
Types, Regions, and Effects for Safe

Programming with Object-Oriented
Parallel Frameworks�

Robert L. Bocchino Jr.1 and Vikram S. Adve2

1 Carnegie Mellon University
2 University of Illinois at Urbana-Champaign

Abstract. Object-oriented frameworks can make parallel programming
easier by providing generic parallel algorithms such as map, reduce, or
pipeline and letting the user fill in the details with sequential code. How-
ever, such frameworks can produce incorrect behavior if they are not
carefully used, e.g., if a user-supplied function performs an unsynchro-
nized access to a global variable. We develop novel techniques that can
prevent such errors. Building on a language (Deterministic Parallel Java,
or DPJ) with an expressive region-based type and effect system, we show
how to write a framework API that enables sound reasoning about the
effects of unknown user-supplied methods. We also describe novel ex-
tensions to DPJ that enable generic types and effects while retaining
soundness. We present a formal semantics and soundness properties for
the language. Finally, we describe an evaluation showing that our tech-
nique can express three parallel frameworks and three realistic parallel
algorithms using those frameworks.

1 Introduction

The emergence of commodity multicore systems is driving parallel programming
into the mainstream, posing new productivity, correctness, and performance
challenges for programmers who are used to writing sequential code. One way to
alleviate these challenges is to use object-oriented frameworks. The framework
writer provides most of the code for parallel construction and manipulation of
generic data structures; for generic parallel algorithms such as map, reduce, or
scan; or for generic parallel coordination patterns such as pipelines. The user
fills in the missing pieces with code that is applied in parallel by the framework.
Examples include the algorithm templates in Intel’s Threading Building Blocks
(TBB) [28] and Java’s ParallelArray [1]. Such frameworks are usually easier to
reason about than general parallel programming because the user only has to
write sequential code, letting the framework orchestrate the parallelism.

� This work was supported by the National Science Foundation under grants CCF
07-02724 and CNS 07-20772, and by Intel, Microsoft, and the University of Illinois
through UPCRC Illinois. Robert Bocchino is supported by a Computing Innovation
Fellowship.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 306–332, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Types, Regions, and Effects for Safe Programming 307

However, state-of-the-art frameworks give no guarantee of noninterference of
effect, and this a serious deficiency in terms of correctness and program un-
derstanding. For example, ParallelArray’s apply method applies an arbitrary
user-specified function to each element of the array. If that operation performs
an unsynchronized update to a global, then a race will result. It would be much
better if (1) the framework developer could write an API expressing a contract
(for example, the function provided to apply has no potentially interfering ef-
fects on shared state); and (2) the compiler could check that the contract is
met by all code supplied by the user to the framework. While several tools
and techniques exist that support writing and checking assertions at interface
boundaries [20, 25, 35], these ideas have not yet been applied to enforce parallel
noninterference. Doing so poses several challenges:

1. Maintaining disjointness. Useful parallel frameworks need to support parallel
updates on contained objects. For example, we would like a ParallelArray
of distinct objects, where the user can define a method that updates an ele-
ment, and ask the framework to apply it to each distinct object in parallel.
To do this safely, the framework must ensure that the objects are really dis-
tinct; otherwise the same object could be updated in two parallel iterations,
causing a race. For a language like Java with reference aliasing, disjointness
of reference is a nontrivial property.

2. Constraining the effects of user-supplied methods. For a parallel update traver-
sal over the objects in a framework, disjointness of reference is necessary but
not sufficient to ensure noninterference. The framework must also ensure
that the effects of the user-supplied methods do not interfere, for example
by updating a global variable, or by following a link from one contained
object to another.

3. Making the types and effects generic. Because different uses of the framework
need user-supplied methods with different effects, the framework should con-
strain the effects of user-supplied methods as little as possible while retaining
soundness. For example, one use of apply may write into each object only,
while another may read shared data and write into each object. The frame-
work should also be generic in the type of the contained objects. These
requirements pose challenges when the framework author needs information
about the type of the contained objects and the effect of user-supplied meth-
ods in order to provide a noninterference guarantee.

4. Writing the framework implementation. The framework author must en-
sure that the internal framework implementation guarantees safe parallelism,
given that the API is enforced. For example, the framework implementation
must ensure that any parallel loop inside the framework iterates exactly once
over each contained object.

Notice that the first three challenges are about defining a framework API that
enables sound reasoning about uses of the framework, while the fourth challenge
is about writing a framework implementation.

In this work we primarily address the first three challenges, i.e., we show how
to write a framework API so that the framework author can reason soundly

308 R.L. Bocchino Jr and V.S. Adve

about interference of effect in arbitrary instantiations of the framework, with
unknown user-supplied methods and generic type bindings. We build on Deter-
ministic Parallel Java (DPJ) [6, 7], which expresses effects in terms of regions
that partition the heap. Regions provide an intuitive and flexible way to express
and check effects.

As to the fourth challenge, we state the properties (type preservation, effect
preservation, and noninterference) that a correct framework must satisfy. In
many cases DPJ can verify those properties. In some cases, however, the DPJ
effect system may be insufficiently expressive to guarantee disjointness of effect.
Here the framework author is free to use a different strategy, such as program
logic [14, 15], testing, or model checking, to verify disjointness. Such checking is
completely hidden from the user of the framework, so that the user gets a strong
guarantee: if the program type checks, then there is no interference.

Our contributions are the following:

1. We show how to write a framework API using DPJ as described in [6] so that
the framework implementer has all the information necessary to guarantee
disjointness of reference and sound effects for user-supplied methods.

2. We show how to extend DPJ to add generic effects and generic types, mak-
ing the frameworks more general and useful. For the effects, we add effect
variables, together with effect constraints to enforce disjointness of effect.
For generic types, we introduce type region parameters, a form of type con-
structor, to guarantee disjointness and soundness of effect, without knowing
the exact type bound to type variables.

3. We sketch the formal semantics of a core subset of the extended language
and formally state the soundness results. The full semantics and proofs are
stated in the first author’s Ph.D. thesis [5].

4. We state the requirements for a correct framework implementation, such that
if these requirements hold, then noninterference is guaranteed for the entire
program. We also show how to use a combination of the DPJ type system
and external reasoning to check the requirements informally. We leave as
future work the formal verification of the requirements.

To evaluate our techniques, we used them to write three parallel frameworks
(Parallel Array, Parallel Tree, and Pipeline) and three applications using those
frameworks. We found that the techniques are expressive enough to capture
realistic parallel algorithms. We also found that the extra annotations required
by the system are fairly simple for framework users and, while more complicated
for framework writers, are not unduly burdensome.

2 Background

DPJ. We begin with a brief introduction to DPJ [6]. DPJ uses regions to specify
access to the heap: every class field and array cell lies in a single region, and
distinct regions represent disjoint collections of memory locations. A region can
be a declared name r, or a colon-separated list of names, such as r1:r2:r3, called

Types, Regions, and Effects for Safe Programming 309

1 public class Node<region R> {
2 int data in R;
3 Node<*> next in R;
4 public Node(int data, Node<R> next) pure { this.data = data; this.next = next; }
5 }

Fig. 1. Node class that will serve as a running example

a region path list (RPL). RPLs give rise to a natural nesting structure: one RPL
is “under” another if the second is a prefix of the first. For example, r1:r2 is
under r1. Nesting is useful for expressing effects (i.e., what regions are read and
written by a particular program statement). The set of all regions under an RPL
R is denoted R:*.

Figure 1 defines a simple list node class that we will also use in subsequent
sections. The class has one region parameter R. Fields data and next are both
placed in region R. When class Node is instantiated into a type, both fields will be
in the region given as the argument to R in the type. The effect of the constructor
is declared pure (no effect), because in DPJ an object is not visible to the rest of
the program until the constructor returns, so constructors do not have to report
their effects on the constructed object. In general, a method must summarize its
effects; if there is no effect summary, the default is “writes the whole heap.”

Figure 2 shows a simple container class, NodePair, that stores a pair of list
nodes. Line 2 declares region names First and Second. Lines 3–4 instantiate
Node types using these names. Line 12 reads field first, located in region First
(line 3). It also writes the data field of first, which is located in region R (line
2 of Figure 1) after substituting First for R, from the type of first (line 3 of
Figure 2). Thus the effect of the write is writes First. Writes cover reads in
DPJ, so the whole effect of line 12 may be summarized as writes First, as
shown. The same reasoning gives the effect writes Second shown in line 13.
Because First and Second are distinct names, the compiler can conclude that
the updates in lines 12 and 13 are disjoint. With these features, together with
additional features for arrays, divide and conquer parallelism, and commutative
operations, DPJ can express important patterns of parallelism [6].

1 class NodePair {
2 region First, Second;
3 Node<First> first in First;
4 Node<Second> second in Second;
5 NodePair(Node<First> first,
6 Node<Second> second) pure {
7 this.first = first;
8 this.second = second;
9 }

10 void updateNodes(int fd, int sd) {
11 cobegin {
12 first.data = fd; // writes First
13 second.data = sd; // writes Second
14 }
15 }
16 }

Fig. 2. Using region parameters to distin-
guish object instances

data

next

data

next

Fig. 3. A potential race caused by
cross links. A race can occur if a task
operating on the left-hand reference
follows the dashed arrow to access the
right-hand object.

310 R.L. Bocchino Jr and V.S. Adve

Difficulties with Region-Based Systems. Region-based effect systems can
be quite expressive, and they are a natural choice for writing safe object-oriented
frameworks. However, existing systems impose significant limitations. As we will
see, by shifting some of the burden of guaranteeing noninterference from the type
system to the framework, we can overcome some of these limitations.

One limitation is that to guarantee soundness we have to prohibit swapping
of first and second in the example:

void swap() {
Node<First> tmp = first;
first = second; // Illegal: Can’t assign Node<Second> to Node<First>
second = tmp; // Illegal: Can’t assign Node<First> to Node<Second>

}

If we could do such an assignment, then we could have multiple references with
conflicting types pointing to the same data, and we would no longer be able to
draw sound conclusions about effects.

For this reason, DPJ and other region-based systems [23, 9] use wildcard
types. For example, in lines 3–4 of Figure 2, we could have written both types
Node<*>, where * stands in for any region. Now the swapping shown above is
sound. However, we have lost the ability to distinguish writes to first.data
and second.data using the type system, because now all we know is that the
writes are to *. So in this case, the state of the art in region-based type systems
forces us to choose: either we can prove that two references don’t alias, or we can
swap the two references, but not both. Notice, however, that (1) regions First
and Second are distinct coming into the constructor (line 5); and (2) the swap
operation preserves the distinctness of First and Second in the dynamic types
of first and second. So in fact it is possible both to allow the swap and to
prove disjointness, although the type system can’t do both.

In fact, the situation is worse than this. As shown in Figure 3, a NodePair
holding distinct list nodes can have cross links. The effect system must ensure
that when following the references to access the objects in parallel, cross links
are never followed to update the same object. Further, we probably don’t want
to encode the write to data into the framework implementation, as shown in
lines 12–13. Instead, as discussed in the introduction, we would like to express
the operation abstractly and let the user supply the specific operation. We must
constrain the effects of the user-supplied method so that for any user-supplied
method, this kind of interference cannot happen. Finally, we don’t really want
a NodePair class; instead, we want a Pair<T>, where T is a generic type.

3 Safe, Reusable Parallel Frameworks

We now show how to address the challenges discussed above to write safe,
reusable parallel frameworks. First we show how to write a container API that
supports sound reasoning about effects for a container specialized to list nodes.
Second, we show how to extend the effect system to make the container API

Types, Regions, and Effects for Safe Programming 311

generic. Third, we address the problem of writing a correct framework imple-
mentation. Although most of this section focuses on the container example, the
work is not specific to containers. In the next section, we formalize the tech-
niques in general terms, without specifically considering disjoint containers. In
Section 5 we use the techniques to write a framework for pipeline parallelism.

3.1 A List Node Container

In this section, we show how to use the DPJ effect system as previously de-
scribed [6] to write a container API that stores Node objects and allows safe
parallel updates to the stored objects. The API generalizes the trivial NodePair
class from the previous section into an arbitrary container. The container im-
plementation is not specified; it could be any container (set, list, tree, etc.). The
point is that we will be able to write an API for a container that (1) holds list
nodes, which may have cross links between them, as shown in Figure 3; and (2)
allows update operations on the nodes to be done safely in parallel, despite the
presence of the cross links. We will extend the example further to a more generic
(and more useful) container in later sections. Writing the list node container API
presents two problems: maintaining disjointness and reasoning about effects.

Maintaining Disjointness. To enable parallel update traversals over the con-
tained nodes, we wish the container to have the following two properties. First,
at runtime, every node element ei stored in the container either is null or points
to an object with a region Ri in its type. Second, for any i �= j, if ei and ej are
both non-null, then Ri and Rj are disjoint (i.e., Ri and Rj refer to nonintersect-
ing sets of regions). In general, we call a container “disjoint” if it satisfies both
properties for its elements ei. Note that the NodePair container from Section 2
satisfies this definition. Disjointness ensures that parallel tasks that update the
regions of different elements are noninterfering.

To enforce disjointness, we use the following strategy: (1) every container
starts empty and so is trivially disjoint; and (2) every operation provided by the
disjoint container API is disjointness-preserving (takes a disjoint container to
another disjoint container). By a simple induction, we can then conclude that
the container is disjoint throughout its lifetime. The hard part is guaranteeing
property (2). In some cases, this problem may be reduced entirely to the problem
of writing a correct framework implementation (Section 3.3). Examples include

1 public interface NodeContainer<region RN,RC | RN:* # RC> {
2 /* One linear container from another */
3 public NodeContainer(NodeContainer<RN,RC> c) writes RC;
4

5 /* Controlled creation of contents */
6 public NodeContainer(NodeFactory fact, int size) writes RC;
7 public interface NodeFactory { public <region R>Node<R> create(int i) pure; }
8

9 /* Parallel operation on all elements */
10 public void performOnAll(Operation op) reads RC writes RN:*;
11 public interface Operation { public <region R>void operateOn(Node<R> elt) writes R; }
12 }

Fig. 4. Framework API for a disjoint list node container

312 R.L. Bocchino Jr and V.S. Adve

1 /* Implement factory interface */
2 public class MyFactory implements NodeContainer.NodeFactory {
3 public <region R>Node<R> create(int i) { return new Node<R>(i, null); }
4 }
5 /* Declare region names A and B */
6 region A, B;
7 /* Use factory to make NodeContainer<A,B> with 10 elements */
8 NodeContainer<A,B> c = new NodeArray<A,B>(new MyFactory(), 10);

Fig. 5. Use of the NodeFactory API from Figure 4

tree rebalancing and array shuffling operations that modify only the internal
structure of the container. In other cases, the framework implementation may
need to cooperate with user-provided code. An example is putting things into a
container: the user must have some control over objects placed in the container,
but the framework must support sound reasoning about disjointness.

We have explored the following two strategies for controlling disjointness:
building one disjoint container from another and controlled creation of contained
objects. Figure 4 shows an API for a list node container that illustrates these
strategies. There are two region parameters, RN for the nodes of the container and
RC for the container itself. In line 1, we use a region parameter constraint [6, 9]
to require that for any instantiation of NodeContainer that binds R1 to RN and
R2 to RC, R1:* and R2 are disjoint. This ensures that reading the container to
traverse the elements does not interfere with updating the contained objects.

Building one disjoint container from another. Line 3 of Figure 4 illustrates this
strategy: it says that given an object of type NodeContainer<RN,RC> we can
create another one. An example is creating a tree from an array or set. An
important special case in DPJ is creating a disjoint container from an index-
parameterized array [6], which supports parallel update traversals but does not
support reshuffling of elements. (This is exactly the problem discussed in Sec-
tion 2, just with array cells rather than fields.) A disjoint container created
from an index-parameterized array supports disjointness-preserving operations,
including shuffling, by doing them internally within the framework.

Controlled creation of contained objects. Lines 6–7 of Figure 4 illustrate this
strategy, for an interface to NodeContainer that could be implemented in differ-
ent ways (array, tree, etc). The container implementation does the actual object
creation, but the user specifies the number of objects to create and provides
a factory method that creates the ith object. For example, a use could look as
shown in Figure 5, assuming a class NodeArray that implements NodeContainer.

The important thing here is that the factory method must really create a new
object and not, for example, just fetch some object reference from the heap and
store it into the container over and over. The framework author can enforce this
requirement by judicious use of a method region parameter.1 In line 7 of Figure 4,
the return type of the factory method is written in terms of a parameter R that is
in scope only in that method. Further, no reference assignable to type Node<R>

1 Method region parameters are not claimed as new in this work; the contribution
here is to use them for safe factory methods.

Types, Regions, and Effects for Safe Programming 313

enters the method. Therefore, the only way a Node<R> can escape the method is
if it is created inside the method. The effect of this strategy is to hide the actual
regions Ri in the types of the created objects from the user code: to create a new
object in Ri, the framework binds Ri to R and calls the user’s factory method.
The factory method doesn’t know what Ri is, except that it is bound to R. On
the other hand, the framework doesn’t know what the factory method is, except
that when called with R = Ri it creates a new Node<Ri>.
Reasoning about Effects. Lines 10–11 of Figure 4 show the part of the API
that allows the user to define a method and then pass that method into the
container to be applied in parallel to all contained objects. For example, given
reference c of type NodeContainer<A,B>, the user could do this:

public class MyOperation implements NodeContainer.Operation {
public <region R>void operateOn(Node<R> elt) writes R { ++elt.data; }

}
c.performOnAll(new MyOperation());

This code increments the data field of each of the objects stored in c in parallel.

Effect of operateOn. In the definition of the abstract operateOn method in
the Operation interface (line 11 of Figure 4), we again use a method region
parameter R. We write the type of the formal parameter elt as Node<R>, and we
specify the effect as writes R. This causes two things to happen. First, the DPJ
type system requires that any user-supplied method implementing operateOn
must have a declared effect that is a subeffect of writes R. That means all
the effects represented by E2 are also represented by E1. For example, reads R
is allowed, but reading or writing some other region is not.2 In particular, if
MyOperation had contained the statement ++elt.next.data, the effect would
be writes *, which is not a subeffect of writes R, and the compiler would
catch the error. Thus, the effect annotations prohibit using cross links to cause
a race, as shown in Figure 3. Second, the API techniques discussed above ensure
that the regions in the contained elements are disjoint. Together, these two
facts guarantee that the effects of different parallel tasks operating on different
elements are noninterfering.

Effect of performOnAll. In Figure 4, we have written the effect of performOnAll
as reads RC writes RN:*. This is correct if, for a particular implementation of
the interface, (1) each element i has type Node<Ri>, where Ri is under RN; and
(2) the implementation of performOnAll reads the container and applies the
user’s operateOn method to the elements. As discussed further in Section 3.3,
the framework writer is responsible for ensuring that both facts are true. Further,
if the framework internals are written in DPJ, then DPJ can verify these facts.

3.2 Getting More Flexibility

We now show how to generalize the list node container to a generic container.
This requires some extensions to the DPJ effect system.
Generic Effects. In the previous API, the effects of operateOn are overly
restricted. For instance, what if the user wants operateOn to read some region
2 The relevant rules for subeffects are given formally in the next section.

314 R.L. Bocchino Jr and V.S. Adve

1 public interface Operation<effect E> {
2 public <region R>void operateOn(Node<R> elt) writes R effect E;
3 }
4

5 public <effect E | effect E # reads RC writes RN:* effect E>
6 void performOnAll(Operation<effect E> op) reads RC writes RN:* effect E;

Fig. 6. Making the effects of the Operation interface generic

1 public class MyOperation implements NodeContainer.Operation<reads Global> {
2 public <region R>void operateOn(Node<R> elt) reads Global writes R {
3 elt.data = global; // global is in region Global
4 }
5 }
6 c.<reads Global>performOnAll(new MyOperation());

Fig. 7. Use of the API from Figure 6

R′ disjoint from R:*, where R is the region bound to RN in the instantiation of
the framework interface? That is safe and should be allowed. Yet it is disallowed
by the effect specification writes R in the API.

To address this problem, we use effect polymorphism [24]. As shown in Fig-
ure 6, we give the Operation interface an effect parameter E that becomes bound
to an actual effect (for example, Operation<reads r>) when the interface is
instantiated into a type. To make this strategy work, we need to solve two prob-
lems: (1) constraining the effect arguments to ensure noninterference; and (2)
ensuring soundness of subtyping.

Constraining the effect arguments. The framework cannot let the effect variable
E become bound to an arbitrary effect in the user’s code, because that would
re-introduce a user-supplied method with unregulated effects. Instead, we use an
effect constraint that restricts the effect of the user-supplied method, as shown
in Figure 6. We give the Operation interface (line 1) an effect variable E. We also
give the performOnAll method (lines 5–6) a constrained method effect parame-
ter E. After the parameter declaration is a constraint specifying that the effect
bound to E must be noninterfering with reads RC writes RN:* effect E. This
constraint ensures that the supplied effect will not interfere with any of (1) the
effect reads RC of reading fields of the container; (2) the effect writes RN:* of
updating the nodes; or (3) itself. The last constraint implies that either E is a
read-only effect, or it is an update operation such as an atomic set insert that
commutes with itself [6]. As an example, Figure 7 shows a user-supplied method
that puts all the Node objects in region A and reads region Global to initialize
all the objects with the same global value.

Soundness of subtyping. Once we add class effect parameters, we need a rule for
deciding if C<E1> is a subtype of C<E2>, where E1 and E2 are effects. We could
require that E1 and E2 be identical effects. However, this is more restrictive than
necessary. While that alone might be acceptable, it turns out this approach is
also not sound if done in the obvious way, as discussed in Section 4.5. Instead,
we let E1 be a subeffect of E2. For example, E1 could be writes r1 and E2

could be writes r1, r2.

Types, Regions, and Effects for Safe Programming 315

This approach introduces a subtle requirement for preserving consistency of
types. For example, consider the following snippet:

class C<effect E> { C<effect E> f; }
C<writes r> x = new C<pure>();

By the subtyping rule stated above, this code is legal. But then what is the static
type of x.f? The obvious answer is C<writes r> (substituting writes r from
the type of x for E in the declaration of f), but this is incorrect. For in that
case, a reference of type C<writes r> could be legally assigned to x.f. But the
dynamic type of x.f is C<pure>, and writes r is not a subeffect of pure, so the
assignment violates type preservation.

The solution we adopt to make the static type of x.f C<effect E′>, where
E′ is a fresh effect parameter (called a capture parameter). The tricky thing here
is that all nonempty effects must be captured when substituted for an effect pa-
rameter in a type. This is because all nonempty effects are essentially wildcards:
the runtime effect could be equal to the static effect, or it could be empty (or
possibly something else, e.g., reads R instead of writes R, or reads R1 instead
of reads R1, R2). Our solution follows in the same vein as generic wildcards [10]
(which stand in for several types) and DPJ’s partially-specified RPLs [5] (which
stand in for several RPLs).

Generic Types. It is also too restrictive to make the class specialized to list
nodes. Instead, we want a class DisjointContainer<type T, region RC> with
a generic type T. Notice, however, that the region argument to the Node type is
essential to writing the API. For example, in writing the NodeFactory interface
of Figure 4), we used a method-local parameter R in the return type of create.
If we just replaced that type with an ordinary type variable T, then we would
not be able to write the node factory pattern at all. A similar issue occurs in
writing the effect of performOnAll.

To solve this problem, we use a type constructor [3, 26] that takes a region
argument. A type variable can be declared T<region R>, where R declares a
fresh parameter. We call R a type region parameter. When a type T becomes
bound to a type variable T, T must have at least one region argument, and R
represents the first region argument. We write uses of the variable T as T<r>,
where r is a valid region in scope. T<r> represents the same type with the region
in its first argument position replaced by r. Notice that according to this rule the
parameter R is a valid region, and T<R> represents the unmodified type provided
as the argument to the variable. For convenience, a bare use of T is allowed,
and this is equivalent to T<R>. Our language also supports multiple type region
parameters for a variable T; this straightforward extension is discussed in [5].

Final Container API. Figure 8 shows the final disjoint container API. Line
1 declares an interface DisjointContainer with one type parameter T and one
region parameter Cont. The type parameter has one region parameter Elt that
names the first region argument of the type bound to T. In line 8, we write T<R>
to require that the return type of create have the method region parameter R
as its first region argument. In line 12, the region Elt is available to write the

316 R.L. Bocchino Jr and V.S. Adve

1 public interface DisjointContainer<type T<region Elt>, region RC | Elt:* # RC> {
2

3 public DisjointContainer(DisjointContainer<T,RC> cont) writes RC;
4

5 public <effect E # writes RC effect E>
6 DisjointContainer(Factory<T, effect E> fact, int size) writes RC effect E;
7 public interface Factory<type T<region Elt>, effect E> {
8 public <region R>T<R> create(int i) effect E;
9 }

10

11 public <effect E # reads RC writes Elt:* effect E>
12 void performOnAll(Operation<T,effect E> op) reads RC writes Elt:* effect E;
13 public interface Operation<type T<region Elt>, effect E> {
14 public <region R>void operateOn(T<R> elt) writes R effect E;
15 }
16 }

Fig. 8. API for a disjoint container with generic types and effects

1 public class MyOperation implements
2 DisjointContainer.Operation<Node<A>,pure> {
3 public <region R>void operateOn(Node<R> elt) writes R { ++elt.data; }
4 }
5 c.performOnAll(new MyOperation());

Fig. 9. Use of the API from Figure 8

effects of performOnAll. We do the same thing for the type parameter of the
Operation interface, in line 13.

Figure 9 shows an example implementation of operateOn, assuming c has
type DisjointContainer<Node<A>,B>. The effect argument in line 2 is pure,
because no effect is needed for this implementation of operateOn, except for
writes R, which is already given by the interface (line 14 of Figure 8). The
effect of the call to performOnAll in line 5 is reads B writes A:*.

3.3 Writing the Framework Implementation

We now address the problem of writing a correct framework implementation. The
framework must ensure three properties: type preservation, effect preservation,
and noninterference of effect. The key point is that the API design discussed in
the previous sections provides all the information needed to reason soundly about
these three properties, even in the presence of unknown user-supplied methods.
Further, the framework author can write the framework in DPJ, thereby using
DPJ to check some or all of these properties. However, so long as the properties
hold for all user-visible types and effects, the framework author may use internal
operations, such as swapping references with disjoint regions, that DPJ alone
cannot prove correct.

Type Preservation. Type preservation means that the static types of variables
agree with the dynamic types of the references they store. If the framework
is written in DPJ, then this property will be checked “for free,” unless the
framework does an assignment (using a cast) that violates the typing rules.
Such type casts produce a warning, but the code compiles and runs.

Types, Regions, and Effects for Safe Programming 317

The DPJ subtyping rules are flexible, so we anticipate that unsound assign-
ments will rarely be needed in practice. A more likely case is that casts are
used to interface with non-DPJ code. For example, pre-Java 5 code implement-
ing a container might represent the container elements as references to Object
and require that they be cast back to their actual type when removed from the
container. For Java code written with generics, such casts should be rare.

Effect Preservation. Effect preservation means that the static effects of state-
ments correctly summarize their dynamic effects. Again, DPJ guarantees this
property, so long as (1) type preservation holds; and (2) every method sum-
mary covers the effects of the method body. In DPJ, one can always write a
correct method summary (writes * is always correct), and in fact an incorrect
summary causes a compile-time error. So property (2) will hold if property (1)
does. If the framework calls into non-DPJ code, then the framework writer must
manually ensure that effect preservation holds for the calling code.

Noninterference of Effect. Noninterference means there are no conflicting
memory accesses between parallel tasks. While DPJ can establish noninterfer-
ence in many cases, in some cases it may not be able to, as in the swap example
discussed in Section 2. In such cases, the framework author can write code that
causes DPJ to produce an interference warning, and use a different technique
to show noninterference. As an example, Figure 10 shows an implementation
of DisjointContainer as a DPJArrayList, which is a Java ArrayList anno-
tated with region information. In line 4, the type argument to DPJArrayList is
Elt:*, i.e., the type does not specify which cell of the array is in which region,
so reshuffling the array is supported. The performOnAll method uses the DPJ
foreach construct (line 8) to iterate in parallel over the elements. We also add
a swap method, similar to the method discussed in Section 2, for swapping array
elements.

1 public class DisjointArray<type T<region Elt>, region RC | Elt:* # RC>
2 implements DisjointContainer<T,RC> {
3 /* Internal array representation */
4 private DPJArrayList<T<Elt:*>,RC> elts in RC;
5 /* Implementation of performOnAll */
6 public <effect E | reads RC writes Elt:* effect E>
7 void performOnAll(Operation<T,effect E> op) reads RC writes Elt:* effect E {
8 foreach (int i in 0, elts.size()) { op.operateOn(elts.get(i)); }
9 }

10 /* Swap elements at idx1 and idx2 */
11 public void swap(int idx1, int idx2) writes RC {
12 T<Elt:*> tmp = elts.get(idx1); elts.add(idx1, elts.get(idx2)); elts.add(idx2, tmp);
13 }
14 }

Fig. 10. Array implementation of a disjoint container (partial)

To show noninterference, it suffices to establish two things for the foreach
construct in line 8: (1) for distinct values i, the region in the dynamic type of
elts.get(i) is distinct; and (2) i attains distinct values i on distinct iterations.
The first statement follows from the inductive argument we made in Section 2:
to change the shape of the array, we either have to use an inherited creation

318 R.L. Bocchino Jr and V.S. Adve

method, which preserves disjointness as discussed in Section 3.1, or do a swap,
which also preserves disjointness, as can be seen from the implementation in line
11. The second statement follows from the semantics of foreach in DPJ.

4 Formal Elements

In this section we formalize the ideas developed in the previous section. We use
a sequential core language, which suffices to establish type preservation, effect
preservation, and noninterference of effect. As discussed in Section 3.3, a frame-
work designer can use these properties to provide deterministic parallelism or
other guarantees for correct framework uses. We give a syntax, static semantics,
and dynamic semantics for the core language. Then we state the key soundness
results, and sketch the proofs. More detail, including proofs, can be found in [5].

4.1 Syntax

Programs P ::= R∗ I∗ C∗ e
Region Names R ::= region r

Interfaces I ::= interface I<τ<ρ>, ρ, η # E> { S∗ }
Classes C ::= class C<τ<ρ>, ρ> implements I<T, R, E> { F∗ M∗ }

Method Signatures S ::= <ρ, η # E>T m(T x) E
Fields F ::= T f in R

Methods M ::= S { e }
RPLs R ::= r | ρ | R:r | R:*
Types T ::= I<T, R, E> | C<T, R> | τ<R> | Null
Effects E ::= ∅ | reads R | writes R | η | E ∪ E

Expressions e ::= this.f | this.f=e | e.<R,E>m(e) | v | new T | null
Variables v ::= this | x

Fig. 11. Syntax of the core language. r, I , τ , ρ, η, C, f , m, and x are identifiers

Figure 11 gives the syntax for the core language. A program P consists of
region name declarations, interface definitions, class definitions, and an expres-
sion to evaluate. An interface I consists of an interface name I, the interface
parameters, and zero or more method signatures. There is one type parameter
τ , one region parameter ρ, and one constrained effect parameter η # E. The
type parameter τ has a region parameter ρ that captures the region argument
of the type bound to it. A method signature S specifies a region parameter, a
constrained effect parameter, a return type, a method name m, a typed formal
parameter x, and an effect.

A class C consists of a class name C, the class parameters, the interface type
being implemented, and the fields and methods of the class. For simplicity we
omit class effect parameters; their treatment is identical to interface effect pa-
rameters. A field F specifies a type, a field name f , and an RPL. A method
specifies a signature and an expression to evaluate. A region path list (RPL) R
is a named region r, a region parameter ρ, or an RPL qualified by appending :r
or :*, where * stands in for any chain of names. A type T instantiates a named
interface with a type, region, and effect; or it instantiates a named class with a

Types, Regions, and Effects for Safe Programming 319

type and region; or it instantiates a type parameter with a region; or it is Null.
Null is the type of a null reference. It also functions as a base-case type for
type parameter arguments (every other type has its own argument). An effect
E is a possibly empty union of read effects, write effects, and effect parameters.
An expression e is a field access, field assignment, method invocation, variable,
object creation, or null reference. A variable v is this or a method parameter x.

4.2 Static Semantics

Environment. We define the static semantics with respect to a static environment
Γ , defined as follows:

Γ ::= ∅ | (v, T) | τ | ρ | η | η # E | Γ ∪ Γ

(v, T) means that variable v has type T ; τ , ρ, or η means that the parameter is
in scope; and η # E means that the effect bound to η constrained not to interfere
with effect E.

Translation mapping φT . We define a mapping φT for translating a type, region,
or effect defined in an interface I or class C to its use as a member of a type T
instantiating I or C (the instantiating type, which must be a class or interface
type). It is the context translation described in [5,6], plus effect parameters and
type region parameters. Figure 12 gives the key formal rules for interface types;
the rules for class types are similar. Note that when the instantiating type has

φT (T ′) φT (I<T ′, R, E>) = I<φT (T ′), φT (R), φT (E)>
φI<T,R,E>(τ<R

′>) = I<T, φI<T,R,E>(R
′), E>

φT (R)
φI<T,R,E>(ρ(I)) = R

φI<T,R,E>(ρτ (I)) = rgn(T) if T �= Null, else R

φT (E)
φT (reads R) = reads φT (R) φI<T,R,E>(η(I)) = E

φT (writes R) = writes φT (R) φT (E ∪ E′) = φT (E) ∪ φT (E′)

Fig. 12. The translation mapping φT for interface types (selected rules). ρτ (T) ρ(T),
and η(T) are the type region parameter, region parameter, and effect parameter of the
interface that T instantiates. rgn(T) is the region argument of T .

a type argument of Null, we treat ρτ as an alias for ρ. That is because in this
simple language, Null is the only type with no parameters. In the full language,
we support classes and interfaces with no type region parameter (or no type
parameter at all), and we disallow bindings of types lacking a region argument
to a type parameter with a region parameter.

Program elements. Figure 13 gives the judgments and rules for typing top-level
program elements. Method checks that the method body is well-typed, and that
its type and effect agree with the return type and effect specified in the method
signature. If a signature with name m also appears in the interface implemented
by the enclosing class, then Implement checks that the types and effects in the
method signature agree with the corresponding types and effects in the signature
of the implemented interface.

320 R.L. Bocchino Jr and V.S. Adve

� P
Program

∀I.(� I) ∀C.(� C) ∅ � e : T, E
� R∗ I∗ C∗ e

� I
Interface

Γ = τ ∪ ρτ ∪ ρ ∪ η ∪ η # E Γ � E ∀S.(Γ � S)
� interface I<τ<ρτ >, ρ, η # E> { S∗ }

� C
Class

Γ = τ ∪ ρτ ∪ ρ ∪ (this, C<τ<ρτ >, ρ>) Γ � I<T, R, E>
∀F.(Γ � F) ∀M.(Γ, I<T, R, E> �M)

� class C<τ<ρτ>, ρ> implements I<T, R, E> { F∗ M∗ }
Γ � F

Field

Γ � T Γ � R
Γ � T f in R

Γ � S
Signature

Γ ′ = Γ ∪ ρ ∪ η ∪ η # E Γ ′ � T Γ ′ � T ′ Γ ′ � E Γ ′ � E′

Γ � <ρ, η # E>T m(T ′ x) E′

Γ, T �M

Method

S = <ρ, η # E>T m(T ′ x) E′ Γ � S
Γ ′ = Γ ∪ ρ ∪ η ∪ η # E ∪ (x, T ′) Γ ′ � e : Te, Ee Γ ′ � Te 	 T Γ ′ � Ee ⊆ E′

m ∈ Dom(S(I))⇒ Γ, I<T ′′, R, E> � S 	 S(I)(m)
Γ, I<T ′′, R, E′′> � S { e }

Γ, T � S 	 S
′

Implement

σ = [ρ2 ← ρ1][η2 ← η1] Γ � σ(φT (E2)) ⊆ E1
Γ � T1 	 σ(φT (T2)) Γ � σ(φT (T ′

2)) 	 T ′
1 Γ � E′

1 ⊆ σ(φT (E′
2))

Γ, T � <ρ1, η1 # E1>T1 m(T ′
1 x) E′

1 	 <ρ2, η2 # E2>T2 m(T ′
2 x′) E′

2

Fig. 13. Typing of program elements. S(I)(m) is the signature S named m in the
definition of I .

Γ � R ⊆ R′
Include-Refl

Γ � R ⊆ R

Include-Trans

Γ � R ⊆ R′ Γ � R′ ⊆ R′′

Γ � R ⊆ R′′

Include-Rec

Γ � R ⊆ R′:*
Γ � R:r ⊆ R′:*

Include-Pref

Γ � R ⊆ R:*

Γ � R # R′
Disjoint-Names

r �= r′

Γ � r:*# r′:*

Disjoint-Include

Γ � R ⊆ R′ Γ � R′′ ⊆ R′′′ Γ � R′ # R′′′

Γ � R # R′′

Fig. 14. Inclusion and disjointness of RPLs

RPLs. Figure 14 gives the rules for inclusion and disjointness of RPLs. We use a
relevant subset of the rules described in [6]. R is included in R′ if R and R′ are
lexically identical, or if R′ = R′′ :*, and R′′ is a prefix of R. For example, r:*:r′

is included in r:*. Two RPLs are disjoint if they both start with different names
r, or if each is included in another RPL, such that the two including RPLs are
disjoint. As in [6], inclusion and disjointness of RPLs correspond to inclusion
and disjointness of the sets of regions (chains of names r) represented by the
RPLs.

Types. Figure 15 gives the rules for checking types. Type-Interface checks the
disjointness requirement for the effect argument to an interface type. Γ � T � T ′

means that T is a subtype of T ′, and Γ � T ⊆ T ′ means that T and T ′ are the
same type, except that the region and effect arguments are related by inclusion.
The inclusion relation ⊆ implies subtyping (rule Subtype-Include), but not
vice versa. Note that it would not be sound to put Γ � T � T ′ in the condition
of Include-Interface or Include-Class, for the same reason that it is not
sound to treat C<C′> as a subtype of C<Object> in ordinary Java [17]. It is

Types, Regions, and Effects for Safe Programming 321

Γ � T

Type-Interface

interface I<τ<ρτ >, ρ, η # E′> { S∗ } ∈ P
Γ � T Γ � R Γ � E Γ � E # φI<T,R,E>(E

′)
Γ � I<T, R, E>

Type-Class

defined(C)
Γ � T Γ � R
Γ � C<T, R>

Type-Param

τ ∈ Γ Γ � R
Γ � τ<R>

Γ � T 	 T ′
Subtype-Include

Γ � T ⊆ T ′

Γ � T 	 T ′

Subtype-Implement

class C<τ<ρτ >, ρ> implements I<T, R, E> { F∗ M∗ } ∈ P
Γ � C<T ′, R′> 	 φC<T ′,R′>(I<T, R, E>)

Γ � T ⊆ T ′
Include-Interface

Γ � T ⊆ T ′

Γ � R ⊆ R′ Γ � E ⊆ E′

Γ � I<T, R, E> ⊆ I<T ′, R′, E′>

Include-Class

Γ � T ⊆ T ′ Γ � R ⊆ R′

Γ � C<T, R> ⊆ C<T ′, R′>

Include-Param

Γ � R ⊆ R′

Γ � τ<R> ⊆ τ<R′>

Fig. 15. Types (selected rules). defined(C) means that class C is defined in the program.

sound, however, to make inclusion a condition of subtyping, because we capture
regions and effects as discussed below.

Γ � E ⊆ E
′

SE-Empty

Γ � ∅ ⊆ E

SE-Reads

Γ � R ⊆ R′

Γ � reads R ⊆ reads R′

SE-Writes

Γ � R ⊆ R′

Γ � writes R ⊆ writes R′

SE-Reads-Writes

Γ � R ⊆ R′

Γ � reads R ⊆ writes R′

SE-Union-1

Γ � E ⊆ E′

Γ � E ⊆ E′ ∪ E′′

SE-Union-2

Γ � E′ ⊆ E Γ � E′′ ⊆ E
Γ � E′ ∪ E′′ ⊆ E

Γ � E # E′
NI-Empty

Γ � ∅# E

NI-Reads

Γ � reads R # reads R′

NI-Writes

Γ � R # R′

Γ � writes R # writes R′

NI-Union

Γ � E # E′′ Γ � E′ # E′′

Γ � E ∪ E′ # E′′

NI-Param

η # E ∈ Γ
Γ � η # E

NI-Include

Γ � E # E′ Γ � E′′ ⊆ E Γ � E′′′ ⊆ E′

Γ � E′′ # E′′′

Fig. 16. Subeffects and disjoint effects

Effects. Figure 16 gives the relevant rules for subeffects and noninterfering effects.
For subeffects, reads effects on R cover reads of R′ if R includes R, and write
effects on R cover both reads and writes of R′. For noninterfering effects, read
effects are always noninterfering, writes effects are noninterfering if the regions
are disjoint, and parametric effects are disjoint if disjointness is specified in a
constraint.

Expressions. Figure 17 gives the rules for typing expressions. Invoke translates
types and effects in the method signature by (1) substituting for the method re-
gion and effect arguments; and (2) applying the translation mapping φT defined
above. Here T is the type of the dispatch expression, after capturing its region
and effect arguments. As discussed in Section 3.2, we must capture all partially
specified RPLs and all effects. We capture an RPL or effect by replacing it with
a fresh parameter, and adding the parameter to the environment. We do this
for the RPL and effect arguments of T , and recursively for the type argument
of T . The formal rules for this procedure are straightforward and are stated in
full in [5].

322 R.L. Bocchino Jr and V.S. Adve

Γ � e : T, E

Access

(this, C<τ<ρτ>, ρ>) ∈ Γ
F(C)(f) = T f in R

Γ � this.f : T, reads R

Assign

(this, C<τ<ρτ >, ρ>) ∈ Γ Γ � e : T, E
F(C)(f) = T ′ f in R Γ � T 	 T ′

Γ � this.f=e : T, E ∪ writes R

Variable

(v, T) ∈ Γ
Γ � v : T, ∅

Invoke

Γ � e1 : T1, E1 Γ � e2 : T2, E2
S(T1)(m) = <ρ, η # E3>T3 m(T4 x) E4 σ = [ρ← R][η ← E5]

Γ � E5 # σ(φT1(E3)) Γ � capt(T1) = (Tc, Γc) Γc � T2 	 σ(φTc (T4))
Γ � e1.<R, E5>m(e2) : σ(φT1(T3)), E1 ∪ E2 ∪ σ(φT1(E4))

New

Γ � C<T, R>

Γ � new C<T, R> : C<T, R>, ∅

Null

Γ � null : Null, ∅

Fig. 17. Expressions. F(C)(f) means field f declared in class C. S(T) means S(I)
or S(C), corresponding to the interface or class named in T . Γ � capt(T) = (T ′, Γ ′)
means that capturing type T in environment Γ yields type T ′ and environment Γ ′.

4.3 Dynamic Semantics

(e, Σ, H) → (o, H′, E)

Dyn-Access

(this, o) ∈ Σ H(o) = (O, C<T, R>)
F(C)(f) = T ′ f in R′

(this.f, Σ, H) → (O(f), H, reads φΣ,H (R′))

Dyn-Assign

(e, Σ, H) → (o, H′, E) (this, o′) ∈ Σ
H′(o′) = (O, C<T, R>) F(C)(m) = T ′ f in R′

(this.f=e, Σ, H) → (o, H′[o′ �→ (O[f �→ o], C<T, R>)], E ∪ writes φΣ,H (R′))

Dyn-Invoke

(e1, Σ, H1)→ (o1, H2, E2) (e2, Σ, H2)→ (o2, H3, E3) H3(o1) = (O, C<T1, R′>)
M(C)(m) = <ρ, η # E4>T2 m(T3 x) E5 { e3 }

Σ′ = (this, o1) ∪ (x, o2) ∪ (ρ, φΣ,H (R)) ∪ (η, φΣ,H (E1)) (e3, Σ′, H3)→ (o3, H4, E6)
(e1.<R, E1>m(e2), Σ, H1)→ (o3, H4, E2 ∪ E3 ∪ E6)

Dyn-Variable

(z, o) ∈ Σ
(z, Σ, H) → (o, H, ∅)

Dyn-New

o �∈ Dom(H) H′ = H ∪ o �→ (new(C), φΣ,H (C<T, R>))
(new C<T, R>, Σ, H) → (o, H′, ∅)

Fig. 18. Program evaluation. f [a �→ b] denotes the function identical to f everywhere
on its domain, except that it maps a to b. new(C) is the function taking each field of
class C to null. The translation function φΣ,H does the following: (1) it substitutes
actual regions and effects for parameters as specified by the bindings in Σ; (2) if
(this, o) ∈ Σ and (O, T) ∈ H , it applies φT . M(C)(m) denotes the method named m
in the definition of class C.

We give a large-step semantics for program execution, using the transition rela-
tion (e, Σ, H) → (o, H ′, E). e is a program expression. The dynamic environment
Σ maps variables v to object references o, region parameters ρ to regions R, and
effect parameters η to effects E:

Σ ::= (v, o) | (ρ, R) | (η, E)

The heap H is a partial function from object references o to pairs (O, C<T, R>),
where O is an object, and C<T, R> is the type of O:

H ::= null | o 	→ (O, C<T, R>) | H ∪ H

Types, Regions, and Effects for Safe Programming 323

null is a special reference that is in Dom(H) but does not map to an object.
Attempting to access a field of null causes execution to fail. An object O is a
mapping from field names f to object references o:

O ::= ∅ | f 	→ o | O ∪ O

The effect E collects the effect of the evaluation. A program evaluates to reference
o with heap H and effect E if its main expression is e and (e, null, ∅) → (o, H, E),
according to the rules shown in Figure 18. The rules describe a standard seman-
tics for an object-oriented language, except that we bind actual regions and
effects to method parameters in rule Invoke, and we accumulate the effects of
every expression evaluation.

4.4 Valid Execution State

To state the soundness results, we need to define valid heaps, environments, and
execution states.

� H
Heap

H � H
� H

H � H′
Heap-Null

H � null

Heap-Object

H � (O, T)
H � o �→ (O, T)

Heap-Union

H � H′ H � H′′

H � H′ ∪H′′

H � o : T
Type-Object

o �→ (O, T) ∈ H
H � o : T

Type-Null

H � null : Null

H � (O, T)

Object

∅ � C<T, R>

∀(f ∈ Dom(F(C))).(F(C)(f) = T ′ f in R′ ∧H � O(f) : T ′′ ∧ ∅ � T ′′ 	 φC<T,R>(T
′))

H � (O, C<T, R>)

Fig. 19. Well-typed heaps

Heaps. Figure 19 gives the rules for typing heaps. A heap is valid if its elements
are valid. An object-type pair (O, T) is valid if (1) T is a valid type; and (2) for
every field f in F(C), O(f) is defined, and its type is a subtype of the static
type of f , after translation via φT . At runtime we check types in the empty
environment, because all parameters have been substituted away.

Environments. A static environment is valid (� Γ) if it binds variables to valid
types, and if the effects named in the constraints are valid. A dynamic envi-
ronment is valid (H � Σ) if it binds variables to valid object references and
parameters to valid regions and effects. We omit the formal rules for valid envi-
ronments, but they are straightforward and are stated in full in [5].

Execution state. Figure 20 gives the rules for a valid execution state (e, Σ, H),
with respect to the environment Γ that typed e in the static semantics. The
rules state that H , Σ, and Γ are valid; e is well typed in Γ ; and Σ instantiates
Γ (H � Σ � Γ). That means the types of the variable bindings in Σ and Γ
match, and the bindings in Σ obey the disjointness constraints specified by Γ .

324 R.L. Bocchino Jr and V.S. Adve

Γ � (e, Σ, H) : T, E

State

� Γ � H H � Σ
H � Σ 	 Γ Γ � e : T, E

Γ � (e, Σ, H) : T, E

H � Σ 	 Γ
Instantiate

Σ, H � Σ 	 Γ
H � Σ 	 Γ

Σ, H � Σ′ 	 Γ
Inst-Var

H � o : T ∅ � T 	 φΣ,H(T ′)
Σ, H � (z, o) 	 (z, T ′)

Inst-Constraint

∅ � φΣ,H (η)# φΣ,H (E)
Σ, H � ∅ 	 η # E

Fig. 20. Valid execution state (selected rules)

4.5 Soundness Results

Preservation of type and effect. The first soundness result states that the static
types and effects computed according to Figure 17 approximate the dynamic
types and effects produced by execution according to Figure 18. More precisely,
if we evaluate e to o starting in a valid execution state, then the resulting heap
is valid; o is well typed, and its type is a subtype of the static type of e; and the
resulting effect is valid and a subeffect of the static effect of e.

Theorem 1 (Preservation of type and effect). If � P and Γ � (e, Σ, H) :
Ts, Es and (e, Σ, H) → (o, H ′, E), then (a) � H ′; (b) H ′ � o : T ; (c) ∅ � T �
φΣ,H′(Ts); (d) ∅ � E; and (e) ∅ � E ⊆ φΣ,H′(Es).

The proof, stated in full in [5], is by induction on the structure of e, showing
the result for each of the rules given in Figure 18. For all rules but Invoke, the
result follows straightforwardly from the assumptions and the induction hypoth-
esis. For Invoke, we must show two facts: first, that the dynamic environment in
which the method body is executed instantiates the static environment in which
we typed the method; and second, that the preservation properties are preserved
when we translate back to the environment in which we typed the method invo-
cation. Both facts are proved by keeping careful track of the substitutions that
occur in translating from one static environment to another, and in translating
from static to dynamic environments.

Here it helps the proof that C<E> is a subtype of C<E′> if E is a subeffect of
E′, as discussed in Section 3.2. If we required E = E′ in the subtype judgment,
then we would not be able to conclude that T a subtype of T ′ implies φT (T ′′)
a subtype of φT ′ (T ′′). In that case, to ensure sound subtyping for method invo-
cations, we would need to introduce some ad-hoc restrictions on the use of type
region parameters in effects.

Noninterference. The second soundness result states that the static noninterfer-
ence judgment for expressions is sound: if two expressions have statically nonin-
terfering effects, then the execution of the two expressions is noninterfering at
runtime.

Theorem 2 (Noninterference). If � P and Γ � (e, Σ, H) : Ts, Es and Γ �
(e′, Σ, H ′) : T ′s, E

′
s and Γ � Es # E′s and (e, Σ, H) → (o, H ′, E) and (e′, Σ, H ′) →

(o′, H ′′, E′), then there are no conflicting memory operations in the evaluations
of e and e′.

Types, Regions, and Effects for Safe Programming 325

“Conflicting accesses” means a pair of operations on the same memory location,
one or both of which is a write. Again the proof is stated in full in [5]. Theorem 1
says that the static effects contain the dynamic effects, so it suffices to show that
conflicting accesses produce interfering effects. But this is straightforward from
(1) the way that the rules in Figure 18 record effects; and (2) the definition of
noninterfering effects in Figure 16.

5 Evaluation

We have evaluated the techniques discussed above with two goals in mind. First,
can we use the techniques to write realistic frameworks and user programs? Do
any additional issues arise in real frameworks or user code? Second, what is the
complexity and annotation overhead of using the techniques to write framework
APIs and client code?

We extended the DPJ compiler [6, 7] to support the new language features
discussed in Sections 3 and 4. Then we studied how to (1) use our techniques to
write generic array, tree, and pipeline frameworks; and (2) use the frameworks
to write three parallel codes: a Monte Carlo simulation algorithm, a Barnes-
Hut n-body computation using a tree to partition physical space, and radix sort
expressed as a pipeline. We chose these three algorithms because they exemplify
different styles of parallelism.

5.1 DPJ Frameworks

Array. We wrote a framework DPJDisjointArray with an API similar to a
subset of Java’s ParallelArray [1]. Our API supports creating an array, mapping
one array to another with a user-supplied element mapping function, and reduc-
ing the array to a single element with a user-supplied binary reduction method
(i.e., that reduces two elements into one). For the array creation and mapping
interfaces, we used exactly the techniques discussed in Section 3. For the reduc-
tion operation, we had to solve the following problem: the user-supplied binary
reduction method might violate disjointness by, e.g., storing one of its argument
objects into a field of the other. To prevent that, we parameterized each of the
arguments with a separate method region parameter, as follows:

public interface Reducer<type T<region R>, effect E> {
public <region R1,R2>T<R1> op(T<R1> a, T<R2> b) writes R1,R2 effect E;

}

Tree. We wrote a framework DPJDisjointTree that provides a tree with a
user-specified branching factor. The tree stores a data object of generic type T
in each node. The API supports building a tree by inserting bodies from the root
and doing a recursive parallel postorder traversal over the tree. The build method
takes a user-supplied index function that computes which of the children of a
particular node to follow next when inserting an object in the subtree rooted
at that node. The postorder visitor takes a user-supplied visit method. The

326 R.L. Bocchino Jr and V.S. Adve

input to the method (furnished by the framework implementation) consists of
the data object at the current node and an ArrayList of result objects produced
from visiting the children (or null if the current node is a leaf). The output is a
result object for the current node. Again we use two region parameters to ensure
that the visit method preserves disjointness for the data objects.

Pipeline. We implemented a framework DPJPipeline that represents data
flowing through a series of pipeline stages, each of which applies some operation
to the data. Following the Threading Building Blocks (TBB) library [28] and
the StreamIt language [34], we call the operation applied by each stage a filter.
Each data element flows sequentially through the stages, but different stages
can apply their filters to different elements at the same time, creating pipeline
parallelism.

The API provides two interfaces for the user to implement: a filter and a
factory method for creating a filter. Method region parameters on the factory
methods ensure that each filter and each element is a freshly-created object.
The filter interface provides an operation method for the user to override. Using
method region parameters and constrained effect variables, as in the other exam-
ples, the API ensures that the user-defined filter operation is limited to updating
the regions of the data object and the filter state, and doing any noninterfering
effects on other state. In particular, the filter operation may not update data
operated on by a concurrent filter, or a different filter.

5.2 Client Code

Monte Carlo Simulation. We studied the Monte Carlo simulation benchmark
from the Java Grande suite [30]. The computation contains three parallelizable
loops: the first one creates task objects, the second one iterates over the objects to
compute a return rate for each one, and the third one reduces the return rates
into a cumulative average. We parallelized all three loops using DPJDisjoint-
Array. The first two loops were straightforward to parallelize with the mapping
operation. For the third loop, we wrote a binary reduction method that takes two
objects produced by the second stage, reads the accumulated sum from both,
adds them, stores the result in the first one, and returns it. We could also have
created a new object and returned it, but that would be less efficient.

Barnes-Hut Center of Mass. Next we studied the Barnes-Hut n-body simu-
lation [29], which uses an octree (eight-ary tree) to represent three-dimensional
space hierarchically, storing the bodies in the leaves. We focused on the center-
of-mass computation, which traverses the tree recursively in parallel and, for
each node, computes and stores the center of mass of the subtree rooted at that
node. It would be straightforward to parallelize the force computation using the
same array-based techniques that we used for Monte Carlo.

We wrote a program that builds a tree and performs a center of mass compu-
tation for a binary tree computation in one-dimensional space. That simplified
the computation, while retaining the algorithm structure. To do this, we instan-
tiated DPJDisjointTreewith a Node class that has subclasses Cell for the inner

Types, Regions, and Effects for Safe Programming 327

node data and Body for the leaf data, similarly to the original and SPLASH ver-
sions [29]. Then, studying the original algorithm, we put the logic for creating
the tree into the user-supplied index function and the logic for computing and
storing the center of mass into the user-supplied visit function.

Radix Sort. We wrote a pipelined version of radix sort that is directly modeled
after the StreamIt RadixSort benchmark [34]. The first stage produces a stream
of arrays to sort, and the successive stages each sort the arrays on a different
radix, with the radix recorded in the Filter object as final variable (so reading
it produces no effect). Each sort stage also stores two temporary arrays as per-
sistent mutable data in the filter region (such that accessing the arrays produces
an effect on the filter region). When an array enters a sort stage, the filter for
that stage adds each array element to one of the temporary arrays, depending
on whether the element has a 0 or 1 at the bit position corresponding to the
radix for that filter. The filter then copies all the 0 elements followed by all the
1 elements back into the original array, and passes it to the next stage.

5.3 Discussion of Evaluation Results

Expressivity. We were able to use the techniques discussed in Section 3 to write
realistic parallel frameworks, with no significant additional challenges. Getting
the region and effect annotations correct for the APIs did require some careful
thought. However, all the APIs have a similar pattern; once we mastered that
pattern, writing the APIs was straightforward.

Table 1 summarizes the effect annotation counts for the framework code. The
leftmost data column shows the annotated over the total source lines of code
(SLOC), counted with sloccount. From the left, the other columns show the
number of class (including interface) definitions, class region and effect param-
eters, class region and effect constraints, region and effect arguments to types,
method definitions, method effect summaries, method region and effect param-
eters, method region and effect constraints, and region and effect arguments to
methods. For arguments to class types, the denominator is the total number of
types appearing in the program; and for arguments to methods, the denomina-
tor is the total number of method invocations. As expected, the annotations are
nontrivial; this is simply a cost of the safety guarantee we provide. We believe
that production frameworks would have a higher ratio of internal to API code
than our simple frameworks do, so the relative annotation overhead would be
lower in practice. Further, some type and effect annotations could be inferred.
In particular [36] shows how to infer method effect summaries for DPJ as de-
scribed in [6]; this approach could be extended to inferring arguments to region
and effect parameters in types and method invocations.

Table 1. Annotation counts for the framework code

Classes Methods
SLOC Defs Params Constr. Args Defs Summ. Params Constr. Args

Array 41/97 12 21 0 10/88 20 11 7 4 1/21
Tree 61/169 11 19 0 32/100 18 16 6 2 4/42
Pipeline 35/112 8 9 1 14/44 19 18 2 0 2/28

328 R.L. Bocchino Jr and V.S. Adve

Table 2. Annotation counts for the client code

Classes Methods
SLOC Defs Params Constr. Args Defs Summ. Params Constr. Args

Monte Carlo 236/1389 21 10 0 90/492 195 136 8 0 3/350
Spatial Tree 55/172 6 5 0 42/90 10 7 4 0 3/45
Radix Sort 31/102 6 3 0 36/46 11 6 4 0 0/13

Framework Client Experience. Table 2 shows the annotation counts for the
client code, with the same layout as Table 1. Overall, the annotation burden is
less than for the framework code. As in [6], most of the annotations are method
effect summaries and region arguments to types. In the client codes, the argu-
ments to effect variables were simple: either pure or one or two read effects. As
expected, there were no effect constraints in the client code. Again, type and
effect inference [36] could reduce the annotation burden.

It is also instructive to compare the client experience to DPJ as presented
in [6,7]. In [6], we wrote Monte Carlo using an index-parameterized array for the
first two loops; for the third loop, we encapsulated the reduction sum in a method
implemented with locks and declared that method commutative. This is not
attractive because it puts the burden of writing low-level synchronization code on
the application developer. To write the Barnes-Hut center of mass computation
using the techniques shown in [6], each tree node would need a distinct type.
Because the destination node of a body is not known at the time the body is
originally created, we would have to recopy the bodies on insertion into the tree;
this is similar to the swapping example discussed in Section 2. This approach
works, but it adds overhead. For pipelined radix sort, we could write this program
using the features presented in [7] for safe nondeterminism, but we would need
to use low-level synchronization techniques in the client program, and we would
not get the framework encapsulation or any determinism guarantee.

Overall, the advantages of the framework approach are (1) simplifying the DPJ
types exposed to the client, by avoiding index parameterized arrays or recursive
types; (2) eliminating low-level code for common patterns such as reductions;
(3) supporting operations such as reshuffling that the type system prohibits;
and (4) extending the language with more flexible parallel control idioms. On
the other hand, the non-framework DPJ code is closer in structure to the original
sequential program. This last point is not specific to our work, but is a general
issue with frameworks.

6 Related Work

Effects. The seminal work on types and effects for concurrency is FX [19, 24],
which adds a region-based type and effect system to a Scheme-like, implicitly
parallel language. Later work added effects to object-oriented languages [18,21].
DPJ [6,7] builds upon this work to provide an expressive type and effect system
for deterministic-by-default parallelism. None of this work teaches how to write
a framework API for safe parallelism using disjoint data structures. Nor does it
support mechanisms such as effect constraints and type region parameters that
are necessary for generic frameworks.

Types, Regions, and Effects for Safe Programming 329

Several sophisticated effect systems are based on object ownership [9,12,22,23].
There are many variants, all unified by the idea that objects define groupings of
data on the heap (which we call regions). DPJ is similar in that it uses regions to
group data on the heap, but it is different in that a region is specified by an RPL,
which is primarily a sequence of declared names like A:B:C. DPJ as described
in [6] incorporates a notion of ownership by allowing an object to appear first in
an RPL (as in o:A:B:C). Though useful for some parallel patterns, this form is
not used in the present work. Ownership domains [2, 31] provide an alternative
way to combine declared names with owner objects.

Linear Types. Linear types [37] allow in-place updates while preserving the
semantic guarantees of pure functional programming. However, linear types pro-
hibit reference aliasing, making many common patterns of imperative program-
ming awkward or impossible.

Several researchers have worked to make linear types less restrictive while
maintaining meaningful guarantees. Fähndrich and DeLine [16] introduced adop-
tion and focus to create aliases of a linear reference with a limited lifetime. Clarke
and Wrigstad [13] have observed that external uniqueness — the property that
every object has at most one reference to it located outside its containing data
structure — can express important patterns. Boyland and others [8, 33] have
used fractional permissions to enforce linearity of write references, while allow-
ing sharing of read-only references.

Our idea of disjoint data structures is related to these mechanisms, but also
different from all of them. Our insight is that for parallel traversals over the
elements of a data structure, all we care about is whether the elements have dif-
ferent regions in their types. This implies that the elements are distinct objects,
but it does not preclude aliasing with other references in the program. DPJ’s
indexed parameterized arrays [6] provide disjoint regions, but they do so by mak-
ing the regions explicit in user code, thereby preventing reference swapping as
discussed in Section 2.

Enforcing API Contracts. The Eiffel language [35] introduced design by con-
tract, which uses preconditions and postconditions to specify interaction between
classes. Spec# [4] and the Java Modeling Language (JML) [20] provide ways to
write design-by-contract specifications for C# and Java; the specifications can
be checked with a combination of static verification and online checking.

Design-by-contract ideas have been applied to concurrent programming lan-
guages. Meyer’s Systematic Concurrent Object-Oriented Programming (SCOOP)
concurrent programming model [25] is based on Eiffel. The Fortress programming
language [32] provides a way to write assertions at interface boundaries that can
be checked at runtime. X10 [11] has a sophisticated dependent type system that
can specify and check interface assertions, also supported with runtime check-
ing. None of this work addresses parallel noninterference or safe frameworks for
shared memory parallelism.

330 R.L. Bocchino Jr and V.S. Adve

Separation Logic. Recent work on separation logic (SL) [14, 15] shows how
to specify abstractions such as barriers, locks, and sets and verify separately
that (1) programs using the abstractions are correct and (2) the abstractions
are correctly implemented. While similar in spirit to ours, this work does not
consider the abstractions we have studied, including data structures containing
references to disjoint mutable objects, frameworks with internal parallelism, and
frameworks applying methods with unknown effects. The technical mechanisms
are also very different (SL-based program verification vs. types and effects).
Compared to SL, our effect system is better integrated with the language, eas-
ier to use, and amenable to lightweight checking; however, it is probably also
less powerful. More complex logics such as SL could be used to prove that a
framework implementation satisfies the properties stated in Section 3.3.

Type Constructors. Type constructors are well known in functional languages
like Haskell. Recently type constructors have been applied to object-oriented
languages [3, 26]. Standard type constructors have no notion of region param-
eters or effects. Further, we exploit the fact that a parametric type implic-
itly provides a type constructor: in our language one can define a class
List<type T<region R>> and use T either as the type T bound to the type
argument of List, or as the type constructor that results from ignoring the
binding to the first region parameter in T . This can be viewed as syntactic sugar
for a more standard approach, where one would specify the region R as a sep-
arate class parameter. Ownership Generic Java [27] uses a similar approach in
specifying type bounds, but it does not have any notion of effects or support
type constructors.

7 Conclusion

We have shown how to use an effect system with polymorphic effects and type
constructors to write a generic framework API that enables sound reasoning
about its uses. The framework internals can be checked once, and then the
compiler can guarantee noninterference for any user program written using the
framework. As future work, we would like to explore ways to formally verify
properties of the framework implementation that DPJ cannot prove.

References

1. http://gee.cs.oswego.edu/dl/jsr166/dist/extra166ydocs/

index.html?extra166y/package-tree.html

2. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from
mechanism. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25. Springer,
Heidelberg (2004)

3. Altherr, P., Cremet, V.: Adding type constructor parameterization to Java. In:
Formal Techniques for Java-like Programs, FTFJP (2007)

http://gee.cs.oswego.edu/dl/jsr166/dist/extra166ydocs/index.html?extra166y/package-tree.html
http://gee.cs.oswego.edu/dl/jsr166/dist/extra166ydocs/index.html?extra166y/package-tree.html

Types, Regions, and Effects for Safe Programming 331

4. Barnett, M., et al.: The Spec# programming system: An overview. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

5. Bocchino, R.: An Effect System and Language for Deterministic-by-Default Parallel
Programming. PhD thesis, Univ. of Illinois, Urbana-Champaign, IL (2010)

6. Bocchino, R., et al.: A type and effect system for deterministic parallel Java. In:
OOPSLA (2009)

7. Bocchino, R., et al.: Safe nondeterminism in a deterministic-by-default parallel
language. In: POPL (2011)

8. Boyland, J.: In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, Springer, Heidelberg
(2003)

9. Cameron, N., et al.: Multiple ownership. In: OOPSLA (2007)
10. Cameron, N., Gairing, M., Bateni, M.: A model for Java with wildcards. In: Ryan,

M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 2–26. Springer, Heidelberg (2008)
11. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster com-

puting. In: OOPSLA (2005)
12. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of

type and effect. In: OOPSLA (2002)
13. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.

(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–201. Springer, Heidelberg (2003)
14. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-

current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

15. Dodds, M., et al.: Modular reasoning for deterministic parallelism. In: POPL (2011)
16. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear types for imper-

ative programming. In: PLDI (2002)
17. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd

edn. Addison-Wesley Longman, Amsterdam (2005)
18. Greenhouse, A., Boyland, J.: An object-oriented effects system. In: Liu, H. (ed.)

ECOOP 1999. LNCS, vol. 1628, pp. 205–229. Springer, Heidelberg (1999)
19. Hammel, R., Gifford, D.: FX-87 performance measurements: Dataflow implemen-

tation. Technical Report MIT/LCS/TR-421 (1988)
20. Leavens, G., et al.: Preliminary design of JML: A behavioral interface specification

language for Java. SIGSOFT Softw. Eng. Notes (2006)
21. Leino, K., et al.: Using data groups to specify and check side effects. In: PLDI (2002)
22. Li, P., et al.: Mojojojo — More ownership for multiple owners. In: FOOL (2010)
23. Lu, Y., Potter, J.: Protecting representation with effect encapsulation. In: POPL

(2006)
24. Lucassen, J., et al.: Polymorphic effect systems. In: POPL (1988)
25. Meyer, B.: Systematic concurrent object-oriented programming. In: CACM (1993)
26. Moors, A., et al.: Generics of a higher kind. In: OOPSLA (2008)
27. Potanin, A., et al.: Generic ownership for generic Java. In: OOPSLA (2006)
28. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-

cessor Parallelism. O’Reilly Media, Sebastopol (2007)
29. Singh, J., et al.: SPLASH: Stanford parallel applications for shared-memory. Tech-

nical report, Stanford Univ. (1992)
30. Smith, L., Bull, J.: A multithreaded Java grande benchmark suite. In: Third Work-

shop on Java for High Performance Computing (2001)
31. Smith, M.: Towards an effects system for ownership domains. ECOOP (2005)
32. Sun Microsystems, Inc. The Fortress language specification, version 1.0. Technical

report, Sun Microsystems, Inc. (March 2008)

332 R.L. Bocchino Jr and V.S. Adve

33. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.
In: TOPLAS (2008)

34. Thies, W., et al.: StreamIt: A language for streaming applications. In: CC (2002)
35. Thomas, P., Weedon, R.: Object-Oriented Programming in Eiffel, 2nd edn.

Addison-Wesley Longman, Amsterdam (1998)
36. Vakilian, M., et al.: Inferring method effect summaries for nested heap regions. In:

ASE (2009)
37. Wadler, P.: Linear types can change the world! In: Working Conf. on Programming

Concepts and Methods (1990)

	Types, Regions, and Effects for Safe Programming with Object-Oriented Parallel Frameworks
	Introduction
	Background
	Safe, Reusable Parallel Frameworks
	A List Node Container
	Getting More Flexibility
	Writing the Framework Implementation

	Formal Elements
	Syntax
	Static Semantics
	Dynamic Semantics
	Valid Execution State
	Soundness Results

	Evaluation
	DPJ Frameworks
	Client Code
	Discussion of Evaluation Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

