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Preface

This volume contains a collection of studies in the areas of complexity theory and
foundations of cryptography. These studies were conducted at different times
during the last couple of decades. Although many of these studies have been
referred to by other works, none of them was formally published before.

Indeed, this volume is quite unusual, and it raises two opposite questions
regarding the publication of the foregoing studies: (1) why were these studies
not published (formally) before, and (2) why are they being published now?

Let me start with the second question. In the years that have elapsed since
the completion of many of these individual studies, I have occasionally looked at
them for some reason. On these occasions, I felt that it is somewhat inappropriate
that these works were never published formally (although many of them were
posted on forums such as ECCC). The current volume is aimed at amending
this situation somewhat.

Turning to the first question, the answer varies according to the case. Re-
garding the surveys and the programmatic and/or reflective articles, the answer
is quite straightforward: The standard publication venues for research in com-
plexity and/or cryptography do not welcome such articles, which may reflect the
unfortunate fact that our community does not hold such articles in high esteem.
Regarding the articles that describe research contributions, the answer varies
from the non-existence of an adequate venue (at least at the relevant time), to
unjustified (in retrospect) timidness regarding the work.

The late publication of some of these articles also raises questions regarding
the relation of the current versions to the original ones. These questions are
addressed at the beginning of each individual article, where the original posting
is stated and the nature of the revision is outlined. In general, all articles were
revised (based on their last posted version), but the revision attempts to preserve
the spirit of the original work. In the few cases that later developments suggest
a different perspective and/or technical improvements, this is stated explicitly
while comparing the original perspective and/or results with the current one.

The compilation of this volume led me to complete the writing of a couple of
surveys. In addition, I decided to also include in this volume a few rather recent
research contributions.

The studies in this volume are arranged in three parts. Part I contains 20
research contributions, Part II contain 12 surveys (and one overview essay on
“Randombess and Computation”), and Part III contains three programmatic
and/or reflective articles. Most studies in Part I (and a couple of the studies in
Part II) were conducted by me in collaboration with other researchers.

The topics addressed in the various studies include average-case complexity,
complexity of approximation, derandomization, expander graphs, hashing func-
tions, locally testable codes, machines that take advice, NP-completeness, one-
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way functions, probabilistically checkable proofs (PCPs), proofs of knowledge,
property testing, pseudorandomness, randomness extractors, sampling, trapdoor
permutations, zero-knowledge and non-interative zero-knowledge (NIZK). In-
deed, one may say that most of these works belong to the interplay between
randomness and computation.

Part I: Research Contributions

1. The Shortest Move-Sequence in the Generalized 15-Puzzle Is NP-Hard
2. Proofs of Computational Ability
3. On Constructing 1-1 One-way Functions
4. On the Circuit Complexity of Perfect Hashing
5. Collision-Free Hashing from Lattice Problems
6. Another Proof that BPP Is Contained in PH (and More)
7. Strong Proofs of Knowledge
8. Simplified Derandomization of BPP Using a Hitting Set Generator
9. On Testing Expansion in Bounded-Degree Graphs

10. A Candidate One-Way Functions Based on Expander Graphs
11. The FGLSS-Reduction and Minimum Vertex Cover in Hypergraphs
12. The GGM Construction Does NOT Yield Correlation Intractability
13. On Logarithmic Versus Single-Bit Advice
14. On Proofs Of Knowledge: Probabilistic Versus Deterministic Provers
15. On the Average-Case Complexity of Property Testing
16. A Candidate Counterexample to the Easy Cylinders Conjecture
17. From Absolute Distinguishability to Positive Distinguishability
18. Testing Graph Blow-Up
19. Proximity Oblivious Testing and the Role of Invariances
20. In a World of P=BPP

Part II: Surveys

1. On Levin’s Theory of Average-Case Complexity
2. On Three XOR-Lemmas
3. On Yao’s XOR-Lemma
4. A Sample of Samplers – A Computational Perspective on Sampling
5. Short Locally Testable Codes and Proofs
6. Bravely, Moderately: A Common Theme in Four Recent Results
7. On the Complexity of Computational Problems Regarding Distributions
8. On Basing Non-Interactive Zero-Knowledge on Trapdoor Permutations
9. Average Case Complexity, Revisited

10. Basic Facts About Expander Graphs
11. A Brief Introduction to Property Testing
12. Introduction to Testing Graph Properties
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Part III: Programmatic and Reflective Articles

1. On Security Preserving Reductions – A Suggested Terminology
2. Contemplations on Testing Graph Properties
3. Another Motivation for Reducing the Randomness Complexity of Algorithms

I am grateful to all of my co-authors of the papers included in the current
volume: Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai
Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, and David Zuckerman. In addi-
tion, I wish to thank all researchers who have contributed to the research being
surveyed in this volume.

Oded Goldreich
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Finding the Shortest Move-Sequence in the

Graph-Generalized 15-Puzzle Is NP-Hard

Oded Goldreich

Abstract. Following Wilson (J. Comb. Th. (B), 1975), Johnson (J. of
Alg., 1983), and Kornhauser, Miller and Spirakis (25th FOCS, 1984), we
consider a game that consists of moving distinct pebbles along the edges
of an undirected graph. At most one pebble may reside in each vertex
at any time, and it is only allowed to move one pebble at a time (which
means that the pebble must be moved to a previously empty vertex). We
show that the problem of finding the shortest sequence of moves between
two given “pebble configuations” is NP-Hard.

Keywords: NP-Completeness, Games’ Complexity, Computational Group
Theory.

This work was completed in July 1984, and later appeared as Technical Report
No. 792 of the Computer Science Department of the Technion (Israel). The
current revision is quite minimal.

1 Problem’s Definition

The following generalization of the “15-Puzzle” appeared in [4,2,3]:

Board: The game is played on a finite, undirected, simple graph. The graph will
be denoted by G(V, E).

Legal Board Configuration: Every vertex contains at most one pebble, and one
vertex is empty. That is, BC : V → {0, 1, 2, . . . , |V | − 1} is a legal board config-
uration if it is one-to-one and onto. The board configuration is interpreted as
follows: if BC(v) �= 0, then vertex v contains pebble BC(v), and if BC(v) = 0, then
vertex v is empty.

Legal Moves: A legal move consists of moving a single pebble, along one of the
edges of the graph to an empty vertex. A legal move is a transformation on
the set of legal configurations. Let BC(·) be a legal configuration and BC′(·) be
the configuration that results from BC(·) after a legal move. Then, there exist
two adjacent vertices, u, v ∈ V (i.e., (u, v) ∈ E), such that BC′(u) = BC(v),
BC′(v) = BC(u) = 0, and BC′(w) = BC(w) for all w ∈ V \ {u, v}. In this move the
pebble BC(v) is moved from vertex v to vertex u.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 1–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 O. Goldreich

A sequence of Moves: A sequence of t moves is a sequence of legal board con-
figurations, denoted BC0(·), BC1(·), BC2(·), . . . , BCt(·), such that for i = 1, . . . , t it
holds that BCi(·) is the result of applying a legal move to BCi−1(·). The configu-
ration BC0(·) is called the beginning configuration of the above sequence, and the
configuration BCt(·) is called the finishing configuration of the above sequence.

Solutions: A pair of legal board configurations is said to have a solution if there
exists a sequence of moves beginning at the first and finishing at the second.

2 Prior Work

Kornhauser, Miller and Spirakis [3] showed that, for any nonseparable graph
G(V, E), if a pair of legal board configurations has a solution, then it has a
solution by O(|V |3) moves. Furthermore, they showed that such a solution (by
O(|V |3) moves) can be found in O(|V |3) time. A natural algorithmic question
arises:

Given a pair of legal board configurations that does have a solution, Is it
feasible to find the shortest solution?

We answer this question negatively, proving that finding such a solution is
NP-Hard.

3 The NP-Completeness Result

In order to discuss the problem of finding the shortest solution to a solvable
pair of legal board configurations, we introduce the following decision problem,
herafter referred to as the Shortest Move Sequence (SMS) Problem:

Input: A nonseparable, simple, undirected graph G(V, E); a pair, B(·) and F (·),
of legal board configuration; and an integer K.

Question: Is there a sequence of K (or less) legal moves beginning at B(·) and
finishing at F (·)?

We prove the following result.

Theorem: The Shortest Move Sequence (SMS) problem is NP-Complete.

Proof: First note that SMS is in NP (since, w.l.o.g., K = O(|V |3)). We prove
that SMS is complete by reducing 3-Exact-Cover (3XC) to it. Recall that the
3XC is defined as follows:

Input: A set U = {ei}3n
i=1 and a collection S = {sj}m

j=1 of 3-element subsets
(3-subsets) of U .

Question: Is there a subcollection, S′ ⊆ S, such that every element in U occurs
in exactly one member of S′?
If existing, such a collection, S′, is called an exact cover. (Also, |S| = n.)
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Recall that Karp has proved that 3XC is NP-complete (see [1]). Now, given an
instance of 3XC, denoted (U = {ei}3n

i=1 , S = {sj}m
j=1), we construct the following

SMS instance:

– Let V = U0 ∪ U1 ∪ S ∪ {t}, where Uσ = {eσ : e∈U} for σ ∈ {0, 1}.
The vertices e0 and e1 will be associated with the element e ∈ U . The vertices
in S will be associated with the corresponding 3-subsets. The vertex t will
be called the temporary vertex.

– Let E = E3XC ∪ {(t, s) : s∈S} ∪ {(e0, e1) : e∈U}, where

E3XC = {(eσ, s) : σ∈{0, 1} ∧ e∈U ∧ e∈s}.

The edges in E3XC encode the description of the 3XC instance. Note that
(eσ, s) ∈ E3XC iff the element e ∈ U appears in the 3-subset s ∈ S.

– Let B(eσ
i ) = 2i− 1 + σ, for 1 ≤ i ≤ 3n and σ ∈ {0, 1}, and B(sj) = 6n + j,

for 1 ≤ j ≤ m. Let B(t) = 0.
In the begin configurations t is empty while the pebbles are placed in a
“canonical” order. In particular, the pebbles 2i− 1 and 2i, which are asso-
ciated with the element ei (for 1 ≤ i ≤ 3n), are placed in vertices e0

i and e1
i ,

respectively. The pebble 6n+ j, which is associated with the 3-subset sj (for
1 ≤ j ≤ m), is placed in vertex sj .

– Let F (eσ
i ) = 2i− σ, for 1 ≤ i ≤ 3n and σ ∈ {0, 1}, and F (sj) = 6n + j, for

1 ≤ j ≤ m. Let F (t) = 0.
In the finish configurations t is still empty and the pebbles in the vertices
that are associated with the 3-subsets remain invariant w.r.t the begin con-
figuration. The pebbles associated with each element of U are switched w.r.t
the begin configuration.

– Finally, let K = 11n.

Having presented our reduction it remains to show that it is indeed valid.
Assume that the 3XC instance has an exact cover, denoted S′ =

{
sij

}n

j=1
.

Let f : {1, 2, . . . , n} × {1, 2, 3} → {1, 2, . . . , 3n} such that ef(j,k) is the k-th
element in the 3-subset sij (where the order on the elements in each 3-subset
is induced by an ordering of U). Note that sij = {ef(j,1), ef(j,2), ef(j,3)} and
U = {ef(j,k) : 1 ≤ j ≤ n ∧ 1 ≤ k ≤ 3}. Then, following is a solution to the
corresponding SMS instance:

for j = 1 to n do begin
move pebble 6n + ij from sij to t;
for k = 1 to 3 do begin

move pebble 2f(j, k)− 1 from e0
f(j,k) to sij ;

move pebble 2f(j, k) from e1
f(j,k) to e0

f(j,k);
move pebble 2f(j, k)− 1 from sij to e1

f(j,k);
[Comment: At this stage, for every k ∈ {1, 2, 3},
the pebbles 2f(j, k)− 1 and 2f(j, k) are switched.]

end
move pebble 6n + ij from t to sij ;
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[Comment: At this stage all pebbles associated to elements in sij are
switched and all the pebbles associated with 3-subsets are back in place.]

end

One can easily verify that the foregoing procedure transforms the begin config-
uration into the finish configuration in (1 + 3 · 3 + 1) · n = K moves

Assume, on the other hand, that the SMS instance has a solution in no more
than K = 11n moves. Let us denote this solution (i.e., sequence of moves) by
Q. Recall that in each move a single pebble is moved (to an empty vertex). The
following facts concerning Q can be easily verified:

Fact 1 : Switching pebble 2i − 1 with pebble 2i (1 ≤ i ≤ 3n) requires
at least two moves of one of these pebbles and at least one move of the
other pebble. Furthermore, this switching requires that at least one of
these pebbles passes through a vertex associated with a 3-subset that
contains the element ei.

The main part follows from the fact that each move must be to a
previously empty vertex, and the furthermore part follows by the graph’s
structure.

Fact 2: If some pebble passes through a 3-subset vertex sj (1 ≤ j ≤ m)
during Q, then the pebble 6n + j must have been moved during Q.

Let M denote the set of pebbles that are associated with 3-subsets that moved
during Q. Using Facts 1 and 2, we get.

Fact 3: The number of moves in Q is at least 3 · 3n + 2 · |M |.

Recall the number of moves (in Q) is at most K = 11n. Thus:

Fact 4: |M | ≤ n.

Fact 5: The collection C = {sj : 6n + j ∈ M} constitutes a cover of the
set U . That is, for every element e ∈ U , there exists a 3-subset s ∈ C
such that e ∈ s.

Note that 2i− 1 has been switched with 2i, for each 1 ≤ i ≤ 3n, and
by Facts 1 and 2 this implies that for some j such that ei ∈ sj it holds
that 6n + j ∈ M .

Combining Facts 4 and 5, we conclude that C is an exact cover of the 3XC
instance. This completes the proof of the theorem.

Acknowledgements. I am grateful to Shimon Even, Dan Kornhauser, Silvio
Micali and Gary Miller for very helpful discussions.
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Proving Computational Ability

Mihir Bellare and Oded Goldreich

Abstract. We investigate extending the notion of a proof of knowledge
to a proof of the ability to perform some computational task. We provide
some definitions and protocols for this purpose.

Keywords: Proofs of Knowledge, Zero-Knowledge, Cryptographic
Protocols.

This work was completed in August 1992, and earlier versions of it were posted
on the authors’ webpages. The current revision is intentionally minimal.

1 Introduction

We extend the idea of proving “knowledge” of a string to encompass a notion
of proving the “ability to perform some task.” Specifically, we wish to formalize
what it means to “prove the ability to compute a function f on some instance
distribution D.”

Motivation. The aforementioned notion might have many uses, and two of them
are described here. Suppose Alice possess a trapdoor, t(x), to a (publically
known) trapdoor permutation fx and wishes to identify herself to Bob, by demon-
strating ability to invert fx. The proof of ability should be zero-knowledge so to
prevent Bob from latter impersonating Alice. Admittingly, in this case Alice
can establish her identity by directly proving, in a zero-knowledge manner, her
knowledge of the trapdoor t(x) (which corresponds to the index x of fx). Still
it may be cheaper to prove ability to invert fx (e.g., by using a trivial proto-
col in which the prover inverts fx on instances chosen by the verifier). This is
particularly valid in case Alice posseses special purpose hardware, in which the
trapdoor is hard-wired, making it very easy for her to invert the function on
inputs of her choice. A second application is for a party to prove possesion of
vast computing power by conducting very difficult tasks (e.g., inverting one-way
functions).

Related Work. This is an extension of our previous work on proofs of knowledge
[1] in which we try to generalize those ideas to the setting of proving computa-
tional ability. Proofs of knowledge are first mentioned in [5] and have been seeing
definitional refinements [3,6,2] culminating in the notions of [1,4]. We assume the
reader is somewhat familiar with the notion.

Proofs of computational ability were first discussed by Yung [7]. We adhere to
the same basic and natural idea (namely, that computational ability of a prover is

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 6–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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certified if some extractor can use the prover as a black box to solve the problem
itself) but our approach is more general. For example whereas an assumption
on the problem hardness is made in [7] it is not made here; we consider notions
of distribution-free and distribution-dependent ability; following [1] we define
an analogue of “knowledge error”; and following [1] we avoid some weaknesses
inherited from earlier definitions of proofs of knowledge.

2 Definitions

For greater generality, we will consider relations rather than functions. By a fam-
ily of relations we mean a sequence {Rx}x∈{0,1}∗ , where Rx ⊆ {0, 1}|x| × {0, 1}∗
for each x. For simplicity we restrict our attention to polynomially bounded
families; that is, we assume there is a polynomial p such that (z, y) ∈ Rx im-
plies |z| = |x| and |y| ≤ p(|x|). Following the notation used in [1], we denote
Rx(z) def= { y : (z, y) ∈ Rx } and LRx

def= { z : ∃y such that (z, y) ∈ Rx }. Prover
and verifier will interact on common input x, with the goal of the interaction
being for the prover to “convince” the verifier that he has the “ability to solve
Rx.”

We need to address the meaning of both of the phrases in quotes above. We
will first define what it means for a machine to “solve a relation” (or a family of
relations), and only next will we define what is a “proof of ability” to do so.

The standard meaning of efficiently solving a relation, S ⊆ {0, 1}∗×{0, 1}∗, is
the existence of an efficient algorithm that, on input z, outputs y ∈ S(z), called
a solution to z, if such exists. This is a notion of worst case. Instead, we adopt
a notion of average case by which we consider a probability distribution on the
inputs and require that the algorithm is efficient on the average (with respect
to the input distribution). An even more liberal notion is derived by allowing
the solver to ask for alternative inputs, which are generated according to the
same distribution (and independently of previous inputs), until it can present a
solution to any of the inputs.

Notation: Let S ⊆ {0, 1}∗ × {0, 1}∗. Then, dom(S) def= { z ∈ {0, 1}∗ : S(z) �= ∅ }
is the domain of S.

Definition 2.1 (solving relations): Let S ⊆ {0, 1}∗ × {0, 1}∗ be a relation, and
D be a distribution on dom(S). Suppose t ∈ N and let M(·) be a machine.
• We say that machine M(·) solves S under D in expected t steps if, on input

(z1, z2, ..., zt), with each zi drawn independently according to D, machine M
halts within expected t steps and outputs a pair (zi, y) so that y ∈ S(zi). (The
expectation here is over the random choices of M as well as the t-product of
the distribution D.)

• We say that machine M(·) strongly solves S under D in expected t steps if,
on input z, drawn according to D, machine M halts within expected t steps
with output y ∈ S(z). (The expectation here is over the random choices of
M as well as the distribution D.)
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Conventions: If a machine has several inputs, we may fix some of them to obtain
a machine on the remaining inputs. Likewise, for an oracle machine, we may fix
the oracle and consider the resulting machine. Specifically, suppose that the
oracle machine M(·, ·, ·) has three inputs, then MA(x, y, ·) denotes the machine
with one input whose output on input z is MA(x, y, z).

Let R = {Rx}x∈{0,1}∗ be a family of relations. We say that D = {Dx}x∈{0,1}∗

is an input distribution for R if for every x, it holds that Dx is a distribution
on dom(Rx). We are now ready to define proofs of ability to solve (repectively,
ability to strongly solve) a family of relations under a family of distributions.

Definition 2.2 (proof of ability): Let R = {Rx}x∈{0,1}∗ be a family of relations,

and D def= {Dx}x∈{0,1}∗ be an input distribution for R. Let κ: {0, 1}∗ → [0, 1].
We say that an interactive function, V , is a verifier of the ability to solve (resp.,
strongly solve), R under D with error κ if the following two conditions hold.

• non-triviality: There exists an interactive function P ∗ so that for all x, all
possible interactions of V with P ∗ on common input x are accepting; that
is, Pr[trP∗,V Dx (x) ∈ ACCV (x)] = 1, where trA,B(x) denotes B’s view of the
interaction with P on common input x, and ACCB(x) denotes the views that
convince B (i.e., make it accept).

• validity: There exists a constant c > 0 and a probabilistic oracle machine
K(·, ·, ·) such that for every interactive function P , every x ∈ {0, 1}∗ and
every γ∈ACCV (x), machine KPx(x, γ, ·) satisfies the following condition:

if p(x) def= Pr[trP,V Dx (x)∈ACCV (x)] > κ(x) then machine KPx(x, γ, ·)
solves (resp., strongly solves) Rx under Dx in an expected number of
steps bounded by

|x|c
p(x)− κ(x)

The oracle machine K is called an ability extractor (resp., strong ability
extractor) under D.

Hence an ability extractor is given a sequence of instances, each independently
selected according to Dx, and is supposed to output a solution to one of these
instances within the specified (expected) time bound. A strong ability extractor
is given a single instance, selected according to Dx, and is supposed to output a
solution to this instances within the specified (expected) time bound. (In both
cases, solutions are with respect to Rx.)

Relation to Proofs of Knowledge. We note that proofs of knowledge (as per [1,
Def. 3.1]) are a special case of proofs of ability. To justify this claim, given a
binary relation R we define the family of relations R = {Rx} so that Rx =
{ (x, y) : (x, y) ∈ R }. Clearly, dom(Rx) is the singleton {x} if R(x) �= ∅ and
∅ otherwise. Let Dx be the distribution on dom(Rx) which, in the former case,
assigns the entire probability mass to x (and is undefined in the latter case).
Clearly D = {Dx} is an input distribution for R. It is easy to see that if V
is a verifier of the ability to solve R under D (with error κ) then V is also a
knowledge verifer for R (with knowledge error κ).
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On the Dependence on the Distribution Dx. Definition 2.2 refers to a specific
input distribution. Clearly, both the ability-verifier and the ability-extractor may
depend on this distribution, and this dependency seems inevitable. However, the
dependency on the input distribution can be “uniform” in the sense that both
verifier and extractor can be fixed machines with access to a random source that
generates the input distribution. We call such a proof of ability distribution-free.

The foregoing notion is defined as follows. Let D be a family of distributions
for some R, and let M be an (interactive and/or oracle) probabilistic machine. A
D-source augmentation of machine M is a machine that, on input x, in addition
to the standard behaviour of M can obtain elements draw independently from
distribution Dx (at the cost of reading them).

Definition 2.3 (distribution-free proof of ability): Let R = {Rx}x∈{0,1}∗ be a
family of relations, and let κ: {0, 1}∗ → [0, 1].
• We say that an interactive machine, V , is a distribution-free verifier of the

ability to solve R with error κ if for every input distribution, denoted D, for
R, the D-source augmentation of machine V constitutes a verifier of the
ability to solve R under D with error κ.

• We say that a distribution-free verifier of the ability to solve R (with error
κ) has a distribution-free ability extractor if there exists an oracle machine,
K, such that the D-source augmentation of machine K constitutes a ability
extractor under D.

A definition of a distribution-free strong ability extractor is derived analogously.

3 Examples

To demonstrate the above definitions we consider two natural examples. Both
examples refer to a familty of one-way permutations, {fx}x∈{0,1}∗ . The string x

is called the index of the permutation fx : {0, 1}|x| → {0, 1}|x|, and there exists
an efficient algorithm that, on input index x and argument y, returns the value
fx(y). We shall consider proofs of ability to invert {fx}; intuitively, such ability
requires either super-polynomial computational resources or knowledge of some
trapdoor information (in case the collection has such trapdoors).

Example 1: Consider a verifier that, on common input x, sends the prover
a single uniformly selected string v ∈ {0, 1}|x|, and accepts if and only if the
prover answers with the inverse of v under fx (i.e., with y satisfying fx(y) = v).
We show (below) that the foregoing verifier is an ability-verifier for inverting fx

under the uniform distribution.

Example 2: Consider a verifier that, on common input x ∈ {0, 1}n (n ∈ N),
sends the prover 2n uniformly and indepedently selected strings, v1, ..., v2n ∈
{0, 1}n, and accepts if and only if the prover answers with the inverse of each of
these vi’s under fx (i.e., with y1, ..., y2n satisfying fx(yi) = vi, for every i). We
show (below) that the foregoing verifier is a strong ability-verifier for inverting
fx on at least one out of 2|x| of uniformly selected instances.
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Proposition 3.1. The program described in Example 1 is an ability-verifier
(with error zero) for solving R = {Rx} under D = {Dx}, where
• Rx = {(v, y) : v = fx(y)};
• Dx is uniform over the set of all strings of length |x|.

Furthermore, if the verifier in Example 1, selects v according to an arbitrary
distribution Dx, then the system described constitutes a distribution-free proof of
ability.

Proof sketch: We present here only the case of uniform distribution, and focus
on the validity condition. Consider an arbitrary, fixed prover, and let px denote
the probability that the verifier is convinced by this prover on common input
x. Here the probability space is over all choices of both the verifier and prover.
Assume, without loss of generality, that px > 2−|x|, otherwise the extractor
satisfies the requirement merely by exhaustive search. Also, we may assume
that the ability-extractor “knows” px since it may estimate px in expected time
poly(|x|)/px by repeated experiments. Let qx(v) denote the probability that the
verifier is convinced conditioned on the event that it chose and sent v to the
prover. Here the probability distribution is merely over the prover’s random
coins (in case it is probabilistic). Let Vx(i) be the set of v’s for which qx(v) is
greater than 2−i and smaller/equal to 2−i+1. Clearly, there exists an i ≤ |x| such
that

|Vx(i)|
2|x|

>
px · 2i

n .
(1)

We are now ready to present the ability-extractor. Formally speaking, the ex-
tractor gets as input an index, x, and a sequence of independently and uniformly
selected |x|-bit long strings, and its task is to invert fx on one of them. However,
to simplify the exposition, we prefer to think of these strings as being chosen by
the extractor. Hence, on input x, the extractor executes m

def= �log2(1/px)� copies
of the following procedure, each with a different value of i ∈ {1, ..., m}. The ith

copy consists of uniformly and independently selecting M
def= poly(n)/(px · 2i)

values, v1, ..., vM ∈ {0, 1}n, and executing the following sub-procedure on each of
them. The sub-procedure with value vj invokes the prover’s program (as oracle),
on input x and message vj , for poly(n) ·2i times, each time checking whether the
prover’s answer is the inverse of vj under fx. Once a positive answer is obtained,
the extractor halts with the corresponding value-inverse pair.

The extractor’s expected running-time is bounded above by

m∑
i=1

poly(n)
px · 2i

·
(
poly(n) · 2i

)
=

poly(n)
px .

To evaluate the performace of the above extractor, consider the ith copy, where i
satisfies Equation (1). With overwhelmingly high probability (i.e., greater than
1 − 2−n), one of the vj ’s chosen in this copy satisfies qx(vj) ≥ 2−i. In this
case, with overwhelmingly high probability, the extractor inverts fx on this vj .
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The exponentially small error probabilities can be eliminated by running an
exhaustive search algorithm (for inverting fx) in parallel to the entire algorithm
described above. The proposition follows.

Proposition 3.2. The program described in Example 2 is a strong ability-verifier
(with error zero) for solving R = {Rx} under D = {Dx}, where
• Rx = {(v1, ..., v2|x|, y) : ∃i s.t. vi = fx(y)};
• Dx is uniform over the set of strings of length 2|x|2.

Proof sketch: As in the proof of Proposition 3.1, we consider an arbitrary fixed
prover and let px denote the probability that the verifier is convinced on common
input x. As before, we may assume that px > 2−|x| and that the ability-extractor
has a good estimate of px. Let n

def= |x|, and consider an 2n-dimentional table
in which the dimensions correspond to the 2n values chosen by the verifier. The
(v1, ..., v2n)-entry in the table equals the probability that the prover convinces
the verifier (i.e., successfuly inverts fx on v1 through v2n) conditioned on the
event that the verifier sent message (v1, ..., v2n) to the prover. The probability
here is merely on the prover’s random choices. As in the proof of Proposition 3.1,
we consider a partition of these probabilities to clusters of similar magnitude. It
follows that there exists an i < 2n such that at least a px,i

def= px · 2i/2n fraction
of the entries have value greater than 2−i. We call these entries admisible. It
follows that there exists a dimention k such that at least a 2n

√
px,i/2 > 1

2 fraction
of the rows in the kth dimention contain at least px,i/2n admisible entries. We
call such a (i, k) pair good.

We are now ready to present the strong ability-extractor. The extractor gets as
input an index, x, and a uniformly chosen 2|x|2-long string v=(v1, ..., v2n), where
vj ∈ {0, 1}n and n= |x|. The extractor is suppose to find a solution to v, and this
amounts to inverting fx on one of the vj ’s. To this end the extractor executes
8n3 copies of the following procedure, each with a different triples (i, k, j), where
1≤ i, k, j≤2n. The (i, k, j)th copy of the procedure tries to invert fx on vj , using
the parameters i and k. Specifically, the (i, k, j)th copy consists of repeatedly
invoking the sub-procedure Ai,k on input vj , for at most �poly(n)/px,i� times
(where px,i = px ·2i/2n). On input v, the sub-procedure Ai,k proceeds as follows.

1. Selects uniformly 2n strings of length n each. These strings are denoted
u1, ..., u2n;

2. Invokes the (oracle to the) prover poly(n) · 2i times, each time with input x
and verifier’s message (u1, ..., uk−1, v, uk+1, ..., u2n). The message consist of
the sequence selected at Step 1, except that uk is replaced by v.

3. If in one of these invocations, the prover answers with a 2n-tuple (y1, ..., y2n)
such that fx(yk) = v, then the extractor halts with output (v, yk).

Clearly, the expected running-time of the foregoing extractor is at most∑2n
i=1 poly(|x|)2i/px,i = poly(|x|)/px. To evaluate the performance of this ex-

tractor, consider a good pair (i, k). By definition of a good pair, it follows that at
least one half of the rows in the kth direction contain at least ρx,i

def= px ·2i/(2n)2
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entries on which the prover convinces the verifier with probability at least 2−i.
Let us denote the set of n-bit strings corresponding to these rows by Sx,k. It
follows that for every v ∈ Sx,k, the sub-procedure Ai,k inverts fx on v with prob-
ability at least ρx,i−2−n. Hence, when invoking Ai,x on v ∈ Sx,k for poly(n)/ρx,i

times, with overwhelming probability (i.e., probability greater than 1−2−n), we
invert fx on v. The final observarion is that, since |Sx,k| ≥ 1

2 ·2n, the probability
that none of 2n indepedently and uniformly selected n-bit strings hits Sx,k is ex-
ponentially vanishing (i.e., smaller than 2−n). As in the proof of Proposition 3.1,
this exponentially small error can be elliminated. It follows that the extractor
strongly solve Rx under Dx.

Acknowledgements. Work done while the first author was at the IBM
T.J. Watson Research Center (New York), and the second author was at the
Techion (Israel).
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On Constructing 1-1 One-Way Functions

Oded Goldreich, Leonid A. Levin, and Noam Nisan

Abstract. We show how to construct length-preserving 1-1 one-way
functions based on popular intractability assumptions (e.g., RSA, DLP).
Such 1-1 functions should not be confused with (infinite) families of (fi-
nite) one-way permutations. What we want and obtain is a single (infi-
nite) 1-1 one-way function.

Keywords: One-Way Functions, RSA, Discrete Logarithm Problem.

This work was conducted in the summer of 1994. An early version of it appeared
as TR95-029 of ECCC. Section 4 has been revised and improved by relying
on subsequent advances regarding primality testing [1]. Specifically, we replace
the randomized primality tester of [3] (which builds upon [13,17]) by the deter-
ministic primality tester of Agrawal, Kayal, and Saxena [1]. Various footnotes
indicate these (as well as other significant) deviations from the aforementioned
early version.

1 Introduction

Given any one-way permutation (i.e., a length preserving 1-1 one-way function),
one can easily construct an efficient pseudorandom generator. The construction
follows the scheme given by Blum and Micali [4], using the fact that every
one-way function has a hard-core bit [8]. Specifically, assume that f is such
a function and let b be a hard core-bit for it (e.g., starting with a function
f ′, we may define f(x, r) def= (f ′(x), r) and b(x, r) as the inner-product mod
2 of the strings x and r when viewed as binary vectors of length |x| = |r|).
Then, on input a seed s, the pseudorandom generator outputs the sequence
b(s), b(f(s)), b(f(f(s))), b(f3(s)), ...

Pseudorandom generators can be constructed also based on arbitrary one-
way functions [12]; yet, the known construction is very complex and inefficient.1

In fact, it is of no practical value. The construction in [9], which uses arbitrary
regular one-way functions is more attractive in these respects, yet it is far less at-
tractive than the simple construction outlined above. A similar situation occurs
with respect to the construction of digital signature schemes (cf., [14] vs [19]).
In general, 1-1 one-way functions currently offer simpler and more practical
constructions (of more complex primitives) than offered by general one-way
functions.
1 The same applies also to subsequent improvements, currently culminating in [11].

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 13–25, 2011.
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These facts were our initial motivation for trying to construct length-
preserving 1-1 one-way functions. Such functions should not be confused with
what is commonly referred to (especially in the “Crypto Community”) as
“one-way permutations”, which are actually infinite sets of finite functions –
see definitions below. What we want is a single infinite function that is both
length-preserving and 1-1 (and needless to say one-way). We show how to con-
struct such 1-1 one-way functions based on popular intractability assumptions
such as the intractability of DLP and inverting RSA.

Indeed, some (but not all) of the constructions that use length-preserving
1-1 one-way functions can be modified such that families of one-way permuta-
tions can be used instead. Still the question of whether the former (i.e., length-
preserving 1-1 one-way functions) exists is of both theoretical and practical
importance.

2 One-Way Functions and Families

We start by recalling the standard definitions.

Definition 2.1 (one-way functions): Let f : {0, 1}∗ → {0, 1}∗ be a length pre-
serving function that is polynomial-time computable.

– (strongly one-way): f is called (strongly) one-way if for any probabilistic
polynomial-time algorithm A, any positive polynomial p and all sufficiently
large n, it holds that

Prob[A(f(x)) ∈ f−1f(x)] <
1

p(n)

where the probability is taken uniformly over x ∈ {0, 1}n, and the internal
coin tosses of algorithm A.

– (weakly one-way): f is called weakly one-way if there exists a positive poly-
nomial p such that for any probabilistic polynomial-time algorithm A and all
sufficiently large n, it holds that

Prob[A(f(x)) /∈ f−1f(x)] >
1

p(n)

where the probability is as above.

Recall that f : {0, 1}∗→{0, 1}∗ is 1-1 if f(x) �= f(y) for all x �= y. In the case
that f(x) �= f(y) for all but a negligible fraction of the pairs (x, y) we say that
f is almost 1-1. Namely, an almost 1-1 function f satisfies, for every positive
polynomial p and all sufficiently large n, it holds that

Prob[f(x)=f(y)] <
1

p(n)

where the probability is taken uniformly and independently over all x, y ∈
{0, 1}n.
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Definition 2.2 (family of one-way permutations – simplified version): An in-

finite set of finite permutations, F = {fi : Di
1-1→ Di}i∈I , is called a family of

one-way permutations if the following conditions hold

– (efficient evaluation): There exists a polynomial-time algorithm that on input
an index (of a permutation) i ∈ I and a domain element x ∈ Di returns
fi(x).

– (efficient index selection): There exists a probabilistic algorithm S that on
input n, runs for poly(n) time and returns a uniformly distributed index of
length n (i.e., an i uniformly distributed in I ∩ {0, 1}n).

– (efficient domain sampling): There exists a probabilistic polynomial-time al-
gorithm D that on input an index i ∈ I, returns a uniformly distributed
element of Di.

– (one-wayness): For any probabilistic polynomial-time algorithm A, any
positive polynomial p and all sufficiently large n, it holds that

Prob[A(i, fi(x)) = x] <
1

p(n)

where the probability is taken uniformly over i ∈ I ∩{0, 1}n, x ∈ Di, and the
internal coin tosses of algorithm A.

In the non-simplified version, both the aforementioned probabilistic algorithms
(i.e., S and D) are allowed to produce output with only noticeable probability
(i.e., probability at least 1/poly(n)). Furthermore, given these algorithms have
produced an output, the output is allowed to be wrong (i.e., out of the target set
or non-uniformly distributed) with negligible probability (e.g., with probability
at most 2−n). Our transformations will take advantage of the first relaxation,
but not of the second.2

Analogously to Definition 2.1, families of permutations can be defined to be
weakly one-way, rather than (strongly) one-way.

3 Transforming One-Way Families into Functions

Clearly, any family of one-way permutations can be converted into a single one-
way function; namely, f(r, s) def= fi(x), where i = S(n, r) is the index selected
using coin-tosses r and x = D(i, s) ∈ Di is the element selected on input i and
coin-tosses s. (Padding can be applied, if necessary, to make f length preserving.)
However, this procedure does not necessarily yield a 1-1 function; furthermore,
for most natural examples such as RSA, DLP, etc., the resulting function will
be many-to-one.

2 In the earlier version of this work, we also took advantage of the second relaxation.
This was done in order to account for the probability of error that was present in
the probabilistic primality tests that we used. The need to accommodate error is
currently eliminated by using the deterministic primality test of [1].
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An alternative construction, which does yield a 1-1 one-way function, is
possible under some additional conditions, as demonstrated below. In fact, the
conditions are defined to make this natural construction work and the thrust of
this paper is in demonstrating that these conditions can be met under reasonable
and popular assumptions (see next section).

3.1 The Conditions

Let F be a family of one-way permutations and that let q(n) denote the number
of coins flipped by the index-selection algorithm S on input n. We consider the
following conditions that F may satisfy.

Definition 3.1 (additional conditions)

– Augmented one-wayness:3 For any probabilistic polynomial-time algorithm A,
any positive polynomial p and all sufficiently large n, it holds that

Prob[A(r, fS(n,r)(x)) = x] <
1

p(n)

where the probability is taken uniformly over r ∈ {0, 1}q(n), x ∈ DS(n,r), and
the internal coin tosses of algorithm A.
(Namely, the permutations are hard to invert even when the inverting algo-
rithm is given the random coins used to generate the index of the
permutation.)

– Canonical domain sampling:4 The domain-sampling algorithm may consist of
uniformly selecting a string of specific (easy to determine) length and testing
whether the string resides in the domain. In other words, we require
• (recognizable domain): There exists a polynomial-time algorithm that on

input an index i ∈ I and a string x decides if x ∈ Di.
• (noticeable domain): There exists a polynomial-time computable function

l : N → N and a positive polynomial p(·) so that Di ⊆ {0, 1}l(n) and
|Di| > 1

p(n) · 2l(n)

3.2 The Construction

Given a family of one-way permutations that satisfies the additional conditions,
we explicitly construct a 1-1 one-way function as follows.

3 Note that this condition is different from the notion of enhanced one-wayness as
defined in [6, Apdx. C.1]. Specifically, here the inverting algorithm gets the coins
that were used by the index selection algorithm, whereas in [6, Apdx. C.1] the
inverting algorithm gets the coins that are used by the domain sampling algorithm.

4 Interestingly, this condition was rediscovered in [10] as an alternative to the enhanced
one-wayness condition of [6, Apdx. C.1]. Actually, Haitner [10] only requires notice-
able domains (and refers to collections of permutations that satisfy this condition
by the term collections having dense domains).
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Construction 3.1 (simple version): Let F be a family of permutations with an
index-selection algorithm S that uses q(·) coins and having domains Di’s that
are subsets of {0, 1}l(|i|), for some function l(·). We construct the function f as
follows

f(r, s) def=

{
(r, fi(s)) if s ∈ Di, where i

def= S(n, r)
(r, s) otherwise

where r ∈ {0, 1}q(n) and s ∈ {0, 1}l(n).

Proposition 3.1 (analysis of Construction 3.1): The function f is 1-1 and
length preserving. If F is a family of one-way permutations satisfying the ad-
ditional conditions of Definition 3.1, then f is weakly one-way. The latter holds
even if F is only weakly one-way (as long as it satisfies the additional conditions).

Proof: By definition f is length-preserving. Let Gn be the set of pairs (r, s) ∈
{0, 1}q(n) × {0, 1}l(n) such that s ∈ DS(n,r) holds and let Bn be the set of the
other pairs (i.e., Bn = ({0, 1}q(n)×{0, 1}l(n)) \Gn). The key observation is that
if (r, s) ∈ Gn, then for i = S(n, r) it holds that s ∈ Di. Furthermore, in that
case, fi(s) ∈ Di and f(r, s) = (r, fi(s)) ∈ Gn follows. On the other hand, if
(r, s) ∈ Bn, then f(r, s) = (r, s) ∈ Bn. Thus, f maps Gn (resp., Bn) to itself
and furthermore the mapping induced on Gn (rep., Bn) is 1-1. It follows that f
is 1-1.

The function f is polynomial-time computable by virtue of the first two ef-
ficiency conditions of F and the additional ‘recognizable domain’ condition. By
the additional ‘noticeable domain’ condition we know that Gn forms a noticeable
fraction of Gn ∪Bn and by the ‘augmented one-wayness’ condition we infer that
f is hard to invert on Gn. Thus, we conclude that f is weakly one-way. In fact,
the latter conclusion remain valid even if the family of permutations F is only
weakly one-way. ��

Remark: The function f (constructed above) may be only weakly one-way, since
it equals the identity transformation for a part of its domain (and this part may
have a noticeable measure). To get a (strongly) one-way function, one may apply
the transformation in [7] (cf. [5, Sec. 2.6]) to the function f . (In fact, degenerate
versions of the transformation in [7] suffice for this purpose; see Section 5.)

Handling the non-simplified version of Definition 2.2. The above construction is
stated with respect to the simplified definition of a family of one-way permuta-
tions. Recall that in the non-simplified version, the index-selecting algorithm, S,
is only required to have an output with noticeable probability (i.e., the probabil-
ity is at least 1/p(n), where p is some fixed positive polynomial). Furthermore,
S is allowed to err (i.e., have output not in I) with a negligible probability. For
the general case, we redefine the function f as follows.

Construction 3.2 (general version): Let F = {fi : Di
1-1→ Di}i∈I be a family

of permutations with an index-selecting algorithm, S, that produces output with
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noticeable probability and errs with negligible probability. We construct the
function f as follows

f(r, s) def=

{
(r, fi(s)) if i

def= S(n, r) �= ⊥ and s ∈ Di

(r, s) otherwise

where the convention is that if on input n and coin tosses r ∈ {0, 1}q(n) the
algorithm S halts with no output, then S(n, r) def= ⊥ /∈ {0, 1}∗.

Proposition 3.2 (analysis of Construction 3.2): The function f is length pre-
serving and almost 1-1. Furthermore, f is 1-1 if S never errs. If F is a family
of one-way permutations satisfying the additional conditions of Definition 3.1,
then f is weakly one-way. The latter holds even if F is only weakly one-way (and
satisfies the additional conditions).

Proof: In case algorithm S never errs, the proof is similar to the proof of Proposi-
tion 3.1 (i.e., Gn is redefined as the set of all pairs (r, s) such that i

def= S(n, r) �= ⊥
and s ∈ Di). Otherwise, we observe that the collision probability of f is bounded
above by the probability that S errs (and outputs a string not in I). Since this
happens with negligible probability, we are done. ��

4 Applying the Transformation

Using the transformation specified in the previous section, we show how to con-
struct a 1-1 one-way function based on one of several popular intractability
assumptions. To this end, we use these intractability assumptions in order to
construct families of one-way permutations satisfying the additional conditions
of Definition 3.1. Before presenting these constructions, we wish to stress an
important aspect regarding them; namely, their (quantified) level of “security”
(see next).

Security

The security of a one-way function f is a function, s : N → N, specifying the
amount of “work” required to invert f on inputs of given length. The work of
an algorithm is defined as the product of the running-time (of the inverting
algorithm) and the inverse of its success probability; namely, wA(n) def= tA(n) ·

1
pA(n) , where tA(n) is the running time of A on f -images of length n and pA(n) def=
Probx∈{0,1}n [A(f(x)) ∈ f−1f(x)] is its success probability.

Typical cryptographic constructions, and in particular our constructions, trans-
form one object (in our case, a family of one-way permutations) of security s(·)
into another object (in our case, a single 1-1 one-way function) of related security
s′(·). The relation between s and s′ is of key importance. A weak relation, which
is usually easier to obtain, is that s′(poly(n)) > s(n)/poly(n). Although this rela-
tion translates any super-polynomial security s into a super-polynomial security
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s′, it is of limited practical value. In order to use the resulting object of security
s′ one may needs to use very big instances. For example, if s′(n5) = s(n) and the
original object is “secure in reality” for instance size 100 (bits), then the resulting
object (of security s′) will be “secure in reality” only for instances of size 1010

(and is thus unlikely to be of practical value). Thus, stronger relation between
the security s of the original object and the security s′ of the resulting object
are of more value. In particular, it is desirable to have s′(O(n)) > s(n)/poly(n),
in which case we say that the transformation preserves the security.

Getting back to the constructions of the previous section, we note that the
security of the resulting one-way 1-1 function f , on f -images of length q(n) +
l(n), is closely related to the security of the family of one-way permutations
on fi-images of length l(n). (Recall, n denotes the length of the index of the
permutation, l(n) the length of the description of elements in the domain of
the permutation, and q(n) the randomness complexity of the index-selecting
algorithm.) Thus, s′(q(n)+l(n)) > s(l(n))/poly(n), where s denotes the security
of the family F and s′ the security of the function f . Therefore, the smaller the
polynomial q(·) is, the better security one gets. It is particularly desirable to
keep q(n) linear in l(n). All the constructions presented below achieve this goal.
Consequently, the one-way functions constructed below preserve the security of
the intractability assumption on which they are based. We remark that the (weak
to strong one-way) transformation of [7] (mentioned in the Remark in Section 3)
preserves security too.

Preliminaries: Selecting Prime Numbers

Prime numbers play a key role in all our constructions, and so efficient algo-
rithms for selecting such numbers are of key importance to us. We will use two
algorithms, the first being being the celebrated deterministic polynomial-time
primality tester of Agrawal, Kayal, and Saxena [1],

Theorem 4.1 (primes are in P): There exists a deterministic polynomial-time
primality tester; that is, an algorithm that decides whether a given integer is a
prime number.

The second algorithm is Bach’s probabilistic polynomial-time algorithm that
on input 1n uniformly generates an n-bit long composite number along with
its factorization [2]. A straightforward implementation of Bach’s algorithm re-
quires a super-linear number of coin tosses (i.e., a number of coin tosses that is
super-linear in the length of the composite being generated). Here we claim an
approximate version that uses a linear number of coin tosses. We say that a dis-
tribution X on n-bit long strings is almost uniformly distributed over S ⊆ {0, 1}n

if the variation distance between X and the uniform distribution over S is
negligible (as a function of n).
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Theorem 4.2 (randomness efficient generation of integers with known prime
factorization): There exists a probabilistic polynomial-time algorithm that, on
input 1n, uses O(n) coin tosses to select a random number N almost uniformly
in the interval [2n−1, 2n − 1], and outputs the prime factorization of N .

Proof: While it is possible to present a direct implementation of an approximate
version of Bach’s algorithm that uses only a linear number of coin tosses, the
details are quite tedious. Hence, we prefer to invoke a general result of Nisan and
Zuckerman [15] that asserts that any probabilistic polynomial-time algorithm that
uses linear space has an approximated version that uses a linear number of coin
tosses, where in our context approximation means that the output distribution
of the new algorithm (on any fixed input) is statistically close to the output
distribution of the original algorithm (i.e., the variation distance is negligible).5

It is easy to see that Bach’s algorithm utilizes linear space, and the theorem
follows. ��

4.1 A Construction Based on RSA

The standard presentation of RSA [18] yields a family of permutations, which
is believed to be one-way, but is certainly not one-way in the augmented sense
of Definition 3.1. Here we refer to a family in which the indices are pairs (N, e),
where N is the product of two primes of equal length and e is relatively prime
to φ(N). The index is generated by randomly selecting these two primes, mul-
tiplying them and next selecting a proper e. Thus, giving these random choices
away compromises the security of RSA, since given the prime factors it is easy
to invert the function.

We consider, instead, the following family of weak one-way permutations.
The indices in this family are pairs of integers (N, P ) such that P is a prime and
|P | = |N |. For each such pair we define a permutation over Z

∗
N , the multiplicative

group modulo N ; specifically, fN,P (x) def= xP mod N . Note that we do not insist
that N is a product of two primes of the same length. Yet, a noticeable fraction of
the possible N ’s will have this form. Thus, if the standard RSA family is strongly
one-way (for random exponent) then it is also (strongly) one-way for a prime
exponent, and consequently the foregoing (non-standard) family of functions will
be weakly one-way (due to the noticeable fraction of composites of the standard
form). Since P is relatively-prime to φ(N), the functions in this family are in
fact permutations over Z∗

N . (Note that the index-selecting algorithm does not
know φ(N), and so relative-primality of P and φ(N) is imposed by requiring
that P is prime.)

We now show that the foregoing family satisfies the non-simplified require-
ments (from a family of one-way permutations) as well as the additional condi-
tions in Definition 3.1. Among the efficiency conditions of Definition 2.2 only the

5 The original result is stated for algorithms that output a single bit, but it extends
trivially to algorithms to algorithms that output a linear number of bits, which is
the case in our application (i.e., the aforementioned “context”).
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one referring to the index selection is problematic, yet it does hold when only re-
quiring that output is produced merely with noticeable probability; specifically,
we select two n-bit integers at random and check whether the second is prime,
producing an output only if the answer is affirmative. Furthermore, Z∗

N is easily
recognizable and has noticeable density with respect to {0, 1}|N |. This family
is one-way in the augmented sense (under the “RSA assumption”), since the
modulus is generated via an identity transformation from the coins of the index-
selecting algorithm (and thus these coins add no knowledge to the inverter). It
follows that we can apply Proposition 3.2 and derive a length-preserving 1-1
one-way function.

Definition 4.1 (standard RSA Assumption): We say that inverting RSA is in-
tractable with security s(·) if any algorithm for the inverting task uses work greater
than s(·). The inverting task consists of finding x such that y = xe mod N , when
given N , e and y, where N is uniformly selected among all composites that are
the product of two (n/2)-bit long primes, e is uniformly selected among the el-
ements of the multiplicative group modulo φ(N), and y is uniformly selected
among the elements of the multiplicative group modulo N .

To justify our claim that the security (of the RSA Assumption) is preserved,
we note that pairs (N, P ) as required can be selected using O(|(N, P )|) random
bits.6 Thus, we get

Corollary 4.1 (a length-preserving 1-1 one-way function based on RSA): Sup-
pose that inverting RSA is intractable with security s(n). Then, there exists a
length-preserving 1-1 one-way function with security s′(O(n)) def= s(n)/poly(n).

4.2 A Construction Based on a Restricted DLP

Here we rely on the assumption that the Discrete Logarithm Problem (DLP) in
the multiplicative group modulo P is hard also for the special case of primes of
the form P = 2Q+1, where Q is a prime. We also use the assumption that such
primes form a noticeable fraction of the integers of the same length. Based on
these assumptions, the following family of permutations is one-way. The indices
in the family are pairs (P, g), where P is a prime of the above form and g is
a primitive element modulo P . The index is selected by first selecting a prime
of the above form and next using the known factorization of φ(P ) = 2Q to
test candidates for primitivity (see details below). For each index, (P, g), we
define a permutation over Z

∗
P , the multiplicative group modulo P ; specifically,

fP,g(x) def= gx mod P . Noting that Z∗
P is both ‘noticeable’ and easy to recognize,

6 Currently, the random bits are merely used to select (N, P ) uniformly among all
pairs of n-bit long integers. Indeed, checking primality is done by using the deter-
ministic algorithm guaranteed in Theorem 4.1 (whereas in the earlier versions Bach’s
randomness-efficient algorithm [3] was used for that purpose, which only resulted in
an almost 1-1 function).
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we can apply Proposition 3.2, provided that the index-selection process satisfies
the augmented one-way condition.

To address the last concern as well as justify our claim that the resulting
1-1 one-way function preserves the security of the family, we need to specify
the way in which the pairs (P, g) are selected. On input n we uniformly select
an (n − 1)-bit integer, Q, and test Q and P = 2Q + 1 for primality. In case
we are successful, we uniformly select g ∈ Z∗

P and test if it is primitive (mod
P ) by computing gP−1 mod P , gQ mod P and g2 mod P . (If the first expression
evaluates to 1 whereas the other two do not, then g is a primitive element modulo
P .)7 Thus, we use |(P, g)| random bits to generate pairs (P, g), and these coins are
identical to the pairs themselves. Combining this with the foregoing assumption
regarding the density of primes of the desired form and the fact that in this case
approximately half the elements of Z∗

P are primitive, we get

Corollary 4.2 (a length-preserving 1-1 one-way function based on restricted
DLP): Suppose that the restricted DLP is intractable with security s(n) (as in
Definition 4.2), and that the set of n-bit primes, P , for which φ(P )/2 is prime,
constitute a 1/poly(n) fraction of the n-bit long integers. Then, there exists a
length-preserving 1-1 one-way function with security s′(O(n)) def= s(n)/poly(n).

Definition 4.2 (restricted DLP Assumption): We say that the restricted DLP
is intractable with security s(·) if any algorithm for the following inverting task
uses work greater than s(·). The inverting task consists of finding x such that
y = gx mod P , when given P , g and y, where P is uniformly selected among
all n-bit primes for which φ(P )/2 is prime, g is uniformly selected among the
primitive elements modulo P , and y is uniformly selected among the elements of
the multiplicative group modulo P .

4.3 A Construction Based on the General DLP

Here we rely on a alternative assumption concerning the DLP. Specifically, we
assume that the Discrete Logarithm Problem (DLP) in the multiplicative group
modulo a prime P is hard also when given the factorization of φ(P ). (Note that
for primes of the special form P = 2Q + 1 the factorization of φ(P ) = 2 · Q is
always known.) Furthermore, we shall assume that this DLP problem remains
hard when given any O(|P |) bits of information regarding P ; that is, we assume
that there are no trapdoors (of linear length) for the DLP in the multiplicative
group modulo a prime. Making this assumption, we can waive the assumption
made in the previous subsection concerning the density of primes of special form
P = 2Q + 1, where Q is a prime.

Based on the foregoing intractability assumption, the following family of
permutations is one-way. The indices in the family are pairs (P, g), where P

7 Again, checking primality is done by using the deterministic algorithm guaranteed
in Theorem 4.1. Indeed, this allows to obtain a 1-1 function (rather than an almost
1-1 function, as in earlier versions).
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is a prime and g is a primitive element modulo P . The index is chosen by
first generating a random prime P with known factorization of φ(P ) (see de-
tails below), and next using this factorization to test candidates for primitiv-
ity. For each index, (P, g), we define a permutation over Z∗

P as before (i.e.,

fP,g(x) def= gx mod P ). Again, we shall apply Proposition 3.2 to the current
family.

We have postponed the discussion of how to randomly generate primes P with
known factorization of φ(P ). Here is where we use Theorem 4.2, which asserts
the existence of an adequate algorithm and furthermore one that uses a linear
number of coin tosses. This yields an index-selection algorithm that selects pairs
(P, g) using O(|(P, g)|) random bits, which is instrumental to our claim that the
resulting 1-1 one-way function preserves the security of the family. The fact that
the coins used by this index-selection algorithm provide additional information
on P is “covered” by the assumption formulated in Definition 4.3. Thus, we get:

Corollary 4.3 (a length-preserving 1-1 one-way function based on general
DLP): Suppose that DLP is intractable with security s(n), even when the factor-
ization of the order of the group is given (as in Definition 4.3). Then, there exists
a length-preserving 1-1 one-way function with security s′(O(n)) def= s(n)/poly(n).

Definition 4.3 (DLP Assumption): We say that the DLP is intractable with
security s(·) if, for every randomized mapping Π such that |Π(z)| = O(|z|),
any algorithm for the following inverting task uses work greater than s(·). The
inverting task consists of finding x such that y = gx mod P , when given Π(P )
and a pair (g, y), where P is uniformly selected among all n-bit primes, g is
uniformly selected among the primitive elements modulo P , and y is uniformly
selected among the elements of the multiplicative group modulo P .

The randomized mapping Π captures possible trapdoor information that may as-
sist in inverting fP,g, and the assumption asserts that the inverting task remains
hard also in the presence of such information.8 In particular, the randomized
mapping Π may yield the coins used by the factored-number generating algo-
rithm of Theorem 4.2. Thus, inverting fP,g is hard also in the augmented sense
of Definition 3.1.

5 Conclusions and Open Problems

We have presented a method for constructing (strongly) one-way permutations.
The method consists of three steps.

Step (1): Using well-known intractability assumptions to construct families
of one-way permutations satisfying the additional properties specified in
Definition 3.1.

8 Indeed, the fact that Π is applied only to P and that |Π(P )| = O(|P |) makes the
assumption potentially weaker. On the other hand, the fact that Π(P ) may contain
P allows us to omit P from the list of inputs to the inverting task.
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Step (2): Using such a family to construct a weak one-way function.
Step (3): Transforming the resulting function into a strongly one-way function.

We consider the identification of the conditions in Definition 3.1 and the con-
struction of families of one-way permutations satisfying these conditions to be
the most important contributions of the current paper. Thus, most of the paper
is dedicated to the implementation of Step (1), whereas Step (2) is obtained by
Construction 3.2, and Step (3) is obtained by referring to [7].

Regarding Step (3), we remark that applying the general (“weak to strong”)
transformation of [7] seems an over-kill, since in our case the weakly one-way
function f has a special structure (e.g., it is hard to invert almost on all points
on which it is not the identity transformation). However, in our attempts to
avoid using [7], we were not able to avoid using random walks on expander
graphs (for the repeated attempts to generate a valid index and/or a sample in
the corresponding domain). Since expander graphs are the only non-elementary
component of [7], we see no point in presenting these alternatives here. Certainly,
it will be better to avoid the use of expander graphs and perform Step (3) in a
more efficient manner.

Another obvious open problem is to construct length-preserving 1-1 one-way
functions based on the conjectured intractability of factoring.9 To achieve this
goal using our method one will need to construct a family of one-way permuta-
tions satisfying the additional properties specified in Definition 3.1. (The stan-
dard construction of a family of one-way permutations based on factoring [16]
does not satisfy the augmented one-wayness condition.)

Acknowledgments. We would like to thank Eric Bach and Hugo Krawczyk for
helpful discussions and comments.
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On the Circuit Complexity of Perfect Hashing

Oded Goldreich and Avi Wigderson

Abstract. We consider the size of circuits that perfectly hash an arbi-
trary subset S⊂{0, 1}n of cardinality 2k into {0, 1}m. We observe that,
in general, the size of such circuits is exponential in 2k−m, and provide
a matching upper bound.

Keywords: Perfect Hashing, Circuit Complexity.

An early version of this work appeared as TR96-041 of ECCC. We later found out
that, in contrast to our previous impression, the lower bound has been known. In
fact, our lower bound argument is analogous to the one presented in [6, pp. 128-
129]. The current revision is quite minimal.

Summary

We consider the problem of perfectly hashing an arbitrary subset S⊂{0, 1}n of
cardinality 2k into {0, 1}m, where k ≤ m. That is, given an arbitrary subset
S ⊂ {0, 1}n of cardinality 2k, we seek a function h : {0, 1}n →{0, 1}m so that
h(x) �= h(y) for every two distinct x �= y in S. Clearly, such a function always
exists, the question is what is its complexity; that is, what is the size of the
smallest circuit computing h. Two obvious upper bounds follow.

1. For every S⊂{0, 1}n, there is a circuit of size |S| ·n that perfectly hashes S
into {0, 1}�log2 |S|�.
(The circuit is merely a look-up table for S.)

2. For every S⊂{0, 1}n, there is a circuit of size poly(n) that perfectly hashes
S into {0, 1}2�log2 |S|�.
(The circuit implements a suitable function from a family of Universal2
Hashing [2]. Such a family always contains perfect hashing functions for
S [4].)

We show that these upper bounds are the best possible. That is:

Theorem 1 (lower bound): For every n, k and m ≤ n− 1, there exists a subset
S⊂{0, 1}n of cardinality 2k such that perfectly hashing S into {0, 1}m requires
a circuit of size Ω(22k−m/n).

Interestingly, this lower bound is tight for all values of m ∈ [k, 2k] (and not
merely for m ∈ {k, 2k}). That is:
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c© Springer-Verlag Berlin Heidelberg 2011
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Theorem 2 (matching upper bound):1 For every n, m, k where k ≤ m ≤ 2k,
and every subset S ⊂ {0, 1}n of cardinality 2k, there exists a circuit of size
22k−m · poly(n) that perfectly hashes S into {0, 1}m.

1 Proof of Theorem 1

The proof follows by a simple counting argument, combining an upper bound
on the number of circuits of given size with a lower bound on the size of a
family of functions that can perfectly hash all subsets of size 2k. Improved lower
bounds for the latter appears in [3,5,7]. For sake of completeness, we prove a
weaker bound, which is sufficient for our purposes, and present the argument in
probabilistic terms.

Suppose, in contrary to Theorem 1, that for every subset S⊂{0, 1}n of car-
dinality K

def= 2k there exists a circuit of size o(22k−m/(2k −m)) that perfectly
hashes S into {0, 1}k. We will show that each circuit can serve as a perfect hash-
ing for too few K-subsets, and hence there are too few circuits to perfectly hash
all possible K-subsets. The main observation follows:

Lemma 1.1 (the fraction of sets that are perfectly hashed by any function):
For any m ≤ n − 1, let C : {0, 1}n → {0, 1}m be an arbitrary circuit, and let
S ⊂ {0, 1}n be a uniformly selected subset of cardinality K = 2k. Then, the
probability that C perfectly hashes S into {0, 1}m is at most 2−Ω(22k−m).

Proof: Let N
def= 2n and M

def= 2m. Clearly, we may assume that k ≤ m (as
otherwise the probability is zero). Let c1, ..., cM denote the sizes of the preimages
of the various m-bit strings under C (i.e., ci = |C−1(si)|, where si denotes the
ith (m-bit long) string by some order). Then, the probability we are interested
in is ∑

I⊆[M ]:|I|=K

∏
i∈I

(
ci

1

)(
N
K

) ≤
(
M
K

)
· (N/M)K(

N
K

)
=

K−1∏
i=0

1− (i/M)
1− (i/N)

= exp

{
−

K−1∑
i=1

ln
(

1 +
(i/M)− (i/N)

1− (i/M)

)}

< exp

{
−

K−1∑
i=1

((i/M)− (i/N))

}

= exp
{
−K · (K − 1)

2
·
(

1
M

− 1
N

)}
which for M ≤ N/2 yields 2−Ω(K2/M). The lemma follows.

1 We stress that the circuits guaranteed here cannot, in general, be simply described;
that is, this result is inherently nonuniform.
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Deriving Theorem 1. Adding up the contribution of all possible circuits, while
applying Lemma 1.1 to each of them, we conclude that if too few circuits are
considered then not all K-subsets can be perfectly hashed. Specifically, there are
sO(s) possible circuits of size s, and so we need sO(s) ·2−Ω(22k−m) ≥ 1. Theorem 1
follows.

2 Proof of Theorem 2

We consider two cases. In the case that m ≤ k + log2 n, the theorem follows by
constructing an obvious circuit that maps each string in S to its rank (in S)
represented as an m-bit long string. This circuit has size |S| · n ≤ 22k−m · n2

(since k ≤ 2k −m + log2 n), and the theorem follows.
The less obvious case is when m ≥ k + log2 n. Here we use a family of n-

wise independent functions mapping {0, 1}n onto {0, 1}�, where 	
def= m− log2 n.

Function in such a family can be evaluated by poly(n)-size circuits (cf. [1]). We
consider the collisions caused by a uniformly chosen function from this family
applied to S. Specifically,

Lemma 2.1 (hashing by n-wise independence functions): Let H be a family of
functions {h : {0, 1}n→{0, 1}�} such that Probh∈H [∧n

i=1h(αi)= βi] = 2−n�, for
every n distinct α1, ..., αn ∈ {0, 1}n and for every β1, ..., βn ∈ {0, 1}�. Then, for
every S ⊂{0, 1}n of cardinality 2k ≤ 2�, there exists h ∈ H such that

1. No value has more than n preimages under h; that is, |h−1(β) ∩ S| ≤ n, for
every β ∈ {0, 1}�.

2. At most 22k−� values have more than one preimage under h; that is, |{β ∈
{0, 1}� : |h−1(β) ∩ S| > 1}| ≤ 22k−�.

Proof: Fixing an arbitrary 2k-subset, S, and uniformly selecting h ∈ H , we
consider the probability that the two items (above) hold. Firstly, we consider
the probability that h maps n elements of S to the same image. Using the n-
wise independence of the family H , the probability of this event is bounded
by (

2k

n

)
· 2−�n <

2kn

n!
· 2−kn <

1
2

where the first inequality uses 	 = m − log2 n ≥ k. Thus, the probability that
Item (1) does not hold is less than 1/2. Next, we consider the probability that
Item (2) does not hold. We start by using the pairwise independence of H to
note that the collision probability is 2−� (i.e., Probh∈H [h(α1)=h(α2)] = 2−�, for
any α1 �= α2 ∈ {0, 1}n). It follows that the expected number of h-images that
have more than a single preimage in S is bounded above by the expected number
of collisions; that is, by

(
2k

2

)
· 2−� < 1

2 · 22k−�. Applying Markov’s Inequality, we
conclude that the probability that Item (2) does not hold is less than 1/2. The
lemma follows.
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Deriving Theorem 2. Fixing an arbitrary 2k-subset, S ⊂ {0, 1}n, and using
Lemma 2.1, we present a circuit that perfectly hashes S into {0, 1}m (where
m ≥ k + log2 n). Our construction uses the double hashing paradigm (see, e.g.,
[4]). Let h :{0, 1}n→{0, 1}m−log2 n be as guaranteed by the lemma (w.r.t the set
S). We define a perfect hashing function f :{0, 1}n→{0, 1}m for S by letting

f(α) def= h(α) ◦ rankS∩h−1(h(α))(α)

where rankR(α) is an log2 n-bit long string representing the rank of α among the
elements of R. A circuit computing the function f is constructed as follows. For
each β having more than a unique h-preimage in S, we maintain a table ranking
these preimages in S. By Item (1) of Lemma 2.1 such a table need only contain
n entries, whereas by Item (2) we only need 22k−� such tables. (If a string, α,
does not appear in any of the tables, then f(α) = h(α) ◦ 0log2 n.) The size of the
circuit is poly(n) + 22k−� ·n2 = poly(n) + 22k−m ·n3, and so Theorem 2 follows.
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Collision-Free Hashing from Lattice Problems

Oded Goldreich, Shafi Goldwasser, and Shai Halevi

Abstract. In 1995, Ajtai described a construction of one-way functions
whose security is equivalent to the difficulty of some well known approxi-
mation problems in lattices. We show that essentially the same construc-
tion can also be used to obtain collision-free hashing. This paper contains
a self-contained proof sketch of Ajtai’s result.

Keywords: Integer Lattices, One-EWay Functions, Worst-Case to
Average-Case Reductions, Collision-Resistent Hashing.

An early version of this work appeared as TR96-042 of ECCC. The current
revision is intentionally minimal.

1 Introduction

In 1995, Ajtai described a problem that is hard on the average if some well-known
lattice problems are hard to approximate in the worst case, and demonstrated
how this problem can be used to construct one-way functions [1]. We show
that Ajtai’s method can also be used to construct families of collision-free hash
functions. Furthermore, a slight modification of this construction yields families
of functions which are both universal and collision-free.

1.1 The Construction

The construction is very simple. For security parameter n, we pick a random
n×m matrix M with entries from Zq, where m and q are chosen so that n log q <
m < q

2n4 and q = O(nc) for some constant c > 0 (e.g., m = n2, q = n7).
See Section 3 for a discussion of the choice of parameters. The hash function
hM : {0, 1}m → Zn

q is then defined, for s = s1s2 · · · sm ∈ {0, 1}m, as

hM (s) = Ms mod q =
∑

i

siMi mod q, (1)

where Mi is the ith column of M .
Notice that hM ’s input is m-bit long, whereas its output is n log q bits long.

Since we chose the parameters such that m > n log q, there are collisions in hM .
As we will argue below, however, it is infeasible to find any of these collisions
unless some well known lattice problems have good approximation in the worst
case. It follows that, although it is easy to find solutions for the equations Ms ≡ 0
(mod q), it seems hard to find binary solutions (i.e., a vector s ∈ {0, 1}m in the
solution space).

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 30–39, 2011.
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Remark. Using our notation, the candidate one-way function introduced by Ajtai
is f(M, s) def= (M, hM (s)). We note that this function is regular (cf., [3]); that
is, the number of preimage of any image is about the same. (Furthermore, for
most M ’s the number of pre-images under hM of almost all images is about the
same.) To the best of our knowledge, it is easier (and more efficient) to construct
a pseudo-random generator based on a regular one-way function than based on
an arbitrary one-way function (cf., [3] and [4]).

1.2 A Modification

A family of hash functions is called universal if a function uniformly selected in
the family maps every two images uniformly on its range in a pairwise indepedent
manner [2]. To obtain a family of functions that is both universal and collision-
free, we slightly modify the foregoing construction. First we set q to be a prime
of the desired size. Then, in addition to picking a random matrix M ∈ Zn×m

q ,
we also pick a random vector r ∈ Zn

q . The function hM,r : {0, 1}m → Zn
q is then

defined, for s = s1 · · · sm ∈ {0, 1}m, as

hM (s) = Ms + r mod q = r +
∑

i

siMi mod q. (2)

The modified construction resembles the standard construction of universal hash
functions [2], with calculations done over Zq instead of over Z2.

2 Formal Setting

In this section we give a brief description of some well known lattice problems,
outline Ajtai’s reduction, and our version of it.

2.1 Lattices

Definition 1. Given a set of n linearly independent vectors in Rn, denoted V =
〈v1, · · · , vn〉, we define the lattice spanned by V as the set of all possible linear
combinations of the vi’s with integral coefficients; that is,

L(V ) def=

{∑
i

aivi : ai ∈ Z for all i

}
.

(3)

We call V the basis of the lattice L(V ). We say that a set of vectors, L ⊂ Rn, is
a lattice if there is a basis V such that L = L(V ).

It is convenient to view a lattice L in Rn as a “tiling” of the space Rn using small
parallelepipeds, with the lattice points being the vertices of these parallelepipeds.
The parallelepipeds themselves are spanned by some basis of L. We call the
parallelepiped that are spanned by the “shortest basis of L” (the one whose
vectors have the shortest Euclidean norm) the basic cells of the lattice L. See
Figure 1 for an illustration of these terms in a simple lattice in R

2.
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R 2A lattice in

Tiling using the "basic-cells" Tiling using some other basis

Fig. 1. Tiling of a simple lattice in R
2 with two different bases

Computational Problems Regarding Lattices. Finding “short vectors” (i.e., vec-
tors with small Euclidean norm) in lattices is considered a hard problem. There
are no known efficient algorithms to find, given an arbitrary basis of a lattice,
either the shortest non-zero vector in the lattice, or another basis for the same
lattice whose longest vector is as short as possible. No efficient algorithms are
known for approximation versions of these problems as well. The approximation
versions being considered here are the following:

(W1) Given an arbitrary basis B of a lattice L in Rn, approximate (up to a
polynomial factor in n) the length of the shortest vector in L.

(W2) Given an arbitrary basis B of a lattice L in Rn, find another basis of L
whose length is at most polynomially (in n) larger than that of the smallest
basis of L (where the length of a basis is the length of its longest vector).

We choose ‘W’ for the foregoing notation to indicate that we will be interested
in the worst-case complexity of these problems. The best known algorithms for
these problems are the L3 algorithm and Schnorr algorithm. The L3 algorithm,
due to Lenstra, Lenstra and Lovász [5] approximates these problems to within
a ratio of 2n/2 in the worst case, and Schnorr’s algorithm [6] improves this
to (1 + ε)n for any fixed ε > 0. Another problem, which can be shown to be
equivalent to the above approximation problems (cf. [1]), is the following:

(W3) Given an arbitrary basis B of a lattice L, find a set of n linearly inde-
pendent lattice vectors, whose length is at most polynomially (in n) larger
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than the length of the smallest set of n linearly independent lattice vectors.
(Again, the length of a set of vectors is the length of its longest vector.)

A few remarks about (W3) are in order:

1. Note that not every linearly independent set of n lattice points is a basis for
that lattice. For example, if V = {v1, v2} span some lattice in R2, then the
set {2v1, v2} is a linearly independent set of 2 vectors that does not span
L(V ), since we cannot represent v1 as an integral linear combination of 2v1

and v2.
2. In the sequel we reduce the security of our construction to the difficulty of

solving Problem (W3). It will be convenient to use the following notation:
For a given polynomial Q(·), denote by (W3)Q the problem of approximating
the smallest independent set in an n-dimensional lattice up to a factor of
Q(n).

2.2 Ajtai’s Reduction

In his paper Ajtai described the following problem:

Problem (A1): For parameters n, m, q ∈ N such that n log q < m ≤ q
2n4 and

q = O(nc), for some constant c > 0.

Input: A matrix M ∈ Zn×m
q .

Output: A vector x ∈ Zm
q \ {0m} such that Mx ≡ 0 (mod q) and ‖x‖ < n

(where ‖x‖ denotes the Euclidean norm of x).

Here, we used ‘A’ (in the notation) to indicate that we will be interested in the
average-case complexity of this problem. Ajtai proved the following theorem,
reducing the worst-case complexity of (W3) to the average-case complexity of
(A1).

Ajtai’s Theorem [1]: Suppose that it is possible to solve a uniformly se-
lected instance of Problem (A1) in expected T (n, m, q)-time, where the expec-
tation is taken over the choice of the instance as well as the coin-tosses of
the solving algorithm. Then, it is possible to solve Problem (W3) in expected
poly(|I|) · T (n, poly(n), poly(n)) time on every n-dimensional instance I, where
the expectation is taken over the coin-tosses of the solving algorithm.

Remark. Ajtai [1] has noted that the theorem remain valid also when Prob-
lem (A1) is relaxed so that the desired output is allowed to have Euclidean
norm of up to poly(n) (i.e., one requires ‖x‖ ≤ poly(n) rather than ‖x‖ < n).

2.3 Our Version

We observe that one can use essentially the same proof to show that the following
problem is also hard on the average.
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Problem (A2): For parameters n, m, q ∈ N as in (A1).

Input: A matrix M ∈ Zn×m
q .

Output: A vector x ∈ {−1, 0, 1}m \ {0m} such that Mx ≡ 0 (mod q).

Theorem 1: Suppose that it is possible to solve a uniformly selected instance of
Problem (A2) in expected T (n, m, q)-time, where the expectation is taken over the
choice of the instance as well as the coin-tosses of the solving algorithm. Then,
it is possible to solve Problem (W3) in expected poly(|I|) ·T (n, poly(n), poly(n))
time on every n-dimensional instance I, where the expectation is taken over the
coin-tosses of the solving algorithm.

Proof: By the foregoing Remark, Ajtai’s Theorem holds also when modify-
ing Problem (A1) such that the output is (only) required to have Euclidean
norm of up to m. Once so modified, Problem (A1) becomes more relaxed than
Problem (A2) and so the current theorem follows.

For the sake of self-containment we sketch the main ideas of the proof of Ajtai’s
Theorem (equivalently, of Theorem 1) in Section 4. The reader is referred to [1]
for further details.

3 Constructing Collision-Free Hash Functions

The security of our proposed collision-free hash functions follows directly from
Theorem 1. Below, we spell out the argument and discuss the parameters.

3.1 The Functions and Their Security

Recall our construction of a family of collision-free hash functions:

Picking a hash-function
To pick a hash-function with security-parameters n, m, q (where n log q <
m ≤ q

2n4 and q = O(nc)), we pick a random matrix M ∈ Zn×m
q .

Evaluating the hash function
Given a matrix M ∈ Zn×m

q and a string s ∈ {0, 1}m, compute

hM (s) = Ms mod q =
∑

i

siMi mod q.

The collision-free property is easy to establish assuming that Problem (A2) is
hard on the average. That is:

Theorem 2: Suppose that given a uniformly chosen matrix, M ∈ Z
n×m
q , it

is possible to find in (expected) T (n, m, q)-time two vectors x �= y ∈ {0, 1}m

such that Mx ≡ My (mod q). Then, it is possible to solve a uniformly selected
instance of Problem (A2) in (expected) T (n, m, q)-time.

Proof: If we can find two binary strings s1 �= s2 ∈ {0, 1}m such that
Ms1 ≡ Ms2 (mod q), then we have M(s1 − s2) ≡ 0 (mod q). Since s1, s2 ∈
{0, 1}m, we have x

def= (s1 − s2) ∈ {−1, 0, 1}m, which constitutes a solution to
Problem (A2) for the instance M .
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3.2 The Parameters

The proof of Theorem 1 imposes restrictions on the relationship between the
parameters n, m and q. First of all, we should think of n as the security parameter
of the system, since we derive the difficulty of solving Problem (A2) by assuming
the difficulty of approximating some problems over n-dimensional lattices.

The condition m > n log q is necessary for two reasons. The first is simply
because we want the output of the hash function to be shorter than its input. The
second is that when m < n log q, a random instance of problem (A2) typically
does not have a solution at all, and the reduction procedure in the proof of
Theorem 1 falls apart.

The conditions q = O(nc) and m < q/2n4 also come from the proof of
Theorem 1. Their implications for the security of the system are as follows:

– The larger q is, the stronger the assumption that needs to be made regard-
ing the complexity of problem (W3). Namely, the security proof shows that
(A2) with parameters n, m, q is hard to solve on the average, if the prob-
lem (W3)(qn6) is hard in the worst case, where (W3)(qn6) is the problem of
approximating the shortest independent set of a lattice up to a factor of qn6.
Thus, for example, if we worry (for a given n) that an approximation ratio
of n15 is feasible, then we better choose q < n9. Also, since we know that
approximation within exponential factor is possible, we must always choose
q to be sub-exponential in n.

– By the above, the ratio R
def= q/n4

m must be strictly bigger than 1 (above, for
simplicy, we stated R > 2). The larger R is, the better the reduction becomes:
In the reduction from (W3) to (A2) we need to solve several random (A2)
problems to obtain a solution to one (W3) problem. The number of instances
of (A2) problem which need to be solved depends on R. Specifically, this
number behaves roughly like n2/ logR. This means that when q/n4 = 2m
we need to solve about n2 instances of (A2) per any instance of (W3), which
yields a ratio of O(n2) between the time it takes to break the hashing scheme
and the time it takes to solve a worst-case (W3) problem. On the other hand,
when R approaches 1 the number of iterations (in the reduction) grows
rapidly (and tends to infinity).

Notice also that the inequalities n log q < m < q
n4 implies a lower bound on q,

namely q
log q > n5, which means that q = Ω(n5 log n).

4 Self-contained Sketch of the Proof of Theorem 1

At the heart of the proof is the following procedure for solving (W3): It takes as
inputs a basis B = 〈b1, · · · , bn〉 for a lattice and a set of n linearly independent
lattice vectors V = 〈v1, · · · , vn〉, with |v1| ≤ |v2| ≤ · · · ≤ |vn|. The procedure
produces another lattice vector w, such that |w| ≤ |vn|/2 and w is linearly
independent of v1, · · · , vn−1. We can then replace the vector vn with w and
repeat this process until we get a “very short independent set”. When invoking



36 O. Goldreich, S. Goldwasser, and S. Halevi

this procedure, we denote by S the length of the vector vn (which is the longest
vector in V ).

In the sequel we describe this procedure and show that as long as S is more
than nc times the size of the basic lattice-cell (for some constant c > 0), the
procedure succeeds with high probability. Therefore we can repeat the process
until the procedure fails, and then conclude that (with high probability) the
length of the longest vector in V is not more that nc times the size of the basic
lattice-cell. For the rest of this section we will assume that S is larger than nc

times the size of the basic lattice-cell.
The procedure consists of five steps: We first construct an “almost cubic”

parallelepiped of lattice vectors, which we call a pseudo-cube. Next, we divide
this pseudo-cube into qn small parallelepipeds (not necessarily of lattice vectors),
which we call sub-pseudo-cubes. We then pick some random lattice points in the
pseudo-cube (see Step 3) and consider the location of each point with respect
to the partition of the pseudo-cube into sub-pseudo-cubes (see Step 4). Each
such location is represented as a vector in Zn

q and the collection of these vectors
forms an instance of Problem (A2). A solution to this instance yields a lattice
point that is pretty close to a “corner” of the pseudo-cube. Thus, our final step
consists of using the solution to this (A2) instance to compute the “short vector”
w. Below we describe each of these steps in more details.

1. Constructing a “pseudo-cube”. The procedure first constructs a paral-
lelepiped of lattice vectors that is “almost a cube”. This can be done by taking
a sufficiently large cube (say, a cube with side length of n3S), expressing each of
the cubes’ basis vectors as a linear combination of the vi’s, and then rounding the
coefficients in this combination to the nearest integers. Denote the vectors thus
obtained by f1, · · · , fn and the parallelepiped that is spanned by them by C. The
fi’s are all lattice vectors, and their distance from the basis vectors of the “real
cube” is very small compared to the size of the cube.1 Hence the parallelepiped
C is very “cube-like”. We call this parallelepiped a pseudo-cube.

2. Dividing the pseudo-cube into “sub-pseudo-cubes”. We then divide
C into qn equal sub-pseudo-cubes, each of which can be represented by a vector
in Zn

q as follows:

for every T =

⎛⎜⎝ t1
...
tn

⎞⎟⎠ ∈ Z
n
q , define CT

def=

{∑
i

αifi :
ti
q
≤ αi <

ti + 1
q

}
.

For each sub-pseudo-cube CT , we call the vector o
T

=
∑

i
ti

q fi the origin of CT

(i.e., o
T

is the vector in CT that is closest to the origin). We note that any vector
in v ∈ CT can be written as v = o

T
+ δ where δ is the location of v inside the

sub-pseudo-cube CT . See Figure 2 for an illustration of that construction (with
n = 2, q = 3).
1 The fi’s can be as far as Sn/2 away from the basis vectors of the real cube, but this

is still much smaller than the size of the cube itself.
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e 2

Lattice vectors
e 1

1 2f , f

e 1 , e2

f

f2

1

The "real cube"

(0, 0)

(0, 1) (1, 1) (2, 1)

(1, 2) (2, 2)(0, 2)

(1, 0) (2, 0)

The pseudo-cube

Fig. 2. The basic construction in the proof of Theorem 1 (for q = 3)

The parameter q was chosen such that each CT is “much smaller” than S.
That is, the side-length of each sub-pseudo-cube CT is Sn3/q ≤ S/2nm. On the
other hand, with this choice, each CT is still much larger than the basic lattice
cell (since S is much bigger than the size of the basic cell). This, together with
the fact that the CT ’s are close to being cubes, implies that each CT contains
approximately the same number of lattice points.

3. Choosing random lattice points in C. We then choose m random lattice
points u1, · · ·um ∈ C. To do that, we use the basis B = {b1, · · · , bn} of the
lattice. To choose each point, we take a linear combination of the basis vectors
bi with large enough integer coefficients (say, in the range [0, 2nc ·max(S, |B|)]
for some constant c). This gives us some lattice point p.

We then “reduce p mod C”. By this we mean that we look at a tiling of
the space Rn with the pseudo-cube C, and we compute the location vector of
p in its surrounding pseudo-cube. Formally, this is done by representing p as a
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linear combination of the fi’s, and taking the fractional part of the coefficients
in this combination. The resulting vector is a lattice point, since it is obtained
by subtracting integer combination of the fi’s from p, whereas the fi’s are lattice
vectors. Also, this vector must lie inside C, since it is a linear combination of the
fi’s with coefficients in [0, 1). It can be shown that if we choose the coefficients
from a large enough range, then the distribution induced over the lattice points
in C is statistically close to the uniform distribution.

4. Constructing an instance of Problem (A2). After we have chosen m lat-
tice points u1, · · · , um, we compute for each ui the vector Ti ∈ Zn

q that represent
the sub-pseudo-cube in which ui falls. That is, for each i we have ui ∈ CTi .

Since, as we said above, each sub-pseudo-cube contains approximately the
same number of points, and since the ui’s are distributed almost uniformly in C,
then the distribution induced on the CTi ’s is close to the uniform distribution,
and so the distribution over the Ti’s is close to the uniform distribution over Zn

q .
We now consider the matrix whose columns are the vectors Ti, that is, M =

(T1|T2| · · · |Tm). By the foregoing argument, it is an “almost uniform” ran-
dom matrix in Zn×m

q , and so, it is an “almost uniform” random instance of
Problem (A2).

5. Computing a “short lattice vector”. We now have a random instance M
of Problem (A2), and so we can use the algorithm whose existence we assume
in Theorem 1 to solve this instance in expected T (n, m, q) time. The solution is
a vector x = {x1, · · · , xm} ∈ {−1, 0, 1}m such that Mx =

∑
i xiTi is congruent

to 0 mod q.
Once we found x, we compute the lattice vector w′ =

∑m
i=1 xiui. Let us

examine the vector w′: Recall that we can represent each ui as the sum of
oi

def= oTi
(the origin vector of CTi) and δi (the location of ui inside CTi). Thus,

w′ =
m∑

i=1

xiui =
m∑

i=1

xioi +
m∑

i=1

xiδi.

A key observation is that since
∑

i xiTi ≡ 0̄ (mod q), “reducing the vector
(
∑

i xioi) mod C” yields the all-zeros vector; that is, (
∑

i xioi) mod C = 0̄. To
see why this is the case, recall that each oi = o

Ti
has the form

∑
j

ti(j)
q fj ,

where ti(j) ∈ {0, ..., q − 1} is the jth component of Ti. Now, the hypothesis∑
i xiti(j) ≡ 0 (mod q) for j = 1, .., n, yields that∑

i

xioTi
=

∑
i

xi

∑
j

ti(j)
q

fj =
∑

j

∑
i xiti(j)

q
fj =

∑
j

cjfj

where all cj ’s are integers. Since “reducing the vector
∑

i xioTi
mod C” means

subtracting from it an integer linear combination of fj ’s, the resulting vector is
0̄. Thus, “reducing w′ mod C” we get

∑m
i=1 xiδi; that is,

w′ mod C =
m∑

i=1

xiδi.
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Since each δi is just the location of some point inside the sub-pseudo-cube CTi ,
the size of each δi is at most n ·S/2mn = S/2m. Moreover as xi ∈ {−1, 0, 1} for
all i we get ∥∥∥∥∥∑

i

xiδi

∥∥∥∥∥ ≤∑
i

|xi| · ‖δi‖ ≤ m · S

2m
=

S

2 .

This means that the lattice vector w′ mod C is close up to S
2 to one of the

“corners” of C. Thus, all we need to do is to find the difference vector between
the lattice vector w′ mod C and that corner (which is also a lattice vector). Doing
that is very similar to reducing w′ mod C: We express w′ as a linear combination
of the fi’s, but instead of taking the fractional part of the coefficients, we take
the difference between these coefficients and the closest integers. This gives us
the “promised vector” w, a lattice vector whose length is at most S/2.

The only thing left to verify is that with high probability, w can replace the
largest vector in V (i.e., it is linearly independent of the other vectors in V ). To
see that, notice that the vector x does not depend on the exact choice of the
ui’s, but only on the choice of their sub-pseudo-cubes CTi ’s. Thus, we can think
of the process of choosing the ui’s as first choosing the CTi ’s, next computing
the xi’s and only then choosing the δi’s.

Assume (w.l.o.g.) that we have x1 �= 0. Let us now fix all the δi’s except δ1

and then pick δ1 so as to get a random lattice point in CT1 . Thus, the probability
that w falls in some fixed subspace of Rn (such as the one spanned by the n− 1
smallest vectors in V ), equals the probability that a random point in CT1 falls
in such subspace. Since CT1 is a pseudo-cube that is much larger than the basic
cell of L, this probability is very small.

Acknowledgments. We thank Dan Boneh and Jin Yi Cai for drawing our
attention to an error in a previous version of this note.
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Another Proof That BPP ⊆ PH (and More)

Oded Goldreich and David Zuckerman

Abstract. We provide another proof of the Sipser–Lautemann Theorem
by which BPP ⊆ MA (⊆ PH). The current proof is based on strong
results regarding the amplification of BPP, due to Zuckerman (1996).
Given these results, the current proof is even simpler than previous ones.
Furthermore, extending the proof leads to two results regarding MA:
MA ⊆ ZPPNP (which seems to be new), and that two-sided error MA
equals MA. Finally, we survey the known facts regarding the fragment
of the polynomial-time hierarchy that contains MA.

Keywords: BPP, The Polynomial-Time Hierarchy, Interactive Proof
Systems (AM and MA), Randomness–Efficient Error Reduction (Am-
plification).

An early version of this work appeared as TR97-045 of ECCC. The current
revision is quite minimal.

1 Introduction

Non-trivial results, showing containment of fundamental complexity classes in
one another, are quite rare. One of the first such results is Sipser’s Theorem [14]
by which BPP is contained in the Polynomial-Time Hierarchy. A simpler proof,
placing BPP even lower in this hierarchy, was presented by Lautemann [11]. Al-
though not stated in these (subsequently introduced) terms, Lautemann’s proof
actually establishes the following:

Theorem 1 (The Sipser–Lautemann Theorem): BPP ⊆MA.

See definitions in next section.

The contents of this note, In this note, we present an alternative proof of
the Sipser–Lautemann Theorem. Our proof relies on powerful results regard-
ing randomness–efficient error reduction (a.k.a amplification) for BPP. Given
these powerful results, our proof is almost a triviality.

Using similiar arguments, we show that MA ⊆ ZPPNP (re-establishing a
theorem of Zachos and Heller [16] by which BPP ⊆ ZPPNP). It follows that
NPBPP ⊆ ZPPNP . To the best of our knowledge, these results were not known
before.

In summary, the purpose of this note is three-fold: Firstly to demonstrate
the power of the currently known results regarding randomness–efficient error
reduction. We believe that these results have not been fully assimilated into

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 40–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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complexity theory and are yet to be exploited by it. Secondly we wish to focus
attention on the fragment of the polynomial-time hierarchy that contains MA.
It seems that this fragment gives rise to some challenges which may be within
our current reach. Finally, we take the oppertunity to prove the aforementioned
new result.

Organization. The core of this work (i.e., the alternative proof of the Sipser–
Lautemann Theorem) is presented in Sections 2 and 3.1. This alternative proof
is further discussed in Section 3.2, and applied in the context of two-sided MA
in Section 3.3. The same proof strategy is then applied to show that MA is
contained in ZPPNP (see Section 4). Finally, we conclude with a brief survey
of the complexity classes around MA (see Section 5).

2 Background

(For further background, see Section 5.)

2.1 BPP and Randomness-Efficient Error Reduction

Definition 1 (the class BPP): For any set S, we denote by χS the characteristic
function of the set; that is, χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. A set
S is in BPP if there exists a probabilistic polynomial-time machine M such that
for every x ∈ {0, 1}∗

Prob[M(x) �= χS(x)] ≤ 1
3

where the probability is taken uniformly over the internal coin tosses of M .

The error probability in the foregoing procedure can be reduced by repetitions
(a process hereafter referred to as amplification). The obvious way of doing
so transforms a machine (as above) that, on input x, uses p(|x|) coins into
a machine having error probability at most 2−t(|x|) that uses O(t(|x|) · p(|x|))
coins (for any polynomial t). More efficient amplification procedures, utilizing
Expander Random Walks, yield the same error bound while using only p(|x|) +
(4 + o(1)) · t(|x|) coins (see survey [6]). In particular, for any constant c > 4,
using a sufficiently large polynomial t, we get a procedure that uses c·t(|x|) coins
and has error probability at most 2−t(|x|). An alternative construction due to
Zuckerman [17] provides, for any constant c > 1 and sufficiently large polynomial
t, a procedure that uses c · t(|x|) coins and has error probability at most 2−t(|x|).
What is remarkable in the last procedure is that the number of coins used is
essentially the logarithm of the error bound. Put in other words, the number of
“bad” coin sequences can be made any (constant) root of the total number of
coin sequences. In particular,

Theorem 2 (Zuckerman’s randomness-efficient amplification of BPP [17]): For
any set S in BPP, there exists a polynomial-time recognizable binary relation R
and a polynomial p such that

|{r ∈ {0, 1}p(|x|) : R(x, r) �= χS(x)}| < 2p(|x|)/3.
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2.2 The Complexity Class MA

Definition 2 (the class MA): A set S is in MA if there exists a polynomial-
time recognizable 3-ary relation V and polynomials p, q such that

– If x ∈ S, then there exists w ∈ {0, 1}q(|x|) such that for every r ∈ {0, 1}p(|x|)

it holds that V (x, w, r) = 1.
– If x �∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x, w, r) = 1] ≤ 1
2

where the probability is taken uniformly over all r ∈ {0, 1}p(|x|).

The class MA, introduced by Babai [1], consists of sets having a Merlin–Arthur
proof system: The prover (Merlin) sends a certificate (denoted w above) to the
verifier (Arthur) who assesses it probabilistically (by tossing coins r and ap-
plying the predicate V ). Merlin–Arthur proof systems are a degenerate type of
interactive proof systems (introduced by Goldwasser, Micali and Rackoff [8] and
Babai [1]). Actually, in a Merlin–Arthur proof system there is no real interaction.
Instead, it is instructive to view MA as the randomized version of NP : Here
the “certificates” (for membership) can be verified via a randomized procedure
and errors may occur (yet with bounded probability).

3 A Proof of the Sipser–Lautemann Theorem

3.1 The Proof Itself

Using Zuckerman’s efficient amplification of BPP, we present the following MA
proof system. Specifically, we will refer to the relation R and the polynomial p
guaranteed in Theorem 2.

The protocol. On input x, both parties compute m = p(|x|), and proceed as
follows.

1. Merlin tries to select r′ ∈ {0, 1}m/2 such that R(x, r′r′′) = 1 for all r′′ ∈
{0, 1}m/2. Merlin sends r′ to Arthur.

2. Upon receiving r′, Arthur selects r′′ ∈ {0, 1}m/2 uniformly and accepts if
and only if R(x, r′r′′) = 1.

Analysis of the foregoing protocol. If x ∈ S, then there are at most 2m/3 possible
r’s for which R(x, r) = 0. Thus there are at most 2m/3 prefixes r′ ∈ {0, 1}m/2

for which some r′′ exists so that R(x, r′r′′) = 0. Merlin may just select any of
the other 2m/2 − 2m/3 prefixes and make Arthur always accept. On the other
hand, if x �∈ S, then there are at most 2m/3 possible r’s for which R(x, r) = 1.
Thus, for each r′ ∈ {0, 1}m/2, it holds that

Probr′′∈{0,1}m/2 [R(x, r′r′′) = 1] ≤ 2m/3

2m/2
� 1

2 .
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3.2 Discussion

Let us review our proof strategy. Starting with Theorem 2, we partitioned the
space of all (2m) possible coin-tosses outcomes into (2m/2) subsets of equal size.
We then used the following two facts:

1. The number of bad outcomes is smaller than the number of subsets (and so
there exists a subset with no bad outcomes). This was used to analyze the
case x ∈ S.

2. The number of bad outcomes is much smaller than the size of each subset
(and so each subset contains a majority of good outcomes). This was used
to analyze the case x �∈ S.

Thus, what we have used is the fact that number of bad outcomes is much
smaller than the square root of the total number of outcomes. We stress that
the fact that any BPP-machine can be transformed into a machine for which
the foregoing holds (i.e., Theorem 2) is highly non-trivial. We believe that this
fact (or known generalizations of it) may find further applications in complexity
theory.

Comparison to Lautemann’s proof. Recall that Lautemann’s proof has the prover
send the verifier t = m/ log2 m strings, s1, ..., st, and the verifier tosses coins
r ∈ {0, 1}m and accepts iff R(x, r ⊕ si) = 1 holds for some i. The existence
of an appropriate sequence of strings is proven by an elementary probabilistic
argument. Actually, s1 may be any fixed string (e.g., 0m) and so needs not be
sent (by the prover). We observe that if we start with R as guaranteed by Theo-
rem 2, then t = 2 suffices. This gets us very close to the proof above. In fact, the
probabilistic argument of Lautemann reduces to the trivial counting argument
above. Thus, using Theorem 2 allows also a simplification of Lautemann’s argu-
ment, although the proof presented earlier is believed to be simpler: Technically
speaking, we have the prover send only m/2 bits (rather than m required in
the simplified Lautemann’s argument), the verifier tosses only m/2 coins (again,
rather than m), and the predicate R is evaluated only once (rather than twice).

3.3 Two-Sided Error Equals One-Sided Error for MA

Both Lautemann’s proof and our proof can be extended to show that a two-sided
error version of MA equals the one-sided error defined above. (This provides an
alternative proof to the one presented in [15].) We mention that interactive proof
systems with zero error collapse to NP , whereas for all (higher than MA) levels
of the interactive proof hierarcy, the two-sided error version equals the one-sided
one [5].

Definition 3 (two-sided version of MA): A set S is in MA2 if there exists a
polynomial-time recognizable 3-ary relation V and polynomials p, q such that

– If x ∈ S, then there exists w ∈ {0, 1}q(|x|) such that

Probr[V (x, w, r) = 1] ≥ 2
3 .
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– If x �∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x, w, r) = 0] ≥ 2
3 .

In both cases, the probability is taken uniformly over all r ∈ {0, 1}p(|x|).

Theorem 3 [15, Thm 2(i)]: MA = MA2.

Proof: Clearly, MA ⊆ MA2, and so we focus on showing that MA2 ⊆ MA.
Let S be an arbitrary set in MA2. For every x ∈ S, we consider w as guar-
anteed by the first condition of Definition 3, whereas for x �∈ S we consider
any w ∈ {0, 1}q(|x|). Both Lautemann’s proof and our proof extend to promise
problems in BPP, and in particular to the following BPP promise problem,
Π = (Πyes, Πno), where

Πyes
def=

{
(x, w) : Probr[V (x, w, r) = 1] ≥ 2

3

}
Πno

def= {(x, w) : x �∈ S}

⊆
{

(x, w) : Probr[V (x, w, r) = 0] ≥ 2
3

}
In particular, the amplification technique of Zuckerman applies also to this case
and so we obtain a predicate V ′ and a polynomail q′ such that

∀(x, w) ∈ Πyes |{r ∈ {0, 1}q′(|x|) : V ′(x, w, r) = 0}| < 2q′(|x|)/3 (1)

∀(x, w) ∈ Πno |{r ∈ {0, 1}q′(|x|) : V ′(x, w, r) = 1}| < 2q′(|x|)/3 (2)

Thus, we augment the MA-protocol of Section 3.1 as follows. On input x, with
m = q′(|x|), Merlin sends (w, r′), where |r′| = m/2, and Arthur uniformly selects
r′′ ∈ {0, 1}m/2 and accepts if and only if V ′(x, w, r′r′′) = 1. As before, in case
x ∈ S, by sending an adequate (w, r′), Merlin can make Arthur accept for every
choice of r′′; whereas, in case x �∈ S, for any choice of (w, r′), Arthur accepts
with negligible probability. It follows that S ∈MA.

4 MA Is Contained in ZPP with an NP-Oracle

The machines in the following definition may halt with a non-Boolean output
(which may be interpreted as abstaining from a decision regarding membership).

Definition 4 (the class ZPP): A set S is in ZPP if there exists a probabilistic
polynomial-time machine M such that for every x ∈ {0, 1}∗

Prob[M(x) = χS(x)] ≥ 1
2

Prob[M(x) = 1− χS(x)] = 0

where the probability is taken uniformly over the internal coin tosses of M .

Thus, the ZPP machine either gives the correct answer or gives no answer at
all (i.e., a non-Boolean output is interpreted as no output). Clearly ZPP =
RP ∩ coRP (actualy, ZPP is sometimes defined this way).
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4.1 BPP Is Contained in ZPP with an NP-Oracle

We start by providing an alternative proof to a result of Zachos and Heller.

Theorem 4 [16, P. 132, Cor. 3]: BPP ⊆ ZPPNP .

Proof: Using the same amplification and notations as in Section 3.1, we con-
struct a probabilistic polynomial-time oracle machine, M , that on input x
operates as follows (where m = p(|x|)):

1. Selects σ ∈ {0, 1} uniformly (as guess for χS(x));
2. Selects r′ ∈ {0, 1}m/2 uniformly;
3. Queries the oracle on whether (x, σ, r′) is in the following coNP set

{(y, τ, u) : ∀v ∈ {0, 1}|s| , R(y, uv) = τ}. (3)

4. If the oracle answers yes, then the machine outputs σ. Otherwise it halts
with no output.

Recall that by the foregoing amplification, for any x, the following holds:

– For each r′, it holds that

|{r′′ ∈ {0, 1}m/2 : R(x, r′r′′) �= χS(x)}| < 2m/2,

and so the oracle never answers yes on query (x, 1 − χS(x), r′). Thus, the
machine never outputs the wrong answer.

– On the other hand, it holds that

Probr′ [∀r′′ ∈ {0, 1}m/2 , R(x, r′r′′) = χS(x)] >
1
2

and so with probability at least 1/4, over the choices of σ and r′, the oracle
answers yes (and the machine produces a (correct) 0-1 output).

Using straightforward amplification, the theorem follows.

4.2 Extension to MA

Combining ideas from the last two proofs, we obtain.

Theorem 5 (seemingly new): MA ⊆ ZPPNP .

Observing that NPBPP ⊆MA2 (see Fact 6), and using Theorems 3 and 5, we
conclude that NPBPP ⊆ ZPPNP .

Fact 6 (folklore): NPBPP ⊆MA2 .
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Proof: Let S ∈ NPBPP . Then, for every x ∈ S, we instruct Merlin to send a
transcript of an accepting computation of the non-deterministic polynomial-time
oracle-machine, and instruct Arthur to verify the validity of transcript as well
as the correctness of the the oracle answers (by running a probabilistic decision
procedure of negligible two-sided error).

Proof of Theorem 5: Let S ∈ MA and consider the same promise problem
Π = (Πyes, Πno) as in the proof of Theorem 3. Furthermore, consider the set
Π ′

yes ⊆ Πyes that consists of all pairs (x, w) such that for all r ∈ {0, 1}p(|x|)

it holds that V (x, w, r) = 1, and recall that for every x ∈ S there exists w ∈
{0, 1}q(|x|) such that (x, w) ∈ Π ′

yes.
We construct a probabilistic polynomial-time oracle machine, M , that on in-

put x and access to an NP-oracle, first attempts to find w such that (x, w) ∈
Πyes, and next verifies that (x, w) ∈ Πyes indeed holds. Following is a detailed
description of the operation of M (as well as key observations towards its anal-
ysis). On input x, where n = q(|x|) and k = p(|x|), machine M proceeds as
follows.

Step 1: Attempting to find a good w. The machine uniformly selects r1, ..., r2n ∈
{0, 1}k, and queries the NP-oracle on whether there exists a w ∈ {0, 1}n such
that ∧2n

i=1V (x, w, ri) = 1. If the answer is no, then M halts with output 0,
otherwise M iteratively recovers the bits of such a string w (by |w| additional
queries) and proceeds to the next step. Specifically, all queries have the form
(x, w′, r1, ..., r2n), and each such query is answered by a yes if and only if
there exists a w′′ ∈ {0, 1}n−|w′| such that ∧2n

i=1V (x, w′w′′, ri) = 1.
Note that if x ∈ S, then a string w such that ∧2n

i=1V (x, w, ri) = 1 exists
(e.g., consider w such that (x, w) ∈ Π ′

yes), and so Step 1 must be completed
while finding such a string w. On the other hand, for each (x, w) �∈ Πyes,
the probability that ∧2n

i=1V (x, w, ri) = 1 holds, where r1, ..., r2n are selected
uniformly in {0, 1}k, is at most (2/3)2n, and it follows that

Probr1,...,r2n[∃w s.t. (x, w) �∈ Πyes and ∧2n
i=1V (x, w, ri) = 1] ] ≤ 2n·(2/3)2n,

which is exponentially vanishing (in n).
Step 2: Verifying that w is good (i.e., (x, w) ∈ Πyes). The machine treats (x, w)

as an input to the promise problem Π and proceeds as in the proof of
Theorem 4. Specifically, by using the same amplification as in the proof
of Theorem 3, we obtain a verification procedure V ′ that satisfies Eq. (1)-
(2). Letting m = q′(|x|), machine M selects an m/2-bit long random prefix
r′, and queries the NP-oracle on whether all m/2-bit long suffixes make
the predicate V ′ evaluate to 1 (i.e., whether for every r′′ it holds that
V ′(x, w, r′r′′) = 1). If the oracle answers yes, then M halts with output 1;
otherwise, M halts with no output. (We stress that we never output 0 in
this step.)

If x ∈ S, then Step 1 never halts but rather always yields a string w (for
Step 2). Furthermore, with overwhelmingly high probability, the string w satis-
fies (x, w) ∈ Πyes. Thus, with overwhelmingly high probability, Step 2 accepts.
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On the other hand, if x �∈ S, then with overwhrlmingly high probability Step 1
halts (with output 0). Furthermore, if the procedure continued to Step 2 with
some string w, then (x, w) ∈ Πno (since x �∈ S). In this case, the oracle will al-
ways answer no, and M will halt with no output. Thus, for any x, the machine
never errs, and with overwhelmingly high probability it produces the correct
output.

5 The Bigger Picture: Complexity Classes around MA

(For a wider perspective on interactive proofs, see [7, Sec. 9.1].)

5.1 Definitions

All the (binary and 3-ary) relations that are mentioned in the following defi-
nitions are only satisfied by arguments of polynomially related length (i.e., all
tuples in a relation have arguments that are of length that is polynomial in the
length of the first argument). Likewise, all quantifiers range over arguments of
such lengths.

Definition 5 (traditional classes – classes of the 1970’s):

– A set S is in ΣP
2 = NPNP (resp., ΠP

2 = coNPNP) if there exists a
polynomial-time recognizable 3-ary relation R such that

S = {x : ∃y∀z R(x, y, z) = 1}
(resp., S = {x : ∀y∃z R(x, y, z) = 1}).

– A set S is in ΔP
2 = PNP if there exists a deterministic polynomial-time

oracle machine M and a set S′ ∈ NP such that x ∈ S iff MS′
(x) = 1 (∀x).

– A set S is in RP if there exists a probabilistic polynomial-time machine M
such that

x ∈ S =⇒ Prob[M(x) = 1] ≥ 1
2

x �∈ S =⇒ Prob[M(x) = 1] = 0

For any class C, we define coC def= {{0, 1}∗ \ S : S ∈ C}.

Definition 6 (AM [1] – a class of the 1980’s): A set S is in AM if there exists
a polynomial-time recognizable 3-ary relation V and polynomials p, q such that

– If x ∈ S, then for every r ∈ {0, 1}p(|x|) there exists w ∈ {0, 1}q(|x|) such that
V (x, r, w) = 1.

– If x �∈ S, then it holds that

Probr[∃w s.t. V (x, r, w) = 1] ≤ 1
2

where the probability is taken uniformly over all r ∈ {0, 1}p(|x|).
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In other words, the class AM, introduced by Babai [1], consists of sets having
an Arthur–Merlin proof systems: The verifier (Arthur) challenges the prover
(Merlin) with a random query, denoted r, and given the prover’s answer (denoted
w) makes a decision using the predicate V . Thus, in contrast to Merlin–Arthur
systems (where Arthur just (probabilistically) evaluates the validity of a “written
proof”), in Arthur–Merlin systems we have a real interaction between the prover
and the verifier. The class AM coincides with the class of sets having constant-
round interactive proof systems [1,9]. Thus, it is the lowest level of the hierarchy
of “real” interactive proofs [1,8] (i.e., interactive proofs that, unlike NP and
MA, are really interactive).

Definition 7 (SP
2 [4,13] – a class of the 1990’s): S is in SP

2 if there exists a
polynomial-time recognizable 3-ary relation R such that for every x ∈ {0, 1}∗

∃y∀z R(x, y, z) = χS(x) (4)
∃z∀y R(x, y, z) = χS(x) (5)

The class SP
2 was introduced independently by Canetti [4] and Russell and Sun-

daram [13] with the motivation of providing a low “symmetric alternation class”
that contains BPP. Indeed, Canetti [4] has extended Lautemann’s proof to show
that BPP ⊆ SP

2 , whereas Russell and Sundaram [13] showed that MA ⊆ SP
2

(and thus BPP ⊆ SP
2 ).

5.2 Known Inclusions

We recall some known inclusions between the aforementioned classes. For sake
of self-containment, we present proofs as well. Recall that, BPP ⊆ MA, by
Theorem 1. We start with some simple syntactical facts:

1. P ⊆ RP ⊆ NP ⊆MA.
2. RP ⊆ BPP.
3. RP ⊆ coMA (equiv., coRP ⊆MA).1
4. NP ∪ coNP ⊆ PNP .
5. AM ⊆ ΠP

2 .
6. SP

2 ⊆ ΣP
2 ∩ΠP

2 .
(Actually, the transparent syntactical facts are the inclusion SP

2 ⊆ ΣP
2 and

the closure of SP
2 under complement.)

7. ZPPNP ⊆ ΣP
2 ∩ΠP

2 .
(Here the transparent facts are ZPPNP ⊆ RPNP ⊆ NPNP = ΣP

2 .)

We now turn to three non-trivial results.

Proposition 7 [1]: MA ⊆ AM.

Proof: We use a naive amplification to reduce the error probability in the
Merlin–Arthur game so to obtain error that is substantially smaller than the
reciprocal of the number of possible Merlin messages. Specifically, we obtain a
polynomial-time recognizable 3-ary relation V and polynomials p, q such that
1 This syntactical fact can also be derived from RP ⊆ BPP , by using BPP ⊆ MA.
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1. If x ∈ S, then there exists w0 ∈ {0, 1}q(|x|) such that for every r ∈ {0, 1}p(|x|)

it holds that V (x, w0, r) = 1.
2. If x �∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x, w, r) = 1] <
1
2
· 2−q(|x|).

Thus,

Probr[∃w ∈ {0, 1}q(|x|) : V (x, w, r) = 1] ≤
∑

w∈{0,1}q(|x|)
Probr[V (x, w, r) = 1]

<
1
2 .

We construct an Arthur–Merlin proof system (defined by a new predicate V ′)
by merely reversing the order of moves in the foregoing proof system, and using
essentially the same decision predicate as above: That is, we let V ′(x, r, w) def=
V (x, w, r). This potentially makes the task of Merlin easier, and so we need only
worry about the case x �∈ S (which we handle easily using the above bound).
Specifically, for the case x ∈ S, we may use the string w0 (guaranteed in Item 1)
as Merlin’s response to any challenge r (and so V ′(x, r, w0) = V (x, w0, r) = 1
for all r’s). For the case x �∈ S we use the bound in Item 2 and so Probr[∃w ∈
{0, 1}q(|x|) : V ′(x, r, w) = 1] < 0.5. The proposition follows.

Proposition 8 [13]: MA ⊆ SP
2 .

Proof: We use the same amplification as in the previous proof. Here we write
the case of x �∈ S as

∀w ∈ {0, 1}q(|x|) |{r ∈ {0, 1}p(|x|) : V (x, w, r) = 1}| < 2p(|x|)−q(|x|) − 1

We define a relation R (for the class SP
2 ) such that R(x, y, z) = 1 if |y| = |z| =

q(|x|) and at least one of the following two conditions holds:

1. y = w0p(|x|)−q(|x|) and V (x, w, z) = 1.
2. z = w0p(|x|)−q(|x|) and V (x, w, y) = 1.

Clearly, this predicate is symmetric with respect to y and z; that is, condition (1)
holds iff condition (2) holds. Thus, we only show, for any x, the existence of a
string y such that, for all z’s, R(x, y, z) = χS(x). Let us shorthand m = p(|x|)
and n = q(|x|). For x ∈ S there exists w ∈ {0, 1}n such that for all r ∈ {0, 1}m

it holds that V (x, w, r) = 1. Thus, there exists y = w0m−n ∈ {0, 1}m such that
for all z ∈ {0, 1}m it holds that R(x, y, z) = 1. We now turn to the case where
x �∈ S: In this case,

|{r : ∃w s.t. V (x, w, r) = 1}| ≤
∑

w∈{0,1}n

|{r : V (x, w, r) = 1}|

< 2n · (2n−m − 1)
= 2m − 2n.
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Thus, there exists r ∈ {0, 1}m \ {0, 1}n0m−n such that for every w ∈ {0, 1}n it
holds that V (x, w, r) = 0. Given such an r, we prove that for all z’s R(x, r, z) = 0.
This holds since R(x, r, z) = 1 requires either r ending with 0m−n (which does
not hold by our choice) or z = w0n−m with V (x, w, r) = 1 (which again cannot
hold).

Proposition 9 [13]: PNP ⊆ SP
2 .

Proof: Let S be an arbitrary set in PNP , and let M be a (deterministic)
polynomial-time oracle machine recognizing S when given access to the NP-
complete set S′. We say that a string τ is a valid transcript of M(x) if there
exists some oracle such that τ describes the computation of M on input x and
access to this oracle. Note that the oracle’s answers in a valid transcript of M(x)
do not necessarily agree with the set S′. A valid transcript is said to be sup-
ported by a sequence of pairs s if for each oracle query q in the transcript τ
that was answered by 1 there is a pair (q, w) in s, where w is an NP-witness for
membership of q in S′. A valid transcript is said to be consistent with a sequence
of pairs s if for each oracle query q in the transcript τ that was answered by 0
there is no pair (q, w) in s, where w is an NP-witness for membership of q in S′.
We consider a fixed parsing of strings into pairs (τ, s), where s is a sequence of
pairs.

We are now ready to define a relation R (for the class SP
2 ): For y = (τ, s) and

z = (τ ′, s′), we let R(x, y, z) def= σ if at least one of the following two conditions
holds:

1. τ is a valid transcript of M(x) with output σ, supported by s and consistent
with s′.

2. τ ′ is a valid transcript of M(x) with output σ, supported by s′ and consistent
with s.

In case none of the conditions hold, R(x, y, z) may be defined arbitrarily. In-
tuitively, the quantification ∃y∀z guarantees that the transcript contained in
y records correct oracle answers (since positive answers must be supported by
NP-witnesses, whereas negative answers must be unrefutable by NP-witnesses
to the opposite). Formally, we have to prove that R is well-defined, and that the
actual execution transcript is both supportable and unrefutable (i.e., consistent
with all valid sequences).

We first show that R is well-defined (i.e., it can not be the case that τ and
τ ′ are both valid, supported and consistent but with different outputs). Here
we use the fact that M is deterministic and so given the same oracle answers it
must yield the same output. Also, if two valid transcripts differ on some oracle
answer, then it cannot be that both transcripts are supported and consistent
with respect to the same two sequences of pairs.2 Finally, observe that for every
2 Consider the first conflicting answer and suppose, without loss of generality, that in

transcript τ the answer is 1. Since τ is supported by a sequence of pairs s, it cannot
be the case that τ ′ (in which the answer to the same query is 0) is consistent with s.
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x, there exists a pair (τ, s) with output χS(x) such that τ is a valid transcript of
M(x), supported by s and consistent with any possible sequence of pairs.

5.3 Conjectured Separations

Below we list some well-known conjectures.

Conjecture 1 (the leading conjecture of TOC): P �= NP.

Conjecture 2 (most widely believed): NP �⊆ BPP.

Conjecture 3 (most widely believed): NP �= coNP.

Conjecture 4 (widely believed): The Polynomial-Time Hierarchy does not col-
lapse.

Conjecture 4 implies the following (see [3]):

Conjecture 5 (widely believed): coNP �⊆ AM.

We believe that Conjecture 5 is interesting on its own; indeed, it is a natural
extension of Conjecture 3.

5.4 Conjectured Inclusions

What we know combined with what is widely believed is depicted in Figure 1. We
note that some of the inclusions that were not conjectured to be separations are
believed to be equalities or “close to it”. In particular, it is widely believed that
BPP is very close to P . This belief is supported, among other things, by the con-
jecture that (uniform) exponential-time cannot be computed by subexponential-
size (non-uniform) circuits [2,10]. We note that the latter conjecture holds
provided there exist strong one-way functions (i.e., polynomial-time computable
functions that cannot be inverted on typical images by subexponential-sized
circuits).

P

RP

BPP

NP MA AM

coRP coNP coMA coAM

Π

Σ

2

2

PNP X

Fig. 1. Arrows indicate containment between classes, with C1 → C2 indicating that
C1 ⊆ C2. Bolder (and bigger) arrows indicate conjectured gaps between the classes.
The symbol X is a placeholder for either SP

2 or ZPPNP (and we do not know how
these two classes are related).
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The Derandomization of BPP versus the Derandomization of MA. We note
that results about derandomization of BPP are likely to imply results on the
derandomization of MA. This holds provided that the former results extend
also to the generalization of BPP to promise problems. We note that all known
derandomization results have this feature. In the next proposition coRP denotes
the class of promise problems of the form Π = (Πyes, Πno), where there exists
a probabilistic polynomial time machine M such that

x ∈ Πyes =⇒ Prob[M(x) = 1] = 1

x ∈ Πno =⇒ Prob[M(x) = 1] ≤ 1
2

Proposition 10 (folklore): Suppose that coRP ⊆ DTIME(t(n)), for a time
constructible function t : N→N. Then, MA ⊆ ∪i∈NNTIME(t(ni)).

Proof: Each set L ∈ MA gives rise to a promise problem Π = (Πyes, Πno),
where

Πyes
def= {(x, w) : ∀r ∈ {0, 1}p(|x|) V (x, w, r) = 1}

Πno
def= {(x, w) : x �∈ L}

with V and p as in Definition 2. Note that, for every x ∈ L there exists w ∈
{0, 1}q(|x|) such that (x, w) ∈ Πyes, whereas for every x �∈ L and every w ∈
{0, 1}q(|x|) it holds that (x, w) ∈ Πno. Also, for every (x, w) ∈ Πno it holds that

Probr∈{0,1}p(|x|) [V (x, w, r) = 1] ≤ 1
2 .

We conclude that Π ∈ coRP . Now, using the hypothesis, we have Π ∈
DTIME(t(n + q(n))), and so L ∈ NTIME(t(n + q(n))). The proposition
follows.

On the Derandomization of MA (a comment added in revision). In light of recent
derandomization results regarding AM (cf. [12]), one may question the conjec-
ture MA �= AM (which is suggested by Figure 1). We note, however, that the
aforementioned derandomization of AM seem to require stronger intractability
assumptions than the ones used in the derandomization of BPP (and MA).

Challenges. Indeed, all our challenges call for establishing some appealing
inclusions (rather than separations).

1. Try to put BPP in PNP . (Recall that BPP in in ZPPNP .)
2. Try to put MA in PNP . (This certainly implies (1).)
3. Try to put RP in coNP . (Recall that RP is in coMA.)
4. Try to put AM in ΣP

2 ∩ΠP
2 .
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15. Zachos, S., Fürer, M.: Probabilistic Quantifiers vs. Distrustful Adversaries. In:
Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 443–455. Springer, Heidelberg
(1987)

16. Zachos, S., Heller, H.: A decisive characterization of BPP. Information and Con-
trol 69(1-3), 125–135 (1986)

17. Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorith-
mica 16, 367–391 (1996)



Strong Proofs of Knowledge

Oded Goldreich

Abstract. The concept of proofs-of-knowledge, introduced in the semi-
nal paper of Goldwasser, Micali and Rackoff, plays a central role in vari-
ous cryptographic applications. An adequate formulation, which enables
modular applications of proofs of knowledge inside other protocols, was
presented by Bellare and Goldreich. However, this formulation depends
in an essential way on the notion of expected (rather than worst-case)
running-time. Here we present a seemingly more restricted notion that
maintains the main feature of the prior definition while referring only to
machines that run in strict probabilistic polynomial-time (rather than to
expected polynomial-time).

Keywords: Proof of Knowledge, Zero-Knowledge.

This work was completed in May 1998, and was integrated in the author’s work
Foundation of Cryptography as [7, Sec. 4.7.6]. The current text is based on a
private memo from May 1998, whereas the postscript section (Sec. 4) is recent
(and confirms speculations raised in the original memo).

1 Introduction

The reader is referred to [3] for a discussion of the intuitive notion of a proof-of-
knowledge (cf., [11]), and the previous attempts to define it [4,13], cumlinating
in the definition presented in [3]. We also assume that the reader is familiar with
the definition given in [3].

The definition given in [3] relies in a fundamental way on the notion of expected
running-time. Throughout the years we remained bothered by this feature, and
while working on [6] we decided to look for an alternative. Specifically, we present
a more stringent definition in which the knowledge extractor is required to run in
strict polynomial-time (rather than in expected polynomial-time). We call proof
systems for which this more stringent definition holds, strong proofs of knowledge
(in contrast to ordinary proofs of knowledge as defined in [3]).

There are two reasons to prefer strong proofs of knowledge over ordinary
ones. Firstly, we feel more comfortable with the notion of strict polynomial-time
than with the notion of expected polynomial-time. For example, it is intuitively
unclear why a machine which runs for time 2n on an 2−n fraction of its coin-tosses
(and in linear time otherwise) should be considered fundamentally different than
a machine which runs for time 2n2

on the same fraction. Secondly, it seems much
more convinient to work (i.e., to compose) strict polynomial-time computations
rather than expected polynomial-time ones. (For further discussion of this issue,
the interested reader is directed to [9].)

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 54–58, 2011.
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Unfortunately, there seems to be a loss in going from ordinary proofs of knowl-
edge to strong ones: Not all proofs of knowledge are known to be strong proofs
of knowledge. Furthermore, we conjecture that there are proofs of knowledge
that are not strong proofs of knowledge (see Section 4). Still, zero-knowledge
strong-proofs-of-knowledge do exist for all NP-relations, provided that one-way
functions exist.

2 The Definition

We assume that the reader is familiar with the definition of a proof of knowledge
(as presented in [3]) as well as with the underlying motivation.

Definition 1 (System of strong proofs of knowledge): Let R be a binary relation.
We say that an efficient strategy V is a strong knowledge verifier for the relation
R if the following two conditions hold.

– Non-triviality: There exists an interactive machine P such that for every
(x, y) ∈ R all possible interactions of V with P on common-input x and
auxiliary-input y are accepting.

– Strong Validity: There exists a negligible function μ : N �→ [0, 1] and a
probabilistic (strict) polynomial-time oracle machine K such that for every
strategy P and every x, y, r ∈ {0, 1}∗, machine K satisfies the following
condition:

Let Px,y,r be a prover strategy, in which the common input x, auxil-
iary input y and random-coin sequence r have been fixed, and denote
by p(x) the probability that the interactive machine V accepts, on
input x, when interacting with the prover specified by Px,y,r. Now,
if p(x) > μ(|x|) then, on input x and access to oracle Px,y,r, with
probability at least 1−μ(|x|), machine K outputs a solution s for x.
That is:

If p(x) > μ(|x|), then Pr[(x, KPx,y,r (x))∈R] > 1− μ(|x|). (1)

The oracle machine K is called a strong knowledge extractor.

An interactive pair (P, V ) so that V is a strong knowledge verifier for a relation
R and P is a machine satisfying the non-triviality condition (with respect to V
and R) is called a system for strong proofs of knowledge for the relation R.

Thus, it is required that whenever p(x) > μ(|x|) (i.e., whenever the prover con-
vinces the verifier with non-negiligible probability), the extractor fails with neg-
ligible probability. Our choice to bound the failure probability of the extractor
by the specific negligible function μ (which serves mainly as bound on p(x))
is rather arbitrary. What is important is to have this failure probability be a
negligible function of |x|. Actually, in case membership in the relation R can
be determined in polynomial-time, one may reduce the failure probability from
1 − 1

poly(n) to 2−poly(n), while maintaining the polynomial running-time of the
extractor. Finally, we note that the extractor presented in the next section has
failure probability 0.
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3 On the Existence of Strong Proofs of Knowledge

Some zero-knowledge proof (of knowledge) systems for NP are in fact strong
proofs of knowledge. In particular, consider n sequential repetitions of the fol-
lowing basic proof system for the Hamiltonian Cycle (HC) problem (which is
NP-complete). We consider directed graphs (and the existence of directed Hamil-
tonian cycles), and employ a commitment scheme {Cn} as above.

Construction 2 (Basic proof system for HC):

– Common Input: a directed graph G = (V, E) with n
def= |V |.

– Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊂ E, in G.
– Prover’s first step (P1): The prover selects a random permutation, π, of

the vertices of G, and commits to the entries of the adjacency matrix of the
resulting permuted graph. That is, it sends an n-by-n matrix of commitments
such that the (π(i), π(j))th entry is Cn(1) if (i, j) ∈ E, and Cn(0) otherwise.

– Verifier’s first step (V1): The verifier uniformly selects σ ∈ {0, 1} and sends
it to the prover.

– Prover’s second step (P2): If σ = 0, then the prover sends π to the verifier
along with the revealing (i.e., preimages) of all n2 commitments. Otherwise,
the prover reveals to the verifier only the commitments to the n entries that
correspond to C; that is, it reveals the (π(i), π(j))th entry if and only if
(i, j) ∈ C. (By revealing a commitment c, we mean supply a preimage of c
under Cn; i.e., a pair (σ, r) so that c = Cn(σ, r).)

– Verifier’s second step (V2): If σ = 0, then the verifier checks that the revealed
graph is indeed isomorphic, via π, to G. Otherwise, the verifier just checks
that all revealed values are 1 and that the corresponding entries form a simple
n-cycle. (Of course in both cases, the verifier checks that the revealed values
do fit the commitments.) The verifier accepts if and only if the corresponding
condition holds.

The reader may easily verify that sequentially repeating the basic protocol for
n times yields a zero-knowledge proof system for HC, with soundness error 2−n.
We argue that the resulting system is also a strong proof of knowledge of the
Hamiltonian cycle. Intuitively, the key observation is that each application of
the basic proof system results in one of two possible situations depending on the
verifier’s choice, σ. In case the prover answers correctly in both cases, we can
retrieve an Hamiltonian cycle in the input graph. On the other hand, in case the
prover fails in both cases, the verifier will reject regardless of what the prover
does from this point on. This observation suggests the following construction of a
strong knowledge extractor (where we refer to repeating the basic proof systems
n times and set μ(n) = 2−n).

Strong Knowledge Extractor for Hamiltonian Cycle: On input G and access to
the prover-strategy oracle P ∗, we proceed in n iterations, starting with i = 1.
Initially, T (the transcript so far), is empty.
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1. Obtain the matrix of commitments, M , from the prover strategy (i.e., M ←
P ∗(T )).

2. Obtain the prover’s answer to both possible verifier moves; that is, for every
σ ∈ {0, 1}, obtain the corresponding answer Aσ ← P ∗(T, σ). Each of these
answers may be correct (i.e., passing the corresponding verifier check) or not.

3. If both answers are correct, then we recover a Hamiltonian cycle. In this case
the extractor outputs the cycle and halts.

4. In case a single answer, say the one for value σ, is correct and i < n, we let
T ← (T, σ), and proceed to the next iteration (i.e., i ← i + 1). Otherwise,
we halt with no output.

Note that we reach iteration i only if and only if in each of the prior i−1 iterations
a single verifier choice is answered correctly (and we have appended this choice
in T ). Hence, if the extractor halts with no output in iteration i < n, then the
verifier (in the real interaction) accepts with probability zero (since in iteration
i both verifier choices yield incorrect answers). Similarly, if the extractor halts
with no output in iteration n, then the verifier (in the real interaction) accepts
with probability at most 2−n (since at most one choine is answered correctly).
Thus, whenever p(G) > 2−n, the extractor succeeds in recovering a Hamiltonian
cycle (with probability 1).

4 Postscript

This section was added in the current revision and provides some support for
conjectures made explicitly or implicitly in the original text.

Regarding our conjecture that there exist proofs-of-knowledge that are not
strong proofs-of-knowledge, partial evidence is provided by subsequent work
of Barak, Lindell, and Vadhan [1,2]. Both work refer to constant-round zero-
knowledge protocols (for sets outside BPP), and the seperation relies on the
existence of such protocols (under standard computational assumptions) that
are (ordinary) proofs of knowledge for NP-relations.

1. Barak and Lindell [1] show that such protocols cannot have a strict proba-
bilistic polynomial-time black-box extractor, which implies that they cannot
be proven to be strong proofs-of-knowledge in a black-box manner. (Still,
recall that non-black-box extractors may exist.)

2. Barak, Lindell, and Vadhan [2] show that if (exponentially) strong one-way
permutations exist, then such prtotocols cannot have a strict probabilistic
polynomial-time extractor, which implies that they cannot be strong proofs-
of-knowledge.

The existence of constant-round zero-knowledge protocols that are (ordinary)
proofs of knowledge for NP-relations can be based on standard intractability
assumptions: See Feige and Shamir [5] for the case of argument systems and
Lindell [12] for the case of proof systems.
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Simplified Derandomization of BPP Using a

Hitting Set Generator

Oded Goldreich, Salil Vadhan, and Avi Wigderson

Abstract. A hitting-set generator is a deterministic algorithm that gen-
erates a set of strings such that this set intersects every dense set that
is recognizable by a small circuit. A polynomial time hitting-set gener-
ator readily implies RP = P , but it is not apparent what this implies
for BPP. Nevertheless, Andreev et al. (ICALP’96, and JACM 1998)
showed that a polynomial-time hitting-set generator implies the seem-
ingly stronger conclusion BPP = P . We simplify and improve their (and
later) constructions.

Keywords: Derandomization, RP, BPP, one-sided error versus two-
sided error.

This work is considered the final version of [7]. An early version of this work
appeared as TR00-004 of ECCC. The current revision is quite minimal.

1 Introduction

The relation between randomized computations with one-sided error and ran-
domized computations with two-sided error is one of the most interesting ques-
tions in the area. Specifically, we refer to the relation betwen RP and BPP. In
particular, does RP = P imply BPP = P?

1.1 An Affirmative Partial Answer

The breakthrough paper of Andreev et al. [2] (and its sequel [3]) gave a natural
setting in which the answer to the foregoing question is yes. The setting is a
specific natural way to prove RP = P , namely via “hitting-set generators” (see
exact definition below). Informally, such a generator outputs a set of strings that
hits every large efficiently-recognizable set (e.g., the witness set of a positive
input of an RP set). Having such a generator that runs in polynomial time
enables a trivial deterministic simulation of an RP algorithm by using each of
the generator’s outputs as the random pad of the given algorithm.

The main result of [2] was that such a generator (which immediately yields
deromization of 1-sided error algorithms) actually suffices for derandomizing 2-
sided error algorithms. In particular, the existence of polynomial-time hitting
set generators implies BPP = P .
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c© Springer-Verlag Berlin Heidelberg 2011



60 O. Goldreich, S. Vadhan, and A. Wigderson

Definition 1 (hitting set generator):1 An algorithm, G, is called a hitting set
generator for circuits if, on input n, s ∈ N (given in unary), it generates as output
a set of n-bit strings, G(n, s), such that every circuit of size s (on n input bits)
that accepts at least half its inputs, accepts at least one element from the set
G(n, s).

Since s is the essential complexity parameter (n ≤ s), we let tG(s) denote the
running time of the generator G on input (n, s), and NG(s) denote the size of
its output set. Clearly NG(s) ≤ tG(s). The result of Andreev et al. [2] is the
following:

Theorem 2 (derandomization via hitting sets [2]): If there exists a hitting-set
generator G running in time tG, then BPP ⊆ DT IME(poly(tG(poly(n))).

Indeed, the most important special case (i.e., tG(s) = poly(s)) is the following:

Corollary 3 (Theorem 2, specialized [2]): If G runs in polynomial time, then
BPP = P.

1.2 In Quest of Simplifications

Our main result is a simple proof of Theorem 2. Explaining what “simple” means
is not so simple. We start by explaining how the given generator (assumed in
the hypothesis of Theorem 2) is used in [2] (and in subsequent works [3,4]) to
derandomize BPP. Indeed, later proofs (of [3] and then [4]) were much simpler
than [2], but while proving Corollary 3, they fell short of proving Theorem 2.2

Warning: The following discussion is carried out on an intuitive (and somewhat
vague) level. Readers who do not like such discussions may skip the rest of the
introduction, and proceed directly to the formal proof (presented in Sections 2
and 3).

The Two Different Uses of the Hitting Set Generator in [2]. The proof in [2] uses
the generator in two ways. The first use is literally as a producer of a hitting set
for all sufficiently dense and efficiently recognized sets. The second use (which
is more subtle) is as a hard function. Indeed, observe that the existence of such

1 In other settings, (pseudorandom) generators are defined as outputting a single
string. In terms of Definition 1 this means that, on input an index i ∈ {1, ..., |G(n, s)|}
(viewed as a seed), the generator outputs the ith string in G(n, s). However, in the
current context, the current convention (which in the standard terms means con-
sidsering the set of all possible outputs of the generator) seems simpler to work
with.

2 We note, however, that both [3] and [4] use their techniques to study other aspects of
the relationship between one-sided and two-sided error (i.e., aspects not addressed by
Theorem 2). In particular, Buhrman and Fortnow [4] resolve the promise-problem
analogue of the question “Does RP = P imply BPP = P?” in the positive. See
Section 1.3.
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a generator G immediately implies the existence of a function on O(log tG(s))
bits that is computable in time tG(s) but cannot be computed by circuits of size
s (or else a contradiction is reached by considering a circuit that that accepts a
vast majority of the strings that are not generated by G).3 These two uses of G
are combined in a rather involved way for the derandomization of BPP.

It is interesting to note that for the case of tG(s) = poly(s), the aforementioned
hard function can be plugged into the pseudorandom generator of [8], to yield
BPP = P as in Corollary 3. (Note, however, that [8] was not available to the
authors of [2] at the time (the two papers are independent).) Moreover, [8] is far
from “simple”, it does use the computational consequence (which we are trying
to avoid), and anyhow it is not strong enough to yield Theorem 2.

The Two-Level Use of the Hitting Set Generator in [3]. A considerably sim-
pler proof was given in [3]. There, the generator is used only in its “original
capacity” as a hitting set generator, without explicitly using any computational
consequence of its existence. In some sense, this proof is more clearly a “black-
box” use of the output set of the generator. However, something was lost. The
running time of the derandomization is replaced by poly(tG(tG(poly(n))).

On the one hand, this is not too bad. For the interesting case of tG(s) =
poly(s) (which implies RP = P), they still get the consequence BPP = P , as in
Corollary 3 (since iterating a polynomial function twice results in a polynomial).
On the other hand, if the function tG grows moderately such that tG(tG(n)) = 2n,
then we have as assumption a highly nontrivial derandomization of RP , but the
consequence is a completely trivial derandomization of BPP.

In our opinion, the best way to understand the origin of the iterated appli-
cation of the function tG in the aforementioned result is explained in the recent
paper of [4], which further simplifies the proof of [3]. They remind the reader
that the proofs [9,10] putting BPP in Σ2∩Π2 actually gives much more. In fact,
viewed appropriately, it almost begs (with hindsight) the use of hitting sets!

The key is, that in both the ∀∃ and ∃∀ expressions for the BPP set, the
“witnesses” for the existential quantifier are abundant. Put differently, BPP ⊆
RPprRP , where prRP is the promise-problem version of RP . But if you have a
hitting set, you can use it first to derandomize the “oracle” part of the right-hand
side. This leaves us with an RT IME(tG(poly(n)) machine, which can again be
derandomized (using hitting sets for tG(poly(n)) size circuits).

In short, the “two quantifier” representation of BPP leads to a two-level
recursive application of the generator. It seems hopeless to reduce the number
of quantifiers to one in the BPP ⊆ Σ2 ∩Π2 result. So another route has to be
taken in order to prove Theorem 2 in a similar “direct” (or “black-box”) manner,
but without incurring the penalty arising from this two-level recursion.

Our Proof. We eliminate the two-level recursion, obtaining a single application
of the hitting set generator, by “increasing the dimension to two” in the following

3 For example, consider a circuit C that accepts a (2 log2 tG(s))-bit string, z, if and
only if z is not a prefix of any string in G(n, s).
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sense. Inspired by Lautemann’s proof [9] of BPP ⊆ Σ2 ∩ Π2, we consider, for
each input to a given BPP algorithm that uses 	(n) random coins, a 2�(n)-
by-2�(n) Boolean matrix such that the (a, b)th entry represents the decision of
the algorithm when using the random pad a ⊕ b.4 In this matrix, the fraction
of incorrect answers in each row (resp., column) is small. The hitting set is
used to select a small subset of the rows and a small subset of the columns,
and the entries of this submatrix determine the result. Specifically, we will look
for “enough” (yet few) rows that are monochromatic, and decide accordingly.
The correctness and efficiency of the test are spelled out in Lemma 6, which is
essentially captured by the following simple Ramsey-type result.

Proposition 4 (log-size dominating sets): For every n-vertex graph, either the
graph or its complement has a dominating set of size �log2(n+1)�. Furthermore,
such a set can be found in polynomial time.

(Proposition 4 is seemingly new and may be of independent interest.)5

We end by observing that (like the previous results) our result holds in the
context of promise problems. Hence, the existence of hitting set generators pro-
vides an efficient way for approximately counting the fraction of inputs accepted
by a given circuit within additive polynomial fraction.

1.3 Perspective

As described above, Buhrman and Fortnow [4] prove that BPP ⊆ prRPprRP ,
and actually prBPP = prRPprRP . It follows immediately that prRP = prP
implies prBPP = prP , resolving the main question of this area for promise
classes! This result suggests two natural extensions that remain open. The first is
to obtain an analogue of their result for the standard classes of decision problems,
RP and BPP. (In [4], it is shown that such an extension cannot relativize.)
The second possible extension is to “scale” the result upwards. In fact, from
the hypothesis prRP ⊆ DT IME(t(n)), they obtain the conclusion prBPP ⊆
DT IME(poly(t(t(poly(n))))). Theorem 2, as proved in [2] and in this paper,
replaces the composition t(t(·)) with a single t(·) for the (very) special case
when the derandomization of prRP is via a hitting-set generator.

2 The Derandomization Procedure

Given L ∈ BPP, consider a probabilistic polynomial-time algorithm A for L. Let
	 = 	(n) be a fixed polynomial denoting the number of coin tosses made by A on
4 In a preliminary version of this work [7], we considered a different matrix such that

its (a, b)th entry represents the decision of the algorithm when using the random pad
a◦b. For that matrix to have the desired properties, it was necessary to first perform
drastic error reduction (using extractors) on the BPP algorithm, where this strategy
was inspired by [6]. The main simplification here is in avoiding this strategy.

5 Proposition 4 corresponds to the special case of Lemma 6 that refers to symmetric
matrices. Note that this special case actually suffices for our application.
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inputs of length n; similarly, define s = s(n) such that the computation of A on
inputs of length n can be implemented by circuits of size s(n). We assume that
A has error probability at most 1/2	(n); this can be achieved by straightforward
amplification of any BPP algorithm for L.

Let A(x, r) denote the output of algorithm A on input x ∈ {0, 1}n and
random-tape contents r ∈ {0, 1}�(n). Our derandomization procedure, described
next, utilizes a hitting-set generator G as defined earlier (i.e., in Definition 1).

Derandomization procedure: On input x ∈ {0, 1}n, let A, 	, and s be as above.

1. Invoking the hitting-set generator G, obtain H ← G(	 , 	 · s). That is, H is
a hitting set for circuits of size 	 · s and input length 	. Denote the elements
of H by e1, ..., eN, where N

def= NG(s) and each ei is in {0, 1}�.
2. Construct an N-by-N matrix, M = (vi,j), such that vi,j = A(x, ei⊕ej). That

is, run A with all possible random-pads composed by XORing each of the
possible pairs of strings in H . (We merely use the fact that a⊕ b is easy to
compute and that for any a the mapping b �→ a⊕ b is 1-1, and similarly for
any b and a �→ a⊕ b.)

3. Using the procedure guaranteed by Lemma 6 (of Section 3 (below)), de-
termine whether for every 	 columns there exists a row on which all these
columns have 1-value. If this procedure accepts, then accept, else reject. That
is, accept if and only if

∀c1, ..., c� ∈ [N] ∃r ∈ [N] s.t. ∧�
i=1 (vci,r = 1). (1)

We first show that if x ∈ L, then Eq. (1) holds; and, analogously, if x �∈ L, then

∀r1, ..., r� ∈ [N] ∃c ∈ [N] s.t. ∧�
i=1 (vri,c = 0). (2)

Note that the foregoing description, by itself, does not establish the correctness
of the procedure. Neither did we specify how to efficiently implement Step 3,
To that end we use a general technical lemma (indeed Lemma 6) that implies
that it cannot be the case that both Eq. (1) and Eq. (2) hold. Furthermore, this
lemma asserts that one can efficiently determine which of the two conditions
does not hold. These aspects are deferred to the next section. But first we prove
the foregoing implications.

Proposition 5 (on the matrix constructed in Step 2): If x ∈ L (resp., x �∈ L),
then Eq. (1) (resp., Eq. (2)) holds.

Proof: We shall prove a slightly more general statement. Let χL be the charac-
teristic function of L (i.e., χL(x) = 1 if x ∈ L and χL(x) = 0 otherwise). Then,
we next prove that, for every x ∈ {0, 1}n, for every 	 rows (resp., columns) there
exists a column (resp., row) on which the value of the matrix is χL(x).

Fixing the input x ∈ {0, 1}n to algorithm A, we consider the circuit Cx which
takes an 	-bit input r and outputs A(x, r) (i.e., evaluates A on input x and coins
r). By our hypothesis regarding the error probability of A, it holds that

Prr∈{0,1}� [Cx(r) �= χL(x)] ≤ 1
2	 .
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It follows that for every y1, ..., y� ∈ {0, 1}�, it holds that

Prz∈{0,1}� [(∀i) Cx(yi ⊕ z) = χL(x)] ≥ 1
2 .

(3)

Let y = (y1, ..., y�), and consider the circuit Cx,y(z) def= ∧�
i=1(Cx(yi⊕z) = χL(x)).

Then, by the Eq. (3), it holds that Prz [Cx,y(z) = χL(x)] ≥ 1/2. On the other
hand, the size of Cx,y is merely 	 times the size of Cx, which was at most s.
Thus, by definition of the hitting-set generator G, the set H = G(	 , 	 · s) must
contain a string z such that Cx,y(z) = χL(x).

The foregoing holds for any y = (y1, ..., y�). Thus, for every y1, ..., y� ∈ H ⊆
{0, 1}�, there exists z ∈ H such that A(x, yi⊕ z) = Cx(yi⊕ z) = χL(x) holds for
every i ∈ [	]. Thus, we have proved that, for every 	 rows in M , there exists a
column (in M) on which the value of the matrix is χL(x).

A similar argument applies to sets of 	 columns in M . Specifically, for every
z1, ..., z� ∈ {0, 1}�, it holds that

Pry∈{0,1}� [(∀i) Cx(y ⊕ zi) = χL(x)] ≥ 1
2 .

(4)

Again, we conclude that, for every z1, ..., z� ∈ H , there exists y ∈ H such that
Cx(y⊕ zi) = χL(x) holds for every i ∈ [	]. Thus, for every 	 columns in M there
exists a row (in M) on which the value of the matrix is χL(x). The proposition
follows. ��

Digest. The foregoing procedure is a simplified version of the procedure given in
the preliminary version of this work [7]. Specifically, inspired by [6], the argument
in [7] relies on the explicit constructions of extractors for drastic error reduction
of the BPP algorithm. Here, we only use a mild (and trivial) error reduction.
This difference stems from the fact that the matrix considered in [7] is different
(i.e., the (a, b)th entry in the matrix considered in [7] represents the decision of
the algorithm when using the random pad a◦ b (rather than a⊕ b)). In contrast,
Steps 1 and 3 of the foregoing derandomization procedure are identical to the
steps in [7], and so is Lemma 6. Thus, our argument relies on two essential
ingredients: The first ingredient, adopted from [3], is the use of auxiliary circuits
(depending on Cx but not identical to it), in order to argue that a hitting-set
must have certain strong properties with respect to Cx. The second ingredient
is the constructive combinatorial result given by Lemma 6. (A third ingredient,
which consists of using extractors as in [7], is eliminated here.)

3 Correctness and Efficiency of the Derandomization

Proposition 5 shows that for every x either Eq. (1) or Eq. (2) holds. But, as stated
before, it is not even clear that Eq. (1) and Eq. (2) cannot hold simultaneously.
This is asserted next.
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Lemma 6 (a generic technical lemma): For every k ≥ log2(n+1), every n-by-n
Boolean matrix either has k rows whose bit-wise disjunction is the all 1’s row, or
k columns whose bit-wise conjunction is the all 0’s column. Moreover, there is a
(deterministic) polynomial-time algorithm that given such a matrix find such a
set.

We prove the lemma momentarily. But first let use show that Eq. (1) and Eq. (2)
cannot hold simultaneously. We first note that in our case n = N = NG(s) and
k = 	, and furthermore n < 2� (since there is no point in having G(	, ·) contain
more than 2�−1 + 1 < 2� strings of length 	 > 1). The claim then follows by
applying the following corollary to Lemma 6.

Corollary 7 (corollary to Lemma 6): For every n-by-n Boolean matrix and
every k ≥ log2(n + 1), it is impossible that both the following conditions hold:

1. For every k rows, there exists a column such that all the k rows have a
0-entry in this column.

2. For every k columns, there exists a row such that all the k columns have a
1-entry in this row.

Furthermore, assuming one of the foregoing conditions holds, deciding which one
holds can be done in (deterministic) polynomial-time.

Proof (of Corollary 7): Suppose Item (1) holds. Then, the bit-wise disjunction
of every k rows contains a 0-entry, and so it cannot be the all 1’s row. Likewise,
if Item (2) holds then the bit-wise conjenction of every k columns contains a
1-entry, and so it cannot be the all 0’s column. Thus, the case in which both
items holds stands in contradiction to Lemma 6. Furthermore, finding a set as
in the lemma indicates which of the two items does not hold. ��

Proof of Lemma 6: Let B = (br,c) be an arbitray n-by-n Boolean matrix, and
consider the following iterative procedure, initiated with C0 = [n] and R = ∅.
For i = 1, 2, ..., take a row r not in R that has at least |Ci−1|/2 1’s in Ci−1 (i.e.,
r ∈ [n] \ R such that |{c∈Ci−1 : br,c =1}| ≥ |Ci−1|/2). Add r to R, and let Ci

be the part of Ci−1 that had 0’s in row r (i.e., Ci
def= {c∈Ci−1 : br,c = 0}). We

get stuck if for any i, no row in the current set [n] \ R has at least |Ci−1|/2 1’s
in Ci−1. Otherwise, we terminate when Ci = ∅

If we never get stuck, then we generated at most log2(n + 1) ≤ k rows (since
|Ci| ≤ |Ci−1|/2, which implies that |C�log2(n+1)�| < 1). Furthermore, the bit-wise
disjunction of these rows is the all 1’s row (i.e., for the final R and every c ∈ [n],
it holds that ∨r∈Rbr,c = 1), since the ith row in R has 1-entries in every column
in Ci−1 \ Ci, and the last Ci is empty.

On the other hand, if we got stuck at iteration i, then we let S = Ci and note
that every row of B has at least |S|/2 0’s in the columns S. (This includes the
rows in the current R, which each have 0’s in all the columns in S ⊂ Ci−1 ⊂
· · · ⊂ C0.) In this case, an argument analogous to Adlemam’s proof [1] that
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RP ⊆ P/poly implies that there exist a set of k columns C that contains a
0-entry in every row (i.e., for every r ∈ [n], it holds that ∧c∈Cbr,c = 0).6

Turning to the algorithmics, note that the foregoing procedure for construct-
ing R, S and C is implementable in polynomial-time. Thus, in case the “row”
procedure was completed successfully, we may output the set of rows R, and
otherwise the set C of columns. ��

Proof of Theorem 2: Proposition 5 shows that for every x either Eq. (1)
or Eq. (2) holds, and furthermore that the former (resp., latter) holds whenever
x ∈ L (resp., x �∈ L). As mentioned above, by applying Corollary 7, it follows that
only one of these equations may hold. Using the decision procedure guaranteed by
Corollary 7, we implement Step 3 in our derandomized procedure, and Theorem 2
follows. ��

A Finer Analysis. For a BPP algorithm that uses 	 coin tosses and can be
implemented by circuits of size s, our derandomization only invokes the hitting-
set generator with parameters (	, s ·	), and otherwise it runs in polynomial time.
However, if the algorithm only has constant error probability, we must first
reduce the error to 1/2	, which increases these parameters somewhat. Using
standard error reduction (running the algorithm O(log 	) times independently
and ruling by majority), we obtain the following more quantitative version of
our result:

Theorem 8 (Theorem 2, refined): Suppose there is a hitting set generator G
such that G(	, s) is computable in time t(	, s). Let L be a problem with a constant-
error BPP algorithm that, on inputs of length n, uses 	 = 	(n) coin tosses and
can be implemented by circuits of size s = s(n). Then,

L ∈ DT IME(poly(t(	′, s · 	′))),

where 	′ = O(	 log 	).

We comment that, by using random walks on expanders for error reduction, one
can replace t(	′, s · 	′) by t(	′′, s · 	′), where 	′′ = 	 + O(log 	) � 	′.

Acknowledgments. The second author thanks Adam Klivans for explaining [7]
to him.

6 Let us spell out the argument in the current setting. We initiate an iterative process
of picking columns from S such that at each iteration we pick a column that covers
the largest number of 0’s in the remaining rows. That is, we initialize R0 = [n] and
C = ∅, and for j = 1, 2, ..., take a column c not in C that has a maximal number of
0’s in Ri−1, add c to C, and let Rj be the part of Rj−1 that has 1’s in column c (i.e.,

Rj
def
= {r∈Ri−1 : br,c =1}). The point is that, by our hypothesis, for the current C,

the submatrix Rj−1 × (S \C) contains at least |Rj−1| · |S|/2 0’s, and therefore there
exists a column c ∈ S \ C such that |{r∈Ri−1 : br,c =0}| ≥ |Rj−1|/2.
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On Testing Expansion in Bounded-Degree

Graphs

Oded Goldreich and Dana Ron

Abstract. We consider testing graph expansion in the bounded-degree
graph model. Specifically, we refer to algorithms for testing whether the
graph has a second eigenvalue bounded above by a given threshold or is
far from any graph with such (or related) property.

We present a natural algorithm aimed towards achieving the foregoing
task. The algorithm is given a (normalized) eigenvalue bound λ < 1,
oracle access to a bounded-degree N-vertex graph, and two additional
parameters ε, α > 0. The algorithm runs in time N0.5+α/poly(ε), and
accepts any graph having (normalized) second eigenvalue at most λ. We
believe that the algorithm rejects any graph that is ε-far from having
second eigenvalue at most λα/O(1), and prove the validity of this belief
under an appealing combinatorial conjecture.

Keywords: Property Testing, Graph Expansion.

This work appeared as TR00-020 of ECCC. It is based on a research project
pursued in the years 1998–99, which was stuck at the gap outlined in Section 4.2.
The current revision is intentionally minimal, because the original publication
has triggered several subsequent works, which directly address the topic of this
work (see [8] and the references therein) or are indirectly inspired by it (see, e.g.,
[4]). For further discussion of subsequent work, see Section 5.

1 Introduction

This memo reports partial results regarding the task of testing whether a given
bounded-degree graph is an expander. That is, we refer to the “bounded-degree
model” of testing graph properties as formulated in [5]. In this model, the (ran-
domized) algorithm is given integers d and N , a distance parameter ε (as well
as some problem-specific parameters), and oracle access to a N -vertex graph G
with degree bound d; that is, query (v, i) ∈ [N ]× [d] is answered by the ith neigh-
bor of v in G (or by a special symbol in case v has less than i neighbors). For a
predetermined property P , the algorithm is required to accept (with probability
at least 2/3) any graph having property P , and reject (with probability at least
2/3) any graph that is ε-far from having property P , where distance between
graphs is defined as the fraction of edges (over dN) on which the graphs differ.

Loosely speaking, the specific property considered here is being an expander.
More precisely, for a given bound λ < 1, we consider the property, denoted Eλ,
of having a normalized by d adjacency matrix with second eigenvalue at most

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 68–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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λ. Actually, we further relax the property testing formulation (as in [9]): Using
an additional parameter λ′ ≥ λ, we only require that

– the algorithm must accept (with probability at least 2/3) any graph having
property Eλ (i.e., having second eigenvalue at most λ); and

– the algorithm must reject (with probability at least 2/3) any graph that is ε-
far from having property Eλ′ (i.e., from any graph that has second eigenvalue
at most λ′).

Setting λ′ = λ we regain the more strict formulation of testing whether a graph
has second eigenvalue at most λ.

We mention that the Ω(
√

N) lower bound on “testing expansion” (presented
in [5]) continues to hold for the relaxed formulation, provided that λ′ < 1.
This is the case because the lower bound is established by showing that any
o(
√

N)-query algorithm fails to distinguish between a very good expander and
an unconnected graph with several huge connected components.1

In view of the foregoing, we shall be content with any sub-linear time algo-
rithm for testing expansion. Below, we present a parameterized family of algo-
rithms. For any α > 0, the algorithm has running-time n0.5+α/poly(ε) and is
supposed to satisfy the foregoing requirement with λ′ = λα/7. Unfortunately,
we only prove that this is indeed the case provided that a certain combinatorial
conjecture (presented in Section 4.2) holds.

2 Conventions and Notation

We consider N -vertex graphs of degree bound d, which should be thought of as
fixed. We consider the stochastic matrix representing a canonical random walk
on this graph, where canonical is anything reasonable (e.g., go to each neighbor
with probability 1/2d). The eigenvalues below refer to this matrix.

Recall that λ denotes the claimed second eigenvalue (i.e., we need to accept
graphs having second eigenvalue at most λ), and ε denotes the distance param-
eter (i.e., we need to reject graphs that are ε-far from having second eigenvalue
at most λ′, where λ′ > λ is related to λ).

The algorithm presented next is parameterized by a small constant α > 0 that
determines both its complexity (i.e., O(N0.5+α/poly(ε))) and its performance
(i.e., λ′ = λα/O(1)). To be of interest, the algorithm must use α < 0.5.

3 The Algorithm

We set L = 1.5 lnN
ln(1/λ) . This guarantees that a graph with second eigenvalue at

most λ mixes well in L steps (i.e., the deviation in max-norm of the end proba-
bility from the uniform distribution is at most N−1.5). The following algorithm
evaluates the distance of the end probability (of an L-step random walk starting
at a fixed vertex) from the uniform probability distribution. It is based on the
fact that the uniform distribution over a set has the smallest possible collision
probability, among all distributions over this set.
1 In the latter case, the graph has (normalized) second eigenvalue equal 1.
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Repeat the following steps t
def= Θ(1/ε) times:

1. Select uniformly a start vertex, denoted s.
2. Perform m

def= Θ(N0.5+α/ε) random walks of length L, starting from vertex s.
3. Count the number of pairwise collisions between the endpoints of the fore-

going m walks.
4. If the count is greater than 1+0.5·N−α/2

N ·
(
m
2

)
, then reject.

If all repetitions were completed without rejection, then accept.

Comment: Random walks were used before in the context of testing graph prop-
erties (in the bounded-degree model). Specifically, Õ(

√
N/poly(ε)) such walks

were used by the bipartitness tester of [6]. Needless to say, random walks seem
much more natural here.

4 Analysis

Fixing any start vertex s, we denote by ps,v the probability that a random walk
of length L starting at s ends in v. The collision probability of L-walks starting at
s is given by ∑

v

p2
s,v ≥ 1

N .
(1)

By our choice of L, if the graph has eigenvalue at most λ, then (for any starting
vertex s) the collision probability of L-walks starting at s is very close to 1/N
(i.e., is smaller than (1/N) + (1/N2)).

4.1 Approximation of the Collision Probabilities

The first issue to address is the approximation to Eq. (1) provided by Steps (2)–
(3) of the algorithm.

Lemma 1 With probability at least 1−(1/3t), the (normalized) empirical count2

computed in Steps (2)–(3) is within a factor of 1 ± 1
4 · N−α/2 of the value of

Eq. (1).

Thus, with probability at least 2/3, all approximations provided by the
algorithms are within a factor of 1± 1

4 ·N−α/2 of the correct value.

Proof: For every i < j, define a 0-1 random variable ζi,j such that ζi,j = 1 if the

endpoint of the ith path is equal to the endpoint of the jth path. Clearly, μ
def=

E[ζi,j ] =
∑

v p2
s,v, for every i < j. Using Chebyshev’s inequality we bound the

probability that the count provided by Steps (2)–(3) deviates from its (correct)
expected value. Let P

def= {(i, j) : 1 ≤ i < j ≤ m} and δ = 1
4 ·N−α/2. Then:

2 That is, the number of pairwise collisions divided by
(

m
2

)
.
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Pr

⎡⎣∣∣∣∣∣∣
∑

(i,j)∈P

ζi,j − |P | · μ

∣∣∣∣∣∣ > δ · |P | · μ

⎤⎦ ≤
Var[

∑
(i,j)∈P ζi,j ]

(δ · |P | · μ)2 .

(2)

Denote ζi,j
def= ζi,j − μ. The rest of the proof needs to deal with the fact that

the random variables associated with P are not pairwise independent. Specif-
ically, for four distinct i, j, i′, j′, indeed ζi,j and ζi′,j′ are independent, and so
E[ζi,jζi′,j′ ] = E[ζi,j ] · E[ζi′,j′ ] = 0; but for i < j �= k the random variables ζi,j

and ζi,k are not independent (since they both depend on the same ith walk).
Still, it holds that

Var

⎡⎣ ∑
(i,j)∈P

ζi,j

⎤⎦ = E

⎡⎢⎣
⎛⎝ ∑

(i,j)∈P

ζi,j

⎞⎠2
⎤⎥⎦

=
∑

(i,j)∈P

E
[
ζ
2

i,j

]
+ 5 ·

∑
1≤i<j<k≤m

E
[
ζi,jζi,k

]
< |P | · μ + m3 ·

∑
v

p3
s,v.

since ζi,jζi,k = 1 if and only if all three random walks end at the same vertex.
Using (

∑
v p3

s,v)1/3 ≤ (
∑

v p2
s,v)1/2, and m2 < 3 · |P |, we obtain

Var

⎡⎣ ∑
(i,j)∈P

ζi,j

⎤⎦ ≤ |P | · μ + (3|P |)3/2 · μ3/2 < 6 · (|P | · μ)3/2 . (3)

Combining Eq. (2) and (3), we obtain

Pr

⎡⎣∣∣∣∣∣∣
∑

(i,j)∈P

ζi,j − |P | · μ

∣∣∣∣∣∣ > δ · |P | · μ

⎤⎦ <
6

δ2 · (|P | · μ)1/2
.

Using μ ≥ 1/N and |P | > m2

4 = Θ(N1+2α

ε2 ), the denominator is at least δ2·Θ(Nα

ε ).
Recalling that δ = 1

4 ·N−α/2 and t = O(1/ε), the lemma follows.

As an immediate corollary we get:

Corollary 2. If the graph has second eigenvalue at most λ, then the foregoing
algorithm accepts it with probability at least 2/3.

Another immediate corollary is the following:

Corollary 3. Suppose that for at least a ε/O(1) fraction of the vertices s in
G the collision probability of L-walks starting at s is greater than 1+0.8N−α/2

N .
Then, the algorithm rejects with probability at least 2/3.
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Thus, if a graph passes the test (with probability greater than 1/3), then it must
have less than (ε/O(1)) ·N exceptional vertices; that is, vertices s for which the
collision probability of L-walks starting at s is greater than 1+0.8N−α/2

N .

Comment: Note that by changing parameters in the algorithm (i.e., t = Θ(Nα/ε)
and m = Θ(N0.5+2α/ε)), we can make the fraction of exceptional vertices smaller
than εN−α. This may help in closing the gap (described in Section 4.2), and only
increases the complexity from N0.5+α/poly(ε) to N0.5+3α/poly(ε).

4.2 The Gap

We believe that the following conjecture (or something similar to it) is true.

Conjecture: Let G be an N -vertex graph of degree-bound d. Suppose that for
all but at most ε/O(1) fraction of the vertices s in G the collision probability
of L-walks starting at s is at most 1+0.8N−α/2

N . Then, G is ε-close to a N -vertex
graph (of degree-bound d) in which the collision probability of L-walks starting
at any vertex is at most 1+N−α/2

N .

The conjecture is very appealing: Suppose that you add εdN edges connecting
at random the exceptional vertices to the rest of the graph. Ignoring for a moment
the issue of preserving the degree bounds, this seems to work – but we cannot
prove it. Indeed, one can show that the previously exceptional vertices now enjoy
rapid mixing, but it is not clear that the added edges will not cause harm to the
mixing properties of the previously non-exceptional vertices.

4.3 Finishing It Off

Once the gap is closed, we have the following situation: If the algorithm rejects
with probability smaller than 2/3, then the input graph is ε-close to a graph
in which the collision probability of L-walks starting at any vertex is at most
1+N−α/2

N . But the excess of the collision probability beyond 1/N is nothing but
the square of the distance, in norm 2, of the probability vector (ps,v)v∈[N ] from
the uniform probability vector (i.e., (

∑
v p2

s,v) − (1/N) =
∑

v(ps,v − (1/N))2).
Thus, for every s the distance, in norm 2, of the probability vector (ps,v)v∈[N ]

from the uniform probability vector is at most
√

N−α/2

N = N−(0.5+β), where
β = α/4.

The plan now is to “reverse” the standard eigenvalue to rapid-mixing con-
nection. That is, infer from the rapid-mixing feature that the graph has a small
second eigenvalue. Such a lemma has appeared in [7]:

Lemma 4 (Lemma 4.6 in [7]): Consider a regular connected graph on N ver-
tices, let A be its normalized adjacency matrix and λ2 denote the absolute value
of the second eigenvalue of A. Let 	 be an integer and Δ� denote an upper bound
on the maximum, taken over all possible start vertices s, of the difference in
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norm 2 between the distribution induced by an 	-step random walk starting at s
and the uniform distribution. Then λ2 ≤ (N ·Δ�)1/�.

Note that by the foregoing, we have ΔL < N−(0.5+β). This does not give anything
useful when applying the lemma directly. Instead, we apply the lemma after
bounding Δ� for 	 = O(L). (This strategy may be an oversight, but that’s how
we argue it now.)

Claim 5. Let Δ� be define as in Lemma 4. Then Δk� ≤ (
√

N ·Δ�)k, for every
integer k.

Proof: Let B = A� be the stochastic matrix representing an 	-step random
walk, and let �e1, ..., �eN denote probability vectors in which all the mass is on
one vertex. Let �ν denote the uniform probability vector. Then Δ� (resp., Δk�)
equals the maximum of ‖B�ei − �ν‖ (resp., ‖Bk�ei − �ν‖) taken over all the �ei’s.

Considering the basis of �ei’s, let �z be an arbitrary zero-sum vector (such as
�ei − �ν). That is, �z is written in the basis of �ei’s as �z =

∑
i zi�ei, and

∑
i zi = 0.

We obtain

‖B�z‖ =

∥∥∥∥∥B

(∑
i

zi�ei

)
−

∑
i

ziB�ν

∥∥∥∥∥
=

∥∥∥∥∥∑
i

ziB(�ei − �ν)

∥∥∥∥∥
≤

∑
i

‖ziB(�ei − �ν)‖

=
∑

i

|zi| · ‖B(�ei − �ν)‖

≤
(∑

i

|zi|
)
·Δ� .

Since
∑

i |zi| ≤
√

N ·
√∑

i z2
i =

√
N · ‖�z‖, we get

‖B�z‖ ≤
√

N ·Δ� · ‖�z‖.

Using B�ν = �ν, we get for every i

‖Bk�ei − �ν‖ = ‖B(Bk−1�ei − �ν)‖
≤ Δ� ·

√
N · ‖Bk−1�ei − �ν‖

<
(
Δ� ·

√
N
)k

and the claim follows.

Combining Lemma 4 and Claim 5, we obtain the following
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Corollary 6. Suppose that for every s the distance, in norm 2, of the probability
vector (ps,v)v∈[N ] from the uniform probability vector is at most N−(0.5+β). Then,
for every constant γ < 2β/3, the second eigenvalue of the graph is at most λγ .

So once the gap is filled, we are done (using β = α/4 and γ ≈ 2β/3).

Proof: Let λ′ be the second eigenvalue of the graph. Then, for every k we have

λ′ ≤ (N ·ΔkL)1/kL [Lemma 4]

≤
(

N ·
(√

N ·ΔL

)k
)1/kL

[Claim 5]

≤
(
N ·

(
N−β

)k
)1/kL

[hypothesis]

= exp
(

(1−kβ)·ln N
kL

)
.

Substituting for L = 1.5 ln N
ln(1/λ) , we get

(1 − kβ) · ln N

kL
=

(1 − kβ) · ln N

k · ((1.5 lnN)/ ln(1/λ))

= −
(

2β

3
− 2

3k

)
· ln(1/λ)

< −γ · ln(1/λ),

for sufficiently large k (since γ < 2β/3). We get λ′ < λγ , and the corollary
follows.

Comment: We have λ′ ≤ λγ for any γ < 2β/3 = α/6 (e.g., γ = α/7 will do). One
may be able to increase the exponent (i.e., γ) somewhat, but a linear dependency
(of the exponent γ) on α seems unavoidable (under the current approach).

5 Subsequent Work

Subsequent works, culiminating in [8], have addressed the problem of testing ex-
pansion of graphs. These subsequent works refer to a combinatorial definition of
graph expansion, rather than to the algebraic definition of eigenvalues. Although
both definitions are related (see [1,2] or [3, Sec. 9.2]), the translation is not tight.
Still, for some values of λ < λ′ < 1, these works resolve the open problem raised
in our work.

In addition, the current work has inspired work on testing distributions,
as initiated in [4]. Specifically, these works use the observation that the em-
pirical collision count of O(

√
N) samples taken from a distribution over [N ]

provides an approximation to the distance of this distribution from the uniform
distribution.
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Candidate One-Way Functions Based on

Expander Graphs

Oded Goldreich

Abstract. We suggest a candidate one-way function using combinato-
rial constructs such as expander graphs. These graphs are used to deter-
mine a sequence of small overlapping subsets of input bits, to which a
hard-wired random predicate is applied. Thus, the function is extremely
easy to evaluate: All that is needed is to take multiple projections of the
input bits, and to use these as entries to a look-up table. It is feasible
for the adversary to scan the look-up table, but we believe it would be
infeasible to find an input that fits a given sequence of values obtained
for these overlapping projections.

The conjectured difficulty of inverting the suggested function does not
seem to follow from any well-known assumption. Instead, we propose the
study of the complexity of inverting this function as an interesting open
problem, with the hope that further research will provide evidence to
our belief that the inversion task is intractable.

Keywords: One-Way Functions, Expander Graphs.

This work appeared as TR00-090 of ECCC. The current revision is intentionally
minimal, because the original publication has triggered several subsequent works
(although less than we have hoped). For further discussion of these subsequent
works and some afterthoughts, see Section 6.

1 Introduction

In contrary to the present attempts to suggest a practical private-key encryption
scheme to replace the des, we believe that attempts should focus on suggesting
practical one-way functions and pseudorandom functions. Being a simpler object,
one-way functions should be easier to construct, and such constructions may later
yield directly or indirectly a variety of other applications (including private-key
encryption schemes).

The current attempts to suggest a practical private-key encryption scheme in
place of the des seem quite ad-hoc: Not only that they cannot be reduced to
any well-known problem, but (typically) they do not relate to a computational
problem of natural appeal. Thus, the study of these suggestions is of limited
appeal (especially from a conceptual point of view).

In this manuscript, we propose a general scheme for constructing one-way
functions. We do not believe that the complexity of inverting the resulting func-
tion follows from some well-known intractability assumptions. We believe that

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 76–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



One-Way Functions Based on Expander Graphs 77

the complexity of inverting this function is a new interesting open problem, and
hope that other researcher will be able to obtain better understanding of this
problem.

In addition to the abstract presentation, we propose several concrete instan-
tiations of our proposal. It seems to us that a reasonable level of “security” (i.e.,
hardness to invert) may be achieved at very modest input lengths. Specifically,
on input length at the order of a couple of hundreds of bits, inverting the function
may require complexity (e.g., time) beyond 2100.

Style and Organization. This write-up is intended to two different types of read-
ers, since we believe that it is relevant to two different research communities (i.e.,
computational complexity and applied cryptography). Consequently, we provide
an asymptotic presentation as well as suggestions for concrete parameters. The
basic suggestion is presented in Sections 2 and 3. Concrete instantiations of this
suggestion are proposed in Section 4. Concluding comments appear in Section 5.

2 The Basic Suggestion

We construct a (uniform) collection of functions {fn : {0, 1}n → {0, 1}n}n∈N.
Our construction utilizes a collection of 	(n)-subsets, S1, ..., Sn ⊂ [n] def= {1, ..., n},
and a predicate P : {0, 1}�(n) → {0, 1}. Jumping ahead, we hint that:

1. The function 	 is relatively small: Theoretically speaking, 	 = O(log n) or
even 	 = O(1). In practice 	 should be in the range {7, ..., 16}, whereas n
should range between a couple of hundreds and a couple of thousands.

2. We prefer to have P : {0, 1}� → {0, 1} be a random predicate. That is, it will
be randomly selected, fixed, and “hard-wired” into the function. For sure, P
should not be linear, nor depend on few of its bit locations.

3. The collection S1, ..., Sn should be expanding; specifically, for some k, every k
subsets should cover at least k +Ω(n) elements of {1, ..., n}. The complexity
of the inversion problem (for fn constructed based on such a collection)
seems to be exponential in the “net expansion” of the collection (i.e., the
cardinality of the union minus the number of subsets).

For x = x1 · · ·xn ∈ {0, 1}n and S ⊂ [n], where S = {i1, i2, ..., it} and ij < ij+1,
we denote by xS the projection of x on S; that is, xS = xi1xi2 · · ·xit . Fixing P
and S1, ..., Sn as above, we define

fn(x) def= P (xS1)P (xS2) · · ·P (xSn). (1)

Note that we think of 	 as being relatively small (i.e., 	 = O(log n)), and aim
at having fn be univertible within time 2n/O(1). Thus, the hardness of invert-
ing fn cannot be due to the hardness of inverting P . Instead, the hardness of
inverting fn is supposed to come from the combinatorial properties of the col-
lection of sets C = {S1, ..., Sn} (as well as from the combinatorial properties of
predicate P ).
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2.1 The Preferred Implementation

Our preference is to have P be a fixed randomly chosen predicate, which is
hard-wired into the algorithm for evaluating fn. Actually, one better avoid some
choices; see next section. (In case 	 = Θ(log n) bad choices are rare enough.) In
practice, we think of 	 in the range {7, ..., 16}, and so hard-wiring a (random)
predicate defined on {0, 1}� is quite feasible. The 	-subsets will be determined by
combinatorial constructions called expander graphs. At this point the reader may
think of them too as being hard-wired into the algorithm. On input x ∈ {0, 1}n,
the algorithm for computing fn proceeds as follows:

1. For i = 1, .., n, projects x on Si, forming the 	-bit long string x(i).
2. For i = 1, .., n, by accessing a look-up table for P , determines the bit yi =

P (x(i)).

The output is the n-bit long string y1y2 · · · yn.

(Note that the n operations, in each of the foregoing two steps, can be performed
in parallel.)

2.2 An Alternative Implementation

An alternative to having P “hard-wired” to the algorithm (as above) is to have
it appear as part of the input (and output). That is, letting 〈P 〉 denote the 2�-bit
string that fully specifies P , we have

f ′
n(〈P 〉, x) def= (〈P 〉, P (xS1)P (xS2) · · ·P (xSn)) (2)

Thus, P is essentially random, since the inversion problem is considered with
respect to a uniformly chosen input. This implementation is more appealing
from a theoretical point of view, and in such a case one better let 	 = log2 n
(rather than 	 = O(1)).1

2.3 Determining Suitable Collections

As hinted above, the collection of 	-subsets, C = {S1, ..., Sn}, is to be determined
by a suitable combinatorial construction known as expander graphs. The reason
for this choice will become more clear from the analysis of one obvious attack
(presented in Section 3.2). The specific correspondence (between expanders and
subsets) depends on whether one uses the bipartite or non-bipartite formulation
of expander graphs:

Bipartite formulation: In this case one considers a bipartite graph
B = ((U, V ), E), where (U, V ) is a partition of the vertex set, with |U | = |V |,

1 Our main concern at the time was to make the new assumption as strong as possble.
From that perspective, we preferred � = O(log n) over � = O(1).
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and E ⊂ U×V is typically sparse. The expanding property of the graph pro-
vides, for every U ′ ⊂ U (of size at most |U |/2), a lower bound on |Γ (U ′)|−|U ′|
(in terms of |U ′|), where Γ (U ′) = {v : ∃u ∈ U ′ s.t. (u, v) ∈ E}.
Our collection of subsets will be defined as C = {Su}u∈U , where Su = {v :
(u, v) ∈ E}.

Non-bipartite formulation: In this case one considers a graph G = (V, E), so
that for every V ′ ⊂ V (of size at most |V |/2), a suitable lower bound on
|Γ (V ′) \ V ′| holds, where Γ (V ′) = {v : ∃v′ ∈ V ′ s.t. (v′, v) ∈ E}.
Our collection of subsets is defined as C = {Sv}v∈V , where Sv = {w :
(v, w) ∈ E} ∪ {v}.

In both cases, the lower bound provided by the expansion property on the size
of the neighbor set is linear in the size of the specific vertex set; e.g., for the
non-bipartite formulation it holds that |Γ (V ′) \ V ′| ≥ c · |V ′| for some constant
c > 0 and every admissible V ′.

3 Avoiding Obvious Weaknesses

Considering a few obvious attacks, we rule out some obviously bad choices of
the predicate P and the collection C.

3.1 The Choice of the Predicate

We start by discussing two bad choices (for the predicate P ), which should be
avoided.

Linear Predicates. It is certainly bad to use a linear predicate P (i.e., P (σ1 · · ·σ�)
= p0 +

∑�
i=1 piσi, for some p0, p1, ..., p� ∈ {0, 1}). Under a linear P , the question

of inverting fn, regardless of what collection of subsets C is used, boils down to
solving a linear system (of n equations in n variables), which is easy. Having a
predicate P that is close to a linear predicate is dangerous too.

Horn Predicates. Likewise, one should avoid having any predicate that will make
the system of equations (or conditions) solvable in polynomial-time. The only
other type of easily solvable equations are these arising from Horn formulae (e.g.,
an OR of all variables).

Degenerate Predicates. The rest of our analysis refers to the collection of sets
that determine the inputs to which the predicate P is applied. For this analysis
to be meaningful, the predicate should actually depend on all bits in its input
(i.e., be non-degenerated).

Good Predicates. We believe that most predicates are good for our purpose. In
particular, we suggest to use a uniformly chosen predicate.
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3.2 The Choice of the Collection

Since the inverting algorithm can afford to consider all preimages of the predicate
P , it is crucial that the inversion of fn cannot be performed by interactively
inverting P . To demonstrate this point, consider the case 	 = 1 and the collection
{S1, ..., Sn} such that Si = {i}. In this case the Si’s are disjoint and we can
recover the preimage by inverting P on each of the bits of the image, separately
from the others. For a less trivial example, consider the case where the collection
C consists of n/2	 sub-collections, each having 2	 subsets of some distinct set
of 2	 elements. In this case, inversion can be performed in time O(n · 22�) by
considering each of these disjoint sets (of 2	 elements) separately. Recall that we
wish the complexity of inversion to be exponential in n (and not in 	, which may
be a constant).

In general, a natural inverting algorithm that should be defeated is the fol-
lowing: On input y = fn(x), the algorithm proceeds in n steps, maintaining a
list of partially specified preimages of y under fn. Initially, the list consists of the
unique fully-undetermined string ∗n. In the first step, depending on the first bit
of y = y1 · · · yn, we form the list L1 of strings over {∗, 0, 1} such that, for every
z ∈ L1, it holds that P (zS1) = y1 and z[n]\S1 = ∗n−�, where [m] def= {1, ..., m}
(and zS1 ∈ {0, 1}�). In the i + 1st step, we extend Li to Li+1 in the natural
manner:

– Let U ′ = ∪i
j=1Sj and U = ∪i+1

j=1Sj .
– For every z′ ∈ Li, we consider all 2|U\U ′| strings z ∈ {∗, 0, 1}n satisfying

1. zU ′ = z′U ′ ,
2. zU\U ′ ∈ {0, 1}|U\U ′|, and
3. z[n]\U = ∗n−|U|.

The string z is added to Li+1 if and only if P (zSi+1) = yi+1.

Thus (when invoked on input y), for every i, it holds that

Li =

⎧⎨⎩z ∈ {∗, 0, 1}n :
zk = ∗ if and only if k ∈ [n] \ ∪i

j=1Sj

and
P (zSj ) = yj for j = 1, ..., i

⎫⎬⎭
.

The average running-time of this algorithm is determined by the expected size
of the list at step i, for the worst possible i. Letting U = ∪i

j=1Sj , consider the
set

Aσ1···σi

def=

⎧⎨⎩z ∈ {∗, 0, 1}n :
zk = ∗ if and only if k ∈ [n] \ U
and
P (zSj ) = σj for j = 1, ..., i

⎫⎬⎭
,

and let X be uniformly distributed over {0, 1}n. Then, the expected size of Li

equals∑
α∈{0,1}i

Pr[f(X)[i] = α] · |Aα| =
∑

α∈{0,1}i

Pr[∃z∈Aα s.t. XU = zU ] · |Aα|
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=
∑

α∈{0,1}i

|Aα|
2|U| · |Aα| = 2−|U| ·

∑
α∈{0,1}i

|Aα|2

≥ 2−|U| ·
(
2|U|)2

2i
= 2|U|−i

where the inequality is due to the fact that the minimum value of
∑

i z2
i , taken

over M (= 2i) non-negative zi’s summing to N (= 2|U|), is obtained when the
zi’s are equal, and the value itself is M · (N/M)2 = N2/M .

Note that the algorithm needs not proceed by the foregoing order of sets
(i.e., S1, S2, S3, ...). In general, for every 1-1 permutation π over [n], we may
proceed by considering in the ith step the set Sπ(i). Still, the complexity of this
(generalized) algorithm is at least exponential in

min
π

{
max

i

{∣∣∪i
j=1Sπ(j)

∣∣− i
}}

.
(3)

We should thus use a collection such that Eq. (3) is big (i.e., bounded below by
Ω(n)).

Bad collections. Obviously, it is a bad idea to have Sj = {j + 1, ..., j + 	}, since
in this case we have | ∪i

j=1 Sj | − i ≤ 	 − 1 for every i. It also follows that we
cannot use 	 ≤ 2, since in this case one can always find an order π such that
Eq. (3) is bounded above by 	− 1.

Good collections. An obvious lower bound on Eq. (3) is obtained by the expansion
property of the collection C = {Sj}, where the expansion of C is defined as

max
k

min
I: |I|=k

{|∪j∈ISj | − k|} . (4)

A natural suggestion is to determine the collection C according to the neigh-
borhood sets of an expander graph. Loosely speaking, known constructions of
expander graphs allow to let 	 be a small constant (in the range {7, ..., 16}),
while guaranteeing that Eq. (4) is a constant fraction of n.

4 Concrete Parameters for Practical Use

If we go for random predicates, then we should keep 	 relatively small (say,
	 ≤ 16), since our implementation of the function must contain a 2�-size table
look-up for P . (Indeed, 	 = 8 poses no difficulty, and 	 = 16 requires a table of
64K bits which seems reasonable.) For concrete security we will be satisfied with
time complexities such as 280 or so. Our aim is to have n as small as possible
(e.g., a couple of hundreds).

The issue addressed below is which expander to use. It is somewhat “disap-
pointing” that for some specific parameters we aim for, we cannot use the “best”
known explicit constructions.

Below we use the bipartite formulation of expanders. By expansion we mean
a lower bound established on the quantity in Eq. (4). Recall that the time com-
plexity is conjectured to be exponential in this bound.
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Random Construction. This yields the best results, but the “cost” is that
with small probability we may select a bad construction. (The fact that we need
to hard-wire the construction into the function description is of little practical
concern, since we are merely talking of hard-wiring n · 	 · log2 n bits, which
for the biggest n and 	 considered below merely means hard-wiring 20K bits.)
Alternatively, one may incorporate the specification of the construction in the
input of the one-way function, at the cost of augmenting the input by n ·	 · log2 n
(where the original input is n-bit long). Specific values that may be used are
tabulated in Figure 1.2

degree (i.e., �) #vertices (i.e., n) expansion error prob.

10 256 77 2−81

12 256 90 2−101

14 256 103 2−104

16 256 105 2−152

8 384 93 2−83

10 384 116 2−121

12 384 139 2−141

8 512 130 2−101

10 512 159 2−151

12 512 180 2−202

Fig. 1. The parameters of a random construction

The last column (i.e., error prob.) states the probability that a random con-
struction (with given n and 	) does not achieve the stated expansion. Actually,
we only provide upper bounds on these probabilities.

Alon’s Geometric Expanders [4]. These constructions do not allow 	 =
O(log n), but rather 	 that is polynomially related to n. Still for our small num-
bers we get meaningful results, when using 	 = q + 1 and n = q2 + q + 1, where
q is a prime power. Specific values that may be used are tabulated in Figure 2.3

Note that these are all the suitable values for Alon’s construction (with 	 ≤ 16);
in particular, 	 uniquely determines n and 	− 1 must be a prime power.

2 The expansion was computed in a straightforward manner. The key issue is to pro-
vide, for any fixed k and h, a good upper bound on the probability that a specific
set of k vertices has less than h neighbors.

3 The expansion is computed from the eigenvalues, as in [5]. Actually, we use the
stronger bound provided by [4, Thm. 2.3] rather than the simpler (and better known)
bound. Specifically, the lower bounds in [4, Thm. 2.3] are on the size of the neigh-
borhood of x-subsets, and so we should subtract x from them, and maximize over
all possible x’s. (We use the stronger lower bound of n− (n−x)(�n+1)

�n+1+(n−�−2)x
, rather than

the simpler bound of n − n3/2

x
, both provided in [4, Thm. 2.3].)
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degree (i.e., �) #vertices (i.e., n) expansion comment

10 91 49 expansion too low

12 133 76 quite good

14 183 109 very good

Fig. 2. The parameters of Geometric expanders

The Ramanujan Expanders of Lubotzky, Phillips, and Sarnak [10].
Until one plays with the parameters governing this construction, one may not
realize how annoying these may be with respect to an actual use: The difficulty
is that there are severe restrictions regarding the degree and the number of
vertices,4 making n ≈ 2000 the smallest suitable choice. Admissible values are
tabulated in Figure 3.5

Parameters Results

p q bipartite? � n expansion (+ comment)

13 5 NO 15 120 20 (unacceptable)

5 13 NO 7 2184 160 (better than needed)

13 17 YES 14 2448 392 (better than needed)

Fig. 3. The parameters of Ramanujan expanders

Note that p = 5 and p = 13 are the only admissible choices for 	 ≤ 16. Larger
values of q may be used, but this will only yield larger value of n.

Using the Simple Expander of Gaber–Galil [8]. Another nasty surprise
is that the easy-to-handle expander of Gaber–Galil performs very poorly on
our range of parameters. This expander has degree 7 (i.e., 	 = 7), and can be
constructed for any n = m2, where m is an integer. But its expansion is (c/2) ·n,
where c = 1−

√
3/4 ≈ 0.1339746, and so to achieve expansion above 80 we need

to use n = 1225. See Figure 4.

A Second Thought. In some applications having n on the magnitude of a cou-
ple of thousands may be acceptable. In such a case, the explicit constructions
of Lubotzky, Phillips, and Sarnak [10] and of Gaber and Galil [8] become rel-
evant. In view of the lower degree and greater flexibility, we would prefer the
construction of Gaber–Galil.

4 Specifically, � = p + 1 and n = (q3 − q)/2, where p and q are different primes, both
congruent to 1 mod 4, and p is a square mod q. For the non-bipartite case, p is a
non-square mod q, and n = q3 − q. Recall that for non-bipartite graphs � equals the
degree plus 1 (rather than the degree).

5 The expansion is computed from the eigenvalues, as in [5].
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degree (i.e., �) #vertices (i.e., n) expansion comment

7 400 27 expansion way too low

7 1225 83 good

7 1600 108 very good

7 2500 168 beyond our requirements

Fig. 4. The parameters of Gaber–Galil expanders

5 Concluding Remarks

This was the last section of the original write-up.

5.1 Variations

One variation is to use either a specific predicate or predicates selected at ran-
dom from a small domain, rather than using a truly random predicate (as in
the foregoing presentation). The advantage of these suggestions is that the de-
scription of the predicate is shorter, and so one may use larger values of 	. Two
specific suggestions follow:

1. Use the predicate that partitions its input into two equal length strings and
takes their inner product modulo 2. That is, P (z1, ..., z2t) =

∑t
i=1 zizt+i mod

2.
In this case, the predicate is described without reference to 	, and so any
value of 	 can be used (in practice). This suggestion is due to Adi Shamir.

2. Use a random low-degree 	-variant polynomial as a predicate. Specifically,
we think of a random 	-variant polynomial of degree d ∈ {2, 3} over the finite
field of two elements, and such a polynomial can be described by

(
�
d

)
bits.

In practice, even for d = 3, we may use 	 = 32 (since the description length
in this case is less than 6K bits).

On the other extreme, for sake of simplifying the analysis, one may use differ-
ent predicates in each application (rather than using the same predicate in all
applications).

5.2 Directions for Investigation

1. The combinatorial properties of the function fn. Here we refer to issues such
as under what conditions is fn 1-to-1 or merely “looses little information”;
that is, how is fn(Xn) distributed, when Xn is uniformly selected in {0, 1}n.
One can show that if the collection (S1, ..., Sn) is sufficiently expending (as
defined above), then fn(Xn) has min-entropy Ω(n); i.e., Pr[fn(Xn) = α] <
2−Ω(n), for every α ∈ {0, 1}n. We seek min-entropy bounds of the form
n−O(log n).
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2. What happens when fn is iterated? Assuming that fn “looses little informa-
tion”, iterating it may make the inverting task even harder, as well as serves
as a starting point for the next item.6

3. Modifying the construction to obtained a “keyed”-function with the hope
that the result is a pseudorandom function (cf. [9]). The idea is to let the
key specify the (random) predicate P . We stress that this modification is
applied to the iterated function, not to the basic one.7 We suggest using
Θ(log n) iteration; in practice 3–5 iterations should suffice.

Our construction is similar to a construction that was developed by Alekhnovich
et. al. [3] in the context of proof complexity. Their results may be applicable
to show that certain search method that are related to resolution will require
exponential-time to invert our function [Avi Wigderson, private communication,
2000].8

5.3 Inspiration

Our construction was inspired by the construction of Nisan and Wigderson [11];
however, we deviate from the latter work in two important aspects:

1. Nisan and Wigderson reduce the security of their construction to the hard-
ness of the predicate in use. In our construction, the predicate is not complex
at all (and our hope that the function is hard to invert can not arise from the
complexity of the predicate). That is, we hope that the function is harder to
invert than the predicate is to compute.9

2. The set system used by Nisan and Wigderson has different combinatorial
properties than the systems used by us. Specifically, Nisan and Wigderson
ask for small intersections of each pair of sets, whereas we seek expansion
properties (of a type that cannot be satisfied by pairs of sets).

Our construction is also reminiscent of a sub-structure of of the des; specifically,
we refer to the mapping from 32-bit long strings to 32-bit long strings induced
by the eight S-boxes. However, the connection within input bits and output bits
is far more complex in our case. Specifically, in the des, each of the 8 (4-bit)
output strings is a function (computed by an S-box) of 6 (out of the 32) input

6 An additional motivation for iterating fn is to increase the dependence of each
output bit on the input bits. A dependency of each output bit on all output bits is
considered by some researchers to be a requirement from a one-way function; we beg
to differ.

7 We note that applying this idea to the original function will definitely fail. In that
case, by using 2� queries (and inspecting only one bit of the answers) we can easily
retrieve the key P .

8 This conjecture was proved in [7]. We mention that in the original posting of this
work we expressed the opinion that this direction requires further investigation.

9 We comment that it is not clear whether the Nisan and Wigderson construction can
be broken within time comparable to that of computing the predicate; their paper
only shows that it cannot be broken substantially faster.
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bits. The corresponding 8 subsets have a very simple structure; the ith subset
holds bit locations {4(i−1)+j : j = 0, ..., 5}, where i = 1, ..., 8 and 32 is identified
with 0. Indeed, inverting the mapping induced on 32-bit strings is very easy.10 In
contrast, the complex relation between the input bits corresponding to certain
output bits, in our case, defeat such a simple inversion attack. We stress that
this complex (or rather expanding) property of the sets of input bits is the heart
of our suggestion.

6 Subsequent Work and Afterthoughts

As evident from the Introduction (as well as from Section 4), our primary mo-
tivation for this proposal was to address a pratical concern. We hoped that
the apparently low cost of a hardware implementation should make this pro-
posal very appealing to practice. We further hoped that the simplicity of the
proposal may encourage theoretically inclined researchers to study it, and that
such research may generate more confidence in this proposal. From this perspec-
tive and for reasons outlined next, it felt preferrable to promote a setting of
	 = O(log n).

At the time, we were unclear as to what may be the best choice of a predi-
cate P , and our feeling was that most predicates (or a random predicate) will
do. Believing that it is best that P lacks any structure (and thus using a ran-
dom P ), the truthtable of P had to be hard-wired in the function (or appear
as part of the input and output to the function). For that reason, 	 = O(log n)
was an absolute limit. As clear from the text, we did not rule out the possi-
bility of setting 	 = O(1), but letting 	 be as large as possible felt safer (cf.
Footnote 1).

In contrast to our initial motivations, the complexity theory community be-
cames more interested in the possibility of setting 	 = O(1), as this yields a
function in NC0. Interest in this aspect of the current work was fueled by the
celebrated work of Applebaum, Ishai, and Kushilevitz [2], since one of their main
results implies that NC0 contains one-way functions if and only if NC1 contains
such functions. In fact, it is fair to say that the current work was practically
rediscovered after [2].

Subsequent studies have shakened our confidence that a random predicate
P is the best possible choice for our proposal. In particular, generalizing our
proposal to functions with m = O(n) output bits (rather than n output bits),
Bogdanov and Qiao showed [6] that a necessary requirement for security is using
a balanaced predicate P (i.e., P such that |{z ∈ {0, 1}� : P (z) = 1}| = 2�−1).
The use of balanaced predicates is also advocated in [1,7].

Acknowledgments. We are grateful to Noga Alon, Adi Shamir, Luca Trevisan,
and Avi Wigderson for useful discussions.

10 In an asymptotic generalization of the scheme, inversion takes time linear in the
number of bits.
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Using the FGLSS-Reduction to Prove

Inapproximability Results for Minimum Vertex
Cover in Hypergraphs

Oded Goldreich

Abstract. Using known results regarding PCP, we present simple proofs
of the inapproximability of vertex cover for hypergraphs. Specifically, we
show that

1. Approximating the size of the minimum vertex cover in O(1)-regular
hypergraphs to within a factor of 1.99999 is NP-hard.

2. Approximating the size of the minimum vertex cover in 4-regular
hypergraphs to within a factor of 1.49999 is NP-hard.

Both results are inferior to known results (by Trevisan (2001) and
Holmerin (2001)), but they are derived using much simpler proofs. Fur-
thermore, these proofs demonstrate the applicability of the FGLSS-
reduction in the context of reductions among combinatorial optimization
problems.

Keywords: Complexity of approximation, combinatorial optimization
problems, Vertex Cover, PCP, regular hypergraphs.

An early version of this work appeared as TR01-102 of ECCC. A discussion of
subsequent works is deferred to Section 5.

1 Introduction

This note was inspired by a work of Dinur and Safra [5], which was new at the
time this work was completed. Specifically, what we take from their work is the
realization that the so-called FGLSS-reduction is actually a general paradigm
that can be applied in various ways and achieve various purposes.

The FGLSS-reduction, introduced by Feige, Goldwasser, Lovász, Safra and
Szegedy [7], is typically understood as a reduction from sets having certain PCP
systems to approximation versions of Max-Clique (or Max Independent Set). The
reduction maps inputs (either in or out of the set) to graphs that represent the
pairwise consistencies among possible views of the corresponding PCP verifier.
It is instructive to think of these possible verifier views as of possible partial
solutions to the problem of finding an oracle that makes the verifier accept.

Dinur and Safra apply the same underlying reasoning to derive graphs that
represent pairwise consistencies between partial solutions to other combinatorial
problems [5]. In fact, they use two different instantiations of this reasoning.
Specifically, in one case they start with the vertex-cover problem and consider

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 88–97, 2011.
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the restrictions of possible vertex-covers to all possible O(1)-subsets of the vertex
set. The partial solutions in this case are the vertex-covers of the subgraphs
induced by all possible O(1)-subsets, and pairwise consistency is defined in the
natural way. Thus, we claim that in a sense, the work of Dinur and Safra [5]
suggests that the FGLSS-reduction is actually a general paradigm that can be
instantiated in various ways. Furthermore, the goal of applying this paradigm
may vary too. In particular, the original instantiatation of the FGLSS-reduction
by Feige et. al. [7] was aimed at linking the class PCP to the complexity of
approximating combinatorial optimization problems. In contrast, in the work
of Dinur and Safra [5] one instantiation is aimed at deriving instances of very
low “degree” (i.e., co-degree at most 2), and the other instantiation is aimed at
moving the “gap location” (cf. [16] and further discussion below).

We fear that the complexity of the work of Dinur and Safra [5] may cause
researchers to miss the foregoing observation (regarding the wide applicability
of the FGLSS-reduction). This would be unfortunate, because we believe in the
potential of that observation. In fact, this note grew out of our fascination with
the foregoing observation and our attempt to find a simple illustration of it.

Our Concrete Results: Combining known results regarding PCP with the
FGLSS-reduction, we present simple proofs of inapproximability results regard-
ing the minimum vertex cover problem for hypergraphs. Specifically, we show
that:

1. For every constant ε > 0, approximating the size of the minimum vertex
cover in O(1)-regular hypergraphs to within a (2− ε)-factor is NP-hard (see
Section 3). In fact, the hypergraphs we use are O((1/ε)o(1))-regular.
This result is inferior to Holmerin’s result [12], by which approximating ver-
tex cover in 4-regular hypergraphs to within a (2− ε)-factor is NP-hard. We
also mention Trevisan’s result [17] by which, for every constant k, approx-
imating vertex cover in k-regular hypergraphs to within a Ω(k1/19)-factor
is NP-hard. Clearly, in terms of achieving a bigger inapproximation factor,
Trevisan’s result is superior, but in terms of achieving an inapproximation
result for k-regular graphs when k is small (e.g., k < 219) it seems that our
result is better.

2. For every constant ε > 0, approximating the size of the minimum vertex
cover in 4-regular hypergraphs to within a (1.5 − ε)-factor is NP-hard (see
Section 4).
Again, this result is inferior to Holmerin’s result [12].

We mention that our work was done independently of Holmerin’s work [12], but
after the publication of Trevisan’s work [17].

2 Preliminaries

This section contains a review of the notion of a vertex cover in a hypergraph
and the notion of free-bit complexity. We also recall the FGLSS-reduction and
discuss its relation to the vertex cover problem in graphs.
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Vertex Covers in Hypergraphs. A k-regular hypergraph is a pair (V, E) such that
E is a collection of k-subsets (called hyper-edges) of V ; that is, for every e ∈ E
it holds that e ⊆ V and |e| = k. For a k-regular hypergraph H = (V, E) and
C ⊆ V , we say that C is a vertex cover of H if for every e ∈ E it holds that
e ∩ C �= ∅.

Free-bit Complexity and the Class FPCP. We assume that the reader is familiar
with the basic PCP-terminology (cf. [1,2,3] and [8, Sec. 2.4]). (For sake of sim-
plicity we consider non-adaptive verifiers.) We say that the free-bit complexity of
a PCP system is bounded by f : N → R if on every input x and any possible
random-pad ω used by the verifier, there are at most 2f(|x|) possible sequence of
answers that the verifier may accept (on input x and random-pad ω). Clearly,
the free-bit complexity of a PCP system is bounded by the number of queries
it makes, but the former may be much lower. Free-bit complexity is a key pa-
rameter in the FGLSS-reduction. For functions c, s : N → [0, 1], r : N → N and
f : N → R, we denote by FPCPc,s[r, f ] the class of sets having PCP systems of
completeness bound c, soundness bound s, randomness complexity r and free-bit
complexity f . In particular, for every input x in the set, there exist an oracle
that makes the verifier accept with probability at least c(|x|), whereas for every
input x not in the set and every oracle the verifier accepts with probability at
most s(|x|).

The FGLSS-Graph. For S ∈ FPCPc,s[r, f ], the FGLSS-reduction maps x to a
graph Gx having 2r(|x|) layers, each having at most 2f(|x|) vertices. The vertices
represent possible views of the verifier, where the N

def= 2r(|x|) layers correspond
to all possible choices of the random-tape and the vertices in each layer corre-
spond to the up-to 2f(|x|) possible sequences of answers that the verifier may ac-
cept. The edges represent inconsistencies among these views. In particular, each
layer consists of a clique (because only one sequence of answers is possible for a
fixed random-tape and a fixed oracle). If the random-tapes ω1, ω2 ∈ {0, 1}r(|x|)

both lead the verifier to make the same query q (and both answers are accept-
able), then the corresponding layers will have edges between vertices encoding
views in which different answers are given to query q. In the case that x ∈ S the
graph Gx will have an independent set of size c(|x|) ·N , whereas in the case that
x �∈ S the maximum independent set in Gx has size at most s(|x|) · N . Thus,
the inapproximability factor for the maximum independent set problem shown
by such a reduction is c(|x|)/s(|x|), and the fact the maximum independent set
is always at most a 2−f(|x|) fraction of the size of Gx does not effect the gap.
However, inapproximability factor for the minimum vertex cover shown by such
a reduction is

2f(|x|) ·N − s(|x|) ·N
2f(|x|) ·N − c(|x|) ·N =

2f(|x|) − s(|x|)
2f(|x|) − c(|x|) <

2f(|x|)

2f(|x|) − 1 .
(1)

This is the reason that, while the FGLSS-reduction allows to establish quite
optimal inapproximability factors for the maximum independent set problem,
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it failed so far to establish optimal inapproximability factors for the minimum
vertex cover problem (although, it was used by Hastad [10] in deriving the 7/6
hardness factor by using Eq. (1) with f = 2, c ≈ 1 and s = 1/2). In a sense, the
gap between the size of the maximum independent set of Gx for x ∈ S versus
for x �∈ S is at the “right” location for establishing inapproximability factors
for the maximum independent set problem, but is at the “wrong” location for
establishing inapproximability factors for the minimum vertex cover problem.
Thus, what we do below is “move the gap location”: Specifically, in Section 3,
we take a maximum independent set gap of c2−f versus s2−f (which means a
minimum vertex cover gap of 1 − c2−f versus 1 − s2−f), and transform it into
a minimum vertex cover gap of (2− c) · 2−f versus (2− s) · 2−f .

3 A 2 − ε Hardness Factor for O(1)-Regular Hypergraphs

We start with the usual FGLSS-graph, denoted G, derived from the FGLSS-
reduction as applied to input x of a FPCP1−ε,s[log, f ] scheme (for a set in NP).
For simplicity, think of f as being a constant such that 2f is an integer. Without
loss of generality, each layer of G has 	 = 2f vertices.

We now apply the “FGLSS paradigm” by considering vertex-covers of G, and
their projection on each layer. Such projections (or “partial assignments”) have
either 	 or 	 − 1 vertices. We focus on the good vertex covers, having exactly
	− 1 vertices in (almost) each layer. Thus, for each (	− 1)-subset of each layer,
we introduce a vertex in the hypergraph, to be denoted H . We also introduce
hyper-edges so to reflect the inconsistencies of the various partial (i.e. layer-
projected) vertex covers of G. This construction, presented next, will provide a
correspondance between vertex covers of G and vertex covers of H .

The Construction of the Hypergraph H. For each layer L = (v1, ..., v�) in G,
we introduced a corresponding layer in H containing 	 vertices such that each
H-vertex corresponds to an (	− 1)-subset of L; that is, we introduce 	 vertices
that correspond to L \ {v1},...,L \ {v�}. For each pair of layers L′ = (v′1, ..., v

′
�)

and L′′ = (v′′1 , ..., v′′� ), if (v′i, v
′′
j ) is an edge in G, then we introduce the 2 · (	−1)-

hyperedge containing the H-vertices that correspond to the subsets {L′ \ {v′k} :
k �= i} and {L′′ \ {v′′k} : k �= j}; that is, the hyper-edge consists of all the H-
vertices of these two layers except for the two H-vertices that correspond to the
subsets L′ \ {v′i} and L′′ \ {v′′j }. In addition, for each layer in H , we introduce
an 	-size hyper-edge containing all 	 vertices of that layer.

To get rid of the non-regularity of this construction, we augment each layer
with a sets of 	 − 2 auxiliary vertices, and replace the abovementioned 	-size
hyper-edge by a hyper-edge containing all vertices of that layer (i.e., the original
	 vertices as well as the 	 − 2 auxiliary vertices). We refer to these hyper-edges
as intra-layer ones. This completes the construction of H .

Motivation to the Analysis. Consider a generic vertex cover, C, of G, and let
S denote the set of all vertices of H that correspond to the (	 − 1)-subsets of
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C. Note that C contains 	 vertices of some layer of G if and only if S contains
all vertices of the corresponding layer in H , and in this case all edges (resp.,
hyper-edges) adjacent to this layer are covered. Thus, we focus on layers of G
that contain 	− 1 vertices of C, and note that (for each such layer) S contains
a single vertex of H that resides in the corresponding layer. Let L′ = (v′1, ..., v

′
�)

and L′′ = (v′′1 , ..., v′′� ) be two such layers of G, and let v′i and v′′j denote the two
vertices that are missing from C (which implies that (v′i, v

′′
j ) is not an edge in

G). Then, L′ \ {v′i} and L′′ \ {v′′j } are in S, and they cover all the hyper-edges
that connect L′ and L′′, because {L′ \ {v′k} : k �= i} ∪ {L′′ \ {v′′k} : k �= j} is not
a hyper-edge in H .

The Actual Analysis. Fixing any input x, we consider the corresponding FGLSS-
graph G = Gx, and the hypergraph H = Hx derived from G by following the
above construction. Let N denote the number of layers in G (and H).

Claim 3.1. If x is a yes-instance, then the hypergraph Hx has a vertex-cover of
size at most (1 + ε) ·N .

Proof: Since x is a yes-instance, the graph G = Gx has an independent set (IS)
of size at least (1− ε) ·N . Consider this IS or actually the corresponding vertex-
cover (i.e., VC) of G. Call a layer in G good if it has 	− 1 vertices in this VC,
and note that at least (1 − ε) ·N layers are good. We create a vertex-cover for
H = Hx as follows. For each good layer, place in C the corresponding H-vertex;
that is, the H-vertex corresponding to the (	−1)-subset (of this layer in G) that
is in the VC of G. For the rest of the layers (i.e., the non-good layers), place in
C any two H-vertices of each (non-good) layer.

In total we placed in C at most (1− ε)N +2εN = (1+ ε)N vertices. We show
that C is a vertex cover of H by considering all possible hyper-edges, bearing in
mind the correspondence between layers of G and layers of H .

– Each intra-layer hyper-edge of H (which consists of all vertices of that layer)
is definitely covered, because we placed in C at least one H-vertex from each
layer.

– Each hyper-edge connecting H-vertices from two good layers is covered.
This is shown by considering the edge, denoted (u, v), of G that is “responsi-
ble” for the introduction of each hyper-edge (in H).1 Since we started with a
vertex cover of G, either u or v must be in that cover. Suppose, without loss
of generality, that u is in the VC of G. Then, we must have placed in C one
of the H-vertices that corresponds to a (	− 1)-subset that contains u. But,
then, this H-vertex covers the said hyper-edge (because, by construction,
the latter hyper-edge contains all (	− 1)-subsets that contain u).

– Each hyper-edge that contains H-vertices from at least one non-good layer
is covered, because we placed in C two H-vertices from each non-good layer,

1 A hyper-edge that correspons to layers L′ and L′′ has the form {L′ \ {w} : w 	=
u} ∪ {L′′ \ {w} : w 	= v}, where u ∈ L′ and v ∈ L′′. Furthermore, (u, v) must be an
edge in G.
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whereas each hyper-edge containing H-vertices of some layer contains all but
at most one vertex of that layer.

The claim follows.

Claim 3.2. If x is a no-instance, then every vertex-cover of the hypergraph Hx

has size at least (2− s(|x|)) ·N .

Proof: Consider any vertex cover C of H . Note that due to the intra-layer hyper-
edges, C must contain at least one vertex in each layer. Furthermore, without
loss of generality, C contains only original vertices (rather than the 	−2 auxiliary
vertices added to each layer). Denote by C′ the set of layers that have a single
vertex in C. Then, |C| ≥ |C′| + 2(N − |C′|) = 2N − |C′|. The claim follows by
proving that |C′| ≤ sN , where s

def= s(|x|).
Suppose, towards the contradiction, that |C′| > sN . We consider the set of

G-vertices, denoted I, that correspond to the (single) H-vertices in these layers;
that is, for layer L (in C′) such that C contains the H-vertex (which corresponds
to) L \ {v}, place v ∈ G in I. We show that I is an independent set in G (and so
derive a contradiction to G = Gx not having an independent set of size greater
than sN , because x is a no-instance). Specifically, for every u, v ∈ I, we show
that (u, v) cannot be an edge in G. Suppose (u, v) is an edge in G, then the
corresponding hyper-edge in H cannot be covered by C; that is, the hyper-edge
{L\{w} : w �= u}∪{L′\{w} : w �= v} (which must be introduced due to the edge
(u, v)) cannot be covered by the H-vertices that correspond to the (	−1)-subsets
L \ {u} and L′ \ {v}. The claim follows.

Conclusion: Starting from a FPCP1−ε,s[log, f ] system for NP , we have shown
that the minimum vertex-cover in (2f+1− 2)-regular hypergraphs is NP-hard to
approximate to a (2−s)/(1+ε)-factor. Now, if we start with any FPCP1,s[log, f ]
for NP , with s ≈ 0, then we get a hardness result for a factor of 2 − s ≈ 2.
Any NP ⊆ PCP[log, O(1)] result (starting from [1]) will do for this purpose,
because a straightforward error-reduction will yield NP ⊆ FPCP1,s[log, O(1)],
for any s > 0. The (amortized) free-bit complexity only effects the growth of
the hyper-edge size as a function of the deviation of the hardness-factor from 2.
Specifically, if we start with an “amortized free-bit complexity zero” result (i.e.,
NP ⊆ FPCP1,s[log, o(log2(1/s))] for every s > 0), then we get a factor of 2− s
hardness for (1/s)o(1)-regular hypergraphs. That is, starting with Hastad’s first
such result [9] (or from the simplest one currently known [11]), and applying the
foregoing reasoning, we obtain our first little result:

Theorem 3.3. For every constant ε > 0, approximating the size of the mini-
mum vertex cover in (1/ε)o(1)-regular hypergraphs to within a (2 − ε)-factor is
NP-hard.

Alternatively, if we start with Hastad’s “maxLIN3 result” [10] (i.e., the result
NP ⊆ FPCP1−ε,0.5[log, 2] for every ε > 0), then we get a hardness factor of
(2− 0.5)/(1 + ε) ≈ 1.5 for 6-regular hypergraphs. Below we show that the same
hardness factor holds also for 4-regular hypergraphs (by starting with the same
“maxLIN3 result” [10] but capitalizing on an additional feature of it).
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4 A 1.5 − ε Hardness Factor for 4-Regular Hypergraphs

We start with the FGLSS-graph derived from applying the FGLSS-reduction
to Hastad’s “maxLIN3 system” [10]; that is, the FPCP1−ε,0.5[log, 2] system for
NP (∀ε > 0). The key observation is that, in this system, for any two queries, all
four answer pairs are possible (as accepting configurations).2 This observation is
relied upon when establishing (below) simple structural properties of the derived
FGLSS-graph.

As before, there will be a correspondence between the vertex set of G and
the vertex set of H . Here it is actually simpler to just identify the two sets. So
it just remains to specify the hyper-edges of H . Again, we place (intra-layer)
hyper-edges between all (i.e., four) vertices of each layer. As for the construction
of inter-layer hyper-edges, we consider three cases regarding each pair of layers:

1. The trivial case: If there are no edges between these two layers in G, then
there would be no hyper-edges between these layers in H . This case corre-
sponds to the case that these two layers correspond to two random-tapes
that induce two query sets with empty intersection.

2. The interesting case is when these two layers correspond to two random-
tapes that induce two query sets having a single query, denoted q, in com-
mon. Relying on the property of the starting PCP system, it follows that
both answers are possible to this query and that each possible answer is rep-
resented by two vertices in each corresponding layer. Accordingly, we denote
the vertices of the first layer by u0

1, u
0
2, u

1
1, u

1
2, where ub

i is the ith configura-
tion in this layer in which query q is answered by the bit b. Similarly, denote
the vertices of the second layer by v0

1 , v0
2 , v

1
1 , v

1
2 . (We stress that this notation

is used only for determining the hyper-edges between the current pair of lay-
ers, and when considering a different pair of layers a different notation may
be applicable.) In this case we introduce the two hyper-edges {u0

1, u
0
2, v

1
1 , v

1
2}

and {u1
1, u

1
2, v

0
1 , v0

2}.
Intuition: Note that the edges in G [sic] between these two layers are two
K2,2’s (i.e., for each b ∈ {0, 1}, between the two ub

i ’s on one side and the
two v1−b

i ’s on the other side). These two K2,2’s enforce that if some ub
i is in

some IS, then v1−b
j is not in the IS. For a H-VC having a single vertex in

each layer, the (two) hyper-edges will have the same effect.
3. The annoying case is when these two layers (correspond to two random-tapes

that induce two query sets that) have two or more queries in common. In this
case, we label the vertices in these two layers according to these two answers;
that is, we denote the four vertices of the first layer by u0,0, u0,1, u1,0, u1,1,
where ua,b is the unique configuration in this layer in which these two queries
are answered by a and b, respectively. Similarly, denote the vertices of the
second layer by v0,0, v0,1, v1,0, v1,1. (Again, this notation is used only for
determining the hyper-edges between the current pair of layers.) In this case,

2 Recall that the number of queries is typically higher than the free-bit complexity.
Indeed, the aforementioned system makes three queries and has free-bit complexity
two.



The FGLSS-Reduction and Vertex Cover in Hypergraphs 95

we introduce four hyper-edges between these two layers, each has one vertex
of the first layer and the three “non-matching” vertices of the second layer;
that is, the hyper-edges are {ua,b, va,1−b, v1−a,b, v1−a,1−b}, for a, b ∈ {0, 1}.
Intuition: The pair (ua,b, va′,b′) is an edge in G if and only if either a �= a′

or b �= b′. Similarly, the pair (ua,b, va′,b′) participates in an hyper-edge of H
if and only if either a �= a′ or b �= b′.

This completes the construction. Note that H = Hx is a 4-regular hypergraph.

Claim 4.1. If x is a yes-instance, then the hypergraph Hx has a vertex-cover of
size at most (1 + 3ε) ·N , where N denotes the number of layers.

Proof: Since x is a yes-instance, the graph G = Gx has an independent set (IS)
of size (1 − ε)N . Consider such an IS, denoted I. Call a layer in G good if it
has a vertex in I, and note that at least (1 − ε)N layers are good. Augment I
by the set of all vertices residing in non-good layers. In total we took at most
(1 − ε)N + 4εN = (1 + 3ε)N vertices. We show that these vertices cover all
hyper-edges of H .

– The intra-layer hyper-edges are definitely covered (since we took at least one
vertex from each layer).

– Each hyper-edge connecting vertices from two good layers is covered.
This is shown by considering each of the two non-trivial cases (in the con-
struction). In the interesting case, I (having a single vertex in each good
layer) must have a single vertex in each K2,2. But then this vertex covers
the corresponding hyper-edge. In the annoying case, I (having a single ver-
tex in each good layer) must contain vertices with matching labels in these
two layers. But then these two vertices cover all four hyper-edges, because
each hyper-edge contains a (single) vertex of each label.

– Hyper-edges containing H-vertices from non-good layers are covered trivially
(because we took all vertices of each non-good layer).

The claim follows.

Claim 4.2. If x is a no-instance, then every vertex-cover of the hypergraph Hx

has size at least 1.5 ·N .

Proof: Consider a cover C of H . Note that (due to the intra-layer hyper-edges) C
must contain at least one vertex in each layer. Denote by C′ the set of layers that
have a single vertex in C. Then, |C| ≥ |C′|+ 2(N − |C′|). The claim follows by
proving that |C′| ≤ 0.5N . Suppose, towards the contradiction, that |C′| > 0.5N .
Consider the set of vertices, denoted I, that correspond to these layers (i.e., for
a layer in C′ consider the layer’s vertex that is in C). We show that I is an
independent set in G (and so we derive contradiction).

Suppose (towards the contradiction) that u, v ∈ I and (u, v) is an edge in G.
In the interesting case, this (i.e., (u, v) being an edge in G) means that u and
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v are in the same hyper-edge in H , and being the only vertices in C that are
in these layers, no vertex covers the other (vertex-disjoint) hyper-edge between
these layers. In the annoying case, this (i.e., (u, v) being an edge in G) means
that u and v do not have the same label and one of the four hyper-edges in H
cannot be covered by them; specifically, without loss of generality, suppose that
u is in the first layer, then neither v = va,b nor u �= ua,b covers the hyper-edge
{ua,b, va,1−b, v1−a,b, v1−a,1−b}.

Conclusion: Starting from the abovementioned NP ⊆ FPCP1−ε,0.5[log, 2] re-
sult of Hastad [10], we have shown that the minimum vertex-cover in 4-regular
hypergraphs is NP-hard to approximate to a factor of 1.5/(1 + 3ε). Let us state
this as our second little result:

Theorem 4.3. For every constant ε > 0, approximating the size of the mini-
mum vertex cover in 4-regular hypergraphs to within a (1.5−ε)-factor is NP-hard.

5 Subsequent Work

As hinted in the introduction, our motivation in this memo was to draw atten-
tion to the wide applicability of the FGLSS-reduction, and the specific results ob-
tained were merely a good excuse to do so. Recall that all our results are inferior
to Holmerin’s independently achieved result [12], by which approximating vertex
cover in 4-regular hypergraphs to within a (2 − ε)-factor is NP-hard. Thus, the
fact that also the latter result was subsequently improved is not relevant to the
main motivation of the current work. Nevertheless, we briefly review some of the
related results that appear after the current work was completed, differentiating
between what was known already in 2001 and what is known in 2010.

Original Postscript (2001). Following this work, Holmerin has applied related
FGLSS-type reductions to different PCP systems and obtained improved inap-
proximability results for vertex cover in hypergraphs [14]. Specifically, for every
constant ε > 0, he showed that:

1. Approximating the size of the minimum vertex cover in k-regular hyper-
graphs to within a factor of Ω(k1−ε) is NP-hard.

2. Approximating the size of the minimum vertex cover in 3-regular hyper-
graphs to within a factor of 1.5− ε is NP-hard.

Additional Postscript (2010). The results reported in the original postscript were
further improved by subsequent works, culiminating in the following two results:

1. For every constant ε > 0, approximating the size of the minimum vertex
cover in k-regular hypergraphs to within a factor of k− 1− ε is NP-hard [4].

2. Assuming the Unique Game Conjecture (UGC), for every constant ε > 0
and every integer k ≥ 2, it is hard to approximate the size of the minimum
vertex cover in k-regular hypergraphs to within a factor of k − ε [15].3

3 Indeed, the case k = 2 drew most attention.
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The GGM Construction Does NOT Yield

Correlation Intractable Function Ensembles

Oded Goldreich

Abstract. We consider the function ensembles emerging from the con-
struction of Goldreich, Goldwasser and Micali (GGM), when applied to
an arbitrary pseudoramdon generator. We show that, in general, such
functions fail to yield correlation intractable ensembles. Specifically, it
may happen that, given a description of such a function, one can easily
find an input that is mapped to zero under this function.

Keywords: Cryptography, Correlation Intractability.

An early version of this work appeared as TR96-042 of ECCC. The current
revision is quite minimal.

1 Introduction

The general context of this work is the so-called Random Oracle Methodolody, or
rather its critical review, undertaken by Canetti, Goldreich and Halevi [CGH98],
Loosely speaking, this methodology suggests to design cryptographic schemes in
a two-step process. In the first step, an ideal scheme is designed in an ideal model
in which all parties (including the adversary) have access to a random orcale.
In the second step, the ideal scheme is realized by replacing the random oracle
by a fully-specified function (selected at random in some function emsemble (see
Definition 1)), while providing all parties with a description of the function.

Canetti, Goldreich, and Halevi [CGH98] showed that, in general, this method-
ology may lead to the design of insecure schemes. That is, in general, it may be
that the ideal scheme is secure in the ideal model (in which all parties have access
to a random orcale), but replacing the random oracle by any function ensemble
yields an insecure scheme. Their analysis is based on the notion of correlation
intractability, which seems a very minimal requirement from such a replacement.
Loosely speaking, a function f is correlation intractable with respect to a sparse
binary relation R if it is infeasible (given a description of f) to find x such that
(x, f(x)) ∈ R. The point is that the sparseness condition implies that when given
access to a random oracle O it is infeasible to find x such that (x,O(x)) ∈ R,
and so we should require the same from the function f . Before proceeding, let
use clarify two of the aforementioned notions.

1.1 Function Ensembles and Correlation Intractability

A function ensemble is a collection of finite functions, where each function has a
finite description (viewed as its index in the ensemble). The functions map strings

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 98–108, 2011.
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of certain length to strings of another length, where these lengths are determined
as a function of the index length. For simplicity, we consider a (natural) special
case in which the input and output lengths are equal.

Definition 1 (function ensembles): Let 	 : N → N. A function ensemble with
length 	 is a set of functions F = {fs}s∈{0,1}∗ such that each function fs maps
	(|s))-bit long strings to 	(|s))-bit long strings. That is:

F
def= {fs : {0, 1}�(|s|) → {0, 1}�(|s|)}s∈{0,1}∗ . (1)

An imprortant requirement, which we avoid here, is that the function ensemble
be efficiently computable (i.e., that there exists an efficient algorithm A such that
for every s ∈ {0, 1}∗ and every x ∈ {0, 1}�(|s|) it holds that A(s, x) = fs(x)).

Turning to the notion of correlation intractabity, we again consider a (natural)
specail case (of a more general definition from [CGH98]). Loosely speaking, a
function ensemble F is correlation intractable with respect to a binary relation R
if every feasible adversary, given a uniformly distributed s ∈ {0, 1}k, fails to find
an x ∈ {0, 1}�(|s|) such that (x, fs(x)) ∈ R, except with negligible probability.

Definition 2 (correlation intractabity): Let F be as in Definition 1.

– Let R ⊆ ∪k{0, 1}�(k)×{0, 1}�(k). We say that F is correlation intractable with
respect to R if for every probabilistic polynomial-time algorithm A it holds
that

Prs∈{0,1}k [(A(s), fs(A(s)) ∈ R] = μ(k),

where the probability is taken uiformly over s ∈ {0, 1}k and the internal
coin tosses of A, and μ is some negligible function (i.e., for every positive
polynomial p, and all sufficiently large k, it holds that μ(k) < 1/p(k)).

– Let R be as in Part 1. We say that R is sparse if

max
x∈{0,1}�(k)

{∣∣∣{y ∈ {0, 1}�(k) : (x, y) ∈ R}
∣∣∣} = μ(k) · 2�(k),

where μ is some negligible function.
– We say that F is correlation intractable if it is correlation intractable with

respect to every sparse relation.

Note that Part 2 implies that a random oracle is correlation intractable with
respect to R (in the sense that for every probabilistic polynomial-time oracle
machine M it holds that Pr[(MO(1k),O(MO(1k)) ∈ R] = μ(k), where O :
{0, 1}�(k) → {0, 1}�(k) denotes a random function).

Canetti, Goldreich, and Halevi [CGH98] showed that that no function en-
sembles (with length 	(k) ≥ k) are correlation intractable. In particular, they
showed that the function ensemble F = {fs} is not correlation intractable with
respect to the “diagonalization” relation D = {(x, fx′(x)) : x ∈ {0, 1}∗}, where
x′ is a prefix (of adequate length) of x (i.e., |x| = 	(|x′|) ≥ |x′|).
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1.2 Our Results

In view of the foregoing, we focus on function ensembles with length 	 : N → N

such that 	(k) ≤ k (and recall that for 	(k) < k/2 no negative results are known).
Furthermore, we will focus on the special case of “constant” relations; that is,
relations of the form R = {(x, y) : x∈{0, 1}∗∧y∈S∩{0, 1}|x|}, for some (sparse)
set S ⊂ {0, 1}∗. We investigate natural candidates for function ensembles that
may be correlation intractable in such a restricted sense. Note that in this case,
correlation intractability means the infeasiblity of finding an input x such that
fs(x) ∈ S, where s is given to us as input.

The Failure of Generic Pseudorandom Functions. One natural candidate for re-
stricted notions of correlation intractability is provided by pseudorandom func-
tion ensembles (as defined in [GGM84]). However, these ensembles may fail (w.r.t
correlation intractability), because they guarantee nothing with respect to ad-
versaries that are given the function’s description (i.e., s). Indeed, in general,
pseudorandom function ensembles may not be correlation intractable w.r.t some
very simple relations (e.g., R0 = {(x, 0|x|) : x ∈ {0, 1}∗}): The reason is that
any pseudorandom function ensemble {fs} can be modified into a pseudorandom
function ensemble {f ′

r,s} such that f ′
r,s(x) = 0|x| if x = r and f ′

r,s(x) = fs(x)
otherwise. Thus, given the description (r, s) of a function, we can easily find an
input x (i.e., x = r) such that (x, f ′

r,s(x)) ∈ R0.

The Failure of the GGM Construction. Our main interest here is in a specific
(natural) construction of pseudorandom functions (based on pseudorandom gen-
erators). That is, while one may argue that the aforementioned failure of generic
pseudorandom functions is due to a contrived example, we show that a natural
construction of pseudorandom functions fails (i.e., it is not correlation intractable
w.r.t some simple relations such as the aforementioned R0). Specifically, we re-
fer to the construction of pseudorandom functions due to Goldreich, Goldwasser,
and Micali [GGM84]. Recall that in their construction, hereafter referred to as
the GGM construction, a function fs : {0, 1}�(|s|) → {0, 1}|s| is define based on a
(length doubling) pseudorandom generator G such that

fs(x) def= Gx�
(Gx�−1(· · ·Gx1(s) · · ·)), (2)

where G(z) = G0(z)G1(z), 	
def= 	(|s|), and x = x1 · · ·x� ∈ {0, 1}�. A length

preserving version of fs is obtained by considering only the 	(|s|)-bit long prefix
of fs(x). (Recall that we assume here that 	(k) ≤ k.) Our main result is:

Theorem 3 (main result): If there exists pseudorandom generators, then there
exists a pseudorandom generator G such that the function ensemble resulting
from applying Eq. (2) to G is not correlation intractable with respect to the
relation R0 = {(x, 0|x|) : x ∈ {0, 1}∗}.
That is, although the resulting function ensemble is pseudorandom (cf. [GGM84]),
given the description s of a function in the ensemble, one can find in polynomial-
time an input x such that fs(x) = 0|x|. The result can be easily extended to hit-
ting other relations. The rest of the paper is devoted to establishing Theorem 3.
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2 The Overall Plan and an Abstraction

The first observation is that 0� is likely to have a preimage under fs, and the
central idea is that, for a carefully constructed G, this preimage is easy to find
when given s. Intuitively, G is constructed such that (1) either G0(s) or G1(s)
is likely to have a longer all-zero prefix than s, and (2) it is always the case that
either G0(s) or G1(s) has an all-zero prefix that is at least as long as the one
in s.

Notation. (At this point, the reader may think of n as equal k.)1 For t = 0, ..., n−
1, let St

def= {0t1γ : γ ∈ {0, 1}n−(t+1)} be the set of n-bit long strings having a
(maximal) all-zero prefix of length t. Let Pt be the set of strings αβ ∈ {0, 1}2n

such that α, β ∈ ∪t
i=0Si and either α ∈ St or β ∈ St. That is:

Pt
def=

{
αβ : α, β∈(∪t

i=0Si) ∧ (α∈St ∨ β∈St)
}

(3)

=
{
αβ : (α, β∈St) ∨

(
α∈St ∧ β∈∪t−1

i=0Si

)
∨
(
α∈∪t−1

i=0Si ∧ β∈St

)}
. (4)

Our aim is to construct a pseudorandom generator G such that for every t ≤ 	
and α ∈ St it holds that G(α) ∈ ∪i≥tPi, and for a constant fraction of α ∈
St it holds that G(α) ∈ ∪i≥t+1Pi. Intuitively, given sλ

def= s we may find an
x = x1 · · ·x� such that fs(x) has an all-zero prefix of length Ω(	), by iteratively
inspecting both parts of G(sx1···xi) for the current sx1···xi and setting xi+1 such
that sx1···xixi+1

def= Gxi+1(sx1···xi) is the part with a longer all-zero prefix.

The Desired Random Mapping. In order to implement and analyze the forego-
ing idea, we first introduce a random process Π : {0, 1}n → {0, 1}2n with the
intention of satisfying the following three properties:

1. Π(Un) ≡ U2n, where Um denotes the uniform distribution on {0, 1}m.
2. For every t ≤ 	 and α ∈ St, it holds that Π(α) ∈ ∪i≥tPi.
3. For every t ≤ 	 and α ∈ St, it holds that Pr[Π(α) ∈ ∪i≥t+1Pi] > c, where

c > 0 is a universal constant.

One natural way to define Π is to proceed in iterations, starting with t = 0.
In each iteration, we map seeds in St to outcomes in Pt until Pt gets enough
probability mass, and map the residual probability mass to ∪i≥t+1Pi (first to
Pt+1, next to Pt+2, etc). In order to satisfy the foregoing Conditions 1 and 2, it
must hold that, for every t, the fraction of n-bit seeds residing in ∪t

i=0Si is at
least as big as the fraction of 2n-bit long outcomes in ∪t

i=0Pi. In fact, to satisfy
Condition 3 the former must be sufficiently bigger than the latter. (Actually, we
shall see that Condition 3 follows from the other two conditions.)

We now turn to the analysis of the desired process Π . Let st
def= Pr[Un ∈

St] = 2−(t+1), and pt
def= Pr[U2n ∈ Pt]. By Eq. (3)-(4), it holds that pt =

s2
t +2st

∑t−1
i=0 si. The following technical claim will play a key role in our analysis.

1 At a later point, it will become clear why we chose to use n rather than k here.
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Claim 4 (central technical claim): For every t ≥ 0:

1.
∑t

i=0 pi =
(∑t

i=0 si

)2

.

2.
∑t

i=0 si = 1
1−2−(t+1) ·

∑t
i=0 pi >

(
1 + 2−(t+1)

)
·
∑t

i=0 pi.

3. Δt
def=

∑t
i=0 si −

∑t
i=0 pi > 1

2 · pt+1. Furthermore, Δt > (1− 2−t) · pt+1.

Part 3 is not used in the actual analysis, and so its proof is moved to the
Appendix.

Proof: We first establish Part 1:

t∑
i=0

pi =
t∑

i=0

⎛⎝s2
i + 2si

i−1∑
j=0

sj

⎞⎠
=

∑
i,j∈{0,...,t}

sisj

=

(
t∑

i=0

si

)2

.

Combining Part 1 and
∑t

i=0 si =
∑t

i=0 2−(i+1) = 1− 2−(t+1), we get
∑t

i=0 si =(
1− 2−(t+1)

)−1 ·
∑t

i=0 pi. Part 2 follows (using (1− ε)−1 > 1+ ε for ε > 0).

Using Claim 4, it follows that by the time we get to deal with seeds in St (t ≥ 1),
we have already spend a probability mass of

∑t−1
i=0 si −

∑t−1
i=0 pi > 1

2pt towards
covering Pt. Thus, some seeds in St−1 are mapped to Pt (or to ∪i≥tPi). The
following claim implies that seeds in St−1 are actually mapped to either Pt−1 or
Pt (but never to ∪i>tPi).

Claim 5 (another technical claim):
∑t

i=0 si =
∑t+1

i=0 pi − 2−(2t+4) <
∑t+1

i=0 pi

Proof: Using Part 1 of Claim 4 (and sj = 2−(j+1)), we get:

t+1∑
i=0

pi =

(
t+1∑
i=0

si

)2

=
(
1− 2−(t+2)

)2

= 1− 2−(t+1) + 2−(2t+4)

= 2−(2t+4) +
t∑

i=0

si

and the current claim follows.
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The Implementation of Π. Given Claims 4 and 5, we explicitly define the process
Π . On input α ∈ S0, with probability p0/s0 = 1/2, we output a uniformly
selected element of P0, otherwise we output a uniformly selected element of P1.
For t ≥ 1, on input α ∈ St, we first compute Δt−1 =

∑t−1
i=0 si −

∑t−1
i=0 pi. (Note

that by Claims 4 and 5 it holds that 0 < Δt−1 < pt, and pt−Δt−1 = st−Δt < st

follows.) With probability (pt−Δt−1)/st, we output a uniformly selected element
of Pt, otherwise we output a uniformly selected element of Pt+1. Indeed, 0 <
(pt −Δt−1)/st < 1. Thus, Π is well-defined.

Note that Π can be implemented in probabilistic polynomial-time. Combining
Claims 4 and 5, we get:

Proposition 6 (Π satisfies the desired properties):

1. Π(Un) ≡ U2n, where Um denotes the uniform distribution on {0, 1}m.
2. For every t ≤ 	 and α ∈ St, it holds that Π(α) ∈ Pt ∪ Pt+1.
3. For every t ≤ 	 and α ∈ St, it holds that Pr[Π(α) ∈ Pt+1] ≥ 1/2.

Part 3 (which follows from Part 3 of Claim 4) is not used in the actual analysis
and is only given for intuition.

Proof: Part 2 is immediate by the construction. It is also clear that Π(Un) is
uniform over each of the Pt’s. Thus, to prove Part 1 it suffices to show that, for
every t, it holds that Pr[Π(Un) ∈ Pt] = pt. In proving this, we use Part 2 (i.e.,
Π(α) ∈ Pt ∪ Pt+1 for every α ∈ St). We first consider the case of t = 0, and get

Pr[Π(Un) ∈ P0] = Pr[Un ∈ S0] · Pr[Π(Un) ∈ P0|Un ∈ S0]

= s0 ·
p0

s0
= p0.

For t ≥ 1 (using Δ−1
def= 0 in case t = 1), we have

Pr[Π(Un) ∈ Pt] = Pr[Un ∈ St] · Pr[Π(Un) ∈ Pt|Un ∈ St]
+Pr[Un ∈ St−1] · Pr[Π(Un) ∈ Pt|Un ∈ St−1]

= st ·
pt −Δt−1

st
+ st−1 ·

(
1− pt−1 −Δt−2

st−1

)
= pt −Δt−1 + st−1 − pt−1 + Δt−2

= pt,

since Δt−1 = Δt−2 + st−1 − pt−1.
Part 3 follows by noting that for every α ∈ St (with t ≥ 1),

Pr[Π(α) ∈ Pt+1] = 1− pt −Δt−1

st

=
∑t

i=0 st −
∑t

i=0 pi

st

>
(1− 2−t) · st

st
≥ 1

2
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where the strict inequality is due to Δt > (1 − 2−t) · 2−(t+1) = (1 − 2−t) · st

(which is established in the first paragraph of the Appendix). For α ∈ S0, it
holds that Pr[Π(α) ∈ P1] = 1− (p0/s0) = 1/2.

The Randomly-labeled Tree: We consider a depth 	 binary tree with nodes labeled
by n-bit long strings. The root is labeled with a uniformly selected string, and
if a node is labeled with α then its children are labeled with the corresponding
parts of Π(α). (The root is said to be in level 0 and the 2� leaves are in level 	.)

Using induction on i = 0, 1..., 	 (and relying on Part 1 of Proposition 6),
it follows that the nodes at level i are assigned independently and uniformly
distributed labels. Specifically, suppose that the claim holds for level i, then
using Part 1 of Proposition 6 the claim holds for level i + 1. On the other hand,
by Part 2 of Proposition 6, the labels along each path from the root to a leaf
belong to Sj ’s such that the sequence of j’s increases by at most one unit at
each step.

Now, on the one hand, with probability s0 + s1 = 3/4, the (level 0) root has
a label in S0 ∪ S1. On the other hand, with probability 1− (1− s�)2

�

= 1− (1−
2−(�+1))2

�

> 0.39, there exists a (level 	) leaf with label in S�. We conclude that,
with probability at least 0.39−0.25 = 0.14, the root has label in S0∪S1 and there
exist a leaf with a label in S�. Furthermore, due to the mild-increasing property
of the label sequence along each path, the ith intermediate node on the path
from the root to this leaf must have a label in Si∪Si+1.2 On the other hand, the
expected number of level i nodes with label in Si∪Si+1 is 2i ·(2−(i+1)+2−(i+2)) =
3/4. Thus, except with exponentially vanishing probability, level i contains less
than n nodes with label in Si ∪ Si+1. To summarize, with probability at least
0.13, the following good event holds:

1. The root has label in S0 ∪ S1.
2. There exist a leaf with a label in S�. Furthermore, the ith intermediate node

on the path from the root to this leaf has a label in Si ∪ Si+1.
3. For every i ≤ 	, level i has at most n nodes that have a label in Si ∪ Si+1.

The following search procedure is “geared towards” the foregoing good event.

The (Ideal) Search Procedure: Starting at the root, proceed in a DFS-like manner
according to the following rule: If the currently reached node is at level i and has
a level not in Si ∪ Si+1, then backtrack immediately, else develop it according
to the standard DFS-rule. If we ever reach a leaf having a label in S�, then the
search is considered successful.

Assuming that the good event holds, the search is successful. Furthermore,
in this case the search has visited at most 2n nodes at each level (i.e., the
children of parents that were DFS-developed), and so the complexity is bounded

2 Recall that a node with label in Sj has children with labels in ∪j+1
k=0Sk. Since the

root has label in S0 ∪ S1, each node at level i has a label in ∪i+1
k=0Sk. Furthermore,

since the specific leaf on the said path has a label in S�, the ith intermediate node
on the said path cannot have a label in ∪i−1

k=0Sk.
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by O(	 ·n). In fact, the complexity analysis depends only on the third condition
(in the definition of a good event), and thus holds except for with exponentially
vanishing probability.

3 The Actual Construction

Recall that we have given a probabilistic polynomial-time implementation of
Π . We now consider a deterministic polynomial-time algorithm Π ′ satisfying
Π ′(α, Um) ≡ Π(α), where m = poly(|α|). Next, using suitable pseudorandom
generators G′ and G′′ (i.e., G′ : {0, 1}n → {0, 1}m and G′′ : {0, 1}n → {0, 1}4n),
we replace Π ′ : {0, 1}n+m → {0, 1}2n by Π ′′ : {0, 1}n+2n → {0, 1}2·(n+2n) such
that

Π ′′(α, r′r′′) = ((α1, r1), (α2, r2)) (5)
where (α1, α2) = Π ′(α, G′(r′)) and (r1, r2) = G′′(r′′) (6)

That is, |r1| = |r2| = |r′r′′| and |r′| = |r′′| = |α|.

Theorem 7 (Theorem 3, specialized): Let 	 : N → N such that 	(k) ≤ k and let
G

def= Π ′′. Then:

1. G is a pseudorandom generator.
2. Let f ′

s : {0, 1}�(|s|) → {0, 1}|s| be defined by applying Eq. (2) to G, and let
fs : {0, 1}�(|s|) → {0, 1}�(|s|) be defined by letting fs(x) equal the 	(|s|)-bit long
prefix of f ′

s(x). Then, the function ensemble {fs}s∈{0,1}∗ is not correlation
intractable with respect to the relation R0 = {(x, 0|x|) : x ∈ {0, 1}∗}. That is,
there exists a probabilistic polynomial-time algorithm that given a uniformly
distributed s ∈ {0, 1}n, finds with probability at least 1/10 a string x ∈
{0, 1}�(|s|) such that fs(x) = 0�(|s|).

Theorem 3 follows.

Proof: In order to prove Part 1 we first observe that Π ′(Un, Um) ≡ U2n.
Letting Un, U ′

n, U ′′
n denote independent random variables each uniformly dis-

tributed in {0, 1}n, we recall that Π ′′(Un, U ′
nU ′′

n ) = ((Z1, R1), (Zn, Rn)), where
(Z1, Z2)

def= Π ′(Un, G′(U ′
n)) and (R1, R2)

def= G′′(U ′′
n ). Thus, Π ′′(Un, U ′

nU ′′
n ) is

computationally indistinguishable from ((Z ′
1, R

′
1), (Z

′
n, R′

n)), where (Z ′
1, Z

′
2)

def=
Π ′(Un, Um) and (R′

1, R
′
2) is uniformly distributed over {0, 1}2n × {0, 1}2n. It

follows that G(U3n) ≡ Π ′′(Un, U ′
nU ′′

n ) is computationally indistinguishable
from ((U ′

n, U ′
2n), (U ′′

n , U ′′
2n)). Since G is computable in polynomial-time, and

|G(U3n)| = 6n, Part 1 follows.
In order to prove Part 2, we consider an algorithm that on input s ∈ {0, 1}3n

invokes the ideal search procedure described at the end of Section 2, while pro-
viding it with labels of an imaginary depth 	 = 	(n) binary tree as follows.
The label of the root is the n-bit long prefix of s, and the 2n-bit long suffix is
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called the secret of the root. If an internal node has label α ∈ {0, 1}n and secret
s′s′′ ∈ {0, 1}2n, then its children will have labels corresponding to the two n-
bit long parts of Π ′(α, G′(s′)) and secrets corresponding to the two 2n-bit long
parts of G′′(s′′). We stress that the search procedure is only given the labels of
nodes (at its request), but it is not given the nodes’ secrets. Note that the way
in which we label the nodes corresponds to the way the function ensemble {fs}
is defined (using G = Π ′′).

Recall that the search procedure succeeds with probability at least 0.13 on
the randomly-label tree, called the ideal setting, where the children of a node
labeled by α are assigned labels that corresponding to the two n-bit long parts
of Π ′(α, Um). Our aim is to show that approximately the same must occur in the
foregoing real setting, where the tree is labeled according to Π ′′ (or, equivalently,
according to Π ′(·, G′(·)) and G′′(·)). To prove this claim, consider a hybrid set-
ting in which all nodes are associated uniformly distributed secrets (rather than
secrets derived by applying G′′ to the second part of their parent’s secret), and
the children of a node labeled by α are assigned labels that corresponding to the
two n-bit long parts of Π ′(α, G′(s′)), where s′ is the first part of the parent’s
secret (and the second part is never used). We observe that:

1. The success probability of the search in the ideal setting is approximately
the same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G′ is a pseudo-
random generator. Specifically, we will show how to distinguish n · 	 samples
of the distribution G′(Un) from n · 	 samples of the distribution Um. Given a
sequence of samples, we run the search procedure while feeding it with labels
generated on-the-fly as follows.
– The root is assigned a uniformly distributed label, and labels that were

assigned to nodes are used whenever the node is visited.
– When reaching a node (e.g., the root) for the first time, we assign labels

to its children by using the next unused sample. Specifically, if the new
node has label α ∈ {0, 1}n and the next sample in the input sequence
is s′ ∈ {0, 1}m then we assign its children (as labels) the corresponding
parts of Π ′(α, s′) ∈ {0, 1}2n.

Note that when the input sequence is taken from Um, the foregoing process
describes the ideal setting, whereas when the input sequence is taken from
G′(Un) we get the hybrid setting.

2. The success probability of the search in the real setting is approximately the
same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G′′ is a pseudo-
random generator by considering 	 additional hybrid settings. For i = 1, ..., 	,
the ith hybrid (or i-hybrid) consists of running the foregoing search while
feeding it with labels generated on-the-fly as follows. The label of a node
al level j < i is generated as in the hybrid setting; that is, these nodes
are assigned uniformly distributed secrets (and the children of such a node
labeled by α are assigned labels that corresponding to the two n-bit long
parts of Π ′(α, G′(s′)), where s′ is the first part of the parent’s secret). On



The GGM Construction Does NOT 107

the other hand, the label of a node al level j ≥ i is generated as in the real
setting; that is, these nodes are assigned secrets that are derived from the
second part of their parent’s secret (and are assigned labels exactly as in
case j < i). That is, if a node at level j − 1 has secret s′s′′, then its chil-
dren are always labeled according to Π ′(α, G′(s′)), whereas the secrets that
they are assigned are either uniformly distributed or derived from G′′(s′′)
depending on whether j < i or j ≥ i. Note that the 	-hybrid corresponds
to the hybrid setting, whereas the 1-hybrid corresponds to the real setting.
Thus, it suffices to show that for every i ∈ {1, ..., 	 − 1}, the i-hybrid and
(i+1)-hybrid are computationally indistinguishable. This is shown by using
a potential distinguisher to violate the pseudorandomness of G′′.
Given a distinguisher of the i-hybrid and (i + 1)-hybrid, we will show how
to distinguish n · 	 samples of the distribution G′′(Un) from n · 	 samples of
the distribution U4n. Specifically, given a sequence of samples, we run the
search procedure while feeding it with secrets and labels generated on-the-
fly as follows. When required to provide a label to a newly visited node we
always provide the label according to Π ′(α, G′(s′)), where s′ is the first part
of the parent’s secret (and α is the parent’s label). The important issue is
the generation of secrets:
– Nodes at level j ≤ i are assigned uniformly distributed secrets.
– Nodes at level j ≥ i + 2 are assigned secrets according to G′′(s′′) where

s′′ is the second part of their parent’s secret.
– Nodes at level i + 1 are assigned secrets (on the fly) that equal the

corresponding part of the next unused sample in the input sequence; that
is, when a node at level i is first visited, its two children are assigned
secrets according to the two parts of the next unused sample.

Note that when the input sequence is taken from U4n, the foregoing process
describes the (i + 1)-hybrid, whereas when the input sequence is taken from
G′′(Un) we get the i-hybrid (although the secrets at level i + 1 do not fit
the second part of the secrets at level i but rather a re-randomization of the
latter).

Combining the two foregoing observations, we conclude that in the real setting
the search procedure is successful with probability at least 0.1. Using the corre-
spondence of the real setting to an attack on the function ensemble {fs}, Part 2
(and so the entire theorem) follows.

Acknowledgments. The question was originally posed by Silvio Micali (in the
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Appendix: Proof of Part 3 of Claim 4

Using Part 2, we have

t∑
i=0

si −
t∑

i=0

pi > 2−(t+1) ·
t∑

i=0

pi

= 2−(t+1) ·
(

t∑
i=0

si

)2

= 2−(t+1) ·
(
1− 2−(t+1)

)2

> 2−(t+1) ·
(
1− 2−t

)
.

On the other hand,

pt+1 = s2
t+1 + 2st+1

t∑
i=0

si

= st+1 ·
(

st+1 + 2
t∑

i=0

si

)
= 2−(t+2) ·

(
2−(t+2) + 2 ·

(
1− 2−(t+1)

))
= 2−(t+1) ·

(
1− 2−(t+1) + 2−(t+3)

)
= 2−(t+1) ·

(
1− 3

8
· 2−t

)
.

Combining Δt =
∑t

i=0 si −
∑t

i=0 pi > 2−(t+1) · (1 − 2−t) with pt+1 = 2−(t+1) ·(
1− 3

8 · 2−t
)
, we get

Δt >
1− 2−t

1− 3
8 · 2−t

· pt+1

=
(

1−
5
8 · 2−t

1− 3
8 · 2−t

)
· pt+1

>

(
1−

5
8 · 2−t

1− 3
8

)
· pt+1

=
(
1− 2−t

)
· pt+1 .

Thus, Δt > 1
2pt+1, provided t ≥ 1. For t = 0, we note that Δ0 = s0 − p0 =

1
2 −

1
4 = 1

4 whereas p1 = 5
16 and so Δ0 = 4

5 · p1. Part 3 follows.
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Abstract. Building on Barak’s work (Random’02), Fortnow and San-
thanam (FOCS’04) proved a time hierarchy for probabilistic machines
with one bit of advice. Their argument is based on an implicit transla-
tion technique, which allow to translate separation results for short (say
logarithmic) advice (as shown by Barak) into separations for a single-bit
advice. In this note, we make this technique explicit, by introducing an
adequate translation lemma.

Keywords: Machines that take advice, separations among complexity
classes.

An early version of this work appeared as TR04-093 of ECCC. The current
revision is quite minimal.

1 Introduction and High Level Description

Trying to address the open problem of providing a probabilistic time hierarchy,
Barak [1] presented a time hierarchy for slightly non-uniform probabilistic ma-
chines. Specifically, he showed that, in presence of double-logarithmic advice,
there exists a hierarchy of probabilistic polynomial-time. Subsequently, Fortnow
and Santhanam [2] showed that a similar hierarchy holds in the presence of a
single-bit advice. Their argument is based on an implicit translation technique,
which allow to translate separation results for short (say logarithmic) advice into
separations for a single-bit advice. In this note, we make this technique explicit,
by introducing an adequate translation lemma and showing that applying it to
Barak’s result [1] yields the aforementioned result of [2].

Interestingly (as in [2]), we rely on the fact that Barak [1] actually shows a
time separation that holds even when the more time-restricted machine is given
a somewhat longer advice. In contrast, arguably, the more natural statement of
such results refers to machines that use the same advice length.1

The basic idea underlying the proof in [2] is that short advice can be incorpo-
rated in the (length of the) instance of a padded set, while using a single bit of
advice to indicate whether or not the resulting instance length encodes a valid
advice. For this to work, the length of the resulting instance should indicate a

1 That is, in order to show, say, that BPtime(n3)/1 is not contained in BPtime(n2)/1,
we use the fact that Barak showed that BPtime(n6)/ log n is not contained
in BPtime(n4)/2 log n (rather than that BPtime(n6)/ log n is not contained in
BPtime(n4)/ log n).
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unique length of the original instance as well as a value of a corresponding advice
(for this instance length).

Suppose we wish to treat a set S that is decidable (within some time bound)
using eight bits of advice. Viewing the possible values of the advice as integers in
{0, 1, ..., 255}, we define a (padded) set S′ as follows: the string x0255|x|+i is in S′

if and only if x ∈ S and i is an adequate advice for instances of length |x|. Note
that S′ can be decided using a single bit of advice that indicates whether the
instance length encodes a valid advice for S. Specifically, the advice bit for length
m instances (of S′) is 1 if and only if m mod 256 is a valid advice for instances
of length �m/256� (of S). Thus, on input y = x0255|x|+i, where i ∈ {0, ..., 255},
we accept if and only if the advice bit is 1 and the original machine accepts x
when given advice i.

Note that we should also show that if S is undecidable using less time (and,
say, nine bits of advice), then S′ is correspondingly hard (even using a single bit
of advice). This is shown by using a machine for deciding S′ as a subroutine for
deciding S, while using part of the advice (given for deciding S) for determining
an adequate instance for S′. In other words, we present a non-uniform reduction
of S to S′, where the non-uniformity is accounted for by the longer advice allowed
in deciding S.

2 Preliminaries

We consider advice-taking probabilistic machines, denoting by M(a, x) the out-
put distribution of machine M on input x and advice a. We denote by
BPtime(T )/A the class of sets decidable by advice-taking probabilistic machines
of time complexity T and advice complexity A. That is, S ∈ BPtime(T )/A if
there exists a probabilistic machine M and a sequence of strings (an)n∈N such
that the following conditions hold:

1. For every n ∈ N, it holds that |an| = A(n).
2. For every x ∈ {0, 1}∗, on input x and advice a|x|, machine M makes at most

T (|x|) steps.
3. For every x ∈ {0, 1}∗, it holds that Pr[M(a|x|, x) = χS(x)] ≥ 2/3, where

χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise.

We assume that the machine model supports some trivial computations with
little overhead. Specifically, we refer to computing the square root of the length
of the input in linear time. Our results hold with minor modifications in case the
machine model is less flexible (e.g., if computing the square root of the length
of the input requires quadratic time).

To simplify the presentation, we will associate binary strings with the integers
that they represents. That is, the 	-bit long binary string σ�−1 · · ·σ0 will be
associated with the integer

∑�−1
j=0 σj · 2j. Thus, when writing 0σ�−1···σ0 , we mean

a binary string consisting of
∑�−1

j=0 σj · 2j zeros.
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3 Detailed Technical Presentation

We state our translation lemma for probabilistic machines, and note that an
analogous lemma holds for deterministic (and non-deterministic) machines.

Lemma 1 (Translation Lemma): Suppose that S is a set that is decided by some
advice-taking probabilistic machine M in time TM (n) using AM (n) ≤ �log2 n�
bits of advice, where n denotes the length of the instance of S. Suppose further
that S is not decided by any a(n)-advice probabilistic machine in time t(n), where
a(n) ≥ AM (n). Then, there exists a set S′ = S′

M that is decided in probabilistic
time T ′ using a single bit of advice, where T ′(m) = TM (�

√
m�) + m, but is not

decidable by any (a(�
√

m�) − AM (�
√

m�))-advice probabilistic machine in time
t(�
√

m�)−m, where m denotes the length of the instance of S′.

Needless to say, the lemma can be generalized to handle AM (n) = O(log n), in
which case �

√
m� should be replaced by m1/O(1).

3.1 Using the Translation Lemma

Before proving the Translation Lemma, let us spell-out its main implication.

Corollary 2 (reducing non-uniformity in BPtime separations): Let T, A, t, a :
N → N such that a(n) ≥ A(n). If BPtime(T )/A contains sets not in
BPtime(t)/a, then BPtime(T ′)/1 contains sets not in BPtime(t′)/a′, where
T ′(m) def= T (�

√
m�) + m, t′(m) def= t(�

√
m�) − m and a′(m) def= a(�

√
m�) −

A(�
√

m�).

For example, we can apply Corollary 2 to Barak’s result [1] that asserts the ex-
istence of a set S in, say, (BPtime(n6)/ log log n)\(BPtime(n4)/ log n). Doing so,
we conclude that there exists a set in (BPtime(m3)/1)\(BPtime(m2)/(0.5 logm−
log log m)), which in particular implies BPtime(m2)/1 ⊂ BPtime(m3)/1. Thus,
we can translate Barak’s separations, which refer to probabilistic machines with
logarithmic advice, into separations that refer to probabilistic machines with a
single bit of advice, as established by Fortnow and Santhanam [2]. (This con-
sequence is not surprising, because the Translation Lemma makes explicit the
ideas in [2].)

Note that in order to obtain an interesting consequence out of Corollary 2, we
need a(n) ≥ A(n)+1. In contrast, using a(n) = A(n) implies that BPtime(T ′)/1
contains sets not in BPtime(t′), which holds regardless of the hypothesis and for
any choice of T ′ > 0 and t′ (even for t′ $ T ′).

3.2 Proving the Translation Lemma

Recall that M decides S in time TM , using advice of length AM , where AM (n) ≤
�log2 n�. Fixing a sequence of advice strings (an)a∈N for machine M , we define
S′ depending on this sequence. Specifically,

S′ def= {x0(|x|−1)|x|+a|x| : x ∈ S}. (1)
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That is, y = x0(|x|−1)|x|+i ∈ S′ if and only if it holds that x ∈ S and a|x| = i.
Observe that |x0(|x|−1)|x|+i| = |x|2 + i and that, for every m ∈ {n2 + 0, ..., n2 +
2AM(n) − 1} (which in turn is contained in {n2, ..., (n + 1)2 − 1}), it holds that
�
√

m� = n. In what follows, n (resp., m) will always denote the length of
instances to S (resp., S′).

We first show that S′ is decidable by a probabilistic machine M ′ taking one
bit of advice and running in time TM (�

√
m�) + m. Machine M ′ checks whether

its input y ∈ {0, 1}m has the form x0(n−1)n+i, where |x| = n = �
√

m� and i < n,
and otherwise rejects y up-front. Given the advice bit σm, machine M ′ always
rejects if σm = 0 and invokes M on input x and advice i (viewed as an AM (n)-
bit long string) otherwise. Thus, M ′ accepts y = x0(|x|+1)|x|+i using advice σm

if and only if σm = 1 and M accepts x using advice i. The advice (bit) σm

regarding m-bit inputs is determined in correspondence to the aforementioned
parsing: the advice bit is 1 if and only if m = �

√
m�2 + a�√m�. Indeed, this

setting of the advice σm guarantees that M ′ accepts y = x0(|x|−1)|x|+i if and
only if x ∈ S and i = a|x|. Thus, using adequate advice, M ′ decides S′. Indeed,
as required, the running time of M ′ is m + TM (�√m�), where m steps are used
to parse y (into x and i) and TM (|x|) steps are used to emulate M(i, x).

We next show that S′ is not decidable by any probabilistic machine that
runs in time t(�

√
m�)−m and takes a (a(�

√
m�)−AM (�

√
m�))-bit long advice.

Actually, for any monotonically non-decreasing functions t′ and a′, we will show
that if S′ is decidable by some probabilistic machine that runs in time t′(m) and
takes a′(m) bits of advice, then S is decidable by a probabilistic machine that
runs in time t′′(n) = t′(n2 + n) + n2 and takes a′′(n) = AM (n) + a′(n2 + n) bits
of advice.2 Suppose that M ′ is a machine deciding S′ as in the hypothesis, and
let advM ′ (m) be the advice it uses for m-bit inputs. Then consider the following
machine M ′′ (designed to decide S) whose advice on inputs of length n is the pair
a′′

n = (an, advM ′(n2 + an)). On input x and advice (i, j), machine M ′′ invokes
M ′ on input x0(|x|−1)|x|+i with advice j. Thus, M ′′ accepts x when given the
(adequate) advice a′′

|x| if and only if M ′ accepts x0(|x|−1)|x|+a|x| when given the
advice advM ′(|x|2 + a|x|). It follows that M ′′ decides S, and does so within the
stated complexities.

Digest: We defined S′ based not only on S but rather based on an adequate
advice sequence (an)n∈N that vouches that S ∈ BPtime(T )/A (via a machine
M). Once S′ is defined, the proof proceeds in two steps:

1. Relying on the hypothesis that M decides S in time T using advice of length
A, we establish that S′ ∈ BPtime(T ′)/1, where T ′(m) = T (�

√
m�) + m.

The advice-bit for S′ is used in order to facilitate the partition of the
instances of S′ into two sets: a set of instances x0(|x|−1)|x|+i that satisfy

2 Indeed, suppose that t′(m) = t(�√m
) − m and a′(m) = a(�√m
) − AM (�√m
),
then t′′(n) = t′(n2 + n) + n2 = (t(�√n2 + n
) − (n2 + n)) + n2 < t(n) and a′′(n) =
AM (n) + a′(n2 + n) = AM (n) + (a(n) − AM (n)) = a(n), in contradiction to the
lemma’s hypothesis.
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i = a|x|, and a set of instances that do not satisfy this condition. Machine
M is invoked only for instances of the first type, and instances of the second
type are rejected up-front.

2. Assuming that S′ ∈ BPtime(t′)/a′, we establish that S ∈ BPtime(t)/a,
where t(n) = t′(n2 + n) + n2 and a(n) = A(n) + a′(n2 + n).

This is done by “reducing” the problem of “deciding S with a(n) bits of
advice” to the problem of “deciding S′ with a′(m) bits of advice”, while the
reduction itself uses A(n) = a(n)− a′(m) bits of advice.

4 Subsequent Work

We mention a subsequent related work by van Melkebeek and Pervyshev [3],
which provides a direct proof of a more general result. We still feel that there is
interest in the approach taken in the current work (i.e., the translation lemma
and its proof).
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On Probabilistic versus Deterministic Provers in

the Definition of Proofs of Knowledge

Mihir Bellare and Oded Goldreich

Abstract. This article points out a gap between two natural formula-
tions of the concept of a proof of knowledge, and shows that in all natural
cases (e.g., NP-statements) this gap can be bridged. The aforementioned
formulations differ by whether they refer to (all possible) probabilistic or
deterministic prover strategies. Unlike in the rest of cryptography, in the
current context, the obvious transformation of probabilistic strategies
to deterministic strategies does not seem to suffice per se. The source
of trouble is “bad interaction” between the expectation operator and
other operators, which appear in the definition of a proof of knowledge
(reviewed here).

Keywords: Proof of Knowledge, Probabilistic Proof Systems, Proba-
bilism versus Determinism, Expected Running Time.

An early version of this work appeared as TR06-136 of ECCC. The current
revision is quite minimal.

1 Introduction

The concept of a “proof of knowledge” was informally introduced by Goldwasser,
Micali and Rackoff [4], and plays an important role in the design of cryptographic
schemes and protocols (see, e.g., [2,3]). This article refers to the common formu-
lation of the aforementioned concept, which was given in [1].

Loosely speaking, the definition of a proof of knowledge requires the existence
of a “knowledge extractor” that, when given access to any strategy, outputs the
relevant information within (expected) time that inversely proportional to the
probability that the given strategy convinces the knowledge verifier. Schemati-
cally, the definition of a proof of knowledge requires something with respect to
any strategy.

The issue addressed in this article is the following. Usually, in definitions of
the aforementioned type, it does not matter whether one quantifies over all prob-
abilistic strategies or over all deterministic strategies. The reason is that, usually,
satisfying the more restricted definition (which refers only to all deterministic
strategies) immediately implies satisfying the general definition (which refers to
all probabilistic strategies). Unfortunately, this does not seem to be the case in
the current setting (of the definition of proofs of knowledge).
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1.1 The Source of Trouble

In this subsection we provide a high-level description of the technical problem
addressed in this work. We re-iterate this explanation, using more precise style
after presenting the relevant definitions (in Section 2).

To clarify the source of trouble, let us first consider one of the many settings
in which the problem does not arise; specifically, we consider the setting of zero-
knowledge. In this case, the ability to simulate (in a black-box manner) any
deterministic verifier strategy, implies the ability to simulate any probabilistic
verifier strategy. The same holds also when we restrict attention to strategies
that can be implemented by polynomial-size circuits. The reason is that given
any probabilistic strategy, we may consider all residual deterministic strategies
(obtained by all possible fixing of the strategy’s coins), and obtain the desired
simulation (for the probabilistic strategy) by combining all the corresponding
simulations (i.e., of the residual deterministic strategies).

This simple argument (per se) fails when applied in the current context (of
proofs of knowledge). Indeed, we can consider all residual deterministic prover
strategies that emerge from a given probabilistic prover strategy, and we can
combine the corresponding extraction procedures, but the combined procedure
does not necessarily run in time that is inversely proportional to the probability
that this prover convinces the verifier. For example, suppose that on input x,
with probability 1

2 (over the choice of the prover’s coins), the residual prover
convinces the verifier with probability 2−|x| (where the probability here is over
the verifier’s moves), and otherwise the residual prover convinces the verifier
with probability 1. Then, in the first case extraction may run in (expected)
time related to 2|x|, whereas in the second case it runs for polynomial-time. It
follows that the extraction for the original probabilistic prover strategy runs in
(expected) time that is related to 1

2 · 2|x|. But this probabilistic prover strategy
convinces the verifier with probability exceeding 1

2 . (Thus, this extractor does
not run in time that is inversely proportional to the success probability of the
probabilistic prover strategy.)

1.2 On the Importance of Relating the Two Definitions

Needless to say, when faced with two natural definitions we wish to know whether
they are equivalent. Furthermore, we note that the two different definitions
have appeared in the literature: For example, the definition in [1] refers to any
probabilistic prover strategy, while the definition in [2, Sec. 4.7] only refers to
(arbitrary) deterministic strategies (see further discussion in Section 2). Thus,
equating the two definitions (which appear in two central texts on this subject)
becomes even more important (as it aims at eliminating a source of confusion in
the current literature).

In addition to the foregoing generic and abstract motivation, there is also a
concrete motivation to our study. It is typically easier to deal with determin-
istic strategies than with probabilistic ones, and thus relating the two defini-
tions yields a useful methodology (i.e., demonstrating the “proof of knowledge”
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property with respect to deterministic strategies and deriving it for free with
respect to probabilistic strategies). For example, we note that in [1, Apdx E]
the “proof of knowledge” property (of the Graph Isomorphism protocol) is only
demonstrated with respect to deterministic strategies, and this demonstration
does not seem to extend to probabilistic strategies.1

Let us stress that in many applications the relevant prover strategies are in
fact probabilistic. This is the case whenever proof-of-knowledge are the end goal
(or close to it as in identification schemes), because in these cases the prover
strategy represents an arbitrary adversarial behavior.2

1.3 Our Result

We show that the aforementioned gap (between the two natural formulations of
the concept of a proof of knowledge), can be bridged in all natural cases (e.g.,
for NP-statements). The basic idea is that, instead of using (in the extraction)
a single residual deterministic prover (derived by fixing random coins to the
original probabilistic strategy), we employ numerous such residual deterministic
strategies. Specifically, we invoke in parallel many executions of the knowledge-
extractor (for deterministic strategies), and provide each of these invocations
oracle access to a different residual deterministic strategy. These parallel exe-
cutions are emulated in a specific manner (as detailed in Section 3) in order to
ensure the desired extraction property.

2 Formal Setting

Let us start by recalling the definitional schema that underlies the two definitions
that we study. Generalizing the treatment in [1] and [2, Sec. 4.7.1], we shall
refer to an arbitrary class of potential (prover) strategies, denoted S. Indeed,
the treatment of [1] is obtained by letting S be the class of all (probabilistic)
strategies, whereas the treatment of [2, Sec. 4.7.1] is obtained by letting S be
the class of all deterministic strategies.

2.1 Preliminaries

We first recall the basic setting, which consists of strategies (for parties in
protocols) and a formulation of potential knowledge.
1 It seems that the authors of [1] overlooked this point. They either did not notice that

the argument is restricted to deterministic strategies or assumed that the demonstra-
tion can be easily extended to probabilistic strategies. We mention that the argument
presented in [1, Apdx E] applies to any three-move Arthur-Merlin protocol for NP
that has the following strong soundness property: Given any two accepting tran-
scripts (for the same input) that start with the same Merlin message but differ on
Arthur’s message, one can efficiently find a corresponding NP-witness.

2 In contrast, in other applications, where proofs-of-knowledge are used as a tool (and
the corresponding knowledge-extractor is used by some simulator), it suffices to
consider deterministic prover strategies (because these are derived from residual
deterministic strategies that are derived in the course of the security analysis).
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Strategies. Loosely speaking, deterministic strategies are functions that specify
the next message to be sent by a party, based on its private input (which is
hardwired in them) and as a function of the messages it has received so far.
General (probabilistic) strategies are similar, except that the next message may
also depend on a random input that is presented to these strategies. Formally, a
(probabilistic) strategy σ is a function from {0, 1}∗×{0, 1}∗ to {0, 1}∗ such that
σ(ω, γ) denotes the message to be sent by the corresponding party given that
its random input equals ω, and the sequence of messages received so far equals
γ. Note that the strategy depends also on private inputs of the corresponding
party, to which the outside world has no direct access. (These private inputs are
hardwired in σ and do not appear explicitly in our notation.)

For a probabilistic strategy σ, we often consider residual deterministic strate-
gies of the form σω = σ(ω) obtained by fixing the value of the random input to
ω (i.e., σω(γ) = σ(ω, γ)).

The Two Perceptions of Strategies. Strategies will be used both as oracles
and as specifying the actions of interactive machines. Specifically, we mean the
following:

– When we discuss the interaction between parties on a common input, we
incorporate this common input in each of the two strategies. The interaction
of a strategy σ with a strategy σ′ is the sequence of messages exchanged
between the residual deterministic strategies σω and σ′

ω′ , where ω and ω′

are uniformly distributed. This sequence equals α1, β1, α2, β2, ... such that
αi+1 = σ(ω, (β1, ..., βi)) and βi = σ′(ω′, (α1, ..., αi)).

– When using σ as an oracle, the oracle machine may issue arbitrary queries,
which need not be consistent with the way that σ interact with any inter-
active machine. In particular, these queries may relate to different values of
random input ω, all chosen at the discretion of the oracle machine.

The second item represents a relaxation of the common interpretation of the
definition of using a probabilistic strategy as an oracle oracle, and thus a short
discussion is in place. The common interpretation of this notion is that the user
(i.e., the oracle machines) is given oracle access to a (single) residual determinis-
tic strategy (i.e., σω) that is obtained from σ by fixing a uniformly distributed ω.
In fact, all prior constructions of knowledge extractors used this interpretation.
We believe, however, that the more liberal interpration suggested above (i.e., by
which the user is given oracle access to σ itself) is consistent with the simulation
paradigm and is adequate in all reasonable applications. Actually, the knowledge
extractor constructed in this work refers to an intermediate interpretation (of
using a probabilistic strategy σ as an oracle). By this interpretation the oracle
machine may is given access to several residual deterministic strategies (i.e., sev-
eral σω ’s) that are derived from the same probabilistic strategy by the selection
of independently and uniformly distributed values of the random input ω.

The Relevant Knoweledge. We capture the relevant knowledge by a binary
relation R ⊆ {0, 1}∗ × {0, 1}∗ such that, on common input x, the “claimed
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knowledge” refers to knowledge of a string in R(x) def= {y : (x, y) ∈ R}. The
archetypical case is of NP-relations; that is, relations R that are polynomially
bounded (i.e., (x, y)∈R implies |y| ≤ poly(|x|)) and are polynomial time recog-
nizable (i.e., there exists a polynomial-time algorithm A such that A(x, y) = 1
if and only if (x, y)∈R). We denote by SR the set of strings for which a “claim
of knowledge” is not bluntly wrong; that is, SR

def= {x : R(x) �= ∅}.

2.2 The Actual Definitions

Our focus will be on the validity condition of the following definition, but for
sake of completeness we state also the non-triviality condition.

Definition 1 (schema for defining proofs of knowledge): Let R be a binary re-
lation, and κ : {0, 1}∗ → [0, 1]. We say that an interactive machine V is a
knowledge verifier for the relation R with respect to a class of strategies S (and
knowledge error κ) if the following two conditions hold.

Non-triviality: For every x ∈ SR, there exists a strategy σ ∈ S such that the
verifier V always accepts when interacting with σ on common input x.

Validity (with error κ): There exists a probabilistic oracle machine K and a poly-
nomial q such that, for every strategy σ ∈ S and every x, machine K satisfies
the following condition:

If when interacting with σ, on common input x, the verifier V accepts
with probability px > κ(x), then on input x when given oracle access
to σ machine K outputs a string in R(x) within an expected number
of steps upper-bounded by

q(|x|)
px − κ(x) .

(1)

Note that the value of px depends on V , the strategy σ, and the
common input x. The probability space to which px refers is that
of all possible coin tosses of the strategies V and σ. Likewise, the
probability space underlying Eq. (1) consists of all possible coin tosses
of the machine K and the strategy σ.

The oracle machine K is called a (universal) knowledge extractor, and κ is called
the knowledge error function.

In particular, it follows that x �∈ SR implies px ≤ κ(x). We stress that, on
input x and when given oracle access to a strategy σ that convinces V to accept
x with probability exceeding κ(x), the knowledge extractor always outputs a
string in R(x); that is, in this case, Pr[Kσ(x) �∈ R(x)] = 0. However, when the
said probability does not exceed κ(x), all bets are off. Nevertheless, if R is an
NP-relation then we may assume, without loss of generality, that for every x and
every σ it holds that Pr[Kσ(x) �∈ (R(x) ∪ {⊥})] = 0, where ⊥ indicates halting
without output. We now turn to the definitions studied in this article.
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Definition 2 (the two definitions):

Following Definition 3.1 in [1]: We say that V is a knowledge verifier for the re-
lation R with knowledge error κ if Definition 1 holds with S being the set of
all possible (probabilistic) strategies.

Following Definition 4.7.2 in [2]: We say that V is a restricted knowledge verifier
for the relation R with knowledge error κ if Definition 1 holds with S being
the set of all possible deterministic strategies.

The two definitions differ only in the scope of strategies considered: [1, Def. 3.1]
refers to all possible (probabilistic) strategies, whereas [2, Def. 4.7.2] refers only
to all possible deterministic strategies.3 Nevertheless, we show that in all natural
cases (e.g., NP-relations) the restricted definition implies the general one.

2.3 Our Result

Before stating this result formally, let us point out why it is not as obvious as
analogous results regarding related definitions.4 Suppose that V is a restricted
knowledge-verifier (with knowledge error κ = 0) and let K be the correspond-
ing knowledge extractor. Given a probabilistic strategy σ, the straightforward
attempt to extract knowledge from σ consists of invoking K while providing it
with oracle access to the residual deterministic strategy σω , where ω is uniformly
distributed. The problem is that the probability that σω convinces V , denoted
p(ω), may deviate arbitrarily from the probability that σ convinces V , denoted
p. That is, the random variable p(ω) may behave arbitrarily subject (only) to
the condition p = Eω[p(ω)] (and, of course, p(ω) ∈ [0, 1]). This, in turn, implies
that the expected running-time of Kσω (taken also over the random choice of
ω) is not necessarily inversely proportional to p. For example, it may be that
Pr[p(ω) = 2−n] = 1/2 and Prω[p(ω) = 1] = 1/2, and in this case the expected
running-time of Kσω may be 2n while Eω[p(ω)] > 1/2. Indeed, in general, it
does not necessarily hold that Eω[1/p(ω)] ≤ poly(n) ·Eω [p(ω)]. Nevertheless, we
prove the following.

Theorem 3 (main result): Let V be a restricted knowledge verifier for R with
knowledge error κ, where the length of the binary expansion of κ(x) is polynomial
in |x|. Suppose that the corresponding knowledge extractor, K, never outputs a
wrong answer; that is, for every x and σ, it holds that Pr[Kσ(x) �∈ R(x)∪{⊥}] =
3 Unfortunately, these facts are not perfectly clear in the original texts: The formu-

lation of [1, Def. 3.1] refers to all possible “interactive functions”, yet the latter
are defined in [1, Def. 2.1] as arbitrary probabilistic strategies. The formulation of
[2, Def. 4.7.2] refers to all residual deterministic strategies that can be obtained by
fixing the random input of some probabilistic strategy, but in retrospect the latter
condition is a red herring (and does not help in extending this definition to the
general case of [1, Def. 3.1]).

4 Recall that simulation-security with respect to arbitrary (polynomial-size) deter-
ministic adversaries typically implies simulation-security with respect to arbitrary
probabilistic (polynomial-time) adversaries.
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0, where ⊥ indicates halting without output. Then, V is a knowledge verifier for
R with knowledge error κ.

Theorem 3 asserts that, under the additional assumptions regarding κ and K,
the restricted definition (i.e., [2, Def. 4.7.2]) implies the general definition (i.e., [1,
Def. 3.1]). As illustrated by the forgoing discussion, the corresponding knowledge
extractor (for [1, Def. 3.1]) is not K (or the minor modification of K discussed
above). We note that the two additional assumptions (regarding κ and K) can
be easily met in case that R is an NP-relation. Details follows.

Recall that if R is an NP-relation, then we can check the output of K, and
thus (on input x) we can always avoid outputting a string that is not in R(x).
This eliminates the additional assumption regarding K. As for the additional
condition regarding κ, it can always be enforced by possiblly increasing κ a
little; that is, by resetting κ(x) to �2q(|x|) · κ(x)�/2q(|x|), where q is an arbitrary
polynomial. Furthermore, in the case that R is an NP-relation, we may reset
κ(x) to κ′(x) def= �2q(|x|) · κ(x)�/2q(|x|), for a sufficiently large polynomial q (by
taking advantage of the fact that, for any x ∈ SR, a string in R(x) can be found
in time exp(q(|x|))).5

3 Proof of Theorem 3

Recall that the source of trouble is that for a uniformly distributed value of
the random input, the success probability of the corresponding residual deter-
ministic strategy (w.r.t convincing V ) may be very different from the success
probability of the original probabilistic strategy. This may lead to overwhelm-
ingly long runs of the knowledge extractor (i.e., runs that contribute to the
total expected running-time more than we can allow). The basic idea is to
truncate such overwhelmingly long runs, and rely on the existence (in sufficient
probability measure) of runs that are not overwhelmingly long.

Let us illustrate this idea by referring to the foregoing example, where
Pr[p(ω) = 2−n] = 1/2 and Pr[p(ω) = 1] = 1/2 (and κ = 0).6 In this case,
p = Eω[p(ω)] > 1/2, and so our extraction procedure should run in expected
polynomial-time. Thus, we invoke K providing it with oracle access to σω , where
ω is uniformly distributed among all possible random inputs, and truncate the

5 This fact allows for handing the case that the probability that σ convinces V to
accept x (i.e., px) is very close to κ(x) in the sense that px − κ′(x) is significantly
larger than px−κ(x). We first note that in this case px < κ(x)+2−q(|x|) (as otherwise
px − κ(x) ≥ 2−q(|x|) and px − κ′(x) < px − κ(x) + 2−q(|x|) ≤ 2 · (px − κ(x))). Thus,
in this case (where (px − κ(x))−1 < 2q(|x|)), we can afford running the standard
exhaustive search algorithm (which runs in time 2q(|x|)) in parallel to the given
knowledge extractor. On the other hand, if px − κ′(x) = O(px − κ(x)), then (px −
κ(x))−1 = O((px − κ′(x))−1). Thus, given an knowledge extractor of error κ, we
obtain a knowledge extractor of error κ′.

6 Throughout the text, n denotes the length of the common input x, which we often
omit from the notation.
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execution after a polynomial number of steps has elapsed. If an output was ob-
tained in this execution attempt, then we output it, otherwise we repeat the
experiment again. Note that, with probability 1/2, the residual strategy σω sat-
isfies p(ω) = 1, in which case Kσω is expected to halt in polynomial-time with
the desired output. Otherwise (i.e., p(ω) = 2−n), the (truncated) execution of
Kσω may be useless, but it will not cause much harm (since it is suspended after
a polynomial number of steps).

In the foregoing example we relied on a good a priori knowledge of the distri-
bution of p(ω), which may not be available in general. Thus, in general, we shall
employ a somewhat more sophisticated argument. Following is a rough sketch of
the general argument, where we still assume for simplicity that κ = 0. One key
observation is that there exists an integer i such that Prω[p(ω) ≈ 2−i] is linearly
related to 2i · p (where p = Eω[p(ω)]). We do not know this i and so we run, in
parallel, numerous processes one per each of the relevant values of i. In the ith

process (i.e., the one related to the value i), we repeatedly attempt extraction
with deterministic residual provers (derived by random fixings of ω), but trun-
cate each attempt after poly(n) ·2i steps. Thus, for the correct value of i, the ith

relevant process will succeed in extraction within the allowed expected number
of steps (i.e., it is expected to make poly(n)/(2i · p) attempts, each running for
poly(n) · 2i steps, and thus the total expected running time is poly(n)/p).

We now turn to a rigorous description of the actual knowledge extractor for
probabilistic strategies. We fix an arbitrary x ∈ SR, but omit it from most
subsequent notations. Fixing an arbitrary randomized strategy σ, we consider
an arbitrary choice of the strategy’s coins, ω, and denote the residual strategy
by σω. In the rest, we will refer to selecting such ω’s and providing oracle access
to the corresponding σω , but we need not select these ω’s ourselves; it suffices to
have the ability of providing oracle access to numerous random and independent
“incarnations” of σ that correspond to such choices of ω’s.

Let p(ω) denote the probability that verifier accepts when interacting with
σω, on common input x. By the hypothesis, if p(ω) > κ(x), then the knowledge
extractor K, given oracle to σω, outputs a string in R(x) in expected time
q(|x|)/(p(ω)−κ(x)), where q is a fixed (universal) polynomial. As before, we let
p = Eω [p(ω)], and assume, without loss of generality, that p > κ(x) (because
otherwise noting is required). In addition, let κ = κ(x) and let 	 = poly(|x|)
denote an upper-bound on the length of the random input used by V on common
input x. It follows that for every choice of ω (which determines a residual strategy
σω) it holds that 2� · p(ω) is an integer (because the relevant probability space
is uniformly distributed over 2� possibilities). Recalling that κ has a binary
expansion of length poly(|x|), we assume, without loss of generality, that 2� · κ
is also an integer. It follows that if p(ω) ≤ κ + 2−�−1, then p(ω) ≤ κ.

We consider a partition of (κ + 2−�−1, κ + 1] into 	 + 1 intervals such that the
ith interval is Ii = (κ + 2−i, κ + 2−i+1]. We claim that there exists i ∈ [	 + 1]
such that

Prω[p(ω) ∈ Ii] ≥
2i · (p− κ)
4(	 + 1) .

(2)
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This claim follows, because otherwise we derive a contradiction as follows
(where in the first inequality we use the fact that p(ω) ≤ κ + 2−�−1 implies
p(ω) ≤ κ):

Eω[p(ω)] ≤ Prω [p(ω) ≤ κ + 2−�−1] · κ +
�+1∑
i=1

Prω[p(ω) ∈ Ii] · (κ + 2−i+1)

= κ +
�+1∑
i=1

Prω[p(ω) ∈ Ii] · 2−i+1

< κ +
�+1∑
i=1

2i · (p− κ)
4(	 + 1)

· 2−i+1

= κ +
p− κ

2

where the second inequality uses the contradiction hypothesis (by which Eq. (2)
is violated for every i ∈ [	 + 1]). Recalling that p = Eω[p(ω)], we obtain p <
κ + (p− κ)/2, which contradicts the hypothesis p > κ.

The new extraction procedure consists of running 	 + 1 processes in parallel.
The ith process successively invokes time-bounded executions of the knowledge
extractor K, providing each such invocation with oracle access to a random
and independent incarnation of σ (i.e., residual strategies σω for uniformly and
independently ditrsibuted values of ω). The time-bound used in the ith process is
2·q(|x|)·2i, where the q is the polynomial guaranteed for K. Thus, if p(ω) ≥ κ+2i

then, with probability at least 1/2, it holds that Kσω(x) halts in 2 · q(|x|) · 2i

steps (because the expected number of steps is q(|x|) · 2i). Once any of these
	+ 1 processes outputs some string y, the entire parallel-process terminates and
y is used as output.

Recall that by the theorem’s hypothesis, whenever K outputs a string y it is
the case that y ∈ R(x). Thus, we confine ourselves to analyzing the expected
running-time of the foregoing extraction process. Considering an arbitrary value
i that satisfies Eq. (2), we observe that the ith process succeed after making an

expected number of 2 ·
(

2i·(p−κ)
4(�+1)

)−1

trials. Thus, the overall time spent by the
new extractor has expectation

(	 + 1) · 2 · 4(	 + 1)
2i · (p− κ)

· (2 · q(|x|) · 2i) =
O(	2 · q(|x|))

p− κ
=

poly(|x|)
p− κ

and the theorem follows.

4 Concluding Remarks

We have established the equivalence of [1, Def. 3.1] and [2, Def. 4.7.2] while
relying on the following three (reasonable) conventions (or assumptions):
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1. We assumed that the pharse “given oracle access to a probabilistic strategy
σ” means ability to query several (rather than one) residual deterministic
strategies of the form σω , where the ω’s are uniformly and independently
distributed.

2. We assumed that the knowledge-extractor never outputs a wrong string (i.e.,
a string not in R(x)), regardless of which input x and which strategy σ it is
given access to.

3. We assumed that the knowledge error function κ is nice in the sense that,
for every x, the binary expansion of κ(x) has length polynomial in |x|.

We believe that these assumptions do not impair the applicability of our result.
Still we wonder whether (some of) these assumptions can be eliminated.
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On the Average-Case Complexity of Property

Testing

Oded Goldreich

Abstract. Motivated by a study of Zimand (22nd CCC, 2007), we con-
sider the average-case complexity of property testing (focusing, for clar-
ity, on testing properties of Boolean strings). We make two observations:

1. In the context of average-case analysis with respect to the uniform
distribution (on all strings of a fixed length), property testing is
trivial. Specifically, either the yes-instances (i.e., instances having
the property) or the no-instances (i.e., instances that are far from
having the property) are exponentially rare, and thus the tester may
just reject (resp., accept) obliviously of the input.

2. Turning to average-case derandomization with respect to distribu-
tions that assigns noticeable probability mass to both yes-instances
and no-instances, we identify a natural class of distributions and
testers for which average-case derandomization results can be
obtained directly (i.e., without using randomness extractors). Fur-
thermore, the resulting deterministic algorithm may preserve the
non-adaptivity of the original tester. (In contrast, Zimand’s argu-
ment utilizes a strong type of randomness extractors and introduces
adaptivity into the testing process.)

Keywords: Property Testing, Average-Case Complexity.

An early version of this work appeared as TR07-057 of ECCC. The current
revision is quite minimal.

1 Introduction

The starting point of this article is Zimand’s study of possible derandomiza-
tions of randomized sublinear-time algorithms [Z]. Zimand showed that ran-
domized sublinear-time algorithms can be derandomized yielding deterministic
algorithms of polynomially-related complexity that err on a negligible fraction
of the instances. Specifically, he showed that, for some fixed α > 0, any random-
ized algorithm of time-complexity T such that T (n) < nα can be emulated by a
poly(T )-time deterministic algorithm that errs on at most an exp(−Ω(T log T ))
fraction of the instances. Needless to say, Zimand’s work (as well as the current
article) refers to a “direct access” model of computation in which each bit of
the input can be read at unit cost. Zimand noted the relevance of his work to
property testing, but our view is that this aspect of his work should be evalu-
ated with great care. Articulating this view is the main motivation of the current
article.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 124–135, 2011.
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1.1 Average-Case with Respect to the Uniform Distribution

In discussing the theoretical significance of his work, Zimand says “it shows that
the properties that can be checked in sublinear time depend, except for a few
inputs, on just a few bits of the input and the locations of these bits can be found
very fast.”1 We fear that such a phrasing does not put adequate emphasis on the
exception clause (i.e., “except for a few inputs”). Furthermore, in our opinion,
the crux of property testing is dealing with non-typical (i.e., exceptional) inputs,
whereas dealing with random inputs is typically uninteresting.

We first note that average-case analysis with respect to the uniform distribu-
tion is not adequate in the context of testing properties of strings, which in turn
cover almost all types of property testing problems (e.g., testing graph properties
in the adjacency matrix model). The reason is that property testing problems
are special type of promise problems2 in which one should distinguish instances
having the property from instances that are far from any string having the prop-
erty. However, as shown in Section 2, for every property of n-bit strings either the
first set (i.e., instances having the property) or the second set (i.e., instances far
from having the property) has exponentially vanishing density. In the first (resp.,
second) case, a trivial tester that rejects (resp., accepts) every input (without
reading a single bit) is correct on all but a exponentially vanishing fraction of
all inputs, where the exceptional cases consists of all the yes-instances (resp.,
all the “far-away” instances).

Indeed, the average-case complexity of promise problems is meaningful only
with respect to distributions that assign noticeable probability mass to both yes-
instances and no-instances (because otherwise a trivial algorithm as above will
do). However, the uniform distribution cannot satisfy the latter condition in
the case of promise problems that correspond to property testing (of Boolean
strings).

1.2 A Direct Average-Case Derandomization for Many Natural
Cases

We thus turn to average-case derandomization with respect to distributions
that assigns noticeable probability mass to both yes-instances and no-instances
(i.e., “far-away” instances). While Zimand’s approach may be applicable to this
context too3, we identify a natural class of distributions and testers for which

1 See last paragraph of [Z, Sec. 1.0].
2 Recall that promise problems [ESY] are represented as pairs of non-intersecting sets

A, B ⊆ {0, 1}∗ and solving such problems requires distinguishing inputs in A from
inputs in B, while an arbitrary answer is allowed for inputs that are neither in A nor
in B. For such a promise problem we say that a string in A ∪ B satisfy the promise
(while strings outside A ∪ B violate the promise).

3 As shown in Section 2, such distributions must have min-entropy at most n−Ω(n),
while [Z] does not provide results for this range of paramters. Still it is possible that
the basic approach of [Z] coupled with a suitable randomness extractor (possibly
tailored for this application) may be applicable to such distributions.
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average-case derandomization results can be obtained directly. Furthermore, we
believe that our analysis provides a more illuminating account of what is actually
going on.

We recall that, in continuation to [GW], Zimand [Z] emulates the computation
of the original randomized tester by applying a (special type of) randomness
extractor to the input, and replacing the coin tosses of the original tester with
corresponding outputs of the extractor. Consequently, even if the original tester
is non-adaptive (as is the case with many natural property testers), the resulting
deterministic algorithm is adaptive (because the emulation step depends on the
bits read in the randomness-extraction step). In contrast, we show that, in many
natural cases, an average-case derandomization can be obtained by arbitrarily
fixing the coins of the original tester.

To illustrate the point, let us consider the problem of testing whether a given
Boolean string has a majority of 1-values (or is far from any such string). In this
case, we may obtain a deterministic algorithm by inspecting the value of the first
few bits in the string, where this algorithm decides correctly on almost all n-bit
strings that have a number of 1-values that is bounded away from n/2; that is,
ruling by the majority of the inspected bits, we decide correctly on almost all
elements in the set of n-bit strings having Hamming weight outside the interval
[0.49n, 0.51n]. Furthermore, any fixed set of sufficiently many bit positions can
be used for this purpose. For a general treatment, see Section 3.

We illustrate the general treatment by considering the special case of testing
graph properties in the adjacency matrix model (as in, e.g., [GGR]). In this
setting (but also in other natural settings), the natural property testers use
their randomness solely for determining the bit positions to be examined in the
input. Furthermore, at the cost of squaring the query complexity, we may assume
that any graph property can be tested by using randomness in such a restricted
manner [GT]. In Section 3, we show that a deterministic tester that inspects the
subgraph induced by any fixed set of vertices (of adequate size) errs rarely with
respect to any distribution on labeled graphs that is invariant under isomorphism.

1.3 Additional Comments

We note that, in many cases, it is easier to construct property testers that work
only on typical objects drawn from natural distributions rather than to construct
standard testers that work on all objects. This fact is mildly reflected by the
results shown in Section 3, where we convert standard (randomized) testers into
deterministic “average-case testers”; that is, here getting rid of randomization
is considered a simplification, but the query complexity of the resulting tester is
not smaller than the query complexity of the original tester.4 However, in many
natural examples (see one below), we can also reduce the query complexity.
Details follow.

Let us first emphasize the fact that, when considering worst-case complexity,
randomness is essential for testing natural properties (see, e.g., [GS], and note
4 Actually, the the query complexity of the resulting tester is somewhat larger than

the query complexity of the original tester.
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that this is an unconditional result). Indeed, this result stand in contrast to the
aforementioned average-case testing results, and provides a formal sense in which
“average-case testing” is easier than standard (worst-case) testing. However, we
claim that things go beyond this sense: Detecting random objects that are far
from a property is typically easier than detecting arbitrary objects that are far
from this property.

Consider, for example, the notoriously hard problem of testing triangle-freeness
in the adjacency matrix model. As shown by Alon [A], testing triangle-freeness
requires a number of queries that is super-polynomial in the reciprocal of the
proximity parameter, denoted ε. In contrast, for a random graph of edge density
ε and any three vertices, with probability ε3, the subgraph induced by these
three vertices is a triangle.

Reservations Regarding Our Own Opinions. The direct average-case derandom-
izations presented in Section 3 refer to distributions that are invariant under
natural reshuffling of the presentation of the studied objects (e.g., in the case of
labeled graph we considered distribution that are invariant under isomorphism).
Although such distributions arise naturally in many cases, distributions that
lack this feature are natural in other cases. For example, consider a distribution
over real-valued vectors (or matrices) that is obtained by the following two-step
process: First a vector (resp., a matrix) is selected according to an arbitrary dis-
tribution, and then each of its entries is pertubed at random and independently
of anything else. The resulting distribution may not satisfy any of the invariances
considered in Section 3, but it does have high min-entropy. Recalling that vari-
ous natural properties of vectors (resp., matrices) can be tested in probabilistic
sublinear time (cf., e.g., [EKKRV, FK]), we note that Zimand’s approach [Z]
may5 be applicable in this case (and if so yield average-case derandomization of
natural appeal).

2 Average-Case with Respect to the Uniform
Distribution

We start by recalling the setting of property testing (cf., e.g., [G, R]), when
specialized to bit strings (of fixed length). We comment that other finite objects
can be naturally represented by such generic strings, and thus corresponding
properties can be naturally cast in this framework. The most notable exam-
ple is property testing of graphs in the adjacency matrix model (as introduced
in [GGR]).

For a generic length parameter n, we consider the set of all strings over {0, 1}n,
and an arbitrary property Pn ⊆ {0, 1}n. Property testing with respect to a
distance parameter ε > 0 corresponds to distinguishing inputs in Pn from inputs
in Γε(Pn), where

Γε(Pn) def= {x ∈ {0, 1}n : ∀z ∈ Pn Δ(x, z) > ε · n} (1)
5 See Footnote 3.
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and Δ(x1 · · ·xn, z1 · · · zn) = |{i : xi �= zi}| denotes the number of bits on which
x = x1 · · ·xn and z = z1 · · · zn disagree.6 That is, property testing with respect to
ε corresponds to deciding the promise problem (Pn, Γε(Pn)). However, as we shall
see, with respect to the uniform distribution on {0, 1}n, this promise problem is
trivial on the average. That is:

Theorem 2.1 ([AS, Thm. 7.5.3], reformulated): For every constant ε > 0 there
exists a constant c > 0 such that for every n if |Pn| ≥ 2−cn · 2n, then |Γε(Pn)| ≤
2−cn ·2n. More generally, if |Pn| ≥ ρ·2n and ε ≥

√
8 ln(1/ρ)

n , then |Γε(Pn)| ≤ ρ·2n.

Indeed, Theorem 2.1 can be reformulated by referring to a uniformly distributed
x ∈ {0, 1}n. This reformulation (of the special case of constant ε > 0) asserts that
(for some constant c > 0) either Prx[x ∈ Pn] < 2−cn or Prx[x ∈ Γε(Pn)] ≤ 2−cn.
In the first case, a tester that always reject is correct on all but at most a 2−cn

fraction of the n-bit inputs, whereas in the second case the same holds for a tester
that always accepts. Thus, property testing is trivial on the average with respect
to any distribution that has min-entropy m

def= n − o(n) (i.e., a distribution Xn

such that of every x it holds that Pr[Xn =x] ≤ 2−m).7

Proof: The theorem is merely a reformulation of a well-known result regarding
the volume of balls around sets. Specifically, let Bd(S) denote the set of n-
bit long strings that are at distance at most d from some string in S (i.e.,
Bd(S) def= {x ∈ {0, 1}n : ∃y ∈ S s.t. Δ(x, y) ≤ d}). Then, Theorem 7.5.3 in [AS]
(see proof in the Appendix) asserts that if |S| ≥ e−λ2/2 · 2n, then |B2λ

√
n(S)| ≥

(1 − e−λ2/2) · 2n. Using S = Pn and λ =
√

2 ln(1/ρ), where ρ = |Pn|/2n, we
get |B√

8n ln(1/ρ)
(Pn)| ≥ (1− ρ) · 2n. Noting that Γε(Pn) = {0, 1}n \ Bεn(Pn), the

general claim follows. The special case follows by noting that ρ = 2−cn implies√
(8 ln(1/ρ))/n =

√
8c/ log e (and so using c = ε2/8 will do).

Generalization. We note that Theorem 2.1 generalizes to properties of sequences
over any alphabet Σ. That is, for any property Pn ⊆ Σn, it holds that if |Pn| ≥
ρ · |Σ|n and ε ≥

√
8 ln(1/ρ)

n , then |Γε(Pn)| ≤ ρ · |Σ|n, where Γε(Pn) denotes the
set of n-long sequences over Σ that are ε-far from every sequence in Pn. (See
further details in the Appendix.)

3 A Direct Average-Case Derandomization for Many
Natural Cases

In this section we show that, in many interesting settings of property testing,
average-case derandomization results can be obtained more directly than by
6 An alternative exposition may refer to Boolean functions of the form f : [n] → {0, 1}.

In this case Δ(f, g) = |{i : f(i) 	=g(i)}|.
7 In fact, we may allow min-entropy m = n − (cn/2), where c is the constant in

Theorem 2.1. For such a distribution Xn (of min-entropy n − (cn/2)), it holds that
either Pr[Xn ∈ Pn] ≤ 2−cn/2 or Pr[Xn ∈ Γε(Pn)] ≤ 2−cn/2.
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following the approach suggested by Zimand.8 We start by considering the con-
crete setting of testing graph properties in the adjacency matrix model (as
in [GGR]), and later generalize the treatment to other settings. Indeed, the
setting of testing graph properties in the adjacency matrix model provides the
most appealing application of the general approach to be described later.

3.1 On Testing Graph Properties in the Adjacency Matrix Model

Recall that in this model (for testing graph properties), n-vertex graphs are
represented by Boolean strings of length n2. For technical reasons, we prefer to
represent such graphs as Boolean functions defined over the set of the

(
n
2

)
(un-

ordered) vertex-pairs, which is actually more natural (as well as non-redundant).
Note that the set of all permutations over [n] induces a transitive group of
permutations over these pairs, where the permutation π : [n] → [n] induces
a permutation that maps pairs of the form {i, j} to {π(i), π(j)}. Indeed, any
graph property is invariant under this group, which is hereafter referred to as
the group of vertex-relabeling; that is, G=([n], E) has the property if and only if
π(G)=([n], {{π(i), π(j)} : {i, j} ∈ E}) has this property.

Theorem 3.1 Let Gn be a graph property, referring to n-vertex graphs, and let
Xn be any arbitrary distribution of n-vertex graphs that is invariant under the
group of vertex-relabeling (i.e., for every permutation π : [n] → [n] it holds that
Xn and π(Xn) are identically distributed). Suppose that the promise problem
(Gn, Γε(Gn)) can be decided correctly (in the worst case) by a probabilistic tester
of query complexity q(n, ε) and error probability at most 1/3. Then, for every k <
n/O(q(n, ε)2), there exists a deterministic algorithm of query complexity O(k ·
q(n, ε)2) that inspects only vertex pairs that correspond to the vertices 1, ..., O(k ·
q(n, ε)) and is correct on a random input Xn with probability at least 2−k.

As will be clear from the proof, we may use any O(k ·q(n, ε)) fixed vertices rather
than the vertex set {1, ..., O(k · q(n, ε))}.
Proof: By [GT, Thm. 2], we may convert the original tester into a canonical

tester that selects uniformly a set of n′ def= O(q(n, ε)) vertices, denoted R, and ac-
cepts if and only if the subgraph induced by R has some predetermined (graph)
property G′n′ . By invoking the resulting (canonical) tester t

def= O(k) times, we re-
duce its (worst-case) error probability to 2−k. We claim that the resulting tester,
denoted A, can be derandomized (for average-case performance) by merely using
any fixed set of t ·n′ vertices rather than a random set of t ·n′ vertices as selected
by A. We denote the resulting deterministic algorithm by D.

To prove the foregoing claim, we consider an arbitrary input graph G that
satisfies the promise (i.e., either G ∈ Gn or G is ε-far from Gn). By the foregoing
discussion we know that the probability that A errs on input G is at most
2−k. Let π denote a uniformly distributed permutation of [n], and consider the
8 Here we ignore the question of the applicability of Zimand’s approach to distributions

of min entropy n − Ω(n); cf. Footnote 3.
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graph π(G) obtained from G by relabeling its vertices according to π. Note that
π(G) ∈ Gn if and only if G ∈ Gn (and, likewise, π(G) is ε-far from Gn iff G is
ε-far from Gn). On the other hand, the distribution of the view of A on input G
is identical to distribution of the view of D on input π(G), because a random π
maps any fixed set of vertices to a uniformly distributed set of vertices. We stress
that the first probability space is defined over the coin tosses of A, whereas the
second probability space is defined over the random relabeling π. We conclude
that the probability that D errs on input π(G) is at most 2−k.

By the hypothesis that Xn is invariant under the group of vertex-relabeling, it
follows that Xn can be described by a process in which one first selects a random
graph G (possibly G ← Xn), and then outputs π(G), where π is a uniformly
distributed permutation of [n]. Note that if G violates the promise, then so does
π(G), whereas if G satisfies the promise, then the probability that D errs on
input π(G) is at most 2−k. It follows that D errs on input Xn with probability
at most 2−k.

3.2 Generalization

Theorem 3.1 can be extended in various ways. We first note that most natural
testers (not only in the setting of testing graph properties in the adjacency
matrix model) are “kind of canonical” in the sense that they select some random
set of “pivots” and consider small sets of bit-locations as determined by these
pivots. That is, randomization is only used in these testers for the selection of
the pivots, which induce queries that are each uniformly distributed. Thus, the
strategy of the proof of Theorem 3.1 can be applied, resulting in a deterministic
algorithm that uses a fixed set of pivots and errs with probability at most 2−k

on any input distribution that is invariant under permutations that correspond
to mapping among sets of pivots. To formalize the above discussion, we need
some definitions.

We turn back to properties of n-bit strings, which we actually view as functions
from [n] to {0, 1}. More generally, we shall consider properties of functions from
[n] to an arbitrary alphabet Σ. For any set (or rather group) Π of permutations
over [n], we say that the property Pn (of such functions) is Π-invariant if for every
f : [n] → Σ and every π ∈ Π it holds that f ∈ Pn if and only (f ◦π) ∈ Pn, where
(f ◦ π)(i) = f(π(i)) (for every i ∈ [n]). In the following definition, “normality”
amounts to non-adaptivity augmented by the requirement that the final decision
is deterministic and only depends on the oracle answers, whereas “Π-normality”
corresponds to the mapping between the aforementioned pivots.

Definition 3.2 (normal testers): Let Π be a permutation group over [n] and Pn

be a Π-invariant property. We say that a tester for Pn is normal if there exists
a query-generating algorithm Q and a verdict predicate V such that on internal
coins ω ∈ {0, 1}r and oracle access to any f : [n] → Σ the tester accepts if
and only if V (f(i1), ..., f(iq)) = 1, where (i1, ..., iq) = Q(ω). That is, the tester
queries the function at locations i1, ..., iq, which are determined by Q(ω) and
accepts if and only if the predicate V evaluates to 1 on the q-tuple of answers.
We say that the tester is Π-normal if the following two conditions hold.
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1. For every ω, ω′ ∈ {0, 1}r there exists π ∈ Π such that Q(ω′) = π(Q(ω)),
where π(i1, ..., iq) = (π(i1), ..., π(iq)).

2. For every ω ∈ {0, 1}r and π ∈ Π there exists ω′ ∈ {0, 1}r such that Q(ω′) =
π(Q(ω)).

Note that, by definition, a normal tester is non-adaptive. The justification for
referring to the two additional conditions by the term Π-normalily is provided by
the following Fact 3.3. But let us first mention that, indeed, the canonical graph
property testers (as defined in [GT] and used in the proof of Theorem 3.1) are
normal. Furthermore, they are Π(vr)-normal for the group Π(vr) of all vertex-
relabeling. Other examples of normal testers are discussed at the end of this
section.

Fact 3.3 Let Π and Pn be as in Definition 3.2, and suppose that V and Q are
as rerquired of a normal tester for Pn. Then, this tester is Π-normall if and only
if for every ω ∈ {0, 1}r and uniformly distributed π ∈ Π it holds that π(Q(ω)) is
uniformly distributed in S

def= {Q(ω′) : ω′ ∈ {0, 1}r} (i.e., for every ω, ω′ ∈ {0, 1}r

it holds that Prπ∈Π [π(Q(ω))=Q(ω′)] = 1/|S|).

Proof: Clearly, the latter (“distributional”) condition implies the two condi-
tion in Definition 3.2. To see that the other direction, we show that Π-normality
implies that, for any fixed ω, ω′, ω′′ ∈ {0, 1}r, it holds that pω,ω′ = pω,ω′′ , where

pa,b
def= Prπ∈Π [π(Q(a)) = Q(b)]. The latter claim can be proved by fixing any

permutation π0 that satisfies Q(ω′′) = π0(Q(ω′)), and observing that a ran-
dom permutation in Π can be written as π0 ◦ π′, where π ∈ Π is uniformly
distributed. Hence, pω,ω′′ = Prπ′∈Π [(π0 ◦ π′)(Q(ω)) = Q(ω′′)], which equals
Prπ′∈Π [π′(Q(ω))=Q(ω′)].

Theorem 3.4 (Theorem 3.1, generalized): Let Π be a permutation group over
[n] and Pn be a Π-invariant property. Let Xn be a distribution over functions
from [n] to Σ such that for every such function f and every π ∈ Π it holds
Pr[Xn =f ] = Pr[Xn =f ◦ π]. Suppose that the promise problem (Pn, Γε(Pn)) can
be decided correctly (in the worst case) by a Π-normal tester of query complexity
q(n, ε) and error probability at most 1/3. Then, for every k < n/O(q(n, ε)), there
exists a (non-adaptive) deterministic algorithm that inspects the function value
at O(k · q(n, ε)) fixed and predetermined positions and is correct on a random
Xn with probability at least 2−k.

A distribution Xn as in the hypothesis of Theorem 3.4 is called Π-invariant.

Proof: The deterministic algorithm, denoted D, is obtained by fixing the
coins to the query-generating algorithm Q. For example, we may query the
input function f at locations (i1, ..., iq) = Q(0r), and accept if and only if
V (f(i1), ..., V (iq)) = 1. (Recall that V represents a fixed predicate.) As in the
proof of Theorem 3.1, we actually apply this construction after reducing the
error probability of the original tester to 2−k.
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To analyze the success probability of D on input Xn, we fix any function f and
consider the function distribution f ◦ π, where π ∈ Π is uniformly distributed.
As in the proof of Theorem 3.1, the distribution of the view of the original tester
on input f is identical to distribution of the view of the deterministic algorithm
D on the randomized input f ◦ π. (Here we use Fact 3.3.) We conclude that if
f ∈ Pn ∪Γε(Pn), then the probability that D errs on the input distribution f ◦ π
is at most 2−k. Again, using the hypothesis that Xn is Π-invariant, we conclude
that the probability that D errs on input Xn is at most 2−k.

Corollaries. Indeed, Theorem 3.1 follows as a special case of Theorem 3.4 by
invoking [GT, Thm. 2] (and referring to the group of vertex-relabeling permu-
tations). Next, we illustrate the applicability of Theorem 3.4 to testing low-
degree polynomials (see, e.g., [RS]) and to testing monotone functions (see,
e.g., [GGLRS]).

– In the case of low-degree tests (see, e.g., [RS]), for some finite field F , we
are given a function f : Fm → F and wish to test whether it is a low-
degree polynomial. The standard test selects uniformly at random a line
in Fm, queries some points that reside on fixed locations on this line and
accepts if and only if an adequate interpolation condition holds. This tester
is clearly normal. Furthermore, this tester is Π-normal, where Π is the group
of all full-rank affine transformations of Fm (because such transformations
define a transitive operation on the set of all pairs of different points).9

Thus, Theorem 3.4 can be applied to any distribution of functions that is
Π-invariant.

– In the case of testing monotonicity (see, e.g., [GGLRS]), for some ordered
set S, we are given a function f : Sm → R and wish to test whether it is
monotone (i.e., whether f(α) ≤ f(β) for every α = (α1, ..., αm) and β =
(β1, ..., βm) such that αi ≤ βi for every i ∈ [m]). In the case that S =
{0, 1}, the standard test selects uniformly at random two points in Sm that
differ in a single coordinate, queries f on these two points, and accepts
if and only if an adequate inequality holds. This tester is clearly normal.
Furthermore, monotonicity is Π-invariant for the group Π that consists of
all permutations π : Sm → Sm such that π(α1, ..., αm) = (απ′(1), ..., απ′(m))
for some permutation π′ : [m] → [m]. Unfortunately, the foregoing tester
is not Π-invariant, because the permutations in Π preserve the Hamming
weight of strings in {0, 1}m.
In order to apply Theorem 3.4, we decouple the foregoing tester into m tests
such that the i-th test selects uniformly an m-bit string α of Hamming weight
i and queries f on this string and on a random string obtained from α by
setting one of its 1-entries to zero. Each of these testers is Π-invariant, and
so we may apply an adequate extension of Theorem 3.4 that refers to testing
properties by a conjunction of several tests.

9 Note that our notion of normality is closely related (but not identical) to the notion
of linear invariances studied in [KS].
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We comment that similar ideas can be applied even to non-adaptive testers,
which seems essential to settings such as testing properties of bounded-degree
graphs in the incidence list model (of [GR1]). For example, note that the testers
presented in [GR1, GR2] only employ comparison-based computations; that is,
they can described in terms of operations such as select a random vertex,
select a random neighbor of a given vertex, and test equality of two
given vertices.10 Thus, the operation of these algorithms is maintained when
we relabel the vertices. Consequently, they can be derandomized analogously
to the proof of Theorem 3.1, resulting in an algorithm that uses a fixed set of
vertices and a fixed set of neighbor indices.11

Acknowledgments. I am grateful to Omer Reingold and Ronen Shaltiel for
extremely useful and insightful discussions. I am also grateful to Marius Zimand
for correcting my initial impression by which [Z] can handle any source of linear
min-entropy.
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Appendix: Generalization of Theorem 2.1

We first detail the generalization of Theorem 2.1 to properties of sequences over
any alphabet Σ. This requires generalizing the definition of Γε as follows (for
any Pn ⊆ Σn):

Γε(Pn) def= {x ∈ Σn : ∀z ∈ Pn Δ(x, z) > ε · n} (2)

where Δ(x1 · · ·xn, z1 · · · zn) = |{i : xi �= zi}| denotes the number of position in
the sequence on which x = x1 · · ·xn and z = z1 · · · zn disagree.

Theorem 2.1, generalized. For any property Pn ⊆ Σn, it holds that if |Pn| ≥
ρ · |Σ|n and ε ≥

√
8 ln(1/ρ)

n , then |Γε(Pn)| ≤ ρ · |Σ|n.

Proof: The proof of Theorem 2.1 generalizes easily, because the proof of Theo-
rem 7.5.3 in [AS] applies (without any change) also to the general case. For sake
of self-containment, we reproduce the proof of [AS, Thm. 7.5.3]. Indeed, the
original text refers to Σ = {0, 1} but it actually holds for any finite Σ (provided
that Δ and Γε are defined as above).

Fixing any Pn ⊆ Σn, define ΔPn(x) = minz∈Pn{Δ(x, z)}, and consider a uni-
formly distributed ω ∈ Σn. Then, the theorem’s statement can be reformulated
as asserting that if Prω [ΔPn(ω)=0] ≥ ρ, then Prω[ΔPn(ω)>

√
8n ln(1/ρ)] ≤ ρ. In

order to prove this claim, we introduce a martingale (cf. [AS, Chap. 7]), ζ0, ..., ζn,
such that

ζi = ζi(ω) = |Σ|−(n−i) ·
∑

ri+1,...,rn∈Σ

ΔPn(ω1 · · ·ωiri+1 · · · rn) (3)
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where ω = ω1 · · ·ωn. (Indeed, ζn(ω) = ΔPn(ω) and ζ0 = Eω[ζn].) Note that
actually ζi only depends on ω1 · · ·ωi. Indeed, the martingale condition holds
(i.e., for every fixed ω1 · · ·ωi, it holds that Eωi+1[ζi+1|ζi] = ζi) and |ζi+1−ζi| ≤ 1
(because |ΔPn(x) − ΔPn(x′)| ≤ Δ(x, x′)). By the Martingale Tail Inequality
(cf. [AS, Thm. 7.2.1]) we have

Prω[ζn < ζ0 − λ
√

n] < e−λ2/2 (4)

Prω[ζn > ζ0 + λ
√

n] < e−λ2/2 (5)

Setting λ =
√

2 log(1/ρ) (so that ρ = e−λ2/2) and contrasting Eq. (4) with
Pr[ζn = 0] ≥ ρ, we conclude that ζ0 ≤ λ

√
n. Thus, Eq. (5) implies Pr[ζn >

2λ
√

n] < ρ, and the theorem follows.
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Cylinders Conjecture
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Abstract. We present a candidate counterexample to the easy cylin-
ders conjecture, which was recently suggested by Manindra Agrawal and
Osamu Watanabe (see ECCC, TR09-019). Loosely speaking, the conjec-
ture asserts that any 1-1 function in P/poly can be decomposed into
“cylinders” of sub-exponential size that can each be inverted by some
polynomial-size circuit. Although all popular one-way functions have
such easy (to invert) cylinders, we suggest a possible counterexample.
Our suggestion builds on the candidate one-way function based on ex-
pander graphs (see ECCC, TR00-090), and essentially consists of iterat-
ing this function polynomially many times.

Keywords: One-Way Functions, Trapdoor Permutations, P/poly.

A version of this work appeared as TR09-028 of ECCC.

1 The Easy Cylinders Conjecture

Manindra Agrawal and Osamu Watanabe [2, Sec. 4] have recently suggested the
following interesting conjecture. The conjecture refers to the notion of an easy
cylinder, defined next, and asserts that every 1-1 and length-increasing function
in P/poly has easy cylinders.

Definition 1 (easy cylinders, simplified1): A length function 	 :N→N is admis-
sible if the mapping n �→ 	(n) can be computed in poly(n)-time and there exists a
constant ε > 0 such that 	(n) ∈ [nε, n−nε]. A function f has easy cylinders if for
some admissible length function 	 there exists mappings σ1, σ2 : {0, 1}∗ → {0, 1}∗
such that the following conditions hold:

1. For every x, it holds that |σ1(x)| = 	(|x|) and |σ2(x)| = |x| − 	(|x|).
2. The function σ(x) = (σ1(x), σ2(x)) is 1-1, polynomial-time computable and

polynomial-time invertible. The cylinders defined by σ1 consists of the col-
lection of sets {σ−1

1 (x′)|n : x′ ∈ {0, 1}�(n)}n∈N, where σ−1
1 (x′)|n def= {x ∈

{0, 1}n : σ1(x) = x′}.
Each such set (i.e., σ−1

1 (x′)|n) is called a cylinder.

1 Our formulation is a special case of the formulation in [2], but we believe that our
candidate counterexample also holds for the definition in [2].
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3. For every n ∈ N and x′ ∈ {0, 1}�(n), there exists a poly(n)-size circuit C =
Cx′ such that for every x ∈ σ−1

1 (x′)|n it holds that C(f(x)) = σ2(x).
Thus, the circuit C (effectively)2 inverts f on the cylinder σ−1

1 (x′)|n.

That is, when restricted to any such cylinder, the function f is easy to invert.

Needless to say, the existence of easy cylinders is interesting only in the case
that f is not polynomial-time invertible. Agrawal and Watanabe noted that all
popular candidates one-way functions have easy cylinders. Generalizing their
observations (and going somewhat beyond them), we first present four classes of
functions that are conjectured to be one-way and still have easy cylinders. Next
(in Section 3), we present our candidate counterexample.

2 Four Classes of Functions That Have Easy Cylinders

The first class generalizes the multiplication function (i.e., (x′, x′′) �→ x′ · x′′).
This class consists of (polynomial-time computable) functions f having the form
f(x) = g(σ1(x), σ2(x)) such that the σi’s satisfy the first two conditions in Defini-
tion 1 and the mapping (x′, x′′) �→ (x′, g(x′, x′′)) is easy to invert (by an efficient
algorithm, denoted I). That is, whereas the mapping (x′, x′′) �→ g(x′, x′′) may
be hard to invert, augmenting the output with x′ (i.e., considering (x′, x′′) �→
(x′, g(x′, x′′))) makes the mapping easy to invert. Clearly, the cylinders defined
by σ1 are easy (since we can let Cσ1(x)(f(x)) output the second element in the
pair I(σ1(x), f(x))).

The second class consists of functions that are derived from collections of
finite one-way functions having a dense index set and dense domains.3 For ex-
ample, consider the DLP-based collection that consists of the functions {fp,g :
Zp → Zp}(p,g), where p is prime, g is a generator of the multiplicative group
modulo p, and fp,g(z) = gz mod p. For simplicity, we consider collections of
the form {fα : {0, 1}|α| → {0, 1}|α|}α∈I , where the index set I is dense (i.e.,
|I ∩{0, 1}n| > 2n/poly(n)). The one-wayness condition means that, for a typical
α ∈ I, the function fα is hard to invert, and so the “natural” cylinders defined
by σ1(α, z) = α are not easy. Nevertheless, the function F (α, z) = (α, fα(z)),
which is (weakly) one-way, has easy (“unnatural”) cylinders that are defined by
σ1(α, z) = z; specifically, it is trivial to extract σ2(α, z) = α from F (α, z) =
(α, fα(z)). (Indeed, in these easy cylinders, the “hard to invert part of F” is
fixed.)

The third class consists of functions that are derived from collections of trap-
door one-way permutations. Unlike in the previous class, in the current case
a non-trivial index-sampling algorithm, denoted I, must exist. This algorithm
2 For any x ∈ σ−1

1 (x′)|n, an f -preimage of y = f(x) is obtained by computing
σ−1(x′, C(y)).

3 Indeed, we consider a restricted case of [4, Def. 2.4.3]. On the other hand, note that
any collection of finite one-way functions with dense domains can be converted into
a collection of finite one-way functions over the set of all strings of a fixed length.
Thus, we may freely use the latter.
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samples the index set along with corresponding trapdoors; that is, the coins
used to sample an index-trapdoor pair cannot be used as the index (because the
trapdoor must be hard to recover from the index). Let I1(r) denote the index
sampled on coins r, and let I2(r) denote the corresponding trapdoor (and sup-
pose that the domains are dense as before, which indeed restricts [4, Def. 2.4.4]).
Then, the function F (r, z) = (I1(r), fI1(r)(z)) is (weakly) one-way, but it has
easy cylinders that are defined by σ1(r, z) = r; specifically, we use the circuit
Cr(F (r, z)) = f−1

I1(r)(z), which in turn uses the trapdoor I2(r) that corresponds
to the index I1(r). (Note that the cylinders defined by σ1(r, z) = z are not easy
in this case, since I1 is hard to invert!)

The last class consists of all functions that are computable in NC0; that
is, functions in which each output bit depends on a constant number of input
bits. Recall that this class is widely conjectured to contain one-way functions
(cf., the celebrated work of Applebaum, Ishai, and Kushilevitz [1]). For every
such function f : {0, 1}n → {0, 1}n, if we let σ1 be the projection of the n-bit
input on n − n1/3 random coordinates, then, with high probability, we obtain
easy cylinders.4 The reason is that, with high probability, no output bit of the
function is influenced by more than one of the n1/3 remaining coordinates (and
so the residual function f(x) obtained after fixing the value of σ1(x) is essentially
a projection).

3 Our Candidate Counterexample to the Conjecture

We note that the last class of functions (i.e., NC0) contains the candidate one-
way function suggested by us [3]. However, we believe that iterating this function
for a polynomial (or even linear) number of times yields a function that has
no easy cylinders. For sake of self-containment, we recall the proposal of [3],
hereafter referred to as the basic function.

The Basic Function. We consider a collection of finite functions {fn : {0, 1}n →
{0, 1}n}n∈N such that fn is based a collection of d(n)-subsets, S1, ..., Sn ⊂ [n] def=
{1, ..., n}, and a predicate P : {0, 1}d(n) → {0, 1} (as follows).

1. The function d is relatively small; that is, d = O(log n) or even d = O(1),
but d > 2.

2. The predicate P : {0, 1}d → {0, 1} should be thought of as being a random
predicate. That is, it will be randomly selected, fixed, and “hard-wired” into
the function. For sure, P should not be linear, nor depend on few of its bit
locations.

4 In fact, the argument remain intact as long as �(n) = n − o(n1/2) (rather than
�(n) = n − n1/3). Actually, using n − o(n2/3) random coordinates would work too,
since then (w.h.p.) no output bit of the function is influenced by more than two
of the o(n2/3) remaining coordinates (and so a 2SAT solver can invert the residual
function on each of the individual cylinders).
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3. The collection S1, ..., Sn should be expanding: specifically, for some k, the
union of every k subsets should cover at least k + Ω(n) elements of [n] (i.e.,
for every I ⊂ [n] of size k it holds that |

⋃
i∈I Si| ≥ k +Ω(n)). Specifically, it

is suggested to have Si be the set of neighbors of the ith vertex in a d-regular
expander graph.

For x = x1 · · ·xn ∈ {0, 1}n and S ⊂ [n], where S = {i1, i2, ..., it} and ij < ij+1,
we denote by xS the projection of x on S; that is, xS = xi1xi2 · · ·xit . Fixing P
and S1, ..., Sn as above, we define the function

fn(x) def= P (xS1)P (xS2) · · ·P (xSn). (1)

Note that we think of d as being relatively small (i.e., d = O(log n)), and hope
that the complexity of inverting fn is related to 2n/O(1). Indeed, the hardness of
inverting fn cannot be due to the hardness of inverting P , but is rather supposed
to arise from the combinatorial properties of the collection of sets {S1, ..., Sn}
(as well as from the combinatorial properties of predicate P ). In general, the
conjecture is that the complexity of the inversion problem (for fn constructed
based on such a collection) is exponential in the “net expansion” of the collection
(i.e., the cardinality of the union minus the number of subsets).

We note that a non-uniform complexity version of this basic function (or
rather the sequence of fn’s) may use possibly different predicates (i.e., different
Pi’s) for the different n applications of P in Eq. 1.

The Iterated Function – the Vanilla Version. The candidate counterexample, F ,
is defined by F (x) = f

p(|x|)
|x| (x), where p is some fixed polynomial (e.g., p(n) = n)

and f i+1
n (x) = fn(f i

n(x)) (and f1
n(x) = fn(x)). We conjecture that this function

has no easy cylinders.

The Iterated Function, Revisited. One possible objection to the foregoing func-
tion F as a counterexample to the easy cylinder conjecture is that F is unlikely
to be 1-1. Although we believe that the essence of the easy cylinder conjecture
is unrelated to the 1-1 property, we point out that this property may be ob-
tained by suitable modifications. One possible modification that may yield a
1-1 function is obtained by prepending the application of F with an adequate
expanding function (e.g., a function that stretches n-bit long strings to m(n)-
bit long strings, where m is a polynomial or even a linear function). Specif-
ically, for a function m : N → N such that m(n) ∈ [2n, poly(n)], we define
gn : {0, 1}n → {0, 1}m(n) analogously to Eq. 1 (i.e., here we use an expand-
ing collection of m(n) subsets), and let F ′(x) = F (g|x|(x)); that is, for every
x ∈ {0, 1}n, we have F ′(x) = f

p(m(n))
m(n) (gn(x)).

4 Conclusion

Starting with the aforementioned non-uniform complexity version of the basic
function fn, and applying different incarnations of this function in the different
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iterations, we actually obtain a rather generic counterexample. Alternatively,
we may directly consider functions Fn : {0, 1}n → {0, 1}m(n) such that the
function Fn has a poly(n)-sized circuit. Note that such a circuit may be viewed
as a composition of polynomially many circuits in NC0, which in turn may be
viewed as basic functions. Furthermore, a random poly(n)-sized circuit is likely
to be decomposed to NC0 circuits that correspond to basic functions in which
the collection of sets (of input bits that influence individual output bits) are
expanding. Needless to say, we believe that generic polynomial-size circuits have
no easy cylinders.

It seems that the existence of easy cylinders in all popular candidate one-way
functions is due to the structured nature of these candidates. Such a structure
will not exist in the generic case, and so we conjecture that the Easy Cylinders
Conjecture is false.
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From Absolute Distinguishability to Positive

Distinguishability

Zvika Brakerski and Oded Goldreich

Abstract. We study methods of converting algorithms that distinguish
pairs of distributions with a gap that has an absolute value that is notice-
able into corresponding algorithms in which the gap is always positive
(and noticeable). Our focus is on designing algorithms that, in addition
to the tested string, obtain a fixed number of samples from each distri-
bution. Needless to say, such algorithms can not provide a very reliable
guess for the sign of the original distinguishability gap, still we show that
even guesses that are noticeably better than random are useful in this
setting.

Keywords: Computational Indistinguishability, Statistical Indistinguisha-
bility.
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1 The Problem and Its Solutions

This work addresses a generic technical problem that arises in the context of try-
ing to establish the computational indistinguishability of certain pairs of prob-
ability ensembles. The problem refers to the fact that computational (and also
statistical) indistinguishability is defined in terms of the absolute difference be-
tween probabilities, whereas it is typically easier to manipulate the difference
itself. Thus, we seek a method of converting a non-negligible absolute difference
into a non-negligible difference; that is, we wish the difference itself (rather than
its absolute value) to be positive.

1.1 A Motivational Example

Many security definitions are formulated by referring to two pairs of proba-
bility ensembles that are indexed by strings, and requiring that these pairs of
probability ensembles are computationally indistinguishable (see, e.g., the def-
initions of computational zero-knowledge [2, Sec. 4.3.1.2] and secure two-party
computation [3, Sec. 7.2]). Such a probability ensemble {Zα}α∈S consists of (an
infinite number of) “random variables” Zα’s, which are each distributed over
some finite set (related to its index, α). Two such ensembles, {Xα}α∈S and
{Yα}α∈S, are said to be computationally indistinguishable if for every proba-
bilistic polynomial-time algorithm D it holds that

gD(α) def= |Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]| (1)

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 141–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



142 Z. Brakerski and O. Goldreich

is negligible as a function of |α| (i.e., for every positive polynomial p and all
sufficiently long α, the value of gD(α) is upper bounded by 1/p(|α|)).

The aforementioned formulation mandates that the value of gD(α) is small for
every α ∈ S. A weaker requirement, which suffices in practice, is that it is infea-
sible to find α ∈ S for which the value of gD(α) is not small. This requirement
may be formulated as mandating that for every probabilistic polynomial-time
algorithm F , representing a potential finder that given 1n outputs an n-bit long
string α ∈ S, the expected value of gD(α) (when defined as in Eq. (1)) is negligi-
ble (as a function of n); that is, E[gD(F (1n))] is negligible in n. This condition
means that∑

α

Pr[F (1n)=α] · |Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]| (2)

is negligible as a function of n.
When trying to establish a condition as in Eq. (2) it is often easier to estab-

lish a corresponding condition in which the absolute value operator is dropped.
Indeed, suppose that for every F and D as above it holds that∑

α

Pr[F (1n)=α] · (Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]) (3)

is negligible (as a function of n). Can we infer that Eq. (2) holds too?
In the case that both ensembles are polynomial-time sampleable, a positive

answer is implicit in many works. Essentially, given a probabilistic polynomial-
time algorithm D such that Eq. (2) is not negligible, one derives a probabilistic
polynomial-time algorithm D′ such that Eq. (3) is not negligible by estimat-
ing the difference between Pr[D(α, Xα) = 1] and Pr[D(α, Yα) = 1] and flipping
D’s output if the estimated difference is negative. Thus, the construction of D′

depends also on gD (which determines the adequate level of approximation). In
particular, the time complexity of D′ is (polynomially) related to gD. Our goal is
to get rid of this dependency; in particular, we wish to avoid the aforementioned
approximation.

1.2 A Generic Problem and One Solution

The generic problem we face is converting an algorithm D that distinguishes Xα

and Yα (i.e., |Pr[D(α, Xα)=1]−Pr[D(α, Yα)=1]| is noticeable) into an algorithm
D′ that on input (α, Xα) outputs 1 with probability that is noticeably higher
than Pr[D(α, Yα) = 1]. We stress that we wish this transformation to hold for
every α, whereas it may be that for some α’s the difference Pr[D(α, Xα) =
1] − Pr[D(α, Yα) = 1] is positive while for other α’s the difference is negative.
Clearly, D′ must know something about Xα and Yα in order for this to be
possible, and indeed we provide D′ with samples taken from Xα and Yα (or,
actually, with algorithms for sampling these distributions).

Thus, the problem we face is actually the following one. We are given a proba-
bilistic polynomial-time algorithm D and sampling algorithms for two ensembles,
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{Xα}α∈S and {Yα}α∈S (i.e., probabilistic polynomial-time algorithms X and Y
such that on any input α it holds that Xα ≡ X(α) and Yα ≡ Y (α)). Our task
is to construct a probabilistic polynomial-time algorithm D′ such that for some
function ρ : (0, 1] → (0, 1] it holds that

Pr[D′(α, Xα)=1] − Pr[D′(α, Yα)=1] ≥ ρ (|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]|) .
(4)

We stress that the r.h.s of Eq. (4) refers to the absolute difference between two
probabilities, whereas the l.h.s refers to a corresponding difference that is not
taken in absolute value and yet is required to be positive (whenever the former
difference is positive).

We seek a universal transformation of D into D′, whereas this transformation
may use a predetermined number of auxiliary samples of the two distributions.
That is, the resulting algorithm D′ is given as input a single sample that is
drawn from one of two distributions (i.e., either from Xα or from Yα), but in
addition it can obtain (a predetermined number of) samples from each of the two
distributions. Like D, algorithm D′ should distinguish the two cases (which cor-
respond to the source of its input). We stress that we wish the complexity of D′

(and specifically the number of auxiliary samples it obtains) to be independent
of gD(α). We note that such a transformation (of D into D′) may be useful also
in other settings. One such generic example is provided by settings in which the
notion of negligible probability being considered is significantly smaller than the
reciprocal of the complexity of the distinguishers (e.g., consider polynomial-time
distinguishers coupled with (sub-)exponentially small distinguishing gaps).

A Simple Transformation. One solution to the foregoing problem is to let D′

estimate the sign of Pr[D(α, Xα)=1]−Pr[D(α, Yα)=1] by using a single sample
of Xα and a single sample of Yα. (Although this estimate is quite poor, it can be
shown to suffice.) Specifically, on input (α and) z (where z is taken from either
Xα or Yα), algorithm D′ proceeds as follows:

1. Ignoring its (“main”) input (i.e., z), algorithm D′ obtains a single sample x of
Xα and a single sample y of Yα, and computes σ ← D(α, x) and τ ← D(α, y);

2. If σ > τ , then D′ invokes D on its input (i.e., z), and outputs D(α, z).
If σ < τ , then D′ outputs 1−D(α, z).
Otherwise (i.e., σ = τ), algorithm D′ outputs the outcome of a fair coin toss.

(Indeed, we have assumed here, without loss of generality, that D always outputs
a Boolean value.)1 Intuitively, σ− τ provides a probabilistic guess of the sign of
Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1], and (as we show next) using this guess in
the obvious manner yields the desired result.

Proposition 1.1 (analysis of the simple transformation): Let D and D′ be as above.
Then,

Pr[D′(α, Xα)=1]− Pr[D′(α, Yα)=1] = (|Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]|)2 .

1 In general, the distinguishing gap of D is defined in terms of the probability that D
outputs 1, and so any non-1 output may be considered as a 0.
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Proof: For the analysis of the performance of D′, we consider an algorithm D′′,
which may output any number in [0, 1], such that

D′′(α, z) def=
1
2
·
(
1 + sign(D(α, Xα)−D(α, Yα)) · (−1)D(α,z)+1

)
, (5)

where sign(r) = 1 if r > 0 (resp., sign(r) = −1 if r < 0), and sign(0) = 0.
Recall that in Step 2 of D′(α, z), the output is set to D(α, z) if σ > τ , to
1−D(α, z) if σ < τ , and is random if σ = τ . Using D(α, z) ∈ {0, 1} and assuming
σ �= τ , the output of D′(α, z) can be written as (1+sign(σ−τ)·(−1)D(α,z)+1)/2.
Thus, D′(α, z) outputs 1 with probability E[D′′(α, z)], and it suffices to analyze
the l.h.s of the following equality

E[D′′(α, Xα)]− E[D′′(α, Yα)] = Pr[D′(α, Xα)=1]− Pr[D′(α, Yα)=1]. (6)

Wishing to substitute Eq. (5) in Eq. (6), we denote by X ′
α and Y ′

α independent
copies of Xα and Yα, and analyze Eq. (6) as follows.

gD′′(α) def= E[D′′(α, Xα)]− E[D′′(α, Yα)]

=
1
2
· E

[
1 + sign(D(α, X ′

α)−D(α, Y ′
α)) · (−1)D(α,Xα)+1

]
−1

2
· E

[
1 + sign(D(α, X ′

α)−D(α, Y ′
α)) · (−1)D(α,Yα)+1

]
=

1
2
· E [sign(D(α, X ′

α)−D(α, Y ′
α))] · E

[
(−1)D(α,Xα)+1 − (−1)D(α,Yα)+1

]
where the last equality uses the statistical independence of (X ′

α, Y ′
α) and (Xα, Yα).

Denoting p = Pr[D(α, Xα) = 1] and q = Pr[D(α, Yα) = 1], we use
E[(−1)D(α,Xα)+1] = p− (1− p) = 2p− 1 and E[(−1)D(α,Yα)+1] = 2q− 1, and get

gD′′(α) = (p− q) · E [sign(D(α, Xα)−D(α, Yα))]
= (p− q) · (Pr[D(α, Xα)>D(α, Yα)]− Pr[D(α, Xα)<D(α, Yα)])
= (p− q) · (p · (1− q)− (1− p) · q) ,

which equals (p− q)2.

1.3 Other Transformations

Two natural questions arise:

1. Is the foregoing construction of D′ optimal (with respect to all constructions
that use a single auxiliary sample from each of the two distributions)?

2. Can we do better if we obtain k auxiliary samples from each of the two
distributions (rather than one auxiliary sample from each of the two distri-
butions)? How good can such a construction be?

Before answering these questions we note that no construction (which is given a
single test sample from one of the two distribution) can outperform the variation
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distance between the tested distributions, (i.e., |p−q|, where p = Pr[D(α, Xα)=
1] and q = Pr[D(α, Yα)= 1]). This holds also when we have full information of
the two tested distributions. Turning back to the foregoing questions, we answer
them as follows.

Theorem 1.2 (Main Result): For every k ≥ 1, the best construction that uses
k auxiliary samples from each of the two distributions is the one that rules anal-
ogously to Eq. (5), when applying the sign function to the difference between
the average values of D on the k samples of each of the two distributions. That
is, on input an index α, a main input z, and 2k auxiliary samples, denoted
x1, ..., xk, y1, ..., yk, where x1, ..., xk are samples of Xα and y1, ..., yk are samples
of Yα, the optimal algorithm D′ outputs 1 with probability (1+δ ·(−1)D(α,z)+1)/2,
where

δ
def= sign

(
k∑

i=1

D(α, xi)−
k∑

i=1

D(α, yi)

)
∈ {−1, 0, 1}.

In other words, algorithm D outputs
· D(α, z) if

∑k
i=1 D(α, xi) >

∑k
i=1 D(α, yi),

· 1−D(α, z) if
∑k

i=1 D(α, xi) <
∑k

i=1 D(α, yi), and
· the outcome of a fair coin toss otherwise.

This algorithm yields a gap that equals the minimum of Ω(
√

k) · (p − q)2 and
(1− εp,q(k)) · |p− q|, where εp,q(k) = exp(−Ω((p− q)2 · k)).

Note that for k = o(1/(p − q)2) the said gap is Ω(
√

k) · (p − q)2, whereas for
k = ω(1/(p− q)2) we approach the ultimate value of |p− q|. We stress that the
foregoing result holds both in the computational setting and in the information
theoretic setting.

2 The General Treatment

Let X and Y be 0-1 random variables (representing D(α, Xα) and D(α, Yα),
respectively), and let Xi’s (resp., Yi’s) be independent copies of X (resp., Y )
representing additional samples available to us. We seek a randomized process
Π : {0, 1}2k+1 → {0, 1} such that

E[Π(X1, ..., Xk, Y1, ..., Yk, X)]− E[Π(X1, ..., Xk, Y1, ..., Yk, Y )] (7)

is maximized (as a function of δ = |E[X ] − E[Y ]|, when maximizing over all
possible 0-1 random variables X and Y that are at statistical distance δ). Indeed,
the probability that Π(a1, ..., ak, b1, ..., bk, c) = 1 is determined by the function
f : {0, 1}2k+1 → [0, 1] such that

f(a1, ..., ak, b1, ..., bk, c) def= Pr[Π(a1, ..., ak, b1, ..., bk, c)=1].

Thus, it suffices to seek a function f : {0, 1}2k+1 → [0, 1] that maximizes

E[f(X1, ..., Xk, Y1, ..., Yk, X)]− E[f(X1, ..., Xk, Y1, ..., Yk, Y )] (8)

(as a function of δ = |E[X ] − E[Y ]|). Let us formally define a more general
optimization problem.
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The General Question (and Its Accompanied Notation). For a function
f : {0, 1}2k+1 → [0, 1] and a pair (p, q) ∈ [0, 1], we denote by V(p,q)(f) the
value of Eq. (8), where X and Y are 0-1 random variables that satisfy p =
E[X ] and q = E[Y ]. Now, for any (possibly infinite) set (or class) of pairs in
[0, 1], denoted C, and any function f : {0, 1}2k+1 → [0, 1], we denote VC(f) def=
min(p,q)∈C{V(p,q)(f)}. We seek a function f for which VC(f) is maximal.

Summary of Our Results (and Their Organization). First, we will show
that, without loss of generality, the function f(x1, ..., xk, y1, ...., yk, z) may only
depend on s

def=
∑

i∈[k] xi, t
def=

∑
i∈[k] yi and z, and furthermore that it can take

a specific canonical form (see Section 2.1). Next, in Section 2.2, we will show
that, in all natural cases (i.e., for “symmertic” classes), the canonical form can
be further simplified to depend only on sign(s− t) and z. Actually, this will yield
a single optimal function. Lastly, in Section 2.3, we will analyze the performance
of this function.

2.1 Canonical Functions

We will first show that it suffices to consider functions f of the form

f(a1, ...., ak, b1, ...., bk, c) =
1 + g

(∑
i∈[k] ai ,

∑
i∈[k] bi

)
· (−1)c

2
(9)

where g : N2 → [−1, +1]. We call such an f canonical. Note that the normaliza-
tion (i.e., shifting by 1 and dividing by 2) is used to map [−1, +1] to [0, 1]. (Note
that an additive shift of f leaves the value of Eq. (8) intact, whereas multiplying
f by any factor has the same effect on the value of Eq. (8).)

Definition 2.1 (dominating strategies) We say that f ′ dominates f (w.r.t C) if
for every (p, q) ∈ C it holds that V(p,q)(f ′) ≥ V(p,q)(f).

Proposition 2.2 (strong optimality): For every C and every f : {0, 1}2k+1 →
[0, 1] there exists a canonical function that dominates f (w.r.t C).

Proof: Given any function f , we consider the function f ′ such that for ev-
ery a, b ∈ {0, 1, ..., k} and c ∈ {0, 1}, the value f ′(a, b, c) equals the aver-
age of f(a1, ...., ak, b1, ...., bk, c) taken over all (a1, ...., ak), (b1, ...., bk) ∈ {0, 1}k

that satisfy
∑

i∈[k] ai = a and
∑

i∈[k] bi = b. Then, for every (p, q), we have
V(p,q)(f ′) = V(p,q)(f), because each permuation of any fixed sequence (v1, ..., vk)
is as likely to be the outcome of k independently and identically distributed sam-
ples. Next, note that the value of f ′ at any (a, b) ∈ {0, 1, ..., k}2 and c ∈ {0, 1}
(i.e., the value f ′(a, b, c)) can be written as

1 + (−1)c

2
· f ′(a, b, 0) +

1− (−1)c

2
· f ′(a, b, 1)

=
1
2
· (f ′(a, b, 0) + f ′(a, b, 1)) +

(−1)c

2
· (f ′(a, b, 0)− f ′(a, b, 1))

= g0(a, b) + g1(a, b) · (−1)c
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where g0(a, b) = (f ′(a, b, 0)+f ′(a, b, 1))/2 and g1(a, b) = (f ′(a, b, 0)−f ′(a, b, 1))/
2. Note that g1(a, b) ∈ [−0.5, +0.5] and that replacing g0(a, b) by 0.5 does not
change the value of V(p,q)(f ′). Thus, setting f ′′(a, b, c) = (1+2g1(a, b) · (−1)c)/2,
we obtain a canonical function f ′′ that dominates f (because V(p,q)(f ′′) =
V(p,q)(f ′) = V(p,q)(f)).

Conclusion and Notation. At this point we can limit our search for good func-
tions (i.e., functions that maximize Eq. (8)) to canonical functions. Thus, for
every function g : N

2 × {0, 1} → [−1, +1] and every k ∈ N, we define f
(k)
g as in

Eq. (9), and consider the value V(p,q)(f
(k)
g ). To estimate V(p,q)(f

(k)
g ), we let X

and Y be 0-1 random variables with E[X ] = p and E[Y ] = q and get

V(p,q)(f (k)
g ) =

1
2
· E

⎡⎣g

⎛⎝∑
i∈[k]

Xi ,
∑
i∈[k]

Yi

⎞⎠ · (−1)X

⎤⎦ (10)

−1
2
· E

⎡⎣g

⎛⎝∑
i∈[k]

Xi ,
∑
i∈[k]

Yi

⎞⎠ · (−1)Y

⎤⎦
.

(11)

Using the independence of X, Y and the Xi’s and Yi’s, we rewrite Eq. (10)&(11)
as

V(p,q)(f (k)
g ) =

1
2
· E

⎡⎣g

⎛⎝∑
i∈[k]

Xi ,
∑
i∈[k]

Yi

⎞⎠⎤⎦ · E [
(−1)X − (−1)Y

]
.

(12)

Recalling that E[(−1)X ] = (1 − p)− p = 1− 2p and E[(−1)Y ] = 1− 2q, we get
E[(−1)X − (−1)Y ] = 2(q − p) and so

V(p,q)(f (k)
g ) = (q − p) · E[g(X ′, Y ′)], (13)

where X ′ =
∑

i∈[k] Xi and Y ′ =
∑

i∈[k] Yi. Denoting B(p, i, k) =
(
k
i

)
· pi · (1 −

p)k−i, we get

V(p,q)(f (k)
g ) = (q − p) ·

∑
i,j∈{0,1,...,k}

B(p, i, k) · B(q, j, k) · g(i, j). (14)

2.2 Symmetric Classes

We focus on symmetric classes of pairs, where C is symmetric if for every (p, q) ∈ C
it also holds that (q, p) ∈ C. In contrast, if C contains only pairs (p, q) such
that p > q, then we may set k = 0 and use the identity function (because
E[X ]− E[Y ] = p− q = StatDiff(X, Y )). We show that, for symmetric classes,
the “sign of the difference” function (i.e., sd(a, b) = sign(b − a) ∈ {−1, 0, +1})
is optimal as a function g.
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Proposition 2.3 (optimality): For every symmetric C and every k ∈ N and g :
N2 → [−1, +1], it holds that VC(f (k)

sd ) ≥ VC(f (k)
g ), where sd(a, b) = sign(b − a).

Recall that sign(d) = −1 if d < 0 (resp., sign(d) = 1 if d > 0), and sign(0) = 0.

Proof: Let (p, q) ∈ C be such that V(p,q)(f
(k)
sd ) = VC(f (k)

sd ). Then, by definition
of VC(f (k)

g ) and the fact that (q, p) ∈ C (which follows by the symmetry of C), it
holds that

VC(f (k)
g ) ≤

V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g )

2 .

On the other hand, by the choice of (p, q) ∈ C, it holds that VC(f (k)
sd ) ≥ V(p,q)

(f (k)
sd ). Furthermore, V(p,q)(f

(k)
sd ) = V(q,p)(f

(k)
sd ), because by Eq. (13) we have

V(p,q)(f
(k)
sd ) = (q − p) · E[sd(X ′, Y ′)]

= (q − p) · E[sign(Y ′ −X ′)]
= (p− q) · E[sd(Y ′, X ′)]

= V(q,p)(f
(k)
sd ).

Thus, it suffices to show that

V(p,q)(f
(k)
sd ) + V(q,p)(f

(k)
sd ) ≥ V(p,q)(f (k)

g ) + V(q,p)(f (k)
g ). (15)

For every a, b ∈ {0, 1, ..., k}, we shall show that replacing g(a, b) by sign(b − a)
may only increase the value of V(p,q)(f

(k)
g )+V(q,p)(f

(k)
g ). Let us start by recalling

Eq. (14), which yields

V(p,q)(f (k)
g ) + V(q,p)(f (k)

g )

= (q − p) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · g(i, j)

+(p− q) ·
∑

i,j∈{0,1,...,k}
B(q, i, k)B(p, j, k) · g(i, j)

= (q − p) ·
∑

i,j∈{0,1,...,k}
[B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k)] · g(i, j).

Clearly, for i = j we have B(p, i, k)B(q, j, k) = B(q, i, k)B(p, j, k). For i < j
(resp., j < i), it holds that B(p, i, k)B(q, j, k) > B(q, i, k)B(p, j, k) if and only
if p < q (resp., q < p). The latter claim seems self-evident, yet we provide a
detailed proof next (for the case p, q ∈ (0, 1)).

B(p, i, k)B(q, j, k) =
(

k

i

)
· pi · (1 − p)k−i ·

(
k

j

)
· qj · (1− q)k−j

=
(

k

i

)
· (1− p)k ·

(
k

j

)
· (1− q)k · (p/(1− p))i · (q/(1− q))j
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Thus, B(p,i,k)B(q,j,k)
B(q,i,k)B(p,j,k) equals

(p/(1− p))i · (q/(1− q))j

(q/(1− q))i · (p/(1− p))j
=

(q/(1− q))j−i

(p/(1− p))j−i

Note that we have p < q iff (p/(1 − p)) < (q/(1 − q)), and so p < q iff
(p/(1 − p))j−i < (q/(1 − q))j−i. It follows that p < q iff B(p, i, k)B(q, j, k) >
B(q, i, k)B(p, j, k).

Recall that for i < j, it holds that B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k) > 0
if and only if q > p. Thus, in this case, we maximize

(q − p) · [B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k)] · g(i, j) (16)

by setting g(i, j) = 1 (because the first two factors have the same sign). Similarly,
for j > i, it holds that B(p, i, k)B(q, j, k) − B(q, i, k)B(p, j, k) > 0 if and only
if q < p, and so the maximization requires g(i, j) = −1. Indeed, for i = j, any
setting of g(i, j) will do. Thus, an optimal setting of g(i, j) is sign(j − i), which
equals sd(i, j). The claim follows.

2.3 The Performance of the Function f
(k)
sd

We now turn to evaluating the performance of the optimal function; that is, we
evaluate V(p,q)(f

(k)
sd ). Recall that

V(p,q)(f
(k)
sd ) = (q − p) ·

∑
i,j∈{0,1,...,k}

B(p, i, k)B(q, j, k) · sd(i, j)

= (p− q) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · sign(i− j)

which yields V(p,q)(f
(k)
sd ) = (p− q) · v(k)

p,q , where

v(k)
p,q

def= E

⎡⎣sign
⎛⎝∑

i∈[k]

Xi −
∑
i∈[k]

Yi

⎞⎠⎤⎦ (17)

such that the Xi’s (resp., Yi’s) are 0-1 i.i.d with expectation p (resp., q). Letting
Ti = Xi − Yi, we rewrite Eq. (17) as E[sign(

∑
i∈[k] Ti)], which equals

Pr

⎡⎣∑
i∈[k]

Ti > 0

⎤⎦− Pr

⎡⎣∑
i∈[k]

Ti < 0

⎤⎦ . (18)

Note that E[Ti] = p−q and Var[Ti] = p(1−p)+q(1−q). Thus, it is apparent that
V(p,q)(f

(k)
sd ) grows with k, unless either {p, q} = {0, 1} or p = q (in which case

V(p,q)(f
(k)
sd ) = |p − q| for every k ≥ 1), and that limk→∞ V(p,q)(f

(k)
sd ) = |p − q|.
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All that remains is to determines the behavior of V(p,q)(f
(k)
sd ) as a function of

k, which calls for analyzing Eq. (18). It should come at little surprise that all
we can offer is functional relations (e.g., relating V(p,q)(f

(k+1)
sd ) to V(p,q)(f

(k)
sd )),

approximations, and close expressions for small values of k. We start with the
latter.

The cases of k = 1 and k = 2. For small k, we can write explicit expressions
for Eq. (18); for example, for k = 1 Eq. (18) yields Pr[T1 > 0] − Pr[T1 < 0] =
p(1− q)− q(1− p) = p− q, and so V(p,q)(f

(1)
sd ) = (p− q)2. For k = 2, we have

Pr[T1 + T2 >0]− Pr[T1 + T2 <0] = Pr[T1 + T2 =2] + 2Pr[T1 =1 ∧ T2 =0]
− (Pr[T1 + T2 =−2] + 2Pr[T1 =−1 ∧ T2 =0])

= p2(1− q)2 + 2p(1− q)(pq + (1− p)(1− q))
−

(
q2(1 − p)2 + 2q(1− p)(pq + (1− p)(1 − q))

)
= (1 + (1− p)(1 − q) + pq) · (p− q)

and so V(p,q)(f
(2)
sd ) = (1 + (1− p)(1− q) + pq) · (p− q)2 (see an alternative proof

following the statement of Proposition 2.4). Thus, the improvement of the case
of k = 2 over the case of k = 1 is a factor of (1 + (1 − p)(1 − q) + pq), which
is greater than 1 unless {p, q} = {0, 1} (where a single sample is as good as k
samples, for any k > 1).

The general case of k > 1. We now turn to a general analysis of Eq. (18)
(and V(p,q)(f

(k)
sd )). Specifically, we consider the increase in the value of Eq. (18)

when going from k to k + 1; that is, we define

Δ(p,q)(k) def= E

⎡⎣sign
⎛⎝ ∑

i∈[k+1]

Ti

⎞⎠⎤⎦− E

⎡⎣sign
⎛⎝∑

i∈[k]

Ti

⎞⎠⎤⎦ (19)

and note that V(p,q)(f
(k+1)
sd ) = V(p,q)(f

(k)
sd ) + (p− q) ·Δ(p,q)(k).

Proposition 2.4 (the growth of V(p,q)(f
(k)
sd ) as a function of k): For every k ≥ 1,

it holds that Δ(p,q)(k) = (p− q) · Pr[Sk =0], where Sk
def=

∑
i∈[k] Ti.

It follows that V(p,q)(f
(k+1)
sd ) = V(p,q)(f

(k)
sd ) + (p − q)2 · Pr[Sk = 0], and so

V(p,q)(f
(k+1)
sd ) ≥ V(p,q)(f

(k)
sd ), where equality holds if and only if {p, q} = {0, 1}

(when ignoring the case of p = q). Proposition 2.4 can also be used to re-establish
V(p,q)(f

(2)
sd ) = (1 + pq + (1− p)(1− q)) · (p− q)2, since V(p,q)(f

(1)
sd ) = (p− q)2 and

Pr[S1 =0] = pq + (1− p)(1− q).

Proof: Starting with Eq. (19), we have

Δ(p,q)(k) = E[sign(Sk + Tk+1)]− E[sign(Sk)]
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=
∑

s∈{−1,0,1}
Pr[Sk =s] · E[sign(s + Tk+1)− sign(s)]

= Pr[Sk =0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1])
+Pr[Sk =−1] · Pr[Tk+1 =1]− Pr[Sk =1] · Pr[Tk+1 =−1].

By symmetry (e.g., consider the case of k = 1), it is rather self-evident that
Pr[Sk =−1] ·Pr[Tk+1 =1] = Pr[Sk =1] · Pr[Tk+1 =−1], yet we provide a detailed
proof next.

Pr[Sk =−1] · Pr[Tk+1 =1] = p(1− q) ·
k∑

j=1

B(p, j − 1, k)B(q, j, k)

= p(1− q) ·
k∑

j=1

(
k

j − 1

)
pj−1(1− p)k−j+1

(
k

j

)
qj(1− q)k−j

=
k∑

j=1

(
k

j − 1

)
pj(1− p)k+1−j

(
k

j

)
qj(1− q)k−j+1

= (1− p)q
k∑

j=1

(
k

j − 1

)
pj(1− p)k−j

(
k

j

)
qj−1(1− q)k−j+1

= (1− p)q ·
k∑

j=1

B(p, j, k)B(q, j − 1, k)

= Pr[Sk =1] · Pr[Tk+1 =−1].

Hence, Δ(p,q)(k) = Pr[Sk = 0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1]), and the claim
follows (since Pr[Tk+1 =1]− Pr[Tk+1 =−1] = p− q).

Another expression for V(p,q)(f
(k)
sd ). Proposition 2.4 yields another expression

for V(p,q)(f
(k)
sd ):

V(p,q)(f
(k)
sd ) = V(p,q)(f

(1)
sd ) + (p− q) ·

k−1∑
�=1

Δ(p,q)(	) (20)

= (p− q)2 + (p− q)2 ·
k−1∑
�=1

Pr[S� =0] (21)

Note that for {p, q} = {0, 1} this expression (i.e., Eq. (21)) equals 1 (for any
k ≥ 1), whereas for p = q it equals 0. In all other cases (i.e., 0 < (p − q)2 < 1)
Eq. (21) grows with k. Using Pr[S� =0] =

∑�
j=0 B(p, j, 	)B(q, j, 	), we get

V(p,q)(f
(k)
sd ) = (p− q)2 + (p− q)2 ·

k−1∑
�=1

�∑
j=0

(
	

j

)2

(pq)j((1− p)(1 − q))�−j (22)
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In the special case of p = 0, Eq. (22) yields

V(0,q)(f
(k)
sd ) = q2 + q2 ·

k−1∑
�=1

(1 − q)�

= q2 + q ·
(
(1− q)− (1− q)k

)
which converges to q = |p − q| when k → ∞. Similarly, V(1,q)(f

(k)
sd ) converges

to 1 − q = |p − q| (where p = 1). Note that in these cases convergence occurs
with k $ |p − q|−1. As we shall see next, in the other cases (i.e., p, q ∈ (0, 1)),
convergence occurs with k $ |p− q|−2.

Approximating V(p,q)(f
(k)
sd ) When p, q ∈ (0, 1). The hidden constants in the

approximation given next depend on the distance of p and q from the boundaries
of (0, 1); that is, the constants in the Θ-notation depends on min(p, q, 1−p, 1−q).

Proposition 2.5 (the approximate value of V(p,q)(f
(k)
sd )): For any fixed p, q ∈

(0, 1) and every k > 2, it holds that V(p,q)(f
(k)
sd ) = v · |p− q|, where v = Θ(

√
k) ·

|p− q| if k ≤ 5(p− q)−2 and v ≥ 1− exp(−(p− q)2k/3) otherwise.

Proof: We shall approximate V(p,q)(f
(k)
sd ) by using Eq. (17) (rather than Eq. (22)).

Recall that by Eq. (17) we have

V(p,q)(f
(k)
sd ) = (p− q) · E[sign(Sk)] (23)

where Sk =
∑k

i=1 Ti (and Ti = Xi − Yi). We assume, without loss of generality,
that p > q and lower bound the value of E[sign(Sk)], using E[Ti] = p − q. We
distinguish three cases according to the relation between k and p− q:

Case 1: k ≥ 5(p− q)−2. In this case we use the (standard additive) Chernoff
Bound, and derive

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0]
> 1− 2 · Pr[Sk≤0]

> 1− 2 · exp
(
− (p− q)2 · k

2

)
.

This establishes the relevant part of the claim (i.e., V(p,q)(f
(k)
sd ) = v · |p− q|,

where v = 1− 2 exp(−(p− q)2k/2) > 1− exp(−(p− q)2k/3)).
The following complemantary two cases are distinguished according to a
constant c ≥ 5 that depends only on γp,q

def=
√

p(1− p) + q(1− q).

Case 2: k ∈ [c · (p− q)−1, 5(p− q)−2]. In this case we use the Berry–Esseen es-
timate of the Central Limit Theorem (cf., e.g., [1, Sec. XVI.5]). Specifically,
we approximate E[sign(Sk)] by E[sign(S̃k)], where S̃k is the normal distri-
bution approximation of Sk; that is,

S̃k
def= k · (p− q) +

√
k · γp,q · N(0, 1),
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where N(0, 1) denotes the normal distribution (with mean 0 and variance 1),
and

√
k ·γp,q replaces

√
Var[Sk] =

√
k ·

√
p(1− p) + q(1− q). More formally,

we use the fact that for every r it holds that that

|Pr[Sk >r]− Pr[S̃k >r]| < ε
def=

3ρ

γp,q
3
√

k

where ρ = E[|T1 − (p− q)|3] < 2 · γp,q
2. It follows that

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0]

= Pr[S̃k >0]− Pr[S̃k <0]± 2ε

= 2Pr[S̃k >0]− 1± 2ε. (24)

Now, we analyze Pr[S̃k >0] via

Pr[(p− q)k +
√

kγp,q · N(0, 1) > 0] = Pr
[
N(0, 1) > −p− q

γp,q
·
√

k

]

Setting r
def= (p−q)

√
k ≤ 1, it follows that Pr[N(0, 1) > −r/γp,q] = 0.5+Θ(r).

So Eq. (24) yields Θ(
√

k · (p − q)) − Θ(k−1/2), which is lower bounded by
Θ(
√

k · (p− q)), when using k ≥ c · (p− q)−1 (where c is large enough w.r.t
the above hidden constants). It follows V(p,q)(f

(k)
sd ) = Θ(

√
k) · (p− q)2, which

establishes the other part of the claim for the current case.
Case 3: k ≤ c · (p− q)−1. It suffices to establish that V(p,q)(f

(k)
sd ) = Θ(

√
k) ·

(p− q)2, for k ≤ (p− q)−1. This is done by writing Ti as T ′
i + (1− T ′

i ) · T ′′
i ,

where T ′
i ∈ {0, 1} and T ′′

i ∈ {−1, 0, 1} are independent random variables
satisfying Pr[T ′

i = 1] = p − q and Pr[T ′′
i = 1] = Pr[T ′′

i = −1] = q−pq
1−(p−q) .

Letting S′
k =

∑
i∈[k] T

′
i and S′′

k =
∑

i∈[k] T
′′
i , we have

E[sign(Sk)] =
k∑

j=0

Pr[S′
k =j] · E[sign(S′′

k−j +j)]

=
k∑

j=0

Pr[S′
k =j] ·

(
E[sign(S′′

k−j)] + 2 · Pr[0≤S′′
k−j <j]

)
(25)

where S′′
k−j represents the sum of the k − j variables T ′′

i that correspond
to the indices i that satisfy T ′

i = 0 (i.e., S′′
k−j represents

∑
i∈I T ′′

i , where
I = {i : T ′

i = 0}). Since E[sign(S′′
k−j)] = 0 (becuase E[T ′′

i ] = 0), Eq. (25)
simplifies to

2 ·
k∑

j=1

Pr[S′
k = j] · Pr[0 ≤ S′′

k−j < j]. (26)

The lower bound in the claim (i.e., v = Ω(
√

k · (p − q))) follows once we
prove that Pr[S′

k = 1] · Pr[S′′
k−1 = 0] = Ω(

√
k · (p − q)). We start by noting
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that

Pr[S′
k = 1] · Pr[S′′

k−1 = 0] = k · (p− q)(1 − (p− q))k−1 · Pr[S′′
k−1 = 0](27)

>
(p− q)k

3
· Pr[S′′

k−1 = 0]

In order to estimate Pr[S′′
k−1 = 0], we write S′′

k−1 as the difference of∑
i∈[k−1] X

′′
i and

∑
i∈[k−1] Y

′′
i , where the X ′′

i ’s and Y ′′
i ’s are iid 0-1 ran-

dom valiables (i.e., p′′ = Pr[X ′′
i = 1] satisfies p′′(1 − p′′) = (1−p)q

1−(p−q) ). We
get

Pr[S′′
k−1 = 0] ≥

∑
j=(k−1)p′′±√

k−1

Pr

⎡⎣ ∑
i∈[k−1]

X ′′
i = j

⎤⎦ · Pr

⎡⎣ ∑
i∈[k−1]

Y ′′
i = j

⎤⎦
=

∑
j=(k−1)p′′±√

k−1

Pr

⎡⎣ ∑
i∈[k−1]

X ′′
i = j

⎤⎦2

>
Pr

[∑
i∈[k−1] X

′′
i = (k − 1)p′′ ±

√
k − 1

]2

2
√

k − 1 + 1

>
Pr

[√
(k − 1)γp′′,p′′ ·N(0, 1) = ±

√
k − 1

]2

− o(1)

2
√

k − 1 + 1

where the last inequality uses the Berry–Esseen estimate of the Central Limit
Theorem. Observing that Pr[N(0, 1) = ±1/γp′′,p′′ ] = Ω(1), it follows that
Pr[S′′

k−1 = 0] = Ω(1/
√

k − 1), and so Eq. (27) is Ω((p − q)k/
√

k − 1) (and
the same holds w.r.t Eq. (26)). To upper bound Eq. (26), we note that it
can be upper bounded by

2 ·
k∑

j=1

Pr[S′
k = j] · j · Pr[S′′

k−j = 0] < 2 ·
k∑

j=1

(
k

j

)
· (p− q)j · j · Pr[S′′

k−j = 0]

= O((p− q)k · Pr[S′′
k−1 = 0])

and the claim follows because Pr[S′′
k−1 = 0] = O(1/

√
k). This establishes

V(p,q)(f
(k)
sd ) = Θ(

√
k) · (p− q)2 also in the current case.

The proposition follows.

3 Conclusion

The obvious way of using statistical information (e.g., a binary guess that is
positively correlated with the correct value) is to amplify the confidence level
of the information and use it as if it were certainly correct. The current work
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studies an alternative method of using statistical information and shows that in
some settings using unreliable information directly works quite well. This was
demonstrated already in Section 1.2, whereas the rest of this work studies the
question of how to make the best use of multiple independent copies of such
statistical information.
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Testing Graph Blow-Up

Lidor Avigad and Oded Goldreich

Abstract. Referring to the query complexity of testing graph properties
in the adjacency matrix model, we advance the study of the class of
properties that can be tested non-adaptively within complexity that is
inversely proportional to the proximity parameter. Arguably, this is the
lowest meaningful complexity class in this model, and we show that it
contains a very natural class of graph properties. Specifically, for every
fixed graph H , we consider the set of all graphs that are obtained by a
(possibly unbalanced) blow-up of H . We show a non-adaptive tester of

query complexity Õ(1/ε) that distinguishes graphs that are a blow-up of
H from graphs that are ε-far from any such blow-up.

Keywords: Property Testing, Adaptivity vs Non-adaptivity, One-sided
vs Two-sided Error, Graph Properties, Graph Blow-up.

This work is based on the M.Sc. thesis of the first author [A], which was com-
pleted under the supervision of the second author.

1 Introduction

The general context of this work is that of testing graph properties in the ad-
jacency matrix representation (as initiated in [GGR]). In this model graphs are
viewed as (symmetric) Boolean functions over a domain consisting of all possible
vertex-pairs (i.e., an N -vertex graph G = ([N ], E) is represented by the function
g : [N ] × [N ] → {0, 1} such that {u, v} ∈ E if and only if g(u, v) = 1). Conse-
quently, an N -vertex graph represented by the function g : [N ] × [N ] → {0, 1}
is said to be ε-far from some predetermined graph property if more than ε ·N2

entries of g must be modified in order to yield a representation of a graph that
has this property. We refer to ε as the proximity parameter, and the complexity
of testing is stated in terms of ε and the number of vertices in the graph (i.e.,
N).

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/ε), and [AFNS], which characterizes the
class of properties that are testable within query complexity that depends only
on the proximity parameter (where this dependence may be an arbitrary func-
tion of ε). A well-known open problem in this area is to characterize the class of
graph properties that can be tested within query complexity poly(1/ε). We men-
tion that such a characterization has been obtained in the special case of induced
subgraph freeness properties [AS], but the general case seems quite difficult.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 156–172, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In light of this state of affairs, it was suggested in [GR08] to try to characterize
lower query complexity classes, and in particular the class of graph properties
that can be tested non-adaptively within query complexity Õ(1/ε). As a first
step towards this goal, it was shown in [GR08, Sec. 6] that, for every constant
c, the set of graphs that each consists of at most c isolated cliques is such a
property.

In this work we significantly extend the latter result by showing that the class
of graph properties that can be tested non-adaptively within query complexity
Õ(1/ε) contains all graph blow-up properties. For any fixed graph H = ([h], F ),
we say that a graph G = ([N ], E) is a blow-up of H if the vertices of G can be
clustered in up to h clusters such that the edges between these clusters reflect
the edge relation of H . That is, vertices in the ith and jth cluster are connected
in G if and only if (i, j) ∈ F . Note that, unlike in the case of balanced blow-up
(cf. [GKNR]), the clusters are not required to have equal size.1 Also note that
the “collection of c cliques” property studied in [GR08, Sec. 6] can be cast as the
property of being a blow-up of a c-vertex clique (by considering the complement
graph).

Theorem 1.1 (main result): For every fixed H, the property of being a blow-
up of H is testable by Õ(1/ε) non-adaptive queries. Furthermore, the tester has
one-sided error (i.e., it always accepts graphs that are blow-ups of H) and runs
in poly(1/ε)-time.

We mention that the aforementioned property cannot be tested by o(1/ε) queries,
even when adaptivity and two-sided error are allowed (see [GR08, Prop. 6.1]).
We also mention that, by [GR08, Prop. 6.2], a tester of Õ(1/ε) query complexity
cannot be canonical (i.e., it cannot rule by inspecting an induced subgraph).

Additional results. We also consider the complexity of testing “balanced blow-
up” properties, showing that the two-sided error query complexity is quadratic
in 1/ε for both adaptive and non-adaptive testers; see Proposition 2.4. Finally,
we present proximity oblivious testers (cf. [GR09]) for any (general) blow-up
property; see Theorem 5.2.

Techniques. Theorem 1.1 is proved by presenting a suitable tester and analyz-
ing it. Recall that this tester cannot be canonical; indeed, this tester selects at
random a sample of Õ(1/ε) vertices, but it inspects (or queries) only Õ(1/ε) of
the vertex pairs in this sample. Consequently, the tester (and the analysis) has
to deal with partial knowledge of the subgraph induced by the sample. A pivotal
notion regarding such partial views is of “inconsistency” between vertices (w.r.t
a given partial view), which means that these vertices have different neighbor
sets and thus cannot be placed in the same cluster (of a blow-up of H (or any
other graph)). Specifically, the tester considers all sets of up to h + 1 pairwise
inconsistent vertices, and accepts if and only if each such set (along with the
1 We note that testing balanced blow-up properties requires Ω(1/ε2) queries. For de-

tails, see Section 2.2.
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known incidence relations) can be embedded in H . As usual, the technically
challenging part is analyzing the behavior of the tester on arbitrary graphs that
are far from being blow-ups of H . Our analysis proceeds in iterations, where
in each iteration some progress is made, but this progress is not necessarily re-
flected by a growing number of incidence constraints but rather in the decreasing
density of the violations reflected in the incidence constraints. This progress is
captured in Lemma 4.4 (which refers to notions introduced in Section 4.1). Here
we merely stress that the number of iterations is polylogarithmic in ε−1 rather
than being O(h2). (The degree of the polylogarithmic function depends on h.)

Organization. The core of this paper is presented in Sections 3 and 4, which
contain a description of the tester and its analysis, respectively. (Indeed, this part
establishes Theorem 1.1.) Section 2 provides preliminaries, which may be skipped
by the experts, as well as a side discussion (and result) regarding “balanced
blow-up” properties. Section 5 provides another secondary discussion; this one
regarding proximity oblivious testers.

2 Preliminaries

In this section we review the definition of property testing, when specialized
to graph properties in the adjacency matrix model. We also define the blow-up
properties (and discuss the case of balanced blow-up).

2.1 Basic Notions

For an integer n, we let [n] def= {1, ..., n}. A generic N -vertex graph is denoted
by G = ([N ], E), where E ⊆ {{u, v} :u, v∈ [N ]} is a set of (unordered) pairs of
vertices.2 Any set of (such) graphs that is closed under isomorphism is called a
graph property. By oracle access to such a graph G = ([N ], E) we mean oracle
access to the Boolean function that answers the query {u, v} (or rather (u, v) ∈
[N ]× [N ]) with the bit 1 if and only if {u, v} ∈ E. At times, we look at E as a
subset of [N ]× [N ]; that is, we often identify E with {(u, v) :{u, v}∈E}.

Definition 2.1 (property testing for graphs in the adjacency matrix model):
A tester for a graph property Π is a probabilistic oracle machine that, on input
parameters N and ε and access to an N -vertex graph G = ([N ], E), outputs a
binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π, then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N ], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than εN2.

2 Thus, we consider simple graphs, with no self-loops nor parallel edges.
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If the tester accepts every graph in Π with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and ε); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph oracle, as a function of the parameters N and ε. We say that a
tester is efficient if it runs in time that is polynomial in its query complexity,
where basic operations on elements of [N ] are counted at unit cost. We note that
all testers presented in this paper are efficient, whereas the lower-bounds hold
also for non-efficient testers.

We shall focus on properties that can be tested within query complexity that
only depends on the proximity parameter, ε. Thus, the query-complexity upper-
bounds that we state hold for any values of ε and N , but will be meaningful
only for ε > 1/N2 or so. In contrast, the lower-bounds (e.g., of Ω(1/ε)) cannot
possibly hold for ε < 1/N2, but they will indeed hold for any ε > N−Ω(1).
Alternatively, one may consider the query-complexity as a function of ε, where
for each fixed value of ε > 0 the value of N tends to infinity.

2.2 The Blow-Up Properties

Following the discussion in the introduction, we first define the blow-up proper-
ties that are the subject of our study.

Definition 2.2 (graph blow-up): We say that the graph G = ([N ], E) is a blow-
up of the graph H = ([h], F ) if there is an h-way partition (V1, ..., Vh) of the
vertices of G such that for every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that
(u, v) ∈ E if and only if (i, j) ∈ F . We stress that the Vi’s are not required to be
of equal size and that some of them may be empty. We denote by BU(H) (resp.,
BUN (H)) the set of all graphs (resp., N -vertex graphs) that are blow-ups of H.

In contrast to Definition 2.2, let us briefly consider the more rigid (and popular)
definition of a balanced blow-up.

Definition 2.3 (balanced blow-up): We say that the graph G = ([N ], E) is
a balanced blow-up of the graph H = ([h], F ) if there is an h-way partition
(V1, ..., Vh) of the vertices of G such that the following two conditions hold:

1. For every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that (u, v) ∈ E if and only
if (i, j) ∈ F .

2. For every i ∈ [h] it holds that |Vi| ∈ {�N/h�, �N/h�}.

We denote by BBU(H) (resp., BBUN (H)) the set of all graphs (resp., N -vertex
graphs) that are balanced blow-ups of H.

It is easy to see that, except for trivial cases (i.e., when H consists of isolated
vertices), balanced blow-up cannot be tested with one-sided error and complexity
that does not depend on the size of the graph. The two-sided error testing
complexity of this property is Θ(1/ε2), as shown next.
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Proposition 2.4 (on the complexity of testing balanced blow-up): For every
H = ([h], F ) such that F �= ∅, testing the property BBU(H) requires Ω(1/ε2)
queries even if adaptive testers of two sided error are allowed. On the other
hand, for any H = ([h], F ), there exists a non-adaptive tester of query complexity
O(1/ε2) (and two-sided error) for the property BBU(H).

Proof: The lower bound follows directly from the known lower bounds on
estimating the average (cf. [CEG]). Specifically, distinguishing Boolean functions
defined over [N ] and having an average value of 0.5 from Boolean functions
having an average of 0.5 − ε can be reduced to distinguishing N -vertex graphs
that consist of two isolated cliques of the same size from graphs that consist of
two isolated cliques of sizes (0.5 − ε) ·N and (0.5 + ε) ·N , respectively. (Given
oracle access to a function f : [N ] → {0, 1} consider the graph G = ([N ], {(u, v) :
f(u)=f(v)}).)

In describing the tester, we first assume that H = ([h], F ) is not a blow-up of
any smaller graph H ′. Also, anticipating the extension to the general case, we
generalize the balanced blow-up property into a proportional blow-up property.
Here, for a fixed graph H = ([h], F ) and sequence of densities ρ = (ρ1, .., ρh), the
graph G is a ρ-blow-up of H if Definition 2.3 holds with Condition 2 replaced
by |Vi| ∈ {�ρiN�, �ρiN�}. The non-adaptive tester for ρ-blow-up of H , where H
is not a blow-up of any smaller graph, proceeds as follows (on input a graph G):

1. Select uniformly a sample of Õ(1/ mini{ρi}) vertices, denoted B, which will
be used as a basis for clustering in Step 2. Select uniformly a sample of
O(|B|/ε2) vertices, denoted S. Finally, select uniformly a sample of O(h2/ε)
vertex pairs in S × S, denoted T .

2. Query all pairs (u, v) ∈ (B × S) ∪ T , and cluster the vertices in S according
to their neighbors in B. That is, for every v ∈ [N ], let sgB(v) def= {u∈B :
(u, v)∈E}, and, for every set B′ ⊆ B, let SB′

def= {v∈S : sgB(v)=B′}.
3. If the number of non-empty sets SB′ exceeds h, then reject. Otherwise, con-

sider all possible 1-1 mappings from C
def= {B′ : SB′ �= ∅} to [h], and for each

such mapping φ determine whether or not the following two conditions hold.
(a) For every B′ ∈ C it holds that |SB′ | = (1± ε/2) · ρφ(B′) · |S|.
(b) For every (u, v) ∈ T it holds that (u, v) ∈ E if and only if

(φ(sgB(u)), φ(sgB(v))) ∈ F .
The test accepts if and only if there exists a mapping φ that satisfies both
the above conditions.

The number of queries performed by the tester is O(|B|2/ε2) = O(1/ε2). We
first consider what happens if G is a ρ-blow-up of H . In this case, with high
probability, (1) the sample B contains at least one representative from each
cluster of G, and (2) for each i ∈ [h] the sample S contains (1 ± ε/2) · ρi · |S|
representatives of the ith cluster. In this case, the tester accepts. We now turn
to the case that G = ([N ], E) is ε-far from being a ρ-blow-up of H . In this case,
for any choice of B, we can consider the clustering of the entire graph according
to sgB, and denote the h largest clusters by V1, ..., Vh (where some of these Vi’s
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may be empty). Letting V
def=

⋃
i∈[h] Vi, we note that if |V | < (1− ε/2) ·N , then

with high probability we reject at the onset of Step 3 due to seeing more than
h clusters in the sample.3 Otherwise, we consider all possible mappings of the
vertices of the h largest clusters to [h]. For each such mapping ψ : V → [h] such
that φ(u) = φ(v) iff u, v ∈ Vi for some i, either there exists an i ∈ [h] such that
|Vi| �∈ (1±ε/4)·ρiN or there exist at least εN2/4 violating pairs (i.e., vertex pairs
(u, v) ∈ V ×V that have an edge relation in G that does not fit the edge relation
of (ψ(u), ψ(v)) in H). In the first case, with high probability, the sample S will
contain a deviating fraction of vertices from Vi, whereas in the second case, with
high probability, the sample T will hit some of these violations.4 In either cases,
with high probability, the tester will reject. This completes the treatment of the
case (of ρ-blow-up) of a graph H = ([h], F ) that is not a blow-up of any smaller
graph.

Finally, suppose that H([h], F ) is a blow-up of some smaller graph H ′, and
suppose that H ′ is minimal (i.e., it is not a blow-up of any smaller graph). Then,
testing the property BBU(H) reduces to testing a proportional blow-up property
regarding H ′, where the proportions are determined according to the blow-up of
H ′ into H (and the densities are multiples of 1/h).

3 The BU(H)-Tester and Its Basic Features

Recall that a tester of the type we seek (i.e., a non-adaptive tester of Õ(1/ε)
query complexity) cannot operate by inspecting an induced subgraph, because
by [GR08, Prop. 6.2] such a subgraph will have to be induced by Ω(1/ε) vertices,
which would yield query complexity Ω(1/ε2). Thus, like in [GR08, Sec. 6.2], our
non-adaptive tester operates by using a less straightforward querying procedure.
Specifically, it does select a sample of Õ(1/ε) vertices, but does not query all
vertex pairs.

Algorithm 3.1 (testing BU(H), for a fixed graph H = ([h], F )): On input
parameters, N and ε, and access to an oracle g : [N ]× [N ] → {0, 1}, representing
a graph G = ([N ], E), the algorithm sets 	 = log2(1/ε) + O(log log(1/ε)) and
proceeds as follows.

1. For every i ∈ [	], it selects uniformly a sample of poly(	)·2i vertices, denoted
Ti.
Denote T =

⋃
i∈[�] Ti.

2. For every i, j ∈ [	] such that i + j ≤ 	, the algorithm queries all pairs in
Ti × Tj.

3 If |Vh| ≥ (ε/2h)·N , then with high probability S will contain a vertex from each Vi as
well as a vertex that does not belong to V . On the other hand, if |Vh| ≤ (ε/2h) · N ,
then with high probability S will contain h + 1 vertices from different clusters in
[N ] \ V .

4 Note that a 1/h2 fraction of these foregoing violations can be attributed to one of
2 · (h

2

)
events that correspond to the existence or non-existence of edges between

some pair of clusters.
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3. The algorithm accepts if and only if the answers obtained in Step 2 are
consistent with some blow-up of H. That is, let K : T × T → {0, 1, ∗} be a
partial description of the subgraph of G induced by T such that K(u, v) =
g(u, v) if query (u, v) was made in Step 2, and otherwise K(u, v) = ∗. Then,
the acceptance condition seeks a mapping φ : T → [h] such that if K(u, v) = 1
then (φ(u), φ(v)) ∈ F and if K(u, v) = 0 then (φ(u), φ(v)) �∈ F .

Indeed, at this point we ignore the computational complexity of implementing
Step 3. We shall return to this issue at the end of the current section. But, first,
let us note that the query complexity of Algorithm 3.1 is∑

i,j:i+j≤�

poly(	) · 2i+j = poly(	) · 2� = Õ(1/ε). (1)

It is also clear that Algorithm 3.1 is non-adaptive and that it accepts every
G ∈ BU(H) with probability 1 (i.e., it has one-sided error). The bulk of this
work (see Section 4) is devoted to showing that if G is ε-far from BU(H), then
Algorithm 3.1 rejects it with probability at least 2/3.

Relaxing the acceptance condition of Algorithm 3.1. A straightforward imple-
mentation of Step 3 amounts to considering all h|T | mappings of T to [h], and
checking for each such mapping φ whether the clustering induced by φ fits the
graph H . Relaxing the acceptance condition (used in Step 3 of Algorithm 3.1)
yields a more time-efficient algorithm. Actually, the relaxed acceptance condi-
tion (defined next) seems easier to analyze than the original one. The notion of
pairwise inconsistent rows (of K) is pivotal to this relaxed acceptance condition.
(Indeed, it will be instructive to think of K as a matrix, and to view rectangular
restrictions of K as sub-matrices.)

Definition 3.2 (pairwise inconsistent rows): Let K ′ : R × C → {0, 1, ∗} be a
sub-matrix of K : T ×T → {0, 1, ∗}; that is, R, C ⊆ T and K ′(r, c) = K(r, c) for
every (r, c) ∈ R × C. Then, the rows r1, r2 ∈ R are said to be inconsistent (wrt
K ′) if there exists a column c ∈ C such that K ′(r1, c) and K ′(r2, c) are different
Boolean values (i.e., K ′(r1, c), K ′(r2, c) ∈ {0, 1} and K ′(r1, c) �= K ′(r2, c)). A
set of rows of K ′ is called pairwise inconsistent (wrt K ′) if each pairs of rows is
inconsistent (wrt K ′).

Another pivotal notion, which was alluded to before, is the notion of being
consistent with some blow-up of H , which we now term H-mappability.

Definition 3.3 (H-mappable sub-matrices): Let K ′ : R × C → {0, 1, ∗} be a
sub-matrix of K : T × T → {0, 1, ∗}. We say that K ′ is H-mappable if there
exists a mapping φ : R → [h] such that if K ′(u, v) = 1 then (φ(u), φ(v)) ∈ F and
if K ′(u, v) = 0 then (φ(u), φ(v)) �∈ F . We call such a φ an H-mapping of K ′ (or
R) to [h].

Note that if K is H-mappable, then every two inconsistent rows of K must be
mapped (by φ as in Definition 3.3) to different vertices of H . In particular, if
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a sub-matrix K ′ : R × C → {0, 1, ∗} of K has pairwise inconsistent rows, then
any H-mapping of K to [h] must be injective. Hence, if K contains more than
h pairwise inconsistent rows, then K is not H-mappable.

Definition 3.4 (the relaxed acceptance condition (of Algorithm 3.1)): The re-
laxed algorithm accept if and only if each set of pairwise inconsistent rows in K
is H-mappable. That is, for every set R of pairwise inconsistent rows in K, we
check whether the sub-matrix K ′ : R × T → {0, 1, ∗} is H-mappable, where the
pairwise inconsistency condition mandates that this mapping of R to [h] is 1-1.
In particular, if K has more than h pairwise inconsistent rows, then the relaxed
acceptance condition fails.

Note that the relaxed acceptance condition can be checked by considering all
s-subsets of T , for all s ≤ h + 1. For each such subset that consists of pairwise
inconsitent rows, we consider all possible 1-1 mappings of this subset to [h], and
check consistency with respect to H . This can be performed in time

( |T |
h+1

)
·(h!) <

|T |h+1 = poly(1/ε), where the polynomial depends on h.
Clearly, if G ∈ BU(H), then for every T ⊆ [N ] it holds that the corresponding

matrix K satisfies Definition 3.4. Thus, the relaxed algorithm always accepts
graphs in BU(H). Section 4 is devoted to showing that if G is ε-far from BU(H),
then the relaxed algorithm rejects with high probability.

4 The Acceptance Condition and Graphs That Are Far
from BU(H)

In light of the above, Theorem 1.1 follows from the fact that the relaxed version
of Algorithm 3.1 (which uses the condition in Definition 3.4) rejects with very
high probability any graph G that is ε-far from BU(H). This fact is established
next.

Lemma 4.1 (main lemma): Suppose that G = ([N ], E) is ε-far from BUN (H),
and let T =

⋃
i∈[�] Ti be selected at random as in Step 1 of Algorithm 3.1. Then,

with probability at least 2/3, there exists a set R ⊂ T of pairwise inconsistent
rows in the corresponding matrix K : T × T → {0, 1, ∗} that is not H-mappable.

Before embarking on the actual proof of Lemma 4.1, we provide a very rough
outline.

Outline of the proof of Lemma 4.1. Our very rough plan of action is to partition
the selection of T (and each of its parts, i.e., T0, T1, ..., T�) into p(	) def= 2	h many
phases such that in the jth phase we select at random samples T j

0 , T j
1 , ..., T j

�

such that |T j
i | = poly(	) · 2i. Thus, we let each Ti equal

⋃p(�)
j=1 T j

i , but we shall
consider the queries as if they are made in phases such that in the jth phase
we only consider queries between T j def=

⋃
i∈[�] T

j
i and T [j] def=

⋃
k≤j T k. Letting

Kj : T [j] × T [j] → {0, 1, ∗} denote the partial information obtained on G in the
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first j phases, we consider a certain set Rj of pairwise inconsistent rows of Kj .
If this set Rj is not H-mappable, then we are done. Otherwise, we show that,
with high probability over the choice of the sample T j+1, we obtain a new set
Rj+1 of pairwise inconsistent rows such that Rj+1 has a higher index than Rj ,
where the indices refer to an order over sequences of length at most h over [	].
Since the number of such sequences is

∑
k∈[h] 	

k < p(	), with high probability,
this process must reach a set Rj that is not H-mappable, and so we are done.

Needless to say, the crucial issue is the progress achieved in each phase; that
is, the fact that at each phase j the index of the new set Rj+1 is higher than the
index of the old set Rj . Intuitively, this progress is achieved because the current
(H-mappable) set Rj induces a clustering of all vertices of G that extends this
H-mapping, whereas this clustering must contain many vertex pairs that violate
the edge relation of H . The sample taken in the current phase (i.e., T j+1) is
likely to hit these violations, and this gives rise to a set Rj+1 with higher index.

4.1 Basic Notions and Notations

In addition to the foregoing notations, T j
i , T j and T [j], we shall use the following

notations.

– A pair (R, C) is called a j-basic pair if C ⊆ T [j] and R ⊆ C. Indeed, j-basic
pairs correspond to restrictions of the sample available at phase j (i.e., T [j]).

– The j-index of a vertex v ∈ T [j], denoted idxj(v), is the smallest index i such
that v ∈ T

[j]
i , where T

[j]
i

def=
⋃

k≤j T k
i . (Note that idx(·) depends on T , but

this dependence is not shown in the notation.)
A key observation is that for every u, v ∈ T , it holds that K(u, v) = g(u, v)
if and only if idxp(�)(u)+ idxp(�)(v) ≤ 	. Otherwise, K(u, v) = ∗ (indicating
that (u, v) was not queried by Algorithm 3.1).
We comment that, with extremely high probability, for each j and v ∈ T [j],
there exists a unique i ∈ [	] and k ∈ [j] such that v ∈ T k

i . Thus, for any
v ∈ T [j], we may assume that idxj+1(v) = idxj(v).

– The indices of individual vertices in T [j] are the basis for defining the index
of sets in T [j]. Specifically, the j-index of a set S ⊆ T [j], denoted idxj(S), is
the multi-set consisting of all values idxj(v) for v ∈ S. It will be instructive
to consider an ordered version of this multi-set; that is, we redefine idxj(S)
as (i1, ..., i|S|) such that (1) for every k < |S| it holds that ik ≥ ik+1, and
(2) for every i ∈ [	] it holds that |{k∈ [|S|] : ik = i}| = |{v ∈ S : idxj(v)= i}|.

– We consider a natural lexicographic order over sequences, denoted &, such
that for two (monotonicly non-increasing) sequences of integers,
a = (a1, ..., am) and b = (b1, ..., bn), it holds that a & b if
• either there exists i ≤ min(n, m) such that (a1, ..., ai−1) = (b1, ..., bi−1)

and ai > bi.
• or m > n and (a1, ..., an) = (b1, ..., bn).

Note that & is a total order on the set of monotonicly non-increasing (finite)
sequences of integers.
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As hinted in the overview, a key notion in our analysis is the notion of a clustering
of the vertices of G that is induced by an H-mapping of some small subset of
vertices. Actually, the clustering is induced by a partial knowledge sub-matrix
K ′ : R× C → {0, 1, ∗} as follows.

Definition 4.2 (the clustering induced by K ′): Let K ′ : R×C → {0, 1, ∗} be a
sub-matrix of K : T ×T → {0, 1, ∗} such that K ′ has pairwise inconsistent rows.
Then, for every r ∈ R, we denote by Vr(K ′) the set of vertices v ∈ [N ] that are
consistent with row r in K ′. That is,

Vr(K ′) def= {v∈ [N ] : (∀c∈C) g(v, c)∼=K ′(r, c)} (2)

where, for σ, τ ∈ {0, 1, ∗}, we write σ∼= τ if either σ = τ or σ = ∗ or τ = ∗.
The vertices that are inconsistent with all rows, are placed in the leftover set
L(K ′) def= [N ] \

⋃
r∈R Vr(K ′).

Indeed, rows r1, r2 ∈ R are inconsistent wrt K ′ (as per Definition 3.2) if there
exists a column c ∈ C such that K ′(r1, c) �∼=K ′(r2, c) (which means that K ′(r1, c)
and K ′(r2, c) are both in {0, 1} but are different). Thus, the hypothesis that
the rows of K ′ are pairwise inconsistent implies that the sets in Eq. (2) are
disjoint. Hence, the clustering in Definition 4.2 is indeed a partition of the vertex
set of G (since v ∈ L(K ′) if for every r ∈ R there exists c ∈ C such that
g(v, c) �∼=K ′(r, c)). This motivates our focus on sub-matrices having pairwise
inconsistent rows. The following definition adds a requirement (regarding such
sub-matrices) that refers to the relation between the index of row r and the
density of the corresponding set Vr(K ′).

Definition 4.3 (nice pairs): Let (R, C) be a j-basic pair and K ′ : R × C →
{0, 1, ∗} be the corresponding sub-matrix of K. We say that (R, C) is a j-nice
pair if the following two conditions hold.

1. R is pairwise inconsistent with respect to K ′.
2. For every r ∈ R it holds that indj(r) ≤ ρ(Vr(K ′)) + 1, where ρ(S) def=
�log(N/|S|)�.

As a sanity check, suppose that r ∈ R was selected in phase j (i.e., r ∈ T j).
Then, it is very likely that r (or some other member of Vr(K ′)) is selected
in T j

ρ(Vr(K′))−1, because T j
ρ(Vr(K′))−1 is a random set of cardinality poly(	) ·

2ρ(Vr(K′))−1 = poly(	) ·N/|Vr(K ′)|.
For each phase j, we shall show the existence of a j-nice pair. Furthermore, we

shall show that the corresponding set of rows has a higher index than all sets of
rows associated with previous phases. The furthermore claim is the crux of the
analysis, and is captured by the Progress Lemma presented in Section 4.2. But
let us first establish the mere existence of j-nice pairs. Indeed, for every j ≥ 1,
we may pick an arbitrary r ∈ T 1

1 , and consider the j-nice pair ({r}, {r}), while
noting that idx1(r) = 1 and ρ(Vr(K ′)) ≥ 0 (where K ′ : {r} × {r} → {0, 1, ∗}).
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4.2 The Progress Lemma

Recall that G = ([N ], E) is ε-far from BU(H), where H = ([h], F ). Furthermore,
we consider the partial view K : T × T → {0, 1, ∗} obtained by Algorithm 3.1,
where T =

⋃
i∈[�],j∈[p(�)] T

j
i is the random sample selected. Throughout the rest

of this section, we say that an event has negligible probability if it occurs with
probability that vanishes faster than any polynomial in ε. Since we shall consider
only poly(	) many events, we can safely ignore these negligible probabilities.5 We
say that an event occurs with overwhelmingly high probability if the probability
that it does not occur is negligible.

Lemma 4.4 (Progress Lemma): Let (R, C) be a j-nice pair and K ′ : R× C →
{0, 1, ∗} be the corresponding sub-matrix of K. If K ′ is H-mappable then, with
overwhelmingly high probability over the choice of T j+1, there exists a (j+1)-nice
pair (R′, C′) such that indj+1(R′) & indj(R).

Recalling that a (trivial) 1-nice pair always exists and that the number of pos-
sible indices is smaller than p(	), we conclude that, with overwhelmingly high
probability (over the choice of T ), there exists a j < p(	) and a j-nice pair
that is not H-mappable. Lemma 4.1 follows. Thus, all that remains is proving
Lemma 4.4, which we undertake next.

Proof: We consider the partition induced by K ′, as per Definition 4.2, and
consider two cases regarding the size of L

def= L(K ′):

Case 1: ρ(L) ≤ 	. In this case (i.e., |L| ≥ 2−� · N), with overwhelmingly high
probability, the sample T j+1 contains a vertex u ∈ L(K ′). Using this u, we
shall obtain a (j + 1)-nice pair with a set of rows that has a higher index
than R. Intuitively, since (g(u, c))c∈C is inconsistent with all rows of K ′,
we may add u as a row to K ′ while possibly omitting rows of K ′ that are
consistent with (K(u, c))c∈C (see below), obtaining a sub-matrix that has
a larger index (than the index of K ′). The detailed analysis of this case is
presented in Claim 4.4.2.

Case 2: ρ(L) > 	. In this case (i.e., |L| < 2−� ·N < εN/2), the partition induced
by (Vr(K ′))r∈R contains many pairs that violate the edge relation of H ,
since the number of pairs adjacent at L is smaller than εN2/2. We shall
show that, with overwhelmingly high probability, the sample T j+1 contains
a vertex w such that augmenting K ′ with the column corresponding to w
yields a sub-matrix K ′′ such that ρ(L(K ′′)) < 	. Intuitively, pairs of vertices
in V (K ′) def=

⋃
r∈R Vr(K ′) that violate the edge relation of H , yield vertices

w that effectively shrink V (K ′) in the sense that adding w as a column to
K ′ moves many vertices from V (K ′) to L(K ′′). In particular, we shall show
that |L(K ′′)| = Ω(εN/	), which means that ρ(L(K ′′)) < log2(O(	)/ε) < 	.

5 In fact, it would have sufficed to define as negligible any probability that vanishes
faster than any polynomial in 1/� (i.e., faster than any polylogarithmic function of
ε).
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At this point we may proceed as in Case 1. (Formally, in this case, the j+1st
phase is partitioned into two sub-phases, where in each sub-phase we use half
of each of the samples T j+1

i .) The detailed analysis of this case is presented
in Claim 4.4.3.

Our analysis of the two cases combines straightforward probabilistic arguments
with manipulations of sub-matrices. The latter manipulations include adding
rows and columns and truncating the sub-matrix so as to leave only rows that
have an index that is lower-bounded by some value. It is thus instructive to
discuss these three operations first.

Adding an arbitrary column from T j+1. Suppose that (R, C) is j-nice with a cor-
responding sub-matrix K ′. Then, adding any column v ∈ T j+1 to K ′ re-
sults in a sub-matrix K ′′ such that the corresponding pair (R, C ∪ {v}) is
(j + 1)-nice. Clearly, adding a column may only add inconsistencies, and
so the pairwise inconsistency condition of K ′ is preserved. For any r ∈ R,
the densities of Vr(·) may only drop when moving from K ′ to K ′′, and so
indj(r) ≤ ρ(Vr(K ′)) + 1 implies indj+1(r) ≤ ρ(Vr(K ′′)) + 1.

Adding a row that belongs to L(K ′) ∩ T j+1
ρ(L(K′)). It is tempting to think that if

(R, C) is j-nice, then adding any row v ∈ T j+1
ρ(L(K′))∩L(K ′)∩C to K ′ results

in a sub-matrix K ′′ such that the corresponding pair (R∪{v}, C) is (j +1)-
nice. It is true that indj+1(r) ≤ ρ(Vr(K ′′))+1 holds for each row r, including
the added row v (because indj+1(v) = ρ(L(K ′)) and ρ(Vv(K ′′)) ≥ ρ(L(K ′)),
since Vv(K ′′) ⊆ L(K ′)). However, although for every r ∈ R there exists c ∈ C
such that g(v, c) �∼= K ′(r, c) (since v �∈ Vr(K ′)), it not necessarily the case that
the row v in K is inconsistent with all rows in K ′ (i.e., it may be the case
that, for some r ∈ R and each c ∈ C, it holds that K(v, c)∼= K ′(r, c), since
K(v, c) ∈ {g(v, c), ∗} and ∗∼=K ′(r, c)). Coping with this problem, which
arises from the fact that K may have ∗-values, leads us to introduce the
following truncation operator.

Truncating at an added row. Suppose that (R, C) is j-nice with a corresponding
sub-matrix K ′, and let v ∈ L(K ′) ∩ T j+1

ρ(L(K′)). Then, consider first adding v

as a new row and column to K ′, and then leaving in the resulting sub-matrix
only the rows that have a (j + 1)-index that is at least as large as the one
of v (i.e., row r remains if and only if indj+1(r) ≥ indj+1(v)). We claim
that these rows are pairwise inconsistent, and thus the resulting sub-matrix
is (j + 1)-nice.
It suffices to prove that the new row v (of K) is inconsistent with any row that
was left from K ′; that is, fixing any r ∈ R such that indj+1(r) ≥ indj+1(v),
we claim that there exists c ∈ C such that K(v, c) �∼= K ′(r, c). Since v ∈
L(K ′), we know that there exists c ∈ C such that g(v, c) �∼=K ′(r, c), which
implies that K ′(r, c) ∈ {0, 1}, which in turn implies indj(r) + indj(c) ≤ 	
(by definition of K). Now, using indj+1(v) ≤ indj+1(r) ≤ indj(r), we get
indj+1(v)+indj(c) ≤ 	, which implies that K(v, c) = g(v, c). Recalling that
g(v, c) �∼=K ′(r, c), we obtain K(v, c) �∼=K ′(r, c), and the claim follows.
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Note that the truncation of K ′ : R × C → {0, 1, ∗} at the added row v always
contains the new row v, and that it may result in |R| + 1 rows (i.e., no “real
truncation”). Another key feature of the truncation-at-an-added-row operation
is that it yields a set of rows with an index larger than the index of R.

Claim 4.4.1 (the effect of truncation): Suppose that (R, C) is j-nice with a
corresponding sub-matrix K ′, and let v ∈ L(K ′) ∩ T j+1

ρ(L(K′)). Then, truncating
the sub-matrix that corresponds to (R∪{v}, C∪{v}) at row v yields a (j+1)-nice
pair with a row set having an index larger than indj(R).

Proof: The first part of this claim was already established above. Denoting the
resulting set of rows by R′, we need to prove that indj+1(R′) & indj(R). If R′ =
R∪{u} then the claim is trivial, and so we consider the case that indj+1(R′) =
(i1, ..., it), where t ≤ |R| and it = indj+1(v). This means that a non-trivial trun-
cating took place, and that all omitted rows had index smaller than it, which im-
plies that (i1, ..., it) & indj+1(R) (because indj+1(R) = (i1, ..., it−1, dt, ..., d|R|)
with dt < it). ��

Claim 4.4.2 (case 1): Suppose that (R, C) is j-nice and that ρ(L) ≤ 	, where
L = L(K ′). Then, with overwhelmingly high probability (over the choice of
T j+1

ρ(L(K′))), the sample T j+1
ρ(L(K′)) contains a vertex u ∈ L(K ′) such that adding u

to K ′ (both as a row and a column) and truncating the resulting sub-matrix at
row u yields a (j + 1)-nice pair (R′, C′) such that indj+1(R′) & indj(R).

Proof: With overwhelmingly high probability, the sample T j+1
ρ(L(K′)) contains a

vertex u ∈ L(K ′), while using any such vertex yields the desired result (due to
Claim 4.4.1). ��

Claim 4.4.3 (case 2): Suppose that (R, C) is j-nice and that the corresponding
sub-matrix K ′ is H-mappable. Further suppose that ρ(L) > 	, where L = L(K ′).
Then, with overwhelmingly high probability (over the choice of T j+1), the sample
T j+1 contains a vertex w such that adding the column w to K ′ yields a (j +
1)-nice pair (R, C ∪ {w}) such that the corresponding sub-matrix K ′′ satisfies
ρ(L(K ′′)) ≤ 	

Proof: We combine the hypothesis that G is ε-far from BU(H) with the hypothe-
sis that K ′ is H-mappable, and denote the corresponding H-mapping by φ : R →
[h]. Extending this mapping to V (K ′) def=

⋃
r∈R Vr(K ′) such that φ(v) = φ(r)

for every v ∈ Vr(K ′), and using the hypothesis that |L(K ′)| < 2−�N < εN/2, we
conclude that there are at least εN2/2 vertex pairs that violate the edge relation
of H (i.e., pairs (u, v) ∈ V (K ′)×V (K ′) such that (u, v) ∈ E iff (φ(u), φ(v)) �∈ F ).
Actually, we should consider all h! possible injections (from R to [h]), and apply
the argument to each of them, but this only increases the error probability by a
factor of h!. These violations can be of one of the following two types.

1. Edges (u, v) ∈ E such that (φ(u), φ(v)) �∈ F . If the number of such pairs
exceeds εN2/4, then we select a pair (r, s) ∈ R×R such that there exist at
least εN2/4h2 pairs (u, v) ∈ E for which (φ(u), φ(v)) = (φ(r), φ(s)) �∈ F .
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2. Non-edges (u, v) �∈ E such that (φ(u), φ(v)) ∈ F . If the number of such pairs
exceeds εN2/4, then we select a pair (r, s) ∈ R×R such that there exist at
least εN2/4h2 pairs (u, v) �∈ E for which (φ(u), φ(v)) = (φ(r), φ(s)) ∈ F .

Fixing (r, s) as above we have at least εN2/4h2 violating pairs in Vr(K ′)×Vs(K ′).
Next, we select an integer m ∈ [	] such that there exists a set W ⊆ Vr(K ′) of
cardinality 2−m · N and every w ∈ W participates in at least ε2mN/4h2	 >
2−(�−m−3) ·N violating pairs (with vertices of Vs(K ′)). Clearly, ρ(W ) = m, and
so with overwhelmingly high probability T j+1

m contains a vertex w ∈ W . Adding
any such w as a column to K ′, we obtain a sub-matrix K ′′ and claim that
ρ(L(K ′′)) ≤ 	 −m ≤ 	. Specifically, we shall show that every u ∈ Vs(K ′) such
that (u, w) is a violating pair must be in L(K ′′), and infer that ρ(L(K ′′)) ≤ 	−m
by recalling that the number of such violating pairs in which w participates
exceeds 2−(�−m−3) ·N .

Thus, letting Uw denote the set of all u ∈ Vs(K ′) such that (u, w) is a violating
pair, we prove that Uw ⊆ L(K ′′). Let u be an arbitrary vertex in Uw ⊆ Vs(K ′)
(and recall that w ∈ W ∩ T j+1

m ⊆ Vr(K ′)). Our argument proceeds as follows.

1. We first note that indj(r) ≤ ρ(Vr(K ′))+1 (by the nicety condition), whereas
ρ(Vr(K ′)) ≤ ρ(W ) = m.
Similarly, indj(s) ≤ ρ(Vs(K ′)) + 1, whereas ρ(Vs(K ′)) ≤ ρ(Uw) ≤ 	−m− 3
(since Vs(K ′) ⊇ Uw and |Uw| > 2−(�−m−3) ·N).

2. Combining the two foregoing facts, we conclude that indj(r) + indj(s) ≤ 	,
which implies that K ′(r, s) = g(r, s).

3. Since w ∈ Vr(K ′), it must be that g(w, s)∼= K ′(r, s), which implies g(w, s) =
g(r, s) (when combined with K ′(r, s) = g(r, s)). Since φ is an H-mapping
it must be that g(s, w) = g(s, r) fits the edge relation of (φ(s), φ(w)) =
(φ(s), φ(r)) with respect to H .

4. On the other hand, since (u, w) is a violating pair, the value g(u, w) does
not fit the edge relation of (φ(u), φ(w)) = (φ(s), φ(r)) with respect to H .

5. Combining Items 3 and 4, we infer that g(u, w) �= g(s, w), which implies
g(u, w) �∼=K ′′(s, w) (because K ′′(s, w) = g(s, w) by virtue of indj+1(s) +
indj+1(w) ≤ (	−m−2)+m < 	, where w ∈ T j+1

m by the hypothesis). Thus,
u is not in Vs(K ′′), although it is in Vs(K ′).

6. We observe that, for every r ∈ R\{s}, vertex u ∈ Vs(K ′) is not in Vr(K ′′) ⊆
Vr(K ′), since the rows of K ′ are pairwise inconsistent.

7. Combining Items 5 and 6, we conclude that u �∈
⋃

r∈R Vr(K ′′), and hence
u ∈ L(K ′′).

Thus, we have established that Uw ⊆ L(K ′′). As noted above, it follows that
ρ(L(K ′′)) ≤ ρ(Uw) ≤ 	−m− 3 < 	. This completes the proof of Claim 4.4.3. ��

Completing the proof of Lemma 4.4. In accordance with the motivating discus-
sion, we now complete the proof of the lemma by using the two latter claims.
Specifically, if Case 1 holds (i.e., ρ(L(K ′)) ≤ 	), then we invoke Claim 4.4.2 and
are done. Otherwise, Case 2 holds (i.e., ρ(L(K ′)) > 	), and we take the follow-
ing two steps. Recall that, as stated in the beginning of the proof, in this case
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(i.e., Case 2) we partition the sample T j+1 into two parts, and use a different
part in each step. In the first step we apply Claim 4.4.3 to the first part, and get
into Case 1; that is, we obtain a new K ′ such that ρ(L(K ′)) ≤ 	. (Note that the
new K ′ has the same row set as the original one, and the latter set maintains its
index.) Next, in the second step, we apply Claim 4.4.2 to the resulting K ′ and
the second part of the sample, and are done.

5 Proximity Oblivious Testing of Blow-Up

In this section we derive, for every fixed graph H , a constant-query proximity
oblivious tester of BU(H). That is, we refer to the following definition of [GR09],
when specialized to the dense graph model.

Definition 5.1 (proximity oblivious testing for graphs in the adjacency matrix
model): A proximity oblivious tester for a graph property Π is a probabilistic
oracle machine that, on input parameter N and access to an N -vertex graph
G = ([N ], E), outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability 1.
2. There exists a monotone function ρ : (0, 1] → (0, 1] such that, for every graph

G = ([N ], E) �∈ Π, it holds that the tester rejects G with probability at least
ρ(δΠ(G)), where δΠ(G) denotes the (relative) distance of G from the set of
N -vertex graphs that are in Π.

The function ρ is called the detection probability of the tester.

Combining Lemma 4.1 and the ideas underlying [GR09, Thm. 6.3], we obtain.

Theorem 5.2 For every fixed graph H = ([h], F ), there exists a O(h2)-query
proximity oblivious tester of BU(H). Furthermore, the tester has detection prob-
ability ρ(ε) = εO(h).

This extends the result of [GR09, Prob. 4.11], which corresponds to the special
case in which H is a h-vertex clique. We also mention that, for constant-query
proximity oblivious testers of BU(H), detection probability of the form ρ(ε) =
εΩ(h) is essential (cf. [GR09, Prob. 4.3]).

Proof: While a direct application of [GR09, Thm. 6.3] would yield a detection
bound of ρ(ε) = εO(h2), we obtain a quantative improvement by using a version
of [GR09, Thm. 6.3] that is specialized to the dense graph model. This version
refers to any graph property Π having a standard tester T (of error probability
1/3) that satisfies the following three conditions:

1. T is non-adaptive;
2. for a monotonically non-decreasing ν : (0, 1] → N, on proximity parameter

ε, the queries of T refer to at most ν(ε) vertices; and
3. for some fixed s ∈ N, the tester T rejects if and only if it sees a partial

view of some s-vertex subgraph that cannot occur in any graph in Π . (Such
a partial view is called a witness for non-membership.)
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In such a case, Π has an
(

s
2

)
-query proximity-oblivious tester with detection

probability at least ρ(ε) = Ω(ε/ν(ε/2)s). We mention that a direct applica-
tion of [GR09, Thm. 6.3] would have yielded a detection bound of ρ(ε) =
Ω(ε/q(ε/2)(

s
2)), where q < ν2 denotes the query complexity of the original tester.

The foregoing claim is easily proved by following the ideas that underly the
proof of [GR09, Thm. 6.3]. Specifically, the proximity oblivious tester select i ∈
{1, ..., �log2 N�} with probability 2−i, invokes the query-generator procedure of T
on input ((alleged) proximity parameter) 2−i, selects uniformly s vertices among
those that appear in the generated queries, makes (only) the corresponding

(
s
2

)
queries, and accept if and only if the induced subgraph is not a witness for non-
membership. Clearly, the resulting tester rejects any graph that is 2−i-far from

Π with probability at least 2−i · 2
3 ·

(
μ(2−i)

s

)−1
.

It remains to show that, when applied to Π = BU(H), the (non-adaptive)
tester in Algorithm 3.1 (when using the relaxed condition of Definition 3.4)
rejects based on a witness for non-membership that contains O(h) vertices. Es-
sentially, this holds since the condition in Definition 3.4 refers to a set of at
most h + 1 pairwise inconsistent rows that are not H-mappable, whereas (as
shown next) only n − 1 columns are required in order to establish that n rows
are pairwise inconsistent. Thus, it suffices to augment the set of rows R by at
most |R| − 1 additional vertices, and derive a witness for non-membership that
contains at most 2h + 1 vertices.

Lastly, we prove that n − 1 columns suffice for establishing the fact that n
rows are pairwise inconsistent. Starting with a row r of the largest index, we
pick an arbitrary column that witnesses the inconsistence of row r with some
other row r′. This column c partitions the set of rows to two non-trivial sets: the
set of rows having the same value as r on column c, and the set of rows having
the opposite value on this column. (Note that all rows have a binary value on
column c, since we started with a row r of largest index.) The process continues,
separately, with each of these two sets, and the key observation is that each split
requires only one (possibly new) column.

6 Conclusions

We have shown a non-adaptive tester of query complexity Õ(1/ε) for BU(H).
The degree of the polynomial in the polylogarithmic factor that is hidden in the
Õ() notation is h + O(1), where h is the number of vertices in H . We wonder
whether the query complexity can be reduced to p(h log(1/ε))) · ε−1, where p
is a fixed polynomial. We mention that such a dependence on h was obtained
in [GR08, Sec. 6.2] for the special case in which H is an h-clique. Furthermore, we
wonder whether non-adaptive testing of BU(H) is possible in query complexity
poly(h) · ε−1. We mention that such a result is only known for h = 2 (cf. [GR08,
Sec. 6.1]), whereas an adaptive tester of query complexity O(h2/ε) is known
(cf. [A, Sec. 4]).



172 L. Avigad and O. Goldreich

Acknowledgments. We are grateful to Dana Ron and to the anonymous re-
viewers of RANDOM’11 for comments regarding previous versions of this work.

References

[AFKS] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large
Graphs. Combinatorica 20, 451–476 (2000)

[AFNS] Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Charac-
terization of the Testable Graph Properties: It’s All About Regularity. In:
38th STOC, pp. 251–260 (2006)

[AS] Alon, N., Shapira, A.: A Characterization of Easily Testable Induced Sub-
graphs. Combinatorics Probability and Computing 15, 791–805 (2006)

[A] Avigad, L.: On the Lowest Level of Query Complexity in Testing Graph
Properties. Master thesis, Weizmann Institute of Science (December 2009)

[CEG] Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms
for Estimating the Average. In: IPL, vol. 53, pp. 17–25 (1995)

[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. Journal of the ACM, 653–750 (July 1998)

[GKNR] Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy theo-
rems for property testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX 2009. LNCS, vol. 5687, pp. 504–519. Springer, Heidelberg (2009)

[GR08] Goldreich, O., Ron, D.: Algorithmic Aspects of Property Testing in the
Dense Graphs Model. ECCC, TR08-039 (2008)

[GR09] Goldreich, O., Ron, D.: On Proximity Oblivious Testing. ECCC, TR08-041
(2008); Extended Abstract in the Proceedings of the 41st STOC (2009)

[GT] Goldreich, O., Trevisan, L.: Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms 23(1), 23–57 (2003)

[RS] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-
plications to program testing. SIAM Journal on Computing 25(2), 252–271
(1996)



Proximity Oblivious Testing and the Role of

Invariances

Oded Goldreich and Tali Kaufman

Abstract. We present a general notion of properties that are character-
ized by local conditions that are invariant under a sufficiently rich class
of symmetries. Our framework generalizes two popular models of testing
graph properties as well as the algebraic invariances studied by Kauf-
man and Sudan (STOC’08). Our focus is on the case that the property
is characterized by a constant number of local conditions and a rich set
of invariances.

We show that, in the aforementioned models of testing graph prop-
erties, characterization by such invariant local conditions is closely re-
lated to proximity oblivious testing (as defined by Goldreich and Ron,
STOC’09). In contrast to this relation, we show that, in general, charac-
terization by invariant local conditions is neither necessary nor sufficient
for proximity oblivious testing. Furthermore, we show that easy testabil-
ity is not guaranteed even when the property is characterized by local
conditions that are invariant under a 1-transitive group of permutations.

Keywords: Property Testing, Graph Properties, Locally Testable Codes,
Sparse Linear Codes, The Long-Code

A version of this work appeared as TR10-058 of ECCC.

1 Introduction

In the last couple of decades, the area of property testing has attracted much
attention (see, e.g., a couple of recent surveys [15,16]). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and
the testers get oracle access to this function (and thus may be expected to work
in time that is sub-linear in the size of the object).

While a host of fascinating results and techniques has emerged, the desire for a
comprehensive understanding of what makes some properties easy to test (while
others are hard to test) is far from being satisfied.1 Two general approaches
that seem to have a potential of addressing the question (of “what makes testing
possible”) were suggested recently.
1 This assertion is not meant to undermine significant successes of several characteri-

zation projects, most notably the result of [1].
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1. Restricting attention to the class of proximity oblivious testers, which are
constant-query testers that reject any object with probability proportional
(but not necessarily linearly proportional) to its distance from the predeter-
mined property. Indeed, the characterization of proximity oblivious testers,
in two central models of graph properties, obtained in [9], addresses the fore-
going question: graph properties have proximity oblivious testers if and only
if they can be characterized in terms of adequate local conditions.2

2. But even before [9], an approach based on adequately invariant local con-
ditions was put forward in [13]. It was shown that in the context of test-
ing algebraic properties, a sufficient condition for testability (which in fact
yields proximity oblivious testers) is that the property can be characterized
in terms of local conditions that are invariant in an adequate sense. (Here
and throughout this paper, a local condition means a condition that refers to
the value of the function at a constant number of points.)

Thus, these two approaches have a very similar flavor, but they are very different
at the actual details. On the one hand, the definition of proximity oblivious testers
does not refer to any structure of the underlying domain of functions, and the
local conditions in the two graph models do not refer explicitly to any invariance.
However, invariance under relabeling of the graph’s vertices is implicit in the
entire study of graph properties (since the latter are defined in terms of such
invariance). On the other hand, the linear invariances considered in [13] presume
that the functions’ domain can be associated with some vector space and that
the properties are invariant under linear transformations of this vector space.

Thus, the first task that we undertake is providing a definition of a general
notion of “characterization by invariant local conditions”, where at the very min-
imum this general definition should unify the notions underlying [9,13]. Such a
definition is presented in Section 2. Loosely speaking, a property P is character-
ized by invariant local conditions if P is charaterized by a set C of local conditions
(i.e., f ∈ P iff f satisfies all conditions in C) and C is generated by a constant
number of local conditions coupled with a set of actions that preserves P (i.e.,
the invariances).

Given such a definition, a natural conjecture that arises, hereafter referred to
as the invariance conjecture, is that a property has a constant-query proximity-
oblivious tester if and only if it can be characterized by invariant local conditions.
This conjecture is rigorously formulated within our definitional framework (see
Section 2.2) and the current work is devoted to its study. The main results of
our study may be stated informally as follows:

1. The invariance conjecture holds in the context of testing graph properties in
the dense graph model (see Theorem 3.1).

2. The invariance conjecture holds in the context of testing graph properties
in the bounded-degree graph model if and only if all local properties are
non-propagating (see Theorem 4.1 and [9, Open Problem 5.8]).

2 We warn that the picture is actually not that clean, because in the case of the
bounded-degree model the notion of adequacy includes some technical condition,
termed non-propagation.
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3. In general, the invariance conjecture fails in both directions.
(a) Characterization by invariant local conditions is not necessary for prox-

imity oblivious testing. This is demonstrated both by linear properties
(see Theorem 5.1) and by the dictatorship property (see Theorem 5.2).

(b) Characterization by invariant local conditions is not sufficient for prox-
imity oblivious testing (see Theorem 5.3). This is demonstrated by the
property called Eulerian orientation (which refers to the orientation of
the edges of a cyclic grid, cf. [6]).

Thus, there are natural settings in which the invariance conjecture holds, but
there are also natural settings in which it fails (in each of the possible directions).

The technical angle. Items 1 and 2 are established by relying on corresponding
results of [9], while our contribution is in observing that the local conditions
stated in [9] (in terms of subgraph freeness) coincide with local conditions that
are invariant under graph isomorphisms. Actually, to rule out characterizations
by other possible invariances (i.e., invariances other than graph isomorphism),
we also use the canonization technique of [10, Thm. 2]. In the two examples of
Item 3a we rely on the fact that these properties were shown to have (proximity
oblivious) testers in [12] and [3], respectively. Thus, in both these cases, our con-
tribution is showing that these properties cannot be characterized by invariant
local conditions. In Item 3b we rely on a lower bound established in [6] (re-
garding testing Eulerian orientations of cyclic grids), and our contribution is in
observing that this property can be characterized by invariant local conditions.

We mention that the property used towards establishing Item 3b is invariant
under a 1-transitive3 permutation group. Thus, even such an invariance feature
does not guarantee easy testability (i.e., a standard tester of query complexity
that only depends on the proximity parameter). Furthermore, this holds even
when all local conditions are generated by a single local condition (closed under
the said invariance).

Terminology. Throughout the text, when we say proximity oblivious testing we
actually mean proximity oblivious testing in a constant number of queries. The
definition of proximity oblivious testing appears in the appendix.

Organization. In Section 2 we provide a definitional framework that captures the
foregoing discussion. In particular, this framework includes a general definition
of the notion of characterizations by invariant local conditions and a formal
statement of the invariance conjecture. In Section 3 we show that the invariance
conjecture holds in the context of testing graph properties in the dense graph
model, and in Section 4 we present an analogous conditional (or partial) result
for the bounded-degree graph model. The failure of the invariance conjecture is
demonstrated in Section 5, and possible conclusions are discussed in Section 6.

3 A permutation group G over D is called 1-transitive if for every e, e′ ∈ D there exists
a π ∈ G such that π(e) = e′.
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2 General Framework

For simplicity, we consider properties of finite functions defined over a finite do-
main D and having a finite range R, whereas an asymptotic treatment requires
considering properties that are infinite sequences of such properties (i.e., a se-
quence of the type (Pn)n∈N where Pn is a set of functions from Dn to Rn).4

Still, we shall just write P, D, R, and (in order for our asymptotic statements
to make sense) one should think of Pn, Dn, Rn. In particular, when we say that
some quantity is a “constant”, we actually think of D as growing (along with P
and possibly R), while the said quantity remains fixed. Thus, in the rest of our
presentation, D and R should be considered as generic sets having a variable
size, although they will be often omitted from definitions and notations.

The simplified form of the invariant condition. We start by outlining a simplified
version of the condition that we seek, regarding a propertyP (of functions D → R):

1. P is closed under the action of some permutation group G, which is defined
over D, and

2. P has a characterization via a constant number of “generic” constraints of
constant size such that a function f is in P iff all actual constraints obtained
by having G act on the generic constraints are satisfied.

In other words, P can be characterized by a set of constraints that are generated
by some permutation group G acting on a constant number of constant-size
constraints.

We stress that the foregoing permutation group G is chosen arbitrarily, and
may depend on P (and not only on a natural class of properties to which P
belongs). Thus, if P is a graph property, then G need not be the group that
preserves all graph properties (i.e., the vertex-relabeling group), but rather may
be any group that extends the vertex-relabeling group. For example, if P is the
property of having more edges than non-edges, then G may be the symmetric
group of all (unordered) vertex pairs, which in particular contains the vertex-
relabeling group as a subgroup.

2.1 Characterization by Generated Constraints

We now generalize and clarify the above discussion. First we need to define
what we mean by a constraint. A constraint will be a pair consisting of domain
elements and a Boolean predicate applied to the corresponding values, and it is
satisfied by a function f if applying the predicate to the f -values at the specified
locations yields the Boolean value 1 (representing true).

Definition 2.1 (constraints): A constraint is a pair ((e1, ..., ec), φ) such that
e1, ..., ec are distinct elements in D, and φ : Rc → {0, 1} is an arbitrary predicate.
We say that the foregoing is a constraint of arity c (or a c-constraint). A function
f : D → R is said to satisfy the foregoing constraint if φ(f(e1), ..., f(ec)) = 1.
4 The reader may think of n = |Dn|, but it is helpful not to insist that Dn = [n]. On

the other hand, the set Rn may be independent of n (cf., e.g., the case of Boolean
functions).
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Note that at this point the predicate φ may depend on the sequence of ele-
ments (e1, ..., ec). Such a dependence will not exist in the case that a large set
of constraints is generated based on few constraints (as in Definition 2.3).

The next notion is of characterization by a set of constraints. A property P
of functions is characterized by a set of constraints if f is in P if and only f
satisfies all the constraints in the set.

Definition 2.2 (characterization by constraints): Let C be a set of constraints
and P be a property. We say that P is characterized by C if for every f : D → R
it holds that f ∈ P if and only if f satisfies each constraint in C.

Next, we consider the set of constraints generated by the combination of (1) a
fixed set of constraints, (2) a group of permutations over D, and (3) a group of
permutations over R. For starters, the reader is advised to think of the second
group as of the trivial group containing only the identity permutation. In general,
we shall consider a subset of the set of all pairs consisting of a permutation as
in (2) and a permutation as in (3).

Definition 2.3 (generated constraints): Let C be a finite set of c-constraints,
and M be a set of pairs consisting of a permutation over D and a permutation
over R (i.e., for any (π, μ) ∈ M it holds that π is a permutation of D and μ
is a permutation of R). The set of constraints generated by C and M , denoted
CONS(C, M), is defined by

CONS(C, M) def= {((π(e1), ..., π(ec)), φ ◦ μ−1) : ((e1, ..., ec), φ)∈C , (π, μ)∈M}
(1)

where φ ◦ μ−1(v1, ..., vc) denotes φ(μ−1(v1), ..., μ−1(vc)).

Note that saying that f satisfies ((π(e1), ..., π(ec)), φ ◦ μ−1) means that

(φ ◦ μ−1)(f(π(e1)), ..., f(π(ec))) = φ(μ−1(f(π(e1))), ..., μ−1(f(π(ec)))) = 1,

which means that μ−1◦f ◦π satisfies the constraint ((e1, ..., ec), φ). Regarding the
use of μ−1 ◦f ◦π rather than μ◦f ◦π, see the discussion following Definition 2.5.

Notation: As in Definition 2.3, it will be convenient to generalize functions to
sequences over their domain. That is, for any function F defined over some
set S, and for any e1, ..., et ∈ S, we denote the sequence (F (e1), ..., F (et)) by
F (e1, ..., et). Throughout the text, id will be used to denote the identity permu-
tation, where the domain is understood from the context.

2.2 The Invariance Condition

Returning to the condition outlined initially, let us now formulate it as follows.
We consider a group of pairs (π, μ) such that π is a permutation over D and μ is a
permutation over R with a group operation that corresponds to component-wise
composition of permutations (i.e., (π1, μ1)) (π2, μ2) = (π1 ◦ π2, μ1 ◦ μ2), where
) denotes the group operation). We call such a group a group of permutation
pairs, and note that it need not be a direct product of a group of permutation
over D and a group of permutations over R.
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Definition 2.4 (the invariance condition): A property P satisfies the invariance
condition if there exists a constant, denoted c, a finite set of c-constraints, de-
noted C, and a group, denoted M , of permutation pairs over D × R such that
P is characterized by CONS(C, M). In this case, we also say that P satisfies the
invariance condition w.r.t M .

The invariance condition and covering the domain. We confine our dis-
cussion to the case that the domain contains only elements that are influential
w.r.t the property P; that is, for every e ∈ D, there exists f1 ∈ P and f0 �∈ P such
that f1(x) = f0(x) for every x ∈ D \{e}. Observe that if property P satisfies the
invariance condition w.r.t M , then M induces a transitive permutation group on
a constant fraction of D. This follows because the permutation group (over D)
induced by M must map a constant number of elements (i.e., those appearing
in the constraint set C) to all elements of D.

The main question. We are interested in the relation between satisfying the in-
variance condition and having a proximity oblivious tester (of constant-query
complexity). One natural conjecture, hereafter referred to as the invariance con-
jecture, is that a property satisfies the invariance condition if and only if it has
a proximity oblivious tester. Weaker forms of this conjecture refer to its validity
within various models of property testing. This leads us to ask what “models of
property testing” are.

2.3 Models of Property Testing

Natural models of property testing can be defined by specifying the domain and
range of functions (i.e., D and R) as well as the closure features of the properties
in the model.5 We elaborate below (and mention that this view was elaborated
independently by Sudan [18]).

For example, the model of testing graph properties in the adjacency matrix
representation, introduced in [7], refers to D =

(
[N ]
2

)
and R = {0, 1} as well as to

the permutation group over D that is defined by all relabeling of [N ]. Specifically,
an N -vertex graph is represented by the Boolean function g :

(
[N ]
2

)
→ {0, 1}

such that g({u, v}) = 1 if and only if u and v are adjacent in the graph. Here
an adequate closure feature gives rise to graph properties, where P is a graph
property if, for every such function g and every permutation ψ over [N ], it holds
that g ∈ P iff gψ ∈ P, where gψ({u, v}) def= g({ψ(u), ψ(v)}).

In general, closure features are defined by groups of pairs of permutations,
just as those in Definition 2.4.

Definition 2.5 (closure features): Let M be as in Definition 2.4. We say that
a property P is closed under M if, for every (π, μ) ∈ M , it holds that f ∈ P if
and only if μ ◦ f ◦ π−1 ∈ P.

5 In addition, one may consider sub-models that are obtained by requiring the func-
tions in such a model to satisfy some auxiliary properties.
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Note that μ ◦ f ◦ π−1 (rather than μ ◦ f ◦ π) is indeed the natural choice, since f
maps D to R whereas the new function f ′ = μ ◦ f ◦ π−1 is meant to map π(D)
to μ(R); thus, when f ′ is applied to e′ = π(e) this results in first recovering e,
next applying f , and finally applying μ.

Definition 2.6 (closure-based models of property testing): The model of M
consists of the class of all properties that are closed under M .

For example, the model of testing graph properties in the adjacency matrix
equals the model of M , where M is the set of all pairs (π, id) such that π :(
[N ]
2

)
→

(
[N ]
2

)
is induced by a permutation of [N ] (i.e., there exists a permutation

ψ over [N ] such that π({u, v}) = {ψ(u), ψ(v)}, for all {u, v} ∈ D =
(
[N ]
2

)
). We

comment that not all “popular models of property testing” can be reduced to
Definition 2.6, but nevertheless Definition 2.6 is a good starting point; that is,
various models can be naturally defined as subclasses of the class of all properties
that are closed under some group M (where typically in such cases the subclass
are characterized by a set of constraints that are generated as in Definition 2.3).6

We observe that closure under M is a necessary condition for satisfying the
invariance condition with respect to M .

Proposition 2.7. If P satisfies the invariance condition w.r.t M , then P is
closed under M .

Proof: For any f ∈ P and (π0, μ0) ∈ M , consider f ′ def= μ0 ◦ f ◦ π−1
0 .

We shall show that f ∈ P if and only if f ′ ∈ P. Suppose that P is charac-
terized by CONS(C, M), and consider an arbitrary constraint in CONS(C, M).
By definition (of being generated from (C, M)), this constraint has the form
(π(e1), ..., π(ec)), φ ◦ μ−1), where ((e1, ..., ec), φ) ∈ C and (π, μ) ∈ M . Our aim
is to show that f ′ satisfies this constraint if and only if f satisfies some related
constraint in CONS(C, M), where the two constraints are related via (π0, μ0).

We start by looking at the value of (φ ◦ μ−1)(f ′(π(e1)), ..., f ′(π(ec))), which
we shorthand as (φ ◦μ−1)(f ′(π(e1, ..., ec))). Plugging-in the definition of f ′, what
we now look at is (φ ◦ μ−1)((μ0 ◦ f ◦ π−1

0 )(π(e1, ..., ec))), which may be written
as φ(μ−1 ◦ μ0 ◦ f ◦ π−1

0 ◦ π(e1, ..., ec)), which in turn equals φ((μ−1 ◦ μ0) ◦ f ◦
(π−1

0 ◦π)(e1, ..., ec)). That is, we consider whether f satisfies the constraint ((π−1
0 ◦

π)(e1, ..., ec), φ◦(μ−1◦μ0)), which can be written as ((π−1
0 ◦π)(e1, ..., ec), φ◦(μ−1

0 ◦
μ)−1).But this constraint is inCONS(C, M), since it is generated from((e1, ..., ec),φ)
∈ C by using the pair (π−1

0 ◦ π, μ−1
0 ◦ μ) ∈ M . Thus, f ′ satisfies the constraint

generated (from ((e1, ..., ec), φ)) by (π−1
0 ◦ π, μ−1

0 ◦ μ) if and only if f satisfies the
constraint generated (from it) by (π, μ). It follows that f ′ satisfies all constraints
in CONS(C, M) if and only if f satisfies all constraints in CONS(C, M).

6 Indeed, an alternative formulation of the model of testing graph properties in the
adjacency matrix representation is obtained by starting from D = [N ]× [N ] and M
that equals all pairs (π, id) such that π(u, v) = (ψ(u), ψ(v)), for some permutation
ψ over [N ] and all (u, v) ∈ D = [N ]× [N ]. In such a case, we consider the subclass of
symmetric functions (i.e., functions g such that g(u, v) = g(v, u) for all (u, v)∈D).
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3 The Invariance Conjecture Holds in the Dense Graph
Model

We prove that the invariance conjecture holds in the special case of graph proper-
ties in the adjacency matrix representation model (a.k.a the dense graph model).
Recall that in this model, an N -vertex graph is represented by the (symmetric)
Boolean function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and only if u
and v are adjacent in the graph.

We rely on a recent result of [9], which states that (in this model) P has a
proximity oblivious tester if and only if it is a subgraph-freeness property. We
observe that being a subgraph-freeness property is equivalent to satisfying the
invariance condition with respect to the canonical set, where the canonical set
has the form M = M ′ × {id} such that M ′ is the group of permutations over
vertex-pairs that is induced by vertex-relabeling.7 (Indeed, the canonical set is
the very set that defines the current model; see Section 2.3). So it is left to show
that P satisfies the invariance condition if and only if P satisfies the invariance
condition with respect to the canonical set. We thus get

Theorem 3.1. Suppose that P is a set of Boolean functions over the set of
unordered pairs over [N ] such that P is closed under relabeling of the base set
(i.e., P is a graph property that refers to the adjacency representation of graphs).
Then, P has a proximity oblivious tester if and only if P satisfies the invariance
condition. Furthermore, if P satisfies the invariance condition, then it satisfies
this condition with respect to the canonical set.

Proof: The key observation is that, in this model, a property satisfies the in-
variance condition with respect to the canonical set if and only if it is a subgraph-
freeness property, where throughout this proof subgraph-freeness means not hav-
ing certain induced graphs (which are specified in a forbidden set). The backward
direction (i.e., from subgraph-freeness to the invariance condition) follows by ob-
serving that every subgraph-freeness property satisfies the invariance condition
with respect to the canonical set, because it can be generated by the predicate
that forbids certain unlabeled graphs (e.g., not having F = ([n], EF ) as an in-
duced subgraph is captured by the constraint (({1, 2}, .., {1, n}, ..., {n−1, n}), φ)
such that φ(a1,2, ..., an−1,n) = 1 if and only if F is not represented by (ai,j)i,j).
In proving the other direction (i.e., from the invariance condition to subgraph-
freeness), observe that the “base” constraints may be viewed as a predicate on
an unlabeled induced subgraph; that is, the constraint (({i1, j1}, .., {ic, jc}), φ)
can be viewed as forbidding all induced subgraphs that are consistent with some
(aik,jk

)k∈[c] such that φ(ai1,j1 , ..., aic,jc) = 0.
Another important observation is that if P satisfies the invariance condition

then it does so with the canonical pair. This observation is proven as follows.
Let P be characterized by CONS(C, M), where M is not necessarily the canoni-
cal set. Then, we view CONS(C, M) (or rather the uniform distribution over it)
7 Note that M ′ is a permutation group over

(
[N]
2

)
; it contains only permutations of the

form πψ such that πψ({u, v}) = {ψ(v), ψ(u)}, where ψ is an arbitrary permutation
over [N ].
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as a ((possibly “weak”) non-adaptive) tester with one-sided error; that is, this
tester always accepts any graph in P and its error probability (on no-instances)
is strictly less than 1 (i.e., it accepts graphs that are not in P with probabil-
ity is at most 1 − |CONS(C, M)|−1). Applying [10, Thm. 2], we obtain a tester
with similar one-sided error that only inspects the graph induced by a random
constant-size vertex-set. (Indeed, the transformation in [10, Thm. 2] preserves
the detection probability no matter how small it is.) The latter tester gives rise
to a characterization of P that can be generated by the decision predicate of
this tester coupled with the group of vertex-relabeling; that is, P satisfies the
invariance condition with the canonical set.

The current theorem now follows by combining the two foregoing observations
with [9, Thm. 4.7]. Specifically, by [9, Thm. 4.7], P has a proximity oblivious
tester if and only if it is a subgraph freeness property. By the first observation, P
is a subgraph freeness property if and only if P satisfies the invariance condition
with the canonical set, whereas (by the second observation) P satisfies the in-
variance condition if and only if P satisfies the invariance condition with respect
to the canonical set.

4 The Invariance Conjecture in the Bounded-Degree
Graph Model

The next natural challenge is proving a result analogous to Theorem 3.1 for
the bounded-degree graph model (introduced in [8]). Unfortunately, only a par-
tial result is established here, because of a difficulty that arises in [9, Sec. 5]
(regarding “non-propagation”), to be discussed below.

But first, we have to address a more basic difficulty that refers to fitting the
bounded-degree graph model within our framework (i.e., Section 2.3). Recall
that the standard presentation of the bounded-degree model represents an N -
vertex graph of maximum degree d by a function g : [N ] × [d] → {0, 1, ..., N}
such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v has
less than i neighbors. This creates technical difficulties, which can be resolved
in various ways.8 The solution adopted here is to modify the representation of
the bounded-degree graph model such that N -vertex graphs are represented by
functions from [N ] to subsets of [N ]. Specifically, such a graph is represented
by a function g : [N ] → 2[N ] such that g(v) is the set of neighbors of vertex
v. Furthermore, we are only interested in functions g that describe undirected
graphs, which means that g : [N ] → 2[N ] should satisfy u ∈ g(v) iff v ∈ g(u) (for
every u, v ∈ [N ]).

8 The problem is that here it is important to follow the standard convention of allowing
the neighbors of each vertex to appear in arbitrary order (as this will happen under
relabeling of vertex names), but this must allow us to permute over [d] without
distinguishing vertices from the 0-symbol. One possibility is to give up the standard
convention by which the vertices appear first and 0-symbols appear at the end of
the list. We choose a different alternative.
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Theorem 4.1. Suppose that P is a set of functions from [N ] to {S ⊂ [N ] : |S|≤
d} that corresponds to an undirected graph property; in particular, P is closed
under the following canonical set M0 defined by (π, μ) ∈ M0 if and only if π is
a permutation over [N ] and μ acts analogously on sets (i.e., μ(S) = {π(v) : v ∈
S}).9 Then:

1. If P has a proximity oblivious tester, then it satisfies the invariance condition.
2. If P satisfies the invariance condition, then it satisfies it with respect to the

canonical set, and it follows that P is a generalized subgraph freeness property
(as defined in [9, Def. 5.1]).

Recall that by [9, Sec. 5], if P is a generalized subgraph freeness property that
is non-propagating, then P has a proximity oblivious tester. But it is unknown
whether each generalized subgraph freeness property is non-propagating. (We
note that this difficulty holds even for properties that satisfy the invariance
condition with respect to the canonical set.)10

Proof: As in the dense graph model (i.e., Theorem 3.1), the key observation is
that a property in this model satisfies the invariance condition with respect to
the canonical set if and only if it is a generalized subgraph-freeness property (as
defined in [9, Def. 5.1]). Thus, Part (1) follows immediately from [9, Thm. 5.5],
and the point is proving Part (2).11

Suppose that P is characterized by CONS(C, M). Viewing the uniform distribu-
tion over CONS(C, M) as a (very weak) one-sided error non-adaptive tester, we ap-
ply a “canonicalization” procedure that is analogous to [10, Thm. 2], and obtain
a (very weak) tester that inspects the neighborhoods of c randomly distributed
vertices. This yields a characterization of P by CONS({((1, ..., c), φ)}, M0), where
φ is this tester’s decision predicate. So we are done.

5 The Invariance Conjecture Fails in Some Cases

We show that, in general, the invariance condition is neither necessary nor suf-
ficient for the existence of proximity oblivious testers (POTs).

9 Recall that we also assume that for every g ∈ P it holds that u ∈ g(v) iff v ∈ g(u)
(for every u, v ∈ [N ]). We note that this extra property is easy to test.

10 In fact, the negative example in [9, Prop. 5.4] can arise in our context. Specifi-
cally, consider the set of constraints generated by the constraint ((1, 2), φ) such that
φ(S1, S2) = 1 iff both (1) |{i ∈ {1, 2} : Si = ∅}| 	= 1 and (2) |S1| ∈ {0} ∪ {2i − 1 :
i ∈ N}. (Indeed, condition (1) mandates that if the graph contains an isolated ver-
tex then it contains no edges, whereas condition (2) mandates that all non-isolated
vertices have odd degree.)

11 The point (i.e., Part (2)) is showing that if P satisfies the invariance condition, then it
satisfies it with respect to the canonical set. We mention that the transformation from
the possibly adaptive character of a proximity oblivious tester to the non-adaptive
character of the invariance condition (equivalently, generalized subgraph-freeness) is
performed in [9, Thm. 5.5].
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5.1 The Invariance Condition Is Not Necessary for POT

We present two examples (i.e., properties) that demonstrate that satisfying the
invariance condition is not necessary for having a proximity oblivious tester.
Both examples are based on sparse linear codes that have (proximity oblivious)
codeword tests (i.e., these codes are locally testable). In both cases, the key
observation is that satisfying the invariance condition with respect to M (as in
Definition 2.4) requires that M is “rich enough” since the domain permutations
should map a fixed number of elements to all the domain elements. On the other
hand, Proposition 2.7 requires that the property is closed under M , whereas this
is shown to be impossible in both examples. In the first example, presented next,
the property will be shown to be closed only under the trivial pair (id, id).

Theorem 5.1. There exists a property, denoted P, of Boolean functions such
that P has a proximity oblivious tester but does not satisfy the invariance condi-
tion. Furthermore, P is a linear property; that is, if f1, f2 ∈ P then f1 + f2 ∈ P,
where (f1 + f2)(x) = f1(x)⊕ f2(x) for every x.

Proof: We consider a random linear property of dimension 	 = O(log n). That
is, for uniformly selected functions g1, ..., g� : [n] → {0, 1}, we consider the
property Pn = {

∑
i∈I gi : I ⊆ [	]}. Actually, we repeat this selection for every

value of n, obtaining the property P = (Pn)n∈N. It was shown in [12] that, with
high probability over these random choices, the property P has a POT. We shall
show that, with high probability over these random choices, the property P does
not satisfy the invariance condition.

The key observation is that satisfying the invariance condition with respect
to M (as in Definition 2.4) requires that M is non-trivial (i.e., contains a non-
trivial pair), because otherwise Pn is characterized by a fixed (i.e., independent
of n) number of constraints, which is highly improbable for random gi’s. On
the other hand, Proposition 2.7 requires that Pn is closed under M , which is
highly improbable when M is non-trivial. Specifically, we will show that with
high probability (over the choice of Pn), for every non-trivial (π, μ), there exists
f ∈ Pn such that μ ◦ f ◦ π−1 �∈ P. We distinguish between two cases: (1) the
case that π is not the identity permutation but μ is the identity permutation,
and (2) the case that μ is not the identity permutation (which implies that
μ(b) = 1− b for every b ∈ {0, 1}).

Claim 5.1.1. Let π be a permutation such that m
def= |{i∈ [n] : π(i) �= i}| > 0.

Then, for a random Pn, the probability that {f ◦ π : f ∈ Pn} = Pn is less than
2−m�/4.

Note that the number of permutations that satisfy the hypothesis is smaller than(
n
m

)
· (m!) < 2m log2 n. Thus, the aggregated probability for the aforementioned

Case (1) is a small constant (i.e.,
∑

m>0 2−m·((�/4)−log2 n) is smaller than, say,
0.01).

Proof: As a warm-up we upper bound the probability that g ◦ π = g, where
g : [n] → {0, 1} is uniformly distributed. For g◦π = g to hold, g must be constant
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on each cycle of π. Denoting the number of cycles by c ≤ m/2, it follows that
Prg[g ◦ π = g] = 2−m+c ≤ 2−m/2. The argument extends to the case that we
wish g ◦ π = g + f to hold for an arbitrary fixed f and a random g. Specifically,
consider a cycle of π, denoted i1, ..., it. Then, Prg[(∀j∈ [t− 1]) g(ij+1) = g(ij) +
f(ij)] = 2−(t−1). It is even easier to prove that Prg[g ◦ π = f ] ≤ 2−m/2, since
actually Prg[g ◦π = f ] = 2−n. We now turn to upper-bound the probability that
{f ◦ π : f ∈ Pn} = Pn, by upper-bounding

Prg1,...,g�
[(∀i∈ [	]) gi ◦ π ∈ Pn] = Prg1,...,g�

⎡⎣∀i∈ [	] ∃Ii ⊆ [	] s.t. gi ◦ π =
∑
j∈Ii

gj

⎤⎦
≤

∑
I1,...,I�⊆[�]

Prg1,...,g�

⎡⎣∀i∈ [	] gi ◦ π =
∑
j∈Ii

gj

⎤⎦ (2)

We break the sum in Eq. (2) into two parts, separating the single term that
corresponds to (I1, ..., I�) = ({1}, ..., {	}) from all other terms. The contribution
of the first term to Eq. (2) is upper-bounded by (2−m/2)�, because Prg1,...,g�

[∀i∈
[	] gi ◦ π = gi] equals

∏�
i=1 Prgi [gi ◦ π = gi]. For each other term corresponding

to (I1, ..., I�) �= ({1}, ..., {	}), we pick an arbitrary i such that Ii �= {i}, and note
that Prg1,...,g�

[gi◦π =
∑

j∈Ii
gj ] equals 2−n, since gi is uniformly distributed even

when fixing the value of
∑

j∈Ii
gj . Furthermore, this assertion holds even if we

only select gi and fi =
∑

j∈Ii
gj at random (where in case Ii = ∅ we mean setting

fi ≡ 0). We now consider an iterative process starting with i1 = i, such that at
the first step we select uniformly gi1 and fi1 =

∑
j∈Ii1

gj . Recall that we have
Prgi1 ,fi1

[gi1 ◦ π = fi1 ] = 2−n. For k = 2, ..., 	/2, at the kth step we set ik such
that gik

is independent of gi1 , ..., gik−1 and fi1 , ..., fik−1 (where fi =
∑

j∈Ii
gj),

and uniformly select gik
and fik

(unless fik
was already determined, in which

case it is left unchanged). Note that such an ik exists as long as k ≤ 	/2, but Iik

need not be different than {ik}. Then, the probability that gik
◦ π =

∑
j∈Iik

gj ,

conditioned on the values of gi1 , ..., gik−1 and fi1 , ..., fik−1 , is at most 2−m/2,
where the probability is taken merely over the choice of gik

(and possibly fik
).

Thus, the contribution of this generic term to Eq. (2) is upper-bounded by
2−n · (2−m/2)(�/2)−1. Using the union bound, we upper-bound the contribution
of all these (2�)� − 1 terms by

2�2 · 2−(n−(m/2)) · (2−m/2)�/2, (3)

which is upper-bounded by 2−(m�/4)−1 (because 2�2 · 2−(n−(m/2)) < 1/2). The
claim follows (because 2−m�/2 < 2−(m�/4)−1). ��

Claim 5.1.2. Let μ(b) = 1 − b. Then, for a random Pn, the probability that
there exists a permutation π such that {μ ◦ f ◦ π−1 : f ∈ Pn} = Pn is negligible
as a function of n (i.e., it vanishes faster than any polynomial fraction (in n)).

Proof: It suffices to show that, while the all-zero function is in Pn, with very
high probability the constant-one function is not in Pn. This is the case because,
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with overwhelmingly high probability, for every non-empty I ⊆ [	] it holds that
|{j ∈ [n] :

∑
i∈I gi(j) = 1}| is in (1 ± o(1)) · n/2. ��

Combining Claims 5.1.1 and 5.1.2, we conclude that with high constant proba-
bility P is not closed under any non-trivial pair. Recalling the initial discussion,
the theorem follows.

Testing the Long-Code (a.k.a dictatorship tests). We refer to the property
P = (Pn), where for n = 2�, it holds that f : {0, 1}� → {0, 1} is in Pn if and
only if there exists i ∈ [	] such that f(σ1 · · ·σ�) = σi. Such a function f is a
dictatorship (determined by bit i) and can be viewed as the ith codeword in the
long-code (i.e., the long-code encoding of i). Note that this property is closed
under the pair (π, id), where π is a permutation π over {0, 1}�, if and only if
there exists a permutation φ over [	] such that π(σ1 · · ·σ�) = σφ(1) · · ·σφ(�). (An
analogous consideration applies to pairs (π, flip), where flip(σ) = 1 − σ for
every σ ∈ {0, 1}.) We shall show that these are the only pairs under which the
dictatorship property is closed, and it will follow that the dictatorship property
violates the invariance condition.

Theorem 5.2. The dictatorship property violates the invariance condition, al-
though it has a proximity oblivious tester.

Proof: The fact that the dictatorship property has a proximity oblivious tester
is established in [3,14].12 We shall show that this property violates the invariance
condition because it is not closed under pairs (π, μ) unless π either preserves the
(Hamming) weight of the strings or preserves this weight under flipping.

Indeed, the notion of (Hamming) weight is pivotal to this proof, where the
weight of a string α ∈ {0, 1}�, denoted wt(α), is defined as the number of bit
positions that contain a one (i.e., wt(σ1 · · ·σ�)

def= |{i ∈ [	] : σi = 1}|). We first
claim that if Pn is closed under (π, μ) then wt(π(α)) equals either wt(α) or
	− wt(α) for every α ∈ {0, 1}�. (These two cases correspond to whether μ = id
or μ = flip (i.e., μ(σ) = 1− σ).)

Suppose that π maps some 	-bit string α to a string β that has a different
weight (i.e., wt(β) �= wt(α)). Then, |{f ∈ Pn : f(α) = 1}| = wt(α), because
for every f ∈ Pn there exists a different i ∈ [	] such that f(σ1 · · ·σ�) = σi.
Similarly, |{f ◦ π : f ∈ Pn ∧ (f ◦ π)(α) = 1}| = wt(β), since (f ◦ π)(α) = f(β).
Using wt(α) �= wt(β), we infer that Pn �= {f ◦ π : f ∈ Pn}, since each set
contains a different number of functions that evaluate to 1 at the point α. This
handles the case of μ = id, and the case of μ = flip is handled similarly (i.e.,
if π maps some 	-bit string α to a string β such that wt(β) �= 	 − wt(α), then
Pn �= {μ ◦ f ◦ π : f ∈ Pn}).

Having established the above, we note that if P had satisfied the invariance
condition then the corresponding M would have mapped a fixed number of
elements to all domain elements. But this fixed number of domain elements (i.e.,
	-bit long strings) have a fixed number of weights, whereas (by Proposition 2.7

12 The longcode test of [3] only refers to the case that � is a power of 2.
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and the above) the set M may only contain pairs (π, μ) such that π preserves
(or “complements”) the weight of strings. This contradicts the requirement that
all 	 + 1 different weights must be covered by the generated constraints, and the
theorem follows.

5.2 The Invariance Condition Is Not Sufficient for POT

We next demonstrate that the invariance condition does not suffice for obtaining
a proximity oblivious tester. Actually, the following example also shows that the
invariance condition does not suffice for the standard definition of testing (with
query complexity that only depends on the proximity parameter).

Theorem 5.3. There exists a property, denoted P, of Boolean functions such
that P satisfies the invariance condition but has no proximity oblivious tester.
Furthermore, the invariant condition holds with respect to a single constraint
that refers to four domain elements, and a group of domain permutations that is
1-transitive. Moreover, P cannot be tested (in the standard sense) within query
complexity that only depends on the proximity parameter.

Proof: We use a lower bound of [6] that refers to the query complexity of test-
ing Eulerian orientations of fixed (and highly regular) bounded-degree graphs.
Specifically, [6, Thm. 9.14] proves an Ω(log 	) query lower bound on the com-
plexity of testing whether the orientation of an 	-by-	 cyclic grid is Eulerian. It
follows that this property has no POT, while we shall see that it satisfies the
invariance condition.

We represent the orientation of the 	-by-	 cyclic grid by two functions h, v :
Z�×Z� → {0, 1} such that h(i, j) represents the orientation of the horizontal edge
between the vertices (i, j) and (i, j+1), whereas v(i, j) represents the orientation
of the vertical edge between the vertices (i, j) and (i +1, j), and the arithmetics
is of Z� (i.e., modulo 	). Specifically, h(i, j) = 1 (resp., v(i, j) = 1) indicates an
orientation from (i, j) to (i, j + 1) (resp., (i + 1, j)). (Needless to say, we can
pack both functions in a single function; for example, f(1, i, j) = h(i, j) and
f(0, i, j) = v(i, j).)

The key observation is that the Eulerian orientation property can be charac-
terized by 4-constraints that are generated from a single constraint. Specifically,
this property is characterized by the set of 4-constraints {h(i, j) + v(i, j) =
h(i, j − 1) + v(i − 1, j) : i, j ∈ Z�}, where the constraint h(i, j) + v(i, j) =
h(i, j − 1) + v(i − 1, j) mandates that exactly two of the four edges of vertex
(i, j) are oriented outwards. Finally, note that this set of constraints is gener-
ated by the single constraint h(1, 1) + v(1, 1) = h(1, 0) + v(0, 1) and the set of
mappings {(πr,s, id)}, where πr,s(i, j) = (i + r, j + s). The main claim follows.

The only part of the furthermore claim that requires elaboration is the claim
that the group of domain permutations is 1-transitive. To show this we explicitly
consider the packing of the aforementioned two functions in a single function
f : {0, 1} × Z� × Z� → {0, 1} such that f(1, i, j) = h(i, j) and f(0, i, j) = v(i, j).
We redefine the domain permutations πr,s such that πr,s(σ, i, j) = (σ, i+r, j +s)
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and introduce an auxiliary permutation π′ such that π′(σ, i, j) = (1 − σ, j, i).
Observe that a generic constraint (now written as f(1, i, j)+f(0, i, j) = f(1, i, j−
1)+f(0, i−1, j)) is preserved under the auxiliary permutation π′. The full claim
now follows.

6 Conclusions

While the invariance conjecture holds in two natural models of testing graph
properties, it was shown to fail in other settings. These failures, described in
Section 5, are of three different types.

1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties
that are only closed under the identity mapping. That is, a strong notion of
testability is achievable also in the absence of any invariants.

2. As shown in Theorem 5.2, the existence of proximity oblivious testers for
properties that do not satisfy the invariance condition is not confined to
unnatural properties and/or to properties that lack any invariance.

3. As shown in Theorem 5.3, the invariance condition does not imply the ex-
istence of a standard tester of query complexity that only depends on the
proximity parameter. (Note that the non-existence of such testers implies the
non-existence of proximity oblivious testers.) Furthermore, this holds even
if the invariance condition holds with respect to a group of domain permu-
tations that is 1-transitive and the set of local conditions is generated by a
single condition (closed under this permutation group).

Our feeling is that the fact that the invariance condition is not necessary for
proximity oblivious testing is less surprising than the fact that the former is
insufficient for the latter. Giving up on the necessity part, we wonder whether
a reasonable strengthening of the invariance condition may suffice for proximity
oblivious testing.

A natural direction to consider is imposing additional restrictions on the group
of domain permutations. As indicated by Theorem 5.3, requiring this group to
be 1-transitive does not suffice, and so one is tempted to require this group to
be 2-transitive13 (as indeed suggested in [11] w.r.t standard testing).14 Recalling
that if P is closed under a 2-transitive group (over the domain) then P is self-
correctable (and thus consists of functions that are pairwise far apart), one
may also wonder about only requiring 1-transitivity but restricting attention to
properties that consist of functions that are pairwise far apart. We mention that
the property used in the proof of Theorem 5.3 contains functions that are close
to one another.
13 A permutation group G over D is called 2-transitive if for every (e1, e2), (e

′
1, e

′
2) ∈

(
D
2

)
there exists a π ∈ G such that π(e1) = e′1 and π(e2) = e′2.

14 Recall that here we refer to a set of local conditions that is generated by a constant
number of local condition (closed under a 2-transitive permutation group). In con-
trast, Ben-Sasson et al. [4] have recently shown that a set of local conditions that is
generated by a non-constant number of local condition (closed under a 2-transitive
permutation group) can yield a non-testable property.
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Actually, restricting attention to properties that are closed under a 1-transitive
group of domain permutations, we may return to the question of necessity and
ask whether the existence of proximity oblivious testers in this case implies the
invariance condition. Note that our proofs of Theorems 5.1 and 5.2 rely on the
fact that the corresponding group is not 1-transitive (e.g., in the first case the
group action is trivial and in the second case it has a non-constant number of
orbits).

An alternative perspective. We mention that Sudan’s perspective on the role of
invariance (cf. [18,19]) is different from the one studied in the current work. In
particular, Sudan suggests to view the role invariance as a theme (or a technique,
akin to others surveyed in [16,19]), which is indeed surveyed in [19, Sec. 5]. From
this perspective, Sudan [19, Sec. 6] views our work as pointing out inherent
limitations on the applicability of the “theme of invariances”, and concludes
that “despite the limitations, invariances have signifficant unifying power (even
if they do not explain everything).”

Acknowledgments. We are grateful to Dana Ron for useful discussions. We
also thank the anonymous reviewers of RANDOM’11 for comments regarding a
previous write-up of this work.
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Appendix: Property Testing and Proximity Oblivious
Testers

We first recall the standard definition of property testing.

Definition A.1 (property tester): Let P =
⋃

n∈N Pn, where Pn is a set of func-
tions defined over the domain Dn. A tester for property P is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ P with probability at least 2/3; that is, for every
n ∈ N and f ∈ Pn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from P, the tester
rejects with probability at least 2/3; that is, for every ε > 0, every n ∈ N

and f over Dn, if δP(f) > ε, then Pr[T f(n, ε) = 0] ≥ 2/3, where δP(f) def=
ming∈Pn{δ(f, g)} and δ(f, g) def= |{e ∈ Dn : f(e) �= g(e)}|/|Dn|.

If the tester accepts every function in P with probability 1, then we say that it has
one-sided error; that is, T has one-sided error if for every f ∈ P and every ε > 0,
it holds that Pr[T f(n, ε)=1] = 1. A tester is called non-adaptive if it determines
all its queries based solely on its internal coin tosses (and the parameters n and
ε); otherwise it is called adaptive.

The query complexity of a tester is measured in terms of the size parameter,
n, and the proximity parameter, ε. In this paper we focus on the case that the
complexity only depends on ε (and is independent of n).

Turning to the definition of proximity-oblivious testers, we stress that they
differ from standard testers in that they do not get a proximity parameter as
input. Consequently, assuming these testers have sublinear complexity, they can
only be expected to reject functions not in P with probability that is related
to the distance of these functions from P. This is captured by the following
definition.
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Definition A.2 (proximity-oblivious tester): Let P =
⋃

n∈N Pn be as in
Definition A.1. A proximity-oblivious tester for P is a probabilistic oracle ma-
chine T that satisfies the following two conditions:

1. The machine T accepts each function in P with probability 1; that is, for
every n ∈ N and f ∈ Pn, it holds that Pr[T f(n)=1] = 1.

2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f �∈ P
is rejected by T with probability at least ρ(δP(f)), where δP(f) is as in
Definition A.1.

The function ρ is called the detection probability of the tester T .

In general, the query complexity of a proximity-oblivious tester may depend on
the size parameter, n, but in this paper we focus on the case that this complexity
is constant.

Note that a proximity-oblivious tester with detection probability ρ yields a
standard (one-sided error) property tester of query complexity O(1/ρ).



In a World of P=BPP

Oded Goldreich

Abstract. We show that proving results such as BPP = P essentially
necessitate the construction of suitable pseudorandom generators (i.e.,
generators that suffice for such derandomization results). In particular,
the main incarnation of this equivalence refers to the standard notion of
uniform derandomization and to the corresponding pseudorandom gen-
erators (i.e., the standard uniform notion of “canonical derandomizers”).
This equivalence bypasses the question of which hardness assumptions
are required for establishing such derandomization results, which has
received considerable attention in the last decade or so (starting with
Impagliazzo and Wigderson [JCSS, 2001]).

We also identify a natural class of search problems that can be solved
by deterministic polynomial-time reductions to BPP. This result is in-
strumental to the construction of the aforementioned pseudorandom gen-
erators (based on the assumption BPP = P), which is actually a reduc-
tion of the “construction problem” to BPP.

Caveat: Throughout the text, we abuse standard notation by letting
BPP,P etc denote classes of promise problems. We are aware of the
possibility that this choice may annoy some readers, but believe that
promise problem actually provide the most adequate formulation of nat-
ural decisional problems.1

Keywords: BPP, derandomization, pseudorandom generators, promise
problems, search problems, FPTAS, randomized constructions.

An earlier version of this work appeared as TR10-135 of ECCC.

1 Introduction

We consider the question of whether results such as BPP = P necessitate the
construction of suitable pseudorandom generators, and conclude that the answer
is essentially positive. By suitable pseudorandom generators we mean generators
that, in particular, imply that BPP = P . Thus, in a sense, the pseudorandom
generators approach to the BPP-vs-P Question is complete; that is, if the ques-
tion can be resolved in the affirmative, then this answer follows from the existence
of suitable pseudorandom generators.

The foregoing equivalence bypasses the question of which hardness assump-
tions are required for establishing such derandomization results (i.e., BPP = P),
1 Actually, the common restriction of general studies of feasibility to decision problems

is merely a useful methodological simplification.
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which is a question that has received considerable attention in the last decade
or so (see, e.g., [17,15,19]). Indeed, the current work would have been obsolete if
it were the case that the known answers were tight in the sense that the hard-
ness assumptions required for derandomization would suffice for the construc-
tion of the aforementioned pseudorandom generators. See further discussion in
Section 1.5.

1.1 What Is Meant by Suitable Pseudorandom Generators?

The term pseudorandom generator is actually a general paradigm spanning
vastly different notions that range from general-purpose pseudorandom gener-
ator (a la Blum, Micali, and Yao [2,27]) to special-purpose generators (e.g.,
pairwise-independence ones [3]). The common theme is that the generators are
deterministic devices that stretch short random seeds into longer sequences that
look random in some sense, and that their operation is relatively efficient. The
specific incarnations of this general paradigm differ with respect to the specific
formulation of the three aforementioned terms; that is, they differ with respect
to the requirements regarding (1) the amount of stretching, (2) the sense in
which the output “looks random” (i.e., the “pseudorandomness” property), and
(3) the complexity of the generation (or rather the stretching) process.

Recall that general-purpose pseudorandom generators operate in (some fixed)
polynomial-time while producing outputs that look random to any polynomial-
time observers. Thus, the observer is more powerful (i.e., runs for more time)
than the generator itself. One key observation of Nisan and Wigderson [20] is that
using such general-purpose pseudorandom generators is an over-kill when the
goal is to derandomize complexity classes such as BPP. In the latter case (i.e., for
derandomizing BPP) it suffices to have a generator that runs in exponential time
(i.e., time exponential in its seed’s length), since our deterministic emulation of
the resulting randomized algorithm is going to incur such a factor in its running-
time anyhow.2 This leads to the notion of a canonical derandomizer, which fools
observers of fixed complexity, while taking more time to produce such fooling
sequences.

Indeed, the aforementioned “suitable pseudorandom generators” are (various
(standard) forms of) canonical derandomizers. Our starting point is the non-
uniform notion of canonical derandomizers used by Nisan and Wigderson [20],
but since we aim at “completeness results” (as formulated above), we seek
uniform-complexity versions of it. Three such versions are considered in our
work, and two are shown to be sufficient and necessary for suitable derandom-
izations of BPP.

The last assertion raises the question of what is meant by a suitable derandom-
ization of BPP. The first observation is that any reasonable notion of a canonical
derandomizer is also applicable to promise problems (as defined in [4]), and so
2 Recall that the resulting (randomized) algorithm uses the generator for producing

the randomness consumed by the original (randomized) algorithm, which it emulates,
and that our deterministic emulation consists of invoking the resulting (randomized)
algorithm on all possible random-pads.
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our entire discussion refers to BPP as a class of promise problems (rather than
a class of standard decision problems).3

The second observation is that standard uniform-complexity notions of canon-
ical derandomizers would not allow to place BPP in P , because rare instances
that are hard to find may not lead to a violation of the pseudorandomness guar-
antee. The known fix, used by Impagliazzo and Wigderson in [17], is to consider
“effective derandomization” in the sense that each problem Π ∈ BPP is ap-
proximated by some problem Π ′ ∈ P such that it is hard to find instances in
the symmetric difference of Π and Π ′. Our main result refers to this notion
(see Sections 4.2–4.3): Loosely speaking, it asserts that canonical derandomizers
(of exponential stretch) exist if and only if BPP is effectively in P . We stress
that this result refers to the standard notion of uniform derandomization and
to the corresponding canonical derandomizers (as in [17] and subsequent works
(e.g. [24])).

We also consider a seemingly novel notion of canonical derandomizers, which
is akin to notions of auxiliary-input one-way functions and pseudorandom gen-
erators considered by Vadhan [26]. Here the generator is given a target string
and the distribution that it produces need only be pseudorandom with respect
to efficient (uniform) observers that are given this very string as an auxiliary
input. We show that such canonical derandomizers (of exponential stretch) exist
if and only if BPP = P ; for details, see Section 4.4.

1.2 Techniques

Our starting point is the work of Goldreich and Wigderson [10], which studied
pseudorandomness with respect to (uniform) deterministic observers. In particu-
lar, they show how to construct, for every polynomial p, a generator of exponen-
tial stretch that works in time polynomial in its output and fools all deterministic
p-time tests of the next-bit type (a la [2]). They observe that an analogous con-
struction with respect to general tests (i.e., deterministic p-time distinguishers)
would yield some non-trivial derandomization results (e.g., any unary set in BPP
would be placed in P). Thus, they concluded that there is a fundamental gap
between probabilistic and deterministic polynomial-time observers.4

Our key observation is that the gap between probabilistic observers and deter-
ministic ones essentially disappears if BPP = P . Actually, the gap disappeared
with respect to certain ways of constructing pseudorandom generators, and the
3 Indeed, as stated upfront, we believe that, in general, promise problem actually pro-

vide the most adequate formulation of natural decisional problems (cf. [9, Sec. 2.4.1]).
Furthermore, promise problems were considered in the study of derandomization
when converse results were in focus (cf. [15]). An added benefit of the use of classes
of promise problems is that BPP = P implies MA = NP.

4 In particular, they concluded that Yao’s result (by which fooling next-bit tests im-
plies pseudorandomness) may not hold in the (uniform) deterministic setting (or,
actually, may be hard to establish in that context). Indeed, recall that the next-bit
tests derived (in Yao’s argument) from general tests (i.e., distinguishers) are proba-
bilistic.
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construction of [10] can be shown to fall into this category. We actually prefer
a more direct approach, which is more transparent and amenable to variations.
Specifically, we consider a straightforward probabilistic polynomial-time con-
struction of a pseudorandom generator; that is, we observe that a random func-
tion (with exponential stretch) enjoys the desired pseudorandomness property,
but of course the problem is that it cannot be constructed deterministically.

At this point, we define a search problem that consists of finding a suit-
able function (or rather its image), and observe that this problem is solvable in
probabilistic polynomial-time. Using the fact that the suitability of candidate
functions can be checked in probabilistic polynomial-time, we are able to de-
terministically reduce (in polynomial-time) this search problem to a (decisional)
problem in BPP. Finally, using the hypothesis (i.e., BPP = P), we obtain the
desired (deterministic) construction.

1.3 Additional Results

The foregoing description alluded to the possibility that BPP = P (which refers
to promise problems of decisional nature) extends to search problems; that is,
that BPP = P implies that a certain class of probabilistic polynomial-time
solvable search problems can be emulated deterministically. This fact, which
is used in our construction of canonical derandomizers, is proven as part of our
study of “BPP-search problems” (and their relation to decisional BPP problems),
which seems of independent interest and importance. Other corollaries include
the conditional (on BPP = P) transformation of any probabilistic FPTAS into
a deterministic one, and ditto for any probabilistic polynomial-time method of
contructing and verifying objects of a predetermined property. (For details see
Section 3.)

Also begging are extensions of our study to general “stretch vs derandomiza-
tion time” trade-off (akin to the general “hardness vs randomness” trade-off)
and to the derandomization of classes such as AM. The first extension goes
through easily (see Section 5), whereas we were not able to pull off the second
(see Section 6).

1.4 Reflection

Recalling that canonical derandomizers run for more time than the distinguishers
that they are intended to fool, it is tempting to say that the existence of such
derandomizers may follow by diagonalization-type arguments. Specifically, for
every polynomial p, it should be possible to construct in (larger) polynomial
time, a set of (poly(n) many) strings Sn ⊂ {0, 1}n such that a string selected
uniformly in Sn is p(n)-time indistinguishable from a totally random n-bit string.

The problem with the foregoing prophecy is that it is not clear how to carry
out such a diagonalization. However, it was observed in a couple of related works
(i.e., [17,10]) that a random choice will do. The problem, of course, is that we
need our construction to be deterministic; that is, a deterministic construction
should be able to achieve this “random looking” fooling effect. Furthermore, it is
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not a priori clear that the hypothesis BPP = P may help us here, since BPP = P
refers to decisional problems.5 Indeed, it seems that the interesting question of
determining the class of problems (e.g., search problems) that can be solved by
deterministic polynomial-time reductions to BPP was not addressed before. Still,
as stated above, we show that the aforemention “construction problem” belongs
to this class, and thus the hypothesis BPP = P allows us to derandomize the
foregoing arguement.

In any case, the point is that BPP = P enables the construction of the
aforementioned type of (suitable) pseudorandom generators; that is, the very
pseudorandom generators that imply BPP = P . Thus, our main result asserts
that these pseudorandom generators exist if and only if BPP = P , which in
our opinion is not a priori obvious. Furthermore, our proof uncovers a very
tight connection between the construction of such pseudorandom generators and
BPP = P . In particular, BPP = P yields a very simple construction of such
pseudorandom generators, which in turn can be seen as fulfillining the foregoing
(diagonalization) prophecy.

1.5 Related Work

This work takes for granted the “hardness versus randomness” paradigm, pi-
oneered by Blum and Micali [2], and its application to the derandomization
of complexity classes such as BPP, as pioneered by Yao [27] and revised by
Nisan and Wigderson [20]. The latter work suggests that a suitable notion of
a pseudorandom generator – indeed, the aforementioned notion of a canonical
derandomizer – provides the “King’s (high)way” to derandomization of BPP.
This view was further supported by subsequent work such as [16,17,25], and the
current work seems to suggest that this King’s way is essentially the only way.

As stated up-front, this work does not address the question of which hard-
ness assumptions are required for establishing such derandomization results (i.e.,
BPP = P). Recall that this question has received considerable attention in the
last decade or so, starting with the aforementioned work of Impagliazzo and
Wigderson in [17], and culminating in the works of Impagliazzo, Kabanets, and
Wigderson [15,19]. We refer the interested reader to [23, Sec. 1.1-1.3] for an
excellent (and quite updated) overview of this line of work.

5 For example, obviously, even if BPP = P , there exist no deterministic algorithms for
uniformly selecting a random solution to a search problem (or just tossing a coin).
Interestingly, while problems of uniform generation cannot be solved deterministi-
cally, the corresponding problems of approximating the number of solutions can be
solved deterministically (sometimes in polynomial-time, especially when assuming
BPP = P). This seems to contradict the celebrated equivalence between these two
types of problems [18] (cf. [9, §6.4.2.1]), except that the relevant direction of this
equivalence is established via probabilistic polynomial-time reductions (which are
inherently non-derandomizable). Going beyond the strict boundaries of complexity,
we note that BPP = P would not eliminate the essential role of randomness in
cryptography (e.g., in the context of zero-knowledge (cf. [8, Sec. 4.5.1]) and secure
encryption (cf. [11])).
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Note that the foregoing discussion refers to three possible events: The first
event is the existence of a good derandomization (e.g., BPP = P), the second
is the existence of certain pseudorandom generators (i.e., canonical derandom-
izers), and the third is the existence of certain lower bound (i.e., hardness re-
sults). The main thread of past work (e.g., [2,27,20,16,17]) goes from hardness
assumptions to pseudorandom generators and further to good derandomization
(e.g., BPP = P). Later work such as [17,15] partially reverse the the hardness
to derandomization implication, whereas our work only refers and reverses the
second leg of the main thread (i.e., showing that BPP = P implies certain
pseudorandom generators). We comment that the reversing of the first leg (i.e.,
showing that pseudorandom generators imply hardness) is folklore (see, e.g., [9,
Exer. 8.24]). All these implications are depicted in Figure 1.

DERANDOM.

(e.g., BPP=P) (canonical 
derandomizers)

PRGs
main thread

main thread
partial

this work

folklore

HARDNESS

Fig. 1. The three related events. The solid arrows show implications that hold for the
full range of parameters, whereas the dashed arrow shows a partial implication that
does not suffice for the “high end” (i.e., for pseudorandom generators that suffice for
BPP = P).

Actually, both the aforementioned works [17,15] imply results that are in the
spirit of our main result, but these results refer to weak notions of derandom-
ization, and their proofs are fundamentally different. The work of Impagliazzo
and Wigderson [17] refers to the “effective infinitely often” containment of BPP
in SUBEXP , whereas the work of Impagliazzo, Kabanets, and Wigderson [15]
refers to the (standard) containment of BPP in NSUBEXP/nε. In both cases,
the derandomization hypotheses are shown to imply corresponding hardness re-
sults (i.e., functions in EXP that are not in BPP or functions in NEXP having
no polynomial size circuits, resp.), which in turn yield “correspondingly canon-
ical” derandomizers (i.e., canonical w.r.t effectively placing BPP in SUBEXP
infinitely often or placing BPP in NSUBEXP , resp.).6 Thus, in both cases,
6 Note that in case of [17] the generators are pseudorandom only infinitely often,

whereas in the case of [15] the generators are computable in non-deterministic
polynomial-time (with short advice). In both cases, the generators have polynomial
strecth.
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the construction of these generators (based on the relevant derandomization hy-
pothesis) follows the “hardness versus randomness” paradigm (and, specifically,
the Nisan–Wigderson framework [20]). In contrast, our constructions bypass the
“hardness versus randomness” paradigm.

We also mention that the possibility of reversing the pseudorandomness-to-
derandomization transformation was studied by Fortnow [5]. In terms of his work,
our result indicates that in some sense Hypothesis III implies Hypothesis II.

There is a remote similarity between our search to decision reduction (see
Section 3.2) and one part of the work of Aaronson et. al. [1]. Our reduction re-
lies on the fact that additive error approximation of certain probabilities can be
done in BPP, and these approximations are use in our search process. Interest-
ingly, our main application is for constructing an adequate pseudorandom set,
which may be viewed as a diagonalization (w.r.t certain class of algorithms). The
argument in [1, Sec. 3] relies on the fact that a multiplicative factor approxima-
tion of certain set sizes can be done in AM, and uses these approximations to
diagonalized over a certain class of circuits. (These two processes were discovered
independently.)

Finally, we mention that the relation between derandomizing probabilistic
search and decision classes was briefly mentioned by Reingold, Trevisan, and
Vadhan in the context of RL; see [22, Prop. 2.7].

1.6 Organization

The rather standard conventions used in this work are presented in Section 2.
In Section 3 we take a close look at “BPP search problems” and their relation
to BPP. The relation between derandomizations of BPP and various forms of
pseudorandom generators is studied in Section 4, and ramified in Section 5. A few
open problems that arise naturally from this work are discussed in Section 6.
The appendix presents two prior proofs of our main result, which may be of
interest.

2 Preliminaries

We assume a sufficiently strong model of computation (e.g., a 2-tape Turing
machine), which allows to do various simple operations very efficiently. Exact
complexity classes such as Dtime(t) and BPtime(t) refer to such a fixed model.
We shall say that a problem Π is in Dtime(t) (resp., in BPtime(t)) if there exists
a deterministic (resp., probabilistic) t-time algorithm that solves the problem on
all but finitely many inputs.

We assume that all polynomials, time bounds, and stretch functions are mono-
tonically increasing functions from N to N, which means, in particular, that
they are injective. Furthermore, we assume that all these functions are time-
constructible (i.e., the mapping n �→ f(n) can be computed in less than f(n)
steps).
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Promise Problems. We rely heavily on the formulation of promise problems (in-
troduced in [4]). We believe that, in general, the formulation of promise problems
is far more suitable for any discussion of feasibility results. The original formu-
lation of [4] refers to decision problems, but we shall also extend it to search
problem. In the original setting, a promise problem, denoted 〈P, Q〉, consists
of a promise (set), denoted P , and a question (set), denoted Q, such that the
problem 〈P, Q〉 is defined as given an instance x ∈ P , determine whether or not
x ∈ Q. That is, the solver is required to distinguish inputs in P ∩Q from inputs
in P \Q, and nothing is required in case the input is outside P . Indeed, an equiv-
alent formulation refers to two disjoint sets, denoted Πyes and Πno, of yes- and
no-instances, respectively. We shall actually prefer to present promise problems
in these terms; that is, as pairs (Πyes, Πno) of disjoint sets. Indeed, standard
decision problems appear as special cases in which Πyes ∪Πno = {0, 1}∗. In the
general case, inputs outside of Πyes ∪Πno are said to violate the promise.

Unless explicitly stated otherwise, all “decisional problems” discussed in this
work are actually promise problems, and P ,BPP etc denote the corresponding
classes of promise problems. For example, (Πyes, Πno) ∈ BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x ∈ Πyes it holds
that Pr[A(x) = 1] ≥ 2/3, and for every x ∈ Πno it holds that
Pr[A(x)=0] ≥ 2/3.

Standard Notation. For a natural number n, we let [n] def= {1, 2, ..., n} and de-
note by Un a random variable that is uniformly distributed over {0, 1}n. When
referring to the probability that a uniformly distributed n-bit long string hits a
set S, we shall use notation such as Pr[Un∈S] or Prr∈{0,1}n [r∈S].

Negligible, Noticeable, and Overwhelmingly High Probabilities. A function f :N→
[0, 1] is called negligible if is decreases faster than the reciprocal of any positive
polynomial (i.e., for every positive polynomial p and all sufficiently large n it
holds that f(n) < 1/p(n)). A function f : N→ [0, 1] is called noticeable if it is
lower bound by the reciprocal of some positive polynomial (i.e., for some positive
polynomial p and all sufficiently large n it holds that f(n) > 1/p(n)). We say
that the probability of an event is overwhelmingly high if the probability of the
complement event is negligible (in the relevant parameter).

3 Search Problems

Typically, search problems are captured by binary relations that determine the
set of valid instance-solution pairs. For a binary relation R ⊆ {0, 1}∗ × {0, 1}∗,
we denote by R(x) def= {y : (x, y)∈R} the set of valid solutions for the instance x,
and by SR

def= {x : R(x) �= ∅} the set of instances having valid solutions. Solving
a search problem R means that given any x ∈ SR, we should find an element of
R(x) (whereas, possibly, we should indicate that no solution exists if x �∈ SR).
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3.1 The Definition

The definition of “BPP search problems” is supposed to capture search problems
that can be solved efficiently, when random steps are allowed. Intuitively, we do
not expect randomization to make up for more than an exponential blow-up,
and so the naive formulation that merely asserts that solutions can be found
in probabilistic polynomial-time is not good enough. Consider, for example, the
relation R such that (x, y) ∈ R if |y| = |x| and for every i < |x| it holds that
Mi(x) �= y, where Mi is the ith deterministic machine (in some fixed enumera-
tion of such machines). Then, the search problem R can be solved by a proba-
bilistic polynomial-time algorithm (which, on input x, outputs a uniformly dis-
tributed |x|-bit long string), but cannot be solved by any deterministic algorithm
(regardless of its running time).

What is missing in the naive formulation is any reference to the “complexity”
of the solutions found by the solver, let alone to the complexity of the set of
all valid solutions. The first idea that comes to mind is to just postulate the
latter; that is, confine ourselves to the class of search problems for which valid
instance-solution pairs can be efficiently recognized (i.e., R, as a set of pairs, is
in BPP).

Definition 3.1 (BPP search problems, first attempt): A BPP-search problem is
a binary relation R that satisfies the following two conditions.

1. Membership in R is decidable in probabilistic polynomial-time.
2. There exists a probabilistic polynomial-time algorithm A such that, for every

x ∈ SR, it holds that Pr[A(x) ∈ R(x)] ≥ 2/3.

We may assume, without loss of generality, that, for every x �∈ SR, it holds that
Pr[A(x) = ⊥] ≥ 2/3. Note that Definition 3.1 is robust in the sense that it allows
for error reduction, which may not be the case if Condition 1 were to be avoided.
A special case in which Condition 1 holds is when R is an NP-witness relation;
in that case, the algorithm in Condition 1 is actually deterministic.

In view of our general interest in promise problems, and of the greater flexibil-
ity they offer, it makes sense to extend the treatment to promise problems. The
following generalization allows a promise set not only at the level of instances,
but also at the level of instance-solution pairs. Specifically, we consider disjoint
sets of valid and invalid instance-solution pairs, require this promise problem
to be efficiently decidable, and of course require that valid solutions be found
whenever they exist.

Definition 3.2 (BPP search problems, revisited): Let Ryes and Rno be two dis-
joint binary relations. We say that (Ryes, Rno) is a BPP-search problem if the
following two conditions hold.

1. The decisional problem represented by (Ryes, Rno) is solvable in probabilistic
polynomial-time; that is, there exists a probabilistic polynomial-time
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algorithm V such that for every (x, y) ∈ Ryes it holds that Pr[V (x, y)=1] ≥
2/3, and for every (x, y) ∈ Rno it holds that Pr[V (x, y)=1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm A such that, for every
x ∈ SRyes , it holds that Pr[A(x) ∈ Ryes(x)] ≥ 2/3, where Ryes(x) = {y :
(x, y)∈Ryes} and SRyes = {x : Ryes(x) �= ∅}.

We may assume, without loss of generality, that, for every x such that (x, y)∈
Rno (∀y), it holds that Pr[A(x) = ⊥] ≥ 2/3. Note that the algorithms postulated
in Definition 3.2 allow to find valid solutions as well as distinguish valid solutions
from invalid ones (while guaranteeing nothing for solutions that are neither valid
nor invalid).

The promise problem formulation (of Definition 3.2) captures many natural
“BPP search” problems that are hard to fit into the more strict formulation of
Definition 3.1. Typically, this can be done by narrowing the set of valid solutions
(and possibly extending the set of invalid solutions) such that the resulting
(decisional) promise problem becomes tractable. Consider for example, a search
problem R (as in Definition 3.1) for which the following stronger version of
Condition 2 holds.

(2’) There exists a noticeable function ntc :N→ [0, 1] such that, for every x ∈ SR

there exists y ∈ R(x) such that Pr[A(x) = y] > ntc(|x|), whereas for every
(x, y) �∈ R it holds that Pr[A(x)=y] < ntc(|x|)/2.

Then, we can define R′
yes = {(x, y) : Pr[A(x) = y] > ntc(|x|)} and R′

no =
{(x, y) : Pr[A(x) = y] < ntc(|x|)/2}, and conclude that R′ = (R′

yes, R
′
no) is

a BPP-search problem (by using A also for Condition 1), which captures the
original problem just as well. Specifically, solving the search problem R is triv-
ially reducible to solving the search problem R′, whereas we can distinguish
between valid solutions to R′ (which are valid for R) and invalid solutions
for R (which are also invalid for R′). This is a special case of the following
observation.

Observation 3.3 (companions): Let Π = (Ryes, Rno) and Π ′ = (R′
yes, R

′
no) be

two search problems such that SR′
yes

= SRyes and R′
no ⊇ ({0, 1}∗×{0, 1}∗)\Ryes,

which implies R′
no ⊇ Rno and R′

yes ⊆ Ryes.7 Then, solving the search prob-
lem (Ryes, Rno) is trivially reducible to solving the search problem (R′

yes, R
′
no),

whereas deciding membership in (R′
yes, Rno) is trivially reducible to deciding

7 The first conclusion (i.e., R′
no ⊇ Rno) follows by the fact that Rno ⊆ ({0, 1}∗ ×

{0, 1}∗) \ Ryes, whereas R′
yes ⊆ Ryes follows since R′

no ⊆ ({0, 1}∗ × {0, 1}∗) \ R′
yes.

Observation 3.3 itself relies only on these conclusions (i.e., R′
no ⊇ Rno and R′

yes ⊇
Ryes) as well as on SR′

yes
⊇ SRyes ; the stronger condition (i.e., R′

no ⊇ ({0, 1}∗ ×
{0, 1}∗) \ Ryes) is used in other applications of the notion of companion problems
(see the discussion following Theorem 3.5).
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membership in (R′
yes, R

′
no). We call Π ′ a companion of Π, and note that in

general this notion is not symmetric.8

The point of these reductions is that they allow using algorithms associated
with Π ′ for handling Π . Specifically, we can search solutions with respect to
Π ′ and test validity of solutions with respect to Π ′, while being guaranteed
that nothing was lost (since we still find valid solutions for any x ∈ SRyes ,
any solution in R′

yes(x) ⊆ Ryes(x) is recognized by us as valid, and any can-
didate solution in Rno(x) ⊆ R′

no(x) is rejected as invalid). Furthermore, by
the companion condition, candidate solutions that are not valid with respect to
Π are also rejected (since they are invalid w.r.t Π ′); that is, if (x, y) �∈ Ryes

(although it needs not be in Rno), then (x, y) ∈ R′
no (since R′

no ⊇ ({0, 1}∗ ×
{0, 1}∗) \Ryes).

The methodology alluded to above is demonstrated next in casting any prob-
abilistic fully polynomial-time approximation scheme (i.e., FPTAS, cf. [13]) as
a search-BPP problem. A (probabilistic) FPTAS for a quantity q :{0, 1}∗→R+

is an algorithm that on input x and ε > 0 runs for poly(n/ε) steps and, with
probability at least 2/3, outputs a value in the interval [(1±ε) ·q(x)]. A straight-
forward casting of this approximation problem as a search problem refers to the
binary relation Q such that Q

def= {(〈x, 1m〉, v)∈R+ : |v − q(x)| ≤ q(x)/m}. In
general, however, this does not yield a BPP-search problem, since Q may not be
probabilistic polynomial-time recognizable. Instead, we consider the BPP-search
problem (Ryes, Rno) such that (〈x, 1m〉, v) ∈ Ryes if |v − q(x)| ≤ q(x)/3m and
(〈x, 1m〉, v) ∈ Rno if |v − q(x)| > q(x)/m. Indeed, on input 〈x, 1m〉 we find a
solution in Ryes(〈x, 1m〉) by invoking the FPTAS on input x and ε = 1/3m,
and deciding the validity of a pair (〈x, 1m〉, v) w.r.t (Ryes, Rno) is done by
obtaining a good approximation of q(x) (and deciding accordingly).9 Indeed,
(Ryes, Rno) is a companion of (Q, Q), where Q = ({0, 1}∗ × {0, 1}∗) \ Q. Thus,
we obtain.

Observation 3.4 (FPTAS as BPP-search problems): Let q : {0, 1}∗→R
+ and

suppose that there exists a probabilistic FPTAS for approximating q; that is,
suppose that there exists a probabilistic polynomial-time algorithm A such that
Pr[|A(x, 1m)− q(x)| ≤ q(x)/m] ≥ 2/3. Then, this approximation task is trivially

8 Actually, if (Ryes, Rno) and (R′
yes, R

′
no) are companions of one another, then they

are identical (since R′
no = Rno and R′

yes = Ryes must hold). Furthermore, in this
case the promise is trivial, since R′

no = Rno ⊇ ({0, 1}∗ × {0, 1}∗) \ R′
yes whereas

R′
no ⊆ ({0, 1}∗ ×{0, 1}∗) \R′

yes. Also note that each problem is its own companion,
and that problems with trivial promise have no other companion (i.e., if (R′

yes, R
′
no)

is a companion of (R, R), where R = ({0, 1}∗ × {0, 1}∗) \ R, then (R′
yes, R

′
no) =

(R, R)).
9 That is, we invoke the FPTAS on input x and ε = 1/3m, obtain a value q′(x),

which with probability at least 2/3 is in (1 ± ε) · q(x), and accept if and only if
|v − q′(x)| ≤ 2q(x)/3m. Indeed, if v ∈ Ryes(〈x, 1m〉), then with probability at least
2/3 it holds that |v − q′(x)| ≤ |v − q(x)| + |q(x) − q′(x)| ≤ 2q(x)/3m, whereas if
v ∈ Rno(〈x, 1m〉), then with probability at least 2/3 it holds that |v − q′(x)| ≥
|v − q(x)| − |q(x) − q′(x)| > 2q(x)/3m.



202 O. Goldreich

reducible to some search-BPP problem (i.e., the foregoing one). Furthermore, the
probabilistic time-complexity of the latter search problem is linearly related to
the probabilistic time-complexity of the original approximation problem. More-
over, this search-BPP problem is a companion of the original approximation
problem.

3.2 The Reduction

One may expect that any BPP-search problem be deterministically reducible
to some BPP decision problem. Indeed, this holds for the restricted definition
of BPP-search problems as in Definition 3.1, but for the revised formulation of
Definition 3.2 we only present a weaker result. Specifically, for every BPP-search
problem (Ryes, Rno), there exists R ⊇ Ryes such that R ∩ Rno = ∅ and solving
the search problem of R is deterministically reducible to some BPP decision
problem.10

Theorem 3.5 (reducing search to decision): For every BPP-search problem
(Ryes, Rno), there exists a binary relation R such that Ryes ⊆ R ⊆ ({0, 1}∗ ×
{0, 1}∗)\Rno and solving the search problem of R is deterministically reducible to
some decisional problem in BPP, denoted Π. Furthermore, the time-complexity
of the reduction is linear in the probabilistic time-complexity of finding solutions
for (Ryes, Rno), whereas the probabilistic time-complexity of Π is the product
of a quadratic polynomial and the probabilistic time-complexity of the decision
procedure guaranteed for (Ryes, Rno).

Applying Theorem 3.5 to a BPP-search problem (Ryes, Rno) that is a companion
of some search problem (Ψyes, Ψno), we obtain a deterministic reduction of solv-
ing the search problem (Ψyes, Ψno) to some promise problem in BPP, because
SΨyes = SRyes ⊆ SR whereas R ⊆ ({0, 1}∗×{0, 1}∗)\Rno ⊆ Ψyes. The argument
in depicted in Figure 2.

Ψ Ψ
RR

YES

YES NO

NO

R

original problem

solved

companion

Fig. 2. The reduction applied to a companion of Ψ

Proof: Let A and V be the two probabilistic polynomial-time algorithms as-
sociated (by Definition 3.2) with the BPP-search problem (Ryes, Rno), and let
tA and tV denote their (probabilistic) time-complexities. Specifically, A is the

10 Indeed, in the special case of Definition 3.1 (where (Ryes, Rno) is a partition of the
set of all pairs), it holds that R = Ryes.
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solution-finding algorithm guaranteed by Condition 2, and V is the decision pro-
cedure guaranteed by Condition 1. Denote by A(x, r) the output of algorithm
A on input x and internal coins r ∈ {0, 1}tA(|x|), and let V ((x, y), ω) denote the
decision of V on input (x, y) when using coins ω ∈ {0, 1}tV (|x|+|y|). Now, define

R
def=

{
(x, y) : Prω∈{0,1}tV (|x|+|y|) [V ((x, y), ω) = 1] ≥ 0.4

}
,

(1)

and note that Ryes ⊆ R and Rno ∩R = ∅.
We now consider an auxiliary algorithm A′′ such that A′′(x, r, ω) def=

V ((x, A(x, r)), ω). Note that, for every x and r such that (x, A(x, r)) ∈ Ryes,
it holds that Prω[A′′(x, r, ω) = 1] ≥ 2/3, and thus, for every x ∈ SRyes , it holds
that Prr,ω[A′′(x, r, ω) = 1] ≥ 4/9.

Given x, our strategy is to try to find r such that A(x, r) ∈ R(x), by deter-
mining the bits of r one by one. We thus start with an empty prefix of r, denoted
r′, and in each iteration we try to extend r′ by one bit. Assuming that x ∈ SRyes

(or rather that Eq. (2) holds for r′ = λ), we try to maintain the invariant

Prr′′∈{0,1}m−|r′|,ω∈{0,1}� [A′′(x, r′r′′, ω) = 1] ≥ 4
9
− |r′|

25m ,
(2)

where m = tA(|x|) and 	 = tV (|x| + m). Note that if this invariant holds for
r′ ∈ {0, 1}m, then necessarily y

def= A(x, r′) ∈ R(x) (since in this case Eq. (2)
implies that Prω[V ((x, y), ω) = 1] ≥ 4

9 − 0.04 > 0.4).
Once a candidate solution y = A(x, r′) is found (using the corresponding

r′ ∈ {0, 1}m), we check whether y is a good solution, and output y if it is
good and ⊥ otherwise. Specifically, we test whether (x, y) ∈ R or (x, y) ∈ Rno

by making a single BPP-query (analogously to the next discussion, since for
(x, y) ∈ Rno it holds that Prω[V ((x, y), ω) = 1] ≤ 1/3).

In view of the foregoing, we focus on the design of a single iteration. Our
strategy is to rely on an oracle for the promise problem ΠA′′ that consists of
yes-instances (x, 1m, r′) such that Prr′′,ω[A′′(x, r′r′′, ω) = 1] ≥ 4

9 −
|r′|−1
25m and

no-instances (x, 1m, r′) such that Prr′′,ω[A′′(x, r′r′′, ω) = 1] < 4
9 −

|r′|
25m , where

in both cases the probability is taken uniformly over r′′ ∈ {0, 1}m−|r′| (and
ω ∈ {0, 1}�). The oracle ΠA′′ is clearly in BPP (e.g., consider a probabilistic
polynomial-time algorithm that on input (x, 1m, r′) estimates Prr′′,ω[A′′(x, r′r′′,
ω) = 1] up to an additive term of 1/50m with error probability at most 1/3, by
taking a sample of O(m2) random pairs (r′′, ω)).

In each iteration, which starts with some prefix r′ that satisfies Eq. (2), we
make a single query to the oracle ΠA′′ ; specifically, we query ΠA′′ on (x, 1m, r′0).
If the oracle answers positively, then we extend the current prefix r′ with 0 (i.e.,
we set r′ ← r′0), and otherwise we set r′ ← r′1.

The point is that if Prr′′∈{0,1}m−|r′|,ω[A′′(x, r′r′′, ω) = 1] ≥ 4
9 −

|r′|
25m , then

there exists σ ∈ {0, 1} such that Prr′′′∈{0,1}m−|r′|−1,ω[A′′(x, r′σr′′′, ω) = 1] ≥
4
9 −

|r′|
25m = 4

9 −
|r′σ|−1

25m , which means that (x, 1m, r′σ) is a yes-instance. Thus,
if Π answers negatively to the query (x, 1m, r′0), then (x, 1m, r′0) cannot be a
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yes-instance, which implies that (x, 1m, r′1) is a yes-instance, and the invariance
of Eq. (2) holds for the extended prefix r′1. On the other hand, if Π = ΠA′′

answers positively to the query (x, 1m, r′0), then (x, 1m, r′0) cannot be a no-
instance, and the invariance of Eq. (2) holds for the extended prefix r′0. We
conclude that each iteration of our reduction preserves the said invariance.

To verify the furthermore-part, we note that the reduction consists of tA(|x|)
iterations, where in each iteration a query is made to Π and some very simple steps
are taken. In particular, each query made is simply related to the previous one (i.e.,
can be obtained from it in constant time), and so the entire reduction has time
complexity O(tA). The time complexity of Π on inputs of the form y = (x, 1m, r′)
is O(m2) ·O(tV (|x|+ m)) = O(|y|2 · tV (|y|)). The theorem follows.

Digest. The proof of Theorem 3.5 follows the strategy of reducing NP-search
problems to NP , except that more care is required in the process. This is re-
flected in the invariance stated in Eq. (2) as well as in the fact that we make an
essential use of promise problems (in the oracle).

3.3 Applications

As stated in the introduction, Theorem 3.5 plays a central role in establishing
our main result (i.e., the reversing of the “pseudorandomness to derandomiza-
tion” implication). In this section, we explore a few additional applications of
Theorem 3.5. In particular, we show that BPP = P implies a host of derandom-
ization results that refer to computational problems that are not of the decisional
type. Indeed, we shall reduce these problems to BPP-search problems and apply
Theorem 3.5.

Approximations. In light of the foregoing discussion (i.e., Observation 3.4), every
approximation problem that has a probabilistic FPTAS can be deterministically
reduced to BPP. Thus:

Corollary 3.6 (implication for FPTAS): If BPP = P, then every function that
has a probabilistic fully polynomial-time approximation scheme (FPTAS) also
has such a deterministic scheme. Furthermore, for every polynomial p, there
exists a polynomial p′ such that if the probabilistic scheme runs in time p, then
the deterministic one runs in time p′.

The furthermore part is proved by using the furthermore parts of Observation 3.3
and Theorem 3.5 as well as a completeness feature of BPtime(·). Specifically,
by combining the aforementioned reductions, we infer that the approximation
problem (which refers to instances of the form 〈x, 1m〉) is (deterministically) p1-
time reducible to a problem in BPtime(p2), where p1(n) = O(p(n)) and p2(n) =
O(n2 · p(n)). Next, we use the fact that BPtime(p2) has a complete problem,
where completeness holds under quadratic-time reductions (which prepend the
input by the original problem’s description and pad it with a quadratic number
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of zeros).11 The point is that this complete problem only depends on p2, which
in turn is uniquely determined by p. The hypothesis (i.e., BPP = P) implies
that this BPtime(p2)-complete problem is in Dtime(p3) for some polynomial
p3, which is solely determined by p2, and the claim follows for p′ = p3◦p2

1. Indeed,
we have also established en passant the following result, which is of independent
interest.

Proposition 3.7 If BPP = P, then, for every polynomial p, there exists a
polynomial p′ such that BPtime(p) ⊆ Dtime(p′).

Indeed, by the Dtime Hierarchy Theorem, it follows that, if BPP = P , then, for
every polynomial p, there exists a polynomial p′′ such that Dtime(p′′) contains
problems that are not in BPtime(p).

Constructions of Varying Quality. While the foregoing discussion of approxi-
mation schemes is related to our previous proofs of the main result (see the
Appendix), the following discussion is more related to the current proof (as pre-
sented in Section 4.2). We consider general construction problems, which are de-
fined in terms of a quality function q :{0, 1}∗→ [0, 1], when for a given n we need
to construct an object y ∈ {0, 1}n such that q(y) = 1. Specifically, we consider
such construction problems that can be solved in probabilistic polynomial-time
and have a FPTAS for evaluating the quality of candidate constructions. One
interesting special case corresponds to rigid construction problems in which the
function q is Boolean (i.e., candidate constructions have either value 0 or 1). In
this special case (e.g., generating an n-bit long prime) the requirement that q
has a FPTAS is replaced by requiring that the set q−1(1) is in BPP.

Proposition 3.8 (derandomizing some constructions): Consider a generalized
construction defined via a quality function q that has a FPTAS, and let Rq

def=
{((1n, 1m), y) : y∈{0, 1}n ∧ q(y)>1− (1/m)}. Suppose that there exists a prob-
abilistic polynomial-time algorithm that solves the search problem of Rq. Then,
if BPP = P, then there exists a deterministic polynomial-time algorithm that
solves the search problem of Rq.

For example, if BPP = P , then n-bit long primes can be found in determin-
istic poly(n)-time. On the other hand, the treatment can be generalized to
constructions that need to satisfy some auxiliary specification, captured by an
auxiliary input x (e.g., on input a prime x = P find a quadratic non-residue
mod P ). In this formulation, Rq

def= {((x, 1m), y) : q(x, y) > 1 − (1/m)}, where
q : {0, 1}∗×{0, 1}∗ → [0, 1] can also impose length restrictions on the desired
construct.

Proof: Consider the BPP-search problem (Πyes, Πno), where
Πyes = {((1n, 1m), y) : y∈{0, 1}n∧q(y)>1−(1/2m)} and Πno = {((1n, 1m), y) :
11 The quadratic padding of x allows p2(|x|) steps of M(x) to be emulated in time

Õ(|M | · p2(|x|)), which is upper-bounded by p2((|M | + |x|)2), assuming that p2 is
(say) at least quadratic.
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y∈{0, 1}n∧q(y)≤1−(1/m)}. Note that (Πyes, Πno) is a companion of the search
problem Rq, and apply Theorem 3.5.

Corollary 3.9 (a few examples): If BPP = P, then there exist deterministic
polynomial-time algorithms for solving the following construction problems.

1. For any fixed c > 7/12, on input N , find a prime in the interval [N, N +N c].
2. On input a prime P and 1d, find an irreducible polynomial of degree d over

GF(P ).
Recall that finding a quadratic non-residue modulo P is a special case.12

3. For any fixed ε > 0 and integer d > 2, on input 1n, find a d-regular n-vertex
graph with second eigenvalue having absolute value at most 2

√
d− 1 + ε.

The foregoing items are based on the density of the corresponding objects in a
natural (easily sampleable) set. Specifically, for Item 1 we rely on the density
of prime numbers in this interval [14], for Item 2 we rely on the density of
irreducible polynomials [7], and for Item 3 we rely on the density of “almost
Ramanujan” graphs [6].13 In all cases there exist deterministic polynomial-time
algorithms for recognizing the desired objects.

4 Canonical Derandomizers

In Section 4.1 we present and motivate the rather standard notion of a canoni-
cal derandomizer, which is the notion to which most of this work refers to. Our
main result, the reversing of the pseudorandomness-to-derandomization trans-
formation is presented in Section 4.2. One tightening, which allows to derive an
equivalence, is presented in Section 4.3, which again refers to a rather standard
notion (i.e., of “effectively placing BPP in P”). An alternative equivalence is
derived in Section 4.4, which refers to a (seemingly new) notion of a targeted
canonical derandomizer.

4.1 The Definition

We start by reviewing the most standard definition of canonical derandomizers
(cf., e.g., [9, Sec. 8.3.1]). Recall that in order to “derandomize” a probabilistic
polynomial-time algorithm A, we first obtain a functionally equivalent algorithm
AG that uses a pseudorandom generator G in order to reduce the randomness-
complexity of A, and then take the majority vote on all possible executions of
AG (on the given input). That is, we scan all possible outcomes of the coin tosses
of AG(x), which means that the deterministic algorithm will run in time that
is exponential in the randomness complexity of AG. Thus, it suffices to have a
12 If the polynomial X2 + bX + c is irreducible, then so is (X + (b/2))2 + (c − (b/2)2),

and it follows that −(c − (b/2)2) is a quadratic non-residue.
13 Recall that Ramanujan graphs are known to be constructable only for specific values

of d and of n.
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pseudorandom generator that can be evaluated in time that is exponential in its
seed length (and polynomial in its output length).

In the standard setting, algorithm AG has to maintain A’s input-output be-
havior on all (but finitely many) inputs, and so the pseudorandomness property
of G should hold with respect to distinguishers that receive non-uniform ad-
vice (which models a potentially exceptional input x on which A(x) and AG(x)
are sufficiently different). Without loss of generality, we may assume that A’s
running-time is linearly related to its randomness complexity, and so the relevant
distinguishers may be confined to linear time. Similarly, for simplicity (and by
possibly padding the input x), we may assume that both complexities are lin-
ear in the input length, |x|. (Actually, for simplicity we shall assume that both
complexities just equal |x|, although some constant slackness seems essential.)
Finally, since we are going to scan all possible random-pads of AG and rule by
majority (and since A’s error probability is at most 1/3), it suffices to require
that for every x it holds that |Pr[A(x) = 1]− Pr[AG(x) = 1]| < 1/6. This leads
to the pseudorandomness requirement stated in the following definition.

Definition 4.1 (canonical derandomizers, standard version [9, Def, 8.14])14:
Let 	 :N→N be a function such that 	(n) > n for all n. A canonical derandom-
izer of stretch 	 is a deterministic algorithm G that satisfies the following two
conditions.

(generation time): On input a k-bit long seed, G makes at most poly(2k · 	(k))
steps and outputs a string of length 	(k).

(pseudorandomness): For every (deterministic) linear-time algorithm D, all suf-
ficiently large k and all x ∈ {0, 1}�(k), it holds that

|Pr[D(x, G(Uk)) = 1] − Pr[D(x, U�(k)) = 1] | <
1
6 . (3)

The algorithm D represents a potential distinguisher, which is given two 	(k)-bit
long strings as input, where the first string (i.e., x) represents a (non-uniform)
auxiliary input and the second string is sampled either from G(Uk) or from U�(k).
When seeking to derandomize a linear-time algorithm A, the first string (i.e., x)
represents a potential main input for A, whereas the second string represents a
possible sequence of coin tosses of A (when invoked on a generic (primary) input
x of length 	(k)).

Towards a uniform-complexity variant. Seeking a uniform-complexity analogue
of Definition 4.1, the first thing that comes to mind is the following definition.

Definition 4.2 (canonical derandomizers, a uniform version): As Definition 4.1,
except that the original pseudorandomness condition is replaced by

(pseudorandomness, revised): For every (deterministic) linear-time algorithm D,
it is infeasible, given 1�(k), to find a string x ∈ {0, 1}�(k) such that Eq. (3)

14 To streamline our exposition, we preferred to avoid the standard additional step of
replacing D(x, ·) by an arbitrary (non-uniform) Boolean circuit of quadratic size.
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does not hold. That is, for every probabilistic polynomial-time algorithm F
such that |F (1�(k))| = 	(k), there exists a negligible function negl such that
if x ← F (1�(k)), then Eq. (3) holds with probability at least 1− negl(	(k)).

When seeking to derandomize a probabilistic (linear-time) algorithm A, the aux-
iliary algorithm F represents an attempt to find a string x ∈ {0, 1}�(k) on which
A(x) behaves differently depending on whether it is fed with random bits (i.e.,
U�(k)) or with pseudorandom ones produced by G(Uk).

Note that if there exists a canonical derandomizer of exponential stretch (i.e.,
	(k) = exp(Ω(k))), then BPP is “effectively” in P in the sense that for every
problem in BPP there exists a deterministic polynomial-time algorithm A such
that it is infeasible to find inputs on which A errs. We hoped to prove that
BPP = P implies the existence of such derandomizers, but do not quite prove
this. Instead, we prove a closely related assertion that refers to the following
revised notion of a canonical derandomizer, which is implicit in [17]. In this
definition, the finder F is incorporated in the distinguisher D, which in turn is
an arbitrary probabilistic algorithm that is allowed some fixed polynomial-time
(rather than being deterministic and linear-time).15 (In light of the central role of
this definition in the current work, we spell it out rather than use a modification
on Definition 4.1 (as done in Definition 4.2).)

Definition 4.3 (canonical derandomizers, a revised uniform version): Let 	, t ::
N→N be functions such that 	(n) > n for all n. A t-robust canonical derandom-
izer of stretch 	 is a deterministic algorithm G that satisfies the following two
conditions.

(generation time (as in Definition 4.1)): On input a k-bit long seed, G makes at
most poly(2k · 	(k)) steps and outputs a string of length 	(k).

(pseudorandomness, revised again): For every probabilistic t-time algorithm D
and all sufficiently large k, it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(U�(k)) = 1] | <
1

t(	(k)) . (4)

Note that, on input an 	(k)-bit string, the algorithm D runs for at most
t(	(k)) steps.

15 Thus, Definition 4.2 and Definition 4.3 are incomparable (when the time bound
t is a fixed polynomial). On the one hand, Definition 4.3 seems weaker because
we effectively fix the polynomial time bound of F (which is incorporated in D).
On the other hand, Definition 4.3 seems stronger because D itself is allowed to
be probabilistic and run in time t (whereas in Definition 4.2 these privileges are
only allowed to F , which may be viewed as a preprocessing step). Indeed, if E
requires exponential size circuits, then there exist pseudorandom generators that
satisfy one definition but not the other: On the one hand, this assumption yields
the existence of a non-uniformly strong canonical pseudorandom generator (i.e.,
satisfying Definition 4.1) of exponential stretch [16] that is not p-robust (i.e., fails
Definition 4.3), for some sufficiently large polynomial p. On the other hand, the
assumption implies BPP = P , which leads to the opposite separation described at
the end of Section 4.2.
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The pseudorandomness condition implies that, for every linear-time D′ and every
probabilistic t-time algorithm F (such that |F (1n)| = n for every n), it holds
that

|Pr[D′(F (1�(k)), G(Uk)) = 1] − Pr[D′(F (1�(k)), U�(k)) = 1] | <
1

t(	(k)) . (5)

Note that if, for every x, there exists a σ such that Pr[D′(x, U|x|) = σ] ≥ 1 −
(1/3t(|x|)) (as is the case when D′ arises from an “amplified” BPP decision
procedure), then the probability that F (1�(k)) finds an instance x ∈ {0, 1}�(k)

on which D′(x, G(Uk)) leans in the opposite direction (i.e., Pr[D′(x, U|x|) �=
σ] ≥ 1/2) is smaller than 3/t(	(k)). A more general (albeit quantatively weaker)
statement is proved next.

Proposition 4.4 (on the effect of canonical derandomizers): For t :N→N such
that t(n) > (n log n)3, let G be a t-robust canonical derandomizer of stretch 	.
Let A be a probabilistic linear-time algorithm, and let AG be as in the foregoing
discussions (i.e., AG(x, s) = A(x, G(s))). Then, for every probabilistic (t/2)-time
algorithm F and all sufficiently large k, the probability that F (1�(k)) hits the set
∇A,G(k) \BA(k) is at most 40/t(	(k))1/3, where

∇A,G(k)
def
=

{
x ∈ {0, 1}�(k) : |Pr[AG(x, Uk) = 1] − Pr[A(x,U�(k)) = 1] | >

1

3

}
(6)

BA(k)
def
=

{
x ∈ {0, 1}�(k) :

1

t(�(k))1/3
< Pr[A(x,U�(k)) = 1] < 1− 1

t(�(k))1/3

}
.

(7)

That is, BA(·) denotes the set of inputs x on which A(x) = A(x, U|x|) is not
“almost determined” and ∇A,G(·) denotes the set of inputs x on which there is
a significant discrepancy between the distributions A(x) and AG(x).

The forgoing discussion refers to the special case in which BA(k) = ∅. In general,
if A is a decision procedure of negligible error probability (for some promise
problem),16 then AG is essentially as good as A, since it is hard to find an
instance x that matters (i.e., one on which A’s error probability is negligible) on
which AG errs (with probability greater than, say, 0.4). This leads to “effectively
good” derandomization of BPP. In particular, if G has exponential stretch, then
BPP is “effectively” in P (see Theorem 4.9).

Proof: Suppose towards the contradiction that there exist algorithms A and F
that violate the claim. For each σ ∈ {0, 1}, we consider the following probabilistic
t-time distinguisher, denoted Dσ. On input r (which is drawn from either U�(k)

or G(Uk)), the distinguisher Dσ behaves as follows.

1. Obtains x ← F (1|r|).
16 That is, BA(·) contains only instances that violate the promise.
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2. Approximates p(x) def= Pr[A(x, U|x|) = σ], obtaining an estimate, denoted
p̃(x), such that Pr[|p̃(x)− p(x)| ≤ t(|x|)−1/3] = 1− negl(|x|).

3. If p̃(x) < 1− 2t(|x|)−1/3, then Dσ halts with output 0.
4. Otherwise (i.e., p̃(x) ≥ 1−2t(|x|)−1/3), Dσ invokes A on (x, r), and outputs 1

if and only if A(x, r) = σ. (Indeed, the actual input r is only used in this
step.)

We stress that Dσ only approximate the value of p(x) = Pr[A(x, U|x|)=σ] (i.e., it
does not approximate the value of Pr[A(x, G(U�−1(|x|))) = σ], which would have
required invoking G). Observe that Dσ runs for at most t(|r|) steps, because the
approximation of p(x) amounts to Õ(t(|r|)2/3) invocations of A(x), whereas each
invocation costs O(|r|) time (including the generation of truly random coins for
A).

Let qσ(k) denote the probability that, on an 	(k)-bit long input, algorithm Dσ

moves to the final (input dependent) step, and note that qσ(k) is independent
of the specific input r ∈ {0, 1}�(k). Assuming that |p̃(x) − p(x)| ≤ t(|x|)−1/3

(for the string x selected at the first step), if the algorithm moves to the final
step, then p(x) > 1 − 3t(|x|)−1/3. (Similarly, if p(x) > 1 − t(|x|)−1/3, then
the algorithm moves to the final step.) Thus, the probability that Dσ(U�(k)))
outputs 1 is at least (1− negl(	(k))) · qσ(k) · (1− 3t(|x|)−1/3), which is greater
than qσ(k) − 4t(|x|)−1/3. On the other hand, by the contradiction hypothesis,
there exists a σ such that with probability at least 20t(	(k))−1/3, it holds that
F (1�(k)) hits the set ∇A,G(k) ∩ Sσ,A(k), where

Sσ,A(k) def=
{

x ∈ {0, 1}�(k) : Pr[A(x, U�(k)) = σ] ≥ 1− 1
t(	(k))1/3

}
.

(8)

In this case (i.e., when x ∈ ∇A,G(k)∩Sσ,A(k)) it holds that p(x) > 1− t(|x|)−1/3

(since x ∈ Sσ,A(k)) and Pr[A(x, G(U�−1(|x|)))=σ] < 2/3 (since x ∈ ∇A,G(k) and
p(x) > 1−t(|x|)−1/3). It follows that the probability that Dσ(G(Uk)) outputs 1 is
at most (qσ(k)−20t(|x|)−1/3)·1+20t(|x|)−1/3 ·2/3+negl(	(k)), which is smaller
than qσ(k)− 5t(|x|)−1/3. Thus, we derive a contradiction to the t-robustness of
G, and the claim follows.

4.2 The Main Result

Our main result is that BPP = P implies the existence of canonical derandom-
izers of exponential stretch (in the sense of Definition 4.3). We conclude that
seeking canonical derandomizers of exponential stretch is “complete” with re-
spect to placing BPP in P . (The same holds w.r.t “effectively” placing BPP in
P , see Theorem 4.9.)

Theorem 4.5 (on the completeness of canonical derandomization): If BPP =
P, then, for every polynomial p, there exists a p-robust canonical derandomizer
of exponential stretch.
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The proof of Theorem 4.5 is inspired by the study of pseudorandomness with re-
spect to deterministic (uniform p-time) observers, which was carried out by Gol-
dreich and Wigderson [10]. Specifically, for every polynomial p, they presented a
polynomial-time construction of a sample space that fools any p-time determin-
istic next-bit test. They observed that an analogous construction with respect to
general (deterministic p-time) tests (i.e., distinguishers) would yield some non-
trivial derandomization results (e.g., any unary set in BPP would be placed in
P). Thus, they concluded that there is a fundamental gap between probabilistic
and deterministic polynomial-time observers. Our key observation is that this
gap may disappear if BPP = P . Specifically, the hypothesis BPP = P allows
us to derandomize a trivial “probabilistic polynomial-time construction” of a
canonical derandomizer.

Proof: Our starting point is the fact that, for some exponential function 	, with
very high probability, a random function G : {0, 1}k → {0, 1}�(k) satisfies the
pseudorandomness requirement associated with 2p-robust canonical derandom-
izers. Furthermore, given the explicit description of any function G : {0, 1}k →
{0, 1}�(k), we can efficiently distinguish between the case that G is 2p-robust and
the case that G is not p-robust.17 Thus, the construction of a suitable pseudoran-
dom generator is essentially a BPP-search problem. Next, applying Theorem 3.5,
we can deterministically reduce this construction problem to BPP. Finally, us-
ing the hypothesis BPP = P , we obtain a deterministic construction. Details
follow.

Let us fix an arbitrary polynomial p, and consider a suitable exponential func-
tion 	 (to be determined later). Our aim is to construct a sequence of mappings
G : {0, 1}k → {0, 1}�(k), for arbitrary k ∈ N, that meets the requirements of a
p-robust canonical derandomizer. It will be more convenient to construct a se-
quence of sets S = ∪k∈NS�(k) such that Sn ⊆ {0, 1}n, and let G(i) be the ith

string in S�(k), where i ∈ [2k] ≡ {0, 1}k. (Thus, the stretch function 	 : N→ N

satisfies 	(log2 |Sn|) = n, whereas we shall have |Sn| = poly(n), which implies
	(O(log n)) = n and 	(k) = exp(Ω(k)).) The set Sn should be constructed in
poly(n)-time (so that G is computable in poly(2k·	(k))-time), and the pseudoran-
domness requirement of G coincides with requiring that, for every probabilistic
p-time algorithm D, and all sufficiently large n, it holds that18∣∣∣∣∣Pr[D(Un)=1]− 1

|Sn|
·
∑
s∈Sn

Pr[D(s)=1]

∣∣∣∣∣ <
1

p(n) .

(9)

17 Formally, the asymptotic terminology of p-robustness is not adequate for discussing
finite functions mapping k-bit long strings to �(k)-bit strings. However, as detailed
below, what we mean is distinguishing (in probabilistic polynomial-time) between
the case that G is “2p-robust” with respect to a given list of p-time machines and
the case that G is not “p-robust” with respect to this list.

18 In [10, Thm. 2] the set Sn was only required to fool deterministic tests of the next-bit
type.
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Specifically, we consider an enumeration of (modified)19 probabilistic p-time
machines, and focus on fooling (for each n) the p(n) first machines, where fool-
ing a machine D means that Eq. (9) is satisfied (w.r.t this D). Note that, with
overwhelmingly high probability, a random set Sn of size K = Õ(p(n)2) satisfies
Eq. (9) (w.r.t the p(n) first machines). Thus, the following search problem, de-
noted CON(p), is solvable in probabilistic Õ(p(n)2 · n)-time: On input 1n, find a
K-subset Sn of {0, 1}n such that Eq. (9) holds for each of the p(n) first machines.

Next, consider the following promise problem CC(p) (which is a companion of
CON(p)). The valid instance-solution pairs of CC(p) are pairs (1n, Sn) such that
for each of the first p(n) machines Eq. (9) holds with p(n) replaced by 2p(n), and
its invalid instance-solution pairs are pairs (1n, Sn) such that for at least one of
the first p(n) machines Eq. (9) does not hold. Note that CC(p) is a BPP-search
problem (as per Definition 3.2), and that it is indeed a companion of CON(p)

(as per Observation 3.3). Thus, by Theorem 3.5,20 solving the search problem
CON(p) is deterministically (polynomial-time) reducible to some promise problem
in BPP. Finally, using the hypothesis BPP = P , the theorem follows.

Observation 4.6 (on the exact complexity of the construction): Note that (by
Theorem 3.5) the foregoing reduction of CON(p) to BPP runs in time t(n) =
Õ(p(n)2 · n), whereas the reduction is to a problem in quartic-time, because
the verification problem associated with CC(p) is in sub-quadratic probabilistic
time.21 Thus, assuming that probabilistic quartic-time is in Dtime(p4), for some
polynomial p4 (see Proposition 3.7), it follows that CON(p) ∈ Dtime(p′), where
p′(n) = p4(t(n)).

Observation 4.7 (including the seed in the output sequence): The construction
of the generator G (or the set Sn) can be modified such that for every s ∈ {0, 1}k

the k-bit long prefix of G(s) equals s (i.e., the ith string in Sn starts with the
(log2 |Sn|)-bit long binary expansion of i).

19 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

20 See also the discussion just following the statement of Theorem 3.5, which asserts
that if the search problem of a companion of Π is reducible to BPP then the same
holds for Π .

21 On input (1n, S) we need to compare the average performance of p(n) machines
on S versus their average performance on {0, 1}n, where each machine makes at

most p(n) steps. Recalling that |S| = K = Õ(p(n)2), and that it suffices to get an
approximation of the performance on {0, 1}n up to an additive term of 1/2p(n),

we conclude that the entire task can be performed in time p(n) · Õ(p(n)2) · p(n) <
(n + |S|n)2 (i.e., the number of machines times the number of experiments (which

is |S| + Õ(p(n)2)) times the running time of one experiment).
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Observation 4.7 implies that a (deterministic) polynomial-time distinguisher,
which runs for more time than the foregoing generator, can distinguish the gen-
erator’s output from a truely random sequence. Next, we show that, in certain
cases, the distinguishing task is extremely easy (i.e., can be performed in sub-
linear time) if the distinguisher is provided with an auxiliary input that can be
generated in polynomial-time independently of the tested string.

A Separation between Definition 4.2 and Definition 4.3: The p-robust canonical
derandomizer constructed in the foregoing proof (or rather a small variant of it)
does not satisfy the notion of a canonical derandomizer stated in Definition 4.2.
Indeed, in this case, a (deterministic) polynomial-time finder F , which runs for
more time than the foregoing generator, can find a string x that allows very fast
distinguishing. Details follow.

The variant that we refer to is different from the one used in the proof of The-
orem 4.5 only in the details of the underlying randomized construction. Instead
of selecting a random set of Õ(p(n)2) strings, we select m = O(p(n)3) strings
in a pairwise independent manner. (This somewhat bigger set suffices to make
the probabilistic argument used in the proof of Theorem 4.5 go through.) Fur-
thermore, we consider a specific way of generating such an m-long sequence over
{0, 1}n: For b = log2 m and t = n/b, we generate an m-long sequence by selecting
uniformly (r1, s1), ..., (rt, st) ∈ {0, 1}2b, and letting the ith string in the m-long
sequence be the concatenation of the t strings r1 + i · s1,..., rt + i · st (where the
arithmetics is of GF(2b)). (In the actual determintic construction of Sn (and G)
a sutibale sequence ((r1, s1), ..., (rt, st)) ∈ {0, 1}2bt is found and fixed, and the
G(i) equals the concatenation of the t strings r1 + i · s1,..., rt + i · st.) Referring
to this specific construction, we propose the following attack:

– The finder F determines the set Sn (just as the generator does). In particular,
F determines the elements r1, s1, r2, s2 used in its construction, finds α, β ∈
GF(2b) such that αs1 + βs2 = 0 and (α, β) �= (0, 0), lets γ = α · r1 + β · r2,
and encodes (α, β, γ) in the 3b-bit long prefix of x.

– On input x (viewed as starting with the 3b-bit long prefix (α, β, γ) ∈ GF(2b)3)
and a tested n-bit long string that is viewed as a sequence (z1, ..., zt) ∈
GF(2b)t, the distinguisher D output 1 if and only if α · z1 + β · z2 = γ.

Note that D(x, G(Uk)) is identically 1 (because α · (r1 + i · s1) + β · (r2 + i · s2)
equals γ = α · r1 + β · r2 for every i ∈ [m]), whereas Pr[D(x, U�(k)) = 1] = 2−b

(because a fixed non-zero linear combination of two random elements of GF(2b)
is uniformly distributed in GF(2b)).

Non-Resilience to Multiple Samples. The foregoing example also demonstrates
the non-resilience of Definition 4.3 to multiple samples. Specifically, consider a
distinguisher D that obtains three samples, denoted (z(1)

1 , ..., z
(1)
t ), (z(2)

1 , ..., z
(2)
t ),

and (z(3)
1 , ..., z

(3)
t ) (each viewed as a t-long sequence over GF(2b)), and outputs 1

if and only if (z(1)
1 − z

(2)
1 ) · (z(2)

2 − z
(3)
2 ) = (z(1)

2 − z
(2)
2 ) · (z(2)

1 − z
(3)
1 ). Then,

D(G(i1), G(i2), G(i3)) = 1 for every i1, i2, i3 ∈ [2k] (because G(i1)j − G(i2)j =
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(i1 − i2) · sj and G(i2)j −G(i3)j = (i2 − i3) · sj for every j ∈ [t], which implies
that each of the two compared products equals (i1− i2)(i2 − i3) · s1s2), whereas
D(U (1)

�(k), U
(2)
�(k), U

(3)
�(k)) equals 1 with probability 2−b (because the two compared

products are uniformly distributed in GF(2b) independently of one another).

4.3 A Tedious Tightening

Recall that we (kind of) showed that canonical derandomizers of exponential
stretch imply that BPP is “effectively” contained in P (in the sense detailed in
Definition 4.8), whereas BPP = P implies the existence of the former. In this
section we tighten this relationship by showing that the existence of canonical
derandomizers of exponential stretch also follows from the hypothesis that BPP
is “effectively” (rather than perfectly) contained in P .

Definition 4.8 (effective containment): Let C1 and C2 be two classes of promise
problems, and let t : N → N. We say that C1 is t-effectively contained in C2 if
for every Π ∈ C1 there exists Π ′ ∈ C2 such that for every probabilistic t-time
algorithm F and all sufficiently large n it holds that Pr[F (1n) ∈ ∇(Π, Π ′) ∩
{0, 1}n] < 1/t(n), where ∇(Π, Π ′) denotes the symmetric difference between
Π = (Πyes, Πno) and Π ′ = (Π ′

yes, Π
′
no) (i.e., ∇(Π, Π ′) def= ∇(Πyes, Π

′
yes) ∪

∇(Πno, Π ′
no), where ∇(S, S′) def= (S \ S′) ∪ (S′ \ S)).

Theorem 4.9 The following two conditions are equivalent.

1. For every polynomial p, it holds that BPP is p-effectively contained in P.
2. For every polynomial p, there exists a p-robust canonical derandomizer of

exponential stretch.

Proof: We first prove that Condition 2 implies Condition 1. (Indeed, this
assertion was made several times in the foregoing discussions, and here we merely
detail its proof.)

Let Π = (Πyes, Πno) be an arbitrary problem in BPP, and consider the cor-
responding probabilistic linear-time algorithm A (of negligible error probability)
derived for a padded version of Π , denoted Ψ = (Ψyes, Ψno). Specifically, sup-
pose that for some polynomial p0, it holds that Ψyes = {x0p0(|x|)−|x| : x ∈ Πyes}
and ditto for Ψno. Now, for any polynomial p, consider the promise problem
Ψ ′ = (Ψ ′

yes, Ψ
′
no) such that

Ψ ′
yes

def= {x ∈ Ψyes : Pr[AG(x) = 1] > 0.6} (10)

Ψ ′
no

def= {x ∈ Ψno : Pr[AG(x) = 1] < 0.4}, (11)

where AG is the algorithm obtained by combining A with a p-robust derandom-
izer G of exponential stretch 	 (i.e., AG(x, s) = A(x, G(s)), where 	(|s|) = |x|).
Then, Proposition 4.4 implies that for every probabilistic p-time algorithm F
and all sufficiently large k, it holds that

Pr[F (1�(k)) ∈ ∇(Ψ, Ψ ′) ∩ {0, 1}�(k)] <
40

p(	(k))1/3
,

(12)
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because ∇(Ψ, Ψ ′)∩{0, 1}�(k) is contained in ∇A,G(k)\BA(k), where ∇A,G(k) and
BA(k) are as in Eq. (6) and Eq. (7), respectively. Now, since G has exponential
stretch, it follows that the randomness complexity of AG is logarithmic (in its
input length). Thus, algorithm AG runs in polynomial-time, and we can also
fully derandomize it in polynomial-time (by invoking AG on all possible random
pads). Concluding that Ψ ′ ∈ P , we further infer that the same holds with respect
to the “unpadded version” of Ψ ′, denoted Π ′ = (Π ′

yes, Π
′
no); that is, we refer to

Π ′
yes = {x : x0p0(|x|)−|x| ∈ Ψ ′

yes} and ditto for Π ′
no. Finally, since ∇(Π, Π ′) ∩

{0, 1}n equals {x : x0p0(|x|)−|x| ∈ ∇(Ψ, Ψ ′)∩{0, 1}p0(n)}, it follows that for every
probabilistic p ◦ p0-time algorithm F and all sufficiently large n, it holds that
Pr[F (1n) ∈ ∇(Π, Π ′) ∩ {0, 1}n] < 40/p(p0(n))1/3. Noting that the same applies
to any Π ∈ BPP (and any polynomial p), we conclude that BPP is (p1/3/40)-
effectively contained in P , for every polynomial p. This completes the proof that
Condition 2 implies Condition 1.

We now turn to proving the converse (i.e., that Condition 1 implies Condi-
tion 2). The idea is to go through the proof of Theorem 4.5, while noting that
a failure of the resulting generator (which is supposed to be p-robust) yields
contradiction to the p′-effective containment of BPP in P , where p′ is a poly-
nomial that arises from the said proof. Specifically, note that the hypothesis
BPP = P is used in the proof of Theorem 4.5 to transform a probabilistic
construction into a deterministic one. This transformation is actually a (deter-
ministic) p3-time22 reduction (of the construction problem) to a fixed problem
Π in BPtime(pΠ) ⊆ BPP, where pΠ(m) = m4. We also note that all queries
made by the reduction have length Θ(2k · 	(k)) (see the proof of Theorem 3.5,
and recall that 2k = Õ(p(	(k))2)). Thus, the reduction fails only if at least one
of the queries made by it is answered incorrectly by the problem in P that is
used to p′-effective place Π in P . Let us suppose for a moment that the re-
duction never makes a query that violates the promise of Π . Then, randomly
guessing the index of the (first wrongly answered) query (i ∈ [p(	(k))3]), we
may answer the prior (i − 1) queries by using the fixed BPP algorithm for Π ,
and hit an m-bit long instance in the symmetric difference with probability at
least 1/p(n)3, where n = 	(k) and m = Θ̃(p(n)2 · n). Thus, for a sufficiently
large polynomial p′, this contradicts the hypothesis that BPP is p′-effectively
contained in P . Specifically, on input 1n, our probabilistic algorithm runs for
time p(n)3 · pΠ(p(n)3) = p(n)15 and hits a bad m-bit long string (on which the
derandomization fails) with probability at least 1/p(n)3, where m = Θ̃(p(n)2 ·n).
Thus, setting p′(m) = m8 suffices. (Formally, the claim follows by considering a
modified algorithm that on input 1m invokes the foregoing algorithm on input
1m1/8

.)
Recall, however, that the foregoing analysis relies on the unjustified assump-

tion that the reduction never makes a query that violates the promise of Π . In
general, when such a query is made, the answer of the deterministic algorithm

22 See Observation 4.6, and use Õ(p(n)2 · n) � p(n)3, which holds for all practical
purposes.
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A (which p′-effectively places Π in P) may be arbitrary and may not reflect the
arbitrary distribution of the answer of the BPP algorithm, deboted B. By ran-
domizing the reduction we may avoid this violation event (or rather bound the
probability that it occurs), without effecting the behavior on queries that satisfy
the promise. Before detailing how this is done, we stress that this modification
will be performed only in the analysis, towards showing that failure of the original
deterministic reduction when using algorithm A implies hitting a query on which
A returns an incorrect answer. Turning back to the reduction to Π = (Πyes, Πno)
(which makes a number of queries that is smaller than the query length), we con-
sider the problem Π ′ = (Π ′

yes, Π
′
no) such that (x, α) ∈ Π ′

yes (resp., (x, α) ∈ Π ′
no)

if and only if Pr[B(x) = 1] > α + 1/20|x| (resp., Pr[B(x) = 1] < α − 1/20|x|).
Clearly, Π ′ ∈ BPP (specifically, Π ′ ∈ BPtime(pΠ′ ), where pΠ′(m) = m6). In
the reduction, we replace each query x by the query (x, α) such that α is selected
at random uniformly in [0.4, 0.6]. Thus, for every x that satisfies the promise of
Π and every α ∈ [0.4, 0.6], it holds that (x, α) satisfies the promise of Π ′. On the
other hand, with probability at least 1−|x| · (2 · (20|x|)−1/0.2) = 1/2, all queries
made by the reduction (to Π ′) satisfy the promise, since a query (x, α) violates
the promise if and only if |Pr[B(x)=1] − α| ≤ 1/30|x|. Now, let A′ be a deter-
ministic algorithm that p′-effectively places Π ′ in P , and let A(x) = A′(x, 0.5).
(Indeed, we are using an algorithm derived from the algorithm for Π ′, rather
than using the algorithm derived directly for Π .) Now, if A fails during the
original deterministic reduction, then, with probability at least 2/3, algorithm
A′ fails during the randomized reduction (i.e., answers some query incorrectly
while all queries satisfy the promise). Hence, we derive a contradiction to the
hypothesis that Π ′ is p′-effectively in P (via algorithm A′).23

Comment. The second part of the foregoing proof actually establishes that there
exists a fixed polynomial p′ such that if BPP is p′-effectively contained in P, then,
for every every polynomial p, there exists a p-robust canonical derandomizer of
exponential stretch. Thus, we obtain that BPP is p′-effectively contained in P
if and only if for every polynomial p BPP is p-effectively contained in P . We
comment that this result can be proved directly by a padding argument.

4.4 A Different Tightening (Targeted Generators)

The use of uniform-complexity notions of canonical derandomizers does not seem
to allow deriving perfect derandomization (of the type BPP = P). As we saw,
the problem is that exceptional inputs (in the symmetric difference between the
original problem and the one solved deterministically) need to be found in order
to yield a violation of the pseudorandomness condition. An alternative approach
may let the generator depend on the input for which we wish to derandomize
the execution of the original probabilistic polynomial-time algorithm. This sug-
gests the following notion of a targeted canonical derandomizer, where both the
23 Note that here we use p′(m) = m11, since the running-time of our probabilistic

process is p(n)3 · pΠ′(p(n)3) = p(n)21, where m = Θ̃(p(n)2 · n).
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generator and the distinguisher are presented with the same auxiliary input (or
“target”).

Definition 4.10 (targeted canonical derandomizers): Let 	 :N→N be a function
such that 	(n) > n for all n. A targeted canonical derandomizer of stretch 	 is a
deterministic algorithm G that satisfies the following two conditions.

(generation time): On input a k-bit long seed and an 	(k)-bit long auxiliary in-
put, G makes at most poly(2k · 	(k)) steps and outputs a string of length
	(k).

(pseudorandomness (targeted)): For every (deterministic) linear-time algorithm
D, all sufficiently large k and all x ∈ {0, 1}�(k), it holds that

|Pr[D(x, G(Uk, x)) = 1] − Pr[D(x, U�(k)) = 1] | <
1
6 . (13)

Definition 4.10 is a special case of related definitions that have appeared in [26,
Sec. 2.4]. Specifically, Vadhan [26] studied auxiliary-input pseudorandom gener-
ators (of the general-purpose type [2,27]), while offering a general treatment in
which pseudorandomness needs to hold for an arbitrary set of targets (i.e., x ∈ I
for some set I ⊆ {0, 1}∗).24 (On the other hand, Definition 4.1 is obatined from
Definition 4.10 by mandating that G ignores s; i.e., G(s, x) = G′(s).)

The notion of a targeted canonical derandomizer is not as odd as it looks at
first glance. Indeed, the generator is far from being general-purpose (i.e., it is
tailored to a specific x), but this merely takes to (almost) the limit the insight of
Nisan and Wigderson regarding relaxations that are still useful towards deran-
domization [20]. Indeed, even if we were to fix the distinguisher D, constructing
a generator that just fools D(x, ·) is not straightforward, because we need to find
a suitable “fooling set” deterministically (in polynomial-time).

Theorem 4.11 (another equivalence): Targeted canonical derandomizers of ex-
ponential stretch exist if and only if BPP = P.

Proof: Using any targeted canonical derandomizer of exponential stretch we ob-
tain BPP = P , where the argument merely follows the one used in the context
of non-uniformly strong canonical derandomizers (i.e., canonical derandomiz-
ers in the sense of Definition 4.1). Turning to the opposite direction, we ob-
serve that the construction undertaken in the proof of Theorem 4.5 can be
carried out with respect to the given auxiliary-input. In particular, the fixed
auxiliary-input is merely passed among the various algorithms, and the argu-
ment remains intact. (See further discussion in Observation 4.12.) The theorem
follows.

Observation 4.12 (super-exponential stretch): In contrast to the situation
with respect to the prior notions of canonical derandomizers (of Definitions 4.1–
24 His treatment vastly extends the original notion of auxiliary-input one-way functions

put forward in [21].
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4.3),25 targeted canonical derandomizer of super-exponential stretch may ex-
ist. Indeed, they exists if and only if targeted canonical derandomizer of ex-
ponential stretch exist. To see this note that the hypothesis BPP = P allows
to carry out the proof of Theorem 4.5 for any stretch function. Specifically,
for any super-exponential function 	, when constructing the set Sn ⊂ {0, 1}n

it suffices to fool the first g(n) (linear-time) machines, where g is any un-
bounded and non-decreasing function and fooling means keeping the distinguisha-
bility gap below 1/6. Thus, |Sn| = 2�−1(n) (which is o(n)) needs only satisfy
2 · exp(−2 · (1/6)2 · |Sn|) · g(n) < 1/3, which calls for using a function g such that
g(n) ≤ 0.1 · exp(2 · (1/6)2 · 2�−1(n)). The claim follows.

4.5 Relating the Various Generators

It is syntactically clear that any non-uniformly strong canonical derandomizer
(as per Definition 4.1) satisfies both Definition 4.2 (the first uniform version of
canonical derandomizers) and Definition 4.10 (the targeted version of canonical
derandomizers). On the other hand, there are good reasons to believe that such
a canonical derandomizer is not necessarily a p-robust canonical derandomizer
(as per Definition 4.3, for some polynomial p).26 However, using Theorems 4.9
and 4.11, we observe that the existence of a generator that satisfies either Def-
inition 4.2 or Definition 4.10 implies, for every polynomial p, the existence of
p-robust canonical derandomizer (as per Definition 4.3).

Corollary 4.13 If there exists a targeted canonical derandomizer of exponen-
tial stretch, then for every polynomial p there exists a p-robust canonical de-
randomizer of exponential stretch. The same holds if the hypothesis refers to
Definition 4.2.

The various relations are depicted in Figure 3. A similar result can be proved
for other (polynomially closed) families of stretch functions, by using the results
of Section 5.

Proof: The existence of a targeted canonical derandomizer of exponential
stretch implies that BPP = P (see Theorem 4.11), which in turn implies the
existence of a p-robust canonical derandomizer of exponential stretch (see Theo-
rem 4.5 or Theorem 4.9). Starting with a generator that satisfies Definition 4.2,
one can easily prove that, for every polynomial p′, it holds that BPP is p′-
effectively in P , where the proof is actually more direct than the corresponding
25 For Definitions 4.1 and 4.2 super-exponential stretch is impossible because we can

encode in x ∈ {0, 1}�(k) the list of all (k +1)-bit long strings that do not appear as a
prefix of any string in {G(s) : s ∈ {0, 1}k}, which yields a linear-time distinguisher
of gap at least 1/2. In case of Definition 4.3, super-exponential stretch is impossible
because of a distinguisher that output 1 if and only if the tested string starts with
0k+1, and so has a distinguishing gap of at least 2−(k+1). Indeed, in both cases we
ruled out �(k) ≥ 2k+1.

26 One such reason was noted in Footnote 15: If E requires exponential size circuits,
then such a “separator” exists.
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non-uniform

(Def. 4.1)

uniform (1st)

(Def. 4.2)

(Def. 4.3)

p-robust

targeted
BPP = P

BPP = P

effectively

(Def. 4.10)

Fig. 3. Relations among various notions of canonical derandomizers (of exponential
stretch). Solid arrows indicate syntactic implications (which hold for any generator),
whereas dashed arrows indicate existential implications.

direction of Theorem 4.9. We are done by using the other direction of The-
orem 4.9 (i.e., the construction of p-robust canonical derandomizer based on
p′-effective containment of BPP in P).

5 Extension: The Full “Stretch vs Time” Trade-Off

In this section we extend the ideas of the previous section to the study to gen-
eral “stretch vs derandomization time” trade-off (akin to the general “hardness
vs randomness” trade-off). That is, here the standard hardness vs randomness
trade-off takes the form of a trade-off between the stretch function of the canoni-
cal derandomizer and time complexity of the deterministic class containing BPP.
The robustness (resp., effectiveness) function will also be adapted accordingly.

Theorem 5.1 (Theorem 4.9, generalized): For every function t : N → N, the
following two conditions are equivalent.

1. For every two polynomials p0 and p, it holds that BPtime(p0) is (p ◦ t)-
effectively contained in Dtime(poly(p ◦ t ◦ p0)).

2. For every polynomial p, there exists a (p ◦ t)-robust canonical derandomizer
of stretch 	p◦t :N→N such that 	p◦t(k) def= (p◦t)−1(2Ω(k)) = t−1(p−1(2Ω(k))).

Furthermore, the hidden constants in the Ω and poly notation are independent
of the functions t, p and p0.

Indeed, Theorem 4.9 follows as a special case (when setting t(n) = n), whereas
for t(n) ≥ 2n both conditions hold trivially. Note that for t(n) = 2εn (resp.,
t(n) = 2nε

), we get 	p◦t(k) = Ω(k/ε)) (resp., 	p◦t(k) = Ω(k)1/ε).
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Proof: We closely follow the proof of Theorem 4.9, while detailing only the
necessary modifications. Starting with the proof that Condition 2 implies Con-
dition 1, we let Π ∈ BPtime(p0), Ψ and A be as in the original proof. Now,
for any polynomial p, we consider the promise problem Ψ ′ = (Ψ ′

yes, Ψ
′
no) such

that Ψ ′
yes = {x ∈ Ψyes : Pr[AG(x) = 1] > 0.6} and Ψ ′

no = {x ∈ Ψno :
Pr[AG(x) = 1] < 0.4}, where AG is the algorithm obtained by combining A
with a (p ◦ t)-robust derandomizer G of stretch 	p◦t. Then, Proposition 4.4 im-
plies that for every probabilistic (p ◦ t)-time algorithm F and all sufficiently
large k, it holds that Pr[F (1�(k)) ∈ ∇(Ψ, Ψ ′) ∩ {0, 1}�(k)] < 40/(p ◦ t)1/3(	(k)).
Since G has stretch 	p◦t, it follows that on input an n-bit string algorithm AG

uses 	−1
p◦t(n) = O(log(p ◦ t)(n)) many coins, and thus we can also fully de-

randomize it in time poly((p ◦ t)(n)). Thus, Ψ ′ ∈ Dtime(poly(p ◦ t)), and it
follows that Π ′ ∈ Dtime(poly(p ◦ t ◦ p0)), where Π ′ denotes the “unpadded
version” of Ψ ′. Concluding that Π is ((p ◦ t)1/3/40)-effectively contained in
Dtime(poly(p ◦ t ◦ p0)), and that the same holds for any Π ∈ BPtime(p0) and
every polynomial p, we have established that Condition 2 implies Condition 1.

We now turn to proving the converse (i.e., that Condition 1 implies Condi-
tion 2). Again, we merely go through the proof of Theorem 4.5, except that
here we construct a set Sn of size poly(p ◦ t)(n). Specifically, the discrepan-
cies we aim at are linearly related to 1/(p ◦ t)(n), and we can afford spending
time poly(p ◦ t)(n) in the construction. We shall indeed make use of this al-
lowance, since we can only rely on the (t′-effective) containment of BPtime(p0)
in Dtime(poly(p ◦ t ◦ p0)), where t′ = poly(p ◦ t) = poly(p) ◦ t. The rest of the
argument proceeds analogously to the proof of Theorem 4.9. We note that the
aforementioned hypothesis regarding BPtime(p0) is only used when determinis-
tically reducing (in time poly(p◦ t)) the construction of Sn to a fixed problem Π
in BPtime(p0), where p0(m) = m4 (as in the proof of Theorem 4.9). Thus, the
reduction fails only if at least one of the queries made by it is answered incor-
rectly by the problem in D def= Dtime(poly(p ◦ t ◦ p0)) that is used to t′-effective
place Π in D. Randomly guessing the the index of the (wrongly answered) query,
we hit an m-bit long instance in the symmetric difference with probability at
least 1/poly(p(t(n))), where m = Ω(	(k)), which contradicts the hypothesis that
BPtime(p0) is t′-effectively contained in D.27

6 Open Problems

We start by recalling the famous open problem regarding whether the a full
derandomization of standard decision problems implies the same for promise
problems. That is, assuming that any decision problem in BPP is in P , does it
follow that BPP = P?28

27 Here, too, m = Θ(Õ(p(t(n))2 · n) actually holds, and so it actually suffices to set
t′(m) = poly(m).

28 Formally, let D denote the set of all promise problems having a trivial promise; that
is, a promise problem (Πyes, Πno) is in D if Πyes∪Πno = {0, 1}∗. Then, the question
is whether BPP ∩ D = P ∩ D implies BPP = P .
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One problem that arises from the current work refers to the relationship be-
tween the two uniform definitions of canonical derandomizers (i.e., Definitions 4.2
and 4.3). Recall (see Section 4.5) that the existence of generators (of exponen-
tial stretch) that satisfy Definition 4.2 implies the existence of generators (of
exponential stretch) that satisfy Definition 4.3, but the converse is not clear.

Another open problem refers to the deriving of analogous results regarding the
derandomization of AM (or AM ∩ coAM). Here the canonical derandomizer
should be computable in non-deterministic poly(2k · 	(k))-time, where computa-
tion by non-deterministic machines refers to the so called “single-value” model
(see, e.g., [23] or [9, Def. 5.13]). The problem in reversing the “pseudorandomness
to derandomization” connection refers to a tension between the distinguishers
used to argue about the derandomization versus our need to handle them in
the construction of the canonical derandomizer. We would welcome any result,
even for a targeted version and even for derandomizing some subclass such as
AM∩ coAM or SZK.

Finally, we return to the question raised in passing in Section 1.4. Specifically,
we ask which search problems can be solved by deterministic polynomial-time re-
ductions to BPP. Denoting the class of such search problems by C, we note that
Theorem 3.5 implies that C contains all search problems that have a companion
that is a BPP-search problem. The converse holds in the special case that the
target of the reduction is a standard decision problem (and the reduced search
problem has a trivial promise at the instance level (see below)). Let us con-
sider the general case and see what happens. Suppose that the search problem
(Ryes, Rno) is reducible in deterministic polynomial-time to Π ∈ BPP. Denot-
ing the oracle machine effecting the reduction by M , we consider the search
problem (R′

yes, R
′
no) such that (x, y) ∈ R′

yes if Mf (x) = y for some f that
is consistent with Π and (x, y) ∈ R′

no otherwise.29 The correctness of the re-
duction implies that SR′

yes
⊇ SRyes whereas R′

no ⊇ Rno, which means that if
SRyes ∪ SRno = {0, 1}∗, then (R′

yes, R
′
no) is a companion of (Ryes, Rno). Now

if Π is a standard decision problem, then f is unique; hence, R′
yes(x) is a sin-

gleton if x ∈ SR′
yes

and is empty otherwise (since SR′
no

= {0, 1}∗ \ SR′
yes

). In
this case membership of (x, y) in R′

yes can be easily tested by checking whether
MΠ(x) = y. The same holds if the reduction is “smart” (i.e., avoids making
queries that violate the promise, cf. [12]),30 but in general it is not clear what
happens.

Acknowledgments. We are grateful to Noga Alon, Or Meir, Madhu Sudan, and
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Dieter van Melkebeek, Amnon Ta-Shma, and Salil Vadhan for their comments
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29 Saying that f is consistent with Π = (Πyes, Πno) means that f(x) = 1 for every
x ∈ Πyes, whereas f(x) = 0 for every x ∈ Πno. Indeed, the value of f on inputs that
violate the promise (i.e., x 	∈ Πyes ∪ Πno) is arbitrary.

30 We note, however, that the reduction used in the proof of Theorem 3.5 is not smart.
Furthermore, we doudt that a smart reduction can be found.
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Appendices: Prior Proofs of the Main Result
(Theorem 4.5)

The current proof of Theorem 4.5 is the second simplification we found: It is
a third incarnation of the same underlying principles, but it hides the original
inspiration to our ideas, which are rooted in [10]. Since we do have written
records of these prior proofs, and since they may be of some interest, we decided
to include them in the current appendix.

Our starting point was the work of Goldreich and Wigderson [10], which
studied pseudorandomness with respect to (uniform) deterministic observers. In
particular, they show how to construct, for every polynomial p, a generator of
exponential stretch that works in time polynomial in its output and fools all
deterministic p-time tests of the next-bit type (a la [2]). They observe that an
analogous construction with respect to general (deterministic p-time) tests (or
distinguishers) would yield some non-trivial derandomization results (e.g., any
unary set in BPP would be placed in P). Thus, they conclude that Yao’s result31

asserting that fooling all efficient next-bit tests implies fooling all efficient dis-
tinguishers relies on the fact that the class of test includes probabilistic p-time
algorithms and not only deterministic ones.

Our key observation is that the gap between probabilistic next-bit tests and
deterministic ones essentially disappears if BPP = P . Actually, the gap disap-
pears if we generalize the notion of next-bit tests so to allow the (deterministic)
tester to output a guess of the probability that the next bit equals 1 (rather than
a guess for the actual value of the next bit), and consider the correlation between
the corresponding random variables. Indeed, assuming that BPP = P , allows to

31 Attributed to oral presentations of [27].
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deterministically emulate a probabilistic p-time next bit test by a (generalized)
deterministic p′-time next bit test, where p′ is a polynomial that depends only
on p. Plugging this into the construction of [10], which can be shown to fool also
(generalized) deterministic p′-time next bit test, we obtain the desired generator
(which produces 	-bit outputs in time poly(p′(	))). A crucial point in the fore-
going argument is that the next-bit test does not need to invoke the generator,
which is not feasible because the generator runs for more time than the potential
tests.

The foregoing argument led to the first proof, which is presented in Ap-
pendix A.2. Subsequently we found a more direct approach, which is presented
in Appendix A.1. This approach is more transparent and amenable to variations
than the first one (but less so in comparison to the proof presented in Section 4.2).
Specifically, rather than working with (generalized) next-bit tests, we directly
work with (probabilistic p-time) distinguishers, and adapt the argument of [10]
to apply in this context. It turns out that in order for this to work, we only need
to approximate the probability that a fixed probabilistic p-time distinguishers
outputs 1 when presented with random (	− i)-bit long extensions of some fixed
i-bit long strings, for i = 1, ..., 	. Assuming that BPP = P , allows to determin-
istically approximate these probabilities (again, in p′-time, where p′ = poly(p)),
and so we are done. Needless to say, the fact that such approximations suffices
is specific to (our adaptation of) the construction of [10].

A.1 An Alternative Proof of Theorem 4.5 (via Derandomizing a
FPTAS)

The alternative proof of Theorem 4.5 proceeds by generalizing the main idea that
underlies the work of Goldreich and Wigderson [10], while using the hypothesis
(i.e., BPP = P) to extend its scope to probabilistic (rather than deterministic)
observers. Specifically, for every polynomial p, they presented a polynomial-
time construction of a sample space that fools any p-time deterministic next-bit
test. The construction is iterative, where in each iteration the next bit of each
string in the sample space is determined such that the resulting space fools all
relevant next-bit tests. Here we consider any (p-time) probabilistic distinguisher,
and seek to determine the next bit so that the probability that this distinguisher
output 1 (on a random extension of the current sample space) is approximately
maintained. Towards this end, we need to approximate the probability that
a fixed p-time probabilistic algorithm outputs 1 on a random extension of the
current prefix. Our key observation is that, due to the hypothesis that BPP = P ,
this quantity can be approximated in deterministic polynomial-time. The use of
this hypothesis is far from being surprising, since (as noted before) the conclusion
of Theorem 4.5 implies that, in some “effective” sense, BPP does equal P .

Proof: We follow the general outline of the proof of [10, Thm. 2], while com-
menting (mostly in footnotes) about the points of deviation. Let us fix an
arbitrary polynomial p, and consider a suitable exponential function 	 (to be
determined later). Our aim is to construct a sequence of mappings G :{0, 1}k→
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{0, 1}�(k), for arbitrary k ∈ N, that meets the requirements of a p-robust canoni-
cal derandomizer. However, it will be more convenient to construct a sequence of
sets S = ∪k∈NS�(k) such that Sn ⊆ {0, 1}n, and let G(i) be the ith string in S�(k),
where i ∈ [2k] ≡ {0, 1}k. (Thus, the function 	 :N→N satisfies 	(log2 |Sn|) = n,
whereas we shall have |Sn| = poly(n).) The set Sn should be constructed in
poly(n)-time (so that G is computable in poly(2k · 	(k))-time), and the pseudo-
randomness requirement of G coincides with requiring that, for every probabilis-
tic p-time algorithm D, and all sufficiently large n, it holds that32∣∣∣∣∣Pr[D(Un)=1]− 1

|Sn|
·
∑
s∈Sn

Pr[D(s)=1]

∣∣∣∣∣ <
1

p(n) .

(14)

Specifically, we consider an enumeration of (modified)33 probabilistic machines
running within time p(n) on input of length n, and focus on fooling the m =
m(n) < p(n) first machines in the sense of Eq. (14). Let ε = 1/p(n), and M be
a generic machines that we wish to fool.

We construct Sn in (roughly) n iterations, such that in iteration i we construct
Sn,i ⊆ {0, 1}i. We start with Sn,k = {0, 1}k, where k = 2 log2(2nm/ε), and let
K = 2k. In the i + 1st iteration, we consider the function fM : [K] → [0, 1]
representing the probability that M outputs 1 on a random extension of each of
the K strings in Sn,i; that is, fM (j) = Pr[M(x(j)Un−i)=1], where x(j) is the jth

string in Sn,i ⊆ {0, 1}i. (The function fM represents M ’s average output on all
possible (n− i)-bit long extensions of all strings in Sn,i.)34 Our aim is to find a
vector u ∈ {0, 1}K such that, for each machine M (among the first m machines),
it holds that the average value of Pr[M(x(j)u[j]Un−i−1)=1] is ε/n-close to the
average value of fM (j); that is,∣∣∣∣∣∣ 1

K

∑
j∈[K]

Pr[M(x(j)u[j]Un−i−1)=1]− 1
K
·
∑

j∈[K]

fM (j)

∣∣∣∣∣∣ <
ε

n .
(15)

Once such a vector u is found, we extend Sn,i into Sn,i+1 in the natural manner;
that is,

Sn,i+1
def= {x(j)u[j] : where x(j) is the jth string in Sn,i} ⊂ {0, 1}i+1. (16)

32 In [10, Thm. 2] the set Sn was only required to fool deterministic tests of the next-bit
type.

33 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

34 In contrast, in [10], the function fM (which is denoted vM there) represented M ’s
attempt to guess the i + 1st bit of a string in Sn, based on the i-bit long prefix of
that string. Furthermore, since in [10] the machine M is deterministic, the function
fM (there) can be constructed by invoking M on K different i-bit strings.
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It follows that Sn
def= Sn,n satisfies Eq. (14), because, for each of the aforemen-

tioned M ’s and for each i ∈ [n− k, n− 1], it holds that

∣∣∣∣∣∣ 1
|Sn,i|

·
∑

s∈Sn,i

Pr[M(s)=1]− 1
|Sn,i+1|

·
∑

s∈Sn,i+1

Pr[M(s)=1]

∣∣∣∣∣∣ <
ε

n
(17)

since the terms in the l.h.s are represented by the function fM defined at the ith

iteration, whereas the terms in the r.h.s correspond to the function fM defined
in the next iteration.

It remains to specify how a suitable vector u ∈ {0, 1}K is found, in each
iteration. This is done by using a pairwise independent sample space for strings
of length K, while recalling that such spaces can be constructed in poly(K)-time
(cf., e.g., [3]). Two issues arise:

1. Showing that such a sample space must always contain a suitable vec-
tor u ∈ {0, 1}K; that is, a vector u ∈ {0, 1}K satisfies Eq. (15). This is
quite an immediate consequence of the fact that, when defining qM,j(σ) def=
Pr[M(x(j)σUn−i−1)=1], we can write Eq. (15) as∣∣∣∣∣∣ 1

K

∑
j∈[K]

qM,j(u[j])− 1
K
·
∑

j∈[K]

∑
σ∈{0,1}

qM,j(σ)
2

∣∣∣∣∣∣ <
ε

n .
(18)

Indeed, when u is selected from a pairwise-independent sample space of
{0, 1}K, Eq. (18) holds with probability at least 1− (1/((ε/n)2K)), and the
claim follows whenever (ε/n)2K > m.
Actually, we shall use the fact that, with probability at least
1− (1/((ε/2n)2K)), a modified version of Eq. (18) holds, where in the modi-
fication the upper bound ε/n is replaced by the (tighter) upper bound ε/2n.

2. Showing that we can distinguish in deterministic polynomial-time whether a
given vector u ∈ {0, 1}K satisfies the aforementioned tighter form of Eq. (18)
or violates Eq. (15).
This issue hardly arose in [10], since there fM (j) referred to the output of a
deterministic machine on fixed string (i.e., the jth string in Sn,i). But here
fM (j) refers to the expected output of a probabilistic machine on a random
extension of a fixed string. Nevertheless, fM (j) can be approximated to
within an additive term of ε/4n by a simple probabilistic algorithm that
merely invokes M sufficiently many (i.e., O(n/ε)2) times on such random
extensions, and ditto for qM,j(·). Now, using the hypothesis BPP = P and
applying Corollary 3.6,35 we conclude that qM,j(·) can be approximated well-
enough (i.e., up to an additive term of ε/4n) by a deterministic polynomial-
time algorithm. Formally, the approximation problem is defined for inputs of

35 Formally, there is a problem here since we do not have a FPTAS for the quantities
qM,j(·) ∈ [0, 1], but we do have a FPTAS for the quantities 1 + qM,j(·) ∈ [1, 2] and
this suffices here.
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the form (M, 1n, x), where M and n are as above and x is a string of length
at most n (i.e., in our application, x = x(j)σ ∈ {0, 1}i+1, where x(j) is the
jth string in Sn,i).

Thus, in each iteration we can find a vector u as desired, an consequently we
construct the desired set Sn in time that is polynomial in n. The theorem
follows.

Comment: The generator constructed in the foregoing proof does not satisfy
the notion of a canonical derandomizer stated in Definition 4.2. Indeed, in this
case, a (deterministic) polynomial-time finder F , which runs for more time than
the foregoing generator, can find a string x that allows very fast distinguishing.
Details follow.

Referring to the foregoing construction of a pseudorandom generator G, we
show how to find in polynomial-time a string x ∈ {0, 1}�(k) such that (x, G(Uk))
and (x, U�(k)) are easy to tell apart. Actually, we refer to a specific implemen-
tation of the construction; that is, to a specific implementation of the pairwise
independence sample space, where the aspect we rely on is that this sample space
is a vector space of low dimension.

Recall that the set Sn, which is the support of G(Uk) (for n = 	(k)), is
constructed by concatenating n vectors, where each vector is an 2k-bit long
sequence taken from a pairwise independence sample space. Specifically, consider
the sample space generated by strings of length k+1 such that the jth coordinate
of the vector generated by r1 · · · rk+1 ∈ {0, 1}k+1 equals

∑k+1
h=1 jhrh, where jh is

the hth bit in the (k +1)-bit long binary expansion of j ∈ [2k]. Thus, each of the
vectors used in the construction of Sn reside in the very same (k+1)-dimensional
vector space.

Then, the finder F can just construct Sn (as done by G), and record the
sequence uk+1, ..., un of vectors taken in each of the n − k iterations (or rather
their succinct representation). In fact, it suffices to record the indices of a sub-
sequence, of length d ≤ k +2, that sums-up to the all zero vector; that is, record
(i1, ..., id) such that the sum of the vectors taken in iterations i1, ..., id equals
the all-zero vector (i.e.,

∑d
h=1 uih

= 0). Now, F just records such a sequence in
a prefix of x, and the distinguisher D just outputs the XOR value of the bits
that appear in these positions. Clearly, D(x, z) = 0 for every z ∈ Sn, whereas
Pr[D(x, U�) = 0] = 1/2.

A.2 Another Alternative Proof of Theorem 4.5 (via next-bit tests)

The alternative proof of Theorem 4.5 follows by combining two results: The
first is an unconditional result that asserts a generator that passes the next-
bit test with respect to deterministic observers, and the second is a conditional
deterministic analogue of the fact that next-bit unpredictability implies pseudo-
randomness. The first result is a technical generalization of [10, Thm. 2] (see The-
orem A.2 below), whereas the second result uses the hypothesis that BPP = P .
The use of this hypothesis should not come at a surprise, since as noted before
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the conclusion of Theorem 4.5 implies that in some “effective” sense BPP does
equal P . (Thus, as observed in [10], an unconditional implication of the foregoing
type, would yield an unconditional derandomization of BPP.)

Next-bit unpredictability, generalized. Let us first present a natural generalization
of the notion of next-bit unpredictability, which is pivotal to our argument.
Recall that the standard notion refers to the probability of guessing the next
bit in a sequence, when given its prefix. That is, in the standard formulation,
the predictor outputs a bit, and the question is whether this bit matches the
actual next bit. Now, consider a generalization in which the predictor output its
estimate of the probability that the next bit is 1, and normalizing the “payoff”
accordingly. That is, the generalized predictor outputs a probability p ∈ [0, 1],
and gets payoff 2p− 1 if the outcome (of the next bit) is 1 and payoff 1− 2p if
the outcome is 0. (In general, the payoff is (1− 2p) · (−1)σ, where σ denotes the
outcome of the next bit.) Note that such a generalization allows the capture the
intuitive case that the predictor wishes to pass on the guess, collect no potential
gain but also suffer from no potential loss.

In the context of probabilistic algorithms, nothing is gained by this general-
ization, because a a probabilistic predictor may maintain the expected payoff by
replacing the output p ∈ [0, 1] with a biased coin toss (i.e., a random Boolean
value that is biased with probability p towards 1).36 But this generalization
seems more powerful in the context of deterministic predictors, and we shall
thus refer to it.

It will be more convenient to replace prediction probabilities with correlation,
as we have already done implicitly above. Thus, the predictors will output a
value in v ∈ [−1, +1] (rather than in [0, 1]) and collect the payoff v · (−1)σ,
where σ denotes the outcome of the next bit. Thus, v corresponds to 1 − 2p in
the forgoing discussion, and v · (−1)σ corresponds to the correlation of v with
(−1)σ.

Definition A.1 (next bit unpredictability, generalized): For 	 : N → N, let G :
{0, 1}∗ → {0, 1}∗ be such that for every s ∈ {0, 1}∗ it holds that |G(s)| = 	(|s|).

– For ε : N → [0, 1], we say that A : N × {0, 1}∗ → [−1, +1] has correlation at
most ε with the next bit of G if for all sufficiently large k and all i < 	(k), it
holds that

E[A(1�(k), x1, ..., xi) · (−1)xi+1] ≤ ε(	(k)), (19)

where (x1, ..., x�(k)) ← G(s) for a uniformly selected s ∈ {0, 1}k.
We will often omit 1�(k) from the list of inputs to A.

– We say that G is next-bit unpredictable by a class of algorithms A with respect
to an advantage ε if every algorithm in A has correlation at most ε with the
next bit of G.

36 That is, the expected payoff with respect to a random variable ζ ∈ {0, 1} is main-
tained, because the original payoff is E[(1 − 2p) · (−1)ζ ], whereas the payoff of the
resulting Boolean predictor is p · E[(−1)ζ+1] + (1 − p) · E[(−1)ζ ].
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We say that G is next-bit t-unpredictable if G is next-bit unpredictable with
respect to advantage 1/t by the class of deterministic t-time algorithms that
have output in [−1, +1].

By a straightforward extension of the ideas of [10], we obtain the following
unconditional result.

Theorem A.2 ([10, Thm. 2], generalized): For every polynomial p, there exist
an exponential function 	 and a deterministic algorithm G that satisfies the first
condition of Definition 4.3 such that G is next-bit p-unpredictable.

The original result was stated in terms of predicting probabilities, and corre-
sponds to the special case in which the algorithm’s output is always in {−1, +1}
(where, in this case, E[A(x1, ..., xi)·(−1)xi+1 ] equals 2·Pr[A(x1, ..., xi)=(−1)xi+1 ]−
1). The original proof extends in a straightforward manner; see Appendix A.3.

The following result presents a conditional transformation from next-bit un-
predictability (by deterministic algorithms) to pseudorandomness (which holds
with respect to probabilistic algorithms). This transformation relies on the fact
that the hypothesis BPP = P allows for derandomizing potential probabilis-
tic next-bit predictors, which are obtained (in the usual way) from potential
distinguishers.

Theorem A.3 (next-bit unpredictability implies pseudorandomness): If BPP =
P, then, for every polynomial p, there exists a polynomial p′ such that the fol-
lowing holds: If G satisfies the first condition of Definition 4.3 and is next-bit
p′-unpredictable, then G is a p-robust canonical derandomizer.

Indeed, an unconditioned (but weaker) version of Theorem A.3 (i.e., one that
does not assume BPP = P (but considers only quadratic-time deterministic
distinguishers)) was discussed in [10], and was observed to imply some deran-
domization (albeit weaker than the one stated in Proposition 4.4, since [10] could
not allow probabilistic distinguishers in Definition 4.3). Goldreich and Wigderson
saw this implication as evidence to the unlikeliness of proving such a version [10].
Our point, however, is that the assumption BPP = P does allow to prove that
next-bit unpredictability implies pseudorandomness (in an adequate sense (i.e.,
as in Definition 4.3)).

Proof: Suppose towards the contradiction that G is not pseudorandom in
the sense of Definition 4.3. That is, there exists a probabilistic p-time distin-
guisher with a distinguishing gap of δ(k) that for infinitely many k is larger
than 1/p(	(k)). Applying the standard transformation from distinguishing to
predicting (cf., e.g., [8, Sec. 3.3.5]), we obtain a probabilistic p-time predictor
A that outputs a binary value (say in {−1, 1}) and has a correlation of at least
ε(k) def= δ(k)/	(k) in guessing the next bit of G (wrt a prefix of some length).37

37 As stressed in [10], the resulting predictor is probabilistic even if we start with a
deterministic distinguisher.
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More precisely, for infinitely many k, there exists i < 	(k), such that

E[A(1�(k), x1, ..., xi) · (−1)xi+1] ≥ ε(k), (20)

where (x1, ..., x�(k)) ← G(s) for a uniformly selected s ∈ {0, 1}k.
Next, we consider a probabilistic FPTAS for approximating the quantity q

such that q(1�(k), x) def= E[A(1�(k), x)]. Note that q : {0, 1}i → [−1, 1] has the
same correlation that A has with the i+1st bit of G, because for every x and every
random variable ζ ∈ {0, 1} it holds that E[q(x) · (−1)ζ] = E[A(x) · (−1)ζ ]. Thus,
our aim is to obtain a deterministic FPTAS for q, which we do by noting that the
existence a probabilistic FPTAS is straightforward, and invoking Corollary 3.6.
Details follow.

A probabilistic FPTAS for q is obtained by invoking A for O(	/ε2) times
and outputting the average value.38 This yields an algorithm A′ with output
in [−1, +1] such that for every x it holds that Pr[A′(x) = q(x) ± ε/4] > 2/3.
At this point we invoke Corollary 3.6 (or rather its furthermore part), and ob-
tain a deterministic algorithm A′′ that satisfies A′(x) = q(x) ± ε/2 for every x.
Furthermore, A′′ has polynomial running time, where the polynomial p′ only
depends on the polynomial p (since p determines the running time of A as well
as ε). Note that for every x and every random variable ζ ∈ {0, 1} it holds that
E[A′′(x) · (−1)ζ ] > E[q(x) · (−1)ζ] − ε/2, which implies that A′′ has correlation
at least ε(k)/2 with the next-bit of G(Uk) for infinitely many k. Since the entire
argument can be applied to any p-time distinguisher, yielding a p′-time predic-
tor of correlation greater than 1/p′ (for the same p′, which only depends on
p), we derive a contradiction to the p′-unpredictability hypothesis. The theorem
follows.

Comment: The generator constructed in the foregoing proof does not satisfy
the notion of a canonical derandomizer stated in Definition 4.2. Indeed, in this
case, a probabilistic polynomial-time finder F , which runs for more time than
the foregoing generator, can find a string x that allows very fast distinguishing.
The details are as at the end of Appendix A.2.

A.3 Proof of Theorem A.2

It will be more convenient to restate Theorem A.2 it terms of {−1, 1}. Thus, the
generator outputs sequences over {−1, 1} rather than sequences over {0, 1}. Also,
it will be convenient to consider constructing the support of the generator, and
assuming that it just outputs a strong that is uniformly distributed in its support.
Since we are interested in generators of exponential stretch, these (support) sets
have size that is polynomial in the length of the strings in them, since the seed
length is logarithmic in these set sizes. Specifically, we refer to sets of the form
38 Actually, this does not yield a FPTAS, but rather an approximation up to an additive

term of ε/2, We can present this as a FPTAS for the value of q + 2 ∈ [1, 3], and so
proceed via the FPTAS formalism.
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S = ∪n∈NSn, where Sn ⊂ {−1, 1}n, and say that such a set is polynomial-time
constructible if there exists a polynomial-time algorithm that on input 1n outputs
the list of all sequences in Sn.

Theorem A.4 (Theorem A.2, restated): For every polynomial p, there exists a
polynomial-time constructible set S = ∪n∈NSn such that, for every deterministic
algorithm A of running-time p and output in [−1, +1], and for all sufficiently
large n and all i < n, it holds that E[A(x1, ..., xi) · xi+1] ≤ 1/p(n), where x =
(x1, ..., xn) is uniformly selected in Sn.

The following text was essentially reproduced from [10], while introducing the
necessary adaptations (which are quite minor).

Proof: Consider an enumeration of (modified)39 deterministic machines run-
ning within time p(n) on input of length n, and suppose that we wish to fool
the m = m(n) < p(n) first machines in the sense that we wish to upper bound
its correlation with the next bit better than ε, where ε = 1/p(n). Let M be one
of the machines we wish to fool.

We construct Sn in (roughly) n iterations, such that in iteration i we construct
Sn,i ⊆ {−1, 1}i. We start with Sn,k = {−1, 1}k, where k = 2 log2(m/ε), and
let K = 2k. In the i + 1st iteration, we consider the vector vM ∈ [−1, +1]K

representing the output of M on each of the K possible i-bit long strings; that is,
vM [j] = M(x(j)), where x(j) is the jth string in Sn,i ⊆ {−1, 1}i. (This represents
M ’s attempt to correlate its output with the i + 1st bit of a string uniformly
selected in Sn, based on the i-bit long prefix of that string.) Our aim is to find
a vector u ∈ {−1, 1}K that has low correlation with all the vM ’s. Once such a
vector u is found, we extend Sn,i into Sn,i+1 in the natural manner; that is,

Sn,i+1
def= {x(j)u[j] : where x(j) is the jth string in Sn,i} ⊂ {−1, 1}i+1. (21)

It follows that Sn
def= Sn,n satisfies the small correlation requirement; that is, for

each of the above M ’s and for each i < n, the correlation of M(x1 · · ·xi) with
xi+1, when x is uniformly selected in Sn, is at most ε.

It remains to specify how a suitable vector u ∈ {−1, 1}K is found, in each
iteration. This is done by using a pairwise independent sample space for strings
of length K, while recalling that such spaces can be constructed in poly(K)-time
(cf. [3]). Thus, it suffices to show that such a sample space must always contain
a suitable vector u ∈ {−1, 1}K. This is quite an immediate consequence of the
following claim.

Claim: Let v ∈ [−1, +1]K be arbitrary, and u be a sequence of K uniformly-
distributed pairwise-independent elements of {−1, 1}. Then, the probability that
39 Recall that one cannot effectively enumerate all machines that run within some

given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.
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the correlation between u and v is greater than ε (i.e.,
∑

i uivi > εK) is strictly
less than 1

ε2K .

Proof: For each j ∈ [K], we define a random variable ηj ∈ [−1, +1] such that

ηj
def= v[j] · u[j]. Since v is fixed and u is a sequence of K uniformly-distributed

pairwise-independent bits, it follows that the ηj ’s are pairwise-independent and
E(ηj) = 0 for each j ∈ [K]. Using Chebyshev’s Inequality, we have

Pr

⎡⎣∣∣∣∣∣∣
∑

j∈[K]

ηj

∣∣∣∣∣∣ ≥ ε ·K

⎤⎦ ≤ Var(
∑

j ηj)
(εK)2

=
1

ε2K

and the claim follows. ��

Since ε2K > m, it follows that the aforementioned sample space contains a
vector u that has correlation at most ε with each of the m vectors representing
the m machines (i.e., the vectors vM ’s). Thus, we construct the desired set Sn

in time polynomial in n, and the theorem follows.



Notes on Levin’s Theory of Average-Case

Complexity

Oded Goldreich

Abstract. In 1984, Leonid Levin initiated a theory of average-case com-
plexity. We provide an exposition of the basic definitions suggested by
Levin, and discuss some of the considerations underlying these defini-
tions.

Keywords: Average-case complexity, reductions.

This survey is rooted in the author’s (exposition and exploration) work [4],
which was partially reproduded in [1]. An early version of this survey appeared
as TR97-058 of ECCC. Some of the perspective and conclusions were revised
in light of a relatively recent work of Livne [21], but an attempt was made
to preserve the spirit of the original survey. The author’s current perspective
is better reflected in [7, Sec. 10.2] and [8], which advocate somewhat different
definitional choices (e.g., focusing on typical rather than average performace of
algorithms).

1 Introduction

The average complexity of a problem is, in many cases, a more significant mea-
sure than its worst case complexity. This has motivated the development of a
rich area in algorithmic research – the probabilistic analysis of algorithms [14,16].
However, historically, this line of research focuses on the analysis of specific al-
gorithms with respect to specific, typically uniform, probability distributions.

The general question of average case complexity was addressed for the first
time by Levin [18]. Levin’s work can be viewed as the basis for a theory of average
NP-completeness, much the same way as Cook’s [2] (and Levin’s [17]) works are
the basis for the theory of NP-completeness. Subsequent works [9,22,10,21] have
provided additional complete problems. Other basic complexity problems, such
as decision versus search, were studied in [1].

Levin’s Average-Case Complexity Theory in a Nutshell. An average case com-
plexity class consists of pairs, called distributional problems. Each such pair
consists of a decision (resp., search) problem and a probability distribution on
problem instances. We focus on the class DistNPdef= 〈NP, P-computable〉, defined
by Levin [18], which is a distributional analogue of NP: It consists of NP deci-
sion problems coupled with distributions for which the accumulative measure is
polynomail-time computable. That is, P-computable is the class of distributions

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 233–247, 2011.
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for which there exists a polynomial time algorithm that on input x computes the
total probability of all strings y ≤ x. The easy distributional problems are those
solvable in “average polynomial-time” (a notion which surprisingly require care-
ful formulation). Reductions between distributional problems are defined in a
way guaranteeing that if Π1 is reducible to Π2 and Π2 is in average polynomial-
time, then so is Π1. Finally, it is shown that the class DistNP contains a complete
problem.

Levin’s Average-Case Theory, Revisited. Levin’s laconic presentation [18] hides
the fact that several non-trivial choices were in the development of the average-
case complexity theory. We discuss some of this choices here. Firstly, we note
that our motivation is providing a theory of efficient computation (as suggested
above), rather than a theory of infeasible computations (e.g., as in Cryptog-
raphy). Recall that a theory of useful-for-cryptography infeasible computations
does exist (cf., [5,6]). A key difference between these two theories is that in Cryp-
tography we seek problems for which one may generate instance-solution pairs
such that solving the problem given only the instance is hard. In the theory of
average-case complexity (considered below), we wish to draw the line between
problems that are easy to solve and problems that are hard to solve (on the
average), but we do not require an efficient procedure for generating hard (on
the average) instances coupled with solutions.

Secondly, one has to admit that the class DistNP (i.e., specifically, the choice
of distributions) is somewhat problematic. Indeed, P-computable distributions
seem “simple” (albeit one may reconsider this view in light of [21]), but it is
not clear if they exhaust all natural distributions. A much wider class, which
certainly contains all natural distributions, is the class, denoted P-samplable, of
all distributions having an efficient algorithm for generting instances (according
to the distribution): Arguably, the instances of any problem that we may need to
solve in real life are generated by some efficient process, and so the latter class of
distributions (i.e., P-samplable) suffices as the scope of our theory [1]. But in this
case it becomes even harder to argue that a distributional problem that refers to
(a computational problem coupled wityh) an arbitrary P-samplable distribution
is natural. Fortunately, it was showed in [13] that any distributional problem
that is complete for DistNP=〈NP, P-computable〉, is also complete with respect
to the class 〈NP, P-samplable〉. Thus, in retrospect, Levin’s choice only makes
the theory stronger: It requires to select complete distributional problems from
the restricted class 〈NP, P-computable〉, whereas hardness holds with respect to
the wider class 〈NP, P-samplable〉.

As hinted above, the definition of average polynomial-time is less straightfor-
ward than one may expect. The obvious attempt at formulation this notion leads
to fundamental problems that, in our opinion, deem it inadequate. (For a de-
tailed discussion of this point, the reader is referred to Appendix A.) We believe
that once the failure of the obvious attempt is understood, Levin’s definition
(presented below) does look a natural one.
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2 Definitions and Notations

In this section we present the basic definitions underlying the theory of average-
case complexity. Most definitions originate from Levin’s work [18], but the reader
is advised to look for further explanations and motivating discussions else-
where (e.g., [14,11,4]). An alternative formulation, which uses probability en-
sembles (rather than a single infinite distribution) as a pivot, is presented in
[7, Sec. 10.2.1] and [8].

For sake of simplicity, we consider the standard lexicographic ordering of
binary strings, but any other efficient enumeration of strings will do.1 By writing
x < y we mean that the string x precedes y in lexicographic order, and y − 1
denotes the immediate predecessor of y. Also, we associate pairs, triples etc.
of binary strings with single binary strings in some standard manner (i.e., a
standard encoding).

Definition 1 (probability distribution functions): A distribution function μ :
{0, 1}∗ → [0, 1] is a non-decreasing function from strings to the unit interval
[0, 1] that converges to one (i.e., μ(0) ≥ 0, μ(x) ≤ μ(y) for each x < y, and
limx→∞ μ(x) = 1). The density function associated with the distribution function
μ is denoted μ′ and is defined by μ′(0) = μ(0) and μ′(x) = μ(x) − μ(x − 1) for
every x > 0.

Clearly, μ(x) =
∑

y≤x μ′(y). For notational convenience, we often describe dis-
tribution functions converging to some positive constant c �= 1. In all the cases
where we use this convention, it is easy to normalize the distribution such that
it converges to one. An important example is the uniform distribution function
μ0 defined as μ′

0(x) = 1
|x|2 · 2−|x|. (A minor variation that does converge to 1 is

obtained by letting μ′
0(x) = 1

|x|·(|x|+1) · 2−|x|.)

Definition 2 (distributional problems): A distributional decision problem (resp.,
distributional search problem) is a pair (D, μ) (resp. (S, μ)), where D : {0, 1}∗ →
{0, 1} (resp., S ⊆ {0, 1}∗ × {0, 1}∗) and μ : {0, 1}∗ → [0, 1] is a distribution
function.

In the sequel we consider mainly decision problems. Similar formulations for
search problems can be easily derived.

2.1 Distributional-NP

Simple distributions are identified with the P-computable ones. The importance
of restricting attention to simple distributions (rather than allowing arbitrary
ones) is demonstrated in [1, Sec. 5.2].

Definition 3 (P-computable): A distribution μ is in the class P-computable if
there is a deterministic polynomial time Turing machine that on input x outputs
the binary expansion of μ(x). (Indeed, the running time is polynomial in |x|.)
1 An efficient enumeration of strings is a 1-1 and onto mapping of strings to integers

that can be computed and inverted in polynomial-time.
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It follows that the binary expansion of μ(x) has length polynomial in |x|. A
necessary condition for distributions to be of interest is their putting noticeable
probability weight on long strings (i.e., for some polynomail, p, and sufficiently
large n the probability weight assigned to n-bit strings should be at least 1/p(n)).
Consider to the contrary the density function μ′(x) def= 2−3|x|. An algorithm of
running time t(x) = 2|x| will be considered to have constant on the average
running-time w.r.t this μ (since

∑
x μ′(x) · t(|x|) =

∑
n 2−n = 1).

If the distribution function μ is in P-computable, then the corresponding den-
sity function, μ′, is computable in time polynomial in |x|. The converse, however,
is false, unless P = NP (see [11]). In spite of this remark we usually present the
density function, and leave it to the reader to verify that the corresponding
distribution function is in P-computable.

We now present the class of distributional problems that corresponds to (the
traditional) class NP. Most of results in the literature refer to this class.

Definition 4 (DistNP): A distributional problem (D, μ) belongs to the class Dis-
tNP if D is an NP-predicate and μ is in P-computable. DistNP is also denoted
〈NP, P-computable〉.

A wider class of distributions, denoted P-samplable, gives rise to a wider class of
distributional NP problems, which was discussed in the Introduction: A distribu-
tion μ is in the class P-samplable if there exists a polynomial p and a probabilistic
algorithm A that outputs the string x with probability μ′(x) within p(|x|) steps.
That is, elements in a P-samplable distribution are generated in time polynomial
in their length. We comment that any P-computable distribution is P-samplable,
whereas the converse is false (provided one-way functions exist). For a detailed
discussion see [1].

2.2 Average Polynomial-Time

The following definitions, regarding average polynomial-time, may seem obscure
at first glance. Thus, it is important to point out that the naive formalizations of
the corresponding notions suffer from serious problems such as not being closed
under functional composition of algorithms, being model dependent, encoding
dependent, etc. For a more detailed discussion, see Appendix A.

Definition 5 (polynomial on the average): A function f : {0, 1}∗ → N is poly-
nomial on the average with respect to a distribution μ if there exists a constant
ε > 0 such that ∑

x∈{0,1}∗
μ′(x) · f(x)ε

|x| < ∞.

The function l(x) = f(x)ε is linear on the average w.r.t. μ.

Thus, a function is polynomial on the average if it is bounded by a polynomial
in a function that is linear on the average. In fact, the basic definition is that
of a function that is linear on the average (cf. [1]). The notion of polynomial on
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the average is the basis of the complexity class of distributional problems that
are solvable in time that is polynomial on the average.

Definition 6 (Average-P): A distributional problem (D, μ) is in the class
Average-P if there exists an algorithm A solving D, so that the running time
of A is polynomial on the average with respect to the distribution μ.

We view the classes Average-P and DistNP as the average-case analogue of P
and NP (respectively). We mention that if EXP �= NEXP (i.e., DTime(2O(n)) �=
NTime(2O(n))), then Average-P does not contain all of DistNP (see [1]).

2.3 Reducibility between Distributional Problems

We now present definitions of (average polynomial time) reductions of one dis-
tributional problem to another. Intuitively, such a reduction should be efficiently
computable, yield a valid result and “preserve” the probability distribution. The
purpose of the last requirement is to ensure that the reduction does not map
very likely instances of the first problem to rare instances of the second prob-
lem. Otherwise, having a polynomial time on the average algorithm for the sec-
ond distributional problem does not necessarily yield such an algorithm for the
first distributional problem. Following is a definition of randomized Turing re-
ductions. Definitions of deterministic and many-to-one reductions can be easily
derived as special cases.

Definition 7 (randomized reductions): We say that the probabilistic oracle Tur-
ing machine M randomly reduces the distributional problem (D1, μ1) to the dis-
tributional problem (D2, μ2) if the following three conditions hold.

Efficiency: Machine M is polynomial time on the average, where the average is
taken over the distribution μ1 and the internal coin tosses of M ; that is,
letting tM (x, r) denote the running time of M on input x and internal coin
tosses r, we require that there exists ε > 0 such that∑

x,r

μ′
1(x)μ′

0(r) ·
tM (x, r)ε

|x| < ∞,

where μ0 is the uniform distribution.
Validity: For every x ∈ {0, 1}∗,

Pr[MD2(x) = D1(x)] ≥ 2
3

where MD2(x) is the random variable (determined by M ’s internal coin
tosses) that denotes the output of the oracle machine M on input x and
access to oracle for D2.

Domination: There exists a constant c > 0 such that for every y ∈ {0, 1}∗ it
holds that

μ′
2(y) ≥ 1

|y|c ·
∑

x∈{0,1}∗
AskM (x, y) · μ′

1(x)
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where AskM (x, y) is the probability (taken over M ’s internal coin tosses) that
machine M asks query y on input x.

In the special case of deterministic Turing reductions the value of MD2(x) is
fully determined by x (rather than being a random variable) and AskM (x, y) is
either 0 or 1 (rather than being any arbitrary rational in [0, 1]). In the case of
a many-to-one deterministic reduction, for every x, there exists a unique y such
that AskM (x, y) = 1 holds.

Proposition: If (D1, μ1) is deterministically (resp., randomly) reducible to
(D2, μ2) and (D2, μ2) is solvable by a deterministic (resp., randomized) algo-
rithm of running time that is polynomial on the average, then so is (D1, μ1).

Proof: Given any reduction of (D1, μ1) to (D2, μ2) we consider the distribution
μI of the queries of the reduction on random instances distributed according to
μ1; that is,

μI(y) def=
∑

x∈{0,1}∗
AskM (x, y) · μ′

1(x).

We next decouple the original reduction to a reduction of (D1, μ1) to (D2, μI)
(via the original transformation) and a reduction by the identity transformation
of (D2, μI) to (D2, μ2). (Note that each of these reductions satisfies Definition 7.)
Thus, it suffices to establish the proposition for each of these two reductions.

1. Considering the reduction of (D1, μ1) to (D2, μI), we note that when this
reduction is invoked on inputs distributed according to μ1, it makes queries
that are distributed according to μI . Thus, if (D2, μI) is solvable in
polynomial-time on the avearge, then so is (D1, μ1).

2. Considering the reduction (by the identity transformation) of (D2, μI) to
(D2, μ2), it suffices to show that if t : {0, 1}∗ → N is polynomial on the
average w.r.t μ2, then t is polynomial on the average w.r.t μI .
By the hypothesis regarding t and μ2, for some for ε > 0, it holds that∑

y μ′
2(y) t(y)ε

|y| = O(1), whereas by the hypothesis that μ2 dominates μI it

holds that μ′
I(y) ≤ |y|cμ′

2(y) (for all y). Let G
def= {y : t(y) ≤ |y|2c/ε}, and

split the sum
∑

y μ′
I(y) t(y)ε/2c

|y| according to whether y ∈ G or not. The sum∑
y∈G μ′

I(y) t(y)ε/2c

|y| is upper bounded by 1 (by using t(y)ε/2c ≤ |y| for y ∈ G);
whereas ∑

y �∈G

μ′
I(y)

t(y)ε/2c

|y| ≤
∑
y �∈G

|y|cμ′
2(y)

t(y)ε/2

|y|

≤
∑
y �∈G

t(y)ε/2μ′
2(y)

t(y)ε/2

|y|

=
∑
y �∈G

μ′
2(y)

t(y)ε

|y|

= O(1)
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where the first inequality uses μ′
I ≤ |y|cμ′

2(y) and the second inequality uses
|y|c ≤ t(y)ε/2 (for y �∈ G).

The proposition follows. ��

We also mention that reductions are transitive in the special case in which they
are honest; that is, on input x they ask queries of length at least |x|ε, for some
constant ε > 0. All known reductions have this property. Finally, we spell out
the resulting definition of DistNP-completeness.

Definition 8 (DistNP-completeness): A distributional problem Π is DistNP-
complete if Π ∈ DistNP and every problem in DistNP is reducible to Π.

We shall actually use the most restricted notion of a reduction; that is, unless
stated otherwise, all the reductions we discuss are deterministic many-to-one
reductions.

2.4 A Generic DistNP Complete Problem

The following distributional version of Bounded Halting, denoted ΠBH =
(BH, μBH), is known to be DistNP-complete (see Section 3).

Definition 9 (distributional Bounded Halting): The distributional problem
ΠBH = (BH, μBH) consists of the following

– Decision: BH(M, x, 1k) = 1 iff there exists a computation of the
non-deterministic machine M on input x that halts within k steps.

– Distribution: The distribution μBH is defined in terms of its density function

μ′
BH(M, x, 1k) def=

1
|M |2 · 2|M| ·

1
|x|2 · 2|x| ·

1
k2

Note that μ′
BH is very different from the uniform distribution on binary strings

(e.g., consider relatively large k), but this seems fair since part of its input is
not binary. Nevertheless, as noted by Levin, one can obtain a variant of ΠBH

that refers to the uniform distribution and is DistNP-complete with respect
to randomized reduction. Specifically, we replace the unary time bound by a
string of equal length, and assign each such string the same probability (see
[7, §10.2.1.3] or [8, Sec. 2.3]).

3 DistNP-completeness of ΠBH

The proof, presented here, is due to Guretich [9]. (An alternative proof is implied
by Levin’s original paper [18].)
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Perspective. In the traditional theory ofNP-completeness, the mere existence of
complete problems is almost immediate. For example, it is extremely simple to
show that the Bounded Halting problem is NP-complete. Recall that Bounded
Halting (BH) is defined over triples (M, x, 1k), where M is a non-deterministic
machine, x is a binary string and k is an integer (given in unary). The decision
problem is to determine whether there exists a computation of M on input x
that halts within k steps. Clearly, Bounded Halting is in NP (here its crucial
that k is given in unary). Let D be an arbitrary NP problem, and let MD be
the non-deterministic machine solving it in time PD(n) on inputs of length n,
where PD is a fixed polynomial. Then, the reduction of D to BH consists of the
transformation x → (MD, x, 1PD(|x|)).

In the case of distributional-NP an analogous theorem is much harder to prove.
The difficulty is that we have to reduce all DistNP problems (i.e., pairs consist-
ing of decision problems and simple distributions) to one single distributional
problem (i.e., Bounded Halting with a single simple distribution). If we apply
reductions as above (and consider the induced probability distributions), then
we will end up with many distributional versions of Bounded Halting. Further-
more the corresponding distribution functions will be very different and will not
necessarily dominate one another. Instead, one should reduce a distributional
problem, (D, μ), with an arbitrary P-computable distribution to a distributional
problem with a fixed (P-computable) distribution (e.g. ΠBH). The difficulty in
doing so is that the reduction should have the domination property.

Consider, for example, an attempt to reduce each problem in DistNP to ΠBH

by using the standard transformation of D to BH (sketched above). This trans-
formation fails when applied to distributional problems in which the distribution
of (infinitely many) strings is much higher than the distribution assigned to them
by the uniform distribution. In such cases, the standard reduction maps an in-
stance x having probability mass μ′(x) $ 2−|x| to a triple (MD, x, 1PD(|x|))
with much lighter probability mass (since μ′

BH(MD, x, 1PD(|x|)) < 2−|x|). This
violates the domination condition, and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encod-
ing of strings taken from an arbitrary polynomial-time computable distribution
by strings that have comparable probability mass under a fixed distribution
(i.e., the uniform one). Specifically, this encoding will map x into a codeword
of length that is at most the logarithm of 1/μ′(x), which means that under the
uniform distribution the codeword of x has probability weight approximately
μ′(x). Accordingly, the reduction will map x to a triple (MD,μ, x′, 1|x|

O(1)
), where

|x′| < log2(1/μ′(x))+O(1), and MD,μ is a non-deterministic Turing machine that
first retrieves x from x′, and then applies the standard non-deterministic ma-
chine (i.e., MD) of the problem D. Such a reduction will be shown to satisfy all
three conditions (i.e. efficiency, validity, and domination). Thus, instead of forc-
ing the structure of the original distribution μ on the target distribution μBH ,
the reduction will incorporate the structure of μ into the the reduced instance
(i.e., in MD,μ). The following technical lemma is the basis of the reduction.
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Coding Lemma: Let μ be a polynomial-time computable distribution function.
Then there exist a coding function Cμ satisfying the following three conditions.

Compression: For every x, it holds that

|Cμ(x)| ≤ min
{
|x|, log2

1
μ′(x)

}
+ 1.

Efficient Encoding: The function Cμ is computable in polynomial-time.
Unique Decoding: The function Cμ is one-to-one (i.e., Cμ(x) = Cμ(x′) implies

x = x′).

Proof: The function Cμ is defined as follows. If μ′(x) ≤ 2−|x|, then Cμ(x) = 0x
(i.e., in this case x serves as its own encoding). Otherwise, if μ′(x) > 2−|x|, then
Cμ(x) = 1z, where z is the longest common prefix of the binary expansions of
μ(x−1) and μ(x); that is, if μ(x−1) and μ(x) have binary expansions 0.σ1σ2 · · ·
and 0.τ1τ2 · · ·, respectively, then z = σ1 · · ·σ� such that σ1 · · ·σ� = τ1 · · · τ�

whereas σ�+1 = 0 and τ�+1 = 1 (e.g., if μ(1010) = 0.10000 and μ(1011) =
0.10101111, then Cμ(1011) = 1z with z = 10). Consequently, 0.z1 is in the
interval (μ(x− 1), μ(x)]; that is, μ(x − 1) < 0.z1 ≤ μ(x).

We now verify that Cμ satisfies the conditions of the lemma. We start with
the compression condition. Clearly, if μ′(x) ≤ 2−|x|, then |Cμ(x)| = 1+ |x| ≤ 1+
log2(1/μ′(x)). On the other hand, suppose that μ′(x) > 2−|x| and let z = z1 · · · z�

be as above (i.e., the longest common prefix of the binary expansions of μ(x−1)
and μ(x)). Then,

μ′(x) = μ(x) − μ(x− 1) ≤

⎛⎝ �∑
i=1

2−izi +
poly(|x|)∑
i=�+1

2−i

⎞⎠−
�∑

i=1

2−izi < 2−|z|

and |z| ≤ log2(1/μ′(x)) follows. Thus, |Cμ(x)| ≤ 1+ log2(1/μ′(x)) in both cases,
and if log2(1/μ′(x)) ≥ |x| (i.e., μ′(x) ≤ 2−|x|), then |Cμ(x)| = |x|+1. Clearly, Cμ

can be computed in polynomial-time (by computing μ(x−1) and μ(x)). Finally,
note that Cμ is one-to-one by considering the two cases (i.e., Cμ(x) = 0x and
Cμ(x) = 1z), while using the fact that μ(x − 1) < 0.z1 ≤ μ(x) (in the second
case ). ��

Towards the Reduction. For every distributional problem (D, μ) in DistNP, we
introduce a non-deterministic machine MD,μ that will be used in the following
reduction of (D, μ) to ΠBH = (BH, μBH) such that all instances (of D) are
mapped to triples with first element MD,μ. The description of this machine,
MD,μ, refers to the aforementioned coding function Cμ (as well as to the non-
deterministic machine MD associated with D). On input y = Cμ(x), machine
MD,μ computes D(x), by first retrieving x from Cμ(x) (e.g., guess and verify),
and next running the non-deterministic polynomial-time machine (i.e., MD) that
solves D.
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The Reduction Itself. An instance x (of D) is mapped by the reduction to the
triple (MD,μ, Cμ(x), 1P (|x|)), where P (n) def= PD(n)+PC(n)+n such that PD(n)
is a polynomial bounding the running time of MD on (acceptable) inputs of
length n, and PC(n) is a polynomial bounding the running time of an algorithm
for encoding inputs (of length n).

Proposition: The foregoing mapping constitutes a reduction of (D, μ) to
(BH, μBH).

Proof: We verify the three requirements from a reduction.

– The transformation can be computed in polynomial-time.
(Indeed, we rely on the fact that Cμ is polynomial-time computable.)

– By construction of MD,μ it follows that D(x) = 1 if and only if there exists a
computation of machine MD,μ that on input Cμ(x) halts outputting 1 within
P (|x|) steps.
(Recall that, on input Cμ(x), machine MD,μ non-deterministically guesses x,
verifies in PC(|x|) steps that x is encoded by Cμ(x), and non-deterministically
“computes” D(x).)

– To see that the distribution induced by the reduction is dominated by the
distribution μBH , we first recall that the transformation x → Cμ(x) is one-to-
one. It suffices to consider instances of BH which have a preimage under the
reduction (since instances with no preimage satisfy the condition trivially).
All these instances are triples with first element MD,μ. By the definition of
μBH

μ′
BH(MD,μ, Cμ(x), 1P (|x|)) = c · 1

P (|x|)2 ·
1

|Cμ(x)|2 · 2|Cμ(x)| (1)

where c = 1

|MD,μ|2·2|MD,μ| is a constant depending only on (D, μ).
By virtue of the Coding Lemma it holds that

μ′(x) ≤ 2 · 2−|Cμ(x)|. (2)

Combing Eq. (1) and (2), we get

μ′
BH(MD,μ, Cμ(x), 1P (|x|)) ≥ c · 1

P (|x|)2 ·
1

|Cμ(x)|2 ·
μ′(x)

2

>
c

2 · |MD,μ, Cμ(x), 1P (|x|)|2 · μ
′(x).

The proposition follows. ��
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4 Conclusions

In general, a theory of average case complexity should provide

1. a specification of a broad class of interesting distributional problems;
2. a definition capturing the subclass of (distributional) problems that are easy

on the average;
3. notions of reducibility that allow to infer the easiness of one (distributional)

problem from the easiness of another;
4. and, of course, results...

It seems that the theory of average case complexity, initiated by Levin and
further developed in [9,22,1,13,21], satisfies these expectations to some extent.
Following is my evaluation regarding its “performance” with respect to each of
the above.

1. The scope of the theory, originally restricted to P-computable distributions,
has been significantly extended to cover all P-sampleable distributions (as
suggested in [1]). The key result here is by Impagliazzo and Levin [13] whow
proved that every language which is 〈NP, P-computable〉-complete is also
〈NP, P-samplable〉-complete. This important result makes the theory of av-
erage case very robust: It allows to reduce distributional problems from an
utmost wide class to distributional problems with very restricted/simple type
of distributions.
Till Livne’s result [21], my feeling was that the set of P-computable distri-
butions may be too restricted in the sense that it may not allow to present
DistNP-complete problems that refer to most natural NP decision problems.
However, Livne showed that all natural NP decision problems do have distri-
butional versions that are DistNP-complete, alas these versions turned out
to be somewaht unnatural (i.e., the distribution does not seem simple and/or
natural).2

2. The definition of average polynomial-time does seem strange at first glance,
but it seems that it (or a similar alternative) does captures the intuitive
meaning of “easy on the average”.
We mention that an alternative notion that refers to the typical running
time rather than the average of (a quantity that is polynomially related to)
the running time is considered in [7, Sec. 10.2.1] and [8]. Specifically, we may
say that f : {0, 1}∗ → N is typically polynomial with respect to a distribution
μ if there exists a positive polynomial p such that, for every polynomial q,
it holds that ∑

x∈{0,1}∗:f(x)>p(|x|)
q(|x|) · μ′(x) < ∞.

3. The notions of reducibility are both natural and adequate.

2 For a discussion of the notion of a natural problem, the interested reader is referred
to Appendix B.
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4. Results did follow, but here indeed much more is expected. Currently, quite
natural DistNP-complete problems are known for the following areas: Com-
putability (e.g., Bounded-Halting) [9], Combinatorics (e.g., Tiling [18] and a
generalization of graph coloring [22]), Formal Languages (cf., [9,4]), and Al-
gebra (e.g., of matrix groups [10]). Furthermore, the aforementioned result
of Livne [21] asserts that all natural NP problems have DistNP-complete
versions. However, the challenge of finding a really natural distributional
problem (e.g., subset sum with uniform distribution) that is complete in
DistNP has not been met so far. It seems that what is still lacking are tech-
niques for design of “distribution preserving” reductions.

In addition to their central role in the theory of average-case complexity, reduc-
tions that preserve uniform (or very simple) instance distribution are of general
interest. Such reductions, unlike most known reductions used in the theory of
NP-completeness, cannot map all instances to some “pathological” subcase.

Levin views the results in his paper [18] as an indication that all P-computable
distributions are in fact related (or similar). Additional support to this statment
is provided by his latter work [20].

Acknowledgements. I’m very grateful to Leonid Levin for many inspiring dis-
cussions. Special thanks also to Noam Livne for reconfiguring my views regarding
P-computable distributions.
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Appendix A: Failure of a Naive Formulation

When asked to motivate his definition of average polynomial-time, Leonid Levin
replies, non-deterministically, in one of the following three ways:

1. “This is the natural definition”.
2. “This definition is not important for the results in my paper; only the defini-

tions of reduction and completeness matter (and even they can be modified
in many ways while preserving the results)”.

3. “Any definition that makes sense is either equivalent or weaker”.

For further elaboration on the first argument the reader is referred to Leonid
Levin. The second argument is, off course, technically correct but unsatisfactory.
We will need a definition of “easy on the average” when motivating the notion
of a reduction and developing useful relaxations of it. The third argument is
a thesis, which should be interpreted along Wittgenstein’s suggestion to the
teacher: “say nothing and restrict yourself to pointing out errors in the students’
attempts to say something”. We will follow this line of argument here by showing
that the definition that seems natural to an average computer scientist suffers
from serious problems and should be rejected.
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Definition X (naive formulation of the notion of easy on the average): A dis-
tributional problem (D, μ) is polynomial-time on the average if there exists an
algorithm A solving D (i.e., on input x outputs D(x)) such that the running time
of algorithm A, denoted tA, satisfies

∃c > 0 ∀n
∑

x∈{0,1}n

μ′
n(x) · tA(x) < nc (3)

where μ′
n(x) is the conditional probability that x occurs given that an n-bit string

occurs (i.e., μ′
n(x) = μ′(x)/

∑
y∈{0,1}n μ′(y)).

The Main Problem with Definition X. The problem that we consider most upset-
ting is that Definition X is not robust under functional composition of algorithms.
Namely, if the distributional problem A can be solved in average polynomial-time
given access to an oracle for B, and problem B can be solved in polynomial-time,
then it does not follow that the distributional problem A can be solved in average
polynomial-time.

For example, consider the uniform probability distribution (on inputs of each
length) and an oracle Turing machine M that solves A when given access to
oracle B. Suppose that M runs for 2

n
2 steps on 2

n
2 of the inputs of length n,

and n2 steps on all other inputs of length n. Furthermore, supposed that when
M makes t steps, it asks a single query of length

√
t. Note that machine M

is polynomial-time on the average. But now suppose that the algorithm for B
has cubic running-time. The reader can verify that, although M itself (when
given access to the oracle B) is polynomial-time on the average, combining M
with the cubic running-time algorithm for B does not yield an algorithm that is
polynomial-time on the average according to Definition X. It is easy to see that
this problem does not arise when using the definition presented in Section 2.

The source of the above problem with Definition X is the fact that the defi-
nition of polynomial-on-the-average that underlies it is not closed under appli-
cation of polynomials. Namely, if t : {0, 1}∗ → N is polynomial on the average
(according to Eq. (3)), with respect to some distribution, it does not follow that
also t2(·) is polynomial on the average (with respect to the same distribution).

The foregoing technical problem is also the source of the following problem,
which Levin considers most upsetting: Definition X is not machine independent.
This is the case because some of the simulations of one computational model
on another square the running time (e.g., the simulation of two-tape Turing
machines on a one-tape Turing machine, or the simulation of a RAM (Random
Access Machine) on a Turing machine).

Having pointed out several weaknesses of Definition X, let us also doubt its
“clear intuitive advantage” over the definition presented in Section 2. Defini-
tion X is derived from the formulation of worst case polynomial-time algorithms,
which requires that ∃c > 0 ∀n such that

∀x ∈ {0, 1}n tA(x) < nc. (4)

Definition X was derived by applying the expectation operator to the Eq. (4), But
why not make a very simple algebraic manipulation of Eq. (4) before applying
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the expectation operator? How about taking the c-th root of both sides and
dividing by n; indeed, this yields that ∃c > 0 ∀n it holds that

∀x ∈ {0, 1}n tA(x)
1
c

n
< 1. (5)

But now, applying the expectation operator to the Eq. (5) leads to the definition
presented in Section 2...

We conclude that both Definition X and the definition presented in Section
2 are obtained by applying the expectation operator to a worst-case inequality,
where the two base inequalities (i.e., Eq. (4) and Eq. (5)) are easily related to one
another. From this perspective it is hard to argue (a priori) that one application
is more natural than another. However, a posteriori, it becomes evident that
the definition presented in Section 2 demonstrates a better understanding of the
effect of the expectation operator with respect to complexity measures.

Summary: Robustness under functional composition as well as machine indepen-
dence seems to be essential for a coherent theory. These are among the primary
reasons for the acceptability of P as capturing problems that can be solved effi-
ciently. In going from worst case analysis to average case analysis we should not
and would not like to lose these properties.

Appendix B: On the Notion of Natural Problems

Throughout this article, we made several references to the undefined notion of
a natural computational problem. While most researchers have some intuition
regarding this notion, we feel that an attempt to articulate this notion is in
place.

We comment that one should not expect to see a formal definition of intuitive
notions such as “simple” or “natural”; yet, this does not mean that we should
not try to articulate our intuition about them.

The first idea that comes to mind is to say that a problem is natural if most
researchers would say so. This empirically oriented definition seems workable,
but it leaves us wondering as to what makes some problems natural whereas
other problems are not natural; that is, why would most researchers agree on
the foregoing classification of problems?

An appealing criterion was proposed by Livne [21]: The extent to which a
computational problem is natural, with respect to some result, is proportional to
the amount of references to the said problem that are prior to the said result and
occur in a different context. Thus, for example, Satisfiability is a very natural
problem with respect to the Cook-Levin Theorem [2,17], because this problem
was defined and studied in numerous works and in different contexts (such as
logic) prior to the Cook-Levin Theorem. To the contrary, the sequence of decision
problems constructed in the proof of the Hierarchy Theorem of [12] is definitely
unnatural, because these decision problems were first defined in this context
(let alone that they are never mentioned outside the context of the Hierarchy
Theorem).



Three XOR-Lemmas — An Exposition

Oded Goldreich

Abstract. We provide an exposition of three lemmas that relate general
properties of distributions over bit strings to the exclusive-or (xor) of
values of certain bit locations.

The first XOR-Lemma, commonly attributed to Umesh Vazirani
(1986), relates the statistical distance of a distribution from the uniform
distribution over bit strings to the maximum bias of the xor of certain bit
positions. The second XOR-Lemma, due to Umesh and Vijay Vazirani
(19th STOC, 1987), is a computational analogue of the first. It relates the
pseudorandomness of a distribution to the difficulty of predicting the xor
of bits in particular or random positions. The third Lemma, due to Gol-
dreich and Levin (21st STOC, 1989), relates the difficulty of retrieving
a string and the unpredictability of the xor of random bit positions. The
most notable XOR Lemma – that is the so-called Yao XOR Lemma – is
not discussed here.

We focus on the proofs of the aforementioned three lemma. Our expo-
sition deviates from the original proofs, yielding proofs that are believed
to be simpler, of wider applicability, and establishing somewhat stronger
quantitative results. Credits for these improved proofs are due to several
researchers.

Keywords: Vector spaces, Kroniker and Fourier bases, pseudorandom-
ness, space-bounded computation, one-way functions, hard-core predi-
cates and functions.

An earlier version of this survey, which was first drafted in July 1991, appeared
as TR95-056 of ECCC. Section 1.6 was added in the current revision. Other than
that, the current revision is quite minimal.

Preface

Unfortunately, the TCS community does not excell in its choice of names of
various notions and phenomena. Consequently, we often find the same name
used for several different issues. The name “XOR Lemma” is indeed a good
example; at least four different technical statements are often referred to as
XOR Lemmas. Indeed, the XOR operation features in each of these lemmas, but
the actual context and contents of these lemmas vary.

The current article surveys three XOR lemmas, focusing on their proofs. As
stated in the abstract, Yao’s XOR-Lemma is not one of the XOR Lemmas sur-
veyed here; the interested reader is referred to [11].
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1 The Information Theoretic XOR-Lemma

The Information Theoretic XOR-Lemma, commonly attributed to Umesh Vazi-
rani, relates two measures of the “randomness” of distributions over n-bit long
strings.

– The statistical difference from uniform; namely, the statistical difference
(variation difference) between the “target” distribution and the uniform dis-
tribution over the set of all n-bit strings.

– The maximum bias of the xor of certain bit positions; namely, the bias of
a 0-1 random variable obtained by taking the exclusive-or of certain bits in
the “target” distribution.

It is well known that the statistical difference from uniform is bounded above by
2n times the maximum bias of the xor’s. Several researchers have noticed that
the factor in the bound can be improved to

√
2n. We provide a four line proof

of this fact. We also explain the reason for the popularity of the worse bound.
As motivation to the XOR-Lemma, we point out that it has been used in

numerous works (e.g., Vazirani [20], Naor and Naor [16]). In a typical application,
one first derives an upper bound on the maxbias of the constructed distribution,
and then the XOR-Lemma is applied to infer an upper bound on the statistical
difference from the uniform distribution.

Credit: The proof presented here has appeared as an appendix in [2].

1.1 Formal Setting

Let π be a an arbitrary probability distribution over {0, 1}n and let μ denote
the uniform distribution over {0, 1}n (i.e., μ(x) = 2−n for every x ∈ {0, 1}n).
Let x = x1 · · ·xn and N

def= 2n. The XOR-Lemma relates two “measures of
closeness” of π and μ.

– The statistical difference (“variation difference”) between π and μ; namely,

stat(π) def=
1
2
·
∑

x

|π(x)− μ(x)| (1)

– The “maximum bias” of the exclusive-or of certain bit positions in strings
chosen according to the distribution π; namely,

maxbias(π) def= max
S �=∅

{|π({x :
⊕

i∈S
xi = 0})− π({x :

⊕
i∈S

xi = 1})|} (2)

The XOR-Lemma, commonly attributed to Umesh Vazirani [20]1, states that stat
(π) ≤ N ·maxbias(π). The proof is based on viewing distributions as elements in
an N -dimensional vector space and observing that the two measures considered
1 The special case where the maxbias is zero appears in Chor et. al. [5].
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by the lemma are merely two norms taken with respect to two different orthogonal
bases (see Section 1.2). Hence, the XOR-Lemma follows from a (more general and
quite straightforward) technical lemma that relates norms taken with respect to
different orthonormal bases (see Section 1.3). It turns out this argument actually
yields stat(π) ≤

√
N ·maxbias(π), and it seems that the previously inferior bound

of [20] was due to a less careful use of the same underlying ideas.

1.2 Preliminaries: The XOR-Lemma and Vector Spaces

Probability distributions over {0, 1}n are functions from {0, 1}n to the reals. Such
functions form a N -dimensional vector space. We shall consider two alternative
bases of this vector space.

The standard basis, denoted K, is the orthonormal basis defined by the Kro-
niker functions; that is, the Boolean functions {kα : α ∈ {0, 1}n}, where kα(x) = 1
if x = α. The statistical difference between two distributions equals (half) the
norm L1 of their difference taken in the above K basis.

On the other hand, the maxbias of a distribution equals the maximum Fourier
coefficient of the distribution, which in turn corresponds to the max-norm (norm
L∞) of the distribution taken in a different basis. This basis is defined by the
functions {bS : S ⊆ {1, 2, ..., n}}, where bS(x) = (−1)Σi∈Sxi . Note that bS(x) = 1
if the exclusive-or of the bits {xi : i ∈ S} is 0 and bS(x) = −1 otherwise. The
new basis is orthogonal but not orthonormal. We hence consider the normalized
basis, denoted F , consisting of the functions fS = 1√

N
· bS .

Notation: Let B be an orthonormal basis and r an integer. We denote by NB
r (v)

the norm Lr of v with respect to the basis B. Namely, NB
r (v)=(

∑
e∈B〈e, v〉r)(1/r),

where 〈e, v〉 is the absolute value of the inner product of the vectors e and
v. We denote by NB

∞(v) the limit of NB
r (v) when r → ∞ (i.e., NB

∞(v) is
maxe∈B{〈e, v〉}).

Clearly, stat(π) = 1
2 · NK

1 (π − μ) whereas maxbias(π) =
√

N · NF∞(π − μ).
Following is a proof of the second equality. Let δ(x) = π(x) − μ(x). Clearly,
maxbias(μ) = 0 and hence maxbias(π) = maxbias(δ). Also

∑
x δ(x) = 0. We get

maxbias(δ) = max
S �=∅

{|δ({x : bS(x)=1})− δ({x : bS(x)=−1})|}

= max
S �=∅

{∣∣∣∣∣∑
x

bS(x) · δ(x)

∣∣∣∣∣
}

=
√

N ·max
S

{∣∣∣∣∣∑
x

fS(x) · δ(x)

∣∣∣∣∣
}

=
√

N ·NF
∞(δ)

We now turn to the actual proof of the XOR Lemma.

1.3 Proof of the XOR-Lemma

The XOR-Lemma follows from the following technical lemma.
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Technical Lemma: For every two orthogonal bases A and B and every vector
v, it holds that

NA
1 (v) ≤ N ·NB

∞(v). (3)

This technical lemma has a three line proof:

For every orthogonal basis A,

NA
1 (v) ≤

√
N ·NA

2 (v). (4)

For every pair of orthonormal bases A and B,

NA
2 (v) = NB

2 (v). (5)

For every orthogonal basis B,

NB
2 (v) ≤

√
N ·NB

∞(v) (6)

Indeed, the Technical Lemma (i.e., Eq. (3)) is obtained by combining Eq. (4)–(6).
Next, using this Technical Lemma, we get:

XOR-Lemma (revised): stat(π) ≤ 1
2 ·
√

N ·maxbias(π).

Proof: By the above

stat(π) =
1
2
·NK

1 (π − μ) ≤ 1
2
·N ·NF

∞(π − μ) =
1
2
·
√

N ·maxbias(π).

1.4 Discussion

The inferior bound, stat(π) ≤ N ·maxbias(π), has been derived by using one of
the following two bounds instead of our Technical Lemma:

1. NA
1 (v) ≤

√
NNB

1 (v) ≤
√

N ·NNB
∞(v).

The first inequality is proved similarly to the proof of our Technical Lemma
(i.e., using NB

2 (v) ≤ NB
1 (v) instead of Eq. (6)). The second inequality is

trivial. Each of the two inequalities is tight, but their combination is wasteful.
2. NA

1 (v) ≤ N ·NA
∞(v) ≤ N ·

√
NNB

∞(v).
The second inequality is proved similarly to the proof of our Technical
Lemma (i.e., using NA

∞(v) ≤ NA
2 (v) instead of Eq. (4)). The first inequality

is trivial. Again, each of the inequalities is tight, but their combination is
wasteful.
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1.5 Variants

Using small variations on the foregoing argument, we obtain the following vari-
ants of the XOR-Lemma:

1. maxx∈{0,1}n{|π(x)− μ(x)|} ≤ maxbias(π).
2. stat(π) ≤

√∑
S �=∅ biasS(π)2, where biasS(π) =

∑
x bS(x) · π(x).

Proof: The first claim follows by using NA
∞(v) ≤ NA

2 (v) (instead of NA
1 (v) ≤√

N ·NA
2 (v)), and obtaining NK∞(π − μ) ≤

√
N ·NF∞(π − μ). The second claim

follows by using NA
1 (v) ≤

√
N ·NB

2 (v) and NF
2 (π − μ) =

√∑
S �=∅ biasS(π)2. In

both parts we also use bias∅(π − μ) = 0.

1.6 Generalization to GF(p), for Any Prime p

The entire treatment can be generalized to distributions over GF(p)n, for any
prime p. In this case, we redefine N

def= pn, and let stat(π) denote the statistical
difference between π and the uniform distribution over GF(p)n (cf. Eq. (1)).
Letting ω denote the pth root of unity, we generalize Eq. (2) to

maxbias(π)def= max
β∈GF(p)n\{0}n

⎧⎨⎩
∣∣∣∣∣∣

∑
e∈GF(p)

ωe ·π
({

x :
∑

i∈[n]βixi ≡ e (mod p)
})∣∣∣∣∣∣

⎫⎬⎭
.

The Fourier basis is generalized analogously: The new basic consists of the func-
tions {bβ : β ∈ GF(p)n}, where bβ(x) = ωΣi∈[n]βixi . The normalized basis,
denoted F , consists of the functions fβ = N−1/2 · bβ .

Note that, in the case of p = 2, these definitions coincides with the definitions
presented before. By following exactly the same manipulations as in the case of
p = 2, we obtain the following generalization.

The XOR-Lemma, generalized to GF(p): Let π be an arbitrary distribution
over GF(p)n, and let μ denote the uniform distribution over GF(p)n. Then

1. stat(π) ≤ 1
2 ·
√

N ·maxbias(π).
2. maxx∈{0,1}n{|π(x)− μ(x)|} ≤ maxbias(π).
3. stat(π) ≤ 1

2 ·
√∑

beta�=0n biasβ(π)2, where biasβ(π) =
∑

x bβ(x) · π(x).

2 The Computational XOR-Lemma

We provide an exposition of the computational XOR-Lemma. By computational
XOR-Lemma we refer to the assertion that a distribution on “short” strings
is pseudorandom if and only if the xor of any of its bits is unpredictable. This
Lemma was first proved by Umesh and Vijay Vazirani. The proof we present here
is taken from the paper of Goldreich and Levin. We demonstrate the applicability
of the computational XOR-Lemma by using it to construct pseudorandom gen-
erators with linear expansion factor that are “secure” against small (yet linear)
bounded space machines.
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2.1 Introduction

This section is concerned the relation between two types of computationally re-
stricted tests of randomness. To be more precise, we are concerned with the pseu-
dorandomness of a random variable Y given some partial information represented
by an related random variable X . For sake of simplicity we write X = f(R) and
Y = g(R) where f and g are fixed functions and R is a random variable uni-
formly distributed on strings of some length. Throughout this section, we assume
that f and g are polynomial-time computable.

Tests of the first type are algorithms that, on input a pair (x, y), output a
single bit. We consider the probability that the test outputs 1 given that x = f(r)
and y = g(r) where r is selected uniformly and compare it to the probability that
the test outputs 1 given that x = f(r) as before and y is selected (independently
and) uniformly among the strings of length |g(r)|. We call the absolute value of
the difference between these two probabilities the distinguishing gap of the test.

Tests of the second type are algorithms that, on input a string f(r), output
a single bit. The output is supposed to be the inner-product (mod 2) of the
string g(r) with some fixed string β (which is not all-zero). We consider the
probability that the algorithm outputs the correct value given that r is selected
uniformly. We call the absolute value of the difference between the success prob-
ability and the failure probability, the advantage of the algorithm. Note that the
inner-product (mod 2) of g(r) and β equals the exclusive-or of the bits in g(r)
that are located in positions corresponding to the 1 bits of β. Hence, tests of
the second type try to predict the xor of bits in g(r) that are in specified bit
locations.

Vazirani and Vazirani [22] proved that if the tests are restricted to run in
probabilistic polynomial-time and the length of g(r) is logarithmic in the length
of f(r), then the two types of tests are equivalent in the following sense: There
exists a test of the first type with a non-negligible distinguishing gap if and
only if there exists a test of the second type with a non-negligible advantage2.
A different proof has appeared in Goldreich and Levin [10]. The interesting
direction is, of course, the assertion that if there exists a test of the first type
with a non-negligible distinguishing gap, then there exists a test of the second
type with a non-negligible advantage3. This assertion is hereafter referred to as
the computational xor-lemma.

The purpose of this section is to present a clear proof of the computational
xor-lemma and to point out its applicability to other resource bounded machines.
Our presentation follows the proof presented in [10], where all obvious details
are omitted. Hence, the only advantage of our presentation is in its redundancy
(w.r.t [10]).

2 A function μ : N → R is non-negligible if there exists a polynomial p such that for
all sufficiently large n we have μ(n) > 1/p(n).

3 The opposite direction follows by noting that a test of a second type can be easily
converted into a test of the first type: Just run the predicting algorithm and compare
its outcome with the actual xor of the corresponding bits.
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2.2 Proving the Computational XOR-Lemma

The proof proceeds via the counterpositive. That is, we show how to transform
any test that distinguishes pairs (f(r), g(r)) from pairs (f(r), y), where r and y
are independently and uniformly distributed (among strings of adequate length),
into a predictor of the xor of some bits of g(r) from f(r) such that the complexity
of the predictor and its advantage are related to the complexity and distinshiong
gap of the original tester. Actually, the construction yields a predictor that has
a related advantage w.r.t a random subset of bits positions (rather than w.r.t
some subset). The construction of the predictor and its analysis are captured by
the following Technical Lemma.

In the following technical lemma, we present a particular algorithm, denoted
G, that (given f(r)) tries to predict a specified xor of the bits of g(r). The
predictor G uses as subroutine a test, T , that (on input f(r) and y) distinguishes
a random y from y = g(r). In particular, on input x and a subset S, the predictor
selects y at random, runs the test T on inputs x and y, and output

⊕
i∈Syi if

T (x, y) = 1 and the complement bit otherwise. The following lemma, lower
bounds the advantage of the predictor G in terms of the distinguishing gap of
the test T .

Technical Lemma (the core of the Computational XOR-Lemma): Let
f and g be arbitrary functions each mapping strings of the same length to strings
of the same length. Let T be an algorithm (of the first type). Denote

p
def= Pr[T (f(r), g(r)) = 1] (7)

and
q

def= Pr[T (f(r), y) = 1], (8)

where the probability is taken over all possible choices of r ∈ {0, 1}m and y ∈
{0, 1}|g(r)| with uniform probability distribution. Let G be an algorithm that, on
input β and x, selects y uniformly in {0, 1}|β|, and outputs T (x, y)⊕1⊕(y, β)2,
where (y, β)2 is the inner product modulo 2 of y and β. Then,

Pr[G(β, f(r)) = (g(r), β)2] =
1
2

+
p− q

2|β| − 1 ,
(9)

where the probability is taken over all possible choices of r ∈ {0, 1}m and β ∈
{0, 1}|g(r)| \ {0}|g(r)| with uniform probability distribution.

A full proof of the Technical Lemma is presented in Section 2.3. Before turning
to that proof, we show that this lemma implies the Computational XOR-Lemma.
This demonstration is immediate by the following two comments.

1. Algorithm G has almost the same complexities as T , with the exception that
G must toss few more coins (to select β). Hence, G is randomized even in
case T is deterministic.
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2. Clearly, there exists a non-zero string β for which Pr[G(β, f(r))=(g(r), β)2 ] ≥
1
2 + p−q

2|β|−1
, where the probability is taken over all possible choices of r ∈

{0, 1}m with uniform probability distribution. A string β with approximately
such a performance can be found by sampling a string β and evaluating the
performance of algorithm G with β as its first input. This requires ability to
compute the functions f and g on many randomly selected instances (and
collect the statistics). One should verify that this added complexity can be
afforded. On the other hand, one should note that finding an appropriate β
(i.e. on which G has almost the average advantage) may not be required (see
the first remark below).

The following Computational XOR-Lemma follows as an immediate corollary to
the Technical Lemma.

Computational XOR-Lemma: Let C be a class of randomized (or non-
uniform) algorithms, such that C is closed under sequential application of al-
gorithms and contains an algorithm for computing |g(r)| from f(r). Suppose
that every algorithm in the class C, given f(r), can predict the xor of a (given)
random subset of the bits of g(r) with (average) success probability at most 1

2 +ε.
Then, for every algorithm, T , in the class C it holds that

|Pr[T (f(r), g(r)) = 1]− Pr[T (f(r), y) = 1]| < 2|g(r)| · ε

where r is selected uniformly in {0, 1}m, the string y is selected uniformly and
independently in {0, 1}|g(r)|.

Remarks. As motivation to the Computational XOR-Lemma, we point out that
it has been used in numerous works (e.g., Vazirani and Vazirani [22], Goldreich and
Levin [10]). Another application of the Computational XOR-Lemma is presented
in Section 2.4. In a typical application, the pseudorandomness of a short string
is proved by showing that every xor of its bits is unpredictable (and using the
Computational XOR-Lemma to argue that this suffices). Since it is typically the
case that one can prove that the xor of a (given) random non-empty subset of
the bits is unpredictable, the Computational XOR-Lemma can be used directly
without finding an appropriate β (as suggested by a previous remark).

In case there are no computational restrictions on the tests, a stronger state-
ment known as the XOR-Lemma can be proved: The statistical difference from
uniform does not exceed

√
2|g(r)| times the maximum bias of a non-empty subset

(see Sectioon 1).

2.3 Proof of the Technical Lemma

Our goal here is to evaluate the success probability of algorithm G. In the follow-
ing analysis we denote Prx[P (x, y)] the probability that P (x, y) holds when x is
distributed according to a distribution to be understood from the context, and y
is fixed. In the case that the predicate P depends on the test T , the probability
will be taken also over the internal coin tosses of T . Hence, the coin tosses of T
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are implicit in the notation. In contrast, the additional coin tosses of G, namely
the string y, are explicit in the notation. Hence, we rewrite

p = Prr[T (f(r), g(r)) = 1]
q = Prr,y[T (f(r), y) = 1]

Recall that r is distributed uniformly on {0, 1}m, whereas y is distributed uni-
formly on {0, 1}|g(r)|. In the following analysis β is selected uniformly in B

def=
{0, 1}|g(r)| − 0|g(r)|. Our aim is to evaluate Prr,β,y[G(β, f(r)) = (g(r), β)2].

We start by fixing any r∈{0, 1}m and evaluating Prβ,y[G(β, f(r))=(g(r), β)2 ].
We define ≡β (resp., �≡β) such that y≡βz hold iff (y, β)2 = (z, β)2 (resp., y �≡βz

iff (y, β)2 �= (z, β)2). We let n
def= |g(r)|.

By the definition of G (i.e., G(β, f(r) = T (x, y)⊕1⊕(y, β)2, where y ∈ {0, 1}|β|
is uniformly selected by G) and elementary manipulations, we get

sr
def= Prβ,y[G(β, f(r)) = (g(r), β)2]

=
∑
β∈B

1
|B| · Pry[G(β, f(r)) = (g(r), β)2]

=
1
|B| ·

∑
β∈B

Pry[T (β, f(r)) = 1⊕(β, y)2⊕(g(r), β)2]

=
1

2|B| ·
∑
β∈B

Pry[T (f(r), y) = 1|y≡βg(r)]

+
1

2|B| ·
∑
β∈B

Pry[T (f(r), y) = 0|y �≡βg(r)]

=
1
2

+
1

2|B| ·
∑
β∈B

Pry[T (f(r), y) = 1|y≡βg(r)]

− 1
2|B| ·

∑
β∈B

Pry[T (f(r), y) = 1|y �≡βg(r)]

=
1
2

+
1

2|B| ·
1

2n−1
·
∑
β∈B

∑
y≡βg(r)

Pr[T (f(r), y) = 1]

− 1
2|B| ·

1
2n−1

·
∑
β∈B

∑
y �≡βg(r)

Pr[T (f(r), y) = 1]

=
1
2

+
1

2n · |B| ·
∑

y

∑
β∈B s.t. y≡βg(r)

Pr[T (f(r), y) = 1]

− 1
2n · |B| ·

∑
y

∑
β∈B s.t. y �≡βg(r)

Pr[T (f(r), y) = 1]
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Recall that B = {0, 1}n − 0n. Now, if y �= g(r) then the number of β ∈ B for
which y �≡βg(r) is 2n−1 (and the number of β ∈ B for which y≡βg(r) is 2n−1−1).
On the other hand, if y = g(r), then all β ∈ B satisfy y≡βg(r). Hence, we get

sr −
1
2

=
1

2n|B| ·
∑

y �=g(r)

(
(2n−1 − 1) · Pr[T (f(r), y)=1]− 2n−1 · Pr[T (f(r), y)=1]

)
+

1
2n|B| · |B| · Pr[T (f(r), g(r))=1]

= − 1
2n|B| ·

∑
y �=g(r)

Pr[T (f(r), y)=1] +
1

2n|B| · |B| · Pr[T (f(r), g(r))=1]

= − 1
|B| ·

∑
y

1
2n

· Pr[T (f(r), y)=1]

+
1

2n|B| · (|B|+ 1) · Pr[T (f(r), g(r))=1]

= − 1
|B| · Pry[T (f(r), y)=1] +

1
|B| · Pr[T (f(r), g(r))=1]

Hence, for every r

Prβ,y[G(β, f(r))=(g(r), β)2 ] =
1
2

+
Pr[T (f(r), g(r))=1] − Pry[T (f(r), y)=1]

|B|

and so we have for uniformly chosen r

Prr,β,y[G(β, f(r))=(g(r), β)2 ] =
1
2
+

Prr[T (f(r), g(r))=1] − Prr,y[T (f(r), y)=1]
|B|

and the lemma follows.

2.4 Application to Pseudorandom Generators for Bounded Space

We apply the Computational XOR-Lemma to the construction of pseudoran-
dom generators with linear stretching that withstands tests of linearly bounded
space. Namely, on input a random string of length n, the generator outputs a
pseudorandom string of length cn withstanding tests of space en (where e > 0
is a constant depending on the constant c > 1). An alternative construction is
immediate from the techniques presented by Nisan in [17].4 A third alternative
construction was suggested by Noam Nisan (private communication) based on
the ideas in [3].

The tests (or predictors) that we consider are non-uniform bounded-space
machines with one-way access to the input (i.e., the string that they test). Hence,
these machines can be represented by finite automata. By an s(n)-space bounded

4 Use a constant number of hash functions.
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machine we mean a finite automata with 2s(n) states that is given an input of
length n. For sake of simplicity, we sometimes discuss randomized automata.
Clearly, randomness can be eliminated by introducing “more” non-uniformity.

Following is an overview of our construction. We begin by presenting a gener-
ator that extends seeds of length n into strings of length cn withstanding tests
of space en, for a specific value of c > 1 (and e > 0). This generator is based on
three observations:

1. Given two vectors, their inner-product mod 2 is unpredictable by machines
of space significantly smaller than the length of these vectors.

2. With respect to such machines, the exclusive-or of bits resulting from the
inner-product mod 2 of one vector and non-cyclic shifts of a second vector is
also unpredictable. This holds because a machine predicting this exclusive-
or can be transformed into a machine predicting the inner product of two
vectors (cf. [10]).

3. Finally, using the computational XOR-Lemma, it follows that the bits re-
sulting from the various inner-products are indistinguishable from random
by space bounded machines.

The foregoing steps are detailed in Section 2.4.1. Next, in Section 2.4.2, we use
this generator to construct, for every k > 1, a generator extending seeds of length
n into strings of length ck · n withstanding tests of space (e/3)k · n.

2.4.1 A construction for a specific expansion constant. The constants
c1, ε1, c0, ε0 in the following construction and analysis will be determined in
course of the analysis. In particular, c0 = 1

4 , ε0 = 1
6 , c1 = 1 + c0

3 , and ε1 = ε0
3 ,

will do.

Construction 1: Using the notation pj(r1r2 · · · r2n) def= rjrj+1 · · · rj+n−1 and

b(x, s) def=
∑n

i=1 xisi mod 2, consider the function g :{0, 1}3n→{0, 1}c0n defined
by g(x, r) = b(x, p1(r)) · · · b(x, pc0n(r)). Finally, consider the generator

g1(x, r) = (x, r, g(x, r)). (10)

This generator expands seeds of length 3n into strings of length 3n+c0n = c1 ·3n.
Clearly, the function g can be computed by an n-space machine. The robustness
of the generator against ε0n-space machines follows from the following three
claims.

Claim 1.1: Let A be an automaton with q states, and x, y be uniformly and
independently selected in {0, 1}n. Then

Prx,y[A(x, y) = b(x, y)] ≤ 1
2

+

√
2q

2n
.
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Proof (adapted from [3]): By Lindsey Lemma (see [6, P. 88]), for every X, Y ⊆
{0, 1}n, it holds that ∣∣∣∣∣∣

∑
x∈X,y∈Y

b(x, y)
|X | · |Y | −

1
2

∣∣∣∣∣∣ ≤
√

2n

|X | · |Y |
.

(11)

Consider a partition of the set of all possible x’s according to the state in which
the automaton is after reading x (i.e., the first half of its input), and denote the
resulting sets X1, X2, ..., Xq. Note that for every x1, x2 ∈ Xj and every y, we
have A(x1, y) = A(x2, y). For each Xi, let Y σ

i denote the sets of y’s for which
A(x, y) = σ given that x ∈ Xi. It follows that

Δ
def=

∣∣∣∣Prx,y[A(x, y) = b(x, y)]− 1
2

∣∣∣∣
=

q∑
i=1

∑
σ∈{0,1}

Prx,y[x∈Xi ∧ y∈Y σ
i ] ·

∣∣∣∣{(x, y)∈Xi × Y σ
i : b(x, y) = σ}

|Xi| · |Y σ
i |

− 1
2

∣∣∣∣
≤

q∑
i=1

∑
σ∈{0,1}

Prx,y[x∈Xi ∧ y∈Y σ
i ] ·

√
2n

|Xi| · |Y σ
i |

= 2−3n/2 ·
q∑

i=1

∑
σ∈{0,1}

√
|Xi| · |Y σ

i |

≤ 2−3n/2 ·
√

2q · 2n

where the first inequality is due to Eq. (11) and the second inequality is due to
(a special case of) the Cauchy-Schwartz Inequality.5 The claim follows. ��

Claim 1.2: Let S ⊆ {1, 2, ..., m}, where m < n. Suppose that automaton AS

has q states and let

p
def= Prx,r

[
AS(x, r) =

⊕
i∈S

b(x, pi(r))
]

where the probability is taken over all random choices of x ∈ {0, 1}n and r ∈
{0, 1}2n. Then, there exists an automaton A with q · 22m states satisfying

Prx,y[A(x, y) = b(x, y)] ≥ p

where the probability is taken over all random choices of x, y ∈ {0, 1}n.

Proof (adapted from [10]): Following is a construction of a randomized au-
tomaton A (randomization can be eliminated via non-uniformity). On input
x, y, the predictor A produces a random string r ∈ {0, 1}2|y| satisfying yi =

5 Specifically, we use
∑m

j=1

√
ai ≤

√
m ·∑m

j=1 ai.
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j∈S ri+j−1 mod 2, for every i ≤ n. This is done by setting the bits of r in in-

creasing order such that rk is randomly selected if either k < t
def= max(S) or k ≥

t+n, and rk is set to yk−t+1−
∑

j∈S\{t} rk−t+j mod 2 for k = t, t+1, ..., t+n−1.
Hence,

⊕
j∈Spj(r) = y, where

⊕
j∈Svj denotes the bit-by-bit exclusive or of the

vectors vj (where j ∈ S). The predictor A runs AS(x, r) and obtains a prediction
for

⊕
j∈Sb(x, pj(r)) = b(x,

⊕
j∈Spj(r)) = b(x, y). The predictor uses at most 2m

more space than GS (for storing r), and the claim follows. ��

Claim 1.3: For every automaton, T , with q states

|Pr[T (x, r, g(x, r)) = 1]− Pr[T (x, r, y) = 1]| < 2|g(r)| ·
√

2q · 22c0n

2n

where (x, r) is selected uniformly in {0, 1}n+2n, the string y is selected uniformly
in {0, 1}|g(x,r)|.

Proof: Immediate by combining Claims 1.1 and 1.2 with the Computational
XOR-Lemma. ��

Setting c0 = 1
4 and ε1 = 1

6 , we conclude that any ε1n-space bounded machine
can distinguish g1(x, r) (where xr ∈ {0, 1}3n) from a uniformly chosen string
of length (3 + c0)n with gap at most 2−ε1n. Hence, for constants c1 = 1 + 1

12
and e1 = 1

18 , we have a generator extending strings of length n to strings of
length c1n so that no ε1n-space bounded machine can distinguish g1(s) (where
s = (x, r) ∈ {0, 1}n) from a uniformly chosen string of length c1n with gap
greater than 2−ε1n. We say that g1 has expansion factor c1 and security constant
e1.

2.4.2 Construction for any expansion constant. To achieve larger ex-
pansion we apply the generator again on small blocks of its output. This idea
is taken from [9], but its usage in our context is restricted since in lower level
the generator will be applied to shorter strings (and not to strings of the same
length as done in [9]). The fact that in lower levels the generator is applied to
shorter strings plays a key role in the proof that the resulting generator is indeed
pseudorandom with respect to appropriate space-bounded machines.

In the sequel we show how to convert generators with expansion factor c into
generators with expansion factor c2. Larger expansion factors are obtained by
repeated application of the construction.

Construction 2: Let g be a generator with expansion factor c and security
constant e. We construct a generator g2 with expansion factor c2 and security
constant e2

3 as follows: g2(s) = g(r1) · · · g(rt), where r1 · · · rt = g(s) such that
|rj | = e

2 · |s| (for all 1≤j≤ t) and t = 2c/e.
To prove that the generator g2 has security e2

3 we consider a hybrid distribution
H that results by selecting at random a string of length cn, partitioning it into t
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blocks (each of length e
2n), and applying the generator g to each of them. First

we show that H is hard to distinguish from random strings of length c2n. Next,
we show that H is hard to distinguish from the strings that g2 generates on
input a random seed of length n.

Claim 2.1 (indistinguishability of H and the uniform distribution): Suppose
that the automaton T has q states. Let pH

def= Prs1···st [T (g(s1) · · · g(st)) = 1] and
pR

def= Prr1···rt [T (r1 · · · rt) = 1], where the probability is taken over all random
choices of s1, ..., st ∈ {0, 1} e

2 n and r1, ..., rt ∈ {0, 1} ce
2 n. Then, there exists an

automaton T ′ with q states satisfying

|Prs[T ′(g(s)) = 1]− Prr[T ′(r) = 1]| ≥ |pH − pR|
t

where the probability is taken over all random choices of s ∈ {0, 1} e
2 n and r ∈

{0, 1} ce
2 n. Hence, if q ≤ e2

2 n, then |pR − pH | < 1
2 · 2−

e2
3 n.

Proof: For every 0≤ i≤ t, define

pi
def= Prr1···risi+1···st [T (r1 · · · ri g(si+1) · · · g(st)) = 1],

where the probability is taken over all random choices of r1, ..., ri ∈ {0, 1} ce
2 n and

si+1, ..., st ∈ {0, 1} e
2 n. Namely, pi is the probability that T outputs 1 on input

taken from a hybrid distribution consisting of i “random” blocks and t− i “pseu-
dorandom” blocks. Clearly, p0 = pH whereas pt = pR, and there exists 0≤ i≤ t−1
such that |pi − pi+1| ≥ |p0−pt|

t . The test T ′ is obtained from T as follows. Fix a
sequence r1, ..., ri ∈ {0, 1} ce

2 n and si+2, ..., st ∈ {0, 1} e
2 n maximizing the distin-

guishing gap between the ith and i+1st hybrids. The starting state of test T ′ is the
state to which T arrives on input r1, ..., ri. The accepting states (i.e. states with
output 1) of test T ′ are the state from which T reaches its accepting state when
reading the string si+2, ..., st. Clearly, T ′ has at most q states and distinguishes
r ∈ {0, 1} ce

2 n from g(s) (for s ∈ {0, 1} e
2 n) with gap at least |pH−pR|

t . Using the

security hypothesis for g, it follows that |pR − pH | < t · 2−e· e
2 n < 1

22−
e2
3 n (for all

sufficiently large n). The claim follows. ��

Note that the test constructed in the proof of Claim 2.1 examines strings of
length c · e

2n.

Claim 2.2 (indistinguishability of H and the output of g2): Suppose that
the automaton T has q states and let pG

def= Prs[T (g2(s)) = 1] and pH
def=

Prr1···rt [T (g(r1) · · · g(rt)) = 1], where the probability is taken over all random
choices of s ∈ {0, 1}n and r1, ..., rt ∈ {0, 1} e

2 n. Then, there exists an automaton
T ′ with q · 2 e

2 n states satisfying |Prs(T ′(g(s)) = 1)−Prr(T ′(r) = 1)| ≥ pG − pH,
where the probability is taken over all random choices of s ∈ {0, 1}n and r ∈
{0, 1}cn. Hence, if q ≤ e

2n, then |pG − pH | < 1
22−

e2
3 n.
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Proof: The test T ′ is obtained from T as follows. On input α ∈ {0, 1}cn (either
random or pseudorandom), the test T ′ breaks α into t blocks, α1, ..., αt, each of
length e

2n. Then T ′ computes β = β1 · · ·βt so that βi = g(αi), and applies T
to the string β. (T ′ accepts α iff T accepts β.) If α is taken from the uniform
distribution, then the resulting β is distributed according to H . On the other
hand, if α is taken as the output of g on random seed s, then β = g2(s). The test
T ′ distinguishes the above cases with gap ≥ |pH − pG|, and can be implemented
using q·2 e

2 n states. Using the security hypothesis for g, it follows that |pG − pH | <
2−en < 1

22−
e2
3 n. The claim follows. ��

Note that the test constructed in the proof of Claim 2.2 evaluates g on strings
of length e

2n. Combining Claims 2.1 and 2.2, we conclude that the generator g2

has security constant e2

3 .

3 A Hard-Core Predicate for All One-Way Functions

A theorem of Goldreich and Levin [10] relates the following two computational
tasks (regarding the function f). The first task is inverting a function f ; that
is, given y, find an x so that f(x) = y. The second task is predicting, with non-
negligible advatage, the exclusive-or of a subset of the bits of x when only given
f(x). More precisely, it has been proved that if f cannot be efficiently inverted,
then given f(x) and r it is infeasible to predict the inner-product mod 2 of x and
r better than obvious.

We present an alternative proof to the original proof as appeared in [10]. The
new proof, due to Charlie Rackoff, has two main advantages over the original
one: It is simpler to explain and it provides better security (i.e., a more efficient
reduction of inverting f to predicting the inner-product). The new proof was
inspired by the proof in [1]. (We mention that the original proof provides a
better starting point for the generalization presented in [12].)

3.1 Introduction

One-way functions are fundamental to many aspects of theory of computation.
Loosely speaking, one-way are those functions that are easy to evaluate but
hard to invert. However, many applications such as pseudorandom generators
(see [4,23] and [7, Chap. 3]) and secure encryption (see [13] and [8, Chap. 5])
require that the function has a “hard-core” predicate b. This value b(x) should
be easy to evaluate on input x, but hard to guess (with a noticeable correlation)
when given only the value of f(x). Intuitively, the hard-core predicate “concen-
trates” the one-wayness of the function in a strong sense. A natural question
of practical and theoretical importance is whether every one-way function has a
hard-core predicate. Prior to [10] only partial answers have been given:

1. Blum and Micali [4] proved that if the discrete exponentiation function is
one-way, then it has a hard-core predicate.6 Analogous results for the RSA

6 This result was generalized to all Abelian groups in [14].
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and Rabin functions (i.e. raising to a power and squaring modulo an integer,
respectively) were obtained by Alexi, Chor, Goldreich, and Schnorr [1].

2. Yao [23] claimed that any one-way function f can be used to construct
another one-way function f∗ that has a hard-core predicate. The function
f∗ partitions its input into many shorter inputs and applies f to each of
them in parallel (i.e., f∗(x1 . . . xk3 ) = f(x1) . . . f(xk3 ), where |xi| = k). This
claim was proved in [15] (see also [11]).

The drawback of the first set of results is that they are based on a particular
intractability assumption (e.g. the hardness of the discrete logarithm problem).
The second result constructs a predicate with security not bounded by a constant
power of the security of f .

Goldreich and Levin [10] resolved the foregoing question by providing essen-
tially every one-way function with a hard-core predicate (see Theorem 3 below).
More specifically, for any time limit s (e.g. s(n) = n, or s(n) = 2

√
n), the follow-

ing tasks are equivalent for probabilistic algorithms running in time s(|x|)O(1):

1. Given f(x) find x for at least a fraction s(|x|)−O(1) of the x’s.
2. Given f(x) and p, |p|= |x|, guess the Boolean inner-product of x and p with

a correlation (i.e. the difference between the success and failure probabilities)
of s(|x|)−O(1).

We mention that, for any polynomial time computable f and b, the smallest
(within a polynomial) such s exists and is called the security of f and b, respec-
tively. The security is a constructible function, can be computed by trying all
small guessing algorithms, and is assumed to grow very fast (at least n1/o(1)).

3.2 Definitions

Loosely speaking, a polynomial-time function f is called one-way if any efficient
algorithm can invert it only with negligible success probability. A polynomial-
time predicate b is called a hard-core of a function f if all efficient algorithm,
given f(x), can guess b(x) only with success probability that is negligibly better
than half.

To simplify our exposition, we associate efficiency with polynomial-time and
negligible functions as such decreasing smaller than 1/poly(n). By Un we denote
a random variable uniformly distributed over {0, 1}n. For simplicity we consider
only length preserving functions (i.e., |f(x)| = |x| for every x).

Definition 1 (one-way function): A one-way function, f , is a polynomial-time
computable function such that for every probabilistic polynomial-time algorithm
A′, every polynomial p(·), and all sufficiently large n it holds that

Pr [f(A′(Yn))=Yn] <
1
2

+
1

p(n)

where Yn = f(Un).
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Definition 2 (hard-core predicate): A polynomial-time computable predicate b :
{0, 1}∗ → {0, 1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A′, every polynomial p(·), and all sufficiently large n
it holds that

Pr [A′(f(Un))=b(Un)] <
1
2

+
1

p(n)

3.3 The Main Result and Its Proof

The following result asserts that every one-way function has a closely related
variant that has a hard-core predicate. The closely related variant (i.e., f ′ below)
is obtained by padding the original function (i.e., f), and the security of f ′ is
closely related to the security of f . Furthermore, the same hard-core predicate
is used for all these variants (and is thus “universal” for them).

Theorem 3 (inner product mod 2 is an almost universal hard-core): Let f be
an arbitrary one-way function, and let g be defined by f ′(x, r) def= (f(x), r), where
|x|= |r|. Let b(x, r) denote the inner-product mod 2 of the binary vectors x and
r. Then, the predicate b is a hard-core of the function g.

In other words, the theorem states that if f is one-way, then it is infeasible to
guess the exclusive-or of a random subset of the bits of x when given f(x) and the
subset itself. We point out that f ′ maintains properties of f such as being length-
preserving and being one-to-one. Furthermore, an analogous statement holds for
collections of one-way functions with/without trapdoor etc. [7, Sec. 2.4].

As stated in Section 3.1, the proof of the foregoing Theorem 3 establishes a
tight relation between the security of the one-way functions and the security
of the corresponding hard-core predicate. This fact is one major advantage of
Theorem 3 over Yao’s aforementioned construction [23].

3.3.1 The proof’s Basic strategy
The proof uses a “reducibility argument” (see [7, Sec. 2.3.3]). Specifically, we
assume (for contradiction) the existence of an efficient algorithm predicting the
inner-product with advantage that is not negligible, and derive an algorithm that
inverts f with related (i.e. not negligible) success probability. This contradicts
the hypothesis that f is a one-way function. Thus, we show that inverting the
function f is reduced to predicting b(x, r) from (f(x), r).

Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and
r tries to predict the inner-product (mod 2) of x and r. Denote by εG(n) the
(overall) advantage of algorithm G in predicting b(x, r) from f(x) and r, where
x and r are uniformly chosen in {0, 1}n. That is,

εG(n) def= Pr [G(f(Xn), Rn) = b(Xn, Rn)]− 1
2
, (12)

where here and in the sequel Xn and Rn denote two independent random vari-
ables, each uniformly distributed over {0, 1}n. Assuming, towards the contradic-
tion, that b is not a hard-core of f ′ means that exists an efficient algorithm G,
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a polynomial p(·) and an infinite set N so that for every n ∈ N it holds that
εG(n) > 1

p(n) . We restrict our attention to this algorithm G and to n’s in this
set N . In the sequel we shorthand εG by ε.

Our first observation is that, on at least an ε(n)
2 fraction of the x’s of length

n, algorithm G has an ε(n)
2 advantage in predicting b(x, Rn) from f(x) and Rn.

Namely,

Claim 3.1: There exists a set Sn ⊆ {0, 1}n of cardinality at least ε(n)
2 · 2n such

that for every x ∈Sn, it holds that

s(x) def= Pr[G(f(x), Rn)=b(x, Rn)] ≥ 1
2

+
ε(n)
2

, (13)

where here the probability is taken over all possible values of Rn and all internal
coin tosses of algorithm G, whereas x is fixed.

Proof: The observation follows by an averaging argument. Namely, write
Exp[s(Xn)] = 1

2 + ε(n), and apply Markov Inequality. ��
In the sequel we restrict our attention to x’s in Sn. We will show an efficient

algorithm that on every input y, with y = f(x) and x ∈ Sn, finds x with very
high probability. Contradiction to the one-wayness of f will follow by noting
that Pr[Un∈Sn] ≥ ε(n)

2 .
Recall that b(x, r) =

∑n
i=1 xiri mod 2, where xi (resp., ri) dentoes the ith

bit of x (resp., r). We highlight the fact that b(x, r)⊕b(x, s) = b(x, r⊕s), which
follows by

∑n
i=1 xiri +

∑n
i=1 xisi ≡

∑n
i=1 xi(ri⊕+ si) (mod 2).

3.3.2 A Motivating Discussion
Consider a fixed x∈Sn. By definition s(x) ≥ 1

2+ ε(n)
2 > 1

2+ 1
2p(n) . Suppose, for a

moment, that s(x) > 3
4+

1
2p(n) . In this case (i.e., of s(x) > 3

4 + 1
poly(|x|)) retrieving

x from f(x) is quite easy. To retrieve the ith bit of x, denoted xi, we randomly
select r ∈ {0, 1}n, and compute G(f(x), r) and G(f(x), r⊕ei), where ei is an
n-dimensional binary vector with 1 in the ith component and 0 in all the others,
and v⊕u denotes the addition mod 2 of the binary vectors v and u. Clearly, if
both G(f(x), r) = b(x, r) and G(f(x), r⊕ei) = b(x, r⊕ei), then

G(f(x), r)⊕G(f(x), r⊕ei) = b(x, r)⊕b(x, r⊕ei)
= b(x, ei)
= xi

(since b(x, r)⊕b(x, s) = b(x, r⊕s)). The probability that both equalities hold (i.e.,
both G(f(x), r)= b(x, r) and G(f(x), r⊕ei)= b(x, r⊕ei)) is at least 1 − 2 · (1

4−
1

poly(|x|)) = 1
2 −

1
poly(|x|) . Hence, repeating the above procedure sufficiently many

times and ruling by majority, we retrieve xi with very high probability. Simi-
larly, we can retrieve all the bits of x, and hence invert f on f(x). However, the
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entire analysis was conducted under (the unjustifiable) assumption that s(x) >
3
4 + 1

2p(|x|) , whereas we only know that s(x) > 1
2 + 1

2p(|x|) .
The problem with the above procedure is that it doubles the original error

probability of algorithm G on inputs of form (x, ·). Under the unrealistic as-
sumption, that the G’s error on such inputs is significantly smaller than 1

4 , the
“error-doubling” phenomenon raises no problems. However, in general (and even
in the special case where G’s error is exactly 1

4 ) the above procedure is unlikely
to invert f . Note that the error probability of G can not be decreased by re-
peating G several times (e.g., G may always answer correctly on three quarters
of the inputs, and always err on the remaining quarter). What is required is an
alternative way of using the algorithm G, a way that does not double the original
error probability of G.

The key idea is to generate the r’s in a way that requires applying algorithm
G only once per each r (and xi), instead of twice. The good news is that the
error probability is no longer doubled, since we only need to use G to get an
“estimate” of b(x, r⊕ei). The bad news is that we still need to know b(x, r), and
it is not clear how we can know b(x, r) without applying G. The answer is that
we can guess b(x, r) by ourselves. This is fine if we only need to guess b(x, r)
for one r (or logarithmically in |x| many r’s), but the problem is that we need
to know (and hence guess) b(x, r) for polynomially many r’s. An obvious way
of guessing these b(x, r)’s yields an exponentially vanishing success probability.
The solution is to generate these polynomially many r’s so that, on one hand
they are “sufficiently random” whereas on the other hand we can guess all the
b(x, r)’s with non-negligible success probability. Specifically, generating the r’s
in a particular pairwise independent manner will satisfy both (seemingly contra-
dictory) requirements. We stress that in case we are successful (in our guesses
for the b(x, r)’s), we can retrieve x with high probability. Hence, we retrieve x
with non-negligible probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(x, r)’s are guessed) is indeed in place. To generate
m = poly(n) many r’s, we uniformly (and independently) select l

def= log2(m +
1) strings in {0, 1}n. Let us denote these strings by s1, ..., sl. We then guess
b(x, s1) through b(x, sl). Let use denote these guesses, which are uniformly (and
independently) chosen in {0, 1}, by σ1 through σl. Hence, the probability that
all our guesses for the b(x, si)’s are correct is 2−l = 1

poly(n) . The different r’s
correspond to the different non-empty subsets of {1, 2, ..., l}; that is, for every
(non-empty) J ⊆ {1, 2, ..., l}, we set rJ def=

⊕
j∈Jsj . The reader can easily verify

that the rJ ’s are pairwise independent and each is uniformly distributed in
{0, 1}n (see details below). The key observation is that

b(x, rJ ) = b(x,
⊕

j∈J
sj) =

⊕
j∈J

b(x, sj). (14)

Hence, our guess for the b(x, rJ )’s is
⊕

j∈Jσj , and with non-negligible probability
all our guesses are correct.
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3.3.3 Back to the Formal Argument
Following is a formal description of the inverting algorithm, denoted A. We
assume, for simplicity that f is length preserving (yet this assumption is not
essential). On input y (supposedly in the range of f), algorithm A sets n

def= |y|,
and l

def= �log2(2n · p(n)2 + 1)�, where p(·) is the polynomial guaranteed above
(i.e., ε(n) > 1

p(n) for the infinitely many n’s in N). Algorithm A uniformly and
independently select s1, ..., sl ∈ {0, 1}n, and σ1, ..., σl ∈ {0, 1}. It then com-
putes, for every non-empty set J ⊆ {1, 2, ..., l}, a string rJ ←

⊕
j∈Jsj and a bit

ρJ ←
⊕

j∈Jσj . Next, for every i∈{1, ..., n} and every non-empty J ⊆ {1, .., l},
algorithm A computes zJ

i ← ρJ⊕G(y, rJ⊕ei). Finally, algorithm A sets zi to be
the majority of the zJ

i values, and outputs z = z1 · · · zn.
(Remark: In an alternative implementation of the foregoing ideas, the in-

verting algorithm, denoted A′, tries all possible values for σ1, ..., σl, and outputs
only one of resulting strings z, with an obvious preference to a string z satisfying
f(z) = y.)

Following is a detailed analysis of the success probability of algorithm A on
inputs of the form f(x), for x ∈ Sn, where n ∈ N . We start by showing that if
the σj ’s are correct, then, with constant probability, zi = xi for all i∈{1, ..., n}.
This is proved by lower bounding the probability that the majority of the zJ

i ’s
equals xi.

Claim 3.2: For every x ∈ Sn and every i∈{1, ..., n}, it holds that

Pr
[
|{J : b(x, rJ )⊕G(f(x), rJ⊕ei) = xi}| >

1
2
· (2l − 1)

]
> 1− 1

2n

where rJ def=
⊕

j∈Jsj and the sj’s are independently and uniformly chosen in
{0, 1}n.

Proof: For every J , define a 0-1 random variable ζJ , so that ζJ equals 1 if and
only if b(x, rJ )⊕G(f(x), rJ⊕ei) = xi. The reader can easily verify that each
rJ is uniformly distributed in {0, 1}n. It follows that each ζJ equals 1 with
probability s(x), which by x ∈ Sn, is at least 1

2 + 1
2p(n) . We show that the ζJ ’s

are pairwise independent by showing that the rJ ’s are pairwise independent. For
every J �= K we have, without loss of generality, j ∈ J and k ∈ K \ J . Hence,
for every α, β ∈ {0, 1}n, we have

Pr
[
rK =β | rJ =α

]
= Pr

[
sk =β | sj =α

]
= Pr

[
sk =β

]
= Pr

[
rK =β

]
and pairwise independence of the rJ ’s follows. Let m

def= 2l−1. Using Chebyshev’s
Inequality, we get

Pr

[∑
J

ζJ ≤ 1
2
·m

]
≤ Pr

[∣∣∣∣∣∑
J

ζJ −
(

1
2

+
1

2p(n)

)
·m

∣∣∣∣∣ ≥ 1
2p(n)

·m
]
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<
Var(ζ{1})

( 1
2p(n) )

2 · (2n · p(n)2)

<
1
4

( 1
2p(n) )

2 · 2n · p(n)2

=
1
2n

The claim follows. ��

Recall that if σj = b(x, sj), for all j’s, then ρJ = b(x, rJ ) for all non-empty J ’s.
In this case z output by algorithm A equals x, with probability at least one half.
However, the first event happens with probability 2−l = 1

2n·p(n)2 independently
of the events analyzed in Claim 3.2. Hence, in case x∈Sn, algorithm A inverts
f on f(x) with probability at least 1

4p(|x|) (whereas the modified algorithm,
A′, succeeds with probability at least 1

2 ). Recalling that |Sn| > 1
2p(n) · 2n, we

conclude that, for every n ∈ N , algorithm A inverts f on f(Un) with probability
at least 1

8p(n)2 . Noting that A is polynomial-time (i.e., it merely invokes G for
2n · p(n)2 = poly(n) times in addition to making a polynomial amount of other
computations), a contradiction to our hypothesis that f is one-way follows. The
theorem follows.

3.3.4 Improving the Efficiency of the Inverting Algorithm
In continuation to the proof of Theorem 3, we present guidelines for a more
efficient inverting algorithm. In the sequel it will be more convenient to use
the arithmetic of the reals instead of that of the Booleans. Hence, we denote
b′(x, r) = (−1)b(r,x) and G′(y, r) = (−1)G(y,r).

1. Prove that, for every x, it holds that Exp[b′(x, r) ·G′(f(x), r + ei)] = s′(x) ·
(−1)xi , where s′(x) def= 2 · (s(x)− 1

2 ).
2. Let v be an l-dimensional Boolean vector, and let R be a uniformly chosen l-

by-n Boolean matrix. Prove that for every v �= u ∈ {0, 1}l\{0}l it holds that
vR and uR are pairwise independent and uniformly distributed in {0, 1}n.

3. Prove that b′(x, vR) = b′(xR�, v), for every x ∈ {0, 1}n and v ∈ {0, 1}l.
4. Prove that, for every x ∈ Sn, with probability at least 1

2 (over the choices
of R as in Item 2), there exists σ ∈ {0, 1}l such that for every 1≤ i≤n the
sign of

∑
v∈{0,1}l b′(σ, v)G′(f(x), vR + ei)) equals the sign of (−1)xi. (Hint:

σ
def= xR�.)

5. Let B be an 2l-by-2l matrix with the (σ, v)-entry being b′(σ, v), and let
gi be an 2l-dimensional vector with the vth entry equal G′(f(x), vR + ei).
Consider an inverting algorithm that computes zi ← Bgi, for all i’s, and
forms a matrix Z in which the columns are the zi’s. That is, the (σ, i)th

entry in Z is
∑

v b′(σ, v) ·G′(f(x), vR + ei). The algorithm outputs a row of
X such that applying f to it yields f(x), where X is Boolean matrix such
that its (σ, i)th entry is 1 iff the (σ, i)th entry in Z is negative.
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(a) Evaluate the success probability of this inverting algorithm.
(b) Using the special structure of matrix B, show that the product Bgi can

be computed in time l · 2l.
Hint: B is the Sylvester matrix, which can be written recursively as

Sk =
(

Sk−1 Sk−1

Sk−1 Sk−1

)
where S0 = +1 and M means flipping the +1 entries of M to −1 and
vice versa.

3.4 Hard-Core Functions

We have just seen that every one-way function can be easily modified to have a
hard-core predicate. In other words, the result establishes one bit of information
about the preimage that is hard to approximate from the value of the function.
A stronger result may say that several bits of information about the preimage
are hard to approximate. For example, we may want to say that a specific pair
of bits is hard to approximate, in the sense that it is infeasible to guess this
pair with probability significantly larger than 1

4 . In general, a polynomial-time
function, h, is called a hard-core of a function f if no efficient algorithm can
distinguish (f(x), h(x)) from (f(x), r), where r is a random string of length
|h(x)|. We assume for simplicity that h is length regular (see below).

Definition 4 (hard-core function): Let h : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function, satisfying |h(x)| = |h(y)| for all |x| = |y|, and let
l(n) def= |h(1n)|. The function h : {0, 1}∗ → {0, 1}∗ is called a hard-core of a
function f if for every probabilistic polynomial-time algorithm D′, every polyno-
mial p(·), and all sufficiently large n it holds that∣∣Pr [D′(f(Xn), h(Xn))=1]− Pr

[
D′(f(Xn), Rl(n))=1

]∣∣ <
1

p(n)

where Xn and Rl(n) are two independent random variables the first uniformly
distributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

Theorem 5 (almost universal hard-core functions): Let f be an arbitrary one-
way function, and let f2 be defined by f2(x, s) def= (f(x), s), where |s|=2|x|. Let
c > 0 be a constant, and l(n) def= �c log2 n�. Let bi(x, s) denote the inner-product
mod 2 of the binary vectors x and (si+1, ..., si+n), where s = (s1, ..., s2n). Then
the function h(x, s) def= b1(x, s) · · · bl(|x|)(x, s) is a hard-core of the function f2.

The proof of the theorem follows by combining a proposition concerning the
structure of the specific function h with a general lemma concerning hard-core
functions. Loosely speaking, the proposition “reduces” the problem of approx-
imating b(x, r) given f ′(x, r) to the problem of approximating the exclusive-or
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of any non-empty set of the bits of h(x, s) given f2(x, s), where b and f ′ are
the hard-core and the one-way function presented in Section 3.3. Since we know
that the predicate b(x, r) cannot be approximated from f ′(x, r), we conclude
that no exclusive-or of the bits of h(x, s) can be approximated from f2(x, s).
The general lemma states that, for every “logarithmically shrinking” function h
(i.e., h satisfying |h(x)| = O(log |x|)), the function h is a hard-core of a function
f if and only if the exclusive-or of any non-empty subset of the bits of h cannot
be approximated from the value of f .

Proposition 6 (exclusive-ors of bits of h are hard-core predicates): Let f , f2

and bi’s be as above. Let I(n) ⊆ {1, 2, ..., l(n)}, n∈N, be an arbitrary sequence of
non-empty subsets, and let bI(|x|)(x, s) def=

⊕
i∈I(|x|)bi(x, s). Then, for every prob-

abilistic polynomial-time algorithm A′, every polynomial p(·), and all sufficiently
large n it holds that

Pr
[
A′(I(n), f2(U3n)) = bI(n)(U3n)

]
<

1
2

+
1

p(n)

The proof is analogous to the proof of Claim 1.2 (presented in Section 2.4).
Nevertheless, we detail the proof for sake of clarity.

Proof: The proof is by a “reducibility” argument. It is shown that the problem
of approximating b(Xn, Rn) given (f(Xn), Rn) is reducible to the problem of
approximating bI(n)(Xn, S2n) given (f(Xn), S2n), where Xn, Rn and S2n are
independent random variable and the last is uniformly distributed over {0, 1}2n.
The underlying observation is that, for every |s| = 2 · |x|,

bI(x, s) =
⊕

i∈I
bi(x, s) =

⊕
i∈I

b(x, subi(s)) = b(x,
⊕

i∈I
subi(s))

where subi(s1, ..., s2n) def= (si+1, ..., si+n). Furthermore, the reader can verify7

that for every non-empty I ⊆ {1, ..., n}, the random variable
⊕

i∈Isubi(S2n) is
uniformly distributed over {0, 1}n, and that given a string r ∈ {0, 1}n and such a
set I one can efficiently select a string uniformly in the set {s :

⊕
i∈Isubi(s) = r}.

Now, assume to the contradiction, that there exists an efficient algorithm A′,
a polynomial p(·), and an infinite sequence of sets (i.e., I(n)’s) and n’s such that

Pr
[
A′(I(n), f2(U3n)) = bI(n)(U3n)

]
≥ 1

2
+

1
p(n)

We first observe that for n’s satisfying the above inequality we can find in prob-
abilistic polynomial time (in n) a set I satisfying

Pr [A′(I, f2(U3n)) = bI(U3n)] ≥ 1
2

+
1

2p(n)

(i.e., by going over all possible I’s and experimenting with algorithm A′ on
each of them). Of course we may be wrong in these experiments, but the error
probability can be made exponentially small.
7 Indeed, see the proof of Claim 1.2.
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We now present an algorithm for approximating b(x, r), from y
def= f(x) and r.

On input y and r, the algorithm first finds a set I as described above (this stage
depends only on |x|, which equals |r|). Once I is found, the algorithm uniformly
select a string s so that

⊕
i∈Isubi(s) = r, and return A′(y, s). Evaluation of the

success probability of this algorithm is left as an exercise.

Lemma 7 (Computational XOR Lemma, revisited): Let f and h be arbitrary
length regular functions, and let l(n) def= |h(1n)|. Let D be an algorithm. Denote

p
def= Pr [D(f(Xn), h(Xn)) = 1] and q

def= Pr
[
D(f(Xn), Rl(n)) = 1

]
where Xn and Rl are as above. Let G be an algorithm that on input y and S
(and l(n)), selects r uniformly in {0, 1}l(n), and outputs D(y, r)⊕1⊕(

⊕
i∈Sri),

where r = r1 · · · rl and ri ∈ {0, 1}. Then,

Pr
[
G(f(Xn), Il, l(n))=

⊕
i∈Il

hi(Xn)
]

=
1
2

+
p− q

2l(n) − 1

where Il is a randomly chosen non-empty subset of {1, ..., l(n)} and hi(x) denotes
the ith bit of h(x).

Proof: See Section 2.

It follows that, for logarithmically shrinking h’s, the existence of an efficient
algorithm that distinguishes (with a gap that is not negligible in n) the random
variables (f(Xn), h(Xn)) and (f(Xn), Rl(n)) implies the existence of an efficient
algorithm that approximates the exclusive-or of a random non-empty subset
of the bits of h(Xn) from the value of f(Xn) with an advantage that is not
negligible.
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On Yao’s XOR-Lemma

Oded Goldreich, Noam Nisan, and Avi Wigderson

Abstract. A fundamental lemma of Yao states that computational weak-
unpredictability of Boolean predicates is amplified when the results of
several independent instances are XOR together. We survey two known
proofs of Yao’s Lemma and present a third alternative proof. The third
proof proceeds by first proving that a function constructed by concatenat-
ing the values of the original function on several independent instances is
much more unpredictable, with respect to specified complexity bounds,
than the original function. This statement turns out to be easier to prove
than the XOR-Lemma. Using a result of Goldreich and Levin (1989) and
some elementary observation, we derive the XOR-Lemma.

Keywords: Yao’s XOR Lemma, Direct Product Lemma, One-Way
Functions, Hard-Core Predicates, Hard-Core Regions.

An early version of this survey appeared as TR95-050 of ECCC, and was revised
several times (with the latest revision posted in January 1999). Since the first
publication of this survey, Yao’s XOR Lemma has been the subject of inten-
sive research. The current revision contains a short review of this research (see
Section 7), but the main text (i.e., Sections 1–6) is not updated according to
these subsequent discoveries. The current version also include a new appendix
(Appendix B), which discusses a variant of the XOR Lemma, called the Selective
XOR Lemma.

1 Introduction

A fundamental lemma of Yao states that computational weak-unpredictability
of Boolean predicates is amplified when the results of several independent in-
stances are XOR together. Indeed, this is analogously to the information theo-
retic wire-tape channel Theorem (cf., Wyner), but the computational analogue
is significanly more complex.

Loosly speaking, by weak-unpredictability we mean that any efficient algo-
rithm will fail to guess the value of the function with probability beyond a stated
bound, where the probability is taken over all possible inputs (say, with uniform
probability distribution). In particular, the lemma known as Yao’s XOR Lemma
asserts that if the predicate f is weakly-unpredictable (within some complexity
bound), then for sufficiently large t (which depends on the bound) the predicate
F (x1, ..., xt)

def= ⊕t
i=1f(xi) is almost unpredictable within a related complexity

bound (i.e., algorithms of this complexity cannot do substantially better than
flip a coin for the answer).
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Yao stated the XOR Lemma in the context of one-way functions, where the
predicate f is the composition of an easy to compute Boolean predicate and the
inverse of the one-way function (i.e., f(x) = b(g−1(x)), where g is a 1-1 one-
way function and b is an easy to compute predicate). Clearly, this is a special
case of the setting described above. Yet, the XOR Lemma is sometimes used
within the more general setting (under the false assumption that proofs for this
setting have appeared in the literature). Furthermore, in contrary to common
beliefs, the lemma itself has not appeared in Yao’s original paper “Theory and
Applications of Trapdoor Functions” [17] (but rather in oral presentations of his
work).

A proof of Yao’s XOR Lemma has first appeared in Levin’s paper [12]. Levin’s
proof is for the context of one-way functions and is carried through in a uniform
model of complexity. The presentation of this proof in [12] is very succinct and
does not decouple the basic approach from difficulties arising from the uniform-
complexity model. In Section 3, we show that Levin’s basic approach suffices
for the general case (mentioned above) provided it is stated in terms of non-
uniform complexity. The proof also extends to a uniform-complexity setting,
provided that some sampling condition (which is satisfied in the context of one-
way functions) holds. We do not know whether the XOR Lemma holds in the
uniform-complexity model in case this sampling condition is not satisfied.

Recently, Impagliazzo has shown that, in the non-uniform model, any weakly-
unpredictable predicate has a “hard-core”1 on which it is almost unpredictable [7].
Using this result, Impagliazzo has presented an alternative proof for the general
case of the XOR-Lemma (within the non-uniform model). We present this proof
in Section 4.

A third proof for the general case of the XOR-Lemma is presented in Section 5.
This proof proceeds by first proving that a function constructed by concatenat-
ing the values of the predicate on several independent instances is much more
unpredictable, with respect to specified complexity bounds, than the original
predicate. Loosely speaking, it is hard to predict the value of the function with
probability substantially higher than δt, where δ is a bound on the probability of
predicting the predicate and t is the number of instances concatenated. Not sur-
prisingly, this statement turns out to be easier to prove than the XOR-Lemma.
Using a result of Goldreich and Levin [5] and some elementary observation, we
derive the XOR-Lemma.

We remark that Levin’s proof yields a stronger quantitative statement of the
XOR Lemma than the other two proofs. In fact, the quantitative statement
provided by Levin’s proof is almost optimal. Both Levin’s proof and our proof
can be transformed to the uniform-complexity provided some natural sampling
condition holds. We do not know how to transform Impagliazzo’s proof to the
uniform-complexity setting, even under this condition.

1 Here the term ‘hard-core’ means a subset of the predicate’s domain. This meaning
is certainly different from the usage of the term ‘hard-core’ in [5], where it means a
strongly-unpredicatable predicate associated with a one-way function.
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A different perspective on the concatenating problem considered above is pre-
sented in Section 6, where we consider the conditional entropy of the function’s
value given the result of a computation (rather than the probability that the
two agree).

2 Formal Setting

We present a general framework, and view the context of one-way functions
as a specail case. The general framework is presented in term of non-uniform
complexity, but uniformity conditions can be added in.

2.1 The Basic Setting

The basic framework consists of a Boolean predicate f : {0, 1}∗ → {0, 1} and
a non-uniform complexity class such as P/poly. Specifically, we consider all
families of polynomial-size circuits and for each family, {Cn}, we consider the
probability that it correctly computes f , where the probability is taken over
all n-bit inputs with uniform probability distribution. Alternatively, one may
consider the most successful n-bit input circuit among all circuits of a given size.
This way we obtain a bound on unpredictability of f with respect to a specific
complexity class.

In the sequel, it will be more convenient to redefine f as mapping bit string
into {±1} and to consider the correlation of a circuit (outputting a value in
{±1}) with the value of the function (i.e., redefine f(x) def= (−1)f(x)).2 Using
this notation allows to replace Prob[C(X) = f(X)] by (1 + E[C(X) · f(X)])/2,
by noting that E[C(X) · f(X)] = Prob[C(X) = f(X)]− Prob[C(X) �= f(X)].

We also generalize the treatment to arbitrary distributions over the set of
n-bit long inputs (rather than uniform ones) and to “probabilistic” predicates
(or processes) that on input x return some distribution on {±1}; that is, for a
fixed x, we let f(x) be a random variable distributed over {±1} (rather than a
fixed value). One motivation for this generalization is that it allows us to treat
as a special case ‘hard predicates’ of one-way functions, when the functions are
not necessarily 1-1.

Definition 1 (algorithmic correlation): Let P be a randomized process/
algorithm that maps bit strings into values in {±1} and let X def= {Xn} be a
probability ensemble such that, for each n, the random variable Xn is distributed
over {0, 1}n. The correlation of a circuit family C = {Cn} with P over X is
defined as c :N→R such that

c(n) def= E[Cn(Xn) · P (Xn)],

2 This suggestion, of replacing the standard {0, 1} by {±1} and using correlations
rather than probabilities, is due to Levin. It is indeed amazing how this simple
change of notation simplifies both the statements and the proofs.
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where the expectation is taken over the random variable Xn (and the process P ).
We say that a complexity class (i.e., a set of circuit families) has correlation at
most c(·) with P over X if, for every circuit family C in this class, the correlation
of C with P over X is bounded by c(·).

The foregoing definition may be used to discuss both uniform and non-uniform
complexity classes. In the next subsection we relate the Definition 1 to the stan-
dard treatment of unpredictability within the context of one-way functions.

2.2 The Context of One-Way Functions

For sake of simplicity, we consider only length-preserving functions (i.e., func-
tions f : {0, 1}∗ → {0, 1}∗ satisfying |f(x)| = |x| for all x). A one-way function
f : {0, 1}∗ → {0, 1}∗ is a function that is easy to compute but hard to invert.
Namely, there exists a polynomial-time algorithm for computing f , but for any
probabilistic polynomial-time3 algorithm A, the probability that A(f(x)) is a
preimage of f(x) is negligible (i.e., smaller than 1/p(|x|) for any positive poly-
nomial p), where the probability is taken uniformly over all x ∈ {0, 1}n and all
possible internal coin tosses of algorithm A.

Let b : {0, 1}∗ → {±1} be an easy to compute predicate and let δ : N → R.
The predicate b is said to be at most δ-correlated to f in polynomial-time if
for any probabilistic polynomial-time algorithm G, the expected correlation of
G(f(x)) and b(x), is at most δ(n) (for all but finitely many n’s). (Again, the
probability space is uniform over all x ∈ {0, 1}n and all possible internal coin
tosses of the algorithm.) Thus, although b is easy to evaluate (i.e., the mapping
x �→ b(x) is polynomial-time computable), it is hard to predict b(x) from f(x),
for a random x.

Let us relate the latter notion to Definition 1. Suppose, first, that f is 1-1.
Then, saying that b is at most δ-correlated to f in polynomial-time is equiva-
lent to saying that the class of (probabilistic) polynomial-time algorithms has
correlation at most δ(·) with the predicate P (x) def= b(f−1(x)), over the uniform
distribution. Note that if f is polynomial-time computable and b is at most
(1− (1/poly))-correlated to f in polynomial-time, then f must be one-way (be-
cause otherwise b(x) can be correlated too well by first obtaining f−1(x) and
then evaluating b),

The treatment can be extended to arbitrary one-way functions, which are not
necessarily 1-1. Let f be such a function and b a predicate that is at most δ-
correlated to f (by polynomial-time algorithms). Define the probability ensemble
X = {Xn} by letting Xn = f(r), where r is uniformly selected in {0, 1}n,
and define the randomized process P (x) by uniformly selecting r ∈ f−1(x) and
outputting b(r). Now, it follows that the class of (probabilistic) polynomial-time
algorithms has correlation at most δ(·) with the predicate P over X.

3 Here we adopt the standard definition of one-way function; however, our treatment
applies also to the general definition where inverting is infeasible with respect to a
specified time bound and success probability.
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2.3 Getting Random Examples

An important issue regarding the general setting, is whether it is possible to
obtain random examples of the distribution (Xn, P (Xn)). Indeed, random exam-
ples are needed in all known proofs of the XOR Lemma (i.e., they are used in
the algorithms deriving a contradiction to the difficulty of correlating the basic
predicate).4 Other than this aspect (i.e., the use of random examples), two of the
three proofs can be adapted to the uniform-complexity setting (see Section 2.5).

Note that in the context of one-way functions such random examples can be
generated by a probabilistic polynomial-time algorithm. Specifically, although
the corresponding P is assumed not to be polynomial-time computable, it is easy
to generate randomly pairs (x, P (x)) for x ← Xn. (This is done, by uniformly
selecting r ∈ {0, 1}n, and outputting the pair (f(r), b(r)) = (f(r), P (f(r))).)
Thus, we can prove the XOR Lemma in the (uniform-complexity) context of
one-way functions.

We also note that the effect of random examples can be easily simulated by
non-uniform polynomial-size circuits (i.e., random examples can be hard-wired
into the circuit). Thus, we can prove the XOR Lemma in the general non-uniform
complexity setting.

2.4 Three (Non-uniform) Forms of the XOR Lemma

Following the description in the introduction (and Yao’s expositions), the basic
form of the XOR Lemma states that the tractable algorithmic correlation of the
XOR-predicate P (t)(x1, ..., xt)

def=
∏t

i=1 P (xi) decays exponentially with t (upto
a negligible fraction). Namely:

Lemma 1 (XOR Lemma – Yao’s version): Let P and X = {Xn} be as in Defi-
nition 1. For every function t :N→N, define the predicate

P (t)(x1, ..., xt(n))
def=

t(n)∏
i=1

P (xi) ,

where x1, ..., xt(n) ∈ {0, 1}n, and let X(t) def= {X(t)
n } be a probability ensemble

such that X
(t)
n consists of t(n) independent copies of Xn.

(hypothesis) Let s :N→N be a size function, and δ :N→ [−1, +1] be a function
that is bounded-away-from-1 (i.e., |δ(n)| < 1 − 1

p(n) , for some polynomial
p and all sufficiently large n’s). Suppose that δ is an upper bound on the
correlation of families of s(·)-size circuits with P over X.

(conclusion) Then, there exists a bounded-away-from-1 function δ′ :N→ [−1, +1]
and a polynomial p such that, for every function t :N→N and every function
ε :N→ [0, 1], the function

δ(t)(n) def= p(n) · δ′(n)t(n) + ε(n)
4 This assertion refers to what was known at the time this survey was written. As

noted in Section 7, the situation regarding this issue has changed recently.
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is an upper bound on the correlation of families of s′(·)-size circuits with P (t)

over X(t), where

s′(t(n) · n) def= poly
(

ε(n)
n

)
· s(n)− poly(n · t(n)).

All three proofs presented below establish Lemma 1. The later two proofs do
so for various values of δ′ and p; that is, in Impagliazzo’s proof (see Section 4)
δ′(n) = 1+δ(n)

2 + o(1 − δ(n)) and p(n) = 2, whereas in our proof (see Section 5)

δ′(n) = 3
√

1+δ(n)
2 and p(n) = o(n). Levin’s proof (see Section 3) does even better;

it establishes the following:

Lemma 2 (XOR Lemma – Levin’s version): Yao’s version holds with δ′ = δ
and p = 1.

Lemma 2 still contains some slackness; specifically, the closest one wants to get
to the “obvious” bound of δ(t)(n) = δ(n)t(n), the more one losses in terms of the
complexity bounds (i.e., bounds on circuit size).5 In particular, if one wishes to
have s′(t(n) · n) = s(n)

poly(n) , then one can only get a result for ε(n) = 1/poly(n)
(i.e., get δ(t)(n) = δ(n)t(n) +1/p(n), for any polynomial p). We do not know how
to remove this slackness. We even do not know if it can be reduced “a little” as
follows.

Lemma 3 (XOR Lemma – dream version – a conjecture): For some fixed neg-
ligible function μ (e.g., μ(n) def= 2−n or even μ(n) def= 2−(log2 n)2), Yao’s version
holds with δ(t)(n) = δ′(n)t(n) + μ(n), and s′(t(n) · n) = s(n)

poly(n) .

Steven Rudich has observed that the Dream Version does not hold in a relativized
world. Specifically, his argument proceeds as follows. Fix μ as in the Dream
Version and set t such that δ(t) < 2μ(n). Consider an oracle that for every
(x1, ..., xt(n)) ∈ ({0, 1}n)t(n) and for a 2μ(n) fraction of the r’s in {0, 1}n, answers
the query (x1, ..., xt(n), r) with (P (x1), ..., P (xt)), otherwise the oracle answers
with a special symbol. These r’s may be selected at random (thus constructing
a random oracle). The hypothesis of the lemma may hold relative to this oracle,
but the conclusion cannot possibly hold. Put differently, one can argue that
there is no (polynomial-time) “black-box” reduction of the task of correlating P
(by at least δ) to the task of correlating P (t) (by at least μ). The reason being
that the polynomial-time machine (effecting this reduction) cannot distinguish a
black-box of negligible correlation (i.e., correlation 2μ) from a black-box of zero
correlation.

2.5 Uniform Forms of the XOR Lemma

So far, we have stated three forms of the XOR Lemma in terms of non-uniform
complexity. Analogous statements in terms of uniform complexity can be made
5 I.e., δ(t)(n) = δ′(n)t(n) + ε(n) is achieved for s′(t(n) · n) = poly(ε(n)/n) · s(n).
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as well. These statements relate to the time required to construct the circuits
in the hypothesis and those in the conclusion. For example, one may refer to
circuit families, {Cn}, for which, given n, the circuit Cn can be constructed in
poly(|Cn|)-time. In addition, all functions referred to in the statement of the
lemma (i.e., s, t : N → N, δ : N → [−1, +1] and ε : N → [−1, +1]) need to be
computable within corresponding time bounds. Such analogues of the two first
versions can be proven, provided that one can construct random examples of the
distribution (Xn, P (Xn)) within the stated (uniform) complexity bounds (and
in particular in polynomial-time). See Section 2.3 as well as comments in the
subsequent sections.

3 Levin’s Proof

The key ingredient in Levin’s proof is the following lemma, which provides an
accurate account of the decrease of the computational correlation in the case
that two predicates are xor-ed together. It should be stressed that the statement
of the lemma is intentionally asymmetric with respect to the two predicates.

Lemma 4 (Isolation Lemma): Let P1 and P2 be two predicates, l : N → N be
a length function, and P (x) def= P1(y) · P2(z) where x = yz and |y| = l(|x|).
Let X = {Xn} be a probability ensemble such that the first l(n) bits of Xn are
statistically independent of the rest, and let Y = {Yl(n)} (resp., Z = {Zn−l(n)})
denote the projection of X on the first l(·) bits (resp., last n− l(n) bits).

(hypothesis) Suppose that δ1(·) is an upper bound on the correlation of families
of s1(·)-size circuits with P1 over Y, and that δ2(·) is an upper bound on the
correlation of families of s2(·)-size circuits with P2 over Z.

(conclusion) Then, for every function ε :N→R, the function

δ(n) def= δ1(l(n)) · δ2(n− l(n)) + ε(n)

is an upper bound on the correlation of families of s(·)-size circuits with P
over X, where

s(n) def= min
{

s1(l(n))
poly(n/ε(n))

, s2(n− l(n))− n

}
The lemma is asymmetric with respect to the dependency of s(·) on the si’s.
The fact that s(·) maybe almost equal to s2(·) plays a central role in deriving
the XOR Lemma from the Isolation Lemma.

3.1 Proof of the Isolation Lemma

Assume, towards the contradiction, that a circuit family C (of size s(·)) has
correlation greater than δ(·) with P over X. Thus, denoting by Yl (resp., Zm)
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the projection of Xn on the first l
def= l(n) bits (resp., last m

def= n − l(n) bits),
we get

δ(n) < E[Cn(Xn) · P (Xn)]
= E[Cn(Yl, Zm) · P1(Yl) · P2(Zm)]
= E[P1(Yl) · E[Cn(Yl, Zm) · P2(Zm)]]

where, in the last expression, the outer expectation is over Yl and the inner one
is over Zm. For every fixed y ∈ {0, 1}l, let

T (y) def= E[Cn(y, Zm) · P2(Zm)]. (1)

Then, by the foregoing,

E[T (Yl) · P1(Yl)] > δ(n). (2)

We shall see that Eq. (2) either contradicts the hypothesis concerning P2 (see
Claim 4.1) or contradicts the hypothesis concerning P1 (by a slightly more in-
volved argument).

Claim 4.1: For all but finitely many n’s and every y ∈ {0, 1}l

|T (y)| ≤ δ2(m).

Proof: Otherwise, fixing a y contradicting the claim, we get a circuit C′
m(z) def=

Cn(y, z) of size s(n) + l < s2(m), having greater correlation with P2 than that
allowed by the lemma’s hypothesis. ��
By Claim 4.1, the value T (y)/δ2(m) lies in the interval [−1, +1]; while, on the
other hand (by Eq. (2)), it (i.e., T (·)/δ2(m)) has good correlation with P1. In
the rest of the argument we “transform” the function T into a circuit which
contradicts the hypothesis concerning P1. Suppose for a moment, that one could
compute T (y), on input y. Then, one would get an algorithm with output in
[−1, +1] that has correlation at least δ(n)/δ2(m) > δ1(l) with P1 over Yl, which
is almost in contradiction to the hypothesis of the lemma.6 The same holds if
one can approximate T (y) “well enough” using circuits of size s1(l). Indeed, the
lemma follows by observing that such an approximation is possible. Namely:

Claim 4.2: For every n, l = l(n), m = n− l, q = poly(n/ε(n)) and y ∈ {0, 1}l, let

T̃ (y) def=
1
q

q∑
i=1

Cn(y, zi) · σi

where (z1, σ1), ..., (zq, σq) is a sequence of q independent samples from the dis-
tribution (Zm, P2(Zm)). Then,

Prob[|T (y)− T̃ (y)| > ε(n)] < 2−l(n)

6 See discussion below; the issue is that the output is in the interval [−1, +1] rather
than being a binary value in {±1}.
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Proof: Immediate by the definition of T (y) and application of Chernoff bound.��
Claim 4.2 suggests an approximation algorithm (for the function T ), where we
assume that the algorithm is given as auxiliary input a sequence of samples from
the distribution (Zm, P2(Zm)). (The algorithm merely computes the average of
Cn(y, zi) · σi over the sample sequence (z1, σ1), ..., (zq, σq).)

If such a sample sequence can be generated efficiently, by a uniform algorithm
(as in the context of one-way functions), then we are done. Otherwise, we use
non-uniformity to obtain a fixed sequence that is good for all possible y’s. (Such a
sequence does exist since with positive probability, a randomly selected sequence,
from the above distribution, is good for all 2l(n) possible y’s.) Thus, there exists
a circuit of size poly(n/ε(n)) · s(n) that, on input y ∈ {0, 1}l(n), outputs a value
(T (y)± ε(n))/δ2(m).

We note that this output is at least δ(n)
δ2(m) −

ε(n)
δ2(m) = δ1(l) correlated with

P1, which almost contradicts the hypothesis of the lemma. The only problem is
that the resulting circuit has output in the interval [−1, +1] instead of a binary
output in {±1}. This problem is easily corrected by modifying the circuit so
that on output r ∈ [−1, +1] it outputs +1 with probability (1 + r)/2 and −1
otherwise. Noting that this modification preserves the correlation of the circuit,
we derive a contradiction to the hypothesis concerning P1.

3.2 Proof of Lemma 2

The stronger version of the XOR Lemma (i.e., Lemma 2) follows by a (care-
ful) successive application of the Isolation Lemma. Loosely speaking, we write
P (t)(x1, x2, ..., xt(n)) = P (x1) ·P (t−1)(x2, ..., xt(n)), assume that P (t−1) is hard to
correlate as claimed, and apply the Isolation Lemma to P ·P (t−1). This way, the
lower bound on the size of circuits correlating P (t) is related to the lower bound
assumed for circuits correlating the original P , since the lower bound derived for
P (t−1) is larger and is almost preserved by the Isolation Lemma (losing only an
additive term!).

3.3 Remarks Concerning the Uniform Complexity Setting

A uniform-complexity analogue of Lemma 2 can be proven provided that one can
construct random examples of the distribution (Xn, P (Xn)) within the stated
(uniform) complexity bounds. To this end, one should state and prove a uniform-
complexity version of the Isolation Lemma, which also assumes that example
from both distributions (i.e., (Yl, P1(Yl)) and (Zm, P2(Zm)))7 can be generated
within the relevant time complexity; certainly, sampleability in probabilistic
polynomial-time suffices. Furthermore, in order to derive the XOR Lemma it
is important to prove a strong statement regarding the relationship between the
time required to construct the circuits referred to in the lemma. Namely:

Lemma 5 (Isolation Lemma – uniform complexity version): Let P1, P2, l, P,
X,Y and Z be as in Lemma 4.
7 Actually, it suffices to be able to sample the distributions Yl and (Zm, P2(Zm)).
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(hypothesis) Suppose that δ1(·) (resp., δ2) is an upper bound on the correlation of
t1(·)-time-constructible families of s1(·)-size (resp., t2(·)-time-constructible
families of s2(·)-size) circuits with P1 over Y (resp., P2 over Z). Further-
more, suppose that one can generate in polynomial-time a random sample
from the distribution (Yl, Zm, P2(Zm)).

(conclusion) Then, for every function ε :N→R, the function

δ(n) def= δ1(l(n)) · δ2(n− l(n)) + ε(n)

is an upper bound on the correlation of t(·)-time-constructible families of
s(·)-size circuits with P over X, where

s(n) def= min
{

s1(l(n))
poly(n/ε(n))

, s2(n− l(n))− n

}
t(n) def= min {t1(l(n)) , t2(n− l(n))} − poly(n/ε(n)) · s(n).

The uniform-complexity version of the Isolation Lemma is proven by adapting
the proof of Lemma 4 as follows. First, a weaker version of Claim 4.1 is stated,
asserting that (for all but finitely many n’s) it holds that

Prob[|T (Yl)| > δ2(m) + ε′(n)] < ε′(n),

where ε′(n) def= ε(n)/3. The new claim is valid, since otherwise, one can find in
poly(n/ε(n))-time a y violating it; to this end we need to sample Yl and, for
each sample y, approximate the value of T (y) (by using poly(n/ε(n)) samples of
(Zm, P2(Zm))). Once a good y is found, we incorporate it in the construction of
Cn, obtaining a circuit that contradicts the hypothesis concerning P2. (We stress
that we have presented an efficient algorithm for constructing a circuit for P2,
given an algorithm that constructs the circuit Cn. Furthermore, the running time
of our algorithm is the sum of the time required to construct Cn and the time
required for sampling (Zm, P2(Zm)) sufficiently many times and for evaluating
Cn on sufficiently many instances.)

Clearly, Claim 4.2 remains unchanged (except for the replacing ε(n) by ε′). Us-
ing the hypothesis that samples from (Zm, P2(Zm)) can be efficiently generated,
we can construct a circuit for correlating P1 within time t(n)+poly(n/ε(n))·(n+
s(n)). This circuit is merely an approximater of the function T , which operates
by averaging (as in Claim 4.2); this circuit is constructed by first constructing
Cn, generating poly(n/ε(n)) samples of (Zm, P2(Zm)) and incorporating them
in corresponding copies of Cn – thus justifying the above time and size bounds.
However, unlike in the non-uniform case, we are not guaranteed that |T (y)| is
bounded above (by δ2(m) + ε′(n)) for all y’s. Yet, if we modify our circuit to do
nothing whenever its estimate violates the bound, we loss at most ε′(n) of the
correlation and we can proceed as in the non-uniform case.

Proving a uniform complexity version of Lemma 2: As in the non-uniform
case, the (strong form of the) XOR Lemma follows by a (careful) successive
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application of the Isolation Lemma. Again, we write P (τ)(x1, x2, ..., xτ(n)) =
P (x1)·P (τ−1)(x1, ..., xτ(n)−1), assume that P (τ−1) is hard to correlate as claimed,
and apply the Isolation Lemma to P · P (τ−1). This way, the lower bounds on
circuits correlating P (τ) is related to the lower bound assumed for circuits corre-
lating the original P and is almost the bound derived for P (τ−1) (losing only an
additive terms!). This almost concludes the proof, except that we have implicitly
assumed that we know the value of τ for which the XOR Lemma first fails; this
value is needed in order to construct the circuit violating the hypothesis for the
original P . In the non-uniform case this value of τ can be incorporated into the
circuit, but in the uniform-complexity case we need to find it. This is not a big
problem as they are only polynomially many possible values and we can test
each of them within the allowed time complexity.

4 Impagliazzo’s Proof

The key ingredient in Impagliazzo’s proof is the notion of a hard-core region of
a weakly-unpredictable predicate and a lemma that asserts that every weakly-
unpredictable predicate has a hard-core region of substantial size.

Definition 2 (hard-core region of a predicate): Let f : {0, 1}∗ → {0, 1} be a
Boolean predicate, s :N→N be a size function, and ε :N→ [0, 1] be a function.

– We say that a sequence of sets, S = {Sn ⊆ {0, 1}n}, is a hard-core (region)
of f with respect to s(·)-size circuits families and advantage ε(·) if for every
n and every circuit Cn of size at most s(n), it holds that

Prob[Cn(Xn)=f(Xn)] ≤ 1
2

+ ε(n)

where Xn is a random variable uniformly distributed on Sn.
– We say that f has a hard-core (region) of density ρ(·) with respect to s(·)-

size circuits families and advantage ε(·) if there exists a sequence of sets
S = {Sn ⊆ {0, 1}n} such that S is a hard-core of f with respect to the above
and |Sn| ≥ ρ(n) · 2n.

We stress that the usage of the term ‘hard-core’ in the above definition (and in
the rest of this section) is different from the usage of this term in [5]. Observe
that every strongly-unpredictable predicate has a hard-core of density 1 (i.e.,
the entire domain itself). Impagliazzo proves that also weakly-unpredicatabe
predicates have hard-core sets that have density related to the amount of unpre-
dictability. Namely:

Lemma 6 (existence of hard-core regions for unpredictable predicates): Let f :
{0, 1}∗→{0, 1} be a Boolean predicate, s :N→N be a size function, and ρ :N→
[0, 1] be a noticeable function (i.e., ρ(n) > 1/poly(n)), such that for every n and
every circuit Cn of size at most s(n) it holds that

Prob[Cn(Un)=f(Un)] ≤ 1− ρ(n),
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where Un is a random variable uniformly distributed on {0, 1}n. Then, for every
function ε :N→ [0, 1], the function f has a hard-core of density ρ′(·) with respect
to s′(·)-size circuits families and advantage ε(·), where ρ′(n) def= (1− o(1)) · ρ(n)
and s′(n) def= s(n)/poly(n/ε(n)).

The proof of Lemma 6 is given in Appendix A. Using Lemma 6, we derive a
proof of the XOR-Lemma, for the special case of uniform distribution.

Suppose that δ(·) is a bound on the correlation of s(·)-circuits with f over
the uniform distribution. Then, it follows that such circuits cannot guess the
value of f better than with probability p(n) def= 1+δ(n)

2 and the existence of
a hard-core S = {Sn} (w.r.t. s′(n)-circuits and ε(n)-advantage) with density
ρ′(n) def= (1− o(1)) · (1− p(n)) follows. Clearly,

ρ′(n) = (1 − o(1)) · 1− δ(n)
2

>
1
3
· (1− δ(n)).

Now, suppose that in contradiction to the XOR Lemma, the predicate F (t) de-
fined as F (t)(x1, ..., xt)

def= ⊕if(xi) can be correlated by “small” circuits with
correlation greater than c′(n) def= 2 · (2+δ(n)

3 )t + ε(n). In other words, such cir-
cuits can guess F (t) with success probability at least 1

2 + 1
2 · c′(n). However, the

probability that none of the t arguments to F (t) falls in the hard-core is at most
(1 − ρ′(n))t. Thus, conditioned on the event that at least one argument falls in
the hard-core S, the circuit guess F (t) correctly with probability at least

1
2

+
1
2
· c′(n)− (1− ρ′(n))t >

1
2

+
ε(n)
2 .

Note, however, that this does not seem to yield an immediate contradition to
the definition of a hard-core of f , yet we shall see that such a contradiction can
be derived.

For every non-empty I ⊆ {1, ..., t}, we consider the event, denoted EI , that
represents the case that the arguments to F (t) that fall in the hard-core of f are
exactly those with index in I. We have just shown that, conditioned on the union
of these events, the circuit guesses the predicate F (t) correctly with probability
at least 1

2 + ε(n)
2 . Thus, there exists an (non-empty) I such that, conditioned

on EI , the circuit guesses F (t) correctly with probability at least 1
2 + ε(n)

2 . Let
i ∈ I be arbitrary. By another averaging argument, we fix all inputs to the circuit
except the ith input and obtain a circuit that guesses f correctly with probability
at least 1

2 + ε(n)
2 . (For these fixed xj ’s, j �= i, the circuit incorporates also the

value of ⊕j �=if(xj).) This contradicts the hypothesis that S is a hard-core.

Generalization. We have just established the validity of the Lemma 1 for the case
of the uniform probability ensemble and parameters p(n) = 2 and δ′(n) = 2+δ(n)

3 .
The bound for δ′ can be improved to δ′(n) = 1+δ(n)

2 +o(1−δ(n)). The argument
extends to arbitrary probability ensembles. To this end one needs to properly
generalize Definition 2 and prove a generalization of Lemma 6; for details the
interested reader is referred to Appendix A.
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5 Going through the Direct Product Problem

The third proof of the XOR Lemma proceeds in two steps. First it is shown
that the success probability of feasible algorithms that try to predict the values
of a predicate on several unrelated arguments decreases exponentially with the
number of arguments. This statement is a generalization of another theorem
due to Yao [17], hereafter called the Concatenation Lemma. Invoking a result of
Goldreich and Levin [5], the XOR-Lemma follows.

5.1 The Concatenation Lemma

(This lemma is currently called the Direct Product Theorem.)

Lemma 7 (concatenation lemma): Let P , X = {Xn}, s : N→ N, and δ : N→
[−1, +1] be as in Lemma 1. For every function t : N → N, define the function
F (t)(x1, ..., xt(n))

def= (P (x1), ..., P (xt(n))), where x1, ..., xt(n) ∈ {0, 1}n, and the
probability ensemble X(t) = {X(t)

n }, where X
(t)
n consists of t(n) independent

copies of Xn.

(hypothesis) Suppose that δ is an upper bound on the correlation of families of
s(·)-size circuits with P over X. Namely, suppose that for every n and for
every s(n)-size circuit C, it holds that

Prob[C(Xn)=P (Xn)] ≤ p(n) def=
1 + δ(n)

2 .

(conclusion) Then, for every function ε : N→ [0, +1], for every n and for every
poly( ε(n)

n ) · s(n)-size circuit C′, it holds that

Prob[C′(X(t)
n )=F (t)(X(t)

n )] ≤ p(n)t(n) + ε(n).

Remark. Nisan et. al. [14] have used the XOR-Lemma in order to derive the
Concatenation Lemma. Our feeling is that the Concatenation Lemma is more
“basic” than the XOR Lemma, and thus that their strategy is not very natural.8

In fact, this feeling was our motivation for trying to find a “direct” proof for
the Concatenation Lemma. Extrapolating from the situation regarding the two
original lemmata of Yao (i.e., the XOR Lemma and the Concatenation Lemma
w.r.t. one-way functions),9 we believed that such a proof (for the Concatenation
8 This assertion is supported by a recent work of Viola and Wigderson, which pro-

vides a very simple proof that, in the general setting, the XOR Lemma implies the
Concatenation Lemma [16, Prop. 1.4].

9 Yao’s original XOR Lemma (resp., Concatenation Lemma) refers to the setting of
one-way functions. In this setting, the basic predicate P is a composition of an easy

to compute predicate b and the inverse of a 1-1 one-way function f ; i.e., P (x)
def
=

b(f−1(x)). For years, the first author has considered the proof of the XOR Lemma
(even for this setting) too complicated to be presented in class; whereas, a proof of
the Concatenation Lemma (for this setting) has appeared in his classnotes [1] (see
also [2]).
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Lemma) should be easy to find. Indeed, we consider the following proof of Con-
catenation Lemma much simpler than the proofs of the XOR Lemma (given in
previous sections).

A tight two-argument version. Lemma 7 is derived from the following Lemma 8
(which is a tight two-argument version of Lemma 7) analogously to the way that
Lemma 2 was derived from Lemma 4; that is, we write F (t)(x1, x2, ..., xt(n)) =
(P (x1), F (t−1)(x2, ..., xt(n))), assume that F (t−1) is hard to guess as claimed, and
apply the Concatenation Lemma to (P, F (t−1)). This way, the lower bound on
circuits guessing F (t) is related to the lower bound assumed for circuits guessing
the original P and is almost the bound derived for F (t−1) (losing only an additive
term!). It is thus left to prove the following two-argument version.

Lemma 8 (two argument version of concatenation lemma): Let F1 and F2 be
two functions, l :N→N be a length function, and F (x) def= (F1(y), F2(z)) where
x = yz and |y| = l(|x|). Let X = {Xn}, Y = {Yl(n)} and Z = {Zn−l(n)} be
probability ensembles as in Lemma 4 (i.e., Xn = (Yl(n), Zn−l(n))).

(hypothesis) Suppose that p1(·) is an upper bound on the probability that families
of s1(·)-size circuits guess F1 over Y. Namely, for every such circuit family
C = {Cl} it holds that

Prob[Cl(Yl)=F1(Yl)] ≤ p1(l).

Likewise, suppose that p2(·) is an upper bound on the probability that families
of s2(·)-size circuits guess F2 over Z.

(conclusion) Then, for every function ε : N→R, the function p(n) def= p1(l(n)) ·
p2(n − l(n)) + ε(n) is an upper bound on the probability that families of
s(·)-size circuits guess F over X, where

s(n) def= min
{

s1(l(n))
poly(n/ε(n))

, s2(n− l(n))− n

}
.

Proof: Let C = {Cn} be a family of s(·)-size circuits. Fix an arbitrary n, and
write C = Cn, ε = ε(n), l = l(n), m = n − l(n), Y = Yl and Z = Zm. Abusing
notation, we let C1(x, y) denote the first component of C(x, y) (i.e., the guess
for F1(x)) and likewise C2(x, y) is C’s guess for F2(y). It is instructive to write
the success probability of C as follows:

Prob[C(Y, Z)=F (Y, Z)] = Prob[C2(Y, Z)=F2(Z)]
· Prob[C1(Y, Z)=F1(Y ) |C2(Y, Z)=F2(Z)]

The basic idea is that using the hypothesis regarding F2 allows to bound the
first factor by p2(m), whereas the hypothesis regarding F1 allows to bound the
second factor by approximately p1(l). The basic idea for the latter step is that a
sufficiently large sample of (Z, F2(Z)), which may be hard-wired into the circuit,
allows to use the conditional probability space (in such a circuit), provided the
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condition holds with noticeable probability. The last caveat motivates a separate
treatment for y’s with noticeable Prob[C2(y, Z)=F2(Z)] and for the rest.

We call y good if Prob[C2(y, Z)=F2(Z)] ≥ ε/2 and bad otherwise. Let G be
the set of good y’s. Then, using Prob[C(Y, Z)=F (Y, Z)] < ε/2 for every bad y,
we upper bound the success probability of C as follows

Prob[C(Y, Z)=F (Y, Z)] = Prob[C(Y, Z)=F (Y, Z) & Y ∈G]
+ Prob[C(Y, Z)=F (Y, Z) & Y �∈G]

< Prob[C(Y, Z)=F (Y, Z) & Y ∈G] +
ε

2 .

Thus, using p(n) = p1(l) · p2(m) + ε, it remains to prove that

Prob[C(Y, Z)=F (Y, Z) & Y ∈G] ≤ p1(l) · p2(m) + ε/2. (3)

We proceed according to the foregoing outline. We first show that
Prob[C2(Y, Z)=F2(Z)] cannot be too large, as otherwise the hypothesis con-
cerning F2 is violate. Actually, we prove the following

Claim 8.1: For every y, it holds that

Prob[C2(y, Z)=F2(Z)] ≤ p2(m).

Proof: Otherwise, using any y ∈ {0, 1}l such that Prob[C2(y, Z)=F2(Z)] >

p2(m), we get a circuit C′(z) def= C2(y, z) that contradicts the lemma’s hypothesis
concerning F2. ��

Next, we use Claim 8.1 in order to relate the success probability of C to the
success probability of small circuits for F1.

Claim 8.2: There exists a circuit C′ of size s1(l) such that

Prob[C′(Y )=F1(Y )] ≥ Prob[C(Y, Z)=F (Y, Z) & Y ∈G]
p2(m)

− ε

2 .

Proof: The circuit C′ is constructed as suggested in the foregoing outline. Specifi-
cally, we take a poly(n/ε)-large sample, denoted S, from the distribution
(Z, F2(Z)) and let C′(y) def= C1(y, z), where (z, β) is a uniformly selected among
the elements of S for which C2(y, z) = β holds. Details follow.

Let S be a sequence of t
def= poly(n/ε) pairs, generated by taking t inde-

pendent samples from the distribution (Z, F2(Z)). We stress that we do not
assume here that such a sample can be produced by an efficient (uniform) al-
gorithm (but, jumping ahead, we remark that such a sequence can be fixed
non-uniformly). For each y ∈ G ⊆ {0, 1}l, we denote by Sy the set of pairs
(z, β) ∈ S for which C2(y, z) = β. Note that Sy is a random sample for the resid-
ual probability space defined by (Z, F2(Z)) conditioned on C2(y, Z) = F2(Z).
Also, with overwhelmingly high probability, |Sy| = Ω(l/ε2) (since y ∈ G implies
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Prob[C2(y, Z)=F2(Z)] ≥ ε/2). Thus, with overwhelming probability (i.e., prob-
ability greater than 1−2−l), taken over the choices of S, the sample Sy provides
a good approximation to the conditional probability space, and in particular

|{(z,β)∈Sy : C1(y, z)=F1(y)}|
|Sy|

≥ Prob[C1(y, Z)=F1(y) |C2(y, Z)=F2(Z)]−ε

2
(4)

Thus, with positive probability, Eq. (4) holds for all y ∈ G ⊆ {0, 1}l. The circuit
C′ guessing F1 is now defined as follows. A set S = {zi, βi} satisfying Eq. (4) for
all good y’s is “hard-wired” into the circuit C′. (In particular, Sy is not empty
for any good y.) On input y, the circuit C′ first determines the set Sy, by running
C for t times and checking, for each i = 1, ..., t, whether C2(y, zi) = βi. In case
Sy is empty, the circuit returns an arbitrary value. Otherwise, the circuit selects
uniformly a pair (z, β) ∈ Sy and outputs C1(y, z). (This latter random choice
can be eliminated by a standard averaging argument.) Using the definition of C′

and Eq. (4), we get

Prob[C′(Y )=F1(Y )]

≥
∑
y∈G

Prob[Y =y] · Prob[C′(y)=F1(y)]

=
∑
y∈G

Prob[Y =y] · |{(z, β) ∈ Sy : C1(y, z)=F1(y)}|
|Sy|

≥
∑
y∈G

Prob[Y =y] ·
(
Prob[C1(y, Z)=F1(y) |C2(y, Z)=F2(Z)] − ε

2

)

≥

⎛⎝∑
y∈G

Prob[Y =y] · Prob[C(y, Z)=F (y, Z)]
Prob[C2(y, Z)=F2(Z)]

⎞⎠ − ε

2 .

Next, using Claim 8.1, we get

Prob[C′(Y )=F1(Y )] ≥

⎛⎝∑
y∈G

Prob[Y =y] · Prob[C(y, Z)=F (y, Z)]
p2(m)

⎞⎠ − ε

2

and the claim follows. ��
Now, by the lemma’s hypothesis concerning F1, we have Prob[C′(Y )=F1(Y )] ≤
p1(l), and so using Claim 8.2 we get

Prob[Y ∈ G & C(Y, Z)=F (Y, Z)] ≤ (p1(l) + ε/2) · p2(m)
≤ p1(l) · p2(m) + ε/2.

This proves Eq. (3) and the lemma follows.

5.2 Deriving the XOR Lemma from the Concatenation Lemma

Using the techniques of Goldreich and Levin [5], we obtain the following result.
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Lemma 9 (hard-core predicate of unpredictable functions): Let F : {0, 1}∗ →
{0, 1}∗, p : N→ [0, 1], and s : N→N, and let X = {Xn} be as in Definition 1.
For α, β ∈ {0, 1}�, we denote by IP2(α, β) the inner-product mod 2 of α and β,
viewed as binary vectors of length 	.

(hypothesis) Suppose that, for every n and for every s(n)-size circuit C, it holds
that

Prob[C(Xn)=F (Xn)] ≤ p(n).

(conclusion) Then, for some constant c > 0, for every n and for every poly(p(n)
n )·

s(n)-size circuit C′, it holds that

Prob[C′(Xn, U�)=IP2(F (Xn), U�)] ≤
1
2

+ c · 3
√

n2 · p(n),

where U� denotes the uniform distribution over {0, 1}�, with 	
def= |F (Xn)|.

(That is, C′ has correlation at most 2c 3
√

n2p(n) with IP2 over (F (Xn), U�).)

Proof Sketch: Let q(n) def= c 3
√

n2 p(n). Suppose that C′ contradicts the con-
clusion of the lemma. Then, there exists a set S such that Prob[Xn ∈ S] ≥ q(n)
and for every x ∈ S the probability that C′(x, U�) = IP2(F (x), U�) is at least
1
2 + q(n)

2 , where the probability is taken over U� (while x is fixed). Employing
the techniques of [5]10, we obtain a randomized circuit C (of size at most a
poly(n/p(n)) factor larger than C′) such that, for every x ∈ S, it holds that
Prob[C(Xn)=F (Xn)] ≥ c′ · (q(n)/n)2 (where the constant c′ > 0 is determined
in the proof of [5] according to Chebishev’s Inequality).11 Thus, C satisfies

Prob[C(Xn)=F (Xn)] ≥ Prob[C(Xn)=F (Xn) ∧Xn∈S]
= Prob[Xn∈S] · Prob[C(Xn)=F (Xn)|Xn∈S]

≥ q(n) ·
(
c′ · (q(n)/n)2

)
= p(n)

in contradiction to the hypothesis. The lemma follows.

Conclusion. Combining the Concatenation Lemma (Lemma 7) with Lemma 9
we establish the validity of Lemma 1 for the third time; this time with respect

to the parameters p(n) = cn2/3 = o(n) and δ′(n) = 3
√

1+δ(n)
2 . Details follow.

Starting with a predicate for which δ is a correlation bound and using Lemma 7,
we get a function that is hard to guess with probability substantially higher than

10 See alternative expositions in either [4, Sec. 7.1.3] or [3, Sec. 2.5.2].
11 The algorithm in [5] will actually retrieve all values α ∈ {0, 1}� for which the corre-

lation of C′(x,U�) and IP2(α, U�) is at least q(n). With overwhelming probability it
outputs a list of O((n/q(n))2) strings containing all the values just mentioned and
thus uniformly selecting one of the values in the list yields F (x) with probability at
least 1/O((n/q(n))2).
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(1+δ(n)
2 )t(n). Applying Lemma 9 establishes that given (x1, ..., xt(n)) and a uni-

formly chosen subset S ⊆ {1, 2, ..., t(n)} it is hard to correlate ⊕i∈SP (xi) better
than with correlation

O

⎛⎝ 3

√
n2 ·

(
1 + δ(n)

2

)t(n)
⎞⎠ = o(n) ·

(
3

√
1 + δ(n)

2

)t(n)

.

This is almost what we need, but not quite (what we need is a statement con-
cerning S = {1, ..., t(n)}). The gap is easily bridged by some standard “padding”
trick. For example, by using a sequence of fixed pairs (zi, σi), such that σi =
P (zi), we reduce the computation of⊕i∈SP (xi) to the computation of⊕t(n)

i=1 P (yi)
by setting yi = xi if i ∈ S and yi = zi otherwise. (See Appendix B for more
details.) Thus, Lemma 1 follows (with the stated parameters).

5.3 Remarks Concerning the Uniform Complexity Setting

A uniform-complexity analogue of the foregoing proof can be carried out pro-
vided that one can construct random examples of the distribution (Xn, P (Xn))
within the stated (uniform) complexity bounds (and in particular in polynomial-
time). Actually, this condition is required only for the proof of the Concatenation
Lemma. Thus we confine ourselves to presenting a uniform-complexity version
of the Concatenation Lemma.

Lemma 10 (Concatenation Lemma – uniform complexity version): Let P,X,
s, δ, t and F (t) be as in Lemma 7.

(hypothesis) Suppose that δ(·) is an upper bound on the correlation of T (·)-
time-constructible families of s(·)-size circuits with P over X. Furthermore,
suppose that one can generate in polynomial-time a random sample from the
distribution (Xn, P (Xn)).

(conclusion) Then, for every function ε : N → [0, +1], the function q(n) def=
p(n)t(n)+ε(n) is an upper bound on the correlation of T ′(·)-time-constructible
families of s′(·)-size circuits with F over X(t), where T ′(t(n) · n) = poly
(ε(n)/n) · T (n) and s′(t(n) · n)=poly(ε(n)/n) · s(n).

The uniform-complexity version of the Concatenation Lemma is proven by adapt-
ing the proof of Lemma 7 as follows. Firstly, we observe that it suffices to prove
an appropriate (uniform-complexity) version of Lemma 8. This is done by first
proving a weaker version of Claim 8.1 that asserts that for all but at most an
ε(n)/8 measure of the y’s (under Y ), it holds that

Prob[C2(y, Z)=F2(Z)] ≤ p2(m) + ε(n)/8.

This holds because otherwise one may sample Y with the aim of finding a y such
that Prob[C2(y, Z)=F2(Z)] > p2(m) holds, and then use this y to construct
(uniformly!) a circuit that contradicts the hypothesis concerning F2. Next, we



On Yao’s XOR-Lemma 291

prove a weaker version of Claim 8.2 by observing that, for a uniformly selected
pair sequence S, with overwhelmingly high probability (and not only with pos-
itive probability), Eq. (4) holds for all good y ∈ {0, 1}l. Thus, if we generate
S by taking random samples from the distribution (Zm, F2(Zm)), then with
overwhelmingly high probability we end-up with a circuit as required by the
modified claim. (The modified claim has p2(m)+ ε/8 in the denominator (rather
than p2(m)) as well as an extra additive term of ε/8.) Using the hypothesis
concerning F1, we are done as in the non-uniform case.

6 A Different Perspective: The Entropy Angle

The XOR Lemma and the Concatenation Lemma are special cases of the so-
called “direct sum conjecture” asserting that computational difficulty increases
when many independent instances of the problem are to be solved. In both cases
the “direct sum conjecture” is postulated by considering insufficient resources
and bounding the probability that these tasks can be performed within these
resources, as a function of the number of instances. In this section we suggest
an analogous analysis based on entropy rather than probability. Specifically, we
consider the amount of information remaining in the task (e.g., of computing
f(x)) when given the result of a computation (e.g., C(x)). This analysis turns
out to be much easier.

Proposition 11. Let f be a predicate, X be a random variable and C be a class
of circuits so that for every circuit C ∈ C

H(f(X)|C(X)) ≥ ε,

where H denotes the (conditional) binary entropy function. Furthermore, suppose
that, for every circuit C ∈ C, fixing any of the inputs of C yields a circuit also
in C. Then, for every circuit C ∈ C, it holds that

H(f(X(1)), ..., f(X(t))|C(X(1), ..., X(t))) ≥ t · ε,

where the X(i)’s are independently distributed copies of X.

We stress that the class C in Proposition 11 may contain circuits with several
Boolean outputs. Furthermore, for a meaningful conclusion, the class C must
contain circuits with t outputs (otherwise, for a circuit C with much fewer out-
puts, the conditional entropy H(f(x1), ..., f(xt)|C(x1, ..., xt)) is large merely due
to information theoretical reasons). On the other hand, the more outputs the
circuits in C have, the stronger the hypothesis of Proposition 11 is. In particular,
the number of outputs must be smaller that |X | otherwise the value of the circuit
C(x) = x determines f(x) (i.e., H(f(x)|x) = 0). Thus, a natural instantiation
of Proposition 11 is for a family of small (e.g., poly-size) circuits each having t
outputs.
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Proof: By definition of conditional entropy, we have for every C ∈ C,

H(f(X(1)), ..., f(X(t))|C(X(1), ..., X(t)))

=
t∑

i=1

H(f(X(i))|C(X(1), ..., X(t)), f(X(1)), ..., f(X(i−1)))

≥
t∑

i=1

H(f(X(i))|C(X(1), ..., X(t)), X(1), ..., X(i−1)).

Now, for each i, we show that

H(f(X(i))|C(X(1), ..., X(t)), X(1), ..., X(i−1)) ≥ ε.

We consider all possible settings of all variables, except X(i), and bound the
conditional entropy under this setting (which does not effect X(i)). The fixed
values X(j) = xj can be eliminated from the entropy condition and incorporated
into the circuit. However, fixing some of the inputs in the circuit C yields a
circuit also in C and so we can apply the proposition’s hypothesis and get

H(f(X(i))|C(x1, ..., xi−1, X
(i), xi+1, ..., xt)) ≥ ε.

The proposition follows.

Proposition 11 vs the Concatenation Lemma. We compare the hypotheses
and conclusions of these two results.

The hypotheses. The hypothesis in Proposition 11 is related to the hypotheses
in the Concatenation Lemma. Clearly, an entropy lower bound (on a single
bit) translates to some unpredictability bound on this bit. (This does not
hold for many bits as can be seen below.) The other direction (i.e., unpre-
dictability implies a lower bound on the conditional entropy) is obvious for
a single bit.

The conclusions. For t = O(log n) the conclusion of Proposition 11 is implied
by the conclusion of the Concatenation Lemma, but for sufficiently large t the
conclusion of Proposition 11 does not imply the conclusion of Concatenation
Lemma. Details follow.
1. To show that, for t = O(log n), the conclusion of the Concatenation

Lemma implies the conclusion of Proposition 11, suppose that for a small
circuit C it holds that h

def= H(f(X(1)), ..., f(X(t))|C(X(1), ..., X(t))) =
o(t). Then, for every value of C, denoted v, there exists a string w = w(v)
such that Prob[f(X(1)), ..., f(X(t))=w|C(X(1), ..., X(t))=v] ≥ 2−h.
Hardwiring these 2t strings w(·) into C, we obtain a small circuit that
predicts f(X(1)), ..., f(X(t)) with probability at least 2−h = 2−o(t), in
contradiction to the conclusion of the Concatenation Lemma.

2. To show that the conclusion of Proposition 11 does not imply the con-
clusion of the Concatenation Lemma, consider the possibility of a small
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(randomized) circuit C that with probability 1−ε correctly determines all
the f values (i.e., Prob[C(X(1), ..., X(t))=f(X(1)), ..., f(X(t))] = 1 − ε),
and yields no information (e.g., outputs a special fail symbol) otherwise.
Then, although C has success probability 1− ε, the conditional entropy
is (1− ε) · 0 + ε · t (assuming that Prob[f(X) = 1] = 1/2).

7 Subsequent Work

Since the first publication of this survey, Yao’s XOR Lemma has been the subject
of intensive research. Here we only outline three themes that were pursued, while
referring the interested reader to [10] and the references therein.

Derandomization. A central motivation for Impagliazzo’s work [7,8] has been the
desire to present “derandomized versions” of the XOR Lemma; that is, predi-
cates that use their input in order to define a sequence of related instances,
and take the XOR of the original predicate on these instances.12 The potential
benefit in such a construction is that the hardness of the resulting predicate is
related to shorter inputs (i.e., the seed of a generator of a t-long sequence of n-bit
long strings, rather than the tn-bit long sequence itself). Indeed, Impagliazzo’s
work [7,8] presented such a construction (based on a pairwise independent gen-
erator), and left the question of providing a “full derandomization” (that uses a
seed of length O(n) to generate t instances) to subsequent work. The goal was
achieved by Impagliazzo and Wigderson [11] by using a generator that combines
Impagliazzo’s generator [7,8] with a new generator, which in turn combines an
expander walk generator with the Nisan-Wigderson generator [15].

Avoiding the use of random examples. As pointed out in Section 2.3, all proofs
presented in this survey make an essential use of random examples. For more
than a decade, this feature stood in the way of a general uniform version of
the XOR Lemma (i.e., all uniform proofs assumed access to such random exam-
ples). This barrier was lifted by Impagliazzo, Jaiswal, and Kabanets [9], which
culminated in comprehensive treatment of [10]. The latter work provides sim-
plified, optimized, and derandomized versions of the XOR and Concatenation
Lemmas.13 The key idea is to use the hypothetical solver of the concatenated
problem in order to obtain a sequence of random examples that are all good
with noticeable probability. An instance of the original problem is then solved
by hiding it in a random sequence that has a fair intersection with the initial
sequence of random examples. The interested reader is referred to [10] for a

12 That is, the predicate consists of an “instance generator” and multiple applications
of the original predicate, P . Specifically, on input an s-bit long seed, denoted y, the
generator produces a t-long sequence of n-bit long strings (i.e., (x1, ..., xt) ← G(y)),
and the value of the new predicate is defined as the XOR of the values of P on these
t strings (i.e., ⊕t

i=1P (xi)).
13 The focus of [10] is actually on the Concatenation Lemma, which is currently called

the Direct Product Theorem. See next paragraph regarding the relation to the XOR
Lemma.
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mature description of this idea (and its sources of inspirarion) as well as for a
discussion of the relation this problem (i.e., proofs of the Concatenation Lemma)
and list-decoding of the direct product code.

The relation between the XOR and Concatenation Lemmas. In Section 5 we
advocated deriving the XOR Lemma from the Concatenation Lemma, and this
suggestion was adopted in several works (including [9,10]). Our intuition that
the Concatenation Lemma is simpler than the XOR Lemma is supported by a
recent work of Viola and Wigderson, which provides a very simple proof that,
in the general setting, the XOR Lemma implies the Concatenation Lemma [16,
Prop. 1.4]. We mention that the both directions of the equivalence between
the Concatenation Lemma and the XOR Lemma pass through an intermedi-
ate lemma called the Selective XOR Lemma (see [4, Exer. 7.17]). For further
discussion see Appendix B.

Acknowledgement. We wish to thank Mike Saks for useful discussions regard-
ing Levin’s proof of the XOR Lemma. We also thank Salil Vadhan and Ronen
Shaltiel for pointing out errors in previous versions, and for suggesting ways to
fix these errors.
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Appendix A: Proof of a Generalization of Lemma 6

We first generalize Impagliazzo’s treatment to the case of non-uniform distribu-
tions; Impagliazzo’s treatment is regained by letting X be the uniform probabil-
ity ensemble.

Definition 3 (hard-core of a predicate relative to a distribution): Let
f :{0, 1}∗→{0, 1} be a Boolean predicate, s :N→N be a size function, ε :N→ [0, 1]
be a function, and X = {Xn} be a probability ensemble.

– We say that a sequence of sets, S = {Sn ⊆ {0, 1}n}, is a hard-core of f
relative to X with respect to s(·)-size circuits families and advantage ε(·) if
for every n and every circuit Cn of size at most s(n), it holds that

Prob[Cn(Xn)=f(Xn)|Xn∈Sn] ≤ 1
2

+ ε(n).

– We say that f has a hard-core of density ρ(·) relative to X with respect to
s(·)-size circuits families and advantage ε(·) if there exists a sequence of sets
S = {Sn ⊆ {0, 1}n} such that S is a hard-core of f relative to X with respect
to the above and Prob[Xn∈Sn] ≥ ρ(n).

Lemma 12 (generalization of Lemma 6): Let f : {0, 1}∗→{0, 1} be a Boolean
predicate, s :N→N be a size function, X = {Xn} be a probability ensemble, and
ρ :N→ [0, 1] be a noticeable function such that for every n and every circuit Cn

of size at most s(n), it holds that

Prob[Cn(Xn)=f(Xn)] ≤ 1− ρ(n).

Then, for every function ε :N→ [0, 1], the function f has a hard-core of density
ρ′(·) relative to X with respect to s′(·)-size circuits families and advantage ε(·),
where ρ′(n) def= (1 − o(1)) · ρ(n) and s′(n) def= s(n)/poly(n/ε(n)).

Proof: We start by proving a weaker statement; namely, that X “dominates”
an ensemble Y under which the function f is strongly unpredictable. Our notion
of domination originates in a different work of Levin [13]. Specifically, referring
to a fixed function ρ, we define domination as assigning probability mass that is
at least a ρ fraction of the mass assigned by the dominated ensemble; namely:
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Definition: Fixing the function ρ for the rest of the proof, we say that the ensemble
X = {Xn} dominates the ensemble Y = {Yn} if for every string α,

Prob[Xn =α] ≥ ρ(|α|) · Prob[Yn =α].

In this case we also say that Y is dominated by X. We say that Y is critically dom-
inated by X if for every string α either Prob[Yn =α] = (1/ρ(|α|)) · Prob[Xn =α]
or Prob[Yn =α] = 0. (Actually, to avoid trivial difficulties, we allow at most one
string α ∈ {0, 1}n such that 0 < Prob[Yn =α] < (1/ρ(|α|)) · Prob[Xn =α].)

The notions of domination and critical domination play central roles in the
following proof, which consists of two parts. In the first part (cf., Claim 12.1),
we prove the existence of a ensemble dominated by X such that f is strongly
unpredictable under this ensemble. In the second part (cf., Claims 12.2 and 12.3),
we essentially prove that the existence of such a dominated ensemble implies the
existence of an ensemble that is critically dominated by X such that f is strongly
unpredictable under the latter ensemble. However, such a critically dominated
ensemble defines a hard-core of f relative to X, and the lemma follows. Before
starting, we make the following simplifying assumptions (used in Claim 12.3).

Simplifying assumptions: Without loss of generality, the following two conditions
hold:

1. log2 s(n) ≤ n.
(Otherwise the hypothesis of the lemma cannot hold.)

2. Prob[Xn =x] < poly(n)/s(n), for all x’s.
(This assumption is justified since x’s violating this condition cannot con-
tribute to the hardness of f with respect to Xn, because one can incorporate
all these s(n)/poly(n) many violating x’s with their corresponding f(x)’s
into the circuit).

Claim 12.1: Under the hypothesis of the lemma it holds that there exists a prob-
ability ensemble Y = {Yn} such that Y is dominated by X and, for every
s′(n)-circuit Cn, it holds that

Prob[Cn(Yn)=f(Yn)] ≤ 1
2

+
ε(n)
2 .

(5)

Proof:14 We start by assuming, towards the contradiction, that for every distri-
bution Yn that is dominated by Xn there exists an s′(n)-size circuits Cn such
that Prob[Cn(Yn)= f(Yn)] > 0.5 + ε′(n), where ε′(n) = ε(n)/2. One key obser-
vation is that there is a correspondence between the set of all distributions that
are each dominated by Xn and the set of all the convex combinations of criti-
cally dominated (by Xn) distributions; that is, each dominated distribution is a
convex combinations of critically dominated distributions and vice versa. Thus,
considering an enumeration Y

(1)
n , ..., Y

(t)
n of all the critically dominated (by Xn)

14 The current text was revised following the revision in [4, Sec. 7.2.2.1].
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distributions, we conclude that, for every distribution (or convex combination)
π on [t], there exists an s′(n)-size circuits Cn such that

t∑
i=1

π(i) · Prob[Cn(Y (i)
n )=f(Y (i)

n )] > 0.5 + ε′(n). (6)

Now, consider a finite game between two players, where the first player selects
a critically dominated (by Xn) distribution, and the second player selects an
s′(n)-size circuit and obtains a payoff as determined by the corresponding suc-
cess probability; that is, if the first player selects the ith critically dominated
distribution and the second player selects the circuit C, then the payoff equals
Prob[C(Y (i)

n ) = f(Y (i)
n )]. Taking this perspective Eq. (6) means that, for any

randomized strategy for the first player, there exists a deterministic strategy for
the second player yielding average payoff greater than 0.5+ ε′(n). The Min-Max
Principle asserts that, in such a case, there exists a randomized strategy for
the second player that yields average payoff greater than 0.5 + ε′(n) no matter
what strategy is employed by the first player. This means that there exists a
distribution, denoted Dn, on s′(n)-size circuits such that for every i it holds
that

Prob[Dn(Y (i)
n )=f(Y (i)

n )] > 0.5 + ε′(n), (7)

where the probability refers both to the choice of the circuit Dn and to the
random variable Y

(i)
n . Let Bn = {x : Prob[Dn(x) = f(x)] ≤ 0.5 + ε′(n)}. Then,

Prob[Xn∈Bn] < ρ(n), because otherwise we reach a contradiction to Eq. (7) by
defining Yn such that Prob[Yn =x] = Prob[Xn =x]/Prob[Xn∈Bn] if x ∈ Bn and
Prob[Yn = x] = 0 otherwise.15 By employing standard amplification to Dn, we
obtain a distribution D′

n over poly(n/ε′(n))·s′(n)-size circuits such that for every
x ∈ {0, 1}n\Bn it holds that Prob[D′

n(x)=f(x)] > 1−2−n. It follows that there
exists an s(n)-sized circuit Cn such that Cn(x) = f(x) for every x ∈ {0, 1}n\Bn,
which implies that Prob[Cn(Xn)=f(Xn)] ≥ Prob[Xn∈{0, 1}n \Bn] > 1− ρ(n),
in contradiction to the theorem’s hypothesis. The claim follows. ��

From a dominated ensemble to a hard-core. In the rest of the proof, we fix
an arbitrary ensemble, denoted Y = {Yn} satisfying Claim 12.1. Using this
ensemble, which is dominated by X, we prove the validity of the lemma (i.e., the
existence of a hard-core) by a probabilistic argument. Specifically, we consider
the following probabilistic construction.
Probabilistic construction: We define a random set Rn ⊆ {0, 1}n by selecting each
string x ∈ {0, 1}n to be in Rn with probability

p(x) def=
ρ(n) · Prob[Yn =x]

Prob[Xn =x]
≤ 1 (8)

15 Note that Yn is dominated by Xn, whereas by the hypothesis Prob[Dn(Yn) =
f(Yn)] ≤ 0.5 + ε′(n). Using the fact that any dominated distribution is a convex

combination of critically dominated distributions, it follows that Prob[Dn(Y
(i)

n ) =

f(Y
(i)

n )] ≤ 0.5 + ε′(n) holds for some critically dominated Y
(i)

n .
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independently of the choices made for all other strings. Note that the inequality
holds because X dominates Y.

First we show that, with overwhelmingly high probability over the choive of
Rn, it holds that Prob[Xn∈Rn] ≈ ρ(n).
Claim 12.2: Let α > 0 and suppose that Prob[Xn =x] ≤ ρ(n) · α2/poly(n), for
every x. Then, for all but at most a 2−poly(n) measure of the choices of Rn, it
holds that

|Prob[Xn∈Rn]− ρ(n)| < α · ρ(n).

Proof: For every x ∈ {0, 1}n, let wx
def= Prob[Xn =x]. We define random variables

ζx = ζx(Rn), over the probability space defined by the random choices of Rn,
such that ζx indicate whether x ∈ Rn; that is, the ζx’s are independent of one
another, and Prob[ζx =1] = p(x) (and ζx = 0 otherwise). Thus, for every possible
choice of Rn, it holds that

Prob[Xn∈Rn] =
∑

x

ζx(Rn) · wx

and consequently we are interested in the behaviour of the sum
∑

x wxζx as a
random variable (over the probability space of all possible choices of Rn). Taking
expactation (over the possible choices of Rn), we get

E

[∑
x

wxζx

]
=

∑
x

p(x) · wx

=
∑

x

ρ(n) · Prob[Yn =x]
Prob[Xn =x]

· Prob[Xn =x]

= ρ(n).

Now, using Chernoff bound, we get

Prob

[∣∣∣∣∣∑
x

wxζx − ρ(n)

∣∣∣∣∣ > α · ρ(n)

]
< exp

(
−Ω

(
α2ρ(n)

maxx{wx}

))
.

Finally, using the claim’s hypotheses wx ≤ α2 · ρ(n)/poly(n) (for all x’s), the
latter expression is bounded by exp(−poly(n)), and the claim follows. ��
Finally, we show that Rn is likely to be a hard-core of f realtive to X (w.r.t.
sufficiently small circuits).
Claim 12.3:16 For all but at most a 2−poly(n) measure of the choices of Rn, it
holds that every circuit Cn of size s′(n) satisfies

Prob[Cn(Xn)=f(Xn)|Xn∈Rn] <
1
2

+ ε(n).

Proof: We define the same random variables ζx = ζx(Rn) as in the proof of
Claim 12.2; that is, ζx(Rn) = 1 if x ∈Rn and ζx(Rn) = 0 otherwise. Also, as
16 The current statement and its proof were somewhat revised.
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before, wx
def= Prob[Xn =x], for every x ∈ {0, 1}n. Fixing any circuit Cn, let C

be the set of inputs on which Cn correctly computes f ; namely,

C
def= {x : Cn(x)=f(x)}. (9)

For every choice of Rn, we are interested in the probability

Prob[Xn∈C|Xn∈Rn] =
Prob[Xn∈C ∧Xn∈Rn]

Prob[Xn∈Rn] .

(10)

We first determine the expected value of the numerator of Eq. (10), where the
expactation is taken over the possible choices of Rn. We rewrite the numerator
as

∑
x∈C ζx(Rn) · wx, and lower bound it as follows

E

[∑
x∈C

ζx · wx

]
=

∑
x∈C

p(x) · wx

=
∑
x∈C

ρ(n) · Prob[Yn =x]
Prob[Xn =x]

· Prob[Xn =x]

= ρ(n) · Prob[Yn∈C]

≤ ρ(n) ·
(

1
2

+
ε(n)
2

)
,

where the last inequality is due to the hypothesis regarding Yn. Next, we use a
(multiplicative) Chernoff bound, and get

Prob

[∑
x∈C

wxζx >

(
1
2

+
2ε(n)

3

)
· ρ(n)

]
< exp

(
−Ω

(
ε(n)2ρ(n)
maxx{wx}

))

< exp

(
−Ω

(
ε(n)2s(n) log2 s(n)

poly(n)

))
,

where the last inequality uses the simplifying assumptions regarding the wx’s
and s(n) (i.e., wx < poly(n)/s(n) and log2 s(n) ≤ n). Thus, for all but at most
a exp(−poly(n) · s′(n) log2 s′(n)) measure of the Rn’s, the numerator of Eq. (10)
is at most (1

2 + 2ε(n)
3 ) · ρ(n). This holds for each possible circuit of size s′(n).

Applying the union bound to the set of all 2s′(n)(O(1)+2 log2 s′(n)) possible circuits
of size s′(n), we conclude that the probability that for some of these circuits the
numerator of Eq. (10) is greater than (1

2 + 2ε(n)
3 ) ·ρ(n) is at most exp(−poly(n)),

where the probability is taken over the choice of Rn. Using Claim 12.2, we
conclude that, for a similar measure of Rn’s, the denumerator of Eq. (10) is at
least (1− ε(n)

3 ) · ρ(n). The claim follows. ��

Conclusion. The lemma now follows by combining the foregoing three claims.
Claim 12.1 provides us with a suitable Y for which we apply the probabilistic
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construction, whereas Claims 12.2 and 12.3 establish the existence of a set Rn

such that both
Prob[Xn∈Rn] > (1− o(1)) · ρ(n)

and
Prob[Cn(Xn)=f(Xn)|Xn∈Rn] <

1
2

+ ε(n)

holds for all possible circuits, Cn, of size s′(n). The lemma follows.

Appendix B: On the Selective XOR Lemma

Following [4, Exer. 7.17], we explicitly introduce a variant of the XOR Lemma,
called the Selective XOR Lemma. Recall that the standard XOR Lemma refers to
the predicate P (t)(x1, ..., xt(n))

def=
∏t(n)

i=1 P (xi), where P is the original predicate
and xi ∈ {0, 1}n for every i. Instead, the Selective XOR Lemma refers to the
predicate Q(t)(x1, ..., xt(n), S) def=

∏
i∈S P (xi), where the xi’s are as before and

S ⊆ {1, ..., t(n)} is represented as an t(n)-bit long string. Thus, we have the
following variant of Lemma 1.

Lemma 13 (Selective XOR Lemma): Let P and X = {Xn} be as in Defini-
tion 1. For every function t :N→N, define the predicate

Q(t)(x1, ..., xt(n), S) def=
∏
i∈S

P (xi) ,

where x1, ..., xt(n) ∈ {0, 1}n and S ⊆ {1, ..., t(n)}. Let Y(t) def= {(X(t)
n , Ut(n))},

where X
(t)
n is as in Lemma 1 and Ut(n) be a random variable that is independently

and uniformly distributed over {0, 1}t(n).

(hypothesis) As in Lemma 1; that is, suppose that for some function s : N→N

and some bounded-away-from-1 function δ : N→ [−1, +1], it holds that δ is
an upper bound on the correlation of families of s(·)-size circuits with P over
X.

(conclusion) Analogously to Lemma 1, there exists a bounded-away-from-1 func-
tion δ′ : N → [−1, +1] and a polynomial p such that, for every function
t :N→N and every function ε :N→ [0, 1], the function

δ(t)(n) def= p(n) · δ′(n)t(n) + ε(n)

is an upper bound on the correlation of families of s′(·)-size circuits with Q(t)

over Y(t), where

s′(t(n) · n) def= poly
(

ε(n)
n

)
· s(n)− poly(n · t(n)).

In this appendix we discuss the relation of the Selective XOR Lemma to the
XOR Lemma and to the Concatenation Lemma.
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The Selective XOR Lemma vs the Concatenation Lemma. As shown in Sec-
tion 5.2, the Concatenation Lemma implies the Selective XOR Lemma (by us-
ing Lemma 9). The opposite implication was recently shown in [16, Prop. 1.4].
The proof boils down to showing that any algorithm that computes the con-
catenation of the t values, can be used to correlate the selective XOR as fol-
lows: On input (x1, ..., xt, S), we obtain (from the algorithm) a guess (b1, ..., bt)
for (P (x1), ..., P (xt)), and output b(S) def=

∏
i∈S bi. Note that if (b1, ..., bt) =

(P (x1), ..., P (xt)), then our answer b(S) is correct for any S, whereas if
(b1, ..., bt) �= (P (x1), ..., P (xt)), then ProbS [b(S) =

∏
i∈S P (xi)] = 1/2. Thus,

if the algorithm is correct with probability p, then our answer has correlation p
with Q(t).

The Selective XOR Lemma implies the XOR Lemma. This implication was
sketched in Section 5.2, and we provide more details next. We show how to
use an algorithm that correlates P (t) in order to correlate Q(t). We shall use t
random examples, denoted (z1, P (z1)), ..., (zt, P (zt)). On input (x1, ..., xt, S), we
set x′

i = xi if i ∈ S and x′
i = zi otherwise, obtain (from the algorithm) a guess

b for P (t)(x′
1, ..., x

′
t), and output b ·

∏
i∈[t]\S P (zi). Thus, our answer is correct if

and only if b = P (t)(x′
1, ..., x

′
t), because P (t)(x′

1, ..., x
′
t) equals Q(t)(x1, ..., xt, S) ·∏

i∈[t]\S P (zi).

The XOR Lemma implies the Selective XOR Lemma. Following [16, Prop. 1.4],
we show how to use an algorithm that correlates Q(3t) in order to correlate
P (t). Here we shall use 3t random examples, denoted (z1, P (z1)), ..., (z3t, P (z3t)).
On input (x1, ..., xt), we select at random a subset S ⊆ {1, ..., 3t}, and let
i1, ..., it be arbitrary t distinct elements of S (assuming that |S| ≥ t). Next,
we set x′

ij
= xj for every j = 1, .., t, and set x′

i = zi for every i ∈ S′, where

S′ def= {1, ..., 3t} \ {ij : j = 1, ..., t}. We obtain (from the algorithm) a guess b
for Q(3t)(x′

1, ..., x
′
3t, S), and output b ·

∏
i∈S\S′ P (zi). Thus, our answer is cor-

rect if and only if b = Q(3t)(x′
1, ..., x

′
3t, S), because Q(3t)(x′

1, ..., x
′
3t, S) equals

P (t)(x1, ..., xt) ·
∏

i∈S\S′ P (zi). Note that this works assuming that |S| ≥ t,
which holds with probability 1− 2−Ω(t). Thus, our correlation with P (t) is lower
bounded by p − 2−Ω(t), where p is the correlation of the given algorithm with
Q(3t).



A Sample of Samplers: A Computational

Perspective on Sampling

Oded Goldreich

Abstract. We consider the problem of estimating the average of a huge
set of values. That is, given oracle access to an arbitrary function f :
{0, 1}n → [0, 1], we wish to estimate 2−n ∑

x∈{0,1}n f(x) upto an additive
error of ε. We are allowed to employ a randomized algorithm that may
err with probability at most δ.

We survey known algorithms for this problem and focus on the ideas
underlying their construction. In particular, we present an algorithm that
makes O(ε−2 · log(1/δ)) queries and uses n + O(log(1/ε)) + O(log(1/δ))
coin tosses, both complexities being very close to the corresponding lower
bounds.

Keywords: Sampling, randomness complexity, saving randomness, pair-
wise independent random variables, Expander graphs, random walks on
graphs, information theoretic lower bounds.

An earlier version of this survey appeared as TR97-020 of ECCC. The current
version includes a quantitative improvement in Theorem 6.1, which is obtained
by the subsequent work of [26].

Preface. The idea of writing this survey occurred to me when finding out that
a brilliant, young researcher who has worked in very related areas was unaware
of the Median-of-Averages Sampler (of [7]). It then occurred to me that many
of the results surveyed here have appeared in papers devoted to other subjects
(indeed, the Median-of-Averages Sampler is an excellent example), and have thus
escaped the attention of a wider community, which might have cared to know
about them. I thus decided to write a survey that focuses on these very basics.

1 Introduction

In many settings repeated sampling is used to estimate the average value of
a huge set of values. Namely, one has access to a value function ν, which is
defined over a huge space (say, ν : {0, 1}n → [0, 1]), and wishes to approximate
ν̄

def= 1
2n

∑
x∈{0,1}n ν(x) without having to inspect the value of ν on the entire

domain. It is well-known that sampling ν at sufficiently many (random) points
yields such an approximation, but we are interested in the complexity of the
approximation. Specifically, (1) how many samples are required? (2) how much
randomness is required to generate these samples? and (3) is this generation
procedure efficient?
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We comment that it is essential to have the range of ν be bounded (or else
no reasonable approximation may be possible). Our convention of having [0, 1]
be the range of ν is adopted for simplicity, and the problem for other (predeter-
mined) ranges can be treated analogously.

1.1 Formal Setting

Our notion of approximation depends on two parameters: accuracy (denoted
ε) and error probability (denoted δ). We wish to have an algorithm that, with
probability at least 1 − δ, gets within ε of the correct value. This leads to the
following definition.

Definition 1.1 (sampler): A sampler is a randomized algorithm that on input
parameters n (length), ε (accuracy) and δ (error), and oracle access to any
function ν : {0, 1}n→ [0, 1], outputs, with probability at least 1 − δ, a value that
is at most ε away from ν̄

def= 1
2n

∑
x∈{0,1}n ν(x). Namely,

Pr [|samplerν(n, ε, δ)− ν̄| > ε] < δ, (1)

where the probability is taken over the internal coin tosses of the sampler.

We are interested in “the complexity of sampling” quantified as a function of the
parameters n, ε and δ. Specifically, we will consider three complexity measures:

1. Sample Complexity: The number of oracle queries made by the sampler.
2. Randomness Complexity: The number of (unbiased) coin tosses performed by

the sampler.
3. Computational Complexity: The running-time of the sampler.

We say that a sample is efficient if its running-time is polynomial in the total
length of its queries (i.e., polynomial in both its sample complexity and in
the length parameter, n).

We will focus on efficient samplers. Furthermore, we will focus on efficient sam-
plers that have optimal (upto a constant factor) sample complexity, and will be
interested in having the randomness complexity be as low as possible.

1.2 Overview

The straightforward method (or the naive sampler) consists of uniformly and
independently selecting sufficiently many sample points (queries), and outputting
the average value of the function on these points. Using Chernoff Bound one
can easily show that O( log(1/δ)

ε2 ) sample points suffice. The naive sampler is
optimal (upto a constant factor) in its sample complexity, but is quite wasteful
in randomness. In Section 2, we discuss the naive sampler and present lower (and
upper) bounds on the sample and randomness complexities of samplers. These
bounds will guide our quest for improvements.
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Pairwise-independent sampling yields a great saving in the randomness com-
plexity. In Section 3 we present the Pairwise-Independent Sampler, and discuss
its advantages and disadvantages. Specifically, for constant δ > 0, the Pairwise-
Independent Sampler is optimal upto a constant factor in both its sample and
randomness complexities. However, for small δ (i.e., δ = o(1)), its sample com-
plexity is wasteful.

An additional idea is required for going further, and a relevant tool – random
walks on expander graphs (see Appendix A) – is also used. In Section 4, we
combine the Pairwise-Independent Sampler with the Expander Random Walk
Technique to obtain a new sampler. Loosely speaking, the new sampler uses
a random walk on an expander to generate a sequence of 	

def= O(log(1/δ))
(related) random pads for 	 invocations of the Pairwise-Independent Sampler.
Each of these invocations returns an ε-close approximation with probability at
least 0.99. The expander walk technique yields that, with probability at least
1−exp(−	) = 1−δ, most of these 	 invocations return an ε-close approximation.
Thus, the median value is an (ε, δ)-approximation to the correct value (i.e., an
approximation that, with probability at least 1 − δ, is within an additive term
of ε of the correct value). The resulting sampler, called the Median-of-Averages
Sampler, has sample complexity O( log(1/δ)

ε2 ) and randomness complexity 2n +
O(log(1/δ)).

In Section 5 we present an alternative sampler that improves over the pairwise-
independent sampler. Maintaining the sample complexity of the latter (i.e.,
O(1/δε2)), the new sampler has randomness complexity n+O(log(1/δε)) (rather
than 2n). Combining this new sampler with the Expander Random Walk Tech-
nique, we obtain sample complexity O( log(1/δ)

ε2 ) and randomness complexity n+
O(log(1/δ)) + O(log(1/ε)). Better bounds are obtained for the case of “Boolean
samplers” (i.e., algorithms that must only well-approximate Boolean functions).
In addition, in Section 5 we present two general techniques for improving existing
samplers.

We conclude with some open problems (see Section 6). In particular, we dis-
cuss the notion of “oblivious” (or “averaging”) samplers, which is closely related
to the notion of randomness extractors (see Section 7.2 and more details in [28]).1

Section 7 sketches the outline of an alternative survey that focuses on the notion
of “averaging” samplers and on their relation to general samplers, on the one
hand, and to randomness extractors, on the other hand.

The Hitting Problem. In order to distinguish the all-zero function from a function
having at least an ε fraction of non-zero values, the sampler must query the
function at a non-zero value (or “hit” some non-zero value). Thus, any sampler
solves the hitting problem, as surveyed in Appendix C. That is, given an oracle to
a Boolean function having at least an ε fraction of 1’s, the “hitter” is required to

1 Indeed, the current text focuses on general samplers, which are not necessarily of the
“averaging” type (e.g., the aforementioned Median-of-Averages Sampler). Thus, this
survey barely mentions the vast body of work that focuses on randomness extractors,
and the interested reader is indeed referred to [28].
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find an input that evaluates to 1. As noted above, each sampler can be used for
this purpose, but this is an over-kill. Indeed, all results and techniques regarding
samplers (presented in the main text of this survey) have simpler analogues for
the hitting problem. Thus, Appendix C can be read as a warm-up towards the
rest of the survey.

2 The Information Theoretic Perspective

The Naive Sampler, presented below, corresponds to the information theoretical
(or statistician) perspective of the problem. We augment it by a lower bound on
the sample complexity of samplers, which is in the spirit of these areas. We con-
clude with lower and upper bounds on the randomness complexity of samplers.
The latter lower bound is also information theoretic in nature, but it refers to a
concern that is more common in computer science.

2.1 The Naive Sampler

The straightforward sampling method consists of randomly selecting a small
sample set S and outputting 1

|S|
∑

x∈S ν(x) as an estimate to ν̄. More accurately,
we select m independently and uniformly distributed strings in {0, 1}n, denoted
s1, ..., sm, and output 1

m

∑
i=1 ν(si) as our estimate. Setting m = ln(2/δ)

2ε2 , we
refer to this procedure as to the Naive Sampler.

To analyze the performance of the Naive Sampler, we use the Chernoff Bound.
Specifically, we define m independent random variables, denoted ζ1, ..., ζm, such
that ζi

def= ν(si), where the si’s are independently and uniformly distributed in
{0, 1}n. By Chernoff Bound:

Pr

[∣∣∣∣∣ν̄ − 1
m

m∑
i=1

ζi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2m

)
(2)

< δ (3)

where Eq. (3) is due to m = ln(2/δ)/2ε2. Observing that 1
m

∑m
i=1 ζi represents

the estimate output by the Naive Sampler, we have established that the Naive
Sampler indeed satisfies Definition 1.1 (i.e., is indeed a sampler). We now con-
sider the complexity of the Naive Sampler

– Sample Complexity: m
def= ln(2/δ)

2ε2 = Θ( log(1/δ)
ε2 ).

– Randomness Complexity: m · n = Θ( log(1/δ)
ε2 · n).

– Computational Complexity: indeed efficient.

In light of Theorem 2.1 (below), the sample complexity of the Naive Sampler is
optimal upto a constant factor. However, as we will shortly see, it is extremely
wasteful in its usage of randomness. In fact, the rest of this survey is devoted to
presenting ways for redeeming the latter aspect.
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2.2 A Sample Complexity Lower Bound

We first assert that the Naive Sampler is quite good as far as sample complex-
ity is concerned. The following theorem is analogous to many results known in
statistics, though we are not aware of a reference prior to [10] where it can be
found.

Theorem 2.1 [10]: Any sampler has sample complexity bounded below by

min
{

2(n−4)/2,
ln(1/O(δ))

4ε2

}
provided ε ≤ 1

8 and δ ≤ 1
6 .

Note that a (constant factor) gap remains between the lower bound asserted
here and the upper bound established by the Naive Sampler. We conjecture that
the lower bound can be improved. Motivated by the lower bound, we say that a
sampler is sample-optimal if its sample complexity is O( log(1/δ)

ε2 ).

2.3 Randomness Complexity Lower and Upper Bounds

We first assert that the Naive Sampler is quite bad as far as randomness complex-
ity is concerned. First evidence towards our claim is provided by a non-explicit
(and so inefficient) sampler:

Theorem 2.2 [10]: There exists a (non-efficient) sampler with sample complex-
ity 2 ln(4/δ)

ε2 and randomness complexity n + 2 log2(2/δ) + log2 log2(1/ε).

The proof is by a probabilistic argument that, given the Naive Sampler, asserts
the existence of a relatively small set of possible coin tosses under which this
sampler behaves almost as under all possible coin tosses (with respect to any
possible function ν). Actually, the randomness bound can be improved to n +
log2(1/δ)− log2 log2(1/δ) while using a constant factor larger sample complexity
and more sophisticated techniques [30]. More generally:

Theorem 2.3 [30]: For every function s : [0, 1]2 → R such that s(ε, δ) ≥
2 log2(1/δ)

ε2 , there exists a (non-efficient) sampler with sample complexity s(ε, δ)
and randomness complexity

n + log2(1/δ) + 2 log2(4/ε)− log2 s(ε, δ)

This gets us very close to the following lower bound.

Theorem 2.4 [10]: Let s : N× [0, 1]2 → R. Any sampler that has sample com-
plexity at most s(n, ε, δ), has randomness complexity at least

n + log2(1/δ)− log2 s(n, ε, δ)− log2(1− 2ε)−1 − 2,

provided ε, δ < 0.5 and s(n, ε, δ) ≤ 2n−1.
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The dependency of the lower bound on the sample complexity should not come
as a surprise. After all, there exists a deterministic sampler that queries the
function on the entire domain. Furthermore, the upper bound of Theorem 2.3
does express a similar trade-off between randomness complexity and sample
complexity. Similarly, one should not be surprised at the effect of 1− 2ε on the
bound: For example, when ε = 0.5, a sample may merely output ν̃ = 1

2 as its
estimate and always be within ε of the average of any function ν : {0, 1}n → [0, 1].

Using Theorem 2.4, we obtain a lower bound on the randomness complexity
of any sample-optimal sampler:

Corollary 2.5 [10]: Any sampler that has sample complexity O( log(1/δ)
ε2 ), has

randomness complexity at least2

n + (1− o(1)) · log2(1/δ)− 2 log2(1/ε),

provided ε, δ < 0.4 and log(1/δ)
ε2 = o(2n).

3 The Pairwise-Independent Sampler

To motivate the Pairwise-Independent Sampler, let us confront two well-known
central limit theorems: Chernoff Bound, which refers to totally independent ran-
dom variables, and Chebyshev’s Inequality, which refers to pairwise-independent
random variables

Chernoff Bound: Let ζ1, ..., ζm be totally independent random variables, each
ranging in [0, 1] and having expected value μ. Then,

Pr

[∣∣∣∣∣μ− 1
m

m∑
i=1

ζi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2m

)
Chebyshev’s Inequality: Let ζ1, ..., ζm be pairwise-independent random variables,
each ranging in [0, 1] and having expected value μ. Then,

Pr

[∣∣∣∣∣μ− 1
m

m∑
i=1

ζi

∣∣∣∣∣ > ε

]
≤ 1

4ε2m

Our conclusion is that these two bounds essentially agree when m = O(1/ε2).
That is, in both cases Θ(1/ε2) identical random variables are necessary and
sufficient to guarantee a concentration within ε with constant probability. Thus,
if this is what we want, then there is no point in using the more sophisticated
Chernoff Bound, which requires more of the random variables.

In the context of sampling, our conclusion is that for achieving an approxima-
tion to within ε accuracy with constant error probability, using O(1/ε2) pairwise-
independent random sample points is as good as using O(1/ε2) totally indepen-
dent random sample points. Furthermore, in the first case we may be save a lot
in terms of randomness.
2 The o(1) term is actually

log2 O(log(1/δ))

log2(1/δ)
.
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The Pairwise-Independent Sampler [12]: On input parameters n, ε and δ, set
m

def= 1
4ε2δ and generate a sequence of m pairwise-independently and uniformly

distributed strings in {0, 1}n, denoted s1, ..., sm. Using the oracle access to ν,
output 1

m

∑
i=1 ν(si) as the estimate to ν̄. Using Chebyshev’s Inequality, one can

easily see that the Pairwise-Independent Sampler indeed satisfies Definition 1.1
(i.e., is indeed a sampler).

There are two differences between the Naive Sampler and the Pairwise-
Independent Sampler. Whereas the former uses independently selected sample
points, the latter uses a sequence of pairwise independent sample points. As we
shall see, this allows the latter sampler to use much less randomness. On the
other hand, the Naive Sampler uses O( log(1/δ)

ε2 ) samples (which is optimal upto
a constant factor), whereas the Pairwise-Independent Sampler uses O( 1

ε2δ ) sam-
ples. However, for constant δ, both samplers use essentially the same number of
sample points. Thus, for constant δ, the Pairwise-Independent Sampler offers a
saving in randomness while being sample-optimal.

Generating a Pairwise-Independent sequence: Whereas generating m totally in-
dependent random points in {0, 1}n requires m · n unbiased coin flips, one can
generate m (m ≤ 2n) pairwise-independent random points using only O(n) un-
biased coin flips. We present two well-known ways of doing this.

1. Linear functions over finite fields: We associate {0, 1}n with the finite field
F

def= GF(2n). Let α1, ..., αm be m ≤ |F | distinct elements of F . To generate
a (pairwise-independent) sequence of length m, we uniformly and indepen-
dently select s, r ∈ F , and let the ith element in the sequence be ei

def= r+αis
(where the arithmetic is that of F ). The analysis of this construction “re-
duces” the stochastic independence of ei and ej to the linear independence
of the vectors (1 , αi) and (1 , αj): For every i �= j and every a, b ∈ F , we
have

Prr,s [ei = a ∧ ej = b] = Prr,s

[(
1 αi

1 αj

)(
r
s

)
=

(
a
b

)]
= Prr,s

[(
r
s

)
=

(
1 αi

1 αj

)−1 (
a
b

)]

=
1
|F |2 .

Only 2n random coins are required in this construction, but the drawback is
that we need a representation of the field F (i.e., an irreducible polynomial
of degree n over GF(2)) which may not be easy to find in general.3 Still, for
specific values of n a good representation exists: Specifically, for n = 2 · 3�

(with 	 integer), the polynomial xn + xn/2 + 1 is irreducible [17, p. 96], and
so we obtain a representation of GF(2n) for such n’s.

3 Things are not better if we wish to work with a large field of prime cardinality; since
we need to find such a prime.
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2. Toeplitz matrices: To avoid problems with non-trivial representation, one may
use the following construction. We associate {0, 1}n with the n-dimensional
vector space over GF(2). Let v1, ..., vm be m ≤ 2n distinct vectors in this vec-
tor space. A Toeplitz matrix is a matrix with all diagonals being homogeneous;
that is, T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1, for all i, j. Note that
a Toeplitz matrix is determined by its first row and first column (i.e., the
values of t1,j’s and ti,1’s). To generate a (pairwise-independent) sequence of
length m, we uniformly and independently select an n-by-n Boolean Toeplitz
matrix, T , and an n-dimensional Boolean vector u. We let the ith element
in the sequence be ei

def= Tvi + u (where the arithmetic is that of the vector
space). The analysis of this construction is given in Appendix B. Here, we
merely note that 3n− 1 random coins suffice for this construction,

Plugging-in either of these constructions, we obtain the following complexities
for the Pairwise-Independent Sampler
– Sample Complexity: 1

4δε2 .
– Randomness Complexity: 2n or 3n−1, depending on which of the constructions

is used.
– Computational Complexity: Indeed efficient.

We note that for constant δ, the sample and randomness complexities match
the lower bounds upto a constant factor. However, as δ decreases, the sample
complexity of the Pairwise-Independent Sampler increases faster than the cor-
responding complexity of the Naive Sampler. Redeeming this state of affairs is
our next goal.

4 The (Combined) Median-of-Averages Sampler

Our goal here is to decrease the sample complexity of the Pairwise-Independent
Sampler while essentially maintaining its randomness complexity. To motivate
the new construction we first consider an oversimplified version of it.
Median-of-Averages Sampler (oversimplified): On input parameters n, ε and
δ, set m

def= Θ( 1
ε2 ) and 	

def= Θ(log(1/δ)), generate 	 independent m-element
sequences, each being a sequence of m pairwise-independently and uniformly
distributed strings in {0, 1}n. Denote the sample points in the ith sequence
by si

1, ..., s
i
m. Using the oracle access to ν, compute ν̃i def= 1

m

∑m
j=1 ν(si

j), for
i = 1, ..., 	, and output the median value among these ν̃i’s. Using Chebyshev’s
Inequality (as in previous section), for each i, it holds that

Pr[|ν̃i − ν̄| > ε] < 0.1

and so

Pr
[
|{i : |ν̃i − ν̄| > ε}| ≥ 	

2

]
<

�∑
j=�/2

(
	

j

)
· 0.1j · 0.9�−j

< 2� · 0.1�/2

≤ δ,
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where the last inequality is due to the choice of 	. Thus, the oversimplified version
described above is indeed a sampler and has the following complexities

– Sample Complexity: 	 ·m = O( log(1/δ)
ε2 ).

– Randomness Complexity: 	 ·O(n) = O(n · log(1/δ)).
– Computational Complexity: Indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the ran-
domness complexity is higher than what we aim for. To reduce the randomness
complexity, we use the same approach as above, but take dependent sequences
rather than independent ones. The dependency we use is such that essentially
preserves the probabilistic behavior of independent choices. Specifically, we use
random walks on expander graphs (cf., Appendix A) to generate a sequence
of 	 “seeds” each of length O(n). Each seed is used to generate a sequence of
m pairwise independent elements in {0, 1}n, as above. Let us generalize this
construction as follows.

Theorem 4.1 (general median-composition [7]): Suppose we are given an effi-
cient sampler of sample complexity s(n, ε, δ) and randomness complexity r(n, ε, δ).
Then:

1. There exists an efficient sampler with sample complexity O(s(n, ε, 0.01) ·
log(1/δ)) and randomness complexity r(n, ε, 0.01) + O(log(1/δ)).

2. For any c > 4, there exists an α > 0 and an efficient sampler with sample
complexity O(s(n, ε, α) · log(1/δ)) and randomness complexity r(n, ε, α) + c ·
log2(1/δ).

Proof: For Item 1, let r
def= r(n, ε, 0.01). We use an explicit construction of

expander graphs with vertex set {0, 1}r, degree d and second eigenvalue λ so
that λ/d < 0.1. We consider a random walk of (edge) length 	−1 = O(log(1/δ))
on this expander, and use each of the 	 vertices along the path as random coins
for the given sampler. Thus, we obtain 	 estimates to ν̄ and output the median
value as the estimate of the new sampler. To analyze the performance of the
resulting sampler, we let W denote the set of coin tosses (for the basic sampler)
that make the basic sampler output an estimate that is ε-far from the correct
value (i.e., ν̄). Thus, W denotes the set of coin tosses that are bad for the basic
sampler, and by the hypothesis |W |

2r ≤ 0.01. Using Theorem A.4 (with some Wi’s
set to W and the others set to {0, 1}r), we infer that the probability that at
least 	/2 vertices of the path reside in W is smaller than

�∑
j=�/2

(
	

j

)
· 0.02j/2 < 2� · 0.02�/4

≤ δ.

Note that we have used 	 · s(n, ε, 0.01) samples and r + (	 − 1) · log2 d = r +
O(log(1/δ)) coin tosses. Item 1 follows.
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Item 2 is proved using the same argument but using Ramanujan Graphs (and
slightly more care). Specifically, we use Ramanujan graphs (i.e., expanders with
λ ≤ 2

√
d− 1) with vertex set {0, 1}r, where r

def= r(n, ε, α) and α = (λ
d )2.

Repeating the foregoing argument, with 	−1 = 2 log2(1/δ)
log2(α/8) , we obtain an efficient

sampler that uses 	 ·s(n, ε, α) samples and r+(	−1) · log2 d = r+(4+ 16
(log2 d)−8 ) ·

log2(1/δ) coin tosses. Since this can be done with a sufficiently large d, Item 2
follows.

Combining the Pairwise-Independent Sampler with Theorem 4.1, we get

Corollary 4.2 (The Median-of-Averages Sampler [7]): There exists an efficient
sampler with

– Sample Complexity: O( log(1/δ)
ε2 ).

– Randomness Complexity: O(n + log(1/δ)).

Furthermore, we can obtain randomness complexity 2n + (4 + o(1)) · log2(1/δ)).

In the next section, we further reduce the randomness complexity of samplers
(from 2n + O(log(1/δ))) to n + O(log(1/ε) + log(1/δ)), while maintaining the
sample complexity (up-to a multiplicative constant).

Generalizing Theorem 4.1. A close look at the proof of Theorem 4.1 reveals
the fact that the median value obtained via an expander random walk (on the
vertex set {0, 1}r) is used as a sampler of accuracy 0.49 and error probability
δ. This suggests the following generalization of Theorem 4.1: Suppose we are
given two efficient samplers such that the ith sampler has sample complexity
si(n, ε, δ) and randomness complexity ri(n, ε, δ). Then, for every δ0 ∈ (0, 0.5),
there exists an efficient sampler of sample complexity s2(r, 0.5−δ0, δ) ·s1(n, ε, δ0)
and randomness complexity r2(r, 0.5−δ0, δ), where r

def= r1(n, ε, δ0). Theorem 4.1
is derived as a special case, when using the expander random walk as the second
sampler and setting δ0 = 0.01.

5 The Expander Sampler and Two Generic
Transformations

The main result of this section is the following:

Theorem 5.1 [7,16]: There exists an efficient sampler that has

– Sample Complexity: O( log(1/δ)
ε2 ).

– Randomness Complexity: n + log2(1/ε) + O(log(1/δ)).
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The theorem is proved by applying Theorem 4.1 to a new efficient sampler that
makes O( 1

δε2 ) oracle queries and tosses n+log2(1/ε) coins. We start by presenting
a sampler for the special case of Boolean functions.

Definition 5.2 (Boolean sampler): A Boolean sampler is a randomized algo-
rithm that on input parameters n, ε and δ, and oracle access to any Boolean
function ν :{0, 1}n→{0, 1}, outputs, with probability at least 1− δ, a value that
is at most ε away from ν̄

def= 1
2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ε, δ)− ν̄| > ε] < δ

where the probability is taken over the internal coin tosses of the sampler.

That is, unlike (general) samplers, a Boolean sampler is required to work well
only when given access to a Boolean function. The rest of this section is organized
as follows:

In Section 5.1 we present the Expander Sampler, which is a Boolean sampler
of sample complexity O(1/δε2) and randomness complexity n. This sample
complexity is obtained by using Ramanujan Graphs (rather than arbitrary
expanders).

In Section 5.2 we present a (general) transformation of Boolean samplers to
general ones.

In Section 5.3 we revisit the Expander Sampler, while using an arbitrary ex-
pander. More importantly, we present another generic composition of sam-
plers, and obtain an alternative construction by using this composition in
conjunction with the aforementioned sampler. Unlike the composition
method that underlies Theorem 4.1, which reduces the error complexity (in
an efficient manner), the current composition reduces the sample complexity.

Theorem 5.1 is proved by combining the ideas of Sections 5.1 and 5.2. An alter-
native proof of a somewhat weaker result is obtained by combining the ideas of
Sections 5.1 and 5.3.

5.1 A Sampler for the Boolean Case

We start by presenting a sampler for the special case of Boolean functions. Our
sampling procedure is exactly the one suggested by Karp, Pippinger and Sipser
for hitting a witness set [22] (cf., Appendix C), yet the analysis is somewhat more
involved. Furthermore, to get an algorithm that samples the universe only on
O(1/δε2) points, it is crucial to use a Ramanujan graph in role of the expander
in the Karp-Pippinger-Sipser method.

The sampler. We use an expander of degree d = 4/δε2 second eigenvalue bounded
by λ and associate the vertex set of the expander with {0, 1}n. The sampler con-
sists of uniformly selecting a vertex, v, (of the expander) and averaging over the



A Computational Perspective on Sampling 313

values assigned (by ν) to all the neighbors of v; that is, the algorithm outputs
the estimate

ν̃
def=

1
d

∑
u∈N(v)

ν(u), (4)

where N(v) denotes the set of neighbors of vertex v.

This algorithm has

– Sample Complexity: O( 1
δε2 ).

– Randomness Complexity: n.
– Computational Complexity: Indeed efficient; that is, polynomial in n, ε−1 and

δ−1.

Lemma 5.3 [16]: The foregoing algorithm constitutes an efficient Boolean sam-
pler.

Proof: We denote by B the set of bad choices for the algorithm; namely, the set
of vertices that once selected by the algorithm yield a wrong estimate. That is,
v ∈ B if ∣∣∣∣∣∣1d

∑
u∈N(v)

ν(u)− ν̄

∣∣∣∣∣∣ > ε. (5)

Denote by B′ the subset of v ∈ B for which

1
d

∑
u∈N(v)

ν(u) > ν̄ + ε. (6)

It follows that each v ∈ B′ has εd too many neighbors in the set A
def= {u : ν(u)=

1}; namely,
|{u∈N(v) : u∈A}| > (ρ(A) + ε) · d, (7)

where ρ(A) def= |A|
N and N

def= 2n. Using the Expander Mixing Lemma (i.e.,
Lemma A.2), we get that

ε · ρ(B′) =
∣∣∣∣ |B′| · (ρ(A) + ε)d

dN
− ρ(B′) · ρ(A)

∣∣∣∣
≤

∣∣∣∣ |(B′ ×A) ∩ E|
|E| − |A|

|V | ·
|B′|
|V |

∣∣∣∣
≤ λ

d
·
√

ρ(A) · ρ(B′).

Thus,

ρ(B′) ≤
(

λ

dε

)2

· ρ(A). (8)
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Using λ ≤ 2
√

d and d = 4
δε2 , we get ρ(B′) ≤ δ · ρ(A). Using a similar argument,4

we can show that ρ(B \ B′) ≤ δ · (1 − ρ(A)). Thus, ρ(B) ≤ δ, and the claim
follows.

Comment 5.4 [16]: Observe that if we were to use an arbitrary d-regular graph
with second eigenvalue λ, then the foregoing proof would hold provided that

λ

d
≤
√

δε2. (9)

This yields, for any such d-regular graph, an efficient Boolean sampler with sam-
ple complexity d and randomness complexity n.

5.2 From Boolean Samplers to General Samplers

The following generic transformation was suggested to us by Luca Trevisan.

Theorem 5.5 (Boolean samplers imply general ones): Suppose we are given an
efficient Boolean sampler of sample complexity s(n, ε, δ) and randomness com-
plexity r(n, ε, δ). Then, there exists an efficient sampler with sample complexity
s(n + log2(1/ε), ε/2, δ) and randomness complexity r(n + log2(1/ε), ε/2, δ).

Proof: As a mental experiment, given an arbitrary function ν : {0, 1}n→ [0, 1],
we define a Boolean function μ : {0, 1}n+� → {0, 1}, where 	

def= log2(1/ε),
as follows: For every x and i = 1, ..., ε−1, we set μ(x, i) def= 1 if and only if
ν(x) > (i − 0.5) · ε (i.e., iff i < ε−1ν(x) + 0.5). Then, for every x, it holds that
|ν(x) − ε ·

∑1/ε
i=1 μ(x, i)| ≤ ε/2. Thus, if we were to sample μ and obtain an

ε/2-approximation of μ̄ then we get an ε-approximation of ν̄. Now, although we
don’t have actual access to μ we can emulate its answers given an oracle to ν.

Given a Boolean sampler, B, we construct a general sampler, A, as follows. On
input n, ε, δ and access to an arbitrary ν as above, algorithm A sets n′ = n + 	,
ε′ = ε/2, and δ′ = δ, and invoke B on input n′, ε′, δ′. When B makes a query
(x, i) ∈ {0, 1}n × {0, 1}�, algorithm A queries for ν(x) and returns 1 if and only
if ν(x) > (i− 0.5) · ε. When B halts with output v, algorithm A does the same.
The theorem follows.

Combining the sampler of Section 5.1 with Theorem 5.5, we get

Corollary 5.6 (The Expander Sampler, revisited): There exists an efficient
sampler that has

– Sample Complexity: O( 1
δε2 ).

– Randomness Complexity: n + log2(1/ε).

Theorem 5.1 follows by combining Corollary 5.6 with Theorem 4.1.

4 That is, we consider the set B′′ def
= B \B′, and observe that every v ∈ B′′ has εd too

many neighbours in A′′ def
= {0, 1}n \ A. Hence, we conclude that ρ(B′′) ≤ δ · ρ(A′′).
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5.3 An Alternative Construction

Using an arbitrary expander graph (with d = poly(1/εδ) and λ
d <

√
δε2) and

invoking Comment 5.4, we have an efficient Boolean sampler with sample com-
plexity poly(1/εδ) and randomness complexity n. Using Theorem 5.5, we get

Corollary 5.7 (The Expander Sampler, revisited again): There exists an effi-
cient sampler with sample complexity poly(1/εδ) and randomness complexity
n + log2(1/ε).

To derive (a weaker form of) Theorem 5.1 via the foregoing sampler, we first
need to reduce its sample complexity. This is done via the following general
transformation. We say that a sampler is of the averaging type if its output
is the average value obtained on its queries, which in turn are determined as
a function of its own coin tosses (independently of the answers obtained on
previous queries).

Theorem 5.8 (reducing sample complexity (or “sampling the sample”)): Sup-
pose we are given two efficient samplers such that the ith sampler has sample
complexity si(n, ε, δ) and randomness complexity ri(n, ε, δ). Further suppose that
the first sampler is of the averaging type. Then, there exists an efficient sampler
of sample complexity s2(log2 s1(n, ε/2, δ/2), ε/2, δ/2) and randomness complexity
r1(n, ε/2, δ/2)+ r2(log2 s1(n, ε/2, δ/2), ε/2, δ/2). Furthermore, if also the second
sampler is of the averaging type, then so is the resulting sampler.

Proof: We compose the two samplers as follows. Setting m
def= s1(n, ε/2, δ/2), we

invoke the first sampler and determine the m queries it would have asked (given
a particular choice of its coins).5 We then use the second sampler to sample these
m queries (invoking it with parameters log2 m, ε/2 and δ/2). Specifically, we let
the second sampler make virtual queries into the domain [m] def= {1, ..., m} and
answer a query q ∈ [m] by the value of the function at the ith query specified
by the first sampler. That is, given access to a function ν : {0, 1}n → [0, 1], and
determining a sequence r of coins for the first sampler, we consider the function
νr : [m] → [0, 1] defined by letting νr(i) = ν(qr,i) where qr,i is the ith query
made by the first sampler on coins r. We run the second sampler providing it
virtual access to the function νr in the obvious manner, and output its output.
Thus, the complexities are as claimed and the combined sampler errs if either
|ν̄− 1

m

∑m
i=1 ν(qr,i)| > ε

2 or | 1
m

∑m
i=1 ν(qr,i)− ν̃r| > ε/2, where ν̃r is the estimate

output by the second sampler when given virtual access to νr. Observing that
the first event means that the first sampler errs (here we use the hypothesis
that this sampler is averaging) and that the second event means that the second
sampler errs (here we use

∑m
i=1 ν(qr,i) = ν̄r), we are done.

5 Here we use the hypothesis that the first sampler is non-adaptive; that is, its queries
are determined by its coin tosses (independently of the answers obtained on previous
queries).
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It is tempting to try to improve the sample complexity of the sampler asserted
in Corollary 5.7 by combining it with the Pairwise-Independent Sampler, via
Theorem 5.8. The problem is that the former sampler, which we wish to use in
the role of the outer sampler, is not of the averaging type. Indeed, the expander
sampler (of Comment 5.4) is of the averaging type, but the proof of Theorem 5.5
does not preserve this feature. Instead, as shown in Theorem 5.10 (below), any
Boolean sampler of the averaging type is a general sampler of the averaging time,
except that its accuracy and error probability may increase by a constant factor.
Thus, combining the sampler of Comment 5.4 with the Pairwise-Independent
Sampler, via Theorem 5.8, we obtain:

Corollary 5.9 (sampling the Expander Sampler): There exists an efficient sam-
pler that has

– Sample Complexity: O( 1
δε2 ).

– Randomness Complexity: n + O(log(1/ε)) + O(log(1/δ)).

Indeed, the sampler asserted in Corollary 5.9 operates by selecting a random
vertex in an expander and taking a pairwise-independent sample of its neighbor
set. A weaker form of Theorem 5.1 (i.e., with an O(log(1/ε) term rather than
with a log2(1/ε) term) follows by combining Corollary 5.9 with Theorem 4.1.

It is left to establish the aforementioned claim by which any Boolean sampler
of the averaging type is a general sampler (of the averaging time), except that
its accuracy and error probability may increase by a constant factor. (A similar
statement was proved in [30].)

Theorem 5.10 (Boolean vs general samplers of the averaging type): Every
Boolean sampler of the averaging type, having sample complexity s(n, ε, δ)
and randomness complexity r(n, ε, δ), is a general sampler (of the averaging
type) with sample complexity s(n, ε/4, δ/3) and randomness complexity r(n, ε/
4, δ/3).

Proof: For any function ν : {0, 1}n → [0, 1], we consider a random function ρ :
{0, 1}n → {0, 1} such that, for every x, we set ρ(x) = 1 with probability ν(x),
independently of the setting of all other arguments. Clearly, with probability 1−
exp(−2ε22n) > 1 − δ, it holds that |ν̄ − ρ̄| < ε. Furthermore, fixing any possible
outcome of the sampler’s coins, with probability at least 1− exp(−8ε2s) over the
choice of ρ, the average of the ρ-values queried by the sampler is 2ε-close to the
average of the ν-values, where s denotes the number of queries. Since (by Theo-
rem 2.1) s > ε−2 log(1/δ)/8, with probability at least 1 − δ over the choice of ρ,
the average that the Boolean sampler outputs when given access to ν is 2ε-close to
the average it would have output on a random ρ, which in turn (with probability
at least 1 − δ over the sampler’s coins) is ε-close to ρ̄. Thus, with probability at
least 1− 3δ (over the sampler’s coins), the Boolean sampler outputs a value that
is 4ε-close to ν̄,
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6 Conclusions and Open Problems

The main results surveyed in the text are summarized in Figure 1. The first
row tabulates Ω(ε−2 log(1/δ)) as a lower bound on sample complexity and the
subsequent three rows refer to sample-optimal samplers (i.e., samplers of sample
complexity O(ε−2 log(1/δ))). The last row refers to a sampler (cf., Thm. 6.1
below) that has randomness complexity closer to the lower bound. However,
this sampler is not sample-optimal.

sample complexity randomness complexity pointer

lower bound Ω( log(1/δ)

ε2
) Thm. 2.1

lower bound for O( log(1/δ)

ε2
) n + (1 − o(1)) · log2(1/δ) − 2 log2(1/ε) Cor. 2.5

upper bound O( log(1/δ)

ε2
) n + log2(1/δ) Thm. 2.3

algorithm O( log(1/δ)

ε2
) n + O(log(1/δ)) + log2(1/ε) Thm. 5.1

algorithm poly(ε−1, log(1/δ)) n + (1 + α) · log2(1/δ), ∀α > 0 Thm. 6.1

Fig. 1. Summary of main results

The randomness complexity of sample-optimal samplers. A closer look at the
randomness complexity of sample-optimal samplers is provided in Figure 2. The
first two rows tabulate lower and upper bounds, which are 2 log2(1/ε) + O(1)
apart. Our conjecture is that the lower bound can be improved to match the
upper bound.6 The efficient samplers use somewhat more than n + 4 · log2(1/δ)
coins, where one factor of 2 is due to the use of expanders and the other to the
“median-of-averages paradigm”. As long as we stick to using expanders in the
Median-of-Averages Sampler, there is no hope to reduce the first factor, which
is due to the relation between the expander degree and its second eigenvalue.
In fact, achieving a factor of 4 rather than a bigger factor is due to the use of
Ramanujan Graphs (which have the best possible such relation).

Boolean samplers vs general ones. Another fact presented in Figure 2 is that we
can currently do better if we are guaranteed that the oracle function is Boolean
(rather than mapping to the interval [0, 1]). We stress that the lower bound holds
also with respect to samplers that need only to work for Boolean functions.

Adaptive vs non-adaptive. All known samplers are non-adaptive; that it, they
determine the sample points (queries) solely as a function of their coin tosses.
In contrast, adaptive samplers may determine the next query depending on the
value of the function on previous queries. Intuitively, adaptivity should not help
the sampler. Indeed, all lower bounds refer also to adaptive samplers, whereas all

6 Partial support for this conjecture was offered to us recently by Ronen Shaltiel (priv.
comm., 2010). He observed that one log2(1/ε) term can be shaved off the lower
bound in the special case of averaging samplers (see below), by using the connection
to randomness extractors and a lower bound on entropy loss due to [25].
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lower bound (even for Boolean) n + log2(1/δ) − 2 log2(1/ε) − log2 log2(1/δ) − O(1)

upper bound n + log2(1/δ) − log2 log2(1/δ)

efficient samplers n + (4 + α) log2(1/δ) + log2(1/ε), for any α > 0

efficient Boolean samplers n + (4 + α) log2(1/δ), for any α > 0

Fig. 2. The randomness complexity of samplers that make Θ( log(1/δ)

ε2
) queries

upper bound only utilizes non-adaptive samplers. This indicates that the differ-
ence between adaptive samplers and non-adaptive ones can not be significant. In
a preliminary version of this survey we advocated providing a direct and more
tight proof of the foregoing intuition. When referring to the sample complex-
ity, such a simple proof was provided in [6, Lem. 9]: It amounts to observing
that adapting queries made to a random isomorphic copy of a function f are
equivalent to uniformly and independently distributed queries made to f . Thus,
adaptivity offers no advantage in this setting.

Averaging (or oblivious) samplers. A special type of non-adaptive samplers are
ones that output the average value of the function over their sample points.
Such samplers were first defined in [9], where they were called “oblivious”, but
we prefer the term averaging. (Recall that we have already defined and used
such samplers in Section 5.3.) We mention that averaging samplers have some
applications not offered by arbitrary non-adaptive samplers (cf., [9] and [29]).
More importantly, averaging samplers are very appealing, since averaging over
a sample seem the natural thing to do. Furthermore, as pointed out in [30],
averaging samplers are closely related to randomness extractors (see Section 7
and more details in [28]). Note that the Naive Sampler, the Pairwise-Independent
Sampler, and the Expander Sampler are all averaging samplers, although they
differ in the way they generate their sample. However, the Median-of-Averages
Sampler, as its name indicates, is not an averaging sampler. Thus, obtaining an
averaging sampler of relatively low sample and randomness complexities requires
an alternative approach. The best results are obtained via the connection to
randomness extractors, and are summarized below.

Theorem 6.1 (efficient averaging samplers [26, Cor. 7.3]):7 For every constant
α > 0, there exists an efficient averaging sampler with

– Sample Complexity: poly(ε−1, log(1/δ)).
– Randomness Complexity: n + (1 + α) · log2(1/δ).

We stress that this sampler is not sample-optimal (i.e., the polynomial in ε−1 is
not quadratic). It would be interesting to obtain an efficient sample-optimal av-
eraging sampler of low randomness complexity, say, one that uses O(n+log(1/δ))

7 The result builds on [30], and uses [18, Thm. 1.5] in order to remove a mild restriction
on the value of ε.
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coins. We mention that non-explicit sample-optimal averaging samplers of low
randomness complexity do exist; specifically, Theorems 2.2 and 2.3 holds with
averaging-samplers (see [10,30], resp.).

7 Postscript: A Different Perspective

As stated in the introduction, the intention of the current survey was to provide a
wide audience of theoretical computer scientists with a basic tutorial regarding
samplers. The focus of this tutorial was on the complexity of sampling, and
our aim was to simultaneously minimize three complexity measures: (1) the
sample complexity, (2) the randomness complexity, and (3) the computational
complexity. We actually focused on the minimization of the first two, while
requiring that a minimal level of computational efficiency is maintained (i.e.,
that the sampler works in time that is polynomial in the total length of the
queries made).

From our perspective, averaging samplers are of no special interest, except
maybe for their natural appeal. An alternative perspective, strongly advocated
by Ronen Shaltiel and Amnon Ta-Shma, may put averaging samplers and their
relation to general samplers at the main focus. This is likely to yield a very
interesting survey, which we outline in the rest of this section, but it is not the
one we set out to write...

7.1 Average Samplers versus General Samplers

The alternative survey will focus on the question of whether non-averaging sam-
plers can outperform averaging samplers. As noted by Amnon and Ronen, a good
starting point for such a survey is the observation that the median of averages
operation can be used for improving the performance of samplers, but it yields
non-averaging samplers. Specifically, the median of averages operation can be
combined with simple averaging samplers (e.g., the pairwise independent ones)
to yield very strong and simple non-averaging samplers. Another interesting ob-
servation is that the currently known lower bound on the randomness complexity
of sample-optimal averaging samplers is higher than the currently know bound
for general samplers (see Footnote 6). Finally, when viewing the minimization
of sample complexity as the primary goal and the minimization of the random-
ness complexity as the secondary goal, the median of averages operation enables
constructing efficient samplers that are by far better (and also much simpler)
than the currently known efficient averaging samplers.

Another interesting parameter is the Boolean versus general distinction, which
was discussed in prior sections. Recall that in the case of averaging samplers,
the two notions are almost identical (see Theorem 5.10), whereas for general
sampler we currently lose a log2(1/ε) term in the randomness complexity (see
Theorem 5.5). Focusing on sample-optimal samplers, we summarize the currently
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lower bound (even for Boolean) n + log2(1/δ) − 2 log2(1/ε) − � − O(1)

lower bound for averaging samplers n + log2(1/δ) − log2(1/ε) − � − O(1)

upper bound (by averaging samplers) n + log2(1/δ) − �

efficient samplers n + (4 + α) · log2(1/δ) + log2(1/ε), ∀α > 0

efficient averaging samplers n + (1 + α) · log2(1/δ) + Õ(s), ∀α > 0

Fig. 3. The randomness complexity of samplers that make s
def
= Θ( log(1/δ)

ε2
) queries,

where � denotes log2 log2(1/δ)

known results in Figure 3, where the three first rows ignore the question of
efficiency (and the last row of Figure 3 is justified by combining Theorems 6.1
and 5.8).8

7.2 Average Samplers versus Randomness Extractors

We start by recalling the basic definition of randomness extractors, while (slightly)
changing some common conventions to better fit our discussion.9 Loosely speak-
ing, a randomness extractor is a function Ext : {0, 1}r × [s] → {0, 1}n that uses
an (log2 s)-bit long random seed in order to transform an r-bit long (outcome
of a) weak source of randomness into an n-bit long string that is almost uni-
formly distributed in {0, 1}n. Specifically, we consider arbitrary weak sources
that are restricted (only) in the sense that, for a parameter k, no string appears
as the source outcome with probability that exceeds 2−k. Such sources are called
(r, k)-sources (and k is called the min-entropy). A special type of (r, k)-sources
are (r, k)-flat sources, which are sources in which each string appears with proba-
bility that equals either 2−k or 0. We say that two distributions are ε-close if the
statistical difference (a.k.a variation distance) between them is at most ε. Now,
Ext is called a (k, ε)-extractor if for any (r, k)-source X it holds that Ext(X, Us)
is ε-close to the uniform distribution over n-bit strings, where Us denotes the
uniform distribution over [s].

There is a close relationship between extractors and averaging samplers. In
order to discuss this relationship, it will be more convenient to state the per-
formance guarantees of the sampler (i.e., ε and δ) in terms of its complexities
(i.e., s and r), rather than the other way around (as done in the rest of this sur-
vey). Thus, we may say that a certain oracle machine (which has certain sample
and randomness complexities) is an (ε, δ)-sampler if it satisfies Eq. (1) for these
particular values of ε and δ.

We shall first show that any averaging sampler gives rise to an extractor.
Let G : {0, 1}r → ({0, 1}n)s be the sample generating algorithm of an averaging

8 Specifically, we invoke Theorem 5.8 when using the sampler of Theorem 6.1 as the
first (i.e., “outer”) sampler, and the Naive Sampler as the second (i.e., “inner”)
sampler.

9 Typically, extractors are defined as mapping {0, 1}n × {0, 1}s to {0, 1}m.
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(ε, δ)-sampler. That is, G uses r bits of randomness and generates s sample points
in {0, 1}n such that, for every f : {0, 1}n → [0, 1] with probability at least 1− δ,
the average of the f -values of these s pseudorandom points resides in the interval
[f ± ε], where f

def=
∑

x∈{0,1}n f(x)/2n. Define Ext : {0, 1}r × [s] → {0, 1}n such
that Ext(ω, i) is the ith sample generated by G(ω). We shall prove that Ext is a
(k, 2ε)-extractor, for k = r − log2(ε/δ).

Suppose towards the contradiction that there exists a (r, k)-source X such
that for some S ⊂ {0, 1}n it is the case that Pr[Ext(X, Us) ∈ S] > 2−n · |S|+ 2ε.
Then, without loss of generality, X is (r, k)-flat, and we consider the set

B = {x ∈ {0, 1}r : Pr[Ext(x, Us) ∈ S] > 2−n · |S|+ ε}.

Then, |B| > ε ·2k = δ ·2r, where the inequality holds since Pr[Ext(X, Us) ∈ S] ≤
Pr[X ∈ B] + 2−n · |S|+ ε. Defining f(z) = 1 if z ∈ S and f(z) = 0 otherwise, it
holds that f = |S|/2m. But, for every ω ∈ B, the f -average of the sample G(ω)
is greater than f + ε, in contradiction to the hypothesis that the sampler has
error probability δ (with respect to accuracy ε).

We now turn to show that extractors give rise to averaging samplers. Let
Ext : {0, 1}r×[s] → {0, 1}n be a (k, ε)-extractor. Consider the sample generation
algorithm G : {0, 1}r → ({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s]. We prove
that G corresponds to an averaging (ε, δ)-sampler, for δ = 2−(r−k−1).

Suppose towards the contradiction that there exists a function f : {0, 1}n →
[0, 1] such that for δ2r = 2k+1 strings ω ∈ {0, 1}r the average f -value of the
sample G(ω) deviates from f by more than ε. Suppose, without loss of generality,
that for at least half of these ω’s the average is greater than f + ε, and let B
denote the set of these ω’s. Then, for X that is uniformly distributed on B (and
is thus a (r, k)-source), we have

Exp[f(Ext(X, Us))] > Exp[f(U ′
n)] + ε,

where U ′
n denotes the uniform distribution on n-bit long strings. But, since

|f(z)| ≤ 1 for every z, this contradicts the hypothesis that Ext(X, Us) is ε-close
to U ′

n, because |Exp[f(Y )] − Exp[f(Z)]| is upper bounded by the statistical
difference between Y and Z (times maxz{|f(z)|}). Summarizing the foregoing
discussion, we obtain:

Theorem 7.1 (averaging samplers vs randomness extractors): Let r, s, k ∈ N

and ε, δ ∈ [0, 1]. Then:

1. If Ext : {0, 1}r×[s] → {0, 1}n is a (k, ε)-extractor, then the sample generating
algorithm G : {0, 1}r → ({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s] yields
an averaging (ε, δ)-sampler for δ = 2−(r−k−1) (i.e., r − k = log2(1/δ) + 1).

2. If G : {0, 1}r → ({0, 1}n)s is the sample generating algorithm of an averaging
(ε, δ)-sampler, then the algorithm Ext : {0, 1}r × [s] → {0, 1}n defined by
Ext(ω, i) = G(ω)i is a (k, 2ε)-extractor, for k = r − log2(ε/δ) (i.e., r − k =
log2(1/δ)− log2(1/ε)).
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Note that starting with a (k, 2ε)-extractor and applying both parts of Theo-
rem 7.1, we obtain a (k′, 2ε)-extractor for k′ = k + 1 + log2(1/ε). Thus, the
translation offered by Theorem 7.1 is not optimal, yet the bounds provided in
both directions are (in general) tight.10

The connection to averaging samplers and the desire to have averaging sam-
plers of optimal sample and randomness complexities calls attention to a research
direction regarding extractors that did not receive much attention. We refer to
the construction of extractors with strongly optimal seed length and almost op-
timal extraction rate. That is, the seed length, which is log2 s in terms of this
section, should be optimal up to a constant additive term, whereas the extraction
rate (i.e., n/k) (or rather the inverse loss rate (i.e., (r − k)/(n− k))) should be
close to 1.

Acknowledgments. I would like to thank Noga Alon, Nabil Kahale, Ronen
Shaltiel, Amnon Ta-Shma, Luca Trevisan, and Salil Vadhan for useful
discussions.
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Appendix A: Expanders and Random Walks

This appendix provides more background on expanders than the very minimum
that is needed for the main text. On the other hand, there is much more to be
learned about this subject (see, e.g., [19]).

A.1 Expanders

An (N, d, λ)-expander is a d-regular graph with N vertices such that the ab-
solute value of all eigenvalues (except the biggest one) of its adjacency matrix
is bounded by λ. A (d, λ)-family is an infinite sequence of graphs so that the
nth graph is a (2n, d, λ)-expander. We say that such a family is efficiently con-
structible if there exists a polynomial-time algorithm that given a vertex, v,
in the expander and an index i ∈ [d] def= {1, ..., d}, returns the ith neighbor of
v. We first recall that for d = 16 and some λ < 16, efficiently constructible
(16, λ)-families do exist (cf., [14]).11

In our applications we use (parameterized) expanders satisfying λ
d < α and

d = poly(1/α), where α is an application-specific parameter. Such (parameter-
ized) expanders are also efficiently constructible. For example, we may obtain
them by taking paths of length O(log(1/α)) on an expander as above. Specif-
ically, given a parameter α > 0, we obtain an efficiently constructible (D, Λ)-
family satisfying Λ

D < α and D = poly(1/α) as follows. We start with a con-

structible (16, λ)-family, set k
def= log16/λ(1/α) = O(log 1/α) and consider the

paths of length k in each graph. This yields a constructible (16k, λk)-family, and
indeed both λk

16k < α and 16k = poly(1/α) hold.

Comment: To obtain the best constants in Sections 4 and 5, one may use ef-
ficiently constructible Ramanujan Graphs [23]. Furthermore, using Ramanujan

11 These are minor technicalities, which can be easily fixed. Firstly, the Gaber–Galil
expanders are defined (only) for graph sizes that are perfect squares [14]. This suffices
for even n’s. For odd n’s, we may use a trivial modification such as taking two copies
of the graph of size 2n−1 and connecting each pair of corresponding vertices. Finally,
we add multiple edges so that the degree becomes 16, rather than being 14 for even
n’s and 15 for odd n’s.
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Graphs is essential for our proof of the second item of Theorem 4.1 as well as
of Lemma 5.3. Ramanujan Graphs satisfy λ ≤ 2

√
d− 1 and so, setting d = 4/α,

we obtain λ
d < α, where α is an application-specific parameter. Here some mi-

nor technicalities arise since these graphs are given only for certain degrees and
certain sizes. Specifically, they can be efficiently constructed for 1

2 · qk · (q2k − 1)
vertices, where q is a prime such that q ≡ d− 1 ≡ 1 mod 4 and d− 1 is a prime
that is a quadratic residue modulo q (cf., [3, Sec. II]). This technical difficulty
may be resolved in two ways:

1. Fixing d and ε, N , we may find q and k satisfying the foregoing conditions
with 1

2 ·qk ·(q2k−1) ∈ [(1−ε)·N, N ], in time polynomial in 1/ε (and in log N).
This defines a Ramanujan Graph that is adequate for all our applications
(since it biases the desired sample in [N ] only by ε).

2. Fixing d and ε, N , we may find q and k satisfying the foregoing conditions
with 1

2 · qk · (q2k − 1) ∈ [N, 2N ], in time polynomial in log N . We may easily
modify our applications so that whenever we obtain a vertex not in [N ]
we just ignore it. One can easily verify that the analysis of the application
remains valid.

A.2 The Expander Mixing Lemma

The following lemma is folklore and has appeared in many papers. Loosely speak-
ing, the lemma asserts that expander graphs (for which d $ λ) have the property
that the fraction of edges between two large sets of vertices approximately equals
the product of the densities of these sets. This property is called mixing.

Lemma A.2 (Expander Mixing Lemma): Let G = (V, E) be an expander graph
of degree d and λ be an upper bound on the absolute value of all eigenvalues,
except the biggest one, of the adjacency matrix of the graph. Then, for every two
subsets, A, B ⊆ V , it holds∣∣∣∣ |(A×B) ∩ E|

|E| − |A|
|V | ·

|B|
|V |

∣∣∣∣ ≤ λ
√
|A| · |B|

d · |V | <
λ

d .

The lemma (and a proof) appears as Corollary 2.5 in [5, Chap. 9].

A.3 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemerédi [1] is that random
walks on expander graphs provide a good approximation to repeated independent
attempts to hit any arbitrary fixed subset of sufficient density (within the vertex
set). The importance of this discovery stems from the fact that a random walk
on an expander can be generated using much fewer random coins than required
for generating independent samples in the vertex set. Precise formulations of
the foregoing discovery were given in [1,13,15] culminating in Kahale’s optimal
analysis [21, Sec. 6].
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Theorem A.3 (Expander Random Walk Theorem [21, Cor. 6.1]): Let G =
(V, E) be an expander graph of degree d and λ be an upper bound on the absolute
value of all eigenvalues, except the biggest one, of the adjacency matrix of the
graph. Let W be a subset of V and ρ

def= |W |/|V |. Then, the fraction of random
walks (in G) of (edge) length 	 that stay within W is at most

ρ ·
(

ρ + (1− ρ) · λ

d

)�

.

(10)

A more general bound (which is weaker for the above special case) was pointed
out to us by Nabil Kahale (personal communication, April 1997):

Theorem A.4 (Expander Random Walk Theorem – general case): Let G =
(V, E), d and λ be as in Theorem A.3. Let W0, W1, ..., W� be subsets of V with
densities ρ0, ..., ρ�, respectively. Then the fraction of random walks (in G) of
(edge) length 	 that intersect W0 ×W1 × · · · ×W� is at most

√
ρ0ρ� ·

�∏
i=1

√
ρi + (1− ρi) ·

(
λ

d

)2

.

(11)

Theorem A.4 improves over a previous bound of [7] (see [8]). Comments regarding
the proofs of both theorems follow.

On the proofs of Theorems A.3 and A.4. The basic idea is viewing events
occuring during the random walk as an evolution of a corresponding probability
vector under suitable transformations. The transformations correspond to tak-
ing a random step in G and to passing through a “sieve” that keeps only the
entries that correspond to the current set W . The key observation is that the
first transformation shrinks the component that is orthogonal to the uniform
distribution, whereas the second transformation shrinks the component that is
in the direction of the uniform distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency
matrix of G divided by the degree, d). Let λ̄ denote the absolute value of the
second largest eigenvalue of A (i.e., λ̄

def= λ/d). Let P (resp., Pi) be a 0-1 matrix
that has 1-entries only on its diagonal such that entry (j, j) is set to 1 if and
only if j ∈ W (resp., j ∈ Wi). Then, we are interested in the vector obtained
when applying (PA)� (resp., P�A · · ·P1A) to the vector representing the uniform
distribution; that is, the probability that we are interested in is the sum of the
component of the resulting vector.

The best bounds are obtained by applying the following technical lemma,
which refer to the effect of a single PA application. For any n-by-n stochastic
matrix M , we let ‖M‖ denote the norm of M defined as the maximum of ‖Mx‖
taken over all normal vectors x (i.e., x ∈ Rn with ‖x‖ = 1), where ‖x‖ denote
the Euclidean norm of x ∈ R

n.
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Lemma A.5 ([21, Lem. 3.2] restated): Let M be a symmetric stochastic matrix
and let δ denote the absolute value of the second largest eigenvalue of M . Let P
be a 0-1 matrix that has 1’s only on the diagonal and let ρ be the fraction of 1’s
on the diagonal. Then, ‖PMP‖ ≤ ρ + (1 − ρ) · δ.

A proof of a weaker bound is presented below.

Proof of Theorem A.3: Let u ∈ Rn be the vector representing the uniform
distribution over V ≡ {1, ..., n} (i.e., u = (n−1, ..., n−1)). Let P be a 0-1 matrix
such that the only 1-entries are in entries (i, i) with i ∈ W . Thus, the probability
that a random walk of length 	 stays within W is the sum of the entries of the
vector

x
def= (PA)�Pu. (12)

In other words, denoting by ‖x‖1 the L1 norm of x, we are interested in an upper
bound on ‖x‖1. Since x has at most ρn non-zero entries (i.e., x = Px′ for some
x′), we have ‖x‖1 ≤

√
ρn · ‖x‖. Invoking Lemma A.5 we get

‖x‖1 ≤
√

ρn · ‖(PA)�Pu‖
≤ √

ρn · ‖PAP‖� · ‖Pu‖
≤ √

ρn ·
(
ρ + (1 − ρ) · λ̄

)� ·
√

ρ/n

and the theorem follows.

Proof of Theorem A.4: Using the same argument, we need to upper bound
the L1 norm of x given by

x
def= P�A · · ·P1AP0u. (13)

We observe that ‖PjA‖=
√
‖PjA2Pj‖ and use Lemma A.5 to obtain ‖PjA

2Pj‖≤
ρj + (1− ρj) · λ̄2. Thus, we have

‖x‖1 ≤
√

ρ�n · ‖P�A · · ·P1AP0u‖

≤ √
ρ�n ·

�∏
j=1

‖PjA‖ · ‖P0u‖

≤ √
ρ�n ·

�∏
j=1

√
ρj + (1− ρj) · λ̄2 ·

√
ρ0/n

and the theorem follows.

Proof of a weak version of Lemma A.5. Rather than proving that ‖PMP‖
≤ ρ + (1 − ρ) · δ, we shall only prove that ‖PMP‖ ≤ ‖PM‖ ≤

√
ρ + δ2. That

is, we shall prove that, for every z, it holds that ‖PMz‖ ≤ (ρ + δ2)1/2 · ‖z‖.
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Intuitively, M shrinks the component of z that is orthogonal to the uniform
vector u, whereas P shrinks the component of z that is in the direction of u.
Specifically, we decompose z = z1 + z2 such that z1 is the projection of z on u
and z2 is the component orthogonal to u. Then, using the triangle inequality and
other obvious facts (which imply ‖PMz1‖ = ‖Pz1‖ and ‖PMz2‖ ≤ ‖Mz2‖), we
have

‖PMz1 + PMz2‖ ≤ ‖PMz1‖+ ‖PMz2‖
≤ ‖Pz1‖+ ‖Mz2‖
≤ √

ρi · ‖z1‖+ δ · ‖z2‖

where the last inequality uses the fact that P shrinks any uniform vector by
eliminating 1−ρi of its elements, whereas M shrinks the length of any eigenvector
except u by a factor of at least δ. Using the Cauchy-Schwartz inequality12, we
get

‖PMz‖ ≤
√

ρi + δ2 ·
√
‖z1‖2 + ‖z2‖2

=
√

ρi + δ2 · ‖z‖,

where the equality is due to the fact that z1 is orthogonal to z2.

Appendix B: Analyzing the Toeplitz Matrix Construction

For every i �= j and a, b ∈ GF(2)n, we have

PrT,u

[
ei = a
ej = b

]
= PrT,u [ei = a|ei ⊕ ej = a⊕ b] · PrT,u [ei ⊕ ej = a⊕ b]

= PrT,u [Tvi + u = a|Tw = c] · PrT [Tw = c] ,

where w = vi ⊕ vj �= 0n and c = a⊕ b. Clearly, for any c ∈ GF(2)n and any T ′:

PrT,u[Tvi + u = a|Tw = c] = Pru[T ′vi + u = a]
= 2−n

It is thus left to show that, for any w �= 0n, when T is a uniformly chosen
Toeplitz matrix, the vector Tw is uniformly distributed over GF(2)n. It may
help to consider first the distribution of Mw, where M is a uniformly distributed
n-by-n matrix. In this case Mw is merely the sum of several (not zero) uniformly
and independently chosen column vectors, and so is uniformly distributed over
GF(2)n. The argument regarding a uniformly chosen Toeplitz matrix is slightly
more involved.

Let f be the first non-zero entry of w = (w1, ..., wn) �= 0n (i.e., w1 = · · · =
wf−1 = 0 and wf = 1). We make the mental experiment of selecting T = (ti,j),

12 That is, we get
√

ρi‖z1‖+δ‖z2‖ ≤
√

ρi + δ2 ·√‖z1‖2 + ‖z2‖2, by using
∑n

i=1 ai ·bi ≤(∑n
i=1 ai

2
)1/2 · (∑n

i=1 bi
2
)1/2

, with n = 2, a1 =
√

ρi, b1 = ‖z1‖, etc.
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by uniformly selecting elements determining T as follows. First we uniformly
and independently select t1,n, ..., t1,f . Next, we select t2,f , ..., tn,f (here it is im-
portant to select tj,f before tj+1,f ). Finally, we select tn,f−1, ..., tn,1. Clearly,
this determines a uniformly chosen Toeplitz matrix, denoted T . We conclude by
showing that each of the bits of Tw is uniformly distributed given the previ-
ous bits. To prove the claim for the jth bit of Tw, consider the time by which
t1,n, ..., t1,f , ..., tj−1,f were determined. Note that these determine the first j − 1
bits of Tw. The key observation is that the value of the jth bit of Tw is a linear
combination of the above determined values xored with the still undetermined
tj,f . (Here we use the hypothesis that w1 = · · · = wf−1 = 0 and wf = 1.) Thus,
uniformly selecting tj,f makes the jth bit of Tw be uniformly distributed given
the past.

Appendix C: The Hitting problem

The hitting problem is a one-sided version of the Boolean sampling problem.
Given parameters n (length), ε (density) and δ (error), and oracle access to any
function σ : {0, 1}n → {0, 1} such that |{x : f(x)=1}| ≥ ε2n, the task to find a
string that is mapped to 1. That is:

Definition C.1 (hitter): A hitter is a randomized algorithm that on input pa-
rameters n, ε and δ, and oracle access to any function σ :{0, 1}n→{0, 1}, such
that |{x : f(x)=1}| ≥ ε2n, satisfies

Pr[σ(hitterσ(n, ε, δ)) = 1] > 1− δ.

Observe that, on input parameters n, ε and δ, any sampler must be able to
distinguish the all-zero function from any function σ :{0, 1}n→{0, 1} such that
|{x : f(x)=1}| ≥ 2ε2n. Thus, in the latter case, the sampler must obtain (with
probability at least 1−δ) the value 1 for at least one of its queries, and outputting
such a query satisfies the requirement for a hitter (w.r.t parameters n, 2ε and
δ).

We note that all results and techniques regarding sampling (presented in the
main text), have simpler analogous with respect to the hitting problem. In fact,
this appendix may be read as a warm-up towards the main text.

C.1 The Information Theoretic Perspective

Analogously to the Naive Sampler, we have the Naive Hitter that independently
selects m

def= ln(1/δ)
ε uniformly distributed sample points and queries the oracle

on each. Clearly, the probability that the hitter fails to sample a point of value
1 is at most (1 − ε)m = δ. The complexities of this hitter are as follows

– Sample Complexity: m
def= ln(1/δ)

ε = Θ( log(1/δ)
ε ).

– Randomness Complexity: m · n = Θ( log(1/δ)
ε · n).

– Computational Complexity: Indeed efficient.
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It is easy to prove that the Naive Hitter is sample-optimal. That is:

Theorem C.2 (sample complexity lower bound): Any hitter has sample com-
plexity bounded below by

min
{

2n−O(1),
ln(1/2δ)

2ε

}
provided ε ≤ 1

8 .

Proof Sketch: Let A be a hitter with sample complexity m = m(n, ε, δ) and let
σ be a function selected at random by setting its value independently on each
argument such that Pr(σ(x)=1) = 1.5ε. Then,

Prσ[σ(Aσ(n, ε, δ)) �= 1] = (1 − 1.5ε)m,

where the probability is taken over the choice of σ and the internal coin tosses
of A. On the other hand, using a Multiplicative Chernoff Bound:

Prσ[|{x : σ(x)=1}| < ε2n] = 2 exp(−Ω(ε2n)).

We may assume that Ω(ε2n) > log2(1/δ) and so the probability that σ has at
least ε fraction of 1’s and yet algorithm A fails is at least (1 − 1.5ε)m − δ > δ,
unless m > ln(1/2δ)

ln(1−1.5ε) > ln(1/2δ)
2ε .

Theorem C.3 (randomness complexity lower bound): Let s : N × [0, 1]2 →
R. Any sampler that has sample complexity at most s(n, ε, δ), has randomness
complexity at least

r > n− log2 s(n, ε, δ) + log2((1 − ε)/δ).

Proof Sketch: Let A be a hitter with sample complexity s = s(n, ε, δ), and
randomness complexity r = r(n, ε, δ). Consider any subset of δ2r possible se-
quence of coin tosses for A and all δ2r · s points that are queried at any of these
coin-sequences. We argue that δ2r · s > (1− ε)2n must hold, or else there exists
a function σ that evaluates to 0 on each of these points and to 1 otherwise (con-
tradicting the requirement that this function be “hit” with probability at least
1− δ). Thus, r > n + log2(1− ε)− log2 s + log2(1/δ).

C.2 The Pairwise-Independent Hitter

Using a pairwise-independent sequence of uniformly distributed sample points
rather than a totally independent one, we obtain the pairwise-independent hitter.
Here we set m

def= 1−ε
δε . Letting ζi represent the σ-value of the ith sample point,

considering only σ’s with an ε-fraction of 1-values,13 and using Chebyshev’s
13 Considering only σ’s with exactly an ε-fraction of 1-values implies that Var[ζi] =

(1− ε)ε. Needless to say, if the hitter works well for all these functions, then it works
well for all functions having at least an ε-fraction of 1-values.
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Inequality we have

Pr

[
m∑

i=1

ζi = 0

]
≤ Pr

[∣∣∣∣∣mε−
m∑

i=1

ζi

∣∣∣∣∣ ≥ εm

]

≤ m · (1− ε)ε
(εm)2

= δ.

Recalling that we can generate 2n − 1 pairwise-independent samples using 2n
coins, the pairwise-independent hitter achieves

– Sample Complexity: 1
δε (reasonable for constant δ).

– Randomness Complexity: 2n
– Computational Complexity: Indeed efficient.

C.3 The Combined Hitter

Our goal here is to decrease the sample complexity of the Pairwise-Independent
Hitter while essentially maintaining its randomness complexity. To motivate the
new construction we first consider an oversimplified version of it.

Combined Hitter (oversimplified): On input parameters n, ε and δ, set m
def= 2

ε

and 	
def= log2(1/δ), generate 	 independent m-element sequences, each being a se-

quence of m pairwise-independently and uniformly distributed strings in {0, 1}n.
Denote the sample points in the ith sequence by si

1, ..., s
i
m. We merely try all

these 	 ·m samples as hitting points. Clearly, for each i = 1, ..., 	,

Pr[(∀j ∈ {1, .., m}) σ(si
j)=0] <

1
2

and so the probability that none of these si
j “hits σ” is at most 0.5� = δ. Thus,

the oversimplified version described above is indeed a hitter and has the following
complexities:

– Sample Complexity: 	 ·m = O( log(1/δ)
ε ).

– Randomness Complexity: 	 ·O(n) = O(n · log(1/δ)).
– Computational Complexity: Indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the ran-
domness complexity is higher than what we aim for. To reduce the randomness
complexity, we use the same approach as above, but take dependent sequences
rather than independent ones. The dependency we use is such that essentially
preserves the probabilistic behavior of independent choices. Specifically, we use
random walks on expander graphs (cf., Appendix A) to generate a sequence of
	 “seeds” each of length O(n). Each seed is used to generate a sequence of m
pairwise independent elements in {0, 1}n, as above. Thus, we obtain:

Corollary C.4 (The Combined Hitter): There exists an efficient hitter with

– Sample Complexity: O( log(1/δ)
ε ).

– Randomness Complexity: 2n + O(log(1/δ)).
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Furthermore, we can obtain randomness complexity 2n+ (2 + o(1)) · log2(1/δ)).

Proof Sketch: We use an explicit construction of expander graphs with vertex
set {0, 1}2n, degree d and second eigenvalue λ so that λ/d < 0.1. We consider a
random walk of (edge) length 	− 1 = log2(1/δ) on this expander, and use each
of the 	 vertices along the path as random coins for the Pairwise-Independent
Hitter, which in turn makes m

def= ε/3 trials. To analyze the performance of
the resulting algorithm, we let W denote the set of coin tosses (for the basic
hitter) on which the basic hitter fails to output a point that evaluates to 1.
By the hypothesis, |W |

22n ≤ 1/3, and using Theorem A.3, the probability that all
vertices of a random path reside in W is bounded above by (0.34 + 0.1)� < δ.
The furthermore clause follows by using a Ramanujan Graph and an argument
as in the proof of Item 2 of Theorem 4.1.

C.4 The Expander Hitter

Our goal here is to decrease the randomness complexity of hitters from 2n +
O(log(1/δ)) to n + O(log(1/δ)), while preserving the sample complexity of
O(ε−1 log(1/δ)). The first step is to get an analogous improvement with respect
to the Pairwise-Independent Hitter (which has sample complexity O(1/δε)).

We use a Ramanujan Graph of degree d = O(1/εδ) and vertex-set {0, 1}n. The
hitter uniformly selects a vertex in the graph and use its neighbors as a sample.
Suppose we try to hit a 1-value of a function σ and let S

def= {u : σ(u)=1}. Let
B

def= {v : N(v) ∩ S = ∅} be the set of bad vertices (i.e., choosing any of these
results in not finding a preimage of 1). Using the Expander Mixing Lemma we
have

ρ(B)ρ(S) =
∣∣∣∣ |(B × S) ∩ E|

|E| − ρ(B)ρ(S)
∣∣∣∣

≤ λ

d
·
√

ρ(B)ρ(S)

Hence, ρ(B)ρ(S) ≤ (λ/d)2 = εδ and using ρ(S) ≥ ε we get ρ(B) ≤ δ. The
complexities of this hitter are as follows:

– Sample Complexity: O( 1
δε )

– Randomness Complexity: n
– Computational Complexity: Indeed efficient.

Adapting the argument in the proof of Corollary C.4, we obtain

Corollary C.5 (The Combined Hitter, revisited): There exists an efficient hit-
ter with

– Sample Complexity: O( log(1/δ)
ε ).

– Randomness Complexity: n + (2 + o(1)) · log2(1/δ)).



Short Locally Testable Codes and Proofs

Oded Goldreich

Abstract. We survey known results regarding locally testable codes
and locally testable proofs (known as PCPs), with emphasis on the
length of these constructs. Local testability refers to approximately test-
ing large objects based on a very small number of probes, each retrieving
a single bit in the representation of the object. This yields super-fast
approximate-testing of the corresponding property (i.e., be a codeword
or a valid proof). We also review the related concept of local decodable
codes.

The survey consists of two independent (i.e., self-contained) parts that
cover the same material at different levels of rigor and detail. Still, in spite
of the repetitions, there may be a benefit in reading both parts.

Keywords: Error Correcting Codes, Property Testing, Probabilistically
Checkable Proofs (PCP), Locally Testable Codes, Locally Decodable
Codes, Self-Correction, Low-Degree Tests, Derandomization, Private
Information Retrieval.

A previous version of this survey appeared as TR05-014 of ECCC; in fact, this
earlier version [36] is cited in the text, when reporting of subsequent develop-
ments. The current version also appeared in [38].

Part I: A High-Level Overview

The title of this survey refers to two types of objects (i.e., codes and proofs) and
two adjectives (i.e., local testability and short). A clarification of these terms is
in place.

Codes, proofs and their length. Codes are sets of strings (of equal length), typ-
ically, having a large pairwise distance. Equivalently, codes are viewed as map-
pings from short (k-bit) strings to longer (n-bit) strings, called codewords, such
that the codewords are distant from one another. We will focus on codes with
relative constant distance; that is, every two n-bit codewords are at distance
Ω(n) apart. The length of the code is measured in terms of the length of the
pre-image (i.e., we are interested in the growth of n as a function of k). Turning
to proofs, these are defined with respect to a verification procedure for asser-
tions of a certain length, and their length is measured in terms of the length
of the assertion. The verification procedure must satisfy the natural completeness
and soundness properties: For valid assertions there should be strings, called
proofs, that are accepted (in conjunction with the assertion) by the verification
procedures, whereas for false assertions no such strings may exist. The reader
may envision proof systems for the set of satisfiable propositional formulae (i.e.,
assertions of satisfiability of given formulae).

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 333–372, 2011.
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Local testability. By local testability we mean that the object can be tested for
the natural property (i.e., being a codeword or a valid proof) using a small (typ-
ically constant)1 number of probes, each recovering individual bits in a standard
representation of the object. Thus, local testability allows for super-fast testing
of the corresponding objects. The tests are probabilistic and hence the result
is correct only with high probability.2 Furthermore, correctness refers to a re-
laxed notion of deciding (which was formulated, in general terms, in the context
of property testing [58, 39]): It is required that valid objects be accepted with
high probability, whereas objects that are “far” from being valid should be re-
jected with high probability. Specifically, in the case of codes, codewords should
be accepted (with high probability), whereas strings that are “far” from the
code should be rejected (with high probability). In the case of proofs, valid
proofs (which exist for correct assertions) should be accepted (with high prob-
ability), whereas strings that are “far” from being valid proofs (and, in par-
ticular, all strings in case no valid proofs exist) should be rejected (with high
probability).3

Our notion of locally testable proofs is closely related to the notion of a
PCP (i.e., probabilistically checkable proof), and we will ignore the difference in
the sequel. The difference is that in the definition of locally testable proofs we
required rejection of strings that are far from any valid proof, also in the case
that valid proofs exists (i.e., the assertion is valid). In contrast, the standard
rejection criteria of PCPs refers only to false assertions. Still, all known PCP
constructions actually satisfy the stronger definition.

The very possibility of local testability. Indeed, local testability of either codes
or proofs is quite challenging, regardless of the issue of length:

– For codes, the simplest example of a locally testable code (of constant relative
distance) is the Hadamard code and testing it amounts to linearity testing.
However, the exact analysis of the natural linearity tester (of Blum, Luby and
Rubinfeld [22]) turned out to be highly complex (cf. [22,6,31,12,13,10,47]).

– For proofs, the simplest example of a locally testable proof is the “inner
verifier” of the PCP construction of Arora, Lund, Motwani, Sudan and
Szegedy [4], which in turn is based on the Hadamard code.

In both cases, the constructed object has exponential length in terms of the
relevant parameter (i.e., the amount of information being encoded in the code
or the length of the assertion being proved).

Local testability at a polynomial blow-up. Achieving local testability by codes
and proofs that have polynomial length turns out to be even more challenging.
1 In this part, we associate local testability with tests that perform a constant number

of probes.
2 It is easy to see that deterministic tests will perform very poorly, and the same holds

with respect to probabilistic tests that make no error.
3 Indeed, in the case the assertion is false, there exist no valid proofs. In this case all

strings are defined to be far from a valid proof.
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– In the case of codes, a direct interpretation of low-degree tests (cf. [6, 7,
35, 58, 34]), proposed in [34, 58], yields a locally testable code of quadratic
length over a sufficiently large alphabet. Similar (and actually better) results
for binary codes required additional ideas, and have appeared only later
(cf. [42]).

– The case of proofs is far more complex: Achieving locally testable proof of
polynomial length is essentially the contents of the celebrated PCP Theorem
of Arora, Lund, Motwani, Safra, Sudan and Szegedy [5, 4].

We focus on even shorter codes and proofs; specifically, codes and proofs of nearly
linear length. The latter term has been given quite different interpretations, and
here we adopt the most strict interpretation by which nearly linear means linear
up to polylogarithmic factors.

Local testability with a polylogarithmic (length) overhead: The ultimate goal is to
obtain locally testable codes and proofs of minimal length. The currently known
results get very close to obtaining this goal.

Theorem 1 (Dinur [26], building on [20]): There exist locally testable codes and
proofs of length that is only a polylogarithmic factor larger than the relevant
parameter. That is, the length function 	 : N → N satisfies 	(k) = Õ(k) = k ·
poly(log k).

One may wonder whether or not a polylogarithmic overhead in inherent to local
testability of codes and proofs. This is indeed a fundamental open problem.

Open Problem 2. Do there exist locally testable codes and proofs of linear
length?

In the rest of this part of the survey, we motivate the study of short locally
testable objects, comment on the relation between such codes and proofs, and
discuss a somewhat related coding problem.

Motivation for the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester
makes only a constant number of bit probes, and determining the probed lo-
cations (as well as the final decision) is typically done in time that is poly-
logarithmic in the length of the probed object.

The length of an error-correcting code is widely recognized as one of the two
most fundamental parameters of the code (the second one being its distance). In
particular, the length of the code is of major importance in applications, because
it determines the overhead involved in encoding information.

The same considerations apply also to proofs. However, in the case of proofs,
this obvious point was blurred by the indirect, unexpected and highly influential
applications of locally testable proofs (known as PCPs) to the theory of approx-
imation algorithms. In our view, the significance of locally testable proofs (i.e.,
PCPs) extends far beyond their applicability to deriving non-approximability
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results. The mere fact that proofs can be transformed into a format that sup-
ports super-fast probabilistic verification is remarkable. From this perspective,
the question of how much redundancy is introduced by such a transformation is
a fundamental one. Furthermore, locally testable proofs (i.e., PCPs) have been
used not only to derive non-approximability results but also for obtaining posi-
tive results (e.g., CS-proofs [49,54] and their applications [8,24]), and the length
of the PCP affects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of approx-
imation algorithms, we note that the length of PCPs is also relevant to non-
approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived. For
example, suppose (exact) SAT has complexity 2Ω(n). The original PCP Theo-
rem [5,4] only implies that approximating MaxSAT requires time 2nα

, for some
(small) α > 0. The work of [56] makes α arbitrarily close to 1, whereas the results
of [42, 21] further improve the lower bound to 2n1−o(1)

and the results of [20, 26]
yields a lower bound of 2n/poly(log n).4

On the relation between locally testable codes and proofs

Locally testable codes seem related to locally testable proofs (PCPs). In fact,
the use of codes with some “local testability” features is implicit in known PCP
constructions. Furthermore, the known constructions of locally testable proofs
(PCPs) provides a transformation of standard proofs (for say SAT) to locally
testable proofs (i.e., PCP-oracles) such that transformed strings are accepted
with probability one by the PCP verifier. Moreover, starting from different stan-
dard proofs, one obtains locally testable proofs that are far apart, and hence
constitute a good code. It is tempting to think that the PCP verifier yields a
codeword tester, but this is not really the case. Note that our definition of a lo-
cally testable proof requires rejection of strings that are far from any valid proof,
but it is not clear that the only valid proofs (w.r.t the constructed PCP verifier)
are those that are obtained by the aforementioned transformation of standard
proofs to locally testable ones.5 In fact, the standard PCP constructions accept
also valid proofs that are not in the range of the corresponding transformation.

In spite of the above, locally testable codes and proofs are related, and the
feeling is that locally testable codes are the combinatorial counterparts of locally
testable proofs (PCPs), which are complexity theoretic in nature. From that
perspective, one should expect (or hope) that it would be easier to construct
locally testable codes than it is to construct PCPs. This feeling was among
the main motivations of Goldreich and Sudan, and indeed their first result was
along this vein: They showed a relatively simple construction (i.e., simple in
comparison to PCP constructions) of a locally testable code of length 	(k) = kc

4 Using [55] (or [27]) allows to achieve the lower bound of 2n1−o(1)
simultaneously

with optimal approximation ratios, but this is currently unknown for the better
lower bound of 2n/poly(log n).

5 Let alone that the standard definition of PCP refers only to the case of false asser-
tions, in which case all strings are far from a valid proof (which does not exist).
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for any constant c > 1 [42, Sec. 3]. Unfortunately, their stronger result, providing
a locally testable code of shorter length (i.e., length 	(k) = k1+o(1)) is obtained
by constructing and using a corresponding locally testable proof (i.e., PCP).
Subsequent works have mostly followed this route, with the notable exception
of Meir’s work [52].

Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes.
Here, one is given a slightly corrupted codeword (i.e., a string close to some
unique codeword), and is required to recover individual bits of the encoded in-
formation based on a constant number of probes (per recovered bit). That is, a
code is said to be locally decodable if whenever relatively few location are cor-
rupted, the decoder is able to recover each information-bit, with high probability,
based on a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of strictly sub-exponential length.
Specifically, k information bits can be encoded by codewords of length n =
exp(ko(1)) that are locally decodable using three bit-probes (cf. [29], building
over [62]). The problem is related to the construction of (information theoretic
secure) Private Information Retrieval schemes, introduced in [25].

A natural relaxation of the definition of locally decodable codes requires that,
whenever few location are corrupted, the decoder should be able to recover most
of the individual information-bits (based on a constant number of queries), and
for the rest of the locations the decoder may output a fail symbol (but not the
wrong value). That is, the decoder must still avoid errors (with high probability),
but on a few bit-locations it is allowed to sometimes say “don’t know”. This
relaxed notion of local decodability can be supported by codes that have length
	(k) = kc for any constant c > 1 (cf. [15]).

An obvious open problem is to separate locally decodable codes from relaxed
locally decodable codes. This may follow by either improving the Ω(k1+ 1

q−1 )
lower bound on the length of q-query locally decodable codes (of [46]), or by
providing relaxed locally decodable codes of length 	(k) = k1+o(1).

Part II: A More Detailed and Rigorous Account

In this part we provide a general treatment of local testability. In contrast to
Part I, here we allow the tester to use a number of queries that is a (typically
small) predetermined function of the length parameter, rather than insisting on
a constant number of queries. The latter special case is indeed an important
one.

1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable
proofs) are fundamental to computer science as well as to related disciplines
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such as mathematics and computer engineering. Redundancy is inherent to error-
correcting codes, whereas testing validity is inherent to proofs. In this survey we
also consider less traditional combinations such as testing validity of codewords
and the use of proofs that contain redundancy. The reader may wonder why
we explore these non-traditional possibilities, and the answer is that they offer
various advantages (as will be elaborated next).

Testing the validity of codewords is natural in settings in which one may want
to take an action in case the codeword is corrupted. For example, when storing
data in an error correcting format, one may want to recover the data and re-
encode it whenever one finds that the current encoding is corrupted. Doing so
may allow to maintain the data integrity over eternity, although the encoded
bits may all get corrupted in the course of time. Of course, one can use the
error-correcting decoding procedure associated with the code in order to check
whether the current encoding is corrupted, but the question is whether one can
check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow
for a super-fast testing of whether or not a give string is a valid codeword. In
particular, the tester works in sub-linear time and reads very few of the bits of
the tested object. Needless to say, the answer provided by such a tester can only
be approximately correct, but this would suffice in many applications (including
the one outlined above).

Similarly, locally testable proofs are proofs that allow for a super-fast prob-
abilistic verification. Again, the tester works in sub-linear time and reads very
few of the bits of the tested object. The tester’s (a.k.a. verifier’s) verdict is only
correct with high probability, but this may suffice for many applications, where
the assertion is rather mundane but of great practical importance. In particular,
it suffices in applications in which proofs are used for establishing the correct-
ness of specific computations of practical interest. Lastly, we comment that such
locally testable proofs must be redundant (or else there would be no chance for
verifying them based on inspecting only a small portion of them).

Our focus is on relatively short locally testable codes and proofs, which is not
surprising in view of the fact that we envision such objects being actually used
in practice. Of course, we do not mean to suggest that one may use in practice
any of the constructions surveyed here (especially not the ones that provide
the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the
current concepts and techniques may lead to such applications.

Organization: In Section 2 we provide a quite comprehensive definitional treat-
ment of locally testable codes and proofs, while relating them to PCPs, PCPs
of proximity, and property testing. In Section 3, we survey the main results
regarding locally testable codes and proofs as well as many of the underlying
ideas. In Section 4 we consider locally decodable codes, which are somewhat
complementary to locally testable codes.
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Caveat: Our exposition of locally testable/decodable codes is aimed at achiev-
ing the best possible length, regardless of whether or not the code is popular
(i.e., used in practice). Thus, we do not survey here results that refer to the
testing (and decoding) features of various popular codes, unless these features
are instructive for our aim.

2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester
is an oracle machine, and the object that it tests is viewed as an oracle. For
simplicity, we confine ourselves to non-adaptive probabilistic oracle machines;
that is, machines that determine their queries based on their explicit input (which
in case of codes is merely a length parameter) and their internal coin tosses (but
not depending on previous oracle answers). When talking about oracle access to
a string w ∈ {0, 1}n we viewed w as a function w : {1, ..., n} → {0, 1}.

2.1 Codeword Testers

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k
(output) bits. Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the
elements of {C(x) : x∈{0, 1}k} ⊆ {0, 1}n are called codewords (of C).

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming)
distance between its codewords; that is, minx �=y{Δ(C(x), C(y))}, where Δ(u, v)
denotes the number of bit-locations on which u and v differ. Throughout this
work, we focus on codes of linear distance; that is, codes C : {0, 1}k → {0, 1}n

of distance Ω(n).
The distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ΔC(w),

is the minimum distance between w and the codewords; that is, ΔC(w) def=
minx{Δ(w, C(x))}. For δ ∈ [0, 1], the n-bit long strings u and v are said to be
δ-far (resp., δ-close) if Δ(u, v) > δ ·n (resp., Δ(u, v) ≤ δ ·n). Similarly, w is δ-far
from C (resp., δ-close to C) if ΔC(w) > δ · n (resp., ΔC(w) ≤ δ · n).

Definition 2.1 (codeword tests, basic version): Let C : {0, 1}k → {0, 1}n be a
code of distance d, and let q ∈ N and δ ∈ (0, 1). A q-local (codeword) δ-tester
for C is a probabilistic (non-adaptive) oracle machine M that makes at most q
queries and satisfies the following two conditions:

Accepting codewords (a.k.a. completeness): For any x ∈ {0, 1}k, given oracle
access to w = C(x), machine M accepts with probability 1. That is,
Pr[MC(x)(1k)=1] = 1, for any x ∈ {0, 1}k.

Rejection of non-codeword (a.k.a. soundness): For any w ∈ {0, 1}n that is δ-far
from C, given oracle access to w, machine M rejects with probability at least
1/2. That is, Pr[Mw(1k)=1] ≤ 1/2, for any w ∈ {0, 1}n that is δ-far from
C.
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We call q the query complexity of M , and δ the proximity parameter.

The above definition is interesting only in case δn is smaller than the covering
radius of C (i.e., the smallest r such that for every w ∈ {0, 1}n it holds that
ΔC(w) ≤ r). Clearly, r ≥ d/2, and so the definition is certainly interesting in
the case that δ < d/2n, and indeed we will focus on this case. On the other
hand, observe that q = Ω(1/δ) must hold, which means that we focus on the
case that d = Ω(n/q).

We next consider families of codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K , where
n, d : N → N and K ⊆ N, such that Ck has distance d(k). In accordance with
the above, our main interest is in the case that δ(k) < d(k)/2n(k). Furthermore,
seeking constant query complexity, we focus on the case d = Ω(n).

Definition 2.2 (codeword tests, asymptotic version): For functions n, d : N →
N, let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K be such that Ck is a code of distance
d(k). For functions q : N → N and δ : N → (0, 1), we say that a machine M is
a q-local (codeword) δ-tester for C = {Ck}k∈K if, for every k ∈ K, machine M
is a q(k)-local δ(k)-tester for Ck. Again, q is called the query complexity of M ,
and δ the proximity parameter.

Recall that being particularly interested in constant query complexity (and re-
calling that d(k)/n(k) ≥ 2δ(k) = Ω(1/q(k))), we focus on the case that d = Ω(n)
and δ is a constant smaller than d/2n. In this case, we may consider a stronger
definition.

Definition 2.3 (locally testable codes): Let n, d and C be as in Definition 2.2
and suppose that d = Ω(n). We say that C is locally testable if for every constant
δ > 0 there exists a constant q and a probabilistic polynomial-time oracle machine
M such that M is a q-local δ-tester for C.

We will be concerned of the growth rate of n as a function of k, for locally
testable codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K of distance d = Ω(n). More
generally, for d = Ω(n), we will be interested in the trade-off between n, the
proximity parameter δ, and the query complexity q.

2.2 Proof Testers

We start by recalling the standard definition of PCP. (For an introduction to
the subject as well as a wider perspective, see [37, Chap. 9]).

Definition 2.4 (PCP, standard definition): A probabilistically checkable proof
(PCP) system for a set S is a probabilistic (non-adaptive) polynomial-time oracle
machine (called a verifier), denoted V , satisfying

Completeness: For every x ∈ S there exists an oracle πx such that V , on input
x and access to oracle πx, always accepts x; that is, Pr[V πx(x)=1] = 1.

Soundness: For every x �∈ S and every oracle π, machine V , on input x and
access to oracle π, rejects x with probability at least 1

2 ; that is, Pr[V π(x) =
1] ≤ 1/2,
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Let Qx(r) denote the set of oracle positions inspected by V on input x and
random-tape r ∈ {0, 1}poly(|x|). The query complexity of V is defined as q(n) def=
maxx∈{0,1}n,r∈{0,1}poly(n){|Qx(r)|}. The proof complexity of V is defined as p(n)def=
maxx∈{0,1}n{|

⋃
r∈{0,1}poly(n) Qx(r)|}.

Note that in the case that the verifier V uses a logarithmic number of coin
tosses, its proof complexity is polynomial. In general, the proof complexity is
upper-bounded by 2r · q, where r and q are the randomness complexity and the
query complexity of the proof tester. Thus, the trade-off between the query com-
plexity and the proof complexity is typically captured by the trade-off between
the query complexity and the randomness complexity. Furthermore, focusing
on the randomness complexity allows for better bounds when composing proofs
(cf. §3.2.2).

All known PCP constructions can be easily modified such that the oracle
locations accessed by V are a prefix of the oracle (i.e.,

⋃
r∈{0,1}poly(|x|) Qx(r) ⊆

{1, ..., p(|x|)}, for every x).6 (For simplicity, the reader may assume that this is
the case throughout the rest of this exposition.) More importantly, all known
PCP constructions can be easily modified to satisfy the following definition,
which is closer in spirit to the definition of locally testable codes.

Definition 2.5 (PCP, augmented): For functions q : N → N and δ : N → (0, 1),
we say that a PCP system V for a set S is a q-locally δ-testable proof system if
it has query complexity q and satisfies the following condition, which augments
the standard soundness condition.7

Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-far
from Πx

def= {w : Pr[V w(x)=1] = 1}, machine V , on input x and access to
oracle π, rejects x with probability at least 1

2 .

The proof complexity of V is defined as in Definition 2.4.

Note that Definition 2.5 uses the tester V itself in order to define the set (denoted
Πx) of valid proofs (for x ∈ S). That is, V is used both to define the set of valid
proofs and to test for the proximity of a given oracle to this set. A more general
definition (presented next), refers to an arbitrary proof system, and lets Πx

equal the set of valid proofs (in that system) for x ∈ S. Obviously, it must hold
that Πx �= ∅ if and only if x ∈ S. Typically, one also requires the existence of
6 Recall that p denotes the proof complexity of the system. In fact, for every x ∈
{0, 1}n, it holds that

⋃
r∈{0,1}poly(n) Qx(r) = {1, ..., p(n)}.

7 Definition 2.5 relies on two natural conventions:

1. All strings in Πx are of the same length, which equals |⋃r∈{0,1}poly(n) Qx(r)|, where

Qx(r) is as in Definition 2.4. Furthermore, we consider only π’s of this length.
2. If Πx = ∅ (which happens if and only if x 	∈ S), then every π is considered δ-far

from Πx.

These conventions will also be used in Definition 2.6.
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a polynomial-time procedure that, on input a pair (x, π), determines whether
or not π ∈ Πx.8 For simplicity we assume that, for some function p : N → N

and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). The resulting definition
follows.

Definition 2.6 (locally testable proofs): Suppose that, for some function p :
N → N and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). For functions q :
N → N and δ : N → (0, 1), we say that a probabilistic (non-adaptive) polynomial-
time oracle machine V is a q-locally δ-tester for proofs in {Πx}x∈{0,1}∗ if V has
query complexity q and satisfies the following conditions:

Technical condition: On input x, machine V issues queries in {1, ..., p(|x|)}.
Accepting valid proofs: For every x ∈ {0, 1}∗ and every oracle π ∈ Πx, machine

V , on input x and access to oracle π, accepts x with probability 1.
Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-

far from Πx, machine V , on input x and access to oracle π, rejects x with
probability at least 1

2 .

The proof complexity of V is defined as p,9 and δ is called the proximity parameter.
In such a case, we say that Π = {Πx}x∈{0,1}∗ is q-locally δ-testable, and that
S = {x ∈ {0, 1}∗ : Πx �= ∅} has q-locally δ-testable proofs of length p.
We say that Π is locally testable if for every constant δ > 0 there exists a constant
q such that Π is q-locally δ-testable. In such a case, we say that S has locally
testable proofs of length p.

This notion of locally testable proofs is closely related to the notion of proba-
bilistically checkable proofs (i.e., PCPs). The difference is that in the definition
of locally testable proofs we required rejection of strings that are far from any
valid proof, also in the case that valid proofs exists (i.e., the assertion is valid). In
contrast, the standard rejection criteria of PCPs refers only to false assertions.
Still, all known PCP constructions actually satisfy the stronger definition.10

Needless to say, the new term “locally testable proof” was introduced to
match the term “locally testable codes”. In retrospect, “locally testable proofs”
seems a more fitting term than “probabilistically checkable proofs”, because it
stresses the positive aspect (of locality) rather than the negative aspect (of being
probabilistic). The latter perspective has been frequently advocated by Leonid
Levin.
8 Recall that in the case that the verifier V uses a logarithmic number of coin tosses,

its proof complexity is polynomial (and so the “effective length” of the strings in
Πx must be polynomial in |x|). Furthermore, if in addition it holds that Πx = {w :
Pr[V w(x)=1] = 1}, then (scanning all possible coin tosses of) V yields a polynomial-
time procedure for determining whether a given pair (x, π) satisfies π ∈ Πx.

9 Note that by the technical condition, the current definition of the proof complexity
of V is lower-bounded by the definition used in Definition 2.4.

10 In some cases this holds only under a weighted version of the Hamming distance,
rather under the standard Hamming distance. Alternatively, these constructions can
be easily modified to work under the standard Hamming distance.
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2.3 Discussion

We first comment about a few definitional choices made above. Firstly, we chose
to present testers that always accept valid objects (i.e., accept valid codewords
(resp., valid proofs) with probability 1). This is more appealing than allowing
two-sided error, but the latter weaker notion is meaningful too. A second choice
was to fix the error probability (i.e., probability of accepting far from valid
objects), rather than introducing yet another parameter. Needless to say, the
error probability can be reduced by sequential applications of the tester.

In the rest of this section, we consider an array of definitional issues. First,
we consider two natural strengthenings of the definition of local testability
(cf. §2.3.1). We next discuss the relation of local testability to property test-
ing (cf. §2.3.2), and the relation of locally testable proofs to PCP of proximity
(as defined in [15], cf. §2.3.3). Finally, we discuss the relation between locally
testable codes and proofs (cf. §2.3.4), and the motivation for the study of short
local testable codes and proofs (cf. §2.3.5).11 Finally (in §2.3.6), we mention a
weaker definition, which seem natural only in the context of codes.

2.3.1 Stronger Definitions
The definitions of testers presented so far, allow for the construction of a different
tester for each relevant value of the proximity parameter. However, whenever
such testers are actually constructed, they tend to be “uniform” over all relevant
values of the proximity parameter. Thus, it is natural to present a single tester for
all relevant values of the proximity parameter, provide this tester with the said
parameter, allow it to behave accordingly, and measure its query complexity as
a function of that parameter. For example, we may strengthen Definition 2.3, by
requiring the existence of a function q : (0, 1) → N and an oracle machine M such
that, for every constant δ > 0, all (sufficiently large) k and all w ∈ {0, 1}n(k),
the following conditions hold:

1. On input (1k, δ), machine M makes q(δ) queries.
2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.
3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] ≤ 1/2.

An analogous strengthening applies to Definition 2.6. A special case of interest
is when q(δ) = O(1/δ). In this case, it makes sense to ask whether or not an even
stronger “uniformity” condition may hold. Like in Definitions 2.1 and 2.2 (resp.,
Definitions 2.5 and 2.6), the tester M is not given the proximity parameter (and
so its query complexity cannot depend on it), but we only require it to reject
with probability proportional to the distance of the oracle from the relevant set.
For example, we may strengthen Definition 2.3, by requiring the existence of an
oracle machine M and a constant q such that, for every constant δ > 0, every
(sufficiently large) k and w ∈ {0, 1}n(k), the following conditions hold:

11 The text of §2.3.5 is almost identical to a corresponding motivational text that
appears in Part I.
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1. On input 1k, machine M makes q queries.
2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.
3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] < 1−Ω(δ).

2.3.2 Relation to Property Testing
Locally testable codes (and their corresponding testers) are essentially special
cases of property testing algorithms, as defined in [58,39]. Specifically, the prop-
erty being tested is membership in a predetermined code. The only difference
between the definitions presented in Section 2.1 and the formulation that is stan-
dard in the property testing literature is that in the latter the tester is given
the proximity parameter as input and determines its behavior (and in particu-
lar the number of queries) accordingly. This difference is eliminated in the first
strengthening outlined in §2.3.1, while the second strengthening is related to the
notion of proximity oblivious testing (cf. [40]). We note, however, that most of
the property testing literature is concerned with “natural” objects (e.g., graphs,
sets of points, functions) presented in a “natural” form rather than with ob-
jects designed artificially to withstand errors (i.e., codewords of error correcting
codes).

Our general formulation of proof testing (i.e., Definition 2.6) can be viewed
as a generalization of property testing. That is, we view the set Πx as a set
of objects having a certain x-dependent property (rather than as a set of valid
proofs for some property of x). In other words, Definition 2.6 allows to consider
properties that are parameterized by auxiliary information (i.e., x), whereas
traditional property testing may be viewed as referring to the case that x only
determines the length of strings in Πx (e.g., Πx = ∅ for every x �∈ {1}∗ or,
equivalently, Πx = Πy for every |x| = |y|).12

2.3.3 Relation to PCPs of Proximity
Our definition of a locally testable proof is related but different from the defi-
nition of a PCP of proximity (appearing in [15]).13 We start by reviewing the
definition of a PCP of proximity.

Definition 2.7 (PCPs of Proximity): A PCP of proximity for a set S with proxim-
ity parameter δ is a probabilistic (non-adaptive) polynomial-time oracle machine,
denoted V , satisfying

Completeness: For every x ∈ S there exists a string πx such that V always accepts
when given access to the oracle (x, πx); that is, Pr[V x,πx(1|x|)=1] = 1.

12 In fact, in the context of property testing, the length of the oracle must always be
given to the tester (although some sources neglect to state this fact).

13 We mention that PCPs of proximity are almost identical to Assignment Testers,
defined independently by Dinur and Reingold [28]. Both notions are (important)
special cases of the general definition of a “PCP spot-checker” formulated before
in [30].
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Soundness: For every x that is δ-far from S ∩ {0, 1}|x| and for every string π,
machine V rejects with probability at least 1

2 when given access to the oracle
(x, π); that is, Pr[Mx,π(1|x|)=1] ≤ 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to
the x-part are counted.

The oracle (x, π) is actually a concatenation of two oracles: the input-oracle x
(which replaces an explicitly given input in the definitions of PCPs and locally
testable proofs), and a proof-oracle π (exactly as in the prior definitions). Note
that Definition 2.7 refers to the distance of the input-oracle to S, whereas locally
testable proofs refer to the distance of the proof-oracle from the set Πx of valid
proofs of membership of x ∈ S.

Still, PCPs of proximity can be defined within the framework of locally
testable proofs. Specifically, consider an extension of Definition 2.6, where (rel-
ative) distances are measured according to a weighted Hamming distance; that
is, for a weight function ω : {1, ..., n} → [0, 1] and u, v ∈ {0, 1}n, we let
δω(u, v) =

∑n
i=1 ω(i) · Δ(ui, vi). (Indeed, the standard notion of relative dis-

tance between u, v ∈ {0, 1}n is obtained by δω(u, v) when using the uniform
weighting function (i.e., ω(i) = 1/n for every i ∈ {1, ..., n}).) Now, Definition 2.7
can be viewed as a special case of (the extended) Definition 2.6 when applied to
the (rather artificial) set of proofs Π1n = {(x, π) : x ∈ S ∩ {0, 1}n ∧ π ∈ Π ′

x},
where Π ′

x = {π : Pr[V x,π(1|x|) = 1] = 1}, by using the weighted Hamming
distance δω for ω that is uniform on the input-part of the oracle; that is, for
(x, π), (x′, π′) ∈ {0, 1}n+p, we use δω((x, π), (x′, π′)) def= Δ(x, x′)/n, which cor-
responds to ω(i) = 1/n if i ∈ {1, ..., n} and ω(i) = 0 otherwise. Alternatively,
weights can be approximately replaced by repetitions (provided that the tester
checks the consistency of the repetitions).14

We mention that PCPs of proximity (of constant query complexity) yield a
simple way of obtaining locally testable codes. More generally, we can combine
any code C0 with any PCP of proximity V , and obtain a q-locally testable code
with distance essentially determined by C0 and rate determined by V , where
q is the query complexity of V . Specifically, x will be encoded by appending
c = C0(x) by a proof that c is a codeword of C0, and distances will be determined
by the weighted Hamming distance that assigns uniform weights to the first part
of the new code. As in the previous paragraph, these weights can be implemented
by making suitable repetitions.
14 That is, given a verifier V as in Definition 2.7, and denoting by n and p = p(n)

the sizes of the two parts of its oracle, we consider proofs of length t · n + p, where
t = p/o(n) (e.g., t = (p/n) · log n). We consider a verifier V ′ with syntax as in
Definition 2.6 that, on input 1n and oracle access to w = (u1, ..., ut, v) ∈ {0, 1}t·n+p,
where ui ∈ {0, 1}n and v ∈ {0, 1}p, selects uniformly i ∈ {1, ..., t} and invokes
V ui,v(1n). In addition, V ′ performs a number of repetition tests that is inversely
proportional to the proximity parameter, where in each test V ′ selects uniformly
i, i′ ∈ {1, ..., t} and j ∈ {1, ..., n} and checks that ui and ui′ agree on their j-th bit.
Thus, V ′ essentially emulates the PCP of proximity V , and the fact that V satisfies
Definition 2.7 can be captured by saying that V ′ satisfies Definition 2.6.
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Finally, we comment that the definition of a PCP of proximity can be extended
by providing the verifier with part of the input in an explicit form. That is,
referring to Definition 2.7, we let x = (x′, x′′), and provide V with explicit input
(x′, 1|x|) and input-oracle x′′ (rather than with explicit input 1|x| and input-
oracle x). Clearly, the extended formulation implies PCP as a special case (i.e.,
x′′ = λ). More interestingly, an extended PCP of proximity for a set of pairs
R (e.g., the witness relation of an NP-set), yields a PCP for the set S

def= {x′ :
∃x′′ s.t. (x′, x′′) ∈ R}.

2.3.4 Relating Locally Testable Codes and Proofs
Locally testable codes can be thought of as the combinatorial counterparts of the
complexity theoretic notion of locally testable proofs (PCPs). This perspective
raises the question of whether one of these notions implies (or is useful towards
the understanding of) the other.

Do PCPs imply locally testable codes? The use of codes with features related
to local testability is implicit in known PCP constructions. Furthermore, the
known constructions of locally testable proofs (PCPs) provides a transformation
of standard proofs (for say SAT) to locally testable proofs (i.e., PCP-oracles), such
that transformed strings are accepted with probability one by the PCP verifier.
Specifically, denoting by Sx the set of standard proofs referring to an assertion
x, there exists a polynomial-time mapping fx of Sx to Rx

def= {fx(y) : y ∈ Sx}
such that for every π ∈ Rx it holds that Pr[V π(x) = 1] = 1, where V is the PCP
verifier. Moreover, starting from different standard proofs, one obtains locally
testable proofs that are far apart, and hence constitute a good code (i.e., for
every x and every y �= y′ ∈ Sx, it holds that Δ(fx(y), fx(y′)) ≥ Ω(|fx(y)|)). It
is tempting to think that the PCP verifier yields a codeword tester, but this is
not really the case. Note that Definition 2.5 requires rejection of strings that are
far from any valid proof (i.e., any string far from Πx), but it is not clear that
the only valid proofs (w.r.t V ) are those in Rx (i.e., the proofs obtained by the
transformation fx of standard proofs (in Sx) to locally testable ones).15 In fact,
the standard PCP constructions accept also valid proofs that are not in the range
of the corresponding transformation (i.e., fx); that is, Πx as in Definition 2.5
is a strict subset of Rx (rather than Πx = Rx). We comment that most known
PCP constructions can be (non-trivially)16 modified to yield Πx = Rx, and thus
to yield a locally testable code (but this is not necessarily the best way to design
locally testable codes, see one alternative in §2.3.3).

Do locally testable codes imply PCPs? Saying that locally testable codes are the
combinatorial counterparts of locally testable proofs (PCPs), raises the expecta-
tion (or hope) that it would be easier to construct locally testable codes than it

15 Let alone that Definition 2.4 refers only to the case of false assertions, in which case
all strings are far from a valid proof (which does not exist).

16 The interested reader is referred to [42, Sec. 5.2] for a discussion of typical problems
that arise.
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is to construct PCPs. The reason being that combinatorial objects (e.g., codes)
should be easier to understand than complexity theoretic ones (e.g., PCPs). In-
deed, this feeling was among the main motivations of Goldreich and Sudan, and
their first result (cf. [42, Sec. 3]) was along this vein: They showed a relatively
simple construction (i.e., simple in comparison to PCP constructions) of a lo-
cally testable code of length 	(k) = kc for any constant c > 1. Unfortunately,
their stronger result, providing a locally testable code of shorter length (i.e.,
length 	(k) = k1+o(1)) is obtained by constructing (cf. [42, Sec. 4]) and using
(cf. [42, Sec. 5]) a corresponding locally testable proof (i.e., PCP). Subsequent
works have mostly followed this route, with the notable exception of Meir’s
work [52], which provides a combinatorial construction of a locally testable code
that does not seem to yield a corresponding locally testable proof.17

2.3.5 Motivation for the Study of Short Locally Testable Codes and
Proofs

Local testability offers an extremely strong notion of efficient testing: The tester
makes only a constant number of bit probes, and determining the probed lo-
cations (as well as the final decision) is typically done in time that is poly-
logarithmic in the length of the probed object. Recall that the tested object is
supposed to be related to some primal object; in the case of codes, the probed
object is supposed to encode the primal object, whereas in the case of proofs the
probed object is supposed to help verify some property of the primal object. In
both cases, the length of the secondary (probed) object is of natural concern,
and this length is stated in terms of the length of the primary object.

The length of codewords in an error-correcting code is widely recognized as
one of the two most fundamental parameters of the code (the second one being
the code’s distance). In particular, the length of the code is of major impor-
tance in applications, because it determines the overhead involved in encoding
information.

As argued in Section 1, the same considerations apply also to proofs. However,
in the case of proofs, this obvious point was blurred by the indirect, unexpected
and highly influential applications of PCPs to the theory of approximation algo-
rithms. In our view, the significance of locally testable proofs (or PCPs) extends
far beyond their applicability to deriving non-approximability results. The mere
fact that proofs can be transformed into a format that supports super-fast prob-
abilistic verification is remarkable. From this perspective, the question of how
much redundancy is introduced by such a transformation is a fundamental one.
Furthermore, locally testable proofs (i.e., PCPs) have been used not only to
derive non-approximability results but also for obtaining positive results (e.g.,
CS-proofs [49,54] and their applications [8,24]), and the length of the PCP affects
the complexity of those applications.

17 We mention that the prior work of Ben-Sasson and Sudan [20] also shows some
deviation from this route (i.e., it reversed the course to the “right one”): First codes
are constructed, and next they are used towards the construction of proofs (rather
than the other way around).
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Turning back to the celebrated application of PCP to the study of approx-
imation algorithms, we note that the length of PCPs is also relevant to non-
approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived from
these PCPs. For example, suppose (exact) SAT has complexity 2Ω(n). The origi-
nal PCP Theorem [5,4] only implies that approximating MaxSAT requires time
2nα

, for some (small) α > 0. The work of [56] makes α arbitrarily close to 1,
whereas the results of [42, 21] further improve the lower bound to 2n1−o(1)

and
the results of [20,26] yields a lower bound of 2n/poly(log n). We mention that the
result of [55] (cf. [27]) allows to achieve the lower bound of 2n1−o(1)

simultane-
ously with optimal approximation ratios, but this is currently unknown for the
better lower bound of 2n/poly(log n).

2.3.6 A Weaker Definition
One of the concrete motivations for local testable codes refers to settings in
which one may want to re-encode the information when discovering that the
codeword is corrupted. In such a case, assuming that re-encoding is based solely
on the corrupted codeword, one may assume (or rather needs to assume) that
the corrupted codeword is not too far from the code. Thus, the following version
of Definition 2.1 may suffice for various applications.

Definition 2.8 (weak codeword tests): Let C : {0, 1}k → {0, 1}n be a code of
distance d, and let q ∈ N and δ1, δ2 ∈ (0, 1) be such that δ1 < δ2. A weak
q-local (codeword) (δ1, δ2)-tester for C is a probabilistic (non-adaptive) oracle
machine M that makes at most q queries, accepts any codeword, and rejects non-
codewords that are both δ1-far and δ2-close to C. That is, the rejection condition
of Definition 2.1 is modified as follows.

Rejection of non-codeword (weak version): For any w ∈ {0, 1}n such thatΔC(w)
∈ [δ1n, δ2n], given oracle access to w, machine M rejects with probability at
least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It re-
quires rejection of non-codewords that are somewhat far from the code, but not
the rejection of codewords that are very far from the code. Still, such weak code-
word testers may suffice in some applications. Interestingly, such weak codeword
testers do exist and even achieve linear length (cf. [59, Chap. 5]). We note that
the non-monotonicity of the rejection probability of testers has been observed
before, the most famous example being linearity testing (cf. [22] and [10]).

2.4 A Confused History

There is a fair amount of confusion regarding credits for some of the definitions
presented in this section.18 We refer mainly to the definition of locally testable
18 Some confusion exists also with respect to some of the results and constructions

described in Section 3, but in comparison to what will be discussed here the latter
confusion is minor.
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codes. This definition (or at least a related notion)19 is arguably implicit in [7]
as well as in subsequent works on PCP (see §2.3.4). Furthermore, the defini-
tion of locally testable codes has appeared independently in the works of Friedl
and Sudan [34] and Rubinfeld and Sudan [58] as well as in the PhD Thesis of
Arora [3].

3 Results and Ideas

We review the known constructions of locally testable codes and proofs, start-
ing from codes and proofs of exponential length and concluding with codes and
proofs of nearly linear length. We mention that random linear codes (of lin-
ear length) require any codeword tester to read a linear number of bits of the
codeword [18], providing an indication to the non-triviality of local testability.

3.1 The Mere Existence of Locally Testable Codes and Proofs

The mere existence of locally testable codes and proofs, regardless of their length,
is non-obvious. Thus, we start by recalling the simplest constructions known.

3.1.1 The Hadamard Code Is Locally Testable
The simplest example of a locally testable code (of constant relative distance)
is the Hadamard code. This code, denoted CHad, maps x ∈ {0, 1}k to a string,
of length n = 2k, that provides the evaluation of all GF(2)-linear functions at
x; that is, the coordinates of the codeword are associated with linear functions
	(z) =

∑k
i=1 	izi and so CHad(x)� = 	(x) =

∑k
i=1 	ixi. Testing whether a string

w ∈ {0, 1}2k

is a codeword amounts to linearity testing. This is the case because
w is a codeword of CHad if and only if, when viewed as a function w : {0, 1}k →
{0, 1}, it is linear (i.e., w(z) =

∑k
i=1 cizi for some ci’s, or equivalently w(y+z) =

w(y) + w(z) for all y, z). Specifically, local testability is achieved by uniformly
selecting y, z ∈ {0, 1}k and checking whether w(y + z) = w(y)+w(z). The exact
analysis of this natural tester, due to Blum, Luby and Rubinfeld [22], turned
out to be highly complex (cf. [22, 6, 31, 12, 13, 10, 47]). Denoting by rej(w) the
probability that the test rejects the string w and by R(δ) be the minimum of
rej(w) taken over all strings that are at distance δ · |w| from CHad, it is known
that R(δ) ≥ Γ (δ), where the function Γ : [0, 0.5] → [0, 1] is defined as follows:

Γ (x) def=

⎧⎪⎪⎨⎪⎪⎩
3x− 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ τ2 where τ2 ≈ 44.9962/128
x + δ(x) τ2 ≤ x ≤ 1/2,

where δ(x) def= 1376x3(1− 2x)12.

(1)

19 The related notion refers to the following relaxed notion of codeword testing: For
two fixed good codes C1 ⊆ C2 ⊂ {0, 1}n, one has to accept (with high probability)
every codeword of C1, but reject (with high probability) every string that is far from
being a codeword of C2. Indeed, our definitions refer to the special (natural) case
that C2 = C1, but the more general case suffices for the construction of PCPs (and
is implicitly achieved in most of them).
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The lower bound Γ is composed of three different bounds with “phase tran-
sitions” at x = 5

16 and at x = τ2 (where τ2 ≈ 44,9962
128 is the solution to

x + δ(x) = 45/128).20 It was shown in [10] that the first segment of this bound
(i.e., for x ∈ [0, 5/16]) is the best possible, and that the first “phase transi-
tions” (i.e., at x = 5

16 ) is indeed a reality; in other words, R = Γ in the interval
[0, 5/16].21 We highlight the fact that the detection probability of the aforemen-
tioned test does not increase monotonically with the distance (of the string from
the code), since Γ decreases in the interval [1/4, 5/16] (while equaling R in this
interval).

Other codes. We mention that Reed-Muller Codes of constant order are also
locally testable [1]. These codes have sub-exponential length, but are quite pop-
ular in practice. The Long Code is also locally testable [11], but this code has
double-exponential length (and was introduced merely for the design of PCPs).22

3.1.2 The Hadamard-Based PCP of [4]
The simplest example of a locally testable proof (for a set not known to be in
BPP) is the “inner verifier” of the PCP construction of Arora, Lund, Motwani,
Sudan and Szegedy [4], which in turn is based on the Hadamard code. Specif-
ically, proofs of the satisfiability of a given system of quadratic equations over
GF(2) are presented by providing a Hadamard encoding of the outer-product of
a satisfying assignment with itself (i.e., a satisfying assignment α ∈ {0, 1}n is
presented by CHad(β), where β = (βi,j)i,j∈[n] and βi,j = αiαj). Given an alleged

proof π ∈ {0, 1}2n2

, the proof-tester proceeds as follows:

1. Tests that π is indeed a codeword of the Hadamard Code. If the test passes
then w is close to some CHad(β), for an arbitrary β = (βi,j)i,j∈[n].

2. Tests that the aforementioned β is indeed an outer-product of some α ∈
{0, 1}n with itself. Note that the Hadamard encoding of α is supposed to
be part of the Hadamard encoding of β (because

∑n
i=1 ciαi =

∑n
i=1 ciα

2
i

is supposed to equal
∑n

i=1 ciβi,i). So we would like to test that the lat-
ter codeword matches the former one. Specifically, we wish to test whether
(βi,j)i,j∈[n] equals (αiαj)i,j∈[n] (i.e., the equality of two matrices). This can
be done by uniformly selecting (r1, ..., rn), (s1, ..., sn) ∈ {0, 1}n, and compar-
ing

∑
i,j risjβi,j and

∑
i,j risjαiαj = (

∑
i riαi)(

∑
j sjαj).

The above would have been fine if w = CHad(β), but we only know that w is
close to CHad(β). The Hadamard encoding of α is a tiny part of the latter, and
so we should not try to retrieve the latter directly (because this tiny part

20 The third segment is due to [47], which improves over the prior bound of [10] that
asserted R(x) ≥ max(45/128, x) for every x ∈ [5/16, 1/2].

21 In contrast, the lower bound provided by the other two segments (i.e., for x ∈
[5/16, 1/2]) is unlikely to be tight, and in particular it is unlikely that the “phase
transitions” at x = τ2 represents the behavior of R itself. Also note that δ(x) >
59(1 − 2x)12 for every x > τ2, but δ(x) < 0.0001 for every x < 1/2.

22 Interestingly, the best results are obtained by using a relaxed notion of local testa-
bility [44,45].
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may be totally corrupted). Instead, we use the paradigm of self-correction
(cf. [22]): In general, for any fixed c = (ci,j)i,j∈[n], whenever we wish to
retrieve

∑n
i=1 ci,jβi,j , we uniformly select r = (ri,j)i,j∈[n] and retrieve both

w(r) and w(r + c). Thus, we obtain a self-corrected value of w(c); that is, if
w is δ-close to CHad(β) then w(r + c)−w(r) =

∑n
i=1 ci,jβi,j with probability

at least 1− 2δ (over the choice of r).
Using self-correction, we indirectly obtain bits in CHad(α), for α=(αi)i∈[n] =
(βi,i)i∈[n]. Similarly, we can obtain any other desired bit in CHad(β), which
in turn allows us to test whether (βi,j)i,j∈[n] = (αiαj)i,j∈[n]. In fact, we are
checking whether (βi,j)i,j∈[n] = (βi,iβj,j)i,j∈[n], by comparing

∑
i,j risjβi,j

and (
∑

i riβi,i)(
∑

j sjβj,j), for randomly selected (r1, ..., rn), (s1, ..., sn)∈{0, 1}n.
3. Finally, we need to check whether the aforementioned α satisfies the given

system of equations. Towards this end, we uniformly selects a linear combi-
nation of the equations, and check whether α satisfies the resulting (single)
equation. Note that the value of the corresponding linear expression (in
quadratic (and linear) forms) appears as a bit of the Hadamard encoding of
β, but again we retrieve it from w by using self correction.

One key observation underlying the analysis of Steps 2 and 3 is that for (u1, ..., un)
�= (v1, ...., vn) ∈ {0, 1}n, if we uniformly select (r1, ...., rn) ∈ {0, 1}n then
Pr[

∑
i riui =

∑
i rivi] = 1/2. Similarly, for n-by-n matrices A �= B, when

r, s ∈ {0, 1}n are uniformly selected (vectors), it holds that Pr[As = Bs] =
2−rank(A−B) and it follows that Pr[rAs = rBs] ≤ 3/4.

3.2 Locally Testable Codes and Proofs of Polynomial Length

The constructions presented in Section 3.1 have exponential length in terms of
the relevant parameter (i.e., the amount of information being encoded in the
code or the length of the assertion being proved). Achieving local testability by
codes and proofs that have polynomial length turns out to be more challenging.

3.2.1 Locally Testable Codes of Quadratic Length
A direct interpretation of low-degree tests (cf. [6,7,35,58,34]), proposed by Friedl
and Sudan [34] and Rubinfeld and Sudan [58], yields a locally testable code of
quadratic length over a sufficiently large alphabet. Similar (and actually better)
results for binary codes required additional ideas, and have appeared only later
(cf. [42]). We sketch both constructions below, starting with locally testable
codes over very large alphabets (which are defined analogously to the binary
case).

We will consider a code C : Σk → Σn of linear distance, with |Σ| $ k and
n > k2. For parameters m � d < log k (such that k < dm), consider a finite
field F of size O(d) and an alphabet Σ = F d+1 (see below).23 Viewing the

23 Indeed, it would have been more natural to present the code as a mapping from
sequences over F to sequences over Σ = F d+1. Following the convention of using the
same alphabet for both the information and the codeword, we just pack every d + 1
elements of F as an element of Σ.
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information as an m-variant polynomial p of total degree d over F , we encode
it by providing its value on all possible lines over Fm, where each such line
is defined by two points in Fm. Actually, the value of p on such a line can
be represented by a univariate polynomial of degree d. Thus, the code maps
log2 |F |(

m+d
d ) > (d/m)m log |F | bits of information (which may be viewed as

k
def= (d/m)m/(d + 1) ≈ dm−1/mm long sequences over Σ = F d+1) to sequences

of length n
def= |F |2m = O(d)2m over Σ. Note that the smaller m, the better the

rate (i.e., relation of n to k) is, but this comes at the expense of using a larger
alphabet. In particular, we consider two instantiations:

1. Using d = mm, we get k ≈ mm2−2m and n = m2m2+o(m), which yields
n ≈ exp(

√
log k) · k2 and log |Σ| = log |F |d+1 ≈ d log d ≈ exp(

√
log k).

2. Letting d = mc for any constant c > 1, we get k ≈ m(c−1)m and n =
m2cm+o(m), which yields n ≈ k2c/(c−1) and log |Σ| ≈ d log d ≈ (log k)c.

As for the codeword tester, it uniformly selects two intersecting lines and checks
that the corresponding univariate polynomials agree on the point of intersection.
Thus, this tester makes two queries (to an oracle over the alphabet Σ). The
analysis of this tester reduces to the analysis of the corresponding low degree
test, undertaken in [4, 56].

The above tester uses only two queries, but the entire description (which refers
to codes over a large alphabet) deviates from the bulk of our treatment, which
has focused on a binary alphabet. We comment that 2-query locally testable
binary codes are essentially impossible (cf., [14]), but we have already seem that
3-query tests are possible. A natural way of reducing the alphabet size of codes is
via the well-known paradigm of concatenated codes [32].24 However, local testa-
bility can be maintained only in special cases. In particular, observe that, for
each of the two queries made by the tester of C, the tester does not need the en-
tire polynomial represented in Σ = F d+1, but rather only its value at a specific
point. Thus, encoding Σ by an error correcting code that supports recovery of
the said value while using a constant number of probes will do.25 In particular,
for integers h, e such that d + 1 = he, Goldreich and Sudan used an encoding
of F d+1 = Fhe

by sequences of length |F |eh over F , and provided a testing and

24 A concatenated code is obtained by encoding the symbols of an “outer code” (using
the coding method of the “inner code”). Specifically, let C1 : Σk1

1 → Σn1
1 be the outer

code and C2 : Σk2
2 → Σn2

2 be the inner code, where Σ1 ≡ Σk2
2 . Then, the concate-

nated code C : Σk1k2
2 → Σn1n2

2 is obtained by C(x1, ..., xk1) = (C2(y1), ..., C2(yn1)),
where xi ∈ Σk2

2 ≡ Σ1 and (y1, ..., yn1) = C1(x1, ..., xk1). Using a good inner code for
relatively short sequences, allows to transform good codes for a large alphabet into
good codes for a smaller alphabet.

25 Indeed, this property is related to locally decodable codes, to be discussed in Sec-
tion 4. Here we need to recover one out of |F | specific linear combinations of the
encoded (d + 1)-long sequence of F -symbols. In contrast, locally decodable refers to
recovering one out of the original F -symbols of the (d + 1)-long sequence.
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recovery procedure that makes O(e) queries [42, Sec. 3.3]. We mention that the
case of e = 1 and |F | = 2 corresponds to the Hadamard code, and that a bigger
constant e allow for shorter codes. The resulting concatenated code, C′, is a
locally testable code over F , and has length n ·O(d)eh = n · exp((e log d) · d1/e).
Using constant e = 2c and setting d = mc ≈ (log k)c, we get n ≈ k2c/(c−1) ·
exp(Õ(log k)1/2) and |F | = poly(log k). Finally, a binary locally testable code is
obtained by concatenating C′ with the Hadamard code, while noting that the
latter supports a “local recovery” property that suffices to emulate the tester
for C′. In particular, the tester of C′ merely checks a linear (over F ) equation
referring to a constant number of F -elements, and for F = GF (2�), this can be
emulated by checking related random linear combinations of the bits representing
these elements, which in turn can be locally recovered (or rather self-corrected)
from the Hadamard code. The final result is a locally testable (binary) code of
nearly quadratic length.26

3.2.2 Locally Testable Proofs of Polynomial Length: The PCP
Theorem

The case of proofs is far more complex: Achieving locally testable proofs of
polynomial length is essentially the contents of the celebrated PCP Theorem
of Arora, Lund, Motwani, Safra, Sudan and Szegedy [5, 4]. The construction
is analogous to (but far more complex than) the one presented in the case of
codes:27 First one constructs proofs over a large alphabet, and next one composes
such proofs with corresponding “inner” proofs (over a smaller alphabet, and
finally a binary one). Our exposition focuses on the construction of these proof
systems and blurs the issues involved in their composition.28

The first step is to introduce the following NP-complete problem. The input
to the problem consists of a finite field F , a subset H ⊂ F of size �|F |1/15�, an
integer m < |H |, and a (3m + 4)-variant polynomial P : F 3m+4 → F of total
degree 3m|H |+ O(1). The problem is to determine whether there exists an m-
variant (“assignment”) polynomial A : Fm → F of total degree m|H | such that
P (x, z, y, τ, A(x), A(y), A(z)) = 0 for every x, y, z ∈ Hm and τ ∈ {0, 1}3 ⊂ H .
Note that the problem-instance can be explicitly described by a sequence of
|F |3m+4 log2 |F | bits, whereas the solution sought can be explicitly described by
a sequence of |F |m log2 |F | bits. We comment that the NP-completeness of the
aforementioned problem can be proved via a reduction from 3SAT, by identifying
the variables of the formula with Hm and essentially letting P be a low-degree
extension of a function f : H3m ×{0, 1}3 → {0, 1} that encodes the structure of
26 Actually, the aforementioned result is only implicit in [42], because Goldreich and

Sudan apply these ideas directly to a truncated version of the low-degree based code.
27 Our presentation reverses the historical order in which the corresponding results (for

codes and proofs) were achieved. That is, the constructions of locally testable proofs
of polynomial length predated the coding counterparts.

28 This section is significantly more complex than the rest of this article, and some
readers may prefer to skip it and proceed directly to Section 3.3. For further details
regarding the proof composition paradigm, the reader is referred to [37, Sec. 9.3.2].
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the formula (by considering all possible 3-clauses). In fact, the resulting P has
degree |H | in each of the first 3m variables and constant degree in each of the
other variables, and this fact can be used to improve the parameters below (but
not in a fundamental way).

The proof that a given input P satisfies the aforementioned condition con-
sists of an m-variant polynomial A : Fm → F (which is supposed to be of
total degree m|H |) as well as 3m + 4 auxiliary polynomials Ai : F 3m+1 → F ,
for i = 1, ..., 3m + 1 (each supposedly of degree (3m|H | + O(1)) · m|H |). The
polynomial A is supposed to satisfy the conditions of the problem, and in par-
ticular P (x, z, y, τ, A(x), A(y), A(z)) = 0 should hold for every x, y, z ∈ Hm and
τ ∈ {0, 1}3 ⊂ H . Furthermore, A0(x, z, z, τ) def= P (x, z, y, τ, A(x), A(y), A(z))
should vanish on H3m+1. The auxiliary polynomials are given to assist the ver-
ification of the latter condition. In particular, it should be the case that Ai

vanishes on F iH3m+1−i, a condition that is easy to test for A3m+1 (assuming
that A3m+1 is a low degree polynomial). Checking that Ai−1 agrees with Ai on
F i−1H3m+1−(i−1), for i = 1, ..., 3m+1, and that all Ai’s are low degree polynomi-
als, establishes the claim for A0. Thus, testing an alleged proof (A, A1, ..., A3m+1)
is performed as follows:

1. Testing that A is a polynomial of total degree m|H |. This is done by selecting
a random line through Fm, and testing whether A restricted to this line
agrees with a degree m|H | univariate polynomial.

2. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai is of total degree
d

def= (3m|H |+ O(1)) ·m|H |. Here we select a random line through F 3m+1,
and test whether Ai restricted to this line agrees with a degree d univariate
polynomial.

3. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai agrees with Ai−1 on
F i−1H3m+1−(i−1). This is done by uniformly selecting r′ = (r1, ..., ri−1) ∈
F i−1 and r′′ = (ri+1, ..., r3m+1) ∈ F 3m+1−i, and comparing Ai−1(r′, e, r′′) to
Ai(r′, e, r′′), for every e ∈ H . In addition, we check that both functions when
restricted to the axis-parallel line (r′, ·, r′′) agree with a univariate polyno-
mial of degree d.29 We stress that the values of A0 are computed according
to the given polynomial P by accessing A at the appropriate locations (i.e.,
by definition A0(x, z, z, τ) = P (x, z, y, τ, A(x), A(y), A(z))).

4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly selecting
r ∈ F 3m+1, and testing whether F (r) = 0.

The above description (which follows [60, Apdx. C]) is somewhat different than
the original presentation in [4], which in turn follows [6,7,31].30 The above tester
may be viewed as making O(m|F |) queries to an oracle over the alphabet F , or

29 Thus, effectively, we are self-correcting the values at H (on the said line), based on
the values at F (on that line).

30 The point is that the sum-check, which originates in [51], is replaced by an analogous
process (which happens to be non-adaptive).
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alternatively, as making O(m|F | log |F |) binary queries.31 Note that we have
already obtained a highly non-trivial tester. It makes O(m|F | log |F |) queries
in order to verify a claim regarding an input of length n

def= |F |3m+4 log2 |F |.
Using m = log n/ log log n, |H | = log n and |F | = poly(log n), we have obtained
a tester of poly-logarithmic query complexity.

To further reduce the query complexity, one invokes the “proof composition”
paradigm, introduced by Arora and Safra [5]. Specifically, one composes an
“outer” tester (as described above) with an “inner” tester that checks the resid-
ual condition that the “outer” tester determines for the answers it obtains. This
composition is more problematic than one suspects, because we wish the “inner”
tester to perform its task without reading its entire input (i.e., the answers to
the “outer” tester). This seems quite paradoxical, since it is not clear how the
“inner” tester can operate without reading its entire input. The problem can be
resolved by using a “proximity tester” (i.e., a PCP of proximity) as an “inner”
tester, provided that it suffices to have such a proximity test (for the answers
to the “outer” tester). Thus, the challenge is to reach a situation in which the
“outer” tester is robust in the sense that, when the assertion is false, the answers
obtained by this tester are far from being convincing (i.e., they are far from any
sequence of answers that is accepted by this tester). Two approaches towards
obtaining such robust testers are known.

– One approach, introduced in [4], is to convert the “outer” tester into one
that makes a constant number of queries over some larger alphabet, and
furthermore have the answer be presented in an error correcting format.
Thus, robustness is guaranteed by the fact that the answers correspond to a
constant-length sequence of codewords, and so any two (properly formatted)
sequences are at constant relative distance of one another.
The implementation of this approach consists of two steps (and is based on
some specifics). The first step is to convert the “outer” tester into one that
makes a constant number of queries over some larger alphabet. This step
uses the so-called parallelization technique (cf. [50,4]). Next, one applies an
error correcting code to these O(1) longer answers, and assumes that the
“proximity tester” can handle inputs presented in this format (i.e., that it
can test an input that is presented by an encoding of a constant number of
its parts).32

– An alternative approach, pursued and advocated in [15], is to take advantage
of the specific structure of the queries, “bundle” the answers together and
furthermore show that the “bundled” answers are “robust” in a sense that fits

31 Another alternative perspective is obtained by applying so-called parallelization
(cf. [50, 4]). The result is a test making a constant number of queries that are each
answered by strings of length poly(|F |).

32 The aforementioned assumption holds trivially in case one uses a generic “proximity
tester” (i.e., a PCP of proximity or an Assignment Tester) as done in [28]. But the
aforementioned approach can be (and was in fact originally) applied with a specific
“proximity tester” that can only handle inputs presented in one specific format
(cf. [4]).
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proximity testing. In particular, the (generic) parallelization step is avoided,
and is replaced by a closer analysis of the specific (outer) tester. We will
demonstrate this approach next.

First, we show how the queries of the aforementioned tester can be “bundled”
(into a constant number of bundles). In particular, we consider the following
“bundling” that accommodates all types of tests (and in particular the m + 1
different sub-tests performed in Steps 2 and 3). Consider
B(x1, ...., x3m+1)=(A1(x1, x2, ...., x3m+1), A2(x2, ...., x3m+1, x1), ..., A3m+1(x3m+1, x1, ...., x3m))

and perform all 3m+1 tests of Step (3) by selecting uniformly (r2, ..., r3m+1) ∈
F 3m and querying B at (e, r2, ..., r3m+1) and (r3m+1, e, ..., r3m) for all e ∈ F .
Thus, all 3m + 1 tests of Step (3) can be performed by retrieving the values of
B on a single axis parallel random line through F 3m+1. Furthermore, note that
all 3m + 1 tests of Step (2) can be performed by retrieving the values of B on a
single (arbitrary) random line through F 3m+1. Finally, observe that these tests
are “robust” in the sense that if, for some i, the function Ai is (say) 0.01-far
from satisfying the condition (i.e., being low-degree or agreeing with Ai−1) then
with constant probability many of the values of Ai on an appropriate random
line will not fit to what is needed. This robustness property is inherited by
B, as well as by B′ (resp., A′) that is obtained by applying a good binary
error-correcting code on B (resp., on A). Thus, we may replace A and the Ai’s
by A′ and B′, and conduct all all tests by making O(m2|F | log |F |) queries to
A′ : Fm × [O(log |F |)] → {0, 1} and B′ : F 3m+1 × [O(log |F |3m+1)] → {0, 1}.
The robustness property asserts that if the original polynomial P had no solution
(i.e., an A as above) then the answers obtained by the tester will be far from
satisfying the residual decision predicate of the tester.

Once the robustness property of the resulting (“outer”) tester fits the proxim-
ity testing feature of the “inner tester”, composition is possible. Indeed, we com-
pose the “outer” tester with an “inner tester” that checks whether the residual
decision predicate of the “outer tester” is satisfies. The benefit of this composi-
tion is that the query complexity is reduced from poly-logarithmic to polynomial
in a double-logarithm. At this point we can afford the Hadamard-Based proof
tester (because the overhead in the proof complexity will only be exponential
in a polynomial in a double-logarithmic function), and obtain a locally testable
proof of polynomial length. That is, we compose the poly(log log)-query tester
(acting as an outer tester) with the Hadamard-Based tester (acting as an inner
tester), and obtain a locally testable proof of polynomial length (as asserted by
the PCP Theorem).

Digest: the proof composition paradigm. The PCP Theorem asserts a PCP sys-
tem that obtains simultaneously the minimal possible randomness and query
complexity (up to a multiplicative factor, assuming that P �= NP). The foregoing
construction obtains this remarkable result by combining two different PCPs: the
first PCP obtains logarithmic randomness but uses poly-logarithmically many
queries, whereas the second PCP uses a constant number of queries but has
polynomial randomness complexity. We stress that each of these two PCP sys-
tems is highly non-trivial and very interesting by itself. We also highlight the fact
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that these PCPs are combined using a very simple composition method (which
refers to auxiliary properties such as robustness and proximity testing). Details
follow.33

Loosely speaking, the proof composition paradigm refers to composing two
proof systems such that the “inner” verifier is used for probabilistically verifying
the acceptance criteria of the “outer” verifier. That is, the combined verifier
selects coins for the “outer” verifier, determines the corresponding locations that
the “outer” verifier wishes to inspect (in the proof), and verifies that the “outer”
verifier would have accepted the values that reside in these locations. The latter
verification is performed by invoking the “inner” verifier, without reading the
values residing in all the aforementioned locations. Indeed, the aim is to conduct
this (“composed”) verification while using much fewer queries than the query
complexity of the “outer” proof system. In particular, the inner verifier cannot
afford to read its input, which makes the composition more subtle than the term
suggests.

In order for the proof composition to work, the combined verifiers should sat-
isfy some auxiliary conditions. Specifically, the outer verifier should be robust in
the sense that its soundness condition guarantee that, with high probability, the
oracle answers are “far” from satisfying the residual decision predicate (rather
than merely not satisfying it).34 The inner verifier is given oracle access to its
input and is charged for each query made to it, but is only required to reject
(with high probability) inputs that are far from being valid (and, as usual, ac-
cept inputs that are valid). That is, the inner verifier is actually a verifier of
proximity.

Composing two such PCPs yields a new PCP, where the new proof oracle
consists of the proof oracle of the “outer” system and a sequence of proof oracles
for the “inner” system (one “inner” proof per each possible random-tape of the
“outer” verifier). The resulting verifier selects coins for the outer-verifier and
uses the corresponding “inner” proof in order to verify that the outer-verifier
would have accepted under this choice of coins. Note that such a choice of coins
determines locations in the “outer” proof that the outer-verifier would have
inspected, and the combined verifier provides the inner-verifier with oracle access
to these locations (which the inner-verifier considers as its input) as well as
with oracle access to the corresponding “inner” proof (which the inner-verifier
considers as its proof-oracle).

The quantitative effect of such a composition is easy to analyze. Specifically,
composing an outer-verifier of randomness-complexity r′ and query-complexity
q′ with an inner-verifier of randomness-complexity r′′ and query-complexity q′′

yields a PCP of randomness-complexity r(n) = r′(n) + r′′(q′(n)) and query-
complexity q(n) = q′′(q′(n)), because q′(n) represents the length of the input (or-

33 Our presentation of the composition paradigm follows [15], rather than the original
presentation of [5,4].

34 Furthermore, the latter predicate, which is well-defined by the non-adaptive nature
of the outer verifier, must have a circuit of size bounded by a polynomial in the
number of queries.
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acle) that is accessed by the inner-verifier. Thus, assuming q′′(m) � m, the query
complexity is significantly decreased (from q′(n) to q′′(q′(n))), while the increase
in the randomness complexity is moderate provided that r′′(q′(n)) � r′(n). Fur-
thermore, the verifier resulting from the composition inherits the robustness
features of the composed verifier, which is important in case we wish to compose
the resulting verifier with another inner-verifier.

3.3 Locally Testable Codes and Proofs of Nearly Linear Length

We now move on to even shorter codes and proofs; specifically, codes and proofs
of nearly linear length. The latter term has been given quite different interpre-
tations, and we start by sorting these out. Currently, this taxonomy is relevant
mainly for second-level discussions and review of some past works.35

3.3.1 Types of Nearly Linear Functions
A few common interpretations of this term are listed below (going from the

most liberal to the most strict one).

T1-nearly linear: A very liberal notion, which seems at the verge of an abuse
of the term, refers to a sequence of functions fε : N → N such that, for every
ε > 0, it holds that fε(n) ≤ n1+ε. That is, each function is actually of the
form n �→ nc, for some constant c > 1, but the sequence as a whole can be
viewed as approaching linearity.
The PCP of Polishchuk and Spielman [56] and the simpler locally testable
code of Goldreich and Sudan [42, Thm. 2.4] have nearly linear length in this
sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers
to individual functions f such that f(n) = n1+o(1). Specifically, for some
function ε : N → [0, 1] that goes to zero, it holds that f(n) ≤ n1+ε(n).
Common sub-types include the following:
1. ε(n) = 1/ log log n.
2. ε(n) = 1/(logn)c for some constant c ∈ (0, 1).

The locally testable codes and proofs of [42, 21, 15] have nearly linear
length in this sense. Specifically, in [42, Sec. 4-5] and [21] any c > 1/2
will do, whereas in [15] any c > 0 will do.

3. ε(n) = exp((log log n)c)
log n for some constant c ∈ (0, 1).

Note that poly(log log n) < exp((log log n)c) < (log n)o(1), for any con-
stant c ∈ (0, 1).

Indeed, the case in which ε(n) = O(log log n)
log n (or so) deserves a special cate-

gory, presented next.

35 Things were different when the original version of this text [36] was written. At that
time, only T2-nearly linear length was know for O(1)-local testability, and the T3-
nearly linear result achieved by Dinur [26] seemed a daring conjecture (which was,
nevertheless, stated in [36, Conj. 3.3]).
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T3-nearly linear: The strongest notion interprets near-linearity as linearity
up to a poly-logarithmic (or quasi-poly-logarithmic) factor. In the former
case f(n) = Õ(n) def= poly(log n) ·n, which corresponds to the case of f(n) ≤
n1+ε(n) with ε(n) = O(log log n)/ logn, whereas the latter case corresponds
to ε(n) = poly(log log n)/ logn (i.e., in which case f(n) ≤ (log n)poly(log log n) ·
n).
The recent results of [20, 26] refer to this notion.

We note that while [20,26] achieve T3-nearly linear length, the low-error results
of [55, 27] only achieve T2-nearly linear length.

3.3.2 Local Testability with Nearly Linear Length
The celebrated gap amplification technique of Dinur [26] is best known for pro-
viding an alternative proof of the PCP Theorem. However, applying this tech-
nique to a PCP that was (previously) provided by Ben-Sasson and Sudan [20]
yields locally testable codes and proofs of T3-nearly linear length. In particular,
the overhead in the code and proof length is only polylogarithmic in the length
of the primal object (which establishes [36, Conj. 3.3]).

Theorem 3.1 (Dinur [26], building on [20]): There exists a constant q and a
poly-logarithmic function f : N → N such that there exist q-locally testable codes
and proofs of length f(k) ·k, where k denotes the length of the actual information
(i.e., the assertion in case of proofs and the encoded information in case of codes).

The proof of Theorem 3.1 combines the PCP system of Ben-Sasson and Su-
dan [20] with the gap amplification method of Dinur [26]. The latter is reviewed in
§3.3.3. We mention that the PCP system of [20] is based on the NP-completeness
of a certain code (of length n = Õ(k)), and on a randomized reduction of testing
whether a given n-bit long string is a codeword to a constant number of similar
tests that refer to

√
n-bit long strings. Applying this reduction log log n times

yields a PCP of query complexity poly(log n) and length Õ(n), which in turn
yields a 3-query “PCP with soundness error 1− 1/poly(log n)”.

We mention that in the original version of this survey [36], we conjectured
that a polylogarithmic (length) overhead is inherent to local testability (or, at
least, that linear length O(1)-local testability is impossible). We currently have
mixed feelings with respect to this conjecture (even when confined to proofs),
and thus rephrase it as an open problem.

Open Problem 3.2. Determine whether there exist locally testable codes and
proofs of linear length.

3.3.3 The Gap Amplification Method
Essentially, Theorem 3.1 is proved by applying the gap amplification method
(of Dinur [26]) to the (weak) PCP system constructed by Ben-Sasson and Su-
dan [20]. The latter PCP system has length 	(k) = Õ(k), but its soundness
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error is 1− 1/poly(log k) (i.e., its rejection probability is at least 1/poly(log k)).
Each application of the gap amplification step doubles the rejection probability
while essentially maintaining the initial complexities. That is, in each step, the
constant query complexity of the verifier is preserved and its randomness com-
plexity is increased only by a constant term (and so the length of the PCP oracle
is increased only by a constant factor). Thus, starting from the system of [20]
and applying O(log log k) amplification steps, we essentially obtain Theorem 3.1.
(Note that a PCP system of polynomial length can be obtained by starting from
a trivial “PCP” system that has rejection probability 1/poly(k), and applying
O(log k) amplification steps.)

In order to describe the aforementioned process we need to redefine PCP sys-
tems so as to allow arbitrary soundness error. In fact, for technical reasons, it is
more convenient to describe the process as an iterated reduction of a “constraint
satisfaction” problem to itself. Specifically, we refer to systems of 2-variable con-
straints, which are readily represented by (labeled) graphs such that the vertices
correspond to (non-Boolean) variables and the edges are associated with con-
straints.

Definition 3.3 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated
with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
(standing for violation) the fraction of unsatisfied constraints under the best
possible assignment; that is,

vlt(G, Φ) = min
α:V →Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}
.

(2)

For various functions τ : N → (0, 1], we will consider the promise problem
gapCSPΣ

τ , having instances as above, such that the yes-instances are fully satis-
fiable instances (i.e., vlt = 0) and the no-instances are pairs (G, Φ) for which
vlt(G, Φ) ≥ τ(|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m
(e.g., replace each clause by a vertex, and use edge constraints that enforce
mutually consistent and satisfying assignments to each pair of clauses). Fur-
thermore, the PCP system of [20] yields a reduction of 3SAT to gapCSPΣ0

τ1
for

τ1(m) = 1/poly(log m) where the size of the graph is nearly linear in the length
of the input formula. Our goal is to reduce gapCSPΣ0

τ0
(or rather gapCSPΣ0

τ1
) to

gapCSPΣ
c , for some fixed finite Σ and constant c > 0, where in the case of

gapCSPΣ0
τ1

we wish the reduction to preserve the length of the instance up to a
polylogarithmic factor. The PCP Theorem (resp., a PCP of nearly linear length)
follows by showing a simple PCP system for gapCSPΣ

c . As noted above, the re-
duction is obtained by repeated applications of an amplification step that is
captured by the following lemma.
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Lemma 3.4 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time computable function f such that,
for every instance (G, Φ) of gapCSPΣ, it holds that (G′, Φ′) = f(G, Φ) is an
instance of gapCSPΣ and the two instances are related as follows:

1. If vlt(G, Φ) = 0 then vlt(G′, Φ′) = 0.
2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).
3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas in-
stances that violate a ν fraction of the constraints are mapped to instances that
violate at least a min(2ν, c) fraction of the constraints. Furthermore, the mapping
increases the number of edges (in the instance) by at most a constant factor. We
stress that both Φ and Φ′ consists of Boolean constraints defined over Σ2. Thus,
by iteratively applying Lemma 3.4 for a logarithmic (resp., double-logarithmic)
number of times, we reduce gapCSPΣ

τ0
(resp., gapCSPΣ

τ1
) to gapCSPΣ

c .

Outline of the proof of Lemma 3.4: Before turning to the proof, let us
highlight the difficulty that it needs to address. Specifically, the lemma asserts a
“violation amplifying effect” (i.e., Items 1 and 2), while maintaining the alphabet
Σ and allowing only a moderate increase in the size of the graph (i.e., Item 3).
Waiving the latter requirements allows a relatively simple proof that mimics
(an augmented version of) the “parallel repetition” of the corresponding PCP.
Thus, the challenge is significantly decreasing the “size blow-up” that arises from
parallel repetition and maintaining a fixed alphabet. The first goal (i.e., Item 3)
calls for a suitable derandomization, and indeed we shall use a “pseudorandom”
generator based on random walks on expander graphs. The second goal (i.e.,
fixed alphabet) can be handled by using the proof composition paradigm, which
was outlined in §3.2.2.

The lemma is proved by presenting a three-step reduction. The first step is a
pre-processing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of vlt may decrease
during this step by a constant factor. The heart of the reduction is the second
step in which we increase vlt by any desired constant factor. This is done by
a construction that corresponds to taking a random walk of constant length on
the current graph. The latter step also increases the alphabet Σ, and thus a
post-processing step is employed to regain the original alphabet (by using any
inner PCP systems; e.g., the one presented in §3.1.2). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary
parameters d and t (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in
the course of our argument) are satisfied. Specifically, t will be the last parameter
to be determined (and it will be made greater than a constant that is determined
by all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the
input (G, Φ) of gapCSPΣ to an instance (G1, Φ1) such that G1 is a d-regular
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expander graph.36 Furthermore, each vertex in G1 will have at least d/2 self-
loops, the number of edges will be preserved up to a constant factor (i.e.,
|G1| = O(|G|)), and vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple:
essentially, the original vertices are replaced by expanders of size proportional
to their degree, and a big (dummy) expander is “superimposed” on the resulting
graph.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (t-edge long) walk on the expander G1 intersects a
fixed set of edges is closely related to the probability that a random sample of (t)
edges intersects this set. Thus, we may expect such walks to hit a violated edge
with probability that is min(Θ(t ·ν), c), where ν is the fraction of violated edges.
Indeed, the current step consists of reducing the instance (G1, Φ1) of gapCSPΣ

to an instance (G2, Φ2) of gapCSPΣ′
such that Σ′ = Σdt

and the following holds:

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge
long path in G1 is replaced by a corresponding edge in G2, which is thus a
dt-regular graph.

2. The constraints in Φ2 refer to each element of Σ′ as a Σ-labeling of the
(“distance ≤ t”) neighborhood of a vertex, and mandates that the two cor-
responding labelings (of the endpoints of the G2-edge) are consistent as well
as satisfy Φ1. That is, the following two types of conditions are enforced by
the constraints of Φ2:
(consistency): If vertices u and w are connected in G1 by a path of length

at most t and vertex v resides on this path, then the Φ2-constraint asso-
ciated with the G2-edge between u and w mandates the equality of the
entries corresponding to vertex v in the Σ′-labeling of vertices u and w.

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t start-
ing at u, then the Φ2-constraint associated with the G2-edge that cor-
responds to this path enforces the Φ1-constraint that is associated with
(v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph
corresponds to the low randomness-complexity of selecting a random walk of
length t in G1.)

Turning to the analysis of this step, we note that vlt(G1, Φ1) = 0 implies
vlt(G2, Φ2) = 0. The interesting fact is that the fraction of violated constraints
increases by a factor of Ω(

√
t); that is, vlt(G2, Φ2) ≥ min(Ω(

√
t·vlt(G1, Φ1)), c).

Here we merely provide a rough intuition and refer the interested reader to [26].

36 A d-regular graph is a graph in which each vertex is incident to exactly d edges.
Loosely speaking, an expander graph has the property that each moderately bal-
anced cut (i.e., partition of its vertex set) has relatively many edges crossing it. An
equivalent definition, also used in the actual analysis, is that, except for the largest
eigenvalue (which equals d), all the eigenvalues of the corresponding adjacency ma-
trix have absolute value that is bounded away from d.
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We may focus on any Σ′-labeling of the vertices of G2 that is consistent with
some Σ-labeling of G1, because relatively few inconsistencies (among the Σ-
values assigned to a vertex by the Σ′-labeling of other vertices) can be ignored,
while relatively many such inconsistencies yield violation of the “equality con-
straints” of many edges in G2. Intuitively, relying on the hypothesis that G1

is an expander, it follows that the set of violated edge-constraints (of Φ1) with
respect to the aforementioned Σ-labeling causes many more edge-constraints of
Φ2 to be violated (because each edge-constraint of Φ1 is enforced by many edge-
constraints of Φ2). The point is that any set F of edges of G1 is likely to appear
on a min(Ω(t) · |F |/|G1|, Ω(1)) fraction of the edges of G2 (i.e., t-paths of G1).
(Note that the claim would have been obvious if G1 were a complete graph, but
it also holds for an expander.)37

The factor of Ω(
√

t) gained in the second step makes up for the constant factor
lost in the first step (as well as the constant factor to be lost in the last step). Fur-
thermore, for a suitable choice of the constant t, the aforementioned gain yields
an overall constant factor amplification (of vlt). However, so far we obtained
an instance of gapCSPΣ′

rather than an instance of gapCSPΣ , where Σ′ = Σdt

.
The purpose of the last step is to reduce the latter instance to an instance of
gapCSPΣ . This is done by viewing the instance of gapCSPΣ′

as a PCP-system,38

and composing it with an inner-verifier using the proof composition paradigm
outlined in §3.2.2. We stress that the inner-verifier used here needs only handle
instances of constant size (i.e., having description length O(dt log |Σ|)), and so
the verifier presented in §3.1.2 will do. The resulting PCP-system uses random-
ness r

def= log2 |G2|+O(dt log |Σ|)2 and a constant number of binary queries, and
has rejection probability Ω(vlt(G2, Φ2)), which is independent of the choice of
the constant t. For Σ = {0, 1}O(1), we can obtain an instance of gapCSPΣ that
has a Ω(vlt(G2, Φ2)) fraction of violated constraints. Furthermore, the size of
the resulting instance (which is used as the output (G′, Φ′) of the three-step
reduction) is O(2r) = O(|G2|), where the equality uses the fact that d and t
are constants. Recalling that vlt(G2, Φ2) ≥ min(Ω(

√
t · vlt(G1, Φ1)), c) and

vlt(G1, Φ1) = Ω(vlt(G, Φ)), this completes the (outline of the) proof of the
entire lemma. ��

Reflection. In contrast to the proof outlined in §3.2.2. which combines two re-
markable constructs by using a simple composition method, the current proof
of the PCP Theorem is based on developing a powerful “combining method”
that improves the quality of the main system to which it is applied. This new
method, captured by the amplification step (Lemma 3.4), does not merely ob-
tain the best of the combined systems, but rather obtains a better system than
the one given. However, the quality-amplification offered by Lemma 3.4 is rather
moderate, and thus many applications are required in order to derive the desired

37 We mention that, due to a technical difficulty, it is easier to establish the claimed
bound of Ω(

√
t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).

38 The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the
instance (G2, Φ2) with probability vlt(G2, Φ2) ∈ [0, 1]).
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result. Taking the opposite perspective, one may say that remarkable results are
obtained by a gradual process of many moderate amplification steps.

3.4 Additional Considerations

Our motivation for studying locally testable codes and proofs referred to super-
fast testing, but our actual definitions have focused on the query complexity
of these testers. While the query complexity of testing has a natural appeal,
the hope is that low query complexity testers would also yield super-fast testing.
Indeed, in the case of codes, it is typically the case that the testing time is related
to the query complexity. However, in the case of proofs there is a seemingly
unavoidable (linear) dependence of the verification time on the input length.
This (linear) dependence can be avoided if one considers PCP-of-Proximity (see
Section 2.3.3) rather than standard PCP. But even in this case, additional work
is needed in order to derive testers that work is sub-linear time. The interested
reader is referred to [16, 53].

4 Locally Decodable Codes

Locally decodable codes are complimentary to local testable codes. Recall that
the latter are required to allow for super-fast rejection of strings that are far from
being codewords (while accepting all codewords). In contrast, in case of locally
decodable codes, we are guaranteed that the input is close to a codeword, and
are required to recover individual bits of the encoded information based on a
small number of probes (per recovered bit). As in case of local testability, the
case when the operation (in this case decoding) is performed based on a constant
number of probes is of special interest.

Local decodability is of natural practical appeal, which in turn provides ad-
ditional motivation for local testability. The point is that it makes little sense
to try to recover part of the data when the codeword is too corrupt. Thus, one
should first apply local testability to check that the received codeword is not too
corrupt, and apply local decodability only in case the codeword test passes.

4.1 Definitions

We follow the conventions of Section 2.1, but extend the treatment to codes over
any finite alphabet Σ (rather than insisting on Σ = {0, 1}).

Definition 4.1 (locally decodable codes, basic version): Let C : Σk → Σn be
a code, and let q ∈ N and δ ∈ (0, 1). A q-local δ-decoder for C is a probabilistic
(non-adaptive) oracle machine M that makes at most q queries and satisfies the
following condition:

Local recovery from somewhat corrupted codewords: For every i ∈ [k] and x =
(x1, ..., xk) ∈ Σk, and any w ∈ Σn that is δ-close to C(x), on input i and
oracle access to w, machine M outputs xi with probability at least 2/3. That
is, Pr[Mw(1k, i)=xi] > 2/3, for any w ∈ Σn that is δ-far from C(x).
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We call q the query complexity of M , and δ the proximity parameter.

Note that the proximity parameter must be smaller than the covering radius of
the code (as otherwise the definition cannot possibly be satisfied (at least for
some w and i)). One may strengthen Definition 4.1 by requiring that the bits of
an uncorrupted codeword be always recovered correctly (rather than with high
probability); that is, for every i ∈ [k] and x = (x1, ..., xk) ∈ Σk, it must hold
that Pr[MC(x)(1k, i) = xi] = 1. Turning to families of codes, we present the
following definition (which potentially allows the alphabet to grow with k).

Definition 4.2 (locally decodable codes, asymptotic version): For functions
n, σ : N → N, let C = {Ck : [σ(k)]k → [σ(k)]n(k)}k∈K . We say that C is a
local decodable code if there exist constants δ > 0 and q and a machine M that
is a q-local δ-decoder for Ck, for every k ∈ K.

We mention that locally decodable codes are related to (information theoretic
secure) Private Information Retrieval (PIR) schemes, introduced in [25]. In the
latter a user wishes to recover a bit of data from a k-bit long database, copies
of which are held by s servers, without revealing any information to any single
server. To that end, the user (secretly) communicates with each of the servers,
and the issue is to minimize the total amount of communication. As we shall
see, certain s-server PIR schemes yield 2s-locally decodable codes of length ex-
ponential in the communication complexity of the PIR.

Related notions of local recovery. The notion of local decodability is a special
case of a general notion of local recovery, where one may be required to recover
an arbitrary function f : Σk → {0, 1}∗ of the original information based on a
constant number of probes to the (corrupted) codeword. The function f must
be restricted in two ways: Firstly, it should have a small range (e.g., its range
may be Σ), and secondly it should come from a small predetermined set F of
functions. Definition 4.1 may be recast in these terms, by considering the set of
projection functions (i.e., {fi : Σk → Σ} where fi(x1, ..., xk) = xi). We believe
that this is the most natural special case of the general notion of local recovery.
In §3.2.1 we referred to another special case, where the alphabet is associated
with a finite field F and the recovery function fe : F k → F is one out of |F |
possible linear functions (specifically, fe(x1, ..., xk) =

∑k
i=1 ei−1xi, for e ∈ F ).39

Another natural case (also used in §3.2.1) is that of the recovery of (correct)
symbols of the codeword, which may be viewed as self-correction. (In this case
each admissible function determines one codeword symbol as a function of the
encoded message.)

4.2 Results

The best known locally decodable codes are of strictly sub-exponential length;
that is, k information bits can be encoded by codewords of length n = exp(ko(1))
39 Indeed, the value fe(x1, ..., xk) is the evaluation at e of the polynomial p(ζ) =∑k

i=1 xiζ
i−1 represented by the coefficients (x1, ..., xk).
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that are locally decodable (cf. [29], building on [62]). This result disproves [36,
Conj. 4.4],

Theorem 4.3 (Efremenko [29], building on Yekhanin [62]): For some δ > 0
there exists a code C : {0, 1}k → {0, 1}n that has a 3-local δ-decoder such that n =
exp(2Õ(

√
log k)) = exp(ko(1)). Furthermore, 2d-local decodability can be obtained

with n = exp(2Õ( d
√

log k)).

In this section we only outline a couple of codes of lesser performance. Specif-
ically, we will present longer codes that are O(1)-locally decodable as well as
shorter codes that are poly(log k)-locally decodable.

4.2.1 Locally Decodable Codes of Sub-Exponential Length
For any d ≥ 1, there is a simple construction of a 2d-locally 2−d−2-decodable
binary code of length n = 2d·k1/d

. For h = k1/d, we identify [k] with [h]d, and
view x ∈ {0, 1}k as (xi1,...,id

)i1,...,id∈[h]. We encode x by providing the parity
of all xi1,...,id

residing in each of the (2h)d sub-cubes of [h]d; that is, for every
(S1, ..., Sd) ∈ 2[h] × · · · × 2[h], we provide

C(x)S1,...,Sd
= ⊕i1∈S1,...,id∈Sd

xi1,...,id
. (3)

Indeed, the Hadamard code is the special case in which d = 1. To recover
the value of xi1,...,id

, at any desired (i1, ..., id) ∈ [h]d, the decoder uniformly
selects (R1, ..., Rd) ∈ 2[h] × · · · × 2[h], and recovers the (possibly corrupted)
values C(x)S1,...,Sd

, where each Sj either equals Rj or equals Rj+{ij}, where
R+{i} = R \ {i} if i ∈ R and R+{i} = R ∪ {i} otherwise. The key observa-
tion is that each of the decoder’s queries is uniformly distributed. Thus, with
probability at least 3/4, XORing the 2d answers, yields the desired result (be-
cause ⊕S1∈{R1,R1�{i1}},...,Sd∈{Rd,Rd�{id}}C(x)S1,...,Sd

equals C(x){i1},...,{id} =
xi1,...,id

).
We comment that a related code (of length n = 2dd·k1/d

) allows for recov-
ery based on d + 1 (rather 2d) queries. The original presentation, due to [2]
(building on [25]), is in terms of PIR schemes (with s = (d + 1)/2 servers and
overall communication dd · k1/d = exp(Õ(s)) · k1/(2s−1)). In particular, in the
case that d = 2, we use two servers, sending (R1, R2, R3) to one server and
(R1+{i1}, R2+{i2}, R3+{i3}) to the other server. Upon receiving (S1, S2, S3),
each server replies with the bit C(x)S1,S2,S3 as well as the three k1/3-bit long se-
quences (C(x)S1�{i},S2,S3)i∈[k1/3], (C(x)S1,S2�{i},S3)i∈[k1/3], and
(C(x)S1,S2,S3�{i})i∈[k1/3], which contain the bits C(x)S1�{i1},S2,S3 ,
C(x)S1,S2�{i2},S3 , and C(x)S1,S2,S3�{i3}. Thus, the user obtains the bits
C(x)R1,R2,R3 , C(x)R1�{i1},R2,R3 , C(x)R1,R2�{i2},R3 , and C(x)R1,R2,R3�{i3} from
the first server, and the bits CR1�{i1},R2�{i2},R3�{i3}, CR1,R2�{i2},R3�{i3},
CR1�{i1},R2,R3�{i3}, CR1�{i1},R2�{i2},R3} from the second server.
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The corresponding locally decodable code is obtained by a generic transfor-
mation that applies to any PIR scheme with s servers, in which the user makes
uniformly distributed queries of length qst(k), gets answers of length ans(k),
and recovers the desired value by XORing some predetermined bits contained
in the answers. In this case, the resulting code will contain the Hadamard en-
coding of each of the possible answers provided by each of the servers; that
is, if the j-th server answers according to Aj(x, q) ∈ {0, 1}ans(k), where x ∈
{0, 1}k and q ∈ {0, 1}qst(k), then C(x)j,q,� = CHad(Aj(x, q))�, for every 	 ∈
{0, 1}ans(k). Thus, the length of the code is s · 2qst(k) · 2ans(k). Now, on in-
put i ∈ [k], the decoder emulates the PIR user, obtaining the query sequence
(q1, ..., qs) and the desired linear combinations (	1, ...., 	s). It uniformly selects
r1, ..., rs ∈ {0, 1}ans(k), queries the (possibly corrupted) codeword at locations
(1, q1, r1), (1, q1, r1 ⊕ 	1), ..., (s, qs, rs), (s, qs, rs ⊕ 	s), and XORs the correspond-
ing 2s answers. Note that each of these queries is uniformly distributed in {j}×
{0, 1}qst(k)×{0, 1}ans(k), for some j ∈ [s], and that C(x)j,qj ,rj ⊕C(x)j,qj ,rj⊕�j =
CHad(Aj(x, qj))�j .

4.2.2 Polylog-local Decoding for Codes of Nearly Linear Length
We will consider a code C : Σk → Σn of linear distance, while identifying Σ with
a finite field (denoted F ). For parameters h and m = logh k, consider a finite
field F of size O(m · h), and a subset H ⊂ F of size h. Viewing the information
as a function f : Hm → F , we encode it by providing the values of its low-degree
extension f̂ : Fm → F on all points in F , where f̂ is an m-variant polynomial
of degree |H | − 1 in each variable. Thus, the code maps k = hm long sequences
over F (which may be viewed as hm log |F | bits of information) to sequences
of length n

def= |F |m = O(mh)m = O(m)m · k over F . This code has relative
distance mh/|F |. Note that the smaller m, the better the rate (i.e., relation of
n to k) is, but this comes at the expense of using a larger alphabet F (as well
as larger query complexity of the decoder presented below).

The decoder works by applying the self-correction paradigm. Given a point
x ∈ Hm and access to an oracle w : Fm → F that is 1/2-close to f̂ , the value of
f(x) is recovered by uniformly selecting a line through x, querying for the |F |
values of w along the line, finding the degree mh univariate polynomial with the
greatest agreement with these values, and evaluating it at the appropriate point.
Thus, we obtain an |F |-local decoder.

Using a constant m, we obtain an O(k1/m)-locally decodable code of constant
rate (i.e., n = O(k)), over an alphabet of size O(k1/m). On the other hand,
using m = ε log k/ log log k (for any constant ε > 0), we obtain a poly(log k)-
locally decodable code of length n = k1+ε, over an alphabet of size poly(log k).
Concatenation with any reasonable40 binary code (coupled with a trivial decoder
that reads the entire codeword), yields a binary poly(log k)-locally decodable
code of length n = k1+ε.

40 Indeed, we may use any good code (i.e., linear length and linear distance), as such
can be easily constructed for block length O(log log k). But we can even use the
Hadamard code, because the length overhead caused by it in this setting is negligible.
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4.2.3 Lower bounds
It is known that locally decodable codes cannot be T2-nearly linear:41 Specifi-
cally, any q-locally decodable code C : Σk → Σn must satisfy n = Ω(k1+ 1

q−1 )
(cf. [46]). For q = 2 and Σ = {0, 1}, an exponential lower bound is known
(cf. [48], following [41]).

We mention that our past conjectures regarding lower bounds for locally de-
codable (binary) codes were disproved twice. Our conjectured lower bound of
n > exp(kΩ(1/q)) for q-locally decodable codes was disproved by [9], and our
conjectured lower bound of n > exp(kΩ(1)) for any locally decodable code was
disproved by [29] (after being vastly shaken by [62]). Given this history, we
dare not make any further conjectures, but instead pose the following open
problem.

Open Problem 4.4. Determine whether there exist locally decodable codes of
polynomial length.

Recall that we know, for a fact, that T2-nearly linear length is impossible, and
it is very tempting to conjecture that T1-nearly linear length is impossible too
(i.e., any locally decodable code C : Σk → Σn requires n > k1+Ω(1)). Still, let
us pose this too as an open problem.

4.3 Relaxations

In light of the fact that locally decodable codes cannot be T2-nearly linear, it is
natural to seek relaxations to the notion of locally decodable codes. One natural
relaxation requires local recovery of most individual information-bits, allowing
for recovery-failure (but not error) on the rest [15]: That is, it is requires that,
whenever few location are corrupted, the decoder should be able to recover
most of the individual information-bits, based on a constant number of queries,
and for the rest of the locations the decoder may output a fail symbol (but
not the wrong value). Augmenting these requirements by the requirement that
whenever the codeword is not corrupted – all bits are recovered correctly (with
high probability), yields the following definition.

Definition 4.5 (locally decodable codes, relaxed): For functions n, σ : N → N,
let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K . For q ∈ N and δ, ρ ∈ (0, 1), a q-local
relaxed (δ, ρ)-decoder for C is a probabilistic (non-adaptive) oracle machine M
that makes at most q queries and satisfies the following conditions:

Local recovery from uncorrupted codewords: For every i∈ [k] and x=(x1, ..., xk)
∈ Σk, it holds that Pr[MC(x)(1k, i)=xi] > 2/3,

Relaxed local recovery from somewhat corrupted codewords: For every x =
(x1, ..., xk) ∈ Σk, and any w ∈ Σn that is δ-close to C(x), the following
two conditions hold:

41 See terminology in §3.3.1.



Short Locally Testable Codes and Proofs 369

1. For every i ∈ [k], it holds that Pr[MC(x)(1k, i)∈{xi,⊥}] > 2/3, where
⊥ is a special (“failure”) symbol.

2. There exists a set Iw ⊆ [k] of size at least ρk such that, for every i ∈ Iw,
it holds that Pr[MC(x)(1k, i)=xi] > 2/3.42

In such a case, C is said to be locally relaxed-decodable.

It turns out (cf. [15]) that Condition 2, in the relaxed recovery requirement, es-
sentially follows from the other requirements. That is, codes satisfying the other
requirements can be transformed into locally relaxed-decodable codes, while es-
sentially preserving their rate (and distance). Furthermore, the resulting codes
satisfy the following stronger form of Condition 2: There exists a set Iw ⊆ [k]
of density at least 1 − O(Δ(w, C(x))/n) such that for every i ∈ Iw it holds that
Pr[MC(x)(1k, i)=xi] > 2/3.

Theorem 4.6 [15]: There exist locally relaxed-decodable codes of T1-nearly lin-
ear length. Specifically, for every ε > 0, there exists codes of length n = k1+ε

that have a O(1/ε2)-local relaxed (Ω(ε), 1 −O(ε))-decoder.

An obvious open problem is to separate locally decodable codes from relaxed
ones. This may follow by either improving the aforementioned lower bound on
the length of locally decodable codes or by providing relaxed locally decodable
codes of T2-nearly linear length.
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Bravely, Moderately: A Common Theme in Four

Recent Works

Oded Goldreich

Abstract. We highlight a common theme in four relatively recent works
that establish remarkable results by an iterative approach. Starting from
a trivial construct, each of these works applies an ingeniously designed
sequence of iterations that yields the desired result, which is highly non-
trivial. Furthermore, in each iteration, the construct is modified in a
relatively moderate manner. The four works we refer to are

1. the polynomial-time approximation of the permanent of non-negative
matrices (by Jerrum, Sinclair, and Vigoda, 33rd STOC, 2001);

2. the iterative (Zig-Zag) construction of expander graphs (by Reingold,
Vadhan, and Wigderson, 41st FOCS, 2000);

3. the log-space algorithm for undirected connectivity (by Reingold,
37th STOC, 2005);

4. and, the alternative proof of the PCP Theorem (by Dinur, 38th
STOC, 2006).

Keywords: Approximation, Expander Graphs, Log-Space, Markov
Chains, NP, Permanent, PCP, Space Complexity, Undirected Connec-
tivity.

An early version of this survey appeared as TR05-098 of ECCC.

1 Introduction

Speude bradeos.1

The title of this essay employs more non-technical terms than one is accustomed
to encounter in the title of a technical survey, let alone that some are rarely used
in a technical context. Indeed, this is an unusual survey, written in an attempt
to communicate a feeling that cannot be placed on sound grounds. The feeling
is that there is a common theme among the works to be reviewed here, and
that this common theme is intriguing and may lead to yet additional important
discoveries. We hope that also readers that disagree with the foregoing feeling
may benefit from the perspective offered by lumping the said works together and
highlighting a common theme.
1 This Ancient Greek proverb, reading hasten slowly, is attributed to Augustus; see

C. Suetonius Tranquillus, D. Octavius Caesar Augustus, paragraph XXV. The in-
tention seems to be a calling for action that is marked by determination and thor-
oughness, which characterizes the “moderate revolution” of Rome under Augustus.
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We are going to review four celebrated works, each either resolving a central
open problem or providing an alternative proof for such a central result. The
common theme that we highlight is the (utmost abstract) attitude of these works
towards solving the problem that they address. Rather than trying to solve the
problem by one strong blow, each of these works goes through a long sequence
of iterations, gradually transforming the original problem into a trivial one. (At
times, it is more convenient to view the process as proceeding in the opposite
direction; that is, gradually transforming a solution to the trivial problem into a
solution to the original problem.) Anyhow, each step in this process is relatively
simple (in comparison to an attempt to solve the original problem at one shot),
and it is the multitude of iterated steps that does the job. Let us try to clarify
the foregoing description by providing a bird’s eye view of each of these works.

1.1 A Bird’s Eye View of the Four Works

Following are very high level outlines of the aforementioned works. At this point
we avoid almost all details (including crucial ones), and refrain from describing
the context of these works (i.e., the history of the problems that they address).
Instead, we focus on the iterative processes eluded to above. More detailed de-
scriptions as well as comments about the history of the problems are to be found
in corresponding sections of this essay.

Approximating the permanent of non-negative matrices. The probabilistic
polynomial-time approximation algorithm of Jerrum, Sinclair, and Vigoda [18]
is based on the following observation: Knowing (approximately) certain param-
eters of a non-negative matrix M allows to approximate the same parameters
for a matrix M ′, provided that M and M ′ are sufficiently similar. Specifically,
M and M ′ may differ only on a single entry, and the ratio of the corresponding
values must be sufficiently close to one. Needless to say, the actual observation
(is not generic but rather) refers to specific parameters of the matrix, which in-
clude its permanent. Thus, given a matrix M for which we need to approximate
the permanent, we consider a sequence of matrices M0, ..., Mt ≈ M such that
M0 is the all 1’s matrix (for which it is easy to evaluate the said parameters),
and each Mi+1 is obtained from Mi by reducing some adequate entry by a factor
sufficiently close to one. This process of (polynomially many) gradual changes,
allows to transform the dummy matrix M0 into a matrix Mt that is very close
to M (and hence has a permanent that is very close to the permanent of M).
Thus, approximately obtaining the parameters of Mt allows to approximate the
permanent of M .

The iterative (Zig-Zag) construction of expander graphs. The construction of
constant-degree expander graphs by Reingold, Vadhan, and Wigderson [26] pro-
ceeds in iterations. Its starting point is a very good expander G of constant size,
which may be found by exhaustive search. The construction of a large expander
graph proceeds in iterations, where in the ith iteration the current graph Gi and
the fixed graph G are combined (via a so-called Zig-Zag product) to obtain the
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larger graph Gi+1. The combination step guarantees that the expansion prop-
erty of Gi+1 is at least as good as the expansion of Gi, while Gi+1 maintains
the degree of Gi and is a constant times larger than Gi. The process is initiated
with G1 = G2, and terminates when we obtain a graph of approximately the
desired size (which requires a logarithmic number of iterations). Thus, the last
graph is a constant-degree expander of the desired size.

The log-space algorithm for undirected connectivity. The aim of Reingold’s al-
gorithm [25] is to (deterministically) traverse an arbitrary graph using logarith-
mic amount of space. Its starting point is the fact that any expander is easy
to traverse in deterministic logarithmic-space, and thus the algorithm gradu-
ally transforms any graph into an expander, while maintaining the ability to
map a traversal of the latter into a traversal of the former. Thus, the algorithm
traverses a virtual graph, which being an expander is easy to traverse in deter-
ministic logarithmic-space, and maps the virtual traversal of the virtual graph
to a real traversal of the actual input graph. The virtual graph is constructed
in (logarithmically many) iterations, where in each iteration the graph becomes
easier to traverse. Specifically, in each iteration the expansion property of the
graph improves by a constant factor, while the graph itself only grows by a
constant factor, and each iteration can be performed (or rather emulated) in
constant space. Since each graph has some noticeable expansion (i.e., expansion
inversely related to the size of the graph), after logarithmically many steps this
process yields a good expander (i.e., constant expansion).

The alternative proof of the PCP Theorem. Dinur’s novel approach [12] to the
proof of the PCP Theorem is based on gradually improving the performance of
PCP-like systems. The starting point is a trivial PCP-like system that detects
error with very small but noticeable probability. Each iterative step increases the
detection probability of the system by a constant factor, while incurring only a
small overhead in other parameters (i.e., the randomness complexity increases
by a constant term). Thus, the PCP Theorem (asserting constant detection
probability for NP) is obtained after logarithmically many such iterative steps.
Indeed, the heart of this approach is the detection amplification step, which
may be viewed as simple only in comparison to the original proof of the PCP
Theorem.

1.2 An Attempt to Articulate the Thesis

The current subsection will contain an attempt to articulate the thesis that
there is a common theme among these works. Readers who do not care about
philosophical discussions (and other attempts to say what cannot be said) are
encouraged to skip this subsection. In order to emphasize the subjective nature
of this section, it is written in first person singular.

I will start by saying a few works about bravery and moderation. I consider
as brave the attempt to resolved famous open problems or provide alternative
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proofs for central celebrated results.2 To try a totally different approach is also
brave, and so is realizing one’s limitations and trying a moderate approach:
Rather than trying to resolve the problem in a single blow, one wisely designs a
clever scheme that gradually progresses towards the desired goal. Indeed, this is
the victory of moderation.

Getting to the main thesis of this essay (i.e., the existence of a common
theme among the reviewed works), I believe that I have already supported a
minimalistic interpretation of this thesis by the foregoing bird’s eye view of
the four works. That is, there is an obvious similarity among these bird’s eye
views. However, some researchers may claim (and indeed have claimed) that this
similarity extends also to numerous other works and to various other types of
iterative procedures. This is the claim I wish to oppose here: I believe that the
type of iterative input-modification process that underlies the aforementioned
works is essentially novel and amounts to a new algorithmic paradigm.

Let me first give a voice to the skeptic. For example, Amnon Ta-Shma, play-
ing the Devil’s advocate, claims that many standard iterative procedures (e.g.,
repeated squaring) may be viewed as “iteratively modifying the input” (rather
than iteratively computing an auxiliary function of it, as I view it). Indeed, the
separation line between input-modification and arbitrary computation is highly
subjective, and I don’t believe that one can rigorously define it. Nevertheless,
rejecting Wittgenstein’s advice [29, §7], I will try to speak about it.

My claim is that (with the exception of the iterative expander construction
of [26]) the reviewed works do not output the modified input, but rather a
function of it, and they modify the input in order to ease the computation of
the said function. That is, whereas the goal was to compute a function of the
original input, they compute a function of the final modified input, and obtain
the originally desired value (of the function evaluated at the original input) by a
process that relies on the relatively simplicity of the intermediate modifications.
The line that I wish to draw is between iteratively producing modified inputs
(while maintaining a relation between the corresponding outputs) and iteratively
producing better refinements of the desired output while keeping the original input
intact. Indeed, I identify the latter with standard iterative processes (and the
former with the common theme of the four reviewed works).

My view is that in each of these works, the input itself undergoes a gradual
transformation in order to ease some later process. This is obvious in the case
of approximating the permanent [18] and in the case of traversing a graph in
log-space [25], but it is also true with respect to the other two cases: In Dinur’s

2 Consider the problems addressed by the four reviewed works: The problem of ap-
proximating the permanent was open since Valiant’s seminal work [28] and has re-
ceived considerable attention since Broder’s celebrated work [11]. Constructions of
expander graphs were the focus of much research since the 1970’s, and were typically
based on non-elementary mathematics (cf. [21,16,20]). The existence of deterministic
log-space algorithms for undirected connectivity has been in the focus of our commu-
nity since the publication of the celebrated randomized log-space algorithm of Aleli-
unas et. al. [1]. The PCP Theorem, proved in the early 1990’s [5,6], is closely related
(via [14,5]) to the study of approximation problems (which dates to the early 1970’s).
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proof [12] of the PCP Theorem the actual iterative process consists of a sequence
of Karp-reductions (which ends with a modified instance that has a simple PCP
system), and in the iterative construction of expanders [26] the size of the desired
expander increases gradually. In contrast, in typical proofs by induction, it is the
problem itself that gets modified, whereas standard iterative procedures refer
to sub-problems that relate to auxiliary constructs. Indeed, the separation line
between the iterative construction of expanders and standard iterative analysis
is the thinnest, but the similarity between it and the results of Reingold [25] and
Dinur [12] may appeal to the skeptic.

I wish to stress that the aforementioned iterative process that gradually trans-
forms the input is marked by the relative simplicity of each iteration, especially in
comparison to the full-fledged task being undertaken. In the case of Reingold’s log-
space algorithm [25], each iteration needs to be implemented in constant amount
of space, which is indeed a good indication to its simplicity. In the case of the ap-
proximation of the permanent [18], each iteration is performed by a modification of
a known algorithm (i.e., of [17]). In the iterative construction of expanders [26], a
graph powering and a new type of graph product are used and analyzed, where the
analysis is simple in comparison to either of [21,16,20]. Lastly, in Dinur’s proof [12]
of the PCP Theorem, each iteration is admittedly quite complex, but not when
compared to the original proof of the PCP Theorem [6,5].

The similarity among the iterated Zig-Zag construction of [26], the log-space
algorithm for undirected connectivity of [25], and the new approach to the PCP
Theorem of [12] has been noted by many researchers (see, e.g., [25,12] them-
selves). However, I think that the noted similarity was more technical in nature,
and was based on the role of expanders and “Zig-Zag like” operations in these
works. In contrast, my emphasis is on the sequence of gradual modifications, and
thus I view the permanent approximator of [18] just as close in spirit to these
works. In fact, as is hinted in the foregoing discussion, I view [25,12] as closer in
spirit to [18] than to [26].

2 Approximating the Permanent of Non-negative
Matrices

The permanent of a n-by-n matrix (ai,j) is the sum, taken over all permutations
π : [n] → [n], of

∏n
i=1 ai,π(i). Although defined very similarly to the determinant

(i.e., just missing the minus sign in half of the terms), the permanent seems
to have a totally different complexity than the determinant. In particular, in
a seminal work [28], Valiant showed that the permanent is #P-complete; that
is, counting the number of solutions to any NP-problem is polynomial-time re-
ducible to computing the permanent of 0-1 matrices, which in turn counts the
number of perfect matchings in the corresponding bipartite graph. Furthermore,
the reduction of NP-counting problems to the permanent of integer matrices
preserves the (exact) number of solutions (when normalized by an easy to com-
pute factor), and hence approximating the permanent of such matrices seems
infeasible (because it will imply P = NP). It was noted that the same does
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not hold for 0-1 matrices (or even non-negative matrices). In fact, Broder’s cel-
ebrated work [11] introduced an approach having the potential to yield efficient
algorithms for approximating the permanent of non-negative matrices. Fifteen
years later, this potential was fulfilled by Jerrum, Sinclair, and Vigoda, in a
work [18] to be reviewed here.

The algorithm of Jerrum, Sinclair, and Vigoda [18] follows the general
paradigm of Broder’s work (which was followed by all subsequent works in the
area): The approach is based on the relation between approximating the ratio
of the numbers of perfect and nearly perfect matchings of a graph and sampling
uniformly a perfect or nearly perfect matching of a graph, where a nearly perfect
matching is a matching that leave unmatched a single pair of vertices. In or-
der to perform the aforementioned sampling, one sets-up a huge Markov Chain
with states corresponding to the set of perfect and nearly perfect matchings of
the graph. The transition probability of the Markov Chain maps each perfect
matching to a nearly perfect matching obtained by omitting a uniformly selected
edge (in the perfect matching). The transition from a nearly perfect matching
that misses the vertex pair (u, v) is determined by selecting a random vertex z,
adding (u, v) to the matching if z ∈ {u, v} and (u, v) is an edge of the graph,
and adding (u, z) to the matching and omitting (x, z) from it if z /∈ {u, v} and
(u, z) is an edge of the graph. By suitable modification, the stationary distri-
bution of the chain equals the uniform distribution over the set of perfect and
nearly perfect matchings of the graph. The stationary distribution of the chain
is approximately sampled by starting from an arbitrary state (e.g., any perfect
matching) and taking a sufficiently long walk on the chain.

This approach depends on the mixing time of the chain (i.e., the number of
steps needed to get approximately close to its stationary distribution), which in
turn is linearly related to the ratio of the numbers of nearly perfect and perfect
matchings in the underlying graph (see [17]). (We mention that the later ratio
also determines the complexity of the reduction from approximating this ratio
to sampling the stationary distribution of the chain.) When the latter ratio is
polynomial, this approach yields a polynomial-time algorithms, but it is easy to
see that there are graphs for which the said ratio is exponential.

One key observation of [18] is that the latter problem can be fixed by intro-
ducing auxiliary weights that when applied (as normalizing factors) to all nearly
perfect matchings yield a situation in which the set of perfect matchings has
approximately the same probability mass (under the stationary distribution) as
the set of nearly perfect matchings. Specifically, for each pair (u, v), we consider
a weight w(u, v) such that the probability mass assigned to perfect matchings
approximately equals w(u, v) times the probability mass assigned to nearly per-
fect matchings that leaves the vertices u and v unmatched. Needless to say, in
order to determine the suitable weights, one needs to know the corresponding
ratios, which seems to lead to a vicious cycle.

Here is where the main idea of [18] kicks in: Knowing the approximate sizes of
the sets of perfect and nearly perfect matchings in a graph G allows to efficiently
approximate these parameters for a related graph G′ that is closed to G, by running
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the Markov Chain that corresponds to G′ under weights as determined for G. This
observation is the basis of the iterative process outlined in the Introduction: We
start with a trivial graph G0 for which the said quantities are easy to determine,
and consider a sequence of graphs G1, ..., Gt such that Gi+1 is sufficiently close
to Gi, and Gt is sufficiently close to the input graph. We approximate the said
quantities for Gi+1 using the estimated quantities for Gi, and finally obtain an
approximation of the number of perfect matchings in the input graph.

The algorithm actually works with weighted graphs, where the weight of a
matching is the product of the weights of the edges in the matching. We start
with G0 that is a complete graph (i.e., all edges are present, each at weight 1),
and let Gi+1 be a graph obtained from Gi by reducing the weight of one of the
non-edges of the input graph by a factor of ρ = 9/8. Using such a sequence,
for t = Õ(n3), we can obtain a graph Gt in which the edges of the input graph
have weight 1 while non-edges of the input graph have weight lower than 1/(n!).
Approximating the total weight of the weighted perfect matchings in Gt provides
the desired approximation to the input graph.

Digest. The algorithm of Jerrum, Sinclair, and Vigoda [18] proceeds in itera-
tions, using a sequence of weighted graphs G0, ..., Gt such that G0 is the complete
(unweighted) graph, Gi+1 is a sufficiently close approximation of Gi, and Gt is
a sufficiently close approximation to the input graph. We start knowing the
numbers of perfect and nearly perfect matchings in G0 (which is easily deter-
mined by the number of vertices). In the ith iteration, using approximations for
the numbers of perfect and nearly perfect matchings in Gi, we compute such
approximations for Gi+1. These approximations are obtained by running an ad-
equate Markov Chain (which refers to Gi+1), and the fact that we only have
(approximations for) the quantities of Gi merely effects the mixing time of the
chain (in a non-significant way). Thus, gradually transforming a dummy graph
G0 into the input graph, we obtain approximations to relevant parameters of all
the graphs, where the approximated parameters of Gi allow us to obtain the ap-
proximated parameters of Gi+1, and the approximated parameters of Gt include
an approximation of the number of perfect matchings in the input graph.

Comment. We mention that a different iterative process related to the approxi-
mation of the permanent was previously studied in [19]. In that work, an input
matrix is transformed to an approximately Doubly Stochastic (aDS) matrix, by
iteratively applying row and column scaling operations, whereas for any aDS
n-by-n matrix the permanent is at least Ω(exp(−n)) and at most 1.

3 The Iterative (Zig-Zag) Construction of Expander
Graphs

By expander graphs (or expanders) of degree d and eigenvalue bound λ < d,
we mean an infinite family of d-regular graphs, {Gn}n∈S (S ⊆ N), such that
Gn is a d-regular graph with n vertices and the absolute value of all eigenvalues,
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except the biggest one, of the adjacency matrix of Gn is upper-bounded by λ.
This algebraic definition is related to the combinatorial definition of expansion
in which it is required that any (not too big) set of vertices in the graph must
have a relatively large set of strict neighbors (i.e., is “expanding”); see [3] and [2].
It is often more convenient to refer to the relative eigenvalue bound defined as
λ/d.

We are interested in explicit constructions of expander graphs, where the
minimal notion of explicitness requires that the graph be constructed in time
that is polynomial in its size (i.e., there exists a polynomial time algorithm that,
on input 1n, outputs Gn).3 A stronger notion of explicitness requires that there
exists a polynomial-time algorithm that on input n (in binary), a vertex v ∈ Gn

and an index i ∈ [d] def= {1, ..., d}, returns the ith neighbor of v. Many explicit
constructions of expanders were given, starting in [21] (where S is the set of all
quadratic integers), and culminating in the optimal construction of [20] (where
λ = 2

√
d− 1 and S is somewhat complex). These constructions are quite simple

to present, but their analysis is based on non-elementary results from various
branches of mathematics. In contrast, the following construction of Reingold,
Vadhan, and Wigderson [26] is based on an iterative process, and its analysis is
based on a relatively simple algebraic fact regarding the eigenvalues of matrices.

The starting point of the construction (i.e., the base of the iterative process)
is a very good expander G of constant size, which may be found by an exhaustive
search. The construction of a large expander graph proceeds in iterations, where
in the ith iteration the graphs Gi and G are combined to obtain the larger graph
Gi+1. The combination step guarantees that the expansion property of Gi+1 is
at least as good as the expansion of Gi, while Gi+1 maintains the degree of Gi

and is a constant times larger than Gi. The process is initiated with G1 = G2

and terminates when we obtain a graph Gt of approximately the desired size
(which requires a logarithmic number of iterations).

The heart of the combination step is a new type of “graph product” called Zig-
Zag product. This operation is applicable to any pair of graphs G = ([D], E) and
G′ = ([N ], E′), provided that G′ (which is typically larger than G) is D-regular.
For simplicity, we assume that G is d-regular (where typically d � D). The
Zig-Zag product of G′ and G, denoted G′©z G, is defined as a graph with vertex
set [N ] × [D] and an edge set that includes an edge between 〈u, i〉 ∈ [N ] × [D]
and 〈v, j〉 if and only if (i, k), (	, j) ∈ E and the kth edge incident at u equals
the 	th edge incident at v.

It will be convenient to represent graphs like G′ by their edge rotation func-
tion4, denoted R′ : [N ]× [D] → [N ]× [D], such that R′(u, i) = (v, j) if (u, v) is
the ith edge incident at u as well as the jth edge incident at v. That is, applying
R′ to (u, i) “rotates” the ith edge incident at vertex u, yielding its representation

3 We also require that the set S for which Gn’s exist is sufficiently “tractable”: say,
that given any n ∈ N one may efficiently find s ∈ S so that n ≤ s < 2n.

4 In [26] (and [25]) these functions are called rotation maps. As these functions are
actually involutions (i.e., R(R(x)) = x for every x ∈ [N ]×[D]), one may prefer terms
as “edge rotation permutations” or “edge rotation involutions”.



Bravely, Moderately: A Common Theme in Four Recent Works 381

from its other endpoint view (i.e., as the jth edge incident at vertex v, assuming
R′(u, i) = (v, j)). For simplicity, we assume that G is edge-colorable with d col-
ors, which in turn yields a natural edge rotation function (i.e., R(i, α) = (j, α)
if the edge (i, j) is colored α). We will denote by Eα(i) the vertex reached from
i ∈ [D] by following the edge colored α (i.e., Eα(i) = j iff R(i, α) = (j, α)). The
Zig-Zag product of G′ and G, denoted G′©z G, is then defined as a graph with the
vertex set [N ]× [D] and the edge rotation function

(〈u, i〉, 〈α, β〉) �→ (〈v, j〉, 〈β, α〉) if R′(u, Eα(i)) = (v, Eβ(j)). (1)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of ver-
tex 〈u, i〉 ∈ [N ] × [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge)
if R(u, Eα(i)) = (v, Eβ(j)). (Pictorially, based on the G′©z G-label 〈α, β〉, we
take a G-step from 〈u, i〉 to 〈u, Eα(i)〉, then viewing 〈u, Eα(i)〉 ≡ (u, Eα(i))
as an edge of G′ we rotate it to obtain (v, j′) def= R′(u, Eα(i)), and finally
take a G-step from 〈v, j′〉 to 〈v, Eβ(j′)〉, while defining j = Eβ(j′) and using
j′ = Eβ(Eβ(j′)) = Eβ(j).)

Clearly, the graph G′©z G is d2-regular and has D · N vertices. The key
fact, proved in [26], is that the relative eigenvalue of the zig-zag produce is
upper-bounded by the sum of the relative eigenvalues of the two graphs (i.e.,
λ(G′©z G) ≤ λ(G′) + λ(G), where λ(·) denotes the relative eigenvalue of the
relevant graph).5

The iterated expander construction uses the aforementioned zig-zag product
as well as graph squaring. Specifically, the construction starts with a d-regular
graph G = ([D], E) such that D = d4 and λ(G) < 1/4. Letting G1 = G2 =
([D], E2), the construction proceeds in iterations such that Gi+1 = G2

i©z G for
i = 1, 2, ..., t − 1. That is, in each iteration, the current graph is first squared
and then composed with the fixed graph G via the zig-zag product. This process
maintains the following two invariants:

1. The graph Gi is d2-regular and has Di vertices.
This holds for G1 = G2 (since G is d-regular with D vertices), and is main-
tained for the other Gi’s because a zig-zag product (of a D-regular N ′-vertex
graph) with a d-regular (D-vertex) graph yields a d2-regular graph (with
D ·N ′ vertices).

2. The relative eigenvalue of Gi is smaller than one half.
Here we use the fact that λ(G2

i−1©z G) ≤ λ(G2
i−1) + λ(G), which in turn

equals λ(Gi−1)2 + λ(G) < (1/2)2 + 1/4. (Note that graph squaring is used
to reduce the relative eigenvalue of Gi before allowing its moderate increase
by the zig-zag product with G.)

To ensure that we can construct Gi, we should show that we can actually con-
struct the edge rotation function that correspond to its edge set. This boils down
to showing that, given the edge rotation function of Gi−1, we can compute the
5 In fact, the upper-bound proved in [26] is stronger. In particular, it also implies that

1 − λ(G′©z G) ≥ (1 − λ(G)2) · (1 − λ(G′))/2.
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edge rotation function of G2
i−1 as well as of its zig-zag product with G. Note

that this computation amounts to two recursive calls to computations regarding
Gi−1 (and two computations that correspond to the constant graph G). But
since the recursion is logarithmic in the size of the final graph, the time spend
in the recursive computation is polynomial in the size of the final graph. This
suffices for the minimal notion of explicitness, but not for the stronger one.

To achieve a strongly explicit construction, we slightly modify the iterative
construction. Rather than letting Gi+1 = G2

i©z G, we let Gi+1 = (Gi ×Gi)2©z G,
where G′ ×G′ denotes the tensor product of G′ with itself (i.e., if G′ = (V ′, E′)
then G′×G′ = (V ′×V ′, E′′), where E′′ = {(〈u1, u2〉, 〈v1, v2〉) : (u1, v1), (u2, v2)∈
E′} with an edge rotation function R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈j1, j2〉)
where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2)). (We still use G1 = G2.)
Using the fact that tensor product preserves the relative eigenvalue and us-
ing a d-regular graph G = ([D], E) with D = d8, we note that the modified
Gi = (Gi−1 × Gi−1)2©z G is a d2-regular graph with (D2i−1−1)2 · D = D2i−1

vertices, and λ(Gi) < 1/2 (because λ((Gi−1 ×Gi−1)2©z G) ≤ λ(Gi−1)2 + λ(G)).
Computing the neighbor of a vertex in Gi boils down to a constant number of
such computations regarding Gi−1, but due to the tensor product operation the
depth of the recursion is only double-logarithmic in the size of the final graph
(and hence logarithmic in the length of the description of vertices in it).

Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is to
reduce the degree, and the increase in the size of the graph is merely a side-effect
(which is actually undesired in Section 4). In both cases, graph squaring is used
in order to compensate for the modest increase in the relative eigenvalue caused
by the zig-zag product. In retrospect, the second construction is the “correct”
one, because it decouples three different effects, and uses a natural operation
to obtain each of them: Increasing the size of the graph is obtained by tensor
product of graphs (which in turn increases the degree), a degree reduction is
obtained by the zig-zag product (which in turn increases the relative eigenvalue),
and graph squaring is used in order to reduce the relative eigenvalue.

A second theme. In continuation to the previous comment, we note that the
successive application of several operations, each improving a different parameter
(while not harming too much the others), reappears in the works of Reingold [25]
and Dinur [12]. This theme has also appeared before in several other works
(including [6,5,13]).6

6 We are aware of half a dozen of other works, but guess that they are many more.
We choose to cite here only works that were placed in the reference list for other
reasons. Indeed, this second theme appears very clearly in PCP constructions (e.g.,
first optimizing randomness at the expense of number of queries and then reducing
the latter at the expense of a bigger alphabet (not to mention the very elaborate
combination in [13])).
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4 The Log-Space Algorithm for Undirected Connectivity

For more than two decades, undirected connectivity was one of the most appeal-
ing examples of the computational power of randomness. Whereas every graph
can be efficiently traversed by a deterministic algorithm, the classical (deter-
ministic) linear-time algorithms (e.g., BFS and DFS) require an extensive use of
(extra) memory (i.e., space linear in the size of the graph). On the other hand,
in 1979 Aleliunas et. al. [1] showed that, with high probability, a random walk of
polynomial length visits all vertices (in the corresponding connected component).
Thus, the randomized algorithm requires a minimal amount of auxiliary mem-
ory (i.e., logarithmic in the size of the graph). In the early 1990’s, Nisan [22,23]
showed that any graph can be traversed in polynomial-time and poly-logarithmic
space, but despite more than a decade of research attempts (see, e.g., [4]), a
significant gap remained between the space complexity of randomized and de-
terministic polynomial-time algorithms for this natural and ubiquitous problem.
This gap was recently closed by Reingold, in a work [25] reviewed next.

Reingold presented a deterministic polynomial-time algorithm that traverses
any graph while using a logarithmic amount of auxiliary memory. His algorithm
is based on a novel approach that departs from previous attempts, which tried
to derandomize the random-walk algorithm. Instead, Reingold’s algorithm tra-
verses a virtual graph, which (being an expander) is easy to traverse (in deter-
ministic logarithmic-space), and maps the virtual traversal of the virtual graph
to a real traversal of the actual input graph. The virtual graph is constructed
in (logarithmically many) iterations, where in each iteration the graph becomes
easier to traverse. Specifically, in each iteration, each connected component of
the graph becomes closer to a constant-degree expander in the sense that (the
graph has constant degree and) the gap between its relative eigenvalue and 1
doubles.7 Hence, after logarithmically many iterations, each connected compo-
nent becomes a constant-degree expander, and thus has logarithmic diameter.
Such a graph is easy to traverse deterministically using logarithmic space (e.g.,
by scanning all paths of logarithmic length going out of a given vertex, while
noting that each such path can be represented by a binary string of logarithmic
length).

The key point is to maintain the connected components of the graph while
making each of them closer to an expander. Towards this goal, Reingold applies a
variant of the iterated zig-zag construction (presented in Section 3), starting with
the input graph, and iteratively composing the current graph with a constant-
size expander. Details follow.

For adequate positive integers d and c, we first transform the actual input
graph into a d2-regular graph (e.g., by replacing each vertex v with a (multi-
edge) cycle Cv and using each vertex on Cv to take care of an edge incident
to v). Denoting the resulting graph by G1 = (V1, E1), we go through a loga-
rithmic number of iterations letting Gi+1 = Gc

i©z G for i = 1, ..., t − 1, where
G is a fixed d-regular graph with d2c vertices. Thus, Gi is a d2-regular graph

7 See Section 3 for definition of expander and its relative eigenvalue.
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with d2c·i · |V1| vertices, and 1 − λ(Gi) > max(2(1 − λ(Gi−1)), 1/6), where the
latter upper-bound on λ(Gi) relies on a result of [26] (see Footnote 5). We
infer that 1 − λ(Gi) > max(2i · (1 − λ(G1)), 1/6), and using the fact that
λ(G1) < 1 − (1/poly(|V1|)), which holds for any connected and non-bipartite
graph, it follows that λ(Gt) < 5/6 for t = O(log |V1|). (Indeed, it is instructive
to assume throughout the analysis that (the original input and thus) G1 is con-
nected, and to guaranteed that it is non-bipartite (e.g., by adding self-loops).)

One detail of crucial importance is the ability to transform G1 into Gt via a
log-space computation. It is easy to see that the transformation of Gi to Gi+1

can be performed in constant-space (with an extra pointer), but the standard
composition lemma for space-bounded complexity incurs a logarithmic space
overhead per each composition (and thus cannot be applied here). Still, tak-
ing a closer look at the transformation of Gi to Gi+1, one may note that it is
highly structured and supports a stronger composition result that incurs only a
constant space overhead per composition. An alternative implementation, out-
lined in [25], is obtained by unraveling the composition. The details of these
alternative implementations are beyond the scope of the current essay.8

A minor variant. It is simpler to present a direct implementation of a minor
variant of the foregoing process. Specifically, rather than using the zig-zag prod-
uct G′©z G (of Section 3), one may use the replacement product G′©r G defined as
follows for a D-regular graph G′ = (V ′, E′) and a d-regular graph G = ([D], E):9

The resulting 2d-regular graph has vertex set V ′ × [D] and the following edge
rotation function (which actually induces an edge coloring)

(〈u, i〉, 〈0, α〉) �→ (〈u, Eα(i)〉, 〈0, α〉)
and

(〈u, i〉, 〈1, α〉) �→ (R′(u, i), (1, α)),
(2)

where Eα is as in Section 3. That is, every 〈u, i〉 ∈ V ′× [D] has d incident edges
that correspond to the edges incident at i in G, and d parallel copies of the ith

edge of u in G′. It can be shown that, in the relevant range of parameters, the
replacement product effect the eigenvalues in a way that is similar to the affect
of the zig-zag product (because the two resulting graphs are sufficiently related).

8 We cannot refrain from saying that we prefer an implementation based on compo-
sition, and provide a few hints regarding such an implementation (detailed in [15,
Sec. 5.2.4]). Firstly, we suggest to consider the task of computing the neighbor of
a given vertex in Gi, where the original graph is viewed as an oracle and the ac-
tual input is the aforementioned vertex. This computation can be performed by a
constant-space oracle machine provided that its queries are answered by a similar
machine regarding Gi−1. Second, the overhead involved in standard composition can
be avoided by using a model of “shared memory for procedural calls” and noting
that the aforementioned reduction requires only constant-space in addition to the
log-space shared memory. The key point is that the latter need only be charged once.

9 Since this product yields a 2d-regular graph, in the context of the log-space algorithm
one should set D = (2d)c (rather than D = d2c).
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Another variant. A more significant variant on the construction was subse-
quently presented in [27]. As a basic composition, they utilize a derandomized
graph squaring of a large D-regular graph G′ = (V ′, E′) using a d-regular (ex-
pander) graph G = ([D], E): Unlike the previous composition operations, the
resulting graph, which is a subgraph of the square of G′, has V ′ itself as the
vertex set but the (vertex) degree of the resulting graph is larger than that of
G′. Specifically, the edge rotation function is

(u, 〈i, α〉) �→ (v, 〈j, α〉) if R′(u, i) = (w, k) and R′(w, Eα(k)) = (v, j). (3)

where Eα is as in Section 3. That is, the edge set contains a subset of the edges
of the standard graph square, where this subset corresponds to the edges of the
small (expander) graph G. It can be shown that the derandomized graph squar-
ing effect the eigenvalues in a way that is similar to the combination of squaring
and zig-zag product, but the problem is that the (vertex) degree does not remain
constant through the iterated procedure. Nevertheless, two alternatives ways of
obtaining a log-space algorithm are known, one of which is presented in [27].

5 The Alternative Proof of the PCP Theorem

The PCP Theorem [5,6] is one of the most influential and impressive results of
complexity theory. Proven in the early 1990’s, the theorem asserts that member-
ship in any NP-set can be verified, with constant error probability (say 1%), by
a verifier that probes a polynomially long (redundant) proof at a constant num-
ber of randomly selected locations. The PCP Theorem led to a breakthrough
in the study of the complexity of combinatorial approximation problems (see,
e.g., [14,5]). Its original proof is very complex and involves the composition of
two highly non-trivial proof systems, each minimizing a different parameter of
the PCP system (i.e., proof length and number of probed locations). An alter-
native approach to the proof of the PCP Theorem was recently presented by
Dinur [12], and is reviewed below. In addition to yielding a simpler proof of the
PCP Theorem, Dinur’s approach resolves an important open problem regarding
PCP systems (i.e., constructing a PCP system having proofs of almost-linear
rather than polynomial length).

The original proof of the PCP Theorem focuses on the construction of two
PCP systems that are highly non-trivial and interesting by themselves, and
combines them in a natural manner. Loosely speaking, this combination (via
proof composition) preserves the good features of each of the two systems; that
is, it yields a PCP system that inherits the (logarithmic) randomness complexity
of one system and the (constant) query complexity of the other. In contrast,
Dinur’s approach is focused at the “amplification” of PCP systems, via a gradual
process of logarithmically many steps. It start from a trivial “PCP” system that
rejects false assertions with probability inversely proportional to their length,
and double the rejection probability in each step. In each step, the constant
query complexity is preserved and the length of the PCP oracle is increased only
by a constant factor. Thus, the process gradually transforms a very weak PCP
system into a remarkable PCP system as postulated in the PCP Theorem.
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In order to describe the aforementioned process we need to redefine PCP
systems so to allow arbitrary soundness error. In fact, for technical reasons it is
more convenient to describe the process as an iterated reduction of a “constraint
satisfaction” problem to itself. Specifically, we refer to systems of 2-variable
constraints, which are readily represented by (labeled) graphs.

Definition 5.1 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated
with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
the fraction of unsatisfied constraints under the best possible assignment; that is,

vlt(G, Φ) = min
α:V →Σ

{|{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|/|E|} (4)

For various functions t : N → [0, 1], we will consider the promise problem
gapCSPΣ

t , having instances as above, such that the yes-instances are fully satis-
fiable instances (i.e., vlt = 0) and the no-instances are pairs (G, Φ) satisfying
vlt(G, Φ) > t(|G|), where |G| denotes the number of edges in G.

Note that 3SAT (and thus any other set in NP) is reducible to gapCSP
{1,...,7}
t for

t(m) = 1/m. Our goal is to reduce 3SAT (or rather gapCSP{1,...,7}
t ) to gapCSPΣ

c ,
for some fixed finite Σ and constant c > 0. The PCP Theorem follows by showing
a simple PCP system for gapCSPΣ

c (e.g., consider an alleged proof that encodes
an assignment α : V → Σ, and a verifier that inspects the values of a uniformly
selected constraint). The desired reduction is obtained by iteratively applying
the following reduction logarithmically many times.

Lemma 5.2 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time reduction of gapCSPΣ to itself such
that the following conditions hold with respect to the mapping of any instance
(G, Φ) to the instance (G′, Φ′).

1. If vlt(G, Φ) = 0, then vlt(G′, Φ′) = 0.
2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).
3. |G′| = O(|G|).

Proof outline: The reduction consists of three steps. We first apply a pre-
processing step that makes the underlying graph suitable for further analysis.
The value of vlt may decrease during this step by a constant factor. The heart
of the reduction is the second step in which we may increase vlt by any desired
constant factor. The latter step also increases the alphabet Σ, and thus a post-
processing step is employed to regain the original alphabet (by using any inner
PCP systems; e.g., the Hadamard-based one presented in [5]). Details follow.

We first note that the aforementioned Σ and c, as well as the auxiliary pa-
rameters d and t, are fixed constants that will be determined to satisfy various
conditions that arise in the course of our argument.
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We start with the pre-processing step. Our aim in this step is to reduce the
input (G, Φ) of gapCSPΣ to an instance (G1, Φ1) such that G1 is a d-regular
expander graph. Furthermore, each vertex in G1 will have at least d/2 self-
loops, |G1| = O(|G|), and vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple:
Essentially, the original vertices are replaced by expanders of size proportional
to their degree, and a big (dummy) expander is superimposed on the resulting
graph.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. This is done by reducing the instance (G1, Φ2)
of gapCSPΣ to an instance (G2, Φ2) of gapCSPΣ′

such that Σ′ = Σdt

. Specifically,
the vertex set of G2 is identical to the vertex set of G1, and each t-edge long
path in G1 is replaced by a corresponding edge in G2, which is thus a dt-regular
graph. The constraints in Φ2 are the natural ones, viewing each element of Σ′

as a Σ-labeling of the (“distance ≤ t”) neighborhood of a vertex, and checking
that two such labelings are consistent and satisfy Φ1. That is, suppose that there
is a path of length at most t in G1 going from vertex u to vertex v and passing
through vertex w. Then, there is an edge in G2 between vertices u and v, and the
constraint associated with it mandates that the entries corresponding to vertex
w in the Σ′-labeling of vertices u and v are identical. In addition, if the G1-edge
(w, w′) is on a path of length at most t starting at v, then the corresponding
edge in G2 is associated with a constraint that enforces the constraint that is
associated to (w, w′) in Φ1.

Clearly, if vlt(G1, Φ1) = 0, then vlt(G2, Φ2) = 0. The interesting fact is
that the fraction of violated constraints increases by a factor of Ω(

√
t); that is,

vlt(G2, Φ2) ≥ min(Ω(
√

t ·vlt(G1, Φ1)), c). The intuition is that any Σ′-labeling
to the vertices of G2 must either be consistent with some Σ-labeling of G1 or
violate many edges in G2 (due to the equality conditions that were inserted to all
new constraints). Focusing on the first case and relying on the hypothesis that
G1 is an expander, it follows that the set of violated edge-constraints (of Φ1) with
respect to the aforementioned Σ-labeling causes many more edge-constraints of
Φ2 to be violated. The point is that a set F of edges of G1 is likely to appear
on a min(Ω(t) · |F |/|G1|, Ω(1)) fraction of the edges of G2 (i.e., t-paths of G1).
(Note that the claim is obvious if G1 were a complete graph, but it also holds
for an expander.)10

For a suitable choice of the constant t, the factor of Ω(
√

t) gained in the
second step, makes up for the constant factor lost in the first step (as well
as the constant factor to be lost in the last step), while leaving us with a net
amplification by a constant factor. However, we obtained an instance of gapCSPΣ′

rather than an instance of gapCSPΣ, where Σ′ = Σdt

. The purpose of the last
step is to reduce the latter instance to an instance of gapCSPΣ . This is done by
viewing the instance of gapCSPΣ′

as a (weak) PCP system and composing it with
an inner-verifier, using the proof composition paradigm (of [9,13], which in turn
follow [6]). We stress that the inner-verifier used here needs only handle instances

10 We also note that due to a technical difficulty it is easier to establish the claimed
bound of Ω(

√
t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).
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of constant size (i.e., having description length O(dt log |Σ|)), and so the one
presented in [5] (or [8]) will do. The resulting PCP-system uses randomness r

def=
log2 |G2|+(dt log |Σ|)2 and a constant number of binary queries, and has rejection
probability Ω(vlt(G2, Φ2)), which is independent of the choice of the constant t.
For Σ = {0, 1}O(1), we obtain an instance of gapCSPΣ that has a Ω(vlt(G2, Φ2))
fraction of violated constraints. Furthermore, the size of the resulting instance is
O(2r) = O(|G2|), because d and t are constants. This completes the description
of the last step as well as the proof of the entire lemma. ��

Application to short PCPs. Recall that the PCP Theorem asserts that member-
ship in any NP-set can be verified, with constant error probability, by a verifier
that probes a polynomially long (redundant) proof at a constant number of
randomly selected locations. Denoting by N the length of the standard proof,
the length of the redundant proof was reduced in [9] to exp((log N)ε) · N , for
any ε > 0. An open problem, explicitly posed in [9], is whether the length of
the redundant proof can be reduced to poly(log N) ·N . Building on prior work
of [10], this seemingly difficult open problem was resolved by Dinur [12]: Specifi-
cally, viewing the system of [10] (which makes poly(log N) queries into a proof of
length poly(log N)·N) as a PCP system with rejection probability 1/poly(log N),
Dinur applies the foregoing amplification step for a double-logarithmic number
of times, thus deriving the desired PCP system.
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On the Complexity of Computational Problems

Regarding Distributions

Oded Goldreich and Salil Vadhan

Abstract. We consider two basic computational problems regarding
discrete probability distributions: (1) approximating the statistical dif-
ference (aka variation distance) between two given distributions, and (2)
approximating the entropy of a given distribution. Both problems are
considered in two different settings. In the first setting the approxima-
tion algorithm is only given samples from the distributions in question,
whereas in the second setting the algorithm is given the “code” of a
sampling device (for the distributions in question).

We survey the know results regarding both settings, noting that they
are fundamentally different: The first setting is concerned with the num-
ber of samples required for determining the quantity in question, and is
thus essentially information theoretic. In the second setting the quanti-
ties in question are determined by the input, and the question is merely
one of computational complexity. The focus of this survey is actually
on the latter setting. In particular, the survey includes proof sketches
of three central results regarding the latter setting, where one of these
proofs has only appeared before in the second author’s PhD Thesis.

Keywords: Approximation, Reductions, Entropy, Statistical Difference,
Variation Distance, Sampleable Distributions, Zero-Knowledge, and
Promise Problems.

This survey was first drafted in 2003, and was recently posted as ECCC TR11-
004.

1 Introduction

We consider two basic computational problems regarding discrete probability
distributions:

1. Computing (or rather approximating) the statistical difference (aka variation
distance) between two given distributions.

2. Computing (or rather approximating) the entropy of a given distribution.

The foregoing informal phrases avoid the question of representation; that is, how
are the distributions given to the algorithms. Both computational problems are
quite trivial in the case that the distributions are explicitly given to the algorithm
(i.e., by a list of all elements in the support of the distribution coupled with the
probability mass assigned to them). Very good additive approximations can be
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obtained also in the case that the algorithm is given sufficiently many samples
(drawn independently) from the distribution, where “sufficiently many” means
linear in the size of the distribution’s support. For example, given N/poly(ε)
samples from a distribution that has support size (at most) N , one can estimate
the distribution’s entropy up-to an additive deviation of ε (w.v.h.p.). The same
number of samples suffices for approximating the statistical distance between
two such distributions (again, up to an additive deviation of ε, w.v.h.p.).

The question is whether such approximations (or even weaker ones) can be
obtained based on significantly less samples. At the very least, we are inter-
ested in algorithms that take o(N) samples (i.e., a “sub-linear” (in the support
size) number of samples). In Section 3, we survey what is known regarding this
question. The bottom-line is that weak approximations of both quantities can
be obtained using Ne samples, for some e < 1, but nothing significant can be
achieved with No(1) samples.

We note that the foregoing question is essentially an information-theoretical
one; that is, the question refers to the number of samples required to make some
estimations regarding the distribution(s). In contrast, in Section 4, we consider
a purely computational-complexity problem: We consider algorithms that are
given the “code” of a sampling device (for the distributions in question). We
stress that such a device fully determines the distribution (from an information-
theoretic point of view), and the issue is what quantities can be efficiently com-
puted based on this description of the distribution. Note that the algorithm may,
of course, use the sampling device in order to generate samples. However, the
algorithm is not confined to this usage of the sampling device and may try to
analyze the device in other ways (e.g., try to “reverse-engineer” it).

To be concrete, the sampling device is represented by a circuit C : {0, 1}m →
{0, 1}n, which can be used to generate samples by feeding it with a uniformly
selected m-bit long string. Alternatively, one may say that C is an implicit
representation of a distribution over {0, 1}n, obtained by feeding C with a uni-
formly selected m-bit long string. Typically, the circuit’s size is polynomial in
n, whereas the distribution defined by it can have support size 2n. Thus, when
we consider the aforementioned computational problems in terms of the circuit
size, polynomial-time algorithms correspond to algorithms that run in time that
may be poly-logarithmic in the size of the support. We stress that, in this model,
the algorithm has full information regarding the distribution in question, but it
does not have enough time to use this information in a straightforward way (i.e.,
feed the circuit with all possible inputs). The question is whether the algorithm
can obtain approximations to the aforementioned quantities within time that is
polynomial in the size of the circuit. In Section 4, we survey what is known re-
garding this question. The bottom-line is that the complexity of approximating
each of the foregoing computational problems is complete (under polynomial-
time reductions) for the complexity class SZK ⊆ AM∩coAM, which is conjec-
tured to extend beyond BPP (i.e., probabilistic polynomial-time). In particular,
under the widely believed conjecture that the Discrete Logarithm Problem is
intractable, it follows that the approximation versions of each of the foregoing
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computational problems are intractable. It is also known that the two types of
computational problems are actually computationally equivalent; that is, each
is efficiently reducible to the other.

Organization: In Section 3 we briefly survey the known results regarding
sampling-based algorithms (i.e., algorithms that only get samples from the dis-
tributions in question). In Section 4 we survey the known results regarding the
second setting; that is, we consider algorithms that are given as input a full
description of a sampling device for the distributions in question. In Section 5
we present the main ideas underlying the proofs of the three theorems stated in
Section 4. One of these proofs has only appeared before in the second author’s
PhD Thesis [22]. Sections 4 and 5 are actually the main part of this survey.

2 Preliminaries

Traditionally, (discrete) probability distributions are represented by the list of
probabilities assigned to the various elements in their range (or potential sup-
port). That is, a distribution is presented by a sequence (p1, ..., pN ) of non-
negative numbers (which sum-up to one) such that pi represents the probability
mass that is assigned to the ith element, denoted ei. Without loss of generality,
we may assume that {ei : i = 1, ..., N} = [N ] def= {1, ..., N}.

In this survey, we prefer to represent probability distributions by correspond-
ing random variables that represent an element selected according to the distri-
bution in question. That is, for a sequence (p1, ..., pN ) as above, we consider a
random variable X ∈ [N ] such that pi = Pr[X = ei], and identify the random
variable X with the probability distribution that assigns to ei the probability
mass Pr[X =ei].

The statistical difference (or variation distance) between the distributions (or
the random variables) X and Y is defined as

Δ(X, Y ) def=
1
2
·
∑

e

|Pr[X =e]−Pr[Y =e]| = max
S
{Pr[X ∈ S]−Pr[Y ∈ S]} (1)

We say that X and Y are δ-close if Δ(X, Y ) ≤ δ and that they are δ-far if
Δ(X, Y ) ≥ δ. Note that X and Y are identical if and only if they are 0-close,
and are disjoint (or have disjoint support) if and only if they are 1-far.

The entropy of a distribution (or random variables) X is defined as

H(X) def=
∑

e

Pr[X =e] · log2(1/Pr[X =e]) . (2)

The entropy of a distribution is always non-negative and is zero if and only if
the distribution is concentrated on a single element. In general, a distribution
that has support size N has entropy at most log2 N .
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3 Sampling-Based Algorithms

In this section we consider algorithms that approximate quantities related to
distributions solely on the basis of samples of the relevant distributions. We refer
to such algorithms as sampling-based algorithms, and consider such algorithms
for approximating the distance between pairs of distributions and approximating
the entropy of a distribution. We denote by N an upper bound on the size of
the support of these distributions, and focus on algorithms that obtain o(N)
samples.

We review the known results regarding the relationship between the number
of samples and the quality of the approximation. In other words, we consider
the sample complexity of these approximation problems.

3.1 Approximating the Distance between Distributions

The study of sampling-based algorithms for approximating the statistical dis-
tance between distributions was initiated by Batu et. al. [6]. They show that
Θ(N1/2) samples are necessary and sufficient in order to distinguish a pair of
identical distributions from a pair of disjoint distributions (i.e., to distinguish
the case that the two distributions are 0-close from the case that they are 1-
far), where N is an upper bound on the support of the distribution. Regarding
the more general problem of distinguishing pairs of identical distributions from
pairs of distributions that are δ-far, Batu et. al. [6] showed that Õ(N2/3δ−4)
samples suffice, and claimed that Ω(N2/3) samples are necessary. The latter
claim was proved by P. Valiant [25]. Regarding the even more general problem
of approximating the statistical distance between distributions, it was shown
by P. Valiant [25] that N1−o(1) samples are required. That is, for every fixed
0 < δ1 < δ2 < 1, it is the case that N1−o(1) samples are required in order to
distinguish distribution-pairs that are δ1-close from distribution-pairs that are
δ2-far apart.

Our conclusion is that in order to obtain any meaningful information regarding
the distance between two distributions (in this model), one must obtain Ω(N1/2)
samples. Furtherthmore, while O(N2/3) samples suffice for distinguishing iden-
tical distribution-pairs from distribution-pairs that are far apart (say 0.1-far),
in the general case N1−o(1) samples are required in order to approximate (up to
any constant additive term) the statistical distance between two distributions
(of support size N).

3.2 Approximating the Entropy of a Distribution

Batu et. al. [4] considered the problem of approximating the entropy of a dis-
tribution based on samples from it; that is, they considered sampling-based
algorithms for this task. They presented an algorithm that, for any γ > 1, using
Õ(N1/γ) samples of a distribution that has entropy Ω(γ) provides a γ-factor
approximation of its entropy. We comment that some lower-bound on the en-
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tropy is necessary for obtaining any approximation-factor based on samples.1 On
the other hand, also in the case that the entropy is lower-bounded (as in Foot-
note 1 or even more), a constant factor approximation of the entropy requires
NΩ(1) samples (i.e., a γ-factor approximation requires Ω(N (1/γ)−o(1)) samples;
see [25]).

Our conclusion is that, except in pathological cases (of distributions having
very small entropy), the sample complexity of obtaining a γ-factor approximation
of the entropy of a distribution is N (1/γ)±o(1), where N is an upper bound on
the support of the distribution.

Additive error approximation. The foregoing discussion refers to multiplicative
error approximation. Recent work by G. Valiant and P. Valiant [23,24] refers to
additive error approximations and shows that Θ(n/ log n) samples are necessary
and sufficient in such a case.

3.3 Additional Comments

A general framework for analyzing the sample complexity of various computa-
tional problems regarding distributions was recently provided by P. Valiant [25].
Indeed, some of the aforementioned lower-bounds are derived using this frame-
work. Furthermore, this framework may be applied to other natural measures of
distance between distributions.

Some of the aforementioned results can be cast naturally within the formalism
of property testing (cf. [20,12,9]). For example, one may consider the property
of two distributions being identical, and the task of accepting pairs having the
property and rejecting pairs that are far from having the property according to
a natural distance measure (cf. [9]).
Related work. Batu et. al. [5] have considered the task of approximating the dis-
tance between a fixed distribution and a second distribution for which one only
obtains samples.2 They present an algorithm that, for a parameter δ, determines
whether the two distributions are μ(N)·δ3-close or δ-far based on Õ(N1/2δ−O(1))
samples, where μ(N) = Õ(1/

√
N). This matches a lower bound of Ω(

√
N) sam-

ples requires to distinguish the case that the distribution is uniform over [N ]
from the case that it is (say) 0.1-far from being uniform. Batu et. al. [4] consid-
ered the problem of approximating the entropy of a distribution also in a model
in which the algorithm has access to an “evaluation oracle” instead or in addi-
tion to the samples, where the evaluation oracle is defined to answer the query x
with the probability mass assigned to x.

4 Algorithms That Are Given a Sampling Device

In this section we consider algorithms that are given a succinct description of
the distributions in question. That is, the algorithm is given a “sampling device”
1 Consider, for example, the family of distributions (parameterized by ε > 0) having

support size 2, assigning probability ε to one element and 1 − ε to the other.
2 Alternatively, the first distribution may be given explicitly (as input to the algo-

rithm), which in this case has running time linear in N .
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(in the form of a circuit) and is supposed to approximate a quantity that refers
to the distribution defined by this sampling device. A sampling device is actually
an algorithm, and the distribution defined by it is the output distribution of the
device when fed with a random input of adequate length. For concreteness, for
a feasibility parameter n, we consider poly(n)-size circuits that map poly(n)-bit
long inputs to n-bit long outputs. Note that such circuits define a distribution
over {0, 1}n, which may contain N = 2n elements. In other words, a distribution
over {0, 1}n is represented by a corresponding (poly(n)-size) sampling device
(or circuit), which typically means that we use a succinct representation of the
distribution.

We consider algorithms that are given such a representation (i.e., a circuit) as
input, and need to approximate some quantities of the represented distribution.
Indeed, one thing that such an algorithm can do is evaluate the circuit on inputs
of its choice, and in particular on uniformly selected inputs. Thus, the algorithm
can certainly produce samples of the distribution, where these samples are in-
deed of the type used in Section 3. However, the algorithm is not confined to
operating in that way, and it may try to “reverse engineer” the circuit in order
to learn more about the distribution (than by merely observing random samples
generated according to the distribution). Needless to say, we don’t really be-
lieve that “reverse engineering” can help to answer the computational problems
considered here, still we cannot rule out this possibility.

We stress that unlike in Section 3, the algorithm gets full information of the
distribution. That is, from an information theoretic point of view, the sampling
device (or circuit) determines the distribution, and thus determines its entropy
and its distance from another distribution. The question is how much time is
required in order to compute these quantities from the information that fully-
determines them. In the rest of this section we associate the sampling circuits
with the distributions generated by them. That is, we associate the circuit C
with the distribution it outputs when fed with a uniformly selected input.

We study the complexity of approximation problems by defining correspond-
ing promise problems (cf. [7]), where the latter are pairs of disjoint sets (cf. [10]).
A promise problem (A, B) consists of distinguishing between inputs in A and
inputs in B, where inputs out of A ∪ B are ignored (or one is “promised” that
the input is in A ∪B).

We briefly recall the standard definitions of reductions, when applied to
promise problems. The promise problem (A1, B1) is Karp-reducible to (A2, B2)
if there exists a polynomial-time computible function f such that if x ∈ A1

(resp., x ∈ B1) then f(x) ∈ A2 (resp., f(x) ∈ B2). More generally, (A1, B1) is
Cook-reducible (or just reducible) to (A2, B2) if there exists a polynomial-time
oracle machine M that on input x ∈ A1 (resp., x ∈ B1) and oracle access to
(A2, B2), outputs 1 (resp., 0), where query q to the oracle (A2, B2) is answered
arbitrarily in case q �∈ A2 ∪ B2. Two problems are said to be computationally
equivalent (resp., computationally equivalent under Karp-reductions) if each is
Cook-reducible (resp., Karp-reducible) to the other.
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4.1 Approximating the Distance between Distributions

We consider promise problems that take as input a pair of circuits and re-
fer to the statistical difference between the two corresponding distributions
(generated by the two circuits). For (threshold) functions c, f : N → [0, 1],
where c ≤ f , the promise problem GapSDc,f = (Closec, Farf ) is defined such
that (C1, C2) ∈ Closec if Δ(C1, C2) ≤ c(|C1| + |C2|) and (C1, C2) ∈ Farf

if Δ(C1, C2) > f(|C1| + |C2|). In particular, we focus on promise problem
GapSD

def= GapSD
1
3 , 2

3 . Interestingly, the complexity of this gap problem, which cap-
tures a moderately good approximation requirement, is computationally equiv-
alent to a very crude approximation requirement. That is, the former problem
is Karp-reducible to the latter:

Theorem 1 ([21], see proof sketch in Section 5.1): There exists a Karp-
reduction of GapSD

1
3 , 23 to GapSDε,1−ε, where ε(n) = 2−n. More generally, for every

polynomial-time computible c, f : N → [0, 1] such that c(n) < f(n)2−(1/poly(n))
it holds that GapSDc,f is Karp-reducible to GapSDε,1−ε.

Using a trivial reduction in the other direction, we conclude that for every c, f :
N → [0, 1] such that c(n) ≥ 2−n, c(n) < f(n)2−(1/poly(n)) and f(n) ≥ 1−2−n,
the problems GapSDc,f and GapSD = GapSD

1
3 , 2

3 are computationally equivalent
(under Karp reductions). This equivalence is useful in determining the complex-
ity of GapSD (as well as all these GapSDc,f ’s). Sahai and Vadhan [21] showed that
any promise problem having a statistical zero-knowledge proof system is Karp-
reducible to GapSD

1
2p2 , 1

p , for some polynomial p, and that GapSDε,1−ε (where
ε(n) = 2−n) has a statistical zero-knowledge proof system. Denoting the class of
promise problem having statistical zero-knowledge proof systems by SZK, we
have:

Theorem 2 [21]: The promise problem GapSD is SZK-complete (under Karp-
reductions).

Recall that SZK contains some promise problems (e.g., one equivalent to Dis-
crete Logarithm Problems) that are widely believed not to be in BPP (cf. [13]).
On the other hand, SZK ⊆ AM∩ coAM (cf. [11,1]), which in turn is quite low
in the Polynomial-Time Hierarchy.

We comment that GapSD = (Close, Far) is Karp-reducible to its complement
(Far, Close) [21]; that is, there is a Karp-reduction that maps pairs (C1, C2) to
pairs (C′

1, C
′
2) such that if Δ(C1, C2) ≤ 1/3 then Δ(C′

1, C
′
2) > 2/3 whereas if

Δ(C1, C2) > 2/3 then Δ(C′
1, C

′
2) ≤ 1/3.

4.2 Approximating the Entropy of a Distribution

We consider two computational problems related to approximating the entropy
of a distribution. The first problem is captured by promise problems that take as
input a circuit and a value and refers to the relation between the entropy of (the
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distribution generated by) the circuit and the given value. For a (slackness) func-
tion s : N → R, where s > 0, the promise problem GapEnts = (Smallers, Larger)
is defined such that (C, v) ∈ Smallers if H(C) ≤ v− s(|C|) and (C, v) ∈ Larger

if H(C) ≥ v. In particular, we focus on promise problem GapEnt
def= GapEnt1

(which refers to approximating the entropy up to an additive error of 1). It is
easy to see that, for every polynomial p and for every ε > 0 and 	(n) = n1−ε(n),
the problems GapEnt1/p, GapEnt1 and GapEnt� are computational equivalent
(under Karp reductions).3

We also consider promise problems that take as input a pair of circuits and
refer to the relation between the entropies of the corresponding distributions
(generated by the two circuits). For a (slackness) function s : N → R, where s >
0, the promise problem GapCmprEnts = (Smallers, Largers) is defined such that
(C1, C2) ∈ Smallers if H(C1) ≤ H(C2)− s(|C1|+ |C2|) and (C1, C2) ∈ Largers

if H(C1) ≥ H(C2) + s(|C1| + |C2|). In particular, we focus on promise problem
GapCmprEnt

def= GapCmprEnt1, and note that it is computationally equivalent
(under Karp reductions) to GapCmprEnt1/p and GapCmprEnt� (where p and 	 are
as above). Two easy observations follow:

Observation 1: The problems GapEnt and GapCmprEnt are computationally
equivalent (under Cook reductions). Specifically, GapEnt is Karp-reducible
to GapCmprEnt, whereas GapCmprEnt is Cook-reducible to GapEnt.
For example, one may use a Karp-reduction that maps an instance (C, v) of
GapEnt to the intance (C, Cv−0.5) of GapCmprEnt1/3 such that Cv−0.5 is a
standard circuit that generates some distribution of entropy (approximately)
v − 0.5. For the other direction, consider an oracle machine that decides
intances of GapCmprEnt by using queries to GapEnt1/3 in order to determine
the entropy of each of the two input distributions (up to an additive error
of 1/3).

Observation 2: The problem GapCmprEnt = (Smaller, Larger) is Karp-
reducible to its complement (Larger, Smaller); e.g., by the reduction that
maps
(C1, C2) to (C2, C1).

It is not know whether or not GapCmprEnt is Karp-reducible to GapEnt and
whether or not GapEnt is Karp-reducible to its complement. In fact, both ques-
tions are equivalent (cf. [16]), and we conjecture that the answer (to both of
them) is negative. It turns out that all these computational problems (regarding
entropy) are computationally equivalent to the computational problems regard-
ing statistical distance:

Theorem 3 ([17], see proof sketch in Section 5.3): The promise problems
GapCmprEnt and GapSD are computationally equivalent under Karp reductions.

Combining Theorem 3 and Observation 2, it follows that GapSD = (Close, Far)
is Karp-reducible to its complement (Far, Close). We comment that this result
3 The tighter (additive) approximation is reduced to the looser one by combining

sufficiently many copies of the circuit.
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(which was already stated at the end of Subsection 4.1) was originally proved
in [21] without using the equivalence of GapSD and GapCmprEnt (i.e., without
using Theorem 3).

4.3 Additional Comments

We comment that the promise problems GapSD, GapEnt and GapCmprEnt were
originally introduced as tools in the study of statistical zero-knowledge.4 Con-
sequently, the original presentations (cf. [21,17,16]) focus on the derivation and
presentation of results regarding statistical zero-knowledge, and the relation be-
tween the promise problems themselves is sometimes only implicit (and is typi-
cally not at the main focus). In fact, redeeming this state of affairs has been our
initial motivation for writing the current survey.

The bottom-line of the foregoing results is that many of the approximation
versions of the two problems (i.e., approximating the distance between distri-
butions and approximating their entropy) are computationally-equivalent. The
exceptional versions that are not known to be equivalent to the other versions
refer to too small gaps (which may yield even harder versions). Whereas in the
case of approximating the entropy the definition of “too small gaps” is a natural
one, it is somewhat artificial in the case of GapSDc,f where we require c < f2.
An interesting open problem is to determine the complexity of GapSDc,f in the
case that c > f2 (but c < f , of course)5; that is, is this problem computationally
equivalent to GapSD or is it strictly harder?

An alternative perspective on the current section is that it concerns only
probability distributions that have a succinct representation, where such a rep-
resentation is one allowing to efficiently obtain samples from the distribution.
Specifically, for a feasibility parameter n, we consider probability distributions
over {0, 1}n. The support of such a distribution may contain 2n elements, while
we consider algorithms operating in poly(n)-time. Thus, such algorithms cannot
read an explicit representation of the distribution (in the form of a sequence of
length 2n), and hence the distribution is given to it in a succinct representation.
Specifically, we have considered algorithms that are given a sampling device,
which is a poly(n)-size circuit that when feed with a random input output a
sample that is distributed according to the distribution. We have considered
the complexity of estimating various quantities of distributions given by such a
succinct representation.

5 Proof Sketches for the Three Theorems

In this section we outline the main ideas used in the proofs of the three theorems
stated in Section 4. Theorem 2 is the only one that refers to statistical zero-
knowledge and its proof is the only one that assumes any familiarity with zero-
4 For more details regarding statistical zero-knowledge see either [21,15,17,16] or [22].
5 The above formulation refers to constant c and f . For c, f : N → [0, 1], we have to

require that c(n) < f(n) − (1/p(n)) for some polynomial p.
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knowledge. The other two proofs are based merely on elementary results from
probability theory and probabilistic analysis.

As in Section 4, we associate the sampling circuits with the distributions
generated by them. That is, we associate the circuit C with the distribution it
outputs when fed with a uniformly selected input.

5.1 Proof Sketch for Theorem 1

Theorem 1 was proven by Sahai and Vadhan [21], and here we provide an outline
of their proof. Recall that the theorem claims a Karp-reduction of GapSD

1
3 , 2

3 (or
any adequate GapSDc,f ) to GapSDε,1−ε, where ε(n) = 2−n. This reduction (called
the Polarization Lemma in [21]) has the interesting effect of “polarizing the
situation”: pairs of distributions that are somewhat close (e.g., are at most at
distance 1/3 apart) are mapped to pairs of almost identical distributions (i.e.,
having negligible distance between them), whereas pairs of distributions that
are somewhat far apart (e.g., at distance at least 2/3) are mapped to pairs
of distributions that are very different (e.g., have distance negligiblly close to
1). The “polarizing” reduction is obtained by composing three Karp-reductions,
which in turn are of two types. These two types of Karp-reductions (among
GapSDc,f problems) are described next, starting with the simpler one.

The Direct Product reduction: This reduction increases both bounds in the defi-
nition of GapSDc,f (but not in a tight manner). For any (polynomial) t, we reduce
GapSDc,f to GapSDt·c,1−2 exp(−t·f2/2) by constructing circuits that generate t sam-
ples of each of the corresponding input distributions. That is, we map the circuit
pair (C1, C2) to (C′

1, C
′
2), where C′

i(r1, ..., rt)
def= (Ci(r1), ..., Ci(rt)). Clearly, the

statistical distance between the distributions grows by at most a factor of t. On
the other hand, it can be shown that if two distributions are at distance δ then
the statistical difference between their t-products is at least 1− 2 exp(−t · δ2/2).
(Indeed, it is not true that the statistical difference between the t-products is
exactly t · δ, the latter is merely an upper bound on the former.)6

The XOR reduction: This reduction decreases both bounds (in a tight manner).
For any (polynomial) t, we reduce GapSDc,f to GapSDct,ft

by mapping the circuit
pair (C0, C1) to (C′

0, C
′
1), where

C′
i(b1, ..., bt−1, r1, ..., rt−1, rt)

def=
(
Cb1(r1), ..., Cbt−1 (rt−1), Ci+

∑ t−1
j=1 bj mod 2(rt)

)
.

6 The lower bound of 1 − 2 exp(−t · δ2/2) can be proved by referring to the second

definition in Eq. (1). Specifically, for an adequate set S, it holds that p
def
= Prr[C1(r) ∈

S] = Prr[C2(r) ∈ S]−δ. Thus, C′
1 (resp., C′

2) is expected to have t ·p (resp., t ·(p+δ)
elements in S. By applying a Chernoff Bound, we note that with probability at least
1− exp(−t · δ2/2), the output of C′

1 (resp., C′
2) will have less than t · (p + δ

2
) (resp.,

more than t · (p + δ
2
)) elements in S. This yields a set S′ that demonstrates the

claimed lower bound on the statistical difference between C′
1 and C′

2.
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That is, the two output circuits (i.e., the C′
i’s) select samples from the two

input distributions (respresented by the Ci’s), and differ only in the parity of
the number samples taken from the (say) first input distribution. Specifically, C′

0

(resp., C′
1) takes an even (resp., odd) number of samples from C1. It can be shown

that if two input distributions are at distance δ then the statistical difference
between the constructed (output) distributions is exactly δt. (Intuitively, a single
sample drawn for one of the two input distributions corresponds to a “weak”
encryption of a bit, whereas a sample drawn from one of the output circuits
corresponds to encrypting a bit by applying “weak” encryptions to a random
sequence of bits that have the desired parity. The “weakness” of the resulting
encryption decays exponentially with t; cf. [26].)7

We now turn to the actual reduction of GapSD
1
3 , 2

3 (or any adequate GapSDc,f)
to GapSDε,1−ε, where ε(n) = 2−n. This reduction is composed of the following
three reductions:

1. A Karp-reduction of GapSD
1
3 , 23 (or any GapSDc,f such that c(n) < f(n)2 −

1
poly(n) ) to some GapSDc′,f ′

such that f ′(n) >
√

8n · c′(n).
Specifically, for an adequate parameter t, we use the XOR reduction and get
c′ = ct and f ′ = f t, which satisfies the desired condition (regarding c′ and
f ′) provided that c < f2 (or actually c(n) < (8n)−t/2 · f(n)2). In particular,
for c = 1/3 and f = 2/3, we set t = O(log n) and reduce GapSDc,f to
GapSDc′,f ′

, where c′(n) def= ct = 1/poly(n) and f ′(n) def= f t = (f2/c)t/2 ·ct/2 >√
8n · c′(n). In general, we set t = poly(n) such that (f(n)2/c(n))t/2 ≥ 8n,

which is possible because f(n)2

c(n) > 1 + 1
p(n) for some positive polynomial p.

2. A Karp-reduction of a GapSDc′,f ′
(with c′ and f ′ as obtained in Step 1) to

GapSDc′′,f ′′
, where c′′(n) = 1/4 and f ′′(n) ≥ 1− 2 exp(−n).

Specifically, for an adequate parameter t (i.e., t = 1/4c′(n)), we use the
Direct Product reduction and get c′′(n) def= t · c′(n) = 1/4 and f ′′(n) def=
1− 2 exp(−t · f ′(n)2/2). Using the hypothesis f ′(n) ≥

√
8n · c′(n), it follows

that f ′′(n) = 1− 2 exp(−f ′(n)2/8c′(n)) ≥ 1− 2 exp(−n),
3. A Karp-reduction of a GapSDc′′,f ′′

(with c′′ and f ′′ as obtained in Step 2) to
GapSDε,1−ε, where ε(n) = 2−n.
Specifically, we apply the XOR reduction again, but this time with t = n/2,
and use (1/4)t = 2−n = ε(n) and (1 − 2 exp(−n))t > 1− 2−n = 1− ε(n).

Combining the above three reductions, we obtain a Karp-reduction of GapSD
1
3 , 23

(or any GapSDc,f such that c(n) < f(n)2 − 1
poly(n) ) to GapSDε,1−ε, where ε(n) =

2−n.

7 Alternatively, consider the following problem. For pairs of random variables, (X0, X1)
and (Y0, Y1), we define a new pair of random variables, (Z0, Z1), such that Zi =
(Xb, Yi⊕b), where b ∈ {0, 1} is uniformly distributed. Using the first definition in
Eq. (1) and expanding the expression for Δ(Z0, Z1), one can show that Δ(Z0, Z1) =
Δ(X0, X1) · Δ(Y0, Y1). The general claim (stated above) follows by induction on t.
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On the use of the condition c < f2 in the current reduction: Note that in
Step 2 we have assumed that f ′(n) ≥

√
8n · c′, where (by Step 1) f ′ = f t

and c′ = ct. It follows that we must have f(n)t ≥ (8n)t/2 · (
√

c(n))t, and in
particular f(n)2 > c(n). As discussed in Section 4.3, it is an open problem
whether or not there exists an alternative reduction that uses a more relaxed
condition (regarding c and f).

5.2 Proof Sketch for Theorem 2

Theorem 2 was also proven by Sahai and Vadhan [21], and here we sketch the
ideas underlying their proof. The proof consists of two parts: (1) showing that
GapSD has a statistical zero-knowledge proof system, and (2) showing that any
problem in SZK is Karp-reducible to GapSD. We try to present the proof ideas
while assuming only a superficial familiarity with the notion of statistical zero-
knowledge proof systems. A reader that does not feel comfortable with this
assumption is invited to skip the current subsection.

The problem GapSD has a statistical zero-knowledge proof system: Using Theo-
rem 1, it suffices to show such a proof system for GapSDε,1−ε, where ε(n) = 2−n.
Actually, we present such a proof system for the complement problem (i.e.,
(Far1−ε, Closeε)), and rely on the (highly non-trivial) fact that GapSD is re-
ducible to its complement.8 Employing the same idea as in [18,14], the verifier
selects one of the input distributions at random and presents the prover with a
random sample generated according to this distribution. The verifier accepts if
and only if the prover correctly identifies the distribution from which the sample
was taken. Observe that if the input distributions are far apart then the prover
can answer correctly with very high probability. On the other hand, if the input
distributions are very close then the prover cannot guess the correct answer with
probability significantly larger than 1/2. This establishes that the protocol is an
interactive proof (and thus that GapSD is in coAM). It can be shown that this
protocol is actually statistical zero-knowledge, intuitively because the verifier
learns nothing from the prover’s correct answer which is a priori known to to
the verifier (in case the two distributions are far apart).

Any problem in SZK is Karp-reducible to GapSD: We rely on Okamoto’s Theo-
rem by which any problem in SZK has a public-coin statistical zero-knowledge
proof system. (We comment that an alternative proof of that theorem has sub-
sequently appeared in [17].) We consider an arbitrary (public-coin) statistical
zero-knowledge proof system. Following Fortnow [11], we observe a discrepency
between the behavior of the simulator on yes-instances versus no-instances:

– In case the input is a yes-instance, the simulator outputs transcripts that are
very similar to those in the real interaction. In particular, these trascripts

8 As mentioned in Section 4, this fact follows by combining Theorem 3 with Obser-
vation 2. An alternative proof of the fact that GapSD is reducible to its complement
was given in [21]. (Actually this alternative proof was discovered before Theorem 3.)
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are accepting and the verifier’s behavior in them is as in a real interac-
tion. In particular, resorting to the public-coin condition, this means that
the verifier’s messages in the simulation are (almost) uniformly distributed
independently of prior messages.

– In case the input is a no-instance, the simulator must output either reject-
ing transcripts or transcripts in which the verifier’s behavior is significantly
different from the verifier’s behavior in a real interaction. In particular, the
only way the simulator can produce accepting transcripts is by producing
transcripts in which the verifier’s messages are not “random enough” (i.e.,
they depend, in a noticeable way, on previous messages).

Thus assuming, without loss of generality, that the simulator only produces
accepting transcripts, we consider two types of distributions. The first type of the
distributions is obtained by truncating a random simulator-produced transcript
at a random “location” (after some verifier message), whereas the second type
is obtained by doing the same while replacing the last verifier message by a
random one. Note that both distributions can be implemented by polynomial-
size circuits that depend on the input to the proof system being analyzed (and
that these two circuits can be constructed in polynomial-time given the said
input). The key observation is that if the input is a yes-instance then the two
corresponding distributions will be very close, whereas if the input is a no-
instance then there will be a noticeable distance between the two corresponding
distributions. Thus, we reduced any problem having a (public-coin) statistical
zero-knowledge proof system to GapSDμ,ν , where μ is a negligible function and
ν(n) is a noticeable function.9 The proof is completed by using Theorem 1 (while
noting that μ(n) < ν(n)2 − (1/poly(n))).

5.3 Proof Sketch for Theorem 3

Theorem 3 was proven by Goldreich and Vadhan [21], by showing that
GapCmprEnt is SZK-complete (under Karp-reductions) and invoking Theorem 2
(which shows the same for GapSD). Here we follow a more direct proof, which
has appeared in Vadhan’s PhD Thesis [22]. The proof consists of two parts:
(1) showing that GapSD is Karp-reducible to GapCmprEnt, and (2) showing that
GapCmprEnt is Karp-reducible to GapSD.

Reducing GapSD to GapCmprEnt: Using Theorem 1, it suffices to reduce GapSDε,1−ε

to GapCmprEnt, for ε(n) = 2−n. Actually, we will reduce GapSDε,1−ε to a related
problem, denoted GapCmprEnt′, that refers to distinguishing pairs of distribu-
tions that have approximately the same entropy from pairs in which the first
distribution has (say half a unit of) more entropy.10 We reduce GapSDε,1−ε to
9 A function μ : N → [0, 1] is called negligible if μ(n) < 1/p(n) for every positive

polynomial p and all sufficiently large n. A function ν : N → [0, 1] is called noticeable
if ν(n) > 1/p(n) for some positive polynomial p and all sufficiently large n.

10 Indeed, the reduction from GapCmprEnt′ to GapCmprEnt is easy: we just increase the
gap in entropy (by repeated sampling), and move the gap location (by augmenting
the second distribution with a few random bits).
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GapCmprEnt′ by mapping the circuit pair (C0, C1) to (C′
1, C

′
2), where C′

1(r, s, b)
def=

(Cs(r), b) and C′
2(r, s, b)

def= (Cs(r), s). That is, C2 outputs a sample of one of
the input distributions along with the “selection bit” s used to determine the
input distribution being sampled, whereas C1 outputs such a sample along with
an independently distributed random bit (denoted b). Clearly, the entropy of C′

1

is always v + 1, where v
def= H(C0)+H(C1)

2 . Now, if the two input distributions are
very far apart then the selection bit s will be determined by the sample and so
the entropy of C′

2 will be approximately v, which is significantly smaller than
H(C′

1). On the other hand, if the two input distributions are very close then
(even conditioned on the sampled selected) the selection bit s will be almost
random and so H(C′

2) ≈ v + 1, which is approximately the same as H(C′
1).

A warm-up: reducing GapEnt to GapSD. We first reduce GapEnt to GapEnt�,
where 	(n) =

√
n, by using sufficiently many samples (of the input distri-

bution): for example, we may map (C, v) to (C′, v′), where C′(r1, ..., rn) =
(C(r1), ..., C(rn)) and v′ = n · v. Next, we assume that the input distribution is
“flat”, where a distribution is called flat if it is uniform over some set (i.e., if all
elements in its support are assigned the same probability mass). We note that
by taking sufficiently many samples, we can transform each distribution to one
that is “almost flat” (in a sense that is sufficient for the rest of the proof), while
maintaining its “relative entropy” (i.e., the average entropy per output bit).
Now, suppose that we are given a pair (C, v) such that C : {0, 1}m → {0, 1}n is
flat and |H(C) − v| ≥

√
n, and we are interested in the relation between H(C)

and v. Suppose that h is a random hash function11 mapping m-bit strings to
(m−v−log2

2 n)-bit long string. Now, consider the distributions (h, C(r), h(r)) and
(h, C(r), h(r′)), where r, r′ ∈ {0, 1}m and h are uniformly selected. By the prop-
erty of the hashing function, the third part of the distribution (h, C(r), h(r′))
is almost uniform over {0, 1}m−v−log2

2 n, even when conditioning on the first
parts (specifically on h). On the other hand, the third part of the distribution
(h, C(r), h(r)) is distributed as h(r) conditioned on C(r) (i.e., h(r)|C(r)). We
note that H(r|C(r)) = m − H(C), and that the distribution r|C(r) is flat. Fur-
thermore, if H(C) ≤ v then H(r|C(r)) ≥ m − v and the distribution h(r)|C(r)
is almost uniform over {0, 1}m−v−log2

2 n, whereas if H(C) ≥ v + 2 log2
2 n then

H(r|C(r)) ≤ m − v − 2 log2
2 n and the distribution h(r)|C(r) is very far from

being uniform over {0, 1}m−v−log2
2 n. Now, recall that |H(C)− v| ≥

√
n, and ob-

serve that if H(C) < v then the distribution (h, C(r), h(r)) is almost identical to
the distribution (h, C(r), h(r′)), whereas if H(C) > v then (h, C(r), h(r)) is very
far from (h, C(r), h(r′)). Thus, we have reduced GapEnt to GapSD.

Reducing GapCmprEnt to GapSD: As in the warm-up, we first reduce GapCmprEnt
to GapCmprEnt�, where 	(n) =

√
n, such that each of the two distributions is al-

most flat. Suppose that we are given a pair of circuits (C1, C2) such that both are

11 Formally speaking, we mean a uniformly selected function in a collection of univer-
sal2 hashing functions [8]. For example, we may select h uniformly among all affine
mappings of GF (2m) to GF (2k), for k = m − v − log2

2 n.
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(almost) flat and |H(C1)− H(C2)| ≥
√

n, and we are interested in the question
of which circuit (or distribution represented by it) has higher entropy. Further
suppose that C1, C2 : {0, 1}m → {0, 1}n. Suppose that h is a random hash
function mapping (n + m)-bit strings to (m− log2

2 n)-bit long string. Now, con-
sider the distributions (h, C1(r1), h(C2(r2), r1)) and (h, C1(r1), h(0n, r2)), where
r1, r2 ∈ {0, 1}m and h are uniformly selected. By the property of the hash-
ing function, the third part of the distribution (h, C1(r1), h(0n, r2)) is almost
uniform over {0, 1}m−log2

2 n, even when conditioning on the first parts. On the
other hand, the third part of the distribution (h, C1(r1), h(C2(r2), r1)) is dis-
tributed as h(C2(r2), r1)|C1(r1)). We note that u

def= H(C2(r2), r1|C1(r1)) =
H(C2) + (m− H(C1)), and that the distribution (C2(r2), r1)|C1(r1) is flat. Fur-
thermore, if u ≥ m then the distribution h(C2(r2), r1)|C1(r1)) is almost uni-
form over {0, 1}m−log2

2 n, whereas if u ≤ m − 2 log2
2 n then the distribution

h(C2(r2), r1)|C1(r1)) is very far from being uniform over {0, 1}m−log2
2 n. Now,

recall that |H(C1) − H(C2)| ≥
√

n, and observe that if H(C2) > H(C1) then
u = m + (H(C2) − H(C1)) > m, whereas if H(C2) < H(C1) then u ≤ m−

√
m.

We conclose that in the first case the distribution (h, C1(r1), h(C2(r2), r1)) is
almost identical to the distribution (h, C1(r1), h(0n, r2)), whereas in the second
case (h, C1(r1), h(C2(r2), r1)) is very far from (h, C1(r1), h(0n, r2)). Thus, we
have reduced GapCmprEnt to GapSD.

6 Conclusions

In Section 4 we considered the complexity of approximating the entropy of a distri-
bution when given the full description of a sampling device for the distribution. In
contrast, the results of Section 3 can be viewed as referring to the case that we are
only given “black-box” access to such a sampling device. Thus, the results surveys
in these sections represent a potential gap between black-box and “non-black-box”
access to sampling devices. This gap may become a real separation if SZK is con-
tained in sub-exponential time (i.e., SZK ⊆ Dtime(f) for some f(n) = 2o(n)).
On the other hand, the hypothetical existence of “sampling obfuscators” (see [3,
Def. 6.2]), which means that non-black-box access to sampling devices does not
actually help, implies that SZK �= BPP (see [3, Prop. 6.4]).

We comment that the general study of the relation between black-box and
non-black-box algorithms has received considerable attention lately. The inter-
ested reader is referred to Barak’s PhD Thesis [2].
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Basing Non-Interactive Zero-Knowledge on

(Enhanced) Trapdoor Permutations: The State
of the Art

Oded Goldreich

Abstract. The purpose of this article is to correct the inaccurate ac-
count of this subject that is provided in our two-volume work Foundation
of Cryptography. Specifically, as pointed out by Jonathan Katz, it seems
that the construction of Non-Interactive Zero-Knowledge proofs for NP
requires the existence of a doubly-enhanced collection of trapdoor per-
mutations (to be defined below). We stress that the popular candidate
collections of trapdoor permutations do satisfy this doubly-enhanced con-
dition. In fact, any collection of trapdoor permutations that has dense
and easily recognizable domain satisfies this condition.

Keywords: Non-Interactive Zero-Knowledge, Trapdoor Permutations.

This article was completed in Nov. 2008, and appeared on the author’s webpage.

1 Introduction

The purpose of this article is to correct the inaccurate account of the construction
of Non-Interactive Zero-knowledge proofs (NIZK) forNP that is provided in [G1,
Sec. 4.10.2] and modified in [G2, Apdx. C.4.1]. We briefly recall the relevant facts.

In [G1, Rem. 4.10.6], a construction of NIZK for NP is sketched based on a
collection of trapdoor permutations in which each permutation fα has domain
{0, 1}|α|. This description is correct, but the problem is with the unsupported
claim (at the end of [G1, Rem. 4.10.6]) by which the construction can be extended
to arbitrary collections of trapdoor permutations (in which the domain of the
permutation fα may be a sparse subset of {0, 1}|α| and may not be easy to
recognize (although it is easy to sample from)).

In [G2, Apdx. C.4.1] it was claimed that such a construction (of NIZK forNP)
can be obtained based on any enhanced collections of trapdoor permutations,
where the enhancement is as defined in [G2, Apdx. C.1]. But again, this claim was
not fully supported. Furthermore, as pointed out by Jonathan Katz, it seems that
this construction requires an additional enhancement. In this article we define the
resulting notion of a doubly-enhanced collection of trapdoor permutations, and
provide full details to the claim that using such permutations one can construct
NIZK for NP . We stress that the popular candidate collections of trapdoor
permutations do satisfy this doubly-enhanced condition. In fact, any collection
of trapdoor permutations that has dense and easily recognizable domain satisfies

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 406–421, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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this condition. More generally, if the domain-sampler S′ of an enhanced collection
of trapdoor permutations has a “reversed sampler” (which given α, y generates
a random r such that S′(α, r) = y), then this collection is doubly-enhanced.

On the non-technical level, we believe that this unfortunate line of events
demonstrates the importance of not being tempted by hand-waving arguments
and working out detailed proofs. Indeed, we believe that the source of trouble is
that the basic idea is presented in [G1, Rem. 4.10.6] as a patch, and further mod-
ifications are also presented as patches (see [G2, Apdx. C.4.1]). These patches
are replaced by the detailed description provided in Section 3, which is the core
of the current article.

2 Background

In this section we recall the standard definition of non-interactive zero-knowledge
proof systems as well as the construction of such systems based on proof systems
in the hidden-bits model. Since proof systems for NP in the hidden-bits model
are known to exists (unconditionally, see [G1, Sec. 4.10.2]), our focus in this
article is on transforming such systems into standard NIZK systems. We stress
that intractability assumptions are used in the latter transformation.

The rest of this section is essentially reproduced from [G1, Sec. 4.10.1&4.10.2],
and its first subsection (i.e., Section 2.1) can be skipped by readers who are
familiar with the standard definition of non-interactive zero-knowledge proof
systems.

2.1 The Basic Definition

Recall that the model of non-interactive (zero-knowledge) proof systems consists
of three entities: a prover, a verifier and a uniformly selected sequence of bits
(which can be thought of as being selected by a trusted third party). Both verifier
and prover can read the random sequence, and each can toss additional coins.
The interaction consists of a single message sent from the prover to the verifier,
who is then left with the decision (whether to accept or not). Here we present
only the basic definition that supports the case of proving a single assertion of
a-priori bounded length. Various extensions are presented in [G1, Sec. 4.10.3]
and in [G2, Sec. 5.4.4.4]; we recall that the construction of such stronger NIZKs
can be reduced to the construction of basic NIZKs (as defined below).

The model of non-interactive proofs seems closer in spirit to the model of
NP-proofs than to general interactive proofs. In a sense, the NP-proof model
is extended by allowing the prover and verifier to refer to a common random
string, as well as toss coins by themselves. Otherwise, as in case of NP-proofs,
the interaction is minimal (i.e., it is unidirectional (from the prover to the ver-
ifier)). Thus, in the definition below both the prover and verifier are ordinary
probabilistic machines that, in addition to the common-input, also get a uni-
formly distributed (common) reference-string. We stress that, in addition to the
aforementioned common input and common reference-string, both the prover
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and verifier may toss coins and get auxiliary inputs. However, for sake of sim-
plicity, we present a definition for the case in which none of these machines gets
an auxiliary input (yet, they may both toss additional coins). Finally, note that
the verifier also gets as input the output produced by the prover.

Definition 1 (non-interactive proof system): A pair of probabilistic machines,
(P, V ), is called a non-interactive proof system for a language L if V is polynomial-
time and the following two conditions hold:

– Completeness: For every x ∈ L, it holds that

Pr [V (x, R, P (x, R))=1] ≥ 2
3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).
– Soundness: For every x �∈ L and every algorithm B, it holds that

Pr [V (x, R, B(x, R))=1] ≤ 1
3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

The uniformly chosen string R is called the common reference-string.

As usual, the error probability in both conditions can be reduced (from 1
3 ) up

to 2−poly(|x|), by repeating the process sufficiently many times (using a sequence
of many independently chosen reference-strings). In stating the soundness con-
dition, we have deviated from the standard formulation that allows x �∈ L to
be adversarially selected after R is fixed; the latter “adaptive” formulation of
soundness is used in [G1, Sec. 4.10.3], and it is easy to transform a system sat-
isfying the above (“non-adaptive”) soundness condition into one satisfying the
adaptive soundness condition (see [G1, Sec. 4.10.3]).

Every language in NP has a non-interactive proof system (in which no ran-
domness is used). However, this NP-proof system is unlikely to be zero-knowledge
(as defined next). The definition of zero-knowledge for the non-interactive model
is simplified by the fact that, since the verifier cannot affect the prover’s actions,
it suffices to consider the simulatability of the view of a single verifier (i.e., the
prescribed one). Actually, we can avoid considering the verifier at all (since its
view can be generated from the common reference-string and the message sent
by the prover).

Definition 2 (non-interactive zero-knowledge): A non-interactive proof system,
(P, V ), for a language L is zero-knowledge if there exist a polynomial p and
a probabilistic polynomial-time algorithm M such that the probability ensem-
bles {(x, Up(|x|), P (x, Up(|x|)))}x∈L and {M(x)}x∈L are computationally indis-
tinguishable, where Um is a random variable uniformly distributed over {0, 1}m.

This definition too is “non-adaptive” (i.e., the common input may not depend on
the common reference-string). An adaptive formulation of zero-knowledge is pre-
sented and discussed in [G1, Sec. 4.10.3]. Note that zero-knowledge is actually a
property of the perscribed prover P , and so we may say that P is zero-knowledge.
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2.2 The Hidden-Bits Model

A fictitious abstraction, which is nevertheless very helpful for the design of non-
interactive zero-knowledge proof systems, is the hidden bits model. In this model
the common reference-string is uniformly selected as before, but only the prover
can see all of it. The ‘proof’ that the prover sends to the verifier consists of two
parts; a ‘certificate’ and the specification of some bit positions in the common
reference-string. The verifier may only inspect the bits of the common reference-
string that reside in the locations that have been specified by the prover. Needless
to say, in addition, the verifier inspects the common input and the ‘certificate’.

Definition 3 (proof systems in the Hidden Bits Model): A pair of probabilistic
machines, (P, V ), is called a hidden-bits proof system for L if V is polynomial-
time and the following two conditions hold:

– Completeness: For every x ∈ L, it holds that

Pr [V (x, RI , I, π)=1] ≥ 2
3

where (I, π) def= P (x, R), R is a random variable uniformly distributed in
{0, 1}poly(|x|) and RI is the substring of R at positions I ⊆ {1, 2, ..., poly(|x|)}.
That is, RI = ri1 · · · rit , where R = r1 · · · rt and I = (i1, ..., it).

– Soundness: For every x �∈ L and every algorithm B, it holds that

Pr [V (x, RI , I, π)=1] ≤ 1
3

where (I, π) def= B(x, R), R is a random variable uniformly distributed in
{0, 1}poly(|x|) and RI is the substring of R at positions I ⊆ {1, 2, ..., poly(|x|)}.

In both cases, I is called the set of revealed bits and π is called the certificate.
Zero-knowledge is defined as in Def. 2, except that here we need to simulate
(x, RI , P (x, R)) = (x, RI , I, π) rather than (x, R, P (x, R)).

As stated above, we do not suggest the Hidden-Bits Model as a realistic model.
The importance of the model stems from two facts. Firstly, it is a ‘clean’ model
that facilitates the design of proof systems (in it), and secondly proof systems
in the Hidden-Bits Model can be easily transformed into non-interactive proof
systems (i.e., the realistic model). The transformation (which utilizes a one-way
permutation f with hard-core b) follows.

Construction 4 (from Hidden Bits proof systems to non-interactive ones): Let
(P, V ) be a hidden-bits proof system for L, and suppose that f :{0, 1}∗→{0, 1}∗
and b : {0, 1}∗→ {0, 1} are polynomial-time computable. Furthermore, let m =
poly(n) denote the length of the common reference-string for common inputs
of length n, and suppose that f is 1-1 and length preserving. Following is a
specification of a non-interactive system, denoted (P ′, V ′):
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– Common Input: x ∈ {0, 1}n.
– Common Reference-String: s = (s1, ..., sm), where each si is in {0, 1}n.
– Prover (denoted P ′):

1. Computes ri = b(f−1(si)), for i = 1, 2, ..., m.
2. Invokes P to obtain (I, π) = P (x, r1 · · · rm).

The prover P ′ outputs (I, π, pI), where pI
def= (f−1(si1) · · · f−1(sit)) for I =

(i1, ..., it).
That is, P ′ augments the proof (I, π), obtained from P , with the f -preimages
of the blocks in the reference-string that have indices in I. These preimages
reveal the values of the corresponding “revealed” bits in the hidden-bits model,
while the values of the other bits remain essentially hidden.

– Verifier (denoted V ′), given prover’s output (I, π, (p1 · · · pt)):
1. Checks that sij = f(pj), for each ij ∈ I.

In case a mismatch is found, V ′ halts and rejects.
2. Computes ri = b(pi), for i = 1, ..., t. Let r = r1, ..., rt.
3. Invokes V on (x, r, I, π), and accepts if and only if V accepts.

That is, using the pj’s, the verifier V ′ reconstructs the the values of the
corresponding “revealed” bits in the hidden-bits model, and invokes V on
these values.

We comment that P ′ is not perfect (or statistical) zero-knowledge even in case
P is. Furthermore (and more central to this article), the prover P ′ may not be
implemented in polynomial-time even if P is (and even with the help of auxiliary
inputs). See further discussion in the next section.

Proposition 5 (analysis of Construction 4): Let (P, V ), L, f , b and (P ′, V ′)
be as in Construction 4. Then, (P ′, V ′) is a non-interactive proof system for L,
provided that Pr[b(Un)=1] = 1

2 . Furthermore, if P is zero-knowledge and b is a
hard-core of f , then P ′ is zero-knowledge too.

Proof: To see that (P ′, V ′) is a non-interactive proof system for L we note
that uniformly chosen strings si ∈ {0, 1}n induce uniformly distributed bits
ri ∈ {0, 1}. This follows by ri = b(f−1(si)), the fact that f is one-to-one, and
the fact that b(f−1(Un)) ≡ b(Un) is unbiased. Thus, the actions of the parties
in the real model (i.e., in Construction 4) perfectly emulate the actions of the
parties in the hidden bits model.

Note that if b is a hard-core of f , then b is almost unbiased (i.e., Pr[b(Un)=
1] = 1

2 ± μ(n), where μ is a negligible function), and the said emulation is
only guaranteed to be almost-perfect (i.e., deviates negligibly from the original).
Thus, saying that b is a hard-core for f essentially suffices for concluding that
(P ′, V ′) is a non-interactive proof system for L.

To see that P ′ is zero-knowledge note that we can convert an efficient sim-
ulator for P into an efficient simulator for P ′. Specifically, we first invoke the
P -simulator and obtain a triple (α, I, π), where α denotes the (simulated) se-
quence of revealed bits, I denotes their positions in the common reference-string,
and π denotes the simulated certificate. Next, for each revealed bit of value σ,
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we uniformly select a string r ∈ {0, 1}n such that b(r) = σ and place f(r) in the
corresponding position in the common reference-string (being simulated for P ′).
That is, if the said bit corresponds to position i ∈ I, then we place f(r) in the ith

block of the reference-string. For each unrevealed bit (i.e., bit position i /∈ I), we
uniformly select a string s ∈ {0, 1}n and place it in the corresponding position
in the common reference-string (i.e., place s in the ith block of the reference-
string). The output of the P ′-simulator consists of the common reference-string
generated as above, the sequence of all r’s generated by the P ′-simulator for bits
revealed by the P -simulator (i.e., bit in I), and the pair (I, π) as in the output
of the P -simulator. Following is a rigorous description of the P ′-simulator, when
invoked on input x ∈ {0, 1}n and using the P -simulator, denoted M .

1. Obtain (x, (σ1, ..., σt), (i1, ..., it), π) ← M(x).
2. For every j = 1, .., t, select uniformly pj ∈ {0, 1}n such that b(pj) = σj and

set sij = f(pj).
3. For every i ∈ [m] \ {ij : j = 1, .., t}, select si uniformly in {0, 1}n.
4. Output (x, (s1, ..., sm), ((i1, ..., it), π, (p1, ..., pt))).

That is the sequence (s1, ..., sm) is the simulated “common reference-string”
whereas the triple ((i1, ..., it), π, (p1, ..., pt)) is the simulated proof.

Using the hypothesis that b is a hard-core of f , it follows that the output of the
P ′-simulator is computationally indistinguishable from the verifier’s view (when
receiving a proof from P ′). Note that the only difference between the simulation
output and the real execution is that in the real execution the blocks of the
(actual) reference-string match the values of the bits of the (imaginary) reference-
string that is given to P (and only partially revealed to V ). In contrast, in the
simulation, the blocks that correspond to unrevealed bits (in the hidden bits
model) do not necessarily match the values of these (imaginary) unrevealed bits.1

However, this difference is computationally indistinguishable (by the hypothesis
that b is a hard-core of f).

3 Efficient Implementations of the Prover of
Construction 4

As hinted in Section 2.2, in general, the strategy P ′ (described in Construction 4)
may not be efficiently implemented given black-box access to P . What is needed
for such an efficient implementation is the ability (of P ′) to invert f . On the other

1 To illustrate the issue, consider a strategy P (for the hidden bits model) that just
reveals m/3 bits in the m-bit long reference-string such that each revealed bit holds
the value 1. Then, the corresponding P ′ reveals the corresponding f -preimages of
m/3 blocks in the m-block long reference-string (i.e., the f -preimage of a block is
sent only if the value of this preimage under b equals 1). However, the simulator
constructed for P ′ generates a simulated m-block long reference-string in which the
f -preimages that are not revealed are random (rather than being suitablly biased
towards evaluating to 0 under b).
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hand, for P ′ to be zero-knowledge f must be one-way. The obvious solution is to
use a collection of trapdoor permutations and let the prover know the trapdoor.

The basic construction is presented based on a collection of trapdoor permu-
tations that have simple domains (i.e., the domain of each permutation is the set
of all strings of some fixed string). Furthermore, the collection should have the
property that its members can be efficiently recognized (i.e., given a description
of a function one can efficiently decide whether it is in the collection).

3.1 The Basic Construction

Using such a collection of trapdoor permutations, P ′ starts by selecting a per-
mutation f over {0, 1}n such that it knows its trapdoor, and proceeds as in
Construction 4, except that it also appends the description of f to the ‘proof’.
Indeed, the knowledge of the trapdoor allows P ′ to invert f on any element in
f ’s domain. The verifier acts as in Construction 4 with respect to the function
f specified in the proof. In addition the verifier also checks that f is indeed in
the collection.

Both the completeness and the zero-knowledge conditions follow exactly as in
the proof of Proposition 5. For the soundness condition we need to consider all
possible members of the collection (w.l.o.g., there are at most 2n such permuta-
tions). For each such permutation, the argument is as before, and our soundness
claim thus follows by a counting argument (as applied in [G1, Sec. 4.10.3]). Ac-
tually, we also need to repeat the (P, V ) system for O(n) times, so to first reduce
the soundness error to 1

3 · 2−n.
The foregoing text is reproduced from [G1, Rem. 4.10.6] and is indeed valid.

The only problem is that it refers to a restricted notion of a collection of trapdoor
permutations. Specifically, when compared with the general definition of such
collections (as provided in [G1, Def. 2.4.5]), the foregoing description corresponds
to the special case in which for every index α the domain of the permutation fα

(i.e., the permutation described by α) equals {0, 1}|α|. In contrast, in general,
the domain of fα may be an arbitrary subset of {0, 1}|α| (as long as this subset
is easy to sample from). The focus of this article is on trying to extend the
foregoing construction by using more general forms of trapdoor permutations.

3.2 Extending the Basic Construction

We start by recalling the (general) definition of a collection of trapdoor permu-
tations, and considering a couple of enhancements.

Enhanced collections of trapdoor permutations. Recall that a collection
of trapdoor permutations, as defined in [G1, Def. 2.4.5], is a collection of finite
permutations, denoted {fα : Dα → Dα}, accompanied by four probabilistic
polynomial-time algorithms, denoted G, S, F and B (for generator, sample, for-
ward and backward), such that the following (syntactic) conditions hold:

1. On input 1n, algorithm G selects a random n-bit long index α of a permu-
tation fα, along with a corresponding trapdoor τ ;
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2. On input α, algorithm S samples the domain of fα, returning an almost
uniformly distributed element in it;

3. For any x in the domain of fα, given α and x, algorithm F returns fα(x)
(i.e., F (α, x) = fα(x));

4. For any y in the range of fα if (α, τ) is a possible output of G(1n), then,
given τ and y, algorithm B returns f−1

α (y) (i.e., B(τ, y) = f−1
α (y)).

The standard hardness condition (as in [G1, Def. 2.4.5]) refers to the difficulty of
inverting fα on a uniformly distributed element of its range, when given only the
range-element and the index α. That is, letting G1(1n) denote the first element
in the output of G(1n) (i.e., the index), it is required that, for every probabilistic
polynomial-time algorithm A (resp., every non-uniform family of polynomial-size
circuit A = {An}n), it holds that

Pr[A(G1(1n), fG1(1n)(S(G1(1n))) = S(G1(1n))] = μ(n), (1)

where μ denotes a generic negligible function. Namely, A (resp., An) fails to in-
vert fα on fα(x), where α and x are selected by G and S as above. An equivalent
way of writing Eq. (1) is

Pr[A(G1(1n), S′(G1(1n), Rn)) = f−1
G1(1n)(S

′(G1(1n), Rn))] = μ(n), (2)

where S′ is the residual two-input (deterministic) algorithm obtained from S
when treating the coins of the latter as an auxiliary input, and Rn denote the
distribution of the coins of S on n-bit long inputs. That is, A fails to invert fα

on x, where α and x are selected as above.

Enhanced trapdoor permutations. Although the foregoing definition suffices for
many applications, in some cases we will need an enhanced hardness condition.
Specifically, we will require that it is hard to invert fα on a random input x (in
the domain of fα) even when given the coins used by S in the generation of x.
(Note that, given these coins (and the index α), the resulting domain element x
is easily determined, and so we may omit it from the input given to the potential
inverter.)

Definition 6 (enhanced trapdoor permutations [G2, Def. C.1.1]): Let {fα :
Dα → Dα} be a collection of trapdoor permutations as in [G1, Def. 2.4.5]. We
say that this collection is enhanced (and call it an enhanced collection of trapdoor
permutations) if, for every probabilistic polynomial-time algorithm A, it holds
that

Pr[A(G1(1n), Rn) = f−1
G1(1n)(S

′(G1(1n)), Rn))] = μ(n), (3)

where S′ and μ are as above. The non-uniform version is defined analogously.

Note that the special case of [G1, Def. 2.4.5] in which the domain of fα equals
{0, 1}|α| satisfies Definition 6 (because, without loss of generality, the sampling
algorithm S′ may satisfy S′(α, r) = r). This implies that modified versions of the
RSA and Rabin collections satisfy Definition 6. More natural versions of both
collections can also be shown to satisfy Definition 6. For further discussion see
the Appendix.
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Doubly-enhanced trapdoor permutations. Although collection of enhanced trap-
door permutations suffice for the construction of Oblivious Transfer (see [G2,
Sec. 7.3.2]), it seems that they do not suffice for our current purpose of provid-
ing an efficient implementation of the prover of Construction 4.2 Thus, we further
enhance Definition 6 so to provide for such an implementation. Specifically, we
will require that, given α, it is feasible to generate a random pair (x, r) such that
r is uniformly distributed in {0, 1}poly(|α|) and x is a preimage of S′(α, r) under
fα; that is, we should generate a random x ∈ Dα along with coins that fit the
generation of fα(x) (rather than coins that fit the generation of x).

Definition 7 (doubly-enhanced trapdoor permutations): Let {fα : Dα → Dα}
be an enhanced collection of trapdoor permutations (as in Def. 6). We say that this
collection is doubly-enhanced (and call it a doubly-enhanced collection of trapdoor
permutations) if there exists a probabilistic polynomial-time algorithm that on
input α outputs a pair (x, r) such that r is distributed identically to R|α| and
fα(x) = S′(α, r).

We note that Definition 7 is satisfied by any collection of trapdoor permuta-
tions that has a reversed domain-sampler (i.e., a probabilistic polynomial-time
algorithm that on input (α, y) outputs a string that is uniformly distributed in
{r : S′(α, r) = y}).

A useful relaxation of Definition 7 allows r to be distributed almost-identically
(rather than identically) to R|α|, where by almost-identical distributions we mean
that the corresponding variation distance is negligible (i.e., the distributions
are statistically close). Needless to say, in this case the definition of a reversed
domain-sampler should be relaxed accordingly.

We stress that suitable implementations of the popular candidate collections
of trapdoor permutations (e.g., the RSA and Rabin collections) do satisfy the
foregoing doubly-enhanced condition. In fact, any collection of trapdoor permu-
tations that has dense and easily recognizable domains satisfies this condition.
For further details see the Appendix.

Actually implementing the prover. Recall that the basic construction pre-
sented in Section 3.1 relies on two extra properties of the collection of trapdoor
permutations.

1. It was assumed that the set of possible descriptions of the possible per-
mutations, denoted I, is easily recognizable (i.e., the support of G(1n) is
recognizable in poly(n)-time).

2. It was assumed that the domain of every permutation fα equals {0, 1}|α|.

The first assumption was waived by Bellare and Yung [BY], and we briefly
sketch their underlying idea first. This relaxation is crucial, since no candidate
2 We mention that the enhancement of Definition 6 was intended to suffice for both

purposes. Indeed, in [G2, Apdx. C.4] it was claimed that enhanced trapdoor per-
mutations do suffice for providing an efficient implementation of the prover of Con-
struction 4. Needless to say, we retract this claim here. Further historical comments
appear in Section 4.



Basing Non-Interactive Zero-Knowledge on Trapdoor Permutations 415

collection of trapdoor permutations that satisfies this assumption is known (i.e.,
for all popular candidates, the corresponding index set I is not known to be
efficiently recognizable).

The problem that arises is that the prover may select (and send) a function
that is not in the collection (i.e., an index α that is not in I). In such a case, the
function is not necessarily 1-1, and, consequently, the soundness property may be
violated. This concern can be addressed by using a (simple) non-interactive (zero-
knowledge) proof for convincing the verifier that the function is “typically 1-1”
(or, equivalently, is “almost onto the designated range”). The proof proceeds by
presenting preimages (under the function) of random elements that are specified
in the reference string. Note that, for any fixed polynomial p, we can only prove
that the function is 1-1 on at least a 1−(1/p(n)) fraction of the designated range
(i.e., {0, 1}n), yet this suffices for moderate soundness of the entire proof system
(which in turn can be amplified by repetitions). For further details, consult [BY].

Note that this solution extends to the case that the collection of permuta-
tions {fα : Dα → Dα}α∈I does not satisfy Dα = {0, 1}|α|, but is rather an
arbitrary collection of doubly-enhanced trapdoor permutations. In this case the
reference string will contain a sequence of coin-sequences to be used by the
domain-sampling algorithm (rather than consisting of elements of the function’s
domain). By virtue of the extra condition in Definition 7, we can simulate the
inverting of each domain element by generating a pair (x, r), placing r on the
reference string, and providing x as the inverse of S′(α, r) under fα. (See an
analogous discussion in next paragraph.)

We now turn to the second aforementioned assumption; that is, the assump-
tion that the domain of fα equals {0, 1}|α| (i.e., Dα = {0, 1}|α|). We would have
liked to waive this assumption completely, but are only able to do so in the
case that the collection of trapdoor permutations is doubly-enhanced. The basic
idea is letting the reference string consist of coin-sequences to be used by the
domain-sampling algorithm (rather than of elements of the function’s domain).
The corresponding domain elements, which depend on the choice of the index
α, are then obtained by applying the domain-sampling algorithm to these coin-
sequences. The enhanced hardness property (stated in Def. 6) is used in order
to note that the corresponding preimages under fα are not revealed by these
coin-sequences, whereas the additional enhancement (stated in Def. 7) is used
for arguing that revealing such preimages does not reveal additional knowledge.
That is, the two additional properties (stated in Def. 6 and Def. 7) are used in the
(analysis of the) simulation and not in the proof system itself. For sake of sim-
plicity, in the following exposition, we again use the (problematic) assumption
by which I is efficiently recognizable.

Construction 8 (Construction 4, revised): Let (P, V ) be a zero-knowledge
hidden-bits proof system for L with exponentially vanishing soundness error
(i.e., soundness error at most 2−n−2), and let m = poly(n) denote the length
of the common reference-string for common inputs of length n. Suppose that
{fα : Dα → Dα}α∈I is a doubly-enhanced collection of trapdoor permutations,
where I is efficiently recognizable, and b :{0, 1}∗→{0, 1} is a corresponding hard-



416 O. Goldreich

core predicate (i.e., b(f−1
α (S′(α, U�))) is infeasible to predict when given (α, U�)).3

Following is a specification of a non-interactive system, denoted (P ′, V ′):

– Common Input: x ∈ {0, 1}n.
– Prover’s auxiliary input: w.
– Common Reference-String: s = (s1, ..., sm), where each si is in {0, 1}� and 	

is the number of coins used by the domain-sampler when given an n-bit long
index of a permutation.

– Prover (denoted P ′):
1. Select at random an n-bit long index α and a corresponding trapdoor τ ;

i.e., (α, τ) ← G(1n).
2. Using the trapdoor τ , compute ri = b(f−1

α (S′(α, si))), for i = 1, 2, ..., m.
3. Invokes P to obtain (I, π) = P (x, w, r1 · · · rm).

The prover P ′ outputs (α, I, π, pI), where pI
def= (f−1

α (S′(α, si1)) · · ·
f−1

α (S′(α, sit))) for I = (i1, ..., it).
– Verifier (denoted V ′), given prover’s output (α, I, π, (p1 · · · pt)):

1. Check if α ∈ I, otherwise halts and rejects.
2. Check that S′(α, sij ) = fα(pj), for each ij ∈ I.

In case a mismatch is found, V ′ halts and rejects.
3. Compute ri = b(pi), for i = 1, ..., t. Let r = r1, ..., rt.
4. Invoke V on (x, r, I, π), and accepts if and only if V accepts.

Clearly, the foregoing strategy P ′ is efficient, provided that so is P .

Proposition 9 (Proposition 5, revised): Let (P, V ), L, f , b and (P ′, V ′) be as in
Construction 8. Then, (P ′, V ′) is a zero-knowledge non-interactive proof system
for L.

Proof: Following the proof of Proposition 5, we note that for any fixed choice
α ∈ I∩{0, 1}n the soundness error is at most 2−n−2. Taking a union bound over
all possible α ∈ I ∩ {0, 1}n and discarding all α �∈ I (by virtue of the explicit
check), we establish that (P ′, V ′) is a non-interactive proof system for L.

To show that P ′ is zero-knowledge we convert any (efficient) simulator for
P into an (efficient) simulator for P ′. First, the new simulator selects at ran-
dom an index α (of a permutation) just as P ′ does. We stress that although
the P ′-simulator obtains the corresponding trapdoor (just as P ′ does), we will
not use this fact in the simulation. Next, we proceed as in the proof of Proposi-
tion 5, modulo adequate adaptations that address the crucial difference between
Construction 4 and Construction 8. Recall that the difference is that in Construc-
tion 4 the reference string is viewed as a sequence of images of the permutation,
whereas in Construction 8 the reference string is viewed as a sequence of 	-bit
long random-sequences that may be used to generate such images. Following
is a rigorous description of the current P ′-simulator, when invoked on input
x ∈ {0, 1}n and using the P -simulator, denoted M .
3 Such a hard-core predicate is obtained by applying the techniques of [GL] (see [G1,

Sec. 2.5.2] or better [G3, Sec. 7.1.3]) to any (doubly-)enhanced collection of trapdoor
permutations.
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1. Obtain (α, τ) ← G(1n).
2. Obtain ((σ1, ..., σt), (i1, ..., it), π) ← M(x).
3. For every j = 1, .., t, generate a random pair (pj , sij ) ∈ Dα × {0, 1}� such

that fα(pj) = S′(α, sij ) and b(pj) = σj .
Note that this operation can be efficiently implemented by either relying on
the additional enhancement introduced in Def. 7 or by merely relying on the
fact that the simulator knows the trapdoor τ and can thus invert fα. (The
“forced” use of the additional enhancement of Def. 7 arises in the proof of
indistinguishabilitry provided below.)

4. For every i ∈ [m] \ {ij : j = 1, .., t}, select si uniformly in {0, 1}�.
5. Output (x, (s1, ..., sm), (α, (i1, ..., it), π, (p1, ..., pt))).

Using the hypothesis that b is a hard-core of the collection {fα} and the doubly-
enhanced hardness of this collection, we will show that the output of the P ′-
simulator is computationally indistinguishable from the verifier’s view (when
receiving a proof from P ′). Again, the only difference between the simulation
and the real execution is that in the simulation the blocks of the (actual) refer-
ence strings do not necessarily match the b-values of the corresponding hidden
bits seen by P . Intuitively, this difference is computationally indistinguishable by
the hypothesis that b(f−1

α (S′(α, U�))) is infeasible to predict when given (α, U�),
which is guaranteed by the enhanced hardness assumption (of Def. 6). How-
ever, we need to show that, for H

def= [m] \ {ij : j = 1, .., t}, it is infeasible to
distinguish a sequence of |H | uniformly selected n-bit strings (representing the
sequence (si)i∈H produced in the simulation) from a corresponding sequence of
si’s that fits a (partially) given sequence of b(f−1

α (S′(α, si))) values (as in the
real interaction). At this point, we encounter a difficulty that seems to require
the doubly-enhanced hypothesis (of Def. 7).

The point is that the indistinguishability of the two sequences is demonstrated
by showing that, given a prefix of the second sequence, it is infeasible to pre-
dict the b(f−1

α (S′(α, ·)))-value of the next element. That is, we wish to show
that, for every i, given a randomly selected α and a uniformly selected sequence
s1, ..., si−1, si along with the values b(f−1

α (S′(α, s1))), ..., b(f−1
α (S′(α, si−1))), it

is infeasible to predict the value of b(f−1
α (S′(α, si))). Recall that the standard

approach toward this task is to use a reducibility argument in order to derive
a contradiction to the hard-core hypothesis (which refers to a single s = si

for which b(f−1
α (S′(α, s))) is unpredictable), by generating the auxiliary prefix

s1, ..., si−1 along with b(f−1
α (S′(α, s1))), ..., b(f−1

α (S′(α, si−1))). Thus, given only
α (and s = si), we need to be able to generate a random sequence s1, ..., si−1

along with the corresponding b(f−1
α (S′(α, sj)))’s. But this is easy to do given the

doubly-enhanced hypothesis (of Def. 7), and once this is done we just rely on the
infeasiblity of predicting b(f−1

α (S′(α, s))) based on s and α (which is guaranteed
by the enhanced hardness assumption of Def. 6).

Subsequent work: A closer look at the use of the doubly-enhanced hypothsis
(in the foregoing construction as well as in other settings) led Rothblum to
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introduce and study a taxonomy of enhanced trapdoor permutations. Indeed,
one of the primitives in his taxonomy fits the aforemention argument perfectly.
The interested reader is referred to [R].

Open Problem: Under what intractability assumptions is it possible to con-
struct non-interactive zero-knowledge proofs (NIZKs) with efficient prover strate-
gies for any set in NP? In particular, does the existence of arbitrary collections
of trapdoor permutations suffice? We mention that the assumption used in con-
structing such NIZKs effects the assumption used in (general) constructions of
public-key encryption schemes that are secure under chosen ciphertext attacks
(see, e.g., [G2, Thm. 5.4.31]).

4 The Story

The story begins with the fact that, while the notion of trapdoor permutations
was widely referred to in the 1980’s, the exact structural requirements from it
were not cmmonly agreed upon at the time. Here we refer to secondary issues
regarding the structure of the index set as well as the domains of the various
permutations. Bellare and Yung seem to have been the first who explicitly ad-
dressed this type of issues, but their focus was on the fact that the index set
cannot be assumed to be efficiently recognizable. As for the domains of the per-
mutations, they just assumed that the domain of fα is {0, 1}|α|, which is indeed
the case for minor modifications of all popular trapdoor permutations. In general,
it seems that most researchers had in mind dense and efficiently recognizable do-
mains, but these additional requirements were not needed in the main classical
applications of trapdoor permutations (e.g., constructions of secure public-key
encryption schemes).

When writing [G1], we decided to use the most liberal definition of trapdoor
permutations that agrees with the basic intuitions regarding this notion. This led
to [G1, Def. 2.4.5], which is the definition that is the starting point of Section 3.2.
While this definition suffices for the constructions of passively-secure public-key
encryption schemes, we failed to notice at the time that it does not suffice for
two less traditional but quite important applications: (1) the construction of
Oblivious Transfer, and (2) the construction of NIZKs with efficient provers for
NP .

We missed the first opportunity to detect the problem, when addressing the
second application in [G1, Sec. 4.10.2]. As stated at the end of the Introduction,
we believe that the source of evil is the careless presentation of this topic as
a laconic comment (i.e., [G1, Rem. 4.10.6]) that focuses on a simplified setting
(i.e., the one discussed in Section 3.1).

When writing [G2, Sec. 7.3.2], we discovered that the known of construction
of Oblivious Transfer based on trapdoor permutations [EGL] may be insecure,
in general, and that standard proof of security seems to require the enhancement
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of Definition 6 (which was introduced in [G2, Apdx. C.1] for that purpose).4

It was evident that this enhancement is also needed for the argument in [G1,
Sec. 4.10.2]. At this point, we missed our second opportunity to detect the prob-
lem; using some hand-waving, we argued in [G2, Apdx. C.4.1] that enhanced
trapdoor permuations (as defined in [G2, Apdx. C.1]) suffice for the construc-
tion of NIZKs with efficient provers for NP . Needless to say, we retract this
claim here.

The flaw was eventually discovered by others: Specifically, Jonathan Katz
called out attention to the flaw in [G2, Apdx. C.4.1], and suggested the notion
of doubly-enhanced trapdoor permutations (as in Definition 7).

Acknowledgments. We are grateful to Jonathan Katz for pointing out the gap
in [G2, Apdx. C.4.1]. While being embarrassed about such flaws, we feel deeply
indebted to those discovering them and bringing them to our attention.

We thank Ron Rothblum for pointing out that a previous version of this write-
up failed to deliver the crucial point, which is currently spelled out at the end
of the proof of Proposition 9.
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Appendix: On the RSA and Rabin Collections

In this appendix we show that suitable versions of the RSA and Rabin collections
satisfy the two aforementioned enhancements (presented in Definitions 6 and 7,
respectively). Establishing this claim is quite straightforward for the RSA collec-
tion, whereas for the Rabin collection some modifications (of the straightforward
version) seem necessary. In order to establish this claim we will consider a variant
of the Rabin collection in which the corresponding domains are dense and easy
to recognize, and will show that having such domains suffices for establishing
the claim.

A.1 The RSA Collection Satisfies Both Enhancements

We start our treatment by considering the RSA collection (as presented in [G1,
Sec. 2.4.3.1] and further discussed in [G1, Sec. 2.4.3.2]). Note that in order to
discuss the enhanced hardness condition (of Def. 6) it is necessary to specify the
domain sampler, which is not entirely trivial (since sampling Z∗

N (or even ZN)
by using a sequence of unbiased coins is not that trivial).

A natural sampler for Z∗
N (or ZN ) generates random elements in the domain

by using a regular mapping from a set of sufficiently long strings to Z∗
N (or to

ZN ). Specifically, the sampler uses 	
def= 2�log2 N� random bits, views them as

an integer in i ∈ {0, 1, ..., 2� − 1}, and outputs i mod N . This yields an almost
uniform sample in ZN , and an almost uniform sample in Z∗

N can be obtained by
discarding the few elements in ZN \ Z∗

N .
The fact that the foregoing implementation of the RSA collection satisfies

Definition 6 (as well as Definition 7) follows from the fact that it has an efficient
reversed-sample (which eliminates the potential gap between having a domain
element and having a random sequence of coins that makes the domain-sample
output this element). Specifically, given an element e ∈ ZN , the reversed-sampler
outputs an almost uniformly distributed element of {i ∈ {0, 1, ..., 2� − 1} : i ≡
e (mod N)} by selecting uniformly j ∈ {0, 1, ..., �2�/N� − 1} and outputting
i ← j ·N + e.

A.2 Versions of the Rabin Collection that Satisfy both
Enhancements

In contrast to the case of the RSA, the Rabin Collection (as defined in [G1,
Sec. 2.4.3.3]), does not satisfy Definition 6 (because the coins of the sampling
algorithm give away a modular square root of the domain element). Still, the
Rabin Collection can be easily modify to yield an doubly-enhanced collection of
trapdoor permutations, provided that factoring is hard (in the same sense as
assumed in [G1, Sec. 2.4.3]).

The modification is based on modifying the domain of these permutations (fol-
lowing [ACGS]). Specifically, rather than considering the permutation induced
(by the modular squaring function) on the set QN of the quadratic residues
modulo N , we consider the permutations induced on the set MN , where MN
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contains all integers in {1, ..., N/2} that have Jacobi symbol modulo N that
equals 1. Note that, as in case of QN , each quadratic residue has a unique
square root in MN (because exactly two square roots have Jacobi symbol that
equals 1 and their sum equals N ; indeed, as in case of QN , we use the fact that
−1 has Jacobi symbol 1). However, unlike QN , membership in MN can be de-
termined in polynomial-time (when given N without its factorization). Lastly,
note that squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain
a permutation over MN , we modify the function a little such that if the result
of modular squaring is bigger than N/2, then we use its additive inverse (i.e.,
rather than outputting y > N/2, we output N − y).

Using the fact that MN is dense (w.r.t {0, 1}�log2 N�+1) and easy to recog-
nize, we may proceed in one of two ways, which are actually generic. Thus,
let us assume that we are given an arbitrary collection of trapdoor permuta-
tions, denoted {fα : Dα → Dα}α∈I , such that Dα ⊆ {0, 1}|α| is dense (i.e.,
|Dα| > 2|α|/poly(|α|))5 and easy to recognize (i.e., there exists an efficient algo-
rithm that given (α, x) decides whether or not x ∈ Dα).

1. The most natural way to proceed is showing that the collection {fα} itself
is doubly-enhanced. This is shown by presenting a rather straightforward
domain-sampler that satisfies the enhanced hardness condition (of Def. 6),
and noting that this sampler has an efficient reversed sampler (which implies
that Def. 7 is satisfied).
The domain-sampler that we have in mind repeatedly selects random (i.e.,
uniformly distributed) |α|-bit long strings and output the first such string
that resides in Dα (and a special failure symbols if |α| · 2|α|/|Dα| attempts
have failed). This sampler has an efficient reversed-sampler that, given x ∈
Dα, generates a random sequence of |α|-bit long strings and replaces the first
string that resides in Dα by the string x.

2. An alternative way of obtaining a doubly-enhanced collection is to first de-
fine a (rather artificial) collection of weak trapdoor permutations, {f ′

α :
{0, 1}|α| → {0, 1}|α|}α∈I , such that f ′

α(x) = fα(x) if x ∈ Dα and f ′
α(x) = x

otherwise. Using the amplification of a weak one-way property to a standard
one-way property (as in [G1, Sec. 2.3&2.6]), we are done.

Indeed, in the first alternative we amplified the trivial domain-sampler that suc-
ceeds with noticeable probability, whereas in the second alternative we amplified
the one-way property of the trivial extension of fα to the domain {0, 1}|α|. Either
way we obtain a doubly-enhanced collection of trapdoor permutations, provided
that {fα} is an ordinary collection of trapdoor permutations.

We mention that the foregoing modifications of the Rabin collection follows
the outline of the second modification that is presented in [G2, Apdx. C.1].
In contrast, as pointed out by Jonathan Katz, the first implementation (of an
enhanced trapdoor permutation based on factoring) that is presented in [G2,
Apdx. C.1] is not doubly-enhanced.
5 Actually, a more general case, which is used for the Rabin collection, is one in which

Dα ⊆ {0, 1}�(|α|) satisfies |Dα| > 2�(|α|)/poly(|α|), where � : N → N is a fixed
function.



Average Case Complexity, Revisited

Oded Goldreich

Abstract. More than two decades elapsed since Levin set forth a theory
of average-case complexity. In this survey we present the basic aspects
of this theory as well as some of the main results regarding it. The
current presentation deviates from our old “Notes on Levin’s Theory of
Average-Case Complexity” (ECCC, TR97-058, 1997) in several aspects.
In particular:

– We currently view average-case complexity as referring to the per-
formance on “average” (or rather typical) instances, and not as the
average performance on random instances. (Thus, it may be more
justified to refer to this theory by the name typical-case complexity,
but we retain the name average-case for historical reasons.)

– We include a treatment of search problems, and a presentation of
the reduction of “NP with sampleable distributions” to “NP with
P-computable distributions” (due to Impagliazzo and Levin, 31st
FOCS, 1990).

– We include Livne’s result (ECCC, TR06-122, 2006) by which all nat-
ural NPC-problems have average-case complete versions. This result
seems to shed doubt on the association of P-computable distribu-
tions with natural distributions.

Keywords: Average-Case Complexity.

This text has been revised based on [6, Sec. 10.2].

1 Introduction

In light of the apparent infeasibility of solving numerous useful computational
problems, it is natural to ask whether these problems can be relaxed such that
the relaxation is both useful and allows for feasible solving procedures. We stress
two aspects about the foregoing question: on one hand, the relaxation should
be sufficiently good for the intended applications; but, on the other hand, it
should be significantly different from the original formulation of the problem so
to escape the infeasibility of the latter. We note that whether a relaxation is
adequate for an intended application depends on the application, and thus much
of the material in this chapter is less robust (or generic) than the treatment of
the non-relaxed computational problems.

One commonly considered type of relaxation refers to the computational prob-
lems themselves; that is, for each problem instance we extend the set of admissi-
ble solutions. In the context of search problems this means settling for solutions
that have a value that is “sufficiently close” to the value of the optimal solution
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(with respect to some value function). Needless to say, the specific meaning of
‘sufficiently close’ is part of the definition of the relaxed problem. In the con-
text of decision problems this means that for some instances both answers are
considered valid; specifically, we shall consider promise problems in which the
no-instances are “far” from the yes-instances in some adequate sense (which is
part of the definition of the relaxed problem).

In this survey, we consider a different type of relaxation. We do not relax the
computational problems themselves, but rather the notion of solving them effi-
ciently. Specifcally, this type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead, the behav-
ior of the solver is analyzed with respect to a predetermined input distribution
(or a class of such distributions), and bad behavior may occur with negligible
probability where the probability is taken over this input distribution. That is,
we replace worst-case analysis by average-case (or rather typical-case) analysis.
Needless to say, a major component in this approach is limiting the class of
distributions in a way that, on one hand, allows for various types of natural
distributions and, on the other hand, prevents the collapse of the corresponding
notion of average-case hardness to the standard notion of worst-case hardness.

1.1 The Basic Mindframe of Average-Case Complexity

The common approach of complexity theory is termed worst-case complexity,
because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That
is, computational problems were defined as referring to a set of instances and
performance guarantees were required to hold for each instance in this set. In
contrast, average-case complexity allows ignoring a negligible measure of the
possible instances, where the identity of the ignored instances is determined by
the analysis of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by
the problem’s statement). It is just that they are viewed as exceptional when
claiming that a specific algorithm solve the problem; that is, these exceptional
instances are determined by the analysis of that algorithm. Needless to say, these
exceptional instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Most importantly, a distribution on
the set of admissible instances has to be specified. In fact, we shall consider a new
type of computational problems, each consisting of a standard computational
problem coupled with a probability distribution on instances. Consequently, the
question of which distributions should be considered in a theory of average-case
complexity arises. This question and numerous other definitional issues will be
addressed in Section 2.1.
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Before proceeding, let us spell out the rather straightforward motivation to
the study of the average-case complexity of computational problems: It is that, in
real-life applications, one may be perfectly happy with an algorithm that solves
the problem fast on almost all instances that arise in the relevant application.
That is, one may be willing to tolerate error provided that it occurs with negligi-
ble probability, where the probability is taken over the distribution of instances
encountered in the application. The study of average-case complexity is aimed
at exploring the possible benefit of such a relaxation, distinguishing cases in
which a benefit exists from cases in which it does not exist. A key aspect in such
a study is a good modeling of the type of distributions (of instances) that are
encountered in natural algorithmic applications.

Let us consider the foregoing motivation from a slightly different perspec-
tive: The conjecture that P �= NP (or rather NP �⊆ BPP) only asserts that
intractability is a feature of some instances of some problems in NP . These
intractable instances may be very rare and pathological. The theory of average-
case complexity addresses the question of whether intractability can also be
a feature of “typical” instances (i.e., whether intractable instances may occur
with noticeable probability with respect to some simple distributions). Needless
to say, the meaningfulness of the latter question depends on restricting the class
of distributions such that only simple (rather than pathological) distributions
are allowed. We shall consider two such classes of distributions (see Section 2.1
and Section 3.2, respectively) and show that if intractability occurs with respect
to the wider class then it occurs also with respect to the more restricted class
(see Theorem 14).

An Average-Case version of the P �= NP Question. Indeed, a fundamental
question that arises is whether every natural computational problem can be solved
efficiently when restricting attention to typical instances? The conjecture that
underlies this section is that, for a well-motivated choice of definitions, the answer
is negative; that is, our conjecture is that the “distributional version” of NP is not
contained in the average-case (or typical-case) version of P. This means that some
NP problems are not merely hard in the worst-case, but are rather “typically
hard” (i.e., hard on typical instances drawn from some simple distribution). This
suggests that hard instances may occur in natural algorithmic applications (and
not only in cryptographic (or other “adversarial”) applications that are design
on purpose to produce hard instances).1

The foregoing conjecture motivates the development of an average-case ana-
logue of NP-completeness, which will be presented in this survey. In particular,
this (average-case) theory identifies distributional problems that are “typically
1 We highlight two differences between the current context (of natural algorithmic ap-

plications) and the context of cryptography. Firstly, in the current context and when
referring to problems that are typically hard, the simplicity of the underlying input
distribution is of great concern: the simpler this distribution, the more appealing the
hardness assertion becomes. This concern is irrelevant in the context of cryptogra-
phy. On the other hand (see, e.g., [5]), cryptographic applications require the ability
to efficiently generate hard instances together with corresponding solutions.
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hard” provided that distributional problems that are “typically hard” exist at all.
If one believes the foregoing conjecture then, for such complete (distributional)
problems, one should not seek algorithms that solve these problems efficiently
on typical instances.

1.2 Organization

A significant part of our exposition is devoted to the definitional issues that arise
when developing a general theory of average-case complexity. These issues are
discussed in Section 2.1. In Section 2.2 we prove the existence of distributional
problems that are “NP-complete” in the corresponding average-case complexity
sense. Furthermore, we show how to obtain such a distributional version for any
natural NP-complete decision problem. In Section 2.3 we extend the treatment
to randomized algorithms. Additional ramifications are presented in Section 3.

2 The Basic Theory

In this section we provide a basic treatment of the theory of average-case com-
plexity, while postponing important ramifications to Section 3. The basic treat-
ment consists of the preferred definitional choices for the main concepts as well
as the identification of complete problems for a natural class of average-case
computational problems.

2.1 Definitional Issues

The theory of average-case complexity is more subtle than may appear at first
thought. In addition to the generic conceptual difficulty involved in defining
relaxations, difficulties arise from the “interface” between standard probabilistic
analysis and the conventions of complexity theory. This is most striking in the
definition of the class of feasible average-case computations. Referring to the
theory of worst-case complexity as a guideline, we shall address the following
aspects of the analogous theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems,
which are standard computational problems coupled with distributions on
the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-
case analogue of classes such as P , we shall reject the first definition that
comes to mind (i.e., the naive notion of “average polynomial-time”), briefly
discuss several related alternatives, and adopt one of them for the main
treatment.

3. Identifying the class of interesting (distributional) problems. Seeking an
average-case analogue of the class NP , we shall avoid both the extreme
of allowing arbitrary distributions (which collapses average-case hardness to
worst-case hardness) and the opposite extreme of confining the treatment to
a single distribution such as the uniform distribution.
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4. Developing an adequate notion of reduction among (distributional) problems.
As in the theory of worst-case complexity, this notion should preserve feasible
solveability (in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Step 1: Defining Distributional Problems. Focusing on decision problems,
we define distributional problems as pairs consisting of a decision problem and a
probability ensemble.2 For simplicity, here a probability ensemble {Xn}n∈N is a se-
quence of random variables such that Xn ranges over {0, 1}n. Thus, (S, {Xn}n∈N)
is the distributional problem consisting of the problem of deciding membership
in the set S with respect to the probability ensemble {Xn}n∈N. (The treatment
of search problem is similar; see Section 3.1.) We denote the uniform probability
ensemble by U = {Un}n∈N; that is, Un is uniform over {0, 1}n.

Step 2: Identifying the Class of Feasible Problems. The first idea that
comes to mind is defining the problem (S, {Xn}n∈N) as feasible (on the average)
if there exists an algorithm A that solves S such that the average running time
of A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial p
such that E[tA(Xn)] ≤ p(n), where tA(x) denotes the running-time of A on input
x). The problem with this definition is that it is very sensitive to the model of
computation and is not closed under algorithmic composition. Both deficiencies
are a consequence of the fact that tA may be polynomial on the average with
respect to {Xn}n∈N but t2A may fail to be so (e.g., consider tA(x′x′′) = 2|x

′| if
x′ = x′′ and tA(x′x′′) = |x′x′′|2 otherwise, coupled with the uniform distribution
over {0, 1}n). We conclude that the average running-time of algorithms is not
a robust notion. We also doubt the soundness of the appeal of this notion, and
view the typical running time of algorithms (as defined next) as a more natural
notion. Thus, we shall consider an algorithm as feasible if its running-time is
typically polynomial.3

We say that A is typically polynomial-time on X = {Xn}n∈N if there exists a
polynomial p such that the probability that A runs more that p(n) steps on Xn

2 We mention that even this choice is not evident. Specifically, Levin [10] (see discus-
sion in [4]) advocates the use of a single probability distribution defined over the
set of all strings. His argument is that this makes the theory less representation-
dependent. At the time we were convinced of his argument (see [4]), but currently
we feel that the representation-dependent effects discussed in [4] are legitimate. Fur-
thermore, the alternative formulation of [10,4] comes across as unnatural and tends
to confuse some readers.

3 An alternative choice, taken by Levin [10] (see discussion in [4]), is considering as
feasible (w.r.t X = {Xn}n∈N) any algorithm that runs in time that is polynomial
in a function that is linear on the average (w.r.t X); that is, requiring that there
exists a polynomial p and a function � : {0, 1}∗ → N such that t(x) ≤ p(�(x)) for
every x and E[�(Xn)] = O(n). This definition is robust (i.e., it does not suffer from
the aforementioned deficiencies) and is arguably as “natural” as the naive definition
(i.e., E[tA(Xn)] ≤ poly(n)).
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is negligible (i.e., for every polynomial q and all sufficiently large n it holds that
Pr[tA(Xn) > p(n)] < 1/q(n)). The question is what is required in the “untypical”
cases, and two possible definitions follow.

1. The simpler option is saying that (S, {Xn}n∈N) is (typically) feasible if there
exists an algorithm A that solves S such that A is typically polynomial-time
on X = {Xn}n∈N. This effectively requires A to correctly solve S on each
instance, which is more than was required in the motivational discussion.
(Indeed, if the underlying motivation is ignoring rare cases, then we should
ignore them altogether rather than ignoring them in a partial manner (i.e.,
only ignore their affect on the running-time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X)
is (typically) feasible if there exists an algorithm A such that A typically
solves S on X in polynomial-time; that is, there exists a polynomial p such
that the probability that on input Xn algorithm A either errs or runs more
that p(n) steps is negligible. This formulation totally ignores the untypical
instances. Indeed, in this case we may assume, without loss of generality,
that A always runs in polynomial-time, but we shall not do so here (in order
to facilitate viewing the first option as a special case of the current option).

We stress that both alternatives actually define typical feasibility and not
average-case feasibility. To illustrate the difference between the two options,
consider the distributional problem of deciding whether a uniformly selected (n-
vertex) graph is 3-colorable. Intuitively, this problem is “typically trivial” (with
respect to the uniform distribution),4 because the algorithm may always say no
and be wrong with exponentially vanishing probability. Indeed, this trivial al-
gorithm is admissible by the second approach, but not by the first approach. In
light of the foregoing discussions, we adopt the second approach.

Definition 1 (the class tpcP): We say that A typically solves (S, {Xn}n∈N) in
polynomial-time if there exists a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p(n) steps is negligible.5 We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial-time.

Clearly, for every S ∈ P and every probability ensemble X , it holds that (S, X) ∈
tpcP . However, tpcP contains also distributional problems (S, X) with S �∈ P
(albeit this assertion refers to unnatural distributional versions of problems not
in P). The big question, which underlies the theory of average-case complexity,
is whether all natural distributional versions of NP are in tpcP . Thus, we turn
to identify such versions.
4 In contrast, testing whether a given graph is 3-colorable seems “typically hard” for

other distributions (see, e.g., Theorem 7). Needless to say, in the latter distributions
both yes-instances and no-instances appear with noticeable probability.

5 Recall that a function μ : N → N is negligible if for every positive polynomial q and
all sufficiently large n it holds that μ(n) < 1/q(n). We say that A errs on x if A(x)
differs from the indicator value of the predicate x ∈ S.
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Step 3: Identifying the Class of Interesting Problems. Seeking to iden-
tify reasonable distributional versions of NP , we note that two extreme choices
should be avoided. On the one hand, we must limit the class of admissible dis-
tributions so as to prevent the collapse of average-case hardness to worst-case
hardness (by a selection of a pathological distribution that resides on the “worst
case” instances). On the other hand, we should allow for various types of natural
distributions rather than confining attention merely to the uniform distribution.6

Recall that our aim is addressing all possible input distributions that may occur
in applications, and thus there is no justification for confining attention to the
uniform distribution. Still, arguably, the distributions occuring in applications
are “relatively simple” and so we seek to identify a class of simple distributions.
One such notion (of simple distributions) underlies the following definition, while
a more liberal notion will be presented in Section 3.2.

Definition 2 (the class distNP): We say that a probability ensemble X =
{Xn}n∈N is simple if there exists a polynomial time algorithm that, on any input
x ∈ {0, 1}∗, outputs Pr[X|x| ≤ x], where the inequality refers to the standard
lexicographic order of strings. We denote by distNP the class of distributional
problems consisting of decision problems in NP coupled with simple probability
ensembles.

Note that the uniform probability ensemble is simple, but so are many other
“simple” probability ensembles. Actually, it makes sense to relax the definition
such that the algorithm is only required to output an approximation of Pr[X|x| ≤
x], say, to within a factor of 1 ± 2−2|x|. We note that Definition 2 interprets
simplicity in computational terms; specifically, as the feasibility of answering
very basic questions regarding the probability distribution (i.e., determining the
probability mass assigned to a single (n-bit long) string and even to an interval
of such strings).

Doudts Regarding Definition 2. We admit that the identification of simple distri-
butions as the class of interesting distribution is significantly more questionable
than any other identification advocated in this book. Nevertheless, we believe
that we were fully justified in rejecting both the aforementioned extremes (i.e.,
of either allowing all distributions or allowing only the uniform distribution).
Yet, the reader may wonder whether or not we have struck the right balance be-
tween “generality” and “simplicity” (in the intuitive sense). One specific concern
is that we might have restricted the class of distributions too much. We briefly
address this concern next.

A more intuitive and very robust class of distributions, which seems to con-
tain all distributions that may occur in applications, is the class of polynomial-
time sampleable probability ensembles (treated in Section 3.2). Fortunately, the
6 Confining attention to the uniform distribution seems misguided by the naive belief

according to which this distribution is the only one relevant to applications. In
contrast, we believe that, for most natural applications, the uniform distribution
over instances is not relevant at all.



Average Case Complexity, Revisited 429

combination of the results presented in Section 2.2 and Section 3.2 seems to
retrospectively endorse the choice underlying Definition 2. Specifically, we note
that enlarging the class of distributions weakens the conjecture that the corre-
sponding class of distributional NP problems contains infeasible problems. On
the other hand, the conclusion that a specific distributional problem is not fea-
sible becomes more appealing when the problem belongs to a smaller class that
corresponds to a restricted definition of admissible distributions. Now, the com-
bined results of Section 2.2 and Section 3.2 assert that a conjecture that refers
to the larger class of polynomial-time sampleable ensembles implies a conclusion
that refers to a (very) simple probability ensemble (which resides in the smaller
class). Thus, the current setting in which both the conjecture and the conclusion
refer to simple probability ensembles may be viewed as just an intermediate step.

Does distNP Contain Only Feasible Problems? Indeed, the big question in the
current context is whether distNP is contained in tpcP . A positive answer (es-
pecially if extended to sampleable ensembles) would deem the P-vs-NP Question
to be of little practical significant. However, our daily experience as well as much
research effort indicate that some NP problems are not merely hard in the worst-
case, but rather “typically hard”. This leads to the conjecture that distNP is
not contained in tpcP .

Needless to say, the latter conjecture implies P �= NP , and thus we should
not expect to see a proof of it. In particular, we should not expect to see a proof
that some specific problem in distNP is not in tpcP . What we may hope to
see is “distNP-complete” problems; that is, problems in distNP that are not in
tpcP unless the entire class distNP is contained in tpcP. An adequate notion
of a reduction is used towards formulating this possibility.

Step 4: Defining Reductions among (Distributional) Problems. Intu-
itively, such reductions must preserve average-case feasibility. Thus, in addition
to the standard conditions (i.e., that the reduction be efficiently computable and
yield a correct result), we require that the reduction “respects” the probability
distribution of the corresponding distributional problems. Specifically, the re-
duction should not map very likely instances of the first (“starting”) problem to
rare instances of the second (“target”) problem. Otherwise, having a typically
polynomial-time algorithm for the second distributional problem does not nec-
essarily yield such an algorithm for the first distributional problem. Following
is the adequate analogue of a Cook reduction (i.e., general polynomial-time re-
duction), and the analogue of a Karp-reduction (many-to-one reduction) can be
easily derived as a special case.7

Definition 3 (reductions among distributional problems): We say that the or-
acle machine M reduces the distributional problem (S, X) to the distributional
problem (T, Y ) if the following three conditions hold.

7 See Footnote 9. We mention that the special case of many-to-one reductions, which
suffices for the distNP-completeness results (e.g., Theorem 5).
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1. Efficiency: The machine M runs in polynomial-time.8
2. Validity: For every x ∈ {0, 1}∗, it holds that MT (x) = 1 if an only if x ∈ S,

where MT (x) denotes the output of the oracle machine M on input x and
access to an oracle for T .

3. Domination:9 The probability that, on input Xn and oracle access to T , ma-
chine M makes the query y is upper-bounded by poly(|y|) ·Pr[Y|y| = y]. That
is, there exists a polynomial p such that, for every y ∈ {0, 1}∗ and every
n ∈ N, it holds that

Pr[Q(Xn) - y] ≤ p(|y|) · Pr[Y|y| = y], (1)

where Q(x) denotes the set of queries made by M on input x and oracle
access to T .
In addition, we require that the reduction does not make too short queries;
that is, there exists a polynomial p′ such that if y ∈ Q(x) then p′(|y|) ≥ |x|.

In this case we say that the distributional problem (S, X) is reducible to the
distributional problem (T, Y ).

The l.h.s. of Eq. (1) refers to the probability that, on input distributed as Xn,
the reduction makes the query y. This probability is required not to exceed
the probability that y occurs in the distribution Y|y| by more than a polyno-
mial factor in |y|. In this case we say that the l.h.s. of Eq. (1) is dominated by
Pr[Y|y| = y].

Indeed, the domination condition is the only aspect of Definition 3 that ex-
tends beyond the worst-case treatment of reductions and refers to the distribu-
tional setting. The domination condition does not insist that the distribution
induced by Q(X) equals Y , but rather allows some slackness that, in turn, is
bounded so to guarantee preservation of typical feasibility. 10

Proposition 4 (typical feasibility is preserved by reduction): Suppose that the
distributional problem (S, X) is reducible to the distributional problem (T, Y ),
and that (T, Y ) ∈ tpcP. Then, (S, X) ∈ tpcP.
8 In fact, one may relax the requirement and only require that M is typically

polynomial-time with respect to X. The validity condition may also be relaxed
similarly.

9 Let us spell out the meaning of Eq. (1) in the special case of many-to-one reductions
(i.e., MT (x) = 1 if and only if f(x) ∈ T , where f is a polynomial-time computable
function): in this case Pr[Q(Xn) � y] is replaced by Pr[f(Xn) = y]. That is, Eq. (1)
simplifies to Pr[f(Xn) = y] ≤ p(|y|) · Pr[Y|y| = y]. Indeed, this condition holds
vacuously for any y that is not in the image of f .

10 We stress that the notion of domination is incomparable to the notion of statistical
(resp., computational) indistinguishability. On one hand, domination is a local re-
quirement (i.e., it compares the two distribution on a point-by-point basis), whereas
indistinguishability is a global requirement (which allows rare exceptions). On the
other hand, domination does not require approximately equal values, but rather a
ratio that is bounded in one direction. Indeed, domination is not symmetric. We
comment that a more relaxed notion of domination that allows rare violations (as
in Footnote 8) suffices for the preservation of typical feasibility.
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Proof Sketch: Let M , Q, p, and p′ be as in Definition 3, and suppose that A
is an algorithm that typically solves (T, Y ) in polynomial-time. Let B denote
the set of instances on which A errs (or runs more than polynomial time), and
Bm

def= B ∩ {0, 1}m. By the domination condition, for every n, it holds that

Pr[MA(Xn) errs] ≤ Pr[Q(Xn) ∩B �= ∅]
≤

∑
m:p′(m)≥n

∑
y∈Bm

Pr[Q(Xn) - y]

≤
∑

m:p′(m)≥n

∑
y∈Bm

p(m) · Pr[Ym = y]

≤
∑

m:p′(m)≥n

p(m) · Pr[Ym ∈ Bm]

where the second (resp., third) inequality uses the additional (resp., main) guar-
antee in the domination condition. It follows that the probability that MA errs
on Xn is negligible (as a function of n).

Perspective. We note that the reducibility arguments that are extensively used
in cryptopgraphy (see, e.g., [5, Chap. 2]) are actually reductions in the spirit of
Definition 3 (except that they refer to different types of computational tasks).

2.2 Complete Problems

Recall that our conjecture is that distNP is not contained in tpcP , which in turn
strengthens the conjecture P �= NP (making infeasibility a typical phenomenon
rather than a worst-case one). Having no hope of proving that distNP is not
contained in tpcP , we turn to the study of complete problems with respect
to that conjecture. Specifically, we say that a distributional problem (S, X) is
distNP-complete if (S, X) ∈ distNP and every (S′, X ′) ∈ distNP is reducible
to (S, X) (under Definition 3).

Distributional Bounded Halting. Recall that it is quite easy to prove the
mere existence of NP-complete problems and that many natural problems are
NP-complete. In contrast, in the current context, establishing completeness re-
sults is quite hard. This should not be surprising in light of the restricted type
of reductions allowed in the current context. The restriction (captured by the
domination condition) requires that “typical” instances of one problem should
not be mapped to “untypical” instances of the other problem. In contrast, it is
fair to say that standard Karp-reductions (used in establishing NP-completeness
results) map “typical” instances of one problem to somewhat “bizarre” instances
of the second problem. Thus, the current section may be viewed as a study of
reductions that do not commit this sin.11
11 The latter assertion is somewhat controversial. While this assertion seems totally

justified with respect to the proof of Theorem 5, opinions regarding the proof of
Theorem 7 may differ.
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Theorem 5 (distNP-completeness): distNP contains a distributional problem
(T, Y ) such that each distributional problem in distNP is reducible (per
Definition 3) to (T, Y ). Furthermore, the reductions are via many-to-one
mappings.

Proof: We start by introducing such a (distributional) problem, which is a
natural distributional version of the “universal decision problem”, denoted Su,
and often referred to as Bounded Halting. Specifically, we define Su such that
the instance 〈M, x, 1t〉 is in Su if there exists y ∈ ∪i≤t{0, 1}i such that ma-
chine M accepts the input pair (x, y) within t steps. We couple Su with the
“quasi-uniform” probability ensemble U ′ that assigns to the instance 〈M, x, 1t〉
a probability mass proportional to 2−(|M|+|x|). Specifically, for every 〈M, x, 1t〉
it holds that

Pr[U ′
n = 〈M, x, 1t〉] =

2−(|M|+|x|)(
n
2

) (2)

where n
def= |〈M, x, 1t〉| def= |M | + |x| + t. Note that, under a suitable natural

encoding, the ensemble U ′ is indeed simple.12

The reader can easily verify that the generic reduction used when reducing
any set in NP to Su (see the proof of [6, Thm. 2.19]), fails to reduce distNP
to (Su, U

′). Specifically, in some cases (see next paragraph), these reductions do
not satisfy the domination condition. Indeed, the difficulty is that we have to
reduce all distNP problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., (Su, U

′)). In contrast,
considering the distributions induced by the aforementioned reductions, we end
up with many distributional versions of Su, and furthermore the corresponding
distributions are very different (and are not necessarily dominated by a single
distribution).

Let us take a closer look at the aforementioned generic reduction (of S to Su),
when applied to an arbitrary (S, X) ∈ distNP . This reduction maps an instance
x to a triple (MS , x, 1pS(|x|)), where MS is a machine verifying membership in
S (while using adequate NP-witnesses) and pS is an adequate polynomial. The
problem is that x may have relatively large probability mass (i.e., it may be that
Pr[X|x|=x] $ 2−|x|) while (MS , x, 1pS(|x|)) has “uniform” probability mass (i.e.,
〈MS , x, 1pS(|x|)〉 has probability mass smaller than 2−|x| in U ′). This violates the
domination condition, and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution. This means that the encoding
should shrink strings that have relatively large probability mass under the origi-
nal distribution. Specifically, this encoding will map x (taken from the ensemble
12 For example, we may encode 〈M, x, 1t〉, where M = σ1 · · · σk ∈ {0, 1}k and x =

τ1 · · · τ� ∈ {0, 1}�, by the string σ1σ1 · · ·σkσk01τ1τ1 · · · τ�τ�01
t. Then

(
n
2

) · Pr[U ′
n ≤

〈M, x, 1t〉] equals (i|M|,|x|,t − 1) + 2−|M| · |{M ′∈{0, 1}|M| : M ′ < M}|+ 2−(|M|+|x|) ·
|{x′∈{0, 1}|x| : x′ ≤ x}|, where ik,�,t is the ranking of {k, k + �} among all 2-subsets
of [k + � + t].
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{Xn}n∈N) to a codeword x′ of length that is upper-bounded by the logarithm of
1/Pr[X|x|=x], ensuring that Pr[X|x|=x] = O(2−|x′|). Accordingly, the reduction
will map x to a triple (MS,X , x′, 1p′(|x|)), where |x′| < O(1)+log2(1/Pr[X|x|=x])
and MS,X is an algorithm that (given x′ and x) first verifies that x′ is a proper
encoding of x and next applies the standard verification (i.e., MS) of the problem
S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency,
validity, and domination). Thus, instead of forcing the structure of the original
distribution X on the target distribution U ′, the reduction will incorporate the
structure of X in the reduced instance. A key ingredient in making this possible
is the fact that X is simple (as per Definition 2).

With the foregoing motivation in mind, we now turn to the actual proof; that
is, proving that any (S, X) ∈ distNP is reducible to (Su, U

′). The following
technical lemma is the basis of the reduction. In this lemma as well as in the
sequel, it will be convenient to consider the (accumulative) distribution function

of the probability ensemble X . That is, we consider μ(x) def= Pr[X|x| ≤ x], and
note that μ : {0, 1}∗ → [0, 1] is polynomial-time computable (because X satisfies
Definition 2).

Coding Lemma:13 Let μ : {0, 1}∗ → [0, 1] be a polynomial-time computable
function that is monotonically non-decreasing over {0, 1}n for every n (i.e.,
μ(x′) ≤ μ(x′′) for any x′ < x′′ ∈ {0, 1}|x′|). For x ∈ {0, 1}n \ {0n}, let x− 1 de-
note the string preceding x in the lexicographic order of n-bit long strings. Then
there exist an encoding function Cμ that satisfies the following three conditions.

1. Compression: For every x it holds that |Cμ(x)| ≤ 1+min{|x|, log2(1/μ′(x))},
where μ′(x) def= μ(x)− μ(x − 1) if x �∈ {0}∗ and μ′(0n) def= μ(0n) otherwise.

2. Efficient Encoding: The function Cμ is computable in polynomial-time.
3. Unique Decoding: For every n ∈ N, when restricted to {0, 1}n, the function

Cμ is one-to-one (i.e., if Cμ(x) = Cμ(x′) and |x| = |x′| then x = x′).

Proof: The function Cμ is defined as follows. If μ′(x) ≤ 2−|x| then Cμ(x) = 0x
(i.e., in this case x serves as its own encoding). Otherwise (i.e., μ′(x) > 2−|x|) then
Cμ(x) = 1z, where z is chosen such that |z| ≤ log2(1/μ′(x)) and the mapping of n-
bit strings to their encoding is one-to-one. Loosely speaking, z is selected to equal
the shortest binary expansion of a number in the interval (μ(x) − μ′(x), μ(x)].
Bearing in mind that this interval has length μ′(x) and that the different intervals
are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that μ′(x) > 2−|x|, and detail the way that z is selected
(for the encoding Cμ(x) = 1z). If x > 0|x| and μ(x) < 1, then we let z be
the longest common prefix of the binary expansions of μ(x − 1) and μ(x); for
example, if μ(1010) = 0.10010 and μ(1011) = 0.10101111 then Cμ(1011) = 1z

13 The lemma actually refers to {0, 1}n, for any fixed value of n, but the efficiency
condition is stated more easily when allowing n to vary (and using the standard
asymptotic analysis of algorithms). Actually, the lemma is somewhat easier to state
and establish for polynomial-time computable functions that are monotonically non-
decreasing over {0, 1}∗ (rather than over {0, 1}n); see [4, Sec. 3].
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with z = 10. Thus, in this case 0.z1 is in the interval (μ(x − 1), μ(x)] (i.e.,
μ(x − 1) < 0.z1 ≤ μ(x)). For x = 0|x|, we let z be the longest common prefix
of the binary expansions of 0 and μ(x) and again 0.z1 is in the relevant interval
(i.e., (0, μ(x)]). Finally, for x such that μ(x) = 1 and μ(x−1) < 1, we let z be the
longest common prefix of the binary expansions of μ(x−1) and 1−2−|x|−1, and
again 0.z1 is in (μ(x− 1), μ(x)] (because μ′(x) > 2−|x| and μ(x− 1) < μ(x) = 1
imply that μ(x− 1) < 1− 2−|x| < μ(x)). Note that if μ(x) = μ(x − 1) = 1 then
μ′(x) = 0 < 2−|x|.

We now verify that the foregoing Cμ satisfies the conditions of the lemma. We
start with the compression condition. Clearly, if μ′(x) ≤ 2−|x| then |Cμ(x)| =
1 + |x| ≤ 1 + log2(1/μ′(x)). On the other hand, suppose that μ′(x) > 2−|x| and
let us focus on the sub-case that x > 0|x| and μ(x) < 1. Let z = z1 · · · z� be
the longest common prefix of the binary expansions of μ(x− 1) and μ(x). Then,
μ(x− 1) = 0.z0u and μ(x) = 0.z1v, where u, v ∈ {0, 1}∗. We infer that

μ′(x) = μ(x)− μ(x− 1) ≤

⎛⎝ �∑
i=1

2−izi +
poly(|x|)∑
i=�+1

2−i

⎞⎠−
�∑

i=1

2−izi < 2−|z|,

and |z| < log2(1/μ′(x)) ≤ |x| follows. Thus, |Cμ(x)| ≤ 1+min(|x|, log2(1/μ′(x)))
holds in both cases. Clearly, Cμ can be computed in polynomial-time by comput-
ing μ(x − 1) and μ(x). Finally, note that Cμ satisfies the unique decoding con-
dition, by separately considering the two aforementioned cases (i.e., Cμ(x) = 0x
and Cμ(x) = 1z). Specifically, in the second case (i.e., Cμ(x) = 1z), use the fact
that μ(x− 1) < 0.z1 ≤ μ(x).

In order to obtain an encoding that is one-to-one when applied to strings of differ-
ent lengths, we augment Cμ in the obvious manner; that is, we consider C′

μ(x) def=
(|x|, Cμ(x)), which may be implemented as C′

μ(x) = σ1σ1 · · ·
σ�σ�01Cμ(x) where σ1 · · ·σ� is the binary expansion of |x|. Note that |C′

μ(x)| =
O(log |x|) + |Cμ(x)| and that C′

μ is one-to-one (over {0, 1}∗).
The machine associated with (S, X). Let μ be the accumulative probability func-
tion associated with the probability ensemble X , and MS be the polynomial-time
machine that verifies membership in S while using adequate NP-witnesses (i.e.,
x ∈ S if and only if there exists y ∈ {0, 1}poly(|x|) such that M(x, y) = 1). Using
the encoding function C′

μ, we introduce an algorithm MS,μ with the intension
of reducing the distributional problem (S, X) to (Su, U

′) such that all instances
(of S) are mapped to triples in which the first element equals MS,μ. Machine
MS,μ is given an alleged encoding (under C′

μ) of an instance to S along with an
alleged proof that the corresponding instance is in S, and verifies these claims in
the obvious manner. That is, on input x′ and 〈x, y〉, machine MS,μ first verifies
that x′ = C′

μ(x), and next verifiers that x ∈ S by running MS(x, y). Thus, MS,μ

verifies membership in the set S′ = {C′
μ(x) : x ∈ S}, while using proofs of the

form 〈x, y〉 such that MS(x, y) = 1 (for the instance C′
μ(x)).14

14 Note that |y| = poly(|x|), but |x| = poly(|C′
μ(x)|) does not necessarily hold (and so

S′ is not necessarily in NP). As we shall see, the latter point is immaterial.
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The reduction. We maps an instance x (of S) to the triple (MS,μ, C′
μ(x), 1p(|x|)),

where p(n) def= pS(n) + pC(n) such that pS is a polynomial representing the
running-time of MS and pC is a polynomial representing the running-time of
the encoding algorithm.

Analyzing the reduction. Our goal is proving that the foregoing mapping con-
stitutes a reduction of (S, X) to (Su, U

′). We verify the corresponding three
requirements (of Definition 3).

1. Using the fact that C′
μ is polynomial-time computable (and noting that p

is a polynomial), it follows that the foregoing mapping can be computed in
polynomial-time.

2. Recall that, on input (x′, 〈x, y〉), machine MS,μ accepts if and only if x′ =
C′

μ(x) and MS accepts (x, y) within pS(|x|) steps. Using the fact that C′
μ(x)

uniquely determines x, it follows that x ∈ S if and only if C′
μ(x) ∈ S′,

which in turn holds if and only if there exists a string y such that MS,μ

accepts (C′
μ(x), 〈x, y〉) in at most p(|x|) steps. Thus, x ∈ S if and only if

(MS,μ, C′
μ(x), 1p(|x|)) ∈ Su, and the validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation x → C′

μ(x) is one-to-
one). Next, we note that it suffices to consider instances of Su that have
a preimage under the foregoing mapping (since instances with no preimage
trivially satisfy the domination condition). Each of these instances (i.e., each
image of this mapping) is a triple with the first element equal to MS,μ and
the second element being an encoding under C′

μ. By the definition of U ′, for
every such image 〈MS,μ, C′

μ(x), 1p(|x|)〉 ∈ {0, 1}n, it holds that

Pr[U ′
n = 〈MS,μ, C′

μ(x), 1p(|x|)〉] =
(

n

2

)−1

· 2−(|MS,μ|+|C′
μ(x)|)

> c · n−2 · 2−(|Cμ(x)|+O(log |x|)),

where c = 2−|MS,μ|−1 is a constant depending only on S and μ (i.e., on
the distributional problem (S, X)). Thus, for some positive polynomial q, we
have

Pr[U ′
n = 〈MS,μ, C′

μ(x), 1p(|x|)〉] > 2−|Cμ(x)|/q(n). (3)

By virtue of the compression condition (of the Coding Lemma), we have
2−|Cμ(x)| ≥ 2−1−min(|x|,log2(1/μ′(x))). It follows that

2−|Cμ(x)| ≥ Pr[X|x| = x]/2. (4)

Recalling that x is the only preimage that is mapped to 〈MS,μ, C′
μ(x), 1p(|x|)〉

and combining Eq. (3)& (4), we establish the domination condition.

The theorem follows.
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Reflections: The proof of Theorem 5 highlights the fact that the reduction used
in establishing the NP-completeness of Su does not introduce much structure in
the reduced instances (i.e., does not reduce the original problem to a “highly
structured special case” of the target problem). Put in other words, unlike more
advanced worst-case reductions, this reduction does not map “random” (i.e.,
uniformly distributed) instances to highly structured instances (which occur with
negligible probability under the uniform distribution). Thus, the reduction used
in establishing the NP-completeness of Su suffices for reducing any distributional
problem in distNP to a distributional problem consisting of Su coupled with
some simple probability ensemble.15

However, Theorem 5 states more than the latter assertion. That is, it states
that any distributional problem in distNP is reducible to the same distributional
version of Su. Indeed, the effort involved in proving Theorem 5 was due to the need
for mapping instances taken from any simple probability ensemble (which may not
be the uniform ensemble) to instances distributed in a manner that is dominated
by a single probability ensemble (i.e., the quasi-uniform ensemble U ′).

Other distNP-complete Problems. Once we have established the existence
of one distNP-complete problem, we may establish the distNP-completeness
of other problems (in distNP) by reducing some distNP-complete problem to
them (and relying on the transitivity of reductions).16 Thus, the difficulties en-
countered in the proof of Theorem 5 are no longer relevant. Unfortunately, a
seemingly more severe difficulty arises: almost all known reductions in the theory
of NP-completeness work by introducing much structure in the reduced instances
(i.e., they actually reduce to highly structured special cases). Furthermore, this
structure is too complex in the sense that the distribution of reduced instances
does not seem simple (in the sense of Definition 2). Actually, as demonstrated
next, the problem is not the existence of a structure in the reduced instances but
rather the complexity of this structure. In particular, if the aforementioned re-
duction is “monotone” and “length regular” then the distribution of the reduced
instances is simple enough (i.e., is simple in the sense of Definition 2):

Proposition 6 (sufficient condition for distNP-completeness): Suppose that f
is a Karp-reduction of the set S to the set T such that, for every x′, x′′ ∈ {0, 1}∗,
the following two conditions hold:

1. (f is monotone): If x′ < x′′ then f(x′) < f(x′′), where the inequalities refer
to the standard lexicographic order of strings.17

2. (f is length-regular): |x′| = |x′′| if and only if |f(x′)| = |f(x′′)|.
15 Note that this cannot be said of most known Karp-reductions, which do map random

instances to highly structured ones.
16 When establishing the transitivity of reductions, it is again essential to use the

additional guarantee in the domination condition. Compare Proposition 4.
17 In particular, if |z′| < |z′′| then z′ < z′′. Recall that for |z′| = |z′′| it holds that

z′ < z′′ if and only if there exists w, u′, u′′ ∈ {0, 1}∗ such that z′ = w0u′ and
z′′ = w1u′′.
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Then, if there exists an ensemble X such that (S, X) is distNP-complete, then
there exists an ensemble Y such that (T, Y ) is distNP-complete.

Proof Sketch: Note that the monotonicity of f implies that f is one-to-one
and that for every x it holds that f(x) ≥ x. Furthermore, as shown next, f
is polynomial-time invertible. Intuitively, the fact that f is both monotone and
polynomial-time computable implies that a preimage can be found by a binary
search. Specifically, given y = f(x), we search for x by iteratively halving the
interval of potential solutions, which is initialized to [0, y] (since x ≤ f(x)). Note
that if this search is invoked on a string y that is not in the image of f , then it
terminates while detecting this fact.

Relying on the fact that f is one-to-one (and length-regular), we define the
probability ensemble Y ={Yn}n∈N such that for every x it holds that Pr[Y|f(x)|=
f(x)] = Pr[X|x| = x]. Specifically, letting 	(m) = |f(1m)| and noting that 	 is
one-to-one and monotonically non-decreasing, we define

Pr[Y|y|=y] =

⎧⎨⎩
Pr[X|x|=x] if x = f−1(y)
0 if ∃m s.t. y ∈ {0, 1}�(m) \ {f(x) : x∈{0, 1}m}
2−|y| otherwise (i.e., if |y| �∈ {	(m) : m∈N})18.

Clearly, (S, X) is reducible to (T, Y ) (via the Karp-reduction f , which, due to
our construction of Y , also satisfies the domination condition). Thus, using the
hypothesis that distNP is reducible to (S, X) and the transitivity of reductions,
it follows that every problem in distNP is reducible to (T, Y ). The key obser-
vation, to be established next, is that Y is a simple probability ensemble, and it
follows that (T, Y ) is in distNP .

Loosely speaking, the simplicity of Y follows by combining the simplicity of
X and the properties of f (i.e., the fact that f is monotone, length-regular, and
polynomial-time invertible). The monotonicity and length-regularity of f implies
that Pr[Y|f(x)| ≤ f(x)] = Pr[X|x| ≤ x]. More generally, for any y ∈ {0, 1}�(m), it
holds that Pr[Y�(m)≤y] = Pr[Xm≤x], where x is the lexicographicly largest string
such that f(x) ≤ y (and, indeed, if |x| < m then Pr[Y�(m) ≤ y] = Pr[Xm ≤ x] =
0).19 Note that this x can be found in polynomial-time by the inverting algorithm
sketched in the first paragraph of the proof. Thus, we may compute Pr[Y|y| ≤ y]
by finding the adequate x and computing Pr[X|x|≤x]. Using the hypothesis that
X is simple, it follows that Y is simple (and the proposition follows).

On the Existence of Adequate Karp-Reductions. Proposition 6 implies that a
sufficient condition for the distNP-completeness of a distributional version of
a (NP-complete) set T is the existence of an adequate Karp-reduction from
the set Su to the set T ; that is, this Karp-reduction should be monotone and
length-regular. While the length-regularity condition seems easy to impose (by

18 Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed
at guaranteeing a “simple” distribution on n-bit strings (also in this case).

19 We also note that the case in which |y| is not in the image of � can be easily detected
and taken care off accordingly.
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using adequate padding), the monotonicity condition seems more problematic.
Fortunately, it turns out that the monotonicity condition can also be imposed by
using adequate padding (or rather an adequate “marking” – see [6, Exer. 2.30]
and [6, Exer. 10.21]. We highlight the fact that the existence of an adequate
padding (or “marking”) is a property of the set T itself, and mention that all
popular NP-complete sets satisfy it. Observing that any Karp-reduction to a
“monotonically markable” set T can be transformed into a Karp-reduction (to T )
that is monotone and length-regular, we conclude that any natural NP-complete
decision problem can be coupled with a simple probability ensemble such that the
resulting distributional problem is distNP-complete. As a concrete illustration
of this thesis, we state the corresponding (formal) result for the twenty-one
NP-complete problems treated in Karp’s paper on NP-completeness [9].

Theorem 7 (a modest version of a general thesis): For each of the twenty-one
NP-complete problems treated in [9] there exists a simple probability ensemble
such that the combined distributional problem is distNP-complete.

The said list of problems includes SAT, Clique, and 3-Colorability.

2.3 Probabilistic Versions

The definitions in Section 2.1 can be extended so to account for randomized
computations. For example, extending Definition 1, we have:

Definition 8 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f , and a time-bound function t : N → N, we say that the string x is
t-bad for A with respect to f if with probability exceeding 1/3, on input x, either
A(x) �= f(x) or A runs more that t(|x|) steps. We say that A typically solves
(S, {Xn}n∈N) in probabilistic polynomial-time if there exists a polynomial p such
that the probability that Xn is p-bad for A with respect to the characteristic
function of S is negligible. We denote by tpcBPP the class of distributional
problems that are typically solvable in probabilistic polynomial-time.

The definition of reductions can be similarly extended. This means that in Def-
inition 3, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) are
random variables rather than fixed objects. Furthermore, validity is required to
hold (for every input) only with probability 2/3, where the probability space
refers only to the internal coin tosses of the reduction. Randomized reductions
are closed under composition and preserve typical feasibility.

Randomized reductions allow the presentation of a distNP-complete prob-
lem that refers to the (perfectly) uniform ensemble. Recall that Theorem 5
establishes the distNP-completeness of (Su, U

′), where U ′ is a quasi-uniform
ensemble (i.e., Pr[U ′

n = 〈M, x, 1t〉] = 2−(|M|+|x|)/
(
n
2

)
, where n = |〈M, x, 1t〉|).

We first note that (Su, U
′) can be randomly reduced to (S′

u, U
′′), where S′

u =
{〈M, x, z〉 : 〈M, x, 1|z|〉 ∈ Su} and Pr[U ′′

n = 〈M, x, z〉] = 2−(|M|+|x|+|z|)/
(
n
2

)
for every 〈M, x, z〉 ∈ {0, 1}n. The randomized reduction consists of mapping
〈M, x, 1t〉 to 〈M, x, z〉, where z is uniformly selected in {0, 1}t. Recalling that
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U = {Un}n∈N denotes the uniform probability ensemble (i.e., Un is uniformly
distributed on strings of length n) and using a suitable encoding we get.

Proposition 9 (distNP-completeness w.r.t the uniform distribition): There ex-
ists S ∈ NP such that every (S′, X ′) ∈ distNP is randomly reducible to (S, U).

Proof Sketch: By the forgoing discussion, every (S′, X ′) ∈ distNP is randomly
reducible to (S′

u, U
′′), where the reduction goes through (Su, U

′). Thus, we focus
on reducing (S′

u, U
′′) to (S′′

u , U), where S′′
u ∈ NP is defined as follows. The

string bin�(|u|) ·bin�(|v|) ·u ·v ·w is in S′′
u if and only if 〈u, v, w〉 ∈ S′

u and 	 =
�log2 |uvw|� + 1, where bin�(i) denotes the 	-bit long binary encoding of the
integer i ∈ [2�−1] (i.e., the encoding is padded with zeros to a total length of 	).
The reduction maps 〈M, x, z〉 to the string bin�(|x|) ·bin�(|M |) ·M ·x ·z, where
	 = �log2(|M |+ |x|+ |z|)�+1. Noting that this reduction satisfies all conditions
of Definition 3, the proposition follows.

3 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 2
is the choice to focus on simple probability ensembles, which in turn restricts
“distributional versions of NP” to the class distNP (Definition 2). As indicated
Section 2.1, this restriction raises two opposite concerns (i.e., that distNP is ei-
ther too wide or too narrow).20 Here we address the concern that the class of sim-
ple probability ensembles is too restricted, and consequently that the conjecture
distNP �⊆ tpcBPP is too strong (which would mean that distNP-completeness
is a weak evidence for typical-case hardness). An appealing extension of the class
of simple probability ensembles is presented in Section 3.2, yielding an corre-
sponding extension of distNP, and it is shown that if this extension of distNP
is not contained in tpcBPP, then distNP itself is not contained in tpcBPP.
Consequently, distNP-complete problems enjoy the benefit of both being in the
more restricted class (i.e., distNP) and being hard as long as some problems in
the extended class is hard.

A different extension appears in Section 3.1, where we extend the treatment
from decision problems to search problems. This extension is motivated by the
realization that search problem are actually of greater importance to real-life
applications (see, e.g., discussions in [6, Sec. 2.1.1]) and hence a theory motivated
by real-life applications must address such problems, as we do next.

Prerequisites: For the technical development of Section 3.1, we assume famil-
iarity with the notion of unique solution and results regarding it (see, e.g., [6,
Sec. 6.2.3]). For the technical development of Section 3.2, we assume familiar-
ity with hashing functions (see, e.g., [6, Apdx. D.2]). In addition, the technical
development of Section 3.2 relies on Section 3.1.
20 On one hand, if the definition of distNP were too liberal, then membership in

distNP would mean less than one may desire. On the other hand, if distNP were
too restricted, then the conjecture that distNP contains hard problems would have
been very questionable.
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3.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least
as important as decision problems. Thus, an average-case treatment of search
problems is indeed called for. We first present distributional versions of the search
problem classes PF and PC (which correspond to P and NP , resp.),21 following
the underlying principles of the definitions of tpcP and distNP.

Definition 10 (the classes tpcPF and distPC): We consider only polynomially
bounded search problems; that is, binary relations R ⊆ {0, 1}∗×{0, 1}∗ such that
for some polynomial q it holds that (x, y) ∈ R implies |y| ≤ q(|x|). We use the
notation R(x) def= {y : (x, y)∈R} and SR

def= {x : R(x) �= ∅}.

– A distributional search problem consists of a polynomially bounded search
problem coupled with a probability ensemble.

– The class tpcPF consists of all distributional search problems that are typ-
ically solvable in polynomial-time. That is, (R, {Xn}n∈N) ∈ tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p(n) steps is negligible,
where A errs on x ∈ SR if A(x) �∈ R(x) and errs on x �∈ SR if A(x) �= ⊥.

– A distributional search problem (R, X) is in distPC if R ∈ PC and X is
simple (as in Definition 2).

Likewise, the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomial-time (cf., Definition 8). The
definitions of reductions among distributional problems, presented in the context
of decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distribu-
tional search problems “reduces” to the study of distributional decision problems.

Theorem 11 (reducing search to decision): distPC ⊆ tpcBPPF if and only if
distNP ⊆ tpcBPP. Furthermore, every problem in distNP is reducible to some
problem in distPC, and every problem in distPC is randomly reducible to some
problem in distNP.

Proof Sketch: The furthermore part is analogous to the actual contents of
the proof that the devision and search versions of the P-vs-NP question are
equivalent (see, e.g., [6, Thm. 2.6] and [6, Thm. 2.16]). Indeed the standard
reduction of NP to PC extends to the current context. Specifically, for any
21 Specifically PF (standing for Polynomial-time Find) is the class of efficiently solvable

search problems; that is, R ∈ PF if there exists a polynomial-time algorithm that

on input x replies with y ∈ R(x)
def
= {z : (x, z) ∈ R} (and with ⊥ if R(x) = ∅).

The class PC (standing for Polynomial-time Check) is the class of search problems
having efficiently checkable solutions; that is, the search problem of a polynomially
bounded relation R ⊆ {0, 1}∗ × {0, 1}∗ is in PC if there exists a polynomial time
algorithm A such that, for every x and y, it holds that A(x, y) = 1 if and only if
(x, y) ∈ R. For more deatils, see [6, Sec. 2.1.1].
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S ∈ NP, we consider a relation R ∈ PC such that S = {x : R(x) �= ∅}, and
note that, for any probability ensemble X , the identity transformation reduces
(S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the standard re-
duction of PC to NP , one reduces the search problem of R ∈ PC to deciding
membership in S′

R
def= {〈x, y′〉 : ∃y′′ s.t. (x, y′y′′) ∈ R} ∈ NP . The difficulty

encountered here is that, on input x, this reduction makes queries of the form
〈x, y′〉, where y′ is a prefix of some string in R(x). These queries may induce a
distribution that is not dominated by any simple distribution. Thus, we seek an
alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions;
that is, for every x it holds that |R(x)| ≤ 1. In this case we may easily reduce
the search problem of R ∈ PC to deciding membership in S′′

R ∈ NP, where
〈x, i, σ〉 ∈ S′′

R if and only if R(x) contains a string in which the ith bit equals σ.
Specifically, on input x, the reduction issues the queries 〈x, i, σ〉, where i ∈ [	]
(with 	 = poly(|x|)) and σ ∈ {0, 1}, which allows for determining the single
string in the set R(x) ⊆ {0, 1}� (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X) ∈ distPC (having unique solutions)
to (S′′

R, X ′′) ∈ distNP , where X ′′ equally distributes the probability mass of x
(under X) to all the tuples 〈x, i, σ〉; that is, for every i ∈ [	] and σ ∈ {0, 1}, it
holds that Pr[X ′′

|〈x,i,σ〉| = 〈x, i, σ〉] equals Pr[X|x| = x]/2	.
Unfortunately, in the general case, R may not have unique solutions. Neverthe-

less, applying the main idea that underlies the reduction of NP to “unique-NP”
(cf. [6, Thm. 6.29]), this difficulty can be overcome. We first note that the fore-
going mapping of instances of the distributional problem (R, X) ∈ distPC to
instances of (S′′

R, X ′′) ∈ distNP satisfies the efficiency and domination condi-
tions even in the case that R does not have unique solutions. What may possibly
fail (in the general case) is the validity condition (i.e., if |R(x)| > 1 then we may
fail to recover any element of R(x)).

Recall that the core of the reduction of NP to unique-NP is a randomized
mapping of instances x (of any R ∈ PC) to triples of the form (x, m, h) such
that m is uniformly distributed in [	] and h is uniformly distributed in a family
of hashing function Hm

� , where 	 = poly(|x|) and Hm
� is a family of pairwise

indepence hashing functions. Furthermore, if R(x) �= ∅ then, with probability
Ω(1/	) over the choices of m ∈ [	] and h ∈ Hm

� , there exists a unique y ∈ R(x)

such that h(y) = 0m. Defining R′(x, m, h) def= {y ∈ R(x) : h(y) = 0m}, this
yields a randomized reduction of the search problem of R to the search problem
of R′ such that with noticeable probability22 the reduction maps instances that
have solutions to instances having a unique solution. Furthermore, this reduction
can be used to reduce any (R, X) ∈ distPC to (R′, X ′) ∈ distPC, where X ′

distributes the probability mass of x (under X) to all the triples (x, m, h) such

22 Recall that the probability of an event is said to be noticeable (in a relevant param-
eter) if it is greater than the reciprocal of some positive polynomial. In the context
of randomized reductions, the relevant parameter is the length of the input to the
reduction.
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that for every m ∈ [	] and h ∈ Hm
� it holds that Pr[X ′

|(x,m,h)| = (x, m, h)] equals
Pr[X|x| = x]/(	·|Hm

� |). (Note that with a suitable encoding, X ′ is indeed simple.)
The theorem follows by combining the two aforementioned reductions. That

is, we first apply the randomized reduction of (R, X) to (R′, X ′), and next re-
duce the resulting instance to an instance of the corresponding decision problem
(S′′

R′ , X ′′), where X ′′ is obtained by modifying X ′ (rather than X). The combined
randomized mapping satisfies the efficiency and domination conditions, and is
valid with noticeable probability. The error probability can be made negligible
by straightforward amplification.

3.2 Simple versus Sampleable Distributions

Recall that the definition of simple probability ensembles (underlying Defini-
tion 2) requires that the accumulating distribution function is polynomial-time
computable. Recall that μ : {0, 1}∗ → [0, 1] is called the accumulating distribu-
tion function of X = {Xn}n∈N if for every n ∈ N and x ∈ {0, 1}n it holds that
μ(x) def= Pr[Xn ≤ x], where the inequality refers to the standard lexicographic
order of n-bit strings.

As argued in Section 2.1, the requirement that the accumulating distribution
function is polynomial-time computable imposes severe restrictions on the set
of admissible ensembles. Furthermore, it seems that these simple ensembles are
indeed “simple” in some intuitive sense, and that they represent a reasonable
(alas disputable) model of distributions that may occur in practice. Still, in light
of the fear that this model is too restrictive (and consequently that distNP-
hardness is weak evidence for typical-case hardness), we seek a maximalistic
model of distributions that may occur in practice. Such a model is provided by
the notion of polynomial-time sampleable ensembles (underlying Definition 12).
Our maximality thesis is based on the belief that the real world should be mod-
eled as a feasible randomized process (rather than as an arbitrary process). This
belief implies that all objects encountered in the world may be viewed as samples
generated by a feasible randomized process.

Definition 12 (sampleable ensembles and the class sampNP): We say that
a probability ensemble X = {Xn}n∈N is (polynomial-time) sampleable if there
exists a probabilistic polynomial-time algorithm A such that for every x ∈ {0, 1}∗
it holds that Pr[A(1|x|) = x] = Pr[X|x| = x]. We denote by sampNP the class
of distributional problems consisting of decision problems in NP coupled with
sampleable probability ensembles.

We first note that all simple probability ensembles are indeed sampleable, and
thus distNP ⊆ sampNP . On the other hand, there exist sampleable probability
ensembles that do not seem simple (and so it seems that distNP ⊂ sampNP).

Extending the scope of distributional problems (from distNP to sampNP)
facilitates the presentation of complete distributional problems. We first note
that it is easy to prove that every natural NP-complete problem has a distri-
butional version in sampNP that is distNP-hard. Furthermore, it is possible
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to prove that all natural NP-complete problem have distributional versions that
are sampNP-complete. (In both cases, “natural” means that the corresponding
Karp-reductions do not shrink the input, which is a weaker condition than the
one in Proposition 6.)

Theorem 13 (sampNP-completeness): Suppose that S ∈ NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the in-
put. Then, there exists a polynomial-time sampleable ensemble X such that any
problem in sampNP is reducible to (S, X)

The proof of Theorem 13 is based on the observation that there exists a
polynomial-time sampleable ensemble that dominates all polynomial-time sam-
pleable ensembles. The existence of this ensemble is based on the notion of a
universal (sampling) machine.

distNP

sampNP

tpcBPP

sampNP-complete [Thm 13]

distNP-complete [Thms 5 and 7]

Fig. 1. Two types of average-case completeness

Theorem 13 establishes a rich theory of sampNP-completeness, but does not
relate this theory to the previously presented theory of distNP-completeness
(see Figure 1). This is essentially done in the next theorem, which asserts that
the existence of typically hard problems in sampNP implies their existence in
distNP .

Theorem 14 (sampNP-completeness versus distNP-completeness): If
sampNP is not contained in tpcBPP then distNP is not contained in
tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are
equivalent. That is, if some “sampleable distribution” versions of NP are not
typically feasible then some “simple distribution” versions of NP are not typically
feasible. In particular, if sampNP-complete problems are not in tpcBPP then
distNP-complete problems are not in tpcBPP.
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The foregoing assertions would all follow if sampNP were (randomly) re-
ducible to distNP (i.e., if every problem in sampNP were reducible (under a
randomized version of Definition 3) to some problem in distNP); but, unfor-
tunately, we do not know whether such reductions exist. Yet, underlying the
proof of Theorem 14 is a more liberal notion of a reduction among distributional
problems.

Proof Sketch: We shall prove that if distNP is contained in tpcBPP then the
same holds for sampNP (i.e., sampNP is contained in tpcBPP). Relying on
Theorem 11 and an analogous result for the sampleable classes, it suffices to show
that if distPC is contained in tpcBPPF, then the sampleable version of distPC,
denoted sampPC, is contained in tpcBPPF. This will be shown by showing that,
under a relaxed notion of a randomized reduction, every problem in sampPC is
reduced to some problem in distPC. Loosely speaking, this relaxed notion (of a
randomized reduction) only requires that the validity and domination conditions
(of Definition 3 (when adapted to randomized reductions)) hold with respect to
a noticeable fraction of the probability space of the reduction.23 We start by
formulating this notion, when referring to distributional search problems.

Definition: A relaxed reduction of the distributional problem (R, X) to the dis-
tributional problem (T, Y ) is a probabilistic polynomial-time oracle machine M
that satisfies the following conditions with respect to a family of sets {Ωx ⊆
{0, 1}m(|x|) : x∈{0, 1}∗}, where m(|x|) = poly(|x|) denotes an upper-bound on
the number of the internal coin tosses of M on input x:

Density (of Ωx): There exists a noticeable function ρ : N → [0, 1] (i.e., ρ(n) >
1/poly(n)) such that, for every x ∈ {0, 1}∗, it holds that |Ωx| ≥ ρ(|x|)·2m(|x|).

Validity (with respect to Ωx): For every r ∈ Ωx the reduction yields a correct
answer; that is, MT (x, r) ∈ R(x) if R(x) �= ∅ and MT (x, r) = ⊥ otherwise,
where MT (x, r) denotes the execution of M on input x, internal coins r, and
oracle access to T .

Domination (with respect to Ωx): There exists a positive polynomial p such that,
for every y ∈ {0, 1}∗ and every n ∈ N, it holds that

Pr[Q′(Xn) - y] ≤ p(|y|) · Pr[Y|y| = y], (5)

where Q′(x) is a random variable, defined over the set Ωx, representing the
set of queries made by M on input x, coins in Ωx, and oracle access to T .
That is, Q′(x) is defined by uniformly selecting r ∈ Ωx and considering the
set of queries made by M on input x, internal coins r, and oracle access to
T . (In addition, as in Definition 3, we also require that the reduction does
not make too short queries.)

23 We warn that the existence of such a relaxed reduction between two specific dis-
tributional problems does not necessarily imply the existence of a corresponding
(standard average-case) reduction. Specifically, although standard validity can be
guaranteed (for problems in PC) by repeated invocations of the reduction, such a
process will not redeem the violation of the standard domination condition.
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The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R ∈ PC, if there exists a relaxed reduction of (R, X) to
(T, Y ) and (T, Y ) is in tpcBPPF then (R, X) is in tpcBPPF. The key obser-
vation is that the analysis may discard the case that, on input x, the reduction
selects coins not in Ωx. Indeed, the queries made in that case may be untypical
and the answers received may be wrong, but this is immaterial. What matter is
that, on input x, with noticeable probability the reduction selects coins in Ωx,
and produces “typical with respect to Y ” queries (by virtue of the relaxed dom-
ination condition). Such typical queries are answered correctly by the algorithm
that typically solves (T, Y ), and if x has a solution then these answers yield a
correct solution to x (by virtue of the relaxed validity condition). Thus, if x
has a solution then with noticeable probability the reduction outputs a correct
solution. On the other hand, the reduction never outputs a wrong solution (even
when using coins not in Ωx), because incorrect solutions are detected by relying
on R ∈ PC.

Our goal is presenting, for every (R, X) ∈ sampPC, a relaxed reduction of
(R, X) to a related problem (R′, X ′) ∈ distPC. (We use the standard notation
X = {Xn}n∈N and X ′ = {X ′

n}n∈N.)

An oversimplified case: For starters, suppose that Xn is uniformly distributed
on some set Sn ⊆ {0, 1}n and that there is a polynomial-time computable and
invertible mapping μ of Sn to {0, 1}�(n), where 	(n) = log2 |Sn|. Then, mapping
x to 1|x|−�(|x|)0μ(x), we obtain a reduction of (R, X) to (R′, X ′), where X ′

n+1

is uniform over {1n−�(n)0v : v ∈ {0, 1}�(n)} and R′(1n−�(n)0v) = R(μ−1(v)) (or,
equivalently, R(x) = R′(1|x|−�(|x|)0μ(x))). Note that X ′ is a simple ensemble
and R′ ∈ PC; hence, (R′, X ′) ∈ distPC. Also note that the foregoing mapping is
indeed a valid reduction (i.e., it satisfies the efficiency, validity, and domination
conditions). Thus, (R, X) is reduced to a problem in distPC (and indeed the
relaxation was not used here).

A simple but more instructive case: Next, we drop the assumption that there
is a polynomial-time computable and invertible mapping μ of Sn to {0, 1}�(n),
but maintain the assumption that Xn is uniform on some set Sn ⊆ {0, 1}n

and assume that |Sn| = 2�(n) is easily computable (from n). In this case, we
may map x ∈ {0, 1}n to its image under a suitable randomly chosen hashing
function h, which in particular maps n-bit strings to 	(n)-bit strings. That is,
we randomly map x to (h, 1n−�(n)0h(x)), where h is uniformly selected in a set
H

�(n)
n of suitable hash functions (i.e., pairwise independent ones). This calls for

redefining R′ such that R′(h, 1n−�(n)0v) corresponds to the preimages of v under
h that are in Sn. Assuming that h is a 1-1 mapping of Sn to {0, 1}�(n), we may
define R′(h, 1n−�(n)0v) = R(x) such that x is the unique string satisfying x ∈ Sn

and h(x) = v, where the condition x ∈ Sn may be verified by providing the
internal coins of the sampling procedure that generate x. Denoting the sampling
procedure of X by S, and letting S(1n, r) denote the output of S on input 1n

and internal coins r, we actually redefine R′ as

R′(h, 1n−�(n)0v) = {〈r, y〉 : h(S(1n, r))=v ∧ y∈R(S(1n, r))}. (6)
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We note that 〈r, y〉 ∈ R′(h, 1|x|−�(|x|)0h(x)) yields a desired solution y ∈ R(x)
if S(1|x|, r) = x, but otherwise “all bets are off” (since y will be a solution for
S(1|x|, r) �= x). Now, although typically h will not be a 1-1 mapping of Sn to
{0, 1}�(n), it is the case that for each x ∈ Sn, with constant probability over the
choice of h, it holds that h(x) has a unique preimage in Sn under h. In this
case 〈r, y〉 ∈ R′(h, 1|x|−�(|x|)0h(x)) implies S(1|x|, r) = x (which, in turn, implies
y ∈ R(x)). We claim that the randomized mapping of x to (h, 1n−�(n)0h(x)),
where h is uniformly selected in H

�(|x|)
|x| , yields a relaxed reduction of (R, X)

to (R′, X ′), where X ′
n′ is uniform over H

�(n)
n × {1n−�(n)0v : v ∈ {0, 1}�(n)}.

Needless to say, the claim refers to the reduction that (on input x, makes the
query (h, 1n−�(n)0h(x)), and) returns y if the oracle answer equals 〈r, y〉 and
y ∈ R(x).

The claim is proved by considering the set Ωx of choices of h ∈ H
�(|x|)
|x| for

which x ∈ Sn is the only preimage of h(x) under h that resides in Sn (i.e.,
|{x′ ∈ Sn : h(x′) = h(x)}| = 1). In this case (i.e., h ∈ Ωx) it holds that
〈r, y〉 ∈ R′(h, 1|x|−�(|x|)0h(x)) implies that S(1|x|, r) = x and y ∈ R(x), and the
(relaxed) validity condition follows. The (relaxed) domination condition follows
by noting that Pr[Xn =x] ≈ 2−�(|x|), that x is mapped to (h, 1|x|−�(|x|)0h(x)) with
probability 1/|H�(|x|)

|x| |, and that x is the only preimage of (h, 1|x|−�(|x|)0h(x)) un-
der the mapping (among x′ ∈ Sn such that Ωx′ - h).

Before going any further, let us highlight the importance of hashing Xn to
	(n)-bit strings. On one hand, this mapping is “sufficiently” one-to-one, and
thus (with constant probability) the solution provided for the hashed instance
(i.e., h(x)) yield a solution for the original instance (i.e., x). This guarantees the
validity of the reduction. On the other hand, for a typical h, the mapping of Xn

to h(Xn) covers the relevant range almost uniformly. This guarantees that the
reduction satisfies the domination condition. Note that these two phenomena
impose conflicting requirements that are both met at the correct value of 	; that
is, the one-to-one condition requires 	(n) ≥ log2 |Sn|, whereas an almost uniform
cover requires 	(n) ≤ log2 |Sn|. Also note that 	(n) = log2(1/Pr[Xn = x]) for
every x in the support of Xn; the latter quantity will be in our focus in the
general case.

The general case: Finally, we get rid of the assumption that Xn is uniformly
distributed over some subset of {0, 1}n. All that we know is that there exists
a probabilistic polynomial-time (“sampling”) algorithm S such that S(1n) is
distributed identically to Xn. In this (general) case, we map instances of (R, X)
according to their probability mass such that x is mapped to an instance (of R′)
that consists of (h, h(x)) and additional information, where h is a random hash
function mapping n-bit long strings to 	x-bit long strings such that

	x
def= �log2(1/Pr[X|x|=x])�. (7)

Since (in the general case) there may be more than 2�x strings in the support
of Xn, we need to augment the reduced instance in order to ensure that it is
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uniquely associated with x. The basic idea is augmenting the mapping of x to
(h, h(x)) with additional information that restricts Xn to strings that occur with
probability at least 2−�x . Indeed, when Xn is restricted in this way, the value of
h(Xn) uniquely determines Xn.

Let q(n) denote the randomness complexity of S and S(1n, r) denote the out-
put of S on input 1n and internal coin tosses r ∈ {0, 1}q(n). Then, we randomly
map x to (h, h(x), h′, v′), where h : {0, 1}|x| → {0, 1}�x and h′ : {0, 1}q(|x|) →
{0, 1}q(|x|)−�x are random hash functions and v′ ∈ {0, 1}q(|x|)−�x is uniformly
distributed. The instance (h, v, h′, v′) of the redefined search problem R′ has
solutions that consists of pairs 〈r, y〉 such that h(S(1n, r)) = v ∧ h′(r) = v′

and y ∈ R(S(1n, r)). As we shall see, this augmentation guarantees that, with
constant probability (over the choice of h, h′, v′), the solutions to the reduced
instance (h, h(x), h′, v′) correspond to the solutions to the original instance x.

The foregoing description assumes that, on input x, we can efficiently deter-
mine 	x, which is an assumption that cannot be justified. Instead, we select 	
uniformly in {0, 1, ..., q(|x|)}, and so with noticeable probability we do select the
correct value (i.e., Pr[	 = 	x] = 1/(q(|x|)+1) = 1/poly(|x|)). For clarity, we make
n and 	 explicit in the reduced instance. Thus, we randomly map x ∈ {0, 1}n to
(1n, 1�, h, h(x), h′, v′) ∈ {0, 1}n′

, where 	 ∈ {0, 1, ..., q(n)}, h ∈ H�
n, h′ ∈ H

q(n)−�
q(n) ,

and v′ ∈ {0, 1}q(n)−� are uniformly distributed in the corresponding sets.24 This
mapping will be used to reduce (R, X) to (R′, X ′), where R′ and X ′ = {X ′

n′}n′∈N

are redefined (yet again). Specifically, we let

R′(1n, 1�, h, v, h′, v′) = {〈r, y〉 : h(S(1n, r))=v∧h′(r)=v′∧y∈R(S(1n, r))} (8)

and X ′
n′ assigns equal probability to each Xn′,� (for 	 ∈ {0, 1, ..., n}), where each

Xn′,� is isomorphic to the uniform distribution over H�
n × {0, 1}� × H

q(n)−�
q(n) ×

{0, 1}q(n)−�. Note that indeed (R′, X ′) ∈ distPC.
The foregoing randomized mapping is analyzed by considering the correct

choice for 	; that is, on input x, we focus on the choice 	 = 	x. Under this
conditioning (as we shall show), with constant probability over the choice of h, h′

and v′, the instance x is the only value in the support of Xn that is mapped to
(1n, 1�x , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} �= ∅. It
follows that (for such h, h′ and v′) any solution 〈r, y〉 ∈ R′(1n, 1�x , h, h(x), h′, v′)
satisfies S(1n, r) = x and thus y ∈ R(x), which means that the (relaxed) validity
condition is satisfied. The (relaxed) domination condition is satisfied too, because
(conditioned on 	 = 	x and for such h, h′, v′) the probability that Xn is mapped to
(1n, 1�x , h, h(x), h′, v′) approximately equals Pr[X ′

n′,�x
=(1n, 1�x , h, h(x), h′, v′)].

We now turn to analyze the probability, over the choice of h, h′ and v′,
that the instance x is the only value in the support of Xn that is mapped

24 As in other places, a suitable encoding will be used such that the reduction
maps strings of the same length to strings of the same length (i.e., n-bit string
are mapped to n′-bit strings, for n′ = poly(n)). For example, we may encode
〈1n, 1�, h, h(x), h′, v′〉 as 1n01�01q(n)−�0〈h〉〈h(x)〉〈h′〉〈v′〉, where each 〈w〉 denotes an
encoding of w by a string of length (n′ − (n + q(n) + 3))/4.
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to (1n, 1�x , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} �= ∅.
Firstly, we note that |{r : S(1n, r) = x}| ≥ 2q(n)−�x , and thus, with constant
probability over the choice of h′ ∈ H

q(n)−�x

q(n) and v′ ∈ {0, 1}q(n)−�x, there exists
r that satisfies S(1n, r) = x and h′(r) = v′. Furthermore, with constant proba-
bility over the choice of h′ ∈ H

q(n)−�x

q(n) and v′ ∈ {0, 1}q(n)−�x , it also holds that
there are at most O(2�x) strings r such that h′(r) = v′. Fixing such h′ and v′, we
let Sh′,v′ = {S(1n, r) : h′(r) = v′} and we note that, with constant probability
over the choice of h ∈ H�x

n , it holds that x is the only string in Sh′,v′ that is
mapped to h(x) under h. Thus, with constant probability over the choice of h, h′

and v′, the instance x is the only value in the support of Xn that is mapped
to (1n, 1�x , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} �= ∅.
The theorem follows.

Reflection: Theorem 14 implies that if sampNP is not contained in tpcBPP
then every distNP-complete problem is not in tpcBPP. This means that the
hardness of some distributional problems that refer to sampleable distributions
implies the hardness of some distributional problems that refer to simple dis-
tributions. Furthermore, by Proposition 9, this implies the hardness of distri-
butional problems that refer to the uniform distribution. Thus, hardness with
respect to some distribution in an utmost wide class (which arguably captures
all distributions that may occur in practice) implies hardness with respect to a
single simple distribution (which arguably is the simplest one).

P  is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Fig. 2. Worst-case vs average-case assumptions

Relation to One-Way Functions. We note that the existence of one-way functions
(see, e.g., [5, Chap. 2]) implies the existence of problems in sampPC that are not
in tpcBPPF (which in turn implies the existence of such problems in distPC).
Specifically, for a length-preserving one-way function f , consider the distribu-
tional search problem (Rf , {f(Un)}n∈N), where Rf = {(f(r), r) : r ∈ {0, 1}∗}.25
On the other hand, it is not known whether the existence of a problem in
sampPC\tpcBPPF implies the existence of one-way functions. In particular, the
25 Note that the distribution f(Un) is uniform in the special case that f is a permutation

over {0, 1}n.
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existence of a problem (R, X) in sampPC \ tpcBPPF represents the feasibility
of generating hard instances for the search problem R, whereas the existence of
one-way function represents the feasibility of generating instance-solution pairs
such that the instances are hard to solve. Indeed, the gap refers to whether or
not hard instances can be efficiently generated together with corresponding solu-
tions. Our world view is thus depicted in Figure 2, where lower levels indicate
seemingly weaker assumptions.

Bibliographic Notes

The theory of average-case complexity was initiated by Levin [10], who in par-
ticular proved Theorem 5. In light of the laconic nature of the original text [10],
we refer the interested reader to a survey [4], which provides a more detailed
exposition of the definitions suggested by Levin as well as a discussion of the
considerations underlying these suggestions.

As noted in Section 2.1, the current text uses a variant of the original definitions.
In particular, our definition of “typical-case feasibility” differs from the original
definition of “average-case feasibility” in totally discarding exceptional instances
and in even allowing the algorithm to fail on them (and not merely run for an
excessive amount of time). The alternative definition was suggested by several re-
searchers, and appears as a special case of the general treatment provided in [2].

Turning to Section 2.2, we note that while the existence of distNP-complete
problems (cf. Theorem 5) was established in Levin’s original paper [10], the exis-
tence of distNP-complete versions of all natural NP-complete decision problems
(cf. Theorem 7) was established more than two decades later in [11].

Section 3 is based on [1,8]. Specifically, Theorem 11 (or rather the reduction of
search to decision) is due to [1] and so is the introduction of the class sampNP .
A version of Theorem 14 was proven in [8], and our proof follows their ideas,
which in turn are closely related to the ideas underlying the construction of
pseudorandom generators based on any one-way function [7].

Recall that we know of the existence of problems in distNP that are hard pro-
vided sampNP contains hard problems. However, these distributional problems
do not seem very natural (i.e., they either refer to somewhat generic decision
problems such as Su or to somewhat contrived probability ensembles (cf. The-
orem 7)). The presentation of distNP-complete problems that combine a more
natural decision problem (like SAT or Clique) with a more natural probability
ensemble is an open problem.

A natural question at this point is what have we gained by relaxing the re-
quirements. In the context of average-case complexity, the negative side seems
more prevailing (at least in the sense of being more systematic). In particular,
assuming the existence of one-way functions, every natural NP-complete prob-
lem has a distributional version that is (typical-case) hard, where this version
refers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-
thermore, in this case, some problems in NP have hard distributional versions
that refer to the uniform distribution.
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Basic Facts about Expander Graphs

Oded Goldreich

Abstract. In this survey we review basic facts regarding expander
graphs that are most relevant to the theory of computation.

Keywords: Expander Graphs, Random Walks on Graphs.

This text has been revised based on [8, Apdx. E.2].

1 Introduction

Expander graphs found numerous applications in the theory of computation,
ranging from the design of sorting networks [1] to the proof that undirected
connectivity is decidable in determinstic log-space [15]. In this survey we review
basic facts regarding expander graphs that are most relevant to the theory of
computation. For a wider perspective, the interested reader is referred to [10].

Loosely speaking, expander graphs are regular graphs of small degree that
exhibit various properties of cliques.1 In particular, we refer to properties such
as the relative sizes of cuts in the graph (i.e., relative to the number of edges),
and the rate at which a random walk converges to the uniform distribution
(relative to the logarithm of the graph size to the base of its degree).

Some Technicalities. Typical presentations of expander graphs refer to one of
several variants. For example, in some sources, expanders are presented as bi-
partite graphs, whereas in others they are presented as ordinary graphs (and
are in fact very far from being bipartite). We shall follow the latter convention.
Furthermore, at times we implicitly consider an augmentation of these graphs
where self-loops are added to each vertex. For simplicity, we also allow parallel
edges.

We often talk of expander graphs while we actually mean an infinite collection
of graphs such that each graph in this collection satisfies the same property
(which is informally attributed to the collection). For example, when talking of
a d-regular expander (graph) we actually refer to an infinite collection of graphs
such that each of these graphs is d-regular. Typically, such a collection (or family)
contains a single N -vertex graph for every N ∈ S, where S is an infinite subset
of N. Throughout this section, we denote such a collection by {GN}N∈S, with
the understanding that GN is a graph with N vertices and S is an infinite set
of natural numbers.
1 Another useful intuition is that expander graphs exhibit various properties of random

regular graphs of the same degree.
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2 Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit
constructions, and two useful properties of expanders.

2.1 Two Mathematical Definitions

We start with two different definitions of expander graphs. These definitions are
qualitatively equivalent and even quantitatively related. We start with an alge-
braic definition, which seems technical in nature but is actually the definition
typically used in complexity theoretic applications, since it directly implies vari-
ous “mixing properties” (see §2.3). We later present a very natural combinatorial
definition (which is the source of the term “expander”).

The Algebraic Definition (Eigenvalue Gap). Identifying graphs with their
adjacency matrix, we consider the eigenvalues (and eigenvectors) of a graph
(or rather of its adjacency matrix). Any d-regular graph G = (V, E) has the
uniform vector as an eigenvector corresponding to the eigenvalue d, and if G
is connected and non-bipartite then the absolute values of all other eigenvalues
are strictly smaller than d. The eigenvalue bound, denoted λ(G) < d, of such a
graph G is defined as a tight upper-bound on the absolute value of all the other
eigenvalues. (In fact, in this case it holds that λ(G) < d − Ω(1/d|V |2).)2 The
algebraic definition of expanders refers to an infinite family of d-regular graphs
and requires the existence of a constant eigenvalue bound that holds for all the
graphs in the family.

Definition 1 (eigenvalue gap): An infinite family of d-regular graphs,
{GN}N∈S, where S ⊆ N, satisfies the eigenvalue bound β if for every N ∈ S

it holds that λ(GN ) ≤ β. In such a case, we say that {GN}N∈S is a family of
(d, β)-expanders, and call d− β its eigenvalue gap.

It will be often convenient to consider relative (or normalized) versions of the
foregoing quantities, obtained by division by d.

The Combinatorial Definition (Expansion). Loosely speaking, expansion
requires that any (not too big) set of vertices of the graph has a relatively large
set of neighbors. Specifically, a graph G = (V, E) is c-expanding if, for every set
S ⊂ V of cardinality at most |V |/2, it holds that

ΓG(S) def= {v : ∃u∈S s.t. {u, v}∈E} (1)

has cardinality at least (1 + c) · |S|. Assuming the existence of self-loops on all
vertices, the foregoing requirement is equivalent to requiring that |ΓG(S) \ S| ≥
2 This follows from the connection to the combinatorial definition (see Theorem 3).

Specifically, the square of this graph, denoted G2, is |V |−1-expanding and thus it
holds that λ(G)2 = λ(G2) < d2 − Ω(|V |−2).
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c · |S|. In this case, every connected graph G = (V, E) is (1/|V |)-expanding.3

The combinatorial definition of expanders refers to an infinite family of d-regular
graphs and requires the existence of a constant expansion bound that holds for
all the graphs in the family.

Definition 2 (expansion): An infinite family of d-regular graphs, {GN}N∈S is
c-expanding if for every N ∈ S it holds that GN is c-expanding.

The two definitions of expander graphs are related (see [6, Sec. 9.2] or [10,
Sec. 4.5]). Specifically, the “expansion bound” and the “eigenvalue bound” are
related as follows.

Theorem 3 (equivalence of the two definitions [3,5]): Let G be a d-regular graph
having a self-loop on each vertex.4

1. The graph G is c-expanding for c ≥ (d− λ(G))/2d.
2. If G is c-expanding then d− λ(G) ≥ c2/(4 + 2c2).

Thus, any non-zero bound on the combinatorial expansion of a family of d-
regular graphs yields a non-zero bound on its eigenvalue gap, and vice versa.
Note, however, that the back-and-forth translation between these measures is
not tight. We note that most applications in complexity theory refer to the
algebraic definition, and that the loss incurred in Theorem 3 is immaterial for
them.

Amplification. The “quality of expander graphs improves” by raising these
graphs to any power t > 1 (i.e., raising their adjacency matrix to the tth power),
where this operation corresponds to replacing t-paths (in the original graphs)
by edges (in the resulting graphs). Specifically, when considering the algebraic
definition, it holds that λ(Gt) = λ(G)t, but indeed the degree also gets raised
to the power t. Still, the ratio λ(Gt)/dt deceases with t. An analogous phe-
nomenon occurs also under the combinatorial definition, provided that some
suitable modifications are applied. For example, if for every S ⊆ V it holds
that |ΓG(S)| ≥ min((1 + c) · |S|, |V |/2), then for every S ⊆ V it holds that
|ΓGt(S)| ≥ min((1 + c)t · |S|, |V |/2).

3 In contrast, a bipartite graph G = (V, E) is not expanding, because it always contains
a set S of size at most |V |/2 such that |ΓG(S)| ≤ |S| (although it may hold that
|ΓG(S) \ S| ≥ |S|).

4 Recall that in such a graph G = (V, E) it holds that ΓG(S) ⊇ S for every S ⊆ V , and
thus |ΓG(S)| = |ΓG(S) \ S| + |S|. Furthermore, in such a graph all eigenvalues are
greater than or equal to −d+1, and thus if d−λ(G) < 1 then this is due to a positive
eigenvalue of G. These facts are used for bridging the gap between Theorem 3 and
the more standard versions (see, e.g., [6, Sec. 9.2]) that refer to variants of both
definitions. Specifically, [6, Sec. 9.2] refers to Γ+

G (S) = ΓG(S) \ S and λ2(G), where
λ2(G) is the second largest eigenvalue of G, rather than referring to ΓG(S) and λ(G).
Note that, in general, ΓG(S) may be attained by the difference between the smallest
eigenvalue of G (which may be negative) and −d.
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The optimal eigenvalue bound. For every d-regular graph G = (V, E), it holds
that λ(G) ≥ 2γG ·

√
d− 1, where γG = 1−O(1/ logd |V |). Thus, for any infinite

family of (d, λ)-expanders, it must holds that λ ≥ 2
√

d− 1.

2.2 Two Levels of Explicitness

Towards discussing various notions of explicit constructions of graphs, we need to
fix a representation of such graphs. Specifically, throughout this section, when
referring to an infinite family of graphs {GN}N∈S, we shall assume that the
vertex set of GN equals [N ]. Indeed, at times, we shall consider vertex sets having
a different structure (e.g., [m]× [m] for some m ∈ N), but in all these cases there
exists a simple isomorphism of these sets to the canonical representation (i.e.,
there exists an efficiently computable and invertible mapping of the vertex set
of GN to [N ]).

Recall that a mild notion of explicit constructiveness refers to the complexity
of constructing the entire object (i.e., the graph). Applying this notion to our set-
ting, we say that an infinite family of graphs {GN}N∈S is explicitly constructible
if there exists a polynomial-time algorithm that, on input 1N (where N ∈ S),
outputs the list of the edges in the N -vertex graph GN . That is, the entire graph
is constructed in time that is polynomial in its size (i.e., in poly(N)-time).

The foregoing (mild) level of explicitness suffices when the application requires
holding the entire graph and/or when the running-time of the application is
lower-bounded by the size of the graph. In contrast, other applications refer to
a huge virtual graph (which is much bigger than their running time), and only
require the computation of the neighborhood relation in such a graph. In this
case, the following stronger level of explicitness is relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs
{GN}N∈S is a polynomial-time algorithm that on input N ∈ S (in binary), a
vertex v in the N -vertex graph GN (i.e., v ∈ [N ]), and an index i ∈ [d], returns
the ith neighbor of v. That is, the “neighbor query” is answered in time that
is polylogarithmic in the size of the graph. Needless to say, this strong level of
explicitness implies the basic (mild) level.

An additional requirement, which is often forgotten but is very important,
refers to the “tractability” of the set S. Specifically, we require the existence of
an efficient algorithm that given any n ∈ N finds an s∈S such that n ≤ s < 2n.
Corresponding to the two foregoing levels of explicitness, “efficient” may mean
either running in time poly(n) or running in time poly(log n). The requirement
that n ≤ s < 2n suffices in most applications, but in some cases a smaller interval
(e.g., n ≤ s < n +

√
n) is required, whereas in other cases a larger interval (e.g.,

n ≤ s < poly(n)) suffices.

Greater Flexibility. In continuation to the foregoing paragraph, we comment that
expanders can be combined in order to obtain expanders for a wider range of
graph sizes. For example, given two d-regular c-expanding graphs, G1 = (V1, E1)
and G2 = (V2, E2) where |V1| ≤ |V2| and c ≤ 1, we can obtain a (d + 1)-regular
c/2-expanding graph on |V1|+ |V2| vertices by connecting the two graphs using a
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perfect matching of V1 and |V1| of the vertices of V2 (and adding self-loops to the
remaining vertices of V2). More generally, combining the d-regular c-expanding
graphs G1 = (V1, E1) through Gt = (Vt, Et), where N ′ def=

∑t−1
i=1 |Vi| ≤ |Vt|,

yields a (d + 1)-regular c/2-expanding graph on
∑t

i=1 |Vi| vertices (by using a
perfect matching of ∪t−1

i=1Vi and N ′ of the vertices of Vt).

2.3 Two Properties

The following two properties provide a quantitative interpretation to the state-
ment that expanders approximate the complete graph (or behave approximately
like a complete graph). When referring to (d, λ)-expanders, the deviation from
the behavior of a complete graph is represented by an error term that is linear
in λ/d.

The Mixing Lemma. Loosely speaking, the following (folklore) lemma asserts
that in expander graphs (for which λ � d) the fraction of edges connecting two
large sets of vertices approximately equals the product of the densities of these
sets. This property is called mixing.

Lemma 4 (Expander Mixing Lemma): For every d-regular graph G = (V, E)
and for every two subsets A, B ⊆ V it holds that∣∣∣∣∣ |(A×B) ∩ �E|

| �E|
− |A|
|V | ·

|B|
|V |

∣∣∣∣∣ ≤ λ(G)
√
|A| · |B|

d · |V | ≤ λ(G)
d

(2)

where �E denotes the set of directed edges (i.e., vertex pairs) that correspond to
the undirected edges of G (i.e., �E = {(u, v) : {u, v}∈E} and | �E| = d|V |).

In particular, |(A × A) ∩ �E| = (ρ(A) · d ± λ(G)) · |A|, where ρ(A) = |A|/|V |. It
follows that |(A× (V \A)) ∩ �E| = ((1− ρ(A)) · d± λ(G)) · |A|.

Proof: Let N
def= |V | and λ

def= λ(G). For any subset of the vertices S ⊆ V , we
denote its density in V by ρ(S) def= |S|/N . Hence, Eq. (2) is restated as∣∣∣∣∣ |(A×B) ∩ �E|

d ·N − ρ(A) · ρ(B)

∣∣∣∣∣ ≤ λ
√

ρ(A) · ρ(B)
d .

We proceed by providing bounds on the value of |(A×B)∩ �E|. To this end we let
a denote the N -dimensional Boolean vector having 1 in the ith component if and
only if i ∈ A. The vector b is defined similarly. Denoting the adjacency matrix of
the graph G by M = (mi,j), we note that |(A×B) ∩ �E| equals a�Mb (because
(i, j) ∈ (A×B) ∩ �E if and only if it holds that i ∈ A, j ∈ B and mi,j = 1). We
consider the orthogonal eigenvector basis, e1, ..., eN , where e1 = (1, ..., 1)� and
ei

�ei = N for each i, and write each vector as a linear combination of the vectors
in this basis. Specifically, we denote by ai the coefficient of a in the direction
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of ei; that is, ai = (a�ei)/N and a =
∑

i aiei. Note that a1 = (a�e1)/N =
|A|/N = ρ(A) and

∑N
i=1 a2

i = (a�a)/N = |A|/N = ρ(A). Similarly for b. It now
follows that

|(A×B) ∩ �E| = a�M

N∑
i=1

biei

=
N∑

i=1

biλi · a�ei

where λi denotes the ith eigenvalue of M . Note that λ1 = d and for every i ≥ 2
it holds that |λi| ≤ λ. Thus,

|(A×B) ∩ �E|
dN

=
N∑

i=1

biλi · ai

d

= ρ(A)ρ(B) +
N∑

i=2

λiaibi

d

∈
[
ρ(A)ρ(B) ± λ

d
·

N∑
i=2

aibi

]

Using
∑N

i=1 a2
i = ρ(A) and

∑N
i=1 b2

i = ρ(B), and applying Cauchy-Schwartz
Inequality, we bound

∑N
i=2 aibi by

√
ρ(A)ρ(B). The lemma follows.

The Random Walk Lemma. Loosely speaking, the first part of the following
lemma asserts that, as far as remaining “trapped” in some subset of the vertex
set is concerned, a random walk on an expander approximates a random walk
on the complete graph.

Lemma 5 (Expander Random Walk Lemma): Let G = ([N ], E) be a d-regular
graph, and consider walks on G that start from a uniformly chosen vertex and
take 	− 1 additional random steps, where in each such step we uniformly selects
one out of the d edges incident at the current vertex and traverses it.

– Let W be a subset of [N ] and ρ
def= |W |/N . Then the probability that such a

random walk stays in W is at most

ρ ·
(

ρ + (1 − ρ) · λ(G)
d

)�−1

.

(3)

– For any W0, ..., W�−1 ⊆ [N ], the probability that a random walk of length 	
intersects W0 ×W1 × · · · ×W�−1 is at most

√
ρ0 ·

�−1∏
i=1

√
ρi + (λ/d)2, (4)

where ρi
def= |Wi|/N .
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The basic principle underlying Lemma 5 was discovered by Ajtai, Komlos, and
Szemerédi [2], who proved a bound as in Eq. (4). The better analysis yielding
the first part of Lemma 5 is due to [12, Cor. 6.1]. A more general bound that
refer to the probability of visiting W for a number of times that approximates
|W |/N is given in [9], which actually considers an even more general problem
(i.e., obtaining Chernoff-type bounds for random variables that are generated by
a walk on an expander). An alternative approach to obtaining such Chernoff-type
bounds has been recently presented in [11].

Proof of Equation (4). The basic idea is viewing events occuring during the
random walk as an evolution of a corresponding probability vector under suitable
transformations. The transformations correspond to taking a random step in G
and to passing through a “sieve” that keeps only the entries that correspond to
the current set Wi. The key observation is that the first transformation shrinks
the component that is orthogonal to the uniform distribution, whereas the second
transformation shrinks the component that is in the direction of the uniform
distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency
matrix of G divided by d), and let λ̂

def= λ(G)/d (i.e., λ̂ upper-bounds the abso-
lute value of every eigenvalue of A except the first one). Note that the uniform
distribution, represented by the vector u = (N−1, ..., N−1)�, is the eigenvector
of A that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1
matrix that has 1-entries only on its diagonal such that entry (j, j) is set to 1
if and only if j ∈ Wi. Then, the probability that a random walk of length 	
intersects W0 ×W1 × · · · ×W�−1 is the sum of the entries of the vector

v
def= P�−1A · · ·P2AP1AP0u. (5)

We are interested in upper-bounding ‖v‖1, and use ‖v‖1 ≤
√

N · ‖v‖, where
‖z‖1 and ‖z‖ denote the L1-norm and L2-norm of z, respectively (e.g., ‖u‖1 = 1
and ‖u‖ = N−1/2). The key observation is that the linear transformation PiA
shrinks every vector.

Main Claim. For every z, it holds that ‖PiAz‖ ≤ (ρi + λ̂2)1/2 · ‖z‖.
Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas
Pi shrinks the component of z that is in the direction of u. Specifically, we
decompose z = z1 + z2 such that z1 is the projection of z on u and z2 is the
component orthogonal to u. Then, using the triangle inequality and other obvious
facts (which imply ‖PiAz1‖ = ‖Piz1‖ and ‖PiAz2‖ ≤ ‖Az2‖), we have

‖PiAz1 + PiAz2‖ ≤ ‖PiAz1‖+ ‖PiAz2‖
≤ ‖Piz1‖+ ‖Az2‖
≤ √

ρi · ‖z1‖+ λ̂ · ‖z2‖
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where the last inequality uses the fact that Pi shrinks any uniform vector by
eliminating 1−ρi of its elements, whereas A shrinks the length of any eigenvector
except u by a factor of at least λ̂. Using the Cauchy-Schwartz inequality5, we
get

‖PiAz‖ ≤
√

ρi + λ̂2 ·
√
‖z1‖2 + ‖z2‖2

=
√

ρi + λ̂2 · ‖z‖

where the equality is due to the fact that z1 is orthogonal to z2.

Recalling Eq. (5) and using the Main Claim (and ‖v‖1 ≤
√

N · ‖v‖), we get

‖v‖1 ≤
√

N · ‖P�−1A · · ·P2AP1AP0u‖

≤
√

N ·
(

�−1∏
i=1

√
ρi + λ̂2

)
· ‖P0u‖.

Finally, using ‖P0u‖ =
√

ρ0N · (1/N)2 =
√

ρ0/N , we establish Eq. (4).

Rapid Mixing. A property related to Lemma 5 is that a random walk starting
at any vertex converges to the uniform distribution on the expander vertices
after a logarithmic number of steps. Specifically, we claim that starting at any
distribution s (including a distribution that assigns all weight to a single vertex)
after 	 steps on a (d, λ)-expander G = ([N ], E) we reach a distribution that is√

N · (λ/d)�-close to the uniform distribution over [N ]. Using notation as in the
proof of Eq. (4), the claim asserts that ‖A�s−u‖1 ≤

√
N ·λ̂�, which is meaningful

only for 	 > 0.5 · log1/λ̂ N . The claim is proved by recalling that ‖A�s − u‖1 ≤√
N · ‖A�s − u‖ and using the fact that s − u is orthogonal to u (because the

former is a zero-sum vector). Thus, ‖A�s − u‖ = ‖A�(s − u)‖ ≤ λ̂�‖s − u‖ and
using ‖s− u‖ < 1 the claim follows.

3 Constructions

Many explicit constructions of (d, λ)-expanders are known. The first such con-
struction was presented in [14] (where λ < d was not explicitly bounded), and an
optimal construction (i.e., an optimal eigenvalue bound of λ = 2

√
d− 1) was first

provided in [13]. Most of these constructions are quite simple (see, e.g., §3.1),
but their analysis is based on non-elementary results from various branches of
mathematics. In contrast, the construction of Reingold, Vadhan, and Wigder-
son [16], presented in §3.2, is based on an iterative process, and its analysis is
based on a relatively simple algebraic fact regarding the eigenvalues of matrices.

5 That is, we get
√

ρi‖z1‖+λ̂‖z2‖ ≤
√

ρi + λ̂2 ·√‖z1‖2 + ‖z2‖2, by using
∑n

i=1 ai ·bi ≤(∑n
i=1 ai

2
)1/2 · (∑n

i=1 bi
2
)1/2

, with n = 2, a1 =
√

ρi, b1 = ‖z1‖, etc.
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Before turning to these explicit constructions we note that it is relatively easy
to prove the existence of 3-regular expanders, by using the Probabilistic Method
(cf. [6]) and referring to the combinatorial definition of expansion.6

3.1 The Margulis–Gabber–Galil Expander

For every natural number m, consider the graph with vertex set Zm ×Zm and
the edge set in which every 〈x, y〉 ∈ Zm × Zm is connected to the vertices
〈x± y, y〉, 〈x ± (y + 1), y〉, 〈x, y ± x〉, and 〈x, y ± (x + 1)〉, where the arithmetic
is modulo m. This yields an extremely simple 8-regular graph with an eigenvalue
bound that is a constant λ < 8 (which is independent of m). Thus, we get:

Theorem 6 There exists a strongly explicit construction of a family of
(8, 7.9999)-expanders for graph sizes {m2 : m∈N}. Furthermore, the neighbors
of a vertex in these expanders can be computed in logarithmic-space.7

An appealing property of Theorem 6 is that, for every n ∈ N, it directly yields
expanders with vertex set {0, 1}n. This is obvious in case n is even, but can be
easily achieved also for odd n (e.g., use two copies of the graph for n − 1, and
connect the two copies by the obvious perfect matching).

Theorem 6 is due to Gabber and Galil [7], building on the basic approach
suggested by Margulis [14]. We mention again that the (strongly explicit) (d, λ)-
expanders of [13] achieve the optimal eigenvalue bound (i.e., λ = 2

√
d− 1), but

there are annoying restrictions on the degree d (i.e., d − 1 should be a prime
congruent to 1 modulo 4) and on the graph sizes for which this construction
works.8

6 This can be done by considering a 3-regular graph obtained by combining an N-cycle
with a random matching of the first N/2 vertices and the remaining N/2 vertices. It is
actually easier to prove the related statement that refers to the alternative definition
of combinatorial expansion that refers to the relative size of Γ+

G (S) = ΓG(S) \ S
(rather than to the relative size of ΓG(S)). In this case, for a sufficiently small ε > 0
and all sufficiently large N , a random 3-regular N-vertex graph is “ε-expanding”
with overwhelmingly high probability. The proof proceeds by considering a (not
necessarily simple) graph G obtained by combining three uniformly chosen perfect
matchings of the elements of [N ]. For every S ⊆ [N ] of size at most N/2 and for every
set T of size ε|S|, we consider the probability that for a random perfect matching M
it holds that Γ+

M (S) ⊆ T . The argument is concluded by applying a union bound.
7 In fact, for m that is a power of two (and under a suitable encoding of the vertices),

the neighbors can be computed by a on-line algorithm that uses a constant amount
of space. The same holds also for a variant in which each vertex 〈x, y〉 is connected
to the vertices 〈x ± 2y, y〉, 〈x ± (2y + 1), y〉, 〈x, y ± 2x〉, and 〈x, y ± (2x + 1)〉. This
variant yields a better known bound on λ, i.e., λ ≤ 5

√
2 ≈ 7.071.

8 The construction in [13] allows graph sizes of the form (p3 − p)/2, where p ≡ 1
(mod 4) is a prime such that d − 1 is a quadratic residue modulo p. As stated in [4,
Sec. 2], the construction can be extended to graph sizes of the form (p3k − p3k−2)/2,
for any k ∈ N and p as in the foregoing.
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3.2 The Iterated Zig-Zag Construction

The starting point of the following construction is a very good expander G of
constant size, which may be found by an exhaustive search. The construction
of a large expander graph proceeds in iterations, where in the ith iteration the
current graph Gi and the fixed graph G are combined, resulting in a larger graph
Gi+1. The combination step guarantees that the expansion property of Gi+1 is
at least as good as the expansion of Gi, while Gi+1 maintains the degree of Gi

and is a constant times larger than Gi. The process is initiated with G1 = G2

and terminates when we obtain a graph Gt of approximately the desired size
(which requires a logarithmic number of iterations).

1

2

35

6
1

2

35

6

4

4

u v

Fig. 1. Detail of the Zig-Zag product of G′ and G. In this example G′ is 6-regular and
G is a 3-regular graph having six vertices. In the graph G′ (not shown), the 2nd edge
of vertex u is incident at v, as its 5th edge. The wide 3-segment line shows one of the
corresponding edges of G′©z G, which connects the vertices 〈u, 3〉 and 〈v, 2〉.

The Zig-Zag Product. The heart of the combination step is a new type of “graph
product” called Zig-Zag product. This operation is applicable to any pair of
graphs G = ([D], E) and G′ = ([N ], E′), provided that G′ (which is typically
larger than G) is D-regular. For simplicity, we assume that G is d-regular (where
typically d � D). The Zig-Zag product of G′ and G, denoted G′©z G, is defined
as a graph with vertex set [N ] × [D] and an edge set that includes an edge
between 〈u, i〉 ∈ [N ]× [D] and 〈v, j〉 if and only if {i, k}, {	, j} ∈ E and the kth

edge incident at u equals the 	th edge incident at v. That is, 〈u, i〉 and 〈v, j〉 are
connected in G′©z G if there exists a “three step sequence” consisting of a G-step
from 〈u, i〉 to 〈u, k〉 (according to the edge {i, k} of G), followed by a G′-step
from 〈u, k〉 to 〈v, 	〉 (according to the kth edge of u in G′ (which is the 	th edge
of v)), and a final G-step from 〈v, 	〉 to 〈v, j〉 (according to the edge {	, j} of G).
See Figure 1 as well as further formalization (which follows).
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It will be convenient to represent graphs like G′ by their edge-rotation function,
denoted R′ : [N ]× [D] → [N ]× [D], such that R′(u, i) = (v, j) if {u, v} is the ith

edge incident at u as well as the jth edge incident at v. That is, R′ rotates the
pair (u, i), which represents one “side” of the edge {u, v} (i.e., the side incident
at u as its ith edge), resulting in the pair (v, j), which represents the other side
of the same edge (which is the jth edge incident at v). For simplicity, we assume
that the (constant-size) d-regular graph G = ([D], E) is edge-colorable with d
colors, which in turn yields a natural edge-rotation function (i.e., R(i, α) = (j, α)
if the edge {i, j} is colored α). We will denote by Eα(i) the vertex reached from
i ∈ [D] by following the edge colored α (i.e., Eα(i) = j iff R(i, α) = (j, α)). The
Zig-Zag product of G′ and G, denoted G′©z G, is then defined as a graph with
the vertex set [N ]× [D] and the edge-rotation function

(〈u, i〉, 〈α, β〉) �→ (〈v, j〉, 〈β, α〉) if R′(u, Eα(i)) = (v, Eβ(j)). (6)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of ver-
tex 〈u, i〉 ∈ [N ] × [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge) if
R(u, Eα(i)) = (v, Eβ(j)), where indeed Eβ(Eβ(j)) = j. Intuitively, based on
〈α, β〉, we first take a G-step from 〈u, i〉 to 〈u, Eα(i)〉, then viewing 〈u, Eα(i)〉 ≡
(u, Eα(i)) as a side of an edge of G′ we rotate it (i.e., we effectively take a G′-
step) reaching (v, j′) def= R′(u, Eα(i)), and finally we take a G-step from 〈v, j′〉
to 〈v, Eβ(j′)〉.

Clearly, the graph G′©z G is d2-regular and has D ·N vertices. The key fact,
proved in [16] (using techniques as in §2.3), is that the relative eigenvalue-value
of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-
values of the two graphs; that is, λ̄(G′©z G) ≤ λ̄(G′) + λ̄(G), where λ̄(·) denotes
the relative eigenvalue-bound of the relevant graph. The (qualitative) fact that
G′©z G is an expander if both G′ and G are expanders is very intuitive (e.g.,
consider what happens if G′ or G is a clique). Things are even more intuitive
if one considers the (related) replacement product of G′ and G, denoted G′©r G,
where there is an edge between 〈u, i〉 ∈ [N ]× [D] and 〈v, j〉 if and only if either
u = v and {i, j} ∈ E or the ith edge incident at u equals the jth edge incident
at v.

The Iterated Construction. The iterated expander construction uses the afore-
mentioned zig-zag product as well as graph squaring. Specifically, the construc-
tion starts9 with the d2-regular graph G1 = G2 = ([D], E2), where D = d4

and λ̄(G) < 1/4, and proceeds in iterations such that Gi+1 = G2
i©z G for

i = 1, 2, ..., t−1, where t is logarithmic in the desired graph size. That is, in each
iteration, the current graph is first squared and then composed with the fixed
(d-regular D-vertex) graph G via the zig-zag product. This process maintains
the following two invariants:

9 Recall that, for a sufficiently large constant d, we first find a d-regular graph G =
([d4], E) satisfying λ̄(G) < 1/4, by exhaustive search.
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1. The graph Gi is d2-regular and has Di vertices.
(The degree bound follows from the fact that a zig-zag product with a d-
regular graph always yields a d2-regular graph.)

2. The relative eigenvalue-bound of Gi is smaller than one half (i.e., λ̄(Gi) <
1/2).
(Here we use the fact that λ̄(G2

i−1©z G) ≤ λ̄(G2
i−1) + λ̄(G), which in turn

equals λ̄(Gi−1)2 + λ̄(G) < (1/2)2 + (1/4). Note that graph squaring is used
to reduce the relative eigenvalue of Gi before increasing it by zig-zag product
with G.)

In order to show that we can actually construct Gi, we show that we can compute
the edge-rotation function that correspond to its edge set. This boils down to
showing that, given the edge-rotation function of Gi−1, we can compute the
edge-rotation function of G2

i−1 as well as of its zig-zag product with G. Note
that this entire computation amounts to two recursive calls to computations
regarding Gi−1 (and two computations that correspond to the constant graph
G). But since the recursion depth is logarithmic in the size of the final graph
(i.e., t = logD |vertices(Gt)|), the total number of recursive calls is polynomial
in the size of the final graph (and thus the entire computation is polynomial in
the size of the final graph). This suffices for the minimal (i.e., “mild”) notion of
explicitness, but not for the strong one.

The Strongly Explicit Version. To achieve a strongly explicit construction, we
slightly modify the iterative construction. Rather than letting Gi+1 = G2

i©z G,
we let Gi+1 = (Gi × Gi)2©z G, where G′ ×G′ denotes the tensor product of G′

with itself; that is, if G′ = (V ′, E′) then G′ ×G′ = (V ′ × V ′, E′′), where

E′′ = {{〈u1, u2〉, 〈v1, v2〉} : {u1, v1}, {u2, v2}∈E′}

(i.e., 〈u1, u2〉 and 〈v1, v2〉 are connected in G′ ×G′ if for i = 1, 2 it holds that ui

is connected to vi in G′). The corresponding edge-rotation function is

R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈j1, j2〉),

where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2). We still use G1 = G2,
where (as before) G is d-regular and λ̄(G) < 1/4, but here G has D = d8

vertices.10 Using the fact that tensor product preserves the relative eigenvalue-
bound while squaring the degree (and the number of vertices), we note that
the modified iteration Gi+1 = (Gi × Gi)2©z G yields a d2-regular graph with
(D2i−1)2 · D = D2i+1−1 vertices, and that λ̄(Gi+1) < 1/2 (because λ̄((Gi ×
Gi)2©z G) ≤ λ̄(Gi)2 + λ̄(G)). Computing the neighbor of a vertex in Gi+1 boils
down to a constant number of such computations regarding Gi, but due to the
tensor product operation the depth of the recursion is only double-logarithmic in
the size of the final graph (and hence logarithmic in the length of the description
of vertices in this graph).
10 The reason for the change is that (Gi × Gi)

2 will be d8-regular, since Gi will be
d2-regular.
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Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is
reducing the graph’s degree, and the increase in the size of the graph is merely a
side-effect.11 In both cases, graph squaring is used in order to compensate for the
modest increase in the relative eigenvalue-bound caused by the zig-zag product.
In retrospect, the second construction is the “correct” one, because it decouples
three different effects, and uses a natural operation to obtain each of them:
Increasing the size of the graph is obtained by tensor product of graphs (which
in turn increases the degree), the desired degree reduction is obtained by the
zig-zag product (which in turn slightly increases the relative eigenvalue-bound),
and graph squaring is used in order to reduce the relative eigenvalue-bound.

Stronger Bound Regarding the Effect of the Zig-Zag Product. In the foregoing de-
scription we relied on the fact, proved in [16], that the relative eigenvalue-bound
of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-
bounds of the two graphs (i.e., λ̄(G′©z G) ≤ λ̄(G′)+ λ̄(G))). Actually, a stronger
upper-bound is proved in [16]: It holds that λ̄(G′©z G) ≤ f(λ̄(G′), λ̄(G))), where

f(x, y) def=
(1− y2) · x

2
+

√(
(1− y2) · x

2

)2

+ y2 (7)

Indeed, f(x, y) ≤ (1− y2) · x+ y ≤ x+ y. On the other hand, for x ≤ 1, we have
f(x, y) ≤ (1−y2)·x

2 + 1+y2

2 = 1− (1−y2)·(1−x)
2 , which implies

λ̄(G′©z G) ≤ 1− (1− λ̄(G)2) · (1− λ̄(G′))
2 . (8)

Thus, 1− λ̄(G′©z G) ≥ (1− λ̄(G)2) · (1− λ̄(G′))/2, and it follows that the zig-zag
product has a positive eigenvalue-gap if both graphs have positive eigenvalue-
gaps (i.e., λ(G′©z G) < 1 if both λ(G) < 1 and λ(G′) < 1). Furthermore, if
λ̄(G) < 1/

√
3 then 1 − λ̄(G′©z G) > (1 − λ̄(G′))/3. This fact plays an impor-

tant role in the celebrated proof that undirected connectivity is decidable in
determinstic log-space [15].
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A Brief Introduction to Property Testing

Oded Goldreich

Abstract. This short article provides a brief description of the main
issues that underly the study of property testing.

This article was originally written for inclusion in [4], which provides a collec-
tion of surveys and extended abstracts that cover various specific subareas and
research directions in property testing.

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property Testing has been a subject of intensive research in the last couple of
decades, with hundreds of studies conducted in it and in closely related areas.
Indeed, Property Testing is closely related to Probabilistically Checkable Proofs
(PCPs), and is related to Coding Theory, Combinatorics, Statistics, Computa-
tional Learning Theory, Computational Geometry, and more.

This brief introduction to the area of Property Testing is confined to concep-
tual issues; that is, it focuses on the main notions and models being studied,
while hardly mentioning the numerous results obtained in the various models.
This deficiency of the current article is corrected by the various surveys and
extended abstracts presented in [4]. In addition, we refer the interested reader
to two recent surveys of Ron [11,12].

2 The Issues

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept func-
tions that have some predetermined property (i.e., reside in some predetermined
set) and reject any function that is “far” from the set of functions having the
property. Distances between functions are defined as the fraction of the domain
on which the functions disagree, and the threshold determining what is consid-
ered far is presented as a proximity parameter, which is explicitly given to the
tester.

O. Goldreich et al.: Studies in Complexity and Cryptography, LNCS 6650, pp. 465–469, 2011.
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An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions
from Dn to Rn, where |Dn| = n. (Often, one just assumes that Dn = [n] def=
{1, 2, ..., n}.) Thus, in addition to the input oracle, representing a function f :
Dn → Rn, the tester is explicitly given two parameters: a size parameter,
denoted n, and a proximity parameter, denoted ε.

Definition 1. Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over the

domain Dn. A tester for a property Π is a probabilistic oracle machine T that
satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
n ∈ N and f ∈ Πn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and n ∈ N, if
f : Dn → Rn is ε-far from Πn, then Pr[T f(n, ε)=0] ≥ 2/3, where f is ε-far
from Πn if, for every g ∈ Πn, it holds that |{e ∈ Dn : f(e) �= g(e)}| > ε · n.

If the tester accepts every function in Π with probability 1, then we say that
it has one-sided error; that is, T has one-sided error if for every f ∈ Π and
every ε > 0, it holds that Pr[T f(n, ε) = 1] = 1. A tester is called non-adaptive
if it determines all its queries based solely on its internal coin tosses (and the
parameters n and ε); otherwise it is called adaptive.

Definition 1 does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity.

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case that the domain and range are associated with some algebraic
structures (e.g., groups, fields, and vector spaces) and studies algebraic proper-
ties such as being a polynomial of low degree (see, e.g., [3,13]). In the context of
testing graph properties (see, e.g., [6,5]), the functions represent graphs or rather
allow certain queries to such graphs (e.g., in the adjacency matrix model, graphs
are represented by their adjacency relation and queries correspond to pairs of
vertices where the answers indicate whether or not the two vertices are adjacent
in the graph).1

Ramifications. While most research in property testing refers to distances with
respect to the uniform distribution on the function’s domain, other distributions
and even distribution-free models were also considered. That is, for a (known or
unknown) distribution μ on the domain, we say that f is ε-far from g (w.r.t μ) if
Pre∼μ[f(e) �=g(e)] > ε. Indeed, Definition 1 refers to the case that μ is uniform
over the domain (i.e., Dn).
1 In an alternative model, known as the incidence-list model, graphs are represented

by functions that assign to the pair (v, i) the ith neighbor of vertex v.
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A somewhat related model is one in which the tester obtains random pairs
(e, f(e)), where each sample e is drawn (independently) from the aforementioned
distribution. Such random (f -labeled) example can be either obtained on top of
the queries to f or instead of them. This is also the context of testing distribu-
tions, where the examples are actually unlabeled and the aim is testing properties
of the underlying distribution (rather than properties of the labeling which is
null here).

A third ramification refers to the related notions of tolerant testing and dis-
tance approximation (cf. [10]). In the latter, the algorithm is required to estimate
the distance of the input (i.e., f) from the predetermined set of instances hav-
ing the property (i.e., Π). Tolerant testing usually means only a crude distance
approximation that guarantees that inputs close to Π (rather than only inputs
in Π) are accepted while inputs that are far from Π are rejected (as usual).

On the Current Focus on Query Complexity. Current research in property test-
ing focuses mainly on query (and/or sample) complexity, while either ignoring
time complexity or considering it a secondary issue. The current focus on these
information theoretic measures is justified by the fact that even the latter are
far from being understood. (Indeed, this stands in contrast to the situation in,
say, PAC learning.)

On the Importance of Representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).
This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natural
representations: the adjacency matrix representation (cf. [6]) and the incidence
lists representation (cf. [7]).

Things get to the extreme in the study of locally testable codes, which may
be viewed as evolving around testing whether the input is “well formed” with
respect to some fixed error correcting code. Interestingly, the general study of
locally testable codes seeks an arbitrary succinct representation (i.e., a code
of good rate) such that well-formed inputs (i.e., codewords) are far apart and
testing well-formness is easy (i.e., there exists a low complexity codeword test).

3 A Brief Historical Perspective

Property testing first appeared as a tool towards program checking (see the
linearity tester of [3]) and the construction of PCPs (see the low-degree tests and
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their relation to locally testable codes, as discussed in [13]). In these settings it
was natural to view the tested object as a function, and this convention continued
also in [6], which defined property testing in relation to PAC learning. More
importantly, in [6] property testing is promoted as a new type of computational
problems, which transcends all its natural applications.

While [3,13] focused on algebraic properties, the focus of [6] was on graph
properties. From this perspective the choice of representation became less obvi-
ous, and oracle access was viewed as allowing local inspection of the graph rather
than being the graph itself.2 The distinction between objects and their repre-
sentations became more clear when an alternative representation of graphs was
studied in [7,8]. At this point, query complexity that is polynomially related to
the size of the object (e.g., its square root) was no longer considered inhibiting.
This shift in scale is discussed next.

Recall that initially property testing was viewed as referring to functions that
are implicitly defined by some succinct programs (as in the context of program
checking) or by “transcendental” entities (as in the context of PAC learning).
From this perspective the yardstick for efficiency is being polynomial in the
length of the query, which means being polylogarithmic in the size of the object.
However, when viewing property testing as being applied to (huge) objects that
may exist in explicit form in reality, it is evident that any sub-linear complexity
may be beneficial.

The realization that property testing may mean any algorithm that does not
inspect its entire input seems crucial to the study of testing distributions, which
emerged with [2]. In general, property testing became identified as a study of a
special type of sublinear-time algorithms.

Another consequence of the aforementioned shift in scale is the decoupling of
the representation from the query types. In the context of graph properties, this
culminated in the model of [9].

Nevertheless, the study of testing properties within query complexity that only
depends on the proximity parameter (and is thus totally independent of the size
of the object) remains an appealing and natural direction. A remarkable result in
this direction is the characterization of graph properties that are testable within
such complexity in the adjacency matrix model [1].
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Introduction to Testing Graph Properties

Oded Goldreich

Abstract. The aim of this article is to introduce the reader to the study
of testing graph properties, while focusing on the main models and issues
involved. No attempt is made to provide a comprehensive survey of this
study, and specific results are often mentioned merely as illustrations of
general themes.

Keywords: Graph Properties, randomized algorithms, approximation
problems.

This survey was originally written for inclusion in [32].

1 The General Context

In general, property testing is concerned with super-fast (probabilistic) algo-
rithms for deciding whether a given object has a predetermined property or is
far from any object having this property. Such algorithms, called testers, obtain
local views of the object by making adequate queries; that is, the object is seen
as a function and the tester gets oracle access to this function, and thus may be
expected to work in time that is sub-linear in the size of the object.

Looking at the foregoing formulation, we first note that property testing is
concerned with promise problems (cf. [26,30]), rather than with standard deci-
sion problems. Specifically, objects that neither have the property nor are far
from having the property are discarded. The exact formulation of these promise
problems refers to a distance measure defined on the set of all relevant objects
(i.e., this distance measure coupled with a distance parameter determine the set
of objects that are far from the property). Thus, the choice of natural distance
measures is crucial to the study of property testing. Secondly, we note that the
requirement that the algorithms operate in sub-linear time (i.e., without read-
ing their entire input) calls for a specification of the type of queries that these
algorithms can make to their input. Thus, the choice of natural query types is
also crucial to the study of property testing. These two general considerations
will become concrete once we delve into the actual subject matter (i.e., testing
graph properties).

1.1 Why Graphs?

Let us start with an empirical observation, taken from Shimon Even’s book
Graph Algorithms [25] (published in 1979):
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Graph theory has long become recognized as one of the more useful
mathematical subjects for the computer science student to master. The
approach which is natural in computer science is the algorithmic one; our
interest is not so much in existence proofs or enumeration techniques,
as it is in finding efficient algorithms for solving relevant problems, or
alternatively showing evidence that no such algorithms exist. Although
algorithmic graph theory was started by Euler, if not earlier, its devel-
opment in the last ten years has been dramatic and revolutionary.

Meditating on these facts, one may ask what is the source of this ubiquitous
use of graphs in computer science. The most common answer is that graphs
arise naturally as a model (or an abstraction) of numerous natural and artificial
objects. Another answer is that graphs help visualize binary relations over finite
sets. These two different answers correspond to two types of models of testing
graph properties that will be discussed below.

1.2 Why Testing?

Suppose we are given a huge graph representing some binary relation over a huge
data-set (see below), and we need to determine whether the graph (equivalently,
the relation) has some predetermined property. Since the graph is huge, we
cannot or do not want to even scan all of it (let alone process all of it). The
question is whether it is possible to make meaningful statements about the entire
graph based only on a “small portion” of it. Of course, such statements will at
best be approximations. But in many settings approximations are good enough.

As a motivation, let us consider a well-known example in which fast approxi-
mations are possible and useful. Suppose that some cost function is defined over
a huge set, and that one wants to obtain the average cost of an element in the set.
To be more specific, let μ : S → [0, 1] be a cost function, and suppose we want
to estimate μ

def= 1
|S|

∑
x∈S μ(x). Then, uniformly (and independently) selecting

m
def= O(ε−2 log(1/δ)) sample points, x1, ..., xm, in S we obtain with probability

at least 1− δ an estimate of μ within ±ε. That is,

Prx1,...,xm∈S

[∣∣∣∣∣ 1
m

m∑
i=1

μ(xi) − μ

∣∣∣∣∣ > ε

]
< δ . (1)

Turning back to graphs, we note that they capture more complex features of
data sets; that is, graphs capture relations among pairs of elements (rather then
functions of single elements). Specifically, a symmetric binary relation R ⊆ S×S
is represented by a graph G = (S, R), where the elements of S are viewed as
vertices and the elements in R are viewed as edges.

The study of testing graph properties reveals that sampling a huge data set
may be useful not only towards approximating various statistics regarding a
function defined over the set, but also towards approximating various properties
regarding a binary relation defined on this set. As we shall see, in many cases, the
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sampling method used (or at least its analysis) is significantly more sophisticated
than the one employed in gathering statistics of the former type. But before doing
so, we wish to further discuss the potential benefit in the notion of approximation
underlining the definition of property testing.

Firstly, being close to a graph that has the property is a notion of approxima-
tion that, in certain applications, may be of direct value. Furthermore, in some
cases, being close to a graph having the property translates to a standard notion
of approximation (see Section 2.2). In other cases, it translates to a notion of
“dual approximation” (see, again, Section 2.2).

Secondly, in some cases, we may be forced to take action without having the
time to run a decision procedure, while given the option of modifying the graph
in the future, at a cost proportional to the number of added/omitted edges. For
example, suppose we are given a graph that represents some suggested design,
where bipartite graphs correspond to good designs and changes in the design
correspond to edge additions/omissions. Using a Bipartiteness tester, we may
(with high probability) accept any good design, while rejecting designs that will
cost a lot to modify. That is, we may still accept designs that are not good, but
only such that are close to being good and thus will not cost too much to modify
later.

Thirdly, we may use the property tester as a preliminary stage before running
a slower exact decision procedure. In case the graph is far from having the
property, with high probability, we obtain an indication towards this fact, and
save the time we might have used running the decision procedure. Furthermore, if
the tester has one-sided error (i.e., it always accepts a graph having the property)
and the tester has rejected, then we have obtained an absolutely correct answer
without running the slower decision procedure at all. The saving provided by
using a property tester as a preliminary stage may be very substantial in many
natural settings where typical graphs either have the property or are very far
from having the property. Furthermore, if it is guaranteed that graphs either
have the property or are very far from having it then we may not even need to
run the (exact) decision procedure at all.

1.3 Three Models of Testing Graph Properties

A graph property is a set of graphs closed under graph isomorphism (renaming
of vertices).1 Let Π be such a property. A Π-tester is a randomized algorithm
that is given oracle access to a graph, G = (V, E), and has to determine whether
the graph is in Π or is far from being in Π . The type of oracle (equiv., the type
of queries allowed) and distance-measure depend on the model, and we focus on
three such models:

1. The adjacency predicate model [33]: Here the Π-tester is given oracle access
to a symmetric function g : V × V → {0, 1} that represents the adjacency

1 That is, Π is a graph property if, for every graph G = (V, E) and every per-
mutation π over V , it holds that G ∈ Π if and only if π(G) ∈ Π , where

π(G)
def
= (V, {{π(u), π(v)} : {u, v}∈E}).
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predicate of the graph G; that is g(u, v) = 1 if and only if (u, v) ∈ E. In
this model distances between graphs are measured according to their repre-
sentation; that is, if the graphs G and G′ are represented by the functions
g and g′, then their relative distance is the fraction of pairs (u, v) such that
g(u, v) �= g′(u, v).
Note that saying that G = ([N ], E) is ε-far from the graph property Π means
that for every G′ ∈ Π it holds that G is ε-far from G′. Since Π is closed
under graph isomorphism, this means that G is ε-far from any isomorphic
copy of G′ = ([N ], E′); that is, for every permutation π over [N ], it holds
that |{(u, v) : g(u, v) �= g′(π(u), π(v))}| > εN2, where g and g′ are as above.
Finally, note that this notion of distance between graphs is most meaningful
in the case that the graph is dense (since in this case fractions of the number
of possible vertex pairs are closely related to fractions of the actual number
of edges). Thus, this model is often called the dense graph model.

2. The incidence function model [35]: Here, for some fixed upper bound d (on the
degrees of vertices in G), the Π-tester is given oracle access to a function
g : V × [d] → V ∪ {⊥} that represents the graph G = (V, E) such that
g(u, i) = v if v is the ith vertex incident at u and g(u, i) = ⊥ if u has
less than i neighbors. That is, E = {(u, v) : ∃i f(u, i) = v}, where we
always assume that g(u, i) = v if and only if there exists a j ∈ [d] such that
g(v, j) = u.
Indeed, only graphs of degree at most d can be represented in this model,
which is called the bounded-degree graph model.
In this model too, distances between graphs are measured according to their
representation, but here the representation is different and so the distances
are different. Specifically, if the graphs G and G′ are represented by the
functions g and g′, then their relative distance is the fraction of pairs (u, i)
such that g(u, i) �= g′(u, i). Again, saying that G = ([N ], E) is ε-far from
the graph property Π means that for every G′ ∈ Π it holds that G is ε-far
from G′. Since Π is closed under graph isomorphism (and the ordering of
the vertices incident at each vertex is arbitrary), this means that for every
permutation π over [N ], it holds that∑

u∈V

|{v : ∃i g(u, i) = v}+{v : ∃i g′(π(u), i) = π(v)}| > εdN ,

where g and g′ are as above, and + denotes the symmetric difference (i.e.,
A+B = (A ∪B) \ (A ∩B)).

3. The general graph model [53,47]: In contrast to the foregoing two models in
which the oracle queries and the distances between graphs are linked to the
representation of graphs as functions, in the following model the representa-
tion is blurred and the query types and distance measure are decoupled.
The relative distance between the graphs G = ([N ], E) and G′ = ([N ], E) is
usually defined as |E�E′|

max(|E|,|E′|) ; that is, the absolute distance is normalized
by the actual number of edges rather than by an absolute upper bound (on
the number of edges) such as N2/2 or dN/2.
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The types of queries typically considered are the two types of queries consid-
ered in the previous two models. That is, the algorithm may ask whether two
vertices are adjacent in the graph and may also ask for a specific neighbor
of a specific vertex.

Needless to say, the general graph model is the most general one, and it is
indeed closest to actual algorithmic applications.2 The fact that this model
has so far received relatively little attention merely reflects the fact that its
study is overly complex. Given that current studies of the other models still
face formidable difficulties (and that these models offer a host of interesting
open problems), it is natural that researchers shy away from yet another level of
complication.

The Current Focus on Query Complexity. Although property testing is moti-
vated by referring to super-fast algorithms, research in the area tends to focus
on the query complexity of testing various properties. This focus should be viewed
as providing an initial estimate to the actual complexity of the testing problems
involved; certainly, query complexity lower bounds imply corresponding bounds
on the time complexity, whereas the latter is typically at most exponential in the
query complexity. Furthermore, in many cases, the time complexity is polynomial
in the query complexity and this fact is typically stated. Thus, we will follow the
practice of focusing on the query complexity of testing, but also mention time
complexity upper bounds whenever they are of interest.

1.4 Organization

The following three sections are devoted to the three models discussed above: We
start with the dense graph model (Section 2), then move to the bounded-degree
model (Section 3), and finally get to the general graph model (Section 4). In
each model we review the definition of testing (when specialized to that model),
provide a taste of the known results, and demonstrate some of the ideas involved
(by focusing on testing Bipartiteness, which seems a good benchmark).

We conclude this article with a discussion of a few issues that are relevant
to all models; these include the treatment of directed graphs (Section 5.1), the
related notions of tolerant testing and distance approximation (Section 5.2), and
the notion of proximity oblivious testing (Section 5.3).

The appendix presents three observations that occurred to us in the process
of writing this article. These refer to testing (degree) regularity in the dense
graph model (Appendix A.1), non-adaptive testers in the bounded-degree graph
model (Appendix A.2), and testing strong connectivity of directed graphs by
only using forward queries (Appendix A.3).

2 In other words, this model is relevant for most applications, since these seem to
refer to general graphs (which model various natural and artificial objects). In con-
trast, the dense graph model is relevant to applications that refer to (dense) binary
relations over finite graphs.
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2 The Dense Graph Model

In the adjacency matrix model (a.k.a the dense graph model), an N -vertex graph
G = ([N ], E) is represented by the Boolean function g : [N ]× [N ] → {0, 1} such
that g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).
Distance between graphs is measured in terms of their aforementioned repre-
sentation (i.e., as the fraction of (the number of) different matrix entries (over
N2)), but occasionally one uses the more intuitive notion of the fraction of
(the number of) unordered vertex pairs over

(
N
2

)
.3 Recall that we are inter-

ested in graph properties, which are sets of graphs that are closed under iso-
morphism; that is, Π is a graph property if for every graph G = ([N ], E) and
every permutation π of [N ] it holds that G ∈ Π if and only if π(G) ∈ Π , where
π(G) def= ([N ], {{π(u), π(v)} : {u, v} ∈ E}). We now spell out the meaning of
property testing in this model.

Definition 2.1 (testing graph properties in the adjacency matrix model): A
tester for a graph property Π is a probabilistic oracle machine that, on input
parameters N and ε and access to (the adjacency predicate of) an N -vertex
graph G = ([N ], E), outputs a binary verdict that satisfies the following two
conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N ], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than ε ·

(
N
2

)
.

If the tester accepts every graph in Π with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and ε); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph, as a function of the parameters N and ε. We say that a tester is
efficient if it runs in time that is polynomial in its query complexity, where basic
operations on elements of [N ] (and in particular, uniformly selecting an element
in [N ]) are counted at unit cost.

We stress that testers are defined as (uniform)4 algorithms that are given the
size parameter N and the distance (or proximity) parameter ε as explicit inputs.
This uniformity (over the values of the distance parameter) makes the positive
results stronger and more appealing (especially in light of a separation result

3 Indeed, there is a tiny discrepancy between these two measures, but it is immaterial
in all discussions.

4 That is, we refer to the standard (uniform) model of computation (cf., e.g., [31,
Sec. 1.2.3]), which does not allow for hard-wiring some parameters (e.g., input length)
into the computing device (as done in the case of non-uniform circuit families).
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shown in [10]). In contrast, negative results typically refer to a fixed value of the
distance parameter.

The study of property testing in the dense graph model was initiated by
Goldreich, Goldwasser, and Ron [33], as a concrete and yet general framework
for the study of property testing at large. From that perspective, it was most
natural to represent graphs as Boolean functions, and the adjacency matrix
representation was the obvious choice. This dictated the choice of the type of
queries as well as the distance measure. In retrospect, the dense graph model
seems most natural when graphs are viewed as representing generic (symmetric)
binary relations (cf. the second motivation to the study of graphs mentioned in
Section 1.1 as well as the discussion of sampling in Section 1.2).

2.1 A Taste of the Known Results

We first mention that graph properties of arbitrary query complexity are known:
Specifically, in this model, graph properties (even those in P) may have query
complexity ranging from O(1/ε) to Ω(N2), and the same holds also for monotone
graph properties in NP (cf. [34]).5 In this overview, we focus on properties
that can be tested within query complexity that only depends on the proximity
parameter (i.e., ε); that is, the query complexity does not depend on the size of
the graph being tested. Interestingly, there is much to say about this class of
properties. Let us start with a brief summary, and provide more details later.

1. A celebrated result of Alon, Fischer, Newman, and Shapira [3] provides a
combinatorial characterization of the class of properties that can be tested
within query complexity that only depends on the proximity parameter. This
class contains natural properties that are not testable in query complexity
poly(1/ε); see [1].

2. The prior work of Goldreich, Goldwasser, and Ron [33] provides a natural
class of properties that can be tested within query complexity poly(1/ε).
This class consists of so-called “partition problems” and includes sets such
as k-colorability, for any fixed k ≥ 2, and graphs containing a clique for
density ρ, for any fixed ρ > 0.

3. A relatively recent work of Goldreich and Ron [39] initiates a study of the
class of properties that can be tested within query complexity Õ(1/ε).

Before providing more details on the foregoing results, we mention that, when
disregarding a possible quadratic blow-up in the query complexity, we may as-
sume that the tester in canonical in the following sense.

5 We mention that a full query complexity hierarchy is established in [34] by using
unnatural graph properties, starting from the Ω(N2) lower bound of [33], which also
uses an unnatural graph property. In contrast, the Ω(N) lower bound established
in [27] (following [2]) refers to the natural property of testing whether an N-vertex
graph consists of two isomorphic copies of some N/2-vertex graph.
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Theorem 2.2 (canonical testers [41, Thm 2]):6 Let Π be any graph property.
If there exists a tester with query complexity q(N, ε) for Π, then there exists a
tester for Π that uniformly selects a set of O(q(N, ε)) vertices and accepts iff the
induced subgraph has property Π ′, where Π ′ is a graph property that may depend
on N as well as on Π. Furthermore, if the original tester has one-sided error,
then so does the new tester, and a sample of 2q(N, ε) vertices suffices

Indeed, the resulting tester is called canonical. We warn that Π ′ need not equal
Π (let alone that Π ′ may depend on N), and that the time complexity of the
canonical tester may be significantly larger than the time complexity of the
original tester. Still, in many natural cases (e.g., k-colorability), Π ′ = Π .

2.1.1 Testability in q(ε) Queries, for Any Function q
As stated above, a celebrated result of Alon et al. [3] provides a combinato-
rial characterization of the class of properties that can be tested within query
complexity that only depends on the proximity parameter. This characterization
refers to the notion of a regularity instance, where regularity is in the sense of
Szemeŕedi’s Regularity Lemma [58]. The result essentially asserts that a graph
property can be tested in query complexity that only depends on ε if and only
if it can be characterized in terms of a constant number of regularity instances.
The lesson from this characterization is that, when ignoring the specific depen-
dency on ε, testing graph properties in query complexity that only depends on ε
reduces to graph regularity. This lesson makes more concrete the feeling already
raised by Theorem 2.2 that testing in this model reduces to combinatorics.

The downside of the algorithms that emerge from this characterization is that
their query complexity is related to the proximity parameter via a function that
grows tremendously fast. Specifically, in the general case, the query complexity
is only upper bounded by a tower of a tower of exponents (in a monotonically
growing function of 1/ε, which in turn depends on the property at hand).

Interestingly, it is known that a super-polynomial dependence on the proxim-
ity parameter is inherent to the foregoing result. Actually, as shown by Alon [1],
such a dependence is essential even for testing triangle freeness. Indeed, this fact
provides a nice demonstration of the non-triviality of testing graph properties.
One might have guessed that O(1/ε) or O(1/ε3) queries would have sufficed to
detect a triangle in any graph that is ε-far from being triangle free, but Alon’s
result asserts that this guess is wrong and that poly(1/ε) queries do not suffice.
We mention that the best upper bound known for the query complexity of test-
ing triangle freeness is tf(poly(1/ε)), where tf is the tower function defined
inductively by tf(n) = exp(tf(n− 1)) with tf(1) = 2 (cf. [1]).

6 As pointed out in [10], the statement of [41, Thm 2] should be corrected such that the
auxiliary property Π ′ may depend on N and not only on Π . Thus, on input N and
ε (and oracle access to an N-vertex graph G), the canonical tester checks whether
a random induced subgraph of size s = O(q(N, ε)) has the property Π ′, where Π ′

itself (or rather its intersection with the set of s-vertex graphs) may depend on N .
In other words, the tester’s decision depends only on the induced subgraph that it
sees and on the size parameter N .
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Perspective. It is indeed an amazing fact that many properties can be tested
within (query) complexity that only depends on the proximity parameter (rather
than also on the size of the object being tested). This amazing statement seems
to shadow the question of the form of the aforementioned dependence, and blurs
the difference between a reasonable dependence (e.g., a polynomial relation) and
a prohibiting one (e.g., a tower-function relation). We beg to disagree with this
sentiment and claim that, as in the context of standard approximation problems
(cf. [45]), the dependence of the complexity on the approximation (or proximity)
parameter is a key issue.

We wish to stress that we do value the impressive results of [2,7,8,29] (let
alone [3]), which refer to graph property testers having query complexity that
is independent of the graph size but depends prohibitively on the proximity pa-
rameter. We view such results as an impressive first step, which called for further
investigation directed at determining the actual dependency of the complexity
on the proximity parameter.

While it is conceivable that there exist (natural) graph properties that can be
tested in exp(1/ε) queries but not in poly(1/ε) queries, we are not aware of such
a property.7 We thus move directly from complexities of the form tf(1/ε) (and
larger) to complexities of the form poly(1/ε).

2.1.2 Testability in poly(1/ε) Queries
Testers of query complexity poly(1/ε) are known for several natural graph
properties [33].

– k-Colorability, for any fixed k ≥ 2. The query-complexity is poly(k/ε).
For k = 2 the running-time is Õ(1/ε3), whereas for k > 2 the running-
time is exp(poly(1/ε)) (and running-time polynomial in 1/ε is unlikely, since
k-Colorability is NP-complete, for k ≥ 3).
The k-Colorability tester has one-sided error; that is, in case the graph is
k-colorable, the tester always accepts. Furthermore, when rejecting a graph,
this tester always supplies a small counterexample (i.e., a poly(1/ε)-size
subgraph that is not k-colorable).
The 2-Colorability (equivalently, Bipartiteness) Tester is presented in
§2.3. An improved analysis has been obtained by Alon and Krivelevich [4].

– ρ-Clique, for any fixed ρ > 0, where ρ-Clique is the set of graphs that have
a clique of density ρ (i.e., N -vertex graphs having a clique of size ρN).

– ρ-CUT, for any fixed ρ > 0, where ρ-CUT is the set of graphs that have a cut
of density at least ρ (compared to N2).
A generalization to k-way cuts has query-complexity poly((log k)/ε).

– ρ-Bisection, for any fixed ρ > 0, where ρ-Bisection is the set of graphs
that have a bisection of density at most ρ (i.e., an N -vertex graph is in ρ-
Bisection if its vertex set can be partitioned into two equal parts with at
most ρN2 edges going between them).

7 Needless to say, demonstrating the existence of such (natural) properties is an inter-
esting open problem.
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Except for k-Colorability, all the other testers have two-sided error, and this is
unavoidable for any tester of o(N) query complexity for any of these properties.

All the above property testing problems are special cases of the General Graph
Partition Testing Problem, which is parameterized by a set of lower and upper
bounds. In this problem one needs to determine whether there exists a k-partition
of the vertices so that the number of vertices in each part as well as the number
of edges between each pair of parts falls between the corresponding lower and
upper bounds (in the set of parameters). For example, ρ-clique is expressible as
a 2-partition in which one part has ρN vertices, and the number of edges in this
part is

(
ρN
2

)
. A tester for the general problem also appears in [33]: The tester uses

Õ(k2/ε)2k+O(1) queries, and runs in time exponential in its query-complexity.

From Testing to Searching. Interestingly, the testers for (all cases of) the General
Graph Partition Problem can be modified into algorithms that find an (implicit
representation of an) approximately adequate partition whenever it exists. That
is, if the graph has the desired (partitioning) property, then the testing algo-
rithm may actually output auxiliary information that allows to reconstruct, in
poly(1/ε) · N -time, a partition that approximately obeys the property. For ex-
ample, for ρ-CUT, we can construct a partition with at least (ρ− ε) ·N2 crossing
edges. We comment that this notion of an implicit representation of an adequate
structure may be relevant for other sets in NP , where this structure corresponds
to an NP-witness. (Indeed, an interesting algorithmic application was presented
in [28], where an implicit partition of an imaginary hypergraph is used in order
to efficiently construct a regular partition (with almost optimal parameters) of
a given graph.)

Back to Testing Graph Properties. Although many natural graph properties can
be formulated as partition problems, many other properties that can be tested
with poly(1/ε) queries cannot be formulated as such problems. The list include
the set of regular graphs, connected graphs, planar graphs, and more. We identify
three classes of such natural properties:

1. Properties that only depends on the vertex degree distribution (e.g., degree
regularity and average degree). For example, for any fixed ρ > 0, the set of N -
vertex graphs having ρN2 edges can be tested using O(1/ε2) queries, which
is the best result possible.8 The same holds with respect to testing degree
regularity, where the Ω(1/ε2) queries lower bound follows by reduction to
estimating the average value of Boolean functions and a corresponding upper
bound can be obtained by building on the Õ(1/ε3)-query algorithm presented
in the proof of [33, Prop. 10.2.1.3].9

8 Both upper and lower bounds can be proved by reduction to the problem of esti-
mating the average value of Boolean functions (cf. [22]).

9 For the lower bound, consider the problem of distinguishing between a random N-
vertex graph in which each vertex has degree either (0.5 + ε)N or (0.5 − ε)N and a
random (N/2)-regular N-vertex graph. For the upper bound, see Appendix A.1.
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2. Properties that are satisfied only by sparse graphs (i.e., N -vertex graphs
having O(N) edges)10 such as Cycle-freeness and Planarity. These prop-
erties can be tested by rejecting any graph that is not sufficiently sparse
(see [33, Prop. 10.2.1.2]).

3. Properties that are almost trivial in the sense that, for some constant c > 0
and every ε > N−c, all N -vertex graphs are ε-close to the property. For
example, every N -vertex graph is N−1-close to being connected (or being
Hamiltonian or Eulerian). These properties can be tested by accepting any
N -vertex graph if ε > N−c (without making any query), and inspecting
the entire graph otherwise (where, in this case

(
N
2

)
= poly(1/ε)). (See [33,

Prop. 10.2.1.1].)

In view of all of the foregoing, we believe that characterizing the class of graph
properties that can be tested in poly(1/ε) queries may be very challenging.
We mention that the special case of induced subgraph freeness properties was
resolved in [9].

2.1.3 Testability in Õ(1/ε) Queries
While Theorem 2.2 may be interpreted as suggesting that testing in the dense
graph model leaves no room for algorithmic design, this conclusion is valid only
if one ignores a possible quadratic blow-up in the query complexity (and also
disregards the time complexity). As advocated by Goldreich and Ron [39], a finer
examination of the model, which takes into account the exact query complexity
(i.e., cares about a quadratic blow-up), reveals the role of algorithmic design.
In particular, the results in [39] distinguish adaptive testers from non-adaptive
ones, and distinguish the latter from canonical testers. These results refer to
testability in Õ(1/ε) queries. In particular, it is shown that:

– Testing every “non-trivial for testing” graph property requires Ω(1/ε) queries,
even when adaptive testers are allowed. Furthermore, any canonical tester
for such a property requires Ω(1/ε2) queries.

– There exists a natural graph property that can be tested by Õ(1/ε) adaptive
queries, requires Ω(ε−4/3) non-adaptive queries, and is actually testable by
O(ε−4/3) non-adaptive queries.

– There exists a natural graph property that can be tested by Õ(1/ε) adaptive
queries but requires Ω(ε−3/2) non-adaptive queries.

– There exist an infinite class of natural graph properties that can be tested
by Õ(1/ε) non-adaptive queries.

All the above testers have one-sided error probability and are efficient, whereas
the lower bounds hold also for two-sided error testers (regardless of efficiency).

The foregoing results seem to indicate that even at this low complexity level
(i.e., testing in Õ(1/ε) adaptive queries) there is a lot of structure and much to
be understood. In particular, it is conjectured in [39] that, for every t ≥ 4, there

10 Actually, this class can be extended by considering a more relaxed notion of sparse-
ness that includes N-vertex graphs having O(N2−Ω(1)) edges.
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exists graph properties that can be tested by Õ(1/ε) adaptive queries and have
non-adaptive query complexity Θ(ε−2+ 2

t ).

2.1.4 Reflections
Let us reflect about some issues that arise from the foregoing exposition.

Adaptive Testers versus Non-Adaptive Ones. Recall that Theorem 2.2 asserts
that canonical testers (which are in particular non-adaptive) have query com-
plexity that is at most quadratic in the query complexity of general (possibly
adaptive) testers. Still the results surveyed in §2.1.3 indicate that such a gap may
exist. An interesting question, raised by Michael Krivelevich, is whether such a
gap exists also for properties having query complexity that is significantly larger
than Õ(1/ε). In particular, we mention that testing Bipartiteness, which has
non-adaptive query complexity Θ̃(ε−2) (cf. [4,21])11 and requires Ω(ε−3/2) adap-
tive queries [21], may be testable in o(ε−2) adaptive queries (cf. [42]).

One-Sided versus Two-Sided Error Probability. As noted above, for many natural
properties there is a significant gap between the complexity of one-sided and
two-sided error testers. For example, ρ-CUT has a two-sided error tester of query
complexity poly(1/ε), but no one-sided error tester of query complexity o(N2).
In general, the interested reader may contrast the characterization of two-sided
error testers in [3] with the results in [8].

A Contrast to Recognizing Graph Properties. The notion of testing a graph prop-
erty Π is a relaxation of the classical notion of recognizing the graph property Π ,
which has received much attention since the early 1970’s (cf. [48]). In the classi-
cal (recognition) problem there are no margins of error; that is, one is required
to accept all graphs having property Π and reject all graphs that lack property
Π . In 1975, Rivest and Vuillemin resolved the Aanderaa–Rosenberg Conjecture,
showing that any deterministic procedure for deciding any non-trivial monotone
N -vertex graph property must examine Ω(N2) entries in the adjacency matrix
representing the graph. The query complexity of randomized decision proce-
dures was conjectured by Yao to be Ω(N2), and the currently best lower bound
is Ω(N4/3). This stands in striking contrast to the aforementioned results re-
garding testing graph properties that establish that many natural (non-trivial)
monotone graph properties can be tested by examining a constant number of
locations in the matrix (where this constant depends on the constant value of
the proximity parameter).

Graph Properties Are Poor Codes. We note that with the exception of two prop-
erties, which each contains a single N -vertex graph, the adjacency matrix rep-
resentation of any property ΠN of N -vertex graphs yields a code over {0, 1}(

N
2 )

11 The Õ(ε−2) upper bound is due to [4], improving over [33], whereas the Ω(ε−2) lower
bound is due to [21].
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with relative distance at most O(1/N). Specifically, if ΠN neither consists of
the N -vertex clique nor of the N -vertex independent set, then ΠN contains a
graph G = ([N ], E) that contains two vertices u, v ∈ [N ] that have different
neighborhoods in G. Consider a permutation π that transposes u and v, while
leaving the rest of [N ] intact, and let G′ = ([N ], {π(a), π(b) : (a, b)∈E}). Then
G′ ∈ ΠN , but G′ is 2N

(N
2 )

-close to G.

2.2 Testing versus other Forms of Approximation

We shortly discuss the relation of the notion of approximation underlying the
definition of testing graph properties (in the dense graph model)12 to more tradi-
tional notions of approximation. Throughout this section, we refer to randomized
algorithms that have a small error probability, which we ignore for simplicity.

Application to the Standard Notion of Approximation: The relation of testing
graph properties to standard notions of approximation is best illustrated in the
case of Max-CUT. Any tester for the set ρ-CUT, working in time T (ε, N), yields an
algorithm for approximating the size of the maximum cut in an N -vertex graph,
up to additive error εN2, in time 1

ε ·T (ε, N). Thus, for any constant ε > 0, using
the above tester of [33], we can approximate the size of the max-cut to within εN2

in constant time. This yields a constant time approximation scheme (i.e., to within
any constant relative error) for dense graphs, which improves over previous work
of Arora et al. [12] and de la Vega [24] who solved this problem in polynomial-
time (i.e., in O(N1/ε2)–time and exp(Õ(1/ε2)) · N2–time, respectively). In the
latter works the problem is solved by actually finding approximate max-cuts.
Finding an approximate max-cut does not seem to follow from the mere existence
of a tester for ρ-cut; yet, as mentioned above, the tester in [33] can be used to
find such a cut in time linear in N .

Relation to “Dual Approximation” (cf. [45, Chap. 3]): To illustrate this rela-
tion, we consider the aforementioned ρ-Clique Tester. The traditional notion of
approximating Max-Clique corresponds to distinguishing the case in which the
max-clique has size at least ρN from, say, the case in which the max-clique has
size at most ρN/2. On the other hand, when we talk of testing ρ-Clique, the
task is to distinguish the case in which an N -vertex graph has a clique of size
ρN from the case in which it is ε-far from the class of N -vertex graphs having
a clique of size ρN . This is equivalent to the “dual approximation” task of dis-
tinguishing the case in which an N -vertex graph has a clique of size ρN from
the case in which any ρN subset of the vertices misses at least εN2 edges. To
demonstrate that these two tasks are vastly different we mention that whereas
the former task is NP-Hard, for ρ < 1/4 (see [15,43]), the latter task can be
solved in exp(O(1/ε2))-time, for any ρ, ε > 0. We believe that there is no abso-
lute sense in which one of these approximation tasks is more important than the
other: Each of these tasks may be relevant in some applications and irrelevant
in others.
12 Analogous relations hold also in the other models of testing graph properties.
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2.3 A Benchmark: Testing Bipartiteness

The Bipartite tester is extremely simple: It selects a tiny, random set of vertices
and checks whether the induced subgraph is bipartite.

Algorithm 2.3 (Bipartite Tester in the Dense Graph Model [33]): On input N ,
ε and oracle access to an adjacency predicate of an N -vertex graph, G = (V, E):

1. Uniformly select a subset of Õ(1/ε2) vertices of V.
2. Accept if and only if the subgraph induced by this subset is bipartite.

Step (2) amounts to querying the predicate on all pairs of vertices in the subset
selected at Step (1), and testing whether the induced graph is bipartite (e.g., by
running BFS). As will become clear from the analysis, it actually suffice to query
only Õ(1/ε3) of these pairs. We comment that a more complex analysis due to
Alon and Krivelevich [4] implies that the Algorithm 2.3 is a Bipartite Tester
even if one selects only Õ(1/ε) vertices (rather than Õ(1/ε2)) in Step (1)).

Theorem 2.4 [33]: Algorithm 2.3 is a Bipartite Tester (in the dense graph
model). Furthermore, the algorithm always accepts a bipartite graph, and in
case of rejection it provides a witness of length poly(1/ε) (that the graph is not
bipartite).

Proof: Let R be the subset selected in Step (1), and GR the subgraph of G
induced by R. Clearly, if G is bipartite then so is GR, for any R. The point is to
prove that if G is ε-far from bipartite then the probability that GR is bipartite
is at most 1/3. Thus, from this point on we assume that at least εN2 edges have
to be omitted from G to make it bipartite.

We view R as a union of two disjoint sets U and S, where t
def= |U| = O(ε−1 ·

log(1/ε)) and m
def= |S| = O(t/ε). We will consider all possible partitions of U,

and associate a partial partition of V with each such partition of U. The idea is
that in order to be consistent with a given partition, (U1, U2), of U, all neighbors
of U1 (respectively, U2) must be placed opposite to U1 (respectively, U2). We
will show that, with high probability, most high-degree vertices in V do neighbor
U and so are forced by its partition. Since there are relatively few edges incident
to vertices that do not neighbor U, it follows that, with very high probability,
each such partition of U is detected as illegal by GR. Details follow, but before
we proceed let us stress the key observation: It suffices to rule out relatively few
(partial) partitions of V (i.e., these induced by partitions of U), rather than all
possible partitions of V.

We use the notations Γ (v) def= {u : (u, v)∈E} and Γ (X) def= ∪v∈XΓ (v). Given
a partition (U1, U2) of U, we define a (possibly partial) partition, (V1, V2), of V
so that V1

def= Γ (U2) and V2
def= Γ (U1) (assume, for simplicity that V1 ∩ V2 is

indeed empty). As suggested above, if one claims that G can be “bi-partitioned”
with U1 and U2 on different sides, then V1 = Γ (U2) must be on the oppo-
site side to U2 (and Γ (U1) opposite to U1). Note that the partition of U places
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no restriction on vertices that have no neighbor in U. Thus, we first ensure that
almost all “influential” (i.e., “high-degree”) vertices in V have a neighbor in U.

Technical Definition 2.4.1 (high-degree vertices and good sets): We say that
a vertex v ∈ V is of high-degree if it has degree at least ε

3N . We call U good if
all but at most ε

3N of the high-degree vertices in V have a neighbor in U.

We comment that not insisting that a good set U neighbors all high-degree
vertices allows us to show that, with high probability, a random U of size un-
related to the size of the graph is good. (In contrast, if we were to insist that
a good U neighbors all high-degree vertices, then we would have had to use
|U| = Ω(log N).)

Claim 2.4.2. Withprobabilityat least5/6,auniformlychosensetUof size t isgood.

Proof: For any high-degree vertex v, the probability that v does not have
any neighbor in a uniformly chosen U is at most (1 − ε/3)t < ε

18 (since t =
Ω(ε−1 log(1/ε))). Hence, the expected number of high-degree vertices that do
not have a neighbor in a random set U is less than ε

18 ·N , and the claim follows
by Markov’s Inequality. ��

Technical Definition 2.4.3 (disturbing a partition of U): We say that an edge
disturbs a partition (U1, U2) of U if both its end-points are in the same Γ (Ui),
for some i ∈ {1, 2}.

Claim 2.4.4. For any good set U and any partition of U, at least ε
3N2 edges

disturb the partition.

Proof: Each partition of V has at least εN2 violating edges (i.e., edges with both
end-points on the same side). We upper bound the number of these edges that
are not disturbing. Actually, we upper bound the number of edges that have an
end-point not in Γ (U).

– The number of edges incident to high-degree vertices that do not neighbor
U is bounded by ε

3N ·N (since there are at most ε
3N such vertices).

– The number of edges incident to vertices that are not of high-degree is
bounded by N · ε

3N (since each such vertex has at most ε
3N incident edges).

This leaves us with at least ε
3N2 violating edges connecting vertices in Γ (U)

(i.e., edges disturbing the partition of U). ��

The theorem follows by observing that GR is bipartite only if either (1) the set
U is not good; or (2) the set U is good and there exists a partition of U so that
none of the disturbing edges occurs in GR. Using Claim 2.4.2 the probability of
event (1) is bounded by 1/6, whereas by Claim 2.4.4 the probability of event (2)
is bounded by the probability that there exists a partition of U so that none of
the corresponding ≥ ε

3N2 disturbing edges has both end-points in the second
sample S. Actually, we pair the m vertices of S, and consider the probability that
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none of these pairs is a disturbing edge for a partition of U. Thus the probability
of event (2) is bounded by

2|U| ·
(
1− ε

3

)m/2

<
1
6

where the inequality holds since m = Ω(t/ε). The theorem follows.

Comment: The procedure employed in the proof yields a randomized poly(1/ε) ·
N -time algorithm for 2-partitioning a bipartite graph such that (with high prob-
ability) at most εN2 edges lie within the same side. This is done by running the
tester, determining a partition of U (defined as in the proof) that is consistent
with the bipartite partition of R, and partitioning V as done in the proof (with
vertices that do not neighbor U, or neighbor both U1, U2, placed arbitrarily).
Thus, the placement of each vertex is determined by inspecting at most Õ(1/ε)
entries of the adjacency matrix. Furthermore, the aforementioned partition of U
constitutes a succinct representation of the 2-partition of the entire graph. All
this is a typical consequence of the fact that the analysis of the tester follows
the “enforce-and-test” paradigm (see [56, Sec. 4]).

3 The Bounded-Degree Graph Model

The bounded-degree model refers to a fixed degree bound, denoted d ≥ 2. An N -
vertex graph G = ([N ], E) (of maximum degree d) is represented in this model
by a function g : [N ]×[d] → {0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith

neighbor of v and g(v, i) = 0 if v has less than i neighbors.13 Distance between
graphs is measured in terms of their aforementioned representation (i.e., as the
fraction of (the number of) different array entries (over dN)), but occasionally
we shall use the more intuitive notion of the fraction of (the number of) edges
over dN/2. We now spell out the meaning of property testing in this model.

Definition 3.1 (testing graph properties in the bounded-degree model): For a
fixed d, a tester for a graph property Π is a probabilistic oracle machine that, on
input parameters N and ε and access to (the incidence function of) an N -vertex
graph G = ([N ], E) of maximum degree d, outputs a binary verdict that satisfies
the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N ], E′) ∈ Π of
maximum degree d it holds that the symmetric difference between E and E′

has cardinality that is greater than ε · dN/2.

One-sided testers and non-adaptive testers are defined as in Definition 2.1.

13 For simplicity, we assume here that the neighbors of v appear in an arbitrary order

in the sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) 	= 0}|. Also, we

shall always assume that if g(v, i) = u ∈ [N ] then there exists j ∈ [d] such that
g(u, j) = v.
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The query complexity of a tester is defined as in Section 2; ditto for its
efficiency.

The study of property testing in the bounded-degree graph model was ini-
tiated by Goldreich and Ron [35], with the aim of allowing the consideration
of sparse graphs, which appear in numerous applications (cf. the first motiva-
tion to the study of graphs mentioned in Section 1.1). The point was that the
dense graph model seems irrelevant to sparse graphs, both because the distance
measure that underlies it deems all sparse graphs as close to one another, and
because adjacency queries seems unsuitable for sparse graphs. Sticking to the
paradigm of representing graphs as functions, where both the distance measure
and the type of queries are determined by the representation, the aforementioned
representation seemed the most natural choice. Indeed, a conscious decision was
(and is) made not to capture, at this point (and in this model), sparse graphs
that do not have constant (or low) maximum degree.

3.1 A Taste of the Known Results

We first mention that, also in this model, graph properties of arbitrary query
complexity are known: Specifically, in this model, graph properties (in NP)
may have query complexity ranging from O(1/ε) to Ω(N), and furthermore
such properties are monotone and natural (cf. [34], which builds over [20]).
In particular, testing 3-Colorability requires Ω(N) queries, whereas testing 2-
Colorability (i.e., Bipartiteness) requires Ω(

√
N) queries [35] and can be done

using Õ(
√

N) · poly(1/ε) queries [36]. We also mention that many natural prop-
erties are testable in query complexity that only depends on the proximity pa-
rameter (i.e., ε). A partial list includes k-edge connectivity, for every fixed k,
and Planarity (cf. [35] and [18], respectively). Details follow.

3.1.1 Testability in q(ε) Queries, for Any Function q

We first mention, that with the exception of properties that only depend on the
degree distribution, adaptive testers are essential for obtaining query complexity
that only depends on ε (cf. [55]).14 Still, as observed in [40], at the cost of an
exponentially blow-up in the query complexity, we may assume that the tester’s
adaptivity is confined to performing (full, BFS-like) searches of a predetermined
depth from several randomly selected vertices. However, the best testing results
are typically obtained by testers that either perform more adaptive searchers or
perform DFS-like rather than BFS-like searchers. A few examples follow, where
all testers are efficient (i.e., their running time is polynomial in their query
complexity).

Testing Connectivity. Graph connectivity can be tested in Õ(1/ε) queries [35].
Essentially, the tester starts a search (e.g., a BFS) from a few randomly selected

14 Actually, the result extends to query complexity of the form o(
√

N · q(ε)), for any
function q. In contrast, note that triangle-freeness can be tested by O(

√
N/ε) non-

adaptive queries; see Appendix A.2.
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vertices, but each such search is terminated after a predetermined number of
vertices is encountered (rather than after visiting all vertices that are at a pre-
determined distance from the start vertex). This tester rejects if and only if
it detects a small connected component, and thus it has one-sided error. The
result essentially extends to k-edge connectivity, for any k ≥ 2, but the query
complexity is Õ(k3/εc), where c = min(k − 1, 3) (cf. [35]).

Testing Cycle-Freeness. Cycle-freeness can be tested in Õ(ε−3) queries, by a
tester having two-sided error [35]. Essentially, the tester compares the num-
ber of edges to the number of connected components, while fully exploring any
small connected components that it happens to visit. The two-sided error is un-
avoidable by any tester that has query complexity o(

√
N) (cf. [35, Prop. 4.3]).

Viewing cycle-free graphs as graphs that have no K3-minor, leads us to the fol-
lowing general result of Benjamini, Schramm, and Shapira [18], which refers to
graph minors (to be briefly recalled next).

The graph H is a minor of the graph G, if H can be obtained from G by a
sequence of edge removal, vertex removal, and edge contraction operations. We
say that G is H-minor free if H is not a minor of G. Thus, a graph is cycle-free
if and only if it is K3-minor free, where Kk denotes the k-vertex clique. (The
notion of minor freeness extends to sets of graphs; that is, for a set of graphs
H, the graph G is H-minor free if no element of H is a minor of G.) Lastly, a
graph property is minor-closed if it is closed under removal of edges, removal of
vertices, and edge contraction. Note that, for every finite sets of graphs H, the
property of being H-minor free (e.g., Planarity) is minor-closed.

Theorem 3.2 ([44], improving over [18]):15 Any minor-closed property can be
tested in query complexity exp(poly(1/ε)).

We mention that this tester has two-sided error, which is unavoidable for any
tester of query complexity o(

√
N), except for the case that the forbidden minors

are all cycle-free.

3.1.2 Testability in Õ(N1/2) · poly(1/ε) Queries
The query complexity of testing two natural properties is Θ̃(N1/2) · poly(1/ε),
and in both cases the time complexity has the same form. The properties are
Bipartiteness and Expansion. In both cases, the algorithm is based on taking
many (i.e., Õ(N1/2) · poly(1/ε)) random walks from a few randomly selected
vertices, where each walk has length poly(ε−1 log N).

The foregoing algorithmic approach originates in [36], where it was applied
to testing Bipartiteness; for further details see §3.2.2. This approach was also
suggested for testing Expansion [37], but the analysis was successfully completed
only in [46,51]. We mention that the Bipartite tester has one-sided error, and
whenever it rejects it may also output a short proof that the graph is not bipartite
(i.e., an odd cycle of length poly(ε−1 log N)).

15 The query complexity obtained in [18] is triple-exponential in 1/ε.
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The Ω(N1/2) lower bound on the query complexity of testing each of the
aforementioned properties was proved in [35]; for details see §3.2.1. We note that
the lower bound for testing Bipartiteness stands in sharp contrast to the situation
in the dense graph model, where Bipartite testing is possible in poly(1/ε)-time.
This discrepancy is due to the difference between the notions of relative distance
employed in the two models.

An application to the Study of the Dense Graph Model. We mention that the
Bipartiteness tester of the bounded-degree model was used in order to derive
an alternative Bipartite tester for the dense graph model [42]. In the case that
almost all vertices in the N -vertex graph have degree O(ε0.99N), this tester
improves over the ones presented in [33,4]. Essentially, this dense-graph model
tester invokes the bounded-degree model tester on the subgraph induced by a
sample S of Õ(1/ε) random vertices (and emulates neighbor queries regarding a
vertex v ∈ S by making adjacency queries of the form (v, w) for every w ∈ S).

3.1.3 Reflections
The fact that the bounded-degree model is closer (than the dense graph model)
to standard algorithmic research offers greater interaction at the technical level.
Indeed, techniques such as local search and random walks are quite basic in both
domains, and the relationship becomes even tighter when we shall move to the
general graph model (in Section 4). At the current point, we mention that the
idea underlying the cycle-freeness tester (outlined in §3.1.1) was employed to the
design of an algorithm for approximating the minimum spanning tree weight in
sub-linear time [23].

We also mention that the idea underlying the expansion tester has become
quite pivotal in the contents of testing distributions, which emerged with [13].

3.2 A Benchmark: Testing Bipartiteness

Both the following lower and upper bounds reflect the fact that being far from
Bipartiteness does not require having constant size cycles of odd length. We
comment that a simplified version of the upper bound implies that odd cycles
of logarithmic length must exist (cf. [36, Prop. 1]).

3.2.1 A Lower Bound
In contrast to Theorem 2.4, under the incidence function representation, there
exists no Bipartite tester of complexity that is independent of the graph size.

Theorem 3.3 [35]: Testing Bipartiteness (with constant ε and d) requires
Ω(
√

N) queries (in the incidence function model).

Proof Idea: For any (even) N , we consider the following two families of graphs:

1. The first family, denoted GN
1 , consists of all degree-3 graphs that are com-

posed of the union of a Hamiltonian cycle and a perfect matching. That is,
there are N edges connecting the vertices in a cycle, and the other N/2 edges
are a perfect matching.
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2. The second family, denoted GN
2 , is the same as the first except that the

perfect matchings allowed are restricted as follows: the distance on the cycle
between every two vertices that are connected by a perfect matching edge
must be odd.

Clearly, all graphs in GN
2 are bipartite. It can be shown that almost all graphs

in GN
1 are far from being bipartite. On the other hand, one can prove that a

testing algorithm that performs o(
√

N) queries cannot distinguish between a
graph chosen randomly from GN

2 (which is always bipartite) and a graph chosen
randomly from GN

1 (which with high probability is far from bipartite). Loosely
speaking, this is the case since in both cases the algorithm is unlikely to encounter
a cycle (among the vertices that it has inspected).

3.2.2 An Algorithm
The lower bound of Theorem 3.3 is essentially tight. Furthermore, the following
natural algorithm constitutes a Bipartite tester of running time poly((log N)/ε)·√

N .

Algorithm 3.4 (Bipartite Tester in the Bounded-Degree Model [36]): On input
N , d, ε and oracle access to an incidence function for an N -vertex graph, G =
(V, E), of degree bound d, repeat T

def= Θ(1
ε ) times:

1. Uniformly select s in V.
2. (Try to find an odd cycle through vertex s):

(a) Perform K
def= poly((log N)/ε) ·

√
N random walks starting from s, each

of length L
def= poly((log N)/ε).

(b) Let R0 (respectively, R1) denote the vertices set reached from s in an
even (respectively, odd) number of steps in any of these walks.

(c) If R0 ∩R1 is not empty then reject.

If the algorithm did not reject in any of the foregoing T iterations, then it accepts.

Theorem 3.5 [36]: Algorithm 3.4 is a Bipartite Tester (in the incidence func-
tion model). Furthermore, the algorithm always accepts a bipartite graph, and in
case of rejection it provides a witness of length poly((log N)/ε) (that the graph
is not bipartite).

Motivation – the Special Case of Rapid Mixing Graphs. The proof of Theorem 3.5
is quite involved. As a motivation, we consider the special case where the graph
has a “rapid mixing” feature. It is convenient to modify the random walks so that
at each step each neighbor is selected with probability 1/2d, and otherwise (with
probability at least 1/2) the walk remains in the present vertex. Furthermore, we
will consider a single execution of Step (2) starting from an arbitrary vertex, s,
which is fixed in the rest of the discussion. The rapid mixing feature we assume
is that, for every vertex v, a (modified) random walk of length L starting at s
reaches v with probability approximately 1/N (say, up-to a factor of 2). Note that
if the graph is an expander then this is certainly the case (since L = ω(log N)).
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The key quantities in the analysis are the following probabilities, referring
to the parity of the length of a path obtained from the random walk by omitting
the self-loops (transitions that remain at current vertex). Let p0(v) (respectively,
p1(v)) denote the probability that a (modified) random walk of length L, starting
at s, reaches v while making an even (respectively, odd) number of real (i.e., non-
self-loop) steps. By the rapid mixing assumption (for every v ∈ V), it holds that

1
2N

< p0(v) + p1(v) <
2
N

. (2)

We consider two cases regarding the sum
∑

v∈V p0(v)p1(v): If the sum is (rela-
tively) “small”, we show that V can be 2-partitioned so that there are relatively
few edges between vertices that are placed in the same side, which implies that
G is close to being bipartite. Otherwise (i.e., when the sum is not “small”), we
show that with significant probability, when Step (2) is started at vertex s it
is completed by rejecting G. These two cases are analyzed in the following two
(corresponding) claims.

Claim 3.5.1. Suppose
∑

v∈V p0(v)p1(v) ≤ ε/50N . Let V1
def= {v ∈ V : p0(v) <

p1(v)} and V2 = V \V1. Then, the number of edges with both end-points in the
same Vσ is bounded above by εdN .

Proof Sketch: Consider an edge (u, v) where, without loss of generality, both u
and v are in V1. Then, both p1(v) and p1(u) are greater than 1

2 ·
1

2N . However,
one can show that p0(v) > 1

3d · p1(u): Observe that an (L − 1)-step walk of
path-parity 1 ending at u is almost as likely as an L-step walk of path-parity
1 ending at u, and that once an (L − 1)-step walk reaches u, with probability
exactly 1/2d, it continues to v in the next step. Thus, the edge (u, v) contributes
at least (1/4N)2

3d to the sum
∑

w∈V p0(w)p1(w). It follows that we can have at
most (ε/50N)/(1/48dN2) such edges, and the claim follows. ��

Claim 3.5.2. Suppose
∑

v∈V p0(v)p1(v) ≥ ε/50N , and that Step (2) is started
with vertex s. Then, with probability at least 2/3, the set R0 ∩ R1 is not empty
(and rejection follows).

Proof Sketch: Consider the probability space defined by an execution of Step (2)
with start vertex s. For every i �= j such that i, j ∈ [K], we define an indicator
random variable ζi,j representing the event that the vertex encountered in the
Lth step of the ith walk equals the vertex encountered in the Lth step of the jth

walk, and that the ith walk corresponds to an even-path whereas the jth to an
odd-path. (That is, ζi,j = 1 if the foregoing event holds, and ζi,j = 0 otherwise.)
Then

E[|R0 ∩R1|] >
∑
i�=j

E[ζi,j ]

= K(K − 1) ·
∑
v∈V

p0(v)p1(v)
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>
500N

ε
·
∑
v∈V

p0(v)p1(v)

≥ 10

where the second inequality is due to the setting of K, and the third to the claim’s
hypothesis. Intuitively, with high probability, it should hold that |R0 ∩R1| > 0.
This is indeed the case, but proving it is less straightforward than it seems; the
problem being that the ζi,j ’s are not pairwise independent. Yet, since the sum
of the covariances of the dependent ζi,j ’s is quite small, Chebyshev’s Inequality

is still very useful (cf. [11, Sec. 4.3]). Specifically, letting μ
def=

∑
v∈V p0(v)p1(v)

(= E[ζi,j ]), and ζi,j
def= ζi,j − μ, we get:

Pr

⎡⎣∑
i�=j

ζi,j = 0

⎤⎦ <
Var

[∑
i�=j ζi,j

]
(K2μ)2

=
1

K4μ2
·

⎛⎝∑
i,j

E
[
ζ
2

i,j

]
+ 2

∑
i,j,k

E
[
ζi,jζi,k

]⎞⎠
<

1
K2μ

+
2

Kμ2
· E[ζ1,2ζ1,3]

For the second term, we observe that Pr[ζ1,2 = ζ1,3 = 1] is upper bounded by
Pr[ζ1,2 = 1] = μ times the probability that the Lth vertex of the first walk
appears as the Lth vertex of the third path. Using the rapid mixing hypothesis,
we upper bound the latter probability by 2/N , and obtain

Pr[|R0 ∩R1| = 0] <
1

K2μ
+

2
Kμ2

· μ · 2
N

<
1
3

where the last inequality uses μ ≥ ε/50N and K2 ≥ 6 · 50N/ε (along with
ε > 5000/N). The claim follows. ��

Beyond Rapid Mixing Graphs. The proof in [36] refers to a more general sum
of products; that is,

∑
u∈U podd(u)peven(u), where U ⊆ V is an appropriate set

of vertices, and podd(v) (respectively, peven(v)) is essentially the probability that
an L-step random walk (starting at s) passes through v after more than L/2
steps and the corresponding path to v has odd (respectively, even) parity. Much
of the analysis in [36] goes into selecting the appropriate U (and an appropriate
starting vertex s), and pasting together many such U’s to cover all of V. Loosely
speaking, U and s are selected so that there are few edges from U and the
rest of the graph, and podd(u) + peven(u) ≈ 1/

√
|V| · |U|, for every u ∈ U. The

selection is based on the “combinatorial treatment of expansion” of Mihail [50].
Specifically, we use the contrapositive of the standard analysis, which asserts that
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rapid mixing occurs when all cuts are relatively large, to assert the existence of
small cuts which partition the graph so that vertices reached with relatively high
probability (in a short random walk) are on one side and the rest of the graph
on the other. The first set corresponds to the aforementioned U and the cut is
relatively small with respect to U. A start vertex s for which the corresponding
sum is big is shown to cause Step (2) to reject (when started with this s), whereas
a small corresponding sum enables to 2-partition U while having few violating
edges among the vertices in each part of U.

The actual argument of [36] proceeds in iterations. In each iteration a vertex s
for which Step (2) accepts with high probability is fixed, and an appropriate set of
remaining vertices, U, is found. The set U is then 2-partitioned so that there are
few violating edges inside U. Since we want to paste all these partitions together,
U may not contain vertices treated in previous iterations. This complicates the
analysis, since it must refer to the part of G, denoted H, not treated in previous
iterations. We consider walks over an (imaginary) Markov Chain representing
the H-part of the walks performed by the algorithm on G. Statements about
rapid mixing are made with respect to the Markov Chain, and linked to what
happens in random walks performed on G. In particular, a subset U of H is
determined so that the vertices in U are reached with probability ≈ 1/

√
|V| · |U|

(in the chain) and the cut between U and the rest of H is small. Linking the
sum of products defined for the chain with the actual walks performed by the
algorithm, we infer that U may be partitioned with few violating edges inside
it. Edges to previously treated parts of the graphs are charged to these parts,
and edges to the rest of H \U are accounted for by using the fact that this cut
is small (relative to the size of U).

4 The General Graph Model

In contrast to the foregoing two models in which the oracle queries and the
distances between graphs are linked to the representation of graphs as functions,
in the following model the representation is blurred and the query types and
distance measure are decoupled. This decoupling makes the current model closer
in spirit to standard studies in graph algorithms.

Giving up on the representation as a yardstick for the relative distance be-
tween graphs, leaves us with no absolute point of reference. Instead, we just
define the relative distance between graphs in relation to the actual number
of edges in these graphs; specifically, the relative distance between the graphs
G = ([N ], E) and G′ = ([N ], E) may be defined as |E�E′|

max(|E|,|E′|) (or, alternatively,

as |E�E′|
(|E|+|E′|)/2 ).16

Turning to the question of query types, we again need to make a choice,
which is now free from representation considerations. The most natural choice
is to allow both adjacency queries and incidence queries (i.e., the two types of

16 Needless to say, these two definitions may not yield the same result, but they are
related by a factor of at most 2.
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queries that were each allowed in one of the previous queries).17 However, other
choices has been considered too (cf. [17]). We note that, typically, adjacency
queries become more useful as the graph becomes more dense, whereas incidence
queries (a.k.a neighbor queries) become more useful as the graph becomes more
sparse (cf. [17]).

Definition 4.1 (testing graph properties in the general model): A tester for
a graph property Π is a probabilistic oracle machine that, on input parameters
N and ε and access to a function answering adjacency queries and incidence
queries regarding an N -vertex graph G = ([N ], E), outputs a binary verdict that
satisfies the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N ], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than ε ·max(|E|, |E′|).

One-sided testers and non-adaptive testers are defined as in Definition 2.1.

The query complexity of a tester is defined as in Section 2; ditto for its efficiency.
The study of property testing in the general graph model was initiated by

Parnas and Ron [53], who only considered incidence queries, and extended by
Kaufman, Krivelevich, and Ron [47], who considered both types of queries. Need-
less to say, the aim of these works was to allow the consideration of arbitrary
graphs and so strengthen the relation between property testing and standard
algorithmic studies. However, forsaking the paradigm of representing graphs as
functions means that the connection to the rest of property testing is a bit weak-
ened (or at least becomes more cumbersome). Still, we believe that the trade-off
is worthwhile.

4.1 A Taste of the Known Results

It is natural to attempt to extend testers designed for the bounded-degree model
to the general graph model. Such extensions face two potential difficulties, which
refer to two ways in which the general graph model extends the bounded-degree
model:

1. Firstly, the maximum degree of vertices in the graph may no longer be
constant, and the question is how does the performance of the tester depends
on the degree bound, d. Formally, one should think of the degree bound d
as a variable, and analyze the tester accordingly.
Note that when d increases, relative distances decrease and so testing may
become easier. On the other hand, we can no longer scan all neighbors of a
given vertex at constant cost.

17 Recall that the incidence query (u, i) is answered with 0 if u has less than i neighbors.
Thus, the incidence queries allow to emulate degree queries at logarithmic cost.
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2. Treating the maximum degree as a variable, raises the question of what
happens when there is a significant discrepancy among the degrees of the
various vertices. Such a situation can break the balance between the afore-
mentioned positive and negative effects of increasing the maximum degree.
Specifically, the algorithmic operations may becomes more costly when the
maximum degree increases, but when using the distance measure of Defi-
nition 4.1 the distances no longer vary with the maximum degree (i.e., d)
but rather vary with the average degree. Thus, we may be in trouble if the
maximum degree is significantly larger than the average degree.

The effect of the foregoing issues is tester-dependent. For example, the operation
of the Connectivity tester (outlined in §3.1.1) is not affected by the possible
discrepancies in the vertex degrees, and so this tester (as is) applies also to the
general graph model (cf. [53]). In contrast, the Bipartiteness tester presented
in Algorithm 3.4 should be modified to the current setting. Details follow.

4.2 A Benchmark: Testing Bipartiteness

Firstly, it was shown in [47] that the algorithm’s performance does not dete-
riorate when d increases. Next, an algorithm for the general graph model was
obtained by emulating Algorithm 3.4 on an imaginary graph that is obtained
by replacing vertices of high degree by adequate gadgets. Specifically, a ver-
tex having degree that is t times larger than the average degree is replaced by
a t-by-t bipartite expander graph, while connecting the original neighbors to
vertices on one of the sides of the expander (such that no vertex has degree
greater than twice the average degree). This replacement preserves the distance
to Bipartiteness (up to a constant factor). We warn that implementing the
emulation (of Algorithm 3.4 on this imaginary graph) is not straightforward. In
particular, it seems to require a procedure for sampling edges in the actual graph
such that almost all edges are sampled with probability that is approximately
(up to a constant factor) the uniform one.18 For details, see [47].

As evident from the above description, the extension of a tester from the
bounded-degree model to the general graph model may require ideas that are
specific to the property at hand. For example, the gadgets used above should
preserve Bipartiteness (as well as distance to Bipartiteness).

Another issue that arises is that one may hope to perform better when the
degree bound d (whether maximum or average) is large. Indeed, we know that
in case of Bipartiteness, dense graphs can be tested with much fewer queries
than sparse graphs (recall Algorithm 2.3). Thus, an optimal tester for the gen-
eral graph model should be able to match the result of the dense graph model
whenever the actual graph happens to be dense. Such a result is indeed provided
by [47], who show a Bipartiteness tester (for the general graph model) that is
optimal for all possible edge densities.

18 A more accurate sampling procedure is implicit in the subsequent work of [38].
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Theorem 4.2 (Testing Bipartiteness in the General Graph Model [47]): Ignor-
ing factors that are polynomial in ε−1 log N , the query (and time) complexity
of testing Bipartiteness is min(

√
N, N2/M), where M denotes the number of

edges in the input graph.

Note that dealing with M $ N3/2 requires some deviation from the aforemen-
tioned emulation (of Algorithm 3.4). Indeed, in such a case the tester of [47] be-
haves quite differently. Specifically, it takes K =

√
N2/M random walks (rather

than N2/M random walks), from each random start vertex, and checks for col-
lisions among the endpoints these K walks by using

(
K
2

)
adjacency queries. We

mention that the use of adjacency queries is necessary for an o(
√

N) query tester
of Bipartiteness.

An Opposite Behavior. In contrast to the case of testing Bipartiteness, where
the complexity improves with the edge density, in the case of testing triangle-
freeness we see the opposite behavior [5].19 Furthermore, in contrast to test-
ing Bipartiteness, there is a gap between the complexity of testing triangle-
freeness in the bounded-degree model and the corresponding complexity in the
general graph model even when the graph is sparse (i.e., M = O(N)). For
example, in the general graph model, the complexity is Ω(N1/3) as long as
M = N2−o(1) [5].

4.3 Reflections

The bulk of algorithmic research regarding graphs refers to general graphs. Of
special interest are graphs that are neither very dense nor have a bounded degree.
In contrast, research in testing properties of graphs started (in [33]) with the
study of dense graphs, proceeded to the study of bounded-degree graphs (in [35]),
and reached general graphs only in [53,47]. This evolution has historical reasons
to be reviewed first.

Testing graph properties was initially conceived (in [33]) as a special case
of the framework of testing properties of functions. Thus, graphs had to be
represented by functions, and two standard representations of graphs (indeed,
the two reviewed in Sections 2 and 3) seemed most fitting in this context. We
stress that both models were formulated in a way that identifies the graphs with
a specific functional representation, which in turn defines the type of queries
allowed to the tester as well as the notion of fractional distance (which underlies
the performance guarantee).

The identification of graphs with any specific functional representation was
abandoned by Parnas and Ron [53] who developed a more general model by
decoupling the type of queries allowed to the tester from the distance mea-
sure: Whatever is the mechanism of accessing the graph, the distance between
graphs is defined as the number of edges in their symmetric difference (rather
19 This is to be expected in light of the fact that testing triangle-freeness has complexity

O(d/ε) in the bounded-degree model [35], whereas in the dense graph model testing
triangle-freeness requires more than poly(1/ε) queries [1].
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than the number of different entries with respect to some specific functional rep-
resentation). Furthermore, the relative distance may be defined as the size of
the symmetric difference divided by the actual (total) number of edges in both
graphs (rather than divided by some (possibly non-tight) upper-bound on the
latter quantity). Also, as advocated by Kaufman et al. [47], it is reasonable to
allow the tester to perform both adjacency and neighbor queries (and indeed
each type of query may be useful in a different range of edge densities). Needless
to say, this model seems adequate for the study of testing properties of arbitrary
graphs, and it strictly generalizes the positive aspects of the two prior models
(i.e., the models based on the adjacency matrix and bounded-degree incidence
list representations).

We wish to advocate further study of the latter model. We believe that this
model, which allows for a meaningful treatment of property testing of general
graphs, is the one that is most relevant to computer science applications. Fur-
thermore, it seems that designing testers in this model requires the development
of algorithmic techniques that may be applicable also in other areas of algo-
rithmic research. As an example, we mention that techniques in [47] underly
the average degree approximation of [38]. (Likewise techniques of [35] underly
the minimum spanning tree weight approximation of [23]; indeed, as noted next,
the bounded-degree incidence list model is also more algorithmic oriented than
the adjacency matrix model.)

Let us focus on the algorithmic contents of property testing of graphs. Recall
that, when ignoring a quadratic blow-up in the query complexity, property test-
ing in the adjacency matrix representation reduces to sheer combinatorics (as
reflected in the notion of canonical testers, see Theorem 2.2). Indeed, as shown
in [39], a finer look (which does not allow for ignoring quadratic blow-ups in
complexity) reveals the role of algorithmic design also in this model. But still
property testing in the incidence list representation seems to require more so-
phisticated algorithms. Testers in the general graph models seem to require even
more algorithmic ideas (cf. [47]).

To summarize, we advocate further study of the model of [53,47] for two rea-
sons. The first reason is that we believe in the greater relevance of this model
to computer science applications. The second reason is that we believe in the
greater potential of this model to have cross fertilization with other branches
of algorithmic research. Nevertheless, this advocation is not meant to under-
mine the study of the dense graph and bounded-degree models. The latter have
their own merits and also offer a host of interesting open problems, which are
potentially relevant to computer science at large.

5 Additional Issues

In this section we discuss three issues that are relevant to each of the three
models discussed in the prior corresponding three sections.



Introduction to Testing Graph Properties 497

5.1 Directed Graphs

So far our discussion was confined to undirected graphs. Nevertheless, the three
models extend naturally to the case of directed graphs. Actually, when consid-
ering incidence queries, two different sub-models emerge (cf. [16]): In the first
model the tester may only query for edges in the forward direction (resp., back-
ward direction), whereas in the second model both forward and backward direc-
tions are allowed. That is, in the second model, the directed graph G = ([N ], E)
is represented by two functions, gout and gin, such that gout(u, i) = v (resp.,
gin(u, i) = v) if the ith out-going edge of u leads to v (resp., the ith in-coming
edge of u arrives from v).

The gap between these two query models was demonstrated by Bender and
Ron, who initiated the study of testing properties of directed graphs [16]. In par-
ticular, they showed that while strong connectivity in bounded-degree directed
graphs can be tested by Õ(1/ε) forward and backward queries [16, Sec. 5.1],
when only forward (resp., backward) queries are allowed no tester can work
with o(

√
N) queries (even when allowing two-sided error [16, Sec. 5.2]).20

Another task studied in [16] is testing whether a given directed graph is acyclic
(i.e., has no directed cycles). They presented an Acyclicity tester of poly(1/ε)
complexity in the adjacency predicate model, and showed that in the incidence
list model no Acyclicity tester can work with o(N1/3) queries (even when both
forward and backward queries are allowed). The question of whether Acyclicity
can be tested with o(N) queries (in the bounded-degree digraph model) remains
open. In general, it seems that the study of this model deserves more attention
than it has received so far. (We mention that testing directed graphs in the dense
digraph model was further studied in [6,52].)

5.2 Tolerant Testing and Distance Approximation

Recall that property testing calls for distinguishing objects having a predeter-
mined property from object that are far from any objects that has this property
(i.e., are far from the property). A more “tolerant” notion requires distinguish-
ing objects that are close to having the property from objects that are far from
this property. Such a distinguisher is called a tolerant tester, and is a special
case of a distance approximator that given any object is required to approximate
its distance to the property. The study of these related notions was initiated by
Parnas, Ron, and Rubinfeld [54].

Definition 5.1 (sketch for the generic case): Let Π be a set of functions over a
finite set Ω. A distance approximator for Π is a probabilistic oracle machine T
that on input an approximation parameter ε and access to any function f outputs
with probability at least 2/3 a value that approximates the relative distance of f

20 The lower bound can be strengthened to Ω(N) when considering only one-sided
error testers. In the case of two-sided error, some improvements are possible; see
Appendix A.3.
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to Π up to an additive term of ε; that is, Pr[|T f − δΠ(f)| ≤ ε] ≥ 2/3, where
δΠ(f) def= ming∈Π{δ(f, g)} and δ(f, g) def= Prx∈Ω[f(x) �= g(x)].

A simple observation is that any tester that makes uniformly distributed queries
offers some level of tolerance. Specifically, if a tester makes q(ε) queries and each
query is uniformly distributed, then this tester distinguishes between objects
that are ε-far from the property and objects that are (ε/10q(ε))-close to the
property. Needless to say, the challenge is to provide stronger relations between
property testing and distance approximators. Such a result was provided by
Fischer and Newman [29]: They showed that, in the dense graph model, testability
in a number of queries that only depends on ε implies distance approximator in a
number of queries that only depends on ε. In the the bounded-degree model, many
of the known testers were extended to yield distance approximators (cf. [49]).

5.3 Proximity Oblivious Testing

Note that in order to satisfy the property testing requirement, any tester (of
a reasonable property) must obtain the proximity parameter as auxiliary input
and determine its actions accordingly. The question, addressed here, is what does
the tester do with this parameter (or how does the parameter affect the actions
of the tester). A very minimal effect is exhibited by testers that, based on the
value of the proximity parameter, determine the number of times that a basic
test is invoked, where the basic test is oblivious of the proximity parameter. For
example, the celebrated linearity tester of [19] repeats a basic test that consists
of selecting two random points, x and y, and probing the value of the function
at the points x, y, and x + y. This basic test is repeated for a number of times
that is inversely proportional to the proximity parameter.

Our focus here is on such basic tests (i.e., basic tests that are oblivious of
the proximity parameter), called proximity oblivious testers. Although proximity
oblivious testers were implicit in prior works (see, e.g., [19,2,3]), their general
study was initiated by Goldreich and Ron [40].

Definition 5.2 (sketch for the generic case): Let Π be a set of functions over a
finite set Ω. A proximity-oblivious tester for Π is a probabilistic oracle machine
T that, when given oracle access to any function f over Ω, satisfies the following
two conditions:

1. The machine T accepts each function in Π with probability 1.
2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f �∈ Π

is rejected by T with probability at least ρ(δΠ(f)), where δΠ(f) is as in
Definition 5.1.

The function ρ is called the detection probability of the tester T .

Indeed, we require that ρ(ε) > 0 for every ε > 0, whereas extending Item 2 to
f ∈ Π (while avoiding contradiction with Item 1) mandates extending ρ so that
ρ(0) = 0. The requirement that ρ is monotone (i.e., monotonically increasing)
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does not rule out cases where the tight lower-bound is non-monotone (e.g., [14]),
because ρ is not required to be tight.

Indeed, using a proximity-oblivious tester T , we can obtain a standard (one-
sided error) tester (of error probability at most 1/3). Specifically, given the prox-
imity parameter ε, the standard tester invokes T for Θ(1/ρ(ε)) times, and ac-
cepts if and only if all these invocations accept. Two natural questions regarding
proximity oblivious testers are:

1. Which properties have proximity oblivious tests (of small query complexity)?
2. How does the detection probability of such tests grow as a function of the

distance of the object from the property, and how does this relate to the query
complexity of the best (standard) tester for the corresponding property.

Goldreich and Ron [40] provide a mix of positive and negative results regard-
ing the foregoing questions. In particular, they provide a characterizations of
the graph properties that have constant-query proximity-oblivious testers in the
two main models discussed in this article (i.e., the dense graphs model and the
bounded-degree graph model). It follows that constant-query proximity-oblivious
testers do not exist for many easily testable properties (e.g., Bipartiteness in
the dense graph model). Also, even when proximity-oblivious testers exist, re-
peating them does not necessarily yield the best standard testers for the corre-
sponding property (e.g., Clique Collection in the dense graph model).

Acknowledgments. We are grateful to Tali Kaufman, Michael Krivelevich,
Dana Ron, Asaf Shapira, and Omer Tamuz for useful comments and suggestions
regarding this article.
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Appendix: In Passing – Three Unrelated Observations

The following three observations occurred to us in the process of writing this
article.

A.1 Testing Degree Regularity in the Dense Graph Model

We improve the Õ(ε−3) query upper bound of [33, Prop. 10.2.1.3] to an optimal
quadratic bound.

Proposition A.1 In the dense graph model, degree regularity can be tested in
O(ε−2) non-adaptive queries.

Proof: We start by reviewing the Õ(ε−3)-query tester presented in the proof
of [33, Prop. 10.2.1.3]. This tester selects O(1/ε) random vertices, and estimates
the degree of each of them up to ±εN/100 using a sample of s = Õ(1/ε2)
random vertices (and making the corresponding s queries). This tester accepts if
and only if all these estimates are at most εN/20 apart. The analysis is based on
the observation that if the tester accepts with high probability, then all but ε′N
vertices have degree that is within ±ε′N units of some value, where ε′ = ε/13.
By omitting and adding at most ε′N2 vertices (i.e., from/to the exceptional
vertices), we reach a situation in which all vertices have degrees that at most
D

def= 4ε′N units apart. At this point, we are done by applying a theorem of Noga
Alon (cf. [33, Apdx. D]) that asserts that such a graph is ((3D/N) + o(1))-close
to being regular.

We improve the foregoing upper bound as follows. For a sufficiently large
constant c, let 	

def= log2(c/ε), and consider an algorithm that, for every i ∈ [	],
proceeds as follows:

1. The algorithm selects uniformly c · 2i vertices, and estimates the degree
of each of these vertices up to ±24i/5ε · N/c units by using a sample of
si

def= c3 · 2−3i/2ε−2 random vertices.
Note that with probability at least

1− c · 2i · exp(−2si · (24i/5ε/c)2) = 1− c · 2i · exp(−2c · 2i/10)
> 1− 2−i−c

all these estimates are as desired.
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2. If two of these estimates are more than 21+(4i/5)ε ·N units apart, then the
algorithm rejects.

(The algorithm accepts if and only if it does not reject in any of these 	 it-
erations.) The query complexity of this algorithm is

∑
i∈[�] c2

i · c32−3i/2ε−2 =
O(ε−2), and it accepts each regular graph with high probability (i.e., whenever
all the foregoing degree estimates are adequate).

On the other hand, if a graph is accepted with high probability, then, for
every i ∈ [	], it holds that all but at most a 2−i fraction of the vertices have
degree that is within 21+4i/5ε ·N/c of the average degree, denoted ρ. For each
value of i ∈ [	], let us denote the set of deviating vertices by Bi; that is, each
vertex in [N ] \Bi has degree (ρ± 21+4i/5ε/c) ·N . Thus (dealing separately with
each Bi \Bi+1 as well as with B� and [N ] \B1), we may omit at most 40εN2/c
edges from the graph, and obtain a graph in which every vertex has degree at
most (ρ + 2ε/c)N . Next, by adding at most 42εN2/c edges to the graph, we
can obtain a graph in which every vertex has degree at least (ρ − 2ε/c)N , and
if we add these edges uniformly (among the vertices) then each vertex in the
resulting graph has degree (ρ ± 44ε/c)N . At this point we can apply the result
of aforementioned result of Noga Alon, and be done.

A.2 Non-adaptive Testers in the Bounded-Degree Graph Model

Recall that, for any function q, if a property can be tested in o(
√

N · q(ε)) non-
adaptive queries in the bounded-degree graph model, then it depends only on
the vertex degree distribution [55]. In contrast, we show that triangle-freeness
can be tested by O(

√
N/ε) non-adaptive queries (in the same model).

The tester selects at random O(
√

N/ε) vertices, queries for the neighbors
of each of them, and accepts if and only if the subgraph discovered contains
no triangles. Note that if the input graph is ε-far from triangle-freeness, then
it contains Ω(εN) triangles, whereas a random sample of O(

√
N/ε) vertices is

likely to hit two vertices of such a triangle.
The argument can be extended to testing H-freeness,21 for any fixed H , with

O((N/ε)1−
1

β(H) ) non-adaptive queries, where β(H) denotes the minimum vertex
cover of H . In this case, if the input graph is ε-far from being H-free, then
a sample of O((N/ε)1−

1
β(H) ) random vertices is likely to hit all vertices in a

vertex cover of one of the copies of H . A more general statement, with weaker
quantitative bounds, follows.

Proposition A.2 Let Π be a graph property having a q-query proximity-
oblivious tester of detection probability ρ, in the bounded-degree model. Then,
in this model, Π can be tested by O(N

q−1
q /ρ(ε)) non-adaptive queries.

Actually, Proposition A.2 holds also when q is an upper bound on the number
of different vertices that appear in the queries of the proximity-oblivious tester.
21 Here, we refer to subgraph freeness.
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Proof: The main observation is that a sample of O(N1−(1/q)) vertices (along
with the neighbor queries that correspond to each vertex) is likely to allow for
the emulation of a random execution of the proximity-oblivious tester (POT).
Specifically, given a q-query POT, we consider the following non-adaptive POT:

1. Select a random sample of O(N1−(1/q)) vertices, denoted S, and query the
neighborhood of each vertex in S. For every (v, i) ∈ S× [d], denote the oracle
answer by Γi(v).
These are all the queries made by the new POT, and the following steps only
involve computations (and no actual queries).

2. Select and fix random coins for T , deriving a residual deterministic oracle
machine T ′.

3. Let S = {s1, ..., s|S|}, and S
def= {(s(i−1)q+1, ..., siq) : i ∈ [|S|/2q]}; that is, S

consists of q-sequences of elements in S such that no element appears twice.
For every (v1, ..., vq) ∈ S, try to emulate an execution of T using the infor-
mation obtained in Step 1. For j = 1, ..., q, proceed as follows, where initially
the permutation π : [N ] → [N ] is totally undetermined.
(a) Obtain the jth query of T ′, denoted (uj , ij).

If π is undetermined on uj, then determine π(uj) = vj .
If π is determined on uj and π(uj) �∈ S, then this emulation is terminated.
Thus, the algorithm proceeds to Step 3b only if π(uj) ∈ S, whereas in
this case the value of Γij (π(uj)) is known.

(b) Let aj = Γij (π(uj)), and suppose that aj ∈ [N ] (as otherwise we provide
aj as the oracle answer to T ′, and proceed to the next iteration).22 If
π−1 is undetermined on aj , then select at random a vertex u such that π
is undetermined on u, and determine π(u) = aj . Provide u as the oracle
answer to T ′, and proceed to the next iteration.
Note that it is quite likely that aj �∈ S, and in this case if T ′ subsequently
issues a query of the form (u, ·) then the emulation will be terminated
(in the corresponding execution of Step 3a).

If the current emulation is successfully completed, then halt and output the
corresponding verdict of T ′. Otherwise, proceed to the next (v1, ..., vq) ∈ S,
while resetting π to be totally undetermined.

4. If no emulation is successfully completed, then halt and output the verdict 1
(i.e., accept).

Each execution of Step 3b may yield a value aj �∈ S, with probability at least
1 − (|S|/N). However, with probability at least |S|/2N , it holds that aj ∈ S.
Thus, for each (v1, ..., vq) ∈ S, we complete an emulation of T ′ (in Step 3)
with probability at least (|S|/2N)q−1 $ 1/|S|. Furthermore, such an emulation
correspond to the execution of T ′ on a random isomorphic copy of the input
graph.

To see that, with high probability, at least one of the |S| emulations is com-
pleted, we consider all |S| emulations simultaneously. Let u

(i)
1 , ..., u

(i)
q denote the

22 Recall that in this case aj is a fixed indication that the relevant vertex has less than
ij neighbors.
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sequence of vertices that occur in the ith emulation, and let π(i) denote the
corresponding permutation. We partition the |S|/2 samples that do not appear
in S into q equal sets, denoted S1, ..., Sq, and terminate the ith emulation in
iteration j < q if a

(i)
j �∈ Sj . (Indeed, this only makes early termination more

likely; cf. Step 3b.) Still, on can show by induction on j, that with high proba-
bility the number of emulations that are not terminated by iteration j exceeds
|S|·(|S|/4qN)j . Furthermore, the queries issued in the j+1st iteration are mostly
different, because they are determined based on different sequences in S. Using
|S| · (|S|/4qN)q−1 > 1, we conclude that, with high probability, there exists an
emulation that does not terminate before the last iteration.

It follows that the foregoing non-adaptive POT has detection probability at
least ρ/2. Applying this POT for O(1/ρ(ε)) times, we obtain a non-adaptive
tester of query complexity O(N1−(1/q)/ρ(ε)).

Conclusion. Recall that all subgraph-freeness properties do have a proximity-
oblivious testers of constant-query complexity in the bounded-degree graph
model. Our conclusion is that non-adaptive testers are not totally useless in
that model.

A.3 Testing Strong Connectivity with Forward Queries only

We show that, for any constant ε > 0, strong connectivity in bounded-degree
digraphs can be tested by using N1−Ω(1) forward queries (and no backward
queries). Needless to say, the same holds for using only backward queries, and
in both cases the tester has two-sided error (which is unavoidable).23

Proposition A.3 In the directed bounded-degree model where only forward
queries are allowed, strong connectivity can be tested in query complexity exp(1/ε)
· N1− 1

t , where t = �4/εd� · d < d + (1/ε) and d is the in-degree and out-degree
bound.

Proof Sketch: Our starting point is the observation that if a graph is ε-far
from being strongly connected, then it contains at least εdN/4 source and sink
components each containing at most �4/εd� vertices (cf. [16, Cor. 9]).24 The easy
case is when the graph contains at least εdN/8 small sink component, since these
are easy to detect by forward queries. The problematic case is the one in which
the graph contains εdN/8 source components, and we start by considering the
simple case in which each of these source components consists of a single vertex.

In the latter case we can estimate the number of vertices having in-degree
zero, by estimating the number of vertices having in-degree d, d− 1, all through
23 The distributions used in [16, Sec. 5.2] can be used to prove an Ω(N) query bound

for one-sided error. The point is that we can find no direct evidence to the fact that
a vertex has in-degree zero.

24 Throughout this proof, the word component means a strongly connected component,
and source (resp., sink) components are components that have no in-coming (resp.,
out-going) edges.
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1. To estimate the number of vertices having in-degree i > 1, we estimate the
number of i-way collisions at the head of randomly selected25 directed edges,
and use the information we already gathered regarding in-degree j for every
j > i. The number of vertices having in-degree 1 is estimated by estimating the
collisions between a uniformly selected vertex and the vertex at the head of a
uniformly selected random edge. Note that, for every i ≥ 2, the number of i-way
collisions can be estimated by a sample of size O(N1− 1

i ).
In the foregoing, we have relied on the fact that a vertex has zero in-degree

if and only if it is a source vertex, and on the hypothesis that many source
vertices exist. But, in general, we only know that there are many small source
components. So the intuitive idea is to “contract” all small components, and
consider in-coming edges at the component level. One small difficulty is that
we cannot determine the components of the input graph, and so the following
modification is used.

For every vertex v, we let Cv denote the set of vertices u such that v and u

reside on a directed cycle of size at most s
def= �4/εd�. We say that v is good if

for every u ∈ Cv it holds that Cu = Cv. Note that, given a vertex v, we can
determine Cv as well as whether v is good by using ds queries. Also note that
every vertex that resides in a small source component is good. We now emulate
the foregoing procedure on the directed graph in which for every good v the set
Cv is contracted to a new vertex, and note that a vertex has in-degree zero in
the resulting graph if and only if it represents a small source of G. Noting that
the maximum degree in this graph is s · s, the claim follows.

Conclusion. Our lesson is that some non-trivial testing can be carried out also
in the model that allows forward queries only.

25 We may select a random directed edge by selecting a vertex uniformly, and selecting
each of its out-going edges with probability 1/d.
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Abstract. The interplay of randomness and computation is at the heart
of modern Cryptography and plays a fundamental role in the design of
algorithms and in the study of computation at large. Specifically, this
interplay is pivotal to several intriguing notions of probabilistic proof
systems (e.g., interactive proofs, zero-knowledge proofs, and probabilis-
tically checkable proofs), is the focal of the computational approach to
randomness, and is essential for some types of sub-linear time algorithms
(e.g., property testers). This essay provides a brief outline of these con-
nections.
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This is a revised version of an essay that has appeared in the Handbook of
Probability Theory with Applications, Sage Publishers, 2008.

Preface. This essay was originally intended for a wide audience of scholars, who
may not have any background in computer science. While theoretical computer
scientists may find much of the introduction (esp., Sections 1.2 and 1.3) unneces-
sary, we avoided the temptation to revise and/or omit this part. Our hope is that
this part of the text may demonstrate to theoretical computer scientists how one
can go about in exposing the field to outsiders. We believe that the rest of this
essay may be of more direct interest to many theoretical computer scientists: It
contains brief overviews of the theory of pseudorandomness (Section 2), three
types of probabilistic proof systems (Section 3), the theoretical foundations of
Cryptography (Section 4), and property testing (Section 5). These overviews
focus on the clarification of the main issues, while trying to avoid any technical
details. Here too, we retained the original style, which attempts to accommodate
outsiders, in order to demonstrate to experts the feasibility of communicating
the contents of these areas to outsiders.

1 Introduction

While it is safe to assume that any living adult is aware of the revolutionary
impact of the computing technology on our society, we fear that few readers
have a sense of the theory of computation. This contrast is not so surprising,
because people seem so overwhelmed by the wonders of this technology that they
do not get to wonder about the theory underlying it. Furthermore, people tend to
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think of computing in the concrete terms in which they have lastly encountered it
rather than in general terms. Consequently, the fascinating intellectual contents
of the theory of computation is rarely understood by non-specialists.

One goal of this essay is making a tiny contribution towards a possible change
in this sour state of affairs, by discussing one aspect of the theory of computation:
Its connection to randomness.

1.1 On the Relation between Computation and Randomness

Our guess is that the suggestion that there is a connection between computation
and randomness may meet the skepticism of some readers, because computation
seems the ultimate manifestation of determinism.

To address this skepticism, we suggest considering what happens when a de-
terministic machine (or any deterministic process) is fed with a random input
or just with an input that looks random. Indeed, one contribution of the theory
of computation (further discussed in Section 2) is a definition of “objects that
look random” (a notion which makes sense even if the real world is actually
deterministic).

Still one may wonder whether we can obtain or generate objects that look
random. For example, can we toss a coin (in the sense that one cannot feasibly
predict the answer before seeing it)? Assuming a positive answer, we may also
assume that unpredictable values can be obtained by other mechanical and/or
electrical processes, which suggest that computers can also obtain such values.
The question then is what benefit can be achieved by using such random (or
unpredictable) values.

A major application of random (or unpredictable) values is to the area of
Cryptography (see Section 4). In fact, the very notion of a secret refers to such a
random (or unpredictable) value. Furthermore, various natural security concerns
(e.g., private communication) can be met by employing procedures that make
essential use of such secrets and/or random values.

Another major application of random (or unpredictable) values is to vari-
ous sampling procedures. In Section 5, we consider a wider perspective on such
procedures, viewing them as a special type of super fast procedures called prop-
erty testers. Such a procedure cannot afford to scan the entire input, but rather
probes few (randomly) selected locations in it and, based on these few values,
attempts to make a meaningful assertion regarding the entire input. Indeed, we
assume that the reader is aware of the fact that random sampling allows to ap-
proximate the fraction of the population that votes for a particular candidate.
Our point is that other global properties of the input, which are not merely
averages of various types, can also be approximated by sampling.

Lastly, we mention that randomized verification procedures yield fascinat-
ing types of probabilistic proof systems, which are discussed in Section 3. In
particular, such proof systems demonstrate the advantage of interaction (over
one-directional communication) and the possibility of decoupling proving from
learning (i.e., the possibility of proving an assertion without yielding anything
beyond its validity). Other forms of probabilistic proof systems allow for super
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fast verification (based on probing few locations in a redundant proof, indeed as
in the aforementioned sublinear-time algorithms).

Before discussing the foregoing applications of randomness in greater length,
we provide a somewhat wider perspective on the theory of computation as well
as present some of its central conventions. We will also clarify what randomness
means in that theory (and in this article).

1.2 A Wider Perspective on the Theory of Computation

The theory of computation aims at understanding general properties of com-
putation be it natural, man-made, or imaginary. Most importantly, it aims to
understand the nature of efficient computation. We demonstrate these issues by
briefly considering a few typical questions.

A key question is which functions can be efficiently computed? For example,
it is (relatively) easy to multiply integers, but it seems hard to take the product
and factor it into its prime components. In general, it seems that there are one-
way computations, or put differently one-way functions: Such functions are easy
to evaluate but hard to invert (even in an average-case sense). But do one-way
functions really exist? It is widely believed that the answer is positive, and this
question is related to other fundamental questions.

A related question is that of the comparable difficulty of solving problems
versus verifying the correctness of solutions. Indeed our daily experience is that
it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely
a coincidence or does it represent a fundamental fact of life (or a property of
the world)? Could you imagine a world in which solving any problem is not
significantly harder than checking a solution to it? Would the term “solving a
problem” not lose its meaning in such a hypothetical (and impossible in our
opinion) world? The denial of the plausibility of such a hypothetical world (in
which “solving” is not harder than “checking”) is what the celebrated “P dif-
ferent from NP” conjecture means, where P represents tasks that are efficiently
solvable and NP represents tasks for which solutions can be efficiently checked
for correctness.

The theory of computation is also concerned with finding the most efficient
methods for solving specific problems. To demonstrate this line of research we
mention that the simple (and standard) method for multiplying numbers that is
taught in elementary school is not the most efficient one possible. Multiplying
two n-digit long numbers by this method requires n2 single-digit multiplications
(and a similar number of single-digit additions). In contrast, consider writing
these numbers as 10n/2 · a′ + a′′ and 10n/2 · b′ + b′′, where a′, a′′, b′, b′′ are n/2-
digit long numbers, and note that

(10n/2 · a′ + a′′) × (10n/2 · b′ + b′′) = 10n · P1 + 10n/2 · (P2 − P1 − P3) + P3

where P1 = a′ × b′, P2 = (a′ + a′′) × (b′ + b′′), and P3 = a′′ × b′′.
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Thus, multiplying two n-digit long numbers requires only three (rather than four)
multiplications of n/2-digit long numbers (and a constant number of additions
of n/2-digit long numbers and “shifts” of n-digit long numbers (indicated by ·)).
Letting M(n) denote the complexity of multiplying two n-digit long numbers,
we obtain M(n) < 3 ·M(n/2) + c · n, where c is some constant (independent of
n), which solves to M(n) < c′ · 3log2 n = c′ · nlog2 3 < n1.6 (for some constant c′).
We mention that this is not the best known algorithm; the latter runs in time
poly(log n) · n.

The theory of computation provides a new viewpoint on old phenomena.
We have already mentioned the computational approaches to randomness (see
Section 2) and to proofs, interaction, knowledge, and learning (see Section 3).
Additional natural concepts given an appealing computational interpretations
include the importance of representation, the notion of explicitness, and the pos-
sibility that approximation is easier than optimization (see Section 5). Let us
say a few words about representation and explicitness.

The foregoing examples hint to the importance of representation, because in
all these computational problems the solution is implicit in the problem’s state-
ment. That is, the problem contains all necessary information, and one merely
needs to process this information in order to supply the answer.1 Thus, the the-
ory of computation is concerned with the manipulation of information, and its
transformation from one representation (in which the information is given) to
another representation (which is the one desired). Indeed, a solution to a com-
putational problem is merely a different representation of the information given;
that is, a representation in which the answer is explicit rather than implicit.
For example, the answer to the question of whether or not a given system of
quadratic equations has an integer solution is implicit in the system itself (but
the task is to make the answer explicit). Thus, the theory of computation clarifies
a central issue regarding representation; that is, the distinction between what is
explicit and what is implicit in a representation. Furthermore, it also suggests a
quantification of the level of non-explicitness.

1.3 Important Conventions for the Theory of Computation

In light of the foregoing discussion it is important to specify the representation
used in computational problems. Actually, a computational problem refer to an
infinite set of finite objects, called the problem’s instances, and specifies the desired
solution for each instance. For example, the instances of the multiplication
problem are pairs of natural numbers, and the desired solution is the correspond-
ing product. Objects are represented by finite binary sequences, called strings.2

1 In contrast, in other disciplines, solving a problem may also require gathering in-
formation that is not available in the problem’s statement. This information may
either be available from auxiliary (past) records or be obtained by conducting new
experiments.

2 Indeed, in the foregoing example, we used the daily representation of numbers as
sequences of decimal digits, but in the theory of computation natural numbers are
typically represented by their binary expansion.
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For a natural number n, we denote by {0, 1}n the set of all strings of length n,
hereafter referred to as n-bit strings. The set of all strings is denoted {0, 1}∗; that
is, {0, 1}∗ = ∪n∈N{0, 1}n.

We have already mentioned the notion of an algorithm, which is central to
the theory of computation and means an automated procedure designed to solve
some computational task. A rigorous definition requires specifying a reasonable
model of computation, but the specifics of this model are not important for the
current essay. We focus on efficient algorithms, which are commonly defined as
making a number of steps that is polynomial in the length of their input.3 In-
deed, asymptotic analysis (or rather a functional treatment of the running time
of algorithms in terms of the length of their input) is a central convention in the
theory of computation.4

Typically, our notion of efficient algorithms will include also probabilistic
(polynomial-time) algorithms; that is, algorithms that can “toss coins” (i.e.,
make random choices). For each reasonable model of computation, probabilis-
tic (or randomized) algorithms are defined as standard algorithm augmented
with the ability to choose uniformly among a finite number (say two) of prede-
termined possibilities. That is, at each computation step, such an algorithm
makes a move that is chosen uniformly among two predetermined possibili-
ties.

1.4 Randomness in the Context of Computation

Throughout the entire essay we will refer only to discrete probability distribu-
tions. The support of such distributions will be associated with a set of strings,
typically of the same length.

For the purpose of asymptotic analysis, we will often consider probability en-
sembles, which are sequences of distributions that are indexed either by integers
or by strings. For example, throughout the essay, we let {Un}n∈N denote the
uniform ensemble, where Un is uniform over the set of strings of length n; that
is, Prz∼Un [z = α] equals 2−n if α ∈ {0, 1}n and equals 0 otherwise. More gen-
erally, we will typically consider probability ensembles, denoted {Dn}n∈N (or
{Ds}s∈S, where S ⊆ {0, 1}∗), where there exists some function 	 : N→N such
that Prz∼Dn [z∈{0, 1}�(n)] = 1 (resp., Prz∼Ds [z∈{0, 1}�(n)] = 1, where n denotes
the length of s). Furthermore, typically, 	 will be a polynomial.

One important case of probability ensembles is that of ensembles that rep-
resent the output of randomized processes (e.g., randomized algorithms). Letting

3 In Section 5 we consider even faster algorithms, which make (significantly) less steps
than the length of their input, but such algorithms can only provide approximate
solutions.

4 We stress, however, that asymptotic (or functional) treatment is not essential to this
theory, but rather provides a convenient framework. One may develop the entire
theory in terms of inputs of fixed lengths and concrete bounds on the number of
steps taken by corresponding algorithms. However, such an alternative treatment is
more cumbersome.
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A(x) denote the output of the probabilistic (or randomized) algorithm A on
input x, we may consider the probability ensemble {A(x)}x∈{0,1}∗ . Indeed, if A
is a probabilistic polynomial-time algorithm then A(x) is distributed over strings
of length that is bounded by a polynomial in the length of x.

On the other hand, we say that a probability ensemble {Dn}n∈N (resp.,
{Ds}s∈S) is efficiently sampleable if there exists a probabilistic polynomial-time
algorithm A such that for every n ∈ N it holds that A(1n) ≡ Dn (resp., for
every s ∈ S it holds that A(s) ≡ Ds). That is, algorithm A makes a number of
steps that is polynomial in n, and produces a sample distributed according to
Dn (resp., Ds, where n denotes the length of s).

We will often talk of “random bits” and mean values selected uniformly
and independently in {0, 1}. In particular, randomized algorithms may be viewed
as deterministic algorithms that are given an adequate number of random bits
as an auxiliary input. This means that rather than viewing these algorithms as
making random choices, we view them as determining these choices according
to a sequence of random bits that is generated by some outside process.

1.5 The Rest of This Essay

In the rest of this essay we briefly review the theory of pseudorandomness
(Section 2), three types of probabilistic proof systems (Section 3), the theoreti-
cal foundations of Cryptography (Section 4), and property testing (Section 5).
Needless to say, these overviews are the tip of an iceberg, and the interested
reader will be referred to related texts for further information. In general, the
most relevant text is [6] (see also [9]), which provides more extensive overviews
of the first three areas.

In addition, we recommend textbooks such as [10,23,27] for background on the
aspects of the theory of computation that are most relevant for the current essay.
We note that randomized algorithms and procedures are valuable also in settings
not discussed in the current essay (e.g., for polynomial-time computations as well
as in the context of distributed and parallel computation). The interested reader
is referred to [22].

An Apology. Our feeling is that in an essay written for a general readership it
makes no sense to provide the standard scholarly citations. The most valuable
references for such readers are relevant textbooks and expository articles, writ-
ten with the intension of communicating to non-experts. On the other hand, the
general reader may be interested in having some sense of the history of the field,
and thus references to few pioneering works seem adequate. We are aware that in
trying to accommodate the non-experts, we may annoy the experts, and hence
the current apology to all experts who made an indispensable contribution to
the development of these areas and who’s work was victim to our referencing
policy.
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2 Pseudorandomness

Indistinguishable things are identical.5

G.W. Leibniz (1646–1714)

A fresh view at the question of randomness has been taken in the theory of
computation: It has been postulated that a distribution is pseudorandom if it
cannot be told apart from the uniform distribution by any efficient procedure.
The paradigm, originally associating efficient procedures with polynomial-time
algorithms, has been applied also with respect to a variety of limited classes of
such distinguishing procedures.

At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources
of randomness) is irrelevant. What matters is how the world looks to us and
to various computationally bounded devices. That is, if some phenomenon looks
random then we may just treat it as if it were random. Likewise, if we can gen-
erate sequences that cannot be told apart from the uniform distribution by any
efficient procedure, then we can use these sequences in any efficient randomized
application instead of the ideal random bits that are postulated in the design of
this application.

2.1 A Wider Context and an Illustration

The second half of this century has witnessed the development of three theories
of randomness, a notion which has been puzzling thinkers for ages. The first the-
ory (cf., [4]), initiated by Shannon, is rooted in probability theory and is focused
at distributions that are not perfectly random (i.e., are not uniform over a set of
strings of adequate length). Shannon’s Information Theory characterizes perfect
randomness as the extreme case in which the information contents is maximized
(i.e., the strings contain no redundancy at all). Thus, perfect randomness is as-
sociated with a unique distribution: the uniform one. In particular, by definition,
one cannot (deterministically) generate such perfect random strings from shorter
random seeds.

The second theory (cf., [20]), initiated by Solomonov, Kolmogorov, and
Chaitin, is rooted in computability theory and specifically in the notion of a
universal language (equiv., universal machine or computing device). It measures
the complexity of objects in terms of the shortest program (for a fixed uni-
versal machine) that generates the object. Like Shannon’s theory, Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme

5 This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexam-
ples to this principle are conceivable but will not occur in real life because God is
much too benevolent. We thus believe that he would have agreed to the theme of this
section, which asserts that indistinguishable things should be considered as identical.
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case. However, in this approach one may say that a single object, rather than
a distribution over objects, is perfectly random. Still, Kolmogorov’s approach is
inherently intractable (i.e., Kolmogorov Complexity is uncomputable), and – by
definition – one cannot (deterministically) generate strings of high Kolmogorov
Complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [16,3,28], is
rooted in the notion of efficient computations and is the focus of this
section. This approach is explicitly aimed at providing a notion of randomness
that nevertheless allows for an efficient generation of random strings from shorter
random seeds. The heart of this approach is the suggestion to view objects as
equal if they cannot be told apart by any efficient procedure. Consequently, a
distribution that cannot be efficiently distinguished from the uniform distribu-
tion will be considered as being random (or rather called pseudorandom). Thus,
randomness is not an “inherent” property of objects (or distributions) but is
rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them, Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by the
knowledge Bob has before making his guess.
In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.
In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on
the motion and thus we believe that also in this case Bob wins with
probability 1/2.
The third alternative is similar to the second, except that Bob has at
his disposal sophisticated equipment capable of providing accurate in-
formation on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.
In the fourth alternative, Bob’s recording equipment is directly con-
nected to a powerful computer programmed to solve the motion equa-
tions and output a prediction. It is conceivable that in such a case Bob
can substantially improve his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. Thus, a natural concept of pseudorandom-
ness arises: a distribution is pseudorandom if no efficient procedure can distinguish
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it from the uniform distribution, where efficient procedures are associated with
(probabilistic) polynomial-time algorithms. This notion of pseudorandomness is
indeed the most fundamental one, and the current section is focused on it.6

The foregoing discussion has focused at one aspect of the pseudorandom-
ness question: the resources or type of the observer (or potential distinguisher).
Another important aspect is whether such pseudorandom sequences can be gen-
erated from much shorter ones, and at what cost (i.e., at what computational
effort). A natural approach is that the generation process has to be at least as
efficient as the distinguisher (equiv., that the distinguisher is allowed at least
as much resources as the generator). Coupled with the aforementioned strong
notion of pseudorandomness, this yields the archetypical notion of pseudoran-
dom generators – these operating in polynomial-time and producing sequences
that are indistinguishable from uniform ones by any polynomial-time observer.
Such (general-purpose) pseudorandom generators enable reducing the random-
ness complexity of any efficient application, and are thus of great relevance
to randomized algorithms and Cryptography (see Sections 2.5 and 4). Indeed,
these general-purpose pseudorandom generators will be the focus of the current
section.7 Further discussion of the conceptual contents of this approach is pro-
vided in Section 2.6.

2.2 The Notion of Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient program (or algo-
rithm) that stretches short random strings into long pseudorandom sequences.
We stress that the generator itself is deterministic and that the randomness in-
volved in the generation process is captured by its input. We emphasize three
fundamental aspects in the notion of a pseudorandom generator:

1. Efficiency. The generator has to be efficient. Since we associate efficient com-
putations with polynomial-time ones, we postulate that the generator has to
be implementable by a deterministic polynomial-time algorithm.

6 We mention that weaker notions of pseudorandomness arise as well; they refer to
indistinguishability by weaker procedures such as space-bounded algorithms (see [6,
Sec. 3.5] or [9, Sec. 8.4]), constant-depth circuits, etc. Stretching this approach even
further one may consider algorithms that are designed on purpose so not to dis-
tinguish even weaker forms of “pseudorandom” sequences from random ones (such
algorithms arise naturally when trying to convert some natural randomized algo-
rithm into deterministic ones; see [6, Sec. 3.6] or [9, Sec. 8.5]).

7 We mention that there are important reasons for considering also an alternative
that seems less natural; that is, allowing the pseudorandom generator to use more
resources (e.g., time or space) than the observer it tries to fool. This alternative is
natural in the context of derandomization (i.e., converting randomized algorithms
to deterministic ones), where the crucial step is replacing the “random source” of
a fixed algorithm by a pseudorandom source, which in turn can be deterministi-
cally emulated based on a much shorter random source. For further clarification and
demonstration of the usefulness of this approach the interested reader is referred
to [6, Sec. 3.4&3.5] (or [9, Chap. 8]).
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This algorithm takes as input a string, called its seed. The seed captures a
bounded amount of randomness used by a device that “generates pseudo-
random sequences.” The formulation views any such device as consisting of
a deterministic procedure applied to a random seed.

2. Stretching. The generator is required to stretch its input seed to a longer
output sequence. Specifically, it stretches n-bit long seeds into 	(n)-bit long
outputs, where 	(n) > n. The function 	 is called the stretching measure (or
stretching function) of the generator.

3. Pseudorandomness. The generator’s output has to look random to any effi-
cient observer. That is, any efficient procedure should fail to distinguish the
output of a generator (on a random seed) from a truly random bit-sequence
of the same length. The formulation of the last sentence refers to a gen-
eral notion of computational indistinguishability that is the heart of the entire
approach.

To demonstrate the foregoing, consider the following suggestion for a pseudo-
random generator. The seed consists of a pair of 500-bit integers, denoted x and
N , and a million-bit long output is obtained by repeatedly squaring the current
x modulo N and emitting the least significant bit of each intermediate result
(i.e., let xi ← x2

i−1 mod N , for i = 1, ..., 106, and output b1, b2, ..., b106 , where

x0
def= x and bi is the least significant bit of xi). This process may be general-

ized to seeds of length n (here we used n = 1000) and outputs of length 	(n)
(here 	(1000) = 106). Such a process certainly satisfies Items (1) and (2) above,
whereas the question whether Item (3) holds is debatable (once a rigorous defi-
nition is provided). As a special case of Theorem 2.6 (which follows), we mention
that, under the assumption that it is difficult to factor large integers, a slight
variant of the foregoing process is indeed a pseudorandom generator.

Computational Indistinguishability. Intuitively, two objects are called compu-
tationally indistinguishable if no efficient procedure can tell them apart. Here
the objects are (fixed) probability distributions (or rather ensembles), and the
observer is given a sample drawn from one of the two distributions and is asked
to tell from which distribution it was taken (e.g., it is asked to say “1” if the
sample is taken from the first distribution). Following the asymptotic framework
(see Sections 1.3 and 1.4), the foregoing discussion is formalized as follows.

Definition 2.1 (computational indistinguishability [16,28]). Two probability
ensembles, {Xn}n∈N and {Yn}n∈N, are called computationally indistinguishable
if for any probabilistic polynomial-time algorithm A, any positive polynomial p,
and all sufficiently large n∣∣∣Prx∼Xn [A(x) = 1] − Pry∼Yn [A(y) = 1]

∣∣∣ <
1

p(n)
. (1)

The probability is taken over Xn (resp., Yn) as well as over the internal coin
tosses of algorithm A.
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Algorithm A, which is called a potential distinguisher, is given a sample (which
is drawn either from Xn or from Yn) and its output is viewed as an attempt to
tell whether this sample was drawn from Xn or from Yn. Eq. (1) requires that
such an attempt is bound to fail; that is, the outcome 1 (possibly representing
a verdict that the sample was drawn from Xn) is essentially as likely to occur
when the sample is drawn from Xn as when it is drawn from Yn.

A few comments are in order. Firstly, the distinguisher (i.e., A) is allowed to
be probabilistic. This makes the requirement only stronger, and seems essential
to the technical development of our approach. Secondly, we view events occur-
ing with probability that is upper bounded by the reciprocal of polynomials as
negligible (e.g., 2−

√
n is negligible as a function of n). This is well-coupled with

our notion of efficiency (i.e., polynomial-time computations): an event that oc-
curs with negligible probability (as a function of a parameter n), will also occur
with negligible probability if the experiment is repeated for poly(n)-many times.
Thirdly, for efficiently sampleable ensembles, computational indistinguishabil-
ity is preserved also when providing the distinguisher with polynomially many
samples (of the tested distribution). Lastly we note that computational indis-
tinguishability is a coarsening of statistical indistinguishability; that is, waiving
the computational restriction on the distinguisher is equivalent to requiring that
the variation distance between Xn and Yn (i.e.,

∑
z |Xn(z)−Yn(z)|) is negligible

(in n).
An important case in which computational indistinguishability is strictly more

liberal than statistical indistinguishability arises from the notion of a pseudo-
random generator.

Definition 2.2 (pseudorandom generators [3,28]). A deterministic polynomial-
time algorithm G is called a pseudorandom generator if there exists a stretching
function, 	 : N→N (i.e., 	(n) > n), such that the following two probability en-
sembles, denoted {Gn}n∈N and {Rn}n∈N, are computationally indistinguishable.

1. Distribution Gn is defined as the output of G on a uniformly selected seed
in {0, 1}n.

2. Distribution Rn is defined as the uniform distribution on {0, 1}�(n).

Note that Gn ≡ G(Un), whereas Rn = U�(n). Requiring that these two en-
sembles are computationally indistinguishable means that, for any probabilistic
polynomial-time algorithm A, the detected (by A) difference between Gn and
Rn, denoted

dA(n) def=
∣∣∣Prs∼Un [A(G(s)) = 1] − Prr∼U�(n) [A(r) = 1]

∣∣∣
is negligible (i.e., dA(n) vanishes faster than the reciprocal of any polynomial).
Thus, pseudorandom generators are efficient (i.e., polynomial-time) deterministic
programs that expand short randomly selected seeds into longer pseudorandom
bit sequences, where the latter are defined as computationally indistinguishable
from truly random bit-sequences. It follows that any efficient randomized algo-
rithm maintains its performance when its internal coin tosses are substituted by
a sequence generated by a pseudorandom generator. That is:
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Construction 2.3 (typical application of pseudorandom generators). Let A be
a probabilistic polynomial-time algorithm, and ρ(n) denote an upper bound on
the number of coins that A tosses on n-bit inputs (e.g., ρ(n) = n2). Let A(x, r)
denote the output of A on input x and coin tossing sequence r ∈ {0, 1}ρ(n), where
n denotes the length of x. Let G be a pseudorandom generator with stretching
function 	 :N→N (e.g., 	(k) = k5). Then AG is a randomized algorithm that on
input x ∈ {0, 1}n, proceeds as follows. It sets k = k(n) to be the smallest integer
such that 	(k) ≥ ρ(n) (e.g., k5 ≥ n2), uniformly selects s ∈ {0, 1}k, and outputs
A(x, r), where r is the ρ(|x|)-bit long prefix of G(s).

Thus, using AG instead of A, the number of random bits used by the algorithm
is reduced from ρ to 	−1 ◦ ρ (e.g., from n2 to k(n) = n2/5), while it is infeasible
to find inputs (i.e., x’s) on which the noticeable behavior of AG is different from
the one of A. That is, we save randomness while maintaining performance (see
Section 2.5).

Amplifying the stretch function. Pseudorandom generators as in Definition 2.2
are only required to stretch their input a bit; for example, stretching n-bit long
inputs to (n + 1)-bit long outputs will do. Clearly, generators with such moder-
ate stretch functions are of little use in practice. In contrast, we want to have
pseudorandom generators with an arbitrary long stretch function. By the effi-
ciency requirement, the stretch function can be at most polynomial. It turns out
that pseudorandom generators with the smallest possible stretch function can
be used to construct pseudorandom generators with any desirable polynomial
stretch function. That is:

Theorem 2.4 [7, Sec. 3.3.2]. Let G be a pseudorandom generator with stretch
function 	(n) = n + 1, and 	′ be any positive polynomial such that 	′(n) ≥
n + 1. Then there exists a pseudorandom generator with stretch function 	′.
Furthermore, the construction of the latter consists of invoking G for 	′ times.

Thus, when talking about the existence of pseudorandom generators, we may
ignore the specific stretch function.

2.3 How to Construct Pseudorandom Generators

The known constructions of pseudorandomness generators are based on one-way
functions. Loosely speaking, a polynomial-time computable function is called one-
way if any efficient algorithm can invert it only with negligible success probabil-
ity. For simplicity, we consider only length-preserving one-way functions.

Definition 2.5 (one-way function). A one-way function, f , is a polynomial-time
computable function such that for every probabilistic polynomial-time algorithm
A′, every positive polynomial p(·), and all sufficiently large n

Prx∼Un

[
A′(f(x))∈f−1(f(x))

]
<

1
p(n)

,

where f−1(y) = {z : f(z)=y}.
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It is widely believed that one-way functions exists. Popular candidates for one-
way functions are based on the conjectured intractability of integer factorization,
the discrete logarithm problem, and decoding of random linear code. Assuming
that integer factorization is indeed infeasible, one can prove that a minor modi-
fication of the construction outlined at the beginning of Section 2.2 constitutes a
pseudorandom generator. More generally, it turns out that pseudorandom gen-
erators can be constructed based on any one-way function.

Theorem 2.6 (existence of pseudorandom generators [18]). Pseudorandom gen-
erators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators implies the existence of
one-way functions, consider a pseudorandom generator G with stretch function
	(n) = 2n. For x, y ∈ {0, 1}n, define f(x, y) def= G(x), so that f is polynomial-
time computable (and length-preserving). It must be that f is one-way, or else
one can distinguish G(Un) from U2n by trying to invert and checking the result:
Inverting f on its range distribution refers to the distribution G(Un), whereas the
probability that U2n has inverse under f is negligible. The interesting direction
is the construction of pseudorandom generators based on any one-way function.
A treatment of some natural special cases is provided in [7, Sec. 3.4-3.5].

2.4 Pseudorandom Functions

Pseudorandom generators allow one to efficiently generate long pseudorandom
sequences from short random seeds (e.g., using n random bits, we can efficiently
generate a pseudorandom bit-sequence of length n2). Pseudorandom functions
(defined below) are even more powerful: they allow efficient direct access to a
huge pseudorandom sequence (which is infeasible to scan bit-by-bit). For exam-
ple, based on n random bits, we define a sequence of length 2n such that we
can efficiently retrieve any desired bit in this sequence while the retrieved bits
look random. In other words, pseudorandom functions can replace truly ran-
dom functions in any efficient application (e.g., most notably in Cryptography).
That is, pseudorandom functions are indistinguishable from random functions
by any efficient procedure that may obtain the function values at arguments of
its choice. Such procedures are called oracle machines, and if M is such machine
and f is a function, then Mf(x) denotes the computation of M on input x when
M ’s queries are answered by the function f (i.e., during its computation, M gen-
erates special strings called queries such that in response to the query q machine
M is given the value f(q)).

Definition 2.7 (pseudorandom functions [13]). A pseudorandom function (en-
semble), with length parameters 	D, 	R : N→N, is a collection of functions
{Fn}n∈N, where

Fn
def= {fs :{0, 1}�D(n)→{0, 1}�R(n)}s∈{0,1}n ,

satisfying
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– (efficient evaluation). There exists an efficient (deterministic) algorithm that
when given a seed, s, and an 	D(n)-bit argument, x, returns the 	R(n)-bit
long value fs(x), where n denotes the length of s.
(Thus, the seed s is an “effective description” of the function fs.)

– (pseudorandomness). For every probabilistic polynomial-time oracle machine
M , every positive polynomial p, and all sufficiently large n∣∣∣Prs∼Un [Mfs(1n) = 1]− Prρ∼Rn [Mρ(1n) = 1]

∣∣∣ <
1

p(n)
,

where Rn denotes the uniform distribution over all functions mapping
{0, 1}�D(n) to {0, 1}�R(n).

Suppose, for simplicity, that 	D(n) = n and 	R(n) = 1. Then a function uniformly
selected among 2n functions (of a pseudorandom ensemble) presents an input-
output behavior indistinguishable in poly(n)-time from the one of a function
selected at random among all the 22n

Boolean functions. Contrast this with a
distribution over 2n sequences, produced by a pseudorandom generator applied
to a random n-bit seed, which is computationally indistinguishable from the
uniform distribution over {0, 1}poly(n) (which has a support of size 2poly(n)). Still
pseudorandom functions can be constructed from any pseudorandom generator.

Theorem 2.8 (how to construct pseudorandom functions [13]). Let G be a pseu-
dorandom generator with stretching function 	(n) = 2n. For s ∈ {0, 1}n, let
G0(s) (resp., G1(s)) denote the first (resp., last) n bits in G(s), and let

Gσn···σ2σ1(s)
def= Gσn(· · ·Gσ2(Gσ1(s)) · · ·).

That is, Gx(s) is computed by successive applications of either G0 or G1 to the
current n-bit long string, where the decision which of the two mappings to apply
is determined by the corresponding bit of x. Let fs(x) def= Gx(s) and consider the
function ensemble {Fn}n∈N, where Fn = {fs : {0, 1}n →{0, 1}n}s∈{0,1}n. Then
this ensemble is pseudorandom (with length parameters 	D(n) = 	R(n) = n).

The foregoing construction can be easily adapted to any (polynomially-bounded)
length parameters 	D, 	R :N→N.

2.5 The Applicability of Pseudorandom Generators

Randomness is playing an increasingly important role in computation: it is fre-
quently used in the design of sequential, parallel, and distributed algorithms
(see [22]), and is of course central to Cryptography. Whereas it is convenient
to design such algorithms making free use of randomness, it is also desirable to
minimize the use of randomness in real implementations since generating per-
fectly random bits via special hardware is quite expensive. Thus, pseudorandom
generators (as in Definition 2.2) are a key ingredient in an “algorithmic tool-
box”: they provide an automatic compiler of programs written with free use of
randomness into programs that make an economical use of randomness.
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Indeed, “pseudo-random number generators” have appeared with the first
computers. However, typical implementations use generators that are not pseu-
dorandom according to Definition 2.2. Instead, at best, these generators are
shown to pass some ad-hoc statistical test. We warn that the fact that a “pseudo-
random number generator” passes some statistical tests does not mean that it
will pass a new test and that it is good for a future (untested) application. Fur-
thermore, the approach of subjecting the generator to some ad-hoc tests fails
to provide general results of the type stated above (i.e., of the form “for all
practical purposes using the output of the generator is as good as using truly
unbiased coin tosses”). In contrast, the approach encompassed in Definition 2.2
aims at such generality, and in fact is tailored to obtain it: the notion of compu-
tational indistinguishability, which underlines Definition 2.2, covers all possible
efficient applications postulating that for all of them pseudorandom sequences
are as good as truly random ones.

Pseudorandom generators and functions are of key importance in Cryptog-
raphy. In particular, they are typically used to establish private-key encryption
and authentication schemes. For further discussion see Section 4.

2.6 The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of pseudorandom generators as de-
fined above.

Behavioristic versus Ontological. Our definition of pseudorandom generators
is based on the notion of computational indistinguishability. The behavioris-
tic nature of the latter notion is best demonstrated by confronting it with
the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string is
Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to
the phenomenon described by the string. A Kolmogorov-random string is thus a
string that does not have a substantially simpler (i.e., shorter) explanation than
itself. Considering the simplest explanation of a phenomenon may be viewed as
an ontological approach. In contrast, considering the effect of phenomena (on
an observer), as underlying the definition of pseudorandomness, is a behavior-
istic approach. Furthermore, there exist probability distributions that are not
uniform (and are not even statistically close to a uniform distribution) but nev-
ertheless are indistinguishable from a uniform distribution by any efficient pro-
cedure. Thus, distributions that are ontologically very different are considered
equivalent by the behavioristic point of view taken in the Definition 2.1.

A Relativistic View of Randomness. Pseudorandomness is defined in terms of
its observer: It is a distribution that cannot be told apart from a uniform distri-
bution by any efficient (i.e., polynomial-time) observer. However, pseudorandom
sequences may be distinguished from random ones by infinitely powerful comput-
ers (not at our disposal!). Furthermore, a machine that runs in exponential-time



522 O. Goldreich

can distinguish the output of a pseudorandom generator from a uniformly se-
lected string of the same length (e.g., just by trying all possible seeds). Thus,
pseudorandomness is subjective, dependent on the abilities of the observer.

Randomness and Computational Difficulty. Pseudorandomness and computa-
tional difficulty play dual roles: The definition of pseudorandomness relies on
the fact that placing computational restrictions on the observer gives rise to
distributions that are not uniform and still cannot be distinguished from uni-
form. Furthermore, the known constructions of pseudorandom generators relies
on conjectures regarding computational difficulty (e.g., the existence of one-way
functions), and this is inevitable: the existence of pseudorandom generators im-
plies the existence of one-way functions.

Randomness and Predictability. The connection between pseudorandomness and
unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions of pseudorandom generators (see [7, Sec. 3.3.5&3.5]). We
wish to highlight the intuitive appeal of this connection.

2.7 Suggestions for Further Reading

A detailed textbook presentation of the material that is reviewed in this section
is provided in [7, Chap. 3]. For a wider perspective, which treats this material
as a special case of a general paradigm, the interested reader is referred to [6,
Chap. 3] (or [9, Chap. 8]).

3 Probabilistic Proof Systems

The glory attributed to the creativity involved in finding proofs, makes us for-
get that it is the less glorified procedure of verification which gives proofs their
value. Philosophically speaking, proofs are secondary to the verification proce-
dure; whereas technically speaking, proof systems are defined in terms of their
verification procedures.

The notion of a verification procedure assumes the notion of computation
and furthermore the notion of efficient computation. This implicit assumption
is made explicit in the following definition in which efficient computation is
associated with deterministic polynomial-time algorithms.

Definition 3.1 (NP-proof systems): Let S ⊆ {0, 1}∗ and ν : {0, 1}∗×{0, 1}∗ →
{0, 1} be a function such that x ∈ S if and only if there exists a w ∈ {0, 1}∗ that
satisfies ν(x, w) = 1. If ν is computable in time bounded by a polynomial in the
length of its first argument then we say ν defines an NP-proof system for S and
that S is an NP-set. The class of NP-sets is denoted NP.

Indeed, ν represents a verification procedure for claims of membership in a set
S, and a string w satisfying ν(x, w) = 1 is a proof that x belongs to S, whereas
x �∈ S has no such proofs. For example, consider the set of systems of quadratic
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equations that have integer solutions, which is a well-known NP-set. Clearly, any
integer solution v to such a system Q constitutes an “NP-proof” for the assertion
the system Q has an integer solution (the verification procedure consists
of substituting the variables of Q by the values provided in v and computing the
value of the resulting arithmetic expressions).

We seize the opportunity to note that the celebrated “P different from NP”
conjecture asserts that NP-proof systems are useful in the sense that there are
assertions for which obtaining a proof helps to verify the correctness of the as-
sertion.8 This conforms with our daily experience by which reading a proof eases
the verification of an assertion.

The formulation of NP-proofs restricts the “effective” length of proofs to be
polynomial in length of the corresponding assertions (since the running-time of
the verification procedure is restricted to be polynomial in the length of the as-
sertion). However, longer proofs may be allowed by padding the assertion with
sufficiently many blank symbols. So it seems that NP gives a satisfactory for-
mulation of proof systems (with efficient verification procedures). This is indeed
the case if one associates efficient procedures with deterministic polynomial-time
algorithms. However, we can gain a lot if we are willing to take a somewhat non-
traditional step and allow probabilistic verification procedures. In particular:

– Randomized and interactive verification procedures, giving rise to inter-
active proof systems, seem much more powerful than their deterministic
counterparts (see Section 3.1).

– Such randomized procedures allow the introduction of zero-knowledge proofs,
which are of great conceptual and practical interest (see Section 3.2).

– NP-proofs can be efficiently transformed into a (redundant) form (called a
probabilistically checkable proof) that offers a trade-off between the number
of bit-locations examined in the NP-proof and the confidence in its validity
(see Section 3.3).

In all these types of probabilistic proof systems, explicit bounds are imposed
on the computational resources of the verification procedure, which in turn is
personified by the notion of a verifier. Furthermore, in all these proof systems,
the verifier is allowed to toss coins and rule by statistical evidence. Thus, all
these proof systems carry a probability of error; yet, this probability is explicitly
bounded and, furthermore, can be reduced by successive application of the proof
system.

Clarifications. Like the definition of NP-proof systems, the abovementioned
types of probabilistic proof systems refer to proving membership in predeter-
mined sets of strings. That is, the assertions are all of the form “the string x

8 NP represents sets of assertions that can be efficiently verified with the help of
adequate proofs, whereas P represents sets of assertions that can be efficiently verified
from scratch (i.e., without proofs). Thus, “P different from NP” asserts the existence
of assertions that are harder to prove than to be convinced of their correctness when
presented with a proof. This means that the notion of a proof is meaningful (i.e.,
that proofs do help when trying to be convinced of the correctness of assertions).
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is in a set S”, where S is a fixed infinite set and x is a variable input. The
definition of an interactive proof system makes explicit reference to a prover,
which is only implicit in the definition of an NP-proof system (where the prover
is the unmentioned entity providing the proof). We note that, as a first approx-
imation, we are not concerned with the complexity of the prover or the proving
task. Our main focus is on the complexity of verification. This is consistent with
the intuitive notion of a proof, which refers to the validity of the proof and not
to how it was obtained.

3.1 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computa-
tions, it is only natural to associate the notion of efficient computation with
probabilistic and interactive polynomial-time computations. This leads naturally
to the notion of an interactive proof system in which the verification procedure
is interactive and randomized, rather than being non-interactive and determin-
istic. Thus, a “proof” in this context is not a fixed and static object but rather
a randomized (dynamic) process in which the verifier interacts with the prover.
Intuitively, one may think of this interaction as consisting of “tricky” questions
asked by the verifier, to which the prover has to reply “convincingly”. The above
discussion, as well as the following definition, makes explicit reference to a prover,
whereas a prover is only implicit in the traditional definitions of proof systems
(e.g., NP-proofs).

Loosely speaking, an interactive proof is a game between a computationally
bounded verifier and a computationally unbounded prover whose goal is to con-
vince the verifier of the validity of some assertion. Specifically, the verifier is
probabilistic polynomial-time. It is required that if the assertion holds then the
verifier always accepts (i.e., when interacting with an appropriate prover strat-
egy). On the other hand, if the assertion is false then the verifier must reject
with probability at least 1

2 , no matter what strategy is being employed by the
prover.

Definition 3.2 (Interactive Proofs – IP [17]): An interactive proof system for a
set S is a two-party game, between a verifier executing a probabilistic polynomial-
time strategy (denoted V ) and a prover which executes a computationally un-
bounded strategy (denoted P ), satisfying

– Completeness: For every x ∈ S the verifier V always accepts after interacting
with the prover P on common input x.

– Soundness: For every x �∈ S and every possible strategy P ∗, the verifier V
rejects with probability at least 1

2 , after interacting with P ∗ on common input
x.

The class of sets having interactive proof systems is denoted by IP.

Recall that the error probability in the soundness condition can be reduced by
successive application of the proof system. To clarify the definition and illustrate
the power of the underlying concept, we consider the following story.
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One day on the Olympus, bright-eyed Athena claimed that Nectar poured
out of the new silver-coated jars tastes less good than Nectar poured out
of the older gold-decorated jars. Mighty Zeus, who was forced to intro-
duce the new jars by the practically oriented Hera, was annoyed at the
claim. He ordered that Athena be served one hundred glasses of Nec-
tar, each poured at random either from an old jar or from a new one,
and that she tell the source of the drink in each glass. To everybody’s
surprise, wise Athena correctly identified the source of each serving, to
which the Father of the Gods responded “my child, you are either right
or extremely lucky.” Since all gods knew that being lucky was not one of
the attributes of Pallas-Athena, they all concluded that the impeccable
goddess was right in her claim.

Note that the proof system underlying this story establishes the dissimilarity
of two objects. This idea can be used to provide an interactive proof system
for the set of “pairs of non-isomorphic graphs” [15], which informally refer to
the dissimilarity of two given objects.9 Indeed, typically, proving similarity be-
tween objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilarity seems
harder, because in general there seems to be no succinct proof of dissimilarity.
More generally, it is typically easy to prove the existence of an easily verifiable
structure in the given object by merely presenting this structure, but proving the
non-existence of such a structure seems hard.

Formally speaking, proving the existence of an easily verifiable structure cor-
responds to NP-proof systems. The forgoing discussion suggests that interactive
proof systems can be used to demonstrate the non-existence of such structures.
Specifically, the set of pairs of non-isomorphic graphs is not known to have an
NP-proof system, and does have an interactive proof system. In general, interac-
tive proof systems can be used to prove the non-existence of any easily verifiable
structure; that is, for every S ∈ NP , the set {0, 1}∗ \ S has an interactive proof
system (i.e., the class coNP is contained in IP). We stress that it is widely
believed that coNP def= {{0, 1}∗ \ S : S∈ NP} is not contained in NP . For ex-
ample, the set of systems of quadratic equations that have no integer solutions
has an interactive proof system, but is believed not to have an NP-proof system.
Furthermore, the class of sets having interactive proof systems coincides with
the class PSPACE containing all sets for which membership is decidable by an
algorithm that uses a polynomial amount of work-space.

Theorem 3.3 [21,27]: IP = PSPACE.

We mention thatNP∪coNP ⊆ PSPACE and that it is widely believed thatNP
contain “little” of PSPACE . Thus, interactive proofs seem to be more powerful
9 A graph G = (V, E) consists of a finite set of vertices V and a finite set of edges

E, where each edge is an unordered pair of vertices. Two graphs, G1 =(V1, E1) and
G2 =(V2, E2), are called isomorphic if there exists a 1-1 and onto mapping φ :V1→V2

such that {u, v}∈E1 if and only if {φ(u), φ(v)}∈E1.
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than NP-proofs. This conforms with our daily experience by which interaction
facilitates the verification of assertions. As we shall argue next, randomness
(and the error probability in the soundness condition) play a key role in this
phenomenon.

Interactive proof systems extend NP-proof systems in allowing extensive in-
teraction as well as randomization (and ruling based on statistical evidence). As
hinted, extensive interaction by itself does not provide any gain (over NP-proof
systems). The reason being that the prover can predict the verifier’s part of the
interaction and thus it suffices to let the prover send the full transcript of the in-
teraction and let the verifier check that the interaction is indeed valid.10 The moral
is that there is no point to interact with predictable parties that are also computa-
tionally weaker. This moral represents the prover’s point of view (with respect to
deterministic verifiers). Certainly, from the verifier’s point of view it is beneficial
to interact with the prover, since the latter is computationally stronger.

We mention that the power of interactive proof systems remains unchanged
under several natural variants. In particular, it turns out that, in this context,
asking clever questions is not more powerful than asking totally random ques-
tions. The reason being that a powerful prover may assist the verifier, which
may thus refrain from trying to be clever and focus on checking (by using only
random questions) that the help extended to it is indeed valid. Also, the power
of interactive proof systems remains unchanged when allowing two-sided error
probability (i.e., allowing bounded error probability also in the completeness
condition). Recall that, in contrast, one-sided error probability (i.e., error prob-
ability in the soundness condition) is essential to the power of interactive proofs.

3.2 Zero-Knowledge Proof Systems

Standard proofs are believed to yield knowledge and not merely establish the
validity of the assertion being proven. Indeed, it is commonly believed that
(good) proofs provide a deeper understanding of the theorem being proved. At
the technical level, assuming that NP-proof are useful at all (i.e., assuming that
P �= NP), an NP-proof of membership in some sets S ∈ NP\P yields something
(i.e., the NP-proof itself) that is typically hard to find (even when assuming that
the input is in S). For example, an integer solution to a system of quadratic
equations constitutes an NP-proof that this system has an integer solution, but
it yields information (i.e., the solution) that is infeasible to find (when given an
arbitrary system of quadratic equations that has an integer solution). In contrast
to such NP-proofs, which seem to yield a lot of knowledge, zero-knowledge proofs
yield no knowledge at all; that is, the latter exhibit an extreme contrast between
being convincing (of the validity of a statement) and teaching something on top
of the validity of the statement.

Loosely speaking, zero-knowledge proofs are interactive proofs that yield noth-
ing beyond the validity of the assertion. These proofs, introduced in [17], are

10 In case the verifier is not deterministic, the transcript sent by the prover may not
match the outcome of the verifier coin tosses.
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fascinating and extremely useful constructs. Their fascinating nature is due to
their seemingly contradictory definition: zero-knowledge proofs are both con-
vincing and yet yield nothing beyond the validity of the assertion being proven.
Their applicability in the domain of Cryptography is vast; they are typically
used to force malicious parties to behave according to a predetermined proto-
col. In addition to their direct applicability in Cryptography, zero-knowledge
proofs serve as a good bench-mark for the study of various problems regarding
cryptographic protocols.

Zero-knowledge is a property of some interactive proof systems, or more accu-
rately of some prover strategies. Specifically, it is the property of yielding nothing
beyond the validity of the assertion; that is, a verifier obtaining a zero-knowledge
proof only gains conviction in the validity of the assertion. This is formulated by
saying that anything that can be feasibly obtained from a zero-knowledge proof
is also feasibly computable from the (valid) assertion itself. Details follow.

The formulation of the zero-knowledge condition refers to two types of prob-
ability ensembles, where each ensemble associates a distribution to each valid
assertion. The first ensemble represents the output distribution of the verifier
after interacting with the specified prover strategy P , where the verifier is not
necessarily employing the specified strategy (i.e., V ) but rather any efficient
strategy. The second ensemble represents the output distribution of some prob-
abilistic polynomial-time algorithm (which does not interact with anyone). The
basic paradigm of zero-knowledge asserts that for every ensemble of the first
type there exist a “similar” ensemble of the second type. The specific variants
differ by the interpretation given to the notion of similarity. The most strict in-
terpretation, leading to perfect zero-knowledge, is that similarity means equality.

Definition 3.4 (perfect zero-knowledge, a simplified version11): A prover strat-
egy, P , is said to be perfect zero-knowledge over a set S if for every probabilistic
polynomial-time verifier strategy, V ∗, there exists a probabilistic polynomial-time
algorithm, M∗, such that for every x ∈ S it holds that (P, V ∗)(x) ≡ M∗(x), where
(P, V ∗)(x) denote the distribution that represents the output of verifier V ∗ after
interacting with the prover P on common input x.12

A somewhat more relaxed interpretation of similarity, leading to almost-perfect
zero-knowledge, is that similarity means statistical closeness (i.e., negligible dif-
ference between the ensembles). The most liberal interpretation, leading to the
standard usage of the term zero-knowledge, is that similarity means computa-
tional indistinguishability (i.e., failure of any efficient procedure to tell the two
ensembles apart). The actual definition is obtained from Definition 2.1, by con-
sidering ensembles indexed by strings and providing the distinguisher with the
relevant index. That is, the probability ensembles, {Yx}x∈S and {Zx}x∈S, are
indistinguishable by an algorithm A if
11 The actual definition allows for a rare event (which occurs with negligible probability)

in which M∗ halts with no output, and the output of M∗ is considered condition on
this event not occuring.

12 As usual, M∗(x) denotes a distribution representing the output of algorithm M∗ on
input x.
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dA(n) def= max
x∈S∩{0,1}n

{|prob(A(x, Yx)=1)− Pr(A(x, Zx)=1)|}

is a negligible function.13 The ensembles {Yx}x∈S and {Zx}x∈S are computation-
ally indistinguishable if they are indistinguishable by every probabilistic polynomial-
time algorithm.

The foregoing discussion refers to simplified versions of the actual definitions.
Specifically, in order to guarantee that zero-knowledge is preserved under sequen-
tial composition it is necessary to slightly augment the definitions. For details
see [7, Sec. 4.3.3-4.3.4].

The Power of Zero-Knowledge. We consider the set of 3-colorable graphs, where
a graph14 G = (V, E) is said to be 3-colorable if there exists a function π : V →
{1, 2, 3} (called a 3-coloring) such that π(v) �= π(u) for every {u, v} ∈ E. It is
easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring
of G, but this NP-proof is not a zero-knowledge proof (unless P = NP). In fact,
assuming P �= NP , graph 3-colorability has no zero-knowledge NP-proofs, but
as we shall see it has zero-knowledge interactive proofs. We first describe these
proof systems using (abstract) “boxes” in which information can be hidden and
later revealed. Such “boxes” can be implemented using one-way functions.

Construction 3.5 (Zero-knowledge proof of 3-colorability [15]): On common
input, G=(V, E), The following steps are repeated |V | · |E| times.

– Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a random
permutation, π, over {1, 2, 3}, and sets φ(v) def= π(ψ(v)), for each v ∈ V .
Hence, the prover forms a random relabeling of the 3-coloring ψ. The prover
sends the verifier a sequence of |V | locked and non-transparent boxes such
that the vth box contains the value φ(v).

– Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E, and
sends it to the prover. Intuitively, the verifier asks to inspect the colors of
vertices u and v.

– Prover’s second step: The prover sends to the verifier the keys to boxes u
and v.

– Verifier’s second step: The verifier opens boxes u and v, and checks whether
or not they contain two different elements in {1, 2, 3}.

The verifier accepts if and only if all checks turn out positive.

The foregoing verifier strategy is easily implemented in probabilistic polynomial-
time. The same holds with respect to the prover’s strategy, provided it is given
a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-colorable
then the prover can cause the verifier to accept with probability 1. On the other
hand, if the input graph is not 3-colorable then any contents put in the boxes
13 If S ∩ {0, 1}n = ∅ then we define dA(n) = 0.
14 See Footnote 9.
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must be invalid on at least one edge, and consequently each time the foregoing
steps are repeated the verifier rejects with probability at least 1

|E| . Repeating
these steps t · |E| times has the effect of reducing the soundness error probability
to (

1− 1
|E|

)t·|E|
≈ e−t.

The zero-knowledge property follows easily, in this abstract setting, because one
can simulate the real interaction by placing a random pair of different colors in
the boxes indicated by the verifier. This indeed demonstrates that the verifier
learns nothing from the interaction (since it expects to see a random pair of dif-
ferent colors and indeed this is what it sees). We stress that this simple argument
is not possible in the digital implementation because the boxes are not totally
unaffected by their contents (but are rather affected, yet in an indistinguishable
manner).

As stated, in order to obtain a real interactive proof, the (abstract or physical)
“boxes” need to be implemented digitally. This can be done using an adequately
defined “commitment scheme” (see [7, Sec. 4.4.1]). Loosely speaking, such a
scheme is a two phase game between a sender and a receiver so that after the first
phase the sender is “committed” to a value and yet, at this stage, it is infeasible
for the receiver to find out the committed value. The committed value will be
revealed to the receiver in the second phase and it is guaranteed that the sender
cannot reveal a value other than the one committed. Such commitment schemes
can be implemented assuming the existence of one-way functions. Thus, the
existence of one-way functions implies a zero-knowledge proofs for 3-colorability.
In fact, one gets zero-knowledge proofs for any NP-set.

Theorem 3.6 [15]: Assuming the existence of one-way functions, any NP-proof
can be efficiently transformed into a zero-knowledge interactive proof. That is,
the prover strategy in the zero-knowledge interactive proof can be implemented
in probabilistic polynomial-time provided that it is given an adequate NP-proof
as auxiliary input.

Theorem 3.6 has a dramatic effect on the design of cryptographic protocols (cf.,
[7,8]). In a different vein and for the sake of elegance, we mention that, using
further ideas and under the same assumption, any set having an interactive proof
system also has a zero-knowledge interactive proof system.

The Role of Randomness. Again, randomness is essential to all the aforemen-
tioned results. Namely, zero-knowledge proof systems in which either the verifier
or the prover is deterministic exist only for sets in BPP, where BPP is the class
of sets for which membership is decidable by some probabilistic polynomial-time
algorithm. Note that such sets have trivial zero-knowledge proofs in which the
prover sends nothing and the verifier just test the validity of the assertion by
itself. Thus, randomness is essential to the usefulness of zero-knowledge proofs.
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3.3 Probabilistically Checkable Proof Systems

We now return to the non-interactive mode in which the verifier receives a (al-
leged) written proof. But our focus is on probabilistic verifiers that are capable
of evaluating the validity of the assertion by examining few (randomly selected)
locations in the alleged proof. Thus, the alleged proof is a string, as in the case
of a traditional proof system, but we are interested in probabilistic verification
procedures that access only few locations in the proof, and yet are able to make
a meaningful probabilistic verdict regarding the validity of the alleged proof.
Specifically, the verification procedure should accept any valid proof (with prob-
ability 1), but rejects with probability at least 1/2 any alleged proof for a false
assertion.

The main complexity measure associated with probabilistically checkable proof
(PCP) systems is indeed their query complexity (i.e., the number of bits ac-
cessed in the alleged proof). Another complexity measure of natural concern is
the length of the proofs being employed, which in turn is related to the ran-
domness complexity of the system. The randomness complexity of PCPs plays
a key role in numerous applications (e.g., in composing PCP systems as well as
when applying PCP systems to derive non-approximability results), and thus we
specify this parameter rather than the proof length.

Loosely speaking, a probabilistically checkable proof system consists of a prob-
abilistic polynomial-time verifier having access to an oracle that represents an
alleged proof (in redundant form). Typically, the verifier accesses only few of
the oracle bits, and these bit positions are determined by the outcome of the
verifier’s coin tosses. As in the case of interactive proof systems, it is required
that if the assertion holds then the verifier always accepts (i.e., when given ac-
cess to an adequate oracle); whereas, if the assertion is false then the verifier
must reject with probability at least 1

2 , no matter which oracle is used. The
basic definition of the PCP setting is given in Item (1) of Definition 3.7. Yet,
the complexity measures introduced in Item (2) are of key importance for the
subsequent discussions.

Definition 3.7 (Probabilistically Checkable Proofs – PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine (called verifier), denoted V , satisfying
– Completeness: For every x ∈ S there exists an oracle πx so that V , on

input x and access to πx, always accepts x.
– Soundness: For every x �∈ S and every oracle π, machine V , on input x

and access to π, rejects x with probability at least 1
2 .

2. Let r and q be integer functions. The complexity class PCP(r(·), q(·)) consists
of sets having a probabilistically checkable proof system in which the verifier,
on any input of length n, makes at most r(n) coin tosses and at most q(n) or-
acle queries, where each query is answered by a single bit. For sets of integer
functions, R and Q, we let PCP(R, Q) equal ∪r∈R,q∈QPCP(r(·), q(·)).
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We stress that the oracle πx in a PCP system constitutes a proof in the standard
mathematical sense. Yet, this oracle has the extra property of enabling a lazy
verifier, to toss coins, take its chances and “assess” the validity of the proof
without reading all of it (but rather by reading a tiny portion of it).

Letting poly denote the set of all polynomials, one may verify that
PCP(0, poly) = NP . Letting log denote the set of all logarithmic functions
(i.e., 	 ∈ log if there exists a constant b such that 	(n) ≤ logb n for all suffi-
ciently large n), one may also verify that PCP(log, poly) ⊆ NP (because the
relevant oracles are of polynomial length). It follows that, for every constant
c, it holds that PCP(log, c) ⊆ NP . This upper bound turned out to be tight,
but proving this is much more difficult (to say the least). The following result
is a culmination of a sequence of great works (see [6, Sec. 2.6.2] for a detailed
account).

Theorem 3.8 [2,1]: There exists a constant c such that NP ⊆ PCP(log, c).

Thus, probabilistically checkable proofs in which the verifier tosses only loga-
rithmically many coins and makes only a constant number of queries exist for
every set in the complexity class NP . (Essentially, this constant is three.) Fur-
thermore, NP-proofs can be efficiently transformed into NP-proofs that offer a
trade-off between the portion of the proof being read and the confidence it of-
fers. Specifically, if the verifier is willing to tolerate an error probability of ε then
it suffices to let it examine c · log2(1/ε) bits of the (transformed) NP-proof.15

These bit locations need to be selected at random. We mention that the length
of the redundant NP-proofs that provide the aforementioned trade-off can be
made almost linear in the length of the standard NP-proofs.

PCP and the Study of Approximation. Following [5] and [1], the characterization
of NP in terms of probabilistically checkable proofs has played a central role
in developments concerning the study of approximation problems. For details,
see [19, Chap. 10]. We merely mention that Theorem 3.8 implies that, assuming
P �= NP , there exists a constant δ < 1 such that given a system of quadratic
equations it is infeasible to distinguish the case in which the system has an integer
solution from the case that any assignment of integers satisfies at most a δ
fraction of the equations.

The Role of Randomness. The foregoing results rely on the randomness of the
verifier and are not possible for deterministic verifiers. Furthermore,PCP(0, log)
= P .

3.4 Suggestions for Further Reading

More detailed overviews of the three types of probabilistically proof systems can
be found in [6, Chap. 2] (or [9, Chap. 9]). A detailed textbook treatment of
zero-knowledge is provided in [7, Chap. 4].
15 In fact, c can be made arbitrarily close to one, when ε is small enough.
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4 Cryptography

In this section we focus on the role of randomness in Cryptography. As stated
at the beginning of the introduction, the very notion of a secret, which is cen-
tral to Cryptography, refers to randomness in the sense of unpredictability (i.e.,
unpredictability of the secret by other parties). Furthermore, the use of random-
ized algorithms and/or strategies is essential for achieving almost any security
goal. We start with the concrete example of providing secret and authenticated
communication, and end with a wider perspective.

4.1 Secret and Authenticated Communication

The problem of providing secret communication over insecure media is the tra-
ditional and most basic problem of Cryptography. The setting of this problem
consists of two parties communicating through a channel that is possibly tapped
by an adversary. The parties wish to exchange information with each other, but
keep the “wire-tapper” as ignorant as possible regarding the contents of this
information. The canonical solution to the above problem is obtained by the use
of encryption schemes.

Loosely speaking, an encryption scheme is a protocol allowing these parties to
communicate secretly with each other. Typically, the encryption scheme consists
of a pair of algorithms. One algorithm, called encryption, is applied by the sender
(i.e., the party sending a message), while the other algorithm, called decryption,
is applied by the receiver. Hence, in order to send a message, the sender first
applies the encryption algorithm to the message, and sends the result, called the
ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e.,
the receiver) applies the decryption algorithm to it, and retrieves the original
message (called the plaintext).

In order for the foregoing scheme to provide secret communication, the com-
municating parties (at least the receiver) must know something that is not known
to the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext ex-
actly as done by the receiver.) This extra knowledge may take the form of the
decryption algorithm itself, or some parameters and/or auxiliary inputs used by
the decryption algorithm. We call this extra knowledge the decryption-key. Note
that, without loss of generality, we may assume that the decryption algorithm
is known to the wire-tapper, and that the decryption algorithm operates on
two inputs: a ciphertext and a decryption-key. (The encryption algorithm also
takes two inputs: a corresponding encryption-key and a plaintext.) We stress
that the existence of a decryption-key, not known to the wire-tapper, is merely
a necessary condition for secret communication.

The point we wish to make is that the decryption-key must be generated
by a randomized algorithm. Suppose, in contrary, that the decryption-key is
a predetermined function of publicly available data (i.e., the key is generated
by employing an efficient deterministic algorithm to this data). Then, the wire-
tapper can just obtain the key in exactly the same manner (i.e., invoking the
same algorithm on the said data). We stress that saying that the wire-tapper
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does not know which algorithm to employ or does not have the data on which
the algorithm is employed just shifts the problem elsewhere; that is, the ques-
tion remains as to how do the legitimate parties select this algorithm and/or
the data to which it is applied? Again, deterministically selecting these objects
based on publicly available data will not do. At some point, the legitimate par-
ties must obtain some object that is unpredictable by the wire-tapper, and such
unpredictability refers to randomness (or pseudorandomness).

However, the role of randomness in allowing for secret communication is not
confined to the generation of secret keys. To see why this is the case, we need
to understand what is “secrecy” (i.e., to properly define what is meant by this
intuitive term). Loosely speaking, we say that an encryption scheme is secure if
it is infeasible for the wire-tapper to obtain from the ciphertexts any additional
information about the corresponding plaintexts. In other words, whatever can be
efficiently computed based on the ciphertexts can be efficiently computed from
scratch (or rather from the a priori known data). Now, assuming that the en-
cryption algorithm is deterministic, encrypting the same plaintext twice (using
the same encryption-key) results in two identical ciphertexts, which are easily
distinguishable from any pair of different ciphertexts resulting from the encryp-
tion of two different plaintexts. This problem does not arise when employing a
randomized encryption algorithm (as presented next).

As hinted, an encryption scheme must specify also a method for selecting keys.
In the following encryption scheme, the key is a uniformly selected n-bit string,
denoted s. The parties use this key to determine a pseudorandom function fs

(as in Definition 2.7). A plaintext x ∈ {0, 1}n is encrypted (using the key s) by
uniformly selecting r ∈ {0, 1}n and producing the ciphertext (r, fs(r)⊕x), where
α ⊕ β denotes the bit-by-bit exclusive-or of the strings α and β. A ciphertext
(r, y) is decrypted (using the key s) by computing fs(r)⊕ y. The security of this
scheme follows from the security of an imaginary (ideal) scheme in which fs is
replaced by a totally random function F : {0, 1}n → {0, 1}n.

Public-Key Encryption Schemes. The foregoing description corresponds to the so
called model of a private-key encryption scheme, and requires the communicat-
ing parties to agree beforehand on a corresponding pair of encryption/decryption
keys. This need is removed in public-key encryption schemes, envisioned by Diffie
and Hellman (and materialized by the RSA scheme of Rivest, Shamir, and Adle-
man). In a public-key encryption scheme, the encryption-key can be publicized
without harming the security of the plaintexts encrypted using it, allowing any-
body to send encrypted messages to Party X by using the encryption-key publi-
cized by Party X. But in such a case, the need for randomized encryption is even
more clear. Indeed, if a deterministic encryption algorithm is employed and the
wire-tapper knows the encryption-key, then it can identity of the plaintext in the
case that the number of possibilities is small. In contrast, using a randomized en-
cryption algorithm, the encryption of plaintext yes under a known encryption-key
may be computationally indistinguishable from the encryption of the plaintext no
under the say encryption-key. For further discussion of the security and construc-
tion of encryption schemes, the interested reader is referred to [8, Chap. 5].
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Authenticated Communication. Message authentication is a task related to the
setting considered for private-key encryption schemes. Again, there are two des-
ignated parties that wish to communicate over an insecure channel. This time,
we consider an active adversary that is monitoring the channel and may alter
the messages sent on it. The parties communicating through this insecure chan-
nel wish to authenticate the messages they send such that their counterpart can
tell an original message (sent by the sender) from a modified one (i.e., modified
by the adversary). Loosely speaking, a scheme for message authentication should
satisfy the following:

– each of the communicating parties can efficiently produce an authentication
tag to any message of its choice;

– each of the communicating parties can efficiently verify whether a given
string is an authentication tag of a given message; but

– it is infeasible for an external adversary (i.e., a party other than the com-
municating parties) to produce authentication tags to messages not sent by
the communicating parties.

Again, such a scheme consists of a randomized algorithm for selecting keys as
well as algorithms for tagging messages and verifying the validity of tags. In
the following message authentication scheme, a uniformly chosen n-bit key, s,
is used for specifying a pseudorandom function (as in Definition 2.7). Using the
key s, a plaintext x ∈ {0, 1}n is authenticated by the tag fs(x), and verification
of (x, y) with respect to the key s amounts to checking whether y equals fs(x).
For further discussion of message authentication schemes and the related notion
of signature schemes, the interested reader is referred to [8, Chap. 6].

4.2 A Wider Perspective

Modern Cryptography is concerned with the construction of information sys-
tems that are robust against malicious attempts to make these systems deviate
from their prescribed functionality. The prescribed functionality may be the pri-
vate and authenticated communication of information through the Internet, the
holding of incoercible and secret electronic voting, or conducting any “fault-
resilient” multi-party computation. Indeed, the scope of modern Cryptography
is very broad, and it stands in contrast to “classical” Cryptography (which has
focused on the single problem of enabling secret communication over insecure
communication media).

The design of cryptographic systems is a very difficult task. One cannot rely
on intuitions regarding the “typical” state of the environment in which the sys-
tem operates. For sure, the adversary attacking the system will try to manipulate
the environment into “untypical” states. Nor can one be content with counter-
measures designed to withstand specific attacks, since the adversary (which acts
after the design of the system is completed) will try to attack the schemes in
ways that are different from the ones the designer had envisioned. The validity
of the above assertions seems self-evident, still some people hope that in practice



Randomness and Computation 535

ignoring these tautologies will not result in actual damage. Experience shows that
these hopes rarely come true; cryptographic schemes based on make-believe are
broken, typically sooner than later.

In view of the foregoing, we believe that it makes little sense to make as-
sumptions regarding the specific strategy that the adversary may use. The only
assumptions that can be justified refer to the computational abilities of the ad-
versary. Furthermore, the design of cryptographic systems has to be based on
firm foundations; whereas ad-hoc approaches and heuristics are a very dangerous
way to go. A heuristic may make sense when the designer has a very good idea
regarding the environment in which a scheme is to operate, yet a cryptographic
scheme has to operate in a maliciously selected environment which typically
transcends the designer’s view.

The foundations of Cryptography are the paradigms, approaches and tech-
niques used to conceptualize, define and provide solutions to natural “security
concerns”. For a presentation of these foundations, the interested reader is re-
ferred to [7,8]. Here we merely note that randomness plays a central role in each
definition and technique presented there. In almost every case, the inputs of the
legitimate parties are assumed to be unpredictable by the adversary, and the
task is performing some manipulation (of the inputs) while preserving or cre-
ating some unpredictability. In all cases, this is obtained by using randomized
algorithms.

Suggestions for Further Reading. As stated above, a (comprehensive) exposition
of the foundations of modern Cryptography can be found in the two-volume
work [7,8].

5 Property Testing

For starters, let us consider a well-known example in which fast approximations
are possible and useful. Suppose that some cost function is defined over a huge
data-set, and that one wants to approximate the average cost of an element in
the set. To be more specific, let μ : S → [0, 1] be a cost function, and suppose
we want to estimate μ

def= 1
|S|

∑
e∈S μ(e). Then, for some constant c, uniformly

(and independently) selecting m
def= c · ε−2 log2(1/δ) sample points, s1, ..., sm, in

S we obtain with probability at least 1− δ an estimate of μ within ±ε:

Prs1,...,sm∈S

[∣∣∣∣∣ 1
m

m∑
i=1

μ(si) − μ

∣∣∣∣∣ > ε

]
< δ .

We stress the fact that the number of samples only depends on the desired level
of approximation (and is independent of the size of S). In this section we discuss
analogous phenomena that occur with respect to objectives that are beyond
gathering statistics of individual values. We focus on more complex features of
a data-set; specifically, relations among pairs of elements rather than values of
single elements. Such binary relations are captured by graphs (as defined in
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Footnote 9); that is, a symmetric binary relation R ⊆ S × S is represented by a
graph G = (S, R), where the elements of S are called vertices and the elements of
R are called edges. Each edge consists of a pair of vertices, called its end-points.

One natural computational question regarding graphs is whether or not they
are bi-partite; that is, whether there exists a partition of S into two subsets S1

and S2 such that each edge has one end-point in S1 and the other endpoint in
S2. For example, the graph consisting of a cycle of four vertices is bi-partite,
whereas a triangle is not bi-partite. We mention that there exists an efficient
algorithm that given a graph G determines whether or not G is bi-partite. Need-
less to say, this algorithm must inspect all edges of G, whereas we seek sub-linear
time algorithms (i.e., algorithms operating in time smaller than the size of the
input). In particular, sub-linear time algorithms cannot afford reading the entire
input graph. Instead, these algorithm can inspect portions of the input graph by
querying for the existence of specific edges (i.e., query whether there is an edge
between a specific pair of vertices). It turns out that, by making a number of
queries that is independent of the size of the graph, one may obtain meaningful
information regarding its “distance” to being bi-partite. Specifically:

Theorem 5.1 [14]: There exists a randomized algorithm that, on input a pa-
rameter ε and access to a graph G = (S, R), makes poly(1/ε) queries to G and
satisfies the following two conditions:

1. If G is bi-partite, then the algorithm accepts with probability 1.
2. If any partition of S into two subsets S1 and S2 has at least ε|S|2 edges with

both end-points in the same Si, then the algorithm rejects with probability at
least 99%.

The algorithm underlying Theorem 5.1 uniformly selects m = poly(1/ε) vertices,
and checks whether the induced graph is bi-partite; that is, for a sample of
vertices v1, ..., vm, it checks whether there exists a partition of {v1, ..., vm} into
two subsets V1 and V2 such that for every i ∈ {1, 2} and every u, v ∈ Vi it holds
that (u, v) �∈ R.

We stress that the said algorithm does not solve the question of whether or
not the graph is bi-partite, but rather a relaxed (or approximated) version of
this question in which one needs to distinguish graphs that are bi-partite from
graphs that a very far from being bi-partite. This phenomenon is analogous to
the case of approximating the average value of μ : S → [0, 1]. Also, as in the
case of approximating the average value of μ : S → [0, 1], it is essential that
the approximation algorithm be randomized. A similar phenomena occurs with
respect to several other natural properties of graphs, but is not generic. That is,
there exist graph properties for which even inspecting a constant fraction of the
graph does not allow for an approximate decision regarding satisfiability of the
property. For details, the interested reader is directed to [12,24].

We note that the notion of approximation underlying Theorem 5.1 refers to
disregarding ε|S|2 edges, where |S|2 is the maximum possible number of edges
over S. This notion of approximation is appealing in the case that R is dense (i.e.,
contains a constant fraction of all possible edges). Going to the other extreme,
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we may consider the case that R contains only a linear (in |S|) number of edge,
or even the case that each vertex participates only in a constant number of edges.
In this case, we may want to distinguish the case that the graph is bi-partite from
the case that any partition of S into two subsets S1 and S2 has at least ε|S| edges
with both end-points in the same Si. It turns out that this problem can be solved
by an algorithm that makes poly((log |S|)/ε) ·

√
|S| queries (to the incidence

lists of the graph), and that these many queries are essentially necessary. We
note that this sub-linear time algorithm operates by inspecting a graph induced
by poly((log |S|)/ε) ·

√
|S| vertices that are selected by taking many (relatively

short) random walks from few randomly selected starting vertices. For details,
the interested reader is directed to [12, Sec. 3.2].

The aforementioned type of approximation is known by the name property
testing, and was initiated and developed in [25,14]. One archetypical problem,
which played a central role in the construction of PCP systems (see Section 3.3),
is distinguishing low-degree polynomials from functions that are far from any
such polynomial. Specifically, let F be a finite field and m, d be integers. Given
access to a function f : Fm → F , we wish to make few queries and distinguish
the case that f is am m-variate polynomial of total degree d from the case it
disagrees with any such polynomial on at least 1% of the domain. It turns out
that making poly(d) random (but dependent) queries to f suffices for making a
decision that is correct with high probability.

In general, property testing problems refer to objects that are represented by
functions, where these functions determine both the type of queries that can be
made to the objects and the distance between objects. The tester is required
to accept functions that have some predetermined property (i.e., reside in some
predetermined set) and reject any function that is “far” from the set of functions
having the property. Distances between functions are defined as the fraction of
the domain on which the functions disagree, and the threshold determining what
is considered far is presented as a proximity parameter, which is explicitly given
to the tester. Thus, property testing is a relaxation of standard decision problems
(and it focuses on algorithms that can only read parts of the input).

Definition 5.2 (property testers) Let Π be a class of functions defined over
the domain D. A tester for a property Π is a probabilistic oracle machine T that
satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
f ∈ Π (and every ε > 0), it holds that Pr[T f(ε) = 1] ≥ 2/3, where T f(ε)
denotes the decision of T (on input ε) when given oracle access to f .

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester rejects
with probability at least 2/3; that is, for every ε > 0, if f : D → {0, 1}∗ is
ε-far from Π, then Pr[T f(ε)=0] ≥ 2/3, where f is ε-far from Π if, for every
g ∈ Π, it holds that |{e ∈ D : f(e) �= g(e)}| > ε · |D|.

If the tester accepts every function in Π with probability 1, then we say that it
has one-sided error; that is, T has one-sided error if for every f ∈ Π and every
ε > 0, it holds that Pr[T f(ε)=1] = 1.
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Definition 5.2 does not specify the query complexity of the tester, and indeed
an oracle machine that queries the entire domain of the function qualifies as a
tester (with zero error probability...). Needless to say, we are interested in testers
that have significantly lower query complexity. Indeed, Theorem 5.1 asserts the
existence of a (one-sided error) tester of complexity poly(1/ε) for the set of
bi-partite graphs, where graphs are represented by their adjacency matrices.

On the Importance of Representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).
This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natu-
ral representations: the adjacency matrix representation and the incidence lists
representation; for details see [12].

Suggestions for Further Reading. A brief introduction to property testing can
be found in [11]. For a more comprehensive treatment, the interested reader is
directed to [24]. For the special case of testing graph properties, the interested
reader is directed to [12].
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On Security Preserving Reductions – Revised

Terminology

Oded Goldreich

Abstract. Many of the results in Modern Cryptography are actually
transformations of a basic computational phenomenon (i.e., a basic prim-
itive, tool or assumption) to a more complex phenomenon (i.e., a higher
level primitive or application). The transformation is explicit and is al-
ways accompanied by an explicit reduction of the violation of the security
of the complex phenomenon to the violation of the simpler one. A key
aspect is the efficiency of the reduction. We discuss and slightly modify
the hierarchy of reductions originally suggested by Leonid Levin.

Keywords: Foundations of Cryptography, Complexity, Reductions.

An early version of this article appeared as ePrint Report 2000/001. The current
revision is quite minimal.

1 Introduction

Modern Cryptography is concerned with the construction of efficient schemes
for which it is infeasible to violate the security feature. Thus, we need a notion of
efficient computations as well as a notion of infeasible ones. The computations
of the legitimate users of the scheme ought to be efficient, whereas violating
the security features (via an adversary) ought to be infeasible. Our notions of
efficient and infeasible computations are “asymptotic” (or rather functional):1

They refer to the running time as a function of the security parameter. This is
done in order to avoid cumbersome formulations that refer to the actual running-
time on a specific model for specific values of the security parameter. Still, one
can easily derive such specific statements from the asymptotic treatment.

Efficient computations are commonly modeled by computations that are poly-
nomial-time in the security parameter. The polynomial bounding the running-
time of the legitimate user’s strategy is fixed and typically explicit and small
(still in some cases it is indeed a valuable goal to make it even smaller). Here
(i.e., when referring to the complexity of the legitimate user) we are in the same
situation as in any algorithmic research. Things are different when referring
to our assumptions regarding the computational resources of the adversary. A
common approach is to postulate that the latter are polynomial-time too, where
1 Actually, the term “asymptotic” is misleading, since from the functional treatment of

the running-time (as a function of the security parameter), one can derive statements
for any value of the security parameter.
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c© Springer-Verlag Berlin Heidelberg 2011



On Security Preserving Reductions 541

the polynomial is not a-priori specified. In other words, the adversary is restricted
to the class of efficient computations and anything beyond this is considered
to be infeasible. Although many definitions explicitly refer to this convention,
this convention is inessential to all known results (in the area). In all cases, a
more general (and yet more cumbersome) statement can be made by referring
to adversaries of running-time bounded by any function (or class of functions).
For example, for any function T : N→ N (e.g., T (n) = 2 3√n), we may consider
adversaries that on security parameter n run for at most T (n) steps. Doing so
we (implicitly) define as infeasible any computation that (on security parameter
n) requires more than T (n) steps.

The results obtained in Modern Cryptography are in most cases conditional
ones. That is, based on some relatively simple intractability assumptions (e.g.,
the existence of one-way functions [3, Chap. 2]) one constructs and establishes
the security of more complex applications (e.g., unforgeable signature schemes [3,
Chap. 6]). In many cases these results are stated in an oversimplified form, where
a typical form reads if the function f cannot be inverted in polynomial-time, then
the scheme Sf (which utilizes f) cannot be broken in polynomial-time. However,
what is actually proved in such works is stronger. Typically, the proof of security
of Sf specifies, for any function T : N→N, a function T ′ : N→N such that if f
cannot be inverted on n-bit images in time T (n), then Sf cannot be broken on
inputs of length m in time T ′(m). Furthermore, typically, the relation between
T ′ and T takes the form

T ′(m) =
p−1
2 (T (p−1

1 (m)))
p3(m) , (1)

where p1, p2, p3 are some fixed polynomials. Such a relation results from the fact
that the proof utilizes a reduction of the task of inverting f on strings of length
n to the task of breaking Sf on strings of length p1(n). Thus, assuming on the
contrary to the security claim that Sf can be broken in time T ′(m) on inputs of
length m = p1(n), one obtains an algorithm inverting f on inputs of length n in
time T (n) ≤ p3(p1(n)) · p2(T ′(p1(n))).

It should be clear (and it is indeed well-known) that the aforementioned rela-
tion between T and T ′ determines the strength of the theoretical result as well
as its potential practical applicability. Specifically, in almost all the cases the
relation takes the form of Eq. (1), and in these cases one is interested in the
specific polynomials p1, p2, p3.

The purpose of this note is to discuss a popular classification of such reduc-
tions, attributed to Leonid Levin and presented in [12]. We suggest to modify
this classification a little.

2 Preliminaries

Actually, the foregoing discussion is over-simplified, because it refers only to
the running-time of the violating algorithms (and implicitly suggesting that we
talk of algorithms that succeed always or almost always). In many cases, the
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statements are more complex, referring both to the running-time of algorithms
and to a (probabilistic) measure of success. Two such common measures are
1. The success probability of easily verified events. For example, the success

probability of an inverting algorithm (for a specific one-way function), or
the success probability of a forging algorithm (for a signature scheme).

2. The gap in probability between two experiments. An archetypical example is
the notion of computational indistinguishability. Here, for two distributions
ensembles, {Xn} and {Yn}, we consider the gap between the probability
that an algorithm A outputs 1 on input Xn and the probability A does so
on input Yn. Thus, definitions such as security of encryption schemes [7],
pseudorandomness [1,13,4], and (computational) zero-knowledge [8] fall into
this category.

The distinction between the foregoing two types is crucial for Levin’s suggestion
to incorporate the running-time and the success measure into a single measure
(see Section 2.2). Note that in order to succeed with probability at least 2/3 in
an attempt of the first type one has to repeat trying for Θ(1/ε(n)) times, where
ε(n) is the success probability in a single attempt. On the other hand, in order
to amplify a distinguishing gap of ε(n) into a gap of 2/3 we need to repeat the
experiment(s) for Θ(1/ε(n)2) times.2

2.1 The General Form of Security Reductions

Before presenting Levin’s approach, let us present the general form that most
results take. Typically, one starts with a basic primitive, denoted f (for sake
of uniformity with the Introduction), and constructs a scheme Sf . (Each of the
two is coupled with its own notion of violation, determining the measure of
success.) The proof of security of Sf is by a reduction to violation of security
of f . That is, such a proof shows, for any t′ : N → N and e′ : N → R, how to
convert an algorithm violating Sf with time complexity t′ and success measure
e′ into an algorithm for violating f with time complexity t and success measure
e. Calling the former an Sf -violator and the latter an f -violator, the conversion
is by a reduction that typically specifies polynomials p1, p2, ..., p7 such that on
input of length n the f -violator invokes the Sf -violator on inputs of length
m = p1(n), and satisfies t(n) = p2(t′(m)) · p3(1/e′(m)) · p4(m) as well as e(n) =
p5(e′(m)) · p6(1/t(m)) · p7(1/m). It follows that, for any function T :N→N and
ε : N → R, if f cannot be violated on n-bit inputs in time T (n) with success
measure ε(n), then Sf cannot be violated on m-bit inputs in time T ′(m) with
success measure ε′(m), where T ′ and ε′ may be any pair of functions satisfying

T (p−1
1 (m)) = p2(T ′(m)) · p3(1/ε′(m)) · p4(m) (2)

ε(p−1
1 (m)) =

p5(ε′(m))
p6(T (m)) · p7(m)

(3)

2 The above discussion refers to an abstract experiment (or pair of experiments).
When applied to the examples given above, repeating the experiment means things
like inverting a one-way function on one of several independently selected images, or
distinguishing between multiple samples of two ensembles.
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where p1, p2, ..., p7 are the polynomials specified above. (Assuming, on the con-
trary, that Sf can be violated on m-bit inputs in time T ′(m) with success measure
ε′(m), implies – via the reduction – violation of f on n-bit inputs in time T (n)
with success measure ε(n).)

2.2 Levin’s Notion of Work

In order to simplify treatments as above, Levin suggested to incorporate the
running-time and the success-measure of each violating algorithm into a single
measure called work. The foregoing distinction between easily verifiable and non-
verifiable success measures is crucial to his suggestion. For a verifiable success
measure, the work of an algorithm A with running-time tA :N→N and success
measure εA : N→R is defined as wA(n) def= tA(n)/εA(n). For a (non-verifiable)
success measure of the gap type, the work of an algorithm A with running-time
tA :N→N and success measure εA :N→R is defined as wA(n) def= tA(n)/ε2A(n).
(We stress that the definition of work is problem specific and ad-hoc in nature.)3

In the sequel, we shall adopt Levin’s simplification. A reader feeling uncom-
fortable with this choice, may consider only algorithms with constant success
measure (in which case work is identical to time (up-to a constant factor)). Se-
curity will be defined as a (possibly postulated) lower bound on the work of
violating algorithms. For example, one may assume that the security of fac-
toring is exp(n1/4), and infer (based on this assumption)4 that pseudorandom
generators of security exp(n1/4) exist.

Definition (security): Let Π be some primitive with an associated notion of
violation that specifies a notion of success measure and induces a notion of work
of violating algorithms. We say that Π has security S : N→N if any algorithm
A violating Π has work function that grows faster than S.

3 Levin’s Hierarchy of Reductions (Revisited)

In order to demonstrate the different quality of certain reductions, Levin has sug-
gested three types of reductions, which were later canonized in Luby’s book [12].
Letting S :N→N denote the security of the basic primitive, and S′ :N→N the
security of the complex primitive constructed from the former, the three types
of reductions are:

(L1) A reduction is linearly preserving if it guarantees S′(n) ≥ S(n)/poly(n).
(L2) A reduction is polynomially-preserving if it guarantees S′(n) ≥ S(n)e/

poly(n), for some constant e > 0.

3 The abstract discussion above does not fully justify the definition (see Footnote 2).
Furthermore, other functionalities of running-time and success-measure may make
sense too.

4 See [2, Sec. 3.4].
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(L3) A reduction is weakly-preserving if it guarantees S′(n) ≥ S(nd)e/poly(n),
for some constants d, e > 0.

Levin has noted that, for nicely-behaved security measures, a reduction that
guarantees S′(n) ≥ S(n/d)e/poly(n), for some constants d, e > 0, is also
polynomially-preserving. The argument is based on the fact that in our con-
text all primitives are breakable within exponential time (i.e., time 2n on input
length n), and so one may assume without loss of generality that S(n) ≤ 2n.
Furthermore, for “nicely-behaved” functions S, which are exponentially bounds,
and for c > 1 one may expect that S(cm) ≤ S(m)c holds. Thus, S′(n) ≥
S(n/d)e/poly(n) ≥ S(n)ed/poly(n). Still, it seems inappropriate to identify the
effect of e and d in a guarantee such as the foregoing (L2). Furthermore, when do-
ing so, we lose an important distinction, which is represented in the gap between
the following Types (T2) and (T3).

3.1 The Revised Hierarchy

(T1) A reduction is strongly preserving if it guarantees S′(n) ≥ S(n)/poly(n).
(This is identical to (L1) above.)

(T2) A reduction is linearly-preserving if, for some constant c ≥ 1, it guarantees

S′(n) ≥ S(n/c)
poly(n)

(This extends (T1), where c = 1, in an important way.)
(T3) A reduction is polynomially-preserving if, for some constants c ≥ 1 and

e > 0, it guarantees

S′(n) ≥ S(n/c)e

poly(n)

(Formally, (T3) extends (L2), where c = 1; but, for “nicely behaved se-
curity measures” (see the foregoing discussion), type (T3) is equivalent to
type (L2).)

(T4) A reduction is weakly-preserving if, for some constants c, d, e > 0, it guar-
antees

S′(n) ≥ S(cnd)e

poly(n)

(This is equivalent to (L3) above.)

Thus, we replace (L2) by the two distinct categories (T2) and (T3).

3.2 Discussion

On the relation between (T2), (T3) and (L2). Levin’s category (L2) is a special
case of our (T3). In light of the discussion about, we believe that Levin himself
would not care much about the extension of (L2) to (T3). In contrast, we believe
that the distinction between Types (T2) and (T3) is very important.
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We note that many claims made by Luby [12] regarding (L2) actually refer
to either (T2) or (T3), and are valid for (L2) only under the above assumption
(i.e., S(cn) ≤ S(n)c, for every constant c > 1) which collapses (T3) into (L2).
Furthermore, when referring to (L2) one losses the important distinction between
Types (T2) and (T3). These considerations are examplified by considering the
following results.

– A hard-core predicate for any one-way function [6]: The original reduc-
tion of [6] (as well as the better known alternative reduction (as presented
in [2, §2.5.2.1–3])) is of Type (T3).5 In contrast, the improved reduction of
Levin [11] (see also [2, §2.5.2.4]) is of Type (T2).

– Security-preserving amplification of one-way function [5]: The reduction
demonstrating this result for the case of one-way permutations is of Type
(T2). In contrast, the known reduction (of [5]) for the case of regular one-way
functions is only of Type (T3), for some range of parameters.6

Thus, the distinctions between the strengths of the aforementioned pairs of re-
sults are reflected in the distinction between (T2) and (T3), but are not reflected
by Levin’s Hierarchy (since these results are all of type (L2)). We chose these
examples because they are famous cases in which the entire point of the corre-
sponding work is obtaining an improvement in quality of reductions among the
studied primitives. Thus, the distinction between (T2) and (T3) is essential for
making the point (as demonstrated above).

Beyond (T4). With the exception of a single case, all results we are aware of (in
the field) are proven by a reduction of Type (T4), or lower. The only exception
is Levin’s observation regarding the existence of a universal one-way function
(cf., [10] and [2, Sec. 2.4.1]).

A final Warning. It should be clear that the above classification (as well as
the one suggested in [12]) is ad-hoc in nature. Namely, it only represents our
knowledge of the current reductions, and an attempt to classify them in a way
that reflects their theoretical strength and practical applicability. Each type may
be further refined according to the constants (and/or polynomials) appearing in
its definition. Furthermore, in some cases (depending on such refinements), a
reduction with higher type may be preferable (in practice) to one with lower
type (e.g.,. 2

√
n < n100 for n < 106).

5 The claim in [12] by which the reduction is of type (L2) is correct only for “nicely
behaved security measures” (see foregoing discussion).

6 Actually, in the regular case, the construction in [5] depends on the security of the
basic (weak) one-way function, and so we have a family of reductions one per each
security function S (which needs to be efficiently computable). These reductions are

of Type (T3), provided that, for some d < 1, S(n) < 2nd

. Otherwise they are only
of Type (T4).
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An Out of Scope Comment: As discussed in Footnote 6, some results are proven
by a construction that depend on the security of the basic scheme; that is,
for every security function S, a different construction of a complex primitive is
presented (assuming that the basic one has security S). One should prefer results
proven via a single construction, which is oblivious of the security of the basic
scheme. The security of the resulting construct will depend on the security of
the basic one, but the latter need not be known a-priori. In practical terms this
means that one may make a weak assumption regarding the basic scheme such
that this assumption guarantees sufficient security for the construct. If the basic
scheme turns out to be more secure than originally assumed then the resulting
construct will benefit in security (as per the security guarantee given with the
reduction). In contrast, when the construction depends on the assumed security,
better than postulated security of the basic scheme may not translate to better
security of the construct.

Acknowledgments. We are grateful to Mihir Bellare for helpful comments.
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Contemplations on Testing Graph Properties

Oded Goldreich

Abstract. This article documents two programmatic comments regard-
ing testing graph properties, which I made during the Dagstuhl workshop
on Sublinear-Time Algorithms (July 2005). The first comment advocates
paying more attention to the dependence of the tester’s complexity on
the proximity parameter. The second comment advocates paying more
attention to the question of testing general graphs (rather than dense
or bounded-degree ones). In addition, this article includes a suggestion
to view and discuss property testing within the framework of promise
problems.

Keywords: Property testing, graph properties.

An early version of this memo appeared on the author’s webpage (in July 2005).
The current revision is intentionally minimal. For a review of some subsequent
developements, the interested reader is directed to [15].

Preliminaries. We assume that the reader is familiar with the basic models and
results regarding testing graph properties (see surveys [15, 28]).

1 Complexity as a Function of the Proximity Parameter

It is indeed an amazing fact that many properties can be tested within (query)
complexity that only depends on the proximity parameter (rather than also on
the size of the object being tested). This amazing statement seems to put in
shadow the question of what is the form of the aforementioned dependence,
and blurs the difference between a reasonable dependence (e.g., a polynomial
relation) and prohibiting one (e.g., a tower-function relation). We claim that, as
in the context of standard approximation problems (cf. [25]), the dependence of
the complexity on the approximation (or proximity) parameter is a key issue.

For the sake of simplicity we focus on the query complexity of testers, and
assume that it only depends on the proximity parameter ε. We highlight the
difference between the following types of dependencies, where ε-testing refers to
distinguishing between objects that have the property and objects that are ε-far
from having the property:

1. The query complexity is linearly related to the proximity parameter; that is,
ε-testing can be achieved by using O(1/ε) queries.
We note that, for any non-trivial graph property, the query complexity of
ε-testing in the adjacency matrix model is Ω(1/ε) (see [22, Prop. 6.1]).1 The
same lower-bound holds in the bounded-degree incidence list model.

1 This result was conjectured in the earlier version, which mentioned the weaker lower
bound of Ω(

√
1/ε), which is easier to establish.
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2. The query complexity is polynomially related to the proximity parameter;
that is, ε-testing can be achieved by using poly(1/ε) queries.
For example, all graph property testers in [17] have query complexity
poly(1/ε). We note, however, that some of these testers (e.g., the one for
3-colorability) have time complexity that is exponential in the proximity pa-
rameter ε, and this seems unavoidable assuming that NP does not have sub-
exponential time algorithms. We wish to praise [4, 10] for further studying
the query complexity of testing k-colorability, and in particular for deter-
mining the query complexity of non-adaptively testing bipartiteness (up to
a polylogarithmic factor).2

A natural problem that is ε-testable within query complexity that only de-
pends on ε, but requires a super-polynomial dependency on 1/ε was pointed
out by Alon [1]. He proved that ε-testing triangle-freeness requires at least
(1/ε)Ω(log(1/ε)) queries. We comment that this is quite far from the known
upper-bound (mentioned in Item 4).

3. The query complexity is exponentially related to the proximity parameter;
that is, ε-testing can be achieved by using exp(1/ε) queries.
We are not aware of any natural testing problem having this query complexity.

4. The query complexity is related to the proximity parameter via a function
that grows tremendously fast. A notorious example is the tower function tf
defined inductively by tf(n) = exp(tf(n − 1)) with tf(1) = 2. (Indeed, tf
is the inverse of the log∗ function.)
Starting in [2], many positive results regarding testing graph properties in
the adjacency matrix model establish such a query complexity; that is, they
establish ε-testers of query complexity tf(poly(1/ε)) (and sometimes even
a tower of towers). In particular, ε-testing triangle freeness is known only
when using tf(poly(1/ε)) queries. This dependence is an artifact of these
results’ application of the Regularity Lemma (or stronger variants of it).

We wish to stress that we do value the impressive results of [2, 5, 6, 14], which
refer to graph testers having query complexity that is independent of the graph
size but depend prohibitingly on the proximity parameter. We view such results
as an impressive first step, which called for further investigation directed at de-
termining the actual dependency of the complexity on the proximity parameter.

Addendum (2006): Recently, Alon et. al. [3] established a combinatorial char-
acterization of graph properties that are testable using a number of queries that
is independent of the graph size. This characterization provides a seemingly ul-
timate answer to the qualitative question of which graph properties are testable
within query complexity that is independent of the graph size and sets the stage
for a quantitative study of the said query complexity.

2 Alon and Krivelevich [4] presented an ε-tester that inspects the subgraph induced

by Õ(1/ε) randomly chosen vertices (thus making Õ(1/ε2) non-adaptive queries),
whereas Bogdanov and Trevisan [10] prove a lower-bound of Ω(1/ε2) non-adaptive
queries (and Ω(1/ε3/2) adaptive queries).
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2 Models of Testing Graph Properties

The bulk of algorithmic research regarding graphs refers to general graphs. Of
special interest are graphs that are neither very dense nor have a bounded-
degree. In contrast, research in testing properties of graphs started (in [17]) with
the study of dense graphs, next (starting in [18]) bounded-degree graphs were
considered, and general graphs were considered only in [26, 27]. This evolution
has historical reasons to be reviewed first.

Testing graph properties was initially conceived (in [17]) as a special case of
the general framework of testing properties of functions (cf. [29]). Thus, graphs
had to be represented by functions, and two standard representations of graphs
seemed most fitting in this context:

1. The adjacency matrix representation [17]: That is, a graph G = (V, E) is
represented by a function g : V × V → {0, 1} such that g(u, v) = 1 if and
only if {u, v} ∈ E. This representation corresponds to the so-called adjacency
queries, and suggests that the (relative) distance between graphs be mea-
sured as the fraction of vertex-pairs on which the corresponding adjacency
matrices differ.
Needless to say, when considering ε-testing, this model is interesting mostly
for ε-dense graphs (i.e., graphs G = (V, E) such that 2|E| > ε|V |2).
(A partial list of the works done in this model includes [1, 2, 4–7, 10, 14, 17,
23].)

2. The (bounded-degree) incidence list representation [18]: Specifically, for a
fixed integer d, the graph G = (V, E) is represented by a function g : V ×
[d] → V ∪{⊥} such that g(u, i) = v if v is the ith neighbor of u and g(u, i) = ⊥
if u has less than i neighbors. This representation corresponds to the so-called
neighbor queries, and suggests that the (relative) distance between graphs be
measured as the fraction of vertex-index pairs on which the corresponding
incidence lists differ.
Needless to say, this model can only be applied to graphs of maximum degree
d. Indeed, we may take d to be arbitrary large, but in this case the model is
interesting mostly for ε-testing graphs having average degree at least εd.
(Work done in this model includes [9, 18–20].)

The reader may note that both models were formulated in a way that identifies
the graphs with a specific functional representation, which in turn defines the
type of queries allowed to the tester as well as the notion of fractional distance
(which underlies the performance guarantee).

The identification of graphs with any specific functional representation was
abandoned by Parnas and Ron [27] who developed a more general model by
decoupling the type of queries allowed to the tester from the distance mea-
sure: Whatever is the mechanism of accessing the graph, the distance between
graphs is defined as the number of edges in their symmetric difference (rather
than the number of different entries with respect to some specific functional rep-
resentation). Furthermore, the relative distance may be defined as the size of
the symmetric difference divided by the actual (total) number of edges in both
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graphs (rather than divided by some (possibly non-tight) upper-bound on the
latter quantity). As advocated by Kaufman et. al. [26], it may be reasonable to
allow the tester to perform both adjacency and neighbor queries (and indeed
each type of query may be useful in a different range of edge densities). Needless
to say, this model seems adequate for the study of testing properties of arbitrary
graphs, and it strictly generalizes the positive aspects of the two prior models
(i.e., the models based on the adjacency matrix and bounded-degree incidence
list representations).

We wish to advocate further study of the latter model. We believe that this
model, which allows for a meaningful treatment of property testing of general
graphs, is the one that is most relevant to computer science applications. Fur-
thermore, it seems that designing testers in this model requires the development
of algorithmic techniques that may be applicable also in other areas of algorith-
mic research. As an example, we mention that techniques in [26] that underly
the average degree approximation of [21]. (Likewise techniques of [18] underly
the minimum spanning tree weight approximation of [11]; indeed, as noted next,
the bonuded-degree incidence list model is also more algorithmic oriented than
the adjacency matrix model.)

Let us focus on the algorithmic contents of property testing of graphs. We first
note that, ignoring a quadratic blow-up in the query complexity, property testing
in the adjacency matrix representation reduces to sheer combinatorics: To ε-test
if G has property P, it suffices to check whether a random induced graph (of ade-
quate size) of G has some “related” property P′ (see [23]).3 In contrast, property
testing in the incidence list representation employs some non-trivial algorithmic
techniques such local search (cf. [18]) and random walks (cf. [19]). Testers in the
general (“flexible”) graph models seem to require even more algorithmic ideas
(cf. [26]).

To summarize, we advocate further study of the model of [26, 27] for two
reasons. The first reason is that we believe in the greater relevance of this model
to computer science applications. The second reason is that we believe in the

3 In the original version of this article we wrote:

We mention that the transformation of [23] may increase the query complexity
in a quadratic manner. It is conceivable that an adaptive tester (which is less
dull from an algorithmic perspective) may perform better than the canonical
tester of [23] (which merely examines a random induced subgraph).

In fact, this possibility has subsequently materialized in [24] and [22]. In view of these
works, we feel that the foregoing sentiments (i.e., “reduction to sheer combinatorics”)
were somewhat overstated. As argued in Section 1, one should not dismiss the exact
dependence of the complexity on ε, and it seems that algorithmic ideas can contribute
to reducing the complexity by a constant power. We do not recall our thoughts
regarding this matter in July 2005, but it seems that we did not really believe in
the possibility that we mentioned as conceivable (i.e., that an adaptive tester may
perform better than a canonical tester), let alone when natural graph properties
were concerned.
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greater potential of this model to have cross fertilization with other branches of
algorithmic research.

A Parenthetical Comment: We seize the opportunity to call attention also to
the study of testing properties of directed graphs, initiated in [8].

3 Property Testing as a Type of a Promise Problem

We advocate viewing property testing within the framework of promise problems,
a framework introduced in [12] (see relatively recent survey [16]). Formally, a
promise problem is a partition of the set of all strings into three subsets:

1. The set of strings representing yes-instances.
2. The set of strings representing no-instances.
3. The set of disallowed strings (which represent neither yes-instances nor

no-instances).

The algorithm (or process) that is supposed to solve the promise problem is re-
quired to distinguish yes-instances from no-instances, and is allowed arbitrary
behavior on inputs that are neither yes-instances nor no-instances. Intuitively,
this algorithm (or rather its designer) is “promised” that the input is either
a yes-instance or a no-instance, and is only required to distinguish these two
cases. This generalizes the standard notion of a decision problem, in which each
string is either a yes-instances or a no-instance.

Gap problems constitute a special type of promise problems in which instances
are partitioned according to some metric leaving a “gap” between yes-instances
and no-instances. Standard approximation problems refer to one such type of
metric in which instances are positioned according to the value of the best cor-
responding “solution” (with respect to some predetermined objective function).
Property testing refer to a second type of metric in which instances are po-
sitioned according to their distance from the set of objects that satisfy some
predetermined property.

Indeed, property testing is a relaxation of decision problems, where this re-
laxation leaves a gap between instances that should be accepted (with high
probability) and instances that should be rejected (with high probability). The
former contain all instances that have the predetermined property, whereas the
latter contain all instances that are “far from having the property” (i.e., being
at large distance from any instance in the former set). Typically, the distance (or
proximity) parameter is given as input to the tester, which makes the positive
results stronger and more appealing (especially in light of a separation showed
in [7]). In contrast, negative results typically refer to a fixed value of the distance
parameter.

Thus, for any property P and any distance function (e.g., Hamming distance
between bit strings), two natural types of promise problems emerge:
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1. Testing w.r.t variable distance: Here instances are pairs (x, δ), where x is a
description of an object and δ is a distance parameter. The yes-instances
are pairs (x, δ) such that x has property P, whereas (x, δ) is a no-instance if
x is δ-far from any x′ that has property P.

2. Testing w.r.t a fixed distance: Here we fix the distance parameter δ, and so
the instances are merely descriptions of objects, and the partition to yes
and no instances is as above.

For example, for some fixed integer d, consider the following promise problem, de-
noted BPGd, regarding bipartiteness of bounded-degree graphs. The yes-instance
are pairs (G, δ) such that G is a bipartite graph of maximum degree d, whereas
(G, δ) is a no-instance if G is an N -vertex graph of maximum degree d such that
more than δ · dN/2 edges must be omitted from G in order to obtain a bipartite
graph. Similarly, for fixed integer d and δ > 0, the promise problem BPGd,δ has
yes-instances that are bipartite graphs of maximum degree d and no-instances
that are N -vertex graphs of maximum degree d such that more than δ · dN/2
edges must be omitted from the graph in order to obtain a bipartite graph. In [18]
it was shown that any tester for BPG3, 0.01 must make Ω(

√
N) neighbor queries.

In contrast, for every d and δ, the tester presented in [19] decides BPGd,δ in time
Õ(
√

N/poly(δ)). In fact, this algorithm decides BPGd in time Õ(
√

N/poly(δ)),
where N and δ are explicitly given parameters.

The Formulation Typically Used in the Literature. Indeed, all research on prop-
erty testing refers to the two aforementioned types of promise problems, where
typically positive results refer to the first type and negative results refer to the
second type. However, most works do not provide a strictly formal statement
of their results (see further discussion next), because the formulation is rather
cumbersome and straightforward. Furthermore, in light of the greater focus on
positive results (and in accordance with the traditions of algorithmic research),
such a formal statement is believed to be unnecessary.4 Let us consider what is
required for a formal statement of property testing results.

– The starting point is a specification of a property and a distance function,
the combination of which yields a promise problem (of the first type).
[Needless to say, this starting point is common to all property testing work,
but the fact that it constitutes a promise problem is rarely stated.]

– The first step is to postulate that the potential “solvers” (i.e., property
testers) are probabilistic oracle machines that are given oracle access to the
“primary” input (i.e., the object in the aforementioned problem types).
[Indeed, this step need to be taken and is taken in all works in the area.]

4 Needless to say, a higher level of rigor is typically required in negative statements.
Indeed, property testing is positioned between algorithmic research and complexity
theory, and seems to be more influenced by the mind-frame of algorithmic research.
(We comment that the positioning of a discipline is determined both by its contents
and by sociology-of-science factors.).
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– Secondly, for a formal asymptotic complexity statement, one needs to
specify the “secondary” (explicit) inputs, which consist of various problem-
dependent parameters (e.g., N and d in the foregoing examples) and the
distance parameter δ (in case of BPGd and any other problem of the first
aforementioned type).
[This step is rarely done explicitly in the literature. The importance of this
step is highlighted in [6, 7], which explicitly distinguish testers that decide
obliviously of N from general testers the decision of which may depend on
N even in case their query complexity is independent of N .]

– Finally, one should state the complexity of the tester in terms of these explicit
inputs.
[Needless to say, this is always done...]

Thus, the only step that is acutely missing in typical works is a rigorous defi-
nition of the relevant explicit inputs (especially, the various problem-dependent
parameters). Regardless of whether or not one explicitly uses the promise prob-
lem formulation, we suggest to be more careful about specifying the (problem-
dependent) explicit inputs given to the tester.
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Another Motivation for Reducing the

Randomness Complexity of Algorithms

Oded Goldreich

Abstract. We observe that the randomness-complexity of an algorithm
effects the time-complexity of implementing a version of it that utilizes
a weak source of randomness (through a randomness-extractor). This
provides an additional motivation for the study of the randomness com-
plexity of randomized algorithms. We note that this motivation applies
especially in the case that derandomization is prohibitingly costly.

Keywords: andomness Complexity, Weak Sources of Randomness,
Randomness Extractors, Pseudorandom Generators, Sampling, Property
Testing.

This article was completed in Nov. 2006, and appeared on the author’s webpage.

1 Introduction: The Standard Motivations

The randomness-complexity of a randomized algorithm is a natural complex-
ity measure associated with such algorithms. Furthermore, randomness is a
“real” resource, and so trying to minimize the use of it falls within the stan-
dard paradigms of algorithmic design.

In addition to the aforementioned generic motivation (which was highlighted
in [2]), there is a more concrete motivation (which was highlighted in [16]): If
we manage to reduce the randomness-complexity to become sufficiently low,
then this opens the door to a relatively efficient derandomization. Specifically,
a randomized algorithm having time-complexity t and randomness-complexity
r yields a functionally equivalent deterministic algorithm of time-complexity
2r · t.

2 The Main Message: Another Motivation

In this article we highlight another concrete motivation for the study of the
randomness-complexity of randomized algorithms. We refer to the effect of the
randomness-complexity on the overhead involved in implementing the algorithm
when using only weak sources of randomness (rather than perfect ones). Specifi-
cally, we refer to the paradigm of implementing randomized algorithms by using a
single sample from such a weak source, and trying all possible seeds to a suitable
randomness extractor (see next). We will show that the overhead created by this
method is determined by the randomness-complexity of the original algorithm.
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Randomness Extractors. Recall that a randomness extractor is a function E :
{0, 1}n × {0, 1}s → {0, 1}r that uses an s-bit long random seed in order to
transform an n-bit long (outcome of a) weak source of randomness into an r-
bit long string that is almost uniformly distributed in {0, 1}r. Specifically, we
consider arbitrary weak sources that are restricted (only) in the sense that,
for a parameter k, no string appears as the source outcome with probability
that exceeds 2−k. Such sources are called (n, k)-sources (and k is called the min-
entropy). Now, E is called a (k, ε)-extractor if for any (n, k)-source X it holds that
E(X, Us) is ε-close to Ur, where Um denotes the uniform distribution over m-bit
strings (and the term ‘close’ refers to the statistical distance between the two
distributions). For further details about (k, ε)-extractors, the interested reader
is referred to Shaltiel’s survey [13].

Next we recall the standard paradigm of implementing randomized algorithms
while using a source of weak randomness. Suppose that the algorithm A has
time-complexity t and randomness-complexity r ≤ t. Recall that, typically, the
analysis of algorithm A refers to what happens when A obtains its randomness
from a perfect random source (i.e., for each possible input α, we consider the
behavior of A(α, Ur), where A(α, ω) denotes the output of A on input α when
given randomness ω). Now, suppose that we have at our disposal only a weak
source of randomness; specifically, a (n, k)-source for n $ k $ r (e.g., n = 10k
and k = 2r). Then, using a (k, ε)-extractor E : {0, 1}n × {0, 1}s → {0, 1}r,
we can transform the n-bit long outcome of this source into 2s strings, each of
length r, and use the resulting 2s strings (which are “random on the average”)
in 2s corresponding invocations of the algorithm A. That is, upon obtaining the
outcome x ∈ {0, 1}n from the source, we invoke the algorithm A for 2s times
such that in the ith invocation we provide A with randomness E(x, i). The results
of these 2s invocations are processed in the natural manner. For example, if A
is a decision procedure, then we output the majority vote obtained in the 2s

invocations (i.e., when given the input α, we output the majority vote of the
sequence 〈A(α, E(x, i))〉i=1,...,2s).1

The analysis of the foregoing implementation is based on the fact that “on the
average” the 2s strings extracted from the source approximate a perfect r-bit
long source (i.e., a random setting of the s-bit seed yields an almost uniformly
distributed r-bit string). In the case of decision procedures this means that if A
has error probability p and X is a (n, k)-source, then the number of values in
〈E(X, i)〉i=1,...,2s that fail A(α, ·) is at most (p + ε) · 2s, where the expectation
is taken over the distribution of X . It follows that the implementation (which
rules by majority) errs with probability at most 2(p + ε). This means that we
should start with p < 1/4. (A similar analysis can be applied to the randomized
search procedures discussed in Footnote 1.)

1 For search problems in NP, we output any valid solution that is obtained in the
relevant 2s invocations. For general search problems (i.e., outside NP), some extra
condition regarding the original randomized algorithm is required (e.g., either that
it never outputs a wrong solution or that it outputs some specific correct solution
with probability that exceeds 1/2 by a noticeable amount).
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The Cost of the Use of a Weak Source of Randomness. Let us consider the cost
of the foregoing implementation. We assume, for simplicity, that the running-
time of the randomness extractor is dominated by the running-time of A. Then,
algorithm A can be implemented using a weak source, while incurring an over-
head factor of 2s. Recalling that s > log2 n (see [13]) and that n > k > r, it
follows that the aforementioned overhead is at least linear in r. On the other
hand, if s = (1+o(1)) log2 n and n = O(r) (resp., s = O(log n) and n = poly(r))
then the aforementioned overhead is in fact linear in r (resp., polynomial in r).
This establishes our claim that the time-complexity of implementing randomized
algorithms when using weak sources is related to the randomness-complexity of
these algorithms. Let us take a closer look at this relationship.

A Focus on Two Common Setting of n w.r.t r. We shall consider two types
of (n, k)-sources, which are most appealing. Indeed, these type of sources have
received a lot of attention in the literature. Furthermore, it suffices to set the
deviation parameter of the extractor (i.e., ε) to a small constant (e.g., ε = 1/10
will do). Recall that r denotes the number of bits that we need to extract for
such a source (in order to feed it to our algorithm). The two cases we consider
are:

1. Linearly related n, k and r; that is, for some constants c > c′ > 1, it holds
that n = c · r and k = c′ · r. In other words, we refer to sources having a
constant rate of min-entropy.
In this case, efficient randomness extractors that use s = log n+O(log log n)
= log2 Õ(n) are known (cf. [15,13]). Using these extractors, we obtain an
implementation of A (using such weak sources) with overhead factor Õ(r).

2. Polynomially related n, k and r; that is, for some c > c′ > 1, it holds that
n = rc and k = rc′ . In other words, we refer to a source having min-entropy
that is polynomially related to its length.
In this case, efficient randomness extractors that use s = log Õ(n) = c log2

Õ(r) are known (cf. [14,13]). Using these extractors, we obtain an implemen-
tation of A (using such weak sources) with overhead factor Õ(rc).

In both cases, the overhead factor is approximately linear in the length of the
source’s outcome (which, in turn, is linearly or polynomially related to r).

We wish to stress that the implementation paradigm considered above is most
relevant in the case that a full derandomization (incurring an overhead factor of
2r) is prohibitingly costly. Two settings in which this is inherently the case are
considered next.

3 Two Settings: Sampling and Property Testing

Derandomization is not a viable option in the setting of sampling and property
testing, and thus these settings provide a good demonstration of the importance
of the new motivation. We start with the setting of sampling, although the more
dramatic results are obtained in the context of property testing, which may be
viewed as a generalization of the context of sampling.
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3.1 Sampling

In many settings repeated sampling is used to estimate the average of a huge
set of values. Namely, given a “value” function ν : {0, 1}n → R, one wishes
to approximate ν̄

def= 1
2n

∑
x∈{0,1}n ν(x) without having to inspect the value

of ν at each point of the domain. The obvious thing to do is sampling the
domain at random, and obtaining an approximation to ν̄ by taking the average
of the values of ν on the sample points. It is essential to have the range of ν
be bounded (or else no reasonable approximation is possible). For simplicity, we
adopt the convention of having [0, 1] be the range of ν, and the problem for other
(predetermined) ranges can be treated analogously. Our notion of approximation
depends on two parameters: accuracy (denoted ε) and error probability (denoted
δ). We wish to have an algorithm that, with probability at least 1−δ, gets within
ε of the correct value. That is, a sampler is a randomized oracle machine that
on input parameters n, ε, δ and oracle access to any function ν : {0, 1}n→ [0, 1],
outputs, with probability at least 1 − δ, a value that is at most ε away from
ν̄

def= 1
2n

∑
x∈{0,1}n ν(x).

We are interested in “the complexity of sampling” quantified as a function
of the parameters n, ε and δ. Specifically, we will consider three complexity
measures: The sample-complexity (i.e., the number of oracle queries made by the
sampler); the randomness-complexity (i.e., the length of the random seed used
by the sampler); and the computational-complexity (i.e., the running-time of the
sampler). We say that a sampler is efficient if its running-time is polynomial in
the total length of its queries (i.e., polynomial in both its sample-complexity and
in n). It is easy to see that a deterministic sampler must have sample-complexity
close to 2n, and thus derandomization is not an option here.

While efficient samplers that have optimal (up-to a constant factor) sample-
complexity are of natural interest, the motivation for the study of the randomness-
complexity of such samplers is less evident. Indeed, one may offer the generic
answer (i.e., that randomness as any other resource need to be minimized), but
the previous section shows that (in a very natural setting) there is a very concrete
reason to care about the randomness-complexity of the sampler: The randomness-
complexity of the sampler effects the sample-complexity of an implementation
that uses a weak random source.

Recall that the naive sampler uses sample-complexity s
def= O(ε−2 log(1/δ))

and randomness-complexity r = s · n. Using sources of constant min-entropy
rate, this yields an implementation of sample-complexity s′ ≈ r ·s = n ·s2. How-
ever using a better sampler that has sample-complexity O(s) but randomness-
complexity r′′ = 2n + O(log(1/δ)) (cf. [1]), we obtain an implementation of
sample-complexity s′′ ≈ r′′ · s = 2n · s + O(ε2s2). This is a significant saving,
whenever good accuracy is required (i.e., ε is small).

3.2 Property Testing

This notion refers to a relaxation of decision problems, where it suffices to distin-
guish inputs having a (fixed) property from objects that are far from satisfying



Another Motivation for Reducing the Randomness Complexity 559

the property (cf., e.g., original papers [11,6] or surveys [4,10]). Typically, one
seeks sublinear-time algorithms that query the object at few randomly selected
locations. In the natural cases, derandomization is not a viable option, because
a deterministic algorithm must inspect at least a constant fraction of the object
(and thus cannot run in sublinear-time). Let us clarify this discussion by look-
ing at the specific example of testing the bipartiteness property for graphs of
bounded-degree.

Fixing a degree bound d, the task is to distinguish (N -vertex) bipartite graphs
of maximum degree d from (N -vertex) graphs of maximum degree d that are ε-far
from bipartite (for some parameter ε), where ε-far means that ε · dN edges have
to be omitted from the graph in order to yield a bipartite graph. It is easy to see
that no deterministic algorithm of o(N) time-complexity can solve this problem.
Yet, there exists a probabilistic algorithm of time-complexity Õ(

√
Npoly(1/ε))

that solves this problem correctly (with probability 2/3). This algorithm makes
q

def= Õ(
√

Npoly(1/ε)) incidence-queries to the graph, and (as described in
the original work [8]) has randomness-complexity r > q >

√
N (yet r < q ·

log2 N).2

Let us now turn to the question of implementing the foregoing tester in a
setting where we have access only to a weak source of randomness. In this case,
the implementation calls for invoking the original tester Õ(r) times, which yields
a total running time of Õ(r)·Õ(

√
Npoly(1/ε)) > N . But in such a case we better

use the standard (deterministic) decision procedure for bipartiteness!
Fortunately, a randomness-efficient implementation of the original tester of [8]

is possible. This implementation (presented in [9,12]) has randomness-complexity
r′ = poly(ε−1 log N) (rather than r = poly(ε−1 log N) ·

√
N). Thus, the cost of

the implementation that uses a weak source of randomness is related to r′ · s =
Õ(
√

Npoly(1/ε)), which matches the original bound (up to differences hidden
in the Õ() and poly() notation). Needless to say, this is merely an example, and
randomness-efficient implementations of other property testers are also presented
in [9,12].

4 Conclusions

This essay articulates an additional motivation for studying the randomness-
complexity of algorithms. This motivation is relevant even if one believes that
generating a random bit is not more expensive than performing a standard
machine instruction. It refers to the fact that the randomness-complexity of
a randomized algorithm effects the running-time of an implementation that may
only utilize a weak source of randomness (and does so by using a randomness-
extractor). Specifically, such an implementation incurs a multiplicative overhead
factor that is (at least) linearly related to the randomness-complexity of the orig-
inal algorithm. This fact motivates the attempt to present randomness-efficient

2 We comment that Ω(
√

N) is a lower-bound on the query-complexity of any property
tester of bipartiteness (in the bounded-degree model; see [7]).
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versions of randomized algorithms and even justifies the use of pseudorandom
generators for this purpose.3
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