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Abstract. Large applications often suffer from excessive memory
consumption. The nature of these heaps, their scale and complex inter-
connections, makes it difficult to find the low hanging fruit. Techniques
relying on dominance or allocation tracking fail to account for sharing,
and overwhelm users with small details. More fundamentally, a program-
mer still needs to know whether high levels of consumption are too high.

We present a solution that discovers a small set of high-impact mem-
ory problems, by detecting patterns within a heap. Patterns are expressed
over a novel ContainerOrContained relation, which overcomes challenges
of reuse, delegation, sharing; it induces equivalence classes of objects,
based on how they participate in a hierarchy of data structures. We
present results on 34 applications, and case studies for nine of these. We
demonstrate that eleven patterns cover most memory problems, and that
users need inspect only a small number of pattern occurrences to reap
large benefits.

Keywords: memory footprint, memory bloat, pattern detection, tools.

1 Introduction

In Java, applications can easily consume excessive amounts of memory [13]. We
commonly see deployed server applications consume many gigabytes of Java heap
to support only a few thousand users. Increasingly, as hardware budgets tighten,
memory per core decreases, it becomes necessary to judge the appropriateness
of this level of memory consumption. This is an unfortunate burden on most
developers and testers, to whom memory consumption is a big black box.

We have spent the past two years working with system test teams that sup-
port a family of large Java applications. These teams perform extensive tests of
applications, driving high amounts of load against them. While running these
tests, they look at gross measures, such as maximum memory footprint. They
may have a gut feeling that the number is high, but have little intuition about
whether easy steps will have any measurable impact on memory consumption.
Sizing numbers alone, whether memory consumption of the process, of the heap,
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Fig. 1. The fraction of the heap that is overhead, including JVM object headers, point-
ers used to implement delegation, and null pointer slots, is often surprisingly high

and even of the size of individual data structures [3,18,10], are not sufficient.
The test teams need a quick evaluation of whether deeper code inspections will
be a worthwhile investment of time.

If size alone does not indicate appropriateness or ease of remediation, then
perhaps measures of overhead can. Prior work infers an overhead measure, by
distinguishing the actual data of a data structure from the implementation costs
necessary for storing it in a Java heap [13]. Overheads come from Java Virtual
Machine (JVM) object headers, null pointers, and various overheads associated
with collections, such as the $Entry objects in a linked structure. Fig. 1 shows
this breakdown, of actual data versus overhead, for 34 heap snapshots from
34 real, deployed applications. The figure is typically quite high, with most
snapshots devoting 50% or more of their heap to implementation overheads.

Unfortunately, when presented with this figure, even on a per-structure basis,
these testing teams were left with only a modified form of their original dilemma.
Instead of wondering how large is too large, they now asked how much overhead is
too much. To a development team, if a memory footprint problem is complicated
to fix, or if the fix is difficult to maintain, it is of little value. Depending on the
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nature of the overhead, a data structure may be easy to tune, or it may just be
something the team has to live with. There are, after all, deadlines to be met.

An Approach Based on Memory Patterns. We have found that common
design mistakes are made, across a wide range of Java applications. For example,
it is common for developers to use the default constructors when allocating
collections: new ArrayList(). If the code only stores a few items in these lists,
we consider this to be an occurrence of a sparse collection pattern; only a few of
the allocated pointers are used, thus the overhead comes from the empty slots.
Hashmaps are often nested, and, if the inner maps are very small, this is an
occurrence of the nested small collection pattern. These sound straightforward,
and that was our goal: find problems that are easily understood, and easily fixed.
Even if we miss large swaths of overhead, at least we are catching the easy stuff.

We discovered that this approach, when based on the right set of patterns,
reliably explains a majority of overheads across a wide diversity of applications.

Detecting and Summarizing Pattern Occurrences. The challenges of this
work came in two parts. First was the cataloging process. This involved a year
of combing over data from many hundreds of real applications, to find the im-
portant patterns. The second challenge lay in the detection and reporting of
pattern occurrences in complex heaps. Existing abstractions and analyses are
insufficient to detect many of the common patterns. Knowing that items stored
in a collection suffer from a high amount of delegation (a design that is actively
encouraged [8]), with its attendant header and pointer overheads, requires know-
ing the boundaries of those items. Where would a scan of the graph of objects
start, and where would it stop, in order to know that these items are highly
delegated, and hence report the cost of this occurrence?

The choice of aggregation is crucial for detecting and reporting problems. Our
approach is motivated by two properties prevalent in large-scale Java programs.
First, multiple instances participate in larger cohesive units, due to the high
degree of delegation common in the implementations of containers and user-
defined entities. All of the objects in such a highly delegated design are grouped
under a single occurrence of a larger pattern. We show how an aggregation
by the role objects play in a data structure can ensure that we detect these
larger patterns. Objects are either part of collection infrastructure, or part of
the implementation details of contained items (entities or nested collections).

Furthermore, framework- and user-defined structures are frequently reused in
multiple contexts. Frameworks themselves employ other frameworks, leading to
deeply layered designs. Existing approaches aggregate by allocation context [7,16],
or by only one hop of points-to context [2,18,3]. To generate meaningful reports,
aggregation by deep context is important, in order to distinguish different uses
(or misuses) of the same building blocks. The analysis cannot report millions of
similar pattern occurrences, for example, one for each of the inner maps in a nest
of hashmaps. In these cases, the context necessary to properly cluster can be in
the dozens of levels of pointers.
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The contributions of this paper are the following:

– Eleven commonly occurring patterns of memory misuse. Table 1 presents a
histogram of the percentage of overhead explained by the eleven patterns,
over 34 heap snapshots.

– The ContainerOrContained Model , a single abstraction that can be used
both to detect occurrences of these patterns, and aggregate these occurrences
into concise summaries based on the data structure context in which they
occur. The abstraction defines the roles that data types play in the collection
and non-collection implementation details of the application’s data models.

– An analysis framework for detecting and aggregating pattern occurrences,
and encodings of the patterns as client analyses.

– A tool that implements this framework, and evaluations of its output on nine
heaps. This tool is in initial use by system test teams within IBM.

– A characterization study of footprint problems in 34 heaps. The study shows,
for example, that our set of patterns suffice to explain much of the overhead
in heaps, and that a tool user typically need only inspect a small number of
pattern occurrences to reap large benefits.

Fig. 2 summarizes our approach. We acquire a heap snapshot from a running
Java application. From this snapshot, we compute the ContainerOrContained
Model. We have encoded the patterns as clients of a common graph traversal
algorithm. The traversal of a chosen data structure computes the count and over-
head of each pattern occurrence, aggregated by its context within the structure.

2 The Memory Patterns

We have found that eleven patterns of memory inefficiency explain the majority
of overhead in Java applications. The patterns can be divided into two main
groups: problems with collections, and problems with the data model of con-
tained items. The goal of this section is to introduce the patterns. In the next
sections, we introduce a set of data structure abstractions and an algorithm
for detecting and aggregating the occurrences of these patterns in a given data
structure.

All of these patterns are common, and lead to high amounts of overhead.
Table 2 names the eleven patterns. We use a short identifier for each, e.g. P1

Table 1. The analysis presented in this paper discovers easy to fix problems that
quite often result in big gains. These numbers cover the heap snapshots in Fig. 1. The
overhead is computed as described in Sect. 3.4.

overhead explained # applications

0–30% 0
30–40% 4
40–60% 9
60–80% 7
80–100% 14
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(a) A heap snapshot (b) A ContainerOrContained Model instance for one
data structure

(c) We present eleven mem-
ory pattern client analyses.

(d) The analyses scan for
occurrences of the patterns;
e.g. P1 occurred 3 times.

Fig. 2. From the raw concrete input, a heap snapshot from a Java application, we
compute a set of abstract representations. We compute one abstract form, called the
ContainerOrContained Model, per data structure in the heap snapshot. The client
analyses scan each data structure for problematic memory patterns, making use this
abstract form.

stands for the pattern of empty collections. Table 3 shows that these patterns do
indeed occur frequently across our sample heap snapshots, often multiple times
per snapshot. Sect. 5 gives detailed findings of our detection algorithm.

2.1 Patterns P1–P3: Empty, Fixed, Small Collections

Each of these patterns has the general nature of a large number of collections
with only a few entries. This situation leads to a high amount of overhead due
to a lack of amortization of the fixed costs of a collection. The fixed costs of
a HashSet in the Java standard library, which includes multiple Java objects
and many field slots, is around 100 bytes (on a 32-bit JVM). This sounds like
an inconsequential number, but if that set contains only a few entries, then the
relative contribution of that fixed overhead to the total heap consumption is
high. The fixed cost of a ConcurrentHashMap in Java is 1600 bytes!

Two important special cases have very different remedies from the general case
of small collections. The first is the fixed-size small collections pattern, where
all the instances of such collections contain always the same constant number
of entries. These may benefit from using array structures, rather than a general
purpose collection. The second is the empty collections pattern; occurrences of
these could be lazily allocated.

2.2 Pattern P4: Sparsely Populated Collections

Collections that have an array-based implementation risk being sparsely pop-
ulated. Fig. 3 shows an ArrayList that was instantiated with its default size,
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Table 2. The eleven memory patterns

memory pattern identifier

Empty collections P1
Fixed-size collections P2
Small collections P3
Sparsely populated collections P4
Small primitive arrays P5
Boxed scalar collections P6
Wrapped collections P7
Highly delegated structures P8
Nested Collections P9
Sparse references P10
Primitive array wrappers P11

typically 10 or 12 entries, but that currently contains only two Strings. Unlike
the first three patterns, this pattern affects both a large number of small (sparse)
collections, and a single large (sparse) collection. The causes of a poorly popu-
lated collections are either: 1) the initial capacity of the collection is too high,
or 2) the collection is not trimmed-to-fit following the removal of many items,
or 3) the growth policy is too aggressive.

2.3 Pattern P5: Small Primitive Arrays

It is common for data structures to have many small primitive arrays dangling
at the leaves of the structure. Most commonly, these primitive arrays contain
string data. Rather than storing all the characters once, in a single large array,
the application stores each separate string in a separate String object, each of
which has its own small primitive character array. The result is often that the
overhead due to the header of the primitive character array (12 bytes, plus 4
bytes to store the array size) often dwarfs the overall cost of the data structure.
If this data is intended to be long-lived, then it is relatively easy to fix this
problem. Java Strings already support this substring optimization.

Table 3. Across the 35 snapshots in Fig. 1, the memory patterns occur frequently. The
patterns are also not spurious problems that show up in only one or two applications;
many occur commonly, across applications.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

# pattern occurrences 37 16 45 11 7 19 2 111 5 5 46
# applications 18 12 20 8 6 13 2 29 3 4 19
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Fig. 3. An example of the sparse collection pattern, in this case with eight null slots

2.4 Pattern P6: Boxed Scalar Collections

The Java standard collections, unlike C++ for example, do not support collec-
tions with primitive keys, values, or entries. As a result, primitive data must
be boxed up into wrapper objects that cost more than the data being wrapped.
This generally results in a huge overhead for storing such data.

2.5 Pattern P7: Wrapped Collections

The Java standard library requires the use of wrappers to modify the behavior
of a collections. This includes, for example, making a collection synchronized
or unmodifiable. HashSet is implemented in this way, too: as a wrapper around
HashMap. This is another case of a cost that would be amortized, if the collections
had many entries, but one with a distinct remedy.

2.6 Pattern P8: Highly Delegated Structures

Java data models often require high degrees of delegation. For example, an em-
ployee has attributes, such as a name and email address. In Java, due to its
single-inheritance nature, one is often forced to delegate the attributes to side
objects; for example, the developer may wish to have these two attributes ex-
tend a common ContactInformation base class. The frequent result is a highly
delegated web of objects, and the repeated payment of the object “tax”: the
header, alignment, and pointer costs.

2.7 Pattern P9: Nested Collections

This pattern covers the common case of nested collections. One can use a
HashMap of HashSets to model a map with multiple values per key. Similarly, a
HashMap of ArrayLists can be used to represent a map which requires multiple
objects to implement a key. Fig. 4 portrays a HashMap of HashSet where String
key maps to a set of values, implemented using a HashSet. For this current
paper, we only cover these two important cases of nested collections: HashMaps
with either HashSet or ArrayList keys or values.
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Fig. 4. An example of the HashMap of HashSet collection pattern

2.8 Pattern P10: Sparse References

In addition to high degrees of delegation, non-collection data often suffers from
many null pointers. This pattern is an important special case of pattern P8:
highly delegated structures. A highly delegated design can suffer from overgen-
erality. The data model supports a degree of flexibility, in its ability to contain
extra data in side objects, that is not used in practice.

2.9 Pattern P11: Primitive Array Wrappers

The last non-collection overhead pattern comes from wrappers around primitive
arrays. These include the String and ByteArrayOutputStream objects whose
main goal is to serve as containers for primitive data. This is a cost related to
P5: small primitive arrays, but one that is outside of developer control; hence we
treat it separately. The Java language does not allow primitive arrays to be stored
inline with scalar primitive data.1 We include this pattern for completeness, even
though in practice developers would have trouble implementing an easy fix to
its occurrences. We wanted to include it, so that the characterization of Sect. 6
can motivate language and compiler developers to fix this problem.

3 The ContainerOrContained Abstraction

We introduce a single abstraction that is useful for both detecting occurrences
of memory patterns and aggregating those occurrences in a way that concisely
summarizes the problems in a data structure. We begin by describing the raw
input to the system of this paper, and briefly present the important limitations
of the dominator relation for heap analysis.
1 Java supports neither structural composition nor value types, those features of C and

C# that permit a developer to express that one object is wholly contained within
another. At least it can be done manually, in the case of scalar data. This is simply
not possible for array data.
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3.1 Heap Snapshots and the Object Reference Graph

The system described in this paper operates on snapshots of the Java heap. This
data is readily available from most commercial JVMs. Typically, one sends a
signal to a Java process, at which point the JVM produces a file that contains
the contents of the Java heap. The analysis can be done disconnected from any
test runs, and the generated snapshots can be shared with development teams
at a later date.

A heap snapshot can be considered as a graph of objects and arrays, intercon-
nected in the way that they reference each other. Fig. 2(a) shows a small-scale
picture of how we consider the heap to be a graph. This graph is commonly
referred to as an object reference graph.

3.2 Limitations of the Dominator Relation

Several existing tools [3,18] base their visualizations and analyses on the domi-
nator forest [9], rather than the full graph. This was also our first choice; it has
some enticing qualities. When applied to an object reference graph, the domi-
nator relation indicates unique ownership: the only way to reach the dominated
object is via reference chasing from the dominator.

Unfortunately, the dominator forest is a poor abstraction for memory footprint
analysis, due to the issue of shared ownership. Fig. 5 illustrates a case where two
data structures share ownership of a sub-structure. An analysis that requires
counting the number of items in a collection, such as the linked-list style structure
in Data Structure 1, must count all items, whether or not they are simultaneously
part of other structures. A traversal of the dominator tree of Data Structure 1
will only count two items — the edge leading to the third is not a part of
the dominator forest. In addition to failing to account for paths from multiple
roots, the dominator relation also improperly accounts for diamond structures.

Fig. 5. The dominator forest is unhelpful both for detecting and for sizing memory
problems. No traversal of a dominator tree (e.g. Data Structure 1 or 2) will encounter
shared sub-structures. A collection, even if it dominates none of its constituents, should
still be considered non-empty.
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The dominator relation introduces a fake edge, from the root of the diamond
to the tail. For these reasons, we base our analysis upon traversals of the full
graph.2

3.3 Roles, and the ContainerOrContained Model

The bulk of objects in a data structure takes on one of six roles. These roles
are summarized in Table 4. Consider a common “chained” implementation of a
hashmap, one that uses linked list structures to handle collisions. Instances of
this hashmap, in Java, are stored in more than one object in the runtime heap.
One of these will be the entry point to the collection, e.g. of type HashMap, and
the rest of the objects will implement the details of the linking structure. These
two roles, the Head of Container, and Implementation Details, are common to
most implementations of structures that are intended to contain an indefinite
number of items.

Underneath the chains of this hashmap will be the contained data structures.
These constituent structures have a similar dichotomy of roles: there are the
Head of Contained structures, and, for each, the implementation details of that
contained structure. Consider the example from earlier (Sect. 2.6): an Employee
data structure that has been implemented to delegate some of its functionality
to other data types, such as PhoneNumber and EmailAddress. That these latter
two pieces of information have been encoded as data types and hence (in Java)
manifested as objects at runtime, is an implementation detail of the Employee
data structure. Another role comes at the interface between the container’s im-
plementation details and the head of the contained items. For example, in a
chained hashmap, the “entry” objects (HashMap$Entry in the Java standard
collections library) will serve the role as this Container-Contained Transition
objects. This role is crucial to correctly detect some of the patterns (shown in
Sect. 4). The final important role, Points to Primitive Array, corresponds to
those objects that serve as wrappers around primitive arrays.

We introduce the ContainerOrContained abstraction, that assigns each ob-
ject in a data structure to at least one of these six roles. Objects not stored
in a collection are unlikely to be the source of memory problems, and hence
do not receive a role in this model. Given an object that is at the root of
a data structure, we show how to compute that structure’s ContainerOrCon-
tained model.3 First, data types that form linking structures, such as the “entry”
objects in a chained hashmap, are identified by looking for cycles in a points-
to graph over types (a simple technique first described in [10]). Any instances
of these types are assigned the Transitionary role, and objects they reference
are assigned the Head of Contained role. Any arrays of references that don’t
point to a Transitionary object are themselves Transitionary; any objects these

2 Many tools, including the authors’ previous work, made a switch over to using the
dominator relation. The demos for one [3] even claim it as their “secret sauce”.

3 In the case that there is a connected component at the root of the data structure,
choose any object from that cycle.
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arrays point to are Heads of Contained structures. Finally, objects that point to
arrays of references or recursive types are Heads of Containers. Note that it is
possible for an object to serve multiple roles, simultaneously. A HashMap inside
a HashMap is both Head of Container and Head of Contained. A String key
is both Head of Contained, and it Points to a Primitive Array. The remaining
objects are either the Implementation Details of a collection, or of the contained
items.

Table 4. In the ContainerOrContained abstraction, objects serve these roles

Role Examples

Head Of Container HashMap, Vector
Head Of Contained keys and values of maps
Container-Contained Transition HashMap$Entry

Points to Primitive Array String

Collection Impl. Details HashMap$Entry[]
Contained Impl. Details everything else

3.4 How Roles Imply Per-Object and Total Overhead

The ContainerOrContained model defines a role for each object in a data struc-
ture. Given this mapping, from object to role, we show that one can compute the
total overhead in that data structure; previous work [13] introduced this concept,
and here we show a novel, much simpler way, to approximate total overhead us-
ing only a ContainerOrContained model that doesn’t rely on dominance. The
goal of this paper is to explain as much of that total overhead as possible, with
a small number of pattern occurrences.

Definition 1 (Per-object Overhead, Total Overhead). Let G be an object
reference graph and D ⊆ G be a data structure of G. The total overhead of D is
the sum of the per-object overhead of each object in D. The per-object overhead
of an object depends on its role:

– Entirely overhead: if its role is Head of Container, Transitionary, or Col-
lection Implementation Detail, then the portion is 100%.

– Headers and pointers: if its role is Head of Contained or Contained Im-
plementation Detail, then the portion includes only the JVM headers, align-
ment, and pointer costs.

– Headers, pointers, and primitive fields: if its role is Points to Primitive
Array, we also include primitive fields, under the assumption that many
primitive array wrappers need to store bookkeeping fields, such as offsets,
lengths, capacities, and cached hashcodes, that are not actual data.
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(a) A data structure (b) ContainerOrCon-
tained DAG

Fig. 6. A data structure, and its corresponding ContainerOrContained DAG

3.5 Regions, and the ContainerOrContained DAG

For every data structure, and the ContainerOrContained model over its con-
stituent types, there is a corresponding directed acyclic graph (DAG) that sum-
marizes the structure’s contents [13]. Informally, the ContainerOrContained DAG
is one that collapses nodes in an object reference graph according to the role they
play and the context in which they are situated. Fig. 6 shows an example data
structure and the corresponding ContainerOrContained DAG. Observe how this
structure has a two-level nesting of collections: the outer collection has a link-
ing structure, and the inner map has an array structure. Sandwiched between
the two collections is a contained item that delegates to two sub-objects; one
of the sub-objects contains the inner array-based collection. The ContainerOr-
Contained DAG collapses this structure down to a, in this case, tree with three
nodes. In general, this summarized form will be a DAG, in the case of diamond
structures.

We define the ContainerOrContained DAG according to an equivalence re-
lation of object reference graph nodes. We present a novel definition and con-
struction algorithm that shows how this DAG is directly inferrable from the
ContainerOrContained model, without reliance on dominance. First, the nodes
of a DAG are regions, which represent one of the two primary roles:

Definition 2 (Head of Region). Let G be an object reference graph and C be
a ContainerOrContained model of the types of G. We say that a node n ∈ G is
a Head of Region if the role of n under C is either Head of Container or the
Head of Contained.

From this, the equivalence relation is defined as follows:

Definition 3 (ContainerOrContained Equivalence). Let G be an object
reference graph, D ⊆ G be a data structure in G with back edges pruned, and C
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be the ContainerOrContained model for the types of G. Two nodes n1, n2 ∈ D
are equivalent under C if either 1) n1 is a head of region and n2 is not and there
is no intervening head of region n3 between n1 and n2 (or vice versa for n1 and
n2); or 2) neither n1 nor n2 is a head of region, but they lie under an n3 that
is a head of region, with no intervening head of region n4 that is on either the
path from n1 to n3 or from n2 to n3; or 3) n1 and n2 have the same role under
C and the parents of n1 are equivalent to the parents of n2.

4 Detecting Pattern Occurrences, and Aggregating Them
by Context

We describe an algorithm that, parameterized by the details of a pattern, scans
for occurrences of that pattern in a given data structure.4 We initially coded
each pattern as its own set of code, but eventually came to realize that each
pattern differed in only three ways:

– The start and stop criteria. The boundaries of an occurrence, the details of
which vary from pattern to pattern, but can always be expressed in terms of
roles. For example, whether a HashMap instance is an occurrence of the empty
collection pattern depends on the objects seen in a traversal of the subgraph
bounded on top (as one traverses from the roots of the data structure being
scanned) by a Head of Container, and bounded on the bottom by the Heads
of Contained items.

– The accounting metrics. Each pattern differs in what it needs to count, as
the scan proceeds. The empty collection pattern counts the number of Heads
of Contained. The sparse references pattern counts a pair of numbers: the
number of valid references, and the number of null slots.

– The match criterion. The empty collections pattern matches that HashMap
if the number of Heads of Contained objects encountered is zero.

Observe that the empty collections pattern cannot count the number of Tran-
sitionary objects, (HashMap$Entry in this case), for two important reasons: 1)
because some collections use these Transitionary objects as sentinels; and 2)
sharing may result in two Transitionary objects referencing a single Head of
Contained object.

Each match of a pattern would, without any aggregation, result in one pat-
tern occurrence. This would result in needlessly complicated voluminous reports.
Instead, as the algorithm traverses the data structure, it detects which Con-
tainerOrContained region it is current in. Any occurrences of a pattern while the
traversal is in a particular region are aggregated into that region. The output
is a set of encountered regions, each with a set of occurrences. Each occurrence
will be sized according to the accounting metrics of the pattern. Fig. 7 gives
Java-like pseudocode for the algorithm.
4 A set of patterns can be scanned for simultaneously. The description in this section

can be generalized straightforwardly to handle this.
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For example, a scan for occurrences of the empty collections pattern would
count the total overhead of the collection’s Implementation Details, matches if
the number of Heads of Contained is zero, and upon a match accumulate that
overhead into the ContainerOrContained region in which the empty collection
is situated.

4.1 Client Analyses

Each pattern is detected by a client analysis of the general algorithm of Fig. 7.
In this paper, we chose three patterns that were illustrative of the interesting
variations from client to client. Sect. 5 then describes an implementation, in
which all eleven clients have been implemented.

P3: Small Collections. This client is activated at a Head of Container and
deactivated at a Head of Contained. The client counts the per-object overhead
of the collection’s Implementation Details and the number of Head of Contained
encountered. The accounting operation plays an important role in the pattern
detection. In the case of a map, unless done careful, the client would double
count the key and the value (recall that the Transitionary element points to
a key and a value). We do so by deactivating the accounting when a Head Of
Contained is reached. The scanning is reactivated at the traversal in postorder of
the Transitionary object. A collection instance, e.g. one instance of a HashMap,
matches the pattern if it contains, in the current implementation, at most nine
entries.

P4: Sparsely Populated Collections. The scope of a sparsely populated
collection is from a Head of Container element up to the next Head of Container
or Head of Contained element. The pattern counts the number of null slots
and its corresponding overhead and the number of non-null slots. The pattern
matches the collection when the number of null slots is greater than the number
of non-null slots.

P5: Small Primitive Arrays. The boundary of a small primitive array pattern
occurrence is a Points to Primitive Array elements as start condition and the
traversal stops when the primitive array is reached. The client counts the per-
object overhead of the primitive array and the size of actual primitive data. A
match happens when the amount of data is small, compared to the overhead.

Table 5 presents the time to detect5 all the eleven pattern categories in the
heap snapshots from Fig. 1. While computation time is sometimes less than 2
minutes for heaps with tens of million of objects (e.g. Applications S8 and S9,
with 57 and 34 million of objects respectively), there are also extreme cases where
the computation time is high. Currently we are working on a few optimization
possibilities to address the slow analysis time.

5 Using Sun’s Linux JVM 1.6.0 13 64-Bit with -server flag, on a 2.66GHz Intel(R)
Core(TM)2 Quad CPU.
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interface Pattern {
boolean start(Role role);
boolean stop(Role role);
boolean match(Accounting accounting);
Accounting makeAccounting();

interface Accounting {
void accountFor(GraphNode node,

Role roleOfNode);
int overhead();

}
}

interface PatternOccurrence {
void incrOverhead(int bytes)
void incrCount();

}

interface Region extends Map<Pattern,
PatternOccurrence> {}

interface ContainerOrContainedModel {
Role role(GraphNode node);
Region equivClass(GraphNode node);

enum Role { ... }; // see Table 4
}

Set<PatternOccurrences>
computePatternOccurrences(Pattern
pattern, Graph dataStructure,
ContainerOrContainedModel CoC) {

Set<PatternOccurrences> occurrences; //
the output

dataStructure.dfsTraverse(new GraphData.
Visitor() {

Stack<Accounting> accountingStack;
boolean active;

void preorder(GraphNode node) {

Role role = CoC.role(node)
if (pattern.stop(role) {

if (!patternStack.isEmpty()) {
accountingStack.top().

accountFor(node, role
);

active = false;
}

} else if (pattern.start(role)) {
active = true;
patternStack.push(pattern.

makeAccounting());
}
if (active) {

accountingStack.top().
accountFor(node, role)

}
}
void postorder(GraphNode node) {

if (pattern.start(node)) {
region = regionStack.pop();
if (pattern.match(

accountingStack.pop()) {
Region region = CoC.

equivClass(node);
PatternOccurrence occ =

region.get(pattern);
occ.incrCount();
occ.incrOverhead(

accountingState.
overhead());

occurrences.add(occ);
}

} else if (pattern.stop(node)) {
active = true;

}
}

});
return occurrences;

}

Fig. 7. The algorithm that, given a pattern and a data structure, produces a set of
aggregated pattern occurrences

5 Experiences with Our Tool

We have implemented the algorithm described in Sect. 4 and the eleven pat-
terns in a tool that analyzes a heap snapshot for problematic uses of memory.
It is in initial use by system test teams within IBM. The tool presents a list
of the pattern occurrences, ranked by the amount of overhead they explain,
and grouped by ContainerOrContained region. We have an initial visualization
tool, under development, that will present these figures on a picture of the Con-
tainerOrContained DAG. In this section, we walk through uses of the tool on
nine of the heap snapshots from Fig. 1, to give a qualitative feeling of the value of
the analysis, and to demonstrate the kinds of problems that routinely show up in
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Table 5. The number of objects and computation time to detect all the patterns in
the heap snapshots from Fig. 1.

# objects time # objects time # objects time
[million] [minutes] [million] [minutes] [million] [minutes]

S32 102 12.56 S27 14 1.59 S11 3.76 0.13
S4 58 114.37 S13 13 100.63 S25 3.09 7.98
S8 57 1.96 S18 12 3.71 S34 2.03 0.64
S3 50 13.59 S6 11 7.25 S24 1.82 8.78
S16 49 5.68 S1 11 1.52 S5 1.73 0.14
S17 37 19.8 S21 10 22.12 S29 1.41 0.73
S2 37 8.2 S23 8.29 6.06 S12 1.41 0.51
S26 36 9.75 S7 7.77 45.86 S30 1.37 3.14
S14 34 275.62 S15 5.83 77.21 S22 1.14 1.49
S9 34 1.27 S28 5.26 0.91 S20 0.62 1.27
S19 30 12.36 S33 4.36 2.84
S10 26 2.21 S31 4.29 73.62

real applications. Each of these is a real application, not a benchmark. Some are
servers, and some are client applications.6

Table 6 provides a high level overview of footprint problems detected by the
tool system. Each row of the table is a row of the output of the tool: the region
in which the problem occurs, the problematic pattern, and the overhead that
would be saved by fixing that pattern. The next section shows that the number
of rows that user must inspect is typically low; in the worst case of the snapshots
we document, the user must inspect 20 rows.

For the purposes of this section, we have selected some example pattern oc-
currences that would be particularly easy to fix. In a few cases, you will see that
this may not cover a very large fraction of the total overhead; these are the cases
where it would be necessary to fix a dozen, rather than a handful of occurrences.
Still, even in these cases, fixing a few lines of code can reduce memory footprint
by almost 100MB — not bad for a few minutes’ work. We now step through
some of these cases in more detail.

Application S7. This application has a heap size of 652MB of which 517MB
is overhead. The application suffers from three easy to fix problems in three
collections. As shown in the S7 rows of Table 6, these belong to the sparse,
small, and fixed-size collection patterns. One of the collections, a HashMap suffers
simultaneously from both the sparse (P4) and the small (P3) collection patterns.
The small collections are likely to be sparse, too. The tool has split out the costs
of these two separate problems, so that the user can gauge the benefit of tackling
these problems, one at a time: these two problems explain 92MB and 73MB of
overhead, respectively.

The tool also specifies the remedies available for each pattern. For example,
the small sparse HashMaps can be remedied by passing an appropriate number to
the constructor. In addition to reporting the occurrence’s overhead (as shown in
each row of Table 6), the tool (not shown) also reports the occurrence count, and
6 Their names are, unfortunately, confidential.
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Table 6. Each row, a pattern occurrence, was selected as a case that would be easy
for the developers to fix. As Sect. 6 shows, the developer needn’t ever fix more than 20
separate problems (and often far fewer than that) to address overhead issues.

Heap Size
Total

Overhead(TO) Region Pattern
Occurrence
Overhead

Total Overhead
Explained

[Size] [% of TO]

S7 652MB 517MB
HashMap

P4: sparse collections 92MB

206MB 40
P3: small collections 73MB

HashMap P3: small collections 19MB
HashMap P2: fixed-size collections 22MB

S15 1.4GB 971MB

HashSet P1: empty collections 50MB

85MB 9
LinkedList P1: empty collections 6.9MB
ArrayList P1: empty collections 6.9MB

sPropContainer P6: boxed scalar collections 21MB

S3 2.61GB 2.26GB

HashMap P6: boxed scalar collections 306MB

1.1GB 49

SparseNode P8: highly delegated 19MB
HashMap P6: boxed scalar collections 267MB

SparseNode P8: highly delegated 25MB
UnmodifiableMap P7: wrapped collections 108MB

ConcurrentHashMap P1: empty collections 99MB

S8 1.28GB 1GB
TreeMap P6: boxed scalar collections 742MB

806MB 79
TreeMap P6: boxed scalar collections 64MB

S32 9GB 4GB

ArrayList P4: sparse collections 736MB

861MB 21
ObjArray P4: sparse collections 72MB

RedirectHashMap P4: sparse collections 34MB
ArrayList P3: small collections 19MB

S27 506MB 307MB
HashSet P1: empty collections 16MB

22MB 7
HttpRequestMI P3: small collections 6.02MB

S17 1.872GB 1.21GB
ArrayList P4: sparse collections 53MB

84MB 7BigDecimal P10: sparse references 18MB
Date P10: sparse references 13MB

S29 832MB 452MB
Vector

P3: small collections 107MB
143MB 32P4: sparse collections 21MB

Vector P1: empty collections 15MB

S4 2.87GB 2.47GB HashMap P9: nested collections 422MB 422MB 17

a distribution of the sizes of the collection instances that map to that pattern
occurrence. This data can be helpful in choosing a solution. For example, if 90%
of the HashMaps that map to that occurrence have only 6 entries, then this, plus
a small amount of slop, is a good figure to pass to the HashMap constructor. For
now, the tool gives these numbers, and a set of known general solutions to the
pattern of each occurrence. Though this arithmetic work necessary to gauge the
right solution, is straightforward, we feel that it is something the tool should do.
Work is in progress to do this arithmetic automatically.

Application S3. The application uses 362MB on actual data and 2.26GB on
overhead. This application suffers from several boxed scalar collection pattern
occurrences in HashMaps, accounting for 573MB of overhead. There are easy to
use, off the shelf solutions to this problem, including those from the Apache
Commons [1] and GNU Trove [5] libraries.
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The tool also finds a large occurrence of a wrapped collections pattern. This
region is headed by a collection of type Collections$UnmodifiableMap; in the
Java standard libraries, this is a type that wraps around a given Map, changing
its accessibility characteristics. The tool (not shown) reveals an occurrence count
of 2,030,732 that accounts for 108MB of overhead. The trivial solution to this
problem is to avoid, at deployment time, the use of the unmodifiable wrapper.

Application S8. The application consumes 1.28GB, of which 1GB is overhead.
As with Application S3, the main contributors to the overhead are occurrences
of boxed scalar collection pattern. In this case, the guilty collections are two
TreeMaps; one is especially problematic, being responsible for 742MB of over-
head. Upon consultation with the developers, we learned that this application
does not need the sorted property of the map until the map is fully populated. A
solution that stores the map as parallel arrays of the primitive data, and sorts at
the end would eliminate this overhead entirely — thus saving 1GB of memory.

Application S32. This application has a memory footprint of 9GB, of which
4GB is overhead. The main findings belong to the sparse collection pattern. The
largest occurrence is an ArrayList region that consumes 1.43GB (not shown),
and 736MB of these lists are used by empty array slots.

Application S4. The application spends 407MB on actual data and 2.47GB
on overhead. The tool’s main finding is a Hash Map of ArrayList pattern which
accounts for 422MB of overhead. In this case, the single outer map had many
inner, but relatively small, lists. Though not small enough to fire the small
collections pattern, this case fires the nested collections pattern. In general for
this pattern, if the outer collection has a significant larger number of elements
than the inner collection, the memory overhead may be reduced by switching
the order of collection’s nesting. The benefit comes as a consequence of greatly
reducing the total number of collection instances.

6 Validation and Characterization

The detection of costly memory patterns provides support for understanding
how a particular system uses (or misuses) its memory. In this section we look
at the results of our analysis across a range of real-world applications, with two
goals in mind. First, we aim to validate that the approach, along with the partic-
ular patterns, produces effective results. Second, we employ the analysis to shed
light on how Java programmers introduce inefficiencies in their implementations.
This characterization can help the community better determine what sort of ad-
ditional tools, optimizations, or language features might lead to more efficient
memory usage. There are three broad questions we would like to assess: 1) Do
the patterns we have identified explain a significant amount of the overhead?
2) How often do these patterns occur in applications? and 3) Do the patterns
provide the best candidates for memory footprint reduction? To achieve this we
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introduce a set of metrics, and apply them on a set of fifteen real-world appli-
cations. In summary, applying the metrics on the application set shows that the
memory patterns we detect do indeed explain large sources of overhead in each
application.

In Fig. 1 we present examples of applications with large footprint overhead.
For our study, we select from these the fifteen applications which make the least
efficient use of memory, applications where more than 50% of the heap is over-
head. Note that in the reporting of results, we are careful to distinguish between a
pattern category, such as Empty Collections, and a pattern occurrence, an instan-
tiation of a pattern category at a particular context. In all of the computations
of overhead explained by the tool, we consider only pattern occurrences which
account for at least 1% of the application overhead. We choose this threshold
so that we report and ask the user to remediate only nontrivial issues. We do
not want to burden the user with lots of insignificant findings (i.e. of just a few
bytes or kilobytes). To ensure meaningful comparisons, the computation of to-
tal overhead in the heap is based on traversing the entire heap and tabulating
lower-level overheads like object header costs, as described in 3.4 (i.e. it is not
dependent on pattern detection). Thus it includes all sources of overhead, from
trivial and nontrivial cases alike.

6.1 How Much of the Overhead Do the Patterns Explain?

An important measure of the effectiveness of the analysis approach, and of the
particular patterns we have identified, is whether they explain a significant por-
tion of the memory overhead. We introduce an overhead coverage metric to
quantify this.

Definition 4. Overhead coverage measures the percentage of total memory over-
head explained by the memory patterns detected.

Table 1 gives a summary of the coverage across all the heaps we analyzed (not
just the subset of fifteen with high overhead). In almost half of the heaps the tool
is able to explain more than 80% of the overhead. Fig. 8 gives a more detailed
look at the fifteen highest overhead heaps. The third bar shows us the percentage
of overhead explained by 100% of the discovered pattern occurrences.

The remaining, unaccounted for overhead can be useful as well in helping us
identify important missing patterns. In continuing work we are looking at the
unexplained part of the heap, and are identifying which portion is the result
of detecting trivial occurrences of known patterns, and which are new patterns
that need to be encoded.

6.2 How Many Contexts Does a User Need to Look at?

We would like to assess if an application which contains memory inefficiencies
has its problems scattered around the entire application or if the main sources of
overhead are located in just a few contexts. As one validation of the usefulness
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of the pattern detection tool, this can tell us whether a user can examine a man-
ageable number of reported contexts and have a significant impact on memory
footprint. From the tool perspective, the metric provides understanding into the
depth of the patterns occurrences that need to be reported in order for the tool
to be useful. This result is also useful from a characterization standpoint, since
it can suggest whether problems are better addressed by automated optimiza-
tions (e.g. if they are diffuse) rather than by tools (e.g. if they are concentrated).
The tool reports pattern occurrences ordered by the amount of overhead they
explain. We would like to know how significant a part of the memory overhead is
explained by the first reported findings. To achieve this we introduce the Pattern
occurrence concentration metric.

Definition 5. Pattern occurrence concentration shows the percentage of the
heap overhead which is explained by the top N% of the memory pattern occur-
rences detected.

Fig. 8 presents the results of the pattern occurrence concentration metric ap-
plied to the experimental set of applications. The figure reveals the percentage
of the heap overhead which is explained by N% of the top memory pattern oc-
currences detected, where N is 10%, 40% and 100%. We see that on average
more than 25% of the overhead is explained by the top 10% of the findings. In
particular Application 8 has almost 70% of the overhead explained by the top
10% of pattern occurrences. This 70% of overhead is uncovered by one single
pattern occurrence, as seen in Fig. 8(b). This means that the user has to apply
only one fix to greatly reduce the application’s overhead footprint. Having a
single context explain the bulk of the overhead is not typical; usually there are
multiple contexts that need to be addressed. From the results we can also see
that increasing the percentage of pattern occurrences from 40% to 100% does
not provide a significant increment in the total overhead explained, compared
to the number of patterns needed to explain that difference. This means that
the applications have a few important memory issues and the rest are smaller
findings. For instance, in the case of Application 4 the top 40% and 100% of
occurrences explain 50% and 70% of the overhead respectively. 12 pattern oc-
currences are required to uncover that additional 20% of overhead. Thus we can
conclude that the main contributors to the memory overhead are exposed by a
few top occurrences.

6.3 How Many Different Types of Problems Exist in a Single Heap?

The previous metric offers quantitative information about how much of the heap
overhead is explained by the top pattern occurrences. Next, we want to iden-
tify whether an application suffers from a wide range of memory issues or if it
contains only a few types of problems. Moreover, as in the previous metric, we
would like to understand how many pattern categories are needed to account for
a significant portion of the overhead in a given heap.
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of pattern occurrences

1 2 3 4 6 7 8 9 10 11 12 14 17 18 29

10% 1 2 2 2 2 1 1 1 2 2 1 2 1 2 1

40% 2 6 6 8 8 3 2 2 5 6 2 8 4 8 4
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(b) Number of pattern occurrences in the top N%

Fig. 8. Occurrence Concentration

Definition 6. Pattern category concentration is the percentage of the heap over-
head which is explained by the pattern categories represented in the top N% of
memory pattern occurrences detected.

Fig. 9(a) and Fig. 9(b) depicts the category concentration results using the top
10% and 40% of findings respectively. The results show that there are always
only a few categories of memory issues responsible for most of the overhead. Ap-
plication 8 exhibit one type of memory inefficiency and most of the applications
have two or three major contributors to the memory overhead. If we compare the
pattern categories reported in both cases, for N=10% and N=40%, we note that
there are no major new types of problems detected by increasing the number
of pattern occurrences, even when more overhead is explained. Table 7 gives a
numerical summary of the data. We can see that usually a system suffers from
a small number of types of memory inefficiency, for N=40% there are 3 different
issues. We can also observe that the same issue is seen in several different points
in the application. This may be a consequence of the degree of reuse common
in framework-based applications, or of developers coding with a similar style in
multiple places in the code.
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Fig. 9. Category Concentration

6.4 How often Do the Pattern Categories Appear across
Applications?

We have seen that the top findings reveal the main categories of memory inef-
ficiencies usage in a given application. The next question is how often are the
same patterns seen across different applications? Does a small number of pattern
categories explain the bulk of the overhead in most applications, or is there more
variety among applications? To study this across multiple systems we introduce
a pairwise similarity metric.

Definition 7. Pattern category similarity measures the degree to which two ap-
plications contain the same pattern categories. The similarity metric reports the
ratio of the number of pattern categories common to both applications to the total
number of pattern categories detected in the two applications:

CS =
2|PC1

⋂
PC2|

|PC1| + |PC2|
where PC is the set of pattern categories detected in the applications 1 and 2.

The value of pattern category similarity metric belongs to [0, 1]. A value of 1
means that the same pattern categories have been detected in both applications.
The lower the value of the similarity metric the greater the range of problems
identified across two applications.

Fig. 10 reports the similarity metric, computed pairwise for the heaps in our
experimental set. The darker the gray shade, the more common the problems
detected between the two applications. To understand how a given heap com-
pares to each of the other heaps, look at both the row and column labeled with
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Table 7. Number of pattern categories represented in the top 10% and the top 40%
of pattern occurrences

# categories
min median max

top 10% of occurrences 1 1 2
top 40% of occurrences 1 3 5

Fig. 10. Pattern category similarity. The darker the gray shade, the more common are
the pattern categories found in the two applications.

the given heap (i.e. an L-shaped region of cells). There is no single application
that presents completely different pattern categories compared with all the other
applications, though application 8 is the least similar to the others. Eleven ap-
plications out of fifteen contain half of the categories in common with at least 9
applications (i.e. CS≥0.5). From the results we conclude that the same memory
problems are frequently seen across multiple applications.

6.5 Additional Sources of Inefficiency

The current work addresses patterns of memory usage that have a high represen-
tational overhead, using a definition of overhead based on infrastructure costs
such as object headers and collection implementations. Developers also intro-
duce inefficiencies in the way they represent the data proper. For example, in
our experience we have seen many applications with large amounts of duplicate
immutable data, scalar data such as enumerated types that are represented in
text form, or classes carrying the cost of unused fields from overly general base
classes. In future work we would like to address these inefficiencies by encoding
data patterns into the same framework. Much of the existing analysis approach
can be easily extended to support recognition of these patterns.
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7 Related Work

We discuss related work in two main categories.
Patterns. One other recent work has adopted a similar approach to memory
footprint issues with a focus on collections [16]. That paper presents a solution
based on a language for specifying queries of heap structure. We have found that
their language, and the system as a whole, is insufficient for expressing important
patterns. They hard-code collection types, and do not treat any issues outside
the scope of those collections; e.g. there is no discussion of delegation or sparse
references for the items stored within collections. Their aggregation is based
on allocation context of individual objects, with, in some cases, a hard-coded
“k” of context in order to cope with the implementation details of the common
collection classes.

Memory Tools. Many tools put an emphasis on detecting memory leaks
[12,7,17,14], rather than footprint. Several tools place an emphasis on domi-
nance [3,18,10], and a great many tools [2,7,3,18,17,16] use the raw data types
of the program as the basis for aggregation and reporting. Some works focus
on the visualization side of memory analysis. They attempt, through cleverly
designed views, to allow the human to make sense of the heap [2,6], or JVM-
level behaviors [15]. These are indispensable tools for experts, but our experience
shows these to be of less value among the rest of the development teams.

8 Conclusions

In Java, it is difficult to implement a data model with only a single data type.
The language’s lack of support for composition and unions forces us to delegate
functionality to side objects. The sometimes perverse focus on reuseability and
pluggability in our frameworks [11] encourages us to to favor delegation over
subclassing [4,8]. For these reasons, classes are a low level manifestation of intent.
In Java, even the most basic of data types, the string, requires two types of
objects and delegation: a String pointing to a character array.

There is a wide modeling gap between what programmers intend to repre-
sent, and the ways that the language and runtime encourage or force them to
store this information. As a consequence, most Java heaps suffer from excessive
implementation overhead. We have shown that it is possible to identify a small
set of semantic reasons for the majority of these overheads in Java heaps. In
the future, we would like to explore this modeling gap more thoroughly. It is
possible that a more rigorous study of the gap will yield opportunities close it,
for important common cases. Why must we use collections explicitly, to express
concerns that are so highly stylized: relationships, long-lived repositories, and
transient views?
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