by a given threshold or is
far from any graph with such (or related) property.

We present a natural algorithm aimed towards achieving the foregoing
task. The algorithm is given a (normalized) eigenvalue bound A < 1,
oracle access to a bounded-degree N-vertex graph, and two additional
parameters ¢, > 0. The algorithm runs in time N°5T*/poly(¢), and
accepts any graph having (normalized) second eigenvalue at most A. We
believe that the algorithm rejects any graph that is e-far from having
second eigenvalue at most A2/9M and prove the validity of this belief
under an appealing combinatorial conjecture.

Keywords: Property Testing, Graph Expansion.

This work appeared as TR00-020 of ECCC. It is based on a research project
pursued in the years 1998-99, which was stuck at the gap outlined in Section 2l
The current revision is intentionally minimal, because the original publication
has triggered several subsequent works, which directly address the topic of this
work (see [8] and the references therein) or are indirectly inspired by it (see, e.g.,
[4]). For further discussion of subsequent work, see Section

1 Introduction

This memo reports partial results regarding the task of testing whether a given
bounded-degree graph is an expander. That is, we refer to the “bounded-degree
model” of testing graph properties as formulated in [5]. In this model, the (ran-
domized) algorithm is given integers d and N, a distance parameter € (as well
as some problem-specific parameters), and oracle access to a N-vertex graph G
with degree bound d; that is, query (v, i) € [N] x [d] is answered by the i*! neigh-
bor of v in G (or by a special symbol in case v has less than ¢ neighbors). For a
predetermined property P, the algorithm is required to accept (with probability
at least 2/3) any graph having property P, and reject (with probability at least
2/3) any graph that is e-far from having property P, where distance between
graphs is defined as the fraction of edges (over dN) on which the graphs differ.

Loosely speaking, the specific property considered here is being an expander.
More precisely, for a given bound A < 1, we consider the property, denoted &},
of having a normalized by d adjacency matrix with second eigenvalue at most

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 68-[4, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On Testing Expansion in Bounded-Degree Graphs 69

A. Actually, we further relax the property testing formulation (as in [9]): Using
an additional parameter A’ > \, we only require that

— the algorithm must accept (with probability at least 2/3) any graph having
property £y (i.e., having second eigenvalue at most \); and

— the algorithm must reject (with probability at least 2/3) any graph that is e-
far from having property €y (i.e., from any graph that has second eigenvalue
at most).

Setting A’ = X\ we regain the more strict formulation of testing whether a graph
has second eigenvalue at most .

We mention that the 2(v/N) lower bound on “testing expansion” (presented
in [B]) continues to hold for the relaxed formulation, provided that A < 1.
This is the case because the lower bound is established by showing that any
o(\/ N)-query algorithm fails to distinguish between a very good expander and
an unconnected graph with several huge connected components

In view of the foregoing, we shall be content with any sub-linear time algo-
rithm for testing expansion. Below, we present a parameterized family of algo-
rithms. For any o > 0, the algorithm has running-time n%5+ /poly(¢) and is
supposed to satisfy the foregoing requirement with X' = */7. Unfortunately,
we only prove that this is indeed the case provided that a certain combinatorial
conjecture (presented in Section [4.2]) holds.

2 Conventions and Notation

We consider N-vertex graphs of degree bound d, which should be thought of as
fixed. We consider the stochastic matrix representing a canonical random walk
on this graph, where canonical is anything reasonable (e.g., go to each neighbor
with probability 1/2d). The eigenvalues below refer to this matrix.

Recall that A denotes the claimed second eigenvalue (i.e., we need to accept
graphs having second eigenvalue at most \), and e denotes the distance param-
eter (i.e., we need to reject graphs that are e-far from having second eigenvalue
at most A, where X > X is related to A).

The algorithm presented next is parameterized by a small constant o > 0 that
determines both its complexity (i.e., O(N°57%/poly(e))) and its performance
(i.e., N = X*/9M) To be of interest, the algorithm must use a < 0.5.

3 The Algorithm

We set L = }n5(11r/‘/<\)[. This guarantees that a graph with second eigenvalue at
most A mixes well in L steps (i.e., the deviation in max-norm of the end proba-
bility from the uniform distribution is at most N ~1%). The following algorithm
evaluates the distance of the end probability (of an L-step random walk starting
at a fixed vertex) from the uniform probability distribution. It is based on the
fact that the uniform distribution over a set has the smallest possible collision
probability, among all distributions over this set.

! In the latter case, the graph has (normalized) second eigenvalue equal 1.

70 O. Goldreich and D. Ron

Repeat the following steps t ef O(1/¢) times:

1. Select uniformly a start vertex, denoted s.

2. Performm %' O(NO-5F@ /¢) random walks of length L, starting from vertex s.

3. Count the number of pairwise collisions between the endpoints of the fore-
going m walks.

140.5.- N~ /2
N

4. If the count is greater than . (ZL)7 then reject.

If all repetitions were completed without rejection, then accept.

Comment: Random walks were used before in the context of testing graph prop-
erties (in the bounded-degree model). Specifically, O(v/N /poly(e)) such walks
were used by the bipartitness tester of [6]. Needless to say, random walks seem
much more natural here.

4 Analysis

Fixing any start vertex s, we denote by p, ., the probability that a random walk
of length L starting at s ends in v. The collision probability of L-walks starting at

S iS giVen by
]!S,’U N

By our choice of L, if the graph has eigenvalue at most A, then (for any starting
vertex s) the collision probability of L-walks starting at s is very close to 1/N
(i.e., is smaller than (1/N) + (1/N?)).

4.1 Approximation of the Collision Probabilities

The first issue to address is the approximation to Eq. ({I]) provided by Steps (2)-
(3) of the algorithm.

Lemma 1 With probability at least 1—(1/3t), the (normalized) empirical count?
computed in Steps (2)—(3) is within a factor of 1 + }l - N~/2 of the value of
Eq. @

Thus, with probability at least 2/3, all approximations provided by the
algorithms are within a factor of 1+ }1 - N=%/2 of the correct value.
Proof: For every i < j, define a 0-1 random variable ¢; ; such that ¢; ; = 1 if the

endpoint of the i*® path is equal to the endpoint of the j*" path. Clearly, u def
ElG,l =2, piw for every i < j. Using Chebyshev’s inequality we bound the
probability that the count provided by Steps (2)—(3) deviates from its (correct)

expected value. Let P {(i,j):1<i<j<m}and =} - N~°/2 Then:

2 That is, the number of pairwise collisions divided by (”;)

On Testing Expansion in Bounded-Degree Graphs 71

Var[Z(i,j)eP G

Pr Z Gij —1Pl-p|>0-|P|-p| < (8-|P| - p)?

(i,J)EP

2)

Denote (; ; def Gi,j — it- The rest of the proof needs to deal with the fact that
the random variables associated with P are not pairwise independent. Specif-
ically, for four distinct i, j,¢, j’, indeed (; ; and (y j are independent, and so
E[¢; ;¢ 7] = E[¢; ;] - E[¢; 7] = 0; but for 7 < j # k the random variables ¢; ;
and (;x are not independent (since they both depend on the same i'" walk).
Still, it holds that

2
Var Z Gi| =E Z Cij
(i,5)eP (i,j)EP
- Z b [4‘23] +5- Z E [¢i ik
(i,J)EP 1<i<j<k<m

<|Pl-p+m®- > pl,.
v

since (; ;G = 1 if and only if all three random walks end at the same vertex.
Using (-, p2.,)"? < (3, p2,)"% and m? < 3 - |P|, we obtain

Var | S0 G| < IPLu+ GBIPDY2 -4 < 6-(IP|- w2, (3)
(i,7)€EP

Combining Eq. () and (B]), we obtain

6

Pr|| > Gg—IPl-uf>0:|Pl-p| < 82 - (|P| -)1/

(i,7)EP

Nl+2a

Using p > 1/N and |P| > ”f =0O(" .), thedenominator is at least 62-@(1\':).
Recalling that § = } - N~°/2 and t = O(1/e), the lemma follows.

As an immediate corollary we get:

Corollary 2. If the graph has second eigenvalue at most X\, then the foregoing
algorithm accepts it with probability at least 2/3.

Another immediate corollary is the following:

Corollary 3. Suppose that for at least a €¢/O(1) fraction of the vertices s in

140.8N~/2

G the collision probability of L-walks starting at s is greater than N

Then, the algorithm rejects with probability at least 2/3.

72 O. Goldreich and D. Ron

Thus, if a graph passes the test (with probability greater than 1/3), then it must
have less than (e/O(1)) - N exceptional vertices; that is, vertices s for which the

collision probability of L-walks starting at s is greater than HO‘SII\\[[o

Comment: Note that by changing parameters in the algorithm (i.e., t = O(N*/¢)
and m = O(N?512% /¢)), we can make the fraction of exceptional vertices smaller
than e N~%, This may help in closing the gap (described in Sectiond2]), and only
increases the complexity from N95T< /poly(e) to N33 /poly(e).

4.2 The Gap

We believe that the following conjecture (or something similar to it) is true.

Conjecture: Let G be an N-vertex graph of degree-bound d. Suppose that for

all but at most €/O(1) fraction of the vertices s in G the collision probability

of L-walks starting at s is at most HO'S]J\,VW/Q. Then, G is e-close to a N-vertex

graph (of degree-bound d) in which the collision probability of L-walks starting

. —a/2
at any vertex s at most 1+NN .

The conjecture is very appealing: Suppose that you add edN edges connecting
at random the exceptional vertices to the rest of the graph. Ignoring for a moment
the issue of preserving the degree bounds, this seems to work — but we cannot
prove it. Indeed, one can show that the previously exceptional vertices now enjoy
rapid mixing, but it is not clear that the added edges will not cause harm to the
mixing properties of the previously non-exceptional vertices.

4.3 Finishing It Off

Once the gap is closed, we have the following situation: If the algorithm rejects
with probability smaller than 2/3, then the input graph is e-close to a graph
in which the collision probability of L-walks starting at any vertex is at most
1+N1\; */* But the excess of the collision probability beyond 1/N is nothing but
the square of the distance, in norm 2, of the probability vector (ps,v)ye[n] from
the uniform probability vector (i.c., (32, p2,) — (1/N) =3, (ps,0 — (1/N))?).
Thus, for every s the distance, in norm 2, of the probability vector (psv)ve[n
= N—(05+6) where

—a/2

from the uniform probability vector is at most \/ N N

8=a/d

The plan now is to “reverse” the standard eigenvalue to rapid-mizing con-
nection. That is, infer from the rapid-mixing feature that the graph has a small
second eigenvalue. Such a lemma has appeared in [7]:

Lemma 4 (Lemma 4.6 in [7]): Consider a regular connected graph on N ver-
tices, let A be its normalized adjacency matriz and Ao denote the absolute value
of the second eigenvalue of A. Let £ be an integer and Ay denote an upper bound
on the maximum, taken over all possible start vertices s, of the difference in

On Testing Expansion in Bounded-Degree Graphs 73

norm 2 between the distribution induced by an {-step random walk starting at s
and the uniform distribution. Then A < (N - Ag)l/e.

Note that by the foregoing, we have Ay, < N~(0-5+5) This does not give anything
useful when applying the lemma directly. Instead, we apply the lemma after
bounding A, for £ = O(L). (This strategy may be an oversight, but that’s how
we argue it now.)

Claim 5. Let A, be define as in Lemmal[jl Then Ay < (\/N - Ag)F, for every
integer k.

Proof: Let B = A’ be the stochastic matrix representing an f-step random
walk, and let €7, ...,€x denote probability vectors in which all the mass is on
one vertex. Let ¥/ denote the uniform probability vector. Then Ay (resp., Axe)
equals the maximum of || B&; — #/|| (resp., || B¥¢€; — 7/]|) taken over all the €;’s.

Considering the basis of €;’s, let Z be an arbitrary zero-sum vector (such as
€; — V). That is, 7 is written in the basis of €;’s as =)", 2;€;, and >, z; = 0.
We obtain

|Bz|| = ||B (Z zé’) - ZZ,BJ
= | > B —7)
< Z lziB(& — D)

= Z 2] - |1B(€: — 7|
< <Z|zz> Ay

Since Y, |z:| < VN - /32, 22 = VN - ||Z]], we get

IBZ]| < VN -A¢- |2,

Using BV = v, we get for every i

|B*e — 7| = | B(B* & —)|
<A,-VN-||B*e -7

k
< (Ae . \/N)
and the claim follows.

Combining Lemma Ml and Claim [l we obtain the following

74 O. Goldreich and D. Ron

Corollary 6. Suppose that for every s the distance, in norm 2, of the probability
vector (ps,v)ve[n] from the uniform probability vector is at most N—(0546) Then,
for every constant v < 2(3/3, the second eigenvalue of the graph is at most \7.

So once the gap is filled, we are done (using § = «/4 and v = 26/3).

Proof: Let)\ be the second eigenvalue of the graph. Then, for every k we have

N < (N - AkL)l/kL [Lemma 4]
N 1/kL
< (N- (\/N-AL)) [Claim 5]
1/kL
< (N~ (N*B)k) [hypothesis]
— exp ((1—k52~111N)
Substituting for L = %n‘?lh/l)]\\)[, we get
(1—-FkB)-InN _ (1—kB)-InN
kL k- ((1.5InN)/In(1/X))
(28 2
=— < g 3I<:> “In(1/X)
<=7 111(1/)\)7

for sufficiently large k (since v < 283/3). We get X' < A7, and the corollary
follows.

Comment: We have A’ < X7 for any v < 26/3 = /6 (e.g., v = /7 will do). One
may be able to increase the exponent (i.e.,) somewhat, but a linear dependency
(of the exponent) on « seems unavoidable (under the current approach).

5 Subsequent Work

Subsequent works, culiminating in [§], have addressed the problem of testing ex-
pansion of graphs. These subsequent works refer to a combinatorial definition of
graph expansion, rather than to the algebraic definition of eigenvalues. Although
both definitions are related (see [II2] or [3, Sec. 9.2]), the translation is not tight.
Still, for some values of A < A < 1, these works resolve the open problem raised
in our work.

In addition, the current work has inspired work on testing distributions,
as initiated in []. Specifically, these works use the observation that the em-
pirical collision count of O(v/N) samples taken from a distribution over [N]
provides an approximation to the distance of this distribution from the uniform
distribution.

On Testing Expansion in Bounded-Degree Graphs 75

References

1. Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83-96 (1986)

2. Alon, N.; Milman, V.D.: A1, Isoperimetric Inequalities for Graphs and Superconcen-
trators. J. Combinatorial Theory, Ser. B 38, 73-88 (1985)

3. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. John Wiley & Sons,
Inc., Chichester (2000)

4. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that Distri-
butions are Close. In: 41st FOCS, pp. 259-269 (2000)

5. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. In: Proc. of
the 29th ACM Symp. on Theory of Computing, pp. 406-415 (1997)

6. Goldreich, O., Ron, D.: A sublinear Bipartite Tester for Bounded Degree Graphs.
Combinatorica 19(2), 1-39 (1999)

7. Goldreich, O., Sudan, M.: Computational Indistinguishability: A Sample Hierarchy.
JCSS 59, 253-269 (1999)

8. Kale, S., Seshadhri, C.: Testing expansion in bounded degree graphs. In: 35th
ICALP, pp. 527-538 (2008); Preliminary version appeared as TR07-076, ECCC
(2007)

9. Parnas, M., Ron, D.: Testing the diameter of graphs. In: Hochbaum, D.S.; Jansen,
K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,
vol. 1671, pp. 85-96. Springer, Heidelberg (1999)

Candidate One-Way Functions Based on
Expander Graphs

Oded Goldreich

Abstract. We suggest a candidate one-way function using combinato-
rial constructs such as expander graphs. These graphs are used to deter-
mine a sequence of small overlapping subsets of input bits, to which a
hard-wired random predicate is applied. Thus, the function is extremely
easy to evaluate: All that is needed is to take multiple projections of the
input bits, and to use these as entries to a look-up table. It is feasible
for the adversary to scan the look-up table, but we believe it would be
infeasible to find an input that fits a given sequence of values obtained
for these overlapping projections.

The conjectured difficulty of inverting the suggested function does not
seem to follow from any well-known assumption. Instead, we propose the
study of the complexity of inverting this function as an interesting open
problem, with the hope that further research will provide evidence to
our belief that the inversion task is intractable.

Keywords: One-Way Functions, Expander Graphs.

This work appeared as TR00-090 of ECCC. The current revision is intentionally
minimal, because the original publication has triggered several subsequent works
(although less than we have hoped). For further discussion of these subsequent
works and some afterthoughts, see Section [6l

1 Introduction

In contrary to the present attempts to suggest a practical private-key encryption
scheme to replace the DES, we believe that attempts should focus on suggesting
practical one-way functions and pseudorandom functions. Being a simpler object,
one-way functions should be easier to construct, and such constructions may later
yield directly or indirectly a variety of other applications (including private-key
encryption schemes).

The current attempts to suggest a practical private-key encryption scheme in
place of the DES seem quite ad-hoc: Not only that they cannot be reduced to
any well-known problem, but (typically) they do not relate to a computational
problem of natural appeal. Thus, the study of these suggestions is of limited
appeal (especially from a conceptual point of view).

In this manuscript, we propose a general scheme for constructing one-way
functions. We do not believe that the complexity of inverting the resulting func-
tion follows from some well-known intractability assumptions. We believe that

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 76-81, 2011.
© Springer-Verlag Berlin Heidelberg 2011

One-Way Functions Based on Expander Graphs 7

the complexity of inverting this function is a new interesting open problem, and
hope that other researcher will be able to obtain better understanding of this
problem.

In addition to the abstract presentation, we propose several concrete instan-
tiations of our proposal. It seems to us that a reasonable level of “security” (i.e.,
hardness to invert) may be achieved at very modest input lengths. Specifically,
on input length at the order of a couple of hundreds of bits, inverting the function
may require complexity (e.g., time) beyond 2100

Style and Organization. This write-up is intended to two different types of read-
ers, since we believe that it is relevant to two different research communities (i.e.,
computational complexity and applied cryptography). Consequently, we provide
an asymptotic presentation as well as suggestions for concrete parameters. The
basic suggestion is presented in Sections 2l and Bl Concrete instantiations of this
suggestion are proposed in Section dl Concluding comments appear in Section Bl

2 The Basic Suggestion

We construct a (uniform) collection of functions {f, : {0,1}" — {0,1}"},en.

Our construction utilizes a collection of £(n)-subsets, Si, ..., S, C [n] def {1,...,n},
and a predicate P : {0,1}*™) — {0,1}. Jumping ahead, we hint that:

1. The function /¢ is relatively small: Theoretically speaking, £ = O(logn) or
even £ = O(1). In practice ¢ should be in the range {7,...,16}, whereas n
should range between a couple of hundreds and a couple of thousands.

2. We prefer to have P : {0,1}* — {0,1} be a random predicate. That is, it will
be randomly selected, fixed, and “hard-wired” into the function. For sure, P
should not be linear, nor depend on few of its bit locations.

3. The collection Sy, ..., Sy, should be expanding; specifically, for some k, every k
subsets should cover at least k+ £2(n) elements of {1, ...,n}. The complexity
of the inversion problem (for f, constructed based on such a collection)
seems to be exponential in the “net expansion” of the collection (i.e., the
cardinality of the union minus the number of subsets).

For x =z - -z, € {0,1}" and S C [n], where S = {i1,42,...,4%:} and ¢; < i;41,
we denote by zg the projection of z on S; that is, xg = x4, i, - - - z;,. Fixing P
and S, ..., S, as above, we define

fal@) E Plas,)P(rs,) - Plas,). (1)
Note that we think of ¢ as being relatively small (i.e., £ = O(logn)), and aim
at having f, be univertible within time 2"/, Thus, the hardness of invert-
ing f,, cannot be due to the hardness of inverting P. Instead, the hardness of
inverting f,, is supposed to come from the combinatorial properties of the col-
lection of sets C' = {S1,..., S, } (as well as from the combinatorial properties of
predicate P).

78 O. Goldreich

2.1 The Preferred Implementation

Our preference is to have P be a fixed randomly chosen predicate, which is
hard-wired into the algorithm for evaluating f,,. Actually, one better avoid some
choices; see next section. (In case £ = O(logn) bad choices are rare enough.) In
practice, we think of ¢ in the range {7,...,16}, and so hard-wiring a (random)
predicate defined on {0, 1}* is quite feasible. The ¢-subsets will be determined by
combinatorial constructions called expander graphs. At this point the reader may
think of them too as being hard-wired into the algorithm. On input z € {0,1}",
the algorithm for computing f,, proceeds as follows:

1. For i =1,..,n, projects = on S;, forming the ¢-bit long string z(*).
2. For i = 1,..,n, by accessing a look-up table for P, determines the bit y; =
P(2z™).

The output is the n-bit long string y1y2 - - - yn.

(Note that the n operations, in each of the foregoing two steps, can be performed
in parallel.)

2.2 An Alternative Implementation

An alternative to having P “hard-wired” to the algorithm (as above) is to have
it appear as part of the input (and output). That is, letting (P) denote the 2¢-bit
string that fully specifies P, we have

F((P),2) = ((P), P(ws,) P(xs,) -+ P(s,)) (2)

Thus, P is essentially random, since the inversion problem is considered with
respect to a uniformly chosen input. This implementation is more appealing
from a theoretical point of view, and in such a case one better let £ = log, n
(rather than £ = O(l))

2.3 Determining Suitable Collections

As hinted above, the collection of ¢-subsets, C' = {51, ..., Sp }, is to be determined
by a suitable combinatorial construction known as expander graphs. The reason
for this choice will become more clear from the analysis of one obvious attack
(presented in Section B.2)). The specific correspondence (between expanders and
subsets) depends on whether one uses the bipartite or non-bipartite formulation
of expander graphs:

Bipartite formulation: In this case one considers a bipartite graph
B = ((U,V), E), where (U, V) is a partition of the vertex set, with |U| = |V,

1 Our main concern at the time was to make the new assumption as strong as possble.
From that perspective, we preferred ¢ = O(log n) over £ = O(1).

One-Way Functions Based on Expander Graphs 79

and F C U xV is typically sparse. The expanding property of the graph pro-
vides, for every U’ C U (of size at most |U|/2), a lower bound on |I'(U”)|—|U’|
(in terms of |U’]), where I'(U’) = {v : Ju € U’ s.t. (u,v) € E}.

Our collection of subsets will be defined as C' = {S, }uecv, where S, = {v :
(u,v) € E}.

Non-bipartite formulation: In this case one considers a graph G = (V, E), so
that for every V! C V (of size at most |V|/2), a suitable lower bound on
|'(V')\ V'| holds, where I'(V') = {v: v’ € V' s.t. (v/,v) € E}.

Our collection of subsets is defined as C = {S,}vev, where S, = {w :
(v,w) € B} U{v}.

In both cases, the lower bound provided by the expansion property on the size
of the neighbor set is linear in the size of the specific vertex set; e.g., for the
non-bipartite formulation it holds that |I'(V’) \ V’| > ¢ - |V’| for some constant
¢ > 0 and every admissible V.

3 Avoiding Obvious Weaknesses

Considering a few obvious attacks, we rule out some obviously bad choices of
the predicate P and the collection C.

3.1 The Choice of the Predicate

We start by discussing two bad choices (for the predicate P), which should be
avoided.

Linear Predicates. It is certainly bad to use a linear predicate P (i.e., P(oy -+ - 0y)
=po+ Zle p;0;, for some pg, p1,...,p¢ € {0,1}). Under a linear P, the question
of inverting f,, regardless of what collection of subsets C' is used, boils down to
solving a linear system (of n equations in n variables), which is easy. Having a
predicate P that is close to a linear predicate is dangerous too.

Horn Predicates. Likewise, one should avoid having any predicate that will make
the system of equations (or conditions) solvable in polynomial-time. The only
other type of easily solvable equations are these arising from Horn formulae (e.g.,
an OR of all variables).

Degenerate Predicates. The rest of our analysis refers to the collection of sets
that determine the inputs to which the predicate P is applied. For this analysis
to be meaningful, the predicate should actually depend on all bits in its input
(i.e., be non-degenerated).

Good Predicates. We believe that most predicates are good for our purpose. In
particular, we suggest to use a uniformly chosen predicate.

80 O. Goldreich

3.2 The Choice of the Collection

Since the inverting algorithm can afford to consider all preimages of the predicate
P, it is crucial that the inversion of f,, cannot be performed by interactively
inverting P. To demonstrate this point, consider the case £ = 1 and the collection
{S1,...,Sn} such that S; = {i}. In this case the S;’s are disjoint and we can
recover the preimage by inverting P on each of the bits of the image, separately
from the others. For a less trivial example, consider the case where the collection
C' consists of n/2¢ sub-collections, each having 2¢ subsets of some distinct set
of 2¢ elements. In this case, inversion can be performed in time O(n - 22¢) by
considering each of these disjoint sets (of 2¢ elements) separately. Recall that we
wish the complexity of inversion to be exponential in n (and not in ¢, which may
be a constant).

In general, a natural inverting algorithm that should be defeated is the fol-
lowing: On input y = f,(z), the algorithm proceeds in n steps, maintaining a
list of partially specified preimages of y under f,,. Initially, the list consists of the
unique fully-undetermined string *™. In the first step, depending on the first bit
of y = y1 -+ Yn, we form the list Ly of strings over {x,0, 1} such that, for every

z € Ly, it holds that P(zs,) = y1 and zpp\s, = *" ¢ where [m)] def {1,...,m}
(and zg, € {0,1}%). In the i + 1% step, we extend L; to L;y1 in the natural
manner:

— Let U' = UézlSj and U = U;illSj.

— For every z' € L;, we consider all 219\U'l strings z € {*,0,1}" satisfying
1. zur = 2,
2. ZU\U' < {07 1}|U\U,|, and
3. ZapU = «n— Ul

The string z is added to L;1; if and only if P(zs,.,) = ¥it+1-

Thus (when invoked on input y), for every i, it holds that

2z, =« if and only if k € [n] \ Uj_; S}
L;=¢2z€{*0,1}": and
P(zs;) =yj forj=1,..,i

The average running-time of this algorithm is determined by the expected size
of the list at step ¢, for the worst possible i. Letting U = U§:1Sj consider the
set
. zp =* if and only if k € [n] \ U
Agy oo, Llze {%,0,1}" : and
P(zs,) =o0j for j=1,...,i

)

and let X be uniformly distributed over {0,1}". Then, the expected size of L;
equals

S O Pr[f(X)y =] |Aul = > Pr[3z€d, st Xpy = zu]-|Adl

ae{0,1}? ae{0,1}?

One-Way Functions Based on Expander Graphs 81

[Aal -
= X i Mal =2 Y P
ae{0,1}¢ ae{0,1}¢

21y

> 9~ IUI. — 9olUl—=i

22
where the inequality is due to the fact that the minimum value of), 22, taken
over M (= 2%) non-negative z;’s summing to N (= 2!Yl), is obtained when the
z;’s are equal, and the value itself is M - (N/M)? = N2 /M.

Note that the algorithm needs not proceed by the foregoing order of sets
(i.e., S1,52,S53,...). In general, for every 1-1 permutation 7 over [n], we may
proceed by considering in the i*" step the set Sr(i)- Still, the complexity of this
(generalized) algorithm is at least exponential in

mgn {m?x{|U§-:1S7r(j)| *Z}} ®)

We should thus use a collection such that Eq. @) is big (i.e., bounded below by
£2(n))-

Bad collections. Obviously, it is a bad idea to have S; = {j + 1, ..., j + £}, since
in this case we have | U;zl S| —i < € —1 for every i. It also follows that we

cannot use ¢ < 2, since in this case one can always find an order 7w such that
Eq. @) is bounded above by ¢ — 1.

Good collections. An obvious lower bound on Eq. (8] is obtained by the expansion
property of the collection C' = {S;}, where the expansion of C is defined as

max I:I|I}i|r=lk{‘Uj€ISj‘ —kl}. (4)

A natural suggestion is to determine the collection C' according to the neigh-
borhood sets of an expander graph. Loosely speaking, known constructions of
expander graphs allow to let ¢ be a small constant (in the range {7,...,16}),
while guaranteeing that Eq. () is a constant fraction of n.

4 Concrete Parameters for Practical Use

If we go for random predicates, then we should keep ¢ relatively small (say,
¢ < 16), since our implementation of the function must contain a 2°-size table
look-up for P. (Indeed, £ = 8 poses no difficulty, and £ = 16 requires a table of
64K bits which seems reasonable.) For concrete security we will be satisfied with
time complexities such as 28° or so. Our aim is to have n as small as possible
(e.g., a couple of hundreds).

The issue addressed below is which expander to use. It is somewhat “disap-
pointing” that for some specific parameters we aim for, we cannot use the “best”
known explicit constructions.

Below we use the bipartite formulation of expanders. By expansion we mean
a lower bound established on the quantity in Eq. (). Recall that the time com-
plexity is conjectured to be exponential in this bound.

82 O. Goldreich

Random Construction. This yields the best results, but the “cost” is that
with small probability we may select a bad construction. (The fact that we need
to hard-wire the construction into the function description is of little practical
concern, since we are merely talking of hard-wiring n - ¢ - logy n bits, which
for the biggest n and ¢ considered below merely means hard-wiring 20K bits.)
Alternatively, one may incorporate the specification of the construction in the
input of the one-way function, at the cost of augmenting the input by n-£-logy n
(where the original input is n-bit long). Specific values that may be used are
tabulated in Figure IZIZIéJ

degree (i.e., £) #vertices (i.e., n) expansion error prob.

10 256 77 2-81
12 256 90 2101
14 256 103 o104
16 256 105 2152

8 384 93 2783
10 384 116 g—12t
12 384 139 o141

8 512 130 g—1ot
10 512 159 2151
12 512 180 9—202

Fig. 1. The parameters of a random construction

The last column (i.e., error prob.) states the probability that a random con-
struction (with given n and ¢) does not achieve the stated expansion. Actually,
we only provide upper bounds on these probabilities.

Alon’s Geometric Expanders [4]. These constructions do not allow ¢ =
O(logn), but rather ¢ that is polynomially related to n. Still for our small num-
bers we get meaningful results, when using ¢ = ¢ 4+ 1 and n = ¢*> + ¢ + 1, where
q is a prime power. Specific values that may be used are tabulated in Figure
Note that these are all the suitable values for Alon’s construction (with ¢ < 16);
in particular, ¢ uniquely determines n and ¢ — 1 must be a prime power.

2 The expansion was computed in a straightforward manner. The key issue is to pro-
vide, for any fixed k£ and h, a good upper bound on the probability that a specific
set of k vertices has less than h neighbors.

The expansion is computed from the eigenvalues, as in [5]. Actually, we use the
stronger bound provided by [4, Thm. 2.3] rather than the simpler (and better known)
bound. Specifically, the lower bounds in [4, Thm. 2.3] are on the size of the neigh-
borhood of z-subsets, and so we should subtract z from them, and maximize over

all possible x’s. (We use the stronger lower bound of n — en(il_f()r(ffetg)w rather than

the simpler bound of n — "1/2, both provided in [4, Thm. 2.3].)

One-Way Functions Based on Expander Graphs 83

degree (i.e., £) #vertices (i.e., n) expansion comment

10 91 49 expansion too low
12 133 76 quite good
14 183 109 very good

Fig. 2. The parameters of Geometric expanders

The Ramanujan Expanders of Lubotzky, Phillips, and Sarnak [10].
Until one plays with the parameters governing this construction, one may not
realize how annoying these may be with respect to an actual use: The difficulty
is that there are severe restrictions regarding the degree and the number of
VeI‘tiCCSE making n &~ 2000 the smallest suitable choice. Admissible values are
tabulated in Figure

Parameters Results
p g bipartite? £ n expansion (4 comment)
13 5 NO 15 120 20 (unacceptable)

513 NO 72184 160 (better than needed)
1317 YES 14 2448 392 (better than needed)

Fig. 3. The parameters of Ramanujan expanders

Note that p = 5 and p = 13 are the only admissible choices for ¢ < 16. Larger
values of ¢ may be used, but this will only yield larger value of n.

Using the Simple Expander of Gaber—Galil [8]. Another nasty surprise
is that the easy-to-handle expander of Gaber—Galil performs very poorly on
our range of parameters. This expander has degree 7 (i.e., £ = 7), and can be
constructed for any n = m?, where m is an integer. But its expansion is (¢/2)-n,
where c =1 — \/3/4 ~ 0.1339746, and so to achieve expansion above 80 we need
to use n = 1225. See Figure @l

A Second Thought. In some applications having n on the magnitude of a cou-
ple of thousands may be acceptable. In such a case, the explicit constructions
of Lubotzky, Phillips, and Sarnak [10] and of Gaber and Galil [§] become rel-
evant. In view of the lower degree and greater flexibility, we would prefer the
construction of Gaber—Galil.

4 Specifically, £ = p + 1 and n = (¢* — ¢)/2, where p and ¢ are different primes, both
congruent to 1 mod 4, and p is a square mod ¢. For the non-bipartite case, p is a
non-square mod ¢, and n = ¢ — ¢. Recall that for non-bipartite graphs ¢ equals the
degree plus 1 (rather than the degree).

® The expansion is computed from the eigenvalues, as in [5].

84 O. Goldreich

degree (i.e., £) #vertices (i.e., n) expansion comment

7 400 27 expansion way too low

7 1225 83 good

7 1600 108 very good

7 2500 168 beyond our requirements

Fig. 4. The parameters of Gaber—Galil expanders

5 Concluding Remarks

This was the last section of the original write-up.

5.1 Variations

One variation is to use either a specific predicate or predicates selected at ran-
dom from a small domain, rather than using a truly random predicate (as in
the foregoing presentation). The advantage of these suggestions is that the de-
scription of the predicate is shorter, and so one may use larger values of £. Two
specific suggestions follow:

1. Use the predicate that partitions its input into two equal length strings and
takes their inner product modulo 2. That is, P(z1, ..., 22:) = Z§=1 2izer; mod
2.
In this case, the predicate is described without reference to ¢, and so any
value of £ can be used (in practice). This suggestion is due to Adi Shamir.

2. Use a random low-degree /-variant polynomial as a predicate. Specifically,
we think of a random ¢-variant polynomial of degree d € {2, 3} over the finite
field of two elements, and such a polynomial can be described by (5) bits.
In practice, even for d = 3, we may use £ = 32 (since the description length
in this case is less than 6K bits).

On the other extreme, for sake of simplifying the analysis, one may use differ-
ent predicates in each application (rather than using the same predicate in all
applications).

5.2 Directions for Investigation

1. The combinatorial properties of the function f,. Here we refer to issues such
as under what conditions is f,, 1-to-1 or merely “looses little information”;
that is, how is f,,(X,,) distributed, when X, is uniformly selected in {0, 1}".
One can show that if the collection (Si, ..., Sy) is sufficiently expending (as
defined above), then f,(X,) has min-entropy 2(n); i.e., Pr[f,(X,) = o] <
2= for every o € {0,1}"™. We seek min-entropy bounds of the form
n — O(logn).

One-Way Functions Based on Expander Graphs 85

2. What happens when f, is iterated? Assuming that f, “looses little informa-
tion”, iterating it may make the inverting task even harder, as well as serves
as a starting point for the next item[d

3. Modifying the construction to obtained a “keyed”-function with the hope
that the result is a pseudorandom function (cf. [9]). The idea is to let the
key specify the (random) predicate P. We stress that this modification is
applied to the iterated function, not to the basic one[l We suggest using
O(logn) iteration; in practice 3-5 iterations should suffice.

Our construction is similar to a construction that was developed by Alekhnovich
et. al. [3] in the context of proof complexity. Their results may be applicable
to show that certain search method that are related to resolution will require
exponﬂfntial—time to invert our function [Avi Wigderson, private communication,
2000]

5.3 Inspiration

Our construction was inspired by the construction of Nisan and Wigderson [I1];
however, we deviate from the latter work in two important aspects:

1. Nisan and Wigderson reduce the security of their construction to the hard-
ness of the predicate in use. In our construction, the predicate is not complex
at all (and our hope that the function is hard to invert can not arise from the
complexity of the predicate). That is, we hope that the function is harder to
invert than the predicate is to compute

2. The set system used by Nisan and Wigderson has different combinatorial
properties than the systems used by us. Specifically, Nisan and Wigderson
ask for small intersections of each pair of sets, whereas we seek expansion
properties (of a type that cannot be satisfied by pairs of sets).

Our construction is also reminiscent of a sub-structure of of the DES; specifically,
we refer to the mapping from 32-bit long strings to 32-bit long strings induced
by the eight S-boxes. However, the connection within input bits and output bits
is far more complex in our case. Specifically, in the DES, each of the 8 (4-bit)
output strings is a function (computed by an S-box) of 6 (out of the 32) input

5 An additional motivation for iterating f, is to increase the dependence of each
output bit on the input bits. A dependency of each output bit on all output bits is
considered by some researchers to be a requirement from a one-way function; we beg
to differ.

We note that applying this idea to the original function will definitely fail. In that
case, by using 2° queries (and inspecting only one bit of the answers) we can easily
retrieve the key P.

This conjecture was proved in [7]. We mention that in the original posting of this
work we expressed the opinion that this direction requires further investigation.

We comment that it is not clear whether the Nisan and Wigderson construction can
be broken within time comparable to that of computing the predicate; their paper
only shows that it cannot be broken substantially faster.

9

86 O. Goldreich

bits. The corresponding 8 subsets have a very simple structure; the " subset

holds bit locations {4(i—1)+j : j = 0,...,5}, where i = 1, ..., 8 and 32 is identified
with 0. Indeed, inverting the mapping induced on 32-bit strings is very easy In
contrast, the complex relation between the input bits corresponding to certain
output bits, in our case, defeat such a simple inversion attack. We stress that
this complex (or rather expanding) property of the sets of input bits is the heart
of our suggestion.

6 Subsequent Work and Afterthoughts

As evident from the Introduction (as well as from Section M), our primary mo-
tivation for this proposal was to address a pratical concern. We hoped that
the apparently low cost of a hardware implementation should make this pro-
posal very appealing to practice. We further hoped that the simplicity of the
proposal may encourage theoretically inclined researchers to study it, and that
such research may generate more confidence in this proposal. From this perspec-
tive and for reasons outlined next, it felt preferrable to promote a setting of
¢ =0O(logn).

At the time, we were unclear as to what may be the best choice of a predi-
cate P, and our feeling was that most predicates (or a random predicate) will
do. Believing that it is best that P lacks any structure (and thus using a ran-
dom P), the truthtable of P had to be hard-wired in the function (or appear
as part of the input and output to the function). For that reason, £ = O(logn)
was an absolute limit. As clear from the text, we did not rule out the possi-
bility of setting £ = O(1), but letting £ be as large as possible felt safer (cf.
Footnote [).

In contrast to our initial motivations, the complexity theory community be-
cames more interested in the possibility of setting ¢ = O(1), as this yields a
function in NCy. Interest in this aspect of the current work was fueled by the
celebrated work of Applebaum, Ishai, and Kushilevitz [2], since one of their main
results implies that A'Cq contains one-way functions if and only if A'C; contains
such functions. In fact, it is fair to say that the current work was practically
rediscovered after [2].

Subsequent studies have shakened our confidence that a random predicate
P is the best possible choice for our proposal. In particular, generalizing our
proposal to functions with m = O(n) output bits (rather than n output bits),
Bogdanov and Qiao showed [6] that a necessary requirement for security is using
a balanaced predicate P (i.e., P such that |[{z € {0,1}: P(z) =1}| = 2¢71).
The use of balanaced predicates is also advocated in [1I7].

Acknowledgments. We are grateful to Noga Alon, Adi Shamir, Luca Trevisan,
and Avi Wigderson for useful discussions.

10 In an asymptotic generalization of the scheme, inversion takes time linear in the
number of bits.

One-Way Functions Based on Expander Graphs 87

References

10.

11.

. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different

assumptions. In: 42nd STOC, pp. 171-180 (2010)

. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SICOMP 36(4),

845-888 (2006)
Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.: Pseudorandom
Generators in Propositional Proof Complexity. In: 41st FOCS, pp. 43-53 (2000)

. Alon, N.: Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey The-

ory. Combinatorica 6, 207-219 (1986)

Alon, N., Milman, V.D.: A1, Isoperimetric Inequalities for Graphs and Supercon-
centrators. J. Combinatorial Theory, Ser. B 38, 73-88 (1985)

Bogdanov, A., Qiao, Y.: On the Security of Goldreich’s One-Way Function. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687,
pp. 392-405. Springer, Heidelberg (2009)

Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s One-Way Function
Candidate and Myopic Backtracking Algorithms. In: Reingold, O. (ed.) TCC 2009.
LNCS, vol. 5444, pp. 521-538. Springer, Heidelberg (2009)

Gaber, O., Galil, Z.: Explicit Constructions of Linear Size Superconcentrators.
JCSS 22, 407420 (1981)

Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions.
JACM 33(4), 792-807 (1986)

Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan Graphs. Combinatorica 8, 261—
277 (1988)

Nisan, N., Wigderson, A.: Hardness vs Randomness. JCSS 49(2), 149-167 (1994)

Using the FGLSS-Reduction to Prove
Inapproximability Results for Minimum Vertex
Cover in Hypergraphs

Oded Goldreich

Abstract. Using known results regarding PCP, we present simple proofs
of the inapproximability of vertex cover for hypergraphs. Specifically, we
show that

1. Approximating the size of the minimum vertex cover in O(1)-regular
hypergraphs to within a factor of 1.99999 is NP-hard.

2. Approximating the size of the minimum vertex cover in 4-regular
hypergraphs to within a factor of 1.49999 is NP-hard.

Both results are inferior to known results (by Trevisan (2001) and
Holmerin (2001)), but they are derived using much simpler proofs. Fur-
thermore, these proofs demonstrate the applicability of the FGLSS-
reduction in the context of reductions among combinatorial optimization
problems.

Keywords: Complexity of approximation, combinatorial optimization
problems, Vertex Cover, PCP, regular hypergraphs.

An early version of this work appeared as TR01-102 of ECCC. A discussion of
subsequent works is deferred to Section [l

1 Introduction

This note was inspired by a work of Dinur and Safra [5], which was new at the
time this work was completed. Specifically, what we take from their work is the
realization that the so-called FGLSS-reduction is actually a general paradigm
that can be applied in various ways and achieve various purposes.

The FGLSS-reduction, introduced by Feige, Goldwasser, Lovasz, Safra and
Szegedy [1], is typically understood as a reduction from sets having certain PCP
systems to approximation versions of Max-Clique (or Max Independent Set). The
reduction maps inputs (either in or out of the set) to graphs that represent the
pairwise consistencies among possible views of the corresponding PCP verifier.
It is instructive to think of these possible verifier views as of possible partial
solutions to the problem of finding an oracle that makes the verifier accept.

Dinur and Safra apply the same underlying reasoning to derive graphs that
represent pairwise consistencies between partial solutions to other combinatorial
problems [5]. In fact, they use two different instantiations of this reasoning.
Specifically, in one case they start with the vertex-cover problem and consider

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 88-P1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The FGLSS-Reduction and Vertex Cover in Hypergraphs 89

the restrictions of possible vertex-covers to all possible O(1)-subsets of the vertex
set. The partial solutions in this case are the vertex-covers of the subgraphs
induced by all possible O(1)-subsets, and pairwise consistency is defined in the
natural way. Thus, we claim that in a sense, the work of Dinur and Safra [5]
suggests that the FGLSS-reduction is actually a general paradigm that can be
instantiated in various ways. Furthermore, the goal of applying this paradigm
may vary too. In particular, the original instantiatation of the FGLSS-reduction
by Feige et. al. [7] was aimed at linking the class PCP to the complexity of
approximating combinatorial optimization problems. In contrast, in the work
of Dinur and Safra [5] one instantiation is aimed at deriving instances of very
low “degree” (i.e., co-degree at most 2), and the other instantiation is aimed at
moving the “gap location” (cf. [16] and further discussion below).

We fear that the complexity of the work of Dinur and Safra [5] may cause
researchers to miss the foregoing observation (regarding the wide applicability
of the FGLSS-reduction). This would be unfortunate, because we believe in the
potential of that observation. In fact, this note grew out of our fascination with
the foregoing observation and our attempt to find a simple illustration of it.

Our Concrete Results: Combining known results regarding PCP with the
FGLSS-reduction, we present simple proofs of inapproximability results regard-
ing the minimum vertex cover problem for hypergraphs. Specifically, we show
that:

1. For every constant ¢ > 0, approximating the size of the minimum vertex

cover in O(1)-regular hypergraphs to within a (2 — €)-factor is NP-hard (see
Section [3)). In fact, the hypergraphs we use are O((1/¢)°™))-regular.
This result is inferior to Holmerin’s result [12], by which approximating ver-
tex cover in 4-regular hypergraphs to within a (2 — €)-factor is NP-hard. We
also mention Trevisan’s result [I7] by which, for every constant k, approx-
imating vertex cover in k-regular hypergraphs to within a 2(k'/1)-factor
is NP-hard. Clearly, in terms of achieving a bigger inapproximation factor,
Trevisan’s result is superior, but in terms of achieving an inapproximation
result for k-regular graphs when k is small (e.g., k < 2!9) it seems that our
result is better.

2. For every constant € > 0, approximating the size of the minimum vertex
cover in 4-regular hypergraphs to within a (1.5 — €)-factor is NP-hard (see
Section M.

Again, this result is inferior to Holmerin’s result [12].

We mention that our work was done independently of Holmerin’s work [12], but

after the publication of Trevisan’s work [17].

2 Preliminaries

This section contains a review of the notion of a vertex cover in a hypergraph
and the notion of free-bit complexity. We also recall the FGLSS-reduction and
discuss its relation to the vertex cover problem in graphs.

90 O. Goldreich

Vertex Covers in Hypergraphs. A k-regular hypergraph is a pair (V, E) such that
E is a collection of k-subsets (called hyper-edges) of V; that is, for every e € E
it holds that e C V and |e] = k. For a k-regular hypergraph H = (V, E) and
C C V, we say that C is a vertex cover of H if for every e € F it holds that
enC #0.

Free-bit Complexity and the Class FPCP. We assume that the reader is familiar
with the basic PCP-terminology (cf. [TI213] and [8, Sec. 2.4]). (For sake of sim-
plicity we consider non-adaptive verifiers.) We say that the free-bit complexity of
a PCP system is bounded by f : N — R if on every input x and any possible
random-pad w used by the verifier, there are at most 2/(*D) possible sequence of
answers that the verifier may accept (on input z and random-pad w). Clearly,
the free-bit complexity of a PCP system is bounded by the number of queries
it makes, but the former may be much lower. Free-bit complexity is a key pa-
rameter in the FGLSS-reduction. For functions ¢,s: N — [0,1], » : N — N and
[:N =R, we denote by FPCP, s[r, f] the class of sets having PCP systems of
completeness bound ¢, soundness bound s, randomness complexity r and free-bit
complexity f. In particular, for every input x in the set, there exist an oracle
that makes the verifier accept with probability at least ¢(|x|), whereas for every
input = not in the set and every oracle the verifier accepts with probability at
most s(|z|).

The FGLSS-Graph. For S € FPCP, s[r, f], the FGLSS-reduction maps x to a
graph G, having 27(?]) layers, each having at most 27(#) vertices. The vertices

represent possible views of the verifier, where the N et or(Ja) layers correspond
to all possible choices of the random-tape and the vertices in each layer corre-
spond to the up-to 27(=1) possible sequences of answers that the verifier may ac-
cept. The edges represent inconsistencies among these views. In particular, each
layer consists of a clique (because only one sequence of answers is possible for a
fixed random-tape and a fixed oracle). If the random-tapes wy,ws € {0, 1}7'(|'£|)
both lead the verifier to make the same query ¢ (and both answers are accept-
able), then the corresponding layers will have edges between vertices encoding
views in which different answers are given to query ¢. In the case that x € S the
graph G, will have an independent set of size ¢(|z|) - N, whereas in the case that
x ¢ S the maximum independent set in G, has size at most s(|z|) - N. Thus,
the inapproximability factor for the maximum independent set problem shown
by such a reduction is ¢(|z|)/s(|z]), and the fact the maximum independent set
is always at most a 2= fraction of the size of G, does not effect the gap.
However, inapproximability factor for the minimum vertex cover shown by such
a reduction is

oflzl) . Ny — s(|z)) N of(lz) — s(|z)) of (lz]))
2/(zD) . N —¢(|z]) - N T 9f(lz]) — c(|z|) < 2f(=l) — 1 @)

This is the reason that, while the FGLSS-reduction allows to establish quite
optimal inapproximability factors for the maximum independent set problem,

The FGLSS-Reduction and Vertex Cover in Hypergraphs 91

it failed so far to establish optimal inapproximability factors for the minimum
vertex cover problem (although, it was used by Hastad [10] in deriving the 7/6
hardness factor by using Eq. () with f =2, ¢~ 1 and s = 1/2). In a sense, the
gap between the size of the maximum independent set of G, for x € S versus
for x € S is at the “right” location for establishing inapproximability factors
for the maximum independent set problem, but is at the “wrong” location for
establishing inapproximability factors for the minimum vertex cover problem.
Thus, what we do below is “move the gap location”: Specifically, in Section [3]
we take a maximum independent set gap of 2~/ versus s27/ (which means a
minimum vertex cover gap of 1 — ¢27f versus 1 — s27f), and transform it into
a minimum vertex cover gap of (2 — ¢) - 2=f versus (2 — s) - 2.

3 A 2 — e Hardness Factor for O(1)-Regular Hypergraphs

We start with the usual FGLSS-graph, denoted G, derived from the FGLSS-
reduction as applied to input x of a FPCP1_ s[log, f] scheme (for a set in N'P).
For simplicity, think of f as being a constant such that 2/ is an integer. Without
loss of generality, each layer of G has ¢ = 2/ vertices.

We now apply the “FGLSS paradigm” by considering vertex-covers of G, and
their projection on each layer. Such projections (or “partial assignments”) have
either ¢ or ¢ — 1 vertices. We focus on the good vertex covers, having exactly
£ — 1 vertices in (almost) each layer. Thus, for each (¢ — 1)-subset of each layer,
we introduce a vertex in the hypergraph, to be denoted H. We also introduce
hyper-edges so to reflect the inconsistencies of the various partial (i.e. layer-
projected) vertex covers of G. This construction, presented next, will provide a
correspondance between vertex covers of G and vertex covers of H.

The Construction of the Hypergraph H. For each layer L = (v1,...,v¢) in G,
we introduced a corresponding layer in H containing ¢ vertices such that each
H-vertex corresponds to an (¢ — 1)-subset of L; that is, we introduce ¢ vertices
that correspond to L\ {v1},...,L \ {ve}. For each pair of layers L' = (v}, ...,v})
and L" = (v{,...,vy), if (v},v}) is an edge in G, then we introduce the 2- (¢ —1)-
hyperedge containing the H-vertices that correspond to the subsets {L’\ {v}} :
k # i} and {L" \ {v}} : k # j}; that is, the hyper-edge consists of all the H-
vertices of these two layers except for the two H-vertices that correspond to the
subsets L'\ {v;} and L" \ {v]'}. In addition, for each layer in H, we introduce
an ¢-size hyper-edge containing all ¢ vertices of that layer.

To get rid of the non-regularity of this construction, we augment each layer
with a sets of ¢ — 2 auxiliary vertices, and replace the abovementioned /-size
hyper-edge by a hyper-edge containing all vertices of that layer (i.e., the original
¢ vertices as well as the ¢ — 2 auxiliary vertices). We refer to these hyper-edges
as intra-layer ones. This completes the construction of H.

Motivation to the Analysis. Consider a generic vertex cover, C, of G, and let
S denote the set of all vertices of H that correspond to the (¢ — 1)-subsets of

92 O. Goldreich

C. Note that C contains ¢ vertices of some layer of G if and only if S contains
all vertices of the corresponding layer in H, and in this case all edges (resp.,
hyper-edges) adjacent to this layer are covered. Thus, we focus on layers of G
that contain £ — 1 vertices of C, and note that (for each such layer) S contains
a single vertex of H that resides in the corresponding layer. Let L' = (v{, ..., v})
and L"” = (v{,...,v)) be two such layers of G, and let v; and v/ denote the two
vertices that are missing from C' (which implies that (v{,v}) is not an edge in
G). Then, L'\ {vj} and L" \ {v}} are in S, and they cover all the hyper-edges
that connect L’ and L”, because {L'\ {v},} : k # i} U{L" \ {v}/} : k # j} is not
a hyper-edge in H.

The Actual Analysis. Fixing any input z, we consider the corresponding FGLSS-
graph G = G,, and the hypergraph H = H, derived from G by following the
above construction. Let N denote the number of layers in G (and H).

Claim 3.1. If x is a yes-instance, then the hypergraph H, has a vertex-cover of
size at most (1 +¢€)- N.

Proof: Since z is a yes-instance, the graph G = G, has an independent set (IS)
of size at least (1 —€) - N. Consider this IS or actually the corresponding vertex-
cover (i.e., VC) of G. Call a layer in G good if it has £ — 1 vertices in this VC,
and note that at least (1 — €) - N layers are good. We create a vertex-cover for
H = H, as follows. For each good layer, place in C the corresponding H-vertex;
that is, the H-vertex corresponding to the (¢ —1)-subset (of this layer in G) that
is in the VC of G. For the rest of the layers (i.e., the non-good layers), place in
C any two H-vertices of each (non-good) layer.

In total we placed in C at most (1 —€)N +2eN = (1+¢€)N vertices. We show
that C' is a vertex cover of H by considering all possible hyper-edges, bearing in
mind the correspondence between layers of G and layers of H.

— Each intra-layer hyper-edge of H (which consists of all vertices of that layer)
is definitely covered, because we placed in C' at least one H-vertex from each
layer.

— Each hyper-edge connecting H-vertices from two good layers is covered.
This is shown by considering the edge, denoted (u, v), of G that is “responsi-
ble” for the introduction of each hyper-edge (in H)! Since we started with a
vertex cover of GG, either u or v must be in that cover. Suppose, without loss
of generality, that u is in the VC of G. Then, we must have placed in C' one
of the H-vertices that corresponds to a (¢ — 1)-subset that contains w. But,
then, this H-vertex covers the said hyper-edge (because, by construction,
the latter hyper-edge contains all (¢ — 1)-subsets that contain u).

— Each hyper-edge that contains H-vertices from at least one non-good layer
is covered, because we placed in C two H-vertices from each non-good layer,

! A hyper-edge that correspons to layers L' and L” has the form {L'\ {w} : w #
uyU{L"\{w} : w # v}, where u € L' and v € L”. Furthermore, (u,v) must be an
edge in G.

The FGLSS-Reduction and Vertex Cover in Hypergraphs 93

whereas each hyper-edge containing H-vertices of some layer contains all but
at most one vertex of that layer.

The claim follows.

Claim 3.2. If z is a no-instance, then every vertex-cover of the hypergraph H,
has size at least (2 — s(|z|)) - N.

Proof: Consider any vertex cover C of H. Note that due to the intra-layer hyper-
edges, C must contain at least one vertex in each layer. Furthermore, without
loss of generality, C' contains only original vertices (rather than the £—2 auxiliary
vertices added to each layer). Denote by C’ the set of layers that have a single
vertex in C. Then, |C| > |C'| +2(N — |C’']) = 2N — |C’|. The claim follows by
proving that |C’| < sN, where s def s(|x])-

Suppose, towards the contradiction, that |C’| > sN. We consider the set of
G-vertices, denoted I, that correspond to the (single) H-vertices in these layers;
that is, for layer L (in C”) such that C contains the H-vertex (which corresponds
to) L\ {v}, place v € G in I. We show that I is an independent set in G (and so
derive a contradiction to G = G, not having an independent set of size greater
than sN, because x is a no-instance). Specifically, for every u,v € I, we show
that (u,v) cannot be an edge in G. Suppose (u,v) is an edge in G, then the
corresponding hyper-edge in H cannot be covered by C; that is, the hyper-edge
{L\{w} : w # u}U{L'\{w} : w # v} (which must be introduced due to the edge
(u,v)) cannot be covered by the H-vertices that correspond to the (¢—1)-subsets
L\ {u} and L'\ {v}. The claim follows.

Conclusion: Starting from a FPCP1_. s[log, f] system for NP, we have shown
that the minimum vertex-cover in (2f +1 _ 2)-regular hypergraphs is NP-hard to
approximate to a (2—s)/(1+e¢)-factor. Now, if we start with any FPCP1 s[log, f]
for NP, with s =~ 0, then we get a hardness result for a factor of 2 — s ~ 2.
Any NP C PCPllog, O(1)] result (starting from [I]) will do for this purpose,
because a straightforward error-reduction will yield NP C FPCP; s[log, O(1)],
for any s > 0. The (amortized) free-bit complexity only effects the growth of
the hyper-edge size as a function of the deviation of the hardness-factor from 2.
Specifically, if we start with an “amortized free-bit complexity zero” result (i.e.,
NP C FPCP1 s[log, o(logy(1/s))] for every s > 0), then we get a factor of 2 — s
hardness for (1/s)°(M-regular hypergraphs. That is, starting with Hastad’s first
such result [9] (or from the simplest one currently known [I1]), and applying the
foregoing reasoning, we obtain our first little result:

Theorem 3.3. For every constant € > 0, approximating the size of the mini-
mum vertex cover in (1/€)°M)-reqular hypergraphs to within a (2 — €)-factor is
NP-hard.

Alternatively, if we start with Hastad’s “maxLIN3 result” [I0] (i.e., the result
NP C FPCPi_c.5/log,2] for every € > 0), then we get a hardness factor of
(2—-10.5)/(1+¢€) = 1.5 for 6-regular hypergraphs. Below we show that the same
hardness factor holds also for 4-regular hypergraphs (by starting with the same
“maxLIN3 result” [10] but capitalizing on an additional feature of it).

94 O. Goldreich

4 A 1.5 — € Hardness Factor for 4-Regular Hypergraphs

We start with the FGLSS-graph derived from applying the FGLSS-reduction
to Hastad’s “maxLIN3 system” [I0]; that is, the FPCP1_e 0.5[log, 2] system for
NP (Ve > 0). The key observation is that, in this system, for any two queries, all
four answer pairs are possible (as accepting conﬁgurations)E This observation is
relied upon when establishing (below) simple structural properties of the derived
FGLSS-graph.

As before, there will be a correspondence between the vertex set of G and
the vertex set of H. Here it is actually simpler to just identify the two sets. So
it just remains to specify the hyper-edges of H. Again, we place (intra-layer)
hyper-edges between all (i.e., four) vertices of each layer. As for the construction
of inter-layer hyper-edges, we consider three cases regarding each pair of layers:

1. The trivial case: If there are no edges between these two layers in G, then
there would be no hyper-edges between these layers in H. This case corre-
sponds to the case that these two layers correspond to two random-tapes
that induce two query sets with empty intersection.

2. The interesting case is when these two layers correspond to two random-

tapes that induce two query sets having a single query, denoted ¢, in com-
mon. Relying on the property of the starting PCP system, it follows that
both answers are possible to this query and that each possible answer is rep-
resented by two vertices in each corresponding layer. Accordingly, we denote
the vertices of the first layer by u,u9, ui, ul, where ug’ is the ith configura-
tion in this layer in which query ¢ is answered by the bit b. Similarly, denote
the vertices of the second layer by v{, v, v}, v3. (We stress that this notation
is used only for determining the hyper-edges between the current pair of lay-
ers, and when considering a different pair of layers a different notation may
be applicable.) In this case we introduce the two hyper-edges {u{, u3, vi, v}
and {ui,u}, vy, v3}.
Intuition: Note that the edges in G [sic] between these two layers are two
Ks2’s (i.e., for each b € {0,1}, between the two u’s on one side and the
two v ”’s on the other side). These two Ko 5’s enforce that if some u? is in
some IS, then v! 7% is not in the IS. For a H-VC having a single vertex in
each layer, the (two) hyper-edges will have the same effect.

3. The annoying case is when these two layers (correspond to two random-tapes
that induce two query sets that) have two or more queries in common. In this
case, we label the vertices in these two layers according to these two answers;
that is, we denote the four vertices of the first layer by g0, 10,1, %1,0,%1,1,
where u, p is the unique configuration in this layer in which these two queries
are answered by a and b, respectively. Similarly, denote the vertices of the
second layer by vo,0,v0,1,v1,0,v1,1- (Again, this notation is used only for
determining the hyper-edges between the current pair of layers.) In this case,

2 Recall that the number of queries is typically higher than the free-bit complexity.
Indeed, the aforementioned system makes three queries and has free-bit complexity
two.

The FGLSS-Reduction and Vertex Cover in Hypergraphs 95

we introduce four hyper-edges between these two layers, each has one vertex
of the first layer and the three “non-matching” vertices of the second layer;
that is, the hyper-edges are {uq b, Va,1-b, V1—a,bs V1—a,1-b}, for a,b € {0,1}.
Intuition: The pair (uqp, ver) is an edge in G if and only if either a # o
or b # b'. Similarly, the pair (uq,p, Ve p) participates in an hyper-edge of H
if and only if either a # a’ or b # b'.

This completes the construction. Note that H = H, is a 4-regular hypergraph.

Claim 4.1. If x is a yes-instance, then the hypergraph H, has a vertex-cover of
size at most (1 + 3€) - N, where N denotes the number of layers.

Proof: Since z is a yes-instance, the graph G = G, has an independent set (IS)
of size (1 — €)N. Consider such an IS, denoted I. Call a layer in G good if it
has a vertex in I, and note that at least (1 — €)N layers are good. Augment I
by the set of all vertices residing in non-good layers. In total we took at most
(1 —€)N 4+ 4eN = (1 + 3¢)N vertices. We show that these vertices cover all
hyper-edges of H.

— The intra-layer hyper-edges are definitely covered (since we took at least one
vertex from each layer).

— Each hyper-edge connecting vertices from two good layers is covered.
This is shown by considering each of the two non-trivial cases (in the con-
struction). In the interesting case, I (having a single vertex in each good
layer) must have a single vertex in each Ko 9. But then this vertex covers
the corresponding hyper-edge. In the annoying case, I (having a single ver-
tex in each good layer) must contain vertices with matching labels in these
two layers. But then these two vertices cover all four hyper-edges, because
each hyper-edge contains a (single) vertex of each label.

— Hyper-edges containing H-vertices from non-good layers are covered trivially
(because we took all vertices of each non-good layer).

The claim follows.

Claim 4.2. If x is a no-instance, then every vertex-cover of the hypergraph H,
has size at least 1.5 - N.

Proof: Counsider a cover C of H. Note that (due to the intra-layer hyper-edges) C
must contain at least one vertex in each layer. Denote by C’ the set of layers that
have a single vertex in C. Then, |C| > |C'| 4+ 2(N — |C’|). The claim follows by
proving that |C’| < 0.5N. Suppose, towards the contradiction, that |C’| > 0.5N.
Consider the set of vertices, denoted I, that correspond to these layers (i.e., for
a layer in C’ consider the layer’s vertex that is in C'). We show that I is an
independent set in G (and so we derive contradiction).

Suppose (towards the contradiction) that u,v € I and (u,v) is an edge in G.
In the interesting case, this (i.e., (u,v) being an edge in G) means that u and

96 O. Goldreich

v are in the same hyper-edge in H, and being the only vertices in C' that are
in these layers, no vertex covers the other (vertex-disjoint) hyper-edge between
these layers. In the annoying case, this (i.e., (u,v) being an edge in G) means
that v and v do not have the same label and one of the four hyper-edges in H
cannot be covered by them; specifically, without loss of generality, suppose that
u is in the first layer, then neither v = v, nor u # u, covers the hyper-edge
{a,bs Va,1—b, V1—a,bs V1—a,1-b}-

Conclusion: Starting from the abovementioned NP C FPCPi_ o.5/log,2] re-
sult of Hastad [10], we have shown that the minimum vertex-cover in 4-regular
hypergraphs is NP-hard to approximate to a factor of 1.5/(1 + 3¢). Let us state
this as our second little result:

Theorem 4.3. For every constant € > 0, approximating the size of the mini-
mum vertex cover in 4-reqular hypergraphs to within a (1.5—¢)-factor is NP-hard.

5 Subsequent Work

As hinted in the introduction, our motivation in this memo was to draw atten-
tion to the wide applicability of the FGLSS-reduction, and the specific results ob-
tained were merely a good excuse to do so. Recall that all our results are inferior
to Holmerin’s independently achieved result [12], by which approximating vertex
cover in 4-regular hypergraphs to within a (2 — €)-factor is NP-hard. Thus, the
fact that also the latter result was subsequently improved is not relevant to the
main motivation of the current work. Nevertheless, we briefly review some of the
related results that appear after the current work was completed, differentiating
between what was known already in 2001 and what is known in 2010.

Original Postscript (2001). Following this work, Holmerin has applied related
FGLSS-type reductions to different PCP systems and obtained improved inap-
proximability results for vertex cover in hypergraphs [I4]. Specifically, for every
constant € > 0, he showed that:

1. Approximating the size of the minimum vertex cover in k-regular hyper-
graphs to within a factor of 2(k1~¢) is NP-hard.

2. Approximating the size of the minimum vertex cover in 3-regular hyper-
graphs to within a factor of 1.5 — € is NP-hard.

Additional Postscript (2010). The results reported in the original postscript were
further improved by subsequent works, culiminating in the following two results:

1. For every constant ¢ > 0, approximating the size of the minimum vertex
cover in k-regular hypergraphs to within a factor of k — 1 — e is NP-hard [4].

2. Assuming the Unique Game Conjecture (UGC), for every constant € > 0
and every integer k > 2, it is hard to approximate the size of the minimum
vertex cover in k-regular hypergraphs to within a factor of k — € [15]@

3 Indeed, the case k = 2 drew most attention.

The FGLSS-Reduction and Vertex Cover in Hypergraphs 97

Acknowledgments. We are grateful to Johan Hastad for referring us to the
works of Trevisan [I7] and Holmerin [12].

References

10.

11.

12.

13.

14.

15.

16.

17.

. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and

Intractability of Approximation Problems. JACM 45, 501-555 (1998); Preliminary
Version in 33rd FOCS (1992)

. Arora, S., Safra, S.: Probabilistic Checkable Proofs: A New Characterization of

NP. JACM 45, 70-122 (1998); Preliminary Version in 33rd FOCS (1992)

. Bellare, M., Goldreich, O., Sudan, M.: Free Bits, PCPs and Non-Approximability

— Towards Tight Results. SICOMP 27(3), 804-915 (1998)

. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A New Multilayered PCP and the

Hardness of Hypergraph Vertex Cover. SICOMP 34(5), 1129-1146 (2005)

. Dinur, 1., Safra, S.: The Importance of Being Biased. manuscript, See also (2001)
. Dinur, I., Safra, S.: The importance of being biased. In: 34th STOC, pp. 33-42

(2002)

. Feige, U., Goldwasser, S., Lovédsz, L., Safra, S., Szegedy, M.: Approximating Clique

is almost NP-complete. JACM 43, 268-292 (1996); Preliminary Version in 32nd
FOCS (1991)

. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.

Algorithms and Combinatorics series, vol. 17. Springer, Heidelberg (1999)

. Hastad, J.: Clique is hard to approximate within n!~¢. Acta Mathematica 182,

105-142 (1999); Preliminary versions in 28th STOC (1996) and 37th FOCS (1996)
Hastad, J.: Some optimal in-approximability results. In: 29th STOC, pp. 1-10
(1997)

Hastad, J., Khot, S.: Query efficient PCPs with Perfect Completeness. In: 42nd
FOCS, pp. 610-619 (2001)

Holmerin, J.: Vertex Cover on 4-regular Hypergraphs is Hard to Approximate
within 2 — e TR01-094, ECCC (2001), See also [13]

Holmerin, J.: Vertex Cover on 4-regular Hypergraphs is Hard to Approximate
within 2—e. In: 34th STOC, pp. 544-552 (2002)

Holmerin, J.: Improved Inapproximability Results for Vertex Cover on k-Uniform
Hypergraphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1005-1016. Springer,
Heidelberg (2002)

Khot, S., Regev, O.: Vertex Cover Might be Hard to Approximate to within 2—e.
JCSS 74(3), 335-349 (2008); Preliminary Version in 18th Conf. on Comput. Com-
plex (2003)

Petrank, E.: The Hardness of Approximations: Gap Location. Computational Com-
plexity 4, 133-157 (1994)

Trevisan, L.: Non-approximability Results for Optimization Problems on Bounded-
Degree Instances. In: 33rd STOC, pp. 453-461 (2001)

The GGM Construction Does NOT Yield
Correlation Intractable Function Ensembles

Oded Goldreich

Abstract. We consider the function ensembles emerging from the con-
struction of Goldreich, Goldwasser and Micali (GGM), when applied to
an arbitrary pseudoramdon generator. We show that, in general, such
functions fail to yield correlation intractable ensembles. Specifically, it
may happen that, given a description of such a function, one can easily
find an input that is mapped to zero under this function.

Keywords: Cryptography, Correlation Intractability.

An early version of this work appeared as TR96-042 of ECCC. The current
revision is quite minimal.

1 Introduction

The general context of this work is the so-called Random Oracle Methodolody, or
rather its critical review, undertaken by Canetti, Goldreich and Halevi [CGH9S],
Loosely speaking, this methodology suggests to design cryptographic schemes in
a two-step process. In the first step, an ideal scheme is designed in an ideal model
in which all parties (including the adversary) have access to a random orcale.
In the second step, the ideal scheme is realized by replacing the random oracle
by a fully-specified function (selected at random in some function emsemble (see
Definition [I])), while providing all parties with a description of the function.

Canetti, Goldreich, and Halevi [CGH98|] showed that, in general, this method-
ology may lead to the design of insecure schemes. That is, in general, it may be
that the ideal scheme is secure in the ideal model (in which all parties have access
to a random orcale), but replacing the random oracle by any function ensemble
yields an insecure scheme. Their analysis is based on the notion of correlation
intractability, which seems a very minimal requirement from such a replacement.
Loosely speaking, a function f is correlation intractable with respect to a sparse
binary relation R if it is infeasible (given a description of f) to find x such that
(z, f(x)) € R. The point is that the sparseness condition implies that when given
access to a random oracle O it is infeasible to find = such that (z, O(x)) € R,
and so we should require the same from the function f. Before proceeding, let
use clarify two of the aforementioned notions.

1.1 Function Ensembles and Correlation Intractability

A function ensemble is a collection of finite functions, where each function has a
finite description (viewed as its index in the ensemble). The functions map strings

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 98-{[08] 2011.
© Springer-Verlag Berlin Heidelberg 2011

The GGM Construction Does NOT 99

of certain length to strings of another length, where these lengths are determined
as a function of the index length. For simplicity, we consider a (natural) special
case in which the input and output lengths are equal.

Definition 1 (function ensembles): Let £ : N — N. A function ensemble with
length ¢ is a set of functions F' = {fs}sefo,1}+ such that each function fs maps
£(]8))-bit long strings to £(|s))-bit long strings. That is:

FE{f {0, 130D - {o, 10} e o1y @

An imprortant requirement, which we avoid here, is that the function ensemble
be efficiently computable (i.e., that there exists an efficient algorithm A such that
for every s € {0,1}* and every z € {0, 1}*(sD it holds that A(s,z) = fs(z)).
Turning to the notion of correlation intractabity, we again consider a (natural)
specail case (of a more general definition from [CGH98|). Loosely speaking, a
function ensemble F' is correlation intractable with respect to a binary relation R
if every feasible adversary, given a uniformly distributed s € {0, 1}*, fails to find
an z € {0,1}¢05D such that (x, fs(x)) € R, except with negligible probability.

Definition 2 (correlation intractabity): Let F' be as in Definition [

— Let R C Up{0,1}®) x {0,1}¥%). We say that F is correlation intractable with
respect to R if for every probabilistic polynomial-time algorithm A it holds
that

Procio,11:[(A(s), fs(A(s)) € R] = u(k),

where the probability is taken wiformly over s € {0,1}* and the internal
coin tosses of A, and p is some negligible function (i.e., for every positive
polynomial p, and all sufficiently large k, it holds that u(k) < 1/p(k)).

— Let R be as in Part 1. We say that R is sparse if

k) . _ _ot(k)
Lomax Al e 000 s @y) € RY = ik -2,

where p is some negligible function.
— We say that F is correlation intractable if it is correlation intractable with
respect to every sparse relation.

Note that Part 2 implies that a random oracle is correlation intractable with
respect to R (in the sense that for every probabilistic polynomial-time oracle
machine M it holds that Pr[(M©(1¥),O(M®(1%)) € R] = u(k), where O :
{0, 1}4k) — £0,1}*™*) denotes a random function).

Canetti, Goldreich, and Halevi [CGH98] showed that that no function en-
sembles (with length £(k) > k) are correlation intractable. In particular, they
showed that the function ensemble F' = {fs} is not correlation intractable with
respect to the “diagonalization” relation D = {(z, fu'(z)) : z € {0,1}*}, where
2’ is a prefix (of adequate length) of z (i.e., |z| = £(|2']) > |2'|).

100 O. Goldreich

1.2 Our Results

In view of the foregoing, we focus on function ensembles with length ¢/ : N — N
such that (k) < k (and recall that for £(k) < k/2 no negative results are known).
Furthermore, we will focus on the special case of “constant” relations; that is,
relations of the form R = {(z,y) : 2€{0,1}* Ay€SN{0, 1}1*1}, for some (sparse)
set S C {0,1}*. We investigate natural candidates for function ensembles that
may be correlation intractable in such a restricted sense. Note that in this case,
correlation intractability means the infeasiblity of finding an input = such that
fs(x) € S, where s is given to us as input.

The Failure of Generic Pseudorandom Functions. One natural candidate for re-
stricted notions of correlation intractability is provided by pseudorandom func-
tion ensembles (as defined in [GGM84]). However, these ensembles may fail (w.r.t
correlation intractability), because they guarantee nothing with respect to ad-
versaries that are given the function’s description (i.e., s). Indeed, in general,
pseudorandom function ensembles may not be correlation intractable w.r.t some
very simple relations (e.g., Ry = {(z,01l) : 2 € {0,1}*}): The reason is that
any pseudorandom function ensemble { fs} can be modified into a pseudorandom
function ensemble {f/ ;} such that f} (z) = 0zl if z = r and fr.s(x) = fs(z)
otherwise. Thus, given the description (r, s) of a function, we can easily find an
input z (i.e., z =) such that (z, f ,(x)) € Ro.

The Failure of the GGM Construction. Our main interest here is in a specific
(natural) construction of pseudorandom functions (based on pseudorandom gen-
erators). That is, while one may argue that the aforementioned failure of generic
pseudorandom functions is due to a contrived example, we show that a natural
construction of pseudorandom functions fails (i.e., it is not correlation intractable
w.r.t some simple relations such as the aforementioned Ry). Specifically, we re-
fer to the construction of pseudorandom functions due to Goldreich, Goldwasser,
and Micali [GGM84]. Recall that in their construction, hereafter referred to as
the GGM construction, a function f : {0, 11D — {0, 1}Isl is define based on a
(length doubling) pseudorandom generator G such that

Fo(@) € Gy (Guyy (- Gy (5)), 2)

where G(z) = Go(2)G1(z), ¢ def (|s]), and x = 21 ---2¢ € {0,1}. A length
preserving version of fs is obtained by considering only the ¢(|s|)-bit long prefix
of fs(z). (Recall that we assume here that ¢(k) < k.) Our main result is:

Theorem 3 (main result): If there exists pseudorandom generators, then there
exists a pseudorandom generator G such that the function ensemble resulting
from applying Eq. (@) to G is not correlation intractable with respect to the
relation Ry = {(z,01%!) : z € {0, 1}*}.

That is, although the resulting function ensemble is pseudorandom (cf. [GGM8&4]),
given the description s of a function in the ensemble, one can find in polynomial-
time an input x such that fq(x) = 0/#l. The result can be easily extended to hit-
ting other relations. The rest of the paper is devoted to establishing Theorem [l

The GGM Construction Does NOT 101

2 The Overall Plan and an Abstraction

The first observation is that 0¢ is likely to have a preimage under f,, and the
central idea is that, for a carefully constructed G, this preimage is easy to find
when given s. Intuitively, G is constructed such that (1) either Go(s) or G1(s)
is likely to have a longer all-zero prefix than s, and (2) it is always the case that
either Gy(s) or G1(s) has an all-zero prefix that is at least as long as the one
in s.

Notation. (At this point, the reader may think of n as equal k. Fort=0,...,n—
1, let S; & {0t17 : v € {0,1}"~(+D} be the set of n-bit long strings having a
(maximal) all-zero prefix of length t. Let P; be the set of strings a8 € {0,1}?"
such that a, 8 € Ul_,S; and either o € Sy or 3 € S;. That is:

P {aB:a,Be(U_yS) A(aeS v BES,)) (3)

= {af:(a,B€8)V (a€S, ABEULZIS:) V (€ €EUZyS; ABES:) }. (4)

Our aim is to construct a pseudorandom generator G such that for every ¢ < £
and o € S; it holds that G(a) € U;>:P;, and for a constant fraction of o €

Sy it holds that G(a) € U;>41P;. Intuitively, given s def 5 we may find an
x = x1 ---x such that fs(z) has an all-zero prefix of length £2(¢), by iteratively
inspecting both parts of G(8z,....;) for the current s, ..., and setting x;41 such

def Gaiy1(8,..2,) is the part with a longer all-zero prefix.

that sz, ...0i2i44
The Desired Random Mapping. In order to implement and analyze the forego-
ing idea, we first introduce a random process IT : {0,1}" — {0,1}?" with the
intention of satisfying the following three properties:

1. II(U,) = Uay,, where U, denotes the uniform distribution on {0,1}™.

2. For every t < { and o € Sy, it holds that IT(«) € U;>.P;.

3. For every t < £ and « € Sy, it holds that Pr[II(«) € U;>¢+1F;] > ¢, where
¢ > 0 is a universal constant.

One natural way to define IT is to proceed in iterations, starting with ¢ = 0.
In each iteration, we map seeds in S; to outcomes in P, until P, gets enough
probability mass, and map the residual probability mass to U;>¢y1P; (first to
Pyy1, next to Piyo, etc). In order to satisfy the foregoing Conditions 1 and 2, it
must hold that, for every ¢, the fraction of n-bit seeds residing in U{_,S; is at
least as big as the fraction of 2n-bit long outcomes in U!_,P;. In fact, to satisfy
Condition 3 the former must be sufficiently bigger than the latter. (Actually, we
shall see that Condition 3 follows from the other two conditions.)

We now turn to the analysis of the desired process II. Let s; def Pr[U,, €
S| = 2=+ and p, def Pr[Us, € P]. By Eq. @)-@), it holds that p; =

52425, Zf;é s;. The following technical claim will play a key role in our analysis.

1 At a later point, it will become clear why we chose to use n rather than k here.

102 O. Goldreich

Claim 4 (central technical claim): For every t > 0:

t t 2
1.3 opi = (Zi:u Sl) :
t t _ t
2.) im0 Si = 1_2}<t+1> “DimoPi > (1 +2 (H_l)) im0 Pi-
def _
3 A= Z§=o S — Zf:o p; > ; “pra1- Furthermore, Ay > (1 —27%) - pyyq.
Part 3 is not used in the actual analysis, and so its proof is moved to the

Appendix.
Proof: We first establish Part 1:

t t i—1
2
E pizg SZ-—I—QSZ‘E S
=0 =0 §=0
= E SiSj
i,j€{0,...,t}

. 2
i=0 _
Combining Part 1 and S0 _s; = 300270+ =1 - 270+ e get 3! s, =
(1- 2_(”1))71 S, pi Part 2 follows (using (1 —€)~ > 1+¢ for € > 0).
Using Claim [it follows that by the time we get to deal with seeds in S; (¢ > 1),
we have already spend a probability mass of Zf;é S — Zf;é pi > é pt towards
covering P;. Thus, some seeds in S;_; are mapped to P; (or to U;>:P;). The

following claim implies that seeds in S;_; are actually mapped to either P;_; or
P, (but never to U;>+ F;).

Claim 5 (another technical claim): Y /_s; = Zfié pi — 27 < Zfié Di

Proof: Using Part 1 of Claim @ (and s; = 2=U+Y) we get:

t+1 41\ 2
Zpi = (Z 81)
i=0 i=0

- (1 - 2*(”2))2

=1— 2—(t+1) 4 2—(2t+4)
t
=2+ 4 Z Si
=0

and the current claim follows.

The GGM Construction Does NOT 103

The Implementation of II. Given ClaimsM and[E] we explicitly define the process
II. On input a € Sy, with probability pg/sp = 1/2, we output a uniformly
selected element of Py, otherwise we output a uniformly selected element of P;.
For ¢t > 1, on input « € S;, we first compute A; 1 = Z’;é S — Zf;é p;. (Note
that by Claims @ and Blit holds that 0 < A;_1 < pg, and p; —Ay_1 = 5, — Ay < 8¢
follows.) With probability (ps—A:—1)/st, we output a uniformly selected element
of P, otherwise we output a uniformly selected element of P;yi. Indeed, 0 <
(pt — Av—1)/s¢ < 1. Thus, IT is well-defined.

Note that I can be implemented in probabilistic polynomial-time. Combining
Claims @ and Bl we get:

Proposition 6 (II satisfies the desired properties):

1. II(U,) = Uay, where U, denotes the uniform distribution on {0,1}™.
2. For every t < /! and « € Sy, it holds that I () € Py U Pyyq.
3. For every t < { and o € Sy, it holds that Pr[II(a) € Piyq] > 1/2.

Part 3 (which follows from Part 3 of Claim[)) is not used in the actual analysis
and is only given for intuition.

Proof: Part 2 is immediate by the construction. It is also clear that IT(U,) is
uniform over each of the P;’s. Thus, to prove Part 1 it suffices to show that, for
every t, it holds that Pr[I1(U,,) € P;] = p:. In proving this, we use Part 2 (i.e.,
II(a) € P, U Py4q for every a € Sy). We first consider the case of ¢ = 0, and get

Pr[II(U,) € Py] = Pr[U,, € So] - Pr[II(U,) € Py|U, € So

Do
g SO . f— pO'
S0

For ¢ > 1 (using A_4 10 in case t = 1), we have

Pr[II(U,) € P) = Pr[U, € S| - Pr[II(U,) € P|U, € S|
+Pr[U,, € S;_1] - Pr[II(U,) € P|U,, € S;_1]
U O Apq Ly (1 P11 — At—2>
St St—1
=p;— Ap1+ 51 —pi—1 + Ao
= Pt

since Ay_1 = Ay 2 +5¢-1 —pi_1.
Part 3 follows by noting that for every a € S; (with ¢ > 1),

— A
Pr[lI(a) € Pryq] =1 o
t
_ ZZ:O St — EE:O Di
St

— 92—ty
>(12)5t>1
St -2

104 O. Goldreich

where the strict inequality is due to A; > (1 —27%) .27 ¢+) = (1 —27t) . 5,
(which is established in the first paragraph of the Appendix). For o € Sy, it
holds that Pr[IT(a) € P1] =1 — (po/s0) = 1/2.

The Randomly-labeled Tree: We consider a depth ¢ binary tree with nodes labeled
by m-bit long strings. The root is labeled with a uniformly selected string, and
if a node is labeled with « then its children are labeled with the corresponding
parts of IT(a). (The root is said to be in level 0 and the 2¢ leaves are in level £.)

Using induction on ¢ = 0,1...,¢ (and relying on Part 1 of Proposition [),
it follows that the nodes at level i are assigned independently and uniformly
distributed labels. Specifically, suppose that the claim holds for level i, then
using Part 1 of Proposition [@] the claim holds for level ¢ + 1. On the other hand,
by Part 2 of Proposition [, the labels along each path from the root to a leaf
belong to S;’s such that the sequence of j’s increases by at most one unit at
each step.

Now, on the one hand, with probability so + s1 = 3/4, the (level 0) root has
a label in Sp U S7. On the other hand, with probability 1 — (1 — Se)gz =1—(1-
2-(HHD)2 5 (.39, there exists a (level £) leaf with label in S;. We conclude that,
with probability at least 0.39—0.25 = 0.14, the root has label in SyU.S; and there
exist a leaf with a label in Sy. Furthermore, due to the mild-increasing property
of the label sequence along each path, the i*" intermediate node on the path
from the root to this leaf must have a label in S; USH_lE On the other hand, the
expected number of level i nodes with label in S;US, 1 is 2¢- (2741 4.2-+42)) —
3/4. Thus, except with exponentially vanishing probability, level i contains less
than n nodes with label in S; U S;+1. To summarize, with probability at least
0.13, the following good event holds:

1. The root has label in Sy U S.

2. There exist a leaf with a label in Sy. Furthermore, the i** intermediate node
on the path from the root to this leaf has a label in S; U S;41.

3. For every ¢ < ¢, level ¢ has at most n nodes that have a label in S; U S;41.

The following search procedure is “geared towards” the foregoing good event.

The (Ideal) Search Procedure: Starting at the root, proceed in a DFS-like manner
according to the following rule: If the currently reached node is at level i and has
a level not in S; U S;41, then backtrack immediately, else develop it according
to the standard DFS-rule. If we ever reach a leaf having a label in Sy, then the
search is considered successful.

Assuming that the good event holds, the search is successful. Furthermore,
in this case the search has visited at most 2n nodes at each level (i.e., the
children of parents that were DFS-developed), and so the complexity is bounded

% Recall that a node with label in S; has children with labels in Uf;ésk. Since the
root has label in Sy U S1, each node at level i has a label in U?;loSk‘ Furthermore,
since the specific leaf on the said path has a label in Sy, the i*" intermediate node

on the said path cannot have a label in U};{)Sk.

The GGM Construction Does NOT 105

by O(¢£-n). In fact, the complexity analysis depends only on the third condition
(in the definition of a good event), and thus holds except for with exponentially
vanishing probability.

3 The Actual Construction

Recall that we have given a probabilistic polynomial-time implementation of
IT. We now consider a deterministic polynomial-time algorithm [T’ satisfying
(o, Upy,) = II(«r), where m = poly(|a|). Next, using suitable pseudorandom
generators G’ and G” (i.e., G’ : {0,1}" — {0,1}™ and G” : {0,1}" — {0, 1}*"),
we replace IT' : {0, 1}"T™ — {0,1}2" by " : {0,1}"*2" — {0,1}>("+27) guch
that

HH(O‘7 7“/7“”) = ((alvrl)v (Ong‘g)) (5>
where (al,ag) = H’(a,G’(r’)) and (7“177“2) = GN(TN) (6>

/|_ //‘_

That is, [r1| = |ra| = [7/r”| and || = [r"] = |a.

Theorem 7 (Theorem 3] specialized): Let £ : N — N such that ¢(k) < k and let

G 11" Then:

1. G is a pseudorandom generator.

2. Let f!:{0,1}40sD — 0,1} be defined by applying Eq. (@) to G, and let
fs 0 {0, 130D — £0,1Y4U5D be defined by letting fs(x) equal the £(|s|)-bit long
prefiz of fi(x). Then, the function ensemble {fs}scqo,1y+ is not correlation
intractable with respect to the relation Ry = {(x,01%) : x € {0,1}*}. That is,
there exists a probabilistic polynomial-time algorithm that given a uniformly
distributed s € {0,1}"™, finds with probability at least 1/10 a string x €
{0,1}°05D such that fo(z) = 045D,

Theorem [follows.

Proof: In order to prove Part 1 we first observe that II'(U,,U,) = Us,.
Letting U,,, U/, U/’ denote independent random variables each uniformly dis-

tributed in {0, 1}", we recall that II"(U,,U,U}) = ((Z1, R1), (Zy, Ry)), where

(21, 2,) & (U, G(U")) and (R, Ry) % G"(U”). Thus, II"(U,, ULU") is

computationally indistinguishable from ((Z1, R}), (Z),, R},)), where (Z1, Z3) e
II'(U,,Up,) and (R}, Ry) is uniformly distributed over {0,1}?" x {0,1}?". It
follows that G(Us,) = II"(Uy,U,U)) is computationally indistinguishable
from ((U},,U},), (U}, Us.)). Since G is computable in polynomial-time, and
|G(Usy,)| = 6n, Part 1 follows.

In order to prove Part 2, we consider an algorithm that on input s € {0,1}3"
invokes the ideal search procedure described at the end of Section 2] while pro-
viding it with labels of an imaginary depth ¢ = ¢(n) binary tree as follows.
The label of the root is the n-bit long prefix of s, and the 2n-bit long suffix is

106 O. Goldreich

called the secret of the root. If an internal node has label o € {0,1}" and secret
s's"” € {0,1}2", then its children will have labels corresponding to the two n-
bit long parts of IT'(a, G'(s")) and secrets corresponding to the two 2n-bit long
parts of G”(s"). We stress that the search procedure is only given the labels of
nodes (at its request), but it is not given the nodes’ secrets. Note that the way
in which we label the nodes corresponds to the way the function ensemble { fs}
is defined (using G = II").

Recall that the search procedure succeeds with probability at least 0.13 on
the randomly-label tree, called the ideal setting, where the children of a node
labeled by a are assigned labels that corresponding to the two n-bit long parts
of IT'(cv, Upy,). Our aim is to show that approximately the same must occur in the
foregoing real setting, where the tree is labeled according to IT” (or, equivalently,
according to IT'(-,G'(+)) and G”(-)). To prove this claim, consider a hybrid set-
ting in which all nodes are associated uniformly distributed secrets (rather than
secrets derived by applying G” to the second part of their parent’s secret), and
the children of a node labeled by « are assigned labels that corresponding to the
two n-bit long parts of IT'(«, G'(s")), where s’ is the first part of the parent’s
secret (and the second part is never used). We observe that:

1. The success probability of the search in the ideal setting is approximately
the same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G’ is a pseudo-
random generator. Specifically, we will show how to distinguish n - ¢ samples
of the distribution G’ (U,,) from n - ¢ samples of the distribution U,,. Given a
sequence of samples, we run the search procedure while feeding it with labels
generated on-the-fly as follows.

— The root is assigned a uniformly distributed label, and labels that were
assigned to nodes are used whenever the node is visited.

— When reaching a node (e.g., the root) for the first time, we assign labels
to its children by using the next unused sample. Specifically, if the new
node has label o € {0,1}"™ and the next sample in the input sequence
is s’ € {0,1}"™ then we assign its children (as labels) the corresponding
parts of IT'(«, ") € {0,1}2".

Note that when the input sequence is taken from U,,, the foregoing process
describes the ideal setting, whereas when the input sequence is taken from
G'(U,,) we get the hybrid setting.

2. The success probability of the search in the real setting is approximately the
same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G'' is a pseudo-
random generator by considering ¢ additional hybrid settings. For: =1, ..., ¢,
the " hybrid (or i-hybrid) consists of running the foregoing search while
feeding it with labels generated on-the-fly as follows. The label of a node
al level j < i is generated as in the hybrid setting; that is, these nodes
are assigned uniformly distributed secrets (and the children of such a node
labeled by o« are assigned labels that corresponding to the two n-bit long
parts of II'(«, G'(s')), where s’ is the first part of the parent’s secret). On

The GGM Construction Does NOT 107

the other hand, the label of a node al level j > i is generated as in the real
setting; that is, these nodes are assigned secrets that are derived from the
second part of their parent’s secret (and are assigned labels exactly as in
case j < i). That is, if a node at level j — 1 has secret s's”, then its chil-
dren are always labeled according to II'(a, G'(s")), whereas the secrets that
they are assigned are either uniformly distributed or derived from G”(s”)
depending on whether j < ¢ or j > i. Note that the ¢-hybrid corresponds
to the hybrid setting, whereas the 1-hybrid corresponds to the real setting.
Thus, it suffices to show that for every ¢ € {1,...,¢ — 1}, the i-hybrid and
(i 4+ 1)-hybrid are computationally indistinguishable. This is shown by using
a potential distinguisher to violate the pseudorandomness of G”.
Given a distinguisher of the i-hybrid and (¢ + 1)-hybrid, we will show how
to distinguish n - £ samples of the distribution G”(U,,) from n - £ samples of
the distribution Uy,. Specifically, given a sequence of samples, we run the
search procedure while feeding it with secrets and labels generated on-the-
fly as follows. When required to provide a label to a newly visited node we
always provide the label according to IT'(«, G'(s’)), where s’ is the first part
of the parent’s secret (and « is the parent’s label). The important issue is
the generation of secrets:
— Nodes at level j < i are assigned uniformly distributed secrets.
— Nodes at level j > i + 2 are assigned secrets according to G”(s”) where
s” is the second part of their parent’s secret.
— Nodes at level i + 1 are assigned secrets (on the fly) that equal the
corresponding part of the next unused sample in the input sequence; that
is, when a node at level 7 is first visited, its two children are assigned

secrets according to the two parts of the next unused sample.
Note that when the input sequence is taken from Uy, the foregoing process

describes the (i + 1)-hybrid, whereas when the input sequence is taken from
G"(U,) we get the i-hybrid (although the secrets at level i + 1 do not fit
the second part of the secrets at level ¢ but rather a re-randomization of the
latter).

Combining the two foregoing observations, we conclude that in the real setting
the search procedure is successful with probability at least 0.1. Using the corre-
spondence of the real setting to an attack on the function ensemble { f;}, Part 2
(and so the entire theorem) follows.

Acknowledgments. The question was originally posed by Silvio Micali (in the
early 1990’s if T recall correctly), and re-posed by Boaz Barak in Summer 2001.
I am grateful to both of them.

References

[CGHY98] Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology.
In: 30th STOC, pp. 209-218 (1998) (revisited)

[GGMS84] Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Func-
tions. JACM 33(4), 792-807 (1986)

108 O. Goldreich

Appendix: Proof of Part 3 of Claim [4]

Using Part 2, we have

t

t t
Zsi - Zpi > 2~ (t+D) . Zpi
i=0 i=0 i=0
. 2
=2~ (D). (Z Si)

— 9 (t+1) (1 _ 27(t+1))2
> 27 (1 - 277)

On the other hand,

t

2
Pt+1 = St + 25t+1 Z Sj
=0

t
= Sty1-° <5t+1 + 2 ZSZ>
i=0
— 9—(t+2) . (2—(t+2) 19, (1 _ 2_(t+1)))

— 9—(t+1) | (1 _o—(t+D) | 2—(t+3))

3
= 2_(t+1) 1= . 2—t
8 .

Combining A; = ZE:O S — Z:ZO pi > 27 (1) . (1 —27%) with pryq = 9—(t+1)
(1—3-27), we get

Thus, 4A; > %pt+1, provided ¢ > 1. For ¢t = 0, we note that Ay = sy — py =
11

2 T 4= 411 whereas p1 = 156 and so Ay = g - p1. Part 3 follows.

From Logarithmic Advice to Single-Bit Advice

Oded Goldreich, Madhu Sudan, and Luca Trevisan

Abstract. Building on Barak’s work (Random’02), Fortnow and San-
thanam (FOCS’04) proved a time hierarchy for probabilistic machines
with one bit of advice. Their argument is based on an implicit transla-
tion technique, which allow to translate separation results for short (say
logarithmic) advice (as shown by Barak) into separations for a single-bit
advice. In this note, we make this technique explicit, by introducing an
adequate translation lemma.

Keywords: Machines that take advice, separations among complexity
classes.

An early version of this work appeared as TR04-093 of ECCC. The current
revision is quite minimal.

1 Introduction and High Level Description

Trying to address the open problem of providing a probabilistic time hierarchy,
Barak [I] presented a time hierarchy for slightly non-uniform probabilistic ma-
chines. Specifically, he showed that, in presence of double-logarithmic advice,
there exists a hierarchy of probabilistic polynomial-time. Subsequently, Fortnow
and Santhanam [2] showed that a similar hierarchy holds in the presence of a
single-bit advice. Their argument is based on an implicit translation technique,
which allow to translate separation results for short (say logarithmic) advice into
separations for a single-bit advice. In this note, we make this technique explicit,
by introducing an adequate translation lemma and showing that applying it to
Barak’s result [I] yields the aforementioned result of [2].

Interestingly (as in [2]), we rely on the fact that Barak [I] actually shows a
time separation that holds even when the more time-restricted machine is given
a somewhat longer advice. In contrast, arguably, the more natural statement of
such results refers to machines that use the same advice length

The basic idea underlying the proof in [2] is that short advice can be incorpo-
rated in the (length of the) instance of a padded set, while using a single bit of
advice to indicate whether or not the resulting instance length encodes a valid
advice. For this to work, the length of the resulting instance should indicate a

! That is, in order to show, say, that BPtime(n?)/1 is not contained in BPtime(n?)/1,
we use the fact that Barak showed that BPtime(n®)/logn is not contained
in BPtime(n")/2logn (rather than that BPtime(n®)/logn is not contained in
BPtime(n*)/logn).

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 109-[[T3] 2011.
© Springer-Verlag Berlin Heidelberg 2011

110 O. Goldreich, M. Sudan, and L. Trevisan

unique length of the original instance as well as a value of a corresponding advice
(for this instance length).

Suppose we wish to treat a set S that is decidable (within some time bound)
using eight bits of advice. Viewing the possible values of the advice as integers in
{0,1,...,255}, we define a (padded) set S’ as follows: the string z0%5°1%1+% is in S’
if and only if € S and i is an adequate advice for instances of length |z|. Note
that S’ can be decided using a single bit of advice that indicates whether the
instance length encodes a valid advice for S. Specifically, the advice bit for length
m instances (of §') is 1 if and only if m mod 256 is a valid advice for instances
of length |m/256] (of S). Thus, on input y = 202°°1*1*% where i € {0, ..., 255},
we accept if and only if the advice bit is 1 and the original machine accepts x
when given advice 1.

Note that we should also show that if S is undecidable using less time (and,
say, nine bits of advice), then S’ is correspondingly hard (even using a single bit
of advice). This is shown by using a machine for deciding S’ as a subroutine for
deciding S, while using part of the advice (given for deciding S) for determining
an adequate instance for S’. In other words, we present a non-uniform reduction
of S to S’, where the non-uniformity is accounted for by the longer advice allowed
in deciding S.

2 Preliminaries

We consider advice-taking probabilistic machines, denoting by M (a, z) the out-
put distribution of machine M on input z and advice a. We denote by
BPtime(T")/A the class of sets decidable by advice-taking probabilistic machines
of time complexity T' and advice complexity A. That is, S € BPtime(T)/A if
there exists a probabilistic machine M and a sequence of strings (a,)nen such
that the following conditions hold:

1. For every n € N, it holds that |a,| = A(n).

2. For every x € {0,1}*, on input x and advice a,|, machine M makes at most
T(|x|) steps.

3. For every x € {0,1}*, it holds that Pr[M(a|,,z) = xs(z)] > 2/3, where
xs(xz)=1if x € S and xs(x) = 0 otherwise.

We assume that the machine model supports some trivial computations with
little overhead. Specifically, we refer to computing the square root of the length
of the input in linear time. Our results hold with minor modifications in case the
machine model is less flexible (e.g., if computing the square root of the length
of the input requires quadratic time).

To simplify the presentation, we will associate binary strings with the integers
that they represents. That is, the ¢-bit long binary string oy_1--- 09 will be
associated with the integer Zﬁ;é ;- 27. Thus, when writing 07¢-1""9° we mean

. . - -1 j
a binary string consisting of ijo 0 - 27 zeros.

From Logarithmic Advice to Single-Bit Advice 111

3 Detailed Technical Presentation

We state our translation lemma for probabilistic machines, and note that an
analogous lemma holds for deterministic (and non-deterministic) machines.

Lemma 1 (Translation Lemma): Suppose that S is a set that is decided by some
advice-taking probabilistic machine M in time Ty (n) using Apr(n) < |logyn]
bits of advice, where n denotes the length of the instance of S. Suppose further
that S is not decided by any a(n)-advice probabilistic machine in time t(n), where
a(n) > Apr(n). Then, there exists a set S’ = S, that is decided in probabilistic
time T' using a single bit of advice, where T'(m) = Ty (|\/m]) + m, but is not
decidable by any (a(|v/m]) — Ar(|/m]))-advice probabilistic machine in time
t(|v/m|) —m, where m denotes the length of the instance of S’.

Needless to say, the lemma can be generalized to handle Ayr(n) = O(logn), in
which case |y/m] should be replaced by m!/©(1).

3.1 Using the Translation Lemma
Before proving the Translation Lemma, let us spell-out its main implication.

Corollary 2 (reducing non-uniformity in BPtime separations): Let T, A,t,a :
N — N such that a(n) > A(n). If BPtime(T)/A contains sets not in

BPtime(t)/a, then BPtime(T")/1 contains sets not in BPtime(t")/a’, where

T'(m) E T(lym]) +m, t'(m) = t(|y/m]) —m and o'(m) = a(|/m]) -

A(lv/m]).

For example, we can apply Corollary[2lto Barak’s result [I] that asserts the ex-
istence of a set S in, say, (BPtime(n%)/loglogn)\ (BPtime(n*)/logn). Doing so,
we conclude that there exists a set in (BPtime(m?)/1)\(BPtime(m?)/(0.5log m—
loglogm)), which in particular implies BPtime(m?)/1 C BPtime(m?)/1. Thus,
we can translate Barak’s separations, which refer to probabilistic machines with
logarithmic advice, into separations that refer to probabilistic machines with a
single bit of advice, as established by Fortnow and Santhanam [2]. (This con-
sequence is not surprising, because the Translation Lemma makes explicit the
ideas in [2].)

Note that in order to obtain an interesting consequence out of Corollary 2l we
need a(n) > A(n)+1. In contrast, using a(n) = A(n) implies that BPtime(7")/1
contains sets not in BPtime(¢'), which holds regardless of the hypothesis and for
any choice of 7" > 0 and ¢’ (even for ¢/ > T").

3.2 Proving the Translation Lemma

Recall that M decides S in time Ty, using advice of length Ay, where A (n) <
|log, n]. Fixing a sequence of advice strings (a,,)qen for machine M, we define
S’ depending on this sequence. Specifically,

§' 98 (200l -Dleltaer . 4 € 5} W

112 O. Goldreich, M. Sudan, and L. Trevisan

That is, y = z0U*I=Dlzl+ ¢ 8" if and only if it holds that z € S and Ajg| = 1.
Observe that |20U*I=DIl+7| = | 2|2 44 and that, for every m € {n? +0,...,n% +
24m() _ 1} (which in turn is contained in {n?, ..., (n 4 1)? — 1}), it holds that
[v/m| = n. In what follows, n (resp., m) will always denote the length of
instances to S (resp., S’).

We first show that S’ is decidable by a probabilistic machine M’ taking one
bit of advice and running in time Ths(|+/m]) +m. Machine M’ checks whether
its input y € {0,1}™ has the form z0("~D"+* where |2| =n = [\/m] and i < n,
and otherwise rejects y up-front. Given the advice bit o,,, machine M’ always
rejects if o, = 0 and invokes M on input 2 and advice ¢ (viewed as an Apr(n)-
bit long string) otherwise. Thus, M’ accepts y = 20U+ DI+ ysing advice oy,
if and only if o, = 1 and M accepts x using advice i. The advice (bit) oy,
regarding m-bit inputs is determined in correspondence to the aforementioned
parsing: the advice bit is 1 if and only if m = [v/m|* + a| s, . Indeed, this
setting of the advice o, guarantees that M’ accepts y = x0{=I=DIzl+i jf and
only if # € S and i = aj,|. Thus, using adequate advice, M’ decides S’. Indeed,
as required, the running time of M’ is m + Tas(|\/m]), where m steps are used
to parse y (into 2 and) and Ths(|z|) steps are used to emulate M (i, x).

We next show that S’ is not decidable by any probabilistic machine that
runs in time ¢(|/m]) —m and takes a (a(|\/m]) — Apr(|\/m]))-bit long advice.
Actually, for any monotonically non-decreasing functions ¢’ and a’, we will show
that if S” is decidable by some probabilistic machine that runs in time ¢ (m) and
takes a’(m) bits of advice, then S is decidable by a probabilistic machine that
runs in time ¢’ (n) = t'(n? +n) + n? and takes a”(n) = Apr(n) +a’'(n? +n) bits
of advice] Suppose that M’ is a machine deciding S’ as in the hypothesis, and
let advys (m) be the advice it uses for m-bit inputs. Then consider the following
machine M" (designed to decide S) whose advice on inputs of length n is the pair
a’ = (an,advyr (n? 4+ a,)). On input = and advice (i, j), machine M” invokes
M’ on input z0U#I=DI#I+% with advice j. Thus, M” accepts = when given the
(adequate) advice a| 2l if and only if M’ accepts z0(*I=DI#1+e2 when given the
advice advay (|2|* + ajy). It follows that M” decides S, and does so within the
stated complexities.

Digest: We defined S’ based not only on S but rather based on an adequate
advice sequence (a,)nen that vouches that S € BPtime(T)/A (via a machine
M). Once S’ is defined, the proof proceeds in two steps:

1. Relying on the hypothesis that M decides S in time 7" using advice of length
A, we establish that S’ € BPtime(7")/1, where T"(m) = T'(|/m]) + m.

The advice-bit for S’ is used in order to facilitate the partition of the

instances of S’ into two sets: a set of instances z0U*I=DIzl+% that satisfy

% Indeed, suppose that t'(m) t([v/m]) — m and a'(m) = a(|vm]) — Am(|vV/m]),
then t’(n) = t'(n®> +n) +n? = (t([vVn2 +n]) — (n® +n)) +n? < t(n) and o’ (n) =
Ap(n) +d' (n? +n) = Ap(n) + (a(n) — Am(n)) = a(n), in contradiction to the
lemma’s hypothesis.

From Logarithmic Advice to Single-Bit Advice 113

i = aj,|, and a set of instances that do not satisfy this condition. Machine
M is invoked only for instances of the first type, and instances of the second
type are rejected up-front.

2. Assuming that S’ € BPtime(t')/a’, we establish that S € BPtime(t)/aq,
where t(n) = t'(n? + n) + n? and a(n) = A(n) + d’(n?® + n).

This is done by “reducing” the problem of “deciding S with a(n) bits of

advice” to the problem of “deciding S’ with a’(m) bits of advice”, while the
reduction itself uses A(n) = a(n) — a’(m) bits of advice.

4 Subsequent Work

We mention a subsequent related work by van Melkebeek and Pervyshev [3],
which provides a direct proof of a more general result. We still feel that there is
interest in the approach taken in the current work (i.e., the translation lemma
and its proof).

References

1. Barak, B.: A Probabilistic-Time Hierarchy Theorem for Slightly Non-uniform Al-
gorithms. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483,
pp. 194-208. Springer, Heidelberg (2002)

2. Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time.
In: 45th FOCS, pp. 316-324 (2004)

3. van Melkebeek, D., Pervyshev, K.: A Generic Time Hierarchy for Semantic Models
with One Bit of Advice. Computational Complexity 16, 139-179 (2007)

On Probabilistic versus Deterministic Provers in
the Definition of Proofs of Knowledge

Mihir Bellare and Oded Goldreich

Abstract. This article points out a gap between two natural formula-
tions of the concept of a proof of knowledge, and shows that in all natural
cases (e.g., NP-statements) this gap can be bridged. The aforementioned
formulations differ by whether they refer to (all possible) probabilistic or
deterministic prover strategies. Unlike in the rest of cryptography, in the
current context, the obvious transformation of probabilistic strategies
to deterministic strategies does not seem to suffice per se. The source
of trouble is “bad interaction” between the expectation operator and
other operators, which appear in the definition of a proof of knowledge
(reviewed here).

Keywords: Proof of Knowledge, Probabilistic Proof Systems, Proba-
bilism versus Determinism, Expected Running Time.

An early version of this work appeared as TR06-136 of ECCC. The current
revision is quite minimal.

1 Introduction

The concept of a “proof of knowledge” was informally introduced by Goldwasser,
Micali and Rackoff [4], and plays an important role in the design of cryptographic
schemes and protocols (see, e.g., [2/3]). This article refers to the common formu-
lation of the aforementioned concept, which was given in [IJ.

Loosely speaking, the definition of a proof of knowledge requires the existence
of a “knowledge extractor” that, when given access to any strategy, outputs the
relevant information within (expected) time that inversely proportional to the
probability that the given strategy convinces the knowledge verifier. Schemati-
cally, the definition of a proof of knowledge requires something with respect to
any strategy.

The issue addressed in this article is the following. Usually, in definitions of
the aforementioned type, it does not matter whether one quantifies over all prob-
abilistic strategies or over all deterministic strategies. The reason is that, usually,
satisfying the more restricted definition (which refers only to all deterministic
strategies) immediately implies satisfying the general definition (which refers to
all probabilistic strategies). Unfortunately, this does not seem to be the case in
the current setting (of the definition of proofs of knowledge).

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 114-[[2Z3] 2011.
© Springer-Verlag Berlin Heidelberg 2011

On Proofs of Knowledge: Probabilistic vs Deterministic Provers 115

1.1 The Source of Trouble

In this subsection we provide a high-level description of the technical problem
addressed in this work. We re-iterate this explanation, using more precise style
after presenting the relevant definitions (in Section).

To clarify the source of trouble, let us first consider one of the many settings
in which the problem does not arise; specifically, we consider the setting of zero-
knowledge. In this case, the ability to simulate (in a black-box manner) any
deterministic verifier strategy, implies the ability to simulate any probabilistic
verifier strategy. The same holds also when we restrict attention to strategies
that can be implemented by polynomial-size circuits. The reason is that given
any probabilistic strategy, we may consider all residual deterministic strategies
(obtained by all possible fixing of the strategy’s coins), and obtain the desired
simulation (for the probabilistic strategy) by combining all the corresponding
simulations (i.e., of the residual deterministic strategies).

This simple argument (per se) fails when applied in the current context (of
proofs of knowledge). Indeed, we can consider all residual deterministic prover
strategies that emerge from a given probabilistic prover strategy, and we can
combine the corresponding extraction procedures, but the combined procedure
does not necessarily run in time that is inversely proportional to the probability
that this prover convinces the verifier. For example, suppose that on input z,
with probability é (over the choice of the prover’s coins), the residual prover
convinces the verifier with probability 2% (where the probability here is over
the verifier’s moves), and otherwise the residual prover convinces the verifier
with probability 1. Then, in the first case extraction may run in (expected)
time related to 2/*!, whereas in the second case it runs for polynomial-time. It
follows that the extraction for the original probabilistic prover strategy runs in
(expected) time that is related to é .21l But this probabilistic prover strategy
convinces the verifier with probability exceeding ; (Thus, this extractor does
not run in time that is inversely proportional to the success probability of the
probabilistic prover strategy.)

1.2 On the Importance of Relating the Two Definitions

Needless to say, when faced with two natural definitions we wish to know whether
they are equivalent. Furthermore, we note that the two different definitions
have appeared in the literature: For example, the definition in [I] refers to any
probabilistic prover strategy, while the definition in [2, Sec. 4.7] only refers to
(arbitrary) deterministic strategies (see further discussion in Section [). Thus,
equating the two definitions (which appear in two central texts on this subject)
becomes even more important (as it aims at eliminating a source of confusion in
the current literature).

In addition to the foregoing generic and abstract motivation, there is also a
concrete motivation to our study. It is typically easier to deal with determin-
istic strategies than with probabilistic ones, and thus relating the two defini-
tions yields a useful methodology (i.e., demonstrating the “proof of knowledge”

116 M. Bellare and O. Goldreich

property with respect to deterministic strategies and deriving it for free with
respect to probabilistic strategies). For example, we note that in [I, Apdx E]
the “proof of knowledge” property (of the Graph Isomorphism protocol) is only
demonstrated with respect to deterministic strategies, and this demonstration
does not seem to extend to probabilistic strategies%

Let us stress that in many applications the relevant prover strategies are in
fact probabilistic. This is the case whenever proof-of-knowledge are the end goal
(or close to it as in identification schemes), because in these cases the prover
strategy represents an arbitrary adversarial behavior 2

1.3 Owur Result

We show that the aforementioned gap (between the two natural formulations of
the concept of a proof of knowledge), can be bridged in all natural cases (e.g.,
for NP-statements). The basic idea is that, instead of using (in the extraction)
a single residual deterministic prover (derived by fixing random coins to the
original probabilistic strategy), we employ numerous such residual deterministic
strategies. Specifically, we invoke in parallel many executions of the knowledge-
extractor (for deterministic strategies), and provide each of these invocations
oracle access to a different residual deterministic strategy. These parallel exe-
cutions are emulated in a specific manner (as detailed in Section [3) in order to
ensure the desired extraction property.

2 Formal Setting

Let us start by recalling the definitional schema that underlies the two definitions
that we study. Generalizing the treatment in [I] and [2, Sec. 4.7.1], we shall
refer to an arbitrary class of potential (prover) strategies, denoted S. Indeed,
the treatment of [I] is obtained by letting S be the class of all (probabilistic)
strategies, whereas the treatment of [2, Sec. 4.7.1] is obtained by letting S be
the class of all deterministic strategies.

2.1 Preliminaries

We first recall the basic setting, which consists of strategies (for parties in
protocols) and a formulation of potential knowledge.

! It seems that the authors of [I] overlooked this point. They either did not notice that
the argument is restricted to deterministic strategies or assumed that the demonstra-
tion can be easily extended to probabilistic strategies. We mention that the argument
presented in [I Apdx E] applies to any three-move Arthur-Merlin protocol for NP
that has the following strong soundness property: Given any two accepting tran-
scripts (for the same input) that start with the same Merlin message but differ on
Arthur’s message, one can efficiently find a corresponding NP-witness.

In contrast, in other applications, where proofs-of-knowledge are used as a tool (and
the corresponding knowledge-extractor is used by some simulator), it suffices to
consider deterministic prover strategies (because these are derived from residual
deterministic strategies that are derived in the course of the security analysis).

On Proofs of Knowledge: Probabilistic vs Deterministic Provers 117

Strategies. Loosely speaking, deterministic strategies are functions that specify
the next message to be sent by a party, based on its private input (which is
hardwired in them) and as a function of the messages it has received so far.
General (probabilistic) strategies are similar, except that the next message may
also depend on a random input that is presented to these strategies. Formally, a
(probabilistic) strategy o is a function from {0, 1}* x {0,1}* to {0, 1}* such that
o(w,7) denotes the message to be sent by the corresponding party given that
its random input equals w, and the sequence of messages received so far equals
v. Note that the strategy depends also on private inputs of the corresponding
party, to which the outside world has no direct access. (These private inputs are
hardwired in o and do not appear explicitly in our notation.)

For a probabilistic strategy o, we often consider residual deterministic strate-
gies of the form o, = o(w) obtained by fixing the value of the random input to

w (ie., ou(v) = o(w,v)).

The Two Perceptions of Strategies. Strategies will be used both as oracles
and as specifying the actions of interactive machines. Specifically, we mean the
following:

— When we discuss the interaction between parties on a common input, we
incorporate this common input in each of the two strategies. The interaction
of a strategy o with a strategy o’ is the sequence of messages exchanged
between the residual deterministic strategies o, and o/,, where w and w’
are uniformly distributed. This sequence equals a1, 81, a2, B2, ... such that
Q41 = O’(u)7 (ﬁh ,ﬁz)) and ﬁl = 0'/(0.)’7 (al, ceey Ozz))

— When using ¢ as an oracle, the oracle machine may issue arbitrary queries,
which need not be consistent with the way that ¢ interact with any inter-
active machine. In particular, these queries may relate to different values of
random input w, all chosen at the discretion of the oracle machine.

The second item represents a relaxation of the common interpretation of the
definition of using a probabilistic strategy as an oracle oracle, and thus a short
discussion is in place. The common interpretation of this notion is that the user
(i.e., the oracle machines) is given oracle access to a (single) residual determinis-
tic strategy (i.e., 0.,) that is obtained from o by fixing a uniformly distributed w.
In fact, all prior constructions of knowledge extractors used this interpretation.
We believe, however, that the more liberal interpration suggested above (i.e., by
which the user is given oracle access to o itself) is consistent with the simulation
paradigm and is adequate in all reasonable applications. Actually, the knowledge
extractor constructed in this work refers to an intermediate interpretation (of
using a probabilistic strategy o as an oracle). By this interpretation the oracle
machine may is given access to several residual deterministic strategies (i.e., sev-
eral 0,,’s) that are derived from the same probabilistic strategy by the selection
of independently and uniformly distributed values of the random input w.

The Relevant Knoweledge. We capture the relevant knowledge by a binary
relation R C {0,1}* x {0,1}* such that, on common input z, the “claimed

118 M. Bellare and O. Goldreich

knowledge” refers to knowledge of a string in R(x) def {y : (z,y) € R}. The
archetypical case is of NP-relations; that is, relations R that are polynomially
bounded (i.e., (z,y) € R implies |y| < poly(]z|)) and are polynomial time recog-
nizable (i.e., there exists a polynomial-time algorithm A such that A(x,y) =1
if and only if (z,y) € R). We denote by Sg the set of strings for which a “claim

of knowledge” is not bluntly wrong; that is, Sp {x: R(z) # 0}.

2.2 The Actual Definitions

Our focus will be on the validity condition of the following definition, but for
sake of completeness we state also the non-triviality condition.

Definition 1 (schema for defining proofs of knowledge): Let R be a binary re-
lation, and k : {0,1}* — [0,1]. We say that an interactive machine V is a
knowledge verifier for the relation R with respect to a class of strategies S (and
knowledge error k) if the following two conditions hold.

Non-triviality: For every x € Sg, there exists a strategy o € S such that the
verifier V always accepts when interacting with o on common input x.
Validity (with error k): There exists a probabilistic oracle machine K and a poly-
nomial q such that, for every strateqy o € S and every x, machine K satisfies

the following condition:
If when interacting with o, on common input x, the verifier V accepts
with probability p, > k(x), then on input © when given oracle access
to o machine K outputs a string in R(x) within an expected number
of steps upper-bounded by

q(l)

Pz — K(x)

(1)

Note that the value of p, depends on V, the strateqy o, and the
common input x. The probability space to which p, refers is that
of all possible coin tosses of the strategies V and o. Likewise, the
probability space underlying Eq.) consists of all possible coin tosses
of the machine K and the strategy o.

The oracle machine K is called a (universal) knowledge extractor, and k is called
the knowledge error function.

In particular, it follows that x ¢ Sg implies p, < k(z). We stress that, on
input = and when given oracle access to a strategy o that convinces V to accept
x with probability exceeding x(z), the knowledge extractor always outputs a
string in R(zx); that is, in this case, Pr[K°(z) ¢ R(z)] = 0. However, when the
said probability does not exceed k(z), all bets are off. Nevertheless, if R is an
NP-relation then we may assume, without loss of generality, that for every x and
every o it holds that Pr[K?(x) ¢ (R(z) U{L})] = 0, where L indicates halting
without output. We now turn to the definitions studied in this article.

On Proofs of Knowledge: Probabilistic vs Deterministic Provers 119

Definition 2 (the two definitions):

Following Definition 3.1 in [I]: We say that V is a knowledge verifier for the re-
lation R with knowledge error « if Definition[d] holds with S being the set of
all possible (probabilistic) strategies.

Following Definition 4.7.2 in [2]: We say that V is a restricted knowledge verifier
for the relation R with knowledge error & if Definition [l holds with S being
the set of all possible deterministic strategies.

The two definitions differ only in the scope of strategies considered: [IJ, Def. 3.1]
refers to all possible (probabilistic) strategies, whereas [2, Def. 4.7.2] refers only
to all possible deterministic strategiesﬁ Nevertheless, we show that in all natural
cases (e.g., NP-relations) the restricted definition implies the general one.

2.3 Our Result

Before stating this result formally, let us point out why it is not as obvious as
analogous results regarding related definitions [Suppose that V is a restricted
knowledge-verifier (with knowledge error k = 0) and let K be the correspond-
ing knowledge extractor. Given a probabilistic strategy o, the straightforward
attempt to extract knowledge from o consists of invoking K while providing it
with oracle access to the residual deterministic strategy o, where w is uniformly
distributed. The problem is that the probability that o, convinces V', denoted
p(w), may deviate arbitrarily from the probability that ¢ convinces V', denoted
p. That is, the random variable p(w) may behave arbitrarily subject (only) to
the condition p = E, [p(w)] (and, of course, p(w) € [0, 1]). This, in turn, implies
that the expected running-time of K%~ (taken also over the random choice of
w) is not necessarily inversely proportional to p. For example, it may be that
Pr[p(w) = 27"] = 1/2 and Pr,[p(w) = 1] = 1/2, and in this case the expected
running-time of K%< may be 2™ while E,[p(w)] > 1/2. Indeed, in general, it
does not necessarily hold that E,[1/p(w)] < poly(n) - E,[p(w)]. Nevertheless, we
prove the following.

Theorem 3 (main result): Let V be a restricted knowledge verifier for R with
knowledge error k, where the length of the binary expansion of k(x) is polynomial
in |x|. Suppose that the corresponding knowledge extractor, K, never outputs a
wrong answer; that is, for every x and o, it holds that Pr[K°(x) & R(x)U{L}] =

3 Unfortunately, these facts are not perfectly clear in the original texts: The formu-
lation of [I Def. 3.1] refers to all possible “interactive functions”, yet the latter
are defined in [Il Def. 2.1] as arbitrary probabilistic strategies. The formulation of
[2, Def. 4.7.2] refers to all residual deterministic strategies that can be obtained by
fixing the random input of some probabilistic strategy, but in retrospect the latter
condition is a red herring (and does not help in extending this definition to the
general case of [I} Def. 3.1]).

4 Recall that simulation-security with respect to arbitrary (polynomial-size) deter-
ministic adversaries typically implies simulation-security with respect to arbitrary
probabilistic (polynomial-time) adversaries.

120 M. Bellare and O. Goldreich

0, where L indicates halting without output. Then, V is a knowledge verifier for
R with knowledge error k.

Theorem [J] asserts that, under the additional assumptions regarding x and K,
the restricted definition (i.e., [2], Def. 4.7.2]) implies the general definition (i.e., [1l
Def. 3.1]). As illustrated by the forgoing discussion, the corresponding knowledge
extractor (for [1, Def. 3.1]) is not K (or the minor modification of K discussed
above). We note that the two additional assumptions (regarding x and K) can
be easily met in case that R is an NP-relation. Details follows.

Recall that if R is an NP-relation, then we can check the output of K, and
thus (on input) we can always avoid outputting a string that is not in R(z).
This eliminates the additional assumption regarding K. As for the additional
condition regarding , it can always be enforced by possiblly increasing x a
little; that is, by resetting £(z) to [29(2D . k(2)]/2902D | where ¢ is an arbitrary

polynomial. Furthermore, in the case that R is an NP-relation, we may reset

k(z) to k' (z) def |2900=D) . g(z) | /290D for a sufficiently large polynomial ¢ (by

taking advantage of the fact that, for any « € Sg, a string in R(z) can be found
in time exp(q(|z|)))H

3 Proof of Theorem

Recall that the source of trouble is that for a uniformly distributed value of
the random input, the success probability of the corresponding residual deter-
ministic strategy (w.r.t convincing V) may be very different from the success
probability of the original probabilistic strategy. This may lead to overwhelm-
ingly long runs of the knowledge extractor (i.e., runs that contribute to the
total expected running-time more than we can allow). The basic idea is to
truncate such overwhelmingly long runs, and rely on the existence (in sufficient
probability measure) of runs that are not overwhelmingly long.

Let us illustrate this idea by referring to the foregoing example, where
Prjp(w) = 27"] = 1/2 and Pr[p(w) = 1] = 1/2 (and k = O)El In this case,
p = Ey[p(w)] > 1/2, and so our extraction procedure should run in expected
polynomial-time. Thus, we invoke K providing it with oracle access to o,,, where
w is uniformly distributed among all possible random inputs, and truncate the

® This fact allows for handing the case that the probability that ¢ convinces V to
accept x (i.e., ps) is very close to x(z) in the sense that p, — x(z) is significantly
larger than p, — k(z). We first note that in this case p, < r(z)+2~%1*! (as otherwise
pe — k(x) > 27900 and p, — &' (2) < pe — w(x) + 279020 < 2. (p, — k(x))). Thus,
in this case (where (p; — x(x))™' < 29020 we can afford running the standard
exhaustive search algorithm (which runs in time 290*D) in parallel to the given
knowledge extractor. On the other hand, if p, — &' (z) = O(ps — k(x)), then (pz —
k(z))™' = O((ps — #'(x))™"). Thus, given an knowledge extractor of error &, we
obtain a knowledge extractor of error ’.

Throughout the text, n denotes the length of the common input z, which we often
omit from the notation.

=]

On Proofs of Knowledge: Probabilistic vs Deterministic Provers 121

execution after a polynomial number of steps has elapsed. If an output was ob-
tained in this execution attempt, then we output it, otherwise we repeat the
experiment again. Note that, with probability 1/2, the residual strategy o, sat-
isfies p(w) = 1, in which case K7+ is expected to halt in polynomial-time with
the desired output. Otherwise (i.e., p(w) = 27™), the (truncated) execution of
K°?+ may be useless, but it will not cause much harm (since it is suspended after
a polynomial number of steps).

In the foregoing example we relied on a good a priori knowledge of the distri-
bution of p(w), which may not be available in general. Thus, in general, we shall
employ a somewhat more sophisticated argument. Following is a rough sketch of
the general argument, where we still assume for simplicity that x = 0. One key
observation is that there exists an integer i such that Pr,[p(w) ~ 277 is linearly
related to 2¢ - p (where p = E, [p(w)]). We do not know this i and so we run, in
parallel, numerous processes one per each of the relevant values of i. In the *!
process (i.e., the one related to the value i), we repeatedly attempt extraction
with deterministic residual provers (derived by random fixings of w), but trun-
cate each attempt after poly(n)-2% steps. Thus, for the correct value of 4, the i*®
relevant process will succeed in extraction within the allowed expected number
of steps (i.e., it is expected to make poly(n)/(2% - p) attempts, each running for
poly(n) - 2¢ steps, and thus the total expected running time is poly(n)/p).

We now turn to a rigorous description of the actual knowledge extractor for
probabilistic strategies. We fix an arbitrary = € Sg, but omit it from most
subsequent notations. Fixing an arbitrary randomized strategy o, we consider
an arbitrary choice of the strategy’s coins, w, and denote the residual strategy
by 0. In the rest, we will refer to selecting such w’s and providing oracle access
to the corresponding o,,, but we need not select these w’s ourselves; it suffices to
have the ability of providing oracle access to numerous random and independent
“incarnations” of ¢ that correspond to such choices of w’s.

Let p(w) denote the probability that verifier accepts when interacting with
0w, on common input z. By the hypothesis, if p(w) > k(z), then the knowledge
extractor K, given oracle to o, outputs a string in R(z) in expected time
q(|z])/(p(w) — k(x)), where ¢ is a fixed (universal) polynomial. As before, we let
p = E,[p(w)], and assume, without loss of generality, that p > k(z) (because
otherwise noting is required). In addition, let k = k(x) and let ¢ = poly(|z|)
denote an upper-bound on the length of the random input used by V' on common
input x. It follows that for every choice of w (which determines a residual strategy
0,,) it holds that 2¢ - p(w) is an integer (because the relevant probability space
is uniformly distributed over 2¢ possibilities). Recalling that » has a binary
expansion of length poly(|z|), we assume, without loss of generality, that 2° -
is also an integer. It follows that if p(w) < x + 2771, then p(w) < k.

We consider a partition of (k+27¢1 k + 1] into £ + 1 intervals such that the
ith interval is I; = (k +27% Kk + 271]. We claim that there exists i € [¢ + 1]
such that

2 (p—r)

Pryp(w) € I;] > A0+ 1)

(2)

122 M. Bellare and O. Goldreich

This claim follows, because otherwise we derive a contradiction as follows
(where in the first inequality we use the fact that p(w) < & + 27471 implies

p(w) < K):

l+1
Eulpw)] < Pry[p(w) <k +271 5+ Z Pry[p(w) € L] (k+277)
l+1 =
=r+ Y Pryfp(w) € L] - 27

i=1

=2 (p - k)
—i+1
<2 e
=1
_ pP—k
=K+ 9

where the second inequality uses the contradiction hypothesis (by which Eq. (2))
is violated for every i € [¢ + 1]). Recalling that p = E,[p(w)], we obtain p <
k + (p — k)/2, which contradicts the hypothesis p > k.

The new extraction procedure consists of running ¢ + 1 processes in parallel.
The ' process successively invokes time-bounded executions of the knowledge
extractor K, providing each such invocation with oracle access to a random
and independent incarnation of o (i.e., residual strategies o, for uniformly and
independently ditrsibuted values of w). The time-bound used in the i*® process is
2-q(|z|)-2%, where the ¢ is the polynomial guaranteed for K. Thus, if p(w) > k+2¢
then, with probability at least 1/2, it holds that K°«(z) halts in 2 - ¢(|z|) - 2
steps (because the expected number of steps is ¢(]z|) - 2¢). Once any of these
{4+ 1 processes outputs some string y, the entire parallel-process terminates and
y is used as output.

Recall that by the theorem’s hypothesis, whenever K outputs a string y it is
the case that y € R(z). Thus, we confine ourselves to analyzing the expected
running-time of the foregoing extraction process. Considering an arbitrary value
i that satisfies Eq. (@), we observe that the i*? process succeed after making an
2% (p—k)
4(6+1)

new extractor has expectation

—1
expected number of 2 - () trials. Thus, the overall time spent by the

2.4(0+1)

o _ O -qllal)) _ poly(jz])
y (e (2 allel) 2 = -

(L+1)- ") bk bk

and the theorem follows.

4 Concluding Remarks

We have established the equivalence of [Il, Def. 3.1] and [2, Def. 4.7.2] while
relying on the following three (reasonable) conventions (or assumptions):

On Proofs of Knowledge: Probabilistic vs Deterministic Provers 123

1. We assumed that the pharse “given oracle access to a probabilistic strategy
¢” means ability to query several (rather than one) residual deterministic
strategies of the form o, where the w’s are uniformly and independently
distributed.

2. We assumed that the knowledge-extractor never outputs a wrong string (i.e.,
a string not in R(x)), regardless of which input « and which strategy o it is
given access to.

3. We assumed that the knowledge error function is nice in the sense that,
for every z, the binary expansion of x(z) has length polynomial in |z|.

We believe that these assumptions do not impair the applicability of our result.
Still we wonder whether (some of) these assumptions can be eliminated.

References

1. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidelberg (1993)

2. Goldreich, O.: Foundation of Cryptography — Basic Tools. Cambridge University
Press, Cambridge (2001)

3. Goldreich, O.: Foundation of Cryptography — Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

4. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. STAM Journal on Computing 18, 186—208 (1989); Preliminary Ver-
sion in 17th STOC (1985)

On the Average-Case Complexity of Property
Testing

Oded Goldreich

Abstract. Motivated by a study of Zimand (22nd CCC, 2007), we con-
sider the average-case complexity of property testing (focusing, for clar-
ity, on testing properties of Boolean strings). We make two observations:

1. In the context of average-case analysis with respect to the uniform
distribution (on all strings of a fixed length), property testing is
trivial. Specifically, either the YES-instances (i.e., instances having
the property) or the NO-instances (i.e., instances that are far from
having the property) are exponentially rare, and thus the tester may
just reject (resp., accept) obliviously of the input.

2. Turning to average-case derandomization with respect to distribu-
tions that assigns noticeable probability mass to both YES-instances
and NO-instances, we identify a natural class of distributions and
testers for which average-case derandomization results can be
obtained directly (i.e., without using randomness extractors). Fur-
thermore, the resulting deterministic algorithm may preserve the
non-adaptivity of the original tester. (In contrast, Zimand’s argu-
ment utilizes a strong type of randomness extractors and introduces
adaptivity into the testing process.)

Keywords: Property Testing, Average-Case Complexity.

An early version of this work appeared as TR07-057 of ECCC. The current
revision is quite minimal.

1 Introduction

The starting point of this article is Zimand’s study of possible derandomiza-
tions of randomized sublinear-time algorithms [Z]. Zimand showed that ran-
domized sublinear-time algorithms can be derandomized yielding deterministic
algorithms of polynomially-related complexity that err on a negligible fraction
of the instances. Specifically, he showed that, for some fixed o > 0, any random-
ized algorithm of time-complexity T such that T'(n) < n® can be emulated by a
poly(7T')-time deterministic algorithm that errs on at most an exp(—{2(T"logT))
fraction of the instances. Needless to say, Zimand’s work (as well as the current
article) refers to a “direct access” model of computation in which each bit of
the input can be read at unit cost. Zimand noted the relevance of his work to
property testing, but our view is that this aspect of his work should be evalu-
ated with great care. Articulating this view is the main motivation of the current
article.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 124-[[35] 2011.
© Springer-Verlag Berlin Heidelberg 2011

On the Average-Case Complexity of Property Testing 125

1.1 Average-Case with Respect to the Uniform Distribution

In discussing the theoretical significance of his work, Zimand says “it shows that
the properties that can be checked in sublinear time depend, except for a few
inputs, on just a few bits of the input and the locations of these bits can be found
very fast.”l] We fear that such a phrasing does not put adequate emphasis on the
exception clause (i.e., “except for a few inputs”). Furthermore, in our opinion,
the crux of property testing is dealing with non-typical (i.e., exceptional) inputs,
whereas dealing with random inputs is typically uninteresting.

We first note that average-case analysis with respect to the uniform distribu-
tion is not adequate in the context of testing properties of strings, which in turn
cover almost all types of property testing problems (e.g., testing graph properties
in the adjacency matrix model). The reason is that property testing problems
are special type of promise problemsﬁ in which one should distinguish instances
having the property from instances that are far from any string having the prop-
erty. However, as shown in Section[2, for every property of n-bit strings either the
first set (i.e., instances having the property) or the second set (i.e., instances far
from having the property) has exponentially vanishing density. In the first (resp.,
second) case, a trivial tester that rejects (resp., accepts) every input (without
reading a single bit) is correct on all but a exponentially vanishing fraction of
all inputs, where the exceptional cases consists of all the YES-instances (resp.,
all the “far-away” instances).

Indeed, the average-case complexity of promise problems is meaningful only
with respect to distributions that assign noticeable probability mass to both YES-
instances and NO-instances (because otherwise a trivial algorithm as above will
do). However, the uniform distribution cannot satisfy the latter condition in
the case of promise problems that correspond to property testing (of Boolean
strings).

1.2 A Direct Average-Case Derandomization for Many Natural
Cases

We thus turn to average-case derandomization with respect to distributions
that assigns noticeable probability mass to both YEs-instances and NO-instances
(i.e., “far-away” instances). While Zimand’s approach may be applicable to this
context tO(E, we identify a natural class of distributions and testers for which

! See last paragraph of [Z, Sec. 1.0].

2 Recall that promise problems [ESY] are represented as pairs of non-intersecting sets
A, B C {0,1}* and solving such problems requires distinguishing inputs in A from
inputs in B, while an arbitrary answer is allowed for inputs that are neither in A nor
in B. For such a promise problem we say that a string in A U B satisfy the promise
(while strings outside A U B violate the promise).

3 As shown in Section [} such distributions must have min-entropy at most n — £2(n),
while [Z] does not provide results for this range of paramters. Still it is possible that
the basic approach of [Z] coupled with a suitable randomness extractor (possibly
tailored for this application) may be applicable to such distributions.

126 O. Goldreich

average-case derandomization results can be obtained directly. Furthermore, we
believe that our analysis provides a more illuminating account of what is actually
going on.

We recall that, in continuation to [GW], Zimand [Z] emulates the computation
of the original randomized tester by applying a (special type of) randomness
extractor to the input, and replacing the coin tosses of the original tester with
corresponding outputs of the extractor. Consequently, even if the original tester
is non-adaptive (as is the case with many natural property testers), the resulting
deterministic algorithm is adaptive (because the emulation step depends on the
bits read in the randomness-extraction step). In contrast, we show that, in many
natural cases, an average-case derandomization can be obtained by arbitrarily
fixing the coins of the original tester.

To illustrate the point, let us consider the problem of testing whether a given
Boolean string has a majority of 1-values (or is far from any such string). In this
case, we may obtain a deterministic algorithm by inspecting the value of the first
few bits in the string, where this algorithm decides correctly on almost all n-bit
strings that have a number of 1-values that is bounded away from n/2; that is,
ruling by the majority of the inspected bits, we decide correctly on almost all
elements in the set of n-bit strings having Hamming weight outside the interval
[0.497,0.51n]. Furthermore, any fixed set of sufficiently many bit positions can
be used for this purpose. For a general treatment, see Section [3

We illustrate the general treatment by considering the special case of testing
graph properties in the adjacency matrix model (as in, e.g., [GGR]). In this
setting (but also in other natural settings), the natural property testers use
their randomness solely for determining the bit positions to be examined in the
input. Furthermore, at the cost of squaring the query complexity, we may assume
that any graph property can be tested by using randomness in such a restricted
manner [GT]. In Section [l we show that a deterministic tester that inspects the
subgraph induced by any fived set of vertices (of adequate size) errs rarely with
respect to any distribution on labeled graphs that is invariant under isomorphism.

1.3 Additional Comments

We note that, in many cases, it is easier to construct property testers that work
only on typical objects drawn from natural distributions rather than to construct
standard testers that work on all objects. This fact is mildly reflected by the
results shown in Section[3 where we convert standard (randomized) testers into
deterministic “average-case testers”; that is, here getting rid of randomization
is considered a simplification, but the query complexity of the resulting tester is
not smaller than the query complexity of the original tester However, in many
natural examples (see one below), we can also reduce the query complexity.
Details follow.

Let us first emphasize the fact that, when considering worst-case complexity,
randomness is essential for testing natural properties (see, e.g., [GS], and note

4 Actually, the the query complexity of the resulting tester is somewhat larger than
the query complexity of the original tester.

On the Average-Case Complexity of Property Testing 127

that this is an unconditional result). Indeed, this result stand in contrast to the
aforementioned average-case testing results, and provides a formal sense in which
“average-case testing” is easier than standard (worst-case) testing. However, we
claim that things go beyond this sense: Detecting random objects that are far
from a property is typically easier than detecting arbitrary objects that are far
from this property.

Consider, for example, the notoriously hard problem of testing triangle-freeness
in the adjacency matrix model. As shown by Alon [A], testing triangle-freeness
requires a number of queries that is super-polynomial in the reciprocal of the
proximity parameter, denoted e. In contrast, for a random graph of edge density
e and any three vertices, with probability €3, the subgraph induced by these
three vertices is a triangle.

Reservations Regarding Our Own Opinions. The direct average-case derandom-
izations presented in Section [refer to distributions that are invariant under
natural reshuffling of the presentation of the studied objects (e.g., in the case of
labeled graph we considered distribution that are invariant under isomorphism).
Although such distributions arise naturally in many cases, distributions that
lack this feature are natural in other cases. For example, consider a distribution
over real-valued vectors (or matrices) that is obtained by the following two-step
process: First a vector (resp., a matrix) is selected according to an arbitrary dis-
tribution, and then each of its entries is pertubed at random and independently
of anything else. The resulting distribution may not satisfy any of the invariances
considered in Section Bl but it does have high min-entropy. Recalling that vari-
ous natural properties of vectors (resp., matrices) can be tested in probabilistic
sublinear time (cf., e.g., [EKKRV] [FK]), we note that Zimand’s approach [Z]
maﬁl be applicable in this case (and if so yield average-case derandomization of
natural appeal).

2 Average-Case with Respect to the Uniform
Distribution

We start by recalling the setting of property testing (cf., e.g., [G [R]), when
specialized to bit strings (of fixed length). We comment that other finite objects
can be naturally represented by such generic strings, and thus corresponding
properties can be naturally cast in this framework. The most notable exam-
ple is property testing of graphs in the adjacency matrix model (as introduced
in [GGRY]).

For a generic length parameter n, we consider the set of all strings over {0, 1}",
and an arbitrary property P, C {0,1}". Property testing with respect to a
distance parameter € > 0 corresponds to distinguishing inputs in P,, from inputs
in I'.(P,,), where

I.(p,) def {r €{0,1}":Vz €P, A(x,z)>e-n} (1)

5 See Footnote

128 O. Goldreich

and A(zy -+ @n, 21+ 2n) = |{i : 2; # 2;}| denotes the number of bits on which
r=x1- Tpandz =2z -2, disagreeﬁ That is, property testing with respect to
e corresponds to deciding the promise problem (P,,, I'.(P,)). However, as we shall
see, with respect to the uniform distribution on {0, 1}", this promise problem is
trivial on the average. That is:

Theorem 2.1 ([AS, Thm. 7.5.3], reformulated): For every constant € > 0 there
exists a constant ¢ > 0 such that for every n if |Pp| > 272", then |I(P,)| <

272" More generally, if |P,| > p-2" and e > \/Sln(nl/p) , then |Te(P,)| < p-2™.

Indeed, Theorem 2.1l can be reformulated by referring to a uniformly distributed
x € {0, 1}™. This reformulation (of the special case of constant € > 0) asserts that
(for some constant ¢ > 0) either Pry[z € P, < 27 or Pry[z € I'.(P,)] < 27
In the first case, a tester that always reject is correct on all but at most a 27"
fraction of the n-bit inputs, whereas in the second case the same holds for a tester
that always accepts. Thus, property testing is trivial on the average with respect
to any distribution that has min-entropy m et — 0%1) (i.e., a distribution X,
such that of every z it holds that Pr[X,,=xz] <27™)

Proof: The theorem is merely a reformulation of a well-known result regarding
the volume of balls around sets. Specifically, let B4(S) denote the set of n-

bit long strings that are at distance at most d from some string in S (i.e.,
def

By(S) = {x € {0,1}": Jy € S s.t. A(z,y) < d}). Then, Theorem 7.5.3 in [AS]
(see proof in the Appendix) asserts that if | S| > e=>*/2. 2" then 1Boxyn(S)| =
(1— e”‘z/z) - 2", Using S = P, and A = /2In(1/p), where p = |P,|/2", we
get |B\/sn1n(1/p) (Pn)| > (1 — p) - 2". Noting that I(P,) = {0,1}"\ Ben(Py), the
general claim follows. The special case follows by noting that p = 27°" implies
V/(8In(1/p))/n = \/8¢/loge (and so using ¢ = ¢2/8 will do).

Generalization. We note that Theorem 2] generalizes to properties of sequences
over any alphabet Y. That is, for any property P, C X, it holds that if |P,,| >

p-|Z|" and € > \/81“(73/"), then |I'e(P,)| < p - |X|™, where I'.(P,) denotes the

set of n-long sequences over X that are e-far from every sequence in P,,. (See
further details in the Appendix.)

3 A Direct Average-Case Derandomization for Many
Natural Cases

In this section we show that, in many interesting settings of property testing,
average-case derandomization results can be obtained more directly than by

5 An alternative exposition may refer to Boolean functions of the form f : [n] — {0,1}.
In this case A(f,g) = [{i: f(i)#g(i)}]-

" In fact, we may allow min-entropy m = n — (cn/2), where c¢ is the constant in
Theorem 211 For such a distribution X,, (of min-entropy n — (cn/2)), it holds that
either Pr[X, € P,] < 272 or Pr[X,, € I.(P,)] <27/

On the Average-Case Complexity of Property Testing 129

following the approach suggested by Zimand§ We start by considering the con-
crete setting of testing graph properties in the adjacency matrix model (as
in [GGR]), and later generalize the treatment to other settings. Indeed, the
setting of testing graph properties in the adjacency matrix model provides the
most appealing application of the general approach to be described later.

3.1 On Testing Graph Properties in the Adjacency Matrix Model

Recall that in this model (for testing graph properties), n-vertex graphs are
represented by Boolean strings of length n?. For technical reasons, we prefer to
represent such graphs as Boolean functions defined over the set of the (Z) (un-
ordered) vertex-pairs, which is actually more natural (as well as non-redundant).
Note that the set of all permutations over [n] induces a transitive group of
permutations over these pairs, where the permutation 7 : [n] — [n] induces
a permutation that maps pairs of the form {i,j} to {m(i),7(j)}. Indeed, any
graph property is invariant under this group, which is hereafter referred to as
the group of vertex-relabeling; that is, G=([n], E) has the property if and only if

7(G)=([n], {r(i), 7(j)} : {i.j} € E}) has this property.

Theorem 3.1 Let G, be a graph property, referring to n-vertex graphs, and let
X, be any arbitrary distribution of n-vertex graphs that is invariant under the
group of vertex-relabeling (i.e., for every permutation 7 : [n] — [n] it holds that
X, and 7(X,,) are identically distributed). Suppose that the promise problem
(Gn, Ie(Gy)) can be decided correctly (in the worst case) by a probabilistic tester
of query complexity q(n, €) and error probability at most 1/3. Then, for every k <
n/O(q(n,€)?), there exists a deterministic algorithm of query complexity O(k -
q(n,€)?) that inspects only vertex pairs that correspond to the vertices 1, ...,O(k -
q(n,€)) and is correct on a random input X,, with probability at least 27%.

As will be clear from the proof, we may use any O(k-q(n, €)) fixed vertices rather
than the vertex set {1,...,O(k - q¢(n,€))}.

Proof: By [GT) Thm. 2], we may convert the original tester into a canonical

tester that selects uniformly a set of n’ def O(q(n, €)) vertices, denoted R, and ac-
cepts if and only if the subgraph induced by R has some predetermined (graph)

property G/,. By invoking the resulting (canonical) tester ¢ def O(k) times, we re-
duce its (worst-case) error probability to 27%. We claim that the resulting tester,
denoted A, can be derandomized (for average-case performance) by merely using
any fized set of t-n’ vertices rather than a random set of t-n’ vertices as selected
by A. We denote the resulting deterministic algorithm by D.

To prove the foregoing claim, we consider an arbitrary input graph G that
satisfies the promise (i.e., either G € G,, or G is e-far from G,). By the foregoing
discussion we know that the probability that A errs on input G is at most
27F. Let m denote a uniformly distributed permutation of [n], and consider the

8 Here we ignore the question of the applicability of Zimand’s approach to distributions
of min entropy n — £2(n); cf. Footnote [

130 O. Goldreich

graph 7m(G) obtained from G by relabeling its vertices according to 7. Note that
m(G) € Gy, if and only if G € G,, (and, likewise, 7(G) is e-far from G,, iff G is
e-far from G,,). On the other hand, the distribution of the view of A on input G
is identical to distribution of the view of D on input 7(G), because a random 7
maps any fixed set of vertices to a uniformly distributed set of vertices. We stress
that the first probability space is defined over the coin tosses of A, whereas the
second probability space is defined over the random relabeling 7. We conclude
that the probability that D errs on input 7(G) is at most 2-k.

By the hypothesis that X, is invariant under the group of vertex-relabeling, it
follows that X, can be described by a process in which one first selects a random
graph G (possibly G «— X,,), and then outputs 7(G), where 7 is a uniformly
distributed permutation of [n]. Note that if G violates the promise, then so does
7(G), whereas if G satisfies the promise, then the probability that D errs on
input 7(G) is at most 27%. It follows that D errs on input X,, with probability
at most 27,

3.2 Generalization

Theorem [31] can be extended in various ways. We first note that most natural
testers (not only in the setting of testing graph properties in the adjacency
matrix model) are “kind of canonical” in the sense that they select some random
set of “pivots” and consider small sets of bit-locations as determined by these
pivots. That is, randomization is only used in these testers for the selection of
the pivots, which induce queries that are each uniformly distributed. Thus, the
strategy of the proof of Theorem [3.1] can be applied, resulting in a deterministic
algorithm that uses a fixed set of pivots and errs with probability at most 2%
on any input distribution that is invariant under permutations that correspond
to mapping among sets of pivots. To formalize the above discussion, we need
some definitions.

We turn back to properties of n-bit strings, which we actually view as functions
from [n] to {0, 1}. More generally, we shall consider properties of functions from
[n] to an arbitrary alphabet Y. For any set (or rather group) IT of permutations
over [n], we say that the property P,, (of such functions) is IT-invariant if for every
f:[n] = X and every w € IT it holds that f € P, if and only (fow) € P,,, where
(fom)(i) = f(n(7)) (for every ¢ € [n]). In the following definition, “normality”
amounts to non-adaptivity augmented by the requirement that the final decision
is deterministic and only depends on the oracle answers, whereas “II-normality”
corresponds to the mapping between the aforementioned pivots.

Definition 3.2 (normal testers): Let II be a permutation group over [n] and Py,
be a II-invariant property. We say that a tester for P, is normal if there exists
a query-generating algorithm @Q and a verdict predicate V' such that on internal
coins w € {0,1}" and oracle access to any f : [n] — X the tester accepts if
and only if V(f(i1), ..., f(iq)) = 1, where (i1, ...,14) = Q(w). That is, the tester
queries the function at locations i1, ...,1q, which are determined by Q(w) and
accepts if and only if the predicate V' evaluates to 1 on the q-tuple of answers.
We say that the tester is II-normal if the following two conditions hold.

On the Average-Case Complexity of Property Testing 131

1. For every w,w’ € {0,1}" there exists m € II such that Q(w') = m(Q(w)),
where (i1, ..., 1q) = (m(i1), ..., 7(iq))-

2. For every w € {0,1}" and 7 € II there exists w' € {0,1}" such that Q(w') =
m(Qw))-

Note that, by definition, a normal tester is non-adaptive. The justification for
referring to the two additional conditions by the term I7T-normalily is provided by
the following Fact 3.3l But let us first mention that, indeed, the canonical graph
property testers (as defined in [GT] and used in the proof of Theorem Bl) are
normal. Furthermore, they are I1(V')-normal for the group IIVY) of all vertex-
relabeling. Other examples of normal testers are discussed at the end of this
section.

Fact 3.3 Let I and P,, be as in Definition[3.2, and suppose that V and Q are
as rerquired of a normal tester for P,,. Then, this tester is II-normall if and only
if for every w € {0,1}" and uniformly distributed w € IT it holds that 7(Q(w)) is
uniformly distributed in S def {Q(w') : v’ € {0,1}"} (i.e., for every w,w’ € {0,1}"
it holds that Prrec[r(Q(w))=Qw")] = 1/]9]).

Proof: Clearly, the latter (“distributional”) condition implies the two condi-
tion in Definition [3:2l To see that the other direction, we show that II-normality
implies that, for any fixed w,w’,w” € {0,1}", it holds that py, «» = Pu o, Where

Dab def Prren[n(Q(a)) = Q(b)]. The latter claim can be proved by fixing any
permutation my that satisfies Q(w”) = m(Q(w’)), and observing that a ran-
dom permutation in IT can be written as my o 7/, where m € IT is uniformly
distributed. Hence, p, v = Prren((mo o 7')(Q(w)) = Q(w”)], which equals
Prren[r'(Qw)) =Q(w)].

Theorem 3.4 (Theorem Bl generalized): Let II be a permutation group over
[n] and P, be a IT-invariant property. Let X, be a distribution over functions
from [n] to X such that for every such function f and every w € II it holds
Pr[X,, = f] = Pr[X,,= f o 7]. Suppose that the promise problem (P, ¢(P,)) can
be decided correctly (in the worst case) by a IT-normal tester of query complexity
q(n, €) and error probability at most 1/3. Then, for every k < n/O(q(n,€)), there
exists a (non-adaptive) deterministic algorithm that inspects the function value
at O(k - q(n,€)) fixred and predetermined positions and is correct on a random
X,, with probability at least 27F.

A distribution X,, as in the hypothesis of Theorem [3.4] is called IT-invariant.

Proof: The deterministic algorithm, denoted D, is obtained by fixing the
coins to the query-generating algorithm (). For example, we may query the
input function f at locations (i1,...,4q) = Q(0"), and accept if and only if
V(f(i1),...,V(ig)) = 1. (Recall that V represents a fixed predicate.) As in the
proof of Theorem Bl we actually apply this construction after reducing the
error probability of the original tester to 2.

132 O. Goldreich

To analyze the success probability of D on input X,,, we fix any function f and
consider the function distribution f o 7w, where m € II is uniformly distributed.
As in the proof of Theorem [B.1] the distribution of the view of the original tester
on input f is identical to distribution of the view of the deterministic algorithm
D on the randomized input f o 7. (Here we use Fact B3l) We conclude that if
f € P,UTI(P,), then the probability that D errs on the input distribution fom
is at most 27%. Again, using the hypothesis that X,, is II-invariant, we conclude
that the probability that D errs on input X, is at most 27%.

Corollaries. Indeed, Theorem [B.1] follows as a special case of Theorem [B.4] by
invoking [GT) Thm. 2] (and referring to the group of vertex-relabeling permu-
tations). Next, we illustrate the applicability of Theorem B4l to testing low-
degree polynomials (see, e.g., [RS]) and to testing monotone functions (see,
e.g., [GGLRS)).

— In the case of low-degree tests (see, e.g., [RS]), for some finite field F, we
are given a function f : F™ — F and wish to test whether it is a low-
degree polynomial. The standard test selects uniformly at random a line
in F™, queries some points that reside on fixed locations on this line and
accepts if and only if an adequate interpolation condition holds. This tester
is clearly normal. Furthermore, this tester is II-normal, where IT is the group
of all full-rank affine transformations of F™ (because such transformations
define a transitive operation on the set of all pairs of different points)ﬂ
Thus, Theorem B4 can be applied to any distribution of functions that is
Il-invariant.

— In the case of testing monotonicity (see, e.g., [GGLRS]), for some ordered

set S, we are given a function f : S™ — R and wish to test whether it is
monotone (i.e., whether f(«) < f(8) for every @ = (ay,...,) and § =
(B1y ...y Bm) such that «; < §; for every i € [m]). In the case that S =
{0, 1}, the standard test selects uniformly at random two points in S™ that
differ in a single coordinate, queries f on these two points, and accepts
if and only if an adequate inequality holds. This tester is clearly normal.
Furthermore, monotonicity is I7-invariant for the group IT that consists of
all permutations 7 : S™ — S™ such that m(au, ..., m) = (Qr/(1), v, Crr (m))
for some permutation «’ : [m] — [m]. Unfortunately, the foregoing tester
is not Il-invariant, because the permutations in II preserve the Hamming
weight of strings in {0,1}™.
In order to apply Theorem B.4] we decouple the foregoing tester into m tests
such that the i-th test selects uniformly an m-bit string o of Hamming weight
i and queries f on this string and on a random string obtained from a by
setting one of its 1-entries to zero. Each of these testers is IT-invariant, and
so we may apply an adequate extension of Theorem [3.4] that refers to testing
properties by a conjunction of several tests.

9 Note that our notion of normality is closely related (but not identical) to the notion
of linear invariances studied in [KS].

On the Average-Case Complexity of Property Testing 133

We comment that similar ideas can be applied even to non-adaptive testers,
which seems essential to settings such as testing properties of bounded-degree
graphs in the incidence list model (of [GR1]). For example, note that the testers
presented in [GRIL [GR2] only employ comparison-based computations; that is,
they can described in terms of operations such as select a random vertex,
select a random neighbor of a given vertex, and test equality of two
given vertices[ld Thus, the operation of these algorithms is maintained when
we relabel the vertices. Consequently, they can be derandomized analogously
to the proof of Theorem B.1] resulting in an algorithm that uses a fixed set of
vertices and a fixed set of neighbor indices[]

Acknowledgments. I am grateful to Omer Reingold and Ronen Shaltiel for
extremely useful and insightful discussions. I am also grateful to Marius Zimand
for correcting my initial impression by which [Z] can handle any source of linear
min-entropy.

References

[A] Alon, N.: Testing subgraphs of large graphs. Random Structures and Algo-
rithms 21, 359-370 (2002)

[AS] Alon, N.; Spencer, J.H.: The Probabilistic Method, 2nd edn. John Wiley &

Sons, Inc., Chichester (2000)

[EKKRV] Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-
Checkers. In: 30th STOC, pp. 259-268 (1998)

[ESY] Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Inform. and Control 61,
159-173 (1984)

[FK] Frieze, A., Kanan, R.: Quick approximation to matrices and applications.
Combinatorica 19(2), 175-220 (1999)
[G] Goldreich, O.: A Brief Introduction to Property Testing.

[GGLRS] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.:
Testing Monotonicity. Combinatorica 20(3), 301-337 (2000)

[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. Journal of the ACM, 653-750 (July 1998)

[GK] Goldreich, O., Kaufman, T.: Proximity Oblivious Testing and the Role of
Invariances. ECCC, TR10-058

[GR1] Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algo-
rithmica, 302-343 (2002)

[GR2] Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree

graphs. Combinatorica 19(3), 335-373 (1999)

10 Many of these algorithms also use the operation of retrieving all neighbors of a
given vertex, which can be emulated by successively selecting a random neighbor
for sufficiently many times. We also note that in [GRIl [GR2] the incidence-lists are
sorted, but this is immaterial to the algorithms. For simplicity, here we refer to
unsorted incidence-lists.

1 Alternatively, the bounded-degree graph model can be handled by the formalism
introduced in the subsequent work of [GK].

134 O. Goldreich

[GS] Goldreich, O., Sheffet, O.: On the randomness complexity of property test-
ing. Computational Complexity 19(1), 99-133 (2010); Extended abstract
in Proc. of RANDOM 2007 (2007)

[GT] Goldreich, O., Trevisan, L.: Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms 23(1), 23-57 (2003)
[GW] Goldreich, O., Wigderson, A.: Derandomization that is rarely wrong from

short advice that is typically good. In: Rolim, J.D.P., Vadhan, S.P. (eds.)
RANDOM 2002. LNCS, vol. 2483, pp. 209-223. Springer, Heidelberg (2002)

[KS] Kaufman, T., Sudan, M.: Algebraic Property Testing: The Role of Invari-
ances. In: 40th STOC, pp. 403412 (2008)

[R] Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Foun-
dations and Trends in TCS 5(2), 73-205 (2010)

[RS] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-
plications to program testing. SIAM Journal on Computing 25(2), 252-271
(1996)

[Z] Zimand, M.: On derandomizing probabilistic sublinear-time algorithms. In:
The Proc. of the 22nd IEEE Conference on Computational Complexity, pp.
1-9 (2007)

Appendix: Generalization of Theorem [2.1]

We first detail the generalization of Theorem 2] to properties of sequences over
any alphabet Y. This requires generalizing the definition of I as follows (for
any P, C X"):

I.(p,) e {re X" :VzeP, A(x,z) >e-n} (2)

where A(zy -+ Tp, 21 2n) = |{i : T; # 2;}| denotes the number of position in
the sequence on which z = z1-- -z, and z = 21 - - - z,, disagree.

Theorem [2.7], generalized. For any property P,, C X™, it holds that if |P,| >
p-| X" and € > \/Slng/’)), then |T(P,)| < p-|X|™.

Proof: The proof of Theorem 2.1 generalizes easily, because the proof of Theo-
rem 7.5.3 in [AS] applies (without any change) also to the general case. For sake
of self-containment, we reproduce the proof of [AS, Thm. 7.5.3]. Indeed, the
original text refers to X' = {0, 1} but it actually holds for any finite X' (provided
that A and I are defined as above).

Fixing any P,, C X" define Ap, () = min,cp, {A(z, 2)}, and consider a uni-
formly distributed w € X™. Then, the theorem’s statement can be reformulated
as asserting that if P, [Ap, (w)=0] > p, then Pr,[Ap, (w)>+/8nIn(1/p)] < p.In
order to prove this claim, we introduce a martingale (cf. [AS| Chap. 7)), (o, ..., Cn,
such that

i = Gilw) = |27 Z Ap, (w1 wilip1 -+ Tn) 3)

Tit1,-,Tn€X

On the Average-Case Complexity of Property Testing 135

where w = wy - -wy. (Indeed, ¢, (w) = Ap, (w) and ¢y = E,[¢,].) Note that
actually ¢; only depends on w; - --w;. Indeed, the martingale condition holds
(i-e., for every fixed wy - - - wj, it holds that E,,,, [Gi+1]¢] = ¢) and (11— G| <1
(because |Ap, (x) — Ap, (z')| < A(z,z’)). By the Martingale Tail Inequality
(cf. [AS] Thm. 7.2.1]) we have

Pro[Cn < Co — MWn] < e /2 (4)
Pro[Cn > Co + Mn] < e /2 (5)

Setting A = /2log(1/p) (so that p = e”‘z/z) and contrasting Eq.) with
Pr[¢, = 0] > p, we conclude that {; < A\/n. Thus, Eq. (@) implies Pr[¢, >
2M/n] < p, and the theorem follows.

A Candidate Counterexample to the Easy
Cylinders Conjecture

Oded Goldreich

Abstract. We present a candidate counterexample to the easy cylin-
ders conjecture, which was recently suggested by Manindra Agrawal and
Osamu Watanabe (see ECCC, TR09-019). Loosely speaking, the conjec-
ture asserts that any 1-1 function in P/poly can be decomposed into
“cylinders” of sub-exponential size that can each be inverted by some
polynomial-size circuit. Although all popular one-way functions have
such easy (to invert) cylinders, we suggest a possible counterexample.
Our suggestion builds on the candidate one-way function based on ex-
pander graphs (see ECCC, TR00-090), and essentially consists of iterat-
ing this function polynomially many times.

Keywords: One-Way Functions, Trapdoor Permutations, P/poly.

A version of this work appeared as TR09-028 of ECCC.

1 The Easy Cylinders Conjecture

Manindra Agrawal and Osamu Watanabe [2], Sec. 4] have recently suggested the
following interesting conjecture. The conjecture refers to the notion of an easy
cylinder, defined next, and asserts that every 1-1 and length-increasing function
in P /poly has easy cylinders.

Definition 1 (easy cylinders, simpliﬁe): A length function £:N—N is admis-
sible if the mapping n — £(n) can be computed in poly(n)-time and there exists a
constant € > 0 such that £(n) € [n®,n—nF]. A function f has easy cylinders if for
some admissible length function € there exists mappings 01,02 : {0,1}* — {0,1}*
such that the following conditions hold:

1. For every z, it holds that |o1(x)| = £(|z]) and |o2(x)| = |z| — £(]z|).

2. The function o(x) = (o1(x),02(x)) is 1-1, polynomial-time computable and
polynomial-time invertible. The cylinders defined by o1 consists of the col-
lection of sets {o7 ' (z')], : @' € {0,1}™},en, where o7 ' (")), def {z €
{0,1}": oy (z) = 2'}.

Each such set (i.e., o7 *(2')|n) is called a cylinder.

! Our formulation is a special case of the formulation in [2], but we believe that our
candidate counterexample also holds for the definition in [2].

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 136-[[420] 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Candidate Counterexample to the Easy Cylinders Conjecture 137

3. For every n € N and 2’ € {0,1}*™), there exists a poly(n)-size circuit C' =
Cyr such that for every x € oy " (x')], it holds that C(f(z)) = oa(x).
Thus, the circuit C (effectivelyd inverts f on the cylinder o7 (2')|n-

That is, when restricted to any such cylinder, the function f is easy to invert.

Needless to say, the existence of easy cylinders is interesting only in the case
that f is not polynomial-time invertible. Agrawal and Watanabe noted that all
popular candidates one-way functions have easy cylinders. Generalizing their
observations (and going somewhat beyond them), we first present four classes of
functions that are conjectured to be one-way and still have easy cylinders. Next
(in Section 3), we present our candidate counterexample.

2 Four Classes of Functions That Have Easy Cylinders

The first class generalizes the multiplication function (i.e., (z/,2") — 2’ -).
This class consists of (polynomial-time computable) functions f having the form
f(x) = g(o1(x), o2(x)) such that the o;’s satisfy the first two conditions in Defini-
tion[Mland the mapping (z', ") — (2, g(a’,2")) is easy to invert (by an efficient
algorithm, denoted I). That is, whereas the mapping (2/,2") — g(2’,2”) may
be hard to invert, augmenting the output with =’ (i.e., considering (z’,z")
(2, g(2',2"))) makes the mapping easy to invert. Clearly, the cylinders defined
by o1 are easy (since we can let Cy, () (f(x)) output the second element in the
pair I{oy(x), /(x)).

The second class consists of functions that are derived from collections of
finite one-way functions having a dense index set and dense domains[For ex-
ample, consider the DLP-based collection that consists of the functions {f, 4 :
Ly — Zp}(p’g), where p is prime, g is a generator of the multiplicative group
modulo p, and f, 4(2) = ¢* mod p. For simplicity, we consider collections of
the form {f, : {0,1}l*l — {0,1}1°1} ,c;, where the index set I is dense (i.e.,
|[In{0,1}™| > 2™/poly(n)). The one-wayness condition means that, for a typical
«a € I, the function f, is hard to invert, and so the “natural” cylinders defined
by o1(a, z) = « are not easy. Nevertheless, the function F(«, z) = (a, fo(2)),
which is (weakly) one-way, has easy (“unnatural”) cylinders that are defined by
o1(q, z) = z; specifically, it is trivial to extract oa(w,2) = « from F(a,z) =
(a, fa(z)). (Indeed, in these easy cylinders, the “hard to invert part of F” is
fixed.)

The third class consists of functions that are derived from collections of trap-
door one-way permutations. Unlike in the previous class, in the current case
a non-trivial index-sampling algorithm, denoted I, must exist. This algorithm

2 For any © € o7 (z')|n, an f-preimage of y = f(zx) is obtained by computing
oo, Cly)).

3 Indeed, we consider a restricted case of [, Def. 2.4.3]. On the other hand, note that
any collection of finite one-way functions with dense domains can be converted into
a collection of finite one-way functions over the set of all strings of a fixed length.
Thus, we may freely use the latter.

138 O. Goldreich

samples the index set along with corresponding trapdoors; that is, the coins
used to sample an index-trapdoor pair cannot be used as the index (because the
trapdoor must be hard to recover from the index). Let I (r) denote the index
sampled on coins 7, and let I»(r) denote the corresponding trapdoor (and sup-
pose that the domains are dense as before, which indeed restricts [4, Def. 2.4.4]).
Then, the function F(r,z) = (I1(r), f1,()(2)) is (weakly) one-way, but it has
easy cylinders that are defined by o1 (r, z) = r; specifically, we use the circuit
Cr(F(r,2)) = fl_lér)(z), which in turn uses the trapdoor I5(r) that corresponds
to the index I;(r). (Note that the cylinders defined by o1 (r, z) = 2z are not easy
in this case, since I7 is hard to invert!)

The last class consists of all functions that are computable in NCp; that
is, functions in which each output bit depends on a constant number of input
bits. Recall that this class is widely conjectured to contain one-way functions
(cf., the celebrated work of Applebaum, Ishai, and Kushilevitz [1]). For every
such function f : {0,1}™ — {0,1}", if we let oy be the projection of the n-bit
input on n — n'/? random coordinates, then, with high probability, we obtain
easy cylindersH The reason is that, with high probability, no output bit of the
function is influenced by more than one of the n'/? remaining coordinates (and
so the residual function f(z) obtained after fixing the value of o1 (z) is essentially
a projection).

3 Our Candidate Counterexample to the Conjecture

We note that the last class of functions (i.e., NCp) contains the candidate one-
way function suggested by us [3]. However, we believe that iterating this function
for a polynomial (or even linear) number of times yields a function that has
no easy cylinders. For sake of self-containment, we recall the proposal of [3],
hereafter referred to as the basic function.

The Basic Function. We consider a collection of finite functions {f, : {0,1}" —

{0,1}"},en such that f, is based a collection of d(n)-subsets, Sy, ..., S, C [n] &

{1,...,n}, and a predicate P : {0,1}%™) — {0,1} (as follows).

1. The function d is relatively small; that is, d = O(logn) or even d = O(1),
but d > 2.

2. The predicate P : {0,1}% — {0, 1} should be thought of as being a random
predicate. That is, it will be randomly selected, fixed, and “hard-wired” into
the function. For sure, P should not be linear, nor depend on few of its bit
locations.

4 In fact, the argument remain intact as long as £(n) = n — o(n'/?) (rather than
£(n) = n —n'/?). Actually, using n — 0o(n*?) random coordinates would work too,
since then (w.h.p.) no output bit of the function is influenced by more than two
of the 0(n2/ 3) remaining coordinates (and so a 2SAT solver can invert the residual
function on each of the individual cylinders).

A Candidate Counterexample to the Easy Cylinders Conjecture 139

3. The collection Sy, ...,S, should be expanding: specifically, for some k, the
union of every k subsets should cover at least k + £2(n) elements of [n] (i.e.,
for every I C [n] of size k it holds that [J,; Si| > k+ £2(n)). Specifically, it
is suggested to have S; be the set of neighbors of the i*" vertex in a d-regular
expander graph.

For x =z - -z, € {0,1}" and S C [n], where S = {i1,42,...,4%:} and ¢; < i;41,
we denote by zg the projection of z on S; that is, xg = x4, i, - - - z;,. Fixing P
and S, ..., S, as above, we define the function

ful@) € Plas,)P(as,) - Plas,). (1)
Note that we think of d as being relatively small (i.e., d = O(logn)), and hope
that the complexity of inverting f,, is related to 27/ Indeed, the hardness of
inverting f, cannot be due to the hardness of inverting P, but is rather supposed
to arise from the combinatorial properties of the collection of sets {Si, ..., Sn}
(as well as from the combinatorial properties of predicate P). In general, the
conjecture is that the complexity of the inversion problem (for f,, constructed
based on such a collection) is exponential in the “net expansion” of the collection
(i-e., the cardinality of the union minus the number of subsets).
We note that a non-uniform complexity version of this basic function (or
rather the sequence of f,,’s) may use possibly different predicates (i.e., different
P;’s) for the different n applications of P in Eq.[Il

The Iterated Function — the Vanilla Version. The candidate counterexample, F',
is defined by F(z) = flz;(llml)(m), where p is some fixed polynomial (e.g., p(n) = n)
and fitl(z) = f.(fi(x)) (and fl(z) = fu(x)). We conjecture that this function
has no easy cylinders.

The Iterated Function, Revisited. One possible objection to the foregoing func-
tion F' as a counterexample to the easy cylinder conjecture is that F' is unlikely
to be 1-1. Although we believe that the essence of the easy cylinder conjecture
is unrelated to the 1-1 property, we point out that this property may be ob-
tained by suitable modifications. One possible modification that may yield a
1-1 function is obtained by prepending the application of F' with an adequate
expanding function (e.g., a function that stretches n-bit long strings to m(n)-
bit long strings, where m is a polynomial or even a linear function). Specif-
ically, for a function m : N — N such that m(n) € [2n,poly(n)], we define
gn @ {0,1}" — {0,1}™™ analogously to Eq. [(i.e., here we use an expand-
ing collection of m(n) subsets), and let F'(z) = F(g|(x)); that is, for every

z € {0,1}", we have F'(z) = ff;({:i)("))(gn(x))

4 Conclusion

Starting with the aforementioned non-uniform complexity version of the basic
function f,, and applying different incarnations of this function in the different

140 O. Goldreich

iterations, we actually obtain a rather generic counterexample. Alternatively,
we may directly consider functions F,, : {0,1}" — {0,1}™™ such that the
function F,, has a poly(n)-sized circuit. Note that such a circuit may be viewed
as a composition of polynomially many circuits in N'Cg, which in turn may be
viewed as basic functions. Furthermore, a random poly(n)-sized circuit is likely
to be decomposed to N'Cq circuits that correspond to basic functions in which
the collection of sets (of input bits that influence individual output bits) are
expanding. Needless to say, we believe that generic polynomial-size circuits have
no easy cylinders.

It seems that the existence of easy cylinders in all popular candidate one-way
functions is due to the structured nature of these candidates. Such a structure
will not exist in the generic case, and so we conjecture that the Easy Cylinders
Conjecture is false.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SICOMP 36(4),
845-888 (2006)

2. Agrawal, M., Watanabe, O.: One-Way Functions and the Isomorphism Conjecture.
ECCC, TR09-019 (2009)

3. Goldreich, O.: Candidate One-Way Functions Based on Expander Graphs. In:
Goldreich, O., et al.: Studies in Complexity and Cryptography. LNCS, vol. 6650,
pp. 76-87. Springer, Heidelberg (2011)

4. Goldreich, O.: Foundation of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

From Absolute Distinguishability to Positive
Distinguishability

Zvika Brakerski and Oded Goldreich

Abstract. We study methods of converting algorithms that distinguish
pairs of distributions with a gap that has an absolute value that is notice-
able into corresponding algorithms in which the gap is always positive
(and noticeable). Our focus is on designing algorithms that, in addition
to the tested string, obtain a fixed number of samples from each distri-
bution. Needless to say, such algorithms can not provide a very reliable
guess for the sign of the original distinguishability gap, still we show that
even guesses that are noticeably better than random are useful in this
setting.

Keywords: Computational Indistinguishability, Statistical Indistinguisha-
bility.

A version of this work appeared as TR09-031 of ECCC.

1 The Problem and Its Solutions

This work addresses a generic technical problem that arises in the context of try-
ing to establish the computational indistinguishability of certain pairs of prob-
ability ensembles. The problem refers to the fact that computational (and also
statistical) indistinguishability is defined in terms of the absolute difference be-
tween probabilities, whereas it is typically easier to manipulate the difference
itself. Thus, we seek a method of converting a non-negligible absolute difference
into a non-negligible difference; that is, we wish the difference itself (rather than
its absolute value) to be positive.

1.1 A Motivational Example

Many security definitions are formulated by referring to two pairs of proba-
bility ensembles that are indered by strings, and requiring that these pairs of
probability ensembles are computationally indistinguishable (see, e.g., the def-
initions of computational zero-knowledge [2, Sec. 4.3.1.2] and secure two-party
computation [3, Sec. 7.2]). Such a probability ensemble {Z,},es consists of (an
infinite number of) “random variables” Z,’s, which are each distributed over
some finite set (related to its index, «). Two such ensembles, {X,}ocs and
{Ya}aes, are said to be computationally indistinguishable if for every proba-
bilistic polynomial-time algorithm D it holds that

gp(a) < [Pr[D(a, Xa)=1] — Pr[D(a, Y,)=1]] (1)

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 141-[[55] 2011.
© Springer-Verlag Berlin Heidelberg 2011

142 7. Brakerski and O. Goldreich

is negligible as a function of |a| (i.e., for every positive polynomial p and all
sufficiently long «, the value of gp(«a) is upper bounded by 1/p(|c])).

The aforementioned formulation mandates that the value of gp(«) is small for
every o € S. A weaker requirement, which suffices in practice, is that it is infea-
sible to find o € S for which the value of gp(«) is not small. This requirement
may be formulated as mandating that for every probabilistic polynomial-time
algorithm F', representing a potential finder that given 1" outputs an n-bit long
string a € S, the expected value of gp(«) (when defined as in Eq. () is negligi-
ble (as a function of n); that is, F[gp(F(1™))] is negligible in n. This condition
means that

ZPr[F(l"):a] -|Pr[D(a, Xo)=1] — Pr[D(e,Y,)=1]| (2)

is negligible as a function of n.

When trying to establish a condition as in Eq. (@) it is often easier to estab-
lish a corresponding condition in which the absolute value operator is dropped.
Indeed, suppose that for every F' and D as above it holds that

S PH{F(1™) =a] - (Pr{D(a, Xa) =1] — Pr[D(a, Ya)=1]) (3)

is negligible (as a function of n). Can we infer that Eq. () holds too?

In the case that both ensembles are polynomial-time sampleable, a positive
answer is implicit in many works. Essentially, given a probabilistic polynomial-
time algorithm D such that Eq. (@) is not negligible, one derives a probabilistic
polynomial-time algorithm D’ such that Eq. @) is not negligible by estimat-
ing the difference between Pr[D(a, X,) =1] and Pr[D(«,Y,) = 1] and flipping
D’s output if the estimated difference is negative. Thus, the construction of D’
depends also on gp (which determines the adequate level of approximation). In
particular, the time complexity of D’ is (polynomially) related to gp. Our goal is
to get rid of this dependency; in particular, we wish to avoid the aforementioned
approximation.

1.2 A Generic Problem and One Solution

The generic problem we face is converting an algorithm D that distinguishes X,
and Yy, (i.e., |[Pr[D(a, Xo)=1]-Pr[D(e,Y,)=1]| is noticeable) into an algorithm
D’ that on input (a, X,) outputs 1 with probability that is noticeably higher
than Pr[D(e,Y,) = 1]. We stress that we wish this transformation to hold for
every «, whereas it may be that for some a’s the difference Pr[D(«, X,) =
1] — Pr[D(«,Y,) = 1] is positive while for other o’s the difference is negative.
Clearly, D' must know something about X, and Y, in order for this to be
possible, and indeed we provide D’ with samples taken from X, and Y, (or,
actually, with algorithms for sampling these distributions).

Thus, the problem we face is actually the following one. We are given a proba-
bilistic polynomial-time algorithm D and sampling algorithms for two ensembles,

From Absolute to Positive Distinguishability 143

{Xa}aes and {Y, }acs (i-e., probabilistic polynomial-time algorithms X and YV
such that on any input « it holds that X, = X(a) and Y, = Y(«)). Our task
is to construct a probabilistic polynomial-time algorithm D’ such that for some
function p : (0,1] — (0,1] it holds that

=1

Pr[D' (o, Xo)=1] — Pr[D'(o, Yo)=1] > p(|Pr[D(c, Xo)=1] — Pr[D(a, Yo)=1]|).

(4)

We stress that the r.h.s of Eq. (@) refers to the absolute difference between two
probabilities, whereas the lL.h.s refers to a corresponding difference that is not
taken in absolute value and yet is required to be positive (whenever the former
difference is positive).

We seek a universal transformation of D into D’, whereas this transformation
may use a predetermined number of auxiliary samples of the two distributions.
That is, the resulting algorithm D’ is given as input a single sample that is
drawn from one of two distributions (i.e., either from X, or from Y,), but in
addition it can obtain (a predetermined number of) samples from each of the two
distributions. Like D, algorithm D’ should distinguish the two cases (which cor-
respond to the source of its input). We stress that we wish the complexity of D’
(and specifically the number of auxiliary samples it obtains) to be independent
of gp(a)). We note that such a transformation (of D into D’) may be useful also
in other settings. One such generic example is provided by settings in which the
notion of negligible probability being considered is significantly smaller than the
reciprocal of the complexity of the distinguishers (e.g., consider polynomial-time
distinguishers coupled with (sub-)exponentially small distinguishing gaps).

A Simple Transformation. One solution to the foregoing problem is to let D’
estimate the sign of Pr[D(«a, Xo)=1] —Pr[D(«, Yy) =1] by using a single sample
of X, and a single sample of Y,,. (Although this estimate is quite poor, it can be
shown to suffice.) Specifically, on input (o and) z (where z is taken from either
X, or Yy,), algorithm D’ proceeds as follows:

1. Ignoring its (“main”) input (i.e., z), algorithm D’ obtains a single sample z of
X, and a single sample y of Y,,, and computes 0 «— D(a, z) and 7+ D(a, y);
2. If 0 > 7, then D’ invokes D on its input (i.e., z), and outputs D(«, z).
If o < 7, then D’ outputs 1 — D(q, 2).
Otherwise (i.e., 0 = 7), algorithm D’ outputs the outcome of a fair coin toss.

(Indeed, we have assumed here, without loss of generality, that D always outputs
a Boolean value. Intuitively, o — 7 provides a probabilistic guess of the sign of
Pr[D(o, Xo) =1] — Pr[D(e, Yy) =1], and (as we show next) using this guess in
the obvious manner yields the desired result.

Proposition 1.1 (analysis of the simple transformation): Let D and D’ be as above.
Then,

Pr[D'(a, Xo)=1] — Pr[D'(a, Yo)=1] = (|Pr[D(c, Xo)=1] — Pr[D(oz,Ya):lH)2 .

! In general, the distinguishing gap of D is defined in terms of the probability that D
outputs 1, and so any non-1 output may be considered as a 0.

144 7. Brakerski and O. Goldreich

Proof: For the analysis of the performance of D', we consider an algorithm D”,
which may output any number in [0, 1], such that

)def 1

DN(O[,
2

- (1+sign(D(a, Xa) = D(a,Ya)) - (~1)P@IH) | (5)
where sign(r) = 1 if » > 0 (resp., sign(r) = —1 if r < 0), and sign(0) = 0.
Recall that in Step 2 of D’(«,z), the output is set to D(«,2) if ¢ > 7, to
1—D(w, 2) if o < 7, and is random if ¢ = 7. Using D(«, z) € {0,1} and assuming
o # 7, the output of D’(a, z) can be written as (1+sign(o—7)-(—1)P(®2)+1)/2,
Thus, D'(a, z) outputs 1 with probability E[D”(«, 2)], and it suffices to analyze
the L.h.s of the following equality

E[D"(a, X,)] — E[D"(a,Yy)] = Pr[D'(a, Xo)=1] — Pr[D'(a,Y,)=1]. (6)

Wishing to substitute Eq. (@) in Eq. (@), we denote by X/, and Y, independent
copies of X,, and Y, and analyze Eq. (@) as follows.

def

D (0. X)) ~ E[D(0.Y,)
B[t + siga(Dla, X1) — D(a,¥2)) - (-1]

gpr (@)

E
1
T2

1
—, -E [1+siga(D(a, X}) = D@, Y2)) - (~1)P(7o)+1]
1
= 5B [sign(D(a, X)) — D(a,Y/))]-E [(—1)’3@){&)+1 - (—1)D(avYa>+1]

where the last equality uses the statistical independence of (X/,,Y,) and (X4, Ya).
Denoting p = Pr[D(a,X,) = 1] and ¢ = Pr[D(e,Y,) = 1], we use
E[(—1)P(@Xe)+]) = p — (1 —p) = 2p— 1 and E[(—1)P(®Y)+1] = 24 — 1, and get

gpr(a) =(p—q)- E[Slgn(D(a Xa) = D(e, Ya))]
= (p—q) - (Pr[D(a, Xa)>D(, Yo)] = Pr[D(a, Xo) < D(a, Ya)))
=

(
p—q)-(p-(1—q) —(1-p)-q),

which equals (p — ¢)%.

1.3 Other Transformations

Two natural questions arise:

1. Is the foregoing construction of D’ optimal (with respect to all constructions
that use a single auxiliary sample from each of the two distributions)?

2. Can we do better if we obtain k auxiliary samples from each of the two
distributions (rather than one auxiliary sample from each of the two distri-
butions)? How good can such a construction be?

Before answering these questions we note that no construction (which is given a
single test sample from one of the two distribution) can outperform the variation

From Absolute to Positive Distinguishability 145

distance between the tested distributions, (i.e., |p—¢|, where p = Pr[D(a, X,)=
1] and ¢ = Pr[D(«, Y,)=1]). This holds also when we have full information of
the two tested distributions. Turning back to the foregoing questions, we answer
them as follows.

Theorem 1.2 (Main Result): For every k > 1, the best construction that uses
k auziliary samples from each of the two distributions is the one that rules anal-
ogously to Eq. ([f), when applying the sign function to the difference between
the average values of D on the k samples of each of the two distributions. That
s, on input an inder o, a main input z, and 2k auziliary samples, denoted
Ty eees Thy Y1y ooes Yk, WheTe x1, ..., T are samples of X, and y1, ..., yx are samples
of Yo, the optimal algorithm D' outputs 1 with probability (1+8-(—1)P(@2)+1) /2,

where . .
5 &t sign (Z D(a, ;) — ZD(a,y,»)) e {-1,0,1}.
i=1 i=1
In other words, algorithm D outputs
' D(aa Z) Zf Zf:l D(Ol,:)']i) > Zi‘c:l D(Oé, yi)7
1—D(a,2) if Zle D(a,x;) < Zle D(«,y;), and
the outcome of a fair coin toss otherwise.
This algorithm yields a gap that equals the minimum of Q(Vk) - (p — q)* and
(1= epg(k)) - p — ql, where ey 4(k) = exp(=2((p — @) - k)).
Note that for k = o(1/(p — ¢)?) the said gap is 2(Vk) - (p — q)?, whereas for
k= w(1/(p — q)?) we approach the ultimate value of |p — q|. We stress that the
foregoing result holds both in the computational setting and in the information
theoretic setting.

2 The General Treatment

Let X and Y be 0-1 random variables (representing D(a, X,) and D(a,Yy),
respectively), and let X,’s (resp., Y;’s) be independent copies of X (resp., Y)
representing additional samples available to us. We seek a randomized process
IT : {0,1}%*+1 — {0, 1} such that

B[IT(X1,..., Xp, Y1, o, Vie, X)] — E[II(X1, ... X, Ya, o, Yie,)] (7)

is maximized (as a function of § = |E[X] — E[Y]|, when maximizing over all
possible 0-1 random variables X and Y that are at statistical distance ¢). Indeed,
the probability that IT(as, ..., ak,b1, ..., bk, c) = 1 is determined by the function
f:{0,1}2+1 — [0,1] such that

flay, ..., ar, b, ..., b,)dffPr[I(ay,...;ak, b1, ..., bk, c)=1].

Thus, it suffices to seek a function f : {0,1}2%*1 — [0, 1] that maximizes
E[f(Xlw"anaYla-- Yka)] [(Xla"' Xkayla"' YIC?Y)] (8)
|

(as a function of 6 = |E[X] — E[Y]|). Let us formally define a more general
optimization problem.

146 7. Brakerski and O. Goldreich

The General Question (and Its Accompanied Notation). For a function
f o+ {0,1}*F1 — 10,1] and a pair (p,q) € [0,1], we denote by Vi, 4 (f) the
value of Eq. (), where X and Y are 0-1 random variables that satisfy p =
E[X] and ¢ = E[Y]. Now, for any (possibly infinite) set (or class) of pairs in
[0,1], denoted C, and any function f : {0,1}2¢*1 — [0,1], we denote Vo(f) %
ming, gyec{Vip,q)(f)}. We seek a function f for which Ve(f) is maximal.

Summary of Our Results (and Their Organization). First, we will show
that, without loss of generality, the function f(x1,...,Zk, Y1,, Yk, 2) may only
depend on s def Zie[k] i, t def Zie[k] y; and z, and furthermore that it can take
a specific canonical form (see Section [Z]). Next, in Section 22 we will show
that, in all natural cases (i.e., for “symmertic” classes), the canonical form can
be further simplified to depend only on sign(s—t) and z. Actually, this will yield
a single optimal function. Lastly, in Section[2Z.3] we will analyze the performance
of this function.

2.1 Canonical Functions

We will first show that it suffices to consider functions f of the form

o (B S)
2

where g : N2 — [~1,+1]. We call such an f canonical. Note that the normaliza-
tion (i.e., shifting by 1 and dividing by 2) is used to map [—1,+1] to [0, 1]. (Note
that an additive shift of f leaves the value of Eq. (§]) intact, whereas multiplying
f by any factor has the same effect on the value of Eq. ().)

f(al, ceeey Ak b1, ceeey bk7C) =

Definition 2.1 (dominating strategies) We say that f’ dominates f (w.r.t C) if
for every (p,q) € C it holds that Vi, 4)(f') > Vip.q)(f)-

Proposition 2.2 (strong optimality): For every C and every f : {0,1}2+1 —
[0, 1] there exists a canonical function that dominates f (w.r.t C).

Proof: Given any function f, we consider the function f’ such that for ev-
ery a,b € {0,1,....k} and ¢ € {0,1}, the value f'(a,b,c) equals the aver-
age of f(ay,....,ax,b1,....,bg, c) taken over all (ai,....,ax), (b1,,0x) € {0,1}*
that satisfy Zie[k] a; = a and Zie[k] b; = b. Then, for every (p,q), we have
Vip.a) (f') = Vip,q)(f), because each permuation of any fixed sequence (v1, ..., vx)
is as likely to be the outcome of k independently and identically distributed sam-
ples. Next, note that the value of f’ at any (a,b) € {0,1,...,k}% and ¢ € {0,1}
(i.e., the value f'(a,b,c)) can be written as

O o+ UV
_ ; (f"(a,b,0) + f'(a,b,1)) + <‘21)C (f'(a,b,0) — f'(a,b, 1))

= go(a;b) + g1(a, b) - (=1)°

From Absolute to Positive Distinguishability 147

where go(a,b) = (f'(a,b,0)+ f'(a,b,1))/2 and ¢1(a,b) = (f'(a,b,0)— f'(a,b,1))/
2. Note that ¢1(a,b) € [—0.5,+0.5] and that replacing go(a,bd) by 0.5 does not
change the value of V, 4)(f’). Thus, setting f”(a,b,c) = (1+2g1(a,b)-(=1)°)/2,
we obtain a canonical function f” that dominates f (because V, ,(f") =

V(pﬂl)(f,) = V(p,q)(f))-

Conclusion and Notation. At this point we can limit our search for good func-
tions (i.e., functions that maximize Eq. () to canonical functions. Thus, for
every function g : N2 x {0,1} — [~1,+1] and every k € N, we define fg(k) as in
Eq. @), and consider the value V(p,q)(fg(k)). To estimate V(p,q)(fg(k)), we let X
and Y be 0-1 random variables with E[X] = p and E[Y] = ¢ and get

V(pq)(f(k)) B g ZXL7ZY '—1X (10)
i€[k] i€[k]

‘Elg| Y X,) vi|-(-1)” (11)
i€ (k] i€[k]

Using the independence of X, Y and the X;’s and Y;’s, we rewrite Eq. (I0)& ()
as

Vo () = 0-Elg | DX, D Vi || -B[(-DX=(=1)"] (12

i€ (k] i€[k]

Recalling that E[(=1)%] = (1 —p) —p=1—2p and E[(-1)¥] = 1 — 2¢, we get
E[(—1)* — (~1)*] = 2(g — p) and 0

Vip.g) (7)) = (¢ —p) - E[g(X",Y")], (13)

where X' = 37,y X; and Y’ = 37,y Y;. Denoting B(p,i, k) = 5y -pi-(1—
p)F7, we get
Voo) =@-p)- Y. Bik)-Blgjk)-g6j5). (14)

i,5€{0,1,....k}

2.2 Symmetric Classes

We focus on symmetric classes of pairs, where C is symmetric if for every (p, q) € C
it also holds that (¢,p) € C. In contrast, if C contains only pairs (p,q) such
that p > ¢, then we may set k¥ = 0 and use the identity function (because
E[X]—E[Y] =p— ¢ = StatDiff(X,Y")). We show that, for symmetric classes,
the “sign of the difference” function (i.e., sd(a,b) = sign(b —a) € {-1,0,+1})
is optimal as a function g.

148 7. Brakerski and O. Goldreich

Proposition 2.3 (optimality): For every symmetric C and every k € N and g :
N? — [~1,+1], it holds that Vc(fs(f)) > Vc(fék)), where sd(a,b) = sign(b—a).

Recall that sign(d) = —1if d < O (resp., sign(d) = 1if d > 0), and sign(0) = 0.

Proof: Let (p,q) € C be such that V(p’q)(fs(f)) = Ve (f%). Then, by definition

of Vc(fék)) and the fact that (g, p) € C (which follows by the symmetry of C), it
holds that

Vi) (F87) + Vig (57
Vc(fék)) < (p,q)(g)2 (q,p)()

On the other hand, by the choice of (p,q) € C, it holds that V¢ (f (k)) > Vipa)
(f(k)) Furthermore, Vi, o) (fs k)) =V, p)(f()) because by Eq. (I3]) we have

V<p,q><f§§>>= ~p) - E[sd(X",Y")]
=(¢-p)- E[s1gn<Y’ X")]
:< >E[sd< X")]
*V(q,p)())

Thus, it suffices to show that

V(p7Q)(fé§)) + V(qm)(ﬁ?) = V(p,q)(fggk)) + V(qm) (fg(k))' (15)

For every a,b € {0,1, ..., k}, we shall show that replacing g(a,b) by sign(b — a)
may only increase the value of V, o) (f;k)) +Vig.p) (fg(k)). Let us start by recalling
Eq. (I[4), which yields

V(pq)(f)+qu)(fk))
=(q-p)- >, Blpi,k)B(g5k) - g(i,j)

i,7€{0,1,....k}
+(p—q)- >, Blg,i,k)B(pj,k) - g(i,J)
i,7€{0,1,....k}
i,7€{0,1,....k}

Clearly, for ¢ = j we have B(p,i,k)B(q,j, k) = Bl(q,i,k)B(p,j, k). For i < j
(resp., j < i), it holds that B(p,i,k)B(q,j,k) > B(q,i,k)B(p, j, k) if and only
if p < q (resp., ¢ < p). The latter claim seems self-evident, yet we provide a
detailed proof next (for the case p,q € (0,1)).

B(p,i,k)B(q,j, k) = (Ij) ph(T—p)Ft (j) gl (1= gt
(5 -amor () - am0k wra -y e - oy

]

From Absolute to Positive Distinguishability 149

B(p,i,k)B(q,5,k)
Thus, B(sz)B(;j)y equals
(p/(L=p)' - (a/(L=q) _ (¢/(1=q))"
(¢/(L=q) - (p/A=p))7 (p/Q—=p)~"
Note that we have p < ¢ iff (p/(1 —p)) < (¢/(1 — q)), and so p < ¢ iff
(p/(1 = p))’" < (a/(1 — q))’~". Tt follows that p < ¢ iff B(p,i,k)B(q,j,k) >
B(q’ 7:’ k)B(p’ j? k)'
Recall that for i < j, it holds that B(p, i, k)B(q, j, k) — B(q,4,k)B(p,j, k) > 0
if and only if ¢ > p. Thus, in this case, we maximize

by setting g(i,) = 1 (because the first two factors have the same sign). Similarly,
for j > 4, it holds that B(p,i,k)B(q,j,k) — B(q,i,k)B(p,j, k) > 0 if and only
if ¢ < p, and so the maximization requires g(,j) = —1. Indeed, for ¢ = j, any
setting of ¢(4, j) will do. Thus, an optimal setting of ¢(i, j) is sign(j — ¢), which
equals sd(4, 7). The claim follows.

2.3 The Performance of the Function fs(f)

We now turn to evaluating the performance of the optimal function; that is, we
evaluate V(p,q)(fg;)). Recall that

Voo (fa) =@-p)- Y. Blpik)B(g,j k) sd(i,)

i,5€{0,1,....k}
=(-q- Y, B(pik)B(qjk)-sign(i-j)
i,5€{0,1,....k}

which yields V(p,q)(fgf)) =((p-—q)- vz(;g, where

vé{? e sign Z Xi— Z Y; (17)

i€ (k] i€[k]

such that the X;’s (resp., Y;’s) are 0-1 i.i.d with expectation p (resp., ¢). Letting
T; = X; = Y;, we rewrite Eq. ([Z) as E[sign(}_;c(73)], which equals

r Y Ti>0-Pr|Y Ti<o0]. (18)
1€ k] i€ (k]
Note that E[T;] = p—q and Var[T;] = p(1—p)+q(1—q). Thus, it is apparent that
V(p’q)(fs(f)) grows with k, unless either {p,q} = {0,1} or p = ¢ (in which case
k
V(pﬂ)(féd)) = |p — q| for every k > 1), and that limy . Vp, q)(f()=|p—q|

150 7. Brakerski and O. Goldreich

All that remains is to determines the behavior of Vi, 4)(fs(g)) as a function of
k, which calls for analyzing Eq. (I8]). It should come at little surprise that all

we can offer is functional relations (e.g., relating V(p,q)(fs(gﬂ)) to V(p’q)(fs(g))),
approximations, and close expressions for small values of k. We start with the
latter.

The cases of Kk = 1 and k = 2. For small k, we can write explicit expressions
for Eq. (I8); for example, for k = 1 Eq. [I8)) yields Pr[Ty > 0] — Pr[T} < 0] =
p(1—q) = q(1 —p) =p — g, and 50 V) (f&') = (p — @)?. For k = 2, we have

Pr[Ty + To>0] — Pr[Ty + Ty <0] = Pr[T} + Ty =2] + 2Pr[Ty =1 A Ty =0]

— (Pr[T} + To=—2] + 2Pr[Ty =—1 A T5=0])
(1-) +2P(1*Q)(PQ+(1* p)(1—q))
—(¢*(1 = p)* +2¢(1 — p)(pg + (1 — p)(1 — q)))
=(1+(1-)(1—61)+pQ)-(p—Q)

p2

and so V(p,q)(fsg)) =1+ (1—p)(1—q)+pq)-(p—q)* (see an alternative proof
following the statement of Proposition 24]). Thus, the improvement of the case
of k = 2 over the case of k = 1 is a factor of (14 (1 — p)(1 — q) 4+ pq), which
is greater than 1 unless {p,q} = {0,1} (where a single sample is as good as k
samples, for any k > 1).

The general case of k > 1. We now turn to a general analysis of Eq. (8]

(and Vip, o) (f)) Specifically, we consider the increase in the value of Eq. (IJ)
when going from k to k + 1; that is, we define

Aoy (k) = E |sign| Y Ti|| —E [sign| Y T; (19)
i€[k+1] i€[k]

and note that V, o) (f(k+1)) V(p’q)(fs(g)) +(p—q) Agp,q (k).

Proposition 2.4 (the growth of V, 4 (f()) as a functlon of k): For every k > 1,
it holds that A, (k) = (p — q) - Pr[S, =0], where Sk de Eie[k] T;.

It follows that V,, q)(f(k+ y = Vip,g) (s "N 4 (p — ¢)? - Pr[S, = 0], and so

Vip.q) (f(1)) > qu)(f()), where equality holds if and only if {p,q} = {0,1}
(when ignoring the case of p = ¢). Proposition[2:4] can also be used to re-establish

Vi (f2) = (L +pg+ (1 —p) (L —q)) - (p—)2, since Vi, o (fia)) = (p— ¢)* and
Pr[S1=0] =pg + (1 —p)(1 —q).

Proof: Starting with Eq. ([9), we have

Awp,q) (k) = E[sign(Sk + Ti+1)] — E[sign(Sk)]

From Absolute to Positive Distinguishability 151

= Y Pr[Sx=s]-E[sign(s + Tks1) — sign(s)]
se{—1,0,1}
= Pr[Sy=0] - (Pr[T+1=1] — Pr[Tp41=—1])
+PI‘[S}C :*1] . PI‘[T]C+1 :1} - PI‘[Sk = 1] . PI‘[T]C+1 :71].
By symmetry (e.g., consider the case of k = 1), it is rather self-evident that
Pr[Sy=—1] - Pr[Tx41=1] = Pr[Sp=1] - Pr[T}4+1=—1], yet we provide a detailed
proof next.

Pr[Sy=—1]- Pr[Tyy1=1] = p(1 —q) - > B(p,j — 1,k)B(q, j, k)

j=1

p’
=(1- p)qzk: (j ﬁ 1>pj(1 —p)ki (j) G (1 — g)F-it!

Hence, A, ¢ (k) = Pr[Sp = 0] - (Pr[T}41=1] — Pr[Tiy1=—1]), and the claim
follows (since Pr[Txy1=1] — Pr[Tx41=—1]=p —q).

Another expression for Vi, o) (féf)). Proposition [24] yields another expression

k
for V(p,q)(fs(d)):

,q)

k—1
Voo (F4)) = Vi F) + 0= 0) > Ay (0) (20)
=1
k—1
=(p—-q*+p—q?*) Pr[S,=0 (21)
=1

Note that for {p,q} = {0,1} this expression (i.e., Eq. (ZI))) equals 1 (for any
k > 1), whereas for p = q it equals 0. In all other cases (i.e., 0 < (p — ¢)? < 1)
Eq. 1) grows with k. Using Pr[S,=0] = Zﬁzo B(p,4,£)B(q,4,¢), we get

k—1

YA 2
Voo (f&) = (0—a)* + (0 —q)? Z(lf) (pa) (1 —p)(1 - q))"7 (22)

£=1 j=0

152 7. Brakerski and O. Goldreich

In the special case of p = 0, Eq. (22)) yields

k—1
Voo (fi) =+ > (1-0q)f
=1
= +q-((1-¢) - (1-9")

which converges to ¢ = |p — ¢| when k — oo. Similarly, V(q g)(fs(f)) converges
to 1 —¢q = |p— q| (where p = 1). Note that in these cases convergence occurs
with k& > |p — ¢q|~!. As we shall see next, in the other cases (i.e., p,q € (0,1)),
convergence occurs with k > |p — q| 2.

Approzimating V) (fsff)) When p,q € (0,1). The hidden constants in the
approximation given next depend on the distance of p and ¢ from the boundaries
of (0,1); that is, the constants in the ©-notation depends on min(p, g, 1 —p, 1—q).

Proposition 2.5 (the approximate value of V(p,q)(fs(f))): For any fized p,q €

(0,1) and every k > 2, it holds that V(p’q)(fs(g)) =v-|p—q|, where v=6(Vk)-
Ip—ql if k<5(p—q)~2 and v > 1 — exp(—(p — q)%k/3) otherwise.

Proof: We shall approximate V), 4) (fs(f)) by using Eq. (IT) (rather than Eq. ([22])).
Recall that by Eq. (I7) we have

Vip.oy (f&) = (0 — q) - Elsign(Sy)] (23)

where Sj, = Zle T; (and T; = X; — Y;). We assume, without loss of generality,
that p > ¢ and lower bound the value of E[sign(Sy)], using E[T;] = p — ¢. We
distinguish three cases according to the relation between k and p — ¢:

Case 1: k > 5(p — q)~2. In this case we use the (standard additive) Chernoff
Bound, and derive

E[sign(Sk)] = PI‘[S}C >0} — PI‘[Sk <O]
>1-2 ~Pr[5k§0]

>1_2.6Xp(_(p—;1)2.k>

This establishes the relevant part of the claim (i.e., V(p’q)(fs(g)) =v-|p—gq,
where v = 1 — 2exp(—(p — ¢)?k/2) > 1 — exp(—(p — q)*k/3)).
The following complemantary two cases are distinguished according to a

constant ¢ > 5 that depends only on 7, 4 Lef V(1 —p) +q(1 - q).

Case 2: k€ [c-(p—q)~1,5(p — q)2]. In this case we use the Berry—Esseen es-
timate of the Central Limit Theorem (cf., e.g., [I, Sec. XVL5]). Specifically,

we approximate E[sign(Sy)] by E[sign(Sk)], where Sy is the normal distri-
bution approximation of Sy; that is,

Se Yk (p—q)+ VE-pq N0, 1),

From Absolute to Positive Distinguishability 153

where N(0, 1) denotes the normal distribution (Wlth mean 0 and variance 1),
and \/k-vp,q replaces \/Var[Sk Vk- \/p 1—p)+ q(1 — q). More formally,
we use the fact that for every r it holds that that

def 3,0
|Pr[S >7] — Pr[Si>7]| < ¢ <
Toa*V

where p = E[|T1 — (p — q)|3] <2 7p,4> It follows that

E[Sign(sk)] = PI“[Sk >0] — Pr[Sk <0]
= Pr[S) >0] — Pr[Si <0] = 2¢
= 2Pr[S}, > 0] — 1+ 2e. (24)

Now, we analyze Pr[S), > 0] via

Pr[(p—q)k—k\/k'yp,q.N(Q’l) >0] = Pr|N(0,1) > _p_Q_\/k

Tp.q

Setting r % (p—q)Vk < 1, it follows that Pr[N(0,1) > —1/7,.4] = 0.5+0(r).
So Eq. @) yields O(Vk - (p — ¢q)) — ©O(k~/?), which is lower bounded by
Ok - (p—q)), when using k > ¢- (p — q)~! (where ¢ is large enough w.r.t
the above hidden constants). It follows V,) (féf)) = O(Vk)-(p—q)?, which
establishes the other part of the claim for the current case.

Case 3: k< c-(p—q)~'. It suffices to establish that V,, q)(f(k)) = O(Vk) -
(p—q)?, for k< (p— q) 1. This is done by writing T; as T} + (1 —T7) - T/,
where T} € {0,1} and Ti” € {-1,0,1} are independent random variables
satisfying Pr[T} = 1] = p — q and Pr[I} = 1] = Pr[I}' = -1] = 7 ™ .
Letting S}, = > ;e 77 and S/ = 3=,y 77, we have

k
E[sign(Sk)] = Z r[Sy =] Elsign(Sy_;+7)]

Pr[S; =j] - (E[sign(S)_;)] +2- Pr[0<S) ;<j]) (25)
0

J
where S;’_; represents the sum of the k& — j variables T} that correspond
to the indices 7 that satisfy 7] = 0 (i.e., S,;’_j represents » ;. T, where
I'={i:T] = 0}). Since E[sign(S}_;)] = 0 (becuase E[T}'] = 0), Eq. (23)
simplifies to

k
23 PilS, =] PO < S <. (26)

The lower bound in the claim (ie., v = 2(Vk - (p — q))) follows once we
prove that Pr[S; =1] - Pr[S}_, =] = (k- (p— q)). We start by noting

154

Z. Brakerski and O. Goldreich
that
Pr[S; =1]- Pr[S{_y =0/ = k- (p— q)(1 = (p—))*" - Pr[Sy_; = 0)27)
(p—ak
-3 Pr(Sy_, = 0]
In order to estimate Pr[S;_; = 0], we write S;_, as the difference of
Yiep—1y Xi and ZZG 1Y/, where the X;”’s and Y/"’s are iid 0-1 ran-
dom valiables (i.e., p” = Pr[X] = 1] satisfies p’(1 — p") = 1(1(pp)q)) We
get
Pr[Sy |, =0] > > Pr| > X!'=j|-Pr| > Y=}
j=(k=1)p" +Vk-1 Li€[k—1]] ie[k—1]
- Q2
= > Pri > X/'=j
j=(k—1)p"” £Vk—1 Li€(k—1]
2
Pr [Soepey XV = (k= 1)p" £ Vi - 1]
>
2k —1+1
2
Pr [\/(k — Dy - N(0,1) = £k — 1} —o(1)
>
2Vk—1+1

where the last inequality uses the Berry—Esseen estimate of the Central Limit
Theorem. Observing that Pr[N(0,1) = 1/,] = £2(1), it follows that
Pr[S) , = 0] = 2(1/Vk — 1), and so Eq. @1) is 2((p — ¢)k/vk — 1) (and
the same holds w.r.t Eq. (26])). To upper bound Eq. (26), we note that it
can be upper bounded by

Zi: j-PrSy_ ;=01 <2- i() jPr[SY_ = 0]

O((p — q)k - PY[SJZA =0])

and the claim follows because Pr[S}_, = 0] = O(1/vk). This establishes
V(p,q)(f(k)) O(Vk) - (p — q)? also in the current case.

The proposition follows.

3

Conclusion

The obvious way of using statistical information (e.g., a binary guess that is
positively correlated with the correct value) is to amplify the confidence level
of the information and use it as if it were certainly correct. The current work

From Absolute to Positive Distinguishability 155

studies an alternative method of using statistical information and shows that in
some settings using unreliable information directly works quite well. This was
demonstrated already in Section [[L2] whereas the rest of this work studies the
question of how to make the best use of multiple independent copies of such
statistical information.

Acknowledgments. We are grateful to Ofer Zeitouni and Dana Ron for useful
discussions.

References

1. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn.,
vol. II. John Wiley & Sons, Chichester (1972)

2. Goldreich, O.: Foundation of Cryptography — Basic Tools. Cambridge University
Press, Cambridge (2001)

3. Goldreich, O.: Foundation of Cryptography — Basic Applications. Cambridge
University Press, Cambridge (2004)

Testing Graph Blow-Up

Lidor Avigad and Oded Goldreich

Abstract. Referring to the query complexity of testing graph properties
in the adjacency matrix model, we advance the study of the class of
properties that can be tested non-adaptively within complexity that is
inversely proportional to the proximity parameter. Arguably, this is the
lowest meaningful complexity class in this model, and we show that it
contains a very natural class of graph properties. Specifically, for every
fixed graph H, we consider the set of all graphs that are obtained by a
(possibly unbalanced) blow-up of H. We show a non-adaptive tester of
query complexity 6(1 /€) that distinguishes graphs that are a blow-up of
H from graphs that are e-far from any such blow-up.

Keywords: Property Testing, Adaptivity vs Non-adaptivity, One-sided
vs Two-sided Error, Graph Properties, Graph Blow-up.

This work is based on the M.Sc. thesis of the first author [A], which was com-
pleted under the supervision of the second author.

1 Introduction

The general context of this work is that of testing graph properties in the ad-
jacency matrix representation (as initiated in [GGR]). In this model graphs are
viewed as (symmetric) Boolean functions over a domain consisting of all possible
vertex-pairs (i.e., an N-vertex graph G = ([N], E) is represented by the function
g : [N] x [N] — {0,1} such that {u,v} € F if and only if g(u,v) = 1). Conse-
quently, an N-vertex graph represented by the function g : [N] x [N] — {0,1}
is said to be e-far from some predetermined graph property if more than e - N2
entries of ¢ must be modified in order to yield a representation of a graph that
has this property. We refer to € as the proximity parameter, and the complexity
of testing is stated in terms of e and the number of vertices in the graph (i.e.,
N).

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/¢), and [AFNS], which characterizes the
class of properties that are testable within query complexity that depends only
on the proximity parameter (where this dependence may be an arbitrary func-
tion of €). A well-known open problem in this area is to characterize the class of
graph properties that can be tested within query complexity poly(1/¢). We men-
tion that such a characterization has been obtained in the special case of induced
subgraph freeness properties [AS], but the general case seems quite difficult.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 156-[[72] 2011.
© Springer-Verlag Berlin Heidelberg 2011

Testing Graph Blow-Up 157

In light of this state of affairs, it was suggested in [GRO§] to try to characterize
lower query complexity classes, and in particular the class of graph properties
that can be tested non-adaptively within query complexity O(1/¢). As a first
step towards this goal, it was shown in [GROS8, Sec. 6] that, for every constant
¢, the set of graphs that each consists of at most ¢ isolated cliques is such a
property.

In this work we significantly extend the latter result by showing that the class
of graph properties that can be tested non-adaptively within query complexity
O(1/¢€) contains all graph blow-up properties. For any fixed graph H = ([h], F),
we say that a graph G = ([N], E) is a blow-up of H if the vertices of G can be
clustered in up to h clusters such that the edges between these clusters reflect
the edge relation of H. That is, vertices in the i*" and ;" cluster are connected
in G if and only if (¢,j) € F. Note that, unlike in the case of balanced blow-up
(cf. [GKNR]), the clusters are not required to have equal size[] Also note that
the “collection of ¢ cliques” property studied in [GROS8|, Sec. 6] can be cast as the
property of being a blow-up of a c-vertex clique (by considering the complement

graph).

Theorem 1.1 (main result): For every fized H, the property of being a blow-
up of H is testable by 5(1/6) non-adaptive queries. Furthermore, the tester has
one-sided error (i.e., it always accepts graphs that are blow-ups of H) and runs
in poly(1/e)-time.

We mention that the aforementioned property cannot be tested by o(1/€) queries,
even when adaptivity and two-sided error are allowed (see [GROS|, Prop. 6.1]).
We also mention that, by [GRO8|, Prop. 6.2], a tester of 5(1/6) query complexity
cannot be canonical (i.e., it cannot rule by inspecting an induced subgraph).

Additional results. We also consider the complexity of testing “balanced blow-
up” properties, showing that the two-sided error query complexity is quadratic
in 1/e for both adaptive and non-adaptive testers; see Proposition 24l Finally,
we present proximity oblivious testers (cf. [GR09]) for any (general) blow-up
property; see Theorem [5.2

Techniques. Theorem [[L1] is proved by presenting a suitable tester and analyz-
ing it. Recall that this tester cannot be canonical; indeed, this tester selects at
random a sample of O(1/¢€) vertices, but it inspects (or queries) only O(1/¢) of
the vertex pairs in this sample. Consequently, the tester (and the analysis) has
to deal with partial knowledge of the subgraph induced by the sample. A pivotal
notion regarding such partial views is of “inconsistency” between vertices (w.r.t
a given partial view), which means that these vertices have different neighbor
sets and thus cannot be placed in the same cluster (of a blow-up of H (or any
other graph)). Specifically, the tester considers all sets of up to h + 1 pairwise
inconsistent vertices, and accepts if and only if each such set (along with the

1 We note that testing balanced blow-up properties requires (1) 62) queries. For de-
tails, see Section

158 L. Avigad and O. Goldreich

known incidence relations) can be embedded in H. As usual, the technically
challenging part is analyzing the behavior of the tester on arbitrary graphs that
are far from being blow-ups of H. Our analysis proceeds in iterations, where
in each iteration some progress is made, but this progress is not necessarily re-
flected by a growing number of incidence constraints but rather in the decreasing
density of the violations reflected in the incidence constraints. This progress is
captured in Lemma[£4] (which refers to notions introduced in Section [£1]). Here
we merely stress that the number of iterations is polylogarithmic in e~! rather
than being O(h?). (The degree of the polylogarithmic function depends on h.)

Organization. The core of this paper is presented in Sections Bl and @ which
contain a description of the tester and its analysis, respectively. (Indeed, this part
establishes Theorem [I[1T]) Section2lprovides preliminaries, which may be skipped
by the experts, as well as a side discussion (and result) regarding “balanced
blow-up” properties. Section [provides another secondary discussion; this one
regarding proximity oblivious testers.

2 Preliminaries

In this section we review the definition of property testing, when specialized
to graph properties in the adjacency matrix model. We also define the blow-up
properties (and discuss the case of balanced blow-up).

2.1 Basic Notions

For an integer n, we let [n] def {1,...,n}. A generic N-vertex graph is denoted
by G = ([N], E), where E C {{u,v}:u,v€[N]} is a set of (unordered) pairs of
vertices] Any set of (such) graphs that is closed under isomorphism is called a
graph property. By oracle access to such a graph G = ([N], E) we mean oracle
access to the Boolean function that answers the query {u,v} (or rather (u,v) €
[N] x [N]) with the bit 1 if and only if {u,v} € E. At times, we look at E as a
subset of [N] x [N]; that is, we often identify E with {(u,v):{u,v} € E}.

Definition 2.1 (property testing for graphs in the adjacency matrix model):
A tester for a graph property II is a probabilistic oracle machine that, on input
parameters N and € and access to an N-vertex graph G = ([N], E), outputs a
binary verdict that satisfies the following two conditions.

1. If G € II, then the tester accepts with probability at least 2/3.

2. If G is e-far from II, then the tester accepts with probability at most 1/3,
where G is e-far from II if for every N-vertex graph G' = ([N],E') € II it
holds that the symmetric difference between E and E' has cardinality that is
greater than eN2.

2 Thus, we consider simple graphs, with no self-loops nor parallel edges.

Testing Graph Blow-Up 159

If the tester accepts every graph in II with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and €); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any IN-
vertex graph oracle, as a function of the parameters N and e. We say that a
tester is efficient if it runs in time that is polynomial in its query complexity,
where basic operations on elements of [N] are counted at unit cost. We note that
all testers presented in this paper are efficient, whereas the lower-bounds hold
also for non-efficient testers.

We shall focus on properties that can be tested within query complexity that
only depends on the proximity parameter, e. Thus, the query-complexity upper-
bounds that we state hold for any values of ¢ and N, but will be meaningful
only for € > 1/N? or so. In contrast, the lower-bounds (e.g., of £2(1/¢)) cannot
possibly hold for € < 1/N?2, but they will indeed hold for any e > N—20),
Alternatively, one may consider the query-complexity as a function of €, where
for each fixed value of € > 0 the value of IV tends to infinity.

2.2 The Blow-Up Properties

Following the discussion in the introduction, we first define the blow-up proper-
ties that are the subject of our study.

Definition 2.2 (graph blow-up): We say that the graph G = ([N], E) is a blow-
up of the graph H = ([h], F) if there is an h-way partition (Vi,...,Vi) of the
vertices of G such that for every i,j € [h] and (u,v) € V; x V; it holds that
(u,v) € E if and only if (i,j) € F. We stress that the V;’s are not required to be
of equal size and that some of them may be empty. We denote by BU(H) (resp.,
BUN(H)) the set of all graphs (resp., N-vertex graphs) that are blow-ups of H.

In contrast to Definition [22] let us briefly consider the more rigid (and popular)
definition of a balanced blow-up.

Definition 2.3 (balanced blow-up): We say that the graph G = ([N],E) is
a balanced blow-up of the graph H = ([h], F) if there is an h-way partition
(Vi,..., V1) of the vertices of G such that the following two conditions hold:

1. For every i,j € [h] and (u,v) € V; x V; it holds that (u,v) € E if and only
if (i,§) € F.
2. For every i € [h] it holds that |V;| € {|N/h|,[N/h]}.
We denote by BBU(H) (resp., BBUN(H)) the set of all graphs (resp., N-vertex
graphs) that are balanced blow-ups of H.

It is easy to see that, except for trivial cases (i.e., when H consists of isolated
vertices), balanced blow-up cannot be tested with one-sided error and complexity
that does not depend on the size of the graph. The two-sided error testing
complexity of this property is ©(1/€?), as shown next.

160 L. Avigad and O. Goldreich

Proposition 2.4 (on the complexity of testing balanced blow-up): For every
H = ([h],F) such that F # 0, testing the property BBU(H) requires 2(1/€?)
queries even if adaptive testers of two sided error are allowed. On the other
hand, for any H = ([h], F'), there exists a non-adaptive tester of query complexity
O(1/€%) (and two-sided error) for the property BBU(H).

Proof: The lower bound follows directly from the known lower bounds on
estimating the average (cf. [CEG]). Specifically, distinguishing Boolean functions
defined over [N] and having an average value of 0.5 from Boolean functions
having an average of 0.5 — € can be reduced to distinguishing N-vertex graphs
that consist of two isolated cliques of the same size from graphs that consist of
two isolated cliques of sizes (0.5 —€) - N and (0.5 + €) - N, respectively. (Given
oracle access to a function f : [N] — {0, 1} consider the graph G = ([N}, {(u,v) :
fu)=f(©)}).)

In describing the tester, we first assume that H = ([h], F') is not a blow-up of
any smaller graph H’. Also, anticipating the extension to the general case, we
generalize the balanced blow-up property into a proportional blow-up property.
Here, for a fixed graph H = ([h], F') and sequence of densities p = (p1, .., pp), the
graph G is a p-blow-up of H if Definition holds with Condition 2 replaced
by |Vi| € {|piN], [p:N]}. The non-adaptive tester for p-blow-up of H, where H
is not a blow-up of any smaller graph, proceeds as follows (on input a graph G):

1. Select uniformly a sample of O(1/min;{p;}) vertices, denoted B, which will
be used as a basis for clustering in Step 2. Select uniformly a sample of
O(|B|/€?) vertices, denoted S. Finally, select uniformly a sample of O(h?/e)
vertex pairs in S x .S, denoted T'.

2. Query all pairs (u,v) € (B x S)UT, and cluster the vertices in S according

to their neighbors in B. That is, for every v € [N], let sgz(v) qef {ueB:
(u,v) € E}, and, for every set B’ C B, let Sp: def {vesS :sgp(v)=B'}.

3. If the number of non-empty sets Sps exceeds h, then reject. Otherwise, con-
sider all possible 1-1 mappings from C def {B’": Sp: # 0} to [h], and for each
such mapping ¢ determine whether or not the following two conditions hold.
(a) For every B’ € C it holds that |Sp/| = (1 £€/2) - pypry - |S].

(b) For every (u,v) € T it holds that (u,v) € FE if and only if
(o(sgp(u)), ¢(sgp(v))) € F.

The test accepts if and only if there exists a mapping ¢ that satisfies both

the above conditions.

The number of queries performed by the tester is O(|B|?/e?) = O(1/€?). We
first consider what happens if G is a p-blow-up of H. In this case, with high
probability, (1) the sample B contains at least one representative from each
cluster of G, and (2) for each ¢ € [h] the sample S contains (1 + €/2) - p; - |S|
representatives of the i** cluster. In this case, the tester accepts. We now turn
to the case that G = ([N], E) is e-far from being a p-blow-up of H. In this case,
for any choice of B, we can consider the clustering of the entire graph according

to sgp, and denote the h largest clusters by Vi, ..., V}, (where some of these V;’s

Testing Graph Blow-Up 161

may be empty). Letting V' def Uiepn Vi we note that if [V| < (1—¢€/2)- N, then
with high probability we reject at the onset of Step 3 due to seeing more than
h clusters in the sampleE Otherwise, we consider all possible mappings of the
vertices of the h largest clusters to [h]. For each such mapping ¢ : V' — [h] such
that ¢(u) = ¢(v) iff u,v € V; for some i, either there exists an ¢ € [h] such that
|Vi| € (14€/4)-p; N or there exist at least e N2 /4 violating pairs (i.e., vertex pairs
(u,v) € V xV that have an edge relation in G that does not fit the edge relation
of (¢¥(u),¥(v)) in H). In the first case, with high probability, the sample S will
contain a deviating fraction of vertices from V;, whereas in the second case, with
high probability, the sample T" will hit some of these violationsH In either cases,
with high probability, the tester will reject. This completes the treatment of the
case (of p-blow-up) of a graph H = ([h], F') that is not a blow-up of any smaller
graph.

Finally, suppose that H([h], F)) is a blow-up of some smaller graph H’, and
suppose that H' is minimal (i.e., it is not a blow-up of any smaller graph). Then,
testing the property BBU(H) reduces to testing a proportional blow-up property
regarding H’, where the proportions are determined according to the blow-up of
H' into H (and the densities are multiples of 1/h).

3 The BU(H)-Tester and Its Basic Features

Recall that a tester of the type we seek (i.e., a non-adaptive tester of O(1/e)
query complexity) cannot operate by inspecting an induced subgraph, because
by [GROS, Prop. 6.2] such a subgraph will have to be induced by 2(1/¢) vertices,
which would yield query complexity £2(1/€2). Thus, like in [GROS, Sec. 6.2], our
non-adaptive tester operates by using a less straightforward querying procedure.
Specifically, it does select a sample of O(1/e) vertices, but does not query all
vertex pairs.

Algorithm 3.1 (testing BU(H), for a fixed graph H = ([h], F)): On input
parameters, N and €, and access to an oracle g : [N]x [N] — {0, 1}, representing
a graph G = ([N], E), the algorithm sets { = log,(1/€) + O(loglog(1/€)) and
proceeds as follows.

1. For everyi € [{], it selects uniformly a sample of poly(¢)-2! vertices, denoted
T

Denote T = ;¢ Ti-

2. For every i,j € [€] such that i + j < £, the algorithm queries all pairs in
Ti X TJ

3 If [Vi| > (¢/2h)- N, then with high probability S will contain a vertex from each V; as
well as a vertex that does not belong to V. On the other hand, if |Vi| < (¢/2h) - N,
then with high probability S will contain h + 1 vertices from different clusters in
INJ\ V.

4 Note that a 1/h? fraction of these foregoing violations can be attributed to one of
2. (h) events that correspond to the existence or non-existence of edges between

2
some pair of clusters.

162 L. Avigad and O. Goldreich

8. The algorithm accepts if and only if the answers obtained in Step 2 are
consistent with some blow-up of H. That is, let K : T x T — {0,1,%} be a
partial description of the subgraph of G induced by T such that K(u,v) =
g(u,v) if query (u,v) was made in Step 2, and otherwise K (u,v) = . Then,
the acceptance condition seeks a mapping ¢ : T — [h] such that if K(u,v) =1
then (¢(u), p(v)) € F and if K(u,v) =0 then (¢(u), p(v)) & F.

Indeed, at this point we ignore the computational complexity of implementing
Step 3. We shall return to this issue at the end of the current section. But, first,
let us note that the query complexity of Algorithm Bl is

> poly(f) -2 = poly(¢) -2 = O(1/e). 1)
i<t

It is also clear that Algorithm [31] is non-adaptive and that it accepts every
G € BU(H) with probability 1 (i.e., it has one-sided error). The bulk of this
work (see Section) is devoted to showing that if G is e-far from BU(H), then
Algorithm Bl rejects it with probability at least 2/3.

Relazing the acceptance condition of Algorithm [31l A straightforward imple-
mentation of Step 3 amounts to considering all k7! mappings of T to [h], and
checking for each such mapping ¢ whether the clustering induced by ¢ fits the
graph H. Relaxing the acceptance condition (used in Step 3 of Algorithm B])
yields a more time-efficient algorithm. Actually, the relaxed acceptance condi-
tion (defined next) seems easier to analyze than the original one. The notion of
pairwise inconsistent rows (of K) is pivotal to this relaxed acceptance condition.
(Indeed, it will be instructive to think of K as a matrix, and to view rectangular
restrictions of K as sub-matrices.)

Definition 3.2 (pairwise inconsistent rows): Let K/ : R x C' — {0,1,%} be a
sub-matriz of K : T xT — {0, 1, x}; that is, R,C C T and K'(r,c¢) = K(r,c) for
every (r,c) € R x C. Then, the rows r1,r2 € R are said to be inconsistent (wrt
K') if there exists a column ¢ € C' such that K'(r1,¢) and K'(ra,c) are different
Boolean values (i.e., K'(r1,¢), K'(r2,¢) € {0,1} and K'(r1,¢) # K'(r2,¢)). A
set of rows of K' is called pairwise inconsistent (wrt K') if each pairs of rows is
inconsistent (wrt K').

Another pivotal notion, which was alluded to before, is the notion of being
consistent with some blow-up of H, which we now term H -mappability.

Definition 3.3 (H-mappable sub-matrices): Let K/ : R x C — {0,1,%} be a
sub-matriz of K : T x T — {0,1,%}. We say that K’ is H-mappable if there
exists a mapping ¢ : R — [h] such that if K'(u,v) = 1 then (¢(u), p(v)) € F and
if K'(u,v) =0 then (¢(u), p(v)) & F. We call such a ¢ an H-mapping of K’ (or
R) to [h].

Note that if K is H-mappable, then every two inconsistent rows of K must be
mapped (by ¢ as in Definition B3] to different vertices of H. In particular, if

Testing Graph Blow-Up 163

a sub-matrix K’ : R x C — {0, 1, x} of K has pairwise inconsistent rows, then
any H-mapping of K to [h] must be injective. Hence, if K contains more than
h pairwise inconsistent rows, then K is not H-mappable.

Definition 3.4 (the relaxed acceptance condition (of Algorithm B))): The re-
laxzed algorithm accept if and only if each set of pairwise inconsistent rows in K
1s H-mappable. That is, for every set R of pairwise inconsistent rows in K, we
check whether the sub-matrizc K' : R x T — {0, 1,*} is H-mappable, where the
pairwise inconsistency condition mandates that this mapping of R to [h] is 1-1.
In particular, if K has more than h pairwise inconsistent rows, then the relaxed
acceptance condition fails.

Note that the relaxed acceptance condition can be checked by considering all
s-subsets of T, for all s < h + 1. For each such subset that consists of pairwise
inconsitent rows, we consider all possible 1-1 mappings of this subset to [h], and
check consistency with respect to H. This can be performed in time (,gll) (R <
|T|"*+1 = poly(1/¢), where the polynomial depends on h.

Clearly, if G € BU(H), then for every T C [N] it holds that the corresponding
matrix K satisfies Definition B4l Thus, the relaxed algorithm always accepts
graphs in BU(H). Section [is devoted to showing that if G is e-far from BU(H),

then the relaxed algorithm rejects with high probability.

4 The Acceptance Condition and Graphs That Are Far
from BU(H)

In light of the above, Theorem [Tl follows from the fact that the relaxed version
of Algorithm [BJ] (which uses the condition in Definition [34) rejects with very
high probability any graph G that is e-far from BU(H). This fact is established
next.

Lemma 4.1 (main lemma): Suppose that G = ([N], E) is e-far from BUn(H),
and let T = Uz’e[z] T; be selected at random as in Step 1 of Algorithm[31. Then,

with probability at least 2/3, there exists a set R C T of pairwise inconsistent
rows in the corresponding matriz K : T x T — {0,1, %} that is not H-mappable.

Before embarking on the actual proof of Lemma EJl we provide a very rough
outline.

Outline of the proof of Lemma[{.1] Our very rough plan of action is to partition

the selection of T' (and each of its parts, i.e., Ty, T4, ..., T¢) into p(¢) dé_f 2@ many
phases such that in the j™ phase we select at random samples Ty, 7Y, ..., T}

such that [T7| = poly(£) - 2. Thus, we let each T} equal Uf(ﬁ T?, but we shall
consider the queries as if they are made in phases such that in the j* phase
we only consider queries between 77 def Uz‘e[é] le and T &' U< ;T k_ Letting
K7 . Tl x Tl — {0, 1, %} denote the partial information obtained on G in the

164 L. Avigad and O. Goldreich

first j phases, we consider a certain set R7 of pairwise inconsistent rows of K7.
If this set R7 is not H-mappable, then we are done. Otherwise, we show that,
with high probability over the choice of the sample 77!, we obtain a new set
RI*! of pairwise inconsistent rows such that R/*! has a higher index than R7,
where the indices refer to an order over sequences of length at most h over [¢].
Since the number of such sequences is Zke[h] ¢k < p(¢), with high probability,
this process must reach a set R’ that is not H-mappable, and so we are done.
Needless to say, the crucial issue is the progress achieved in each phase; that
is, the fact that at each phase j the index of the new set R7*! is higher than the
index of the old set R7. Intuitively, this progress is achieved because the current
(H-mappable) set R? induces a clustering of all vertices of G that extends this
H-mapping, whereas this clustering must contain many vertex pairs that violate
the edge relation of H. The sample taken in the current phase (i.e., T7F1) is
likely to hit these violations, and this gives rise to a set R/*! with higher index.

4.1 Basic Notions and Notations

In addition to the foregoing notations, le , 77 and TV, we shall use the following
notations.

— A pair (R, C) is called a j-basic pair if C C TVl and R C C. Indeed, j-basic
pairs correspond to restrictions of the sample available at phase j (i.e., T U]).

— The j-index of a vertex v € T, denoted idx’ (v), is the smallest index i such
that v € T,i[j], where Tim ef Ur<; TF. (Note that idx(-) depends on T, but
this dependence is not shown in the notation.)

A key observation is that for every w,v € T, it holds that K(u,v) = g(u,v)
if and only if 1dxP(¥) (u) + 1dx?() (v) < . Otherwise, K (u,v) = * (indicating
that (u,v) was not queried by Algorithm [BT]).

We comment that, with extremely high probability, for each j and v € T,
there exists a unique i € [{] and k € [j] such that v € T. Thus, for any
v € TVl we may assume that idx’*!(v) = idx’(v).

— The indices of individual vertices in TV! are the basis for defining the index
of sets in TV1. Specifically, the j-index of a set S C TV!, denoted idx’(S), is
the multi-set consisting of all values idx’(v) for v € S. It will be instructive
to consider an ordered version of this multi-set; that is, we redefine idx’(S)
as (i1, ...,4|g|) such that (1) for every k < |S] it holds that iz > iry1, and
(2) for every i € [€] it holds that [{k€[|S]] : ir=1i}| = |[{v € S : idx’ (v)=1}|.

— We consider a natural lexicographic order over sequences, denoted >, such
that for two (monotonicly non-increasing) sequences of integers,
a = (ai,...,am) and b = (by, ..., by,), it holds that a > b if

e either there exists ¢ < min(n,m) such that (aq,...,a;—1) = (b1,...,bi—1)
and a; > b;.
e or m>n and (a,...,an) = (b1, ..., bp).
Note that > is a total order on the set of monotonicly non-increasing (finite)
sequences of integers.

Testing Graph Blow-Up 165

As hinted in the overview, a key notion in our analysis is the notion of a clustering
of the vertices of G that is induced by an H-mapping of some small subset of
vertices. Actually, the clustering is induced by a partial knowledge sub-matrix
K':Rx C — {0,1,} as follows.

Definition 4.2 (the clustering induced by K'): Let K’ : Rx C — {0,1,%} be a
sub-matriz of K : T xT — {0, 1, *} such that K’ has pairwise inconsistent rows.
Then, for every r € R, we denote by V,.(K') the set of vertices v € [N] that are
consistent with row r in K'. That s,

Vi (K') € {ve[N]: (VeeC) g(v,e) 2 K'(r,c)} (2)

where, for o,7 € {0,1,x}, we write 0 =7 if either 0 =7 or 0 = * or 7 = *.

The wvertices that are inconsistent with all rows, are placed in the leftover set

L(K') < [N]\ U, e Vi (K).

Indeed, rows ri,ry € R are inconsistent wrt K’ (as per Definition B2)) if there
exists a column ¢ € C such that K'(r1,¢) 2 K'(rq, ¢) (which means that K'(rq, c)
and K'(re,c) are both in {0,1} but are different). Thus, the hypothesis that
the rows of K’ are pairwise inconsistent implies that the sets in Eq. (@) are
disjoint. Hence, the clustering in Definition is indeed a partition of the vertex
set of G (since v € L(K') if for every r € R there exists ¢ € C such that
g(v,¢) 2K'(r,c)). This motivates our focus on sub-matrices having pairwise
inconsistent rows. The following definition adds a requirement (regarding such
sub-matrices) that refers to the relation between the index of row r and the
density of the corresponding set V,.(K').

Definition 4.3 (nice pairs): Let (R,C) be a j-basic pair and K' : R x C —
{0,1,*} be the corresponding sub-matriz of K. We say that (R,C) is a j-nice
pair if the following two conditions hold.

1. R is pairwise inconsistent with respect to K'.
2. For every v € R it holds that ind?(r) < p(V,.(K')) + 1, where p(S) e
[log(N/[S])T-

As a sanity check, suppose that r € R was selected in phase j (i.e., r € T7).
Then, it is very likely that r (or some other member of V,.(K’)) is selected
in TZ(VT(K,))_l, because TZ(VT(K,))_l is a random set of cardinality poly(¢) -
20V KN =1 — poly (£) - N/|V,.(K)].

For each phase j, we shall show the existence of a j-nice pair. Furthermore, we
shall show that the corresponding set of rows has a higher index than all sets of
rows associated with previous phases. The furthermore claim is the crux of the
analysis, and is captured by the Progress Lemma presented in Section But
let us first establish the mere existence of j-nice pairs. Indeed, for every j > 1,
we may pick an arbitrary r € T}, and consider the j-nice pair ({r}, {r}), while
noting that idx!(r) = 1 and p(V,.(K’)) > 0 (where K’ : {r} x {r} — {0,1,%}).

166 L. Avigad and O. Goldreich

4.2 The Progress Lemma

Recall that G = ([N], E) is e-far from BU(H), where H = ([h], F'). Furthermore,
we consider the partial view K : T'x T — {0, 1, *} obtained by Algorithm B.1]
where T' = Uie[g] J€P(O)] T7 is the random sample selected. Throughout the rest
of this section, we say that an event has negligible probability if it occurs with
probability that vanishes faster than any polynomial in €. Since we shall consider
only poly(¢) many events, we can safely ignore these negligible probabilitiesﬁ We
say that an event occurs with overwhelmingly high probability if the probability
that it does not occur is negligible.

Lemma 4.4 (Progress Lemma): Let (R,C) be a j-nice pair and K' : R x C' —
{0,1,*} be the corresponding sub-matriz of K. If K' is H-mappable then, with
overwhelmingly high probability over the choice of T?TY, there exists a (j+1)-nice
pair (R, C") such that ind’ T (R’) = ind’(R).

Recalling that a (trivial) 1-nice pair always exists and that the number of pos-
sible indices is smaller than p(¢), we conclude that, with overwhelmingly high
probability (over the choice of T'), there exists a j < p(¢) and a j-nice pair
that is not H-mappable. Lemma [£.]] follows. Thus, all that remains is proving
Lemma [£4] which we undertake next.

Proof: We consider the partition induced by K’, as per Definition [£2] and

consider two cases regarding the size of L e L(K'):

Case 1: p(L) < ¢. In this case (i.e., |L| > 27 N), with overwhelmingly high
probability, the sample 77! contains a vertex u € L(K'). Using this u, we
shall obtain a (j + 1)-nice pair with a set of rows that has a higher index
than R. Intuitively, since (g(u,c))cec is inconsistent with all rows of K,
we may add u as a row to K’ while possibly omitting rows of K’ that are
consistent with (K (u,c))ccc (see below), obtaining a sub-matrix that has
a larger index (than the index of K’). The detailed analysis of this case is
presented in Claim

Case 2: p(L) > £. In this case (i.e., |L| < 27¢- N < eN/2), the partition induced
by (Vi.(K'))rcr contains many pairs that violate the edge relation of H,
since the number of pairs adjacent at L is smaller than eN?/2. We shall
show that, with overwhelmingly high probability, the sample 77+ contains
a vertex w such that augmenting K’ with the column corresponding to w
yields a sub-matrix K" such that p(L(K")) < £. Intuitively, pairs of vertices

in V(K’) ef U,er Vo (K') that violate the edge relation of H, yield vertices
w that effectively shrink V(K') in the sense that adding w as a column to
K’ moves many vertices from V(K') to L(K"). In particular, we shall show
that |L(K")| = £2(eN/{), which means that p(L(K")) < log,(O(£)/€) < £.

5 In fact, it would have sufficed to define as negligible any probability that vanishes
faster than any polynomial in 1/¢ (i.e., faster than any polylogarithmic function of

€).

Testing Graph Blow-Up 167

At this point we may proceed as in Case 1. (Formally, in this case, the j+ 1st
phase is partitioned into two sub-phases, where in each sub-phase we use half
of each of the samples T7 +1.) The detailed analysis of this case is presented
in Claim

Our analysis of the two cases combines straightforward probabilistic arguments
with manipulations of sub-matrices. The latter manipulations include adding
rows and columns and truncating the sub-matrix so as to leave only rows that
have an index that is lower-bounded by some value. It is thus instructive to
discuss these three operations first.

Adding an arbitrary column from 771, Suppose that (R, C) is j-nice with a cor-
responding sub-matrix K’. Then, adding any column v € T+ to K’ re-
sults in a sub-matrix K" such that the corresponding pair (R,C U {v}) is
(j + 1)-nice. Clearly, adding a column may only add inconsistencies, and
so the pairwise inconsistency condition of K’ is preserved. For any r € R,
the densities of V.(-) may only drop when moving from K’ to K", and so
ind’(r) < p(V,.(K')) + 1 implies ind? " (r) < p(V,.(K")) + 1.

Adding a row that belongs to L(K") ﬂTg('El(K,)). It is tempting to think that if

(R, C) is j-nice, then adding any row v € Tg&l(K,)) NL(K')NC to K' results
in a sub-matrix K" such that the corresponding pair (RU{v},C) is (j+1)-
nice. It is true that ind’*!(r) < p(V,.(K"))+1 holds for each row r, including
the added row v (because ind’ ! (v) = p(L(K’)) and p(V,(K")) > p(L(K")),
since V,,(K") C L(K")). However, although for every r € R there exists ¢ € C
such that g(v,c) 2 K'(r, ¢) (since v € V,.(K’)), it not necessarily the case that
the row v in K is inconsistent with all rows in K’ (i.e., it may be the case
that, for some r € R and each ¢ € C, it holds that K(v,c) = K'(r,c), since
K(v,c) € {g(v,¢),+} and *= K'(r,c)). Coping with this problem, which
arises from the fact that K may have x-values, leads us to introduce the
following truncation operator.

Truncating at an added row. Suppose that (R, C) is j-nice with a corresponding

sub-matrix K’, and let v € L(K') N TZ(J;}(K,)). Then, consider first adding v
as a new row and column to K’ and then leaving in the resulting sub-matrix
only the rows that have a (j + 1)-index that is at least as large as the one
of v (i.e., row r remains if and only if ind’*!(r) > ind’*!(v)). We claim
that these rows are pairwise inconsistent, and thus the resulting sub-matrix
is (§ + 1)-nice.
It suffices to prove that the new row v (of K) is inconsistent with any row that
was left from K'; that is, fixing any r € R such that ind’*!(r) > ind’*!(v),
we claim that there exists ¢ € C such that K(v,c) 2 K'(r,c). Since v €
L(K'), we know that there exists ¢ € C' such that g(v,c) % K'(r,c), which
implies that K'(r,c) € {0,1}, which in turn implies ind’(r) + ind’(c) < ¢
(by definition of K). Now, using ind’™!(v) < ind/*!(r) < ind’(r), we get
ind’*!(v) + ind’ (c) < ¢, which implies that K (v, c) = g(v, ¢). Recalling that
g(v,c) 2K'(r,c), we obtain K (v,c) % K'(r,c), and the claim follows.

168 L. Avigad and O. Goldreich

Note that the truncation of K’ : R x C' — {0,1,*} at the added row v always
contains the new row v, and that it may result in |R| 4+ 1 rows (i.e., no “real
truncation”). Another key feature of the truncation-at-an-added-row operation
is that it yields a set of rows with an index larger than the index of R.

Claim 4.4.1 (the effect of truncation): Suppose that (R,C) is j-nice with a
corresponding sub-matriz K', and let v € L(K') N ijal(K,)). Then, truncating
the sub-matriz that corresponds to (RU{v}, CU{v}) at row v yields a (j+1)-nice

pair with a row set having an index larger than ind’ (R).

Proof: The first part of this claim was already established above. Denoting the
resulting set of rows by R’, we need to prove that ind/*!(R’) = ind/(R). If R’ =
RU{u} then the claim is trivial, and so we consider the case that ind’ ™ (R') =
(i1, ...,4¢), where t < |R| and i = ind’T!(v). This means that a non-trivial trun-
cating took place, and that all omitted rows had index smaller than i;, which im-
plies that (i1, ...,4;) = ind’T!(R) (because ind’*1(R) = (i1, ..., 411, dy, ey d|R))
with dt < Zt) d

Claim 4.4.2 (case 1): Suppose that (R,C) is j-nice and that p(L) < £, where
L = L(K'). Then, with overwhelmingly high probability (over the choice of
Tg(zl(K,))), the sample ijal(K,)) contains a vertex u € L(K') such that adding u
to K' (both as a row and a column) and truncating the resulting sub-matriz at
row u yields a (j + 1)-nice pair (R',C") such that ind’*1(R') = ind/(R).

Proof: With overwhelmingly high probability, the sample T p]('zl(K7) contains a

vertex u € L(K'), while using any such vertex yields the desired result (due to
Claim 4.T]). O

Claim 4.4.3 (case 2): Suppose that (R,C) is j-nice and that the corresponding
sub-matriz K' is H-mappable. Further suppose that p(L) > ¢, where L = L(K').
Then, with overwhelmingly high probability (over the choice of T7+1), the sample
T+Y contains a vertex w such that adding the column w to K' yields a (j +
1)-nice pair (R,C U {w}) such that the corresponding sub-matriz K" satisfies
p(L(K")) < ¢

Proof: We combine the hypothesis that G is e-far from BU(H) with the hypothe-

sis that K’ is H-mappable, and denote the corresponding H-mapping by ¢ : R —

[h]. Extending this mapping to V(K’) def U,er Vo (K') such that ¢(v) = é(r)

for every v € V,.(K'), and using the hypothesis that |L(K')| < 27N < eN/2, we
conclude that there are at least e N2 /2 vertex pairs that violate the edge relation
of H (i.e., pairs (u,v) € V(K')x V(K’) such that (u,v) € Eiff (¢p(u), p(v)) € F).
Actually, we should consider all k! possible injections (from R to [h]), and apply
the argument to each of them, but this only increases the error probability by a
factor of h!. These violations can be of one of the following two types.

1. Edges (u,v) € E such that (¢(u),d(v)) ¢ F. If the number of such pairs
exceeds eN? /4, then we select a pair (r,s) € R x R such that there exist at
least eN?2/4h? pairs (u,v) € E for which (¢(u), ¢(v)) = (¢(r), ¢(s)) € F.

Testing Graph Blow-Up 169

2. Non-edges (u,v) € E such that (¢(u), ¢p(v)) € F. If the number of such pairs
exceeds eN?2 /4, then we select a pair (r,s) € R x R such that there exist at
least eN2/4h? pairs (u,v) ¢ E for which (¢(u), p(v)) = (6(r), ¢(s)) € F.

Fixing (r, s) as above we have at least e N2 /4h? violating pairs in V,.(K')x V,(K").
Next, we select an integer m € [¢] such that there exists a set W C V,.(K') of
cardinality 2=™ - N and every w € W participates in at least €2™N/4h?(>
2~ (t=m=3) . N violating pairs (with vertices of V;(K")). Clearly, p(W) = m, and
so with overwhelmingly high probability 77! contains a vertex w € W. Adding
any such w as a column to K’, we obtain a sub-matrix K” and claim that
p(L(K")) < £ —m < {. Specifically, we shall show that every u € Vi(K') such
that (u, w) is a violating pair must be in L(K"), and infer that p(L(K")) < {—m
by recalling that the number of such violating pairs in which w participates
exceeds 27 (F~m=3) . N,

Thus, letting U™ denote the set of all u € V5 (K’) such that (u, w) is a violating
pair, we prove that U* C L(K"). Let u be an arbitrary vertex in U% C V,(K")
(and recall that w € W NTJ+ ! C V,.(K')). Our argument proceeds as follows.

1. We first note that ind’ (r) < p(V,.(K’))+1 (by the nicety condition), whereas
p(Vo(K')) < p(W) =m.

Similarly, ind’(s) < p(Vs(K')) + 1, whereas p(V5(K")) < p(UY) < €L—m —3
(since Vi(K') D U and |U¥| > 2= (¢=m=3) . N).

2. Combining the two foregoing facts, we conclude that ind’(r) 4+ ind’(s) < ¢,
which implies that K'(r,s) = g(r, s).

3. Since w € V,.(K'), it must be that g(w, s) = K'(r, s), which implies g(w, s) =
g(r,s) (when combined with K’(r,s) = g(r,s)). Since ¢ is an H-mapping
it must be that g(s,w) = g(s,r) fits the edge relation of (¢(s), p(w)) =
(p(s), p(r)) with respect to H.

4. On the other hand, since (u,w) is a violating pair, the value g(u,w) does
not fit the edge relation of (¢(u), p(w)) = (¢(s), #(r)) with respect to H.

5. Combining Items Bl and @ we infer that g(u,w) # g(s,w), which implies
g(u,w) £K"(s,w) (because K"(s,w) = g(s,w) by virtue of ind’*!(s) +
ind/ 1 (w) < (—m—2)+m < £, where w € TJ*! by the hypothesis). Thus,
w is not in Vi(K"), although it is in Vi(K’).

6. We observe that, for every r € R\ {s}, vertex u € V4(K’) is not in V,.(K") C
V..(K’), since the rows of K’ are pairwise inconsistent.

7. Combining Items [l and [f] we conclude that v & |
u € L(K").

rer Vr(K"), and hence

Thus, we have established that U* C L(K"). As noted above, it follows that
p(L(K")) < p(U") < £ —m — 3 < £. This completes the proof of Claim 43 O

Completing the proof of Lemmal[{.4] In accordance with the motivating discus-
sion, we now complete the proof of the lemma by using the two latter claims.
Specifically, if Case 1 holds (i.e., p(L(K’)) < £), then we invoke Claim f.42] and
are done. Otherwise, Case 2 holds (i.e., p(L(K")) > ¢), and we take the follow-
ing two steps. Recall that, as stated in the beginning of the proof, in this case

170 L. Avigad and O. Goldreich

(i.e., Case 2) we partition the sample 79! into two parts, and use a different
part in each step. In the first step we apply Claim [£.4.3] to the first part, and get
into Case 1; that is, we obtain a new K’ such that p(L(K')) < ¢. (Note that the
new K’ has the same row set as the original one, and the latter set maintains its
index.) Next, in the second step, we apply Claim to the resulting K’ and
the second part of the sample, and are done.

5 Proximity Oblivious Testing of Blow-Up

In this section we derive, for every fixed graph H, a constant-query proximity
oblivious tester of BU(H). That is, we refer to the following definition of [GR09],
when specialized to the dense graph model.

Definition 5.1 (proximity oblivious testing for graphs in the adjacency matrix
model): A proximity oblivious tester for a graph property II is a probabilistic
oracle machine that, on input parameter N and access to an N-vertex graph
G = ([N], E), outputs a binary verdict that satisfies the following two conditions.

1. If G € II, then the tester accepts with probability 1.

2. There exists a monotone function p : (0,1] — (0, 1] such that, for every graph
G = ([N], E) & II, it holds that the tester rejects G with probability at least
(0 (G)), where 611(G) denotes the (relative) distance of G from the set of
N-vertex graphs that are in II.

The function p is called the detection probability of the tester.
Combining Lemma (1] and the ideas underlying [GR09, Thm. 6.3], we obtain.

Theorem 5.2 For every fized graph H = ([h], F), there exists a O(h?)-query
proximity oblivious tester of BU(H). Furthermore, the tester has detection prob-
ability p(e) = 2,

This extends the result of [GR09), Prob. 4.11], which corresponds to the special
case in which H is a h-vertex clique. We also mention that, for constant-query
proximity oblivious testers of BU(H), detection probability of the form p(e) =
(M) is essential (cf. [GRO9, Prob. 4.3]).

Proof: While a direct application of [GR09, Thm. 6.3] would yield a detection
bound of p(e) = eo(hz), we obtain a quantative improvement by using a version
of [GR0OY, Thm. 6.3] that is specialized to the dense graph model. This version
refers to any graph property I having a standard tester T (of error probability
1/3) that satisfies the following three conditions:

1. T is non-adaptive;

2. for a monotonically non-decreasing v : (0,1] — N, on prozimity parameter
€, the queries of T refer to at most v(e) vertices; and

3. for some fized s € N, the tester T rejects if and only if it sees a partial
view of some s-vertex subgraph that cannot occur in any graph in II. (Such
a partial view is called a witness for non-membership.)

Testing Graph Blow-Up 171

In such a case, II has an (;)-query prozimity-oblivious tester with detection
probability at least p(e) = $2(e/v(e/2)%). We mention that a direct applica-
tion of [GR09, Thm. 6.3] would have yielded a detection bound of p(e) =
Q(e/q(e/2)(§)), where ¢ < 2 denotes the query complexity of the original tester.

The foregoing claim is easily proved by following the ideas that underly the
proof of [GRO9, Thm. 6.3]. Specifically, the proximity oblivious tester select i €
{1, ..., [logy N} with probability 27¢, invokes the query-generator procedure of T
on input ((alleged) proximity parameter) 27¢, selects uniformly s vertices among
those that appear in the generated queries, makes (ounly) the corresponding (;)
queries, and accept if and only if the induced subgraph is not a witness for non-
membership. Clearly, the resulting tester rejects any graph that is 27‘-far from

IT with probability at least 2% - (”(2 1)) .

It remains to show that, When applied to IT = BU(H), the (non-adaptive)
tester in Algorithm [3.1] (When using the relaxed condition of Definition [3.4])
rejects based on a witness for non-membership that contains O(h) vertices. Es-
sentially, this holds since the condition in Definition B4 refers to a set of at
most h + 1 pairwise inconsistent rows that are not H-mappable, whereas (as
shown next) only n — 1 columns are required in order to establish that n rows
are pairwise inconsistent. Thus, it suffices to augment the set of rows R by at
most |R| — 1 additional vertices, and derive a witness for non-membership that
contains at most 2h + 1 vertices.

Lastly, we prove that n — 1 columns suffice for establishing the fact that n
rows are pairwise inconsistent. Starting with a row r of the largest index, we
pick an arbitrary column that witnesses the inconsistence of row r with some
other row r’. This column ¢ partitions the set of rows to two non-trivial sets: the
set of rows having the same value as r on column ¢, and the set of rows having
the opposite value on this column. (Note that all rows have a binary value on
column ¢, since we started with a row r of largest index.) The process continues,
separately, with each of these two sets, and the key observation is that each split
requires only one (possibly new) column.

6 Conclusions

We have shown a non-adaptive tester of query complexity O(1/€) for BU(H).
The degree of the polynomial in the polylogarithmic factor that is hidden in the
O() notation is h + O(1), where h is the number of vertices in H. We wonder
whether the query complexity can be reduced to p(hlog(1/¢))) - e~t, where p
is a fixed polynomial. We mention that such a dependence on h was obtained
in [GRO8] Sec. 6.2] for the special case in which H is an h-clique. Furthermore, we
wonder whether non-adaptive testing of BU(H) is possible in query complexity
poly(h)-e~1. We mention that such a result is only known for h = 2 (cf. [GROS,
Sec. 6.1]), whereas an adaptive tester of query complexity O(h?/¢) is known
(cf. [AL Sec. 4]).

172

L. Avigad and O. Goldreich

Acknowledgments. We are grateful to Dana Ron and to the anonymous re-
viewers of RANDOM’11 for comments regarding previous versions of this work.

References

[AFKS]

[AFNS]

[AS]
[A]
[CEG]
[GGR]

[GKNR]

[GROS]

Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large
Graphs. Combinatorica 20, 451-476 (2000)

Alon, N.; Fischer, E., Newman, I., Shapira, A.: A Combinatorial Charac-
terization of the Testable Graph Properties: It’s All About Regularity. In:
38th STOC, pp. 251-260 (2006)

Alon, N., Shapira, A.: A Characterization of Easily Testable Induced Sub-
graphs. Combinatorics Probability and Computing 15, 791-805 (2006)
Avigad, L.: On the Lowest Level of Query Complexity in Testing Graph
Properties. Master thesis, Weizmann Institute of Science (December 2009)
Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms
for Estimating the Average. In: IPL, vol. 53, pp. 17-25 (1995)

Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. Journal of the ACM, 653-750 (July 1998)
Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy theo-
rems for property testing. In: Dinur, 1., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX 2009. LNCS, vol. 5687, pp. 504-519. Springer, Heidelberg (2009)
Goldreich, O., Ron, D.: Algorithmic Aspects of Property Testing in the
Dense Graphs Model. ECCC, TR08-039 (2008)

Goldreich, O., Ron, D.: On Proximity Oblivious Testing. ECCC, TR08-041
(2008); Extended Abstract in the Proceedings of the 41st STOC (2009)
Goldreich, O., Trevisan, L.: Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms 23(1), 23-57 (2003)

Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-
plications to program testing. STAM Journal on Computing 25(2), 252-271
(1996)

Proximity Oblivious Testing and the Role of
Invariances

Oded Goldreich and Tali Kaufman

Abstract. We present a general notion of properties that are character-
ized by local conditions that are invariant under a sufficiently rich class
of symmetries. Our framework generalizes two popular models of testing
graph properties as well as the algebraic invariances studied by Kauf-
man and Sudan (STOC’08). Our focus is on the case that the property
is characterized by a constant number of local conditions and a rich set
of invariances.

We show that, in the aforementioned models of testing graph prop-
erties, characterization by such invariant local conditions is closely re-
lated to proximity oblivious testing (as defined by Goldreich and Ron,
STOC’09). In contrast to this relation, we show that, in general, charac-
terization by invariant local conditions is neither necessary nor sufficient
for proximity oblivious testing. Furthermore, we show that easy testabil-
ity is not guaranteed even when the property is characterized by local
conditions that are invariant under a 1-transitive group of permutations.

Keywords: Property Testing, Graph Properties, Locally Testable Codes,
Sparse Linear Codes, The Long-Code

A version of this work appeared as TR10-058 of ECCC.

1 Introduction

In the last couple of decades, the area of property testing has attracted much
attention (see, e.g., a couple of recent surveys [I516]). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and
the testers get oracle access to this function (and thus may be expected to work
in time that is sub-linear in the size of the object).

While a host of fascinating results and techniques has emerged, the desire for a
comprehensive understanding of what makes some properties easy to test (while
others are hard to test) is far from being satisfied[] Two general approaches
that seem to have a potential of addressing the question (of “what makes testing
possible”) were suggested recently.

! This assertion is not meant to undermine significant successes of several characteri-
zation projects, most notably the result of [I].

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 173-[[90] 2011.
© Springer-Verlag Berlin Heidelberg 2011

174 O. Goldreich and T. Kaufman

1. Restricting attention to the class of prozimity oblivious testers, which are
constant-query testers that reject any object with probability proportional
(but not necessarily linearly proportional) to its distance from the predeter-
mined property. Indeed, the characterization of proximity oblivious testers,
in two central models of graph properties, obtained in [9], addresses the fore-
going question: graph properties have proximity oblivious testers ﬁ‘ and only
if they can be characterized in terms of adequate local conditions

2. But even before [9], an approach based on adequately invariant local con-
ditions was put forward in [I3]. It was shown that in the context of test-
ing algebraic properties, a sufficient condition for testability (which in fact
yields proximity oblivious testers) is that the property can be characterized
in terms of local conditions that are invariant in an adequate sense. (Here
and throughout this paper, a local condition means a condition that refers to
the value of the function at a constant number of points.)

Thus, these two approaches have a very similar flavor, but they are very different
at the actual details. On the one hand, the definition of proxzimity oblivious testers
does not refer to any structure of the underlying domain of functions, and the
local conditions in the two graph models do not refer explicitly to any invariance.
However, invariance under relabeling of the graph’s vertices is implicit in the
entire study of graph properties (since the latter are defined in terms of such
invariance). On the other hand, the linear invariances considered in [I3] presume
that the functions’ domain can be associated with some vector space and that
the properties are invariant under linear transformations of this vector space.

Thus, the first task that we undertake is providing a definition of a general
notion of “characterization by invariant local conditions”, where at the very min-
imum this general definition should unify the notions underlying [9/T3]. Such a
definition is presented in Section 2l Loosely speaking, a property P is character-
ized by invariant local conditions if P is charaterized by a set C of local conditions
(i.e., f € P iff f satisfies all conditions in C') and C is generated by a constant
number of local conditions coupled with a set of actions that preserves P (i.e.,
the invariances).

Given such a definition, a natural conjecture that arises, hereafter referred to
as the invariance conjecture, is that a property has a constant-query proximity-
oblivious tester if and only if it can be characterized by invariant local conditions.
This conjecture is rigorously formulated within our definitional framework (see
Section [Z2) and the current work is devoted to its study. The main results of
our study may be stated informally as follows:

1. The invariance conjecture holds in the context of testing graph properties in
the dense graph model (see Theorem B.)).

2. The invariance conjecture holds in the context of testing graph properties
in the bounded-degree graph model if and only if all local properties are
non-propagating (see Theorem 1] and [9, Open Problem 5.8]).

2 We warn that the picture is actually not that clean, because in the case of the
bounded-degree model the notion of adequacy includes some technical condition,
termed non-propagation.

Proximity Oblivious Testing and the Role of Invariances 175

3. In general, the invariance conjecture fails in both directions.

(a) Characterization by invariant local conditions is not necessary for prox-
imity oblivious testing. This is demonstrated both by linear properties
(see Theorem [5.J]) and by the dictatorship property (see Theorem [(B.2)).

(b) Characterization by invariant local conditions is not sufficient for prox-
imity oblivious testing (see Theorem [5.3)). This is demonstrated by the
property called Eulerian orientation (which refers to the orientation of
the edges of a cyclic grid, cf. [0]).

Thus, there are natural settings in which the invariance conjecture holds, but
there are also natural settings in which it fails (in each of the possible directions).

The technical angle. Ttems [Il and 2] are established by relying on corresponding
results of [9], while our contribution is in observing that the local conditions
stated in [9] (in terms of subgraph freeness) coincide with local conditions that
are invariant under graph isomorphisms. Actually, to rule out characterizations
by other possible invariances (i.e., invariances other than graph isomorphism),
we also use the canonization technique of [I0, Thm. 2]. In the two examples of
Ttem [Bal we rely on the fact that these properties were shown to have (proximity
oblivious) testers in [I2] and [3], respectively. Thus, in both these cases, our con-
tribution is showing that these properties cannot be characterized by invariant
local conditions. In Item B we rely on a lower bound established in [6] (re-
garding testing Eulerian orientations of cyclic grids), and our contribution is in
observing that this property can be characterized by invariant local conditions.

We mention that the property used towards establishing Item [3bl is invariant
under a 1-transitivd) permutation group. Thus, even such an invariance feature
does not guarantee easy testability (i.e., a standard tester of query complexity
that only depends on the proximity parameter). Furthermore, this holds even
when all local conditions are generated by a single local condition (closed under
the said invariance).

Terminology. Throughout the text, when we say proximity oblivious testing we
actually mean proximity oblivious testing in a constant number of queries. The
definition of proximity oblivious testing appears in the appendix.

Organization. In Sectionlwe provide a definitional framework that captures the
foregoing discussion. In particular, this framework includes a general definition
of the notion of characterizations by invariant local conditions and a formal
statement of the invariance conjecture. In Section [Bl we show that the invariance
conjecture holds in the context of testing graph properties in the dense graph
model, and in Section] we present an analogous conditional (or partial) result
for the bounded-degree graph model. The failure of the invariance conjecture is
demonstrated in Section [0l and possible conclusions are discussed in Section

3 A permutation group G over D is called 1-transitive if for every e, e’ € D there exists
a7 € G such that 7(e) =¢€'.

176 O. Goldreich and T. Kaufman

2 General Framework

For simplicity, we consider properties of finite functions defined over a finite do-
main D and having a finite range R, whereas an asymptotic treatment requires
considering properties that are infinite sequences of such properties (i.e., a se-
quence of the type (P,)nen where P, is a set of functions from D,, to Rn)E
Still, we shall just write P, D, R, and (in order for our asymptotic statements
to make sense) one should think of P,,, D,,, R,,. In particular, when we say that
some quantity is a “constant”, we actually think of D as growing (along with P
and possibly R), while the said quantity remains fixed. Thus, in the rest of our
presentation, D and R should be considered as generic sets having a variable
size, although they will be often omitted from definitions and notations.

The simplified form of the invariant condition. We start by outlining a simplified
version of the condition that we seek, regarding a property P (of functions D — R):

1. P is closed under the action of some permutation group G, which is defined
over D, and

2. P has a characterization via a constant number of “generic” constraints of
constant size such that a function f is in P iff all actual constraints obtained
by having G act on the generic constraints are satisfied.

In other words, P can be characterized by a set of constraints that are generated
by some permutation group G acting on a constant number of constant-size
constraints.

We stress that the foregoing permutation group G is chosen arbitrarily, and
may depend on P (and not only on a natural class of properties to which P
belongs). Thus, if P is a graph property, then G need not be the group that
preserves all graph properties (i.e., the vertex-relabeling group), but rather may
be any group that extends the vertex-relabeling group. For example, if P is the
property of having more edges than non-edges, then G may be the symmetric
group of all (unordered) vertex pairs, which in particular contains the vertex-
relabeling group as a subgroup.

2.1 Characterization by Generated Constraints

We now generalize and clarify the above discussion. First we need to define
what we mean by a constraint. A constraint will be a pair consisting of domain
elements and a Boolean predicate applied to the corresponding values, and it is
satisfied by a function f if applying the predicate to the f-values at the specified
locations yields the Boolean value 1 (representing true).

Definition 2.1 (constraints): A constraint is a pair ((e1,...,e.), @) such that
€1, ..., €c are distinct elements in D, and ¢ : R® — {0,1} is an arbitrary predicate.
We say that the foregoing is a constraint of arity ¢ (or a c-constraint). A function
f: D — R is said to satisfy the foregoing constraint if ¢(f(e1), ..., f(ec)) = 1.

* The reader may think of n = |D,,|, but it is helpful not to insist that D,, = [n]. On
the other hand, the set R, may be independent of n (cf., e.g., the case of Boolean
functions).

Proximity Oblivious Testing and the Role of Invariances 177

Note that at this point the predicate ¢ may depend on the sequence of ele-
ments (eq, ..., e.). Such a dependence will not exist in the case that a large set
of constraints is generated based on few constraints (as in Definition [2.3]).

The next notion is of characterization by a set of constraints. A property P
of functions is characterized by a set of constraints if f is in P if and only f
satisfies all the constraints in the set.

Definition 2.2 (characterization by constraints): Let C' be a set of constraints
and P be a property. We say that P is characterized by C if for every f : D — R
it holds that f € P if and only if f satisfies each constraint in C.

Next, we consider the set of constraints generated by the combination of (1) a
fixed set of constraints, (2) a group of permutations over D, and (3) a group of
permutations over R. For starters, the reader is advised to think of the second
group as of the trivial group containing only the identity permutation. In general,
we shall consider a subset of the set of all pairs consisting of a permutation as
in (2) and a permutation as in (3).

Definition 2.3 (generated constraints): Let C be a finite set of c-constraints,
and M be a set of pairs consisting of a permutation over D and a permutation
over R (i.e., for any (m,u) € M it holds that 7 is a permutation of D and
is a permutation of R). The set of constraints generated by C and M, denoted
CONS(C, M), is defined by

CONS(C, M) € {((m(er) - m(ec)) o0 ™) < (1), 6) €C, mwent
where ¢ o u=(vy,...,v.) denotes (= (v1), ..., pH(ve)).

Note that saying that f satisfies ((w(e1), ..., 7(ec)), o =) means that

(@0 n™ ") (f(m(er)), s f(m(ee))) = d(u™" (F(m(er))), ooy ™' (f(mlec)))) = 1,

which means that u~!o for satisfies the constraint ((e, ..., e), ¢). Regarding the
use of 1o fon rather than o fom, see the discussion following Definition

Notation: As in Definition 2.3, it will be convenient to generalize functions to
sequences over their domain. That is, for any function F' defined over some
set S, and for any ey, ...,e; € S, we denote the sequence (F(ey), ..., Fl(et)) by
F(ey,...,et). Throughout the text, id will be used to denote the identity permu-
tation, where the domain is understood from the context.

2.2 The Invariance Condition

Returning to the condition outlined initially, let us now formulate it as follows.
We consider a group of pairs (m, u) such that 7 is a permutation over D and p is a
permutation over R with a group operation that corresponds to component-wise
composition of permutations (i.e., (71, 1) ® (w2, p2) = (71 © T2, 1 © p2), where
©® denotes the group operation). We call such a group a group of permutation
pairs, and note that it need not be a direct product of a group of permutation
over D and a group of permutations over R.

178 O. Goldreich and T. Kaufman

Definition 2.4 (the invariance condition): A property P satisfies the invariance
condition if there exists a constant, denoted c, a finite set of c-constraints, de-
noted C, and a group, denoted M, of permutation pairs over D X R such that
P is characterized by CONS(C, M). In this case, we also say that P satisfies the
invariance condition w.r.t M.

The invariance condition and covering the domain. We confine our dis-
cussion to the case that the domain contains only elements that are influential
w.r.t the property P; that is, for every e € D, there exists f; € P and fy € P such
that f1(z) = fo(z) for every x € D\ {e}. Observe that if property P satisfies the
invariance condition w.r.t M, then M induces a transitive permutation group on
a constant fraction of D. This follows because the permutation group (over D)
induced by M must map a constant number of elements (i.e., those appearing
in the constraint set C) to all elements of D.

The main question. We are interested in the relation between satisfying the in-
variance condition and having a proximity oblivious tester (of constant-query
complexity). One natural conjecture, hereafter referred to as the invariance con-
jecture, is that a property satisfies the invariance condition if and only if it has
a proximity oblivious tester. Weaker forms of this conjecture refer to its validity
within various models of property testing. This leads us to ask what “models of
property testing” are.

2.3 Models of Property Testing

Natural models of property testing can be defined by specifying the domain and
range of functions (i.e., D and R) as well as the closure features of the properties
in the model[] We elaborate below (and mention that this view was elaborated
independently by Sudan [I§]).

For example, the model of testing graph properties in the adjacency matrix
representation, introduced in [7], refers to D = ([g]) and R = {0,1} as well as to
the permutation group over D that is defined by all relabeling of [N]. Specifically,
an N-vertex graph is represented by the Boolean function g : (U;']) — {0,1}
such that g({u,v}) = 1 if and only if v and v are adjacent in the graph. Here
an adequate closure feature gives rise to graph properties, where P is a graph
property if, for every such function g and every permutation ¢ over [N], it holds
that g € P iff g, € P, where gy({u,v}) < g({1)(u), ¥(v)}).

In general, closure features are defined by groups of pairs of permutations,
just as those in Definition 2.4

Definition 2.5 (closure features): Let M be as in Definition [2.4 We say that
a property P is closed under M if, for every (w,u) € M, it holds that f € P if
and only if po for~! €P.

® In addition, one may consider sub-models that are obtained by requiring the func-
tions in such a model to satisfy some auxiliary properties.

Proximity Oblivious Testing and the Role of Invariances 179

Note that o fomr~! (rather than po fon) is indeed the natural choice, since f
maps D to R whereas the new function f’ = o f o7~1 is meant to map 7 (D)
to pu(R); thus, when f’ is applied to e’ = m(e) this results in first recovering e,
next applying f, and finally applying pu.

Definition 2.6 (closure-based models of property testing): The model of M
consists of the class of all properties that are closed under M.

For example, the model of testing graph properties in the adjacency matrix
equals the model of M, where M is the set of all pairs (m,id) such that 7 :
([];[]) — ([g]) is induced by a permutation of [IV] (i.e., there exists a permutation
¢ over [N] such that w({u,v}) = {¢(u),(v)}, for all {u,v} € D = ([1;[])) We
comment that not all “popular models of property testing” can be reduced to
Definition 2.6, but nevertheless Definition is a good starting point; that is,
various models can be naturally defined as subclasses of the class of all properties
that are closed under some group M (where typically in such cases the subclass
are characterized by a set of constraints that are generated as in Deﬁnitionl’_):{l)@

We observe that closure under M is a necessary condition for satisfying the
invariance condition with respect to M.

Proposition 2.7. If P satisfies the invariance condition w.r.t M, then P is
closed under M.

Proof: For any f € P and (mo, o) € M, consider f’ def po o f omy .

We shall show that f € P if and only if f' € P. Suppose that P is charac-
terized by CONS(C, M), and consider an arbitrary constraint in CONS(C, M).
By definition (of being generated from (C, M)), this constraint has the form
(m(e1),...,m(ec)), ¢ o u~1t), where ((e1,...,e.),¢) € C and (m,u) € M. Our aim
is to show that f’ satisfies this constraint if and only if f satisfies some related
constraint in CONS(C, M), where the two constraints are related via (mo, po)-

We start by looking at the value of (¢ o u=1)(f/(w(e1)), ..., f'(w(ec))), which
we shorthand as (¢ o u=1)(f/(n(e1, ..., ec))). Plugging-in the definition of f/, what
we now look at is (¢ o =) (o o f o w5 1) (m(e1, -, €c))), which may be written
as ¢p(u=t o pg o fomytom(er,...,e.)), which in turn equals ¢((u=" o pg) o f o
(my Lom)(e1, ..., €)). That is, we consider whether f satisfies the constraint ((ry ' o
T)(e1, ..y ec), o (™ opup)), which can be written as (15 o) (e1, ..., ec), po (g o
1)~ 1). But this constraint is in CONS(C, M), since it is generated from ((eq, ..., e¢),0)
€ C by using the pair (75" o 7, g " o 1) € M. Thus, f’ satisfies the constraint
generated (from ((ey,...,e.), ¢)) by (75 "o m, gt o p) if and only if f satisfies the
constraint generated (from it) by (m,). It follows that f’ satisfies all constraints
in CONS(C, M) if and only if f satisfies all constraints in CONS(C, M).

5 Indeed, an alternative formulation of the model of testing graph properties in the
adjacency matrix representation is obtained by starting from D = [N] X [N] and M
that equals all pairs (7, id) such that 7 (u,v) = (¢(u), 1 (v)), for some permutation
1 over [N] and all (u,v) € D = [N] x [N]. In such a case, we consider the subclass of
symmetric functions (i.e., functions g such that g(u,v) = g(v,u) for all (u,v) € D).

180 O. Goldreich and T. Kaufman

3 The Invariance Conjecture Holds in the Dense Graph
Model

We prove that the invariance conjecture holds in the special case of graph proper-
ties in the adjacency matrix representation model (a.k.a the dense graph model).
Recall that in this model, an N-vertex graph is represented by the (symmetric)
Boolean function g : [N] x [N] — {0,1} such that g(u,v) = 1 if and only if u
and v are adjacent in the graph.

We rely on a recent result of [9], which states that (in this model) P has a
proximity oblivious tester if and only if it is a subgraph-freeness property. We
observe that being a subgraph-freeness property is equivalent to satisfying the
invariance condition with respect to the canonical set, where the canonical set
has the form M = M’ x {id} such that M’ is the group of permutations over
vertex-pairs that is induced by vertex—relabelingE (Indeed, the canonical set is
the very set that defines the current model; see Section 2.3]). So it is left to show
that P satisfies the invariance condition if and only if P satisfies the invariance
condition with respect to the canonical set. We thus get

Theorem 3.1. Suppose that P is a set of Boolean functions over the set of
unordered pairs over [N] such that P is closed under relabeling of the base set
(i.e., P is a graph property that refers to the adjacency representation of graphs).
Then, P has a prozimity oblivious tester if and only if P satisfies the invariance
condition. Furthermore, if P satisfies the invariance condition, then it satisfies
this condition with respect to the canonical set.

Proof: The key observation is that, in this model, a property satisfies the in-
variance condition with respect to the canonical set if and only if it is a subgraph-
freeness property, where throughout this proof subgraph-freeness means not hav-
ing certain induced graphs (which are specified in a forbidden set). The backward
direction (i.e., from subgraph-freeness to the invariance condition) follows by ob-
serving that every subgraph-freeness property satisfies the invariance condition
with respect to the canonical set, because it can be generated by the predicate
that forbids certain unlabeled graphs (e.g., not having F' = ([n], Er) as an in-
duced subgraph is captured by the constraint (({1,2},..,{1,n},....{n—1,n}),d)
such that ¢(a12,...,an—1,,) = 1 if and only if F is not represented by (a; ;)i ;)-
In proving the other direction (i.e., from the invariance condition to subgraph-
freeness), observe that the “base” constraints may be viewed as a predicate on
an unlabeled induced subgraph; that is, the constraint (({é1,71}, .-, {fc;Jc}), @)
can be viewed as forbidding all induced subgraphs that are consistent with some
(@iy,jr)kelq such that ¢(ai, j,, ..., ai, 5.) = 0.

Another important observation is that if P satisfies the invariance condition
then it does so with the canonical pair. This observation is proven as follows.
Let P be characterized by CONS(C, M), where M is not necessarily the canoni-
cal set. Then, we view CONS(C, M) (or rather the uniform distribution over it)

" Note that M’ is a permutation group over ([]g]); it contains only permutations of the
form 7y such that my({u,v}) = {¥(v),¥(u)}, where ¢ is an arbitrary permutation
over [N].

Proximity Oblivious Testing and the Role of Invariances 181

as a ((possibly “weak”) non-adaptive) tester with one-sided error; that is, this
tester always accepts any graph in P and its error probability (on no-instances)
is strictly less than 1 (i.e., it accepts graphs that are not in P with probabil-
ity is at most 1 — |CONS(C, M)|~1). Applying [I0, Thm. 2], we obtain a tester
with similar one-sided error that only inspects the graph induced by a random
constant-size vertex-set. (Indeed, the transformation in [I0, Thm. 2] preserves
the detection probability no matter how small it is.) The latter tester gives rise
to a characterization of P that can be generated by the decision predicate of
this tester coupled with the group of vertex-relabeling; that is, P satisfies the
invariance condition with the canonical set.

The current theorem now follows by combining the two foregoing observations
with [9 Thm. 4.7]. Specifically, by [9 Thm. 4.7], P has a proximity oblivious
tester if and only if it is a subgraph freeness property. By the first observation, P
is a subgraph freeness property if and only if P satisfies the invariance condition
with the canonical set, whereas (by the second observation) P satisfies the in-
variance condition if and only if P satisfies the invariance condition with respect
to the canonical set.

4 The Invariance Conjecture in the Bounded-Degree
Graph Model

The next natural challenge is proving a result analogous to Theorem [3.1] for
the bounded-degree graph model (introduced in [8]). Unfortunately, only a par-
tial result is established here, because of a difficulty that arises in [9, Sec. 5]
(regarding “non-propagation”), to be discussed below.

But first, we have to address a more basic difficulty that refers to fitting the
bounded-degree graph model within our framework (i.e., Section 23)). Recall
that the standard presentation of the bounded-degree model represents an N-
vertex graph of maximum degree d by a function g : [N] x [d] — {0,1,..., N}
such that g(v,i) = u € [N] if u is the i*" neighbor of v and g(v,i) = 0 if v has
less than ¢ neighbors. This creates technical difficulties, which can be resolved
in various Waysﬁ The solution adopted here is to modify the representation of
the bounded-degree graph model such that N-vertex graphs are represented by
functions from [N] to subsets of [N]. Specifically, such a graph is represented
by a function g : [N] — 2 such that g(v) is the set of neighbors of vertex
v. Furthermore, we are only interested in functions g that describe undirected
graphs, which means that g : [N] — 2] should satisfy u € g(v) iff v € g(u) (for
every u,v € [N]).

8 The problem is that here it is important to follow the standard convention of allowing
the neighbors of each vertex to appear in arbitrary order (as this will happen under
relabeling of vertex names), but this must allow us to permute over [d] without
distinguishing vertices from the O-symbol. One possibility is to give up the standard
convention by which the vertices appear first and 0-symbols appear at the end of
the list. We choose a different alternative.

182 O. Goldreich and T. Kaufman

Theorem 4.1. Suppose that P is a set of functions from [N] to {S C [N]:|S|<
d} that corresponds to an undirected graph property; in particular, P is closed
under the following canonical set My defined by (m,u) € My if and only if m is
a permutation over [N] and p acts analogously on sets (i.e., u(S) = {mw(v) : v €
SHE Then:

1. IfP has a proxzimity oblivious tester, then it satisfies the invariance condition.

2. If P satisfies the invariance condition, then it satisfies it with respect to the
canonical set, and it follows that P is a generalized subgraph freeness property
(as defined in [9, Def. 5.1]).

Recall that by [9, Sec. 5], if P is a generalized subgraph freeness property that
18 non-propagating, then P has a proximity oblivious tester. But it is unknown
whether each generalized subgraph freeness property is non-propagating. (We
note that this difficulty holds even for properties that satisfy the invariance
condition with respect to the canonical set.

Proof: As in the dense graph model (i.e., Theorem 1), the key observation is
that a property in this model satisfies the invariance condition with respect to
the canonical set if and only if it is a generalized subgraph-freeness property (as
defined in [9, Def. 5.1]). Thus, Part (1) follows immediately from [9, Thm. 5.5],
and the point is proving Part (2)

Suppose that P is characterized by CONS(C, M). Viewing the uniform distribu-
tion over CONS(C, M) as a (very weak) one-sided error non-adaptive tester, we ap-
ply a “canonicalization” procedure that is analogous to [10, Thm. 2], and obtain
a (very weak) tester that inspects the neighborhoods of ¢ randomly distributed
vertices. This yields a characterization of P by CONS({((1,...,¢), #)}, Mop), where
¢ is this tester’s decision predicate. So we are done.

5 The Invariance Conjecture Fails in Some Cases

We show that, in general, the invariance condition is neither necessary nor suf-
ficient for the existence of proximity oblivious testers (POTSs).

9 Recall that we also assume that for every g € P it holds that u € g(v) iff v € g(u)
(for every u,v € [N]). We note that this extra property is easy to test.

10 In fact, the negative example in [9 Prop. 5.4] can arise in our context. Specifi-
cally, consider the set of constraints generated by the constraint ((1,2), ¢) such that
¢(S1,52) = 1 iff both (1) |{¢ € {1,2} : S; =0} # 1 and (2) |S1] € {0} U{2i —1:
¢ € N}. (Indeed, condition (1) mandates that if the graph contains an isolated ver-
tex then it contains no edges, whereas condition (2) mandates that all non-isolated
vertices have odd degree.)

The point (i.e., Part (2)) is showing that if P satisfies the invariance condition, then it
satisfies it with respect to the canonical set. We mention that the transformation from
the possibly adaptive character of a proximity oblivious tester to the non-adaptive
character of the invariance condition (equivalently, generalized subgraph-freeness) is
performed in [9] Thm. 5.5].

11

Proximity Oblivious Testing and the Role of Invariances 183

5.1 The Invariance Condition Is Not Necessary for POT

We present two examples (i.e., properties) that demonstrate that satisfying the
invariance condition is not necessary for having a proximity oblivious tester.
Both examples are based on sparse linear codes that have (proximity oblivious)
codeword tests (i.e., these codes are locally testable). In both cases, the key
observation is that satisfying the invariance condition with respect to M (as in
Definition [Z4]) requires that M is “rich enough” since the domain permutations
should map a fixed number of elements to all the domain elements. On the other
hand, Proposition 27l requires that the property is closed under M, whereas this
is shown to be impossible in both examples. In the first example, presented next,
the property will be shown to be closed only under the trivial pair (id, id).

Theorem 5.1. There exists a property, denoted P, of Boolean functions such
that P has a proximity oblivious tester but does not satisfy the invariance condi-
tion. Furthermore, P is a linear property; that is, if f1, fo € P then f1 + f2 € P,
where (f1 + f2)(x) = f1(x) ® fa(x) for every x.

Proof: We consider a random linear property of dimension £ = O(logn). That
is, for uniformly selected functions g1,...,g¢ : [n] — {0,1}, we consider the
property P, = {> ,c;9: : I C [{]}. Actually, we repeat this selection for every
value of n, obtaining the property P = (P,)nen. It was shown in [I2] that, with
high probability over these random choices, the property P has a POT. We shall
show that, with high probability over these random choices, the property P does
not satisfy the invariance condition.

The key observation is that satisfying the invariance condition with respect
to M (as in Definition [Z4]) requires that M is non-trivial (i.e., contains a non-
trivial pair), because otherwise P,, is characterized by a fixed (i.e., independent
of n) number of constraints, which is highly improbable for random g;’s. On
the other hand, Proposition 2.1 requires that P,, is closed under M, which is
highly improbable when M is non-trivial. Specifically, we will show that with
high probability (over the choice of P,,), for every non-trivial (7, 1), there exists
f € P, such that po fon~! ¢ P. We distinguish between two cases: (1) the
case that 7 is not the identity permutation but w is the identity permutation,
and (2) the case that u is not the identity permutation (which implies that
pu(b) =1 —10b for every b € {0,1}).

Claim 5.1.1. Let 7 be a permutation such that m < [{i€[n] : m(i) #£i}| > 0.

Then, for a random P, the probability that {f om : f € P,} = P,, is less than
27m£/4‘

Note that the number of permutations that satisfy the hypothesis is smaller than
(7"”) - (m!) < 2mleg2an Thus, the aggregated probability for the aforementioned
Case (1) is a small constant (i.e., >, _,27™((#/H-10821) i gmaller than, say,

0.01).

Proof: As a warm-up we upper bound the probability that g o # = ¢, where
g : [n] — {0, 1} is uniformly distributed. For gom = ¢ to hold, g must be constant

184 O. Goldreich and T. Kaufman

on each cycle of m. Denoting the number of cycles by ¢ < m/2, it follows that
Prylgom = g] = 27™+¢ < 27™/2_ The argument extends to the case that we
wish gom = g+ f to hold for an arbitrary fixed f and a random g. Specifically,
consider a cycle of m, denoted 41, ..., 7. Then, Pry[(Vj€[t —1]) g(ij41) = g(i;) +
f(i;)] = 27D Tt is even easier to prove that Pry[gom = f] < 27™/2 since
actually Pry[gom = f] = 27". We now turn to upper-bound the probability that
{fon:feP,}=P,, by upper-bounding

Prg,,. .ql(Vie[l]) giom € Pyl =Prg . 4 |Vie[l]3L C[{]st.giom = Z g;
Jjel;

< Z Prg,...q Vie[ﬂ]giow:Zgj (2)

Iy,...I,C[] Je€L;

We break the sum in Eq. (@) into two parts, separating the single term that
corresponds to (I, ..., Iy) = ({1},..., {¢}) from all other terms. The contribution
of the first term to Eq. () is upper-bounded by (27™/2)¢, because Pr,, ,,[Vi€
[€] g; o ™ = g;] equals Hle Pry,[gi o m = g;]. For each other term corresponding
to (I, ..., Ip) # ({1}, ..., {£}), we pick an arbitrary ¢ such that I; # {i}, and note
that Pry, . g.[giom = Zj el g;] equals 27", since g; is uniformly distributed even
when fixing the value of > jer, 95 Furthermore, this assertion holds even if we
only select g; and f; = Y jer; 95 at random (where in case I; = () we mean setting
fi =0). We now consider an iterative process starting with ¢; = i, such that at
the first step we select uniformly g;, and f;;, = > jer, 9i- Recall that we have
Pry, 5. [9i om = fi,] =277 For k = 2,...,0/2, at the kth step we set i, such
that g;, is independent of g;,, ..., gi, , and fi,, .., fi,_, (where fi = 3> . ; g;),
and uniformly select g;, and f;, (unless f;, was already determined, in which
case it is left unchanged). Note that such an i, exists as long as k < ¢/2, but I,
need not be different than {i;}. Then, the probability that g;, o7 = Zjehk 9j,

conditioned on the values of g;,,...,g;, , and fi,..., fi,_,, is at most 2-m/2
where the probability is taken merely over the choice of g;, (and possibly f;,).
Thus, the contribution of this generic term to Eq. (@) is upper-bounded by
27" (2*’”/2)(5/2)*1. Using the union bound, we upper-bound the contribution
of all these (2°)¢ — 1 terms by

9f* . g=(n=(m/2) (9=m/2)t/2, 3)
which is upper-bounded by 2~(m¢/4)=1 (hecause 20* . 9=(n=(m/2)) < 1/2). The
claim follows (because 2-"¢/2 < 2=(mf/9)-1)

Claim 5.1.2. Let u(b) = 1 —b. Then, for a random P,,, the probability that
there exists a permutation 7 such that {go for=1: f € P,} = P, is negligible
as a function of n (i.e., it vanishes faster than any polynomial fraction (in n)).

Proof: It suffices to show that, while the all-zero function is in P,, with very
high probability the constant-one function is not in P,,. This is the case because,

Proximity Oblivious Testing and the Role of Invariances 185

with overwhelmingly high probability, for every non-empty I C [¢] it holds that
i elnl:Xier9:(G) =1} isin (1 £0(1)) - n/2.0

Combining Claims B T.1 and B.T.2] we conclude that with high constant proba-
bility P is not closed under any non-trivial pair. Recalling the initial discussion,
the theorem follows.

Testing the Long-Code (a.k.a dictatorship tests). We refer to the property
P = (P,), where for n = 2¢, it holds that f : {0,1}¢ — {0,1} is in P, if and
only if there exists ¢ € [¢] such that f(o1---04) = 0;. Such a function f is a
dictatorship (determined by bit i) and can be viewed as the i*"" codeword in the
long-code (i.e., the long-code encoding of ¢). Note that this property is closed
under the pair (r,id), where 7 is a permutation 7 over {0,1}¢, if and only if
there exists a permutation ¢ over [{] such that w(o1---0¢) = 0g1) - -~ Tg). (An
analogous consideration applies to pairs (7, flip), where flip(c) = 1 — o for
every o € {0,1}.) We shall show that these are the only pairs under which the
dictatorship property is closed, and it will follow that the dictatorship property
violates the invariance condition.

Theorem 5.2. The dictatorship property violates the invariance condition, al-
though it has a proximity oblivious tester.

Proof: The fact that the dictatorship property has a proximity oblivious tester
is established in [3.,14] We shall show that this property violates the invariance
condition because it is not closed under pairs (7,) unless 7 either preserves the
(Hamming) weight of the strings or preserves this weight under flipping.
Indeed, the notion of (Hamming) weight is pivotal to this proof, where the

weight of a string o € {0,1}¢, denoted wt(c), is defined as the number of bit

positions that contain a one (i.e., wt(o1 - - - 0y) def {i € [€] : o5 = 1}]). We first

claim that if P,, is closed under (m,) then wt(m(a)) equals either wt(a) or
¢ —wt(a) for every a € {0,1}¢. (These two cases correspond to whether 4 = id
or p=£flip (i.e, pu(oc) =1-0).)

Suppose that m maps some ¢-bit string « to a string § that has a different
weight (i.e., wt(8) # wt(a)). Then, |{f € P, : f(a) = 1}| = wt(«), because
for every f € P, there exists a different ¢ € [¢] such that f(o1---0¢) = o;.
Similarly, [{fon: f € Py A(f om)(a) = 1} = wt(0), since (f o7)(a) = f(B).
Using wt(a) # wt(5), we infer that P,, # {fonw : f € P,}, since each set
contains a different number of functions that evaluate to 1 at the point «. This
handles the case of ;1 = id, and the case of y = f1ip is handled similarly (i.e.,
if 7 maps some ¢-bit string « to a string 8 such that wt(8) # £ — wt(«), then
Py {pofor: fePy)),

Having established the above, we note that if P had satisfied the invariance
condition then the corresponding M would have mapped a fixed number of
elements to all domain elements. But this fixed number of domain elements (i.e.,
£-bit long strings) have a fixed number of weights, whereas (by Proposition 21

2 The longcode test of [3] only refers to the case that £ is a power of 2.

186 O. Goldreich and T. Kaufman

and the above) the set M may only contain pairs (m,) such that 7 preserves
(or “complements”) the weight of strings. This contradicts the requirement that
all £+ 1 different weights must be covered by the generated constraints, and the
theorem follows.

5.2 The Invariance Condition Is Not Sufficient for POT

We next demonstrate that the invariance condition does not suffice for obtaining
a proximity oblivious tester. Actually, the following example also shows that the
invariance condition does not suffice for the standard definition of testing (with
query complexity that only depends on the proximity parameter).

Theorem 5.3. There exists a property, denoted P, of Boolean functions such
that P satisfies the invariance condition but has mo proximity oblivious tester.
Furthermore, the invariant condition holds with respect to a single constraint
that refers to four domain elements, and a group of domain permutations that is
1-transitive. Moreover, P cannot be tested (in the standard sense) within query
complezity that only depends on the proximity parameter.

Proof: We use a lower bound of [6] that refers to the query complexity of test-
ing Eulerian orientations of fixed (and highly regular) bounded-degree graphs.
Specifically, [6, Thm. 9.14] proves an {2(log¥) query lower bound on the com-
plexity of testing whether the orientation of an ¢-by-¢ cyclic grid is Eulerian. It
follows that this property has no POT, while we shall see that it satisfies the
invariance condition.

We represent the orientation of the ¢-by-¢ cyclic grid by two functions h,v :
ZyxZy — {0,1} such that (i, j) represents the orientation of the horizontal edge
between the vertices (7, j) and (i, j+ 1), whereas v(i, j) represents the orientation
of the vertical edge between the vertices (¢, 7) and (i + 1,), and the arithmetics
is of Zy (i.e., modulo ¢). Specifically, h(i,j) = 1 (resp., v(¢,j) = 1) indicates an
orientation from (,5) to (¢, + 1) (resp., (i + 1,7)). (Needless to say, we can
pack both functions in a single function; for example, f(1,¢,5) = h(i,j) and
£(0,,5) = v(3,5).)

The key observation is that the Eulerian orientation property can be charac-
terized by 4-constraints that are generated from a single constraint. Specifically,
this property is characterized by the set of 4-constraints {h(i,j) + v(i,j) =
h(i,j —1) +v(@i —1,5) : i,j € Z;}, where the constraint h(i,j) + v(i,j) =
h(i,j — 1) + v(i — 1,7) mandates that exactly two of the four edges of vertex
(i,4) are oriented outwards. Finally, note that this set of constraints is gener-
ated by the single constraint h(1,1) 4+ v(1,1) = h(1,0) + v(0,1) and the set of
mappings {(m,s,1d)}, where 7, 5(7,7) = (i + 7, j + s). The main claim follows.

The only part of the furthermore claim that requires elaboration is the claim
that the group of domain permutations is 1-transitive. To show this we explicitly
consider the packing of the aforementioned two functions in a single function
f : {071} XLy x Ly — {Oa 1} such that f(l,l,]) = h(l,j) and f(OaZaj) = U(Z,j)
We redefine the domain permutations 7, s such that . s(0,4,j) = (0,i+7,j+3)

Proximity Oblivious Testing and the Role of Invariances 187

and introduce an auxiliary permutation 7’ such that 7'(c,i,5) = (1 — 0,7,4%).
Observe that a generic constraint (now written as f(1,4,5)+f(0,4,5) = f(1,4,5—
1)+ f(0,i—1, j)) is preserved under the auxiliary permutation 7. The full claim
now follows.

6 Conclusions

While the invariance conjecture holds in two natural models of testing graph
properties, it was shown to fail in other settings. These failures, described in
Section Bl are of three different types.

1. As shown in Theorem[5.1] proximity oblivious testers exist also for properties
that are only closed under the identity mapping. That is, a strong notion of
testability is achievable also in the absence of any invariants.

2. As shown in Theorem [£.2] the existence of proximity oblivious testers for
properties that do not satisfy the invariance condition is not confined to
unnatural properties and/or to properties that lack any invariance.

3. As shown in Theorem [5.3] the invariance condition does not imply the ex-
istence of a standard tester of query complexity that only depends on the
proximity parameter. (Note that the non-existence of such testers implies the
non-existence of proximity oblivious testers.) Furthermore, this holds even
if the invariance condition holds with respect to a group of domain permu-
tations that is 1-transitive and the set of local conditions is generated by a
single condition (closed under this permutation group).

Our feeling is that the fact that the invariance condition is not necessary for
proximity oblivious testing is less surprising than the fact that the former is
insufficient for the latter. Giving up on the necessity part, we wonder whether
a reasonable strengthening of the invariance condition may suffice for proximity
oblivious testing.

A natural direction to consider is imposing additional restrictions on the group
of domain permutations. As indicated by Theorem (.3l requiring this group to
be 1-transitive does not suffice, and so one is tempted to require this group to
be 2-transitived (as indeed suggested in [I1] w.r.t standard testing) Recalling
that if P is closed under a 2-transitive group (over the domain) then P is self-
correctable (and thus consists of functions that are pairwise far apart), one
may also wonder about only requiring 1-transitivity but restricting attention to
properties that consist of functions that are pairwise far apart. We mention that
the property used in the proof of Theorem contains functions that are close
to one another.

13 A permutation group G over D is called 2-transitive if for every (e1, ez), (€], €5) € (g)
there exists a m € G such that 7(e1) = €] and 7(e2) = e5.

4 Recall that here we refer to a set of local conditions that is generated by a constant
number of local condition (closed under a 2-transitive permutation group). In con-
trast, Ben-Sasson et al. [4] have recently shown that a set of local conditions that is
generated by a non-constant number of local condition (closed under a 2-transitive
permutation group) can yield a non-testable property.

188 O. Goldreich and T. Kaufman

Actually, restricting attention to properties that are closed under a 1-transitive
group of domain permutations, we may return to the question of necessity and
ask whether the existence of proximity oblivious testers in this case implies the
invariance condition. Note that our proofs of Theorems [5.1] and rely on the
fact that the corresponding group is not 1-transitive (e.g., in the first case the
group action is trivial and in the second case it has a non-constant number of
orbits).

An alternative perspective. We mention that Sudan’s perspective on the role of
invariance (cf. [I8/19]) is different from the one studied in the current work. In
particular, Sudan suggests to view the role invariance as a theme (or a technique,
akin to others surveyed in [16J19]), which is indeed surveyed in [19] Sec. 5]. From
this perspective, Sudan [19, Sec. 6] views our work as pointing out inherent
limitations on the applicability of the “theme of invariances”, and concludes
that “despite the limitations, invariances have signifficant unifying power (even
if they do not explain everything).”

Acknowledgments. We are grateful to Dana Ron for useful discussions. We
also thank the anonymous reviewers of RANDOM’11 for comments regarding a
previous write-up of this work.

References

1. Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characteriza-
tion of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC,
pp. 251-260 (2006)

2. Alon, N.; Shapira, A.: A Characterization of Easily Testable Induced Subgraphs.
Combinatorics Probability and Computing 15, 791-805 (2006)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability —
towards tight results. SIAM Journal on Computing 27(3), 804-915 (1998)

4. Ben-Sasson, E., Maatouk, G., Shpilka, A., Sudan, M.: Symmetric LDPC codes are
not necessarily locally testable. ECCC, TR10-199 (2010)

5. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to
Numerical Problems. JCSS 47(3), 549-595 (1993)

6. Fischer, E., Lachish, O., Newman, I., Matsliah, A., Yahalom, O.: On the Query
Complexity of Testing Orientations for Being Eulerian. In: Goel, A., Jansen,
K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS,
vol. 5171, pp. 402-415. Springer, Heidelberg (2008), Full version available from
http://www.cs.technion.ac.il/~oyahalom

7. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. Journal of the ACM, 653-750 (July 1998)

8. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-
mica 32(2), 302-343 (2002)

9. Goldreich, O., Ron, D.: On Proximity Oblivious Testing. ECCC, TR08-041 (2008);
Also in the Proceedings of the 41st STOC (2009)

10. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.
Random Structures and Algorithms 23(1), 23-57 (2003)

http://www.cs.technion.ac.il/~oyahalom

Proximity Oblivious Testing and the Role of Invariances 189

11. Grigorescu, E., Kaufman, T., Sudan, M.: 2-Transitivity is Insufficient for Local
Testability. In: 23rd CCC, pp. 259-267 (2008)

12. Kaufman, T., Sudan, M.: Sparse Random Linear Codes are Locally Testable and
Decodable. In: The Proceedings of the 48th FOCS, pp. 590-600 (2007)

13. Kaufman, T., Sudan, M.: Algebraic Property Testing: The Role of Invariances. In:
40th STOC, pp. 403-412 (2008)

14. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. STAM
Journal on Discrete Math. 16(1), 2046 (2002)

15. Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and
Trends in Machine Learning 1(3), 307-402 (2008)

16. Ron, D.: Algorithmic and Analysis Techniques in Property Testing. In: Foundations
and Trends in TCS (to appear)

17. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing 25(2), 252-271 (1996)

18. Sudan, M.: Invariance in Property Testing. ECCC, TR10-051 (2010)

19. Sudan, M.: Testing Linear Properties: Some General Themes. ECCC, TR11-005
(2011)

Appendix: Property Testing and Proximity Oblivious
Testers

We first recall the standard definition of property testing.

Definition A.1 (property tester): Let P = {J, oy Pn, where Py, is a set of func-
tions defined over the domain D,,. A tester for property P is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f € P with probability at least 2/3; that is, for every
n €N and f € P,, (and every € > 0), it holds that Pr[T/(n,e)=1] > 2/3.
2. Given € > 0 and oracle access to any f that is e-far from P, the tester

rejects with probability at least 2/3; that is, for every e > 0, every n € N

and f over Dy, if op(f) > ¢, then Pr[T7(n,e) =0] > 2/3, where dp(f) e

mingep, {8(f,9)} and 5(f,9) = [{e € Dy : f() # g(e)}|/|Dul.
If the tester accepts every function in P with probability 1, then we say that it has
one-sided error; that is, T has one-sided error if for every f € P and every e > 0,
it holds that Pr[Tf(n,e)=1] = 1. A tester is called non-adaptive if it determines
all its queries based solely on its internal coin tosses (and the parameters n and
€); otherwise it is called adaptive.

The query complexity of a tester is measured in terms of the size parameter,
n, and the proximity parameter, €. In this paper we focus on the case that the
complexity only depends on ¢ (and is independent of n).

Turning to the definition of proximity-oblivious testers, we stress that they
differ from standard testers in that they do not get a proximity parameter as
input. Consequently, assuming these testers have sublinear complexity, they can
only be expected to reject functions not in P with probability that is related
to the distance of these functions from P. This is captured by the following
definition.

190 O. Goldreich and T. Kaufman

Definition A.2 (proximity-oblivious tester): Let P = |J,cyPn be as in
Definition [A1l A proximity-oblivious tester for P is a probabilistic oracle ma-
chine T that satisfies the following two conditions:

1. The machine T accepts each function in P with probability 1; that is, for
every n € N and f € P, it holds that Pr[T/(n)=1] = 1.

2. For some (monotone) function p : (0,1] — (0,1], each function f ¢ P
is rejected by T with probability at least p(dp(f)), where 0p(f) is as in
Definition [A 1

The function p is called the detection probability of the tester T'.

In general, the query complexity of a proximity-oblivious tester may depend on
the size parameter, n, but in this paper we focus on the case that this complexity
is constant.

Note that a proximity-oblivious tester with detection probability p yields a
standard (one-sided error) property tester of query complexity O(1/p).

In a World of P=BPP

Oded Goldreich

Abstract. We show that proving results such as BPP = P essentially
necessitate the construction of suitable pseudorandom generators (i.e.,
generators that suffice for such derandomization results). In particular,
the main incarnation of this equivalence refers to the standard notion of
uniform derandomization and to the corresponding pseudorandom gen-
erators (i.e., the standard uniform notion of “canonical derandomizers”).
This equivalence bypasses the question of which hardness assumptions
are required for establishing such derandomization results, which has
received considerable attention in the last decade or so (starting with
Impagliazzo and Wigderson [JCSS, 2001]).

We also identify a natural class of search problems that can be solved
by deterministic polynomial-time reductions to BPP. This result is in-
strumental to the construction of the aforementioned pseudorandom gen-
erators (based on the assumption BPP = P), which is actually a reduc-
tion of the “construction problem” to BPP.

Caveat: Throughout the text, we abuse standard notation by letting
BPP,P etc denote classes of promise problems. We are aware of the
possibility that this choice may annoy some readers, but believe that
promise problem actually provide the most adequate formulation of nat-
ural decisional problemsEl

Keywords: BPP, derandomization, pseudorandom generators, promise
problems, search problems, FPTAS, randomized constructions.

An earlier version of this work appeared as TR10-135 of ECCC.

1 Introduction

We consider the question of whether results such as BPP = P necessitate the
construction of suitable pseudorandom generators, and conclude that the answer
is essentially positive. By suitable pseudorandom generators we mean generators
that, in particular, imply that BPP = P. Thus, in a sense, the pseudorandom
generators approach to the BPP-vs-P Question is complete; that is, if the ques-
tion can be resolved in the affirmative, then this answer follows from the existence
of suitable pseudorandom generators.

The foregoing equivalence bypasses the question of which hardness assump-
tions are required for establishing such derandomization results (i.e., BPP = P),

1 Actually, the common restriction of general studies of feasibility to decision problems
is merely a useful methodological simplification.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 191-F32] 2011.
© Springer-Verlag Berlin Heidelberg 2011

192 O. Goldreich

which is a question that has received considerable attention in the last decade
or so (see, e.g., [ITUT5I19]). Indeed, the current work would have been obsolete if
it were the case that the known answers were tight in the sense that the hard-
ness assumptions required for derandomization would suffice for the construc-
tion of the aforementioned pseudorandom generators. See further discussion in
Section

1.1 What Is Meant by Suitable Pseudorandom Generators?

The term pseudorandom generator is actually a general paradigm spanning
vastly different notions that range from general-purpose pseudorandom gener-
ator (a la Blum, Micali, and Yao [227]) to special-purpose generators (e.g.,
pairwise-independence ones [3]). The common theme is that the generators are
deterministic devices that stretch short random seeds into longer sequences that
look random in some sense, and that their operation is relatively efficient. The
specific incarnations of this general paradigm differ with respect to the specific
formulation of the three aforementioned terms; that is, they differ with respect
to the requirements regarding (1) the amount of stretching, (2) the sense in
which the output “looks random” (i.e., the “pseudorandomness” property), and
(3) the complexity of the generation (or rather the stretching) process.

Recall that general-purpose pseudorandom generators operate in (some fixed)
polynomial-time while producing outputs that look random to any polynomial-
time observers. Thus, the observer is more powerful (i.e., runs for more time)
than the generator itself. One key observation of Nisan and Wigderson [20] is that
using such general-purpose pseudorandom generators is an over-kill when the
goal is to derandomize complexity classes such as BPP. In the latter case (i.e., for
derandomizing BPP) it suffices to have a generator that runs in exponential time
(i.e., time exponential in its seed’s length), since our deterministic emulation of
the resulting randomized algorithm is going to incur such a factor in its running-
time anyhowE This leads to the notion of a canonical derandomizer, which fools
observers of fixed complexity, while taking more time to produce such fooling
sequences.

Indeed, the aforementioned “suitable pseudorandom generators” are (various
(standard) forms of) canonical derandomizers. Our starting point is the non-
uniform notion of canonical derandomizers used by Nisan and Wigderson [20],
but since we aim at “completeness results” (as formulated above), we seek
uniform-complexity versions of it. Three such versions are considered in our
work, and two are shown to be sufficient and necessary for suitable derandom-
izations of BPP.

The last assertion raises the question of what is meant by a suitable derandom-
ization of BPP. The first observation is that any reasonable notion of a canonical
derandomizer is also applicable to promise problems (as defined in [4]), and so

2 Recall that the resulting (randomized) algorithm uses the generator for producing
the randomness consumed by the original (randomized) algorithm, which it emulates,
and that our deterministic emulation consists of invoking the resulting (randomized)
algorithm on all possible random-pads.

In a World of P=BPP 193

our entire discussion refers to BPP as a class of promise problems (rather than
a class of standard decision problems)ﬁ

The second observation is that standard uniform-complexity notions of canon-
ical derandomizers would not allow to place BPP in P, because rare instances
that are hard to find may not lead to a violation of the pseudorandomness guar-
antee. The known fix, used by Impagliazzo and Wigderson in [I7], is to consider
“effective derandomization” in the sense that each problem II € BPP is ap-
proximated by some problem II’ € P such that it is hard to find instances in
the symmetric difference of IT and II’. Our main result refers to this notion
(see Sections 2ZHA3)): Loosely speaking, it asserts that canonical derandomizers
(of exponential stretch) exist if and only if BPP is effectively in P. We stress
that this result refers to the standard notion of uniform derandomization and
to the corresponding canonical derandomizers (as in [I7] and subsequent works
(e.g. [24])).

We also consider a seemingly novel notion of canonical derandomizers, which
is akin to notions of auxiliary-input one-way functions and pseudorandom gen-
erators considered by Vadhan [26]. Here the generator is given a target string
and the distribution that it produces need only be pseudorandom with respect
to efficient (uniform) observers that are given this very string as an auxiliary
input. We show that such canonical derandomizers (of exponential stretch) exist
if and only if BPP = P; for details, see Section 4

1.2 Techniques

Our starting point is the work of Goldreich and Wigderson [10], which studied
pseudorandomness with respect to (uniform) deterministic observers. In particu-
lar, they show how to construct, for every polynomial p, a generator of exponen-
tial stretch that works in time polynomial in its output and fools all deterministic
p-time tests of the next-bit type (a la [2]). They observe that an analogous con-
struction with respect to general tests (i.e., deterministic p-time distinguishers)
would yield some non-trivial derandomization results (e.g., any unary set in BPP
would be placed in P). Thus, they concluded that there is a fundamental gap
between probabilistic and deterministic polynomial-time observers

Our key observation is that the gap between probabilistic observers and deter-
ministic ones essentially disappears if BPP = P. Actually, the gap disappeared
with respect to certain ways of constructing pseudorandom generators, and the

3 Indeed, as stated upfront, we believe that, in general, promise problem actually pro-
vide the most adequate formulation of natural decisional problems (cf. [9} Sec. 2.4.1]).
Furthermore, promise problems were considered in the study of derandomization
when converse results were in focus (cf. [15]). An added benefit of the use of classes
of promise problems is that BPP = P implies MA = NP.

In particular, they concluded that Yao’s result (by which fooling next-bit tests im-
plies pseudorandomness) may not hold in the (uniform) deterministic setting (or,
actually, may be hard to establish in that context). Indeed, recall that the next-bit
tests derived (in Yao’s argument) from general tests (i.e., distinguishers) are proba-
bilistic.

194 O. Goldreich

construction of [I0] can be shown to fall into this category. We actually prefer
a more direct approach, which is more transparent and amenable to variations.
Specifically, we consider a straightforward probabilistic polynomial-time con-
struction of a pseudorandom generator; that is, we observe that a random func-
tion (with exponential stretch) enjoys the desired pseudorandomness property,
but of course the problem is that it cannot be constructed deterministically.

At this point, we define a search problem that consists of finding a suit-
able function (or rather its image), and observe that this problem is solvable in
probabilistic polynomial-time. Using the fact that the suitability of candidate
functions can be checked in probabilistic polynomial-time, we are able to de-
termanistically reduce (in polynomial-time) this search problem to a (decisional)
problem in BPP. Finally, using the hypothesis (i.e., BPP = P), we obtain the
desired (deterministic) construction.

1.3 Additional Results

The foregoing description alluded to the possibility that BPP = P (which refers
to promise problems of decisional nature) extends to search problems; that is,
that BPP = P implies that a certain class of probabilistic polynomial-time
solvable search problems can be emulated deterministically. This fact, which
is used in our construction of canonical derandomizers, is proven as part of our
study of “BPP-search problems” (and their relation to decisional BPP problems),
which seems of independent interest and importance. Other corollaries include
the conditional (on BPP = P) transformation of any probabilistic FPTAS into
a deterministic one, and ditto for any probabilistic polynomial-time method of
contructing and verifying objects of a predetermined property. (For details see
Section B])

Also begging are extensions of our study to general “stretch vs derandomiza-
tion time” trade-off (akin to the general “hardness vs randomness” trade-off)
and to the derandomization of classes such as AM. The first extension goes
through easily (see Section [Bl), whereas we were not able to pull off the second
(see Section [)).

1.4 Reflection

Recalling that canonical derandomizers run for more time than the distinguishers
that they are intended to fool, it is tempting to say that the existence of such
derandomizers may follow by diagonalization-type arguments. Specifically, for
every polynomial p, it should be possible to construct in (larger) polynomial
time, a set of (poly(n) many) strings S, C {0,1}" such that a string selected
uniformly in S, is p(n)-time indistinguishable from a totally random n-bit string.

The problem with the foregoing prophecy is that it is not clear how to carry
out such a diagonalization. However, it was observed in a couple of related works
(i.e., [I710)) that a random choice will do. The problem, of course, is that we
need our construction to be deterministic; that is, a deterministic construction
should be able to achieve this “random looking” fooling effect. Furthermore, it is

In a World of P=BPP 195

not a priori clear that the hypothesis BPP = P may help us here, since BPP =P
refers to decisional problemsﬁ Indeed, it seems that the interesting question of
determining the class of problems (e.g., search problems) that can be solved by
deterministic polynomial-time reductions to BPP was not addressed before. Still,
as stated above, we show that the aforemention “construction problem” belongs
to this class, and thus the hypothesis BPP = P allows us to derandomize the
foregoing arguement.

In any case, the point is that BPP = P enables the construction of the
aforementioned type of (suitable) pseudorandom generators; that is, the very
pseudorandom generators that imply BPP = P. Thus, our main result asserts
that these pseudorandom generators exist if and only if BPP = P, which in
our opinion is not a priori obvious. Furthermore, our proof uncovers a very
tight connection between the construction of such pseudorandom generators and
BPP = P. In particular, BPP = P yields a very simple construction of such
pseudorandom generators, which in turn can be seen as fulfillining the foregoing
(diagonalization) prophecy.

1.5 Related Work

This work takes for granted the “hardness versus randomness” paradigm, pi-
oneered by Blum and Micali [2], and its application to the derandomization
of complexity classes such as BPP, as pioneered by Yao [27] and revised by
Nisan and Wigderson [20]. The latter work suggests that a suitable notion of
a pseudorandom generator — indeed, the aforementioned notion of a canonical
derandomizer — provides the “King’s (high)way” to derandomization of BPP.
This view was further supported by subsequent work such as [I6J17)25], and the
current work seems to suggest that this King’s way is essentially the only way.

As stated up-front, this work does not address the question of which hard-
ness assumptions are required for establishing such derandomization results (i.e.,
BPP = P). Recall that this question has received considerable attention in the
last decade or so, starting with the aforementioned work of Impagliazzo and
Wigderson in [I7], and culminating in the works of Impagliazzo, Kabanets, and
Wigderson [I5I19]. We refer the interested reader to [23, Sec. 1.1-1.3] for an
excellent (and quite updated) overview of this line of work.

5 For example, obviously, even if BPP = P, there exist no deterministic algorithms for
uniformly selecting a random solution to a search problem (or just tossing a coin).
Interestingly, while problems of uniform generation cannot be solved deterministi-
cally, the corresponding problems of approximating the number of solutions can be
solved deterministically (sometimes in polynomial-time, especially when assuming
BPP = P). This seems to contradict the celebrated equivalence between these two
types of problems [I8] (cf. [9, §6.4.2.1]), except that the relevant direction of this
equivalence is established via probabilistic polynomial-time reductions (which are
inherently non-derandomizable). Going beyond the strict boundaries of complexity,
we note that BPP = P would not eliminate the essential role of randomness in
cryptography (e.g., in the context of zero-knowledge (cf. [8 Sec. 4.5.1]) and secure
encryption (cf. [11])).

196 O. Goldreich

Note that the foregoing discussion refers to three possible events: The first
event is the existence of a good derandomization (e.g., BPP = P), the second
is the existence of certain pseudorandom generators (i.e., canonical derandom-
izers), and the third is the existence of certain lower bound (i.e., hardness re-
sults). The main thread of past work (e.g., [2I27J20/T6/17]) goes from hardness
assumptions to pseudorandom generators and further to good derandomization
(e.g., BPP = P). Later work such as [I7/I5] partially reverse the the hardness
to derandomization implication, whereas our work only refers and reverses the
second leg of the main thread (i.e., showing that BPP = P implies certain
pseudorandom generators). We comment that the reversing of the first leg (i.e.,
showing that pseudorandom generators imply hardness) is folklore (see, e.g., [9,
Exer. 8.24]). All these implications are depicted in Figure[Il

main thread
PRGs
DERANDOM.
(e.g., BPP=P) (canonical
o this work derandomizers)
\\\ partial folklore
N N main thread
N HARDNESS

Fig. 1. The three related events. The solid arrows show implications that hold for the
full range of parameters, whereas the dashed arrow shows a partial implication that
does not suffice for the “high end” (i.e., for pseudorandom generators that suffice for

BPP = P).

Actually, both the aforementioned works [17/15] imply results that are in the
spirit of our main result, but these results refer to weak notions of derandom-
ization, and their proofs are fundamentally different. The work of Impagliazzo
and Wigderson [I7] refers to the “effective infinitely often” containment of BPP
in SUBEXP, whereas the work of Impagliazzo, Kabanets, and Wigderson [15]
refers to the (standard) containment of BPP in NSUBEXP /ne. In both cases,
the derandomization hypotheses are shown to imply corresponding hardness re-
sults (i.e., functions in EXP that are not in BPP or functions in NEXP having
no polynomial size circuits, resp.), which in turn yield “correspondingly canon-
ical” derandomizers (i.e., canonical w.r.t effectively placing BPP in SUBEXP
infinitely often or placing BPP in NSUBEXP, resp.)ﬁ Thus, in both cases,

5 Note that in case of [I7] the generators are pseudorandom only infinitely often,
whereas in the case of [I5] the generators are computable in non-deterministic
polynomial-time (with short advice). In both cases, the generators have polynomial
strecth.

In a World of P=BPP 197

the construction of these generators (based on the relevant derandomization hy-
pothesis) follows the “hardness versus randomness” paradigm (and, specifically,
the Nisan-Wigderson framework [20]). In contrast, our constructions bypass the
“hardness versus randomness” paradigm.

We also mention that the possibility of reversing the pseudorandomness-to-
derandomization transformation was studied by Fortnow [5]. In terms of his work,
our result indicates that in some sense Hypothesis III implies Hypothesis II.

There is a remote similarity between our search to decision reduction (see
Section B2)) and one part of the work of Aaronson et. al. [1]. Our reduction re-
lies on the fact that additive error approximation of certain probabilities can be
done in BPP, and these approximations are use in our search process. Interest-
ingly, our main application is for constructing an adequate pseudorandom set,
which may be viewed as a diagonalization (w.r.t certain class of algorithms). The
argument in [T, Sec. 3] relies on the fact that a multiplicative factor approxima-
tion of certain set sizes can be done in AM, and uses these approximations to
diagonalized over a certain class of circuits. (These two processes were discovered
independently.)

Finally, we mention that the relation between derandomizing probabilistic
search and decision classes was briefly mentioned by Reingold, Trevisan, and
Vadhan in the context of RL; see [22], Prop. 2.7].

1.6 Organization

The rather standard conventions used in this work are presented in Section [2
In Section Bl we take a close look at “BPP search problems” and their relation
to BPP. The relation between derandomizations of BPP and various forms of
pseudorandom generators is studied in Sectiond], and ramified in Section[El A few
open problems that arise naturally from this work are discussed in Section [6l
The appendix presents two prior proofs of our main result, which may be of
interest.

2 Preliminaries

We assume a sufficiently strong model of computation (e.g., a 2-tape Turing
machine), which allows to do various simple operations very efficiently. Exact
complexity classes such as DTIME(t) and BPTIME(t) refer to such a fixed model.
We shall say that a problem IT is in DTIME(t) (resp., in BPTIME(¢)) if there exists
a deterministic (resp., probabilistic) ¢-time algorithm that solves the problem on
all but finitely many inputs.

We assume that all polynomials, time bounds, and stretch functions are mono-
tonically increasing functions from N to N, which means, in particular, that
they are injective. Furthermore, we assume that all these functions are time-
constructible (i.e., the mapping n — f(n) can be computed in less than f(n)
steps).

198 O. Goldreich

Promise Problems. We rely heavily on the formulation of promise problems (in-
troduced in [4]). We believe that, in general, the formulation of promise problems
is far more suitable for any discussion of feasibility results. The original formu-
lation of [4] refers to decision problems, but we shall also extend it to search
problem. In the original setting, a promise problem, denoted (P, @), consists
of a promise (set), denoted P, and a question (set), denoted @, such that the
problem (P, Q) is defined as given an instance x € P, determine whether or not
x € . That is, the solver is required to distinguish inputs in PN @ from inputs
in P\ @, and nothing is required in case the input is outside P. Indeed, an equiv-
alent formulation refers to two disjoint sets, denoted Ilygs and Ilyo, of YES- and
NoO-instances, respectively. We shall actually prefer to present promise problems
in these terms; that is, as pairs ([1ygs, ITyo) of disjoint sets. Indeed, standard
decision problems appear as special cases in which ITygs U ITyo = {0,1}*. In the
general case, inputs outside of I1yzs U Ily are said to violate the promise.

Unless explicitly stated otherwise, all “decisional problems” discussed in this
work are actually promise problems, and P, BPP etc denote the corresponding
classes of promise problems. For example, (I1ygs, [Ixo) € BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x € Ilygs it holds
that Pr[A(x) = 1] > 2/3, and for every x € Iy, it holds that
Pr[A(z)=0] > 2/3.

Standard Notation. For a natural number n, we let [n] e {1,2,...,n} and de-
note by U, a random variable that is uniformly distributed over {0, 1}"™. When
referring to the probability that a uniformly distributed n-bit long string hits a
set S, we shall use notation such as Pr[U,, € S] or Pr,cfo 13n[r€S].

Negligible, Noticeable, and Overwhelmingly High Probabilities. A function f:N—
[0,1] is called negligible if is decreases faster than the reciprocal of any positive
polynomial (i.e., for every positive polynomial p and all sufficiently large n it
holds that f(n) < 1/p(n)). A function f:N —[0,1] is called noticeable if it is
lower bound by the reciprocal of some positive polynomial (i.e., for some positive
polynomial p and all sufficiently large n it holds that f(n) > 1/p(n)). We say
that the probability of an event is overwhelmingly high if the probability of the
complement event is negligible (in the relevant parameter).

3 Search Problems

Typically, search problems are captured by binary relations that determine the
set of valid instance-solution pairs. For a binary relation R C {0,1}* x {0,1}",

we denote by R(x) ef {y : (z,y) € R} the set of valid solutions for the instance z,

and by Sr def {z : R(z) # (0} the set of instances having valid solutions. Solving
a search problem R means that given any x € Sg, we should find an element of
R(z) (whereas, possibly, we should indicate that no solution exists if z ¢ Sg).

In a World of P=BPP 199

3.1 The Definition

The definition of “BPP search problems” is supposed to capture search problems
that can be solved efficiently, when random steps are allowed. Intuitively, we do
not expect randomization to make up for more than an exponential blow-up,
and so the naive formulation that merely asserts that solutions can be found
in probabilistic polynomial-time is not good enough. Consider, for example, the
relation R such that (x,y) € R if |y| = |z| and for every ¢ < |z| it holds that
M;(x) # y, where M; is the i*" deterministic machine (in some fixed enumera-
tion of such machines). Then, the search problem R can be solved by a proba-
bilistic polynomial-time algorithm (which, on input z, outputs a uniformly dis-
tributed |z|-bit long string), but cannot be solved by any deterministic algorithm
(regardless of its running time).

What is missing in the naive formulation is any reference to the “complexity”
of the solutions found by the solver, let alone to the complexity of the set of
all valid solutions. The first idea that comes to mind is to just postulate the
latter; that is, confine ourselves to the class of search problems for which valid
instance-solution pairs can be efficiently recognized (i.e., R, as a set of pairs, is
in BPP).

Definition 3.1 (BPP search problems, first attempt): A BPP-search problem is
a binary relation R that satisfies the following two conditions.

1. Membership in R is decidable in probabilistic polynomial-time.
2. There ezists a probabilistic polynomial-time algorithm A such that, for every
x € SR, it holds that Pr[A(z) € R(x)] > 2/3.

We may assume, without loss of generality, that, for every x ¢ Sg, it holds that
Pr[A(z) = 1] > 2/3. Note that Definition [3]is robust in the sense that it allows
for error reduction, which may not be the case if Condition [Tl were to be avoided.
A special case in which Condition [l holds is when R is an NP-witness relation;
in that case, the algorithm in Condition [l is actually deterministic.

In view of our general interest in promise problems, and of the greater flexibil-
ity they offer, it makes sense to extend the treatment to promise problems. The
following generalization allows a promise set not only at the level of instances,
but also at the level of instance-solution pairs. Specifically, we consider disjoint
sets of valid and invalid instance-solution pairs, require this promise problem
to be efficiently decidable, and of course require that valid solutions be found
whenever they exist.

Definition 3.2 (BPP search problems, revisited): Let Ryps and Ryo be two dis-
joint binary relations. We say that (Rygs, Rxo) is a BPP-search problem if the
following two conditions hold.

1. The decisional problem represented by (Ryrs, Rxo) is solvable in probabilistic
polynomial-time; that 1is, there exists a probabilistic polynomial-time

200 O. Goldreich

algorithm V' such that for every (x,y) € Rygs it holds that Pr[V (z,y)=1] >
2/3, and for every (x,y) € Ryo it holds that Pr[V (z,y)=1] < 1/3.

2. There exists a probabilistic polynomial-time algorithm A such that, for every
T € SRygss it holds that Prl[A(x) € Ryws(x)] > 2/3, where Ryws(x) = {y :
(%,y) € Ryes} and Sgyys = {x : Rys(z) # 0}.

We may assume, without loss of generality, that, for every x such that (x,y) €
Ryo (Vy), it holds that Pr[A(x) = L] > 2/3. Note that the algorithms postulated
in Definition [3.2 allow to find valid solutions as well as distinguish valid solutions
from invalid ones (while guaranteeing nothing for solutions that are neither valid
nor invalid).

The promise problem formulation (of Definition B2)) captures many natural
“BPP search” problems that are hard to fit into the more strict formulation of
Definition Il Typically, this can be done by narrowing the set of valid solutions
(and possibly extending the set of invalid solutions) such that the resulting
(decisional) promise problem becomes tractable. Consider for example, a search
problem R (as in Definition B]) for which the following stronger version of
Condition [2] holds.

(2?) There exists a noticeable function ntc:N— [0, 1] such that, for every x € Sg
there exists y € R(x) such that Pr[A(x) =y] > ntc(|z|), whereas for every
(z,y) € R it holds that Pr[A(x)=y] < ntc(|z])/2.

Then, we can define R, = {(z,y) : Pr[A(z) = y] > ntc(|z])} and R, =
{(z,y) : Pr[A(x) = y] < ntc(|z|)/2}, and conclude that R' = (R, Rio) is
a BPP-search problem (by using A also for Condition [, which captures the
original problem just as well. Specifically, solving the search problem R is triv-
ially reducible to solving the search problem R’, whereas we can distinguish
between valid solutions to R’ (which are valid for R) and invalid solutions
for R (which are also invalid for R’). This is a special case of the following
observation.

Observation 3.3 (companions): Let IT = (Rygs, Rxo) and II' = (R, ., R},) be
two search problems such that Sgy, . = SRy and Ry, 2 ({0, 1} x{0,1}7)\ Rygs,
which implies R, 2 Ryo and R, C RYESE Then, solving the search prob-
lem (Rygs, Rno) 48 trivially reducible to solving the search problem (R, Rio)s
whereas deciding membership in (R, Rxo) 45 trivially reducible to deciding

" The first conclusion (i.e., Rio 2 Rwo) follows by the fact that Rno C ({0, 1}* x
{0,1}*) \ Rygs, whereas Ryps C Rygs follows since Ry C ({0, 1} x {0,1}*) \ Ris.
Observation [3.3 itself relies only on these conclusions (i.e., Ryo 2 Ryo and Rygg 2
Ryes) as well as on Sgy_ 2 Sy the stronger condition (ie., Rio 2 ({0,1}* x
{0,1}*) \ Ryss) is used in other applications of the notion of companion problems
(see the discussion following Theorem [3.5)).

In a World of P=BPP 201

membership in (R, Ri,)- We call II' a companion of II, and note that in

general this notion is not symmetric

The point of these reductions is that they allow using algorithms associated
with IT’ for handling IT. Specifically, we can search solutions with respect to
II’ and test validity of solutions with respect to II’, while being guaranteed
that nothing was lost (since we still find valid solutions for any z € Spgyu,
any solution in R () C Rygs(z) is recognized by us as valid, and any can-
didate solution in Ryo(x) € Ry,(x) is rejected as invalid). Furthermore, by
the companion condition, candidate solutions that are not valid with respect to
IT are also rejected (since they are invalid w.r.t IT'); that is, if (z,y) € Ryes
(although it needs not be in Ryo), then (z,y) € Ry, (since RL, 2 ({0,1}* x
[0 1)\ Rves).

The methodology alluded to above is demonstrated next in casting any prob-
abilistic fully polynomial-time approximation scheme (i.e., FPTAS, cf. [I3]) as
a search-BPP problem. A (probabilistic) FPTAS for a quantity q:{0,1}* - R™
is an algorithm that on input « and € > 0 runs for poly(n/e) steps and, with
probability at least 2/3, outputs a value in the interval [(1+€)-g(z)]. A straight-
forward casting of this approximation problem as a search problem refers to the
binary relation @ such that @ e {({z,1™),v) eRT : |v — q(x)| < g(x)/m}. In
general, however, this does not yield a BPP-search problem, since may not be
probabilistic polynomial-time recognizable. Instead, we consider the BPP-search
problem (Rygs, Ryo) such that ((z,1™),v) € Ry if |v — q(z)| < ¢(z)/3m and
({x,1™),v) € Ryo if |v — ¢q(x)] > q(z)/m. Indeed, on input (x,1™) we find a
solution in Rygs({z,1™)) by invoking the FPTAS on input = and € = 1/3m,
and deciding the validity of a pair ({x,1™),v) w.r.t (Rygs, Rxo) is done by
obtaining a good approximation of ¢(z) (and deciding accordingly)ﬁ Indeed,
(Rygs, Rxo) is a companion of (@, Q), where @ = ({0,1}* x {0,1}*) \ Q. Thus,
we obtain.

Observation 3.4 (FPTAS as BPP-search problems): Let ¢:{0,1}* = R" and
suppose that there exists a probabilistic FPTAS for approximating q; that is,
suppose that there exists a probabilistic polynomial-time algorithm A such that
Pr[|A(z,1™) — q(z)| < g(x)/m] > 2/3. Then, this approximation task is trivially

8 Actually, if (Ryss, Rxo) and (RYgs, Rio) are companions of one another, then they
are identical (since Rio = Rno and Rips = Ryms must hold). Furthermore, in this
case the promise is trivial, since Rio = Rxo 2 ({0,1}* x {0,1}*) \ R{gs whereas
Rio C ({0,1}* x {0,1}*) \ R{gs. Also note that each problem is its own companion,
and that problems with trivial promise have no other companion (i.e., if (Rygs, Rio)
is a companion of (R, R), where R = ({0,1}* x {0,1}*) \ R, then (RYgs, Rio) =
(R, R)).

That is, we invoke the FPTAS on input x and ¢ = 1/3m, obtain a value ¢'(x),
which with probability at least 2/3 is in (1 % €) - g(z), and accept if and only if
lv — ¢'(x)| < 2q(z)/3m. Indeed, if v € Ryrs({z,1™)), then with probability at least
2/3 it holds that |[v — ¢'(z)] < |v — q(z)| + |q(z) — ¢'(z)| < 2q(x)/3m, whereas if
v € Ryno({z,1™)), then with probability at least 2/3 it holds that |v — ¢'(z)| >
o — g(@)| — la() — ¢'(2)] > 2q(z)/3m.

202 O. Goldreich

reducible to some search-BPP problem (i.e., the foregoing one). Furthermore, the
probabilistic time-complexity of the latter search problem is linearly related to
the probabilistic time-complezity of the original approximation problem. More-
over, this search-BPP problem is a companion of the original approrimation
problem.

3.2 The Reduction

One may expect that any BPP-search problem be deterministically reducible
to some BPP decision problem. Indeed, this holds for the restricted definition
of BPP-search problems as in Definition 3.1l but for the revised formulation of
Definition [3.2l we only present a weaker result. Specifically, for every BPP-search
problem (Rygs, Rxo), there exists R O Rygs such that RN Ry, = 0 and solving
the search problem of R is deterministically reducible to some BPP decision
problem

Theorem 3.5 (reducing search to decision): For every BPP-search problem
(Ryes, Ruo), there exists a binary relation R such that Ryss € R C ({0,1}* x
{0, 1}*)\ Rxo and solving the search problem of R is deterministically reducible to
some decisional problem in BPP, denoted II. Furthermore, the time-complexity
of the reduction is linear in the probabilistic time-complexity of finding solutions
for (Ryes, Rxo), whereas the probabilistic time-complexity of II is the product
of a quadratic polynomial and the probabilistic time-complexity of the decision
procedure guaranteed for (Rygs, Rxo).

Applying Theorem B35 to a BPP-search problem (Rygs, Ryo) that is a companion
of some search problem (Wygs, Pyo), we obtain a deterministic reduction of solv-
ing the search problem (¥ygs,Pxo) to some promise problem in BPP, because
Swyps = Shyes C Sk whereas R C ({0,1}*x{0,1}*)\ Ryo € Wygs. The argument
in depicted in Figure

original problem

companion

solved

Fig. 2. The reduction applied to a companion of ¥

Proof: Let A and V be the two probabilistic polynomial-time algorithms as-
sociated (by Definition [3.2)) with the BPP-search problem (Ryys, Ryo), and let
ta and ty denote their (probabilistic) time-complexities. Specifically, A is the

10 Indeed, in the special case of Definition B1] (where (Ryrs, Rno) is a partition of the
set of all pairs), it holds that R = Rygs.

In a World of P=BPP 203

solution-finding algorithm guaranteed by Condition[2], and V is the decision pro-
cedure guaranteed by Condition [[I Denote by A(z,r) the output of algorithm
A on input x and internal coins r € {0, 1}*4(*D) and let V((x,y),w) denote the
decision of V' on input (z,y) when using coins w € {0, 1}t"(|z|+|y|). Now, define

R df {(x,y) : Prwe{o,l}tv(lwlﬂyl) V((z,y),w)=1] > 0,4} (1)

)

and note that Rygs € R and Ryo N R = 0.
def

We now consider an auxiliary algorithm A” such that A”(z,r,w) =
V((z, A(z,7)),w). Note that, for every x and r such that (x, A(z,r)) € Rygs,
it holds that Pry[A”(z,r,w) = 1] > 2/3, and thus, for every x € Sg,, it holds
that Pr, ,[A" (x,r,w) = 1] > 4/9.

Given z, our strategy is to try to find r such that A(x,r) € R(z), by deter-
mining the bits of r one by one. We thus start with an empty prefix of r, denoted
', and in each iteration we try to extend r’ by one bit. Assuming that © € Sgy .
(or rather that Eq. (2) holds for v’ = X), we try to maintain the invariant

4 |
Prco1ym— 17l wefo1}e [A" (z,r'r" W) =1] > 9 25m. (2)

where m = t4(]z|) and £ = tv(|x| + m). Note that if this invariant holds for

" € {0,1}™, then necessarily y ef A(z,r") € R(x) (since in this case Eq. ()
implies that Pr,[V((z,y),w) =1] > § — 0.04 > 0.4).

Once a candidate solution y = A(z,r’) is found (using the corresponding
r’ € {0,1}™), we check whether y is a good solution, and output y if it is
good and L otherwise. Specifically, we test whether (z,y) € R or (z,y) € Rxo
by making a single BPP-query (analogously to the next discussion, since for
(x,y) € Ryo it holds that Pr,[V((z,y),w) = 1] < 1/3).

In view of the foregoing, we focus on the design of a single iteration. Our
strategy is to rely on an oracle for the promise problem IT4. that consists of

YEs-instances (x,1™,7’) such that Pr.. ,[A"(z,7'r" w) = 1] > 3 - |g/5|:nl and

No-instances (z,1™,7') such that Pr,» [A" (z,r'1" w) = 1] < § — 2|;':r|7,7 where
in both cases the probability is taken uniformly over r” € {0,1}™~ "' (and
w € {0,1}). The oracle IT4» is clearly in BPP (e.g., consider a probabilistic
polynomial-time algorithm that on input (x,1™,7’) estimates Pr, ,[A” (z, 7",
w) = 1] up to an additive term of 1/50m with error probability at most 1/3, by
taking a sample of O(m?) random pairs (r”,w)).

In each iteration, which starts with some prefix v’ that satisfies Eq. [2]), we
make a single query to the oracle IT 4/ specifically, we query IT 4~ on (z, 1™, 1'0).
If the oracle answers positively, then we extend the current prefix v’ with 0 (i.e.,

we set ' — r’0), and otherwise we set 1’ « r'1.

The point is that if Prr,,e{o’l}m,‘rq’W[A”(m,r’r”7w) =1] > g — 2|Z’mlw then
there exists o € {0,1} such that Pr.cq ym-iri-1 [A" (2,707 w) = 1] >
5 - ng"ll =9 |T2;l;1, which means that (z,1™,r'c) is a YES-instance. Thus,
if IT answers negatively to the query (z,1™,7'0), then (z,1™,7'0) cannot be a

204 O. Goldreich

YEs-instance, which implies that (x,1™, 1) is a YES-instance, and the invariance
of Eq. (@) holds for the extended prefix r'1. On the other hand, if IT = T4~
answers positively to the query (x,1™,7/0), then (x,1™,7/0) cannot be a NO-
instance, and the invariance of Eq. (2)) holds for the extended prefix 0. We
conclude that each iteration of our reduction preserves the said invariance.

To verify the furthermore-part, we note that the reduction consists of ¢t 4(|x|)
iterations, where in each iteration a query is made to IT and some very simple steps
are taken. In particular, each query made is simply related to the previous one (i.e.,
can be obtained from it in constant time), and so the entire reduction has time
complexity O(t). The time complexity of IT on inputs of the form y = (z, 1™, r')
is O(m?) - O(ty (|z| +m)) = O(ly|? - tv(|y])). The theorem follows.

Digest. The proof of Theorem follows the strategy of reducing NP-search
problems to NP, except that more care is required in the process. This is re-
flected in the invariance stated in Eq. [2]) as well as in the fact that we make an
essential use of promise problems (in the oracle).

3.3 Applications

As stated in the introduction, Theorem plays a central role in establishing
our main result (i.e., the reversing of the “pseudorandomness to derandomiza-
tion” implication). In this section, we explore a few additional applications of
Theorem [BAl In particular, we show that BPP = P implies a host of derandom-
ization results that refer to computational problems that are not of the decisional
type. Indeed, we shall reduce these problems to BPP-search problems and apply
Theorem

Approzimations. In light of the foregoing discussion (i.e., Observation B4, every
approximation problem that has a probabilistic FPTAS can be deterministically
reduced to BPP. Thus:

Corollary 3.6 (implication for FPTAS): If BPP = P, then every function that
has a probabilistic fully polynomial-time approximation scheme (FPTAS) also
has such a deterministic scheme. Furthermore, for every polynomial p, there
exists a polynomial p’' such that if the probabilistic scheme runs in time p, then
the deterministic one runs in time p’.

The furthermore part is proved by using the furthermore parts of Observation[3.3]
and Theorem as well as a completeness feature of BPTIME(-). Specifically,
by combining the aforementioned reductions, we infer that the approximation
problem (which refers to instances of the form (z,1™)) is (deterministically) p;-
time reducible to a problem in BPTIME(p2), where p1(n) = O(p(n)) and pa(n) =
O(n? - p(n)). Next, we use the fact that BPTIME(p2) has a complete problem,
where completeness holds under quadratic-time reductions (which prepend the
input by the original problem’s description and pad it with a quadratic number

In a World of P=BPP 205

of Zeros) The point is that this complete problem only depends on ps, which
in turn is uniquely determined by p. The hypothesis (i.e., BPP = P) implies
that this BPTIME(ps)-complete problem is in DTIME(p3) for some polynomial
ps3, which is solely determined by p, and the claim follows for p’ = p3op?. Indeed,
we have also established en passant the following result, which is of independent
interest.

Proposition 3.7 If BPP = P, then, for every polynomial p, there exists a
polynomial p’ such that BPTIME(p) C DTIME(p').

Indeed, by the DTIME Hierarchy Theorem, it follows that, if BPP = P, then, for
every polynomial p, there exists a polynomial p” such that DTIME(p”) contains
problems that are not in BPTIME(p).

Constructions of Varying Quality. While the foregoing discussion of approxi-
mation schemes is related to our previous proofs of the main result (see the
Appendix), the following discussion is more related to the current proof (as pre-
sented in Section[2]). We consider general construction problems, which are de-
fined in terms of a quality function ¢:{0,1}* —[0, 1], when for a given n we need
to construct an object y € {0,1}™ such that ¢(y) = 1. Specifically, we consider
such construction problems that can be solved in probabilistic polynomial-time
and have a FPTAS for evaluating the quality of candidate constructions. One
interesting special case corresponds to rigid construction problems in which the
function ¢ is Boolean (i.e., candidate constructions have either value 0 or 1). In
this special case (e.g., generating an n-bit long prime) the requirement that ¢
has a FPTAS is replaced by requiring that the set ¢=!(1) is in BPP.

Proposition 3.8 (derandomizing some constructions): Consider a generalized

construction defined via a quality function g that has o FPTAS, and let R, def

{((@™,1™),y) : ye{0,1}" Ag(y) >1 — (1/m)}. Suppose that there exists a prob-
abilistic polynomial-time algorithm that solves the search problem of R,. Then,
if BPP = P, then there exists a deterministic polynomial-time algorithm that
solves the search problem of R,.

For example, if BPP = P, then n-bit long primes can be found in determin-
istic poly(n)-time. On the other hand, the treatment can be generalized to
constructions that need to satisfy some auxiliary specification, captured by an
auxiliary input x (e.g., on input a prime x = P find a quadratic non-residue
mod P). In this formulation, R, ef {((x,1™),y) : ¢(x,y) >1 — (1/m)}, where
q:{0,1}*x{0,1}* — [0,1] can also impose length restrictions on the desired
construct.

Proof: Consider the BPP-search problem (Ilygs, Ily,), where
Iyes = {((17",17),y) 1 y €{0,1}" Aq(y) > 1= (1/2m)} and Ixo = {((1",17),y) :
' The quadratic padding of = allows p2(|z|) steps of M(x) to be emulated in time

O(IM| - p2(|z|)), which is upper-bounded by pa((|M| + ||)?), assuming that ps is
(say) at least quadratic.

206 O. Goldreich

y€{0,1}"Aq(y)<1—(1/m)}. Note that (IIygs, ITxo) is a companion of the search
problem R,, and apply Theorem

Corollary 3.9 (a few examples): If BPP = P, then there exist deterministic
polynomial-time algorithms for solving the following construction problems.

1. For any fized ¢ > 7/12, on input N, find a prime in the interval [N, N+ N€|.

2. On input a prime P and 1%, find an irreducible polynomial of degree d over
GF(P).
Recall that finding a quadratic non-residue modulo P is a special case[

3. For any fized € > 0 and integer d > 2, on input 1™, find a d-reqular n-vertex
graph with second eigenvalue having absolute value at most 2v/d — 1 + €.

The foregoing items are based on the density of the corresponding objects in a
natural (easily sampleable) set. Specifically, for Item [Il we rely on the density
of prime numbers in this interval [I4], for Item 2] we rely on the density of
irreducible polynomials [7], and for Item [3] we rely on the density of “almost
Ramanujan” graphs [6]2 In all cases there exist deterministic polynomial-time
algorithms for recognizing the desired objects.

4 Canonical Derandomizers

In Section 1] we present and motivate the rather standard notion of a canoni-
cal derandomizer, which is the notion to which most of this work refers to. Our
main result, the reversing of the pseudorandomness-to-derandomization trans-
formation is presented in Section One tightening, which allows to derive an
equivalence, is presented in Section [£3], which again refers to a rather standard
notion (i.e., of “effectively placing BPP in P”). An alternative equivalence is
derived in Section 4] which refers to a (seemingly new) notion of a targeted
canonical derandomizer.

4.1 The Definition

We start by reviewing the most standard definition of canonical derandomizers
(cf., e.g., [9 Sec. 8.3.1]). Recall that in order to “derandomize” a probabilistic
polynomial-time algorithm A, we first obtain a functionally equivalent algorithm
Ag that uses a pseudorandom generator G in order to reduce the randomness-
complexity of A, and then take the majority vote on all possible executions of
A (on the given input). That is, we scan all possible outcomes of the coin tosses
of Ag(z), which means that the deterministic algorithm will run in time that
is exponential in the randomness complexity of Ag. Thus, it suffices to have a

2 If the polynomial X2 4 bX + c is irreducible, then so is (X + (b/2))? + (c — (b/2)?),
and it follows that —(c — (b/2)?) is a quadratic non-residue.

'3 Recall that Ramanujan graphs are known to be constructable only for specific values
of d and of n.

In a World of P=BPP 207

pseudorandom generator that can be evaluated in time that is exponential in its
seed length (and polynomial in its output length).

In the standard setting, algorithm A has to maintain A’s input-output be-
havior on all (but finitely many) inputs, and so the pseudorandomness property
of GG should hold with respect to distinguishers that receive non-uniform ad-
vice (which models a potentially exceptional input « on which A(x) and Ag(x)
are sufficiently different). Without loss of generality, we may assume that A’s
running-time is linearly related to its randomness complexity, and so the relevant
distinguishers may be confined to linear time. Similarly, for simplicity (and by
possibly padding the input x), we may assume that both complexities are lin-
ear in the input length, |z|. (Actually, for simplicity we shall assume that both
complexities just equal |z|, although some constant slackness seems essential.)
Finally, since we are going to scan all possible random-pads of Ag and rule by
majority (and since A’s error probability is at most 1/3), it suffices to require
that for every z it holds that |Pr[A(x) = 1] — Pr[A¢(x) = 1]| < 1/6. This leads
to the pseudorandomness requirement stated in the following definition.

Definition 4.1 (canonical derandomizers, standard version [9, Def, 8.14]:

Let £:N—N be a function such that £(n) > n for all n. A canonical derandom-
izer of stretch ¢ is a deterministic algorithm G that satisfies the following two
conditions.

(generation time): On input a k-bit long seed, G makes at most poly(2* - £(k))
steps and outputs a string of length (k).

(pseudorandomness): For every (deterministic) linear-time algorithm D, all suf-
ficiently large k and all x € {0, 1}e(k), it holds that

| Pe[D(x, G(UL)) = 1] — Pr[D(z, Usgy) = 1]| < é , 3)

The algorithm D represents a potential distinguisher, which is given two £(k)-bit
long strings as input, where the first string (i.e., «) represents a (non-uniform)
auxiliary input and the second string is sampled either from G(Uy) or from Up(y,.
When seeking to derandomize a linear-time algorithm A, the first string (i.e.,)
represents a potential main input for A, whereas the second string represents a
possible sequence of coin tosses of A (when invoked on a generic (primary) input
x of length ¢(k)).

Towards a uniform-complexity variant. Seeking a uniform-complexity analogue
of Definition 1], the first thing that comes to mind is the following definition.

Definition 4.2 (canonical derandomizers, a uniform version): As Definition[{.]],
except that the original pseudorandomness condition is replaced by

(pseudorandomness, revised): For every (deterministic) linear-time algorithm D,
it is infeasible, given 1), to find a string x € {0,1}**) such that Eq. (@)

14 To streamline our exposition, we preferred to avoid the standard additional step of
replacing D(z,-) by an arbitrary (non-uniform) Boolean circuit of quadratic size.

208 O. Goldreich

does not hold. That is, for every probabilistic polynomial-time algorithm F
such that |F(1°F)| = ¢(k), there exists a negligible function negl such that
if x — F(1°P), then Eq. @) holds with probability at least 1 — negl(£(k)).

When seeking to derandomize a probabilistic (linear-time) algorithm A, the aux-
iliary algorithm F represents an attempt to find a string = € {0, 1}“’” on which
A(z) behaves differently depending on whether it is fed with random bits (i.e.,
Ug(ry) or with pseudorandom ones produced by G(Uy).

Note that if there exists a canonical derandomizer of exponential stretch (i.e.,
(k) = exp(£2(k))), then BPP is “effectively” in P in the sense that for every
problem in BPP there exists a deterministic polynomial-time algorithm A such
that it is infeasible to find inputs on which A errs. We hoped to prove that
BPP = P implies the existence of such derandomizers, but do not quite prove
this. Instead, we prove a closely related assertion that refers to the following
revised notion of a canonical derandomizer, which is implicit in [I7]. In this
definition, the finder F' is incorporated in the distinguisher D, which in turn is
an arbitrary probabilistic algorithm that is allowed some fixed polynomial-time
(rather than being deterministic and linear—time) (In light of the central role of
this definition in the current work, we spell it out rather than use a modification
on Definition] (as done in Definition [2)).)

Definition 4.3 (canonical derandomizers, a revised uniform version): Let £, :
N—N be functions such that £(n) > n for all n. A t-robust canonical derandom-
izer of stretch ¢ is a deterministic algorithm G that satisfies the following two
conditions.

(generation time (as in Definition d1l)): On input a k-bit long seed, G makes at
most poly(2* - £(k)) steps and outputs a string of length ((k).

(pseudorandomness, revised again): For every probabilistic t-time algorithm D
and all sufficiently large k, it holds that

1
t(e(k)) -

Note that, on input an €(k)-bit string, the algorithm D runs for at most
t(L(k)) steps.

15 Thus, Definition and Definition 3] are incomparable (when the time bound
t is a fixed polynomial). On the one hand, Definition F3] seems weaker because
we effectively fix the polynomial time bound of F (which is incorporated in D).
On the other hand, Definition [£3] seems stronger because D itself is allowed to
be probabilistic and run in time ¢ (whereas in Definition these privileges are
only allowed to F, which may be viewed as a preprocessing step). Indeed, if &
requires exponential size circuits, then there exist pseudorandom generators that
satisfy one definition but not the other: On the one hand, this assumption yields
the existence of a non-uniformly strong canonical pseudorandom generator (i.e.,
satisfying Definition [J]) of exponential stretch [16] that is not p-robust (i.e., fails
Definition B3)), for some sufficiently large polynomial p. On the other hand, the
assumption implies BPP = P, which leads to the opposite separation described at
the end of Section

| Pr[D(G(Ur)) = 1] = Pr[DUer)) = 1]| < (4)

In a World of P=BPP 209

The pseudorandomness condition implies that, for every linear-time D’ and every
probabilistic ¢-time algorithm F' (such that |F(1")| = n for every n), it holds
that

1
t(e(k)) -

Note that if, for every x, there exists a o such that Pr[D'(z,U},) = o] > 1 —
(1/3t(]z|)) (as is the case when D’ arises from an “amplified” BPP decision
procedure), then the probability that F(1¢*) finds an instance z € {0, 1}¢*)
on which D'(x,G(Uy)) leans in the opposite direction (i.e., Pr[D'(z,U,) #
o] > 1/2) is smaller than 3/t(¢(k)). A more general (albeit quantatively weaker)
statement is proved next.

| Pr[D(F(1'W),G(Uy)) = 1] — Pr[D'(F(1W), Uygy) =1]| < ()

Proposition 4.4 (on the effect of canonical derandomizers): For t:N—N such
that t(n) > (nlogn)3, let G be a t-robust canonical derandomizer of stretch (.
Let A be a probabilistic linear-time algorithm, and let Ag be as in the foregoing
discussions (i.e., Ag(x, s) = A(x,G(s))). Then, for every probabilistic (t/2)-time
algorithm F and all sufficiently large k, the probability that F(1°F)) hits the set
Va.c(k)\ Ba(k) is at most 40/t(¢(k))*/3, where

Va.c(k) % {m € {0,1}*® . |Pr[Ac(z, Uy) = 1] — Pr[A(z, Uy = 1]| > ; }(6)

Ba(k) o {QU € {0, 1}Z(k) : t(g(kl))ua < Pr{A(z, Usw) = 1] < 1775(3(13))1/3 }(7)

That is, Ba(:) denotes the set of inputs x on which A(x) = A(z,U)) is not
“almost determined” and V4 ¢(-) denotes the set of inputs x on which there is
a significant discrepancy between the distributions A(x) and Ag(x).

The forgoing discussion refers to the special case in which B4 (k) = (). In general,
if A is a decision procedure of negligible error probability (for some promise
problem)E then Ag is essentially as good as A, since it is hard to find an
instance x that matters (i.e., one on which A’s error probability is negligible) on
which Ag errs (with probability greater than, say, 0.4). This leads to “effectively
good” derandomization of BPP. In particular, if G has exponential stretch, then
BPP is “effectively” in P (see Theorem F.J]).

Proof: Suppose towards the contradiction that there exist algorithms A and F’
that violate the claim. For each o € {0, 1}, we consider the following probabilistic
t-time distinguisher, denoted D,. On input r (which is drawn from either Uy,
or G(Uy)), the distinguisher D, behaves as follows.

1. Obtains « F(1I").

16 That is, Ba(-) contains only instances that violate the promise.

210 O. Goldreich

2. Approximates p(z) ef Pr[A(z,U),|) = o], obtaining an estimate, denoted
B, such that Pr{[p(z) — p(e)| < t(J]) /%] = 1 — negl(Ja]).

3. If p(z) < 1 —2t(Jz|)~1/3, then D, halts with output 0.

4. Otherwise (i.e., p(x) > 1—2t(|z|)~*/3), D, invokes A on (z,r), and outputs 1
if and only if A(z,7) = 0. (Indeed, the actual input = is only used in this
step.)

We stress that D, only approximate the value of p(x) = Pr[A(z, U,) =0] (i.e., it
does not, approximate the value of Pr[A(z, G(Uy-1(j4)))) = o], which would have
required invoking G). Observe that D, runs for at most ¢(|r|) steps, because the
approximation of p(z) amounts to O(¢(|r|)%/?) invocations of A(z), whereas each
invocation costs O(|r|) time (including the generation of truly random coins for
A).
Let ¢, (k) denote the probability that, on an £(k)-bit long input, algorithm D,
moves to the final (input dependent) step, and note that g, (k) is independent
of the specific input 7 € {0,1}¥%). Assuming that |p(z) — p(x)| < t(|z|)~/3
(for the string x selected at the first step), if the algorithm moves to the final
step, then p(x) > 1 — 3t(|z|)~ /3. (Similarly, if p(z) > 1 — t(|z[)~'/3, then
the algorithm moves to the final step.) Thus, the probability that D, (Ugs)))
outputs 1 is at least (1 —negl(¢(k))) - ¢o (k) - (1 — 3t(|x|)~*/3), which is greater
than ¢, (k) — 4t(Jz[)~'/3. On the other hand, by the contradiction hypothesis,
there exists a o such that with probability at least 20¢(¢(k))~/3, it holds that
F(1°%)) hits the set Va g (k) N Sy a(k), where

Spoa(k) {x € {0,1}*™ : Pr[A(z, Uyy) = 0] > 1 — t(g(kl))l/?)} (8)

In this case (i.e., when z € Va (k) NS, a(k)) it holds that p(z) > 1 —¢(|z])~1/3
(since x € Sy, a(k)) and Pr[A(z, G(Us-1(j)))) =0] < 2/3 (since x € Va,g(k) and
p(z) > 1—t(|z])~1/3). It follows that the probability that D, (G(Uy)) outputs 1 is
at most (gy (k) —20t(|z|)~'/3)-1+20¢t(|z|)~1/3-2/3 +negl(¢(k)), which is smaller
than ¢, (k) — 5t(|]z|)~'/3. Thus, we derive a contradiction to the t-robustness of
G, and the claim follows.

4.2 The Main Result

Our main result is that BPP = P implies the existence of canonical derandom-
izers of exponential stretch (in the sense of Definition [3]). We conclude that
seeking canonical derandomizers of exponential stretch is “complete” with re-
spect to placing BPP in P. (The same holds w.r.t “effectively” placing BPP in
P, see Theorem H.91)

Theorem 4.5 (on the completeness of canonical derandomization): If BPP =
P, then, for every polynomial p, there exists a p-robust canonical derandomizer
of exponential stretch.

In a World of P=BPP 211

The proof of Theorem [£.5]is inspired by the study of pseudorandomness with re-
spect to deterministic (uniform p-time) observers, which was carried out by Gol-
dreich and Wigderson [10]. Specifically, for every polynomial p, they presented a
polynomial-time construction of a sample space that fools any p-time determin-
istic next-bit test. They observed that an analogous construction with respect to
general (deterministic p-time) tests (i.e., distinguishers) would yield some non-
trivial derandomization results (e.g., any unary set in BPP would be placed in
P). Thus, they concluded that there is a fundamental gap between probabilistic
and deterministic polynomial-time observers. Our key observation is that this
gap may disappear if BPP = P. Specifically, the hypothesis BPP = P allows
us to derandomize a trivial “probabilistic polynomial-time construction” of a
canonical derandomizer.

Proof: Our starting point is the fact that, for some exponential function ¢, with
very high probability, a random function G : {0,1}* — {0,1}*(*®) satisfies the
pseudorandomness requirement associated with 2p-robust canonical derandom-
izers. Furthermore, given the explicit description of any function G : {0,1}* —
{0, 1}5(’”7 we can efficiently distinguish between the case that G is 2p-robust and
the case that G is not p—robust Thus, the construction of a suitable pseudoran-
dom generator is essentially a BPP-search problem. Next, applying Theorem [3.5]
we can deterministically reduce this construction problem to BPP. Finally, us-
ing the hypothesis BPP = P, we obtain a deterministic construction. Details
follow.

Let us fix an arbitrary polynomial p, and consider a suitable exponential func-
tion £ (to be determined later). Our aim is to construct a sequence of mappings
G :{0,1}% — {0,1}4*) for arbitrary k € N, that meets the requirements of a
p-robust canonical derandomizer. It will be more convenient to construct a se-
quence of sets S = UpenSyx) such that S, € {0,1}", and let G(i) be the ith
string in Sy(x), where i € [2¥] = {0,1}*. (Thus, the stretch function £: N — N
satisfies £(log, |Sn|) = n, whereas we shall have |S,| = poly(n), which implies
£(O(logn)) = n and £(k) = exp(£2(k)).) The set S,, should be constructed in
poly(n)-time (so that G is computable in poly(2¥-£(k))-time), and the pseudoran-
domness requirement of G coincides with requiring that, for every probabilistic
p-time algorithm D, and all sufficiently large n, it holds tha

1
S

1

Pr[D(U,)=1] i)

Y Pr[D(s)=1]| <

s€Sn

9)

7 Formally, the asymptotic terminology of p-robustness is not adequate for discussing
finite functions mapping k-bit long strings to ¢(k)-bit strings. However, as detailed
below, what we mean is distinguishing (in probabilistic polynomial-time) between
the case that G is “2p-robust” with respect to a given list of p-time machines and
the case that G is not “p-robust” with respect to this list.

'8 In [I0, Thm. 2] the set S,, was only required to fool deterministic tests of the next-bit

type.

212 O. Goldreich

Specifically, we consider an enumeration of (modiﬁed)@ probabilistic p-time
machines, and focus on fooling (for each n) the p(n) first machines, where fool-
ing a machine D means that Eq. (@) is satisfied (w.r.t this D). Note that, with
overwhelmingly high probability, a random set S,, of size K = é(p(n)Q) satisfies
Eq. @) (w.r.t the p(n) first machines). Thus, the following search problem, de-
noted CON() | is solvable in probabilistic 6(;0(71)2 -n)-time: On input 1™, find a
K -subset Sy, of {0,1}™ such that Eq. @) holds for each of the p(n) first machines.

Next, consider the following promise problem ¢C(®) (which is a companion of
CON®)). The walid instance-solution pairs of CCP) are pairs (17,S,) such that
for each of the first p(n) machines Eq. @) holds with p(n) replaced by 2p(n), and
its invalid instance-solution pairs are pairs (1™,S,,) such that for at least one of
the first p(n) machines Eq. @) does not hold. Note that CC®) is a BPP-search
problem (as per Definition B.2]), and that it is indeed a companion of coN(®)
(as per Observation B33)). Thus, by Theorem BHPY solving the search problem
CON®) is deterministically (polynomial-time) reducible to some promise problem
in BPP. Finally, using the hypothesis BPP = P, the theorem follows.

Observation 4.6 (on the exact complexity of the construction): Note that (by
Theorem 1) the foregoing reduction of CON®) to BPP runs in time t(n) =
6(p(n)2 - n), whereas the reduction is to a problem in quartic-time, because
the verification problem associated with CCP) is in sub-quadratic probabilistic
timeP1 Thus, assuming that probabilistic quartic-time is in DTIME(py), for some
polynomial py (see Proposition B7), it follows that CON®P) € DTIME(p'), where

p'(n) = pa(t(n)).

Observation 4.7 (including the seed in the output sequence): The construction
of the generator G (or the set S,,) can be modified such that for every s € {0,1}*
the k-bit long prefiv of G(s) equals s (i.e., the i*" string in S, starts with the
(logy |Snl)-bit long binary expansion of 7).

!9 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

See also the discussion just following the statement of Theorem [3.5] which asserts
that if the search problem of a companion of IT is reducible to BPP then the same
holds for IT.

On input (1", S) we need to compare the average performance of p(n) machines
on S versus their average performance on {0,1}", where each machine makes at
most p(n) steps. Recalling that |S| = K = O(p(n)?), and that it suffices to get an
approximation of the performance on {0,1}" up to an additive term of 1/2p(n),

20

21

we conclude that the entire task can be performed in time p(n) - O(p(n)?) - p(n) <
(n 4 1S|n)? (i.e., the number of machines times the number of experiments (which

is |S| + 6(p(n)2)) times the running time of one experiment).

In a World of P=BPP 213

Observation 7] implies that a (deterministic) polynomial-time distinguisher,
which runs for more time than the foregoing generator, can distinguish the gen-
erator’s output from a truely random sequence. Next, we show that, in certain
cases, the distinguishing task is extremely easy (i.e., can be performed in sub-
linear time) if the distinguisher is provided with an auxiliary input that can be
generated in polynomial-time independently of the tested string.

A Separation between Definition[{.9 and Definition[[.3: The p-robust canonical
derandomizer constructed in the foregoing proof (or rather a small variant of it)
does not satisfy the notion of a canonical derandomizer stated in Definition
Indeed, in this case, a (deterministic) polynomial-time finder F'; which runs for
more time than the foregoing generator, can find a string x that allows very fast
distinguishing. Details follow.

The variant that we refer to is different from the one used in the proof of The-
orem [4.5 only in the details of the underlying randomized construction. Instead
of selecting a random set of O(p(n)?) strings, we select m = O(p(n)?) strings
in a pairwise independent manner. (This somewhat bigger set suffices to make
the probabilistic argument used in the proof of Theorem go through.) Fur-
thermore, we consider a specific way of generating such an m-long sequence over
{0, 1}": For b = log, m and t = n/b, we generate an m-long sequence by selecting
uniformly (71, s1), ..., (1, 5¢) € {0,1}2%, and letting the i*® string in the m-long
sequence be the concatenation of the ¢ strings rq 44 - s1,..., 7t +14 - ¢ (where the
arithmetics is of GF(2%)). (In the actual determintic construction of S,, (and G)
a sutibale sequence ((r1,s1), ..., (r¢,s¢)) € {0,1}?% is found and fixed, and the
G (i) equals the concatenation of the ¢ strings r1 + - s1,..., 7t + 14 - $¢.) Referring
to this specific construction, we propose the following attack:

— The finder F determines the set S,, (just as the generator does). In particular,
F' determines the elements r1, S1,72, S2 used in its construction, finds o, 3 €
GF(2%) such that as; + B3se = 0 and (a, 8) # (0,0), lets vy = a.- 71 + B - 7o,
and encodes (a, §,7) in the 3b-bit long prefix of x.

— Oninput x (viewed as starting with the 3b-bit long prefix (o, 3,7) € GF(2%)3)
and a tested n-bit long string that is viewed as a sequence (z1,...,2¢) €
GF(2%)t, the distinguisher D output 1 if and only if o+ 21 + B - 22 = 7.

Note that D(z, G(Uy)) is identically 1 (because «c- (r1 +i-81) + - (ro + - s2)
equals v = a -y + 3 - ry for every i € [m]), whereas Pr[D(z, Uyy)) = 1] =27°
(because a fixed non-zero linear combination of two random elements of GF(2°)
is uniformly distributed in GF(2%)).

Non-Resilience to Multiple Samples. The foregoing example also demonstrates
the non-resilience of Definition to multiple samples. Specifically, consider a
distinguisher D that obtains three samples, denoted (z%l), ey zﬁl)), (z§2), ey 2,52)),
and (zf'), e zt(‘i)) (each viewed as a t-long sequence over GF(2°)), and outputs 1
if and only if (251) - zgg)) . (zég) - zég)) = (zél) - zég)) . (zgg) - z%g)). Then,
D(G(i1),G(i2), G(i3)) = 1 for every iy,ia,i5 € [2¥] (because G(i1); — G(iz); =

214 O. Goldreich

(i1 — i) - s; and G(i2); — G(i3); = (i2 —i3) - s; for every j € [¢], which implies
that each of the two compared products equals (i — i2)(iz — i3) - $152), whereas
D(UZ((I;)7 Ue((%z)’ Ue(?lz)) equals 1 with probability 27° (because the two compared
products are uniformly distributed in GF(2°) independently of one another).

4.3 A Tedious Tightening

Recall that we (kind of) showed that canonical derandomizers of exponential
stretch imply that BPP is “effectively” contained in P (in the sense detailed in
Definition [L.8]), whereas BPP = P implies the existence of the former. In this
section we tighten this relationship by showing that the existence of canonical
derandomizers of exponential stretch also follows from the hypothesis that BPP
is “effectively” (rather than perfectly) contained in P.

Definition 4.8 (effective containment): Let C; and C2 be two classes of promise
problems, and let t : N — N. We say that Cy is t-effectively contained in Co if
for every Il € Cy there exists II' € Co such that for every probabilistic t-time
algorithm F and all sufficiently large n it holds that Pr[F(1™) € V(II,II') N
{0,1}"] < 1/t(n), where V(II,II') denotes the symmetric difference between

1T = (ITyes, IIvo) and II' = (I, IT.,) (i.e., VI, IT') < V(1T IT,,.) U

YES? NO
V(o IT',,), where VI(S, ") % (S\ S) U (S'\ S)).

Theorem 4.9 The following two conditions are equivalent.

1. For every polynomial p, it holds that BPP is p-effectively contained in P.
2. For every polynomial p, there exists a p-robust canonical derandomizer of
exponential stretch.

Proof: We first prove that Condition [implies Condition [[l (Indeed, this
assertion was made several times in the foregoing discussions, and here we merely
detail its proof.)

Let IT = (I1ygs, ITyo) be an arbitrary problem in BPP, and consider the cor-
responding probabilistic linear-time algorithm A (of negligible error probability)
derived for a padded version of IT, denoted ¥ = (Wygs, Pyo). Specifically, sup-
pose that for some polynomial pg, it holds that Wy = {x0p°(|x|)_|x| cx € Tygs}
and ditto for Wyo. Now, for any polynomial p, consider the promise problem

V' = (W, W) such that
Lp\/{ES =4 {z € Uygs : Pr[Ag(z) = 1] > 0.6} (10)
U208 o {x € WUy : Pr[Ag(z) = 1] < 0.4}, (11)

where Ag is the algorithm obtained by combining A with a p-robust derandom-
izer G of exponential stretch ¢ (i.e., Ag(z,s) = A(z,G(s)), where £(|s|) = |z|).
Then, Proposition 4] implies that for every probabilistic p-time algorithm F
and all sufficiently large k, it holds that

40

PI‘[F(lz(k)) € V(Wy wl) N {Oa 1}£(k)] < p(f(k‘))l/?”

(12)

In a World of P=BPP 215

because V(¥, ¥') N {0, 1} is contained in V4 (k) \ Ba(k), where Va ¢ (k) and
B,(k) are as in Eq. (@) and Eq. (), respectively. Now, since G has exponential
stretch, it follows that the randomness complexity of Ag is logarithmic (in its
input length). Thus, algorithm Ag runs in polynomial-time, and we can also
fully derandomize it in polynomial-time (by invoking A on all possible random
pads). Concluding that &' € P, we further infer that the same holds with respect
to the “unpadded version” of ¥/, denoted I’ = (IT, ., IT},); that is, we refer to
I = {z : xorol=D=lzl ¢ @i 3 and ditto for IT/,. Finally, since V(IT,1I") N
{0, 1} equals {x : z0Po(UzD=lel ¢ V(@ @) N {0,1}Po(M}, it follows that for every
probabilistic p o pp-time algorithm F' and all sufficiently large n, it holds that
Pr[F(1™) e VII,II') N {0,1}"] < 40/p(p0(n))1/3. Noting that the same applies
to any IT € BPP (and any polynomial p), we conclude that BPP is (p'/3/40)-
effectively contained in P, for every polynomial p. This completes the proof that
Condition [2] implies Condition [

We now turn to proving the converse (i.e., that Condition [I] implies Condi-
tion 2)). The idea is to go through the proof of Theorem 5] while noting that
a failure of the resulting generator (which is supposed to be p-robust) yields
contradiction to the p’-effective containment of BPP in P, where p’ is a poly-
nomial that arises from the said proof. Specifically, note that the hypothesis
BPP = P is used in the proof of Theorem to transform a probabilistic
construction into a deterministic one. This transformation is actually a (deter-
ministic) p3-time?d reduction (of the construction problem) to a fixed problem
IT in BPTIME(pr7) € BPP, where prr(m) = m*. We also note that all queries
made by the reduction have length ©(2* - £(k)) (see the proof of Theorem [3.5]
and recall that 28 = O(p(£(k))?)). Thus, the reduction fails only if at least one
of the queries made by it is answered incorrectly by the problem in P that is
used to p’-effective place IT in P. Let us suppose for a moment that the re-
duction never makes a query that violates the promise of II. Then, randomly
guessing the index of the (first wrongly answered) query (i € [p({(k))3]), we
may answer the prior (¢ — 1) queries by using the fixed BPP algorithm for I7,
and hit an m-bit long instance in the symmetric difference with probability at
least 1/p(n)3, where n = (k) and m = O(p(n)? - n). Thus, for a sufficiently
large polynomial p’, this contradicts the hypothesis that BPP is p’-effectively
contained in P. Specifically, on input 1™, our probabilistic algorithm runs for
time p(n)? - prr(p(n)?) = p(n)® and hits a bad m-bit long string (on which the
derandomization fails) with probability at least 1/p(n)3, where m = O(p(n)2-n).
Thus, setting p’(m) = m® suffices. (Formally, the claim follows by considering a
mO(}iﬁed algorithm that on input 1™ invokes the foregoing algorithm on input
1m1 8.)

Recall, however, that the foregoing analysis relies on the unjustified assump-
tion that the reduction never makes a query that violates the promise of I7. In
general, when such a query is made, the answer of the deterministic algorithm

22 See Observation EL6, and use O(p(n)? - n) < p(n)?, which holds for all practical
purposes.

216 O. Goldreich

A (which p’-effectively places IT in P) may be arbitrary and may not reflect the
arbitrary distribution of the answer of the BPP algorithm, deboted B. By ran-
domizing the reduction we may avoid this violation event (or rather bound the
probability that it occurs), without effecting the behavior on queries that satisfy
the promise. Before detailing how this is done, we stress that this modification
will be performed only in the analysis, towards showing that failure of the original
deterministic reduction when using algorithm A implies hitting a query on which
A returns an incorrect answer. Turning back to the reduction to IT = (ITygs, [Ixo)
(which makes a number of queries that is smaller than the query length), we con-
sider the problem II’ = (11}, I1},) such that (z,a) € II} (resp., (z,a) € II},)
if and only if Pr[B(z) =1] > a + 1/20|z| (resp., Pr[B(z) =1] < a — 1/20|x|).
Clearly, I1" € BPP (specifically, II' € BPTIME(psr/), where pr/(m) = mS). In
the reduction, we replace each query x by the query (x, &) such that « is selected
at random uniformly in [0.4, 0.6]. Thus, for every z that satisfies the promise of
IT and every a € [0.4,0.6], it holds that (x, «) satisfies the promise of II’. On the
other hand, with probability at least 1 — |z|- (2-(20]|z])~1/0.2) = 1/2, all queries
made by the reduction (to II') satisfy the promise, since a query (x,) violates
the promise if and only if |Pr[B(z) =1] — a| < 1/30|z|. Now, let A’ be a deter-
ministic algorithm that p’-effectively places I’ in P, and let A(z) = A’(z,0.5).
(Indeed, we are using an algorithm derived from the algorithm for IT’, rather
than using the algorithm derived directly for IT.) Now, if A fails during the
original deterministic reduction, then, with probability at least 2/3, algorithm
A’ fails during the randomized reduction (i.e., answers some query incorrectly
while all queries satisfy the promise). Hence, we derive a contradiction to the
hypothesis that IT’ is p’-effectively in P (via algorithm A’)

Comment. The second part of the foregoing proof actually establishes that there
exists a fized polynomial p’ such that if BPP is p’'-effectively contained in P, then,
for every every polynomial p, there exists a p-robust canonical derandomizer of
exponential stretch. Thus, we obtain that BPP is p’-effectively contained in P
if and only if for every polynomial p BPP is p-effectively contained in P. We
comment that this result can be proved directly by a padding argument.

4.4 A Different Tightening (Targeted Generators)

The use of uniform-complexity notions of canonical derandomizers does not seem
to allow deriving perfect derandomization (of the type BPP = P). As we saw,
the problem is that exceptional inputs (in the symmetric difference between the
original problem and the one solved deterministically) need to be found in order
to yield a violation of the pseudorandomness condition. An alternative approach
may let the generator depend on the input for which we wish to derandomize
the execution of the original probabilistic polynomial-time algorithm. This sug-
gests the following notion of a targeted canonical derandomizer, where both the

23 Note that here we use p'(m) = m!, since the running-time of our probabilistic
3

process is p(n)® - prr (p(n)*) = p(n)?', where m = O(p(n)? - n).

In a World of P=BPP 217

generator and the distinguisher are presented with the same auxiliary input (or
“target”).

Definition 4.10 (targeted canonical derandomizers): Let £:N—N be a function
such that £(n) > n for all n. A targeted canonical derandomizer of stretch ¢ is a
deterministic algorithm G that satisfies the following two conditions.

(generation time): On input a k-bit long seed and an £(k)-bit long auziliary in-
put, G makes at most poly(2¥ - £(k)) steps and outputs a string of length
(k).

(pseudorandomness (targeted)): For every (deterministic) linear-time algorithm
D, all sufficiently large k and all z € {0,1}¥) it holds that

1

| Pr[D(x, G(Uy,x)) = 1] — Pr[D(z,Uyry) = 1]| < 6

(13)
Definition 10l is a special case of related definitions that have appeared in [26,
Sec. 2.4]. Specifically, Vadhan [26] studied auxiliary-input pseudorandom gener-
ators (of the general-purpose type [2I27]), while offering a general treatment in
which pseudorandomness needs to hold for an arbitrary set of targets (i.e., z € T
for some set I C {0,1}*)4 (On the other hand, Definition {1l is obatined from
Definition 210 by mandating that G ignores s; i.e., G(s,z) = G'(s).)

The notion of a targeted canonical derandomizer is not as odd as it looks at
first glance. Indeed, the generator is far from being general-purpose (i.e., it is
tailored to a specific x), but this merely takes to (almost) the limit the insight of
Nisan and Wigderson regarding relaxations that are still useful towards deran-
domization [20]. Indeed, even if we were to fix the distinguisher D, constructing
a generator that just fools D(x, -) is not straightforward, because we need to find
a suitable “fooling set” deterministically (in polynomial-time).

Theorem 4.11 (another equivalence): Targeted canonical derandomizers of ex-
ponential stretch exist if and only if BPP = P.

Proof: Using any targeted canonical derandomizer of exponential stretch we ob-
tain BPP = P, where the argument merely follows the one used in the context
of non-uniformly strong canonical derandomizers (i.e., canonical derandomiz-
ers in the sense of Definition ELT). Turning to the opposite direction, we ob-
serve that the construction undertaken in the proof of Theorem can be
carried out with respect to the given auxiliary-input. In particular, the fixed
auxiliary-input is merely passed among the various algorithms, and the argu-
ment remains intact. (See further discussion in Observation £.121) The theorem
follows.

Observation 4.12 (super-exponential stretch): In contrast to the situation
with respect to the prior notions of canonical derandomizers (of Definitions EI}-

24 His treatment vastly extends the original notion of auxiliary-input one-way functions
put forward in [21].

218 O. Goldreich

IZ:{I) targeted canonical derandomizer of super-exponential stretch may ez-
ist. Indeed, they exists if and only if targeted canonical derandomizer of ex-
ponential stretch exist. To see this note that the hypothesis BPP = P allows
to carry out the proof of Theorem [{.3 for any stretch function. Specifically,
for any super-exponential function £, when constructing the set S, C {0,1}"
it suffices to fool the first g(n) (linear-time) machines, where g is any un-
bounded and non-decreasing function and fooling means keeping the distinguisha-
bility gap below 1/6. Thus, |Sn| = 2¢ (™) (which is o(n)) needs only satisfy
2-exp(—2-(1/6)2-1S,]) - g(n) < 1/3, which calls for using a function g such that
g(n) <0.1-exp(2-(1/6)?- 2471(")). The claim follows.

4.5 Relating the Various Generators

It is syntactically clear that any non-uniformly strong canonical derandomizer
(as per Definition [£]]) satisfies both Definition (the first uniform version of
canonical derandomizers) and Definition [L10 (the targeted version of canonical
derandomizers). On the other hand, there are good reasons to believe that such
a canonical derandomizer is not necessarily a p-robust canonical derandomizer
(as per Definition 3] for some polynomial p) However, using Theorems .9
and [£T1] we observe that the existence of a generator that satisfies either Def-
inition or Definition implies, for every polynomial p, the existence of
p-robust canonical derandomizer (as per Definition E.3]).

Corollary 4.13 If there exists a targeted canonical derandomizer of exponen-
tial stretch, then for every polynomial p there exists a p-robust canonical de-
randomizer of exponential stretch. The same holds if the hypothesis refers to

Definition[1.2

The various relations are depicted in Figure[3l A similar result can be proved
for other (polynomially closed) families of stretch functions, by using the results
of Section Bl

Proof: The existence of a targeted canonical derandomizer of exponential
stretch implies that BPP = P (see Theorem LTI, which in turn implies the
existence of a p-robust canonical derandomizer of exponential stretch (see Theo-
rem L7 or Theorem [L9)). Starting with a generator that satisfies Definition [£.2]
one can easily prove that, for every polynomial p’, it holds that BPP is p'-
effectively in P, where the proof is actually more direct than the corresponding

25 For Definitions 1 and super-exponential stretch is impossible because we can
encode in z € {0, 1}*®) the list of all (k4 1)-bit long strings that do not appear as a
prefix of any string in {G(s) : s € {0,1}*}, which yields a linear-time distinguisher
of gap at least 1/2. In case of Definition 3] super-exponential stretch is impossible
because of a distinguisher that output 1 if and only if the tested string starts with
0**1, and so has a distinguishing gap of at least 2~ (*+1 Indeed, in both cases we
ruled out £(k) > 2F+1.

26 One such reason was noted in Footnote If € requires exponential size circuits,
then such a “separator” exists.

In a World of P=BPP 219

non-uniform
(Def. 4.1)

uniform (1st)
(Def. 4.2)

targeted
(Def. 4.10)

effectively |<=----- p-robust
BPP =P ====% (Def. 4.3)

Fig. 3. Relations among various notions of canonical derandomizers (of exponential
stretch). Solid arrows indicate syntactic implications (which hold for any generator),
whereas dashed arrows indicate existential implications.

direction of Theorem We are done by using the other direction of The-
orem (i.e., the construction of p-robust canonical derandomizer based on
p’-effective containment of BPP in P).

5 Extension: The Full “Stretch vs Time” Trade-Off

In this section we extend the ideas of the previous section to the study to gen-
eral “stretch vs derandomization time” trade-off (akin to the general “hardness
vs randomness” trade-off). That is, here the standard hardness vs randomness
trade-off takes the form of a trade-off between the stretch function of the canoni-
cal derandomizer and time complexity of the deterministic class containing BPP.
The robustness (resp., effectiveness) function will also be adapted accordingly.

Theorem 5.1 (Theorem 9 generalized): For every function t : N — N, the
following two conditions are equivalent.

1. For every two polynomials po and p, it holds that BPTIME(pg) is (p o t)-
effectively contained in DTIME(poly(potopp)).
2. For every polynomial p, there exists a (p o t)-robust canonical derandomizer

of stretch Lpoy:N—N such that £yor(k) % (pot)=1(22(R)) = =1 (p=1(22(R))).

Furthermore, the hidden constants in the {2 and poly notation are independent
of the functions t,p and pg.

Indeed, Theorem follows as a special case (when setting ¢(n) = n), whereas
for ¢(n) > 2™ both conditions hold trivially. Note that for ¢(n) = 2" (resp.,
t(n) =2""), we get Lyor(k) = 2(k/€)) (vesp., Lyor(k) = 2(k)1/e).

220 O. Goldreich

Proof: We closely follow the proof of Theorem 9] while detailing only the
necessary modifications. Starting with the proof that Condition 2] implies Con-
dition [T we let IT € BPTIME(pg), ¥ and A be as in the original proof. Now,
for any polynomial p, we consider the promise problem ¥’ = (¥, ¥/,) such
that @), = {z € WUy : Pr[Ag(z) = 1] > 0.6} and ¥}, = {z € ¥y :
Pr[Ag(z) = 1] < 0.4}, where A¢ is the algorithm obtained by combining A
with a (p o t)-robust derandomizer G of stretch ¢po;. Then, Proposition [£4] im-
plies that for every probabilistic (p o t)-time algorithm F and all sufficiently
large k, it holds that Pr[F (1) € V&, ") N {0,1}*¥)] < 40/(p o t)'/3(¢(k)).
Since G has stretch £po, it follows that on input an n-bit string algorithm Ag
uses K;Olt(n) = O(log(p o t)(n)) many coins, and thus we can also fully de-
randomize it in time poly((p o ¢)(n)). Thus, ¥/ € DTIME(poly(p o t)), and it
follows that I’ € DTIME(poly(p o t o pg)), where II' denotes the “unpadded
version” of ¥'. Concluding that IT is ((p o t)'/3/40)-effectively contained in
DTIME(poly(p ot o pg)), and that the same holds for any IT € BPTIME(py) and
every polynomial p, we have established that Condition 2 implies Condition [l

We now turn to proving the converse (i.e., that Condition [l implies Condi-
tion 2]). Again, we merely go through the proof of Theorem [except that
here we construct a set .S, of size poly(p o t)(n). Specifically, the discrepan-
cies we aim at are linearly related to 1/(p o t)(n), and we can afford spending
time poly(p o t)(n) in the construction. We shall indeed make use of this al-
lowance, since we can only rely on the (#'-effective) containment of BPTIME(pg)
in DTIME(poly(p o t o pg)), where t' = poly(p o t) = poly(p) o t. The rest of the
argument proceeds analogously to the proof of Theorem We note that the
aforementioned hypothesis regarding BPTIME(pg) is only used when determinis-
tically reducing (in time poly(pot)) the construction of S,, to a fixed problem IT
in BPTIME(pg), where po(m) = m* (as in the proof of Theorem E9). Thus, the
reduction fails only if at least one of the queries made by it is answered incor-

rectly by the problem in D def DTIME(poly(potopg)) that is used to t’-effective
place IT in D. Randomly guessing the the index of the (wrongly answered) query,
we hit an m-bit long instance in the symmetric difference with probability at
least 1/poly(p(t(n))), where m = 2(£(k)), which contradicts the hypothesis that
BPTIME(py) is t'-effectively contained in DL

6 Open Problems

We start by recalling the famous open problem regarding whether the a full
derandomization of standard decision problems implies the same for promise
problems. That is, assuming that any decision problem in BPP is in P, does it
follow that BPP = PP

2" Here, too, m = O(O(p(t(n))? - n) actually holds, and so it actually suffices to set
t'(m) = poly(m).

28 Formally, let D denote the set of all promise problems having a trivial promise; that
is, a promise problem (ITygs, IIno) is in D if IIygsUIIno = {0, 1}". Then, the question
is whether BPP N'D =P N D implies BPP = P.

In a World of P=BPP 221

One problem that arises from the current work refers to the relationship be-
tween the two uniform definitions of canonical derandomizers (i.e., Definitions[1.2]
and [3)). Recall (see Section [H) that the existence of generators (of exponen-
tial stretch) that satisfy Definition implies the existence of generators (of
exponential stretch) that satisfy Definition FL3] but the converse is not clear.

Another open problem refers to the deriving of analogous results regarding the
derandomization of AM (or AM N coAM). Here the canonical derandomizer
should be computable in non-deterministic poly(2¥ - £(k))-time, where computa-
tion by non-deterministic machines refers to the so called “single-value” model
(see, e.g., [23] or [0, Def. 5.13]). The problem in reversing the “pseudorandomness
to derandomization” connection refers to a tension between the distinguishers
used to argue about the derandomization versus our need to handle them in
the construction of the canonical derandomizer. We would welcome any result,
even for a targeted version and even for derandomizing some subclass such as
AM N coAM or SZK.

Finally, we return to the question raised in passing in Section [4l Specifically,
we ask which search problems can be solved by deterministic polynomial-time re-
ductions to BPP. Denoting the class of such search problems by C, we note that
Theorem [3.5] implies that C contains all search problems that have a companion
that is a BPP-search problem. The converse holds in the special case that the
target of the reduction is a standard decision problem (and the reduced search
problem has a trivial promise at the instance level (see below)). Let us con-
sider the general case and see what happens. Suppose that the search problem
(Ryes, Ruo) is reducible in deterministic polynomial-time to IT € BPP. Denot-
ing the oracle machine effecting the reduction by M, we consider the search
problem (Rl Rl,) such that (z,y) € Rl if M/(z) = y for some f that
is consistent with IT and (z,y) € R, otherwise 2] The correctness of the re-
duction implies that S Rl 2 Skygs Whereas R{, D Ryo, which means that if
Skyes U Sryo = {0,1}%, then (R, RY,) is a companion of (Rygs, Rno). Now
if IT is a standard decision problem, then f is unique; hence, R} (z) is a sin-
gleton if x € Sk, . and is empty otherwise (since Sg; = {0,1}*\ Sg;_). In
this case membership of (x,y) in R, can be easily tested by checking whether
M (z) = y. The same holds if the reduction is “smart” (i.e., avoids making
queries that violate the promise, cf. [12])@ but in general it is not clear what
happens.

Acknowledgments. We are grateful to Noga Alon, Or Meir, Madhu Sudan, and
Avi Wigderson for useful discussions on related issues. We also thank Or Meir,
Dieter van Melkebeek, Amnon Ta-Shma, and Salil Vadhan for their comments
on early drafts of this work.

29 Saying that f is consistent with IT = (IIygs, IIno) means that f(z) = 1 for every
x € Ilyrs, whereas f(x) = 0 for every x € IIno. Indeed, the value of f on inputs that
violate the promise (i.e., x & ITyps U IIxo) is arbitrary.

30 We note, however, that the reduction used in the proof of Theorem is not smart.
Furthermore, we doudt that a smart reduction can be found.

222

O. Goldreich

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Aydinlioglu, B., Gutfreund, D., Hitchcock, J.M., Kawachi, A.: Derandomizing
Arthur-Merlin Games and Approximate Counting Implies Exponential-Size Lower
Bounds. Computational Complexity (to appear)

. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of

Pseudo-Random Bits. In: SICOMP, vol. 13, pp. 850-864 (1984); Preliminary ver-
sion in 23rd FOCS, pp. 80-91 (1982)

. Chor, B., Goldreich, O.: On the Power of Two—Point Based Sampling. Jour. of

Complexity 5, 96-106 (1989)

. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with

Applications to Public-Key Cryptography. Inform. and Control 61, 159-173 (1984)

. Fortnow, L.: Comparing Notions of Full Derandomization. In: 16th CCC, pp. 28-34

(2001)

. Friedman, J.: A Proof of Alon’s Second Eigenvalue Conjecture. In: 35th STOC,

pp. 720-724 (2003)

. Gauss, C.F.: Untersuchungen Uber Hohere Arithmetik, 2nd edn. Chelsea publish-

ing company, New York (1981) (reprinted)

. Goldreich, O.: Foundation of Cryptography: Basic Tools. Cambridge University

Press, Cambridge (2001)

. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge

University Press, Cambridge (2008)

Goldreich, O., Wigderson, A.: On Pseudorandomness with respect to Deterministic
Observers. In: RANDOM 2000, Proceedings of the Satellite Workshops of the 27th
ICALP. Carleton Scientific (Proc. in Inform. 8), pp. 77-84 (2000); See also ECCC,
TRO00-056

Goldwasser, S., Micali, S.: Probabilistic Encryption. JCSS 28(2), 270299 (1984);
Preliminary version in 14th STOC (1982)

Grollmann, J., Selman, A.L.: Complexity Measures for Public-Key Cryptosystems.
In: SICOMP, vol. 17(2), pp. 309-335 (1988)

Hochbaum, D. (ed.): Approximation Algorithms for NP-Hard Problems. PWS
(1996)

Huxley, M.N.: On the Difference Between Consecutive Primes. Invent. Math. 15,
164-170 (1972)

Impagliazzo, R., Kabanets, V., Wigderson, A.: In Search of an Easy Witness: Ex-
ponential Time vs Probabilistic Polynomial Time. JCSS 65(4), 672-694 (2002);
Preliminary version in 16th CCC (2001)

Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In: 29th STOC, pp. 220-229 (1997)

Impagliazzo, R., Wigderson, A.: Randomness vs. Time: De-randomization under
a uniform assumption. JCSS 63(4), 672-688 (2001); Preliminary version in 39th
FOCS (1998)

Jerrum, M., Valiant, L., Vazirani, V.V.: Random Generation of Combinatorial
Structures from a Uniform Distribution. In: TCS, vol. 43, pp. 169-188 (1986)
Kabanets, V., Impagliazzo, R.: Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds. Computational Complexity 13, 1-46 (2003); Pre-
liminary version in 35th STOC (2003)

Nisan, N., Wigderson, A.: Hardness vs Randomness. JCSS 49(2), 149-167 (1994);
Preliminary version in 29th FOCS (1988)

In a World of P=BPP 223

21. Ostrovsky, R., Wigderson, A.: One-Way Functions are Essential for Non-Trivial
Zero-Knowledge. In: 2nd Israel Symp. on Theory of Computing and Systems, pp.
3-17. IEEE Comp. Soc. Press, Los Alamitos (1993)

22. Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks on regular digraphs
and the RL vs. L problem. In: 38th STOC, pp. 457-466 (2006); See details in
ECCC, TR05-022

23. Shaltiel, R., Umans, C.: Low-end Uniform Hardness vs Randomness Tradeoffs for
AM. SICOMP 39(3), 1006-1037 (2009); Preliminary version in 39th STOC (2007)

24. Trevisan, L., Vadhan, S.: Pseudorandomness and Average-Case Complexity Via
Uniform Reductions. Computational Complexity 16(4), 331-364 (2007); Prelimi-
nary version in 17th CCC (2002)

25. Umans, C.: Pseudo-random Generators for all Hardness. JCSS 67(2), 419-440
(2002); Preliminary version in 34th STOC (2002)

26. Vadhan, S.: An Unconditional Study of Computational Zero Knowledge.
SICOMP 36(4), 1160-1214 (2006); Preliminary version in 45th FOCS (2004)

27. Yao, A.C.: Theory and Application of Trapdoor Functions. In: 23rd FOCS, pp.
80-91 (1982)

Appendices: Prior Proofs of the Main Result
(Theorem [4.5])

The current proof of Theorem is the second simplification we found: It is
a third incarnation of the same underlying principles, but it hides the original
inspiration to our ideas, which are rooted in [I0]. Since we do have written
records of these prior proofs, and since they may be of some interest, we decided
to include them in the current appendix.

Our starting point was the work of Goldreich and Wigderson [10], which
studied pseudorandomness with respect to (uniform) deterministic observers. In
particular, they show how to construct, for every polynomial p, a generator of
exponential stretch that works in time polynomial in its output and fools all
deterministic p-time tests of the next-bit type (a la [2]). They observe that an
analogous construction with respect to general (deterministic p-time) tests (or
distinguishers) would yield some non-trivial derandomization results (e.g., an
unary set in BPP would be placed in P). Thus, they conclude that Yao’s result?]
asserting that fooling all efficient next-bit tests implies fooling all efficient dis-
tinguishers relies on the fact that the class of test includes probabilistic p-time
algorithms and not only deterministic ones.

Our key observation is that the gap between probabilistic next-bit tests and
deterministic ones essentially disappears if BPP = P. Actually, the gap disap-
pears if we generalize the notion of next-bit tests so to allow the (deterministic)
tester to output a guess of the probability that the next bit equals 1 (rather than
a guess for the actual value of the next bit), and consider the correlation between
the corresponding random variables. Indeed, assuming that BPP = P, allows to

31 Attributed to oral presentations of [27].

224 O. Goldreich

deterministically emulate a probabilistic p-time next bit test by a (generalized)
deterministic p’-time next bit test, where p’ is a polynomial that depends only
on p. Plugging this into the construction of [I0], which can be shown to fool also
(generalized) deterministic p’-time next bit test, we obtain the desired generator
(which produces ¢-bit outputs in time poly(p’(£))). A crucial point in the fore-
going argument is that the next-bit test does not need to invoke the generator,
which is not feasible because the generator runs for more time than the potential
tests.

The foregoing argument led to the first proof, which is presented in Ap-
pendix Subsequently we found a more direct approach, which is presented
in Appendix[A1l This approach is more transparent and amenable to variations
than the first one (but less so in comparison to the proof presented in Section[2)).
Specifically, rather than working with (generalized) next-bit tests, we directly
work with (probabilistic p-time) distinguishers, and adapt the argument of [10]
to apply in this context. It turns out that in order for this to work, we only need
to approximate the probability that a fixed probabilistic p-time distinguishers
outputs 1 when presented with random (¢ — 7)-bit long extensions of some fixed
i-bit long strings, for i = 1,...,£. Assuming that BPP = P, allows to determin-
istically approximate these probabilities (again, in p’-time, where p’ = poly(p)),
and so we are done. Needless to say, the fact that such approximations suffices
is specific to (our adaptation of) the construction of [10].

A.1 An Alternative Proof of Theorem (via Derandomizing a
FPTAS)

The alternative proof of Theorem 4.5 proceeds by generalizing the main idea that
underlies the work of Goldreich and Wigderson [10], while using the hypothesis
(i.e., BPP = P) to extend its scope to probabilistic (rather than deterministic)
observers. Specifically, for every polynomial p, they presented a polynomial-
time construction of a sample space that fools any p-time deterministic next-bit
test. The construction is iterative, where in each iteration the next bit of each
string in the sample space is determined such that the resulting space fools all
relevant next-bit tests. Here we consider any (p-time) probabilistic distinguisher,
and seek to determine the next bit so that the probability that this distinguisher
output 1 (on a random extension of the current sample space) is approximately
maintained. Towards this end, we need to approximate the probability that
a fixed p-time probabilistic algorithm outputs 1 on a random extension of the
current prefix. Our key observation is that, due to the hypothesis that BPP = P,
this quantity can be approximated in deterministic polynomial-time. The use of
this hypothesis is far from being surprising, since (as noted before) the conclusion
of Theorem (5] implies that, in some “effective” sense, BPP does equal P.

Proof: We follow the general outline of the proof of [I0, Thm. 2], while com-
menting (mostly in footnotes) about the points of deviation. Let us fix an
arbitrary polynomial p, and consider a suitable exponential function ¢ (to be
determined later). Our aim is to construct a sequence of mappings G:{0,1}* —

In a World of P=BPP 225

{0, 1}6(’“)7 for arbitrary k£ € N, that meets the requirements of a p-robust canoni-
cal derandomizer. However, it will be more convenient to construct a sequence of
sets S = UrenSy(x) such that S, € {0,1}", and let G(i) be the it" string in Suy,
where i € [2¥] = {0, 1}*. (Thus, the function ¢:N— N satisfies £(log, |S,|) = n,
whereas we shall have |S,| = poly(n).) The set S,, should be constructed in
poly(n)-time (so that G is computable in poly(2* - £(k))-time), and the pseudo-
randomness requirement of G coincides with requiring that, for every probabilis-
tic p-time algorithm D, and all sufficiently large n, it holds that®?

1
Pr[D(U,)=1] — 5| ; Pr[D < p(n) (14)

Specifically, we consider an enumeration of (modiﬁed probabilistic machines
running within time p(n) on input of length n, and focus on fooling the m =
m(n) < p(n) first machines in the sense of Eq. (I4)). Let e = 1/p(n), and M be
a generic machines that we wish to fool.

We construct S, in (roughly) n iterations, such that in iteration ¢ we construct
Sni C {0,1}". We start with S, = {0,1}*, where k = 2log,(2nm/e), and let
K = 2% In the i + 15 iteration, we consider the function fi; : [K] — [0,1]
representing the probability that M outputs 1 on a random extension of each of
the K strings in S, ;; that is, fas(j) = Pr[M (29 U,,_;) =1], where 2(9) is the j*
string in S, ; C {0,1}*. (The function fys represents M’s average output on all
possible (n — 7)-bit long extensions of all strings in S, ;.). Our aim is to find a
vector u € {0, 1}% such that, for each machine M (among the first m machines),
it holds that the average Value of Pr[M (2D u[j]U,_;_1) =1] is €/n-close to the
average value of fy/(j); that is,

Il{ > PrM (D ufj|U, i) = Z ()| < :l (15)

JElK] JelK]

Once such a vector u is found, we extend S, ; into S;, ;41 in the natural manner;
that is,

Shit1 e {zDu[j] : where 219 is the 5 string in S,;} < {0,1}+1. (16)

32 In [0, Thm. 2] the set S,, was only required to fool deterministic tests of the next-bit
type.

Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

In contrast, in [I0], the function fas (which is denoted vas there) represented M’s
attempt to guess the i + 15° bit of a string in S,, based on the i-bit long prefix of
that string. Furthermore, since in [10] the machine M is deterministic, the function
fur (there) can be constructed by invoking M on K different i-bit strings.

33

34

226 O. Goldreich

It follows that S, qef nn satisfies Eq. ([Id)), because, for each of the aforemen-
tioned M’s and for each ¢ € [n — k,n — 1], it holds that

|571”|' > Pr[M(s)=1]

SESn i

1
|Sn,i+1|

Y PrM(s)=1]| < © (7)

n
SESn,it+1

since the terms in the Lh.s are represented by the function fj; defined at the *"
iteration, whereas the terms in the r.h.s correspond to the function f; defined
in the next iteration.

It remains to specify how a suitable vector v € {0,1}¥ is found, in each
iteration. This is done by using a pairwise independent sample space for strings
of length K, while recalling that such spaces can be constructed in poly (K)-time
(cf., e.g., [3]). Two issues arise:

1. Showing that such a sample space must always contain a suitable vec-
tor u € {0,1}; that is, a vector u