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Preface

It is an honor and a pleasure to write this preface to the proceedings of the 25th
European Conference on Object-Oriented Programming (ECOOP 2011) held in
Lancaster, UK.

ECOOP is the premier European conference on object-oriented programming
and related software development paradigms. The ECOOP research track brings
together leading researchers and practitioners working in the fields of software
engineering, programming languages, and software systems. This year, it con-
sisted of 26 papers included in these proceedings, which the Program Committee
carefully selected from a total of 100 submitted papers.

Each paper received at least three reviews from a Program Committee con-
sisting of 30 internationally reputed researchers. A long and intensive virtual
discussion was conducted after the first versions of the reviews were available
and prior to an author response period, during which the authors had the oppor-
tunity to respond to reviews in depth and without a-priori length limit to clear
up misunderstandings or to answer questions specifically posed by reviewers. The
response period was followed by another series of online discussions rounded off
by a Program Committee meeting late February in Darmstadt, where final de-
cisions were made. The Champion pattern was used: for a paper to be accepted
at least one manifest proponent is required. Program Committee members were
allowed to submit a paper, but these were subjected to a higher level of scrutiny.

The selected program reflected how ECOOP brings together different com-
munities around the theme of software development paradigms and tools. There
were papers that presented very interesting findings resulting from comprehen-
sive empirical studies. Another group of papers were dedicated to approaches,
techniques, and tools for assisting software developers in using APIs, or evolving
software systems. Aliasing and ownership were also prominent topics in the pro-
gram as well as other traditionally represented topics at ECOOP editions such as
types, memory and runtime optimization techniques, modeling, refactoring, and
exception handling. A very interesting group of papers concerned with various
aspects of modularity rounded up a very strong and diverse program.

I would like to thank the many authors who contributed by submitting a
paper, in spite of the high requirements. I would like to express my profound
gratitude and my highest respect to the members of the Program Committee
that put an incredible amount of effort to enable a critical but fair selection and
to provide thorough and constructive feedback to the authors. Many thanks also
to all co-reviewers who generously shared their expertise during the evaluation
process. Richard van de Stadt of Borbala Online Conference Services provided
superb support, going far beyond the call of duty. Gudrun Harris, Eric Bodden
and Martin Monperrus assisted with all organizational aspects of the Program
Committee meeting, as did many other members of the Software Technology
team of Darmstadt University of Technology, Germany.



VI Preface

Continuing the tradition of previous conferences, ECOOP 2011 was more
than just the research track: it included keynote speeches by this year’s Dahl-
Nygaard Prize winners, Craig Chambers and Atsushi Igarashi, a keynote speech
by Erik Meijer, a banquet speech by the Turing Award winner, Alan Key, an ex-
cellent summer school program, several workshops, demonstrations, social events
and more.

May 2011 Mira Mezini
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A Co-relational Model of Data for Large Shared

Data Banks

Erik Meijer

Microsoft Research

Abstract. For the past decade, I have been on a quest to democratize
developing data-intensive distributed applications. My secret weapon to
slay the complexity dragon has been category theory and monads, but
in particular the concept of duality. As it turns out, the data domain is
an extremely rich source of all kinds of interesting dualities. These duali-
ties are not just theoretical curiosities, but actually solve many practical
problems and help to uncover deep similarities between concepts that
at first look totally unrelated.In this talk I will illustrate several of the
dualities I have encountered during my journey, and show how this re-
sulted in a novel “A co-Relational Model of Data for Large Shared Data
Banks”.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



An Empirical Study of Object Protocols in the

Wild

Nels E. Beckman, Duri Kim, and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, USA
{nbeckman,aldrich}@cs.cmu.edu, duri.kim@alumni.cmu.edu

Abstract. An active area of research in computer science is the preven-
tion of violations of object protocols, i.e., restrictions on temporal order-
ings of method calls on an object. However, little is understood about
object protocols in practice. This paper describes an empirical study
of object protocols in some popular open-source Java programs. In our
study, we have attempted to determine how often object protocols are
defined, and how often they are used, while also developing a taxonomy
of similar protocols. In the open-source projects in our study, comprising
almost two million lines of code, approximately 7.2% of all types defined
protocols, while 13% of classes were clients of types defining protocols.
(For comparison, 2.5% of the types in the Java library define type pa-
rameters using Java Generics.) This suggests that protocol checking tools
are widely applicable.

1 Introduction

Object protocols are rules dictating the ordering of method calls on objects of a
particular class. We say that a type defines an object protocol if its concrete state
can be abstracted into a finite number of abstract states of which clients must be
aware in order to use that type correctly, and among which object instances will
dynamically transition (a definition we will expand in Section 2.1). The classic
example of an object protocol, often cited in research literature, is that of a file
class. Instances of this file class can only have their read methods called while
the file is open. Once the file is closed with the closemethod, subsequent calls to
the read method will result in run-time exceptions or undefined behavior. Most
popular languages do not give object protocols first-class status, and therefore
cannot ensure their correct use statically.

Static and dynamic checking of object protocols is an extremely active area of
research in the software engineering and programming languages communities.
There have been protocol checkers based on software model checking [3, 12].
There have been type systems and flow analyses for checking object protocols [23,
8, 19, 5]. (Type-based checkers are so common that these properties are often
referred to as “typestate” properties.) There have been checkers that focus on the
narrower problem of object initialization [10, 22], and checkers that focus on the
wider issues of framework conformance [16, 11]. There have even been dynamic
checkers [14, 6], and checkers that focus on concurrent applications [4, 17].

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 2–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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While many of these approaches are quite powerful and their designs elegant,
we argue that very little is known about how protocols are used in practice.
Do they occur often or are they rarely defined? Are they used by many other
classes? Are the protocols themselves simple, or complex? These are the kinds
of questions we have attempted to answer with this study.

In this paper, we present an empirical study on object protocols in open
source Java software. We took several popular open-source projects and the
Java standard library, ran a suite of automated analyses that attempted to find
evidence of object protocols, and manually investigated the results.

This work contains several contributions. As part of our investigation, we
discovered that object protocol definition is relatively common (in about 7%
of all types) and protocol use even more so (by about 13% of all classes). We
discovered seven behavioral categories of object protocols that account for 98%
of all the protocols we discovered. Compared to existing protocol studies which
looked at large volumes of code [26, 27, 2], ours is the first to attempt to examine
characterstics of the protocols themselves, for example frequency of definition
and categories of protocols.

The paper proceeds in the following manner: Section 2 discusses the design
of our experiment. This includes important definitions, description of our auto-
mated analyses, the data that we gathered and the motivation underlying our
approach. Section 2.4 describes the threats to the validity of our experiment.
Section 3 presents the data that we gathered during our study, and Section 4
discusses that data and its implications for other researchers.

2 Methodology

Our study proceeded in the following manner: We created a static analysis to
detect patterns in source code that we believe are indicative of object protocols.
Then, we ran the static analysis on popular open-source Java projects and the
Java standard library. Next, we manually investigated the reports issued by the
static analysis, marking each as evidence for a protocol or not. During this pro-
cess, data about the location, classes involved, their super-types, and more was
gathered. We also created categories of similar protocols based on our observa-
tions. Finally, we used the information about which types define protocols in
order to run another automated analysis which gathered information about the
usage of those protocols. An earlier version of this study was conceived by one
author, Duri Kim, and presented in her masters thesis [18].

The first part of this section will discuss our definitions, namely, what are
object protocols? Next we walk the reader through the experimental process,
including a description of our analyses and the data we gathered. Finally, we
describe the Java programs we analyzed and threats to the validity of our study.

2.1 Definitions and Scope

One of the trickiest parts of discussing object protocols is agreeing on exactly
what is meant by the term. While many sanctioned interactions between dif-
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ferent pieces of code could be described generically using the term protocol, we
choose to focus on a definition that is based around abstract state machines. The
definition of object protocol stated here sets the scope for our entire experiment.
It is the idea on which our analyses and terms like “false negative” will be based.

Definition. A type defines an object protocol if the concrete state of objects
of that type can be abstracted into a finite number of abstract states of which
clients must be aware in order to use that type correctly, and among which object
instances will dynamically transition.

This definition contains several key ideas.

client. The states of the protocol must be observable and relevant to clients.
abstract and finite. The states must be abstractions of any internal represen-

tation, and there must be a finite number.
runtime transitions. Methods calls on an object instance after construction

will cause it to transition between abstract states.
correct use. Failure of clients to obey a protocol can result in run-time excep-

tions or undefined behavior.

Classic examples of protocols fall under this definition. For example, an instance
of the java.io.FileReader class can be interpreted as having two abstract
states, Open and Closed. Clients must be aware of which state a given instance
of the file is in otherwise they might incorrectly call a method such as read, which
requires the file to be open, when the file is actually closed. java.util.Iterator
fits our definition as well. Even though it is an interface and does not have its
own concrete state, clients must be aware that the next method can only be
called when a call to hasNext would return true.

Our definition includes initialization protocols; objects that must have certain
methods called after construction to put them into a valid, initialized state.
While these protocols may in fact be quite simple, they fit our definition, and
are an important piece of the contract of many types.

We additionally include a degenerate form of protocol known as type quali-
fiers [13, 9]. In this case, object instances enter an abstract state at construction-
time that they can never leave. Like other protocols, depending on the state the
object is in, certain method calls may be illegal. We will point out type quali-
fiers in this study even though they do not strictly fit our definition, as we feel
they are quite similar to more standard object protocols and because, like object
protocols, current languages do not check them statically.

Our definition specifically excludes protocols in which a type has an in-
finite number of abstract states. This is meant to exclude types such as
java.util.List on the basis of methods like List.remove(int). This method
throws an exception when the argument is greater than or equal to the size of the
list. While List could be interpreted as having the abstract states, LargerThan0,
LargerThan1, LargerThan2, etc., this does not fall under our definition, and will
not be considered a protocol.

Scope of this Study. Our definition of object protocol leaves out other object
protocols that some readers may consider to be important. For example, it does
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not include multi-object protocols, in which clients must call an ordered sequence
of methods on two or more objects. One of the things we will show is that, even
when taking a restricted view of object protocols, they are still rather common.
By considering a more inclusive definition, we believe one would find that object
protocols are even more common.

We have observed that protocol classes frequently are implemented so that
they can detect protocol violations. Generally, violations that are detected will
cause an exception to be thrown (e.g., InvalidStateException).This is relevant
to our study because, within the scope of our definition of object protocol, our
automated analysis detects the subset for which this is true (see Section 2.2).

Other Definitions. Here are some other terms that will be used throughout the
remainder of the paper:

Phase 1. In the first phase of the study we examined the nature of protocol
definition.

Phase 2. In the second phase of the study we examined protocol use.
Candidate, Candidate Code. A section of code that may represent evidence

of an object protocol, as reported by our static analysis.
Protocol Evidence. A candidate that, after manual analysis, is determined to

be evidence of an object protocol (a true positive).
Evidence Class. A class that contains protocol evidence.

2.2 Experimental Procedure

Our experiment consisted of several steps where we alternatingly performed
analyses, manual and automated, and gathered and processed their results. This
section presents the entire process from start to finish. For convenience, this
process is illustrated in Figure 1. At each step in the experiment, we will say
what data is gathered and why that particular course of action was chosen.

Phase 1: Finding Object Protocols. In the first phase of our experiment,
we start with a set of programs in which we would like to find object protocols.
The first step is to run ProtocolFinder, a static analysis that will generate a list
of code candidates, locations in code that may indicate that a class is defining
an object protocol.

We had several goals in mind when developing the ProtocolFinder static anal-
ysis. For one, we wanted to keep the rate of false negatives as low as possible.
In this case, false negatives are protocols that exist in the programs under anal-
ysis that are not found. Manual inspection, of course, can have a very low rate
of false negatives but is extremely time consuming, particularly considering the
amount of code we would like to investigate. We desired an automated analysis.
Dynamic analyses for discovering protocols in running programs exist [15, 28].
Unfortunately, such approaches are quite susceptible to false negatives, since
appropriate test cases must be found to exercise all of the possible protocols in
an application. For the same reasons, a dynamic approach would require exam-
ining only programs that were accompanied by sufficient test cases, and thus,
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ProtocolFinder

Examination

ProtocolUsage

4
prgms.

Candidate
Locations

Protocol
Evidence

Classes, Methods,
Overriden Methods

X
Protocol Methods,

Protocol Types
16

prgms.

Protocol
Categories

Legend:

X
Automated analysis
Manual analysis
Program under analysis

Result Data
Temporary Data
Information Flow
Correlation

Classes Calling
Protocol Methods

Classes with
Protocol Fields

Phase 1

Random
Sample

Examination

Est. of Classes w/
Field Wrap Protocols

Phase 2

Fig. 1. A schematic explaining the experimental procedure

was ruled out. By comparison, a static analysis can be run on any open-source
program. In the end, we decided to develop a conservative static analysis that
would eliminate many (although not all) false negatives while reducing manual
effort. A subsequent manual examination is used to eliminate false positives.

ProtocolFinder is a static analysis created for this study that attempts to
find object protocols by searching for locations in code where protocol violations
are detected. Specifically, it looks for locations in code where instance methods
throw exceptions as a result of reading instance fields.

The intuition behind the analysis is simple: In our preliminary investigations
we noticed that many protocol methods throw exceptions when object protocols
are violated. Because our definition of object protocol depends on some abstract
state of the method receiver, we expect that any exceptions thrown for proto-
col violation will be thrown in instance methods and as a result of reading an
instance field. This pattern has been noted and used as the basis for existing pro-
tocol detectors [27, 2]. Like ProtocolUsage, described later, the ProtocolFinder
analysis is an Eclipse plugin whose source we have made freely available.1

1 http://code.google.com/p/nolacoaster/
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1 // from java.util.concurrent.ArrayBlockingQueue .Itr

2 public void remove() {
3 final ReentrantLock lock = ArrayBlockingQueue .this.lock;
4 lock.lock();

5 try {

6 int i = this.lastRet;
7 if (i == -1)
8 throw new IllegalStateException ();

9 lastRet = -1;

10 // ... method continues

11 }

12
13 // from javax.swing.undo.AbstractUndoableEdit

14 public void undo() throws CannotUndoException {

15 if (!canUndo()) {
16 throw new CannotUndoException ();
17 }

18 hasBeenDone = false;
19 }

20
21 public boolean canUndo() { return alive && hasBeenDone; }

Fig. 2. The ProtocolFinder reports candidate code on lines 8 and 16. Both are classified
as protocol evidence. In the first, the field lastRet flows through a local variable i. In
the second, the field value comes from a getter.

ProtocolFinder. ProtocolFinder is a flow-insensitive static analysis that examines
every instance method in a given code base. Upon encountering an ‘if’ block or a
conditional expression, the analysis first examines the condition. If the condition
expression contains a read of a field of the current receiver (or a call to a “getter”
method on the current receiver), the analysis will examine both ‘then’ and ‘else’
branches. (“Getter” methods are methods which more or less immediately return
the value of a field.) If either branch of the conditional throws an exception the
analysis issues a report indicating that piece of code is a protocol candidate.
Both the field read in the condition and the throw statement in the branches
can be nested arbitrarily deeply. In order to determine whether an expression in
the condition is a field read or getter call on the current receiver, the analysis
queries a sub-analysis. This flow-sensitive static analysis has a list of all the
methods in the current class determined to be field getters, and can track if a
value in an intermediate variable flows from a getter or a field.

The analysis uses a simple procedure to determine which methods are “getter”
methods. Any method with a non-void return type where all return statements
contain values that flow from field reads are marked as getters.

ProtocolFinder reports protocol candidates in the examples shown in Figures 2
and 3, all of which are from the Java standard library. In Figure 2, reports are
issued on lines 8 and 16. The first example comes from an implementation of
the Iterator interface. It is noteworthy because the field value flows from the
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1 // from java.awt.Container

2 public void remove(int index) {
3 synchronized (getTreeLock ()) {
4 if(index <0||index >=this.component.size()){
5 throw new ArrayIndexOutOfBoundsException (index);

6 }

7 // ... method continues

8 }

Fig. 3. In the remove method the ProtocolFinder reports a possible protocol on line 5.
Note that the field, component, is nested in a sub-expression of the condition (line 4).
By manual examination, we have determined that this candidate is not evidence for
an object protocol.

lastRet field to the local variable i before the conditional. The second example
is noteworthy because the condition involves a call to the getter method canUndo,
which itself is the result of a combination of fields, alive and hasBeenDone.

In Figure 3, ProtocolFinder reports a candidate on line 5. This example is
noteworthy because the field read that occurs on line 4 is nested within a sub-
expression of the condition. ProtocolFinder still treats the condition as being
dependent on a receiver field.

The output of the ProtocolFinder is thus a list of protocol candidates. In the
next part of the experiment, we manually inspect each candidate to determine
whether or not it is actually evidence of an object protocol. For each report
issued, the ProtocolFinder includes the line number and file name of the candi-
date, the method and class in which the candidate was found, and all methods
that are overridden by the method in which the candidate was found. This in-
formation helps us find the candidate for the purposes of manual examination,
and, in the event that a candidate represents evidence of an actual protocol, will
provide us with the data we need to carry out the usage phase of our study.

Manual Examination. After running the ProtocolFinder and gathering a list of
protocol candidates, we investigated each candidate by hand.2 The primary pur-
pose of this manual investigation was to determine which candidates were actual
evidence of object protocols and which were not. This was done by looking at
the code location and the surrounding class and trying to understand its behav-
ior. Where possible, documentation was also examined. After understanding the
candidate and the conditions under which an exception would be thrown, we
consulted our own definition of object protocol in order to determine whether
or not the candidate represented protocol evidence.

As an example, consider the code snippets in Figures 2 and 3. Both were
returned as candidates by the ProtocolFinder. During manual analysis, both
candidates in Figure 2 were classified as evidence for actual protocols. Iterators
have RemovalPermitted and RemovalNotPermitted abstract states, transitioned
2 The bulk of the work of manual examination was performed by Duri Kim, a masters

student. Nels Beckman, a Ph.D. student, performed spot checks on these results.
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to and from by the next and remove methods. remove can only be called on
instances in the RemovalPermitted state. AbstractUndoableEdit defines several
abstract states but the undo method can only be called if an instance is both
Alive and HasBeenDone. The candidate in Figure 3, on the other hand, was
not categorized as protocol evidence. The exception is really thrown in response
to the state of the argument, not the receiver. Even if we wanted to abstract
the concrete state of the receiver to prevent the exception, the only reasonable
abstraction would require an infinite number of states.

For every candidate that is manually classified as evidence of a protocol, cer-
tain information is recorded and used in the second phase of the study. For each
piece of protocol evidence, we record the method in which it appears and the class
in which that method appears. These classes are referred to as evidence classes.
But we consider a larger set of types to be protocol-defining. The methods in
which protocol evidence appears, and every method they override or implement
are considered to be protocol methods. Additionally, any public method that
calls a private protocol method is considered to be a protocol method (if we
determine the private method to be part of the “state check” pattern, described
below). Finally, the types declaring each of the protocol methods are known as
protocol types. When we say in the introduction that 7.2% of types declare pro-
tocols, these are the types that we are referring to. As these terms will be used
frequently in the rest of the paper, we summarize:

Protocol Methods. The methods containing protocol evidence, any methods
they override and, if a method containing protocol evidence is private, any
public method that calls it.

Protocol Types. The classes and interfaces containing protocol methods.

Our inclusion of private methods and overridden methods is worth further dis-
cussion. Regarding our inclusion of overridden methods, our logic here is that,
because of subsumption, any subtype may be known statically as its supertype.
When a subtype method is part of an object protocol, overridden methods are
also frequently part of a protocol, or at best clients must be aware that some
subtypes have usage protocols. Therefore, we want to consider calls to those
overridden methods as potential client-side uses of protocols.

This strategy addresses one limitation of the ProtocolFinder, that it cannot
detect Java interfaces that define protocols. If the implementing methods of an
interface have behavior that the ProtocolFinder recognizes as a protocol, then
the overriden interface methods will be added to our list of protocol methods.

In a few cases, we removed overridden methods that were added to the
set of protocol methods by this process because we felt that the methods are
widely used and not normally considered to be part of a protocol. For exam-
ple, in the Java implementation of the Kerberos authentication protocol, the
KerberosTicket class defines a protocol of which its toString method par-
ticipates; if a Kerberos ticket has been destroyed, calling its toString method
results in an IllegalStateException. However, Object.toString should not
be considered a protocol method since most implementations do not have such
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java.lang.Runnable.run()

java.lang.Thread.run()

java.lang.Object.toString()

java.util.List.add(int,Object)
java.util.List.remove(int)

java.util.AbstractList.add(int,Object)
java.util.AbstractList.remove(int)

Fig. 4. Superclass and interface methods automatically considered to be protocol meth-
ods due to a subclass that we removed from our list of protocol methods. This was done
because these methods are widely used, but their contracts do not imply a protocol.

behavior, and it is so widely used that considering it to be one would result in
vastly distorted results. (In such situations, one may reasonably conclude that
behavioral subtyping was broken.) Figure 4 contains the full list of supertype
methods that were removed from the list of protocol methods because they do
not in general represent protocols. As far as we can tell, no other widely used
supertype methods were misclassified in this manner.

We included the public callers of private methods because we noticed a com-
mon pattern in many classes we encountered. Private methods cannot be called
outside of the class in which they are defined and as a result will never appear as
client usage in the second phase of our study. However, many classes have pri-
vate “state check” methods which verify that the instance is in some particular
state. These methods are called by multiple public protocol methods as a way
of avoiding code duplication. For example, the java.util.PrintStream class
defines a simple Open/Closed protocol, and once the stream has been closed,
there are essentially no methods that can be called on the stream. In order to
implement this without code duplication, the PrintStream method defines a
private ensureOpen method that is called first thing inside every public method
of the class. We want to make sure that we consider those public methods to
be protocol methods, even though our analysis does not report them, so we add
them when our manual analysis confirms this pattern.

During manual analysis of protocol candidates, two final pieces of data are
generated. One of the goals of our study is to determine if object protocols
share similar characteristics. Anecdotally, most protocols seem to be rather sim-
ple, and somewhat similar (e.g., Open/Closed, Initialized/Uninitialized) and we
wanted to determine if this was generally true. While manually examining each
potential protocol, we did our best to observe similarities and group them into
categories based on these similarities, using single coding. Rather than defining
the categories a priori, we constructed them as new similarities were observed.

Lastly, we are very interested in whether or not protocols are used in multi-
threaded applications. We would like to understand the relevance of protocol
checkers that work even in the face of concurrency, such as our own work [4] and
that proposed by Joshi and Sen [17]. So, for each piece of protocol evidence, we
recorded whether synchronization primitives (e.g., locks, monitors) were used in
the surrounding code. Such use indicates that the class has been designed to be
used on multithreaded programs.
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Phase 2: Finding Protocol Usage. In the second phase of the study, we
examined how often the protocols we discovered in the first phase were actually
used. The input of this phase is the list of protocol methods and protocol types
generated in the preceding phase. After running an automated analysis on a
suite of code, we were left with a list of all classes that called protocol methods
as well as a list of all classes that have fields whose types are protocol types, and
an estimate of the number of those classes that pass their fields’ protocols along
to their clients. The static analysis itself is rather simple.

ProtocolUsage. ProtocolUsage is a flow-insensitive static analysis. It proceeds
by visiting every method call site in a given code-base. At every method call
site, regardless of the receiver, the method binding is statically resolved, and the
method’s fully qualified name is noted. If the method is in the list of protocol
methods, a report is issued, unless the method call site is inside the same class as
the protocol method being called. Such a call would more accurately be described
as an internal interaction rather than a client-provider interaction.

Note that if a class calls protocol methods of its super-class this is considered
to be an client interaction with a protocol-defining class, even though at run-
time there is only one object. A sub-class can validly be considered to be a client
of its super-class, in the sense that a programmer extending another class must
be aware of and understand the super-class’s rules of use.

ProtocolUsage also looks for instance fields whose types are protocol-defining.
In this part of the analysis, at every field declaration, the field’s type is resolved.
If this type is contained in the list of protocol types, a report is issued.

We are interested in fields of protocol type because they may potentially rep-
resent an even closer level of interaction with a protocol-defining type. Since
objects referenced by fields are in the heap and may be accessed at any time by
member methods, it is more difficult for programmers to obey their protocols
than objects that are simply passed and returned amongst methods. Addition-
ally, in our experience it is often the case that classes with fields that define
protocols expose those protocols to their own clients.

Manual Examination. While we did not have the time to investigate all of the
fields of protocol type, we did want to get an estimate of the number of classes
acting as protocol wrappers, passing on the protocols of their fields to their
clients. To this end we took a random sample of the classes containing fields of
protocol types (approximately 7%) and we manually investigated those classes
to see whether or not the protocols of the fields were passed on to their classes.
We recorded whether or not this was the case, and used the rate of protocol
passing-on to get a rough estimate for the entire suite of phase two programs.

This is the end of the second phase of our study.

2.3 Programs Under Analysis

We ran the ProtocolFinder tool on four open-source programs, in order to find
out how many protocols they defined. We then ran the ProtocolUsage analysis
on those four plus twelve additional programs to determine how often code acts
as a client to protocol-defining code.
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All of the programs we analyzed in both phases are shown in Table 1, along
with their sizes descriptions. With the exception of the standard library and our
own analysis framework, Crystal, they all come from the Qualitas Corpus [24].
We attempted to select relatively large, popular open-source programs, and to
have a mix of library/framework software as well as end-user applications. By
choosing a wide variety of programs we reduce the risk that the programs we
analyzed contain abnormally many (or few) protocols. The desire to include both
libraries/frameworks and end-user applications is based on our own intuition. We
hypothesized that libraries and frameworks are more likely to define types with
object protocols since they may be wrapping some underlying system resources
that is inherently stateful (e.g., sockets and files).

During the course of the study we examined 1.9 million lines of Java, of
which 1.2 million was used in the first phase of the study, and of that portion,
one million of which is the Java standard library. Examining the Java standard
library for object protocols was a high priority. Because of its wide use in most
Java programs, knowing which types in the standard library define protocols
enables us to analyze client usage of protocols in many more programs. In fact
almost all of the client-side protocol usage in our study was usage of standard
library types. This makes sense since, for example, Ant is unlikely to use any
protocols defined in PMD, Azureus or JDT and we do not know any of the
protocols it defines, since it was not part of the first phase of our study.

2.4 Risks

There are a number of potential risks and threats to validity in the study as
designed. Here we discuss some of those risks, as well as mitigating factors.

Some of the most interesting risks in our study are due to our use of static
analysis. The use of static analysis is motivated by our desire to examine as large
a corpus of programs as possible. Unfortunately, this means the study is subject
to the false negative and false positive rates of our static analysis, particularly
the ProtocolFinder. For the ProtocolFinder, false negatives are instances where
the analysis is run on a piece of code that defines an object protocol and yet the
analysis does not report a candidate. False positives are the protocol candidates
that are not classified as protocol evidence. False positives are mitigated by
manual inspection. Every candidate reported by the ProtocolFinder has been
manually inspected to determine whether or not it represents protocol evidence.

However, we can imagine several potential sources of false negatives. The first
source is that the ProtocolFinder can only investigate code, and that code must
be written in Java. This rules out protocols that are defined by Java interfaces,
which contain no code, and native methods, which are written in other languages.
We mitigate the former case with our inspection process: when a method is
determined to be a protocol method, we note the supertype methods it overrides
and add them to our list of protocol methods for use in subsequent phases of
the study. For native methods, though, there is not much that we are able to do.
Still, of the 120,085 methods we analyzed in the first phase of the study, only
739 were native methods, suggesting that we might not be missing much.
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Table 1. The programs analyzed as part of this study, along with their sizes and
descriptions

Program L/F or Version LOC Classes Description
App. (Interfaces)

Phase I: Programs analyzed for protocol definition and usage.

JSL L/F jdk1.6.0 14 1,012,860 8,485 (1,761) Java standard library

PMD A 3.1.1.0 26,586 396 (27) Static analysis

Azureus A 3.3.2 102,119 900 (354) BitTorrent client

Eclipse (JDT
core)

L/F 3.3 99,691 300 (41) IDE Framework

Phase II: Additional programs analyzed for protocol usage.

ant A 1.7.1 91,679 962 (71) Build tool

antlr A 2.7.7 41,880 186 (35) Lexer/parser tool

aoi A 2.5.1 81,597 438 (26) 3D modeler

columba A 1.0 68,267 982 (109) GUI email client

crystal L/F 3.4.1 17,052 187 (66) Static analysis
framework

drjava A 20050814 59,114 639 (79) Educational IDE

freecol A 0.7.4 62,641 434 (21) Civilization clone

log4j L/F 1.2.13 13,784 178 (16) Logging library

lucene L/F 1.4.3 25,472 276 (15) Text search library

poi L/F 2.5.1 47,804 417 (28) Microsoft document
library

quartz L/F 1.5.2 22,171 121 (25) EJB scheduling
framework

xalan L/F 2.7.0 161,008 1,004 (65) XSLT XML transfor-
mation engine

Total 8×A 1,933,725 15,905 (2,739)
8×L/F

L/F=Library or Framework A=Application

Another source of false negatives comes from code that does not attempt to
detect protocol violations, in other words, protocol-defining code that does not fit
the pattern that the ProtocolFinder is looking for. The ProtocolFinder requires
code to check or use the value of a receiver field inside a conditional expression
and then throw an exception in one branch of the conditional. APIs that fail in
an undefined manner when their protocols are violated likely would not fit this
pattern. As an example, consider a class defining an initialization protocol, which
will throw a null pointer exception if its methods are called before initialization
due to null fields. Such a protocol would likely not be detected by our analysis.
We believe that well-designed code will generally attempt to detect violations of
its own protocols. However, this scenario is likely a source of real false negatives.

Similarly, APIs that define protocols due to their delegation to other, protocol-
defining APIs may be missed by our ProtocolFinder. For example, an enhanced
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stream that wraps another stream, and delegates calls may define a protocol
that is very similar to the underlying stream. While we do not have a direct
way of finding these protocols, we are attempting to gage how likely they might
be by reporting the number of classes whose fields themselves define protocols.
Then, based on a manual examination of a sample of those classes, we estimate
the number of unexamined classes that delegate the protocols of their fields.

Lastly, we have the typical threats of any empirical study: that our selection
of programs may be biased, not representative, or too small to draw meaningful
conclusions. We have done our best to draw a variety of programs from a re-
spected corpus of popular Java programs [24] that was as large as possible given
our time constraints.

3 Results

In this section we present the results of our study3, with little additional dis-
cussion. Discussion of the results is postponed until Section 4. The results of
running the ProtocolFinder analysis are discussed in Section 3.1, categories of
protocols we found are discussed in Section 3.2 and the results of running the
ProtocolUsage analysis are discussed Section 3.3.

The summary is that a little over 2.2% of all classes on which we ran our
ProtocolFinder define protocols. 7.2% of all types are considered to define pro-
tocols when we include supertypes, and approximately 13.3% of all the classes
on which we ran our ProtocolUsage analysis use object protocols as clients. 98%
of the protocols we found fit into one of seven simple categories.

3.1 Protocol Definitions

Table 2 contains the results of running the ProtocolFinder analysis on the four
code bases in phase one. The first column contains the number of candidates
reported by the ProtocolFinder analysis. These varied from around 2,600 for the
Java standard library to 32 for PMD. The next column shows how many candi-
dates were manually classified as protocol evidence. The next column shows the
number of classes containing protocol evidence, followed by a column showing
the number of types classified as protocol types. (Recall that our list of protocol
types includes classes and interfaces containing methods overridden by meth-
ods containing evidence of protocols.) Next, “Thread-Safe Evidence Classes”
displays how many classes containing protocol evidence use mutual exclusion.
Since we are interested overall in how well our analysis is performing, the next
column shows the precision of the ProtocolFinder: the ratio of protocol evidence
to protocol candidates. The last two columns show the percentage of classes con-
taining protocol evidence relative to the total number of classes and the number
of protocol types relative to the total number of types. The last row displays cu-
mulative values for each column, and percentages recalculated from these sums.
3 All the data gathered during this study can be found at the following location:
http://www.nelsbeckman.com/research/esopw/
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Table 2. The results of running the ProtocolFinder on the four phase one code bases

Program Protocol Protocol E.C. P.T. T.S.E.C. Precision %E.C. %P.T.
Candidates Evidence

JSL 2,690 613 195 842 54 22.8% 2.3% 8.2%

PMD 32 7 3 10 0 21.9% 0.8% 2.4%

Azureus 136 24 19 32 4 17.6% 2.1% 2.6%

JDT 62 4 4 5 0 6.5% 1.3% 1.5%

Total 2,920 648 221 889 58 22.2% 2.2% 7.2%

T.S.E.C.=Thread-Safe Evidence Classes E.C.= Evidence Classes
P.T.= Protocol Types

3.2 Protocol Categories

Of the 613 candidates in JSL that were manually determined to be protocol
evidence, we noticed a number of similarities in their structure and intent. In
fact, almost all of them could be characterized in one of seven protocol cate-
gories, which we will describe in this section. Due to the means by which our
analysis produces candidates, the categories we present are largely categories of
errors: conditions under which operation of a class will result in an error. Table 3
summarizes the results for each category. More details on each category can be
found in Duri Kim’s masters thesis [18].

Initialization (28.1%). Some types must be initialized after construction time
but before the object is meant to be used. In the initialization category, calls to
an instance method m after construction-time will result in an error unless an
initializing method i has been called at least once before. Types may (or may
not) allow i to be called multiple times, however, it is a feature of this category
that objects cannot become uninitialized after they have already been initialized
(i.e., initialization is monotonic).

A typical example of this category is the protocol defined by the Java library
class AlgorithmParameters in the package java.security. After an instance of
algorithm parameters is constructed, it is not ready for use until one of its three
init methods is called. Before initialization, calls to the toString method will
return null, and calls to getEncoded and getParameterSpec throw an exception.

Deactivation (25.8%). Some types permit deactivation, after which point in-
stances can no longer be used. In the deactivation category, calls to an instance
method m will fail after some method d is called on the same instance, and it
will always fail for the rest of the object’s lifetime. Like initialization, types may
or may not permit d to be called more than once.

A typical example is the BufferedInputStream in the package java.io. Once
a stream is closed, no further methods can be called on the stream, and it
cannot be reopened. A somewhat more interesting example is FreezableList
from com.sun.corba.se.impl.ior. This is a normal mutable list that, at some
point during its lifetime, can be made immutable by calling the makeImmutable
method. After this point mutating methods, like remove, can no longer be called.
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(This is in direct contrast to other immutable lists, like those created by Collec-
tions.unmodifiableList, which are immutable for the entire object lifetime.)

Type Qualifier (16.4%). Some types disable certain methods for the lifetime of
the object. In the type qualifier category, an object instance will enter an ab-
stract state S at construction-time which it will never leave. Calls to an instance
method m, if it is disabled in state S will always fail. This category is so-named
since it is similar in spirit to flow-insensitive type-qualifiers [13, 9].

Protocols in this category show two distinct behaviors. In some cases, the
abstract state that newly constructed instances inhabit can be set by parame-
ters to the constructor. For example, instances of the ByteBuffer type in the
java.nio package may or may not be backed by a byte array. Whether or not
they are depends solely on whether or not a backing array was provided at
construction-time. If one was not provided, any calls to the array method will
fail with a run-time exception. In other cases, the instantiating class itself deter-
mines the abstract state that all instances will inhabit, relative to the abstract
states defined in a super-type. For example, consider the instances returned
from calls to Collections.unmodifiableList in the Java standard library. All
such instances are unmodifiable relative to the super-type List, which permits
both mutable and immutable lists. In both case, clients must be aware of which
methods are enabled.

Dynamic Preparation (8.0%). Certain methods cannot be called until a different
method has been called to ready the object. In the dynamic preparation category,
an instance method m will fail unless another instance method p is called before
it. If we think of types in this category as having two states, ready and not
ready, this category is distinguished from the initialization category in that an
object may dynamically change from ready to not ready at numerous points in
its lifetime (i.e., it is not monotonic).

The most familiar example of this category is the remove method on the
Iterator interface. An iterator’s contract states that the removemethod cannot
be called until next has been called, and clients must continue to call the next
method at least once before each time the remove method is called.

Boundary (7.9%). Some types force clients to be sure that an instance is still
“in bounds.” In the boundary category, an instance method m can only be called
a dynamically-determined number of times. Calling m more times will result in
an error. Typically such types will provide some method c to clients so that
they can determine if an subsequent call to m is safe, although clients are not
required to call it. We can abstract this into a finite number of states by having
is in bounds and isn’t in bounds abstract states.

A widely known example of this category is the iterator. In an iterator, the
next method can only be called if the iterator is at a location in the iterated col-
lection where there are subsequent items. Iterators provide the hasNext method
allowing clients to check dynamically if this is the case.
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Redundant Operation (7.3%). In the redundant operation category, a method m
will fail if it is called more than once on a given instance.

For an example of this category, consider the AbstractProcessor class, lo-
cated in the javax.annotation.processing package. If the init method is
called more than once, the second call will fail. One might wonder, given the
name of the method, why this is not considered to be part of the initialization
category. The answer has to do with the fact that our categories are oriented
towards errors. In the initialization category, methods on an object will fail if
the object has not already been initialized. Here, the failure occurs when the
init method is called a second time.

Domain Mode (4.8%). The domain mode category captures protocols for objects
that very closely model a domain. In these objects, various “modes,” which
are domain-specific, can be enabled and disabled, which in turn cause certain
methods related to those modes to be enabled or disabled.

As an example, consider the ImageWriteParam class in the javax.imageio
package. An image may be written with or without compression. Im-
ageWriteParam objects control whether and how compression is used for other
image objects. The ImageWriteParam class defines several compression modes,
“no compression,” “explicit,” and “writer-selected.” The parameter’s setCom-
pressionType method can only be called when the parameter is in “explicit”
compression mode.

Others (1.9%). Finally, there were a smattering of protocols that did not fit
any of the previously-mentioned categories, although even these protocols them-
selves have certain similar characteristics. As examples, we encountered a few
instances of types that defined methods that must be called in strict alternation
(a single call to method A enables a single call to method B and vice versa).
We also found a limited number of protocols that we would describe as lifecycle
methods, where a type defines more multiple abstract states through which an
object transitions monotonically during its lifetime. For example, the GIFIm-
ageWriter and JPEGImageWriter classes in the Java imageio library seem to
have this behavior. While we did not encounter many lifecycle protocols, our
own experience with Object-Oriented frameworks suggests that they may be
more common elsewhere.

3.3 Protocol Usage

Table 4 shows the results of running the ProtocolUsage analysis on the sixteen
candidate programs from phase two of the study. The goal here is to see how
often classes act as clients of other protocol-defining types. The table contains the
following information: The first column after the list of programs is the number of
classes in that program that contain calls to protocol methods. The next column
shows the percentage of classes in each program that use protocol methods.
These numbers range from 4% of all classes using protocols, on the low end, to
28% of all classes on the high end. The next two columns show the number and
percentage of classes that have fields whose types are protocol-defining types.
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Table 3. Categorization of each of the 648 reports issued by the ProtocolFinder that
were evidence for actual protocols

Category Protocol Evidence %

Initialization 182 28.1%

Deactivation 167 25.8%

Type Qualifier 106 16.4%

Dynamic Preparation 52 8.0%

Boundary 51 7.9%

Redundant Operation 47 7.3%

Domain Mode 31 4.8%

Others 12 1.9%

Table 4. The results of running the ProtocolUsage analysis on the sixteen candidate
code bases

Program Classes Calling %Classes w/ % Exposes Est. Classes
Protocol Methods Prot. Fields Protocol Rate From Total

JSL 1012 12% 1082 13% 15% 157

PMD 85 22% 29 7% 0% 0

Azureus 198 22% 763 8% 31% 234

JDT 13 4% 18 6% 0% 0

ant 269 28% 187 19% 20% 37

antlr 20 11% 16 9% 0% 0

aoi 25 6% 37 8% 0% 0

columba 120 12% 246 25% 8% 18

crystal 9 5% 2 1% 0% 0

drjava 49 8% 107 17% 0% 0

freecol 94 22% 117 27% 0% 0

log4j 39 22% 32 18% 0% 0

lucene 30 11% 27 10% 0% 0

poi 41 10% 13 3% 100% 13

quartz 16 13% 10 8% 0% 0

xalan 91 9% 142 14% 13% 17

Total 2111 13% 2141 13% 17% 356

W/O JSL 1099 15% 1059 14% 18% 196

The column, “Exposes Protocol Rate” shows the percentage of the classes with
protocol fields that were found to expose the protocols of those fields to their own
clients, of the 7% of classes with protocol fields that we sampled. The column,
“Est. Classes From Total” is an estimate of the total number of classes that
expose protocols defined by their fields based on this rate. The last two rows
show the totals and cumulative percentages for the entire suite, as well as the
numbers excluding the Java standard library.

We were also interested in finding out which protocol methods were being
called most frequently, and Table 5 summarizes this information. This table
contains a list of the fifteen most frequently called protocol methods. During our
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examination of the sixteen open-source code bases used in phase two, we found
7,645 calls to protocol methods. We took all the protocol methods that were
called, and ordered them by how many times they were called. Table 5 shows
the 15 most frequently called protocol methods along with the number of times
that method was called in our candidate programs and the percentage of the
7,645 protocol method calls that particular method constitutes. For example, the
next method of the Iterator interface was the most-frequently called protocol
method in our study. Of the 7,645 calls to protocols we found, over 2,200 were
calls to Iterator.next, almost 30% of the calls.

4 Discussion

After running our experiment, we noticed some interesting results. Protocols
were defined with small, but significant, frequency and almost all of those proto-
cols fit within a small number of categories. All of the protocols we expected to
find we did find, which gives us some confidence in our approach. And a signifi-
cant number of classes in our study use protocols as clients, even though almost
all of the protocols we were looking for were defined in the Java standard library.
Interestingly, but not surprisingly, there are a few protocols that are much more
widely used than others.

4.1 Sanity Check

As discussed in Section 2.4, we were curious about the ProtocolFinder’s false-
negatives: protocols that were defined in the code under analysis but not dis-
covered due to the design of the analysis. One quick sanity check we can do is
to make sure that all the protocols we already know about are found by our
analysis. This is not perfect, since our ProtocolFinder was designed with these
protocols in mind. Still, it is somewhat comforting to see that all of the protocols
we have encountered in our own work, and in similar works are found by our
analysis.

We expected to see sockets, files, streams and iterators in our results, since
those types are widely discussed in related work. And with the exception of
the actual java.io.File class, which does not define a protocol, we were not
disappointed. Socket, Readers, Writer, Streams and all their related classes did
turn up in our analysis. (Interestingly, ZipFile does define an Open/Closed
protocol.) We were also previously aware of the Throwable and Timer protocols.

Additionally, we were happy to see that well-known protocol-defining inter-
faces, like Iterator, were discovered through our process, since, for interfaces,
the ProtocolFinder has no code to examine.

4.2 Widely Used Protocols

We were quite interested, although not surprised, by the fifteen most frequently
called protocol methods, shown in Table 5. The iterator protocol, examined in
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Table 5. The 15 most-frequently called protocol methods, out of a total of 7,645 calls
to protocol methods, and percentage occurrence of each method relative to the total

Method Calls % Calls

java.util.Iterator.next() 2226 29.11%
java.util.Enumeration.nextElement() 1022 13.37%
java.lang.Throwable.initCause(Throwable) 850 11.12%
org.w3c.dom.Element.setAttribute(String,String) 460 6.02%
java.util.Iterator.remove() 211 2.76%
java.io.Writer.write(int) 182 2.38%
java.io.OutputStream.write(int) 165 2.16%
java.io.InputStream.read() 162 2.12%
sun.reflect.ClassFileAssembler.cpi() 138 1.81%
org.omg.CORBA.portable.ObjectImpl. get delegate() 90 1.18%
java.io.InputStream.read(byte[],int,int) 89 1.16%
java.util.ListIterator.next() 80 1.05%
java.io.Writer.write(char[],int,int) 77 1.01%
java.io.PrintWriter.flush() 76 0.99%
java.io.OutputStream.flush() 75 0.98%

several recent works [5, 20], appears at the top of the list, and the next method
of the iterator protocol accounts for nearly a third of all protocol method calls.4

While this seems rather uninteresting, it does suggest two points. One, that
the time spent evaluating protocol checkers against the iterator interface may
be well-spent, since a good iterator-checker can check a large portion of the
protocols that are used in practice. Second, all of the calls recorded are actual
calls to Iterator.next, and not instances of Java 5’s enhanced for loop. While
at present, these do represent actual protocol uses, where the client needed to
understand the Iterator’s protocol in order to use it, one suspects that many of
these calls could be replaced by the enhanced for loop, which would dramatically
reduce the number of protocol clients we observed. (The same cannot be said
for calls to Iterator.remove.)

The remaining frequently called methods quickly drop off in the frequency of
their use. The most-frequently called list leaves something like forty percent of
all protocol method calls off. This suggests that most protocols, like most APIs
in general, have a small number of clients. Most of the commonly used protocols
are quite recognizable: readers, writers, streams and certain collections defining
abstract states. Interestingly, when we remove recognizable types (e.g., streams,
sockets, files, iterators, throwables and their subclasses) we found that what
was left accounted for 21% of all protocol usage. This means there is still a fair
amount of use of non-obvious protocols.

4 It is worth noting that the hasNext method, which we would generally consider to be
part of the Iterator’s protocol, does not show up at all in our list of protocol methods.
This is due to the fact that the implementations of hasNext do not normally partake
in protocol violation detection by throwing an exception.
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4.3 Protocol Categories

We were pleasantly surprised to discover that a small number of categories
(seven) could be used to classify almost all of the protocols that we encountered
(98%). This is useful because it suggests a new evaluation criteria for develop-
ers of typestate checkers. Unless a typestate checker can verify protocols from
each of these seven categories, it is unlikely that it will work on most practical
examples. Of course, many of the interesting challenges in protocol verification
come from the context in which the protocols are used, for example whether or
not the relevant objects are aliased [7]. Still, these categories can help to guide
analysis evaluation.

It is also interesting that the categories produced during this study have the
flavor of “protocol primitives,” and this may have something to do with how
the study was carried out. To illustrate, one may have noticed that none of the
categories that we found have more than two abstract states. Yet this does not
mean that none of the types we investigated had more than two abstract states.
Our study proceeded by investigating each location of interest as determined by
the ProtocolFinder. We tried to understand only enough of the implementation
to determine whether or not we were seeing evidence for a protocol, the state
that the class should be in in order not to have that particular exception thrown,
and which state the class is in if the exception is thrown. But classes can have
different pieces of a protocol that fit into different categories or even multiple
protocol pieces that are all in the same category. As an example of the latter
case, consider the Socket class in java.net. A socket instance can be open or
closed, its “write-half” can be open or shut down. Both aspects of the protocol
are categorized as deactivation check protocols, but if one to is to consider the
class’ protocol in total, it would have at least four abstract states.

All of this is to say that there may be interesting characteristics shared by
protocol-defining types that are not captured by our categories. Coming to a
better understanding of protocols at a larger level of granularity, while an inter-
esting topic for future work, is out of the scope of this study.

4.4 Other Observations

A number of other points can be made by examining the results of our study.
First, object protocols are relatively common. Without context, 7.2% of the types
analyzed may not sound like an enormous amount, but consider that, according
to a simple analysis, just 2.5% of the 10,246 types in the Java library define Java
“Generic” type parameters, a widely heralded new feature of the language.

One point suggested by the data is that protocol use (13% of all classes)
is more common than protocol definition (7.2% of all types). This information
suggests that client-side protocol checking may be more important than imple-
mentation-side checking. Certain protocol-checking approaches have the ability
to verify both the correct use of protocols by clients and the correct implementa-
tion of protocols by their providers. Such is the case for the approach presented
by Bierhoff and Aldrich [5]. While provider-side checking may be important in
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some situations, a good client-side protocol checker may give programmers the
most bang for the buck.

In Table 4 we showed that 13% of all classes have fields whose types are pro-
tocol types. From the 7% of those classes we manually examined in our random
sample, 17% of them were found to expose the protocols of their fields to their
clients. Extending this rate to the entire set of classes with protocol fields, we
estimate that something like 356 of the classes in the phase two programs define
object protocols simply because of the ways in which their fields must be used.
This represents about 2% of all of the classes we examined in the entire study,
and, if accurate, is a significant increase in the percentage of protocol types.

Of all the classes defining protocols, the percentage implemented with syn-
chronization primitives was significant. Out of 221 classes containing protocol
evidence, 58 of them, or 26.2% were designed to be accessed by multiple threads
concurrently. If protocol checking is considered an area of research interest, this
suggests that those checkers should be designed with multi-threading in mind.

We did not observe conclusively that protocols were more likely to be defined
by libraries and frameworks than by applications. However, the Java standard
library when considered separately, has a much higher percentage of its types
classified as protocol-defining (8% vs. approximately 2%). There could be some
truth to the idea that code wrapping underlying system resources is more likely
to define protocols. However, given our process of gathering protocol types, it
might alternatively suggest that the standard library has a deeper type hierarchy.

For protocol usage, there was some difference observed. In programs that we
classified as applications, 17.4% of classes acted as clients of protocol-defining
methods. For library and framework code, that rate was 11.4%.

We were interested in the variety of types that define protocols. As evidenced
by the small number of protocol categories, these protocols were often quite
similar, but in fact the contexts in which they were defined vary greatly. This
answered one of the questions that helped to motivate this study: Are there
any protocol types beyond files, sockets and iterators? We can say, confidently,
that the answer is yes. The following list shows just a few of the examples we
found:

Security com.sun.org.apache.xml.internal.security.signature.Manifest,
java.security.KeyStore

Graphics java.awt.Component.FlipBufferStrategy,
java.awt.dnd.DropTargetContext

Networking javax.sql.rowset.BaseRowSet,
javax.management.remote.rmi.RMIConnector

Configuration javax.imageio.ImageWriteParam,
java.security.AlgorithmParameters

System sun.reflect.ClassFileAssembler, java.lang.ThreadGroup
Data Structures com.sun.corba.se.impl.ior.FreezableList, java.util.Vector
Parsing net.sourceforge.pmd.ast.JavaParser,
org.eclipse.jdt.internal.compiler.parser.Scanner
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4.5 Future Work

Our study suggests a number of potential avenues for future work. For one,
the simple static analysis, ProtocolFinder, developed for this study, while use-
ful, is not sound with respect to our own definition of object protocol. Better
analyses will likely find even more protocol definitions in the same code base.
Alternatively, widening the definition of object protocol to include more object
behaviors, will also likely result in finding more object protocols in the same
code base, and a wider definition may be of interest to certain researchers.

As discussed in Section 4.3, our current protocol categories are in some sense
“micro-categories:” primitive categories from which larger behavioral patterns
might emerge. An interesting task for future work is to examine these larger
behavioral entities to see if they share common characteristics.

Finally, even if object protocols are common, an interesting question to ask is
whether or not they lead to program defects. Studying the correlation between
protocol definition and use in a code base and the quality of that code may help
to answer this question.

5 Related Work

The problem of finding classes that define protocols is one of protocol inference,
and there has been some work in this area. The two most closely-related studies
were done by Weimer and Necula [26] and Whaley et al. [27].

Weimer and Necula [26] performed a study on open-source software that in
some ways is similar to ours. In their work, they were looking for violations of
resource-disposal protocols. For example, a connection to a database that must
be closed eventually, ideally as soon as it is no longer needed. They examined
over four million lines of open-source Java code and found numerous violations of
these sorts of protocols. This study, while quite interesting, differs from ours in a
number of ways. First off, their focus was on finding violations of protocols rather
than characterizing the nature and use of protocols (correct or otherwise) as we
have done. While they did look for protocol violations, they made no systematic
attempt to discover automatically the types that define such protocols. Rather,
they started their experiments with a known list. Additionally, their notion of
protocol and our notion of protocol do not quite overlap. They consider protocols
to be instances on which some operation must eventually be performed. The
protocols we consider, protocols in which calling a method at the wrong time
will lead to an error, are not considered in their work.

Both Whaley et al. [27] and Alur et al. [2] have developed effective tools for
statically inferring protocol definition. Whaley et al. [27] present a dynamic and
a static analysis for inferring object protocols. Their static analysis is inspired
by the same reasoning that ours is, and the description contains an in-depth
discussion of the practice of “defensive programming,” which is what we have
described here as detection of protocol violations. The dynamic analysis they
propose can infer more complex protocols than the static analysis. While our
experiments cover some of the same ground as theirs (both examine the Java
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standard library) our focus is different. Their primary focus is on the analyses
themselves, with the frequency and character of the protocols taking a back-
seat. Their largest studies were performed using the dynamic analysis, and so in
some ways are not comparable since not all of lines of code are executed during
dynamic analysis. Our best estimate is that their study covered approximately
550 thousand lines of source, compared with 1.2 million lines of source covered in
phase one of our study. Numbers are only reported for the Java standard library
experiment. They report that 81 of 914 classes define protocols. Our experiments
for version 1.6.0 14 report that 195 of 8,485 classes define protocols, and show
how much the Java standard library has grown since version 1.3.1! Still, their
work contains some discussion of the relevant methods and interesting features
of these object protocols. Our work contains a more systematic description of
the protocols encountered, including a classification of those protocols. Lastly
their static analysis seems to be more precise. It can detect protocol violations
that result in null pointer exceptions, which ours cannot.

Alur et al. [2] propose a related static protocol detector that also seems to
be more precise than ours. They also looked at the Java standard library, albeit
just a handful of classes. While either of these static analyses might have made
a better candidate for our own study, neither are publicly available.

In fact, a large number of other approaches have been proposed for automat-
ically inferring object protocols, both static and dynamic (e.g., [1, 25, 15, 28],
Pradel et al. [21] give a good overview). While a more precise static analysis may
help the accuracy of our findings it does not affect our overall conclusions. It is
our position that dynamic inference is inappropriate for our needs, since using
these analyses requires, at a minimum, test cases to exercise parts of code that
use protocols. In our attempt to find as many protocols as possible in as much
code as possible, finding test cases has proved to be quite difficult.

6 Conclusion

In this paper we presented an empirical study that examined several popular
open-source Java programs. The goal was to determine the true nature of object
protocols; how often they are defined, how often they are used, and in what
way those protocols are similar. In order to examine as much code as possible,
which can help us draw broad conclusions, we developed two static analyses,
ProtocolFinder and ProtocolUsage, which help us find where protocols may be
defined and where they are used. ProtocolFinder in particular may be subject
to false negatives, but regardless was able to find many of the most commonly
discussed object protocols.

We found that object protocols are occasionally defined (on average, 7.2% of
all types were found to define protocols) but more commonly used (on average,
13% of classes acted as clients of protocols). A small number (seven) of rather
simple protocol categories were used to classify almost all of the found protocols.
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Abstract. We present an approach that partitions a software system
into its algorithmically essential parts and the parts that manifest its
design. Our approach is inspired by the notion of an algorithm and its
asymptotic complexity. However, we do not propose a metric for mea-
suring asymptotic complexity (efficiency). Instead, we use the one aspect
of algorithms that drives up their asymptotic complexity – repetition, in
the form of loops and recursions – to determine the algorithmically es-
sential parts of a software system. Those parts of a system that are not
algorithmically essential represent aspects of the design. A large fraction
of inessential parts is indicative of “overdesign”, where a small fraction
indicates a lack of modularization. We present a metric, relative essence,
to quantify the fraction of the program that is algorithmically essential.
We evaluate our approach by studying the algorithmic essence of a large
corpus of software system, and by comparing the measured essence to an
intuitive view of design “overhead”.

1 Introduction

Given today’s large software systems, consisting of tens or hundreds of thousands
of classes, wouldn’t it be nice to be able to automatically distinguish between
their essential and non-essential parts? More specifically, wouldn’t it be nice to
be able to quantify the amount of algorithmically essential code and the amount
of code that primarily serves design? And wouldn’t it be nice to have a tool that
automatically locates the essential code? In this paper we present an approach
towards this goal.

A software system implements a set of interacting algorithms to achieve a
function. As software systems have gotten more complex, software developers
have tried to find techniques to combine and implement the algorithms in such a
way as to not only achieve efficiency of the running code, but also structure in the
software code. The structure is generally referred to as design. There has been
a lot of effort to develop effective design methods. Many of them are based on
Parnas’ fundamental principle of “information hiding” [13]. The expectation is
that good design will impose an overhead (often in the form of extra indirection)
during execution, but that it will provide benefits in terms of understandability
and maintainability of the software.
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In his seminal “No Silver Bullet – Essence and Accident in Software En-
gineering” [3], Brooks provides an intensional definition of essential complexity
(“complex conceptual structures that compose the abstract software entity”) and
accidental complexity (“representation of these abstract entities in programming
languages”). His definition of essential complexity refers to the algorithms to be
implemented in a system. Any implementation of such algorithms in a given
programming language will necessarily entail design decisions such as: Do I ex-
tract this code into a separate method? Do I implement this traversal iteratively
or recursively? Do I use polymorphism or a switch statement? Do I introduce
a facade? Do I use delegation or inheritance? Do I use a visitor pattern or do
I place the computation in the structure itself? All of these design decisions
affect the resulting code. None of them (should) affect the essential algorithms
implemented by the system.

Our goal is to identify the essential parts of a software system by analyzing
its code. To automate this task, we have to provide an operational definition of
essence. We do this by focusing on repetitions. Repetitions are essential for the
algorithmic complexity of a program. If there are no repetitions, the asymptotic
computational complexity is constant, or O(1). While conditionals affect compu-
tational complexity, adding a conditional statement to a structured program can
only reduce its computational complexity. Thus, to keep our analysis tractable,
we focus on the most important algorithmic aspect in code: repetitions.

In most programming languages, there are two forms of repetition: loops and
recursion. Loops correspond to cycles in the control flow graph of a method, while
recursions correspond to cycles in the call graph of a program. Our analysis thus
identifies the loops in all methods and it determines the recursive cycles in the
program’s call graph. The duality between loops and recursions allows us to use
the same algorithm for both analyses.

More precisely, our analysis creates forests of nested cycles for each of these
graphs. For control-flow graphs, such a forest is known as a “loop nest tree”.
A cycle is a set of nodes so that each node in the set is reachable from each
other node in the set. Moreover, each cycle has a set of header nodes, through
which execution can enter the cycle. In control-flow graphs directly compiled
from structured programs, loops contain only a single header node. However,
loops in control flow graphs of unstructured programs, and recursive cycles in
the call graph, can have multiple headers.

Our approach to determine the algorithmically essential parts of a program
identifies all header nodes of iterative and recursive cycles. Nodes in cycles that
are not headers are not deemed algorithmically essential. This relatively straight-
forward approach allows us to identify the (algorithmically inessential) methods
introduced by design decisions such as the use of collections, facades, iterators,
encapsulation, or visitors.

The result of our analysis is a representation we call the loop call graph,
in which we highlight essential parts of the program. Moreover, based on that
representation, we compute metrics that quantify the algorithmic essence of a
system (or subsystem) as well as its design “overhead”.
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1.1 Rationale

Our approach is based on the following design rationale:

Localizable. We do not just want to have a global overall metric measuring
essence, but we want an approach that explicitly identifies essential and
inessential parts in programs.

Intuitive. The program parts identified as essential need to correspond to a
programmer’s intuition of what is essential in the underlying algorithm.

Stable. When analyzing two implementations of the same algorithm, the essen-
tial parts in both implementations should correspond to each other.

Language-independent. Our approach should not depend on a specific pro-
gramming language. Two equivalent programs written in different languages
should result in equivalent essential parts.

The remainder of this paper is structured as follows. Section 2 presents a moti-
vating example. Section 3 explains our approach and analysis. Section 4 discusses
the tool that implements our approach for Java programs. Section 5 uses our
approach to characterize a large body of Java programs. Section 6 discusses the
relationship between essence and design. Section 7 connects essence to related
work. Section 8 discusses usage scenarios for our metric and limitations of our
approach, and Section 9 concludes.

2 Motivation

Consider the three implementations1 of the factorial function in Listings 1, 2,
and 3. They vary in their amount of indirection: Listing 1 expresses the com-
putation as two nested for loops, Listing 2 factors out the multiplication into a
separate method, and Listing 3 introduces separate methods for even more ba-
sic computational steps. However, all three implementations perform the same
essential computation.

Many developers probably would consider Listing 2 as the best of the three
designs. We believe this is because neither the call graph nor the control flow
graph is excessively big. Figure 1 shows those two graphs (left and center column)
for each of the three listings (top to bottom). Listing 1 has a relatively large
control-flow graph, while Listing 3 has a similarly large call graph. Unfortunately,
we cannot use this balance between call graph and control-flow graph size as
guidance for a design metric: the size of the call graph is unbounded because it
grows with the size of the program.

However, if we identify the repetitions (in these iterative programs, the loops),
we can use them to measure the amount of algorithmically essential code versus
the amount of design-related code. We do this in our new representation, the
loop call graph (right-most column in Figure 1), which adds loop nodes into
the call graph. Having a single representation allows us to combine information
about recursion with information about loops.
1 For the sake of a simple example, assume the language does not have a multiplication

operator, which requires the developer to implement multiplication explicitly.
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Listing 1. Too little indirection

private static int f a c ( int n) {
int f = 1 ;
for ( int i =1; i<=n ; i++) {
int p = 0 ;
for ( int j =1; j<=i ; j++) {p=p+f ;}
f = p ;

}
return f ;

}

Listing 2. Enough indirection

private static int f a c ( int n) {
int f = 1 ;
for ( int i =1; i<=n ; i++) { f=mul( f , i ) ; }
return f ;

}
private static int mul( int a , int b) {
int p = 0 ;
for ( int j =1; j<=a ; j++) {p=p+b ;}
return p ;

}

Figure 1 shows that each of the three implementations contains two loops. The
loop call graph shows that, at runtime, the multiplication loop will be nested
inside the factorial loop, no matter which implementation we use. Moreover,
it shows that the number of inessential nodes in the loop call graphs differs
significantly. The relative essence, or the number of essential nodes divided by
the number of method nodes, changes from 2/1 to 2/2 to 2/5. As these values
show, a high relative essence is not necessarily positive: it may indicate the
absence of any modularization. However, an essence close to 0 is an indication
of “overdesign”, or too much indirection.

3 Approach

Our approach to identifying essential and accidental parts of computation is to
look for repetition in the computation. This repetition manifests itself either as
loops (cycles in control-flow graphs) or recursions (cycles in call graphs).

To reason about repetition overall, we have to combine information from both
of these graphs. In theory, we could build a whole-program control-flow graph. In
this way, call graph cycles would result in cycles in the whole-program control-
flow graph. However, given the size of modern software, the size of the resulting
whole-program control-flow graph would grow too big for efficient analysis.
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Listing 3. Too much indirection

private static int f a c ( int n) {
int f = 1 ;
for ( int i =1; lessOrEqual ( i , n ) ; i=addOne ( i ) ) { f=mul ( f , i ) ; }
return f ;

}
private static int mul( int a , int b) {
int p = 0 ;
for ( int j =1; lessOrEqual ( j , a ) ; j=addOne ( j ) ) {p=add (p , b ) ; }
return p ;

}
private static int add ( int a , int b) {return a+b ;}
private static boolean l e ssOrEqual ( int a , int b) {return a<=b ;}
private static int addOne ( int a ) {return add( a , 1 ) ;}

Instead of combining call graph and control-flow graph, we propose a multi-
level analysis. We analyze each control-flow graph individually to find loops, and
we analyze the call graph to find recursions. Each loop and each recursion header
represents a computationally essential part of the program, while all other call
graph nodes represent accidental parts. Then we combine the results to present
the essential and accidental parts of the program and to measure its essence.

3.1 Overview

Our overall approach can be summarized as follows:

1. Build control-flow graphs
2. Identify loop forests in control-flow graphs
3. Build call graph
4. Identify recursion forests in call graph
5. Combine loop forests & call graph into loop call graph
6. Compute metrics

Building control-flow graphs. Control-flow graphs of programs written in
languages supporting exception handling often contain a substantial number
of exception edges. We expect the control-flow graphs to include those edges,
so that we are able to analyze the whole program, including all its exception
handlers.
Identify loop forests in control flow graphs. We use an approach to loop
detection that works on arbitrary (even un-structured) control flow graphs. Sec-
tion 3.2 describes that approach in detail.
Build call graph. We expect the call graph to include all feasible call edges
(e.g. including those due to polymorphic invocations and calls through function
pointers). Naively, this can be satisfied by adding edges between each pair of
methods. However, such an extremely conservative approach would lead to large
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Call graph Control-flow graph Loop call graph
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Fig. 1. Call graph, control-flow graph, and loop call graph

numbers of cycles in the call graph and would greatly overstate the amount of
recursion in the program.

For strongly-typed languages with polymorphic method calls, efficient analy-
ses such as class-hierarchy or rapid type analysis [1] are able to eliminate most
infeasible call edges. For weakly-typed languages, more expensive flow-sensitive
analyses or pointer analyses are necessary to get a reasonably precise call graph.

Our recursion detection approach requires one node of the call graph to be
denoted as the entry node, and it requires all other nodes to be reachable from
that node. When analyzing entire programs, this usually corresponds to the
main method. When analyzing libraries, we introduce an artificial entry node
that points to all public API methods provided by the library.

Sometimes we are interested in analyzing an application but to exclude (some
of) the libraries. In that case we do not create any nodes for the excluded library
methods. Call sites in the application that point to excluded library methods do
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not lead to any call edges. Frameworks, like libraries, are called by the applica-
tion, but they also call back into the application. When analyzing frameworks in
isolation, we create neither of these (incoming or outgoing) call edges, and thus
we may miss recursive cycles that cross between application and framework2.

Identify recursion forests in call graph. Skiena [16] proposed to identify
recursion in call graphs with the purpose of optimizing non-recursive code. He
labels all nodes that are involved in a recursion cycle. However, not all methods
involved in a recursion cycle are essential for the computational complexity of the
program. Analog to loop analysis in control-flow graphs, we want to identify the
“headers” of recursion cycles, and we want to properly handle nested recursion
cycles. Doing so requires us to determine recursion forests, forests consisting
of trees of nested recursion cycles (“loops”). The duality between control-flow
graphs and call graphs allows us to use the same approach we use for detecting
loop forests in control-flow graphs.

Combine loop forests and call graph into loop call graph. To present
the results of our analysis in a single structure, we combine the loops and the
call graph into a loop call graph. A loop call graph contains two kinds of nodes:
method nodes represent methods and loop nodes represent loops. The graph
contains two kinds of edges: call edges represent method calls and loop entry
edges represent loop entries. Call edges point from a method or a loop to a
method (the callee). Loop entry edges point from a method or a loop to a loop.
Loop entry edges originating from a loop represent loop nesting (entry of an
inner loop from an outer loop). Call edges only originate in a method if the
call site is not located in a loop (otherwise they originate in the innermost loop
containing the call site).

Figure 2 shows the loop call graphs for four variations of the “best” factorial
example in Listing 2. The left-most graph corresponds to the original example,
the other graphs replace one or both methods (fac or mul) with recursive im-
plementations. Loop entry edges are rendered with dotted lines, while call edges
are solid. Loop nodes are filled in blue. Method nodes that are recursion headers
are filled in red. The method node that corresponds to the graph entry (fac)
has a bold outline.

Compute metrics. Given the loop call graph, we compute the metrics that
quantify the algorithmic essence of the program. First, we define three direct
absolute-scale metrics to count the different kinds of nodes in the loop call graph:

NN = |non-recursive method nodes|
NR = |recursive method nodes|
NL = |loop nodes|
Second, we compute the absolute essence E, a simple indirect metric that

counts the essential nodes in the loop call graph:

E = NL + NR

2 We have observed such cycles in frameworks, such as GUI toolkits, that contain
recursively invokable event dispatch methods.
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Fig. 2. Factorial Loop Call Graphs and Metrics

Finally, we compute indirect ratio-scale metrics to be able to reason about
essence independently of program size, culminating in our measure of relative
essence e:

recursiveness = NR

NN+NR
loopyness = NL

NN+NR
e = E

NN+NR

Figure 2 shows that E is the same (2) for all four implementations of the
program. This means that E is agnostic to the choice between recursive or iter-
ative implementations. Moreover, Figure 1 shows that E is not affected by the
design of the program: no matter what degree of indirection is added, E stays
the same (2). NN , however, significantly changes with the design of the program:
for Figure 1 it varies between 1 and 5, and it clearly correlates with the amount
of indirection introduced by the programmer. Our main metric, e, also stays the
same (1) for all four implementations in Figure 2. It does clearly show, though,
the differences between the three implementations in Figure 1 (2, 1, and 0.4; for
the “underdesigned”, nice, and ”overdesigned” implementations).

3.2 Forest Construction

Two steps in our approach require the construction of forests representing the
cycle nesting structure in a graph. We need to find loop forests in control-flow
graphs and recursion forests in loop call graphs.
Reducibility. Loop identification and loop forest construction are standard
analyses in optimizing compilers. The control-flow graphs compilers operate on
are usually derived from structured source programs, and thus they are usually
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reducible3 (and even if they were not, optimizers could just decide to skip loop
optimizations on irreducible control flow graphs). For this reason, the classic loop
identification algorithms used in compilers are unable to properly identify loops
in irreducible graphs. Unfortunately, the graphs we encounter in our static anal-
ysis, in particular the call graphs (for example those in Figures 5 and 6), are not
necessarily reducible. Moreover, unlike a compiler optimization, we cannot just
bail out if we encounter an irreducible graph (especially because many realistic
call graphs are irreducible, and analyzing the call graph is essential). Thus, we
cannot use the classical natural-loop identification algorithms for constructing
our recursion forests.

Forests in irreducible graphs. We base our approach on prior work on loop
identification in irreducible flow graphs. Ramalingam [14] provides an axiomatic
framework for this problem and generalizes prior approaches by Sreedhar et
al. [18], Havlak [7], and Steensgaard [19]. Algorithm 1 represents the core of
loop forest construction. It iteratively removes specific edges from the graph until
the graph contains no more cycles. FindStronglyConnectedComponents

corresponds to Tarjan’s algorithm, and returns the set of strongly-connected
components (the set of loop bodies). In the inner loop, the algorithm iterates
over each loop body to determine its header nodes. Unlike in reducible graphs, in
irreducible graphs loops can have multiple headers. IdentifyHeadersSteens-

gaard thus returns a set of header nodes for each loop. The algorithm adds
each newly identified loop L into the loop forest F . RemoveLoopbackEdges

in Algorithm 3 then removes all loopback edges (edges that point to a header
from within the body) from the graph. Finally, the algorithm repeats by again
finding strongly-connected components on the now smaller graph.

Header identification. We use Steensgaard’s variant of Ramalingam’s ap-
proach, because it produces loops with headers that most closely correspond to
the intuitive understanding of the recursion structure in programs. With Steens-
gaard’s variant, the headers of a loop correspond to all entry nodes (all nodes
pointed to from outside the loop). This is more intuitive than Havlak’s or Sreed-
har’s variants, which consider subsets of the entry nodes to be headers.

4 Implementation

We implemented a static program analysis tool to measure the essence of Java
programs. Our tool uses ASM [12] to statically analyze Java class files. We
build control-flow graphs that include all exception edges and use class hierarchy
analysis [1] to statically resolve polymorphic call targets. We implemented the
forest construction algorithm described in Section 3.2. Our tool determines the
number of loops, recursion headers, and total call graph nodes, and computes
our metric of essence. It also produces a visualization of the loop call graph with
nodes annotated accordingly.
3 In a reducible flow graph [8], each strongly-connected component can only have one

entry edge.
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Algorithm 1. ConstructLoopForest

Require: graph G = 〈N, E〉
Ensure: loop forest F = 〈L, C〉

{S}CC set S, loop L, loop body B, loop headers H
{n}ode to loop map M = 〈N, L〉
S ← FindStronglyConnectedComponents(G)
while S �= ∅ do

for all B ∈ S do
H ← IdentifyHeadersSteensgaard(G, B)
L ← (H, B)
Lp ← FindParentLoop(F, L, M)
C ← (Lp, L)
F ← F ∪ {(L, C)}
RemoveLoopbackEdges(G, L)

end for
S ← FindStronglyConnectedComponents(G)

end while
return F

5 Characterization

To evaluate our new metric, we studied the essence of a large number of Java pro-
grams. Our programs consist of the 100 applications of the Qualitas Corpus [20]
release 20100719r and the two dominant Java benchmark suites: SPEC JVM [17]
release 2008, and Dacapo [2] release 9.12-bach. We included all systems from all
three suites. For Qualitas, we used the meta data to indicate which classes to
analyze. Instead of including one JRE in the Qualitas corpus, we analyzed JRE
1.6.0 for three different platforms: Linux, Mac OS X, and Windows, because the
Java runtime libraries can differ significantly by platform. For SPEC JVM, we
analyzed the classes indicated in other characterization studies [21]. For Dacapo,
the set of analyzed packages corresponds to the set of packages used when the

Algorithm 2. FindParentLoop

Require: loop forest F = 〈L, C〉, new loop L = 〈H,B〉,
node to loop map M = 〈N, L〉

Ensure: return loop L’s parent Lp, or ∅ if L is a root
Lp ← ∅
for all n ∈ B do

if ∃Lm ∈ L such that (n, Lm) ∈ M then
Lp ← Lm

end if
end for
for all n ∈ B do

M ← M \ {(n, Lp)} ∪ {(n, L)}
end for
return Lp
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Algorithm 3. RemoveLoopbackEdges

Require: graph G = 〈N, E〉, loop L〈H,B〉, H ⊆ B ⊆ N
Ensure: ∀h ∈ H ∀b ∈ B (b, h) /∈ E

for all h ∈ H do
for all b ∈ B do

E ← E \ {(b, h)}
end for

end for

Algorithm 4. IdentifyHeadersSteensgaard

Require: graph G = 〈N, E〉, loop body B ⊆ N
Ensure: loop headers H ⊆ B

H ← ∅
for all n ∈ B do

if ∃n1 ∈ N such that n1 /∈ B ∧ (n1, n) ∈ E then
H ← H ∪ {n}

end if
end for
return H

benchmarks are run. We label each system with a suffix, according to the corpus
it comes from (Q for Qualitas, S for SPEC JVM, D for Dacapo, and we use J
for the JREs).

5.1 Size

Our corpus consists of 133 systems, with a total of just over 2 million Java
methods and 229536 loops. The systems range in size between 16 and 257562
methods (median: 5132). 159052 of the methods are recursion headers, and there
are a total of 38845 recursive cycles. While 31213 (80%) of those recursions have a
single header method, 7632 contain multiple headers (and thus lead to irreducible
call graphs).

5.2 Essence

The relative essence e of the systems ranges between 0.037 and 0.66 (median:
0.206). Figure 3 plots relative essence versus program size. The logarithmic x-
axis shows program size in terms of the number of loop call graph nodes. The
highlighted band shows the first, second, and third quartiles of the essence dis-
tribution. Half of the systems lie within that band. Systems outside that band
are somewhat unconventional.

All the systems with fewer than 200 nodes come from the SPEC JVM suite.
Many of them correspond to small, loop-driven algorithm implementations. The
fact that our metric separates these systems from “normal” systems in the Qual-
itas corpus and the Dacapo suite corresponds to the findings of the authors of
the Dacapo suite [2].
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The relative essence of larger systems usually is closer to the median of the
corpus. Large systems, such as the Mac OS X JRE with 219893 methods, are
rarely written by a single developer or team, and thus they constitute a mix
of code contributions, each contribution with a somewhat different design style.
When measuring the essence of the entire system, the different design styles are
mixed together and the essence gets close to the median essence of the corpus.
For this reason, large systems with a particularly high or low relative essence
are interesting. Weka is such a large system, with 30589 nodes and a high e of
0.395. Weka is a large collection of machine learning algorithms, and thus its
high algorithmic essence is not surprising. JMoney is at the opposite end of the
essence spectrum. It is a money management application based on the Eclipse
platform. It consists mostly of glue code that connects various Eclipse plugins.
It delegates most repetitions either to existing GUI controls (such as table grids)
or collection classes (such as Java’s Arrays.sort).

5.3 Essence by System

Figure 4 presents details about the essence of all the systems in our corpus.
We ordered the systems on the x-axis by relative essence. The top chart shows
the relative essence, consisting of its two components (loops and recursions).
The bottom chart shows the size of the systems in terms of their number of
loop call graph nodes. Bars are stacked according to the different node types:
non-recursive methods (“normal”), recursive methods, and loops. The y-axis is
cropped at 50000, however six systems had well over 50000 nodes (the three
JREs, Dacapo’s trade benchmarks, and the Qualitas version of Eclipse).
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Fig. 4. Essence, recursive methods, and loops in Qualitas, SPEC, and Dacapo systems

Two of the systems in our corpus are traditionally used as good examples
of design. JUnit is known for its high design pattern density, and JHotDraw is
partially written by the same authors. Those two systems implement dramat-
ically different functionality, however, their relative essence is relatively close
(0.144 and 0.153, respectively). Their essence is significantly below the median
of 0.206. One could use systems like these, with a design of an exemplary quality,
as a reference for the amount of essence a well-designed system should have.

Our corpus contains several groups of related systems. The relative essence
of each of the three JREs is above the median. The Windows and Linux ver-
sions, which are almost identical, have the same essence of 0.235. The Mac OS
X version has a slightly higher essence of 0.242. That version includes additional
libraries, such as the QuickTime multimedia framework, a possible source for
more algorithm-dominated code. The corpus contains two versions of Derby, one
in Qualitas and the other in SPEC. Given the different definitions of what consti-
tutes part of a system, the set of analyzed classes in such cases can significantly
differ. For Derby, even though the set of analyzed methods differs, the essence is
nearly the same (0.235 vs. 0.242). For Xalan, the difference is relatively similar
(0.213 vs. 0.240). For Sunflow, which is part of all three suites, the relative essence
differs significantly (0.222, 0.258, 0.275). However, the three suites include sig-
nificantly different subsets of the Sunflow classes. The essence differs for Eclipse
in Dacapo (0.333) and Qualitas (0.233), but Qualitas includes a more recent
version of Eclipse and a much larger set of plugins. JRuby (0.158) and Jython
(0.206) are two runtime environments for dynamic languages. Jython makes
much heavier use of recursion. Finally, SableCC (0.154) and Javacc (0.374) are
located almost at the opposite ends of the spectrum. They are both parser gen-
erators. The SableCC documentation points out the focus on generating easy-to-
maintain, object-oriented, design-pattern-based parsers. This indicates that the
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developers of SableCC followed the same design approach when writing SableCC
itself. It is interesting to note that the relative essence of SableCC and the well-
designed JHotDraw is the same.

6 Essence and Design

In this section we show that essence is directly related to object oriented design
concepts, such as code smells, refactorings, and design patterns.

6.1 Essence and Code Smells

Code smells help to identify specific design problems. To understand how code
smells relate to essence, we performed two tests.

First, we manually analyzed the commonly known code smells [5], to under-
stand how they correlate with relative essence4. Of the 31 smells, 3 strongly
indicate low relative essence, 2 weakly indicate low relative essence, 2 weakly
indicate high relative essence, and 14 strongly indicate high relative essence.
This means that most of the commonly known smells represent issues where
the relative essence is too big. This may be an indication that in practice, most
problems with software are related to the lack of modularization. Nevertheless,
there are some smells (especially “Lazy Class/Freeloader”, “Middle Man”, and
“Shotgun Surgery”) that indicate that the relative essence is too low and the
amount of indirection too high.

Second, in our corpus of 211507 real-world classes, we manually analyzed
those classes that exhibited the highest and the lowest relative essence, to un-
derstand their design and to find potential code smells5. The 14 classes with the
highest relative essence produce mostly “Long Method” smells, often accompa-
nied by “Comments” to break the long method into understandable blocks. In
our corpus, 125640 classes (59%) have zero relative essence. Out of that large
pool, we picked two small samples. The first zero-essence sample represents the
classes with the largest number of methods (and thus method nodes in the
loop call graph). This sample, in which each class contains at least 90 methods,
represents many “Data Classes” and “Middle Men”. However, it also contains
automatically generated classes and adapters with almost empty default method
implementations. To avoid the bias possibly introduced by exclusively focusing
on classes with many methods, we also investigated a second, random, sample
of zero-essence classes. That sample also contains some bad smells like “Data
Class”, however many classes in that sample are participants in design patterns,
and thus make positive use of indirection.

6.2 Essence and Refactorings

Refactoring is one way to fix the cause of a code smell. In Fowler’s “Refactoring”
book [5], Beck differentiates between two kinds of refactorings: those that add
4 Complete results: http://sape.inf.usi.ch/essence/algorithmic/smells
5 Complete results: http://sape.inf.usi.ch/essence/algorithmic/outliers

http://sape.inf.usi.ch/essence/algorithmic/smells
http://sape.inf.usi.ch/essence/algorithmic/outliers
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indirection where programs are “missing one or more benefits of indirection”
(such as for enabling of sharing of logic, for explaining the intent separately
from implementation, for isolating change, and for encoding conditional logic
through polymorphism), and those that remove “parasitic” indirection which
isn’t paying for itself (such as left-over intermediate methods, or unused poly-
morphism). According to Beck, refactoring essentially maximizes the amount of
design qualities while minimizing (or at least not unnecessarily increasing) the
amount of indirection.

We analyzed how well-known refactorings relate to relative essence, and thus
to the amount of indirection6. Of the 85 refactorings we studied, only 18 may
increase relative essence (14 strongly, 4 of those to a lower degree). A much
larger fraction, 47 refactorings, may decrease relative essence (42 strongly, 5
to a lower degree). Three pairs of refactorings most directly relate to relative
essence: “Inline Method” and “Extract Method”, “Remove Middle Man” and
“Hide Delegate”, and “Replace Delegation with Inheritance” and “Replace In-
heritance with Delegation”. For each of these pairs, the first refactoring increases
relative essence and the second refactoring (representing the inverse transforma-
tion) decreases relative essence. The first two pairs directly introduce or remove
delegation. The last pair is a bit more subtle. It transforms between delega-
tion and inheritance. Inheritance could be seen as an implicit form of delegation
(dynamic method lookup instead of explicit indirection to the delegate in the
application code).

6.3 Essence and Design Patterns

The presence of design patterns in a software system often is considered an in-
dicator of good quality. It is easy to see how design patterns like a “Facade”,
an “Adapter”, a “Mediator”, or a “Bridge” introduce extra indirections and de-
crease the relative essence of software. The effect of some other design patterns
on essence are a bit less straightforward. We thus manually analyzed this rela-
tionship7 for the well-known “Gang of Four” [6] design patterns. None of the 23
patterns directly implies a higher relative essence. Only 4 patterns are mostly
uncorrelated with relative essence. The vast majority (19) represent a design
with a low relative essence. Given that design patterns generally reduce relative
essence, relative essence could be seen as a measure of design pattern density.

In the remainder of this section we describe the effect of a more complicated
pattern, “Visitor”, which is often used in a recursive context. As our running
example, assume we want to implement a program that can evaluate abstract
syntax trees that represent arithmetic expressions. Algorithm 5 shows the essence
of the solution in the form of pseudo-code. Its relative essence would be e =
NR/NR = 1.

Listing 4. provides a possible implementation of this algorithm in Java, without
using the visitor pattern. The tree is represented using a class hierarchy, rooted

6 Complete results: http://sape.inf.usi.ch/essence/algorithmic/refactorings
7 Complete results: http://sape.inf.usi.ch/essence/algorithmic/patterns

http://sape.inf.usi.ch/essence/algorithmic/refactorings
http://sape.inf.usi.ch/essence/algorithmic/patterns
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Algorithm 5. Eval

Require: n is a tree node, n.type is its type, n.value is its value, n.left and n.right
are its children

Ensure: return value = result of evaluating the subtree rooted in n
if n.type = LITERAL then

return n.value
else if n.type = ADD then

return Eval(n.left) + Eval(n.right)
else if n.type = SUBTRACT then

return Eval(n.left) − Eval(n.right)
else if n.type = MULTIPLY then

return Eval(n.left) · Eval(n.right)
end if

in an abstract superclass Node. The only method of that class, eval(), evaluates
a node. Node has two subclasses, Literal which represents a constant value, and
BinOp, which represents a binary operation. BinOp keeps references to its two
operand nodes. Add is one of the three BinOp subclasses, representing an addition.
Subtract and Multiply are analog to Add, and are omitted for brevity. In our
example, the program entry point is Main.calc(), which receives a tree via a
reference to its root node and contains a polymorphic call to Node.eval().

Main.calc

Add.eval

Multiply.eval

Subtract.eval

Literal.eval BinOp.getA BinOp.getB

Main.calc

FOREST

headers: 
Multiply.eval
Subtract.eval

Add.eval

Literal.eval BinOp.getA BinOp.getB

Add.eval Subtract.eval Multiply.eval

Fig. 5. OO call graph and recursion forest

The top of Figure 5 shows the call graph of this program. The three essential
nodes corresponding to the three eval() methods represent the headers of one
recursive cycle. We call these kinds of recursive cycles “polymorphic recursions”,
because their header nodes are implementations of a method declared in a super
type, and because they are invoked polymorphically in a recursive way. The three
nodes are all header nodes of this single cycle (according to Steensgaard’s ap-
proach to header node identification), because there is a node outside the cycle,
Main.calc(), which points to all of them. If we turned the call in Main.calc()
into a monomorphic call (e.g. by changing the type of Main.calc()’s parame-
ter from Node to Add), this would change: We would end up with one header
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Listing 4. Polymorphic implementation in Java

public abstract class Node { public abstract int eva l ( ) ; }
public class L i t e r a l extends Node {
private int value ;
public L i t e r a l ( int value ) { this . va lue = value ;}
public int eva l ( ) {return value ;}

}
public abstract class BinOp extends Node {
private Node a ;
private Node b ;
public BinOp(Node a , Node b) { this . a = a ; this . b = b ;}
public Node getA ( ) {return a ;}
public Node getB ( ) {return b ;}

}
public class Add extends BinOp {
public Add(Node a , Node b) {super (a , b ) ; }
public int eva l ( ) {return getA ( ) . eva l ( ) + getB ( ) . eva l ( ) ; }

}
public class Main {
public int ca l c (Node n) {return n . eva l ( ) ; }

}

node (Add.eval). However, the loop forest algorithm would detect a nested re-
cursive cycle (after eliminating the loopback edges pointing to Add.eval), with
Subtract.eval and Multipy.eval as its headers. This means that the number
of recursive cycles would change, which is the reason for why we count header
nodes and not recursive cycles when computing essence. With our approach, no
matter whether we enter this recursive cycle via a polymorphic or a monomor-
phic call, we end up with three header nodes and the relative essence stays the
same8: e = (NL + NR)/(NN + NR) = (0 + 3)/(3 + 4) = 0.43. The bottom of
Figure 5 shows the recursion cycle forest of this program, which includes a single
recursive cycle (rectangle) containing just the three header nodes.

For space reasons, we omit the visitor-based implementation of the traversal.
We only show the resulting loop call graph at the top of Figure 6. As we can
see, we still have three essential methods (the three concrete elements’ accept
methods). They form the headers of a larger recursive cycle, which also includes
the visitor’s visit methods. Our approach correctly identifies that the visitor
pattern introduces an extra level indirection for each method. The number of
essential nodes stays the same (E = 3), however, the relative essence decreases
due to the extra level of indirection: e = E/(NN + NR) = 3/(3 + 10) = 0.23.
Also note that the recursion forest at the bottom of the figure shows the same
structure, which means that the visitor does not introduce any nested recursive

8 Note that header node identification approaches other than Steensgaard’s can violate
this property.
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Main.calc

Subtract.accept

Add.accept

Literal.accept

Multiply.accept

EvalVisitor.getResult

EvalVisitor.visitSubtract

EvalVisitor.visitAdd

EvalVisitor.visitLiteral

EvalVisitor.visitMultiply

Literal.getValue

BinOp.getB BinOp.getA

Main.calc

FOREST

headers: 
Multiply.accept
Subtract.accept

Add.accept

Literal.accept BinOp.getA BinOp.getB Literal.getValue EvalVisitor.getResult EvalVisitor.visitLiteral

Add.accept Subtract.accept Multiply.accept EvalVisitor.visitAdd EvalVisitor.visitSubtract EvalVisitor.visitMultiply

Fig. 6. Visitor call graph and recursion forest

cycles. This corresponds to intuition, because the introduction of the visitor
pattern does not change the algorithmic aspect of the program.

7 Related Work

Our approach – and our metric – is related to and inspired by two seminal works
in software engineering.

Our operational definition of essence, based on the loop call graph and our
two metrics, is similar in spirit to Brook’s intensional definition [3] of essence
and accident. We start with the representation of a solution formulated in a
concrete programming language, which, according to Brooks, contains essential
and inessential aspects. Instead of finding an abstract model representing the
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complete essence (and only the essence) of a solution, we aim for the more
tractable task of separating the parts of the concrete program that are likely
essential from the parts that are likely accidental.

Parnas’ “On the criteria to be used in decomposing systems into modules” [13]
describes the concept of information hiding. The tool enabling information hiding
is the use of indirection in the form of functions that hide design decisions and
internal data structures. Relative essence is our approach towards quantifying
the amount of such indirection.

7.1 Conceptual Relationship to Existing Metrics

Essence is a design metric. In this section and the next, we analyze whether
essence just represents a different perspective on an existing design metric, or
whether essence represents a design property that is not captured by exist-
ing metrics. While this section discusses the conceptual relationships between
essence and intuitively related metrics, the next section empirically studies the
correlation of essence with well-known existing metrics.

Essence is particularly related to four kinds of software metrics: design pattern
density, coupling and cohesion, cyclomatic complexity, and bloat.

Design pattern density. Essence is related to Riehle’s design pattern den-
sity [15]. Design pattern density determines “which parts of a design are design
pattern instances, and which parts are not”. It is defined as “the percentage on
an object-oriented framework’s collaborations that are design pattern instances”.
Measuring pattern density has many potential benefits, such as estimating the
maturity or quantifying the ease of learning a framework. While design pattern
density separates the “good” (pattern-based) parts of the design from the “bad”
parts of the design, our new metric, essence, separates the overall design from the
algorithmic core of a program. A second difference between our essence metric
and design pattern density is that our metric is fully automatically computable
from code, while design pattern density depends on the prior identification of
collaborations and design patterns. While there is much active research in that
direction, we are unaware of an approach to automatically and reliably identify-
ing all the necessary collaborations and design patterns in code.

Coupling and cohesion. Essence is also related to coupling and cohesion [4].
While coupling and cohesion tell you what you should move around, essence
tells you what you might want to remove, and it tells you about the absence of
indirections you might want to add.

Cyclomatic complexity. Essence is related to McCabe’s cyclomatic complex-
ity [10]. Cyclomatic complexity characterizes method bodies consisting of basic
blocks, we characterize programs consisting of methods and entire loops. Note
that McCabe also defines a measure he calls “essential complexity”, ev, which,
however, is very different from our notion of essence. His ev measures the un-
structuredness of a control-flow graph. Structured control-flow graphs, no matter
how high their cyclomatic complexity, have ev = 1. Thus, essence is closer to
McCabe’s cyclomatic complexity, with the difference that we focus on repetitions
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(instead of all branches) and that we include recursion (which, as our results
show, is a major contribution to the complexity of modern software systems).

Bloat. To some degree, essence could be considered a dual to bloat [11]: bloat
focuses on unnecessary transformations of data, while we identify algorithmically
inessential code.

7.2 Empirical Correlation with Existing Metrics

The above section discussed the relationship between relative essence and well
known metrics on a conceptual level. In this section we empirically determine
the correlation of relative essence with design metrics as computed by existing
tools.

We believe that relative essence may be a surrogate for design pattern density.
However, given the absence of an automatic approach to measuring design pat-
tern density, we are not able to validate that hypothesis other than by argument.
As we have shown in Section 6.3, the introduction of most design patterns re-
duces relative essence, and no pattern generally increases relative essence. Thus,
at least for the “Gang of Four” patterns, we have reason to believe that pattern
density is inversely correlated with relative essence.

Unlike design pattern density, many other design metrics can be computed
automatically. However, as Lincke et al. [9] have shown, metric definitions can be
ambiguous, and different metrics measurement tools often interpret metrics def-
initions differently. To make our comparison unambiguous we computed design
metrics using four open-source tools: CyVis9 for cyclomatic complexity, JDe-
pend10 for object-oriented design metrics, ckjm11 for the Chidamber-Kemerer [4]
metrics, and Dependency Finder12 for more basic object-oriented metrics. Our
study involved 137 metrics. These include metrics computed for each of the
211507 classes, each of the 11018 packages, or each of the 133 applications in our
corpus13. We found that none of the existing metrics are correlated with relative
essence. Cyclomatic complexity shows the closest correlation, with a Pearson’s
product moment correlation coefficient r=0.49. As a rule of thumb, correlation
coefficients with an absolute value below 0.6 or 0.7 are considered uncorrelated.
Figure 7 shows a scatterplot of cyclomatic complexity versus relative essence. It
includes a regression line with a positive slope. Each class corresponds to an in-
dividual data point. The figure confirms that the correlation between cyclomatic
complexity and relative essence is rather weak.

The second metric, the only other metric with |r| > 0.4, is the number of
local variables per method. The fact that classes with more local variables per
method also show a higher relative essence makes intuitive sense, because meth-
ods involving loops or recursion often include local variables.

9 http://cyvis.sourceforge.net/
10 http://www.clarkware.com/software/JDepend.html
11 http://www.spinellis.gr/sw/ckjm/
12 http://depfind.sourceforge.net/
13 Complete results: http://sape.inf.usi.ch/essence/algorithmic/metrics

http://cyvis.sourceforge.net/
http://www.clarkware.com/software/JDepend.html
http://www.spinellis.gr/sw/ckjm/
http://depfind.sourceforge.net/
http://sape.inf.usi.ch/essence/algorithmic/metrics
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Fig. 7. Relative essence vs. cyclomatic complexity, class granularity: r = 0.49

For all other metrics, |r| lies below 0.3. This includes metrics like coupling
and cohesion. In particular Chidamber-Kemerer’s LCOM (lack of cohesion of
methods) is entirely uncorrelated with relative essence (r=0.026).

8 Discussion

In this paper we introduced a novel structure, the loop call graph, and two met-
rics derived from that structure, absolute and relative essence. We have explained
the intuition behind our approach, and we related it to code smells, refactorings,
design patterns, and existing design metrics. In this section we discuss potential
uses of the loop call graph and essence metrics as well as the limitations of our
approach.

8.1 Usage Scenarios

This paper lays the foundation for approaches and tools that analyze and im-
prove systems based on the amount of indirection, modularization, or informa-
tion hiding in those systems.

Deviation from reference. We believe a good use of our metric is to mea-
sure the essence of systems, and to compare it to a reference value of a system
of high design quality (such as JUnit and JHotDraw). This is similar to uses
of existing design metrics for quality control, where tools produce reports on
violations based on a configurable range of admissible metric values. A high
essence is indicative of a monolithic design that lacks the structure necessary
for good understandability and maintainability. A low essence is indicative of an
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“overdesigned” system with excessive indirections, or of a system that consists
mostly of glue connecting other systems together.

Problem localization. Besides a mere metric to flag potential problems, our
approach also provides a representation (the loop call graph) that helps in lo-
cating the sources of the problem. In our own first uses of loop call graphs of
student programs, we have found that for small programs (with tens of methods)
a node-link diagram visualization, where essential nodes are highlighted, helps
to quickly spot clusters of nodes with particularly high or low essence. Given
that essence can be computed on any subgraph of the whole-program loop call
graph, future approaches could automatically identify connected subgraphs with
particularly high or low relative essence, and present these subgraphs to the de-
veloper as regions with bad smells. This would avoid the problem of visualizing
loop call graphs of realistic programs, with their tens or hundreds of thousands
of nodes.

Refactoring recommendation. We can group refactorings into three classes
according to their impact on relative essence: refactorings that increase, do not
affect, or decrease relative essence. Thus, the relative essence of a given sub-
system could guide recommendations on which refactorings to perform. This
would help to better modularize those subsystems with abnormally high relative
essence, and to eliminate unnecessary indirections in subsystems with abnor-
mally low relative essence.

Quality and process attribute prediction. Is it possible to predict process
attributes, such as error rates or times to fix an error, based on our metric?
Our hypothesis is that the distance of a system’s essence from the essence of a
reference system might be a predictor for various external product quality and
process attributes. We would like to study this connection in future work.

8.2 Limitations

We believe that algorithmic essence is a novel concept that promises to lead to
several useful approaches and tool. However, the idea of automatically computing
essence comes with several important limitations.

Programming language paradigm. While we designed our approach for
modern object oriented languages such as Java, it applies to imperative lan-
guages in general. However, it is unclear to what degree it applies to functional
or logic languages. It would be interesting to study this in future work.

Granularity. We compute relative essence by counting non-recursive methods
(inessential nodes) versus loops and recursion headers (essential nodes). If de-
velopers aggressively inline methods, they will get a higher relative essence (by
eliminating inessential methods while keeping the loops). When thinking on a
lower level of abstraction, one could argue that this is not good, because, while
the inessential methods disappeared, their (inessential) contents still exists (it
just got inlined into the body of the top-level method). To circumvent this prob-
lem, we could apply our approach at a granularity finer than methods and loops:
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Instead of counting methods, we could count statements, or byte-code instruc-
tions. We would count loop headers and recursive method call sites as essential
nodes, and all other statements (or bytecode instructions) as inessential nodes.

Intent. A main limitation of our approach is the mismatch between Brooks’
intensional definition of essence, and our operational definition based on loop
call graph nodes: (1) In a loop call graph, not all (inessential) non-recursive
method nodes represent purely accidental complexity. Clearly, some methods
do provide a meaningful algorithmic contribution even if they are not recursion
headers and do not contain loops. (2) Not all (essential) recursion headers and
loops are necessarily required for solving the problem the program needs to
solve. A program may contain unnecessary algorithmic computations, or it may
contain overly complex algorithms for a given problem. In general, we believe
that any operational (and thus automatically measurable) definition of essence
will be unable to determine with absolute certainty that a given piece of code
is essential according to Brooks’ intensional definition. However, we believe that
our approach, while imperfect, is the first to try to quantify this fundamental
property, and that it comes close to the intensional definition. By focusing on
repetition we focus on the backbone of any algorithm, and we provide (as our
results in Section 6 show), a metric that directly relates to design patterns, code
smells, and refactorings.

9 Conclusions

While design metrics like coupling and cohesion provide hints for which parts
of the system to move where, our new metric, essence, provides hints on which
parts of the system to remove, and where to add extra indirections. Essence is
a measure of the absence of indirection, layering, encapsulation, or delegation
in a system. All of these aspects can positively affect software qualities such as
modularity and understandability, however, too much indirection (and thus too
little essence) can be an indication of over-engineered systems or even cruft.

Our metric, essence, is an internal product metric. To measure it, we only
require the source or binary code of a software system. Essence is simple, precise,
and can be measured automatically. It is based on the counts of well known and
intuitive concepts: methods, loops, and the headers of recursive cycles in the
call graph. Moreover, it can be efficiently computed. It took roughly 3 hours
to calculate essence across the entire set of analyzed applications. Essence is a
principled metric. It is based on the principle that loops and recursions are the
only constructs that can increase the computational complexity of an algorithm.
For this reason, any implementation of an algorithm will contain a “backbone”
consisting of loops and recursions. By identifying loops and recursions, we can
thus identify algorithmically essential parts of a program.

We have studied essence in the largest open corpus of software systems we
are aware of, we have found that essence is not correlated to any existing de-
sign metrics, and we have found that essence is tightly related to design pattern
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density, to code smells, and to refactoring. We hope that essence will prove to be
as useful in practice as existing prevalent metrics such as cohesion and coupling.
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Abstract. Transforming text into executable code with a function such as Java-
Script’s eval endows programmers with the ability to extend applications, at any
time, and in almost any way they choose. But, this expressive power comes at
a price: reasoning about the dynamic behavior of programs that use this feature
becomes challenging. Any ahead-of-time analysis, to remain sound, is forced to
make pessimistic assumptions about the impact of dynamically created code. This
pessimism affects the optimizations that can be applied to programs and signifi-
cantly limits the kinds of errors that can be caught statically and the security guar-
antees that can be enforced. A better understanding of how eval is used could lead
to increased performance and security. This paper presents a large-scale study of
the use of eval in JavaScript-based web applications. We have recorded the be-
havior of 337 MB of strings given as arguments to 550,358 calls to the eval
function exercised in over 10,000 web sites. We provide statistics on the nature
and content of strings used in eval expressions, as well as their provenance and
data obtained by observing their dynamic behavior.

eval is evil. Avoid it.
eval has aliases. Don’t use them.

—Douglas Crockford

1 Introduction

JavaScript, like many dynamic languages before it, makes it strikingly easy to turn text
into executable code at runtime. The language provides the eval function for this pur-
pose.1 While eval and other dynamic features are a strength of JavaScript, as attested
to by their widespread use, their presence is a hindrance to anyone intent on providing
static guarantees about the behavior of JavaScript code. It may be argued that correct-
ness and efficiency are not primary concerns of web application developers, but security
has proven to be a harder concern to ignore. And, as web applications become central in
our daily computing experience, correctness and performance are likely to become more
important.
See no Eval, Hear no Eval. The actual use of eval is shrouded in myths and confu-
sion. A common Internet meme is that “eval is evil” and thus should be avoided.2 This
comes with the frequent assertion that eval is the most misused feature of the language.3

1 While JavaScript provides a few other entry points to code injection, such as setInterval, setTimeout

and Function, we refer to this class of features as eval for much of our discussion.
2 http://javascript.crockford.com/code.html
3 http://blogs.msdn.com/b/ericlippert/archive/2003/11/01/53329.
aspx

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 52–78, 2011.
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Although eval is a significant feature of JavaScript, it is common for research on Java-
Script to simply ignore it [2,11,20,1], claim it is hardly used (only in 6% of 8,000
programs in [8]), assume that usage is limited to a relatively innocuous subset of the
language such as JSON deserialization and occasional loading of library code [9], or
produce a simple warning while ignoring eval’s effects [13]. The security literature
views eval as a serious threat [19]. Although some systems have unique provisions for
eval and integrate it into their analysis [7], most either forbid it completely [15], assume
that its inputs must be filtered [5] or wrapped [12], or pair a dynamic analysis of eval
with an otherwise static analysis [4].

True Eval. The goal of this study is to thoroughly characterize the real-world use of
eval in JavaScript. We wish to quantify the frequency of dynamic and static occurrences
of eval in web applications. To this end, we have built an infrastructure that automat-
ically loads over 10,000 web pages. For all web page executions, we have obtained
behavioral data with the aid of an instrumented JavaScript interpreter. We focus our at-
tention on program source, string inputs to eval and other dynamically created scripts,
provenance information for those strings, and the operations performed by the eval’d
code (such as the scopes of variable reads and writes). Though simply loading a web
page may execute non-trivial amounts of JavaScript, such non-interactive executions
are not representative of typical user interactions with web pages. In addition to page-
load program executions, we use a random testing approach to automatically generate
user input events to explore the state space of web applications. Lastly, we have also
interacted manually with approximately 100 web sites. Manual interaction is necessary
to generate meaningful interactions with the websites.

While we focus on JavaScript, eval is hardly unique to JavaScript. Java supports
reflection with the java.lang.Reflect package, and the class loading infrastructure allows
programs to generate and load bytecode at runtime. Dynamic languages such as Lisp,
Python, Ruby, Lua, and others invariably have facilities to turn text into executable code
at runtime. In all cases, the use of reflective features is a challenge to static analysis.
JavaScript may represent the worst case since eval’d code can do almost anything.

Our results reveal the current practice and use of reflective features in one of the most
widely-used dynamic programming languages. We hope our results will serve as useful
feedback for language implementers and designers. The contributions of this paper are:

– We extend the tracing infrastructure of our previous work [18] to record the prove-
nance of string data and monitor the scope of variable accesses.

– We add tools for automatically loading web sites and generating events.
– We report on traces of a corpus of over 10,000 websites.
– We make available a database summarizing behavioral information, including all

input arguments to eval, and other execution statistics.
– We provide the most thorough study of the usage of eval in real-world programs to

date.
– We instrumented other means of creating a script at runtime and compare their

behavior to eval.

Our tools and data are freely available at:

http://sss.cs.purdue.edu/projects/dynjs

http://sss.cs.purdue.edu/projects/dynjs
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2 The Nature of Eval

JavaScript, which is a variation of the language standardized as ECMAScript [6], is
supported by all major web browsers. It was designed in 1995 by Brendan Eich at
Netscape to allow non-programmers to extend web sites with client-side executable
code. JavaScript can be best described as an imperative, object-oriented language with
Java-like syntax and a prototype-based object system. An object is a set of properties
that behave like a mutable map from strings to values. Method calls are simulated by
applying arguments to a property that evaluates to a closure; this is bound to the callee.
The JavaScript object system is extremely flexible, making it difficult to constrain the
behavior of any given object. One of the most dynamic features of JavaScript is the
eval construct, which parses a string argument as source code and immediately exe-
cutes it. While there are other means of turning text into code, including the Function
constructor, setInterval, setTimeout, and indirect means such as adding <script> nodes
to the DOM with document.write, this paper focuses on eval as a representative of this
class of techniques for dynamically loading program source at runtime.

The Root of All Evals. Eval excels at enabling interactive development, and makes it
easy to extend programs at runtime. Eval can be traced back to the first days of Lisp [16]
where eval provided the first implementation of the language that, until then, was trans-
lated by hand to machine code. It has since been included in many programming lan-
guages, though often under other names or wrapped inside a structured interface.

The Face of Eval. In JavaScript, eval is a function defined in the global object. When
invoked with a single string argument, it parses and executes the argument. It returns
the result of the last evaluated expression, or propagates any thrown exception. eval can
be invoked in two ways: If it is called directly, the eval’d code has access to all variables
lexically in scope. When it is called indirectly through an alias, the eval’d code executes
in the global scope [6, sect. 10.4.2]. All other means to create scripts at runtime, as
discussed in Sec. 6, execute in the global scope.

The Power of Eval. JavaScript offers little in the way of encapsulation or access control.
Thus, code that is run within an eval has the ability to reach widely within the state
of the program and make arbitrary changes. An eval can install new libraries, add or
remove fields and methods from existing objects, change the prototype hierarchy, or
even redefine built-in objects such as Array. To illustrate the power of eval, consider the
following example, which implements objects using only functions and local variables.

Point = function() { var x=0; var y=0;
return function(o,f,v){ if (o==”r”) return eval(f); else return eval(f+”=”+v); }

}
Every invocation of the function bound to Point returns a new closure which has its own
local variables, x and y, that play the role of fields. Calling the closure with ”r” causes
the eval to read the ’field’ name passed as second argument; any other value updates
the ’field’. Calling eval exposes the local scope, thus breaking modularity. Exposing the
local scope can be avoided by aliasing eval, but the global scope is still exposed: any
assignment to an undeclared variable, such as eval(”x=4”), will implicitly declare the
variable in the global scope and pollute the global namespace.
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Necessary Eval? In modern web applications, the server and client rarely have a per-
sistent connection. Instead, the client makes independent, asynchronous requests every
time it needs data. This style of communication is often called Asynchronous JavaScript
and XML (AJAX). The data returned is frequently in an application-dependent format,
in a portable serialization format such as JSON, or in the form of JavaScript code. If
they are in the form of code, then eval is the typical means of evaluating this code. Al-
though the canonical means of making such requests is by using an XMLHttpRequest
(XHR) object, it has the drawback that it is subject to the same origin policy, which
prevents requests to a different domain. Many sites divide server functions between dif-
ferent hosts, and as such are forced to use other means which are not restricted by the
SOP. Most other means actually evaluate the server response as code regardless.

Until recently, JavaScript did not have its own built-in serialization facility, so eval
was (and is) often used to deserialize data and code. JSON4 is syntax designed to pro-
vide a portable way for applications to serialize and deserialize data. JSON is also, by
no coincidence, a subset of JavaScript’s object, array, string and number literal syntax.
An example JSON string is:

{”Image”: {”Title”: ”View from a Room”, ”IDs”: [11,23,33], ”Size”: {”Height”: 125}}}
JSON is restrictive; e.g. {”foo”:0} is valid, but {’foo’:0} or {foo:0} are not, though all
are semantically equivalent JavaScript expressions. Anecdotal evidence suggests that
JSON-like strings that don’t adhere precisely to the JSON standard are commonly used
by developers. JSON is also commonly eval’d along with an assignment to a variable,
e.g. x={”foo”:0}. Performing the assignment within the eval is unnecessary, as eval re-
turns a result. The canonical way to parse JSON with eval and assign the result to a
variable is x=eval(y).

The use of eval is often unnecessary, and is could be replaced by uses of other (less
dynamic) features of JavaScript.5 Consider the following misuse:

eval(”Resource.message ” + validate(input))

The programmer presumably has some Resource object holding a number of messages.
To select the right message at runtime, a string such as ‘‘Resource.message error’’ is
built out of some user input. To be on the safe side, the input is validated program-
matically. Validation is tricky and a large number of code injection attacks come from
faulty validators. The above code could be implemented straightforwardly without eval
as Resource[”message ”+ input]. Rather than invoking the full power of eval, the code
uses a constructed string to index Resources. This achieves the same effect with none
of the security risks associated with using eval.

The Eval Within. The eval function is a performance bottleneck because its mere pres-
ence affects how a JavaScript engine can optimize and execute surrounding code. Any
optimization performed by the virtual machine must account for the black-box behavior
of eval. The fact that eval can introduce new variables in the local scope means that flex-
ible, deoptimized bytecode must be generated for a function that contains eval within
its body. This version will always be slower than an equivalent function without eval,
even if no such variables are actually introduced (see Appendix B).

4 http://www.ietf.org/rfc/rfc4627
5 Recent versions of ECMAScript introduced JSON.parse as an alternative to eval.

http://www.ietf.org/rfc/rfc4627
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3 Methodology

We now describe the infrastructure and methodology used to collect our data.

3.1 Infrastructure

We quantify usage of eval by recording relevant information during JavaScript execu-
tion, and subsequently performing offline analyses. The data presented in this paper was
recorded using TracingSafari [18], an instrumented version of the open-source WebKit
project,6 the common web platform underlying Safari, Google Chrome, and other appli-
cations. TracingSafari is able to record low-level, compact JavaScript execution traces;
we augmented it to also record properties specific to eval. In particular, we add prove-
nance tracking for strings, as these might eventually become arguments to eval.

TracingSafari records a trace containing most operations performed by the interpreter
(reads, writes, deletes, calls, defines, etc.) as well as events for source file loads. Invo-
cations to eval save the string argument. Complete traces are compressed and stored to
disk. Traces are analyzed offline and the results are stored in a database which is then
mined for data. The offline trace analysis component performs relatively simple data
aggregation over the event stream. For more complex data, it is able to replay any trace,
creating an abstract representation of the heap state of the corresponding JavaScript
program. The trace analyzer maintains a rich history of the program’s behavior, such as
access history of each object, call sites, allocation sites, and so on.

3.2 Corpus

Gathering a large corpus of programs is difficult in most languages because accessibility
to source code and specific runtime configurations is often limited. On the web, this is
generally not the case: any interactive web site uses JavaScript, and JavaScript is only
transmitted in source form. Furthermore, most websites are designed to function in
many browsers.

JavaScript executes in two distinct phases: first, non-trivial amounts of JavaScript are
parsed and executed automatically as the result of loading a document in the browser.
Further program execution is event-driven: event handlers are triggered by timers and
user input events such as mouse movements, clicks, and the like. To capture a wide
range of behavior we have compiled a corpus composed of three data sets:

INTERACTIVE Manual interaction with web sites.
PAGELOAD First 30 seconds of execution of a web page.
RANDOM PAGELOAD with randomly generated events.

All of our runs were based on the most popular web sites according to the alexa.
com list as of March 3, 2011. INTERACTIVE was generated by manually interacting
with the 100 most popular web sites on the Alexa list. Each session was 1 to 5 minutes
long and approximated a “typical” interaction with the web site, including logging into
accounts. PAGELOAD and RANDOM were based on the 10,000 most popular web sites
on the Alexa list. PAGELOAD is intended to record the load-time behavior of pages.

6 http://webkit.org Rev. 76456

alexa.com
alexa.com
http://webkit.org
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It simply navigates the browser to each page and records execution for a total of 30
seconds without any further interaction. As script execution can recur indefinitely, there
is no clear moment when a page has finished loading. In this case, a simple timeout
is the most reliable way to include load-time behavior without interaction. RANDOM

behaves similarly to PAGELOAD, but includes a script which will randomly trigger
click events on DOM elements with mouse event listeners registered, and click links.
One click event is generated per second, for at most 30 events. The final data was
recorded between March 3rd and 13th, 2011. All recorded traces are available from our
project’s site.

These three data sets each cover a useful subset of eval usage in the wild. INTER-
ACTIVE provides the best picture of complete interactions with a web application and
is thus the most representative of the usage of eval in JavaScript programs. PAGELOAD

and RANDOM give us breadth of coverage and allow us to study a much larger number
of web sites but with a caveat of reduced program behavior coverage. PAGELOAD will
not generate unrealistic behavior, although it may generate atypical behavior. RANDOM

can generate unrealistic behavior, but is the best way of obtaining a wide variety of
behaviors on a large corpus of sites.

3.3 Threats to validity

Program coverage. As with any tracing-based methodology it is difficult to obtain
exhaustive coverage. The problem is compounded by the interactive nature of web ap-
plications which are driven by the user interface. Furthermore, as programs are only fed
to the browser one page at a time, it is difficult to even assess which fraction of a web
site was exercised. Our results may thus fail to uncover some interesting behaviors. This
said, we believe that our corpus is representative of typical browsing behavior. Browser
versions are fairly easy to ascertain, so it is possible (and common) for JavaScript code
to exhibit behavior peculiar to WebKit. Although this does introduce a subtle bias, all
other JavaScript implementations introduce comparable bias.
Diversity of programs. Another threat comes from our focus on client-side web applica-
tions. It is likely that other categories of JavaScript applications would display different
characteristics. For instance, widgets appear to do so [8]. But the importance of web
applications and the quantity of JavaScript code on the web mean that this is a class of
applications worth studying.

4 Usage Metrics

This section presents a high-level picture of the usage of JavaScript and eval in a broad
selection of web pages, as summarized in Table 1. At the time of our study, all of the top
100 sites used some JavaScript. For the 10,000 most accessed web sites we found that
89% rely on JavaScript. Similarly, eval was used widely and frequently in our corpus.
We have recorded 550,358 calls to eval for a total of 337 MB of string data. Over 82%
of the top 100 pages use eval, and 50% of the remaining 10,000 pages do as well. It is
noteworthy that the difference in the use of eval between RANDOM and PAGELOAD is
only 2%, which suggests that sites relying on eval do so even without user interaction.
On the other hand, the number of calls to eval increases significantly in RANDOM.
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Table 1. Eval usage statistics

Data Set JavaScript eval Avg eval Avg eval total eval total eval size total JS size
used use (bytes) calls calls (MB) (MB)

INTERACTIVE 100% 82% 1,210 84 7,078 8.2 204
PAGELOAD 89% 50% 655 34 158,994 99.3 1,319
RANDOM 89% 52% 627 61 384,286 229.6 1,823
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Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The
difference in code size between PAGELOAD and
RANDOM is explained by the fact that a mouse
click (or any other event) may cause additional
code to be loaded.

Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM

(127 and 1331 call sites, respectively).

Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.

Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at
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Fig. 2. Eval call sites. The y-axis is the dis-
tribution of the number of call sites to the
eval function in websites that call the func-
tion at least once. (Max value appear on top)

Fig. 3. Eval calls. The y-axis is the dis-
tribution of the number of calls to the eval
function in websites that call the function at
least once.

460KB and 515KB respectively. The average source size is 1,210 bytes for the INTER-
ACTIVE, 655 bytes for the PAGELOAD, and 627 bytes for the RANDOM runs. JSON in
particular carries more data on average than other categories. The average size of JSON
strings was 3,091 bytes in INTERACTIVE, 2,494 bytes in PAGELOAD and 2,291 bytes
in RANDOM. However the medians were considerably lower (1,237, 31 and 54 bytes,
respectively), which is consistent with the distribution of sizes seen for other categories.
The maximum JSON size is 45KB for INTERACTIVE and 459KB for the other data sets.

Amount of computation via eval. With the exception of loading JavaScript libraries via
eval, most calls performed relatively few operations. Fig. 5 shows the distribution of
eval trace lengths. The trace length is a rough measure of the amount of computational
work performed by any given eval. The operations captured in a trace include object
access and update, calls as well as allocation. The median number is again low, 4,
with the third quartile reaching 10 operations. The spread beyond the third quartile is
extreme, with the RANDOM sessions recording traces of up to 1.4 million operations.
Given the maximum size of the source strings passed to eval reported in Fig. 4 this size
is not too surprising. In contrast, the maximum number for the INTERACTIVE sessions
is low compared to its maximum size of source strings.

In all datasets, the largest eval’d strings, both in terms of length and in terms of event
count, were those that loaded libraries. In JavaScript, loading a library is rarely as sim-
ple as just installing a few functions; tasks such as browser and engine capability checks,
detection of other libraries and API’s, creation of major library objects and other such ini-
tialization behavior constitutes a large amount of computation relative to other eval calls.

Aliasing of eval. We observed that few programmers took advantage of the differing
behavior that results from calling an alias of eval. In INTERACTIVE, 10 of the top 100
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Fig. 4. Eval string sizes. The y-axis is the distri-
bution of the size of eval arguments in bytes.

Fig. 5. Events per eval. The y-axis is the
distribution of the number of events per-
formed in an eval.

sites aliased eval, but calls to such aliases accounted for only 0.9% of all eval invoca-
tions. In PAGELOAD and RANDOM, only 130 and 157 sites, respectively, used used an
alias of eval, accounting for 1.3% and 0.8% of eval strings respectively. Manual inspec-
tion revealed use cases where programmers used an alias of eval to define a function
in the global scope, without realizing that the same effect could be achieved by simply
assigning a closure to an undeclared variable. See Appendix C for an illustration.

Presence of JavaScript libraries. In our corpus, JavaScript libraries and frameworks
were present on over half of all sites. Table 4 gives the proportion of the sites using
common libraries. We found that jQuery, Prototype, and MooTools were used most
often. JQuery is by far the most widespread library, appearing in more than half of all
websites that use JavaScript. Other common libraries were detected in under 10% of
all sites. The Google Closure library used by many Google sites is usually obfuscated,
and thus not easily detectable. We do not report on it here. Libraries are sometimes
loaded on demand, as shown by the spread between the PAGELOAD and RANDOM (for
instance 53% and 60% for JQuery).

One might wonder if libraries are themselves a major contributing factor to the use of
eval. Manual code review reveals that eval and its equivalents (the Function constructor,
etc) are not required for their operation. The only uses of eval we have discovered are
executing script tags from user-provided HTML strings, and as a fallback for browsers
lacking JSON.parse. Thus, libraries are not a significant contributor to the behavior or
use of eval.

Data Set jQuery Prototype MooTools

INTERACTIVE 54% 11% 7%
PAGELOAD 53% 6% 4%
RANDOM 60% 7% 6%

Table 2. Common libraries. Percentage of
website loading one of the following li-
braries: jquery.com, prototypejs.
org, mootools.net. We have no data
for code.google.com/closure.

jquery.com
prototypejs.org
prototypejs.org
mootools.net
code.google.com/closure


The Eval That Men Do 61

5 A Taxonomy of Eval

The previous section gave a high-level view of the frequency of eval; we now focus
on categorizing the behavior of eval. We look at five important axes. Firstly, we study
the mix of operations performed by the code executed from an eval. Next, we look at
what scope is affected by operations inside eval’d code. Operations that mutate shared
data are more likely to invalidate assumptions or pose security risks than operations
that are limited in scope to data created within the eval. Thirdly, we try to identify pat-
terns of usage. A better classification of the patterns of eval usage can help language
designers provide limited, purpose-specific alternatives to eval, and also provide a bet-
ter understanding of the range of tasks done within evals. Fourthly, we investigate the
provenance of the string passed into eval. This comes directly from a desire to better
understand the problems linked to code injection attacks. Our last axis is consistence,
or how the arguments to a particular eval call site vary from invocation to invocation.
We focus on each axis independently, discussing the relationships between them when
relevant, then discuss the implications of each on analyses and other systems.

5.1 Operation Mix

The operations recorded in our traces are simplified, high-level versions of the Web-
Kit interpreter’s bytecodes. We report on stores (STORE), reads (READ) and deletes
(DELETE) of object properties. These include indexed (x[3]) and hashmap style (x[”foo”])
access to object properties. We also report on function definitions (DEFINE), object cre-
ations (CREATE), and function calls (CALL). Fig. 6 gives the distribution of operations
performed by eval’d code for each of our three data sets. The distribution of operation
types across the PAGELOAD data set is consistent with earlier findings, and suggests
that eval’d code is not fundamentally different from general JavaScript code. In par-
ticular, eval is not solely used for JSON object deserialization, as some related work
assumes. That said, INTERACTIVE sessions do contain a greater proportion of STORE
and CREATE events, which we attribute to JSON-like constructs. We will consider the
proportion of JSON-like constructs in more detail in Sect. 5.3. The RANDOM sessions
had a greater proportion of CALL events, likely as part of handling the randomly gener-
ated mouse events.

Interactive PageLoad Random
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100%
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Fig. 6. Operation mix. Proportion of stores,
reads, deletes, defines creates and calls per-
formed by eval’d code.
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Fig. 7. Scope. Distribution of locality of op-
erations performed by eval.
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5.2 Scope

As with any JavaScript code, the code executed via eval may access both local and
global variables. Code that does not access global state is self-contained and preferred.
Our instrumentation determines statically what eval strings have no unbound variables
and so are pure, and dynamically logs reads and writes to non-local variables. We cate-
gorize the locality of accesses within each call to eval into the following sets.

Pure Access newly created objects.
Local Access to local variables and objects.
Read Global Same as Local + read properties of the global object.
Write Global Same as Local + read/write/delete properties of the global object.

These categories help us understand the interplay between eval and encapsulation. The
Pure category captures code that is restricted to creating objects and reading/writing
their properties. All JSON code fits in this category. This is the safest category because
it neither relies on nor affects the environment of the eval. The Local category includes
cases where the eval’d code either reads, writes or deletes variables of the function that
called the eval (or one of its lexically enclosing functions). The Read Global category
extends the previous one with the ability to read properties of the global object. Po-
tentially most dangerous is the Write Global category, consisting of eval’d code that
also can add, modify or delete properties of the global object. For instance, writing to
an undeclared variable will add and/or modify this variable in the global namespace.
When the variable window is only defined in the global scope, then using this name for
property access renders the side-effect evident. Also, in cases when the global object is
aliased, resulting global read/writes may be underreported.

We found that evals in the Pure and Writes Global categories were scarce, while the
other two categories were much more common. Fig. 7 shows the scope of operations
performed by evals collected in each data set. While the number of Pure strings is quite
low, the vast majority of evals are actually quite local: only 7 to 8% of all evals modify
the global scope for all data sets. However, reads are more evenly split, 38 to 61% of all
evals read from the global scope. It is reasonable to assume that many eval strings even
in the Local and Reads Global categories have no side-effects outside the local scope,
but are not self-contained, as their behavior will nonetheless depend on the global scope
and if it were for using global functions only. Code passed to eval that is neither pure
nor global (and so must be designed to work with a particular scope and eval call site)
accounts for more than 41% of all eval strings in all data sets.

5.3 Patterns

There are many common patterns in the use of eval. Some are industry best practices,
such as JSON, and asynchronous content and library loading. Others result from poor
understanding of the language, repetition of old mistakes, or adapting to browser bugs.
While it is not possible to be exhaustive, we have nevertheless identified 9 frequently
occurring patterns of eval strings which can be detected by a simple syntactic check (a
more precise description of how strings are categorized appears in Appendix A):
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JSON A JSON string or variant.
JSONP A padded JSON string.
Library One or more function definitions.
Read Read access to an object’s property.
Assign Assignment to a local variable or object property.
Typeof Type test expression.
Try Trivial try/catch block.
Call Simple function/method call.
Empty Empty or blank string.
Other Uncategorized string.

JSON-like constructs. Deserializing JSON is often seen as an acceptable use of eval.
The JSON category covers strings that are in JSON syntax [6], as well as relaxed no-
tions that permit equivalent JavaScript literals. The JSONP (JSON with padding) cate-
gory covers strings which either assign a JSON expression to a variable or pass a JSON
expression as an argument to a function. This pattern is often used for load balancing
requests across domains. These other domain names violate the browser’s same origin
policy, precluding the use of XMLHttpRequest to load JSON from these servers. As a
workaround, many standard libraries dynamically create JSONP expressions, typically
a function call that takes a JSON argument. The function is a callback function that
assigns the JSON data to a variable and processes that data.

Library loading. Libraries can be loaded by <script> tags in the document, but down-
loading, parsing, and evaluating scripts is synchronous with layout and other events.
Blocking ensures deterministic page loading, since scripts can modify the DOM in-
place. Although HTML5 introduces new mechanisms for deferred loading, their use is
not widespread. A common workaround is to download the script asynchronously with
AJAX, then execute it with eval at some later time. This does not block page parsing
or rendering immediately, but leaves the programmer the burden of ensuring a known,
consistent execution state. The Library category attempts to capture this pattern of use.
A simple heuristic detects libraries: any eval string that is longer than 512 bytes and de-
fines at least one function. Manual inspection revealed this to be a reasonable heuristic.

Field access. Access to properties of an object and to local variables is covered by the
Read category. In the vast majority of situations, property reads can be replaced either
by using JavaScript’s hashmap access or by explicitly referencing the global scope. For
instance, eval(”foo.”+x) can be replaced by foo[x]. Concatenations like these are usually
simple and repetitive. This pattern also often underlies a misunderstanding of arrays,
such as using eval(”subPointArr ”+i) instead of making subPointArr an array. Another
common use of eval is variable access. One reason why evaling might be useful comes
from the scoping rules for eval. Using an aliased eval guarantees that accesses to vari-
ables will occur in the global scope. As mentioned before, this feature found little use.
The Assign category comprises all statements that assign a value to a variable. A few
sites have been found to use variable declarations within an eval. This actually modifies
the local scope, and can alter the binding of variables around the eval.

Strange patterns. A strange expression pattern is the category which we call Typeof
and which covers typeof expressions. For instance, typeof(x)!=”undefined”. It in not
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necessary to use eval for this expression. typeof is often used to check whether a variable
is defined and define it if not, if(typeof(x)===”undefined”) x={}. However, in most cases,
this too has clearer alternatives which use JavaScript’s hashmap style of field access.
For instance, checking for the existence of a global variable can be done more clearly
with if(”x” in window). This misunderstanding can also be combined with a misunder-
standing of object access, such as eval(’typeof(zflag ’+y0[i]+’)!=”undefined”’) instead of
making zflag a hashmap and using y0[i] in zflags.

Another case for which we have no satisfying explanation, labeled Try, is to eval
try/catch blocks. For instance, bbc.co.uk evals try{throw v=4}catch(e){} which is se-
mantically equivalent to v=4 since the throw and the catch parts cancel each other out.
Since it’s hard to imagine any reason to do this, we can only assume that this code is a
strange corner-case of a code generator.
Function invocation. The Call category covers evals that invoke methods with pa-
rameters that are not padded JSON. A common case in this category is document
.getElementById, the utility of which is particularly unclear since the parameter to
document.getElementById is a string. If only the string parameter varies, then this
can be done without eval. If the function called varies, eval can usually be avoided
with hashmap syntax as described above. These are usually short and simple, such
as document.getElementById(”topadsblk01menu”) and update(obj). The latter could be
done without eval using hashmap style access for the function name, for example
window[”update”](obj).
Other categories. The Empty category is made up of empty strings and strings contain-
ing only whitespaces. This pattern seems to be the default (empty) case for generated
eval strings. Finally, the Other category captures any eval’d string not falling into the
previous categories. In particular, it contains method calls interleaved with field access,
like foo.bar().zip, but also more complex pieces of code that we did not categorize as a
library. As an example consider the following code:

eval(”img1.src=’http://c.statcounter.com/t.php?ip address=xx’;”);

which encodes data into a URL and sends an HTTP GET request in order to circumvent
the same origin policy imposed by the DOM. It is also unclear why this example was
passed to eval; we speculate that the particular mechanism of circumventing the same-
origin policy is determined dynamically and the appropriate one used.
Distribution of categories. Almost all eval categories are present in each data set. Fig. 8
shows the number of web sites using each of the eval categories. The prevalence of
Other evals is high, with 53 sites in INTERACTIVE using uncategorizable evals, 1020
sites in PAGELOAD and 1215 in RANDOM. Manual inspection suggests that there is no
unifying category for these, and the actions performed are in fact quite diverse. Fig. 9
shows the number of eval strings in each category. Although uncategorizable evals are
used in many sites, we have been able to categorize most strings, with 82%, 71% and
67% of strings categorized for INTERACTIVE, PAGELOAD and RANDOM, respectively.
We see that loading libraries is common, and between 9% (for PAGELOAD) and 22%
(for INTERACTIVE) of sites were detected doing so. Fig. 9 indicates that our method of
categorizing libraries is accurate, as the number of actual evals in this category is quite
low, at 2% for all data sets. Since most sites load only a few libraries, we expect the
total number of eval strings in this category to be low.
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Fig. 8. Patterns by websites. Number of web sites in each data set with at least one eval argument
in each category (a single web site can appear in multiple categories).
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Fig. 9. Patterns. Ratio of evals in each category.

Both JSON and JSONP are quite common. In each data set, JSONP is at worst the
third most common category in both Fig. 8 and Fig. 9, and JSON and JSONP strings
accounted for between 22% (RANDOM) and 37% (INTERACTIVE) of all strings eval’d.
Since most call sites do not change categories (discussed later in Section 5.5) these
numbers indicate that analyses could make optimistic assumptions about the use of eval
for JSON, but will need to accomodate the common pattern of JSON being assigned to
a single, often easily-determinable, variable.

Most of the remaining evals are in the categories of simple accesses. Property and
variable accesses, both simple accesses which generally have no side-effects, are in all
data sets amongst the second to fifth most common categories for sites to use. They
account for 8%, 27% and 24% of eval calls in INTERACTIVE, PAGELOAD and RAN-
DOM, respectively. The most problematic categories7 appear in fewer sites, but seem to
be used frequently in those sites where they do appear. However, this does not include
uncategorized evals, which also have problematic and unpredictable behavior.

7 By problematic categories, we include evals with complex side effects such as assignments
and declarations, and those categories with unconstrained behavior such as calls.
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Impact on analysis. Most eval call sites in categories other than Library, Other and
Call are replaceable by less dynamic features such as JSON.parse, hashmap access,
and proper use of JavaScript arrays. On INTERACTIVE, these categories account for
76% of all eval’d strings; thus, a majority of eval uses are not necessary. Upon further
investigation into instances of these categories, we believe that they are sufficiently
simple to be replaced automatically. While we were able to confirm that best practices
of JSON and asynchronous library loading are common uses of eval, other uses cannot
be discounted: they are far from uncommon, and the sites that use them tend to use them
quite often, and to perform diverse actions.

5.4 Provenance

Cross-site scripting attacks (XSS) often make use of eval to run arbitrary JavaScript
code. To better understand where eval’d strings come from, we tagged all strings with
provenance (tainting) information and instrumented all built-in string operations to pre-
serve provenance information. The return values of certain HTML-specific operations
(see below) were also tagged with provenance. We group strings by provenance in the
following categories, where later categories may include all previous:

Constant Strings that appear in the source code.
Composite String constructed by concatenating constants and primitive values.
Synthetic Strings that are constants in a nested eval.
DOM Strings obtained from DOM or native calls.
AJAX Strings that contain data retrieved from an AJAX call.
Cookies Strings retrieved from a cookie or other persistent storage.
Input Strings entered by a user into form elements.

For an example of Synthetic strings, consider x=eval(”’”+document.location.href+”’”); y=
eval(x). The argument to the first eval is from the DOM. However, because the first eval
string is in fact a string literal, x is a string. x has Synthetic provenance, to distinguish
it from string literals appearing in non-eval code (which have Constant provenance).
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Fig. 10. Provenance by websites. Percentage of web sites using a string of given provenance at
least once in an eval expression.
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The Constant category includes string literals, and the Composite category includes
strings created by concatenating string literals. The DOM category includes the result
of DOM queries such as document.body.innerHTML) as well as native methods like
Date.toLocaleString().

The INTERACTIVE data set had a much higher appearance rate for all provenance
types, which is not surprising. Fig. 10 shows the number of sites that pass strings of a
given provenance to eval for our 3 data sets. The percentages of the PAGELOAD and
RANDOM sets differ only slightly, and both had fewer strings of AJAX provenance.

Provenance data tells a more interesting story when aggregated by the provenance of
each call to eval; Fig. 11 presents this view. For the INTERACTIVE data set, the dominant
provenance of strings was Composite. More than 3,000 strings were constructed from
composites of only constants and around 600 strings were just a constant in the source.
The distribution of provenance is significantly different for the PAGELOAD and RAN-
DOM data sets. For these, DOM and Constant are used in equal proportion, while
AJAX is virtually nonexistent.

Interactive PageLoad Random
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Constant

Fig. 11. Provenance. Proportion of strings with given
provenance in eval’d strings for the three data sets.

Provenance vs. Patterns. The eval
pattern categories from Section 5.3
help to explain some of the sur-
prising provenance data. Fig. 12 re-
lates the patterns we found with
provenance information. We had
expected most JSON to originate
from AJAX, as this is the standard
way of dynamically loading data
from a server. However, the DOM
provenance outnumbers all others.
The same holds for Empty and Li-
brary patterns. Upon further inves-
tigation into the low proportion of
AJAX provenance, we found that,
for example, google.com retrieves most of its JSON as constant values by means of
a dynamically-created <script> tag. This script contains code of the form f(’{”x”:3}’),
where the parameter is a string containing a JSON object. However, instead of using
the JSON string directly as a parameter (f({”x”:3})), they parse the string in the func-
tion f using eval. Our provenance tracking will categorize this string as a compile time
constant, as it is a constant in the dynamically created script tag. Because google.com
stores its JavaScript on a separate subdomain, this convoluted pattern is necessary to
circumvent the same-origin policy (under which the straightforward AJAX approach
would be forbidden). Many major web sites have a similar separation of content.

In general, the simpler eval string patterns come from Constant and Composite
sources. Looking at Empty, Typeof, Read, Call, Assign and Try as a group, 85% of these
eval’d strings are constant or composite in RANDOM, with similar proportions in the
other data sets. Many of these are often misused as replacements for arrays or hashmap
syntax, so it is unsurprising that they are generated from constant strings.
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Fig. 12. Provenance by Pattern. Distribution of string provenances across eval categories in
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5.5 Consistency

Patterns 1 2 3 4 5
Callsites 27553 303 92 3 1

Fig. 13. Consistency. Number of differ-
ent patterns per call site.

window.location
dw Inf.get(dw Inf.ar)
dw Inf.x0();

Each eval call site is quite consistent with re-
spect to the pattern of the string argument, but
there are exceptions. Across all of our data sets,
we observed only 399 eval call sites (1.4% of all
call sites) with strings in multiple pattern cat-
egories, see Fig. 13. Many of these “polymor-
phic” cases were clearly a single centralized eval
used from many branches and for many pur-
poses. For instance, the following three strings
are all eval’d by the same call site, found at
www.netcarshow.com in RANDOM (although the library that this eval belongs to is
found at a few other sites as well). More perplexing call sites include ones that evals
the strings ”4”, ”5” and ”a”, callsites that alternate between simple constants and bound
variables, and a call site that at times evaluated ”(null)” (which happens be valid JSON)
and at other times evaluated ”(undefined)” (which is not). Another call site evals JSON
strings in most cases, but sometimes evaluates JSON-like object literals which include
function literals, which neither JSON nor relaxed JSON accept. Of the 399 eval call
sites with strings in multiple patterns, the maximum number of categories was 5, at the
call site mentioned above.

6 Other Faces of Eval

Eval is only one of several entry points to generate executable JavaScript code dynami-
cally. This section reports on the use of the other methods of dynamic code generation
available to programmers. We identified the following eight mechanisms of dynamic
code generation provided to web programmers:

Eval Call to eval, executing in local scope.
GlobalEval Call to an alias executing in global scope.
Function Create a new function from a pair of strings. (Global scope)
SetInterval Execute a string periodically. (Global scope)
SetTimeout Execute a string after a specified point in time. (Global scope)
ScriptCont DOM operation that changes the contents of a script tag. (Global scope)
ScriptScr DOM operation that changes the src attribute of a script tag. (Global scope)
Write DOM operation that writes to the document in place. (Global scope)

The first three mechanisms are part of the JavaScript language. An example is the
code var y=Function(”x”, ”print(x)”) which creates a new function that takes the parame-
ter x and passes it to the print function. The following two mechanisms are not stan-
dardized but commonly implemented as properties of the window object. A simple
example is setTimeout( ”callback()”,1000) which invokes the callback function after 1
second. The final three mechanisms are related to DOM8 manipulation. ScriptCont

8 The Document Object Model (DOM) represents an HTML page as a tree, where nested tags
are encoded as child nodes.
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Fig. 14. Dynamic Code Generation by websites. Number of web sites in each data set that are
dynamically creating scripts. The x-axis displays the mechanism to create the script, a single web
site can appear multiple times.

covers changes to script tags such as setting the text or innerHTML property, or calling
appendChild(createTextNode(src)), all of which change the source in the script tag. The
ScriptSrc covers modifications of the src attribute of a script tag, which downloads the
given resource and executes its code. The Write category covers uses of document.write
to manipulate the DOM in-place while executing JavaScript code. (Libraries that con-
tain document.write cannot be loaded asynchronously.) The use of write is discouraged.
Consider the the example below, where the first line outputs “<scr” to the document
which is concatenated in place with “ipt>” to create a script tag:

<script>document.write(”<scr”);</script>
ipt>alert(”this is malicious”);</script>

The above code is typical of an attack that tries to fool malware filters.
The prevalence of the different mechanisms varies widely among the data sets, espe-

cially between the interactively and automatically-gathered data sets. Fig. 14 displays
how many sites use each mechanism at least once. In the INTERACTIVE data set, Eval
is predominant (present in 83% of sites), but in PAGELOAD and RANDOM this mech-
anism was only used in 23% and 31% of sites, respectively. The use of the global eval
variant (GlobalEval) is minor (10% of the pages in the INTERACTIVE data set) and
even less so in the other data sets (1.3% and 1.6% for PAGELOAD and RANDOM). The
Function constructor is frequently used by sites in the INTERACTIVE data set (49%),
while the other two data sets make only limited use of it (between 8.8% and 13%).

The remaining non-JavaScript mechanisms are used widely. SetTimeout is generally
used by twice as many sites as SetInterval. SetTimeout appears in 39% of the sites in
INTERACTIVE data set, and for the other data sets between 13% and 18%. Setting the
content of a script tag is widespread in the INTERACTIVE data, where 67% of the sites
use it, compared to only 23% in the PAGELOAD and 32% in the RANDOM data. Setting
the src attribute of a script tag is only widespread in the INTERACTIVE (at 64%) data
set, compared to 10–15% in the other data sets. This seems to be a result of the most
popular sites using this mechanism to load content from servers on a different domain.
Writing script tags to the DOM is popular for all data sets, with 64% of the INTERAC-
TIVE sites doing this, 32% of PAGELOAD and 40% of RANDOM.
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Fig. 15. Dynamic Code Generation. Distribution of
mechanisms used to dynamically create scripts per
data set.

When counted by number of
actual uses, the Eval construct con-
stitutes a clear minority; this is wor-
rying, since other code generation
mechanisms tend to be overlooked
or ignored in the literature. Fig. 15
shows the distribution of the dif-
ferent mechanisms to dynamically
create code. For the INTERACTIVE

data set, the Function constructor
was the most commonly used mech-
anism, despite Eval being present in
many more sites. Usage of SetTime-
out is also quite frequent, account-
ing for more invocations than Write, ScriptSrc, and ScriptCont combined, despite
appearing in fewer sites than those mechanisms. This pattern makes sense when one
considers that uses of SetTimeout frequently recur (in lieu of using SetInterval). For
the PAGELOAD data set it is interesting to note that SetTimeout is used most frequently,
SetInterval is rarely used, and 7% of scripts written directly to the DOM. This distribu-
tion corresponds well with initial setup of the web page, where some tasks are deferred
by SetTimeout. This is reinforced by the distribution of the RANDOM data. It creates
more scripts by means of Eval, and is the only data set where SetInterval plays a sig-
nificant role for script creation. We attribute this to the greater dynamism triggered by
our random clicking strategy.

Classifying the behavior of code created by each of the mechanisms according to
the patterns in Sect. 5.3 gives an even better picture of how these mechanisms are com-
monly used. This classification is depicted in Fig. 16. For all data sets, the local and
global Eval is used to load the most diverse code, with about 9 significant patterns
for these two mechanisms. All the other mechanisms are far less diverse, falling into
3–7 of our defined patterns. setInterval and setTimeout in particular are used almost
exclusively with simple function calls (bearing in mind that by JSONP’s definition, it is

JSON JSONP Empty Library Typeof Read Call Assign Try Other
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Fig. 16. Patterns by Dynamic Code Generation. Distribution of code patterns per mechanism
of dynamically creating scripts.
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often also a simple function call). This consistency suggests that these functions could
be speculatively optimized or replaced by safer alternatives in the JavaScript runtime.
Even for the other less predictable mechanisms, there is a sufficient lack of diversity
that an optimizing compiler could provide faster or safer alternatives according to our
patterns.

7 Case Studies

We will now look at individual websites and give examples of their use of eval.

Heute.de: The German news site heute.de (from our RANDOM data set) has a repre-
sentative example of the naı̈ve use of eval found in many sites, in this case in a snippet
which is also found on several other sites. The website contains 49,174 bytes of Java-
Script code, with a paltry 136 bytes of eval in 9 calls from the same call site. The
eval-using code is summarized in the following snippet:

var flashVersion = parse();
flash2Installed = flashVersion == 2;
flash3Installed = flashVersion == 3;
... // same for 4 to 10
flash11Installed = flashVersion == 11;
for (var i = 2; i <= maxVersion; i++)

if(eval(”flash”+i+”Installed”)==true)
actualVersion = i;

This example is enlightening in its utter
disregard for any consideration of style,
legibility and performance. The purpose
of the code is to set global variable
actualVersion to the version of Flash plugin
available in the browser. This is achieved
by, first, storing the version number in
the local variable flashVersion, then creat-
ing 10 new global variables flashiInstalled

(which pollute the namespace and are never used again). Then, to save space perhaps, a
loop iterates over an eval that reads a constructed variable name and sets actualVersion.
(As an aside, the loop guard, maxVersion, is 10, thus flash11Installed will never be
seen.) In this case there is no reason to use eval at all, the entire code snippet could be
replaced by the more direct one-liner: actualVersion = parse().

Trainenquiry.com: This Indian train schedule site (also from RANDOM) has 42,135
bytes of JavaScript code and 163 bytes of eval strings across three call sites, all in the
ValidatorHookupEvent function (irrelevant code elided):

function ValidatorHookupEvent(control, eventType, functionPrefix) {
var ev;
eval(”ev = control.” + eventType + ”;”);
eval(”control.” + eventType + ” = func;”);
if (typeof(val.evalfunction) == ”string”)

eval(”val.evalfunction = ” + val.evalfunction + ”;”);

The first two cases are simple misunderstanding of JavaScript which could be expressed
more efficiently and succinctly as hash map accesses:

ev = control[eventType];
control[eventType] = func;

The last one is worth explaining in a little bit more detail. The property val.evalfunction
may hold a string, in which case, it is taken to be the name of the function that should
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be stored in that property. The conditional will use eval to replace the string with a
reference to a function object. This could also have been expressed as

if (typeof(val.evalfunction) == ”string”)
val.evalfunction = window[val.evalfunction];

where eval is again replaced with hash map access to a global property.

Ask.com: Because it loads functionality from several different sources, several of which
use eval-equivalent behavior, and it contains a wide variety of behaviors generated by
dynamic code, ask.com is an interesting case study. This site loads 2.22MB unique
code, 1.39MB of code passed to all variants of eval, and 3.77KB passed to 409 eval calls
originating from 48 callsites. The code passed to variants of eval consists of several large
libraries from different sources (through <script> tag generation), and two of them, as
well as the host, also dynamically generate code. We have excerpted several examples.
The site contains ads, and one ad agency’s scripts are loaded dynamically by adding
<script> tags to the document by means of document.write.

document.write(”<scr”+”ipt type=’text/javascript’
src=’http://afe.specificclick.net/?l=12915&sz=300x250&wr=j&t=j&u=”+u
+”&r=”+r+”&rnd=”+sm random+”’></scr”+”ipt>”);

The behavior of the script added is to save some tracking data, then dynamically load
more scripts which themselves load more scripts. This is done by setting the src attribute
of a script tag and using document.write.

var comscore = comscore || []; comscore.push({ c1: ”8”, c2: ”2101” ,... });
(function() { var s = document.createElement(”script”), ...; s.async = true; ...;
document.write(”<SCRI”+”PT src=’http://ads....”’></SCRI”+”PT>”);

As a search query is entered, ask.com attempts to auto-complete it. Because auto-
completion is performed by a server on a different domain, XMLHttpRequest is not
an option and instead a <script> tag is created with the request encoded into the URL.
The script loaded in response is a JSONP string. Given the limited portable options for
cross-domain communication, this is reasonable.

searchSuggestion([”who”,[”<span ...>who</span> is justin bieber”,...]]);

An initialization routine is deferred by means of setTimeout with a string argument,
presumably to assure that it does not interfere with the loading of the remaining source.

setTimeout(”JASK.currentTime.init()”,JASK.currentTime.SECOND);

Since this string is a constant, it could be replaced with a function. We intercepted four
different ways to initialize a local variable coming from the same eval call site:

function(str){...; eval(”var p=”+str+”;”); return p;}
This attempt at JSON deserialization suffers from the dual misconceptions that eval can
only evaluate statements and not expressions, and that eval is the only way to deserialize
JSON. The eval can be replaced portably by:

if(”JSON” in window) return JSON.parse(str); else return eval(”(”+str+”)”);
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The reCAPTCHA library updates state in a way that is similar to JSONP, but performs
both an assignment and a call, and also uses a relaxed form of JSON. It is loaded
similarly to the auto-completion example above.

var RecaptchaState = {... timeout : 18000}; Recaptcha.challenge callback();

The following line, which assigns a value to itself, intuitively makes no sense.

RichMediaCreative 1298 = RichMediaCreative 1298;

This odd behavior is clarified by the original code. A function is loaded with a name
containing a unique ID (a timestamp, in fact), and used from other loaded code under
that name. Presumably for fear of a miscommunication, eval is used to assure that the
created function is assigned to the name that the other code expects.

eval(”RichMediaCreative ”+plcrInfo 1298.uniqueId+”=RichMediaCreative 1298;”);

Since the function exists in the global scope, this case is easily replaceable by hashmap
syntax over the window object.

8 Related Work

Empirical data on real-world usage of language features is generally missing or limited
to a small corpus. In previous work, we investigated the dynamic behavior of real-
world JavaScript applications [18]. That result, on a corpus of 103 web sites, confirmed
that eval is widely used for a variety of purposes, but in that effort we did not scale
up the analysis to a larger corpus or provide a detailed analysis of eval itself. Ratana-
worabhan et al. have performed a similar study of JavaScript behavior [17] focusing on
performance and memory behavior. There have been studies of JavaScript’s dynamic
behavior as it applies to security [21,7] including the role of eval, but the behaviors
studied were restricted to security properties. Holkner and Harland [10] conducted a
study of dynamic features in Python, which includes a discussion of eval. Their study
concluded that there is a clear phase distinction in Python programs. In their corpus
dynamic features occur mostly at initialization and less so during the main computa-
tion. Their study detected some uses of eval, but their corpus was relatively small so
they could not generalize their observations about uses of eval. Other languages have
facilities similar to eval. Livshits et al. did static analysis of Java reflection in [14],
and Christensen et al. [3] analyze the reflection behavior of Java programs to improve
analysis precision for their analysis of string expressions.

9 Conclusion

This paper has provided the first large-scale study of the runtime behavior of Java-
Script’s eval function. Our study, based on a corpus of the 10,000 most popular websites
on the Internet, captures common practices and patterns of web programming. We used
an instrumented web browser to gather execution traces, string provenance informa-
tion, and string inputs to eval. A number of lessons can be drawn from our study. First
and foremost, we confirm that eval usage is pervasive. We observed that between 50%
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and 82% of the most popular websites used eval. Clearly, eval is not necessarily evil.
Loading scripts or data asynchronously is considered a best practice for backwards-
compatibility and browser performance, because there is no other way to do this. While
JSON is common, we found that eval is not used solely for JSON deserialization. Even
if we allowed relaxed JSON and JSONP notation, this accounts for at most 37% of
all calls. Thus, nearly two thirds of the calls do in fact use other language features. It
seems that eval is indeed an often misused feature. While many uses eval were legiti-
mate, many were unnecessary and could be replaced with equivalent and safer code.

We started this work with the hope that it would show that eval can be replaced
by other features. Unfortunately our data does not support this conclusion. Removing
eval from the language is not in and of itself a solution; eval is a convenient way of
providing a range of features that weren’t planned for by the language designers. For
example, JSON was created to support (de-)serialization of JavaScript objects. It was
straightforward to implement with eval, and it is now supported directly in ECMAScript
5. Standards for safer and more consistent library loading have been proposed, e.g. as
part of CommonJS. Most accepted uses of eval have been transformed into libraries
or new language features recently, and as such no best practices recommends usage of
eval. However it is still needed for some use cases such as code generation, which ei-
ther have not or can not be encapsulated into safer strategies. On the positive side, our
categorization was extremely simple, and yet covered the vast majority of eval strings.
The categories were chosen to be as restrictive as they are to assure that they are easily
replaced by other mechanisms. Restricting ourselves to eval’s in which all named varia-
bles refer to the global scope, many patterns can be replaced by more disciplined code.
The following table illustrates some simple replacements for our patterns.

JSON JSON.parse(str)
JSONP window[id] = JSON.parse(str) or window[id](JSON.parse(str))
Read window[id] or window[id][propertyName]
Assign window[id] = window[id] or window[id][propertyName]=window[id]
Typeof typeof(window[id]) or id in window
Try (Not trivially replaceable)
Call window[id](window[id], ...) or window[id].apply(window, [...])
Empty undefined or void 0

Furthermore, more than two thirds of the eval strings in these categories listed above
are of constant or composite provenance (66.3%, 81.9% and 75.1% in INTERACTIVE,
PAGELOAD and RANDOM, respectively) giving a limited number of possible names to
be referred to. All but one of these replacements depend on JavaScript’s hashmap syn-
tax, which can be used to access properties of objects by string name, but not variables
in scope. Since the global scope is also exposed as an object, window, this is sufficient
for accessing variables which happen to be in the global scope. However, at least a quar-
ter to a half of eval strings refer to local variables (locality “local”: 41.1%, 27.0% and
24.7% in INTERACTIVE, PAGELOAD and RANDOM, respectively; likely everything but
“pure”), possibly precluding the use of hashmap syntax. Many of these can be replaced
somewhat less trivially in existing code by putting variables which would be accessed
by a dynamic name into an object and using hashmap syntax, but for the general case an
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extension to JavaScript which would allow to access local variables dynamically would
greatly reduce the need for eval.
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A Patterns

Patterns are determined in strings by a simple tool itself written in JavaScript, using
JSON.parse and various regular expressions. Its algorithm is as follows: With eval
string str:

– If str starts and ends with a ( and ), remove them. This is a common workaround to
force certain engines to interpret the string as an expression instead of a statement.

– Strip whitespace from the beginning and end, and comments from any location in
the string.

– If JSON.parse(str) does not throw an exception, return JSON.
– Relax str into str relaxed (the relaxation procedure is explained below).
– If JSON.parse(str relaxed) does not throw an exception, return JSON.
– Test str against regular expressions to determine other patterns.

The regular expressions (shown here in the order they are tested) are:

JSONP /ˆ[A−Za−z0−9 \$\. \t\[\]”’]∗=[ \t\r\n]∗(.∗);∗$/ and
matched substring 1 must be JSON or relaxed JSON

Empty /ˆ$/
Library /function ∗[A−Za−z0−9 \$]∗ ∗(/ and

string must be greater than 512 bytes
Typeof /ˆtypeof ∗\(? ∗[A−Za−z0−9 \$\. \t\[\]”’]∗\)?$/ or

/ˆtypeof ∗\(? ∗[A−Za−z0−9 \$\. \t\[\]”’]∗\)? ∗[!=<>]+/ or
/ˆif ∗\(typeof ∗\(? ∗[A−Za−z0−9 \$\. \t\[\]”’]∗\)? ∗[!=<>]+[ˆ\)]∗\)[ˆ\}]∗\}? ∗;? ∗$/

Read /ˆ[A−Za−z0−9 \$]∗$/ or /ˆ[A−Za−z0−9 \$\.\[\]”’]∗$/
Call /ˆ[A−Za−z0−9 \$\.]∗\([A−Za−z0−9 \$\.\[\]”’, \t\r\n]∗\);?$/
Assign /ˆ[A−Za−z0−9 \$\.\[\]”’]∗ ∗= ∗[A−Za−z0−9 \.\[\]”’]∗;?[ \t\r\n]∗$/ or

/ˆvar [A−Za−z0−9 \$]∗ ∗(= ∗[A−Za−z0−9 \$\.\[\]”’]∗)?;?$/
Try /ˆtry ∗\{[ˆ\}]∗\} ∗catch ∗\([ˆ\)]∗\) ∗\{[ˆ\}]∗\} ∗;?$/

All other strings are categorized as Other.
The relaxation procedure is a simple process that replaces most JSON-like strings

with strict JSON strings. Single-quoted strings are replaced with double-quoted strings
(e.g. {’foo’:0} becomes {”foo”:0}, unquoted names are quoted ({foo:0} becomes {”foo”:0})
and a form of string escapes not accepted by JSON (\x) are replaced by their JSON
equivalent (\u).



78 G. Richards et al.

B Performance Impact of Eval

function E() {
eval(evalstr); x++;
return x;

}
enter
init lazy reg r0
init lazy reg r2
init lazy reg r1
create activation r0
resolve with base r4, r3,

eval(@id0)
resolve r5, evalstr(@id1)
call eval r3, 2, 12
op call put result r3
resolve with base r4, r3, x(@id2)
pre inc r3
put by id r4, x(@id2), r3
resolve r3, x(@id2)
tear off activation r0, r2
ret r3

function NoE() {
id(evalstr);
x++;
return x;

}

enter
get global var r0, −8
mov r1, undefined(@k0)
get global var r2, −12
call r0, 2, 9
get global var r0, −11
pre inc r0
put global var −11, r0
get global var r0, −11
ret r0

Fig. 17. Bytecode generated by WebKit

The WebKit JavaScript en-
gine will generate different
bytecodes for local variable
access when a function calls
eval.

Consider the two func-
tions in Fig. 17. Because
of the presence of eval,
the translation of function
E() must do dynamic, by-
name lookup of x (opcodes
resolve with base, put by id,
resolve), whereas NoE()
simply refers to statically-
known global offsets
(opcodes get global var,
put global var). This is a di-
rect example of the potential impact of eval on performance as the code on the left
will run slower in a WebKit.

C Local vs. Global Scope

The eval function provides two modi operandi. Called directly, it executes in the local
scope and only variables that are not declared in that scope will bind to the local scope.
However, if called through an alias, then eval executes in the global scopes and all
variables, declared or undeclared in the eval string, bind to the global scope. In the
following program the first eval executes in the local scope and thus assigns to the local
variable x, while the call to the alias of eval assigns to the global variable x.

1 (function() { // the anonymous function creates its local scope
2 var x = eval(”x = 4”); // assigns 4 to the local variable x twice
3 var e = eval; // alias eval to call it in the global scope
4 x = e(”x = 4”);})() // first assigns 4 to the global variable x and then to the local variable
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Abstract. Empirical evidence indicates that developers face significant
hurdles when the API elements necessary to implement a task are not
accessible from the types they are working with. We propose an approach
that leverages the structural relationships between API elements to make
API methods or types not accessible from a given API type more dis-
coverable. We implemented our approach as an extension to the content
assist feature of the Eclipse IDE, in a tool called API Explorer. API Ex-
plorer facilitates discoverability in APIs by recommending methods or
types, which although not directly reachable from the type a developer
is currently working with, may be relevant to solving a programming
task. In a case study evaluation, participants experienced little difficulty
selecting relevant API elements from the recommendations made by API
Explorer, and found the assistance provided by API Explorer helpful in
surmounting discoverability hurdles in multiple tasks and various con-
texts. The results provide evidence that relevant API elements not ac-
cessible from the type a developer is working with could be efficiently
located through guidance based on structural relationships.

1 Introduction

Application Programming Interfaces (APIs) play a central role in modern-day
software development. Software developers often favor reuse of code libraries or
frameworks through APIs over re-invention as reuse holds promise of increased
productivity. Learning how to use APIs, however, presents several challenges to
both novice and expert developers [4,12,15,16]. One such challenge, referred to as
the discoverability problem, highlights the difficulty faced by a developer looking
for the types and methods of an API necessary to implement a programming
task [12,16]. Empirical evidence indicates that when working on a programming
task, most developers look for a main-type central to the scenario to be imple-
mented and explore an API by examining the methods and types referenced in
the method signatures of the main-type [16]. As a result, a developer may be at
a significant disadvantage when an API method essential to a task is located on
a helper-type not directly accessible from the main-type, or when other essential
types are not referenced in the signature of the methods on a main-type. For
instance, Stylos et al. observed that placing a “send” method on a helper-type
such as EmailTransport.send(EmailMessage), instead of having it on the main-
type such as EmailMessage.send(), significantly hinders the process of learning
how to use APIs; they observed that developers were two to eleven times faster
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Fig. 1. Apache Commons wrapper for the JavaMail API placed the “send” method
on the main-type, and simplified the process of creating an email message object by
providing a default constructor

at combining multiple objects when relevant API methods and types were ac-
cessible from the main-type [16]. A different study which looked at the usability
tradeoff between the use of the Factory pattern or a constructor for object con-
struction also reported that developers required significantly more time using a
factory than a constructor because factory classes and methods are not easily
discoverable from the main-type [4].

A potential solution to improving discoverability in APIs is to restructure
an API to make the methods and types essential to the use of a main-type
discoverable. For instance, moving the “send” method from EmailTransport to
EmailMessage and providing constructors for object construction instead of the
Factory pattern would improve discoverability. However, such a restructuring
may not always be beneficial as it could negatively impact other desirable fea-
tures of an API such as its performance and evolvability, and the client code
may also become broken. A second solution to the discoverability problem is to
provide an API wrapper. For instance, we are aware of over six API wrappers for
the JavaMail1 API, all aimed at simplifying the process of composing and deliv-
ering an email message. One such wrapper, provided by the Apache Commons
project, underscores the discoverability issues with the JavaMail API by placing
the “send” method on the main-type, and by simplifying object construction
through the use of a constructor (see Figure 1). The use of API wrappers to
resolve discoverabilty problems is promising but may be expensive, and intro-
duces maintenance and versioning problems. Furthermore, developing wrappers
introduces the risk of unwittingly altering the behavior of the original API.

In this paper, we propose a novel and an inexpensive approach for improving
the discoverability of API elements. Our approach is based on the intuition that
the structural relationships between API elements, such as method-parameter

1 http://java.sun.com/products/javamail

http://java.sun.com/products/javamail
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relationships, return-type relationships and subtype relationships, can be lever-
aged to make discoverable the methods and types that are not directly accessible
from a main-type. For instance, we can use the fact that EmailTransport.send

(EmailMessage) takes EmailMessage as a parameter to recommend the “send”
method of the EmailTransport class when a developer looks for a “send” method,
or something similar, on the EmailMessage class. Similar recommendations can be
made for object construction from factory methods, public methods, or subtypes.
These can be accomplished without trading off other desirable API features to
make elements discoverable, or the need to create and maintain API wrappers.

To investigate our intuition, we built a recommendation system, called API
Explorer,2 which makes use of a special-purpose dependency graph for APIs to
provide recommendations based on the structural context in which assistance
is requested. We implemented API Explorer as a novel extension of the content
assist feature of the Eclipse IDE. Content assist in Eclipse, or IntelliSense as it is
called in Microsoft Visual Studio, is limited to showing only the methods avail-
able on the object on which it is invoked. API Explorer extends content assist
with support for recommending relevant methods on other objects, locating API
elements relevant to the use of a method or type, and also providing support for
combining the recommended elements. We evaluated API Explorer through a
multiple-case study in which eight participants were asked to complete the same
four programming tasks using four different real-world APIs, each task present-
ing multiple discoverability challenges. The results of the study was consistent
across the participants and the tasks, and show that API Explorer is effective in
assisting a developer discover relevant helper-types not accessible from a main-
type. The results also show that the use of structural relationships, combined
with the use of content assist to generate and present recommendations, could be
a viable, and an inexpensive, alternative when seeking to improve discoverability
in APIs. We make the following contributions:

– We present an approach that uses the structural relationships between API
elements to make discoverable helper-types not accessible from a main-type.

– We provide API Explorer, a publicly available plugin for Eclipse that embod-
ies our approach. API Explorer is the first tool, to our knowledge, that can
recommend relevant API methods on other objects through the content assist
feature of an IDE.

– We present a detailed analysis of data from 32 programming sessions of par-
ticipants using API Explorer with real-world APIs, showing how our approach
is effective in helping developers discover helper-types not reachable from a
main-type, and helping us understand the contexts in which the approach
would not be effective.

We continue in the next section with an example scenario that highlights typical
discoverability hurdles observed in previous studies on API usability.

2 API Explorer is available at: www.cs.mcgill.ca/~swevo/explorer

www.cs.mcgill.ca/~swevo/explorer
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2 Motivation

Consider a scenario in which a developer has to implement a solution to compose
and deliver an email message using the JavaMail API. Going through the docu-
mentation of JavaMail, the developer found Message, the main-type representing
an email message. The developer then proceeds by attempting to construct an
object of type Message from its default constructor3 and encounters the first
discoverability hurdle: Message is an abstract class. Creating an object of type
Message requires three helper-types (MimeMessage, Session, and Properties), none
of which are directly accessible from Message (i.e., these helper-types are not ref-
erenced or reachable from any of the public members of Message). Eventually,
after spending some time going through the documentation, or code examples
on the Web, the developer would locate all the types necessary to construct a
Message object, and also the information on how these types should be combined.
Once Message is created and all the necessary attributes are set, the developer
then proceeds to send the email and encounters the second discoverability hurdle:
there is no method on the Message object that provides the “send” functionality.
The developer must therefore spend more time looking for a helper-type with a
method that could be used to send the Message object. The code completion fea-
ture of the IDE is not helpful because it can only display the methods available
on Message and provides no easy way to discover the existence of a helper-type
with a send method. Also, the traditional search tools that come with IDEs do
not provide direct support to locate multiple helper-types from a main-type.
A developer would have to combine the results from multiple tools (e.g., the
type hierarchy and reference search tools) and filter out the search results before
potentially finding the relevant helper-types.

This scenario describes a conceptually simple task but highlights discover-
ability hurdles commonly faced by developers in practice: “...in real world APIs
like Java’s JDK and Microsoft’s .NET, it frequently seems to be the case that
the classes [helper-types] one needs are not referenced by the classes [main-type]
with which one starts...” [16, p.2]. Thirteen out of twenty participants in a sep-
arate exploratory study we conducted to investigate the challenges developers
encounter when learning to use APIs experienced some difficulty locating the
helper-types relevant to implementing a programming task [2]. We observed that
the participants relied on imperfect proxies such as domain knowledge or their
expectation of how an API should be structured when looking for helper-types
not referenced by a main-type. These attributes are often not consistent across
different APIs, and may be misleading, resulting in unsuccessful searches and
wasted efforts. This observation raises two research challenges:

– How can we assist developers in efficiently discovering helper-types not acces-
sible from a main-type?

– How can we assist developers in the process of combining these related types
to implement a task?

3 Three separate studies observed that most developers, both novice and experts alike,
begin object construction by attempting to use the default constructor [4,15,16].
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Fig. 2. API Explorer shows the developer the types required to construct an instance
of Message and generates code which illustrate how to combine these types

Fig. 3. API Explorer recommends three send methods on the Transport class which
can be used for sending an email Message object

We hypothesize that structural relationships between API elements can be lever-
aged as beacons to assist developers locate helper-types not accessible from a
main-type, and in combining these related types. In the next section, we dis-
cuss how API Explorer, a tool developed to investigate our hypothesis, could
have assisted the developer quickly surmount the hurdles encountered above.
We present the heuristics and algorithms enabling API Explorer in Section 4.

3 API Explorer

API Explorer generates recommendations that would assist a developer discover
helper-types not accessible from a main-type based on the structural context in
which help is requested.

Faced with an object construction hurdle, a developer would query API Ex-
plorer for assistance by invoking content assist after the assignment operator.
For instance, in the example above, the developer would enter Message m =, then
the key sequence Ctrl+Space, and API Explorer would instantly display two op-
tions for creating a Message object from MimeMessage (see Figure 2(A)). API Ex-
plorer can provide assistance for creating objects from constructors, subtypes,
factory methods, public methods, or static methods. Selecting a recommenda-
tion reveals a hoverdoc, containing a rationale, that explains why the element
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Fig. 4. API Explorer combines structural analysis with synonym analysis to recom-
mends three send methods of the Transport class when a developer looks for a “for-
ward” method on the Message object

was recommended, and the documentation of the recommended element to help
a developer determine its relevance in the given context (see Figure 2). Once the
developer makes a selection, API Explorer automatically expands the selected
recommendation into code that shows how the elements needed to create an
object of type Message should be combined (see Figure 2(B)).

API Explorer provides three options for discovering relevant methods on
helper-types. With the first option, API Explorer display methods that take
an object of type Message together with the public methods declared on Message

through the code completion feature of the Eclipse IDE. To minimize confu-
sion, we differentiated the recommendations of API Explorer using a different
icon and appended them after the methods of the main-type. Thus, a developer
browsing through the methods of Message using this enhanced code completion
feature (i.e., code completion in Eclipse with API Explorer installed) will also
come across the method Transport.send(Message). The second option requires
the developer to request explicit assistance from API Explorer. For instance,
the developer would enter “message.send”, where “message” is an object of type
Message, and API Explorer would recommend methods named “send” on other
types that take an object of type Message as parameter. In this case, API Ex-
plorer recommended three “send” methods of the Transport class, and generated
code of how these types should be combined once a recommendation is selected
by the developer (see Figure 3). The third option handles cases where a devel-
oper might search for a method prefix that does not match the name of any
method on the helper-types (e.g., searching for “message.forward” instead of
“message.send”). In this case, API Explorer combines structural analysis with
synonym analysis to recommend methods with a name similar to what the de-
veloper is looking for (see Figure 4). We continue in the next section with the
algorithms underlying API Explorer.

4 API Graph and Recommendation Algorithms

API Explorer relies on a specialized dependency graph for APIs, called API Ex-
ploration Graph, and incorporates algorithms that use the information contained
in the graph to generate recommendations based on the structural context.
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4.1 API Exploration Graph

We use an API Exploration Graph (XGraph) to model the structural relation-
ships between API elements. In an XGraph, API elements are represented as
nodes; an edge exists between two nodes if the elements represented by the
nodes share one of several structural relationships.
Nodes: an XGraph uses two kinds of nodes to represent API elements: a node
to represent API types such as classes or interfaces, and a node to represent API
methods. We model a public constructor as a method that returns an object of
the created type.
Edges: an XGraph uses four kinds of edges to capture the relationships between
API elements:

– created-from edge: this edge exists between an API type, T , and an API
method, M , if the method M returns an object of type T . The created-from
edge captures object construction through constructors, static methods, or
instance methods.

– is-parameter-of edge: this edge exists between an API type, T , and an API
method, M , if the type T is a parameter of the method M .

– is-subtype-of edge: this edge is used to represent subtype relationships between
API types. It exists between the type Tk and the type Tm, if Tk is a subtype
of Tm.

– requires edge: is used to distinguish instance methods from class methods. A
requires edge exist between a method, M , and an API type, T , if an instance
of T must exist on which the method M must be invoked.

The XGraph is simple, but by combining the information encoded in multi-
ple edges, we are able to derive useful non-trivial facts about the relation-
ships between API elements. For instance, from knowing that MimeMessage is-
subtype-of Message, and that Message is-parameter-of Transport.send, we can
infer at least three facts: first, objects of type Message could be created from
MimeMessage; second, MimeMessage can be used whenever Message is expected;
and third, MimeMessage can also be sent using the “send” method of Transport.

ab s t r a c t Message {
pub l i c vo id s e tText ( S t r i n g ) }

MimeMessage extends Message {
pub l i c MimeMessage( S e s s i o n ) }

Transpo r t {
pub l i c s t a t i c vo id sendEmai l ( Message ) }

Se s s i o n {
pub l i c s t a t i c Se s s i o n g e t I n s t a n c e ( P r o p e r t i e s ) }

Listing 1.1. A simplified version of the JavaMail API

Listing 1.1 shows a simplified version of the JavaMail API, and Figure 5 shows
the corresponding XGraph. JavaMail uses the types String and Properties from
the Java Runtime Environment (JRE). API Explorer maintains an XGraph of
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Fig. 5. The XGraph of the simplified JavaMail API in Listing 1.1. The nodes in boldface
represent API types; the other nodes represent API methods, including constructors,
and the edges represent relationships between the nodes.

the JRE, and automatically links it to the XGraph of APIs referencing types of
the JRE, as in Figure 5. We generate XGraphs from the binaries of APIs using
the Javaassist4 byte code analysis library, and it takes less than one minute to
create an XGraph even for large APIs such as the JRE, which includes 3000 types
and 9300 methods. API Explorer uses the information in the XGraph to gen-
erate recommendations and code showing how the recommended API elements
should be combined. We present the recommendation algorithms in Sections 4.2
through 4.5, and use the sample API in Listing 1.1 and its XGraph to present
examples of the algorithms.

4.2 Object Construction Algorithm

The object construction algorithm (Algorithm 1) facilitates the discovery of fac-
tory methods, static methods, or subtypes that may be needed to construct an
object of a given API type, say T (input to the algorithm). The algorithm begins
by looking at the created-from edges of the node representing T in the XGraph
(lines 4 and 8). The xgraph.getNodes(T,edgeType) method (line 8) returns the
API element (a factory method or constructor) each created-from edge points
to, for every such edge found on T . The algorithm is designed to first search
for a way of creating an object of type T that does not involve its subtypes.
We did this to minimize the number of recommendations presented to a user.
If no recommendation for creating an object of type T without its subtypes is
found, the algorithm proceeds to look at the created-from edges of the subtypes
of T (lines 9 to 12). The algorithm uses the is-subtype-of edge to locate the sub-
types of T (line 10), then recursively calls the getObjectConstructionProposals
method for each subtype (lines 11 to 12). The algorithm continues down the
hierarchy until information on how to create an object of type of T is found, or
all the subtypes are exhausted. Upon completion, the algorithm presents a list
of recommendations showing different ways of creating an object of type T . We
present the code generation algorithm in Section 4.5 that recursively looks for
the parameters and dependencies of a selected recommendation, and generate
code showing how to combine them.

4 www.javassist.org
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Example. Consider as an example a developer looking for assistance on how to
create an object of type Message. The algorithm begins by looking at the created-
from edges on the Message node. The Message node has no created-from edge;
the algorithm then proceeds by looking for subtypes of Message from which an
object could be created. The Message node, in this case, has a single is-subtype-
of edge pointing to MimeMessage. Next, the algorithm looks at the created-from
edges on the MimeMessage node, and finds MimeMessage(Session), a constructor
for creating a MimeMessage object. The algorithm, being aware that MimeMessage

is a subtype of Message, recommends MimeMessage(Session) as a way of creating
a Message object.

Algorithm 1. Object Construction

Input: T, xgraph /* the type T for which object construction

assistance is requested and the XGraph */

Output: recommendations /* a list of recommended API elements that

could be used to create an object of type T */

Var edgeType := created-from /* a valid edge in the XGraph */1

recommendations := ∅2

begin3

recommendations := getObjectConstructionProposals(T, xgraph, edgeType)4

end5

function: getObjectConstructionProposals(T, xgraph, edgeType)6

begin7

Var proposals := ∅8

proposals := xgraph.getNodes(T, edgeType) /* get the nodes in the9

XGraph pointed to by the created-from edges of node T */

if proposals == ∅ then10

Var subtypes = xgraph.getNodes(T, is-subtype-of )11

foreach type ∈ subTypes do12

proposals := proposals ∪13

getObjectConstructionProposals(type,xgraph,edgeType)

return proposals14

end15

For simplicity, our example API has types with only a single object construc-
tion option. However, in practice, an API may provide multiple ways of creating
objects of a given type. For instance, the JavaMail API provides four options
for creating a Session object. In such situations, API Explorer presents all the
options to a developer to decide the most appropriate construction pattern in a
given usage context. As will be seen in Section 5, the participants of our case
study evaluation demonstrated little difficulty selecting a relevant recommenda-
tion when presented with multiple options.

4.3 Method Recommendation Algorithm

The method recommendation algorithm (Algorithm 2) is based on the obser-
vation that if a method a developer needs is not available on the type, T , the
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developer is working with, then one of the methods which take T , or an ancestor
(a class, or an interface) of T , as a parameter may provide the needed function-
ality. The algorithm uses the is-parameter-of and the is-subtype-of edges of the
XGraph to recommend relevant methods on other objects.

The algorithm begins by looking at the API methods that take T as a pa-
rameter using the is-parameter-of edges at the node T in the XGraph (lines
3, 12 to 15). The algorithm verifies if the name of a method that takes T as a
parameter starts with the prefix entered by the user, and if so, adds that method
to the list of proposals. If the list of proposals is empty once all the methods that
take T as parameter have been examined, the algorithm uses synonym analysis
to search for, and recommend, API methods with a name similar to what the
developer is looking for. Our intuition is that, a developer looking for an API
method to send an email object, if not searching for a method prefixed “send”,
may be looking for something similar to “send”, such as “transmit” or “deliver”,
instead of something totally unrelated.

Algorithm 2. Method Recommendation

Input: T, prefix, xgraph /* the type for which a recommendation is being

requested, the prefix provided by the user, and the XGraph */

Output: recommendations /* list of recommended API methods */

recommendations := ∅1

begin2

recommendations := getMethodProposals(T, prefix, xgraph)3

if recommendations == ∅ then4

Var ancestors = T.getAncestors()5

foreach type ∈ ancestors do6

recommendations := recommendations ∪7

getMethodProposals(type, prefix, xgraph)8

end9

function: getMethodProposals(T, prefix, xgraph)10

begin11

Var proposals := ∅12

Var list := xgraph.getNodes(T, is-parameter-of )/* get the method nodes13

pointed to by the is-parameter-of edges of node T */

foreach method ∈ list do14

if method.nameStartsWith(prefix) then15

proposals := proposals ∪ method16

/* synonym analysis */

if proposals == ∅ then17

Set prefixSet = getSynonyms(prefix)18

foreach method ∈ list do19

Set methodSet = getSynonyms(method.getName())20

if methodSet ∩ prefixSet �= ∅ then21

proposals := proposals ∪ {method}22

return proposals23

end24
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The synonym analysis part of the algorithm (lines 16 to 21) re-examines all the
API methods that take T as parameter. The synonym analysis begins by gener-
ating the synonym set for the prefix entered by the user (line 17 ); then for each
method of the is-parameter-of edges of T, the algorithm extracts its prefix and
generates its synonym set. The methods whose synonym set have one or more ele-
ments in common with the synonym set of the prefix entered by the user are added
to the list of proposals (lines 20 to 21). API Explorer uses the WordNet5 dictionary
to generate the synonym sets. We also augmented WordNet with common words
such as “insert”, “put”, and “append” often used interchangeable in APIs, and by
developers, but which are not necessarily synonyms in the English vocabulary.

The method recommendation algorithm may not find a relevant method
amongst the methods that take T as a parameter. In this case, the algorithm
searches for API methods that take an ancestor of T as a parameter (lines 4
to 8). The algorithm uses the is-subtype-of edges at T to located its ancestors
(line 5), and for each ancestor, calls the getMethodProposal method for recom-
mendations (line 6 to 8). Upon completion, the algorithm presents a list of API
methods with a prefix matching, or similar, to that entered by the developer,
and with object of type T as a parameter.
Example. Consider as an example a developer looking for a “send” method
on a MimeMessage object. The algorithm begins by looking at the is-parameter-
of edges of the MimeMessage node, searching for methods prefixed “send” that
take MimeMessage as a parameter. The MimeMessage node, however, has no is-
parameter-of edge; the algorithm then looks for a supertype of MimeMessage by
moving up its is-subtype-of edge, and finds the type Message. Next, the algorithm
looks at the is-parameter-of edges of the Message node and, this time, finds an
edge pointing to the static method sendEmail(Message) on the Transport class.
The algorithm does not terminate once the first “send” method is found; it
searches for all methods prefixed “send” that can accept a MimeMessage object
by looking at other is-parameter-of edges on the current node and on other
nodes up the hierarchy. In this example, the algorithm would recommend the
only method it found, Transport.sendEmail(Message), to the developer with the
knowledge that MimeMessage is a subtype of Message.

4.4 Relationship Exploration Algorithm

In our work with APIs, we have observed cases in which a developer has identified
two or more types relevant to their programming task, but remains uncertain
about how these types are related [2]. Unfortunately, direct support for such an
inquiry is unavailable. A developer wanting to verify the relationship between
the types T1 and T2 must either combine the results of multiple search tools, or
go through the documentation of at least one of the types before determining
whether or not they are related. Using the XGraph, our relationship exploration
algorithm (Algorithm 3) can help a developer efficiently explore the relationships
between API types.
5 http://wordnet.princeton.edu/
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The algorithm takes a input an array of API types and the XGraph, and
outputs the relationships between the types, if any. Given a single API type
typeArray[0], the algorithm can locate other API types related to it (lines 3 to 4).
The xgraph.getRelatedTypes(typeArray[0]) method (line 4) returns a list of types
related to typeArray[0] through the is-parameter-of, is-subtype-of, or the created-
from edge of the XGraph. Given two API types typeArray[0] and typeArray[1],
the algorithm looks for method-parameter or return type relationships between
the types (lines 5 to 9). For typeArray[0], the algorithm first retrieves the list
of all the API methods defined on typeArray[0] (line 6). Then, for each method
on typeArray[0], the algorithm checks whether the method takes an object of
type typeArray[1], or its ancestor, as a parameter, or has typeArray[1], or its
subtype (represented as <:) as a return type. If so, that method is added to the
list of related elements (lines 7, 10 to 16). This same procedure is repeated for
the type typeArray[1] (lines 8 to 9), and the relationships between the types are
presented to the user.

Algorithm 3. Relationship Exploration

Input: typeArray[], xgraph /* an array of API types and the XGraph */

Output: relations /* a list of related API element */

begin1

relations := ∅2

if typeArray.length == 1 then3

relations := relations ∪ xgraph.getRelatedTypes(typeArray[0])4

else if typeArray.length == 2 then5

Var listOfMethods0 = xgraph.getMethods(typeArray[0])6

relations := relations ∪ getRelationships(typeArray[1],listOfMethods0)7

Var listOfMethods1 = xgraph.getMethods(typeArray[1])8

relations := relations ∪ getRelationships(typeArray[0],listOfMethods1)9

end10

function: getRelationships(T, listOfMethods)11

begin12

Var relationships := ∅13

foreach method ∈ listOfMethods do14

if method.getReturnType() <: T OR T ∈ method.getParameters()15

then
relationships := relationships ∪ method16

return relationships17

end18

Example. Consider as an example a developer wanting to explore the relation-
ships of MimeMessage. The developer will begin by issuing a query to the rela-
tionship exploration algorithm to identify the types related to MimeMessage. The
algorithm uses the edges of the XGraph to locate types related to MimeMessage: in
this case, the algorithm would reveal that MimeMessage is related to both Message

and Transport using the is-subtype-of and the is-parameter-of edges of the
XGraph. The developer may then explore the relationship between MimeMessage
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and one of the related types (e.g., Transport) by selecting Transport. The al-
gorithm then looks at the edges that connect MimeMessage to Transport in the
XGraph to provide an explanation of how they are related. The algorithm re-
turns within a second of the query, revealing that MimeMessage and Transport are
related through the Transport.sendEmail(Message) method. Traditional “refer-
ence search” features, such as that provided in the Eclipse IDE, are unable to
determine that MimeMessage is related to Transport.sendEmail(Message) because
they are not inheritance-aware. Our relationship exploration algorithm therefore
complements existing “reference search” tools.

4.5 Code Generation Algorithm

The code generation algorithm is triggered only when a recommendation is se-
lected. This algorithm is intended to show a developer how to correctly co-
ordinate the main-type and helper-types. If the selected recommendation is a
constructor, the algorithm first determines whether or not it has parameters. If
the constructor has no parameters, the algorithm generates code showing how
to use the default constructor. For constructors with parameters, the code gen-
eration algorithm first generates an identifier for the non-primitive parameters,
and for each non-primitive parameter T, calls the object construction algorithm
to determine how to create an object of type T. The algorithm uses the method-
parameter relationship to determine how the statements should be ordered and
how they relate to each other.

If the selected recommendation is an API method, the algorithm uses the
requires edge to determine whether or not the method is static. For a non-static
method, the algorithm begins by calling the object construction algorithm to
create an object of the type on which the method is defined, before invoking
it. Then, for each non-primitive parameter T of the selected method, the code
generation algorithm calls the object construction algorithm to determine how
to create an object of type T. For a static API method (i.e., method without a
requires edge), the algorithm only has to create objects for each non-primitive
parameter. The algorithm does not create objects for non-primitive parameter
types already available from the context in which API Explorer was invoked
— it uses variables in the context that match a given parameter type. For in-
stance, if a developer selects Transport.send(Message) from the recommenda-
tions on how to send a Message object m1, the code generation algorithm will
not create a new Message object, but will pick m1 from the context, and output
Transport.send(m1).

4.6 Design Rationale

We designed our approach with the awareness that a main-type may have sev-
eral helper-types, with each helper-type relevant to a different programming
scenario. For instance, the type Message of the JavaMail API has the method
Transport.send(Message) as a helper-type for sending email objects, and the
method SearchTerm.match(Message) as a helper-type for locating email objects
that satisfy a given search criterion. Similarly, an API type may have several
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object construction patterns, with each pattern relevant to a different usage sce-
nario. Our approach does not attempt to guess which helper-type is relevant
for a given programming scenario; it recommends all valid helper-types in a
given structural context, and allows the developer to select the most appropri-
ate helper-type for a given programming scenario. We designed our approach
this way for two reasons: first, a heuristic that attempts to narrow down the list
of recommended help-types by removing those considered irrelevant in a given
scenario may inadvertently hide a helper-type most appropriate for a given sce-
nario. Such a mistake will further undermine discoverability, the very problem
our approach is intended to solve. To avoid hampering discoverability, we opted
for a design that relies on the developer to select the helper-type most appropri-
ate for a given task. Second, our experience working with APIs indicates that
developers have little problem selecting relevant API elements from a list of
recommendations. We therefore expect that developers will have little difficulty
selecting the most appropriate helper-type from a list of possible helper-types
for a given programming task. We discuss the extent to which our expectations
were valid in Section 5.

5 Evaluation

Our evaluation had two goals: first, to show the extent to which our assumptions
about the API exploration behavior of developers, and their ability to select
relevant recommendations, are reflected in realistic API usage contexts; and
second, to understand the contexts in which API Explorer may be helpful in
discovering helper-types not accessible from a given main-type. Given that we
were interested in studying how the approach supports people (as opposed to the
performance of algorithms taken in isolation), we favored a qualitative evaluation
methodology. We reasoned that a qualitative evaluation of our approach in the
context of several programming tasks will enable us to reliably evaluate the
assumptions and observations on which our approach is based, and to understand
the contexts in which the approach would not be effective.

5.1 Case Study Design

We used a case study methodology to evaluate our approach. Yin introduces the
case study methodology as “an empirical inquiry that investigates a contempo-
rary phenomenon within its real-life context” [20, p. 13], and Easterbrook et al.
explains that the case study methodology is particularly suited for evaluating
software tools “where the context is expected to play a role in the phenomena” [3,
p. 297], as in the case of API Explorer. For example, Holmes and Murphy used
a case study evaluation to provide an in-depth understanding of how and why
their Strathcona tool was helpful, ICSE ’05 [6].

In the case study methodology, the cases (programming tasks, in our setting)
are selected to represent the phenomenon being studied, and each case is con-
sidered as a replication, rather than a member of a sample [3,20]. Furthermore,
our case study methodology emphasizes generalization to similar contexts (i.e,
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if the selected cases supports our hypotheses, then it is expected that similar
cases will be supported by our approach), not statistical generalization [20, p.
31]. The goal of our case study was to answer the following questions:
Q.1 To what degree are our assumptions about the API exploration behavior of
developers reflected in practice?
Q.2 In which ways can structural relationships help when trying to increase the
discoverability of API elements necessary to solve a task?
Q.3 Would a developer be able to select a helper-type relevant to their task
when presented with a list of possible helper-types?
Q.4 In which situations would API Explorer not be helpful, and why?

A. Programming tasks
Our approach is intended to assist developers locate helper-types not accessible
from a type they may be working with. We therefore selected programming
tasks that typified the discoverability hurdles our approach is intended to solve.
Three of the tasks (the Email, XML, and Chart tasks) selected for the study
have been the subject of previous studies that investigated the discoverability
problem [2,16].
Email task: we asked the participants to use the JavaMail API to implement a
solution that would compose and deliver an email message. To complete the task,
a participant needed to create and configure at least four API types, all created
from factory methods or subtypes, and needed to discover a key relationship
between Message and Transport to send the email message. We used version
1.4.2 of the JavaMail API, which has five packages and 91 non-exception classes.
XML task: we asked the participants to use the Java API for XML Processing
(JAXP)6 to verify whether the structure of an XML file conforms to a given
XML schema file. This task required the combination of at least four API types
(Validator, Schema, SchemaFacotry, and Source); we selected this task to evalu-
ate the object construction feature because of the unique challenges it presents
— all the required types are abstract with no subtypes; the types must be cre-
ated from factory or public methods (e.g., Validator can only be created from
Schema.newValidator()). We used version 1.4 of the JAXP API, which has 23
packages and 207 non-exception classes.
Chart task: we asked the participants to use the JFreeChart7 API to create
a pie chart and to save the chart to a file in a graphic format. To complete
this task, a participant needed to coordinate at least five API types, and had to
discover the relationship between JFreeChart, the type for representing charts,
and ChartUtilities, the type needed to save the chart. We used version 1.0.13
of the JFreeChart API, which has 37 packages and 426 non-exception classes.
PDF Task: we asked the participants to use the PDFBox8 API to implement a
solution to merge two PDF files. This task required the combination of just two

6 jaxp.dev.java.net
7 jfree.org/jfreechart
8 pdfbox.apache.org
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API types: PDFDocument and MergerUtility. However, the relationship between
PDFDocument and MergerUtility (related through an “append” method on Merg-

erUtility) cannot be determined through synonym analysis since “merge” is
not a synonym of “append”. We were interested in investigating whether the
participants would be able to use other features of API Explorer to discover
this key relationship. We used version 1.2.1 of the PDFBox API, which has 31
packages and 307 non-exception classes.

B. Study participants.
We recruited eight participants (henceforth referred to as P1, ..., and P8) through
our departmental mailing list. Our participants reported between 1.5 and 3 years
of experience programming with Java, with a median Java programming experi-
ence of 2.5 years. All the participants had at least six months experience working
with the Eclipse IDE. None of the participants, with the exception of P1, had
used any of the four APIs in the study; P1 had used the JFreeChart API in
the past, but in a task different from ours and could not remember the types
provided by the API.

C. Study procedure.
We provided each participant with a tutorial of the features of API Explorer
before the study began, and asked the participants to use API Explorer when-
ever they believed a feature it provides could be helpful. We also provided each
participant with a description of the tasks and the documentation of the APIs.
The four tasks were completed in the same order by the participants, and the
participants were allowed a maximum of forty minutes per task. We asked the
participants to think-aloud whenever API Explorer was used to allow us to un-
derstand why the assistance of API Explorer was needed, why the participant
selected a given recommendation, and whether or not the assistance provided by
API Explorer was helpful. We also used screen capturing software to document
all the actions of the participants. To avoid influencing the behavior of the par-
ticipants, we did not inform them of which types of an API were relevant to each
task, or which type of an API to start from; the decision of how to approach
each task was left to each participant.

5.2 Results

The study produced a total of over 16 hours of screen captured videos and ver-
balizations of eight participants using API Explorer in 32 different programming
sessions. Our analysis of the data from the study focused on the questions the
study was designed to answer. We begin by presenting task-level observations
that show the degree to which the API exploration behavior of the participants
supports the hypothesis on which our approach is based (Q.1). For each task, and
for each participant, we provide observations on how the participant approached
the task, and the degree to which API Explorer was effective in helping the par-
ticipant discover helper-types not accessible from a main-type. Then, we present
episode-level observations: an analysis of all the instances in which API Explorer
was used by each participant, the degree to which a participant was able to se-
lect relevant recommendations, and the discoverability contexts in which API
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Table 1. A summary of the results of how the participants approached each task, their
effectiveness in using API Explorer (APIX) to locate helper-types not accessible from
a main-type, and the API Explorer feature (SA — synonym analysis, EC — enhanced
code completion, RE — relationship exploration, OC — object construction) used to

make the discovery. The check mark (�) represents Yes, and � represents No.

P1 P2 P3 P4 P5 P6 P7 P8

Email Task
Started from Message, then
looked for Transport

� � � � � � � �

Found Transport.send from
Message using APIX

� � � � � � � �

Feature used EC SA SA SA EC SA SA EC

Chart Task
Started from JFreeChart,
then looked for ChartUtil

� � � � � � � �

Found ChartUtil.write from
JFreeChart using APIX

� � � � � � � �

Feature used EC SA SA EC — — EC SA

PDF Task
Started from PDFDoc, then
looked for MergerUtil

� � � � � � � �

Found MergerUtil.append
from PDFDoc using APIX

� � � � � � � �

Feature used EC RE EC EC EC EC EC —

XML Task
Started from Validator, then
looked at Schema

� � � � � � � �

Found
Schema.newValidator()
from Validator using APIX

� � � � � � � �

Feature used OC — OC OC OC — OC OC

Explorer proved helpful (Q.2 and Q.3). Lastly, we look at situations in which
API Explorer was not helpful (Q.4).

A. Tasks-Level Observations.
The first question (Q.1) was intended to investigate the degree to which the
behavior of our participants supports our main hypothesis (when working on a
task, a developer typically starts from a main-type central to the programming
scenario before looking for helper-types) and to evaluate the degree to which API
Explorer would be helpful in discovering relevant helper-types. Due to space
restrictions, we present a detailed outline of the observations from the Email
task, and summarize the observations from the other tasks in Table 19.

9 A detailed outline of how the participants approached each task, and how they used
API Explorer is available at: www.cs.mcgill.ca/~swevo/explorer/evaluation/

www.cs.mcgill.ca/~swevo/explorer/evaluation/
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All eight participants started the Email tasks by looking for a type rep-
resenting an email message. They all found the abstract class Message from
the documentation and proceeded to query API Explorer for assistance on
how to create an object of type Message. API Explorer provided two recom-
mendations: MimeMessage(Session) and MimeMessage(Session,InputStream), both
constructors from the subtype MimeMessage; seven of the participants selected
MimeMessage(Session), P5 selected MimeMessage(Session,InputStream) thinking
InputStream is needed to set the email content. P5 later reverted to MimeMessage-

(Session). After selecting MimeMessage(Session), API Explorer provided four
recommendations on how to create a Session object from factory methods, and
all the eight participants selected Session.getInstance(Properties), to complete
the process of creating a Message object.

The participants approached the next part of the task, sending the email mes-
sage, differently. P1 started with the documentation in search for assistance on
how to send the message but did not find Transport. He then browsed through the
methods of Message using the enhanced code completion (EC) feature of Eclipse
when he noticed Transport.send(Message) amongst the recommendations of API
Explorer. P5 and P8 also used the EC to discover Transport.send(Message) di-
rectly from Message. Participants P2, P3, P4, P6, and P7 all used the synonym
analysis (SA) feature of API Explorer to query for a recommendation for “Mes-
sage.send”, and received four recommendations from which they discovered three
different “send” methods on the Transport class.

We present a summary of the observations from the other tasks in Table 1. For
each task, we indicate whether the participant started from the main-type before
looking for the helper-type, whether the participant was able to use API Explorer
(APIX) to discover the helper-type directly from the main-type, and the API
Explorer feature that was used to make the discovery. For the Chart task, seven
of the eight participants started from the main-type JFreeChart before looking
for the helper-type ChartUtilities. Only P6 started from ChartUtilities before
looking for JFreeChart, and this occurred because P6 had difficulties finding
the main-type and happened to stumble on ChartUtilities. Six of the eight
participants successfully used APIX to discover ChartUtilities directly from
JFreeChart. P5 did not attempt to use APIX to look for a helper-type; he came
up with an improvised solution that created a BufferedImage from JFreeChart.
For the PDF task, all the eight participants started from the main-type
PDFDocument before looking for the helper-type MergerUtility, and seven of the
participants successfully used APIX to discover MergerUtility directly from
PDFDocument. P8 used synonym analysis with “PDFDocument.merge” but got no
recommendations. He made no attempt to use other features of APIX, such as the
enhanced code completion, that could have helped him discover MergerUtility;
he came up with an improvised solution for merging the documents.

Five of the eight participants in the XML task started with the main-type
Validator; the other three started with the helper-type Schema. The domain that
provided support for validation had only six classes, with Schema at the top of the
list, and Validator at the end: that could have influenced the three participants
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that started with Schema. Six of the participants used the object construction
feature to discover how to create a Validator object from Schema.newValidator(),
the other two used the documentation.

The results were consistent across the eight participants and in most of the
tasks: the participants typically began exploring an API from the main-type
before looking for a relevant helper-type, and successfully used API Explorer
to discover relevant helper-types directly from a main-type.

B. Episode-Level Observations.
To answer questions Q.2, Q.3, and Q.4, we analyzed all the segments of the
screen captured videos, which we called episodes, corresponding to instances in
which a participant used API Explorer to discover API elements relevant to a
task. In our analysis, we focused on the degree to which a participant was able
to select API elements relevant to a task from the recommendations of API
Explorer, the discoverability contexts in which the assistance of API Explorer
was requested, and whether or not the assistance provided was helpful. We con-
sider the assistance provided by API Explorer helpful if its recommendations
contains an API element relevant to a given request, and if the participant was
able to recognize and select the relevant element. The results of the analysis are
summarized in Table 2.

The third column (# of usage episodes) of Table 2 shows the number of
episodes where API Explorer was used, per participant and per discoverability
context. For instance, P1 used API Explorer 21 times: four times to discover
relevant methods on other API types (row METH), 16 times to discover API
elements necessary to construct an object of a given API type (row OBJ), and
once to look for types related to a given API type that could be used to per-
form a given operation (e.g., types related to PDFDocument that could be used
for merging; row ER). The participants requested the assistance of API Ex-
plorer a combined total of 161 times. The fourth column presents the average
number of recommendations per episode for each of the different discoverability
contexts. The average number of recommendations ranged from about 2 to 15
recommendations per episode.

The fifth column presents the number of episodes in which a participant was
unable to select or recognize an API element relevant to a task from the recom-
mendations made by API Explorer. We observed only two instances in which a
participant was unable to select a relevant API element from the recommen-
dations of API Explorer. In the first instance, P3 had requested the list of
API types related to PDFDocument while looking for a type that could be used
for merging PDF files. API Explorer provided a list with 12 API types, in-
cluding MergerUtility, but P3 failed to notice it because it was not visible,
and P3 did not scroll to examine the entire list. In the second instance, P7
had requested for assistance on how to create a Schema object, and received
eight recommendations: P7 selected DocumentBuilder.getSchema() instead of
SchemaFactory.newSchema(File), but later reverted to SchemaFactory.newSchema-

(File) when she realized a schema file was provided for the task. API Explorer
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Table 2. A summary of all the instances in which API Explorer was used by each
participant for the various contexts (object construction [OBJ], looking for relevant
methods on other types [METH], and exploring the relationships between types [ER])

# of usage
episodes

average # of
recommendations

unable
to select

API Explorer
not helpful

P1 OBJ 16 6.3 0 0
METH 4 5 0 0
ER 1 0 0 1

P2 OBJ 12 5.5 0 0
METH 4 4.2 0 2
ER 4 6 0 1

P3 OBJ 11 7.8 0 0
METH 3 8.2 0 0
ER 8 3.5 1 1

P4 OBJ 16 6.3 0 0
METH 3 9.1 0 0
ER 5 5.9 0 0

P5 OBJ 14 7 0 0
METH 2 15.2 0 0
ER 3 0 0 0

P6 OBJ 12 8.3 0 0
METH 4 5.1 0 1
ER 5 3.6 0 0

P7 OBJ 11 7.1 1 1
METH 3 8.6 0 0
ER 1 5.5 0 0

P8 OBJ 14 6.2 0 0
METH 2 8.4 0 0
ER 3 1.7 0 0

TOTAL 161 2 7

was not helpful in only seven of the 161 episodes in which it was used (last
column): we address these situations below where we look at the limitations of
our approach.

The participants experienced little difficulty selecting API elements relevant
to a given programming scenario when presented with a list of possible helper-
types. API Explorer also proved mostly helpful when looking for helper-types
relevant to creating an object, relevant helper-methods on other objects, and
when looking for types related to a given API type that could be used to
perform a given operation.
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C. Limitations of our approach
Our approach will not be helpful if the relationships between API elements can
only be determined at runtime. The last column of Table 2 shows other situations
in which our approach was not helpful: these involve the synonym analysis and
relationship exploration features of API Explorer.

The effectiveness of our synonym analysis algorithm depends on API meth-
ods respecting naming conventions such as method names beginning with action
verbs, not acronyms, and on the ability of a developer to provide a prefix that
match, or is a synonym to the name of a relevant method on a helper-type.
In two instances, P2 and P8 had sought for assistance on how to merge PDF
files using synonym analysis with “PDFDocument.merge” but received no rec-
ommendation. This was expected as “merge” is not a synonym of the “append”
method on MergerUtility. We had designed the PDF task to see whether the
participants would be able to use other features of API Explorer to discover
MergerUtility from PDFDocument. In particular, to address the limitations of the
synonym analysis feature, we enhanced the default Eclipse code completion fea-
ture with the ability to display not only the methods defined on type T , but also
the API methods that take an object of type T as a parameter. For instance,
a developer browsing through the methods of Message using this enhanced code
completion feature will also come across the method Transport.send(Message).
Thus, a relevant helper-method not recommended by synonym analysis will be
discovered when the developer looks through the methods of T . As shown in
Table 1 (PDF task), six of the eight participants were able to use the enhanced
code completion feature to discover MergerUtility directly from PDFDocument.

Our relationship exploration algorithm has two limitations: it can not iden-
tify the API types that throw a given exception, and can only identify di-
rect relationships between API types. P1 had looked for types related to
SendFailedException that could be used to send an email message but was mis-
informed that there was no related type, although this exception is thrown by
Transport. This occurred because the current version of our XGraph does not
support types related through thrown exceptions. However, P1 subsequently
discovered Transport.send with the assistance of the method recommendation
feature of API Explorer. P2 was misinformed that Document is not related to
Source, although they are related through DOMSource(Document), a constructor
of a subtype of Source. This occurred because our relationship exploration algo-
rithm does not consider indirect relationships between API elements. We plan
on extending our XGraph and algorithms to show API types that throw a given
exception and to support indirect relationships between API elements.

5.3 Summary

Overall, the results of the study were consistent across the participants and for
most of the tasks: the participants began exploring the APIs from a main-type
before looking for the helper-types, and were mostly successful at using API
Explorer to locate helper-types not accessible from a main-type. The partici-
pants also experienced little trouble selecting relevant elements when presented
with multiple recommendations. Our understanding of the domain enabled us
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to select tasks from real-world APIs with discoverability hurdles typical to those
that have been identified in the literature [4,16]. We therefore expect our ob-
servations to generalize to similar contexts, namely, when seeking to make API
elements not directly accessible from a given API type more discoverable. The
participants expressed four reasons why they considered the assistance provided
by API Explorer helpful:

– Saves time (P2, P3, P4, P5, P7, P8): “It would have taken me a lot of time to
go [to the documentation] and find which class will have a merge functionality.
Using the tool, I could find MergeUtility directly from PDFDocument” – P2.

– Increases awareness (P1, P4, P6, P7, P8): “this is another thing I really like.
A lot of times when you look at an API, you look at just the first constructor
and use that. API Explorer shows me other better options that I wouldn’t
have looked for.” – P1.

– Serves as a reminder (P1): “I couldn’t remember the proper way of using it
[the JFreeChart class] and was reminded by the tool” – P1.

– Unmasks hidden relationships (P1, P2, P4, P5, P7, P8): “If you want to save
something, you would like to say object.save() but that option is usually
not provided; usually, it is something.save(object) [that is provided]. It [API
Explorer] is useful because it can make the association between the object you
want to save and the method that you need to call” – P1.

API Explorer recursively shows a participant how to create and relate objects
necessary to use a selected recommendation, even if the required objects comes
from commonly used types. Two participants (P4 and P6) complained that this
was not necessary for commonly used types such as the String class: “telling
me how to construct a String might not necessarily be the most helpful thing
because it is commonly used.” – P6.

5.4 Threats to validity
As indicated in Section 5.1, our method of choice for evaluating API Explorer
was the case study, which emphasizes exploration of the relation between a phe-
nomenon and its context as opposed to generalization. In particular, the diversity
of APIs and programming languages present factors which limits the generaliz-
ability of the results of our study. First, API Explorer will not be helpful for APIs
without helper types, or APIs without indirect object construction patterns such
as the Factory pattern. The same is true for an API with a well-written API
documentation that include actual usage examples. History, however, suggests
that we are far from these ideals: there are situations where it seems reasonable
to provide a Factory, instead of a constructor, and to provide helper-types. It
is for such situations that we envisage tools such as API Explorer to remain
helpful in facilitating discoverablity in APIs. Second, although the tasks used in
our evaluation were drawn from real-world APIs, it is likely that they did not
uncover every discoverability hurdle that could occur in practice. In particular,
very few indirect relationships, a feature not currently supported by API Ex-
plorer, were uncovered by the evaluation. As future work, we plan on extending
API Explorer to support indirect relationships and to conduct further studies
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to evaluate this feature. Lastly, some APIs have the notion of an internal API,
intended to be used by the designers only, and the public API, for general use.
The current version of API Explorer does not take these differences in account
when making recommendations; there is therefore the possibility that recom-
mendations made by API Explorer may be from the internal API, a practice
discouraged by API designers.

6 Related work

Improving Code Completion Tools. Previous work on code completion sys-
tems focused either on re-ordering the list of methods accessible on a given type,
or on predicting the method of an API type most likely to be called next in a
given context. Robbes et al. modeled the change history of systems as atomic
operations and used this history to predict the method of an object most likely
to be called next in a given context [11]. Bruch et al. used example code in code
repositories to improve the ordering of the list of suggested methods [1]. These
previous works can only suggest or re-order elements accessible on the object
on which code completion is requested. API Explorer is a novel extension of
code completion, capable of suggesting relevant methods on other objects, and
providing support for locating elements relevant to the use of a given API type.
Other IDE Tools. IDEs provide tools that could be used to search for places
where an API type is referenced, and potentially, locate elements not structurally
accessible from a given type. These tools are suited for code comprehension,
not API exploration, and there is no evidence that a participant from any of
the previous studies even attempted to use these tools when learning how to
use APIs [2,4,15,16]. On the contrary, observations from previous studies indi-
cated that the content assist feature is the most widely used when exploring
APIs [15,16].
Documentation Improvement Tools. Some efforts on facilitating the dis-
covery of API elements have focused on improving the API documentation. Kim
et al. proposed eXoaDocs [9], a tool that integrates code snippets mined from
source code search engines into the Java API documentation, making factory
methods or subtypes necessary for object construction discoverable. Jadeite [17]
uses usage statistics of the types and methods of an API from code examples
found on the Web to help developers find commonly used API elements from
the documentation, and also integrates code snippets on how to construct ob-
jects of API types in the documentation. Jadeite also has a concept, similar to
our method recommendation feature, known as a “placeholder” which allows a
developer to annotate the documentation with the name of a method expected
to be located on a given API type, and to link the “placeholder” to an actual
method of the API that should be used instead. API Explorer, in contrast, au-
tomatically identifies relevant methods on other API types using the structural
relationships between API elements, and presents this information through the
code completion feature of the IDE. Furthermore, Jadeite and eXoaDocs re-
quire large collections of example usages of APIs. API Explorer, in contrast, is
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lightweight, leveraging the structural relationships between API elements, not
collections of code examples, to make API elements discoverable.

Example Recommender Tools. These tools leverage the proliferation of code
examples on the Web and open-source repositories to make learning how to use
APIs easier; they differ in the approach used to retrieve code examples and
in the kind of support afforded to API users. CodeBroker [19] uses comments
and method signatures written by the programmer to recommend methods from
code repositories. Strathcona [6] uses the structural context of the code under
development such as the parent class of the framework type being extended,
and the signature of API methods to retrieve relevant code examples from a
repository. MAPO uses pattern mining techniques to identify code snippets and
method call sequence that show how to use a given API method [21]. Prospec-
tor [10], ParseWeb [18], and XSnippet [13] take queries of the form “source-type
→ destination-type”, and recommend code examples that show how to get the
destination-type from the source-type. Jiang et al. [8], Salah [14], and Hey-
darnoori [5] proposed tools which use dynamic analysis of the interaction be-
tween sample applications and APIs to identify valid usage scenarios and valid
call sequence of API methods. Code Conjurer [7] uses test cases written by pro-
grammers to retrieve example usages of APIs element from code repositories.

Prospector and XSnippet are the most similar to API Explorer because they
combine the use of code examples with the structural relationships between
API elements such as return types and method parameters to identify relevant
method call sequences that link a source-type to a destination-type. However,
the support provided by Prospector and XSnippet is limited to object construc-
tion only, and for both tools to work, a developer is expected to provide both a
source-type and a destination-type. As observed in our case study, and also in
a previous API usability study [2], a developer may not even be aware of the nec-
essary destination-type. With API Explorer, developers can obtain object con-
struction support with only a source-type. Furthermore, API Explorer extends
these works by using structural relationships to make relevant API methods not
accessible from an API type discoverable.

7 Conclusion

Learning how to use APIs is major part of a software developer’s job. Even ex-
perienced developers must learn newer parts of an existing API, or newer APIs,
when working on a new project. This paper addresses one of the challenges de-
velopers face when learning a new API: discovering relevant helper-types not
accessible from a main-type they are working with. We have proposed an ap-
proach that leverages structural relationships to make relevant API elements
not accessible on a given API type discoverable. We implemented our approach
in a tool called API Explorer, and evaluated the approach through a multiple-
case study in which eight participants replicated four programming tasks with
several discoverability hurdles. The results of the study was consistent across
the participants and the tasks: API Explorer effectively assisted the participants
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to locate helper-types not accessible from a main-type in different discoverabil-
ity contexts. The participants also experienced little difficulty selecting relevant
API elements from the recommendations of API Explorer. The results provide
initial evidence that the use of structural relationships to make API elements
discoverable could be a viable, and an inexpensive, alternative to API wrappers
or API restructuring when seeking to improve discoverability in APIs.
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Abstract. As software evolves, so does the interaction between its com-
ponents. But how can we check if components are updated consistently?
By abstracting object usage into temporal properties, we can learn evolu-
tion patterns that express how object usage evolves over time. Software
can then be checked against these patterns, revealing code that is in
need of update: “Your check for isValidWidget() is now superseded
by checkWidget().” In an evaluation of seven different versions of three
open source projects, our LAMARCK tool was able to detect existing
code issues with a precision of 33%–64% and to prevent such issues with
a precision of 90%–100%.

1 Introduction

In software development, change is the only constant. New features are added,
defects are fixed, or code is refactored to improve maintainability. In each of those
cases, changes must be consistently applied to avoid defects and maintenance
problems.

As an example of a project-wide change, consider the example Eclipse method
removeSelectionListener() shown in Figure 1. In Eclipse 1.0, this method
calls isValidThread() and isValidWidget() to verify that its preconditions are
satisfied. In Eclipse 2.0, however, these two calls have been replaced with a call to
checkWidget()—a new method which encompasses the two original checks and
which can easily be extended to implement additional checks. This change has
been applied across several Eclipse 2.0 methods that performed similar checks.
But how do we know we found them all? And how do we ensure that new code
actually uses checkWidget() rather than falling back to the old style?

In this paper, we address these problems and introduce a tool that solves them,
called LAMARCK1. LAMARCK analyzes the changes that occurred between two
versions of the same project, determines the object usage in both versions and
derives evolution patterns—that is, changes that have been consistently applied
at multiple locations, like the one in Figure 1. These patterns can be forwarded
to developers, informing them of object usage changes. As formal descriptions,
1 Jean-Baptiste Lamarck (1744–1829) was an early proponent of organic evolution,

proposing that organisms became transformed by their efforts to respond to the
demands of their environment. He was, however, unable to explain a mechanism for
this. [13, under “Lamarck” and “evolution”].

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 105–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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void removeSelectionListener(Listener listener){

- if (!isValidThread ())

- error (SWT.ERROR_THREAD_INVALID_ACCESS);

- if (!isValidWidget ())

- error (SWT.ERROR_WIDGET_DISPOSED);

+ checkWidget();

if (listener == null)

error (SWT.ERROR_NULL_ARGUMENT);

if (eventTable == null) return;

eventTable.unhook (SWT.Selection, listener);

eventTable.unhook (SWT.DefaultSelection,listener);

}

Fig. 1. Method change from Eclipse 1.0 to 2.0. The old check (prefixed with “-”) has
been replaced by a custom method call (prefixed with “+”). Has this change been
propagated consistently across Eclipse?

however, they can also be used to detect violations—places in the code where a
change should have been applied, but was not.

We have evaluated LAMARCK on seven different versions of three open
source projects. LAMARCK found over 2000 evolution patterns followed by those
projects. As it comes to preventing errors, LAMARCK was able to detect miss-
ing changes with a precision of 90%–100%. Every time, LAMARCK provided a
crisp and accurate representation of the change to be applied. On top of that,
LAMARCK can also be helpful for detecting errors in existing code, uncovering
complex API usage changes with a true positive rate of 33%–62%. In the pre-
venting errors scenario, LAMARCK can be used to assist developers apply the
needed changes and warn them against violating a pattern, while in the detecting
errors scenario the developers have in a sense decided that they have corrected
all the locations that need change—then LAMARCK looks automatically for such
omitted locations.

The contributions of our work are as follows:

1. The first approach to study how object usage changes over time;
2. The first approach to combine specification mining with mining source code

archives;
3. A novel approach to detect missing and incomplete changes, based on object

usage;
4. A novel approach to detect bugs due to inconsistent API usage, based on

API evolution.

The remainder of this paper follows the flow of information through our
LAMARCK tool (Figure 2). In Section 2, we introduce the concept of software
evolution from the perspective of evolving object usage. Section 3 introduces
the concept of evolution patterns and shows how they and their violations (i.e.,
missing changes) can be detected. In Section 4, we present our evaluation on de-
tecting and preventing errors. We conclude the paper with the survey of related
work (Section 5), and close with conclusions and future work (Section 6).
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Fig. 2. How LAMARCK works. Given two versions (a), LAMARCK extracts temporal
properties (b) that characterize object usage in each version. The differences (c) are
then mined for recurrent change patterns (d). These patterns can then be used to
search for missing changes (e) in new code (f).

2 Object Usage Evolution

As stated initially, our goal is to have changes applied consistently across
a piece of software. To apply changes consistently, we need a notion of simi-
larity—a similarity of changes, but also of contexts in which these changes are
to be applied. Choosing an appropriate abstraction level for similarity is tricky.
If we choose it too low, we end up with syntactic similarity, where changes are
deployed consistently only across copy-and-paste clones. If we choose it too high,
we end up with semantic similarity, which is generally undecidable.

To characterize changes, we use an abstraction that is well understood in
software design—application programming interfaces (APIs). The key idea is to
monitor how the usage of object APIs evolves in individual versions. This allows
us to abstract away from syntactic similarity, yet detect inconsistent evolution in
object usage: If a component still interacts with an API in a deprecated fashion,
it is in need of an update.

Of course, there are established concepts to deter usage of “old” APIs: In-
dividual functions may be marked as “deprecated”, causing a warning during
compilation time, or simply not offered at all. However, “old” API usage may
not necessarily mean using “old” functions, it may be a specific “old” combina-
tion of existing functions that is no longer up to date. In Figure 1, the methods
isValidThread() and isValidWidget() still exist in Eclipse 2.0, and are still
being used; it is this specific usage in this specific context, though, that now has
evolved. Any characterization of object usage thus must express relationships
between individual functions—to characterize both the evolving APIs as well as
the context into which they are embedded.

In earlier work [17], Wasylkowski, Zeller, and Lindig described a formalism
that satisfies these requirements—so-called temporal properties of object usage.
To express the fact that method a()may be used before method b(), they use the
syntax a()≺ b(). The temporal properties for the Eclipse 1.0 version of the code
shown in Figure 1, for instance, include isValidThread() ≺ isValidWidget()
and isValidThread() ≺ error().

However, temporal properties can also carry dataflow information, denoting
objects that are shared across these properties. The term “return value of a() ≺
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second argument of b()” means that the return value of a() is used as the
second argument of b(). In the Eclipse 1.0 version in Figure 1, the properties
thus actually read “target of isValidThread() ≺ target of isValidWidget()”
and likewise, because the two methods share the same target object (the implicit
this object).

If the API usage changes, the temporal properties will also change. Since tem-
poral properties encode dataflow, such changes will also characterize changes in
argument ordering, or changes in the order of method calls. In Figure 1, for
instance, the properties “target of isValidWidget() ≺ target of error()”,
“target of isValidThread() ≺ target of error()”, and likewise, will be re-
placed by “target of checkWidget()≺ target of error()”. Note that this change
in temporal properties encodes both the change itself (from isValidWidget()
and isValidThread() to checkWidget()) as well as the context (the error()
method). Being able to express temporal ordering as well as data flow, and to
include changes as well as context, is what makes this particular representation
so well-suited to propagate changes at high precision.

2.1 Temporal Properties

We define software evolution as the evolution of temporal properties. But first,
let us give details on how to extract temporal properties from a single project
version.

Formally, a temporal property is an ordered pair of events a and b associated
with the same object. We use the expression a ≺ b to represent an ordering
where event a may happen before event b. An event associated with an object
is one of the following:

– a method call (including constructor calls) with the object being used as
the target or as an argument : x.bar(y, z) is an event associated with x, y,
and z.

– a method call with the object being the value that was returned by the
method: x = map.items() is an event associated with x.

– a field access with the object being the value that was read: x = System.out
is an event associated with x.

– a cast with the object being cast to a different type: (String) x is an event
associated with x.

Events are represented as precisely as possible (e.g., a method call is represented
using the fully qualified name of the class defining the method, the method’s
name and its signature). In the presented examples we omit most of those details
to improve readability. We chose to focus on those types of events, as we found
that these event types are well-suited to characterize the complex patterns of
API usage in terms of their data flow and control flow [17]. The aim is to find a
balance between the comprehensive results by static analysis and scalability.

To extract temporal properties we have adapted our earlier tool, JADET [17].
JADET works on bytecode level and extracts temporal properties in two steps:
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target of isValidThread()

target of error()

target of isValidWidget()

target of error()

target of error()

Fig. 3. Object usage model for the target object (“this”) accessed by the meth-
ods shown in Figure 1 (Eclipse 1.0 version). Dashed lines denote empty transitions
(without calls).

Mining object usage models. Object usage models are finite state automata
that show how objects “flow” through various events in a method.

Extracting temporal properties. Temporal properties, as extracted from ob-
ject usage models, provide a succinct and easy-to-manipulate representation
of how objects actually “flow” through various events.

To illustrate how JADET works, let us again consider the example method
removeSelectionListener() from Eclipse 1.0 version in Figure 1. The first
step is to mine object usage models. We create an object usage model for each
statically identifiable object used by the method. These objects are: formal pa-
rameters of methods (including the implicit this parameter), objects created
via new, return values of method calls (as in x = map.items()), values read
from fields (including static fields, as in x = System.out), and explicit constants
(such as null and "OK"). The removeSelectionListener() method uses three
objects: the listener argument, the eventTable field, and the implicit this
object. For each of those objects we build an object usage model that will show
how the object is being used (i.e., in which events it participates). For exam-
ple, the object usage model for the implicit this object is shown in Figure 3.
Dashed edges represent “no-op” transitions. This model expresses the fact that
the calls to error() are optional, whereas the two calls to isValidThread()
and isValidWidget() always happen, and always in the same order.2

2 An astute reader will notice that the object usage model is not fully correct, because
it assumes that after the call to error() the method’s execution proceeds further.
This limitation is not too important, though, because such “bail-out” methods do
not occur too often and thus their influence on the overall results is small.
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After we have extracted object usage models, we can abstract each of them
into a set of temporal properties. The idea here is as follows: If there is a path
through the object usage model (from the initial state to any other state), along
which events a and b occur, and there exists an occurrence of a that happens
earlier on that path than some occurrence of b, we create a temporal property
a ≺ b—expressing the fact that a may precede b. For this purpose we again use
JADET, but with the following major modification. JADET, when abstracting
object usage models into temporal properties, drops the dataflow information
that is present in the models. For example, if an object usage model contains
two successive events, “target of lock()” and “target of unlock()”, JADET
will abstract it into a temporal property lock() ≺ unlock(). For this work,
we extended JADET to actually put dataflow information in the temporal prop-
erties. For example, extracting temporal properties from the object usage model
shown in Figure 3 results in the following set:

target of Widget.isValidThread() ≺ target of Widget.error()
target of Widget.isValidThread() ≺ target of Widget.isValidWidget()
target of Widget.error() ≺ target of Widget.isValidWidget()
target of Widget.error() ≺ target of Widget.error()
target of Widget.isValidWidget() ≺ target of Widget.error()

Once we do this for every single object usage model extracted from a method,
we can create a union of those models’ temporal properties and store it as the set
of temporal properties that characterize the method. If we consider the method
removeSelectionListener() from Figure 1 (Eclipse 1.0 version), the set of
temporal properties that characterizes it will contain the temporal properties
shown above and the following temporal properties, obtained from the object
usage model created for the listener argument and the eventTable field (the
other two objects accessed by removeSelectionListener()):

2nd arg of EventTable.unhook() ≺ 2nd arg of EventTable.unhook()
field Widget.eventTable ≺ target of EventTable.unhook()

Further details on extracting temporal properties can be found in the paper by
Wasylkowski et al. [17].

2.2 Change Properties

Temporal properties tell us how a specific method uses APIs. Therefore, if we
want to see how the APIs usages in a method evolved and changed between
two versions of a project, we can look at how the temporal properties of the
method changed. For this purpose, we introduce the notion of change properties,
constructed from the comparison of two sets of temporal properties coming from
two versions of the same method. To identify the same method between two
versions of the project, we use the method’s name, signature, and the class in
which it is defined (if a method was renamed, we will not be able to track its evo-
lution). A change property is a temporal property annotated with information
about the temporal property’s evolution between the two versions (more on that
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below). We built LAMARCK for the purpose of extracting change properties.
LAMARCK extracts change properties in three stages, which we detail using the
example from Figure 1.

Extracting Temporal Properties. In the first stage, LAMARCK identifies the
common methods between the two versions of the analyzed project and extracts
the sets of temporal properties for each method in each version separately.

As an example, consider versions 1.0 and 2.0 of Eclipse. One of the methods
that occurs in both versions is removeSelectionListener() from the Button
class, shown in Figure 1. After identifying all common methods between the two
versions, LAMARCK extracts temporal properties for each method in each ver-
sion with the help of the modified JADET tool (as explained in Section 2.1). Here
is the set of temporal properties for the removeSelectionListener() method,
as implemented in Eclipse 1.03:

EventTable.unhook() ≺ EventTable.unhook()
field Widget.eventTable ≺ EventTable.unhook()
Widget.error() ≺ Widget.error()
Widget.error() ≺ Widget.isValidWidget()
Widget.isValidThread() ≺ Widget.error()
Widget.isValidThread() ≺ Widget.isValidWidget()
Widget.isValidWidget() ≺ Widget.error()

The temporal properties in version 2.0 are much simpler:

EventTable.unhook() ≺ EventTable.unhook()
field Widget.eventTable ≺ EventTable.unhook()
Widget.checkWidget() ≺ Widget.error()

Extracting Change Properties. In the second stage, LAMARCK compares
the sets of temporal properties in both versions of each method and creates a
set of change properties for this method—that is, temporal properties annotated
with information about their evolution. If a temporal property is only present
in the first version, LAMARCK transforms it into a change property annotated
with D (for deleted); if a temporal property is only present in the second version,
LAMARCK transforms it into a change property annotated with A (for added). In
our removeSelectionListener() example, LAMARCK will create the following
set of change properties:

D: Widget.error() ≺ Widget.error()
D: Widget.error() ≺ Widget.isValidWidget()
D: Widget.isValidThread() ≺ Widget.error()
D: Widget.isValidThread() ≺ Widget.isValidWidget()
D: Widget.isValidWidget() ≺ Widget.error()
A: Widget.checkWidget() ≺ Widget.error()

3 From now on, we will omit presenting dataflow information in temporal properties,
except if it is really needed to understand the property, in order to increase the
readability of the properties in the paper.
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Table 1. Change properties (including context) for the removeSelectionListener()

method

O: EventTable.unhook() ≺ EventTable.unhook()

O: field Widget.eventTable ≺ EventTable.unhook()

O: Widget.error() ≺ Widget.error()

O: Widget.error() ≺ Widget.isValidWidget()

O: Widget.isValidThread() ≺ Widget.error()

O: Widget.isValidThread() ≺ Widget.isValidWidget()

O: Widget.isValidWidget() ≺ Widget.error()

D: Widget.error() ≺ Widget.error()

D: Widget.error() ≺ Widget.isValidWidget()

D: Widget.isValidThread() ≺ Widget.error()

D: Widget.isValidThread() ≺ Widget.isValidWidget()

D: Widget.isValidWidget() ≺ Widget.error()

A: Widget.checkWidget() ≺ Widget.error()

These change properties show how temporal properties of the example method
removeSelectionListener() evolved between versions 1.0 and 2.0 of Eclipse.

Adding Context. In the final stage, LAMARCK extends the set of change
properties created for each method in the previous stage with special change
properties expressing the context of the change. For this purpose, LAMARCK

adds to the set of change properties created in the previous stage another set of
change properties, obtained by annotating all temporal properties from the ear-
lier version of the method with O (for original)—these properties we consider the
context of a change. Whereas the change properties created in the second stage
represent the change itself—and thus will allow us to find evolution patterns,
the change properties created in this stage represent the context of the change—
and will allow us to find locations in the project where the change should have
happened, but did not. This will allow us to find missing changes—the main
contribution of this paper.

In our example, Table 1 shows the final set of change properties extracted by
LAMARCK for the example method from Figure 1:

In a similar manner, LAMARCK goes through all the methods common to
two versions of the analyzed project and produces a set of change properties for
each such method.

3 Mining Patterns

Having generated the change properties, LAMARCK can use them to mine evolu-
tion patterns (i.e., sets of change properties that repeat in many methods) and
find missing changes (i.e., methods where a certain change should have been
applied but was not).
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3.1 Detecting Evolution Patterns

In Section 2, we have shown how LAMARCK can express evolution of methods
using their change properties. Because we are interested in tracking the evolution
of the whole project, we need to aggregate the individual changes over the entire
project. More specifically, if a certain set of change properties occurs frequently
throughout the project’s evolution (i.e., is common to many methods), we treat it
as an evolution pattern. For detecting evolution patterns LAMARCK uses formal
concept analysis and its implementation provided by the Colibri/Java tool [6].

Change properties

M
et

ho
ds

an evolution pattern

• • • •
• •

• • • •
• • •

• • • •
• • •

•

•
• • •

•

Fig. 4. Concept Analysis Matrix

Formal concept analysis is, broadly speaking, a technique for finding pat-
terns [5]. Its input is a set of objects, a set of properties, and a cross table
associating objects with properties. In our case, the set of objects is the set of
common methods between the two analyzed versions. The set of properties is
the set of all change properties created from the entire project. Figure 4 shows
an example of such a cross table. A dot is present in a place where a row and a
column cross when the change property represented by the column was extracted
for the method represented by the row. The result of formal concept analysis
are concepts (rectangles) found in the cross table. A concept is a set of objects
and a set of properties such that every object in the concept is associated with
all properties in the concept, and both sets are maximal (i.e., it is not possible
to add elements to one of the sets without influencing the other one). In our
case, a concept is a set of change properties and a set of methods such that the
change properties occur in each method. The number of methods in the concept
is called the support of the concept.

If we restrict ourselves to finding concepts that have high support values, we
will in effect be finding sets of change properties that occur in many methods—
and therefore likely candidates for evolution patterns. For this purpose we use a
parameter called the minimum support. LAMARCK returns only those concepts
that have support values at least equal to the value of the minimum support
parameter, and treats all returned concepts as evolution patterns.
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Table 2. An evolution pattern occurring in 170 Eclipse methods

O: Widget.error() ≺ Widget.error()

O: Widget.error() ≺ Widget.isValidWidget()

O: Widget.isValidThread() ≺ Widget.error()

O: Widget.isValidThread() ≺ Widget.isValidWidget()

O: Widget.isValidWidget() ≺ Widget.error()

D: Widget.error() ≺ Widget.error()

D: Widget.error() ≺ Widget.isValidWidget()

D: Widget.isValidThread() ≺ Widget.error()

D: Widget.isValidThread() ≺ Widget.isValidWidget()

D: Widget.isValidWidget() ≺ Widget.error()

A: Widget.checkWidget() ≺ Widget.error()

Table 2 shows an example of an evolution pattern as extracted by LAMARCK

from Eclipse versions 1.0 and 2.0. This evolution pattern expresses the change to
the removeSelectionListener() method shown in Figure 1. As it was applied
to 169 other methods in Eclipse, the support of this evolution pattern is 170.

3.2 Finding Missing Changes

Finding evolution patterns is useful for understanding and for documentation
purposes, and in Section 4.1 we give examples of interesting and useful evolution
patterns found by LAMARCK. However, there is a very important question that
can often occur while changing a project: Was the change applied consistently
throughout the entire project’s code? If we consider the evolution pattern shown
in the preceding section, methods where the change expressed by the pattern
was not applied, but should have been, become locations with potential future
defects and/or maintenance problems. Therefore, it is important to be able to
answer the stated question.

Our evolution patterns contain, amongst others, change properties annotated
with the letter “O”—these are temporal properties that were present in the
earlier version. They form the context of the change, and answer the question:
In which context does the change happen?

As an example of such a change context, consider the evolution pattern shown
in the preceding section, Table 2. Any method that has in its change property
set all the change properties annotated with “O” from this pattern, but none of
the other “A” or “D” change properties, is in fact a method that exhibited the
same “starting conditions”, like other methods that evolved, but it itself did not
evolve. Potentially, there is a missing change in that method.

LAMARCK finds such missing changes again using the Colibri/Java tool [6] for
formal concept analysis. Generally, whenever we have two concepts, and the set
of properties in one of them is a subset of the set of properties in the other one,
we have a potential violation. The reason why one set is a subset of another is
that there are some properties missing—in our case, missing change properties.
For details on the technique, see [11].
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However, it can happen that an evolution pattern occurs in many methods,
but is also missing in many methods. As it is not possible to say with absolute
certainty that all those other methods are violating the pattern, we introduce
another parameter—the so-called minimum confidence. The confidence of a vio-
lation is a number between 0 and 1, calculated as the ratio s/(s + v), where s is
the support of the evolution pattern (i.e., the number of methods that did evolve
exactly according to the pattern), and v is the number of methods that violate
the pattern (i.e., those that exhibit only the “O”-annotated change properties
from the pattern).

4 Evaluation

LAMARCK detects evolution patterns that carry information regarding which
sequences of method calls have been removed or added in a certain method
between two versions of the project. In this section, we are going to evaluate
LAMARCK’s usefulness.

We evaluate LAMARCK in two different evaluation settings:

Detecting errors. In Section 4.1, we run LAMARCK on the subjects “as is”
and manually assess the reported violations for whether they are real code
issues. It turns out that 33%–62% of the reported violations indeed are code
smells or defects. In this scenario LAMARCK looks for missing changes, i.e.
locations that were omitted by the developers when applying a change.

Preventing errors. In Section 4.2, we simulate settings in which programmers
had to apply a change and we wanted to see if LAMARCK can assist them
during this process and prevent them from omitting a change. It turns out
that in such a setting, LAMARCK has almost no false alarms (the preci-
sion ranges from 90%–100%); almost all of the inconsistencies detected by
LAMARCK actually were in need for update and later versions this update
was performed in exactly the way as predicted by the pattern.

For our experiments, we used the projects and versions4 given in the first column
in Table 3. In the second and third columns we give the number of methods in
the earlier and the later versions of the analyzed project. The fourth column
contains the total number of methods that we managed to match between the
two project versions, expressed both as an absolute value and a percentage of
the number of methods in the earlier version. All of the presented results in the
evaluation section are computed for minimum support value of 10 and minimum
confidence value of 0.8.

4.1 Detecting Errors

In the first part of our evaluation, we want to assess how well LAMARCK is able
to detect defects due to missing changes. For this purpose, we applied it to the
4 http://archive.eclipse.org/eclipse/downloads/, http://www.eclipse.org/aspectj,

http://sourceforge.net/projects/azureus/develop
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Table 3. Evaluation Subjects

# Methods

Case study older version newer version Matching #Patterns Time

Eclipse 1.0 vs. 2.0 34,197 49,862 19,952 (58%) 133 13m34s
Eclipse 2.0 vs. 2.1 49,862 61,358 44,692 (90%) 2,019 10m57s
AspectJ 1.6.0 vs. 1.6.3 38,544 36,729 35,546 (92%) 58 7m41s
Azureus 4.1.0.0 vs. 4.4.0.0 38,328 40,506 32,200 (84%) 17 9m57s

subjects described in Table 3; if a violation of a pattern is reported, this means
that a location in the project’s code has been found that does not comply with
the change pattern extracted from the project’s history. In other words, we have
found a location where the developers were supposed to change something, but
they did not and thus we find a missing change.

Hypothesis 1: LAMARCK detects missing changes.

Patterns reported. We ran LAMARCK on the test subjects presented in Ta-
ble 3. In the last two columns of Table 3, we give the number of extracted
evolution patterns and the total analysis time in minutes and seconds (including
the time used to extract object usage models and temporal properties). The way
to interpret the number of patterns detected is generally “the more, the better”,
as the more patterns we detect the more errors we will be able to catch. The
time results are for an Intel Core 2 Duo 2.57 GHz machine with 4GB of RAM,
averaged over 10 runs.

The first thing that stands out is the big difference in the number of patterns
detected. This is due to the size of the projects and the difference between
the versions. Generally speaking, if the two versions are too far apart in time,
the source code would have evolved too much for us to manage to match the
methods. This becomes evident in the change from Eclipse 1.0 to Eclipse 2.0.
Here, only 133 patterns are reported; as Eclipse has changed quite a lot for this
initial period there were only a few common methods (see Table 3) that could
be detected and only so much patterns reported. In contrast, consider the 2019
reported patterns for Eclipse 2.0 vs. 2.1; we attribute this much higher number
to the closeness of the structure of Eclipse in this minor release increment.

One would also notice the difference in the patterns detected in Eclipse and
in the Azureus and AspectJ projects. This is due to the fact that the latter two
are smaller than Eclipse, leading to fewer changes in fewer locations. We chose a
minimum support of 10 for all of our experiments, which means that a pattern
should appear in at least 10 locations, which is not so often the case for smaller
projects.

We present a few examples of interesting patterns later in this section.

Issues detected. Using the detected evolution patterns, LAMARCK looks for
possible violations of those patterns in order to detect missing changes in the
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Table 4. Reported unique violations and their success rate

Case study Time #Violations %Issues

Eclipse 1.0 vs. 2.0 62s 6 33%
Eclipse 2.0 vs. 2.1 111s 8 62%
AspectJ 1.6.0 vs. 1.6.3 72s 7 57%
Azureus 4.1.0.0 vs. 4.4.0.0 86s 5 40%

project’s code. A violation reported by LAMARCK need not be an issue. We
manually investigated all of the reported violations and classified them into the
three categories of code defects, code smells (i.e., potential defects) and false
positives.

We define code defects, code smells and false positives as follows:

– Defects. Those are real defects in the source code that will lead the project
to fail by crashing or producing erroneous results.

– Code smells. This category contains all reported violations that are not at
present defects in the code, but have the potential to become such. In this
category fall also all reported cases, which might be improved in terms of
readability, maintainability or performance of the program.

– False positives. This category contains all reported violations, that are
neither defects, nor code smells.

In Table 4 we report our findings. The first column of Table 4 lists again our test
subjects. The second column gives the time needed in seconds for LAMARCK to
detect the patterns violations for each of our case study subjects. The third col-
umn contains the number of unique patterns violations detected by LAMARCK.
The success rate of the reported violations is presented in the last column of the
table and takes into account both the reported defects and code smells (summa-
rized as “issues”), as in both cases the source code needs to be corrected. Our
highest true positive rate is 62%—that is, 62% of the locations where LAMARCK

detected an issue were in need of correction. Even though a false positive rate
of 38% does indicate that there is still room for improvement, our results show
that every second of our reports points to a bug and this is in production code,
which should have far fewer defects. This result highlights the potential benefits
of our approach.

Two of our subjects had much lower true positive rates:

– Between Eclipse 1.0 and 2.0, the true positives rate is 33%—that is, 2 out of 3
violations are false alarms. This is due to several refactorings between these
two major releases and most of the reported false positive pattern violations
were reported for methods that have evolved too much for the pattern to
still hold. In other words, the distance is too large to learn from.

– Most of the false positives reported by LAMARCK for the Azureus project
were due to the different compiler versions used for compiling the two ver-
sions. For our experiments we used the binaries provided by the project and
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void createControl(Composite parent) {

+ Font font = parent.getFont();

Composite comp = new Composite();

...

Composite locationComp = new Composite();

GridLayout locationLayout = new GridLayout();

...

locationComp.setLayout(locationLayout);

GridData gd = new GridData(GridData.FILL_BOTH);

locationComp.setLayoutData(gd);

+ locationComp.setFont(font);

...

}

Fig. 5. Method change from Eclipse 2.0 to 2.1. The added methods address a font
inconsistency.

as LAMARCK is working on binary level, this resulted in reporting of vio-
lations that boil down to equal source code, but different binary code. One
should note that these are not faulty recommendations as the byte code did
indeed change, but this change just had no visible manifestation in the end
source code.

Generally speaking, any static defect detection tool will suffer from false positives—
in particular, if the properties checked against were learned from other code in-
stances. The question is whether the issues could also be detected in another,
possibly cheaper way. Tools like FindBugs 5, for example, check for specific API
misuses by implementing a specific analysis for each API. This would be cheaper
(in terms of computational power) and more precise, yet less general and more
expensive (in terms of human labor). For the kind of issues LAMARCK detects,
there is yet no other alternative; and the our results indicate a reasonable effi-
ciency.

Qualitative Analysis. Now let us take a look at a few examples of the patterns
and their violations detected by LAMARCK.

Our first example is the one presented in Figure 5. As one can see from this
source code example new method calls have been added to the method. This
change is detected by LAMARCK by the following pattern:

O: Composite.<init>() ≺ Control.setLayout()
O: Composite.<init>() ≺ Control.setLayoutData()
A: retval of Control.getFont() ≺ 1st arg of Control.setFont()

This pattern tells us that when we are setting the layout and the layout data on
a Control object, we should also set the font on the same object (the Composite
class inherits from the Control class). It originates from a widely spread issue

5 http://findbugs.sourceforge.net/
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void navigation(IProgramElement node)

{

if (node == null) return;

...

- treeViewBuilder.buildView

(Asm.getDef().getHierarchy());

+ treeViewBuilder.buildView

(Ajde.getDef().getModel().getHierarchy());

}

...

}

Fig. 6. Method change from AspectJ. buildView() now takes an object derived from
the Ajde singleton.

public AddBookmarkAction(Shell shell)

{

super(WorkbenchMessages.getString("AddBookmarkLabel"));

setId(ID);

Assert.isNotNull(shell);

this.shell = shell;

setToolTipText(WorkbenchMessages.getString("AddBookmarkToolTip"));

- WorkbenchHelp.setHelp(this, new Object[] {IHelpContextIds.ADD_BOOKMARK});

+ WorkbenchHelp.setHelp(this, IHelpContextIds.ADD_BOOKMARK);

}

Fig. 7. Method change from Eclipse 1.0 to 2.0. The changed method
AddBookmarkAction calls a deprecated method.

in Eclipse 2.0, where people were not setting the font of the Control object they
were working with, which could lead to problems when trying to set a font in a
control based on the font of its parent. In Eclipse 2.1 this issue was corrected by
adding calls to getFont() and setFont() in the appropriate locations, resulting
in LAMARCK detecting it as a pattern. The support value for this pattern is
66, i.e. it was applied 66 times during the change from Eclipse 2.0 to 2.1. The
violation of the pattern expresses itself in missing the following change property:

A: retval of Control.getFont() ≺ 1st arg of Control.setFont()

what this tells us is that there was supposed to be added a call to getFont()
before the call to setFont(). LAMARCK was able to detect locations in the
Eclipse 2.1 code, where this change was not applied, thus marking those loca-
tions as locations that violate an evolution pattern and expose a code defect
in the project. What this means is that in the faulty methods the developer
is creating a new component, but is not setting its font properly. As discussed
earlier the omission of the getFont() method call was a widely spread issue in
Eclipse 2.0. The violation found by LAMARCK shows that the Eclipse developers
failed to locate all methods where this change needed to be applied. In this case
LAMARCK was able to point to such omitted locations.
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Our second example comes from the AspectJ project and is shown in Fig-
ure 6. The change pattern that LAMARCK detected for this piece of code is the
following:

O: retval of Asm.getDef() ≺ Asm.getHierarchy()
D: retval of Asm.getDef() ≺ Asm.getHierarchy()
A: retval of Ajde.getDef() ≺ Ajde.getModel()
A: retval of Ajde.getModel() ≺ Asm.getHierarchy()

What this pattern, with a support of 10, tells us is that the return value of
the deleted getDef() method call was substituted with the return value of the
added getDef() and getModel() method calls. As one can notice, the deleted
methods are from class Asm, while the added ones are from class Ajde. After
investigating the case, it turns out that the Asm class was a singleton class, but
it was changed in the newer AspectJ version to a non-singleton class, due to
change in the AspectJ functionality. A new class Ajde was created that acted
as a singleton wrapper of the old class and had a Asm field (that is why the
Asm.getHierarchy() is called on the Ajde.getModel() return value). In the
newer version of AspectJ both classes are present (and all their methods, as well).
Thus, a developer could still use the Asm.getDef() method and the compiler
would not issue a warning. However in this case, the Ajde class needs to be used.

Now let us take a look at an example of a code smell detected by LAMARCK.
In Figure 7 one can see a frequently occurring change between Eclipse 1.0 and
2.0. This change has been detected by LAMARCK through the following pattern:

O: setToolTipText(String) ≺ setHelp(iAction, Object[])
D: setToolTipText(String) ≺ setHelp(iAction, Object[])
A: setToolTipText(String) ≺ setHelp(iAction, String)

What this pattern tells us is that the call to setHelp(iAction, Object[])
has been deleted and substituted with a call to setHelp(iAction, String).
The support for this pattern is 33, which means that in 33 methods throughout
Eclipse 2.0 this pattern has been followed. LAMARCK has detected violations of
this pattern in Eclipse 2.0 in the sense that the developers continued to use the
old setHelp method. After investigating the matter we found out that the old
setHelp method was in fact a deprecated method in Eclipse 2.0 and shouldn’t
have been used. Thus, even though the program was not crashing, we classified
this violation as a code smell, as the code is expressing unwanted and deprecated
behavior.

In conclusion we can state that

LAMARCK is able to find useful evolution patterns and use them to detect
missing changes in project code.

4.2 Preventing Errors

We already discussed a few of the patterns detected by LAMARCK and their
usefulness when it comes to detecting missing changes in project’s code. However,
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Fig. 8. Evaluation Setting. In 1/10 of the code, we artificially revert changes and
check whether LAMARCK is able to predict them after learning from the changes in
the remaining 9/10.

this is only one of the aspects of the usefulness of those patterns. The patterns as
detected by LAMARCK can also be used for preventing errors. On top of that,
the patterns themselves are an exact suggestion how to fix a potential future
defect location.

Hypothesis 2: LAMARCK prevents missing changes
and suggests how to fix them.

Evaluation Setting. In order to perform such evaluation in an unbiased man-
ner, we designed the scenario sketched in Figure 8. The key idea is to artificially
revert changes between versions and check whether LAMARCK is able to predict
them. In this way we simulate a real-life scenario, when a given change pattern
has been applied to only a few of the intended locations.

➀ We split the set of common methods in the two versions into two parts—
9/10 and 1/10 parts. In the 1/10 part, we substituted the methods from
the later version by the methods in the earlier version, effectively reversing
the changes that occurred between those two versions. We thus simulated a
situation in which 1/10 of the code in the later version would still be in need
of update.

➁ We applied LAMARCK on the earlier version and the (modified) later version
and had LAMARCK predict which locations in those 1/10 methods would
be in need for update and what the update should accomplish.

➂ From the (original) later version, we looked at the actual changes applied in
the same 1/10 methods subset.

➃ Comparing the suggested and the actual changes for the 1/10 part allows us
to assess the accuracy (and hence the usefulness) of LAMARCK.

Using the setting described above, we performed 50 random 1/10 vs. 9/10 splits
on each of the four case studies.
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Table 5. LAMARCK’s effectiveness in discovering inconsistently applied changes. The
table summarizes the results obtained for 50 random splits of the input data. See
Section 4 for details on the evaluation scheme.

# Inconsistencies Precision

Case study min max avg min max avg

Eclipse 1.0 vs. 2.0 16 29 22 93% 100% 98%
Eclipse 2.0 vs. 2.1 14 24 19 90% 100% 99%
AspectJ 1.6.0 vs. 1.6.3 4 12 7 100% 100% 100%
Azureus 4.1.0.0 vs. 4.4.0.0 2 5 3 100% 100% 100%

Results. Our results are presented in Table 5. The first column gives the
projects and their versions used for the experiment. The second column gives
the number of inconsistencies (with a pattern) detected in the 1/10 part of the
methods, when the later version was modified as explained above—we show the
minimum, maximum and the average number of reported inconsistencies over
all the 50 experimental runs. The third column contains the precision of the
reported inconsistencies, i.e. the percentage of the cases where the faulty loca-
tion was indeed fixed by the developers exactly as LAMARCK recommended it
to be fixed. A high precision implies a low number of false positives, i.e. invalid
recommendations.

The reported precision in Table 5 is accumulated over the total number of
50 random splits. As one can see from the table, our precision results are close
to 100% in all cases. This means that almost all of the inconsistencies detected
by LAMARCK actually were in need for update, and this in the exact way as
predicted by the pattern. We consider this precision a remarkable result, as this
means LAMARCK is not only able to predict that some location will change,
but is able to accurately predict how this location will change. Please note that
these results do not depend on the size of the split (if we consider all the changes
applied in 90% of the code or less), as the size of the split would influence the
amount of patterns detected, but not their defect prevention properties.

Validation. In our experience, evaluation results like these are more likely to
indicate a bug rather than a feature. We therefore manually took a look at
one random split for each of the four experiments in order to re-verify that
the location for which an inconsistency would have been reported was indeed
changed the way our patterns say. Our findings were that in all cases what
LAMARCK predicted that has to be changed, the code was indeed changed and
that exactly in the manner predicted. We classified predictions that were wrong
as false positives.

As LAMARCK extracts the evolution patterns from the bytecode of the project
versions, we also stumbled across evaluation artifacts—cases where our tool rec-
ommends a change, but this change is only in the type of the objects returned
by some methods and passed to some other methods. The situation here is as
follows: class A gets replaced by class B, and methods that used class A now
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Fig. 9. Influence of minimum support on LAMARCK’s effectiveness on Eclipse 1.0 vs.
2.0 (minimum confidence fixed at 0.8)
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Fig. 10. Influence of minimum confidence on LAMARCK’s effectiveness on Eclipse 1.0
vs. 2.0 (minimum support fixed at 10)

use class B. Source code that does not use objects of class A explicitly, but
just passes them around (as in foo(bar()), if bar() returns an object of type
A and foo() accepts an object of type A) does not need to be changed, but
the bytecode will change after the project gets recompiled. Since in our evalu-
ation we use old bytecode of the 1/10 part, LAMARCK reports such locations
as needing an update. However, these are not faulty recommendations per se,
because during real usage (and not in an artificial setting, as in our evaluation)
after replacing classes and recompiling the code LAMARCK will not report such
locations anymore.

After classifying all reported predictions into true positives, false positives and
evaluation artifacts, our manual inspection reports precision ranging from 89%
to 100%. We classified in total 45 predictions out of which 16 were evaluation
artifacts, which we ignored. Thus, our manual inspection confirmed our high
precision rate.

To further reduce the probability of a bug, we also took a look at the recall
values and they were as close as up to 10%. Recall in this case would mean finding
all locations where a change is supposed to be applied. Such low recall values
are expected, as we do not aim at finding all changes that occurred between two
versions of a given project; we aim at finding all frequently occurring changes—
changes that follow certain patterns. The recall values are low, as most of the
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code changes occur only at a single location (or at least in less than 10 locations,
which is our minimum support number). A bug in the evaluation, for instance a
mix of training and testing sets, would have returned far higher recall values.

Sensitivity Analysis. Finally, we investigated the sensitivity of our results to
small changes of the minimum support and minimum confidence parameters.
For this purpose, we redid our evaluation on Eclipse 1.0 vs. 2.0 for different
minimum support and minimum confidence values. The results are shown in
Figures 9 and 10. It turns out that LAMARCK is quite insensitive to small
changes of its input parameters. What is more important, for minimum support
of 5, LAMARCK finds on average 40 missing changes (compared to 22 when
using the default minimum support value of 10), and still more than 95% of
LAMARCK’s suggestions (on average) are followed by the Eclipse developers.
Thus, users can tweak LAMARCK to find more missing changes, and still get
very precise results.

All these results confirm our hypothesis:

LAMARCK can detect missing updates with a precision close to 100%,
giving precise fix suggestions.

4.3 Threats to Validity

As any other, our study is prone to threats to validity.

External validity. We have investigated seven versions of three different open-
source projects, coming from different maturity, size and domain. However
it is possible that the results we acquire on them do not generalize to other
arbitrary projects. For example, closed-source projects, due to differences in
the internal processes, might have very different properties.

Construct validity. Our approach might be prone to mistakes. The external
tools we use might also be defective. However, we hope that we have elim-
inated this threat to a big extent as the Colibri [11] and the JADET [17]
tools are publicly available6 and besides the validation in Section 4.2, we
ourselves have performed a cross-check of our source code to eliminate any
possible mistakes on our side.

Internal validity. The presented evaluation for the usefulness of LAMARCK

when used as an errors preventing tool is a combination of automatic and
manual inspection of 50 random splits of the common methods for two ver-
sions of a project methods. It might be the case that 50 splits are not enough.
It might also be the case that, as we are not well acquainted with the an-
alyzed projects, our manual classification results would not be the same if
classified by a real developer from that project. Another possibility is that,
apart from the evaluation artifacts mentioned in Section 4.1, other missing

6 This is the online implementation of the latest JADET tool version:
http://www.checkmycode.org/
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changes reported by LAMARCK would also be found by a compiler (due to
missing types, etc.). However, based on our evaluation in Section 4.2, we
think that the likelihood of all reported missing changes being of this type
is very small.

5 Related Work

Our approach is unique in that it combines specification mining with mining
source code archives. LAMARCK is based on the JADET [17] static analysis
tool, but the same technique could be used to enrich any other single-versioned
programming rules mining tool like PR-Miner [10] or GrouMiner [16].

To the best of our knowledge, the presented work is the first to define API
evolution patterns as a set of change properties derived from temporal properties.
However, there are many other approaches that learn from existing code in order
to learn about the software evolution or detect code defects.

5.1 Learning Evolution Rules

A large body of work has been done in the area of looking for API evolution
changes and the way they should be deployed to API clients. Several techniques
and tools [9,2,18,20] have been developed to discover the refactorings that a
software system has undergone by analyzing two versions of the evolved soft-
ware project. Dig and Johnson [3] found out that 84%–97% of all API breaking
changes, i.e. changes that are extremely disruptive in the development life cycle
of component-based applications, are in fact refactorings (e.g. class or method
renaming). LAMARCK is also able to detect change patterns based on refactor-
ings, but is also as well able to detect much more complicated patterns and thus
find non-refactoring based defects.

Nguyen et al. [14] developed the LibSync tool, which helps developers migrate
from one library version to another. LibSync has a knowledge base of API adap-
tation patterns for each library version and given a client system and the desired
library version, the tool finds the locations in the code that are associated with
the changed API version. In comparison, even though both tools report similar
precision rates, LAMARCK is much more light-weight and time-efficient and is
able to detect both external API, as well as project-specific change patterns.

Based on how a framework adapts to its own changes, Dagenais and Ro-
billard [1] developed a recommendation system that suggests replacements for
framework elements accessed by client programs. Dagenais and Robillard de-
signed a tool, called SemDiff, that explores code locations that used an API
method, which was later deleted from the API. SemDiff mines the new API
methods that are being used instead and comes up with a set of method calls
that substituted the call to the deleted API method. In comparison to SemDiff,
LAMARCK is also able to perform such kind of detection, but in addition can
also offer recommendations in the cases where an entire piece of code was sub-
stituted with a method call (e.g. our checkWidget() example) or the method
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(or even a class) remained unchanged, but the usage pattern of the method (or
the class) changed (e.g. our Ajde example).

Fluri et al. [4] looked for context changes of method invocations as moving an
existing method invocation into the then or the else-part of an if-statement.
Our approach is not restricted to such context changes and can detect any type of
context change thanks to the original change properties representing the context
of a change.

Kim and Notkin [7] grouped code changes that form change patterns with the
help of their LSdiff tool. LSdiff infers systematic structural code differences
as logic rules from the difference of two sets of predicates, representing the two
versions of a program. LSdiff was built as a tool for assisting developers when
making a diff between two revisions of a file.

5.2 Learning from Project History

FixWizard [15] is a tool that identifies recurring bug fixes by comparing the
changes that happened between two version control revisions of a project. Apart
from using a completely different algorithm for identifying frequently occur-
ring changes, LAMARCK and FixWizard also interpret the context of a code
change differently. FixWizard is restricted to infer and offer recommendations
only from and to code peers that match in naming convention or ancestor classes.
LAMARCK on the other hand interprets context as any method that meets the
same “starting conditions” (described by the original temporal properties) of a
pattern, thus addressing a much larger number of methods.

Livshits and Zimmermann [12] also mine patterns and their violations from
software repositories. Their DynaMine tool can detect a pattern of method calls,
but only if the method calls are used in the same transaction. We on the other
hand, look at the project as a whole and extract our patterns based on the
entire project’s code. This allows us to produce more general patterns and to
find patterns and possible defect locations different from the ones DynaMine
detects.

Kim et al. [8], similarly to Livshits and Zimmermann [12], also operate on
version system transaction level and look for patterns on bug fixes. Our approach
can, like BugMem, detect changes that were due to a bug fix, but is not restricted
to that. For example, we are able to detect a change due to the addition of
new code, which is not the case with BugMem. We also have a much higher true
positive rate, when comparing our best defect detection results (62%) against
their best results (38.7%) on the Eclipse project (see Section 4.1).

Williams and Hollingsworth [19] mine source code repositories to look for
commonly fixed bugs. We do not rely on version repositories, which are not
always easy to find, but simply on two versions of the same project. Our method
is not restricted to patterns of bug fixes.

6 Conclusion and Consequences

To reduce the risk induced by software evolution, it is necessary that changes
be applied consistently across a project. By characterizing the impact of change
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on involved method calls, their temporal ordering, and their dataflow, our tool
LAMARCK learns how software has changed in the past. As it comes to pre-
venting errors, LAMARCK’s recommendations are very precise. An average false
positive rate of < 2% implies substantial benefits at low costs and low require-
ments. We therefore recommend usage of LAMARCK or similar approaches in
all projects that care about minimizing the risks of inconsistent software evo-
lution. On top of that, LAMARCK can also be helpful for detecting errors in
existing code, uncovering complex API usage changes with a true positive rate
of 33%–62%.

Despite these successes, there is still a lot of work to do. Besides general
improvements in performance and scalability, our future work will concentrate
on the following topics:

Generating changes. The patterns LAMARCK produces contain all the infor-
mation to deploy the change again and again. We are working on techniques
that automatically generate a change to source code which only needs to be
acknowledged by the programmer.

Automatic change deployment. Given the high precision of its recommen-
dations, it may be possible to not only suggest a code change, but also to
actually apply it. Such automatic updates, backed by additional regression
tests or symbolic verification, may be useful in situations where loss of func-
tionality is to be avoided under all circumstances.

Clone detection. Since object usage patterns serve so well in characterizing
changes as well as context, we are currently investigating whether they would
prove helpful tools in detecting code clones—an area where light-weight se-
mantic approaches may meet a sweet spot between precision and applicabil-
ity.

We made parts of our data and evaluation results available online. To learn more
about our work in model mining, visit our Web site:

http://www.st.cs.uni-saarland.de/models/
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Abstract. Identifier names are the main vehicle for semantic informa-
tion during program comprehension. Identifier names are tokenised into
their semantic constituents by tools supporting program comprehen-
sion tasks, including concept location and requirements traceability. We
present an approach to the automated tokenisation of identifier names
that improves on existing techniques in two ways. First, it improves to-
kenisation accuracy for identifier names of a single case and those con-
taining digits. Second, performance gains over existing techniques are
achieved using smaller oracles. Accuracy was evaluated by comparing
the output of our algorithm to manual tokenisations of 28,000 identifier
names drawn from 60 open source Java projects totalling 16.5 MSLOC.
We also undertook a study of the typographical features of identifier
names (single case, use of digits, etc.) per object-oriented construct (class
names, method names, etc.), thus providing an insight into naming con-
ventions in industrial-scale object-oriented code. Our tokenisation tool
and datasets are publicly available1.

1 Introduction

Identifier names are strings of characters, often composed of one or more words,
abbreviations and acronyms that describe actions and entities in source code.
Identifier names are tokenised into their component words to support a wide
range of activities in software development, maintenance and research, including
concept location [16,14], to extract semantically useful information for other
processes such as traceability [2], and the extraction of domain-specific ontologies
[17], or to support investigations of the composition of identifier names [9,10].

Identifier naming conventions describe how developers should construct identi-
fier names. The conventions typically provide mechanisms for identifying bound-
aries between component words either with separator characters, e.g. get text
(Eclipse), or internal capitalisation where the initial letter of the second and
successive component words is capitalised, colloquially known as ‘camel case’,
e.g. getText (OpenProj). The use of separator characters and internal capitali-
sation mean identifier names can be readily tokenised. However, a non-negligible
proportion of identifier names (we found approximately 15%) are more difficult
to tokenise accurately and reliably because they contain features such as upper

1 http://oro.open.ac.uk/28352/

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 130–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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case acronyms, unconventional uses of capitalisation and digits, or are com-
posed of characters of a single case. Upper case acronyms and words are delim-
ited inconsistently, e.g. setOSTypes (jEdit) contains the acronym OS, hasSVUID
(Google Web Toolkit) contains two acronyms, SVU and ID, concatenated, while
DAYSforMONTH [7] relies on a change of case to mark a word boundary. Digits
are found in some acronyms, e.g. J2se and POP3, and are also found as discrete
tokens, thus there is no simple means of recognising a word boundary where
a digit appears in an identifier name. Single case identifier names contain no
readily identifiable word boundaries and in some instances, e.g. ALTORENDSTATE
(JDK), have more than one plausible tokensiation based on dictionary words,
which needs to be resolved. Further difficulties arise from the use of mixed case
acronyms like OSGi and DnD, where the acronym is difficult to recover as a
single token when used in the mixed case form, e.g. as in isOSGiCompatible
(Eclipse), which lack conventional word boundaries.

Current approaches to identifier name tokenisation [7,8,15] report accuracies
of around 96% for the tokenisation of unique identifier names. However, some
approaches ignore identifier names containing digits [8,15], or treat digits as
discrete tokens [7]. In this paper, we present a step-wise strategy to tokenising
identifier names that improves on existing methods [7,8] in three ways. Firstly,
we introduce a method for tokenising single case identifier names that addresses
the problem of resolving ambiguous tokenisations and does not rely on the as-
sumption that identifier names begin and end with known words; secondly, we
implement and evaluate a method of tokenising identifier names containing digits
that relies on an oracle and heuristics; and thirdly, we use an oracle created from
published word lists [4] with 117,000 entries, which makes the solution easier to
create and deploy than that described in [7] where the oracle consists of 630,000
entries harvested from 9,000 Java projects.

Improvements in identifier name tokenisation can have a big impact on the
coverage of concept location and program comprehension tools because tokeni-
sation accuracy is reported in terms of unique identifier names. Hence, even a
1% improvement of accuracy can have a radical effect (e.g. in concept location)
if it affects those identifiers with many instances throughout the source code,
which would otherwise lead to incorrect or missing concept locations. More im-
portantly, by improving techniques for tokenising identifier names composed of
characters of a single case and those containing digits, the coverage of concept
location tools can be extended to include identifier names have previously been
ignored or underused.

Identifier name tokenisation can also be used in IDE tools to support identifier
name quality assurance. For example, some projects use tools like Checkstyle2 to
check conformance to programming conventions when source code is committed
to the repository. Such tools typically only ensure typographical conventions,
like the usage of word separators in names of constants, not lexical ones, like
the usage of dictionary words and recognised abbreviations. Using tokenisation

2 http://checkstyle.sourceforge.net/

http://checkstyle.sourceforge.net/
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to check whether an identifier name can be properly parsed would allow a more
pro-active approach to ensuring the readability of source code.

The remainder of the paper is structured as follows. Section 2 consists of
an exposition of the problems encountered when tokenising identifier names. In
Section 3 we give an account of related work including the approaches taken by
other researchers, before describing our approach to the problem in Section 4. In
Section 5 we describe the experiments undertaken to evaluate our solution and
compare it with existing solutions. In Sections 6 and 7 we discuss the results of
our experiments and draw our conclusions.

2 The Identifier Name Tokenisation Problem

In this section we describe the practical problems encountered when trying to
tokenise identifier names.

2.1 The Composition of Identifier Names

Programming languages and programming conventions constrain the content
and form of identifier names. Programming languages impose hard constraints,
most commonly that identifier names must consist of a single string3, where the
initial character is not a digit, and are composed of a restricted set of characters.
For the majority of programming languages, the set of characters permitted
in identifier names consists of upper and lower case letters, digits, and some
additional characters used as separators. An additional hard constraint imposed
by languages such as Perl and PHP is that identifier names begin with specific
non-alphanumeric characters used as sigils – signs or symbols – to identify the
type represented by the identifier. For example, in Perl ‘$’ denotes a scalar and
‘@’ a vector.

Programming conventions provide soft constraints in the form of rules on the
parts of speech to be used in identifier names, how word boundaries should
be constructed and often include the vague injunction that identifier names
should be ‘meaningful’. Programming conventions typically advise developers
to create identifier names with some means of identifying boundaries between
words. Java, for example, employs two conventions [19]: constants are composed
of words and abbreviations in upper case characters and digits separated by
underscores (e.g. FOO BAR), and may be described by the regular expression
U [DU ]∗(S[DU ]+)∗, where D represents a digit, S a separator character and U
an upper case letter; and all other identifier names rely on internal capitalisation
to separate component words (e.g. fooBar).

2.2 Tokenising Identifier Names

Programming conventions, though applied widely, are soft constraints and, con-
sequently, are not applied universally. Thus, tools that tokenise identifier names
3 Smalltalk method names are a rare exception where the identifier name is separated

to accommodate the arguments, e.g. multiply: x by: y .
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need to provide strategies for splitting both conventionally and unconventionally
constructed identifier names. Identifier names contain features such as separator
characters, changes in case, and digits that have an impact on tokenisation. We
discuss each feature before looking at the difficulties encountered when attempt-
ing to tokenise identifier names without separator characters or changes in case
to indicate word boundaries.

Separator Characters. Separator characters – for example, the hyphen in
Lisp and the full-stop, or period, in R4 – can be used to separate the component
words in identifier names. Accordingly, the identification of conventional internal
boundaries in identifier names is straightforward, and the vocabulary used by
the creator of the identifier name can be recovered accurately.

Internal Capitalisation. Internal capitalisation, often referred to as ‘camel
case’, is an alternative convention for marking word boundaries in identifier
names. The start of the second and subsequent words in an identifier name are
marked with an upper case letter as in the identifier name StyledEditorKit
(Java Library), where the boundary between the component words of an identi-
fier name occurs at the transition between a lower case and an upper case letter,
i.e. internally capitalised identifier names are of the form U?L+(UL+)∗, where L
represents a lower case letter, and the word boundary is characterised by the reg-
ular expression LU . The word boundary is easily detected and identifier names
constructed using internal capitalisation are readily tokenised.

A second type of internal capitalisation boundary is found in practice. Some
identifier names contain a sequence consisting of two or more upper case letters
followed by at least one lower case letter, i.e. the sequence U+UL+. We refer to
this type of boundary as the UCLC boundary, where UCLC is an abbreviation
of upper case to lower case. Most commonly, identifier names with a UCLC
boundary contain capitalised acronyms, for example the Java library class name
HTMLEditorKit. In these cases the word boundary occurs after the penultimate
upper case letter of the sequence. However, identifier names have also been found
[7] with the same characteristic sequence where the word boundary is marked
by the change of case from upper case to lower case, for example PBinitialize
(Apache Derby). Thus, identification of the UCLC boundary alone is insufficient
to support accurate tokenisation [7].

Some identifier names mix the internal capitalisation and separator character
conventions, e.g. ATTRIBUTE fontSize (JasperReports). Despite being uncon-
ventional, such identifier names pose no further problems for tokenisation than
those already given.

Digits. Digits occur in identifier names as part of an acronym or as discrete
tokens. Where a digit or digits are embedded in the component word, as in
the abbreviation J2SE, then the boundaries between tokens are defined by the
internal capitalisation boundaries between the acronym and its neighbours. Ab-
breviations that have a bounding digit, e.g. POP3 and 3D, cannot be separated
4 http://www.r-project.org/

http://www.r-project.org/
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from other tokens where boundaries are defined by case transitions between
alphabetical characters. Even if developers rigorously adopted the convention
of only capitalising the initial character of acronyms advocated by Vermeulen
[20], that would only help detect the boundary following a trailing digit (e.g.
Pop3Server), it would not allow the assumption that a leading digit formed a
boundary – that is it could not be assumed that UL+DUL+ may be tokenised
as UL+ and DUL+. In other words, because digits do not appear in consistent
positions in acronyms, there is no simple rule that can be applied to tokenise
identifier names containing acronyms that include digits. Similar complications
arise where digits form a discrete component of identifier names, including the
use of digits as suffixes (e.g. index3) and as homophone substitutions for prepo-
sitions (e.g. html2xml).

Single Case. Some identifier names are composed exclusively of either upper
case (U+) or lower case characters (L+), or are composed of a single upper
case letter followed by lower case letters (UL+). Such identifier names are of-
ten formed from a single word. However, some, such as maxprefwidth (Vuze)
and ALTORENDSTATE (JDK), are composed of more than one word. Lacking word
boundary markers, multi-word single case identifier names cannot be tokenised
without the application of heuristics or the use of oracles. A variant of the
single case pattern is also found within individual tokens in identifier names
like notAValueoutputstream (Java library), where the developer has created
a compound, or failed to mark word boundaries. Accordingly some tokens re-
quire inspection and, possibly, further tokenisation. When tokenising identifiers
composed of a single case there are two dangers: ambiguity and oversplitting.

Ambiguity. Some single case identifier names have more than one possible to-
kenisation. For example, ALTORENDSTATE is, probably, intended to be interpreted
as {ALT, OR, END, STATE}. However, it may also be tokenised as {ALTO, RENDS,
TATE} by a greedy algorithm that recursively searches for the longest dictionary
word match from the beginning of the string, leaving the proper noun ‘Tate’ as
the remaining token. A function of tokenisation tools is therefore to disambiguate
multiple tokenisations.

Oversplitting. The term oversplitting describes the excessive division of to-
kens by identifier name tokenisation software [7], e.g. tokenising the single case
identifier name outputfilename as {out, put, file, name}. The consequence
of this form of oversplitting is that search tools for concept location would not
identify that ‘output’ was a component of outputfilename without additional
effort to reconstruct words from tokens.

Oversplitting is also practised by developers in two forms: one conventional,
the other unconventional. Oversplitting occurs in conventional practice in class
identifier names that are part of an inheritance hierarchy. Class identifier names
can be composed of part or all of the super class identifier name that may
be consist of a number of tokens and an adjectival phrase indicating the spe-
cialisation. For example, the class identifier name HTMLEditorKit is composed
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of part of the type name of its super class StyledEditorKit and the adjecti-
val abbreviation HTML, yet would be tokenised as {HTML, Editor, Kit}. In this
case the compound of the super type is potentially lost, but can be recovered
by program comprehension tools. Developers also oversplit components of iden-
tifier names unconventionally by inserting additional word boundaries, which
increases the difficulty of recovering tokens that reflect the developer’s intended
meaning. Common instances include the oversplitting of tokens containing digits
such as Http 1 1, the demarcation of some common prefixes as separate words
as in SubString, and the division of some compounds such as metadata and
uppercase. In each case, a recognisable semantic unit is subdivided into com-
ponents and the composite meaning is lost, and must be recovered by program
comprehension tools [14].

In the following section we examine the literature on identifier name tokenisa-
tion and the approaches adopted by different researchers to solving the problems
outlined above.

3 Related Work

Though the tokenisation of identifier names is a relatively common activity
undertaken by software engineering researchers [1,2,3,6,9,11,14,16,18], few re-
searchers evaluate and report their methodologies.

Feild et al. [8] conducted an investigation of the tokenisation of single case
identifier names, or hard words in their terminology. Their experimental effort
focused on splitting single case identifier names into component, or soft, words.
For example, the hard word hashtable is constructed from the two soft words
hash and table.

Feild et al. compared three approaches to tokenising identifier names – a
random algorithm, a greedy algorithm and a neural network. The greedy algo-
rithm applied a recursive algorithm to match substrings of identifier names to
words found in the ispell5 dictionaries to identify potential soft words. For hard
words that are composed of more than one soft word, the algorithm starts at
the beginning and end of the string looking for the longest known word and
repeats the process recursively for the remainder of the string. For example
outputfilename is tokenised as {output, filename} from the beginning of the
string and as {outputfile, name} from the end of the string on the first pass.
The process is then repeated and the forward and backward components of the
algorithm produce the same list of soft words, and thus the single tokenisation
{output, file, name}. Where lists of soft words are different, the list containing
the higher proportion of known soft words is selected.

Of the three approaches, the greedy algorithm was found to be the more
consistent, tokenising identifier names with an accuracy of 75-81%. The greedy
algorithm, however, was prone to oversplitting. The neural network was found
to be more accurate, but only under particular conditions, for example when the
training set of tokenisations was created by an individual.
5 http://www.gnu.org/software/ispell/ispell.html

http://www.gnu.org/software/ispell/ispell.html
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In a related study Lawrie et al. [12] turned to expanding abbreviations to
support identifier name tokenisation, and posed the question: how should an
ambiguous identifier name such as thenewestone be divided into component
soft words? Depending on the algorithm used there are a number of plausible
tokenisations and no obvious way of selecting the correct one, e.g. {the, newest,
one}, {then, ewe, stone}, and {then, ewes, tone}. Lawrie et al. suggested that
the solution lies in a heuristic that relies on the likelihood of the soft words being
found in the vocabulary used in the program’s identifier names.

Enslen et al. expanded on these ideas in a tool named Samurai [7]. Samurai
applies a four step algorithm to the tokenisation of identifier names.

1. Identifier names are first tokenised using boundaries marked by separator
characters or the transitions between letters and digits.

2. The tokens from step 1 are investigated for the presence of changes from
lower case to upper case (the primary internal capitalisation boundary) and
split on those boundaries.

3. Tokens found to contain the UCLC boundary – as found in HTMLEditor –
are investigated using an oracle to determine whether splitting the token
following the penultimate upper case letter, or at the change from upper to
lower case results in a better tokenisation.

4. Each token is investigated using a recursive algorithm with the support of
an oracle to determine whether it can be divided further.

The oracle used in steps 3 and 4 was constructed by recording the frequency
of tokens resulting from naive tokenisation based on steps 1 and 2 found in
identifier names extracted from 9,000 Sourceforge projects. The oracle returns
a score for a token based on its global frequency among all the code analysed
and its frequency in the program being analysed. The algorithms in steps 3 and
4 are conservative. In step 3 the algorithm is biased to split the string following
the penultimate upper case letter, and will only split on the boundary between
upper and lower case where there is overwhelming evidence that the tokenisation
is more frequent. The recursive algorithm applied in step 4 will only divide a
single case string where there is strong evidence to do so, and also relies on lists
of prefixes and suffixes6 to prevent oversplitting. For example, the token listen
could be tokenised as {list, en} for projects where ‘list’ occurs as a token
with much greater frequency than ‘listen’. Samurai avoids such oversplitting by
ignoring possible tokenisations where one of the candidate tokens, such as ‘en’,
is found in the lists of prefixes and suffixes.

Enslen et al. also reproduced the ‘greedy algorithm’ reported by Feild et al.
and compared the relative accuracies of the two techniques. The experiment used
a reference set of 8,000 identifier names that had been tokenised by hand. The
Samurai algorithm performed better than their implementation of the greedy
algorithm, with an accuracy of 97%. The Samurai algorithm has some limitations
which we discuss in the next section.

Madani et al. [15] developed an algorithm, derived from speech recognition
techniques, to split identifier names that does not rely on conventional internal
6 Available from http://www.cis.udel.edu/~enslen/samurai

http://www.cis.udel.edu/~enslen/samurai
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capitalisation boundaries. The approach tries to match substrings of an identifier
name with entries in an oracle, both as a straightforward match and through
a process of abbreviation expansion analogous to that used by a spell-checking
program. Thus idxcnt would be tokenised as {index, count}. Furthermore, be-
cause the algorithm ignores internal capitalisation it can consistently tokenise
component words such as MetaData and metadata. Madani et al. achieved accu-
racy rates of between 93% and 96% in their evaluations, which was better than
naive camel case splitting in both projects investigated.

In the next section we describe our approach and how it differs from the above
techniques.

4 Approach

The approaches described were found to tokenise 96-97% of identifier names
accurately. However, there are limitations to each solution and issues with their
implementation that make their application in practical tools difficult. Of the
three approaches discussed, only Enslen et al. attempt to process identifier names
containing digits. However, digits are isolated as separate tokens at an early
stage of the Samurai algorithm so that meaningful acronyms such as http11
are tokenised as {http, 11}. Samurai is also hampered by the amount of data
collection required to create its supporting oracle.

We have implemented a solution to the problem of identifier name tokeni-
sation that addresses the issues identified in current tools. The solution named
INTT, or Identifier N ame Tokeniser Tool, is part of a larger source code mining
tool [5]. In particular, we have tried to ensure that the solution is relatively easy
to implement and deploy, and is able to tokenise all types of identifier name.
INTT applies naive tokenisation to identifier names that contain conventional
separator character and internal capitalisation word boundaries. Tokens contain-
ing the UCLC boundary or digits are processed using heuristics to determine a
likely tokenisation, and identifier names composed of letters of a single case are
tokenised using an adaptation of the greedy algorithm described above.

The core tokenisation functionality of INTT is implemented in a JAR file
so that it can be readily incorporated into other tools. The simple API allows
the caller to invoke the tokeniser on a single string, and returns the tokens
as an array. Thus front ends can range in sophistication from basic command
line utilities that process individual identifier names to parser based tools that
process source code. To support programming language independence the set of
separator characters can be configured using the API, but the caller is responsible
for removing any sigils from the identifier name. However, INTT has only been
tested on identifier names extracted from Java source code.

In summary, our algorithm consists of the following steps, which we discuss
in detail below:

1. Identifier names are tokenised using separator characters and the internal
capitalisation boundaries.

2. Any token containing the UCLC boundary is tokenised with the support of
an oracle.
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3. Any identifier names with tokens containing digits are reviewed and to-
kenised using an oracle and a set of heuristics.

4. Any identifier name composed of a single token is investigated to determine
whether it is a recognised word or a neologism constructed from the simple
addition of known prefixes and suffixes to a recognised word.

5. Any remaining single token identifier names are tokenised by recursive al-
gorithms. Candidate tokenisations are investigated to reduce oversplitting,
before being scored with weight being given to tokens found in the project-
specific vocabulary.

4.1 Oracles

To support the tokenisation of identifier names containing the UCLC boundary,
digits and single case identifier names, we constructed three oracles: a list of
dictionary words, a list of abbreviations and acronyms, and a list of acronyms
containing digits. The list of dictionary words consists of some 117,000 words,
including inflections and American and Canadian English spelling variations,
from the SCOWL package word lists up to size 70, the largest lists consist-
ing of words commonly found in published dictionaries [4]. We added a further
120 common computing and Java terms, e.g. ‘arity’, ‘hostname’, ‘symlink’, and
‘throwable’. Previous work [5] included analysis of which identifier names did
not correspond to dictionary words and found that several known computing
terms were unrecognised. The list of computing terms was hence constructed
iteratively over the analysed projects, using the criterion that any word added
should be a known, non-trivial computing term. Each oracle was implemented
using a Java HashSet so that lookups are performed in constant time.

The use of dictionaries imposes a limitation on the accuracy of the result-
ing tokenisation because a natural language dictionary cannot be complete. We
addressed this limitation by adopting a method to incorporate the lexicon of
the program being processed in an additional oracle, which takes a step towards
resolving the issue highlighted in Lawrie et al.’s question of how to resolve am-
biguous tokenisations for identifier names such as thenewestone [12]. Tokens
resulting from the tokenisation of conventionally constructed identifier names
are recorded in a temporary oracle to provide a local – i.e. domain- or project-
specific – vocabulary that is employed to support the tokenisation of single case
identifier names. For example, tokens extracted from identifier names such as
pageIdx and lineCnt can be used to support the tokenisation of an identifier
name like idxcnt as {idx, cnt}.

INTT is also able to incorporate alternative lists of dictionary words in its or-
acle, and is, thus, potentially language independent. INTT relies on Java’s string
and character representations, which default to the UTF-16 unicode character
encoding standard. So, INTT is able to support dictionaries, and thus tokenise
identifier names created using natural languages where all the characters, in-
cluding accented characters, can be represented using UTF-16 (subject to the
constraints on identifier name character sets imposed by the programming lan-
guage). However, as INTT was designed with the English language and English
morphology in mind, adaptation to other languages may not be straightforward.
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4.2 Tokenising Conventionally Constructed Identifier Names

The first stage of INTT tokenises identifier names using boundaries marked by
separator characters and on the conventional lower case to upper case inter-
nal capitalisation boundaries. Where the UCLC boundary is identified, INTT
investigates the two possible tokenistations: the conventional internal capitali-
sation where the boundary lies between the final two letters of the upper case
sequence, e.g. as found in HTMLEditorKit; and the boundary following the se-
quence of upper case letters, as in PBinitialize. The preferred tokenisation is
that containing more words found in the oracle. Where this is not a discriminant,
tokenisation at the internal capitalisation boundary is preferred.

Following the initial tokenisation process, identifier names are screened to
identify those that require more detailed processing. Identifier names found to
contain one or more tokens with digits are tokenised using heuristics and an
oracle. Identifier names composed of letters of a single case are tokenised, if nec-
essary, using a variant of the greedy algorithm [12]. These processes are described
in detail below.

4.3 Tokenising Identifier Names Containing Digits

In Section 2 we outlined the issues concerning the tokenisation of identifier
names containing digits. We identified three uses of digits in identifier names:
in acronyms (e.g. getX500Principal (JDK)), as suffixes (e.g. typeList2 (JDK,
Java libraries and Xerces)) and as homophone substitutes for prepositions (e.g.
ascii2binary (JDK and Java libraries)). In the latter two cases the digit, or
group of digits, forms a discrete token of the identifier, and if identified correctly
the identifier name may be tokenised with relative ease. Acronyms containing
digits are more problematic. We have identified two basic forms of acronym:
those with an embedded digit, e.g. J2SE, and those with one or more bounding
digits, e.g. 3D, POP3 and 2of7 .

Acronyms with embedded digits are bounded by letters and can be tokenised
correctly by relying on internal capitalisation boundaries alone. For example, the
method identifier name createJ2SEPlatform (Netbeans) can be tokenised as as
{create, J2SE, Platform} without any need to investigate the digit. Acronyms
with leading or trailing digits cannot easily be tokenised, and neither can those
with bounding digits. We made a special case of acronyms with bounding digits.
While they could be tokenised on the assumption that the digits were discrete
tokens, we decided that the very few instances of acronyms with bounding digits
found in the subject source code were better seen as discrete tokens from a
program comprehension perspective. Indeed all the instances we found were noun
phrases describing mappings, 1to1, or bar code encoding schemes 2of7.

With the exception of the embedded digit form of acronym there is no gen-
eral rule by which to tokenise identifier names containing digits. Accordingly we
created an oracle from a list of common acronyms containing digits and devel-
oped a set of heuristics to support the tokenisation of identifier names containing
digits.
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Identifier names are first tokenised using separator characters and the rules
for internal capitalisation. Where a token is found to contain one or more digits
it is investigated to determine whether it contains an acronym found in the
oracle. Where the acronym is recognised the identifier name is tokenised so that
the acronym is a token. For example, Pop3StoreGBean can be tokenised using
internal capitalisation as {Pop3Store, G, Bean}. The tokens are then investigated
for known digit containing acronyms and tokenised on the assumption that Pop3
is a token, resulting in the tokenisation of {Pop3, Store}.

Where known acronyms are not found, the digit containing token is split to
isolate the digit and an attempt made to determine whether the digit is a suffix
of the left hand textual fragment, a prefix of the right hand one, or a discrete
token. We employ the following heuristics:

1. If the identifier name consists of a single token with a trailing digit, then the
digit is a discrete token, e.g. radius2 (Netbeans) is tokenised as {radius,
2}.

2. If both the left and right hand tokens are both words or known acronyms the
digit is assumed to be a suffix of the left hand token, e.g. eclipse21Profile
(Eclipse) is tokenised as {eclipse21, Profile}.

3. If both the left and right hand tokens are unrecognised the digit is assumed
to be a suffix of the left hand token, e.g. c2tnb431r1 (Geronimo and JDK)
is tokenised as {c2, tnb431, r1}.

4. If the left hand token is a known word and the right hand token is unrecog-
nised, then the digit is assumed to be a prefix of the right hand token, e.g.
is9x (Geronimo) is tokenised as {is, 9x}.

5. If the digit is either a 2 or 4 and the left and right hand fragments are known
words, the digit is assumed to be a homophone substitution for a preposition,
and thus a discrete token, e.g. ascii2binary is tokenised as {ascii, 2,
binary}. It is trivial for the application that calls our tokenisation method
to expand the digit into ‘to’ or ‘for’, if deemed relevant for the application.

4.4 Tokenising Single Case Identifier Names

To tokenise single case identifier names we adapted the greedy algorithm devel-
oped by Feild et al. [8]. We identified two areas of the greedy algorithm that re-
quired modification to suit our purposes. Firstly, because the algorithm is greedy,
it may fail to identify more accurate tokenisations in particular circumstances.
For example, the algorithm finds the longest known word from beginning and
end of the string, so thenewestone would be tokenised as {then, ewes, tone}
by the forward pass, and as {thenewe, stone} by the backward pass. Secondly,
the algorithm assumes that the string to be processed begins or ends with a
recognised soft word and therefore cannot locate soft words in a string that both
begins and ends with unrecognised words.

Our adaptation of the greedy algorithm is implemented in two forms: greedy
and greedier. The greedy algorithm assumes that the string being investigated
either begins or ends with a known soft word and the greedier algorithm is only
invoked when the greedy algorithm cannot tokenise the string.
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Algorithm 1. INTT greedy algorithm: forward tokenisation pass
1: procedure greedyTokeniseForwards(s)
2: candidates � a list of lists
3: for i ← 0, length(s) do
4: if s[0, i] is found in dictionary then
5: rightCandidates ← greedyTokeniseForwards(s[i + 1, length(s)])
6: for all lists of tokens in rightCandidates do
7: add s[0, i] to beginning of list
8: add list to candidates
9: end for

10: end if
11: end for
12: if candidates is empty then
13: create new list with s as member
14: add list to candidates
15: end if
16: return candidates
17: end procedure

Prior to the application of the greedy algorithm, strings are screened to en-
sure that they are not recognised words or simple neologisms. The check for
simple neologisms uses lists of prefixes and suffixes to check that strings are not
composed of a combination of, for example, a known prefix followed by a known
word. This allows identifier names such as discontiguous (Java Libraries, JDK
and NetBeans) to be recognised as words, despite them not being recorded in
the dictionary. The greedy algorithm iterates over the characters of the identifier
name string forwards (see Algorithm 1) and backwards. On each iteration, the
substring from the end of the string to the current character is tested using the
dictionary words and acronyms oracles to establish whether the substring is a
known word or acronym. When a match is found the soft word is stored in a list
of candidates and the search invoked recursively on the remainder of the string.
Where no word can be identified the remainder of the string is added to the list
of candidates.

When the greedy algorithm is unable to tokenise the string, the greedier al-
gorithm is invoked. The greedier algorithm attempts to tokenise a string by
creating a prefix of increasing length from the initial characters and invokes
the greedy algorithm on the remainder of the string to identify known words
(see Algorithm 2). For example, for the string cdoutputef, c is added to a list
of candidates and the greedy algorithm invoked on doutputef, then the pre-
fix cd is tried and the greedy algorithm invoked on outputef resulting in the
tokenisation {cd, output, ef}. This process is repeated, processing the string
both forwards and backwards until the prefix and suffix are one character less
than half the length of the string being tokenised, which allows the forward
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and backward passes to find small words sandwiched between long prefixes
and suffixes, while avoiding redundant processing. For example in the string
yyytozzz both the forwards and backwards passes will recognise to, and in the
string yyyytozz the backwards pass will recognise to.

Algorithm 2. INTT greedier algorithm: backwards tokenisation pass
1: procedure greedierTokeniseBackwards(s)
2: candidates � a list of lists
3: for i ← length(s), length(s)/2 do
4: leftCandidates ← greedyTokeniseBackwards(s[0, i − 1])
5: for all lists of tokens in leftCandidates do
6: add s[i, length(s)] to beginning of list
7: add list to candidates
8: end for
9: end for

10: return candidates
11: end procedure

Each list of candidate component words is scored according to the percentage
of the component words found in the dictionaries of words and abbreviations, and
the program vocabulary – i.e. component words found in identifier names in the
program that were split using conventional internal capitalisation boundaries and
separator characters. The percentage of known words is recorded as an integer
and a weight of one added for each word found in the program vocabulary. For
example, suppose splitting thenewestone resulted in two candidate sets {the,
newest, one} and {then, ewe, stone}. All the words in both sets are found
in the dictionaries used and thus each set of candidates score 100. However,
suppose newest and one are found in the list of identifier names used in the
program, so two is added to the score of the first set, and that is selected as the
preferred tokenisation.

The algorithm, because of its intensive search for candidate component words,
is prone to evaluating an oversplit tokenisation as a better option than a more
plausible tokenisation. To reduce oversplitting, each candidate tokenisation is
examined prior to scoring to determine whether adjacent soft words can be con-
catenated to form dictionary words. Where this is the case the oversplit set of
tokens is replaced by the concatenated version. For example outputfile would
be tokenised as {output, file} and {out, put, file}. Following the check for
oversplitting, the first two tokens of the latter tokenisation would be concate-
nated making the two tokenisations identical, allowing one to be discarded.

The key advantage offered by the greedy and greedier algorithms are that
a single case identifier name can be tokenised without the requirement that it
begins or ends with a known word. For example, Feild et al.’s greedy algorithm
cannot tokenise identifier names like lboundsb unless ‘b’ or ‘l’ are separate entries
in the oracle. Samurai can only tokenise lboundsb if ‘l’ or ‘lbounds’ are found
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as separate tokens in the oracle. Our algorithm can tokenise lboundsb using a
dictionary where ‘bounds’ is an entry.

In the following section we evaluate the accuracy of our identifier name to-
kenisation algorithm and compare its performance with Samurai and Feild et
al.’s greedy algorithm.

5 Experiments and Results

To evaluate our approach and compare its performance with existing tools we
adopted a similar procedure to that used by Feild et al. [8] and Enslen et al.
[7]. However, instead of using a single test set of identifier names, we created
seven test sets consisting of 4,000 identifier names each, extracted at random
from a database of 827,475 unique identifier names from 16.5MSLOC7 of Java
from 60 projects, including ArgoUML, Cobertura, Eclipse, FindBugs, the Java
libraries and JDK, Kawa and Xerces8. One test set consists of identifier names
selected at random from the database. Five test sets consist of random selections
of particular species of identifier name – we use the term species to identify the
role the identifier name plays in the programming language, such as a class or
method name. The seventh set consists of identifier names composed of a single
case only (see Table 1).

Table 1. Distribution of identifier name categories in datasets
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Dataset Description

A Random identifier names 2414 467 1011 106
B Class names 3133 185 113 569
C Method names 3459 116 184 151
D Field names 2717 401 818 64
E Formal arguments 2754 250 961 34
F Local variable names 2596 349 1021 34
G Single case 0 0 4000 0

Each test set of 4,000 identifier names was tokenised manually by the first
author to provide reference sets of tokenisations. The resulting text files consist
of lines composed of the identifier name followed by a tab character and the
tokenised form of the identifier name, normalised in lower case, with each token

7 Obtained using Sloccount http://www.dwheeler.com/sloccount/
8 A complete list of the projects analysed is available with the INTT library at http://
oro.open.ac.uk/28352/

http://www.dwheeler.com/sloccount/
http://oro.open.ac.uk/28352/
http://oro.open.ac.uk/28352/
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Fig. 1. Distribution of the percentage of unique identifier names found in each category
for sixty Java projects

separated by a dash, e.g. HTMLEditorKit〈tab〉html-editor-kit. Bias may have
been introduced to our experiment by the reference tokenisations having not
been created independently and we discuss the implications below in Subsection
5.4 Threats to Validity.

The identifier names in the test sets were classified using four largely mutually
exclusive categories that reflect particular features of identifier name composition
related to the difficulty of accurate tokenisation. The categories are:

– Conventional identifier names are composed of groups of letters divided
by internal capitalisation (lower case to upper case boundary) or separator
characters.

– Digits identifier names contain one or more digits.
– Single case identifier names are composed only of letters of the same case,

or begin with a single upper case letter with the remaining characters all
lower case.

– UCLC identifier names contain two or more contiguous upper case charac-
ters followed by a lower case character.
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Identifiers names are categorised by first testing for the presence of one or more
digits, then testing for the UCLC boundary. Consequently the digits category
may contain some identifier names that also have the UCLC boundary. In the
seven test sets there are a total of 1768 identifier names containing digits, of
which 62 also contain a UCLC boundary. The classification system is intended
to allow the exclusion of identifier names containing digits from evaluations of
those tools that do not attempt realistic tokenisation of such identifier names,
and to allow evaluation of our approach to tokenising identifier names containing
digits. The distribution of the four categories of identifier names in each of the
datasets is given in Table 1.

We also surveyed the 60 projects in our database. Figure 1 shows the distri-
bution of each category as a proportion of the total number of unique identifier
names in each application. Identifier names containing only conventional bound-
aries are by far the most common form of identifier name found in all the projects
surveyed. A significant proportion of single case identifier names are found in
most projects, and around 10% of identifier names contain digits or the UCLC
boundary. Table 2 gives a breakdown of the proportion of unique identifier names
in each category across all 60 projects for each species of identifier. Test sets B
to F reflect the most common species, with the exception of constructor names
which are lexically identical to class identifier names, but differ in distribution
because not all classes have an explicitly declared constructor, while others have
more than one.

Table 2. Percentage distribution of identifier name categories by species
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Species

Annotation 70.4 0.2 25.6 3.8 0.1
Annotation member 49.8 0.5 49.5 0.2 <0.1
Class 79.8 4.1 2.9 13.2 9.8
Constructor 79.8 3.5 3.1 13.5 7.2
Enum 73.4 0.5 19.4 6.7 0.1
Enum constant 55.9 10.2 33.6 0.2 0.8
Field 86.1 6.0 6.2 1.7 27.1
Formal argument 81.8 3.0 14.2 0.1 8.1
Interface 59.3 2.6 6.4 31.7 1.5
Label name 59.1 15.7 25.0 0.1 0.1
Local variable 82.4 3.8 12.6 1.2 16.9
Method 91.6 2.9 1.6 3.9 28.4

Total 84.9 4.1 6.4 4.6
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Table 2 shows that identifier names containing digits and those containing
UCLC boundaries constitute nearly 9% of all the identifier names surveyed.
Class, constructor and interface identifier names, the most important names for
high level global program comprehension, have a relatively high incidence of
identifier names containing the UCLC boundary – 13% for class and constructor
identifier names and 32% for interface identifier names. In other words, approxi-
mately 20% of class names and 40% of interface names require more sophisticated
heuristics to determine how to tokenise them.

We evaluated the performance of INTT by assessing the accuracy with which
the test sets of identifier names were tokenised, and by comparing INTT with
an implementation of the Samurai algorithm, both in terms of accuracy and the
relative strengths and weaknesses of the two approaches.

5.1 INTT

We used INTT to tokenise the identifier names in each of the seven datasets. The
accuracy of the tokenisations was automatically checked against the reference
tokenisations for each dataset using a small Java program. A percentage accuracy
score calculated for INTT’s overall performance and for each species of identifier
name. A percentage accuracy was also calculated for each of the four structural
categories found in each set of identifier names, see Table 3. (The results for
dataset G are reported in Subsection 5.3.)

Table 3. Percentage accuracies for INTT

C
o
n
v
e
n
ti

o
n
a
l

D
ig

it
s

S
in

g
le

c
a
se

U
C

L
C

O
v
e
ra

ll

W
it

h
o
u
t

d
ig

it
s

Dataset

A Random identifier names 97.3 95.9 97.4 85.8 96.9 97.0
B Class names 98.3 85.4 92.4 92.1 96.5 97.1
C Method names 97.1 63.8 96.8 92.7 96.0 96.9
D Field names 97.5 88.7 96.4 87.5 96.3 97.1
E Formal arguments 98.8 94.4 93.4 79.4 97.0 97.2
F Local variable names 98.2 94.3 92.0 85.3 96.2 96.3

INTT was found to have an overall accuracy of 96-97%, which improves
marginally when identifier names containing digits are excluded. Identifier names
containing digits are tokenised with an accuracy in excess of 85% for three of
the six data sets A–F. However, accuracy drops to 64% for method identifier
names containing digits. Inspection of the tokenisations for class and method
names show that there are two contributing factors: firstly, the assumption that a
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recognised acronym containing digits always takes precedence over the heuristics
when determining a tokenisation led to incorrect tokenisations in some instances
and, secondly, some oversplitting of textual tokens occurs. An example of the
former is the method name replaceXpp3DOM (NetBeans) which was tokenised
as {replace, Xpp, 3D, OM} on the basis that 3D is a known acronym contain-
ing digits. Applying the heuristics alone, however, would have found the correct
tokenisation of {replace, Xpp3, DOM}.

The overall percentage accuracy for each dataset is comparable with the ac-
curacies reported for the Samurai tool [7] (97%) and by Madani et al. [15] (93-
96%). The breakdowns for each structural type of identifier name show that
INTT performs less consistently for identifier names containing digits and for
those containing the UCLC boundary.

5.2 Comparison with Samurai

To make a comparison with the work of Enslen et al. we developed an imple-
mentation of the Samurai tool based on the published pseudocode and textual
descriptions of the algorithm [7]. The implementation processed the seven test
sets of identifier names and the resulting tokenisations were scored for accuracy
against the reference tokenisations. The results are shown in Table 4 with the
exception of the single case dataset G, which is reported below in Subsection
5.3. The overall accuracy figure given for our implementation of the Samurai
algorithm in Table 4 excludes identifier names with digits, and should be com-
pared with the figures in the rightmost column of Table 3. Samurai’s treatment
of digits as discrete tokens leads to an accuracy of 80% or more for all but class
and method identifier names, where accuracy falls to 45% and 55% respectively.

Our implementation of the Samurai algorithm performs less well than the
original [7]. On inspecting the tokenisations we found more oversplitting than
we had anticipated. There are a number of factors that could contribute to the

Table 4. Percentage accuracies for Samurai
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A Random identifier names 93.3 92.9 69.1 82.1 86.3
B Class names 94.0 44.9 86.3 81.5 91.7
C Method names 92.8 55.2 88.8 83.4 92.3
D Field names 91.3 78.8 78.2 73.4 87.7
E Formal arguments 94.8 88.4 75.0 64.7 89.4
F Local variable names 92.7 86.2 67.7 70.6 85.4
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observed difference in performance, which we discuss in Subsection 5.4 Threats
to Validity.

5.3 Single Case Identifier Names

Both INTT and Samurai contain algorithms for tokenising single case identi-
fier names that are intended to improve on Feild et al.’s greedy algorithm. To
compare the two tools we extracted a data set of 4,000 random single case iden-
tifier names from our database. All the identifier names consist of a minimum
of eight characters: 2,497 are composed of more than one word or abbreviation,
the remainder are either single words found in the dictionary or have no obvious
tokenisation.

We implemented the greedy algorithm developed by Feild et al. following
their published description [8], to provide a baseline of performance from which
we could evaluate the improvement in performance represented by INTT and
Samurai. The supporting dictionary for the Feild et al.’s greedy algorithm was
constructed from the English word lists provided with ispell v3.1.20, the same
version used by Feild et al.. We replaced their stop-list and list of abbreviations,
with the same list of abbreviations used in INTT and the additional list of terms
that are included in INTT’s dictionary.

Enslen et al. found that Samurai and greedy both had their strengths. Samu-
rai is a conservative algorithm that tokenises identifier names only when the
tokenisation is a very much better option than not tokenising. As a result, the
greedy algorithm correctly tokenised identifier names that Samurai left intact.
However, the greedy algorithm was more prone to oversplitting than the more
conservative Samurai [7].

The 4,000 single case identifier names were tokenised with 78.4% accuracy
by our implementation of the ‘greedy’ algorithm, with 70.4% accuracy by our
implementation of Samurai, and with 81.6% accuracy by INTT.

5.4 Threats to Validity

The threats to validity in this study are concerned with construct validity and
external validity. We do not consider internal validity because we make no claims
of causality. Similarly, we do not consider statistical conclusion validity, because
we have not used any statistical tests.

Construct Validity. There are two key concerns regarding construct validity:
the possibility of bias being introduced through manual tokenisation of identifier
names used to create sets of reference tokenisations; and the observed difference
in perfomance between our implementation of Samurai and the accuracy re-
ported for the original implementation [7].

That we split the identifier names for the reference tokenisations ourselves may
have introduced a bias towards tokenisations that favour our tool. We guarded
against this during the manual tokenisation process as much as possible, and
conducted a review of the reference sets to look for any possible bias and revised
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any such tokenisations found. Of the related works [8,7,15] only Enslen et al.
used a reference set of tokenisations created independently.

We have identified three factors that may explain the reduced accuracy
achieved by our implementation of Samurai in comparison to the reported ac-
curacy of the original. When implementing the Samurai algorithm, we took all
reasonable steps, including extensive unit testing, to ensure our implementation
conformed to the published pseudo code and text descriptions [7]. However, it
is possible that we may have inadvertently introduced errors. There is the pos-
sibility that computational steps may have inadvertently been omitted from the
published pseudo code description. The third possibility is that the scoring for-
mula used in Samurai to identify preferable tokenisations, which was derived
empirically, may not hold for oracles composed of fewer tokens with lower fre-
quencies. The oracle used in our implementation of Samurai was constructed
using identifier names found in 60 Java projects, much fewer than the 9,000
projects Enslen et al. used as the basis for their dictionary. Our version of the
Samurai oracle contains 61,580 tokens, with a total frequency of 3 million. In
comparison the original Samurai oracle was created using 630,000 tokens with a
total frequency of 938 million.

External Validity. External validity is concerned with generalisations that
may be drawn from the results. Our experiments were conducted using iden-
tifier names extracted from Java source code only. Although we cannot claim
any accuracy values for other programming languages, we would expect results
to be similar for programming languages with similar programming conventions,
because our tokenisation approach is independent of the programming language.
Our experiments were also conducted on identifier names constructed using the
English language. While the techniques and the tool we developed can be applied
readily to identifier names in other natural languages, some of the heuristics, in
particular the treatment of ‘2’ and ‘4’ as homophone substitutions for preposi-
tions, may need to be revised for non-English natural languages.

6 Discussion

One of our primary motivations for adopting the approach described above was
a concern over the computing resources, both in terms of time and space that
were being devoted to solving the problem of identifier name tokenisation. The
approach taken by Madani et al. processes each identifier name in detail and is
thus relatively computationally intensive, while the Samurai algorithm relies on
harvesting identifier names from a large body of existing source code – a total of
9,000 projects – to create the supporting oracle. Like Samurai, we process iden-
tifier names selectively and reserve more detailed processing for those identifier
names assumed to be more problematic. However, we achieve levels of accuracy
similar to the published figures for Samurai using a smaller oracle constructed,
largely, from readily available components such as the SCOWL word lists.
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6.1 Identifier Names Containing Digits

We demonstrated an approach to tokenising identifier names containing digits
that achieves an accuracy of 64% at worst and most commonly 85%-95%. The
only tool available for comparison was our implementation of the Samurai algo-
rithm, which takes a simple and unambiguous approach to tokenising identifier
names containing digits and achieves, an accuracy that is consistently between
10% and 3% less than that achieved by INTT, with the exception of class iden-
tifier names where Samurai’s treatment of digits as discrete tokens results in an
accuracy of 45%, some 40% less than INTT.

While we are largely satisfied with having achieved such high rates of accu-
racy, there is room for improvement. Inspection of INTT’s output showed that
some inaccurate tokenisations could be attributed to incorrect tokenisation of
textual portions of the identifier name. However, they also showed that some of
our heuristics for identifying how to tokenise around digits require refinement.
One possibility is the introduction of a specific heuristic for tokens of the form
‘v5’, signifying a version number, so that they are tokenised consistently. We
found that though most were tokenised accurately, some identifier names, for
example SPARCV9FlushwInstruction (JDK), were not. The difficulty appears
not to be the digit alone, but that the digit in combination with the letter is
key to accurate tokenisation. Other incorrect tokenisations occurred where iden-
tifier names such as replaceXpp3DOM contain a known acronym. The solution in
such cases appears to be to choose between the tokenisation resulting from us-
ing recognised acronyms, and that arising from the application of the heuristics
alone.

6.2 Limitations

No current approach tokenises all identifier names accurately. Indeed, accurate
tokenisation of all identifier names may only be possible with some projects where
a given set of identifier naming conventions are strictly followed. However, we
would argue that there are a number of barriers to tokenisation that are dif-
ficult to overcome, and outside the control of those processing source code to
extract information. An underlying assumption of the approaches taken to iden-
tifier name tokenisation is that identifier names contain semantic information in
the form of words, abbreviations and acronyms and that these can be identi-
fied and recovered. Developers, however, do not always follow identifier naming
conventions and building software that can process all the forms of identifier
names that developers can dream up is most likely impossible and would require
a great deal of additional effort for a minimal increase in accuracy. For exam-
ple, is0x8000000000000000L (Xerces) is an extremely unusual form of identifier
name – the form is seen only three times9 in the 60 projects we surveyed – which
would require additional functionality to parse the hexadecimal number in order
to tokenise the identifier name accurately.

9 NetBeans unit tests include the method names test0x01 and test0x16.
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Another limitation arises from neologisms and misspelt words. Neologisms
found in the single case test set include ‘devoidify’, ‘detokenated’, ‘discontigu-
ous’, ‘grandcestor’, ‘indentator’, ‘pathinate’ and ‘precisify’. With the exception
of ‘grandcestor’ these are all formed by the unconventional use of prefixes and
suffixes with recognised words or morphological stems. Some, e.g. ‘discontiguous’
are vulnerable to oversplitting by the greedy algorithm, and algorithms based
on it. Others may cause problems when concatenated with other words in single
case identifier names where a plausible tokenisation is found to span the intended
boundary between words.

Samurai and INTT both guard against oversplitting neologisms by using lists
of prefixes and suffixes. INTT identifies single case identifier names found to be
formed by a recognised word in combination with either or both a known prefix
or suffix and does not attempt to tokenise them. Samurai tries to tokenise all
single case identifier names, but rejects possible tokenisations where one of the
resulting tokens would be a known prefix or suffix. All of the neologisms listed
would be recognised as single words by both approaches. However, INTT would
not recognise ‘precisify’ as a neologism resulting from concatenation and would
try to tokenise it.

Tools that use natural language dictionaries as oracles will try to tokenise
a misspelt word, whether it is found in isolation or concatenated with another
word, as a single case identifier name. The majority of observed misspellings
result from insertion of an additional letter, omission of a letter or transposition
of two letters. Precisely the sort of problem that can be readily identified by a
spell checker. For example, possition (NetBeans) is oversplit by both INTT
and the greedy algorithm as {pos, sit, ion} and {poss, it, ion}, respectively.
Samurai also oversplits possition probably because of a combination of the
relative rarity of the spelling mistake, the more common occurrence of the token
poss (AspectJ, Eclipse, Netbeans, and Xalan). A step towards preventing some
oversplitting of misspelt words could be achieved through the use of algorithms
applied in spell-checking software, such as the Levenshtein distance [13].

Inspection of the tokenisations of the test sets for each tool show that the
greedy algorithm is prone to oversplitting neologisms particularly where a suf-
fix such as ‘able’ that is also a word has been added to a dictionary word,
e.g. zoomable (JFreeChart). Greedy also cannot consistently tokenise identifier
names that start and end with abbreviations not found in its dictionary, e.g.
tstampff (BORG Calendar), and cannot differentiate between ambiguous to-
kenisations. Indeed, Feild et al. provide no description of how to differentiate
between tokenisations that return identical scores [8]. In our implementation of
the greedy algorithm, the tokenisation resulting from the backward pass is se-
lected in such situations, because English language inflections, particularly the
single ‘s’, can be included by the forward pass of the algorithm. For example,
debugstackmap (JDK) is tokenised incorrectly as {debugs, tack, map} by the
forward pass and correctly as {debug, stack, map} by the backward pass. The
backward pass is also prone to incorrect tokenisations, though from inspection
of the test set this is much less common. For example, the reverse pass tokenises
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commonkeys (JDK) as {com, monkeys}, using ispell word lists where ‘com’ is
listed as a word.

Tools such as INTT and Samurai work on the assumption that developers
generally follow identifier naming conventions and that computational effort is
required for exceptions that can be identified. As noted in our description of the
problem (see Section 2) the assumption is an approximation. There are many
cases where the conventions on word division are broken, or are used in ways
that divide the elements of semantic units so as to render them meaningless. In
other words, a key issue for tokenisation tools is that word divisions, be they sep-
arator characters or internal capitalisation, can be misleading and are thus not
always reliable. Consequently, meaningful tokens may need to be reconstructed
by concatenating adjacent tokens.

7 Conclusions

Identifier names are the main vehicle for semantic information during program
comprehension. The majority of identifier names consist of two or more words
or acronyms concatenated and therefore need to be tokenised to recover their
semantic constituents, which can then be used for tool-supported program com-
prehension tasks, including concept location and requirements traceability. Tool-
supported program comprehension is important for the maintenance of large
object-oriented software projects where cross-cutting concerns mean that con-
cepts are often not located in a single class, but are found diffused through the
source code.

While identifier naming conventions should make the tokenisation of identifier
names a straightforward task, they are not always clear, particularly with regard
to digits, and developers do not always follow conventions rigorously, either us-
ing potentially ambiguous word division markers or none at all. Thus accurate
identifier name tokenisation is a challenging task.

In particular, the tokenisation of identifier names of a single case is non-trivial
and there are known limitations to existing methods, while identifier names
containing digits have been largely ignored by published methods of identifier
name tokenisation. However, these two forms of identifier name occur with a
frequency of 9% in our survey of identifier names extracted from 16.5MSLOC of
Java source code, demonstrating the need to improve methods of tokenisation.

In this paper we make two contributions that improve on current identifier
name tokenisation practice. First, we have introduced an original method for
tokenising identifier names containing digits that can achieve accuracies in excess
of 90% and is a consistent improvement over a naive tokenisation scheme. Second,
we demonstrate an improvement on current methods for tokenising single case
identifier names, on the one hand in terms of improved accuracy and scope by
tokenising forms of identifier name that current tools cannot, and on the other
hand in terms of resource usage by achieving similar or better accuracy using an
oracle with less than 20% of the entries. Furthermore, the oracle we used can be
constructed easily from available components, whereas the Samurai algorithm
relies on identifier names harvested from 9,000 Java projects.
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We make two further contributions. Firstly, INTT, written in Java, is avail-
able for download10 as a JAR file with an API that allows the identifier name
tokenisation functionality described in this paper to be integrated into other
tools. Secondly, the data used in this study is made available as plain text files.
The data consists of the seven test datasets of 28,000 identifier names together
with the manually obtained reference tokenisations, and 1.4 million records of
over 800,000 unique identifier names in 60 open source Java projects, including
information on the identifier species. By making these computational and data
resources available, we hope to contribute to the further development of iden-
tifier name based techniques (not just tokenisation) that help improve software
maintenance tasks.
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Abstract. What is modularity? Which kind of modularity should devel-
opers strive for? Despite decades of research on modularity, these basic
questions have no definite answer. We submit that the common under-
standing of modularity, and in particular its notion of information hiding,
is deeply rooted in classical logic. We analyze how classical modularity,
based on classical logic, fails to address the needs of developers of large
software systems, and encourage researchers to explore alternative vi-
sions of modularity, based on nonclassical logics, and henceforth called
nonclassical modularity.

1 Introduction

Modularity has been an important goal for software engineers and program-
ming language designers, and over the last decades much research has provided
modularity mechanisms for different kinds of software artifacts. But despite sig-
nificant advances in the theory and practice of modularity, the actual goal of
modularity is not clear, and in fact different communities have quite different
visions in this regard. On the one hand, there is a classical notion of modularity
grounded in information hiding, which manifests itself in modularization mech-
anisms such as procedural/functional abstraction and abstract data types. On
the other hand, there are novel (and not so novel) notions of modularity that
emphasize extensibility and separation of concerns at the expense of information
hiding, such as program decompositions using inheritance, reflection, exception
handling, aspect-oriented programming, or mutable state and aliasing, all of
which may lead to dependencies between modules that are not visible in their
interfaces.

This work is an attempt to better understand the relation between these
different approaches to modularity by relating them to logic. Classical logic is
the school of logic prevalent in modern mathematics, most notably first-order
predicate logic. We argue that the “modularity = information hiding” point of
view is rooted in classical logic, and we illustrate that many of the modularity
problems we face can be interpreted in a novel way through this connection,
since the limitations of classical logic as a representation formalism for human
knowledge are well-known. This is in stark contrast to the programming research
community, in which information hiding is nowadays such an undisputed dogma
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of modularity that Fred Brooks even felt that he had to apologize to Parnas for
questioning it [9]. Our analysis of information hiding in terms of classical logic
suggests that there are good reasons to rethink this dogma.

To make one thing clear upfront: We do of course not propose to abandon
information hiding or modularity in general; rather, we suggest to investigate
different notions of information hiding (and corresponding module systems),
inspired by nonclassical logics, that align better with how humans structure and
reason about knowledge.

Since there is no precise definition of modularity available, we will use the
following working definition in the beginning: Modularity denotes the degree to
which a system is composed of independent parts, whereby ‘independent’ implies
reusability, separate understandability and so forth.

A concern is separated if its code is localized in a single component of a system,
such as a file, a class, or a container. Information hiding denotes the distinction
between the interface of a software component and its implementation. The
interface specification should be weaker than the implementation so that an
interface allows multiple possible implementations and hence leaves room for
evolution that does not invalidate the interface. The interface specification being
weaker also means that an implementation can have multiple interfaces at the
same time; in particular, one can talk about the interface of a module to another
module as its weakest interface necessary to satisfy the other module’s needs [62].
An interface is also an abstraction of the implementation because it does not only
hide (parts of) the implementation but also abstracts over it, that is, it allows
reasoning on a more abstract level. For instance, rather than describing partial
details of a sorting algorithm, it just states that the result is a sorted list.

Akeyquestion in informationhiding iswhich informationtohideandwhich infor-
mationtoexpose.Parnassuggestedtheheuristictohidewhatis ‘likelytochange’[58].

Modularity can also be viewed from the technical perspective of module con-
structs in programming languages. Module constructs typically enforce desirable
properties such as separate compilation through type systems or other restric-
tions and analyses. While we appreciate the numerous wonderful works on mod-
ule constructs, in this paper we want to discuss the more general question of how
to organize, decompose, and reason about complex software systems, which is
more basic than the question of how to enforce a given decomposition discipline
by module constructs.

In the remainder of this paper, we formulate and defend the following five
hypotheses:

1. The modularity and abstraction mechanisms that we use today are in deep
ways tied to classical logic (and henceforth called classical modularity in the
remainder of this paper; Sec. 2).

2. Classical modularity mechanisms and reasoning frameworks do often not
align with how programmers reason about their programs (Sec. 3).

3. Successful information hiding is limited by the degree of separation of con-
cerns, the inherent complexity of the system, and the need to support soft-
ware evolution (Sec. 4).
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4. The explanation for these problems is that programs are not like abstract,
idealized scientific models – an analogy that has shaped the understanding of
modeling in software development – but rather complex real-world systems
(Sec. 5).

5. To overcome these problems, we have to weaken the assumptions of classical
modularity and investigate notions of modularity based on nonclassical log-
ics. Some existing attempts to escape classical modularity can be understood
as being based on nonclassical logics (Sec. 6).

We conclude the paper with a proposal for a novel definition of modularity that
makes the connection between a program and the logic in which we reason about
its properties explicit.

2 Modularity and Classical Logic

The classical understanding of modularity is highly related to (and possibly
shaped by) classical logic, and therefore, the basic principles and limitations of
classical logic are relevant for modularity, too.

The spirit of classical logic is captured by the following quote from Lakatos:

The ideal theory is a deductive system with an indubitable truth injec-
tion at the top (a finite conjunction of axioms) — so that truth, flowing
down from the top through the safe truth-preserving channels of valid
inferences, inundates the whole system. [37]

This view of logic and proofs can be distilled into a number of basic principles,
such as

– The principle of explosion: Everything follows from a contradiction.
– Monotonicity of entailment: If a statement is proven true, its truth cannot

be renounced by adding more axioms to the theory, because proofs are for
eternity, and if we learn more, we do not have to revise earlier conclusions.

– Idempotency of entailment: A hypothesis can be used many times in a proof.

and also a number of “nonprinciples” or “don’ts”, such as:

– Inductive reasoning – generalizing from examples – is unsound.
– Reasoning by defaults (such as “typically birds can fly”) or Occam’s razor

(prefer the simplest explanation) is unsound.
– Closed-world reasoning, such as drawing conclusions by searching the knowl-

edge database, is unsound.

These basic principles are common to all classical logics [21], that is, the logics
most commonly used in mathematical reasoning since Frege’s Begriffsschrift,
most notably first-order predicate logic.

Although, nowadays, these and similar properties are often taken for granted,
they are actually specific to classical logics. Nonclassical logics do not have all of
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these properties, or may allow reasoning using one of the aforementioned “non-
principles”. For instance, paraconsistent logics give up the principle of explosion,
that is, a contradiction has only “local” consequences and does not render the
whole theory trivial. Another example are nonmonotonic logics, which give up
the monotonicity of entailment. A well-known proof rule which is nonmonotonic
is negation-as-failure [11], which means that a proposition is considered true if
its negation cannot be proven – an example of closed-world reasoning. A well-
known logic that gives up idempotency of entailment and monotonicity is linear
logic [22].

A fundamental concept in logic is the distinction between proof theory and
model theory [27]: For a set of axioms A formulated in the logic we can, via the
syntactic deduction rules of the proof theory of that logic, prove theorems A � T .
On the other hand, we have the semantic notion of a model or structure M of a
set of axioms, which is a mathematical structure that satisfies all axioms: M |= φ
for all φ ∈ A using an interpretation function that assigns mathematical objects
to the symbols occurring in the axioms. These semantic and syntactic views are
typically related by soundness and completeness theorems. A soundness theorem
says that all theorems that can be deduced from the axioms (the theory of the
axioms) hold in all models of the axioms. The completeness theorem says that
every theorem that holds in all models can also be deduced.

How is this related to modularity? In the following, we discuss some princi-
ples that we believe to constitute our understanding of (classical) modularity as
information hiding, and relate them to classical logic as described above. We do
not claim that all these principles have necessarily been shaped with classical
logic in mind, but we believe that classical logic is the best formalization of the
notion of abstraction that connects all these principles.

2.1 Information Hiding and Abstraction

Information hiding is to distinguish the concrete implementation of a software
component and its more abstract interface, so that details of the implementation
are hidden behind the interface. This supports modular reasoning and indepen-
dent evolution of the “hidden parts” of a component [58]. If developers have
carefully chosen to hide those parts ‘most likely to change’ [58], most changes
have only local effects: The interfaces act as a kind of firewall that prevents the
propagation of change.

Abstraction can be seen as a different take on information hiding, focusing
more on the removal of information and the generalization of concrete to pa-
rameterized components that can be instantiated again. This includes the idea
of having more than one instantiation of the same abstract component at the
some time, thereby promoting code reuse.1

Both information hiding and abstraction imply some notion of substitutabil-
ity: A module’s implementation can be replaced by a different implementation
1 Parnas and his colleagues have often used the word abstract interface for what we

call just interface [60,8]; in Parnas’ terminology, an interface is between two software
modules and describes the assumptions one module makes about the other.
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adhering to the same interface, and since the implementation was hidden to other
components in the system in the first place, these other components should not
be disturbed by the change. Parnas was one of the first researchers to investigate
this influence of information hiding on software evolution [58,63], but the idea
shows up in many different forms:

– In structured programming, control structures such as loops hide the de-
tails of control flow management. Compilers are then free to choose among
different implementations of the control structure with low-level jumps.

– Procedural and functional abstraction hide the implementation of an algo-
rithm behind a procedure or function signature/contract. A procedure or
function can then be replaced by a different implementation of the same
contract.

– In object-oriented programming, encapsulation can be used to achieve infor-
mation hiding.2 Objects of a class can then be replaced by objects of a sub-
class. The Liskov substitution principle [41] codifies this idea: The instances
of a subclass should have the same observable behavior as the instances of
the superclass when observed through the interface of the superclass, so that
substitution of a subclass instance for a superclass instance does not change
the observable behavior of the overall program.

– Data abstraction mechanisms hide the internal representation of an abstract
data type, for instance, whether a complex number is stored in polar or
Cartesian coordinates [67]. Logically, abstract data types are a form of ex-
istential quantification [48]. The internal representation of an abstract data
type can be replaced with a different representation type supporting the
same interface. Reynolds formalized and proved this property of abstract
data types in his abstraction theorem [67].

The distinction between an interface and implementations of that interface,
which is the at the core of information hiding and abstraction, is related to
logic. The interface corresponds to a set of axioms, and the implementation of
the interface corresponds to a model of the axioms. Substitutability is reflected
by the fact that the same theorems hold for all models of the axioms (by sound-
ness of the logic), hence we cannot distinguish two different models within the
theory. The heuristic of hiding what is most likely to change is reflected by the
design of axiom systems (say, the axioms of a group in abstract algebra) in such
a way that there are many interesting models of the axioms.

2.2 Reductionism and Compositionality

Reductionism is the belief that a complex system can be understood completely
by understanding its parts and the rules with which they are composed. This
very general idea is not limited to software systems, and it has been described
many times in the history of sciences, for instance, by Descartes [14]. A more
recent take by Dawkins [13] describes hierarchical reductionism as the idea that
2 Encapsulation is a somewhat ambiguous term. We follow Booch’s definition [5] here.
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complex systems can be described with a hierarchy of organizations, each of
which is only described in terms of objects one level down in the hierarchy. For
instance, a computer can be explained in terms of the operation of hard drives,
processors, and memory, but it is not necessary to talk about logical gates, or
even about electrons in a semiconductor. It is not surprising that this idea has
been picked up and advocated in programming once program size became an
issue [16,59].

Reductionism is an implicit assumption underlying classical modularity: When
analyzing a modular software system, we want to understand it in terms of our
understanding of the modules that constitute the system [63].

In the context of language semantics, the ideas of reductionism have been
formally stated as compositionality. A semantics is compositional if the meaning
of a complex expression is fully determined by the meanings of its constituent
expressions and the rules used to combine them, rather than by the constituent
expressions themselves. Compositionality is deeply grounded in mathematics
through its relation to the notions of structure-preserving mappings, that is, ho-
momorphisms and morphisms in universal algebra and category theory respec-
tively, since a compositional function preserves the structure of its argument,
and conversely a structure-preserving mapping is compositional [49].

As in the case of information hiding and abstraction, compositionality implies
a strong notion of substitutability: If a subprogram is substituted by a different
subprogram with the same meaning, the meaning of the whole program will
still be the same. In other words, we can successfully reason more abstractly
on an expression by thinking of its meaning rather than of the expression itself.
When reasoning about the program, we can identify expressions having the same
meaning. This process is typically called equational reasoning. Since the actual
expression is hidden behind its meaning, compositionality can also be seen as a
specific form of information hiding by considering the meaning of a program to
be its interface.

Classical logic reflects the ideas of compositionality and reductionism in two
ways: First, classical logic is compositional in the sense that a subset of the
axioms of the theory can be exchanged by other axioms if they are logically
equivalent (which means that they have the same deductive closure) without
changing the set of theorems that hold for the whole set of axioms. Second, the
“meaning function” (such as: determining whether a formula holds in a specific
model) of classical logic is also compositional, meaning that the truth value of a
composite formula is determined by the truth values of its constituents.

In the field of programming, compositionality is the hallmark of denotational
semantics [78] and initial algebra semantics [23]. The denotation of a program
is an abstraction of the program: different programs (such as 1+2 and 3) have
the same denotation (such as the mathematical object 3). In this sense, the de-
notation can be understood as an abstraction of the program, or, conversely, a
program can be understood to be a model of its denotation. This may sound
somewhat as if it is the other way around, since the denotation function maps
syntax to semantics, but it makes sense if we consider the program to stand for
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its “actual denotation” when executed on physical hardware. The “actual deno-
tations” of 1+2 and 3 are clearly different. They differ, for instance, in their power
consumption or heat production of the CPU and required runtime. The differ-
ence between denotation and “actual denotation” hints at a principal limitation
of compositionality: Those aspects of the “actual denotation” of a program that
are abstracted over in its denotation may, to some user, be just as important as
those that are reflected by its denotation. To take a practical example, whether
a compiler of a programming language performs tail-call optimization [76] or not
will often determine whether a program can be executed successfully or termi-
nate with a stack overflow error. One can of course always enrich the semantic
domain by more elements of the “actual denotation” (or abstractions of the
“actual denotation”, such as a specification of the space behavior of procedure
calls [12]), but it is not clear when to stop enriching the domains, since different
stakeholders need to work with different equivalence classes of programs.

2.3 Idealization

The notion of idealization can be traced back at least to Plato and his idea
of ideas or forms [71]. He holds that there are abstract notions – ideas – that
capture the essence of aspects of our real life, yet never actually occur in real
life. For instance, there are no perfect circles in real life, yet we can talk about
the idea of a perfect circle.

Idealization was used systematically by Galileo, who, in his study of bodies
in motion, made assumptions such as frictionless surfaces and spheres of perfect
roundness. The motivation for idealization is that actual scientific objects are
too complicated, hence they need to be summarized to a few properties relevant
to the phenomenon under study.

In the computer science community, Dijkstra motivates idealization from a
modularity perspective as follows:

A scientific discipline separates a fraction of human knowledge from the
rest: we have to do so, because, compared with what could be known,
we have very, very small heads. [17]

Modularization and idealization are hence rather similar ideas: To deal with
complexity by being able to concentrate on those things that are relevant to the
task at hand and to ignore the rest for the time being. Idealization is an implicit
assumption underlying modularity: Our understanding (or, the interface) of a
module is an idealization of the actual implementation of the module. Interfaces
are an idealization in the sense that they assume that some aspects of the imple-
mentation are not relevant (such as whether a display update is triggered when
calling an interface function), which may lead to false assumptions about the
implementations of the modules [33].

The axiomatic method of classical logic described in the beginning of this
section can be seen as a formalization of idealization, where the axioms play the
role of an idea, and its models are the real-world objects captured by that idea.
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2.4 Monotonicity

Monotonicity is the idea that we want to prove things “once and for all”. It
means that we never have to withdraw a conclusion when we learn more. For
instance, if we establish a property of a software system in a monotonic logic,
we never have to revise that property when more components are added to the
system. As described above, monotonicity is one of the defining properties of
classical logics.

Program logics such as Hoare logic [28] are typically monotonic: Enlarging the
program does not invalidate what was proved about the contained smaller pro-
gram. Also, operational models of programming languages can in most cases be
considered a monotonic logic in the following sense: If we consider the equational
theory implied by the operational semantics of the language, then typically we
have the property that if e = e′, then E[e] = E[e′] for an evaluation context E
that plugs the expression into a bigger program [50,81]. This congruence prop-
erty allows us to reason about the behavior of programs in a modular way: We
do not have to revise our conclusions about program behavior when we enlarge
the program or use it as subprogram in a bigger program.

2.5 Summary

The common notion of modularity, especially the facet of information hiding, is
deeply related to classical logic. We take compositionality of abstractions and
monotonicity in reasoning about them for granted. Classical logic shapes our
thinking and expectation of modularity. However, as we will argue next, humans
(and hence programmers) do not always organize and reason about knowledge in
accordance with classical logic, which threatens the implicit assumption of clas-
sical modularity, namely that information hiding in the strong sense presented
here is the best means to deal with software complexity.

3 Programmers Use Nonclassical Reasoning

Although our modularity mechanisms are shaped by classical logic, programmers
frequently reason about software systems in nonclassical logics. Programmers use
inductive reasoning, use default reasoning and Occam’s razor, and use negation-
as-failure and closed-world reasoning, as we will illustrate. All these means of
reasoning are unsound from the perspective of classical logic (and have been
formalized in various nonclassical logics), but are still used in everyday develop-
ment and maintenance tasks. Hence, classical modularity mechanisms frequently
do not support programmers adequately when reasoning about their programs.

3.1 Programmers Use Inductive Reasoning

Programmers routinely infer a general software property from observing indi-
vidual cases. For example, from a lack of bugs in specific cases, developers ten-
tatively infer the lack of bugs of a software. This is the essence of testing. From
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the perspective of classical logic, however, a successful test case shows nothing;
only a failed test case produces new knowledge.

Similarly, developers sometimes explore the behavior of a software module
by testing it on some inputs, and infer, through inductive reasoning, general
laws on how the module behaves, especially when its APIs are underspecified.
Alternatively, they might know the behavior of a module A only partially, use it
to build module B, and later learn details about the behavior of A (for instance,
corner cases) by testing the complete software.

The success of tools like Daikon [19] or the technique from Henkel and Di-
wan [26], which discover likely program invariants or algebraic specifications by
inductive reasoning over test case results, also illustrates that inductive reasoning
over programs does produce useful knowledge.

We could argue that inductive reasoning is unsound and programmers should
not use it, but there are good arguments to the contrary. First, all basic theo-
ries in natural sciences are essentially the product of inductive (or abductive)
reasoning; all theories in natural sciences can only potentially be falsified, but
never be proven correct [64]. In that sense, inductive reasoning has a quite im-
pressive track record. Second, inductive reasoning is natural human behavior.
This hypothesis is supported by the basic learning mechanism of the human
brain at the neuronal level, known as Hebbian learning [25]: Our brain learns
correlation between different concepts and expects that this correlation will re-
peat in the future. Conditioned reflexes are a prime example of such learning
process. Recent advances in computational neuroscience provide models that
successfully explain many higher-level behaviors through the basic mechanism
of Hebbian learning [47]. Detailed studies are available mostly for vision (for
instance, illusory contours are explained this way), but brain processing uses
the same fundamental processing mechanisms for all kinds of information; thus,
researchers conjecture that all brain functions might be explained in terms of
associative learning.

3.2 Programmers Use Default Reasoning and Occam’s Razor

Programmers tend to use the simplest explanation they can imagine for an expe-
rienced phenomenon, such as a bug. Similarly, they tend to predict the simplest
behavior consistent with the interface for a software entity, such as an API.
Nevertheless, they regard such explanations and predictions as tentative, that
is, programmers infer them nonmonotonically and revise them when contradict-
ing evidence is discovered.

Default reasoning and Occam’s razor are common in everyday development
tasks; consider the following examples: (1) Developers might assume that an
API function will not perform the side effect of formatting the harddrive or
modifying the value of the provided arguments unless it is explicitly specified.
(2) When a program terminates by printing "NullPointerException", devel-
opers typically assume a raised NullPointerException as cause, rather than a
println("NullPointerException") instruction in the program. (3) Developers
may expect that getter methods do not mutate the receiver object and can thus
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be safely invoked in a read-only fashion from multiple threads. (4) Developers
might observe patterns in an API from a few of its members, and use such in-
ferred patterns as default rules. Default reasoning is also acknowledged by design
principles such as the principle of least astonishment [4], which recommends that
the API should not contradict common predictions of the programmer.

Of course, these reasoning patterns can lead to invalid results when additional
observations are made. This is actually quite common and may be the cause
for some debugging efforts. For example, the second author shared the third
assumption about thread-safe getter methods and had to revise his reasoning in
a program using a well-known open-source library.

Again, we could put the blame for false preliminary conclusions on the pro-
grammer, but Occam’s razor and default reasoning appear to be “hard-wired”
human behavior, as also supported by the law of prägnanz in Gestalt psychol-
ogy, which says that we tend to order our experience in a way which is regular,
orderly, symmetric and maximizes simplicity [77].

3.3 Programmers Use Negation as Failure and Closed-World
Reasoning

Programmers often reason about a closed code base. For example, when removing
a method that is presumably no longer necessary, they confirm that the method
is actually no longer necessary by checking whether this method is still called
in the current code base. These kinds of API changes are of course avoided if
possible, if the API is used by a large number of applications outside the control
of the programmer or company, but it is well-known that this means that APIs
often become a kind of “software asbestos” [35,3] or leads to versioning problems
such as the infamous ‘DLL hell’, if the API change cannot be avoided.

Reasoning about callers of a method is an example of the negation-as-failure
proof rule, which allows to deduce a property ¬P from failure of proving P [11]
(for instance, with P = “method foo is used”). It is an example of closed-world
reasoning [65] as well, because such (nonmonotonic) reasoning might be inval-
idated when the considered scenario is extended to elements allowing to prove
P . Negation as failure and closed-world reasoning are both incompatible with
classical logic.

Conflicts between classical logic and closed-world reasoning frequently arise
during software evolution, especially in the context of APIs. Stable APIs are
very difficult to achieve in open systems that might be extended by others (it is
essentially impossible to ever remove any API functionality). Therefore, many
developers are less strict about stability and information hiding and tend toward
a closed-world assumption. For example, the Linux kernel developers do not
guarantee stable APIs and instead strongly urge maintainers of external code to
submit that code for inclusion in the kernel, so it can be reasoned about and
evolved together with the APIs in a closed-world fashion [36].

Closed-world reasoning is also required to establish many other important
properties of software, for instance, temporal or concurrency properties.
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This holds for informal manual reasoning, but is even more obvious when one
considers automated tools such as model checkers and static analyses, which
assume a closed world when reasoning about source code. A property established
in one code base may no longer hold in a larger versions of the program. For
instance, suppose a module acquires lock A and then lock B (while holding lock
A) and model checking ensures this module is safe; suppose then a new module
is introduced, acquiring locks A and B in the reverse order. As we know, this will
cause a deadlock, which will affect also the existing module. These limitations are
of course well-known in these communities (e.g., [1,40]); we mention them here
to support our point that programmers and their tools routinely and successfully
used inductive reasoning.

3.4 Discussion

We have shown that in many cases programmers use reasoning that does not
align with classical logic and which causes problems in the context of classical
modularity. One could ask, whether we should blame programmers or the modu-
larity mechanisms. For example, we could blame programmers, because they are
presumably just too lazy to use proper reasoning, or we could blame modularity
mechanisms, because they do not support programmers adequately.

We take sides with the programmers for two reasons: First, we have evidence
that various patterns of nonclassical reasoning are “hard-wired” into human in-
telligence. It seems natural to us that programming methodology should embrace
rather than denunciate the way of reasoning humans are born with. Second,
many important properties of programs just cannot be established using classi-
cal reasoning: Viewed as axioms of logical theories, module interfaces are highly
incomplete, that is, for many propositions P neither P nor ¬P can be proven
classically (such as in the examples from above: P = “method foo is used”, or
P = “the program is deadlock -free”). Hence, programmers are essentially forced
to use nonclassical reasoning, because there is no way to prove or reject many
relevant properties with classical reasoning.

These two reasons suggests that the power of classical “modular reasoning”
is rather limited, because it only works for so few properties. We believe that
modularity mechanisms should be adapted accordingly to better reflect how
programmers reason about code. In light of this finding, the next section will
analyze the limitations of classical information hiding in detail.

4 Limits of Information Hiding

Information hiding is typically regarded as a core achievement and goal of mod-
ularity in the struggle to reduce complexity [63]. However, programmers often
experience limitations where information hiding is difficult or does not seem to
pay off. In the following, we describe some situations where the limitations of
information hiding become apparent.
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4.1 Operational Behavior and Interface Detail

If a stakeholder wants to reason about “nonfunctional”3 aspects of a system,
such as time or space complexity or power consumption, he probably needs to
reason about implementation details hidden behind abstraction barriers.

For example, when hiding the representation of complex numbers as either
Cartesian or polar coordinates [67], the choice of representation is irrelevant
from the perspective of Reynold’s abstraction theorem, as already discussed in
Section 2.1. However, the implementation choice makes a difference when execut-
ing the program on physical hardware. For example, different implementations
have different time or space behavior of the operations, different rounding errors,
different optimizations that the compiler will apply, or different power consump-
tion. To some stakeholders, such concerns may well be important; while some
require higher performance, others require higher precision.

To support the information needs of such a stakeholder, one could expose
performance and precision information, for example, by adding additional con-
straints to the interface of the complex-number data type. But with each ad-
ditional constraint, the possible implementations are more and more limited,
until eventually all information is exposed, and just one possible implementa-
tion remains. By strengthening the interface, the distinction between interface
and implementation is weakened, and information hiding is rendered useless. In
logic, this situation is formalized by the notion of completeness, which denotes
a logical theory that has just one model (up to isomorphism).

In a modular structure based on a nonclassical form of information hiding, it
may be possible to establish additional interface properties by nonclassical (e.g.,
inductive or default) reasoning, without explicitly stating all of them in the in-
terface. A concrete example would be a default rule which says that ”getter”
methods usually do not perform side-effects. An example of inductive reasoning
would be to observe that many functions of an API that access the file system are
not thread-safe, and generalize this finding to all API functions that access the
file system. In the field of logic, the problem of having to state too many prop-
erties explicitly to reason about an ‘API’ is known as the qualification problem,
which we will discuss in more detail in Sec. 4.5.

4.2 Large Systems

When information is hidden behind an abstraction barrier, there are potential
stakeholders (or concerns), who are interested in that hidden information. There-
fore, the success of information hiding depends on whether such potential stake-
holders (or concerns) and their information needs are relevant for the system or
not – and, the larger the software system, the more likely a relevant stakeholder
exists. In that sense, we argue that strict information hiding is problematic in
3 Actually the word nonfunctional is a misnomer, since nonfunctional properties are

just as important aspects of the function of a system as its “functional” properties.
The wording is unfortunate, because it is an excuse to pretend that some aspects of
a system can be ignored when “modeling” a system, see also the discussion in Sec. 5.
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large systems. This has strong implications on practice, as we exemplify with
the Linux kernel.

Surrounding the origins of the Linux kernel there is a well-known debate
about how to design an operating system kernel between Linus Torvalds, the
original developer behind Linux, and Andrew Tanenbaum, an operating system
researcher [15]. At the heart of the debate lies another debate about modularity.
Academics argued that kernels of operating systems should be written using
loosely coupled independent modules and that interface boundaries should be
enforced through shared-nothing, message-passing-based concurrency (known as
microkernel design [79]). In contrast, Linux uses a monolithic kernel design which
does not enforce information hiding strictly.

In a nutshell, Torvalds’ motivation for neglecting information hiding is that
parts of the kernel are highly interdependent.4 They require so much knowledge
about each others implementation that there remains little to hide. Torvalds
himself provides (among many others) the following example:

This is an example of how things [different modules] are not “indepen-
dent”. The filesystems depend on the VM [Virtual Memory subsystem],
and the VM depends on the filesystem. You can’t just split them up as
if they were two separate things (or rather: you can split them up, but
they still very much need to know about each other in very intimate
ways).5

So, programmers of the Linux kernel, and in fact of most other operating
systems as well, accept a weaker form of modularity because so much information
would have to be exposed in interfaces that information hiding does no longer
add enough value.

A related issue of large systems arises with crosscutting concerns such as
transactions or concurrency. The problem that such concerns are very hard to
modularize with classical modularity mechanisms has been the motivation for
aspect-oriented programming [32].6 If such concerns are not modularized, how-
ever, a basic assumption of information hiding, namely monotonicity, does not
hold anymore: Composing two programs which are each separately correct with
respect to, say, lock-based concurrency or transactions, are in general no longer
correct when composed. More importantly, the noncomposability can in general
not be deduced from the interfaces of these components (or it is at least not clear
how to document the components in such a way that it is). Hence, the mono-
tonicity assumption of classical modularity fails when concerns are not properly
separated.

4 Actually, also performance is a common argument for monolithic kernels. Although
some modularity mechanisms may arguably add some performance penalties, we
ignore this aspect to concentrate on the issue at hand.

5 http://kt.earth.li/kernel-traffic/kt20050103_289.html#1
6 There is no consensus whether AOP solves these problems (e.g., [34]) but this is not

relevant to our point.

http://kt.earth.li/kernel-traffic/kt20050103_289.html#1
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4.3 Separation of Concerns and the Dominant Decomposition

When taking the point of view that what is hidden behind an interface is (or
belongs to) a concern, it becomes obvious that better separation of concerns
reduces the amount of information hiding in the system. For instance, in the
canonical AOP example of updating a display when a figure element changes [33],
a figure element module hides less information behind its interface when the
display updating logic is separated from the figure element module. In that sense,
and contrary to the common notion that information hiding and separation of
concerns go hand in hand, information hiding and separation of concerns can
actually be contradictory.

The tyranny of the dominant decomposition [80] also reflects a major limita-
tion of information hiding: What can be hidden behind an interface depends on
the choosen decomposition, but there is no “best” decomposition; rather, from
each point of view (such as the points of views of the different stakeholders) a
different decomposition (and hence information hiding policy) would be most
appropriate. What one stakeholder would hide as an implementation detail be-
hind an interface is of primary importance to another stakeholder, who would
hence choose a different decomposition that exposes that information.

4.4 Software Evolution

Even if a software system is successfully modularized, and the information needs
of all stakeholders and concerns are reflected in the interfaces of components,
information hiding might still hinder software evolution. This might be surprising
at first, because information hiding is supposed to facilitate software evolution
by hiding design decisions behind interfaces, so that they can be changed at
will. The problem is that the original developers have to anticipate change and
to modularize the software accordingly.

Unfortunately, it is not clear how to decide up-front which design decisions
need to be hidden and which need to be exposed. Parnas heuristic of hiding what
is most likely to change is difficult to follow.7 If a design decision is exposed in
the interface of a component, this aspect of the component cannot be evolved in
a modular fashion later. But if the design decision is hidden behind the interface,
software evolution might bring a new stakeholder (or concern) into the system
which needs to access that hidden information. So, to support the information
need of this stakeholder (or concern), the design decision should not have been
hidden in the first place.

An example for this situation is discussed in the aforementioned display-
update example: When the Point figure element hides its update logic behind its
interface, the system cannot evolve to support also a Line abstraction based on
Point, since the update logic of Line cannot be implemented without detailed
knowledge about the update logic of Point [33].
7 The wording ‘most likely’ indicates that one has to use nonclassical – such as in-

ductive or probabilistic but in any case nonmonotonic – reasoning to determine the
modular structure of a system. Hence the illusion of staying within classical logic all
the way through breaks together one way or the other.
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One could argue that successful modularization just needs better planning [61]
to better assess what is likely to change, but we believe that this is an implau-
sible assumption because large-scale software systems are assembled from many
independently developed and independently evolving parts; hence, a big global
“plan” is infeasible and unanticipated changes are unavoidable in long-living
projects. In fact, the mere assumption of a monolithic global plan is contradic-
tory to modularity.

4.5 Information Hiding and Classical Logic

As lesson, we infer from these examples that the larger and more complex a
software system is, the harder a strict classical discipline of information hiding
can be maintained. There are many concerns that, when separated, need to
expose implementation detail in such a way that information hiding is impaired.
Developers have to decide what information to hide and what to separate. This
is a fundamental problem of classical modularity, which can be traced back to
problems well-known in classical logic. For instance, the qualification problem
describes the problem that

in order to fully represent the conditions for the successful performance
of an action, an impractical and implausible number of qualifications
would have to be included in the sentences expressing them [44].

McCarthy gives the following example:

The successful use of a boat to cross a river requires, if the boat is a
rowboat, that the oars and rowlocks be present and unbroken, and that
they fit each other. Many other qualifications can be added, making the
rules for using a rowboat almost impossible to apply, and yet anyone will
still be able to think of additional requirements not yet stated.

From the perspective of modularity, the qualification problem is clearly about
information hiding, or more precisely, about the difficulty of information hiding
in classical logic.

We believe that a possible solution can be to restrict the expectations of in-
formation hiding driven by classical logic (for instance, not to expect to prove
program properties “once and for all”), and open us to less strict forms of infor-
mation hiding, as we will discuss in Section 6.

5 Programs Are Not Models

What is the cause of the failures of classical modularity discussed in the previous
two sections? We believe that the answer to this question lies in the notion of
modeling and idealization from natural sciences (and, eventually from Plato’s
ideas and Aristotle’s notion of essence), as discussed in Section 2: A scientific
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model8 of a physical phenomenon removes information not relevant for the pur-
pose of the model, and makes simplifying assumption to distill the core of the
phenomenon the model is supposed to illustrate. It is not surprising that classi-
cal logic is a good match to describe natural scientific models, since historically,
mathematics and logics were developed as auxiliary sciences to support natural
science.

It seems tempting to assume that software is a model in that sense, too,
and we believe that this is indeed a wide-ranging implicit assumption of many
software researchers. Software engineering books talk about “modeling” all the
time. There is even a branch of software engineering called ”model-driven devel-
opment”, in which the actual programs are explictly called ”models”. The Object
Management Group defines: ”An object models a real world entity” [52], and the
point of view that programs should model the real world has been quite impor-
tant in Simula and the whole Scandinavian tradition to OO programming [42].

However, large software systems are not like that. They have to take into
account the desires and needs of many different stakeholders. They have to deal
and interact with the real world, which means that simplifying assumptions often
turn out to be false. Instead of being like a scientific model, software systems
are more like a mix of many overlapping and interacting models. One could of
course say that a mix of overlapping models is another, more complicated model.
But we believe that it is no longer useful to consider big programs to be models
of a part of reality, but rather to be a part of reality. For instance, while at some
early stage the programming concept of an order may have been a model of a
hand-written document in a company, there are nowadays typically no artefacts
beyond the record in the database that represent the order: It is the order.
In contrast to a natural science model, a program is not describing a physical
phenomenon – it is, when running, a physical phenomenon.

In natural sciences the problems of idealization and abstract models are well-
known, of course. For instance, when trying to compute the movements of actual
bodies in motion, aspects such as friction or air resistance have to be taken into
account – the simplifying assumptions do not hold anymore. Taking all these ad-
ditional influences into account turns Galileo’s simple models into highly complex
computations. Even in natural sciences itself, there is discussion about whether
scientific models are really accurate descriptions of physical phenomena [10], and
a process of de-idealization and de-simplification is proposed to turn the model
into an accurate description of reality [46,39].

The problem of multiple overlapping models, which manifests itself as the
tyranny of the dominant decomposition in software (cf. Sec. 4.3), is also well-
known in natural scientific modeling:

All of our theories and models are tightened together only because they
apply to the same empirical reality but do not enter into any further
relations (deductive or otherwise). We are confronted with a patchwork

8 In this section we use the term model to denote scientific model and not as the term
is used in logic, which is confusingly different.
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of theories and models, all of which hold ceteris paribus in their specific
domains of applicability. [24]

Complex, de-idealized patchworks of scientific models, as required for simulations
of the real world, are much more akin to large software systems, since both have
to deal with many aspects of reality and do not have the luxury to abstract over
aspects that are inconvenient for a simple, elegant model.

The misleading analogy between programs and natural scientific models ex-
plains the failure of information hiding, since classical logic – the foundation of
information hiding – is the framework in which scientific models are implicitly
or explicitly formulated.

6 Towards Nonclassical Modularity

In the beginning of Sec. 1, we have pointed out several modularity mechanisms
that can be used to improve extensibility or separation of concerns, but have
been criticized for restricting information hiding and modular reasoning, for
instance inheritance [75], aspect-oriented programming [2], reflection, aliasing
and mutation [51,54], multithreading [20], and exception handling [69].

Many of these modularity mechanisms can be understood to leave the “safe”
world of classical logic, and indeed they can be understood to correspond to
different nonclassical logics. Here are a few examples.

Aspect-Oriented Programming and Reflection. In earlier work, the first author
has shown that aspect-oriented programming can be understood in terms of a
nonmonotonic logic called default logic [56]. The idea is that one can reason
by default that the semantics of a method call is to execute the corresponding
method body, similar to how classes themselves can be interpreted as defining a
default behavior that may be refined by subclasses (see discussion of inheritance
below). Aspects that intercept such method calls are considered exceptions to
that default rule. Hence, in this setting, one can – using defaults – reason locally
about the program behavior. In case one learns later that the default assumption
turns out to be wrong, there is a controlled process of updating the conclusions
one has drawn from the invalid default assumption [56]. Using the logic pro-
posed in this paper, one can establish a property such as “display updating is
consistently applied when the data changes” modularly, by only considering the
aspect that maintains this property.

Reflection (e.g., [74]) is also known to be a powerful modularity mechanism
(e.g., [31]), but is in conflict with information hiding, since implementation de-
tails of foreign modules can be observed and modified. Not surprisingly, reflection
is also frowned upon in classical logic ever since the paradoxes of naive set theory
(Russel paradox, Cantor paradox, etc.) have been discovered – all of which rely
on a form of reflection, namely self-application.

Aliasing and Mutation. The program-verification community has developed sep-
aration logic [68] to reason about programs using pointers, aliasing, etc., in a
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modular way. Separation logic is a nonclassical logic, since the structural rules of
weakening (monotonicity of entailment) and contraction (idempotency of entail-
ment) do not hold [53]. Instead, the so-called frame rule allows the programmer
to reason about each routine separately, given that the parts of the heap that
are modified by each routine are disjunct [68]. The frame rule solves a particu-
lar instance of the frame problem [45], which has been a major motivation for
the development of many nonclassical logics and is at the same time a typical
modularity problem, namely how to specify what a module does not do, without
enumerating all possibilities [6].

Separation logic seems to be compatible with classical information hiding at
first. However, the frame rule forces one to make all sharing and aliasing in the
program explicit in the specification, which is contrary to the idea of using im-
plicit communication via shared variables to reduce coupling and hence improve
modularity [18, Sec. 2] [72, Sec. 4.8.2]. Specifying sharing and aliasing explicitly
has a ripple effect, because typically the callers of the components that share
variables have to know about this, hence the callers of the callers have to know,
and so forth [72, Sec. 4.8.2], which means that the usage of separation logic in
such cases becomes a form of closed-world reasoning. So one has only two choices:
Either give up the modularity that can be gained by implicit communication,
or use a stronger – unsound – form of the frame rule, similar to circumscrip-
tion [44], that allows one to tentatively compose proofs of properties of program
parts even if they do potentially communicate implicitly.

Inheritance. Ideas to understand classes in object-oriented languages as giving
nonmonotonic default definitions that may be refined by subclasses are almost
as old as object-oriented programming itself [66,73]. More recently, variants of
separation logic (see above) have been proposed to reason about object-oriented
programs [57]. These logics illustrate that inheritance is a nonclassical modular-
ity mechanism.

Temporal Logics. Temporal logics, such as linear-time logic (LTL), are a common
formalism to reason about temporal properties of programs, especially concur-
rent programs [43]. Temporal logics assume a closed world, which means that
the whole program (or state machine) to be verified must be fully known, and
results established for one program do not automatically hold for extensions of
that program (nonmonotonicity) or compositions of multiple programs [1].

Closed-World Modularity. Some approaches embrace closed-world reasoning and
instead focus on tool support to dealing with nonmodular systems. For example,
FEAT helps to discover and document scattered concerns and can afterward
support reasoning about the still-scattered concerns (a closed knowledge base) by
providing navigation support [70]. Virtual separation of concerns [30] emphasize
editable views on code and whole-program analysis to reason about scattered
implementations of a concern instead of enforcing a separation into modules.
Ideas of effective views [29] and on-demand remodularization [55] take this even
a step further and actually rewrite the source code on demand to match the
form of locality or information hiding that the programmer needs for a task.
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Error Handling. Lanier remarked that software “breaks before it bends” [38].
That is, a single failure (such as a null-pointer access) in a minor part can
cause inconsistencies in the whole program, just like a single inconsistency in a
logical theory allows to prove every proposition (including contradictory ones).
We believe this similarity is not accidental: Software inherits this property from
the principle of explosion of classical logic. One of the common points is that
both a software module and a logical theory require the perfect consistency (such
as: freedom of bugs), even if software modules are in daily practice are rarely
exempt from inconsistencies.

Interestingly, both in logic and in software different but similar means have
been developed to deal with such explosions/crashes. In logic, the field of para-
consistent logics [7] deals with logics that are inconsistency-tolerant, that is,
where one can still draw reasonable nontrivial conclusions even if there is an
inconsistency in some part of the theory. This is similar in spirit to attempts
in computer science to limit the effects of errors, such as null pointer errors or
nontermination, that would otherwise destroy a running program immediately.

For instance, insulating faults by partitioning a software in different processes
is a traditional best practice in the Unix culture, because it increases stability.

More recently, Martin Rinard and his group introduced the notion of failure-
oblivious computing [69] whose idea is that applications should continue to pro-
duce reasonable results despite unexpected errors, and proposed innovative and
even surprising techniques for doing so. These techniques are often met with re-
sistance, because they change the local semantics of the program (for instance,
by skipping loop iterations to improve performance). That is contrary to the
spirit of classical modularity; however, the only alternative is the principle of
explosion.

Nonstrict programming languages (such as Haskell) can also be understood
to restrict the propagation of a common error, namely nontermination. The con-
nection to paraconsistent logics becomes particularly obvious when one identifies
inconsistency with nontermination, which is also suggested by the fact that the
same symbol,⊥, is used to denote both inconsistency in logic and nontermination
in denotational semantics.

Discussion. While the results discussed in this section are rather preliminary
and require a more formal investigation, we still consider it striking that many
program structuring mechanisms that have been criticized for violating informa-
tion hiding are at the same time similar to developments in nonclassical logics.
Also, the motivations for these developments are often similar as well, for in-
stance, avoiding the propagation of errors for both error recovery mechanisms
and paraconsistent logics, or avoiding an excessive number of qualifications for
both aspect-oriented programming and nonmonotonic logics (cf. Sec. 4.5).

We believe that these similarities indicate that the programming community
should acknowledge that programs are a form of knowledge representation, and
the same considerations with regard to modularity, extensibility, ease of reason-
ing, and so forth, apply to both logics and programs. Until now, programming
languages have usually been developed independently of logics, and logics to
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reason about various properties of the program have only been added as an af-
terthought. We believe that there is a lot of potential in the idea to make use
of the connection between programming on one hand and logics and knowledge
representation on the other hand, and develop modularity constructs and their
logic side by side instead.

7 Conclusions

The traditional point of view on modularity as information hiding is deeply
rooted in classical logic and inherits both its merits and limitations. As a de-
vice to structure the knowledge embodied by large-scale software system it is
problematic, since there is a deep mismatch between the idealizing form of mod-
eling for which classical logic was designed, and the multi-stakeholder reality
of complex software systems. Some existing ideas to escape the limitations of
traditional information hiding can be understood as being based on nonclassical
logics. We propose to turn this observation into a principled design methodol-
ogy for future modularity mechanism in which the modularity mechanism, its
information hiding policy, and a corresponding (potentially nonclassical) logic
are developed side by side. It does not make sense to judge a modularity mech-
anism through the glasses of a logic that does not match to the logic with which
knowledge is organized in this modularity mechanism.

In fact, we believe that it is useful to adopt a novel definition of modularity9

that takes the relation between programs, its modules, and the logic we use to
reason about the program into account.

Instead of talking about modularizing concerns – a term that has often been
understood in a rather syntactic way – we propose to talk about modularizing
properties of a program. Since the way we establish a property depends on
the logic, modularity is also relative to the used logic L. Hence we can define
property P to be modularized in a program unit U (which we assume to include
its interface to the rest of the program) of a program, if P can be proved from
U in L, or, using formal notation, U �L P .

Under this definition, cohesion denotes that a program unit modularizes a
single (or few) coherent program properties. Program units are coupled, if an
important property can only be proved from a larger set of program units, or
even the whole program. A perfect (perhaps unattainable) modularization is one
where all properties required by the specification are modularized.

We hope this definition will help to correct what we perceive to be a modular-
ity bias : That some desired properties – such as the aforementioned “functional”
properties of a system – are more important to modularize than other (“non-
functional”) properties.
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Abstract. The state of an imperative program—e.g., the values stored in global
and local variables, arrays, and objects’ instance variables—changes as its state-
ments are executed. These changes, or side effects, are visible globally: when one
part of the program modifies an object, every other part that holds a reference to
the same object (either directly or indirectly) is also affected. This paper intro-
duces worlds, a language construct that reifies the notion of program state and
enables programmers to control the scope of side effects. We investigate this idea
by extending both JavaScript and Squeak Smalltalk with support for worlds, pro-
vide examples of some of the interesting idioms this construct makes possible,
and formalize the semantics of property/field lookup in the presence of worlds.
We also describe an efficient implementation strategy (used in our Squeak-based
prototype), and illustrate the practical benefits of worlds with two case studies.

1 Introduction

Solutions to many problems in computing start with incomplete information and must
gather more while the solution is in progress. An important class of problems have to
perform speculations and experiments, often in parallel, to discover how to proceed.
These include classical non-deterministic problems such as certain kinds of parsing,
search and reasoning, dealing with potential and actual error conditions, doing, undoing,
and redoing in user interfaces, supporting multiple forked versions of files and other
structures that may need to be both ramified and retracted, etc. The “need to undo”
operates at all levels of scale in computing and goes beyond simple backtracking to
being able to support multiple speculative world-lines.

Most of the ploys historically used to deal with “undoing” have been ad hoc and in-
complete. For example, features such as try/catch enable some speculation, but only
unwind the stack on failure; side effects are not undone automatically. Programmers
have little choice but to rely on error-prone idioms such as the command design pat-
tern [13]. This is analogous to the manual storage management mechanisms found in
low-level languages (e.g., malloc and free in C). In contrast, garbage collection trades
a little efficiency for enormous safety and convenience, and the worlds mechanism we
present in this paper provides a similar service for all levels of “doing-and-undoing.”

Web surfing is a useful analogy for thinking about worlds: during a simple explo-
ration of the web, you might just use the back button, but more complex explorations

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 179–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



180 A. Warth et al.

(speculations) are more easily done with multiple tabs. All the changes you made dur-
ing your explorations remain local to the tab that you used, and can be made “global”
or not by your choice.

This is somewhat similar to transactions, which are another example of a general
mechanism that can handle some of the “computing before committing” problems at
hand here. But whereas the purpose of transactions is to provide a simple model for
parallel programming, the goal of worlds is to provide a clean and flexible mechanism
for controlling the scope of side effects. Unlike transactions, worlds are first-class values
and are not tied to any particular control structure—a world can be stored in a variable
to be revisited at a later time. This novel combination of design properties makes worlds
more general (albeit more primitive) than transactions. For example, neither the module
system shown in Section 3.3 nor the tree-undo feature presented in Section 6 could be
implemented using transactions. Furthermore, we show in Section 8 that it is straight-
forward to implement transactions in a language that supports worlds.

The rest of paper is structured as follows. Section 2 introduces the notion of worlds
and its instantiation in Worlds/JS. Section 3 illustrates some of the interesting idioms
made possible by this construct. Section 4 details the semantics of property lookup
in the presence of worlds. Section 5 describes the efficient implementation strategy
used in our Squeak-based prototype. Sections 6 and 7 present two case studies, the
first of which is used to benchmark the performance of our implementation. Section 8
compares worlds with related work, and Section 9 concludes.

2 Approach

The world is a new language construct that reifies the notion of program state. All com-
putation takes place inside a world, which captures all of the side effects—changes to
global and local variables, arrays, objects’ instance variables, etc.—that happen inside
it.

Worlds are first-class values: they can be stored in variables, passed as arguments to
functions, etc. They can even be garbage-collected just like any other object.

A new world can be “sprouted” from an existing world at will. The state of a child
world is derived from the state of its parent, but the side effects that happen inside
the child do not affect the parent. (This is analogous to the semantics of delegation
in prototype-based languages with copy-on-write slots.) At any time, the side effects
captured in the child world can be propagated to its parent via a commit operation.

2.1 Worlds/JS

A programming language that supports worlds must provide some way for program-
mers to:

– refer to the current world,
– sprout a new world from an existing world,
– commit a world’s changes to its parent world, and
– execute code in a particular world.
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Fig. 1. Projections/views of the same object in three different worlds

We now describe the way in which these operations are supported in
Worlds/JS, an extension of JavaScript [9] we have prototyped in order to
explore with the ideas discussed in this paper. (Worlds/JS is available at
http://www.tinlizzie.org/ometa-js/#Worlds_Paper. No installation is
necessary; you can experiment with the language directly in your web browser.)

Worlds/JS extends JavaScript with the following new syntax:

– thisWorld — is an expression whose value is the world in which it is evaluated
(i.e., the “current world”), and

– in <expr> <block>— is a statement that executes <block> inside the world obtained
from evaluating <expr>.

All worlds delegate to the world prototype, whose sprout and commit methods can be
used to create a new world that is a child of the receiver, and propagate the side effects
captured in the receiver to its parent, respectively.

In the following example, we modify the y property of the same instance of Point in
two different ways, each in its own world, and then commit one of them to the original
world. This serves the dual purpose of illustrating the syntax of Worlds/JS and the
semantics of the sprout and commit operations.

A = thisWorld;
p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();

http://www.tinlizzie.org/ometa-js/#Worlds_Paper
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Fig. 2. The state of the “universe” shown in Figure 1 after a commit from world C

Figures 1 and 2 show the state of the point in each world, before and after the commit
operation, respectively. Note that p’s identity is “universal,” and each world associates
it with p’s state in that world.

2.2 Safety Properties

Programming with worlds should not be error-prone or dangerous. In particular, if wchild

is a world that was sprouted from wparent :

– Changes in wparent—whether explicit (caused by assignments in wparent itself) or
implicit (caused by a commit from one of wchild’s siblings)—should never make
variables appear to change spontaneously in wchild . We call this the “no surprises”
property.

– Similarly, a commit from wchild should never leave wparent in an inconsistent state,
e.g., because the changes being committed are incompatible with changes made in
wparent after wchild was sprouted. We call this property “consistency.”

In this section, we explain how the semantics of worlds ensures these properties.

Preventing “Surprises”. Once a variable (or slot, memory location, etc.) has been read
or modified in a world w, subsequent changes to that variable in w’s parent world are
not visible in w. This ensures that variables do not appear to change spontaneously in
child worlds.

For example, Figure 2 shows that the effects of the commit from world C (p.y← 7)
are not visible in world B (because it has also modified p.y). However, if yet another
world that is sprouted from A changes the value of p.x and then commits, as shown
below,

D = A.sprout();
in D {
p.x = 5;

}
D.commit();
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Fig. 3. The state of the “universe” shown in Figure 2 after a commit from world D (not pictured)

the new value of p.x becomes visible not only in A, because it is D’s parent, but also
in B and C, since neither of them has read or modified p.x. (See Figure 3.) This is safe
because up to this point:

– neither B nor C has read the old value of p.x, so they will not be able to tell that it
has changed, and

– whatever writes have already been done in B and C (assuming the program is cor-
rect) are guaranteed not to depend on the value of p.x—otherwise p.x would have
been read in those worlds.

Preserving Consistency. Note that the “no surprises” property does not prevent the
state of a parent world from changing as a result of commits from its children—after
all, the sole purpose of the commit operation is to change the state of the parent world.
But not all such changes are safe: certain kinds of changes could leave the parent world
in an inconsistent state. This is why the commit operation of worlds, like its counterpart
in transaction-processing systems, is guarded by a serializability check.

A commit from wchild to wparent is only allowed to happen if, at commit-time, all of
the variables (or slots, memory locations, etc.) that were read in wchild have the same
values in wparent as they did when they were first read by wchild . If this is not the case,
some of the assignments that were made in wchild may have been based on values that
are now out of date. A commit that fails the serializability check is aborted, leaving both
child and parent worlds unchanged, and throws a CommitFailed exception.

Section 5 describes the implementation of the commit operation, including the seri-
alizability check described here.

3 Worlds by Example

The following examples illustrate some of the applications of worlds. Other obvious
applications (not discussed here) include sand-boxing and heuristic search.
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3.1 Better Support for Exceptions

In languages that support exception-handling mechanisms (e.g., the try/catch state-
ment), a piece of code is said to be exception-safe if it guarantees not to leave the
program in an inconsistent state when an exception is thrown. Writing exception-safe
code is a tall order, as we illustrate with the following example:

try {
for (var idx = 0; idx < xs.length; idx++)

xs[idx].update();
} catch (e) {
// ...

}

Our intent is to update every element of xs, an array. The problem is that if one of the
calls to update throws an exception, some (but not all) of xs’ elements will have been
updated. So in the catch block, the program should restore xs to its previous consistent
state, in which none of its elements was updated.

One way to do this might be to make a copy of every element of the array before
entering the loop, and in the catch block, restore the successfully-updated elements to
their previous state. In general, however, this is not sufficient since update may also
have modified global variables and other objects on the heap. Writing truly exception-
safe code is difficult and error-prone.

Versioning exceptions [23] offer a solution to this problem by giving try/catch
statements a transaction-like semantics: if an exception is thrown, all of the side effects
resulting from the incomplete execution of the try block are automatically rolled back
before the catch block is executed. In a programming language that supports worlds
and a traditional (non-versioning) try/catch statement, the semantics of versioning
exceptions can be implemented as a design pattern. We illustrate this pattern with a
rewrite of the previous example:

try {
in thisWorld.sprout() {

for (var idx = 0; idx < xs.length; idx++)
xs[idx].update();

thisWorld.commit();
}

} catch (e) {
// no clean-up required!

}

Note that the statements of the original try block are now evaluated in a new world
that will capture their side effects. Note also that inside the in statement, the pseudo-
variable thisWorld refers to this new world, and not its parent world. Therefore,
if the loop terminates normally (i.e., without throwing an exception), the statement
thisWorld.commit(); will propagate the side effects to the parent world. On the other
hand, if an exception is thrown, control will pass to the catch block before the commit
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operation is executed, and thus the side effects will be discarded. (In fact, the new world
will eventually be garbage-collected, since it is not referenced by any variables.)

3.2 Undo for Applications

We can think of the “automatic clean-up” supported by versioning exceptions as a kind
of one-level undo. In the last example, we implemented this by capturing the side effects
of the try block—the operation we may need to undo—in a new world. The same
idea can be used as the basis of a framework that makes it easy for programmers to
implement applications that support multi-level undo.

Applications built using this framework are objects that support two operations:
perform and undo. Clients use the perform operation to issue commands to the ap-
plication, and the undo operation to restore the application to its previous state (i.e., the
state it was in before the last command was performed). The example below illustrates
how a client might interact with a counter application that supports the commands inc,
dec, and getCount, for incrementing, decrementing, and retrieving the counter’s value,
respectively. (The counter’s value is initially zero.)

counter.perform(’inc’);
counter.perform(’inc’);
counter.perform(’dec’);
counter.undo(); // undo ’dec’
print(counter.perform(’getCount’)); // outputs ’2’

The interesting thing about our framework is that it allows programmers to imple-
ment applications that support multi-level undo for free, i.e., without having to use
error-prone idioms such as the command design pattern [13]. The implementation of
the counter application—or rather, a factory of counters—is shown below:

makeCounter = function() {
var app = new Application();
var count = 0;
app.inc = function() { count++; };
app.dec = function() { count--; };
app.getCount = function() { return count; };
return app;

};

Note that the counter application is an instance of the Application class.
Application is our framework; in other words, it is where all of the undo functionality
is implemented. Its source code is shown in Figure 4.

The state of the application is always accessed in a world that “belongs” to the
application. When the application is instantiated, it has only one world. Each time a
client issues a command to the application via its perform operation, the method that
corresponds to that command (the one with the same name as the command) is invoked
in a new world. This new world is sprouted from the world that holds the previous
version of the application’s state (i.e., the one in which the last command was executed).



186 A. Warth et al.

Application = function() { };
Application.prototype = {
worlds: [thisWorld],
perform: function(command) {
var w = this.worlds.last().sprout();
this.worlds.push(w);
in w { return this[command](); }

},
undo: function() {
if (this.worlds.length > 0)
this.worlds.pop();

},
flattenHistory: function() {
while (this.worlds.length > 1) {
var w = this.worlds.pop();
w.commit();

}
}

};

Fig. 4. A framework for building applications that support multi-level undo

The undo operation simply discards the world in which the last command was exe-
cuted, effectively returning the application to its previous state. Lastly, the (optional)
flattenHistory operation coalesces the state of the application into a single world,
which prevents clients from undoing past the current state of the application.

Note that the application’s public interface (the perform and undo methods) essen-
tially models the way in which web browsers interact with online applications, so this
technique could be used in a web application framework like Seaside [8].

Our Worlds/Squeak image includes a text editor implementation that supports multi-
level undo using the idiom described in this section. It is available for download at
http://www.tinlizzie.org/˜awarth/worlds.

3.3 Extension Methods in JavaScript

In JavaScript, functions and methods are “declared” by assigning into properties. For
example,

Number.prototype.fact = function() {
if (this == 0)

return 1;
else

return this * (this - 1).fact();
};

adds the factorial method to the Number prototype. Similarly,

inc = function(x) { return x + 1 };

declares a function called inc. (The left-hand side of the assignment above is actually
shorthand for window.inc, where window is bound to JavaScript’s global object.)

http://www.tinlizzie.org/~awarth/worlds
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JavaScript does not support modules, which makes it difficult, sometimes even im-
possible for programmers to control the scope of declarations. But JavaScript’s declara-
tions are really side effects, and worlds enable programmers to control the scope of side
effects. We believe that worlds could serve as the basis of a powerful module system
for JavaScript, and have already begun experimenting with this idea.

Take extension methods, for example. In dynamic languages such as JavaScript,
Smalltalk, and Ruby, it is common for programmers to extend existing objects/classes
(e.g., the Number prototype in JavaScript) with new methods that support the needs of
their particular application. This practice is informally known as monkey-patching [4].
Monkey-patching is generally frowned upon because, in addition to polluting the in-
terfaces of the objects involved, it makes programs vulnerable to name clashes that
are impossible to anticipate. Certain module systems, including those of MultiJava [6]
and eJava [33], eliminate these problems by allowing programmers to declare lexically-
scoped extension methods. These must be explicitly imported by the parts of an appli-
cation that wish to use them, and are invisible to the rest of the application.

The following example shows that worlds can be used to support this form of mod-
ularity:

ourModule = thisWorld.sprout();
in ourModule {
Number.prototype.fact = function() { ... };

}

The factorial method defined above can only be used inside ourModule, e.g.,

in ourModule {
print((5).fact());

}

and therefore does not interfere with other parts of the program.
This idiom can also be used to support local rebinding, a feature found in some

module systems [3,2,7] that enables programmers to locally replace the definitions of
existing methods. As an example, we can change the behavior of Number’s toString
method only when used inside ourModule:

in ourModule {
numberToEnglish = function(n) { ... };
Number.prototype.toString = function() {

return numberToEnglish(this);
};

}

and now the output generated by

arr = [1, 2, 3];
print(arr.toString());
in ourModule {
print(arr.toString());

}
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is

[1, 2, 3]
[one, two, three]

A more detailed discussion of how worlds can be used to implement a module system
for JavaScript, including a variation of the idiom described above that supports side-
effectful extension methods, can be found in the first author’s Ph.D. dissertation [31].

4 Property Lookup Semantics

This section formally describes the semantics of property lookup in Worlds/JS, which
is a natural generalization of property lookup in JavaScript. We do not formalize the
semantics of field lookup in Worlds/Squeak, since it is just a special case of the former
in which all prototype chains have length 1 (i.e., there is no delegation).

4.1 Property Lookup in JavaScript

JavaScript’s object model is based on single delegation, which means that every object
inherits (and may also override) the properties of its “parent” object. The only exception
to this rule is Object.prototype (the ancestor of all objects), which is the root of
JavaScript’s delegation hierarchy and therefore does not delegate to any other object.

The semantics of property lookup in JavaScript can be formalized using the follow-
ing two primitive operations:

(i) getOwnProperty(x, p), which looks up property p in object x without looking up
the delegation chain. More specifically, the value of getOwnProperty(x, p) is

– v, if x has a property p that is not inherited from another object, and whose
value is v, and

– the special value none, otherwise;
(ii) parent(x), which evaluates to

– y, the object to which x delegates, or
– the special value none, if x does not delegate to any other object.

and the following set of inference rules:

getOwnProperty(x, p) = v
v �= none

lookup(x, p) = v
(JS-LOOKUP-OWN)

getOwnProperty(x, p) = none
parent(x) = none

lookup(x, p) = none
(JS-LOOKUP-ROOT)

getOwnProperty(x, p) = none
parent(x) = y

y �= none
lookup(y, p) = v

lookup(x, p) = v
(JS-LOOKUP-CHILD)
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4.2 Property Lookup in Worlds/JS

In Worlds/JS, property lookup is always done in the context of a world. And since it
may be that an object x has a property p in some world w but not in another, the prim-
itive operation getOwnProperty(x, p) must be replaced by a new primitive operation,
getOwnPropertyInWorld(x, p,w).

Another primitive operation we will need in order to formalize the semantics of prop-
erty lookup in Worlds/JS is parentWorld(w), which yields w’s parent, or the special
value none, if w is the top-level world.

Using these two new primitive operations, we can define a new operation,
getOwnProperty(x, p,w), which yields the value of x’s p property in world w, or (if
x.p is not defined in w) in w’s closest ancestor:

getOwnPropertyInWorld(x, p,w) = v
v �= none

getOwnProperty(x, p,w) = v
(WJS-GETOWNPROPERTY-OWN)

getOwnPropertyInWorld(x, p,w) = none
parentWorld(w) = none

getOwnProperty(x, p,w) = none
(WJS-GETOWNPROPERTY-ROOT)

getOwnPropertyInWorld(x, p,w1) = none
parentWorld(w1) = w2

w2 �= none
getOwnProperty(x, p,w2) = v

getOwnProperty(x, p,w1) = v
(WJS-GETOWNPROPERTY-CHILD)

And finally, using the worlds-friendly variant of getOwnProperty defined above, the
inference rules that formalize the semantics of lookup in Worlds/JS can be written as
follows:

getOwnProperty(x, p,w) = v
v �= none

lookup(x, p,w) = v
(WJS-LOOKUP-OWN)

getOwnProperty(x, p,w) = none
parent(x) = none

lookup(x, p,w) = none
(WJS-LOOKUP-ROOT)

getOwnProperty(x, p,w) = none
parent(x) = y

y �= none
lookup(y, p,w) = v

lookup(x, p,w) = v
(WJS-LOOKUP-CHILD)
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Fig. 5. The property lookup order used when evaluating x′′.p in world w′′ (the notation Δx,w

represents the properties of x that were modified in w)

Note that these rules closely mirror those that describe the semantics of lookup in
JavaScript—the only difference is that getOwnProperty and lookup now each take a
world as an additional argument.

Figure 5 illustrates the property lookup order that results from the algorithm de-
scribed above. The solid vertical lines in the diagram indicate delegates-to relationships
(e.g., object x′ delegates to x), whereas the solid horizontal lines indicate is-child-of re-
lationships (e.g., world w′ is a child of w). Note that the chain of worlds gets precedence
over the object delegation chain; in other words, any relevant “version” of an object may
override the properties of the object to which it delegates. This lookup order preserves
JavaScript’s copy-on-write delegation semantics, i.e., if a delegates to b, and then we
assign into a’s p property, subsequent changes to b’s p property will not affect a. So
no matter what world a statement is executed in—whether it is the top-level world, or
a world that sprouted from another world—it will behave in exactly the same way as it
would in “vanilla” JavaScript.

5 Implementation

Our Worlds/JS prototype works by translating Worlds/JS programs into JavaScript code
that can be executed directly in a standard web browser, and it is useful for doing “quick
and dirty” experiments. However, JavaScript’s lack of support for weak references re-
quired a costly work-around that makes Worlds/JS unsuitable for larger experiments.

In this section, we describe the implementation strategy used in our more performant
prototype of worlds, which is based on Squeak Smalltalk [16]. (The Worlds/Squeak im-
age, which also includes the case study discussed in Section 6, is available for download
at http://www.tinlizzie.org/˜awarth/worlds.)

5.1 Data Structures

The core of our implementation consists of two classes: WObject, which is the super-
class of all “world-friendly” objects (i.e., objects that exhibit the correct behavior when

http://www.tinlizzie.org/~awarth/worlds
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viewed/modified inside worlds), and WWorld, which represents worlds. The methods
of WObject and its subclasses are automatically instrumented in order to indirect all
instance variable accesses (reads and writes) through the world in which they are being
evaluated.

A WWorld w contains a hash table that, similar to a transaction log, associates
WObjects with

– a reads object, which holds the “old” values of each slot of the WObject when it
was first read in w, or the special Don’tKnow value for each slot that was never read
in w, and

– a writes object, which holds the most recent values of each slot of the WObject, or
the special Don’tKnow value for slots that were never written to in w.

The keys of this hash table are referenced weakly to ensure that the reads and writes
objects associated with a WObject that is no longer referenced by the program will be
garbage collected. Also, reads and writes objects are instantiated lazily, so (for example)
an object that has been read but not written to in a world will have a reads object, but
not a writes object, in that world.

5.2 The Slot Update Operation: (xi ← v)w

To store the value v in x’s ith slot in world w,

1. If w does not already have a writes object for x, create one.
2. Write v into the ith slot of the writes object.

5.3 The Slot Lookup Operation: (xi)w

To retrieve the value stored in x’s ith slot in world w,

1. Let wcurrent = w and ans = unde f ined.
2. If wcurrent has a writes object for x and the value stored in the ith slot of the writes

object is not Don’tKnow, set ans to that value and go to step 5.
3. If wcurrent has a reads object for x and the value stored in the ith slot of the reads

object is not Don’tKnow, set ans to that value and go to step 5. (This step ensures
the “no surprises” property, i.e., that a slot value does not appear to change sponta-
neously in w when it is updated in one of w’s ancestors.)

4. Otherwise, set wcurrent to wcurrent ’s parent, and go to step 2.
5. If w does not already have a reads object for x, create one.
6. If the value stored in the ith slot of the reads object is Don’tKnow, write ans into

that slot.
7. Return ans.

Note that the slots of a new WObject are always initialized with nils in the top-level
world. This mirrors the semantics of object instantiation in Smalltalk and ensures that
lookup always terminates.

(We initially implemented the slot lookup operation in Smalltalk, but later re-
implemented it as a primitive, which resulted in a significant performance improvement.
See Section 6.3 for details.)
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Fig. 6. A successful commit

5.4 Reads and Writes in the Top-Level World

The top-level world has no need for reads objects, since it has no parent world to commit
to. This gave us an idea: if we made every WObject be its own writes object in the top-
level world, there would be no need for a hash table. This optimization minimizes the
overhead of using WObjects in the top-level world—after all, the slot update and lookup
operations can manipulate the WObject directly, without the additional cost of a hash
table lookup.

5.5 The Commit Operation

To commit the side effects captured in world wchild to its parent, wparent ,

1. Serializability check: for all xi = v in each of wchild’s reads objects, make sure that
either v = Don’tKnow or the current value of xi in wparent is equal to v. (Otherwise,
throw a CommitFailed exception.)

2. Propagate all of the information in wchild’s writes objects to wparent’s writes objects,
overriding the values of any slots that have already been assigned into in wparent .

3. Propagate all of the information in wchild’s reads objects to wparent’s reads objects,
except for the slots that have already been read from in wparent . (This step ensures
that the serializability check associated with a later commit from wparent will protect
the consistency of its own parent.)

4. Clear wchild’s hash table.

Note that in step 2, new writes objects must be created for any objects that were written
to in wchild , but not in wparent . Similarly, in step 3, new reads objects must be created
for any objects that were read from in wchild , but not in wparent (unless wparent is the
top-level world, which, as discussed in Section 5.4, has no need for reads objects).
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Fig. 7. A failed commit

5.6 Pulling It all Together

The Worlds/Squeak code and diagrams in Figures 6 and 7 show these data structures
and operations in action.

In Figure 6 (A), we see a point p1 and a world w that was sprouted from the
top-level world. In (B), we see what happens when we decrement p’s x field in w.
(WWorld>>eval: is equivalent to the in-statement in Worlds/JS.) Note that this step
results in the creation of a hash table entry for p. (Note also that the key used to index
the hash table is p itself—the identity of an object never changes, no matter what world
it’s in.) The old (1) and new (0) values of x are stored in p’s reads and writes objects,
respectively; the question marks denote the Don’tKnow value. In (C), p’s y field is up-
dated in the top-level world with the value 5. Lastly, (D) shows the effects of a commit
on w. The old values stored in the reads objects in the child world (in this case there
is only one, p.x = 1) are compared against the corresponding (current) values in the
parent world. Since these are equal, the changes that were stored in the child world (p.x
← 0) are propagated to the parent world. Note that a successful commit does not cause
the child world to be discarded; it simply clears the information stored in that world so
that it can be used again.

Figure 7 illustrates a slightly different senario. In (B), both x and y are read in order
to compute the new value of x and as a result, both values are recorded in the reads
object. In (C), y is updated in the top-level world. In (D), w tries to commit but fails the
serializability check because the value of y that was recorded in the reads object is dif-
ferent from the current value of y in the top-level world. This results in a CommitFailed
exception, and the commit operation is aborted. Note that (C) and (D) are identical—
a failed commit leaves both the parent and child worlds unchanged. This enables the
programmer to examine (and also extract) potentially useful values in the child world

1 p is an instance of WPoint, which is a subclass of WObject.
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Fig. 8. Our bitmap editor, implemented in Worlds/Squeak, supports tree-undo

using its #eval: method. The programmer may also start anew by sprouting a new
child world.

6 Case Study #1: A Bitmap Editor

To gauge the utility of worlds in practical applications, we have implemented a bitmap
editor that supports a sophisticated tree-undo mechanism. This is an interesting chal-
lenge for worlds because it involves large bitmap objects (∼1M slots per bitmap) that
must not only be manipulated interactively and efficiently, but also passed to Squeak’s
graphics primitives, which do not support worlds.

Applications that support (traditional) linear undo allow users to undo/redo a series
of actions. Tree-undo is a more general model for undo that enables users to create new
“branches” in the edit history and move from freely from branch to branch, which in
turn makes it convenient for different choices/possibilities to be explored concurrently.

Figure 8 shows the Graphical User Interface (GUI) of our bitmap editor. To the
right of the large painting area there are several tool-selecting buttons: three differ-
ent brushes, a bucket fill tool, and a color picker. Below these buttons, in addition to the
self-explanatory “save” and “quit,” there are buttons for managing the undo tree: “new
branch” creates a new branch that stems from the current undo record, and “delete
branch” discards the current branch. Last but not least, to the right of these buttons is a
view of the undo tree in which each thumbnail represents an undo record (the one with
the thick border is the current undo record), and each row of thumbnails represents a
sequence of states in the same branch.

While our bitmap editor (which comprises approximately 300 lines of Lesser-
phic2/Squeak code) is not particularly feature-rich, it is interesting enough to serve
as a benchmark for measuring the performance of Worlds/Squeak.
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6.1 The Implementation of Tree Undo

As illustrated in Section 3.2, the semantics of worlds provides a good basis for imple-
menting the undo mechanism: all we have to do is create a chain of worlds in which
to capture changes to the state of the application. The undo operation, then, involves
merely switching the world from which we view the state of the application. This idiom
gives the application designer complete control over what parts of the application’s state
should be undoable (i.e., what parts are always modified in and viewed from a world in
the undo chain), and the granularity of the undo operation (i.e., how often new worlds,
or “undo records,” are created).

In our bitmap editor, the only piece of application state we chose to make undoable
was the bitmap itself. So whenever the user performs an action that modifies the bitmap,
e.g., a pen stroke, we sprout a new world from the current world, and make the appro-
priate changes to the bitmap in that new world. After drawing three strokes for example,
we are left with a chain of four worlds (the first represents the state of the bitmap before
the first stroke).

Extending this idiom to support tree-undo was straightfoward. To make a new
branch, we simply sprout a new world from the current world, and to delete a branch,
we remove all references to the root of that branch (as a result, its undo records and
their associated worlds will eventually be garbage-collected). Our program must main-
tain undo records, which are data structures that represent the branches of the undo tree,
because a world does not retain a list of its children (after all, this would prevent worlds
from ever being garbage-collected, since every world is a descendant of the top-level
world).

6.2 Bitmap Representation

We wanted our editor to feel “smooth.” A user should, for example, be able to edit a
500×500-pixel bitmap while the screen is updated 30 times per second. This meant that
our application had to sustain 7.5M slot lookup operations per second just to display
the bitmap. Our first (naive) implementation of Worlds/Squeak, in which WObject’s
lookup operation was implemented entirely in Smalltalk, did not meet these require-
ments: while drawing a line on a 2.4 GHz Core Duo computer, we observed a refresh
rate of about 1 fps—far from usable in any reasonable standard.

To increase the performance of our application, we created a variable-length, non-
pointer subclass of WObject called WBitmap. We made WBitmaps structurally identical
to Squeak’s Bitmaps so that the BitBlt primitives could be used to draw on WBitmaps.2

We implemented “write-only” features like line drawing, for example, by passing the
WBitmap’s “delta” to a BitBlt primitive that efficiently mutates it as desired. (By modi-
fying the delta, we ensure that the changes are only visible in the appropriate world.)

We also realized that WObject’s slot lookup method could be implemented as a
Squeak primitive; in fact, we took this idea one step further and implemented a prim-
itive that reads all of the slots of a WObject, and returns a “flattened snapshot” of that
object, as shown in Figure 9. Note that, because all of its state is stored in a single
Squeak object (i.e., in a contiguous block of memory), a flattened WObject can be used

2 Some primitives turned out to have strict type checks that prevented us from using them.
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Fig. 9. The flatten operation

to interface with parts of the system that are not “worlds-aware,” including Squeak’s
graphics system. To flood-fill an area of a WBitmap, for instance, we pass the bitmap’s
delta and a flattened snapshot to a primitive; the flattened object is used for reading
values out of the bitmap, and the delta is used as a target for the writes.

The downside of representing WBitmaps as arrays of “immediate” (i.e., non-pointer)
values is that it makes it impossible for their slots to reference the special Don’tKnow
value that causes lookup to be delegated to the parent world—after all, every 4-byte
value is a valid (ARGB) pixel value. We got around this problem by using the value
“0x00000001” (the darkest, completely transparent blue) as WBitmap’s equivalent of
WObject’s Don’tKnow value. A more general work-around—which would be necessary
for applications that require access to all possible 4-byte values—would be to use an
additional bit array (one bit per slot in the object) whose values indicate whether or not
a slot in a “delta” or “orig” object contains a valid value.

6.3 Benchmarking the Bitmap Editor

After we introduced the flatten primitive, our bitmap editor became really responsive:
while editing a 500×500-pixel bitmap on the same 2.4 GHz Core Duo computer, the
frame rate only drops below 30 once the length of the delegation chain—i.e., the dis-
tance between the current undo record and the root of the undo tree—reaches about 50.
(At this point, a casual user may start to notice a slowdown.)

In order to get a better idea of the performance characteristics of our bitmap edi-
tor (and of our Squeak-based implementation of worlds), we conducted the following
experiment. We started with a 20,000-pixel bitmap, created a chain of worlds, and mea-
sured the time it takes to read all of the slots (pixel values) of the bitmap from the world
at the end of the chain. Looking up a slot’s value requires a traversal of the world chain
until a valid (non-Don’tKnow) value is found, so the “load factor,” i.e., the number of
value-holding slots at each level, dictates the typical length a lookup operation, which
in turn determines the performance of the application.
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Fig. 10. time to flatten a 20,000-slot bitmap

Figure 10 shows the results of this experiment. When the load factor is close to zero,
the lookup primitive must nearly always scan all of the worlds in the chain, and as
a result, time grows linearly with the number of worlds in the chain. When the load
factor is high, e.g., when 50% of the slots are filled randomly at each level, the lookup
primitive only has to inspect a few worlds—two, on average—so the length of the chain
has no measurable effect on the performance of our application.

The “lookup” and “flatten” primitives provide significant performance improve-
ments. Without them, reading every slot of a 500×500-pixel bitmap through a chain
of 1000 worlds takes 27.17 seconds and 137 milliseconds with a load factor of 0.005%
and 50%, respectively. Using the “lookup” primitive to access each slot reduces these
times to 0.36 seconds and 10 milliseconds, respectively. Using the “flatten” primitive
further reduces these times to 0.038 seconds and less than 1 millisecond, respectively.
On average, the use of these primitives improved the performance of our application by
two orders of magnitude.

7 Case Study #2: OMeta + Worlds

Consider the semantics of the ordered choice operator (|) in OMeta [32], or if you
prefer, in Parsing Expression Grammars and Packrat Parsers [11,12]. If a match fails
while the first operand is being evaluated, the parser, or more generally, the matcher
has to backtrack to the appropriate position on the input stream before trying the sec-
ond operand. We can think of this backtracking as a limited kind of undo that is only
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OMeta._or = function() {
var origInput = this.input;
for (var idx = 0;

idx < arguments.length;
idx++) {

try {
this.input = origInput;
return arguments[idx]();

}
catch (f) {

if (f != fail)
throw f;

}

throw fail;
};

OMeta._or = function() {

for (var idx = 0;
idx < arguments.length;
idx++) {

var ok = true;
in thisWorld.sprout() {
try {

return arguments[idx]();
}
catch (f) {

ok = false;
if (f != fail)
throw f;

}
finally {

if (ok)
thisWorld.commit();

}
}

}
throw fail;

};
(A) (B)

Fig. 11. Two different implementations of OMeta’s ordered choice operator

concerned with changes to the matcher’s position on the input stream. Other kinds of
side effects that can be performed by semantic actions—e.g., destructive updates such
as assigning into one of the fields of the matcher object or a global variable—are not un-
done automatically, which means that the programmer must be specially careful when
writing rules with side effects.

To show that worlds can greatly simplify the management of state in backtrack-
ing programming languages like OMeta and Prolog, we have implemented a variant
of OMeta/JS [30] in which the choice operator automatically discards the side effects
of failed alternatives, and similarly, the repetition operator (*) automatically discards
the side effects of the last (unsuccessful) iteration. This was modification straightfor-
ward: since Worlds/JS is a superset of JavaScript—the language in which OMeta/JS
was implemented—all we had to do was redefine the methods that implement the se-
mantics of these two operators.

Figures 11 (A) and (B) show the original and modified implementations of the
ordered choice operator, respectively. Note that the modified implementation sprouts a
new world in which to evaluate each alternative, so that the side effects of failed alter-
natives can be easily discarded. These side effects include the changes to the matcher’s
input stream position, and therefore the code that implemented backtracking in the
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original version (this.input = origInput) is no longer required. Finally, the side ef-
fects of the first successful alternative are committed to the parent world in the finally
block.

Similarly, the alternative implementation of the repetition operator (omitted for
brevity) sprouts a new world in which to try each iteration, so that the effects of the
last (unsuccessful) iteration can be discarded.

And thus, with very little additional complexity, worlds can be used to make the use
of side effects safer and easier to reason about in the presence of backtracking.

8 Related Work

In languages that support Software Transactional Memory (STM) [27,14], every trans-
action that is being executed at a given time has access to its own view of the program
store that can be modified in isolation, without affecting other transactions. Therefore,
like worlds, STM enables multiple versions of the store to co-exist. But whereas the pur-
pose of transactions is to provide a simple model for parallel programming, the goal of
worlds is to provide a clean and flexible mechanism for controlling the scope of side ef-
fects. Unlike transactions, worlds are first-class values and are not tied to any particular
control structure—a world can be stored in a variable to be revisited at a later time. This
novel combination of design properties makes worlds more general (albeit more prim-
itive) than transactions. For example, neither the module system shown in Section 3.3
nor the tree-undo feature presented in Section 6 could be implemented using transac-
tions. Furthermore, in a language that supports threads, it would be straightforward to
implement the semantics of STM using worlds:

executeInNewThread {
in thisWorld.sprout() {

... // statements to run in the transaction
thisWorld.commit();

}
}

(The code above assumes that commits are executed atomically.)
Burckhardt et al.’s recent work on concurrent programming with revisions and isola-

tion types [5] provides a model in which programmers can declare what data they wish
to share between tasks (threads), and execute tasks concurrently by forking and joining
revisions. While a revision’s rjoin operation provides similar functionality to a world’s
commit operation, there are some important differences. For example, unlike rjoin, the
commit operation detects read-write conflicts (these result in a CommitFailed excep-
tion). Also, “revisions do not guarantee serializability . . . but provide a different sort
of isolation guarantee” and the authors “posit that programmers, if given the right ab-
straction, are capable of reasoning about concurrent executions directly.” [5]. While this
may indeed be the case, we believe that serializability (which is supported by worlds)
makes for a much more understandable programming model.

The idea of treating the program store as a first-class value and enabling program-
mers to take snapshots of the store which could be restored at a later time first appeared
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in Johnson and Duggan’s GL programming language [18].This model was later ex-
tended by Morrisett to allow the store to be partitioned into a number of disjoint “sub-
stores” (each with its own set of variables) that could be saved and restored sepa-
rately [22].

The main difference between previous formulations of first-class stores and worlds
lies in the programming model: whereas first-class stores have until now been presented
as a mechanism for manipulating a single store (or multiple partitions of the store, as
is the case with Morrisett’s work) through a save-and-restore interface, worlds enable
multiple versions of the store—several “parallel universes”—to co-exist in the same
program. This makes worlds a better fit for “programming via experiments”, i.e., a
programming style that involves experimenting with multiple alternatives, sometimes
making mistakes that require retraction in order to make fresh starts. (This is difficult to
do in mainstream imperative programming languages, due to the unconstrained nature
of side effects.) It also makes it possible for multiple “experiments” to be carried out in
parallel, which is something we intend to investigate in future work.

Tanter has shown that values that vary depending on the context in which they are ac-
cessed or modified—(implicitly) contextual values—can be used to implement a scoped
assignment construct that enables programmers to control the scope of side effects [29].
Although Tanter’s construct does not support the equivalent of the commit operation on
worlds, it is more general than worlds in the sense that it allows any value to be used as
a context. However, it is not clear whether this additional generality justifies the com-
plexity that it brings to the programming model. For example, while it is straightforward
to modify a group of variables in the context of the current thread (e.g., thread id 382),
or the current user (e.g., awarth), it is difficult to reason about the state of the program
when both contexts are active, since they need not be mutually exclusive. (This is simi-
lar to the semantic ambiguities that are caused by multiple inheritance in object-oriented
languages.)

Smith and Ungar’s Us [28], a predecessor of today’s Context-Oriented Programming
(COP) languages [15], explored the idea that the state and behavior of an object should
be a function of the perspective from which it is being accessed. These perspectives,
known as layers, were very similar to worlds (they were first-class objects that provided
a context in which to evaluate expressions) but did not support the equivalent of the
commit operation.

Worlds enable programmers to enjoy the benefits of Functional Data Structures
(FDSs) [24] without having to plan for them ahead of time. For instance, the example
in Section 3.1 (Better Support for Exceptions) would require whatever data is modified
in the try block to be represented as a FDS, which is inconvenient and potentially very
time-consuming for the programmer. To make matters worse, the try block might call
a function—in this case, the programmer would have to (non-modularly) inspect the
code that implements that function in order to find out what data it may modify so that
she can change it into a FDS. With worlds, none of this is necessary.

Lastly, a number of mechanisms for synchronizing distributed and decentralized sys-
tems (e.g., TeaTime [25,26] and Virtual Time / Time Warp [17]) and optimistic methods
for concurrency control [21] rely on the availability of a rollback (or undo) operation.
As shown in Section 3.2, a programming language that supports worlds greatly sim-



Worlds: Controlling the Scope of Side Effects 201

plifies the implementation of rollbacks, and therefore could be a suitable platform for
building these mechanisms.

9 Conclusions and Future Work

We have introduced worlds, a new language construct that enables programmers to con-
trol the scope of side effects. We have instantiated our notion of worlds in Worlds/JS
and Worlds/Squeak (extensions of JavaScript and Squeak Smalltalk, respectively), for-
malized the semantics of property/field lookup in these languages, and shown that this
construct is useful in a wide range of applications. We have also described the efficient
implementation strategy that was used in our Squeak-based prototype.

We believe that worlds have the potential to provide a tractable programming model
for multi-core architectures. As part of the STEPS project [19,20], we intend to investi-
gate the feasibility of an even more efficient (possibly hardware-based) implementation
of worlds that will enable the kinds of experiments that might validate this claim. For ex-
ample, there are many problems in computer science for which there are several known
algorithms, each with its own set of performance tradeoffs. In general, it is difficult to
tell when one algorithm or optimization should be used over another. Our hardware-
based implementation should make it practical for a program to choose among opti-
mizations simply by sprouting multiple “sibling worlds”—one for each algorithm—and
running all of them in parallel. The first one to complete its task would be allowed to
propagate its results, and the others would be discarded.

Also as part of the STEPS project, we intend to build a multimedia authoring sys-
tem that supports “infinite” undo. Our bitmap editor and text editor (referenced in Sec-
tion 3.2) are two distinct examples of undo, but we hope use worlds to implement a data
model for all media types.

The top-level world’s commit operation, which is currently a no-op, might be an
interesting place to explore the potential synergy between worlds and persistence. For
example, a different implementation of TopLevelWorld>>commit that writes the cur-
rent state of every object in the system to disk (to be retrieved at a later time) could be
the basis of a useful checkpointing mechanism.

One current limitation of worlds is that they only capture the in-memory side effects
that happen inside them. Programmers must therefore be careful when executing code
that includes other kinds of side effects, e.g., sending packets on the network and ob-
taining input from the user. It would be interesting to investigate whether some of the
techniques used in reversible debuggers such as EXDAMS [1] and IGOR [10] could
be used to ensure that, for example, when two sibling worlds read a character from the
console, they get the same result.
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Abstract. It is considered good software design practice to organize
source code into modules and to favour within-module connections (cohe-
sion) over between-module connections (coupling), leading to the
oft-repeated maxim ”low coupling/high cohesion”. Prior research into
network theory and its application to software systems has found evi-
dence that many important properties in real software systems exhibit
approximately scale-free structure, including coupling; researchers have
claimed that such scale-free structures are ubiquitous. This implies that
high coupling must be unavoidable, statistically speaking, apparently con-
tradicting standard ideas about software structure. We present a model
that leads to the simple predictions that approximately scale-free struc-
tures ought to arise both for between-module connectivity and overall
connectivity, and not as the result of poor design or optimization short-
cuts. These predictions are borne out by our large-scale empirical study.
Hence we conclude that high coupling is not avoidable—and that this is
in fact quite reasonable.

1 Introduction

We have long heard the maxim of “high cohesion/low coupling” in soft-
ware design. It is generally believed that high coupling—that is, high levels
of between-module connectivity—particularly signals poor design, as it leads
to greater difficulties in modification, comprehension, and parallel develop-
ment [31,2,28,32,38,17]. Unfortunately, while software can be poorly created with
definitely excessive coupling, it is not immediately clear whether high coupling
can be definitively eliminated in all circumstances.

Analysis of complex networks has revealed the presence of (approximately)
scale-free structure in networks from a wide variety of fields [27]. A scale-free
network is one that has a power-law degree distribution [1,3], characterized by
having a majority of nodes involved in few connections and a few nodes involved
in many connections. Roughly speaking, an approximately scale-free distribu-
tion would manifest itself as a straight line on a log–log plot of the connection
degree histogram (i.e., number of connections vs. frequency of nodes). Evidence
suggests that other distributions produce similar network characteristics [19,8]
and that these distributions exist for various relations in procedural and object-
oriented software systems [37,26,24,30,35,4,18,15,17,9,23,6,16,14,36,12]. This set
of distributions are known as heavy-tailed to differentiate the decay character-
istic of their probability mass function from that of typical exponential decay;
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a significant probability of occurrence exists even at several standard deviations
above the mean [8].

While the application of complex networks to the analysis of software has seen
much work, it overlooks a surprising consequence of the observed phenomena:

The presence of any heavy-tailed distribution describing the degree counts
in the connectivity network means that there must be nodes that are
highly coupled, and even nodes that are very highly coupled, relative to
the mean level for each system.

Given the specific distributions observed empirically, highly coupled nodes are
commonplace even in an absolute sense.

This is a paradox. We are all well aware that high coupling is something
to be avoided. Yet, the mechanics of heavy-tailed distributions are such that—
should they be found to be as universal as claimed—high coupling apparently
must be present. Possible immediate explanations present themselves: perhaps
the systems from which the empirical data were collected were poorly designed
and thus the conclusions not indicative of good practice; perhaps the researchers
made some serious mistake in the data collection or analysis, such as not actually
looking at “real” coupling; perhaps we are witnessing an effect from well-known,
practical optimizations; perhaps we have to accept that high coupling is actually
necessary after all.

To resolve this paradox, we begin (in Section 2) by examining the previous
work in network theory, especially as it has been applied to software systems;
we find some weaknesses in the generality of the empirical results and a few
questionable premises and conclusions, but nothing so serious as to resolve the
paradox. Next, we present (in Section 3) a model, based largely on existing ideas,
for why (approximate) scale-free structure should arise in overall connectivity
and thus more specifically in between-module connectivity. These simple predic-
tions are then tested in an empirical study, run against 97 open source software
systems (the Qualitas Corpus [33]) written in the Java programming language,
across granularities ranging from the statement level to the package level. The
design of the study and the experimental apparatus are described in Section 4,
while the results are analyzed in Section 5. Remaining issues and observations
are discussed in Section 6.

This paper makes three contributions: (1) a demonstration that overall con-
nectivity follows a heavy-tailed distribution across the spectrum of granularity
for a large number of open-source systems—regardless of maturity, degree of ac-
tive support, and level of use; (2) a demonstration that between-module connec-
tivity ubiquitously follows a heavy-tailed distribution—and thus highly-coupled
nodes are ubiquitous; and (3) an explanatory model as to why having some areas
of high coupling is consistent with good software design practices.

2 Scale-Free Structure and Its Application to Software

There has been considerable interest in the study of the structure of net-
works [27], due especially to the observation that networks derived from “real”
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phenomena (as opposed to phenomena derived from the simulation of mathe-
matical models) have a degree distribution that follows a power law [1,3,13]. This
is in contrast to networks generated using the algorithmic techniques defined by
Erdős and Rényi, which possess a Poisson degree distribution [11].

2.1 Power-Lawdistributions

In networks that possess a power-law degree distribution, the probability that a
node x has the degree deg(x) is proportional to deg(x)−α where α > 1: i.e.,

p(deg(x)) = C deg(x)−α, (1)

for some normalization constant C chosen to satisfy
∑∞

y=1 C y−α = 1 (because
of the definition of probability mass function). In most power-law distributions
encountered in practice, 2 ≤ α ≤ 3, but this is not always the case [8]. From
such distributions, two key connectivity characteristics emerge:

1. The mean connectivity is low relative to the range because the distribution
is left-skewed. This indicates that most of the nodes in the system have low
connectivity.

2. The range of connectivity has the potential to be several orders of magnitude
greater than the mean, depending on the size of the network. Thus, nodes
will be present that exhibit high degrees of connectivity with respect to the
mean; these nodes will reside in the heavy tail of the distribution.

Networks with a power-law degree distribution are called scale-free [1,3], due to
the fact that they are self-similar at “all” scales.

Transforming Equation 1 to take the logarithms of each side, we arrive at:

log(p(deg(x))) = −α log(deg(x)) + log(C), (2)

which presents itself as a straight line on a log–log plot of deg(x) versus p(deg(x))
(practically, the frequency observed in empirical data). One is thus tempted to
perform a linear regression to the log–log plot to determine the parameters of
the model. Strictly speaking, this is not a statistically valid procedure for a
variety of reasons [8], not least of which is the fact that data drawn from many
different distributions can lead to a roughly straight line on a log–log plot. For
our purposes, it is enough to note that any of these heavy-tailed distributions lead
to an inevitable consequence: the probability is surprisingly large that there exist
data points in the heavy tail that are multiple standard deviations away from
the mean. The lack of such points would actually invalidate the claim that the
data follows a heavy-tailed distribution, as an approximately straight line would
not be observed on the log–log plot.

It is well-observed [8] that, for values below some threshold deg(x) = dmin, the
power law breaks down because there is some minimum natural scale preventing
the behaviour from continuing all the way to 0.
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2.2 Empirical Findings

There have been several investigations into the structure of software systems that
have revealed the presence of power-laws and other heavy-tailed distributions.
Wheeldon and Counsell [37] examined power-laws in the class coupling relation-
ships within 3 industrial systems for the purpose of using power-law distributions
to predict coupling patterns. They examined 5 different class-coupling relation-
ships (inheritance, interface, aggregation, parameter type, and return type) and
concluded that not only does each have a power-law distribution but the relation-
ships are independent of each other. Wheeldon and Counsell do not include cou-
pling as a result of method invocation, and no analysis occurs below the class level.

Myers [26], Marchesi et al. [24], Potanin et al. [30], and Gao et al. [12] observed
power-laws in both the in-degree and out-degree distributions of modules in a
total of 26 different software systems. Baxter et al. [4] examined 56 systems—
many of which are also contained in the Qualitas Corpus [33]—for a large set of
measures including some coupling measures, but considered them independently
from one another. They observed log-normal out-degree distributions, and some
specific coupling measures did not match a heavy-tailed distribution in some
instances, perhaps hinting at a lack of universality. Jing et al. [18] found power-
laws in the measures weighted methods per class (WMC) and coupling between
objects (CBO) for 4 open-source software systems. Concas et al. [9] examined 10
properties of 3 software systems and found those properties to have both Pareto
and log-normal distributions. Ichii et al. [16] examined 4 measures (including
two variants of WMC) on 6 systems, finding that in-degree follows a power law
while out-degree follows some other heavy-tailed distribution. Louridas et al. [23]
found power-laws present in the dependencies of software libraries, applications,
and system calls in the Linux and FreeBSD operating systems and concluded
that power-laws are ubiquitous in software systems.

None of the aforementioned investigations considered software systems at the
level of statements and variables, limiting the generality of the findings. Some
of the investigations did not explicitly plan to investigate coupling. Myers [26]
considered only inheritance and aggregation relationships. Concas et al. [9] fo-
cused mostly on size measures, but did include a count of method invocations
between classes, which they found to conform to a power-law; however, they did
not examine other forms of coupling. Gao et al. [12] considered method–method
interaction, thereby excluding other class-level coupling measures.

Hyland-Wood et al. [15] examined coupling relationships at differing levels of
granularity (package, class, and method level, but not statement level) for 2 sep-
arate open source projects over a 15 month period and concluded that scale-free
properties were present at all levels of analysis for each snapshot although they
note that these properties were approximate in most cases. While demonstrating
the relationship of scale-free structure between differing levels of granularity, this
study’s lowest level of analysis was that of methods.

Vasa et al. [36] noted that many software metrics have a skewed distribution,
which makes the reporting of data using central tendency statistics unreliable.
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To address this, they recommend adopting the use of the Gini coefficient, which
has been used in the field of economics to characterize the relative equality of
distributions. They examined 46 systems on a variety of measures, where two
of the measures are related to coupling (in-degree count and out-degree count).
Their findings appear to mimic the findings of Myers [26] and Gao et al. [12] that
in-degrees and out-degrees have differing distributions. However, their findings
do not address the structure of software at the source code level.

Some of the investigations had confounding factors, which makes them diffi-
cult to directly compare with our investigation. Marchesi et al. [24] examined
classes in Smalltalk systems, but issues of dynamic binding prevented precise
resolution of between-module interactions. To circumvent these issues, depen-
dency relationships that could only be resolved at runtime were approximated
using a weighting function, but it is not clear what effect this transformation
may have had. Potanin et al. [30] investigated object graphs, which are not
directly comparable to class graphs. For example, collection objects may have
large numbers of runtime associations that would not be detectable through
static analysis. Similarly, the number of instances of each class could skew the
total degree distribution as classes with higher numbers of instances would have
greater weight in the analysis. It is not clear that scale-free structure in an object
graph translates to scale-free structure in its corresponding class graph.

Valverde et al. [34] and Jenkins and Kirk [17] note that nodes with large
numbers of dependencies (termed hubs) fall in “the set of bad design practices
known as antipatterns” [20]; they fail to identify that the ubiquitous presence of
heavy-tailed distributions implies the presence of hubs.

2.3 Process Models Leading to Scale-Free Structure

To offer an explanation as to how a power-law could develop, Barabási and
Albert [3] considered the evolution of complex networks as they increased in size
and noted that the preferential attachment model caused scale-free structure to
emerge. In this model, newly added nodes preferentially attach to nodes that
have been in the network the longest time, resulting in a structure where most
nodes have limited connectivity and only the oldest have high connectivity.

Several criticisms of the preferential attachment model have been put forth,
especially as it applies to software systems. Valverde et al. [34] complain that
“no design principle explicitly introduces preferential attachment, nor scaling”,
offering an alternative model based on optimizing designs to minimize the path
length between nodes. Unfortunately, their complaint about design principles is
largely irrelevant since known design principles are rules of thumb and incom-
plete. Furthermore, their evaluation is based on the assumption that the systems
they look at possess optimal designs—because they have been under develop-
ment for a long time. This contradicts Lehman’s Law of Declining Quality [21]
and the community’s general experience.

Myers [26] dismisses preferential attachment because it cannot generate the
hierarchical structures present in software; he suggests that scale-free struc-
ture arises instead from continuous refactoring. But not all software undergoes
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non-trivial refactoring, so either his model is false or we would expect there to
exist software systems that do not exhibit scale-free structure—he analyzed only
6 industrial systems that had been under development for prolonged periods and
hence could be assumed to have undergone at least some refactoring. Keller [19]
points out that many different processes can lead to scale-free structure, and
that in fact, the necessary constraints are quite meagre.

Jenkins and Kirk [17] state “preferential attachment relies on newly added
nodes having prior knowledge of the rest of the network, which seems implausi-
ble, since software is built in pieces from a series of sources using various rules for
design patterns which do not apply to the finished software graph”—a clearly un-
tenable assertion, since the developer must have prior knowledge of the network
in order to select to which parts of it a newly added node should connect.

Chen et al. [6] added a factor to the preferential attachment model that made
it less likely that attachment would happen to a node in another module; they
fail to consider how modules themselves are added, deleted, or refactored within
a system, and they only validate their conclusions against a single (albeit large
and important) system. Li et al. [22] accept the preferential attachment model
wholeheartedly without addressing Myers’s concern that it fails to explain hier-
archical structures; they evaluate their conclusions on two systems.

3 Model

It is generally accepted that dependency between programmatic entities within
a software system has a direct impact on that system’s ease to be changed,
understood, and developed in parallel, and that a key indicator of dependency
is connectivity between entities [31,2,10,28,32,7,5]. In Section 3.1, we examine
background on the interplay between connectivity and evolvability. We use this
background to develop a model, in Section 3.2, for why overall connectivity
should be expected to possess an approximately scale-free structure. Adding
considerations of practical limitations on module sizes leads us to the conclusion
that between-module connectivity should also possess an approximately scale-
free structure—and thus, that highly-coupled entities must exist in any sizeable
system.

3.1 Connectivity and Evolvability

Different theoretical models of the relationship between dependency and evolv-
ability were developed by Simon [31] and Alexander [2] (Alexander used the term
adaption). Simon focused on the structures common to all complex systems while
Alexander focused on the design of systems intended to fit a particular problem.
Both researchers viewed complex systems as sets of “components” (we will use
the term entities or nodes to avoid further overloading the term “component”)
that are organized in a hierarchical structure, which interact in a non-simple
way. Both viewed the evolvability of complex systems as a probabilistic function
based on the interdependency of entities.
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In these models, the evolvability of a system is a function of its stability with
respect to change propagation. To illustrate this point, consider Figure 1(a).
Nodes labelled 1, 2, and 3 share mutual dependency due to their structure of
connectivity. Should one of the nodes change, the probability of that change
propagating through a connection with dependent nodes is determined by a
probability distribution function that could, in principle, be determined empir-
ically. Change propagation may necessitate further change, and so on, thereby
increasing the number of structural modifications, which increases the time nec-
essary for the system to stabilize. Such change propagation is often called a
ripple effect [32,38]. Overall system stability is a function of the probability
of propagation p and the number of pathways through which propagation can
occur.

1

2 3

p pp
4

p
p p

p'

(b)(a)

Fig. 1. Evolvability: (a) change propagation; (b) clustering to minimize propagation

As a system increases in size, the potential for instability caused by ripple
effects also increases. In Figure 1(a), the introduction of node 4 introduces three
potential new pathways through which change propagation may occur. Since
systems require interaction between entities to function, limiting the number of
entities, or limiting their ability to interact, may increase a system’s stability
at the cost of limiting its capabilities. To mitigate the effects of dependency
while allowing a system to increase in size requires the use of modularization.
Figure 1(b) shows entities grouped into two modules. Entities within each one
are free to interact, but interaction between modules is strictly controlled. This
structure increases the overall stability of the system by attempting to contain
ripple effects within module boundaries.

Whether or not modularization mitigates overall change propagation depends
on the probability of propagation between modules (p′ in Figure 1(b)). Alexander
noted that, in a complex system, the strength of connectivity between entities
is not homogeneous [2]. Because of this, he specified that module boundaries be
chosen in a way that places entities for which change propagation is high in the
same module. This structure minimizes the probability of change propagating
between modules.

The principles outlined by Simon and Alexander are echoed in later work
by Dijkstra [10] and by Parnas [28,29]. Parnas compared two software systems
that were written to address the same problem. The key difference between the
systems was not the selection of individual entities, but rather the criteria used
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to construct module boundaries. In the first system, modules were constructed
by identifying key steps in the overall processing, while for the second they
were constructed by using information hiding as the primary criterion. The
modularizations created in the first system resulted in the sharing of variables
between modules. Since the probability of propagation is high between processing
statements and variables, shared variables act as a bridge through which change
propagation flows between modules. Building module boundaries based upon
information hiding, however, encapsulated the interaction between processing
statements and variables within modules, thereby constraining the flow of change
propagation between modules. Parnas argued that the evolvability (along with
the understandability and the ability to construct the modules independently)
was higher in the second system due to the structure of its modules.

Recognizing the effects of between-module interaction on evolvability, Stevens
et al. [32] coined the term coupling. In a modularized system, coupling is defined
as “the measure of strength of association established by a connection from
one module to another” [32, pp. 233]. In Parnas’s example, modularization of
the second system exhibited lower coupling than the first and it was therefore
deemed to be more evolvable.

3.2 Scale-Free Structure in Overall Connectivity

We adopt the preferential attachment model as the starting point for our model,
and initially ignore considerations of constraining the maximum allowable con-
nectivity. Barabási and Albert [3] base the notion of preferential attachment on
an evolutionary process, in which the probability of attachment increases simply
because a node has been in the network longer. We can translate this into more
appropriate selection criteria at play in software development that should result
in the same overall effect. (1) The probability of attachment will be directly pro-
portional to the usefulness of the functionality provided. The general usefulness
of nodes can be expected to vary quite widely; in fact, a node that has proven
generally useful in the past is more likely to be generally useful in the future.
(2) A developer has to be aware of existing functionality to make use of it. The
most commonly used functionality in a system is most likely to be familiar to
that developer, his co-workers from whom he is likely to seek help, or any on-line
documentation or examples he is likely to encounter. (3) A developer is more
likely to use functionality in which he has greater trust, because he or others
have used it a lot in the past, or because it has been actively supported for a
prolonged time and has acquired a reputation for quality.

Two issues might skew empirically-derived distributions. First, below some
minimal scale, insufficient nodes exist for the Law of Large Numbers to hold. Sec-
ond, developers make errors (contrary to the assumptions of Valverde et al. [34]);
a developer might add a spurious connection or fail to add a necessary connec-
tion. Whatever the distribution from which these errors would be drawn, their
probability is necessarily much lower than that of the correct nodes, so the
result would be a noisy scale-free structure. As a result, we arrive at the
following hypothesis:
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Hypothesis 1*: The overall connectivity network of source code enti-
ties for any software system above some minimum size follows an (ap-
proximately) scale-free distribution, when no constraints are externally
applied to the maximum level of overall connectivity.

Now, we must consider the effect of disallowing any entities to be added
to the system with connectivity greater than some value dmax. Imagine that,
through the standard preferential attachment model, we obtain the first entity
e that would normally (in the absence of the constraint) have connectivity of
deg(e) = d > dmax. Simply discarding this e is not an option—it was presumably
to be added to serve a new purpose within the system. Therefore, we must replace
e with some alternative that satisfies the constraint. We can begin by ignoring the
constraint and nevertheless insert e into the network, then transform (refactor)
the network to again support the constraint.

To replace e, two or more other entities ei could take its place, each of which
(at best) would inherit an independent portion of the connections of e; each
of these replacement entities would need at least one connection with another
of the replacement entities but as many as one connection with every of the
replacement entities. Thus, we have deg(e1) = p1d + p̂1n, deg(e2) = p2d + p̂2n,
. . . , deg(en) = pnd+ p̂nn where pi is the fraction of the connections of e inherited
by ei and p̂i is the fraction of the replacement nodes to be connected to ei. If
any of these replacement entities themselves fail to respect the constraint, the
process can recurse. To ensure that this replacement process halts, we can add an
additional, simple constraint: that deg(ei) < deg(e) in all cases; thus, progress
is made at each iteration and eventually the constraint is satisfied.

To determine specifically to which other entities ei will be connected, we can
return to the original principle of preferential attachment. But preferential at-
tachment is known to result in a scale-free structure in the limit of long time
(equivalently, large number of network evolution steps). Thus for any arbitrary
dmax and the simple requirement for progress at each replacement step, a con-
nectivity network with a constraint on its maximum degree will also result in a
(different) scale-free structure. Thus we can revise Hypothesis 1* to eliminate
the clause regarding maximum connectivity not being constrained:

Hypothesis 1: The overall connectivity network of source code entities
for any software system above some minimum size follows an (approxi-
mately) scale-free distribution.

If “high coupling” is defined in terms of number of standard deviations away
from the mean, there will thus remain highly coupled entities (ignoring the ques-
tion of between-module versus within-module connectivity for the moment) after
the replacement process—even though the maximum absolute coupling level will
have been reduced. However, presumably any arbitrary dmax ≥ 1 is achievable,
and at some point, dmax would be considered “low enough” for practical pur-
poses; thus, “high coupling” would not be universal according to a more absolute
definition. The question then becomes: are there other negative consequences of
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the replacement process that would tend to prevent an arbitrarily low dmax from
being achieved? If so, high coupling would remain, even when defined in absolute
terms.

To address this question, consider inlinks (inbound connections) and outlinks
(outbound connections) for all source code entities. In general, outlinking is
constrained to be reasonably small. For example, class declarations have few
direct superclasses and directly implement few interfaces. Variables are of a single
type (or few types in the case of generics) and individual statements tend to be
limited to the number of variable access or method invocations due to practical
issues, such as style guidelines and the difficulty of reading statements that
extend beyond a programmer’s screen width. Method declarations have practical
limits on the number of return types, the number of parameters, and the number
of exceptions that can be thrown by the method. There is, however, no constraint
on the number of inlinks that can be made to an entity that has a name within
a defined scope. Classes can be used in any number of variable declarations and
methods can be invoked from any number of statements. Variables, too, can
be used in a variety of different contexts although they will tend to be limited
to a stricter scope than that of classes and methods. For these reasons, high
connectivity is largely due to inlinks.

A source code entity that exhibits high connectivity is thus likely to do so
because of its utilization in multiple contexts. Indeed, use in multiple contexts
is a direct side effect of hierarchical structure. Consider a source code entity e
such that deg(e) > dmax and for which the number of connections is largely due
to inlinking. To replace e by two or more entities (ei) in an attempt to satisfy
deg(ei) ≤ dmax would require that all the replacement nodes ei provide the same
utility as e. This suggests the introduction of code clones, which is considered
to be poor design. The ability to reuse source code entities suggests that an
arbitrarily low dmax cannot be practically achieved.

3.3 Scale-Free Structure in Between-Module Connectivity

We still have to deal with Myers’s concern about preferential attachment being
an unsuitable model for software evolution because it does not generate hier-
archical structures [26]. While hierarchical structure does not emerge from the
preferential attachment model, Myers’s analysis does not consider a variation on
preferential attachment for which hierarchy is imposed by some external means
(such as programming language grammar). As new nodes are added to the net-
work, they will minimally link to a parent node. The programming language
syntax and semantics impose constraints on which nodes may act as an accept-
able parent based on the type of the node being added. For example, the Java
programming language only allows method declarations to be placed within the
source code graph as children of a class declaration. This constrains node linkages
in a preferential manner, although the preferential probability function differs
from that defined in the preferential attachment model [6].
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A final question remains: is it reasonable to consider that scale-free structure
for overall connectivity necessarily leads to high coupling? Consider the models
of Alexander [2] and Simon [31], discussed in Section 3.1. A primary function of
modularization is to minimize propagation of change between modules, and to
this end, propagation of change within a module can be ignored if the module
stabilizes quickly. Module stabilization time is largely affected by limiting module
size. Having fewer entities within a module reduces the number of pathways
through which change propagation can occur, thereby resulting in pressure to
limit the size of modules.

For any source code entity that exhibits high connectivity its links will resolve
to other entities contained either in the same module or a different module. If
they are resolved within a module, this implies that there are enough entities
within the module with which resolution can occur, and that suggests a large
module if connectivity is high. Since there is pressure to limit the size of mod-
ules, this suggests that high connectivity of source code components is resolved
between modules, which represents a form of high coupling. Thus we arrive at:

Hypothesis 2*: The between-module connectivity network of source
code entities follows a heavy-tailed distribution.

But the same replacement process can be applied to between-module con-
nectivity as was for overall connectivity, with the same constraints. Thus, while
between-module connectivity can be reduced, it cannot be practically reduced
beyond some minimum level. We can therefore adjust Hypothesis 2*:

Hypothesis 2: The between-module connectivity network of source
code entities follows a heavy-tailed distribution, and the degree of left
skewness has some maximum level.

Hypothesis 2 (if supported) implies that highly-coupled entities must exist for a
sizeable system, even when considered in absolute rather than relative terms.

4 Empirical Study

This study comprises an empirical investigation of source code connectivity as
observed in practice. The empirical data comes from the Qualitas Corpus [33], a
collection of 100 independent open-source software systems written in the Java
programming language. The corpus contains at least one version of each indepen-
dent system, and for some systems multiple versions are present. Since different
versions of the same software are not independent, our study only includes one
version of each system, specifically the latest one within the corpus, resulting
in 100 systems available for study. For three of the systems (eclipse SDK-3.3.2-
win32, myfaces core-1.2.0, and jre-1.5.0 14-linux-i586), source code was absent
from the corpus and thus discarded from the examination set, leaving 97 systems
for investigation.

Table 1 provides a truncated view of the systems examined. For each one,
counts are reported for: source code entities, connections between entities, mod-
ules, classes, methods, statements, and variables. Source code entities include
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Table 1. Structural measures of the systems that were examined. “Nod” = nodes;
“Cnx” = connections; “Mod” = modules; “Cls” = classes; “Mth” = methods; “Blk”
= blocks; “Sta” = statements; “Var” = variables

# Name/Version Nod Cnx Mod Cls Mth Blk Sta Var

1 derby-10.1.1.0 318831 809952 135 1805 25067 56357 160555 74910
2 gt2-2.2-rc3 256838 651522 219 3453 26347 52556 106738 67523
3 weka-3.5.8 248704 682151 91 2019 19169 47561 124152 55710
4 jtopen-4.9 230394 593240 18 1940 20559 42206 112259 53410
5 tomcat-5.5.17 177249 433523 149 1777 17152 36247 80214 41708
6 compiere-250d 155379 388859 43 1260 18128 25458 73472 37016

92 jmoney-0.4.4 6310 17618 6 193 713 996 2989 1411
93 nekohtml-0.9.5 6606 17153 7 54 422 1453 2887 1781
94 jchempaint-2.0.12 5757 15844 8 125 419 1146 2696 1361
95 jasml-0.10 5482 15419 8 53 256 895 3011 1257
96 fitjava-1.1 3862 10296 5 96 462 786 1564 947
97 picocontainer-1.3 3771 9117 5 99 540 842 1155 1128

modules, classes, method declarations, blocks, statements, and variables; each
is modelled as a node within a directed graph. Connections between source
code entities are modelled as links between nodes; these include parent/child
relationships, method invocations, superclass/subclass relationships, superinter-
faces, type usage, variable usage, and polymorphic relationships. The systems
shown in Table 1 are sorted in descending order by node count; only the top and
bottom six systems are presented.

4.1 Graph-Based Source Code Representation

The basis of our analysis is a directed graph representation of source code, where
nodes represent source code entities (packages, classes, methods, blocks, state-
ments, and variables), and links (directed arcs) represent connections between
entities (hierarchical containment, method invocation, superclass, implementa-
tion, type, variable usage, and method overriding). Figure 2 shows the meta-
model used in this investigation, similar to that of Mens and Lanza [25].

Our model differs mostly in terms of the level of details provided (Mens and
Lanza’s metamodel is language-independent and was simplified for readability);
however, there are three key structural differences. (1) Our model explicitly de-
fines package and block entities, which are implicit in Mens and Lanza’s model.
Our reasoning for inclusion of these structural features is that they are impor-
tant means of structuring in practice, and they could have a significant effect on
the connectivity network. (2) Our model is more explicit about containment and
hierarchical structure. For example, classes can contain other classes and state-
ments can contain other statements or blocks (such as the code to be executed
as part of a loop). This kind of containment definition is particularly relevant
in terms of variable declarations. Our model allows for explicit containment
of variables within classes/interfaces (as class and instance variables), method
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Fig. 2. Metamodel applied in our analysis

declarations (as parameters), blocks (as scope-limited variables), and statements
(e.g., a for-loop counter), where the Mens and Lanza model appears to be focused
exclusively on instance variables. (3) Our model supports relationships that do
not exist in Mens and Lanza’s model. For example, variables have a type (which
in our model is represented as a relationship between the variable declaration
entity and the associated type entity) and methods have a return type and can
specify exceptions that can be thrown from within the method’s body. Method
invocation is represented as a relationship between a statement and the target
method declaration, whereas the Mens and Lanza model represents invocation
as an entity contained within a method.

To illustrate the use of this metamodel, we provide a Java source example
(Figure 3) and the resulting directed graph (Figure 4). In Figure 4, different
node categories are illustrated as different shapes and link categories are shown
using different colour and line styles. To improve readability, some relationships
shown in the metamodel are excluded from the example (specifically “extends”,
“implements”, “throws”, and “overrides”). The example source code contains two
class definitions (X and Y), which are represented as Type nodes in the graph,
and each class is located within separate packages, p1, and p2. The code con-
tains several references to int, a primitive data type in Java. The code contains
three method declarations—m1(), getVar2(), and getValue()—the first two being
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package p1;
public class X {

private Y var1;
private int var2 ;
public int m1() {

int temp;
temp = var1.getValue() + getVar2();
return temp;

}
private int getVar2() {

return var2 ;
}

}

package p2;
public class Y {

public int getValue() { ... }
}

Fig. 3. Sample Java source code listing

defined within class X and the last within class Y. To simplify this example, the
implementation is provided for only two of the methods.

The hierarchical structure1 of the source code is maintained through Parent
links. Child nodes connect to their parent source code entities, and each node
can only have one hierarchical parent. For example, class X is in package p1, and
method m1() is defined within class X. Specification of type (as is seen in vari-
able declaration and method return type specifications) is represented as a link
from the specifying node to the type declaration node. In the example, instance
variable var1 (contained in class X) has a reference to class Y, creating a link
between node var1 and node Y. Similarly, each of the methods are declared to
have an int return type, so there is a link from each method to the node repre-
senting the int type. There are two method invocations, which are represented
as links between the calling statement node and the called method declaration
node. Finally, uses of variables (var1, var2 and temp) are represented as links
between the using statement and the used variable declaration node.

This structure is constructed through the standard parser of the Eclipse in-
tegrated development environment.2 The Eclipse parser is robust to all versions
of the Java programming language and because it is used in both industrial-
strength toolsets and research environments, it provides a reasonable basis
upon which we conduct this investigation. The abstract syntax tree (AST) for
each compilation unit in a given system is constructed using the parser. The
hierarchical relationships in the resulting directed graph are derived from the

1 Note that, in this context, “hierarchical” refers to the syntactic hierarchy, and should
not be confused with the type hierarchy.

2 http://www.eclipse.org

http://www.eclipse.org
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Fig. 4. Directed graph of the sample source code

hierarchical structure of the AST. Each compilation unit is inserted into the
hierarchy, according to package definition, under a root node that represents
the whole system. The remaining links are derived from the semantic informa-
tion contained in the AST. In the case of type relationships, the Eclipse parser
provides the fully qualified name of all resolved types, which is used to resolve
the target node within the directed graph (the source node is implicit to the
context of the type relationship). In the case of method invocations, special care
is needed to correctly resolve overloaded methods as the fully-qualified names
for overloaded methods are the same. To resolve this ambiguity, we extract the
fully qualified name as well as the declared method’s signature for each method
declaration (which are guaranteed to be unique within the containing class).
This signature is used in conjunction with the method’s fully qualified name
to resolve to the correct method declaration node. Finally, the Eclipse parser
cannot provide a fully qualified name for variables that are embedded within
blocks because blocks do not provide a namespace for contained variables. How-
ever, because the hierarchical structure of the source code is preserved in our
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directed-graph representation, the scope of any node can be computed. In the
case of variable accesses for which the parser has not provided a fully qualified
name, the scope of the accessing node is computed and the variable in question
is resolved within that scope by unqualified name.

We consider package declarations, class and interface declarations, method
declarations, variable declarations, blocks, and statements as the base units of
analysis. The form of other substructures, such as expressions and subexpres-
sions, are highly constrained by the syntax of the language, rather than necessar-
ily taking on a form that arises more naturally; thus, we ignore them for the sake
of this analysis. To eliminate subexpressions from the data structure, all links for
each subexpression are collapsed into the nearest non-expression ancestor node
within the structure. For example, the statement return x * y; is represented
by four nodes in the AST: the return statement, the multiplication expression,
and the two variable references. Nodes x and y have links to the associated vari-
able declaration nodes and the node representing the multiplication has no links
(other than hierarchical containment ones). The relationships between x and y
and their respective variable declarations are collapsed into the return statement.
Once all subexpression relationships are resolved and collapsed, subexpression
nodes are removed from the data structure.

Embedded within the source code structure are polymorphic relationships
that are not explicitly identified by the compiler. Specifically, polymorphic
method invocation is resolved at runtime: it is a dependency relationship that
is implicit within the inheritance structure defined by superclass and subclass
relationships. To make this relationship explicit, all overriding method declara-
tions are identified and a link is added between each declaration and all ancestor
method declarations in the class and interface hierarchy that have the identi-
cal signature. The Java programming language allows for single inheritance of
classes but implementation of interfaces, which is supported by our toolset.

Virtually all software systems contain references to externally defined entities
(e.g., libraries and programming language types). Since external entities are not
part of the system under investigation, they are not considered in the analy-
sis. However, proxy nodes that represent external entities are included in the
analytic structure to act as placeholders, thereby allowing consideration of the
connections between internal and external entities. For example, variables of
type int possess a link to an int type declaration node even though the int type
is external to the software system.

4.2 Identification of Within-Module and Between-Module Links

In object-oriented programming, the key module in a software design is the ob-
ject, and objects are represented in source code by their classification (class).
For the purposes of this analysis, we consider class to be the defining aspect of
modular boundaries; alternatives are both possible and desirable targets for anal-
ysis, which we discuss further in Section 6. Identification of within-module and
between module links is a matter of identifying links that cross class boundaries.
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Fig. 5. Identifying within-module and between-module dependency

Encapsulated within the analytic structure are the hierarchical relationships
for each entity in a software system. Within-module links are those for which
both its associated source and target nodes share a common class in their hier-
archical ancestry. Figure 5 illustrates examples of within-module and between-
module links.

Hierarchical relationships introduce a confounding factor into our analysis.
These links do not define relationships of direct interaction and because they
are overwhelmingly within-module, their inclusion as part of the analysis will
skew any comparison in that direction. For this reason, hierarchical links are
used to identify structural boundaries that are relevant to the analysis but are
not included as part of the computation of degree distributions.

Heavy-tailed distributions are then identified and fit to a power-law model via
the informal procedure described in Section 2.1.

5 Analysis

To test Hypothesis 1, the degree distribution for all systems is computed and, in
accordance with Section 4.2, hierarchical links are eliminated from the analysis.
To test Hypothesis 2, we compute the degree distribution for all systems excluding
hierarchical and within-module links. Between-module links are identified using
the approach outlined in Section 4.2: links are between-module if their source node
and target node do not share the same class in their hierarchical ancestry.

All nodes that have a degree of zero (such as those whose sole dependency is
through hierarchical relationships) are removed from the analysis. The resulting
distributions are plotted using a log–log scale; the full set is available elsewhere.3

5.1 Overall Connectivity

For the purposes of discussion, three example plots are chosen based on system
size (total node count). The example systems are derby-10.1.1.0, jung-1.7.6, and
picocontainer-1.3, which represent the largest, median, and smallest systems,
respectively. Figure 6 shows these distributions on a single plot. The similarity
in shape is striking: we observe a positive slope between the first two data points,
3 http://hdl.handle.net/10289/5307

http://hdl.handle.net/10289/5307


Can We Avoid High Coupling? 221

Fig. 6. Distribution of overall connectivity for the example systems

Fig. 7. Mean degree versus maximum degree

followed by a linear negative trend. Note that each of the distributions is noisy
at the right end of the distribution, which is expected because they are produced
from discrete data points and naturally have fewer points exhibiting high values.

All the plots exhibit characteristics of heavy-tailed distributions. They are
left skewed and have a total range that is at least an order of magnitude larger
than the mean. The mean degree for each example system is also shown on
Figure 6. To demonstrate this for all systems, the mean and maximum degrees
of each system are computed and plotted with a logarithmically-scaled y-axis in
Figure 7, and the systems are sorted by descending order of maximum degree.
The mean degree over all systems remains relatively constant, while the maxi-
mum is roughly between 10 and 1000 times the mean for all systems.

Further observation of the distributions in Figure 6 reveals clear differentiation
of the three systems except to the right where the distributions are noisy. This is
consistent with the expectations of a power-law distribution (Equation 1). The
probability of a node with a high degree decreases proportionally to the degree;
therefore, given a fixed α, the number of nodes with higher degrees increases for
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systems that have more nodes. Based on these observations, we conclude that
Hypothesis 1 is satisfied: overall connectivity for source code entities follows a
heavy-tailed distribution for all systems within the corpus.

5.2 Between-Module Connectivity

The between-module distributions for the three example systems are shown in
Figure 8. The between-module distributions show the overall coupling present
in each system.

Fig. 8. Degree distributions for the sample systems (between-module only)

Figure 8 demonstrates that the between-module connectivity distributions are
similar in shape to those computed to show overall connectivity (Figure 6). The
between-module connectivity distributions are less well defined and this is due to
the avoidance of between module interaction; less interaction equates with fewer
data points, thereby producing noisier distributions. All the between-modules
connectivity distributions have similar shape, including a heavy tail.

Figure 9 shows the overall and between-module connectivity distributions
plotted together for each of the target systems. For each of the three systems
we observe an overlap in the heavy tail. If the links for the nodes that exhibited
high overall connectivity were primarily resolved within-module, then we would
observe a migration of data points towards the left in the within-module distri-
butions, which would therefore not exhibit a heavy tail. However, this migration
is not observed. Instead, we observe heavy tails in both distributions, which over-
lap when we plot them on the same graph. This demonstrates that the nodes
that appear in the heavy tail of the overall connectivity distributions are the
same nodes that appear in the heavy tail of the between-module connectivity
distributions, and are responsible for the presence of high-coupling.

In Figure 9, we observe that there is a difference in slope of the linear por-
tions of the distributions. Because the overall connectivity distributions have
more data points in the left side of the distribution, the slope in the over-
all connectivity distributions are steeper than the slope for the corresponding
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Fig. 9. Comparison of overall and between-module connectivity distributions for the
example systems

Fig. 10. Comparison of α estimates

within-module connectivity distributions. Using the process outlined in Sec-
tion 2.1, we estimate α for all distributions. We use dmin = 1 for all between-
module distributions and dmin = 2 for all overall connectivity distributions; data
below the threshold are ignored. Comparison of estimated α between overall and
within-module connectivity distributions for all systems (sorted in descending
order by largest α estimate for overall connectivity) is shown on Figure 10. Esti-
mated α for between-module connectivity distributions is lower than the overall
connectivity distribution for the same system and this is true for all systems.
Based on the above analysis, we conclude that Hypothesis 2 is satisfied.

6 Discussion

Here we discuss remaining issues and avenues for further research.

6.1 Threats to Validity

Internal validity. It is an important characteristic of these findings that scale-
free structure was found to be ubiquitous in the data set. It is important because
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we do not have a priori knowledge about the quality of design of the systems in
the corpus and because of this, we have no ground truth from which to argue
about the relationship between scale-free structure, high coupling, and the design
of software systems. The results demonstrate, however, that high coupling is
present in every system in our data set. If we are to accept high coupling as a
definitive indicator of poor design, then we would have to conclude that all 97
systems under investigation suffer from poor design. This conclusion, however,
seems implausible given the number of systems and the long modification and
usage history and maturity of some of the systems. It is likely that at least some
of the systems in the corpus are well designed despite the fact that they contain
areas of high coupling. To be clear, we do not argue that all the systems in the
corpus are well designed, but we argue against the notion that they are all poorly
designed and that at least for the systems in the corpus, the presence of high
coupling does not distinguish good design from poor. From these findings, we
conclude that the presence of high coupling can be consistent with good design.

Construct validity. In Section 3.2, we presented a model of software evolution
that is based on preferential attachment. Our model assumes hierarchical struc-
ture imposed as a constraint and utilizes a preferential probability function based
on node functionality, module structure, and scoping rules. We are quick to point
out that our finding of scale-free structure at the source code level does not
necessarily imply our model in action. Keller notes that the mere presence of
a particular distribution does not imply particular underlying or generational
process [19]. However, our model does show that preferential attachment can
be modified to be consistent with the evolution of software systems, thereby
providing the possibility that our findings may translate to other programming
languages and paradigms. If scale-free structure is common at the overall con-
nectivity level, then high coupling is difficult to avoid.

External validity. While this study demonstrates that the presence of high cou-
pling can be consistent with good design practice, we caution against extrapo-
lating the specific structures identified in the examined systems to all software
systems. All the systems in this investigation were open source and written
using the Java programming language. Based on the structure of our investiga-
tion, it may be that the programming paradigm or open source nature of the
systems confound our results. Different programming paradigms may produce
dependency structures that are different from those generated using an object-
oriented paradigm. Similarly, open source software may introduce greater levels
of dependency through the desire to appeal to a broad base of users. Although
our investigation did not identify any systems that did not contain areas of high
coupling, we cannot conclude that a system with such structure does not exist.

The differing functionality, size, maturity, and modification histories of the in-
vestigated systems supports some generalizability of these findings. None of the
systems under investigation were immune to the hypothesized effects, thereby
suggesting that the presence of scale-free structure is independent of these
properties.
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6.2 Near-Constant α for Between-Module Connectivity

From our model, we believe that α for between-module connectivity is obtained
through balancing two opposing goals: manageable module sizes and low cou-
pling. While we expected to see distributions that were not extremely left-skewed
(as stated in Hypothesis 2), we were surprised at the constancy of α. This may
be a sign of an optimal balance that developers are able to achieve. One must
recall that this is an exponent, however, and so even small variations can have
large effects on the actual data. Even so, the possibility that this is more than
coincidence is intriguing, and demands further investigation.

6.3 Varieties of Coupling

It has been argued that not all types of coupling are the same. Indeed, Wheeldon
and Counsell [37] studied 5 different class-coupling relationships and found them
to be independent. However, they also concluded that all 5 relationships followed
a power-law, which suggests that high-coupling exists across those types. One
avenue of future work suggests expanding the analysis performed here to account
for different types of coupling.

There are cases where the quality of design is reduced as a tradeoff to a more
desirable goal, such as performance optimizations. It is possible that some of
the coupling detected by our analysis is the result of performance optimization;
however, we consider it unlikely that all 97 systems have been subjected to this
kind of optimization.

7 Conclusion

We have long heard the maxim of “high cohesion/low coupling” as a basis for
good design. Abstract models of evolvability demonstrate why modularization
and minimization of between-module connectivity (coupling) are essential to
building complex systems: change propagation that would otherwise destabilize
an unconstrained network can be contained. We build from the preferential at-
tachment model and standard ideas of modularity to theorize as to why highly-
coupled nodes should be expected in real software systems. In our model, we
propose a preferential probability function based on entity utility and we ar-
gue that the probability of attachment to utility-providing nodes is not uniform
because nodes will provide functionality of differing utility.

Using classes to define modules, we studied connectivity in 97 open source
software systems using a graph-based analytic framework. Regardless of ma-
turity, size, modification history, and the size of the user community, all these
systems exhibit a similar scale-free dependency structure in both the structure of
overall connectivity and between-module connectivity (coupling). Our analysis
also demonstrated a relationship between highly-connected source code entities
and high coupling: entities that exhibited high connectivity were the same enti-
ties that participated in areas of high coupling, as these nodes made up the heavy



226 C. Taube-Schock, R.J. Walker, and I.H. Witten

tail of both distributions. The links of highly connected source code entities were
not generally resolved within-module, and our model indicates that this is due to
practical limits on module sizes. From this, we conclude that scale-free structure
in the source code network translates directly to high coupling.

Thus, we conclude that high coupling is impracticable to eliminate entirely
from software design. The maxim of “high cohesion/low coupling” is interpreted
by some to mean that all occurrences of high coupling necessarily represent poor
design. In contrast, our findings suggest that some high coupling is necessary for
good design.
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35. Valverde, S., Solé, R.V.: Logarithmic growth dynamics in software networks. Eu-
rophys. Lett. 72(5), 858–864 (2005)

36. Vasa, R., Lumpe, M., Branch, P., Nierstrasz, O.: Comparative analysis of evolving
software systems using the Gini coefficient. In: Proc. IEEE Int. Conf. Softw. Maint.,
pp. 179–188 (2009)

37. Wheeldon, R., Counsell, S.: Power law distributions in class relationships. In: Proc.
IEEE Int. Wkshp. Source Code Analys. Manipul, pp. 45–54 (2001)

38. Wilkie, F.G., Kitchenham, B.A.: Coupling measures and change ripples in C++
application software. J. Syst. Softw. 52(2–3), 157–164 (2000)



Expressiveness, Simplicity, and Users

Craig Chambers

Google

Abstract. I have worked on several different language design and opti-
mizing compiler projects, and I am often surprised by which ideas turn
out to be the most successful. Oftentimes it is the simplest ideas that
seem to get the most traction in the larger research or user community
and therefore have the greatest impact. Ideas I might consider the most
sophisticated and advanced can be challenging to communicate, lead-
ing to less influence and adoption. This effect is particularly pronounced
when seeking to gain adoption among actual users, as opposed to other
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Abstract. Class diagrams (CDs), which specify classes and the rela-
tionships between them, are widely used for modeling the structure of
object-oriented systems. As models, programs, and systems evolve over
time, during the development lifecycle and beyond it, effective change
management is a major challenge in software development, which has
attracted much research efforts in recent years.

In this paper we present cddiff , a semantic diff operator for CDs. Un-
like most existing approaches to model comparison, which compare the
concrete or the abstract syntax of two given diagrams and output a list
of syntactical changes or edit operations, cddiff considers the semantics
of the diagrams at hand and outputs a set of diff witnesses, each of which
is an object model that is possible in the first CD and is not possible in
the second. We motivate the use of cddiff , formally define it, and show
how it is computed. The computation is based on a reduction to Alloy.
The work is implemented in a prototype Eclipse plug-in. Examples show
the unique contribution of our approach to the state-of-the-art in version
comparison and evolution analysis.

1 Introduction

Class diagrams (CDs) are widely used for modeling the structure of object-
oriented systems. The syntax of CDs includes classes and the various relation-
ships between them (association, generalization, etc.). The semantics of CDs is
given in terms of object models, consisting of sets of objects and the relation-
ships between these objects. Specifically, we are interested in a variant of the
standard UML2 CDs, which is rich and expressive, supporting generalizations
(inheritance), interface implementation, abstract and singleton classes, class at-
tributes, uni- and bi-directional associations with multiplicities, enumerations,
aggregation, and composition.

As models, programs, and systems evolve over time, during the development
lifecycle and beyond it, effective change management and controlled evolution are
major challenges in software development, and thus have attracted much research
� S. Maoz acknowledges support from a postdoctoral Minerva Fellowship, funded by
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efforts in recent years (see, e.g., [1,5,10,14,17,22,26,34]). Fundamental building
blocks for tracking the evolution of software artifacts are diff operators one can
use to compare two versions of a program or a model. Most existing approaches
to differencing concentrate on matching between model elements using different
heuristics related to their names and structure and on finding and presenting
differences at a concrete or abstract syntactic level. While showing some success,
most of these approaches are also limited. Models that are syntactically very
similar may induce very different semantics (in the sense of ‘meaning’ [12]), and
vice versa, models that semantically describe the same system may have rather
different syntactic representations. Thus, a list of syntactic differences, although
accurate, correct, and complete, may not be able to reveal the real implications
these differences may have on the correctness and potential use of the models
involved. In other words, such a list, although easy to follow, understand, and
manipulate (e.g., for merging), may not be able to expose and represent the
semantic differences between two versions of a model, in terms of the bugs that
were fixed or the features (and new bugs. . . ) that were added.

In this paper we present cddiff , a semantic diff operator for CDs. Unlike exist-
ing differencing approaches, cddiff is a semantic diff operator. Rather than com-
paring the concrete or the abstract syntax of two given diagrams, and outputting
a list of syntactical changes or edit operations, cddiff considers the semantics of
the diagrams at hand and outputs a set of diff witnesses, each of which is an
object model that is possible in the first CD and is not possible in the second.
These object models provide concrete proofs for the meaning of the change that
has been done between the two compared versions and for its effect on the use
of the models at hand.

We specify CDs using the class diagrams of UML/P [29], a conceptually re-
fined and simplified variant of UML designed for low-level design and imple-
mentation. Our semantics of CDs is based on [11] and is given in terms of sets
of objects and relationships between these objects. An overview of the formal
definition of the syntax and semantics of our CDs is given in Sect. 3.

Given two CDs, cd1 and cd2, cddiff (cd1, cd2) is roughly defined as the set
of object models possible in the first CD and not possible in the second. As
this set may be infinite, we are specifically interested in its bounded version,
cddiff k(cd1, cd2), which only includes object models where the number of object
instances is not greater than k. The formal definition of cddiff is given in Sect. 4.

To compute cddiff we use Alloy [13]. Alloy is a textual modeling language
based on relational first-order logic. A short overview of Alloy is given in Sect. 3.2.
To employ Alloy for our needs, we have defined a transformation that takes
two CDs and generates a single Alloy module. The module includes predicates
specifying each of the CDs, cd1 and cd2, and a diff predicate reading Cd1NotCd2,
specifying the existence of a satisfying assignment for the predicate cd1 (for us,
representing an instance of cd1), which is not a satisfying assignment for the
predicate cd2 (representing an instance of cd2). Analyzing this predicate with a
user-specified scope k produces elements of cddiff k(cd1, cd2), if any, as required.
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Our transformation is very different from ones suggested in other works that
use Alloy to analyze CDs (see, e.g., [4,21]). First, we take two CDs as input,
and output one Alloy module. Second, to support a comparison in the presence
of generalizations and associations, we must use a non-shallow embedding, that
is we have to encode all the relationships between the signatures in generated
predicates ourselves. In particular, we cannot use Alloy’s extends keyword to
model inheritance and cannot use Alloy’s fields to model class attributes, because
for the shared signatures, a class’s inheritance relation and set of attributes may
be different between the two CDs. Thus, these need to be modeled as predicates,
different ones for each CD, outside the signatures themselves. The transformation
is described in Sect. 4.2.

In addition to finding concrete diff witnesses (if any exist), which demonstrate
the meaning of the changes that were made between one version and another,
cddiff can be used to compare two CDs and decide whether one CD semantics
includes the other CD semantics (the latter is a refinement of the former), are
they semantically equivalent, or are they semantically incomparable (each allows
instantiations that the other does not allow). When applied to the version history
of a certain CD, which can be retrieved from a version repository, such an analysis
provides a semantic insight into the evolution of this CD, which is not available
in existing syntactic approaches.

We have implemented cddiff and integrated it into a prototype Eclipse plug-
in. The plug-in allows the engineer to compare two selected CDs and to browse
the diff witnesses found, if any. Indeed, all examples shown in this paper have
been computed by our plug-in. We describe the plug-in’s implementation, main
features, and performance results in Sect. 5.

Following the evaluation in Sect. 5, we define and implement two important
extensions of the basic cddiff technique. The first extension deals with filtering
the diff witnesses found, so that ‘uninteresting witnesses’ are filtered out, and
a more succinct yet informative set of witnesses is provided to the engineer.
The second extension deals with the use of abstraction in the comparison. The
extensions are described in Sect. 6.

Model and program differencing, in the context of software evolution, has
attracted much research efforts in recent years (see [1,5,10,14,17,22,26,34]). In
contrast to our work, however, most studies in this area present syntactic dif-
ferencing, at either the concrete or the abstract syntax level. We discuss related
work in Sect. 8.

It is important not to confuse differencing with merging. Merging is a very
important problem, dealing with reconciling the differences between two models
that have evolved independently from a single source model, by different develop-
ers, and now need to be merged back into a single model (see, e.g., [3,10,17,23,25]).
Differencing, however, is the problem of identifying the differences between two
versions, for example, an old version and a new one, so as to better understand
the course of a model evolution during some step of its development. Thus, diff
witnesses are not conflicts that need to be reconciled. Rather, they are proofs
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Fig. 1. cd1.v1 and its revised version cd1.v2

of features that were added or bugs that have been fixed from one version to
another along the history of the design and development process.

The next section presents motivating examples demonstrating the unique fea-
tures of our work. Sect. 3 provides preliminary definitions of the CD language
syntax and semantics as used in our work. Sect. 4 introduces cddiff and the tech-
nique to compute it. Sect. 5 presents the prototype implementation and related
applications. Sect. 6 describes the filtering and abstraction extensions. Sect. 7
presents a discussion of advanced topics and future work directions, Sect. 8 con-
siders related work, and Sect. 9 concludes.

2 Examples

We start off with motivating examples for semantic differencing of CDs. The
examples are presented semi-formally. Formal definitions appear in Sect. 4.

2.1 Example I

Consider cd1.v1 of Fig. 1, describing a first version of a model for (part of) a
company structure with employees, managers, and tasks. A design review with
a domain expert has revealed three bugs in this model: first, employees should
not be assigned more than two tasks; second, managers are also employees, and
they can handle tasks too; and third, there is another kind of position, namely
an external position.
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Fig. 2. Example object models representing semantic differences between the old class
diagram cd1.v1 and its revised version cd1.v2

Following this design review, the engineers created a new version cd1.v2,
shown in the same figure. The two versions share the same set of named elements
but they are not identical. Syntactically, the engineers added an inheritance re-
lation between Manager and Employee, set the multiplicity on the association
between Employee and Task to 0..2, and added the external position kind. What
are the semantic consequences of these differences?

Using the operator cddiff we can answer this question. cddiff (cd1.v1, cd1.v2)
outputs om1, shown in Fig. 2, as a diff witness that is in the semantics of cd1.v1
and not in the semantics of cd1.v2; thus, it demonstrates (though does not prove)
that the bug of having more than two tasks per employee was fixed. In addition,
cddiff (cd1.v2, cd1.v1) outputs om2, shown in Fig. 2 too. om2 is a diff witness
that is in the semantics of the new version cd1.v2 and not in the semantics of the
old version cd1.v1. Thus, the engineers should perhaps check with the domain
expert whether the model should indeed allow managers to manage themselves
and hold an external kind of position.

2.2 Example II

The two class diagrams cd3.v1 and cd3.v2, shown in Fig. 3, provide alternative
descriptions for the relation between Department and Employee in the company.
Again the two diagrams share the same set of named elements but the diagrams
are not identical. First, Department is a singleton only in cd3.v1. Second, only in
cd3.v1 the relation between Department and Employee is a Whole/Part compo-
sition relation. What are the semantic consequences of the differences between
the two versions of cd3?

Fig. 3 includes two objects models. In om3 there are two departments with
no employees. In om4 there is a single employee and no departments. It is easy
to see that both object models are in the semantics of cd3.v2 but not in the
semantics of cd3.v1. We formally write it as {om3, om4} ⊆ cddiff (cd3.v2, cd3.v1).
In addition, we can see that cd3.v2 is a refinement of cd3.v1, since all object
models in the semantics of cd3.v1 are also in the semantics of cd3.v2 (that is,
cddiff (cd3.v1, cd3.c2) = ∅). Again, the two diff witnesses (in one direction) can
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Fig. 3. cd3.v1 and its revised version cd3.v2, with example object models representing
the semantic differences between them. Both object models are in the semantics of
cd3.v2 and not in the semantics of cd3.v1.

be computed and the refinement relation (in the other direction) can be proved
(in a bounded scope) by our operator.

2.3 Example III

Finally, cd5.v1 of Fig. 4 is another class diagram from this model of company
structure. In the process of model quality improvement, an engineer has sug-
gested to refactor it by introducing an abstract class Person, replacing the asso-
ciation between Employee and Address by an association between Person and
Address, and redefining Employee to be a subclass of Person. The resulting
suggested CD is cd5.v2.

Using cddiff we are able to prove (in a bounded scope) that despite the syntac-
tic differences, the semantics of the new version is equivalent to the semantics of
the old one, formally written cddiff (cd5.v1, cd5.v2) = cddiff (cd5.v2, cd5.v1) = ∅.
The refactoring is correct and the new suggested version can be committed.

Fig. 4. cd5.v1 and its revised version cd5.v2. The two versions have equal semantics

3 Preliminaries

We give a short overview of the CD language used in our work and of Alloy, the
tool we use for the computation of cddiff .
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3.1 Class Diagrams Language

As a concrete CD language we use the class diagrams of UML/P [29], a concep-
tually refined and simplified variant of UML designed for low-level design and
implementation. Our semantics of CDs is based on [11] and is given in terms of
sets of objects and relationships between these objects. More formally, the se-
mantics is defined using three parts: a precise definition of the syntactic domain,
i.e., the syntax of the modeling language CD and its context conditions (we use
MontiCore [16,24] for this); a semantic domain - for us, a subset of the Sys-
tem Model (see [7,8]) OM, consisting of all finite object models; and a mapping
sem : CD → P(OM), which relates each syntactically well-formed CD to a set
of constructs in the semantic domain OM. For a thorough and formal account
of the semantics see [8].

Note that we use a complete interpretation for CDs (see [29] ch. 3.4). This
roughly means that ‘whatever is not in the CD, should indeed not be present in
the object model’. In particular, we assume that the list of attributes of each class
is complete, e.g., an employee object with an id and a salary is not considered
as part of the semantics of an Employee class with an id only.

The CD language constructs we support include generalization (inheritance),
interface implementation, abstract and singleton classes, class attributes, uni-
and bi-directional associations with multiplicities, enumerations, aggregation,
and composition.

3.2 A Brief Overview of Alloy

Alloy [2,13] is a textual modeling language based on relational first-order logic.
An Alloy module consists of a number of signature declarations, fields, facts and
predicates. The basic entities in Alloy are atoms. Each signature denotes a set of
atoms. Each field belongs to a signature and represents a relation between two or
more signatures. Such relations are interpreted as sets of tuples of atoms. Facts
are statements that define constraints on the elements of the module. Predicates
are parametrized constraints, which can be included in other predicates or facts.

Alloy Analyzer is a fully automated constraint solver for Alloy modules. The
analysis is achieved by an automated translation of the module into a Boolean
expression, which is analyzed by SAT solvers embedded within the Analyzer.
The analysis is based on an exhaustive search for instances of the module. The
search space is bounded by a user-specified scope, a positive integer that limits
the number of atoms for each signature in an instance of the system that the
solver analyzes.

The Analyzer can check for the validity of user-specified assertions. If an
instance that violates the assertion is found within the scope, the assertion is
not valid. If no instance is found, the assertion might be invalid in a larger scope.
Used in the opposite way, one can look for instances of user-specified predicates.
If the predicate is satisfiable within the given scope, the Analyzer will find an
instance that proves it. If not, the predicate may be satisfiable in a larger scope.
We discuss the advantages and limitations of using Alloy for our problem in
Sect. 7. A thorough account of Alloy can be found in [13].
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4 CDDiff

4.1 Definitions

We define a diff operator cddiff : CD × CD → P(OM), which maps two CDs,
cd1 and cd2, to the (possibly infinite) set of all object models that are in the
semantics of cd1 and are not in the semantics of cd2. Formally:

Definition 1. cddiff(cd1, cd2) = {om ∈ OM | om ∈ sem(cd1)∧om /∈ sem(cd2)}.
Note that cddiff is not symmetric. In addition, by definition, ∀cd1, cd2 ∈ CD,
cddiff (cd1, cd1) = ∅ (the empty set, not the empty object model) and
cddiff (cd1, cd2) ∩ cddiff (cd2, cd1) = ∅, as expected. The members of the set
cddiff are called diff witnesses.

The set-theoretic definition of cddiff , as given above, is however not construc-
tive, and may yield an infinite set. As a pragmatic solution, we approximate it
by defining (a family of) bounded diff operators that we are able to compute.
Thus, we use a bound k, which limits the total number of objects in the diff
witnesses we are looking for. Formally:

Definition 2. ∀k ≥ 0, cddiffk(cd1, cd2) = {om | om ∈ cddiff(cd1, cd2) ∧ |om| ≤
k}, where |om| is the total number of objects in om.

4.2 Computing cddiff k: Overview

To compute cddiff k we use Alloy. To employ Alloy for our needs, we have de-
fined a transformation that takes two CDs and generates a single Alloy module.
The module includes predicates specifying each of the CDs, cd1 and cd2, and
a diff predicate reading Cd1NotCd2, specifying the existence of a satisfying as-
signment for the predicate cd1 (for us, representing an instance of cd1), which
is not a satisfying assignment for the predicate cd2 (representing an instance of
cd2). Analyzing this predicate with a user-specified scope k produces elements
of cddiff k(cd1, cd2), if any, as required.

Our transformation is very different from ones suggested in other works that
use Alloy to analyze CDs (see, e.g., [4,21]). First, we take two CDs as input, and
output a single Alloy module. Second, to support a comparison in the presence
of generalizations and associations, we must use a non-shallow embedding, that
is we have to encode all the relationships between the signatures in generated
predicates ourselves. In particular, we cannot use Alloy’s extends keyword to
model inheritance and cannot use Alloy’s fields to model class attributes, because
for the shared signatures, a class’s inheritance relation and set of attributes may
be different between the two CDs. Thus, these need to be modeled as predicates,
different ones for each CD, outside the signatures themselves.

It is important to note that a naive approach that would transform each of the
two CDs separately into a corresponding Alloy module and then compare the
instances found by the analyzer for each CD, would have been incomplete and
hopelessly inefficient. Such an approach requires the complete computation of
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the two sets of instances before the comparison could be done. As Alloy generates
instances one-by-one, with no guarantee about their order, this could not work
in practice. Thus, our approach, of taking the two input CDs and constructing
a single Alloy module whose all instances, if any, are diff witnesses, is indeed
required. In other words, instead of computing the differences, if any, ourselves,
we create an Alloy module whose instances are the differences we are looking
for, and let the SAT solver do the hard work for us.

Below we show only selected excerpts from the generated Alloy module cor-
responding to the two CDs from the example in Fig. 1 (a complete definition
of the translation, which shows how each CD construct is handled, is given in
supporting materials available from [31]).

4.3 Computing cddiff k: The Generated Alloy Module

We start off with a generic part, which is common to all our generated modules.

1 // Names of fields/associations in classes of the model

2 abstract sig FName {}

3

4 // Parent of all classes relating fields and values

5 abstract sig Obj { get: FName -> {Obj + Val + EnumVal }}

6

7 // Values of fields

8 abstract sig Val {}

9

10 fact values {

11 // No values can exist on their own

12 all v: Val | some f: FName | v in Obj.get[f] }

13

14 // Names of enum values in enums of the model

15 abstract sig EnumVal {}

16

17 fact enums {

18 //no enum values can exist on their own

19 all v: EnumVal | some f: FName | v in Obj.get[f] }

Listing 1.1. FName, Obj, Val, and EnumVal signatures

List. 1.1 shows the abstract signature FName used to represent association
role names and attribute names for all classes in the module. The abstract Obj
signature is the parent of all classes in the module, and its get Alloy field relates
it and an FName to instances of Obj, Val, and EnumVal. List. 1.1 also shows
the abstract signature Val, which we use to represent all predefined types (i.e.,
primitive types and other types that are not defined as classes in the CDs). Values
of enumeration types are represented using signature EnumVal. Enumeration
values as well as primitive values should only appear in an instance if referenced
by any object (see predicates in lines 10-12 and lines 17-19).
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1 pred ObjAttrib [objs:set Obj ,

2 fName:one FName , fType:set {Obj + Val + EnumVal}] {

3 objs.get[fName] in fType

4 all o: objs| one o.get[fName] }

5

6 pred ObjNoFName [objs:set Obj , fName:set FName] {

7 no objs.get[fName] }

Listing 1.2. Predicates for objects and their fields

List. 1.2 shows some of the generated predicates responsible for specifying the
relation between objects and fields: ObjAttrib limits objs.get[fName] to the
correct field’s type and ensures that there is exactly one atom related to the field
name (by the get relation); ObjNoFName is used to ensure classes do not have
field names other than the ones stated in the CD.

1 pred ObjUAttrib [objs:set Obj ,

2 fName:one FName , fType:set Obj , up: Int] {

3 objs.get[fName] in fType

4 all o: objs| (#o.get[fName] =< up) }

5

6 pred Composition [left:set Obj ,

7 lFName:one FName , right:set Obj] {

8 all l1, l2: left |

9 (# {l1.get[lFName] & l2.get[lFName]} > 0) => l1=l2

10 all r: right | # {l: left | r in l.get[lFName]} = 1 }

Listing 1.3. Predicates for multiplicities and Whole/Part compositions

List. 1.3 shows some of the generated predicates responsible to specify mul-
tiplicities and Whole/Part compositions. The first predicate provides an upper
bound for the number of objects in the set represented by the get relation for a
specified role name. The second predicate is used to constrain a composition re-
lation between classes. Its first statement (lines 8-9) ensures that no two wholes
(on the ‘left’) own the same part (on the ‘right’). The second statement (line 10)
ensures that a part (on the ‘right’) belongs to exactly one whole (on the ‘left’).

1 // Predicate for diff

2 pred Cd1NotCd2 { cd1 not cd2}

3

4 // Command for diff

5 run Cd1NotCd2 for 5

Listing 1.4. The diff predicate and the related run command



240 S. Maoz, J.O. Ringert, and B. Rumpe

List. 1.4 shows the simple predicate Cd1NotCd2 representing the diff. An Al-
loy instance that satisfies the generated predicate cd1 and does not satisfy the
generated predicate cd2 is in the set cddiff k(cd1, cd2). The value for the scope k
of the run command (line 5) is part of the input of our transformation.

All the above are generic, that is, they are common to all generated modules,
independent of the input CDs at hand. We now move to the parts that are
specific to the two input CDs.

All class names and field names from the two CDs are shown in List. 1.5 as
Alloy signatures and are stripped from their inheritance relations, attributes,
associations etc. Note the type Date signature in line 6, which extends Val (see
List. 1.1). Concrete enumeration values from both class diagrams are declared
in lines 9-10.

1 // Concrete names of fields in cd1 and cd2

2 one sig startDate , mngBy , worksOn , mng ,

3 doneBy , kind extends FName {}

4

5 // Concrete value types in model cd1 and cd2

6 lone sig type_Date extends Val {}

7

8 // Concrete enum values

9 lone sig enum_PosKnd_external , enum_PosKnd_fullTime ,

10 enum_PosKnd_partTime extends EnumVal {}

11

12 // Actual classes in the model

13 sig Tsk , Emp , Mgr extends Obj {}

Listing 1.5. The common signatures

Next, we define a set of functions and a predicate for each CD individually.
We show here only the ones for cd1.v2, a CD that we presented in Fig. 1 (in the
generated Alloy code that we show below, this CD appears as cd2).

First, subtype functions, shown in List. 1.6 (top), which specify subtype re-
lations between the relevant signatures specific for this CD. Note how function
EmpSubsCD2 denotes that in cd1.v2 employees are either of type Emp or their
subtype Mgr. The possible values of enumeration PosKnd in cd1.v2 are defined
by function PosKndEnumCD2.

Second and finally, the predicate cd2, specifying the properties of the CD
cd1.v2, is shown in List. 1.6. Note the use of the generic predicates defined
earlier, in particular, the use of the parametrized predicate ObjNoFName (defined
in List. 1.2); e.g., line 15 specifies that a Tsk has no other field names but doneBy
and startDate. Also, note the use of the parametrized predicate ObjLUAttrib
(defined using the predicate shown in List. 1.3); e.g., line 27 specifies that all
instances of Emp (including subtypes, see the function EmpSubsCD2 defined in
List.1.6), work on at most 2 tasks.

As an optional optimization, the transformation identifies and ignores syntac-
tically equal attributes of same-name classes and common enumeration values
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1 // Types wrapping subtypes

2 fun MgrSubsCD2 : set Obj { Mgr}

3 fun TskSubsCD2 : set Obj { Tsk}

4 fun EmpSubsCD2 : set Obj { Mgr + Emp}

5

6 // Enums

7 fun PosKndEnumCD2 : set EnumVal { enum_PosKnd_external +

8 enum_PosKnd_fullTime + enum_PosKnd_partTime }

9

10 // Values and relations in cd2

11 pred cd2 {

12

13 // Definition of class Tsk

14 ObjAttrib [Tsk , startDate , type_Date ]

15 ObjNoFName [Tsk , FName - doneBy - startDate ]

16

17 // Definition of class Emp

18 ObjAttrib [Emp , kind , PosKndEnumCD2 ]

19 ObjNoFName [Emp , FName - kind - mngBy - worksOn]

20

21 // Definition of class Mgr

22 ObjAttrib [Mgr , kind , PosKndEnumCD2 ]

23 ObjNoFName [Mgr , FName - kind - mngBy - worksOn]

24

25 // Associations

26 BidiAssoc [EmpSubsCD2 , worksOn , TskSubsCD2 , doneBy]

27 ObjLUAttrib [EmpSubsCD2 , worksOn , TskSubsCD2 , 0, 2]

28 ObjLUAttrib [TskSubsCD2 , doneBy , EmpSubsCD2 , 1, 1]

29

30 ObjLUAttrib [EmpSubsCD2 , mngBy , MgrSubsCD2 , 0, 1]

31 ObjL[MgrSubsCD2 , mngBy , EmpSubsCD2 , 0] }

Listing 1.6. Subtyping functions and the predicate for cd1.v2

between the two CDs. By definition, such attributes and enumerations will not
be a necessary part of any diff witness and thus they can be ignored. Note that
this is done on the flattened model, that is, while considering also inherited at-
tributes. In addition to faster performance, this has the very important effect of
reducing the size of the problem for Alloy, and hence, let us increase the maxi-
mum number of instances – Alloy’s scope – in finding a witness, while keeping
the size of the SAT problem small, and thus better cope with the bounded anal-
ysis limitation. In particular, in the presence of large CDs, it allows us to find
differences that we were unable to find otherwise.

5 Implementation and Evaluation

We have implemented cddiff and integrated it into a prototype Eclipse plug-
in. The input for the implementation are UML/P CDs, textually specified using
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MontiCore grammar and generated Eclipse editor [16,24]. The plug-in transforms
the input CDs into an Alloy module and uses Alloy’s APIs to analyze it and to
produce diff witnesses. Witnesses are presented to the engineer using MontiCore
object diagrams. The complete analysis cycle, from parsing the two selected CDs,
to building the input for Alloy, to running Alloy, and to translating the Alloy
instances that were found, if any, back to MontiCore object diagrams, is fully
automated.

5.1 Browsing Diff Witnesses

The plug-in allows the engineer to compare two selected CDs, and to browse
the diff witnesses found, if any. Fig. 5 shows an example screen capture, where
the engineer has selected to compare cd1.v1 (left) and cd1.v2 (right), which we
presented in Sect. 2, and is currently browsing one of the two diff witnesses that
were found. This witness is an object diagram with a full-time employee handling
three tasks.

Clicking Compute computes the diff witnesses and shows a message telling the
engineer if any were found. The diff witness is textually displayed as an object
diagram in the central lower pane. The Next and Previous buttons browse for
the next and previous diff witnesses. The Switch Left/Right button switches
the order of comparison. The Settings button opens a dialog that allows the
engineer to set values for several parameters, such as the scope that Alloy should
use in the computation and the activation of various filters and abstractions (see
Sect. 6).

5.2 High-Level Evolution Analysis

Another application enabled by the plug-in is high-level evolution analysis. The
plug-in supports a compare command: given two CDs, cd1 and cd2, and a scope
k, the command checks whether one CD is a refinement of the other, are the
two CDs semantically equivalent, or are they semantically incomparable (each
allows object models the other does not allow). Formally, compare(cd1, cd2, k)
returns one of four answers:

<k if cddiff k(cd1, cd2) = ∅ and cddiff k(cd2, cd1) �= ∅
>k if cddiff k(cd1, cd2) �= ∅ and cddiff k(cd2, cd1) = ∅
≡k if cddiff k(cd1, cd2) = ∅ and cddiff k(cd2, cd1) = ∅
<>k if cddiff k(cd1, cd2) �= ∅ and cddiff k(cd2, cd1) �= ∅

The subscript k denotes the scope used in the computation.
Given a reference to a series of historical versions of a CD, as can be retrieved

from the CD’s entry in a revision repository (such as SVN, CVS etc.), the plug-in
can use the compare command to compute a high-level analysis of the evolution
of the CD: which new versions have introduced new possible implementations
relative to their predecessors, which new versions have eliminated possible im-
plementations relative to their predecessors, and which new versions included
only syntactical changes that have not changed the semantics of the CD.
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Fig. 5. A screen capture from Eclipse, showing a view from the prototype plug-in for
cddiff . Two class diagrams that were selected by the user, corresponding to cd1.v1 and
cd1.v2 of Fig. 1, are shown at the upper part of the screen. A generated diff witness,
consisting of an object model that includes a full-time employee with three tasks, is
displayed at the lower part of the screen.

For example, applying this evolution analysis to the examples presented in
Sect. 2 with, e.g., a scope of 5, reveals: compare(cd1.v1, cd1.v2, 5) = <>5,
compare(cd3.v1, cd3.v2, 5) = <5, and compare(cd5.v1, cd5.v2, 5) = ≡5. Thus,
it shows (within the selected scope), that cd1.v1 and cd1.v2 are incomparable
(each allows object models that are not allowed by the other), that cd3.v1 is
a refinement of cd3.v2 (the latter allows all the object models that are allowed
by the former, and some more), and that cd5.v1 and cd5.v2 have equivalent
semantics (one is a correct refactoring of the other).

5.3 Performance

We report the performance of the plug-in in generating diff witnesses. Experi-
ments were done using Alloy version 4.1.10 with SAT4J [30], on a laptop com-
puter, Intel Dual Core CPU, 2.8 GHz, with 4 GB RAM, running Windows Vista.
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Table 1 shows results from computing diff witnesses for the three examples
presented in Sect. 2 using different scopes. Each example is reported twice, com-
puting the differences in both directions. The column titled Vars / primary
vars / clauses reports on the SAT formula created by Alloy. The column ti-
tled Alloy time reports the time it took Alloy to find the first diff witness
(building the formula + finding the instance). The column titled # Witnesses
reports on the total number of witnesses found by the plug-in (we compute only
the first 20 witnesses). The rightmost column reports the total time it took for
the plug-in to compute all (up to 20) witnesses. All timing data is reported in
milliseconds.

Table 2 shows the results from computing diff witnesses for several versions
of CDs from a library example (The CDs of the library example are available for
download as supporting materials in [31]). The CDs in this example include 11
classes, 4 enumerations (with average of 4 values each), 7 associations (with most
multiplicities ∗ or 1..∗), an average of 4 attributes per class (some classes have
6 attributes), and an inheritance hierarchy of depth 3. The columns in Table 2
are the same as the ones in Table 1.

On the one hand, the performance results show that for relatively small mod-
els, computing diff witnesses using our approach runs very fast or at least in
reasonable times. On the other hand, the results show that for large models, or
ones that require a high scope, performance may not scale well, as doubling the
scope typically causes a performance slowdown of a factor of 4 or more. Given
these results, in the future, we plan to develop heuristics to improve the scala-
bility of cddiff , using, e.g., abstraction / refinement techniques, decomposition
for early detection of independent sub models, etc. See the short discussions in
the next section.

Finally, as can be seen from the table, in all cases where witnesses exist, the
plug-in has found 20 witnesses (and could have perhaps found more if we would
have continued to look for more witnesses). This points to a limitation in cddiff ,
where despite the symmetry breaking heuristics employed by Alloy, many of
the witnesses found are rather similar and thus not interesting. To address this
limitation, we have defined and implemented a filtering mechanism. We discuss
this in Sect. 6.1.

6 Extensions: Filtering and Abstraction

6.1 Filtering Diff Witnesses

One limitation of cddiff and its computation through Alloy as presented in
previous sections, is related to the usefulness of the set of witnesses that we
find. In some cases, the automatically generated set contains many very similar
and thus possibly uninteresting witnesses. This is true despite the symmetry
reduction heuristics employed by Alloy. For example, assuming a difference in
multiplicities of ∗ and 0..m between employees and tasks, all object models with
one or more employees, where at least one employee has more than m tasks
are diff witnesses. Indeed, all such witnesses (up to the specified scope) may be
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Table 1. Results from computing diff witnesses for the three examples presented in
Sect. 2, using different scopes. Each example is reported twice, computing the differ-
ences in both directions. The column titled Vars / p. vars / clauses reports on the
SAT formula created by Alloy. The column titled Alloy time reports the time it took
Alloy to find the first diff witness (building the formula + finding the instance). The
column titled # Wit. reports on the total number of witnesses found by the plug-in
(we compute up to 20 witnesses). The rightmost column reports the total time it took
for the plug-in to compute all (up to 20) witnesses. All timing data is reported in
milliseconds.

Name Scope Vars/p. vars/clauses Alloy time (ms) # Wit. Plug-in time (ms)

Ex. 1 5 4079 / 234 / 9106 54 + 11 20 281
Ex. 1 rev. 5 4079 / 234 / 9092 44 + 7 20 212
Ex. 1 10 13664 / 704 / 33386 265 + 29 20 634
Ex. 1 rev. 10 13664 / 704 / 33357 253 + 20 20 603
Ex. 1 20 49834 / 2394 / 126446 1740 + 156 20 3472
Ex. 1 rev. 20 49834 / 2394 / 126387 1786 + 112 20 2970

Ex. 2 5 883 / 72 / 2014 8 + 2 0 11
Ex. 2 rev. 5 883 / 72 / 2014 8 + 1 20 76
Ex. 2 10 3613 / 242 / 9244 40 + 2 0 44
Ex. 2 rev. 10 3613 / 242 / 9244 40 + 5 20 164
Ex. 2 20 14713 / 882 / 39484 337 + 10 0 348
Ex. 2 rev. 20 14713 / 882 / 39484 347 + 18 20 814

Ex. 3 5 1165 / 77 / 2665 10 + 3 0 14
Ex. 3 rev. 5 1165 / 77 / 2665 10 + 3 0 14
Ex. 3 10 4455 / 252 / 11020 56 + 28 0 84
Ex. 3 rev. 10 4455 / 252 / 11020 49 + 20 0 70
Ex. 3 20 17575 / 902 / 45010 390 + 388 0 780
Ex. 3 rev. 20 17575 / 902 / 45010 397 + 404 0 802

returned by our computation. Thus, we look for ways to improve the usefulness
of the computation by filtering out ‘uninteresting witnesses’ and keeping a more
succinct yet informative set of witnesses.

To address this problem, we have defined and implemented a filtering mech-
anism. At every stage of the computation, given the set of witnesses that was
already found, the mechanism supports the filtering of witnesses that (1) only in-
clude objects of classes instantiated in previously found witnesses (NNC), (2) only
include types of associations appearing in previously found witnesses (NNA), and
(3) only include combinations of classes and associations appearing in previously
found witnesses (NNCA). For example, recalling Fig. 2, after om1 is found, when
using the first filter NNC, all additional object model diff witnesses consisting
of only employees, tasks, and managers, would be filtered out from the results
(thus, in this case, after om1 is found, no more diff witnesses will be reported).

Table 3 shows the results of applying our filtering mechanisms to the diff wit-
nesses computation of cddiff . We report on applying the filters to the examples
shown in Sect. 2 and to the library example (the same examples considered in
Sect. 5.3). Note that the cases where there are no diff witnesses are omitted from
the table because they are irrelevant for the filtering issue.
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Table 2. Results from computing diff witnesses for the library example, using different
scopes. Each example is reported twice, computing the differences in both directions.
Columns are the same as the ones in Table 1.

Name Scope Vars/p. vars/clauses Alloy time (ms) # Wit. Plug-in time (ms)

V1 vs. V2 5 10735 / 429 / 28947 173 + 27 20 536
– rev. – 5 10735 / 429 / 28932 166 + 17 20 592
V1 vs. V2 10 42590 / 1544 / 120542 1370 + 68 20 2476
– rev. – 10 42590 / 1544 / 120512 1250 + 56 20 2338

V2 vs. V3 5 10947 / 429 / 29522 172 + 31 0 206
– rev. – 5 10947 / 429 / 29523 171 + 30 0 206
V2 vs. V3 10 43442 / 1544 / 123257 1344 + 109 20 2761
– rev. – 10 43442 / 1544 / 123258 1422 + 97 20 2432

V3 vs. V4 5 46347 / 1562 / 124413 1102 + 125 20 2135
– rev. – 5 46347 / 1562 / 124368 1093 + 219 20 2622
V3 vs. V4 10 120807 / 3997 / 331983 5583 + 812 20 9821
– rev. – 10 120807 / 3997 / 331903 5617 + 384 20 11103

V4 vs. V5 5 33380 / 1144 / 91631 678 + 173 20 1791
– rev. – 5 33380 / 1144 / 91617 674 + 66 20 1660
V4 vs. V5 10 93995 / 3199 / 263066 4016 + 780 20 8241
– rev. – 10 93995 / 3199 / 263042 4047 + 291 20 7051

In all cases we first ran cddiff without the filters and saw that it produces at
least 20 diff witnesses. Then we ran it again, each time with a different filter. The
table shows the effectiveness of the filters in significantly reducing the number
of witnesses. Moreover, the remaining witnesses are guaranteed to be rather
different from one another and thus interesting for the engineer. Note, however,
that the effectiveness of these filters depends, to a certain extent, on the order
in which Alloy finds the instances, which, unfortunately, is undefined. Thus, for
example, we may end up with a different set of witnesses each time we run
cddiff with the same two CDs as input. Also, a larger scope does not guarantee
that we are left with more witnesses after filtering (see, e.g., in the last section
of Table 3, increasing the scope from 5 to 10 for Lib. V4 vs. V5 rev. reduced the
number of witnesses that passed the filters from 3/2/4 to 3/1/4).

The filters described above and are reported on in the experiments can be
considered incremental or online filters, because they are applied to the results
online, as they are found during the computation. Alternatively, we may suggest
static filters, which take the complete set of all the computed diff witnesses (up
to the given scope), apply a classification based on some criteria, and then out-
put a representative witness from each equivalence class. For example, a possible
criteria for classification may be the set of classes represented in the diff witness
object model. Two diff witnesses would be considered equivalent if they contain
object instances from exactly the same set of classes. This would ensure variabil-
ity in the set of representatives that is included in the final output. Note that
the witnesses provided by the incremental filter NNC, which we described above,
can all be viewed as representatives of different equivalence classes. However,
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Table 3. Results from applying filters to the examples shown in Sect. 2 and to the
library example (the same examples considered in Sect. 5.3). Note that the cases where
there are no diff witnesses are omitted from the table, because these are not relevant
to the filters.

Name Scope # Wit. # After filtering by NNC / NNA / NNCA

Ex. 1 5 20 2 / 3 / 3
Ex. 1 rev. 5 20 3 / 2 / 4
Ex. 1 10 20 2 / 2 / 3
Ex. 1 rev. 10 20 3 / 3 / 6

Ex. 2 rev. 5 20 2 / 1 / 3
Ex. 2 rev. 10 20 1 / 1 / 2

Lib. V1 vs. V2 5 20 5 / 4 / 5
Lib. V1 vs. V2 rev. 5 20 4 / 2 / 4
Lib. V1 vs. V2 10 20 2 / 2 / 3
Lib. V1 vs. V2 rev. 10 20 4 / 2 / 4

Lib. V2 vs. V3 10 20 4 / 3 / 6
Lib. V2 vs. V3 rev. 10 20 5 / 3 / 6

Lib. V3 vs. V4 5 20 3 / 2 / 4
Lib. V3 vs. V4 rev. 5 20 4 / 1 / 4
Lib. V3 vs. V4 10 20 4 / 3 / 4
Lib. V3 vs. V4 rev. 10 20 4 / 2 / 6

Lib. V4 vs. V5 5 20 3 / 2 / 4
Lib. V4 vs. V5 rev. 5 20 3 / 2 / 4
Lib. V4 vs. V5 10 20 3 / 2 / 4
Lib. V4 vs. V5 rev. 10 20 3 / 1 / 4

the alternative static filter variant is better, as its output may be more complete
and include representatives of additional equivalence classes.

The use of the different filters in our plug-in is optional. Further evaluation of
the effectiveness of these filters and the development of additional ones are left
for future work.

6.2 Abstraction

Abstraction, a fundamental concept in model-driven engineering, has an impor-
tant role in the context of CD comparisons. Specifically, two models may be
equivalent at one level of abstraction but different in a less abstract level. Thus,
the level of abstraction of interest should be defined by the engineer applying the
comparison, who may be aware that the models at hand differ at a certain de-
tailed level, but would be interested in comparing them at a higher level, where
they are supposedly equivalent.

To this end, we have defined and implemented an attribute abstraction. With
this abstraction in effect, cddiff ignores differences that are caused only by local
changes to the attribute lists of the classes in the diagrams. That is, all class
attributes of primitive or library types are abstracted away, so that two CDs
whose sole difference is at the attributes level are considered equivalent. For
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Table 4. Results from computing diff witnesses for the library example, with and
without the attribute abstraction. Columns are the same as the ones in Table 1.

Name Scope Vars/p. vars/clauses Alloy time (ms) # Wit. Plug-in time (ms)

V2 vs. V3 5 10947/429/29522 168 + 30 0 202
– w./abs. – 5 10947/429/29522 165 + 39 0 207

V2 vs. V3 10 43442/1544/123257 1302 + 114 20 2652
– w./abs. – 10 43442/1544/123257 1371 + 108 20 2577

V3 vs. V4 5 46347/1562/124413 1123 + 97 20 2159
– w./abs. – 5 12952/486/34336 269 + 45 0 320

V3 vs. V4 10 120807/3997/331983 5547 + 731 20 9508
– w./abs. – 10 51302/1756/143631 1747 + 153 20 3161

V4 vs. V5 5 33380/1144/91631 673 + 173 20 1681
– w./abs. – 5 0/0/0 184 + 0 0 187

V4 vs. V5 10 93995/3199/263066 4091 + 802 20 8154
– w./abs. – 10 0/0/0 1540 + 0 0 1542

example, in Fig. 4, if an attribute ID is added to the class Employee (in only one
of the CDs) or to the abstract class Person, the two CDs are still considered
semantically equivalent under the attribute abstraction.

The attribute abstraction becomes useful when the engineer is aware of
attribute-level differences resulting from local changes, but is interested in check-
ing for more global semantic differences, if any. Another application of this ab-
straction relates to performance and scope. Given two large CDs, with many
classes or many attributes per class, one can start by a comparison with the
abstraction in effect. If a difference is found, indeed this proves that the CDs’ se-
mantics are different. If a difference is not found, however, one has no choice but
to make the comparison again with a higher scope or without the abstraction.

As a concrete example, we have compared the performance and completeness
of cddiff with and without the attribute abstraction when running on CDs from
the library example. Recall that in this example, each CD has 11 classes and the
average number of attributes per class is 4. The results are shown in Table 4.
On the one hand, the results show that the abstraction can reduce the size
of the problem for Alloy and accelerate the computation of the diff witnesses.
On the other hand, as expected, the analysis with abstraction is incomplete: in
some cases it does not find all the diff witnesses that can be found without the
abstraction. For example, the results for V3 vs. V4 with scope 5 show that 20
witnesses were found without abstraction, but none were found with abstraction.
Interestingly, in the case of V4 vs. V5, the abstraction caused Alloy to construct
an empty formula: the only differences between V4 and V5 are in some attributes
and thus, without them, Alloy’s formula construction and minimization was able
to directly reduce the differencing predicate to false. In contrast, in the case of V2
vs. V3, the size of the formula constructed by Alloy, with or without abstraction,
was the same. This happened because the differences between V2 and V3 are all
not in the attributes, and so the optimization we use, of removing same-name
attributes from same-name classes (see the end of Sect. 4.3), has the same effect
as the attribute abstraction.
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Defining and implementing additional abstractions to be supported by cddiff ,
e.g., an abstraction based on the composition hierarchy between classes or the
containment hierarchy of packages and classes, is left for future work.

7 Discussion and Future Directions

We discuss some limitations of our work and list related future work directions.

7.1 Bounded Analysis and the Small Scope Hypothesis

The use of Alloy, and consequently, encoding the problem of computing the
diff witnesses as an instance of SAT, carries a significant price: all analysis is
bounded to the user-specified scope. If a witness is found, we know the CDs’
semantics are different; if no witness is found, we do not know whether the CDs
have equal semantics or there still is a witness of a larger size. Recall that by
size we mean the maximal number of objects in the object model. As a simple
example, assuming a difference in multiplicities, between ∗ and 0..m, a witness
of size < m does not exist. In this sense, the analysis is sound but incomplete.
It is important to note, though, that for a given scope k, the analysis is sound
and complete: if a witness of size ≤ k exists, it is found.

Nevertheless, our experience with CD, as well as an informal survey we have
conducted by checking hundreds of CDs that appear in several textbooks and in
different projects, e.g., the meta-model of the UML (available in [27]), showed us
that while the number of classes and associations in large CDs can be high (we
have seen examples of CDs with more than 100 classes), the multiplicities used
on associations are typically 0..1, 1, 1..∗, and ∗. Multiplicities that use specific
numbers greater than 1 (e.g., a polygon class that has 3..∗ sides, a panel that
has 1..10 buttons), are rather rare.

Thus, as the scope limitation is relevant mostly to the multiplicities, we adapt
the small scope hypothesis of [13] to our problem domain, and suggest that in
many cases, although the CDs involved may be large and include many classes
and associations, witnesses for their differences could be rather small. More-
over, the optimization suggested at the end of Sect. 4.3 helps us in coping with
reducing the size of the problem for Alloy.

Still, given large CDs, or diagrams with no object models of small size, a
symbolic technique or an abstraction/refinement approach may be recommended
and required in order to allow our analysis to scale (see also subsection 6.2).
Alternatively, it may be possible to identify cases where one can formally prove
that a certain scope is ‘good enough’, that is, it may be possible to find sufficient
conditions on the two CDs that will guarantee that a bounded analysis in this
case is as complete as an unbounded one. We leave these directions for future
research work.

7.2 Integration With Operation-Based and Syntactic Differencing

Our approach to semantic differencing is state-based rather than operation-based
(on the distinction between the two see [23]). That is, the input for cddiff consists



250 S. Maoz, J.O. Ringert, and B. Rumpe

only of the two versions of the CD, and includes no information about the edit
operations, if any, that have led from the first to the second version. Some works,
however, concentrate on operation-based differencing, or take the two versions
and aim to reconstruct a (shortest) series of edits (additions, deletions, updates)
that leads from one version to the other (see the related work discussion in
Sect. 8). Moreover, our approach to differencing is semantic, while most related
comparison approaches are syntactic.

Thus, it may be useful to combine syntactic and operation-based differencing
with state-based semantic differencing of class diagrams. For example, one may
extend the applicability of semantic differencing in comparing diagrams whose
elements have been renamed or moved in the course of evolution, by applying
a syntactic matching (see, e.g., [9]) before computing a semantic differencing.
This would result in a mapping plus a set of diff witnesses. As another example,
one may find ways to use information extracted from syntactic differencing as
a means to localize and thus improve the performance of semantic differencing
computations.

We leave these ideas for future work.

8 Related Work

We discuss related work in the area of CD formal semantics and analyses and in
the area of model and program comparisons.

8.1 CD Formal Semantics and Analysis

Class diagrams are part of the UML standard and are widely used for the mod-
eling of the structure of object-oriented systems, in particular in model-driven
design and development setups. As such, many researchers have discussed the
semantics of class diagrams and considered related analysis questions.

A number of works consider various analysis problems related to class dia-
grams (see, e.g., [6,20,33]). These include the finite satisfiability problem, the
consistency between UML models, the problem of class equivalence, the identi-
fication of implicit consequences etc. Some of these works use Description Logic
(DL) as their underlying formalism, some use linear programming methods, while
others include no implementation but present theoretical results about the de-
cidability and complexity of the problems at hand. In contrast, we consider the
specific problem of semantic comparison and the generation of diff witnesses. We
provide a solution, in a bounded scope, using a reduction to an Alloy module
and its analysis with a SAT solver.

Some previous works consider the use of Alloy for the analysis of class dia-
grams (see, e.g., [4,32]). These work focus on the formal definition of the trans-
formation of a single CD to an Alloy module at the level of a meta-model and
on the implementation of this transformation using a transformation language.
Possible applications of the use of Alloy to analyze a given CD are not dis-
cussed in depth in these works. In contrast, as explained earlier, the input for
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our transformation consists of two CDs, and it produces a single Alloy module
whose all instances, if any, represent the required diff witnesses. Defining and
implementing our transformation using QVT or other transformation language
such as ATL [15] is possible, but is outside the focus of our work.

Finally, in another paper in this conference [19] we presented modal object
diagrams (MOD), as an extension of classical object diagrams, and a related
verification process, which verifies a CD against an MOD specification. MOD
verification is implemented using a transformation to Alloy, whose input is a CD
and an MOD. It is different than the one we use here for cddiff .

8.2 Model and Program Comparisons

Model and program differencing, in the context of software evolution, has at-
tracted much research efforts in recent years (see [1,10,17,22,26,34]). In contrast
to our work, almost all studies in this area, however, present syntactic differenc-
ing, at either the concrete or the abstract syntax level.

Alanen and Porres [1] describe the difference between two models as a se-
quence of elementary transformations, such as element creation and deletion
and link insertion and removal; when applied to the first model, the sequence
of transformations yields the second. Kuster et al. [17] investigate differencing
and merging in the context of process models, focusing on identifying dependen-
cies and conflicts between change operations. Engel et al.[10] present the use of
a model merging language to reconcile model differences. Comparison is done
by identifying new/old MOF IDs and checking related attributes and references
recursively. Results include a set of additions and deletions, highlighted in a Dif-
f/Merge browser. Mehra et al. [22] describe a visual differentiation tool where
changes are presented using editing events such as add/remove shape/connector
etc. Xing and Stroulia [34] present an algorithm for object-oriented design dif-
ferencing whose output is a tree of structural changes, reporting differences in
terms of additions, deletions, and moves of model elements, assisted by a set of
similarity metrics. Ohst et al. [26] compare UML documents by traversing their
abstract-syntax trees, detecting additions, deletions, and shifts of sub-trees.

As the above shows, some works go beyond the concrete textual or visual
representation and have defined the comparison at the abstract-syntax level,
detecting additions, removals, and shifts operations on model elements. However,
to the best of our knowledge, no previous work considers model comparisons at
the level of the semantic domain, as is done in our work.

Some works, e.g. [9,34], use similarity-based matching before actual differenc-
ing. As our work focuses on semantics, it assumes a matching is given. Matching
algorithms may be used to suggest a matching before the application of semantic
differencing. The result of such an integration would be a mapping plus a set of
differentiating traces.

We are aware of only a few studies of semantic differencing between pro-
grams. Jackson and Ladd [14] presented a tool that summarizes the semantic
diff between two procedures in terms of observable input-output behaviors. Api-
wattanapong et al. [5] presented a behavioral differencing algorithm for object-
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oriented programs based on an extended control-flow graph representation, and
a tool called JDiff, which implements it in the context of Java. Finally, Per-
son et al. [28] suggested to compute a behavioral characterization of a program
change using a technique called differential symbolic execution. We focus on
model comparison and not on program comparison. Also, while our work is
somewhat similar to these works in terms of motivation, it is very different in
terms of technology.

9 Conclusion

We presented cddiff , a semantic differencing operator for class diagrams. Unlike
existing approaches to model’s comparison, cddiff performs a semantic compar-
ison and outputs a set of diff witnesses, each of which is an object model that
is possible in the first CD and is not possible in the second. We have formally
defined cddiff , described the technique to compute it, and demonstrated its ap-
plication in comparing CDs within the Eclipse IDE. When applied to the version
history of a given CD, cddiff provides a semantic insight into its evolution, which
is not available in existing syntactic approaches.

We have implemented cddiff and applied it to several examples. We have
extended the basic cddiff technique with a filtering mechanism that filters out
‘uninteresting witnesses’ and reports a more succinct yet informative set of wit-
nesses to the engineer. We have also extended the basic cddiff technique with
an attribute abstraction mechanism. This abstraction becomes useful when the
engineer is aware of attribute-level differences resulting from local changes, but
is interested in checking for more global semantic differences, if any. It is also
useful in addressing the scope limitation and in improving cddiff performance.

We discussed a number of challenges and directions for future work in Sect. 7,
including the development of heuristics to improve the performance of cddiff
and allow it to scale. An interesting future work is to extend cddiff with sup-
port for abstraction beyond the attribute abstraction we have already defined
and implemented. Another direction for future work is the integration of cddiff
with existing approaches to matching and syntactic differencing, in particular
as a means to improve its performance and the usefulness of its results to the
engineers. The usefulness of cddiff to engineers, in particular in comparison with
existing syntactic approaches, should be empirically evaluated.

Finally, in a recent paper [18] we have described our more general vision on
semantic model differencing. Thus, cddiff is part of a larger project [31], aiming
to apply the idea of semantic differencing and the computation of diff witnesses
to other modeling languages, including, e.g., activity diagrams, statecharts, and
feature diagrams. We hope to report on our work in these directions in future
papers.
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Abstract. We generalize previous work on constraint-based refactoring and de-
velop it into the definition of a constraint language allowing the specification of 
refactorings in a completely declarative way. We present a compiler that trans-
forms specifications in our language to plug-ins for an IDE that, together with 
an accompanying framework providing the necessary infrastructure, implement 
the specified refactoring tools. We evaluate our approach by presenting specifi-
cations of three different refactorings for the Eiffel programming language, and 
by applying the resulting refactoring tools to several sample programs. Out-
come suggests that our approach is indeed viable. 

1   Introduction 

Constraint-based refactoring has proven to be a powerful approach to mastering the 
complexity of various type and accessibility related refactorings [4, 9, 14, 15, 26, 29, 
30]. The declarative nature of constraints and of the rules that generate them allow 
one to stay close to the language specification, and away from the combinatorial ex-
plosion of possible expressions whose correct handling makes imperative formula-
tions of the preconditions and the mechanics of a refactoring such a daunting task. 
However, we observe that the scope of constraint-based refactoring has so far unnec-
essarily been constrained to treating a single aspect of a programming language — 
such as typing or accessibility — in isolation, where the same approach, with some 
extensions, could be used to solve a much broader class of refactoring problems, in-
cluding the joint handling of different language aspects in one refactoring. Preparing 
the ground for such a broadening of scope is the aim of our work presented here. 

More concretely, we count six main contributions in this paper (and ask the reader 
to accept the following enumeration as an outline also): 

1. We generalize previous work on constraint-based refactoring, extending it to the 
control of properties beyond types and accessibilities, allowing their joint treat-
ment within a single refactoring (Section 3). 

2. We identify a number of challenges of constraint-based refactoring uniformly 
posed by different programming languages, providing solutions that remain en-
tirely in the realm of constraint satisfaction and thus a single solution framework 
(Section 4). 
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3. We specify a powerful, yet concise constraint language, called REFACOLA, allow-
ing the completely declarative specification of various refactorings (Section 5.1). 

4. We present an implementation of that language allowing the generation of refac-
toring tools for various platforms directly from their specifications (Section 5.2). 

5. We present the REFACOLA specifications of three declaration-related refactorings 
for the Eiffel programming language (Section 6), showing that the constraint-
based approach is capable of dealing with problems rather different from those 
found in Java (to which constraint-based refactoring has so far exclusively been 
applied). 

6. We evaluate the computational cost of constraint-based refactorings resulting from 
REFACOLA specifications by applying them to a body of Eiffel programs (Section 
7), showing the feasibility of our approach. 

We have chosen Eiffel for our evaluation, and thus decided to break with the Java 
monotony that currently characterizes the field, because (a) continued concentration 
on a single language tends to draw attention to accidental problems caused by that 
language’s design, rather than the essential problems of refactoring, (b) Eiffel is suffi-
ciently different from Java and its kin to support our claim of generalizing constraint-
based refactoring, and (c) because the Eiffel standard [6] makes heavy use of so-
called validity rules, a form of language specification that has a rather direct mapping 
to the constraint rules of constraint-based refactoring, thereby increasing one’s belief 
in that refactoring tools correctly incorporate the language specification. 

2   Motivation and Related Work 

Although the discipline of refactoring — as initiated by the works of Griswold [11] 
and Opdyke [21] — is already almost two decades old, currently available refactoring 
tools are still plagued with bugs (see, e.g., [3, 22, 24–26]). While some would main-
tain that refactorings are used mainly in agile settings characterized by excessive re-
gression testing anyway [8], we object that refactoring tools are metaprograms that 
play in the same league as editors, compilers, and version control, for the correctness 
of which one too would not want to rely on testing one’s own object programs. 

Roughly, the symptoms of today’s refactoring tools’ failures can be divided into 
four categories:  

1. A refactoring that is possible is nevertheless refused.  
2. The refactored program contains errors (compile time or runtime) the original pro-

gram did not exhibit. 
3. The refactored program behaves differently from the original program.  
4. The refactored program does not exhibit the change of structure reflecting the 

refactoring intent.  

Except for the last, all problems can be blamed on a partial ignorance, on behalf of the 
refactoring tool, of the target language’s syntax and semantics, and thus should be 
resolvable, once and for all, by incorporating the relevant parts of the language speci-
fication into the tool’s refactoring procedure. 

One approach to making a refactoring language-specification aware is to specify it 
in terms of rewrite rules to be applied to a graph representation of programs [18], 
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where the rewrite rules are designed to observe the syntactic and semantic rules of the 
programming language. However, it turns out that the necessary precondition check-
ing, and also the correctness-preserving transformations themselves, are nontrivial to 
formulate using graph grammars, which is why these approaches resort to consider-
able imperative components (“programmed graph grammars”) that suffer the same 
problems as the standard procedural implementations of refactorings. As far as we 
know, no widely disseminated refactoring tools as yet utilize this approach.  

ASTGen [3] uses comprehensive syntactic and (static) semantic knowledge of the 
programming language whose programs are to be refactored, for generating programs 
that provoke errors in refactoring tools. While this proved to allow for very effective 
testing of existing refactoring implementations, it is not obvious how the language-
awareness of ASTGen could be incorporated directly into a refactoring tool. 

In a series of works, Tip et al. [9, 15, 30, 29] have used constraints to include 
Java’s typing rules into the precondition checking and mechanics of refactoring tools, 
thereby avoiding errors of above category 2. Ref. 26 has picked up the approach and 
transferred it to the rules of access control in Java. However, as has been pointed out 
in [26, 29], obeying the typing and accessibility rules alone is insufficient to prevent 
errors of category 3: in presence of overloading, hiding, and other name resolution 
issues, constraints modelling the name lookup in Java may be needed which, given its 
imperative nature, are hard to express. That name binding rules even for a language 
such as Java can be modelled as constraints (although admittedly at some expense) 
has been shown in [26, 27]. 

In a complementary series of works, Schäfer et al. [22–25] have elaborated how to 
preserve, among other dependencies, the binding of references (names) to declared 
entities. For this, they have established a notion of locked names which can be con-
ceived of as pointers to declared entities persisting all refactorings. Once a refactoring 
has been performed, the locked names are converted back to Java names, inserting 
qualifiers where necessary to force the original binding. While this procedure does not 
always succeed (there may be cases for which no suitable qualification exists, or an 
entity involved in a qualification may be inaccessible), it has proven well-suited for a 
language such as Java with its intricate problems of hiding, shadowing, and obscuring 
[12], which are hard to deal with otherwise. However, it is far less useful for a lan-
guage like Eiffel, in which scopes cannot be nested and the only possibility to resolve 
name conflicts is by renaming. 

While all of the above works focus on implementing refactoring tools, JunGL [32] 
is a refactoring scripting language providing the necessary infrastructure for such im-
plementations. Like [18], it builds on a graph representation of programs, but adds 
powerful querying facilities based on a combination of functional and logic program-
ming (Datalog). However, the mechanics of the refactorings must still be specified 
imperatively, limiting declarativeness of the approach to precondition checking. 

Constraint languages (which are inherently declarative) have so far mostly been 
devised for other problems than refactoring. For instance, CCEL was designed as a 
constraint expression language for C++ allowing the definition of design, implemen-
tation, and stylistic rules that programmers should obey [20]. A CCEL constraint  
consists of a set of universally quantified variables and an assertion that uses the vari-
ables. Constraints are applied to programs by binding the variables to matching  
components of the program, and by evaluating the constraints for each found binding, 
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with a violated constraint indicating a violated rule. A similar approach is taken by 
more recent work on pluggable type systems [1], which also uses a constraint lan-
guage (called JavaCOP). While bearing many similarities to the constraint rules that 
constraint-based refactoring rests on, neither CCEL nor JavaCOP have notions of 
allowing a program to change in such a way that its components meet the required 
constraints — this however is a necessary feature of every refactoring language. 

3   A Generalized Framework of Constraint-Based Refactoring 

A common tenet of all constraint-based refactorings is that for the purpose of a spe-
cific refactoring, a program is sufficiently represented by a set of constraint variables 
and a set of constraints that relate their values, where both are derived from the pro-
gram to be refactored by application of so-called constraint rules [4, 9, 26, 29, 30]. 
Depending on the concrete refactoring, the constraint variables represent properties of 
program elements such as types [29], type parameters [4, 9, 15], or declared accessi-
bility [26], but generally, there is no reason to restrict constraint variables to one kind 
of program properties per refactoring, just as there is no general limit as to which 
properties can at all be represented by constraint variables. This observation is the 
starting point of our conception of a refactoring constraint language. 

3.1   Program Elements, Kinds, and Properties 

For our purposes, it is sufficient to assume that a program consists of 

• a set D of declared entities (elsewhere also referred to as definitions), 
• a set R of references to declared entities (also called uses of definitions), and 
• relationships on subsets of RD ∪ . 

We refer to declared entities and references collectively as program elements. 
Program elements come in different kinds. Kinds that will be found in most object-

oriented programming languages are Class, Field, Method, and Local for classes, 
fields, methods, and locals (formal parameters and local variables), respectively, and 
Reference for references to (uses of) declared entities; but generally, different lan-
guages may have different kinds of program elements.  

Depending on the programming language, different kinds of program elements have 
different properties such as identifiers, types, declaring classes, etc. Deviating from 
prior work on constraint-based refactoring, which considered only a single property 
each (and therefore could afford to use brackets to denote types [29] or accessibilities 
[26]), we do not limit the kind of properties considered by any single refactoring (and 
therefore use Greek letters to denote properties, writing e.π for the property π of an 
element e). As will be seen, it is useful to organize the kinds of program elements in a 
subsumption hierarchy and to let subkinds inherit the properties of their superkinds. 

It is important to note that a refactoring will usually alter properties of program 
elements and not the program elements themselves — the elements’ identity is always 
preserved under refactoring (meaning that an element cannot become another one; in 
fact, it is legitimate to think of program elements as objects in the object-oriented  
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sense, as well as of kinds as classes, and of properties as fields). It is the properties, 
and not the program elements, that are mapped to the constraint variables of a con-
straint-based refactoring. 

3.2   Domains 

Each property is associated with a domain from which its possible values are drawn. 
Although the domains of properties are essentially the domains of constraint variables 
most of which will be represented by the set of integers (see below), at the refactoring 
constraint language level it is useful to distinguish different domains of properties. 
For instance, the domain of a property identifier (ι), Identifier, is the set of all valid 
identifiers of a programming language, and the domain of the property accessibility 
(α) in Java is the set {private, package, protected, public}. Domains are essentially 
types, and constraints are typed; a constraint such as r.ι = d.α, although solvable by 
the solver (if the integer representations of the corresponding domains overlap), does 
not make sense. 

Program-Dependent Domains. Some domains’ members are drawn from the ele-
ments of a program. For instance, the value of a location property that associates a 
method with its declaring class is a class, which is also program element (of kind 
Class). Since properties are constraint variables, and since standard constraint solvers 
know nothing of program elements as defined here, we cannot use kinds as the do-
mains of properties. Instead, we allow domains of properties to be based on kinds, by 
introducing an injective mapping [⋅] from kinds to domains, writing [K] for the do-
main corresponding to kind K and (by extending the mapping from kinds to their ele-
ments) [e]  for the value corresponding to program element e ∈K. 

Ordered Program-Dependent Domains. Program-dependent domains such as 
[Class] may be (partially) ordered: in this case, the ordering relation has to be 
extracted from the program from which the domain is drawn. In the example of 
[Class], one ordering relation is the subclass relation; another would be the nest-
ing of classes (if allowed by the language). 

3.3   Constraints, Constraint Rules, and Constraint-Based Refactoring  

The constraint variables and constraints that represent a refactoring problem are gen-
erated from the program to be refactored by application of so-called constraint rules. 
Each constraint rule is of the general form 

program queries 

constraints 
 

where the rule precedent is a logical expression (see below) selecting the program 
elements for which the rule is to take effect, and the rule consequent lists the con-
straints to be generated. The program queries contain variables (which are not con-
straint variables!) that are bound to program elements during application of the rule; 
the properties of these program elements make the constraint variables of the con-
straints generated by the application. Each rule is implicitly universally quantified 
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over its variables representing program elements, and application of the rule to a pro-
gram will find all combinations of program elements matching the queries expressed 
in the rule precedent. For instance, if the query binds(r, d) of the rule 

binds(r, d) 

r.ι = d.ι r.τ = d.τ 

finds the pairs (r1, d1) and (r2, d2), the constraints r1.ι = d1.ι, r1.τ = d1.τ, r2.ι = d2.ι, and 
r2.τ = d2.τ will be generated and added to the constraint set (note how the rule in-
volves both identifier, ι, and type, τ, properties). Adjacent expressions above and be-
low the bar are implicitly conjoined; explicit logical junctions are also possible  
(examples will be given in the following sections). 

A constraint system generated from a program by application of the constraint 
rules is always solved with the variable values reflecting the program as is (the initial 
values); it may however be invalidated by assigning one or more variables new values 
to reflect the goal of the refactoring. Solving the invalidated constraint system then 
amounts to computing the additional changes mandated by the refactoring. Note how 
this blurs the usual distinction between precondition checking and the mechanics of a 
refactoring: an unsatisfiable constraint system reflects a precondition violation. 

3.4   Program Queries and Writing Back Solutions 

The program queries constituting the precedents of the constraint rules are basically 
Datalog-like [2, 32] expressions whose predicates are matched against a (thought) fact 
base representing the program to be refactored. Every predicate has a name and a 
number of variables as arguments; variables occurring in more than one predicate 
refer to the same program element. Evaluating these queries produces all tuples of 
program elements satisfying the rule precedent. How the queries are evaluated is out-
side the scope of this paper; in practice, queries will be transformed to searches of the 
AST of the queried program, but generating an intermediate representation of the pro-
gram and storing it in a database to speed up querying is also feasible. 

Once the constraints have been generated and solved, the variable assignments that 
constitute the solution must be translated to necessary changes of the program to be 
refactored, a process that we refer to as writing back the solution. Depending on the 
property a constraint variable represents, writing back amounts to changing a compo-
nent of a declaration (such as identifier, type, accessibility, or other modifiers) or a 
change of location (declaring class) of a program element, or it may lead to the intro-
duction or deletion of code (a novel aspect that will be detailed in Section 4.4). 

3.5   Specifying a Refactoring 

If the constraint rules identified for a given programming language are sufficient to 
guarantee meaning preservation for all possible changes of the constrained program 
properties, every solution of the constraint system generated from a given program 
corresponds to a refactoring of that program. Specification of a concrete refactoring  
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such as RENAME or GENERALIZE DECLARED TYPE therefore amounts to narrowing the 
solution space to the solutions reflecting the changes associated with that refactoring, 
that is, the refactoring intent. 

Specification of a concrete constraint-based refactoring usually involves specifying 

• the kinds of program elements the refactoring can be applied to (e.g., all declared 
entities in the case of RENAME, or typed entities in the case of GENERALIZE DE-

CLARED TYPE),  
• the properties that are to be changed by the refactoring (e.g., identifiers in the case 

of RENAME, and declared types in the case of GENERALIZE DECLARED TYPE), as 
well as other properties whose adjustment may make a concrete refactoring possi-
ble (such as the identifiers of other program elements, e.g. references), and  

• to which (sets of) values the changeable properties may be changed by the refac-
toring (e.g., a supertype in the case of GENERALIZE DECLARED TYPE). 

All this information is to be supplied by the author of the refactoring. A concrete ap-
plication of the refactoring further involves specification of  

• the concrete program element(s) to which the refactoring is to be applied and 
• the target values of the specified element(s)’(s) properties. 

This information is to be supplied by the user of the refactoring. 

4   Challenges of Constraint-Based Refactoring 

While the previous section identified the basic constituents of a constraint-based 
refactoring framework, this section deals with specific problems that we encountered 
during our work on implementing constraint-based refactoring tools using this frame-
work. The nature of these problems and their repeated occurrence in various refactor-
ings that we have worked on gave rise to the definition of REFACOLA as will be  
presented in Section 5. One such problem, the handling of foresight (necessary for 
MOVE refactorings that change the AST of a program) requires techniques whose 
presentation exceeds the spatial limits of this paper; it is presented in a companion 
paper [27]. 

4.1   Indirection 

Specifying the semantics of programming languages as constraints occasionally in-
volves indirection. For instance, in Java for a member declared package local to be 
accessible by a reference r on receiver q, the type t of q must be defined in the same 
package the reference is located in, as would be expressed by the constraint t.π = r.π 
(in which π denotes the package property). However, if the type t of the receiver q is 
variable (because a refactoring such as GENERALIZE DECLARED TYPE [29] is allowed 
to change it), this constraint does not model the problem adequately, since t, which is 
bound to a program element during application of a constraint rule (cf. Section 3.3), 
during constraint solution always denotes the same type, no matter whether the type 
of q, q.τ , is changed by a refactoring. What we would really need to express is  
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q.τ.π = r.π (1)

in which q.τ denotes the property representing the type of q, and q.τ.π denotes the 
property representing the package of the value of q.τ. Note that which property q.τ.π 
denotes depends on the value of q.τ, which is itself a property (and thus variable). 
Thus, the package property of the receiver type is indirectly accessed. 

As detailed in Section 3.2, the members of the domain of a property cannot them-
selves have properties, so that indirections of the above kind cannot be expressed  
directly. However, with the aid of program-dependent domains (here: [Type] as the 
domain of q.τ), the indirection of (1) can be expressed as a quantified constraint [27] 

∃ t∈Type: q.τ = [t] ∧ t.π = r.π   (2)

which is satisfied only if there is a program element t that is located in the same pack-
age as r and whose corresponding program-dependent domain value [t] is the value of 
q.τ. It turns out that (2) directly maps to the element constraint [17, 31] offered by 
many constraint solvers: if i and x are integer variables and A is an array of integer 
variables, element(i, A, x) is satisfied if and only if the constraint A[i] = x is satisfied. 
For instance, using element the indirection constraint (1) can be expressed as 

                                                     element(q.τ, Π, r.π)                                                      
in which Π is an array of package properties such that Π[i] is ti.π, the package prop-
erty of type ti whose corresponding value [ti] is encoded (through the mapping of the 
domain [Type] to the set of integers; cf. Section 3.2) by integer i, and in which q.τ. 
(whose domain is [Type]) serves as the index into Π. 

4.2   Reducing the Solution Space: Generating the Necessary Constraints Only 

The usual approach to constraint-based refactoring is to apply all constraint rules to 
all elements of a program to be refactored, thereby generating huge numbers of con-
straints, including ones for program elements that are not involved in an intended 
refactoring. Depending on how the generated constraint system is solved, this proce-
dure may not only waste resources in constraint generation, it can also produce myr-
iads of solutions the user of the refactoring did not request, or has no interest in. 

As stated in Section 3.5, input to the concrete application of a refactoring are the 
variable assignments that reflect the refactoring intent, and the set of other variables 
(properties) whose value may be changed by the refactoring. Of the latter, only the 
variables participating in constraints that may be invalidated by the former are of in-
terest; all other variable assignments represent solutions that are independent from the 
refactoring intent, and should therefore not be generated. An algorithm that deter-
mines which constraints and constraint variables are to be generated to constrain pre-
cisely these properties is shown in Figure 1. 

The algorithm is straightforward. It starts with the set of properties whose value 
must change, determines all constraints derivable from the program that directly con-
strain their new values, and replaces the occurrences of the properties in the  
constraints with constants reflecting the new values. For all other properties con-
strained by these constraints, it checks for each one whether it may be changed by the 
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Algorithm GenerateConstraints 
Input:  

M, the set of properties whose values must change 
N, the set of properties whose values may change 
v0, a function mapping properties to their initial values 
vf, a function mapping the members of M to their new values 
R, a set of constraint rules 

Output: 
C, a set of constraints 

Steps: 
1. let P = M, Q = ∅, C = ∅ 
2. repeat 
3.  move one property p from P to Q 
4.  for each constraint rule r in R 
5.   if r can constrain p 
6.    for each constraint c generated by r, constraining p 
7.     for each property p' occurring in c 
8.      if p'∈M 
9.       replace every occurrence of p' in c with vf(p' ) 

10.      else if p'∉N 
11.       replace every occurrence of p' in c with v0(p' ) 
12.      else if p'∉Q  
13.       add p' to P 
14.     add c to C 
15. until P = ∅ 

Fig. 1. Algorithm computing the set of constraints to be generated for a specific refactoring 

refactoring: if not, it replaces its occurrences in the constraints with the property’s 
initial value (again a constant); otherwise, it applies the procedure recursively to the 
property, i.e., it determines which other constraints constrain the property (thereby 
indirectly constraining the properties to be changed) and so forth. All constraints  
determined by this algorithm constrain, either directly or indirectly (through proper-
ties that may be changed), the properties that must be changed, and are therefore nec-
essary; all others can be dispensed with. The constraint variables generated by the 
algorithm are those constrained by its generated constraints. 

4.3   Determining the Best Solution: Soft Constraints 

Even with the algorithm of Figure 1 in place, a constraint system generated from a 
refactoring problem has usually more than one solution. The first solution produced 
by a general purpose constraint solver depends on internals of the solver, and may not 
be the one that a custom algorithm tailored for the specific problem computes (that is, 
the “best” solution).  

To find a best solution, contemporary solvers allow the definition of an objective 
variable (also called a soft constraint) whose value they will then maximize or mini-
mize. This can be exploited for refactoring problems, namely by defining an objective 
variable as accumulating penalties for violating certain aptness criteria to be respected 
by a good solution, such as changing as few properties as possible or preferring inser-
tion of a cast at the call site of an overloaded method over renaming it (see below). In 
general, penalties can be expressed as equality constraints of the form 

ci = if constraint(πi, …) then pi else 0 
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in which ci is a constraint variable representing the cost of property πi having a certain 
value (which one being specified by constraint(πi, …), which may involve other 
properties including the original value of πi) and in which pi is an integer constant 
representing the penalty. The solver must then be instructed to minimize an objective 
variable c whose value is constrained to the sum of all ci.  

Soft constraints come at a high price, however: in the worst case, finding the 
minimum requires exploration of the complete solution space, which is generally ex-
ponential in the number of constraint variables. Therefore, specifying penalties must 
be carefully traded against local search strategies that try to solve a constraint system 
starting from a solution that was invalidated by changing one or more variable values. 

4.4   Defaults and Introductions 

Sometimes the solution of a refactoring problem requires the introduction of a new 
program element. For instance, in the Java program 

class Server { 
 boolean m(String s) { return s.length() > 0; } 
 void m(Comparable s) {…} 
} 

 

class Client {{ new a.Server().m("abc"); }} 

the parameter type of Server.m(String), String, can be generalized to CharSequence 
without affecting the method’s well-typedness, allowing instances of other implemen-
tations of CharSequence to be passed. However, this will make the client’s invocation 
of m ambiguous unless a cast to CharSequence is inserted before the actual parameter 
"abc". Since a constraint solver cannot introduce new program elements, we have to 
assume that such a cast, c, is already present in the program, only that it is not visible 
in the program text, because the cast’s target type property, c.τ, has a default value, 
namely the type of the expression to be cast (here: String). Should the solver assign 
such a “hidden” property a different value (different than the default), this value will 
materialize in the program text once the solution of the constraint system is written 
back (Section 3.4). The sparing use of non-default values (i.e., use only if the refactor-
ing is impossible otherwise, or requires even less apt changes) can be enforced by 
corresponding soft constraints (penalties; see above), in the above example by penal-
izing c.τ ≠ r.τ, in which r represents the reference to be cast by the (hidden) cast c.1  

4.5   Miscellaneous 

To save space, we omit a number of other challenges and their solutions here. This 
includes the handling of external program elements such as those contained in librar-
ies (which may constrain a refactoring, but may not themselves be subject to change), 

                                                           
1 Note that inserting a cast is not the only possibility to fix the presented refactoring problem: 

other constraints of the program permitting, accessibility of the method competing in the 
binding, Server.m(Comparable), could be lowered to private, or one of the two methods could 
be renamed. It is one of the strengths of our approach that if constraints for all three proper-
ties are generated, the refactoring will consider all possible solutions, and will choose the one 
imposing the least cost (in terms of the penalties defined). 
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the reduction of large domains such as Identifier or [Class] to smaller ones that do not 
contain values leading to equivalent solutions (used for RENAME FEATURE in Section 
6.1), and the modelling of orderings that are themselves subject to change by a refac-
toring (such as class and type hierarchies for refactorings like EXTRACT INTERFACE 
[29] or REPLACE INHERITANCE WITH DELEGATION [14], or nesting of program ele-
ments for MOVE [8] refactorings). However, we can assure the reader that all these 
challenges can be solved by suitable encodings of the involved domains. 

5   The Refactoring Constraint Language REFACOLA 

Based on the generalized framework presented in Section 3 and on our solutions to 
the challenges identified in Section 4 we have devised REFACOLA, a refactoring con-
straint language allowing us to express the constraint rules specific to a programming 
language, as well as to specify refactorings relying on these rules, in a declarative 
way. Examples of specifications in REFACOLA can be found in the figures below; be-
cause of a lack of space, we do not present its syntax rules here. More information on 
REFACOLA can be found under http://www.feu.de/ps/prjs/refacola. 

5.1   The REFACOLA Language and Framework 

As can be seen in Figure 2, the REFACOLA language has three kinds of modules: lan-
guages, rulesets, and refactorings. A language module consists of the definitions of 
kinds (of program elements; cf. Section 3.1), their properties, domains, and the signa-
tures of program queries. The kinds are arranged in a subkind hierarchy (using <:) and 
the properties associated with each kind (if any; appended to it in curly braces) are 
inherited by its subkinds. Properties are associated with domains (separated by a co-
lon), which are either predefined (such as Identifier or Boolean) or enumerated (such as 
Accessibility in Java or C#) or program-dependent (such as [Class]; cf. Section 3.2). 
Properties with the same domain are compatible: for instance, class and type proper-
ties can be used interchangeably if the domain of both is [Class].2 The (partial) order-
ing of program-dependent domains is specified by referring to a program query  
extracting the ordering from the program to be refactored. For instance, in Eiffel the 
domain [Class] has two partial orders, one being defined by a query inherits and the 
other by a query inherits-non-conforming [6 §8.6.9]. For the first ordering defined, <= 
and < can be used as relation symbols (see, e.g., Figure 5); for all that follow, the 
query predicate defining the order has to be used. Queries are defined as signatures 
only; they provide the interface to the querying component of the REFACOLA frame-
work (see below). ENTITY and REFERENCE are predefined kinds corresponding to D and 
R, respectively (cf Section 3.1). 

A ruleset module imports a language module (using the for keyword) and consists 
of a set of rules, each carrying an identifier. The specification of a rule is comprised 
of the declaration of the variables serving as placeholders for program elements (in-
troduced by for all), an if-part for the rule precedent, and a then-part for the rule con-
sequent. The precedents of rules are Datalog-like [2] expressions whose atoms are 
 

                                                           
2 Note that, for the sake of simplicity, we ignore parameterized types throughout this paper; that 

they can be treated with constraints has been shown elsewhere, e.g. in [4, 9, 15]. 
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language Eiffel 
kinds

Deferrable <: ENTITY {deferred} 
Class <: Deferrable 

 Assignable <: REFERENCE {type} 
Feature <: Deferrable 

properties
 deferred : Boolean 
 type : Type 
domains Type = [Class] oordered by inherits
queries
 has(Class, Feature) "Class defines or redefines or inherits Feature" 
 create(Assignable) "object of Assignable's type is created and assigned to it" 
 inherits(Class, Class) "1st Class inherits from 2nd" 

ruleset Deferring ffor Eiffel 
rules
  deferred-class 
   ffor all c : Class  f : Feature 

if   has(c, f) 
   tthen f.deferred = true iimplies c.deferred = true 
 instantiation 

for all a : Assignable 
if create(a)
then a.type.deferred = false 

refactoring ChangeDeferredState ffor Eiffel uuses Deferring 
forced changes deferred oof DeclaredEntity 
allowed changes deferred oof Class 

 

Fig. 2. Sample language, ruleset, and refactoring modules for the deferred property (corres-
ponding to abstract in Java et al.) of classes and features (members) in Eiffel. The rule named 
instantiation constrains the type of an (variable or attribute) to one that is instantiable (i.e., not 
tagged as deferred), if the assignable is used in an instance creation expression ([6 §8.20.6]). 
Note that this rule involves indirection (Section  4.1); this is necessary if the type of an assigna-
ble is subject to change by a refactoring (such as CHANGE DECLARED TYPE; see Section  6.3). 
The ordering of the program-dependent domain Type is defined by the inherits query; the order-
ing is not used in this example. 

program queries of the imported language module; the consequents are sets of con-
straints that are to be generated for the program elements to which the rules apply.  

The constraints supported by REFACOLA are (currently) those supported by our 
used constraint solver (Cream [28]) and include program-dependent orderings (using 
the Relation constraint [28] with the relations extracted as described above) and indi-
rection (Section 4.1). 

A refactoring module imports a language and one or more ruleset modules of the 
same language, and specifies which kind of program element the refactoring is to be 
applied to, which properties it is to change (the “forced changes”), and also which 
other properties of which other elements (if any) may be changed in the course of the 
refactoring (the “allowed changes”; cf. Section 3.5).  

Based on a refactoring module and the language and ruleset modules it depends on, 
the REFACOLA compiler generates code that plugs into the REFACOLA framework that 
is itself embedded in an IDE such as Eclipse, MonoDevelop, or EiffelStudio (see Fig-
ure 3; currently, only Eclipse is supported, with adapters to the ASTs of MonoDe-
velop and EiffelStudio). The framework provides the implementations of the program 
queries, the constraint generator (which includes an implementation of the Generate-
Constraints algorithm of Figure 1), and the routines necessary for writing back the 
solutions into refactored programs. Currently, small adapters are still hand-crafted to 
map the language definitions specified in REFACOLA to the types of the AST. Also, a 
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full-fledged implementation of the framework on the target platform would adapt the 
refactorings to the IDE’s user interface. As of today, however, we have only imple-
mented the batch application required to produce the results presented in Section 7. 

5.2   Implementation of the Compiler 

Our REFACOLA compiler is implemented using the Xtext [34] language development 
framework, which is itself Eclipse-based [5] (cf. Figure 3). The necessary type checks 
(e.g., that properties are only qualified by program elements for which they have been 
defined, and that constraints and queries are supplied with properties of the required 
domains) are performed using xtext-typesystem [35]. The code fragments (“plug-ins”) 
that — together with the REFACOLA framework and a constraint solver providing the 
necessary infrastructure — implement the refactorings specified in REFACOLA are 
generated using Xpand [33] and are based on templates specific to the programming 
language and target IDE. 

6   Application 

To demonstrate the expressiveness of REFACOLA, we first present specifications of the 
RENAME, CHANGE ACCESSIBILITY, and CHANGE DECLARED TYPE refactorings for the 
Eiffel programming language, and then explain how they are combined into a single 
refactoring whose applicability exceeds that of its components. The applicability of 
the refactorings is evaluated in Section 7. 

6.1   The RENAME Refactorings 

Eiffel has no explicit namespaces, so that every class must have a unique name. This 
is expressed as the simple REFACOLA constraint rule (put into the context of a lan-
guage definition in Figure 4) 

for all c1, c2 : Class if c1 != c2 then c1.id != c2.id 

which alone governs the RENAME CLASS refactoring. A similar condition applies to 
renaming features (members); however, here the situation is more complicated. 

Fig. 3. REFACOLA compiler and framework and their embeddings in IDEs 
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language Eiffel 
kinds
 DeclaredEntity <: ENTITY {id} 

Class <: DeclaredEntity 
 Feature <: DeclaredEntity 

Local <: DeclaredEntity 
Renaming <: Feature {inheritedId} 
Reference <: REFERENCE {id} 

properties
 id : Identifier 
 inheritedId : Identifier 
queries
  binds(Reference, DeclaredEntity) "Reference binds to DeclaredEntity" 
 has(Class, DeclaredEntity) "Class defines or inherits Feature or Local" 
 redefines(Feature, Feature) "1st Feature redefines 2nd" 
 renames(Renaming, Feature) "Renaming renames inherited Feature, poss. default" 
 merged(Renaming, Renaming) "Renamings are merged in immediate subclass" 
 split(Renaming, Renaming) "Renamings are different feat. in immediate subclass" 

ruleset Naming ffor Eiffel
rules
  binding 
   for all r : Reference, d : DeclaredEntity
  if binds(r, d)
  then r.id = d.id 
 unique-class-identifier 

for all c1, c2 : Class
if c1 != c2 
then c1.id != c2.id 

 unique-feature-identifier-1 
for all c : Class, f1, f2 : Feature 
if has(c, f1)  has(c, f2)  f1 != f2 
then f1.id != f2.id 

 unique-feature-identifier-2 
for all c : Class, f : Feature, l : Local
if has(c, f)  has(c, l) 
then f.id != l.id 

 redefine-feature 
for all f1, f2 : Feature iif redefines(f2, f1) tthen f2.id = f1.id 

 rename-feature 
for all f : Feature, r : Renaming iif renames(r, f) tthen r.inheritedId = f.id 

 merging 
for all r1, r2 : Renaming iif merged(r1, r2) tthen r1.id = r2.id 

 splitting 
for all r1, r2 : Renaming iif split(r1, r2) tthen r1.id != r2.id 

refactoring RenameFeature ffor Eiffel uuses Naming 
forced changes
  id oof DeclaredEntity 
allowed changes
  id oof DeclaredEntity vvalues {oold, ffresh}
  id oof Reference 
penalties
 changing-identifiers 
   for all  d : DeclaredEntity ppenalize d.id != oold d.id wwith 1
 inserting-rename-clauses  
   for all  r : Renaming ppenalize r.id != r.inheritedId wwith 2 

 

Fig. 4. REFACOLA modules for the RENAME FEATURE refactoring for Eiffel 

In Eiffel, a class can define a feature, inherit it from a superclass, redefine an inher-
ited feature (corresponding to overriding), rename it (can be combined with redefin-
ing), or undefine it (i.e., make it abstract). Since Eiffel has no overloading, the names 
of features available in a class must be unique within that class, and also different 
from all local variables and formal parameters (together referred to as locals) of that 
class. In particular, renaming is mandatory if a class inherits two features of the same 
name from different superclasses, or one that has the same name as one of its own 
features. The problem is illustrated by the sample program  
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 class A feature i : ANY end 
 class B inherit A feature j : ANY end 
 class C inherit A rename i as j end end 

for which renaming feature i of class A to “j” (as a refactoring) must either be rejected 
(because subclass B already has a feature of the same name), or B.j must be given a 
fresh name, or a rename clause must be introduced in B which renames the inherited 
feature. Note that, that A.i is renamed to “j” in C (by a corresponding rename clause) 
does not constrain the refactoring, even if this means that after the refactoring, the 
feature is renamed to the same name — instead, in the above example, rather than 
updating the reference i in the rename clause of C to j, the rename clause can be 
dropped, giving us the refactored program 

 class A feature j : ANY end 
 class B inherit A rename j as i end feature j : ANY end 
 class C inherit A end 

Alternatively, as mentioned above, feature B.j could have been renamed by the refac-
toring, saving the renaming of the inherited j. 

The REFACOLA definitions for a RENAME refactoring that incorporates enough of 
the Eiffel specification to handle all options are shown in Figure 4. Except for the 
handling of rename clauses and the special treatment of repeated inheritance [9 
§8.16.2], all definitions are straightforward. 

To handle rename clauses as described above, we introduce a special kind of fea-
ture, called Renaming, and assume default renamings (defaulting to the same name; cf. 
Section 4.4) for all inherited features that are not explicitly renamed. This implies that 
the query binds(r, d) must bind r to a default renaming if the target of r inherits the 
feature without explicitly renaming it. Renaming declares an additional property, inher-
itedID, for the identifier of the feature it renames (which may itself be a renaming, 
default or proper); this is used to keep track of the identifier of that feature (the inher-
ited identifier [6 §8.6.18]), which is necessary for determining the default status of a 
renaming upon writing back the solution of the constraint system (only renamings r 
for which r.id ≠ r.inheritedId translate to rename clauses in the program; cf. Section 
4.4), and also for expressing the penalty inserting-rename-clauses, suggesting that re-
namings should not needlessly be introduced by the solver (cf. Section 4.3).  

In case of repeated inheritance, i.e., inheritance of a feature from two immediate 
superclasses that have in turn inherited the feature from a common ancestor (the 
“diamond problem” of multiple inheritance), Eiffel merges the two inherited features 
into one, unless one or both are renamed in the superclasses so that their names differ 
— in that case, the subclass inherits two (different) features (the Repeated Inheritance 
rule; [9 §8.16.2]). Renaming of repeatedly inherited features may thus cause the split-
ting of a feature into two, or the merging of two features into one, which both likely 
affect the meaning of the program. Therefore, renaming must maintain the merging 
status of repeatedly inherited features, which is guaranteed by the rules named merg-
ing and splitting. 

6.2   The CHANGE ACCESSIBILITY Refactoring 

The classes of an Eiffel program do not only all exist in the same global namespace, 
they are also accessible (“available” in Eiffel jargon) by all other classes of the same 
program. The accessibility of the features of a class is controlled by an explicit export 
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mechanism: each feature definition can have a set of classes attached from whose 
bodies (including the bodies of the classes’ subclasses) the feature is accessible. By 
way of re-exporting using export clauses [6 §8.7], subclasses may change the export 
status of their inherited features, which includes making them accessible by fewer 
(including no) classes. This accounts for one half of so-called catcalls (where “cat” 
stands for “change availability or type” [19]), which threaten subtyping.3 A refactor-
ing should therefore not introduce catcalls. 

The following program illustrates some of the constraints controlling accessibility: 

 class A feature {C, D} m do … end end 
 class B inherit A end 
 class C feature m local a : A do … a.m … end end 
 class D feature m local b : B do … b.m … end end 

In this program, accessibility of A.m could be reduced to include just C, but the access 
of m on an instance of B from class D would require introduction of an export {D} m 
clause in class B, as in  

 class A feature {C} m do … end end 
 class B inherit A export {D} m end end 

This however is insufficient, since making B.m inaccessible from C (the semantics of 
the export clause is not additive) makes the call a.m in C a catcall. The export clause 
in B must therefore include C as well.  

The definitions for a CHANGE ACCESSIBILITY refactoring for Eiffel are shown in 
Figure 5.4 They are explained as follows: 

• While an Eiffel class may introduce one feature clause or export clause per feature 
defined or re-exported, both a feature clause and an export clause can list several 
features that then all share the same export status. To express this, feature clauses 
and export clauses (jointly represented by program elements of kind Export) also 
have an accessibility property, and the accessibility of features is inferred from that 
of their exports by constraining them to equal the accessibility of their clause (the 
accessibility-inference rule). Note that, were the export clause to which a feature 
belongs subject to change by a refactoring, this constraint would require indirec-
tion, i.e., f.accessibility = f.export.accessibility (see Section 4.1), with export being a 
property of features with program-dependent domain [Export] (see Section 3.2). 

• The accessibility property is set valued. This is reflected in the accessible-feature 
rule, which requires that the location of a reference to a feature, which is (the body 
of) a class, is a subclass of at least one class in accessibility, the set of classes the 
feature is exported to. The rule consequent therefore involves an existentially 
quantified constraint (cf. [27]); its semantics is not detailed here since for technical 
reasons, in our implementation we will have to replace set-valuedness of accessibil-
ity with single-valuedness (see Section 7). 

                                                           
3  While [19] defines catcalls statically, the Eiffel compiler [7] inserts runtime type checks sig-

nalling exceptions on the occurrence of catcalls, so that introducing catcalls does not lead to 
uncompilable code, but may lead to new runtime errors and therefore may change behaviour. 

4  Note that we use different language and ruleset modules here only to make each refactoring 
specification self-contained. In practice, modules would be shared between refactorings. 
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language Eiffel 
kinds

Class <: ENTITY 
Export <: DeclaredEntity {accessibility} 
Feature <: DeclaredEntity {accessibility} 
Reference <: REFERENCE {location} 

properties
 accessibility : SetOf(Type) 
 location : Type 
domains
 Type = [Class] oordered by inherits
queries
 feature(Export, Feature) "Feature is a feature of the clause Export" 
 accesses(Reference, DeclaredEntity) "Ref. accesses DeclEnt. from other class" 
 requires(Feature, Feature) "1st Feature references 2nd Feature in its precond." 
 reexports(Feature, Feature) "1st Feature redefines export status of 2nd" 
 inherits(Class, Class) "1st Class inherits from 2nd" 

ruleset Exporting ffor Eiffel
rules
 accessibility-inference 
   ffor all e : Export, f : Feature 

if   feature(e, f) 
   tthen f.accessibility = e.accessibility 
  accessible-feature 
   ffor all r : Reference  f : Feature 

if   accesses(r, f) 
   tthen  exists c : Class ([c] iin f.accessibility aand r.location <= [c]) 
 precondition-export 

for all r : Reference, f1, f2 : Feature 
if   accesses(r, f1) requires(f1, f2) 

   tthen  exists c : Class ([c] iin f2.accessibility aand r.location <= [c]) 
 no-catcalls 
   ffor all r : Reference  f1, f2 : Feature 

if   accesses(r, f1)  reexports(f2, f1) 
   tthen  exists c : Class ([c] iin f2.accessibility aand r.location <= [c]) 

refactoring ChangeAccessibility ffor Eiffel uuses Exporting 
forced changes accessibility oof Feature
allowed changes accessibility oof Feature, accessibility oof Export

 

Fig. 5. REFACOLA modules for the CHANGE ACCESSIBILITY refactoring 

• It is a prerequisite of design by contract that all clients of a feature are able to 
check that the preconditions of the feature are satisfied (by querying the features 
that are used in the precondition) [19, 6 §8.9.5]. This is expressed in precondition-
export, which requires that each feature referenced from the precondition of an-
other feature of the same class is accessible to at least the clients of the referencing 
feature. 

• To avoid the introduction of catcalls to a program (cf. above), the no-catcalls rule 
requires that if a referenced feature is re-exported in a subclass, the re-exported 
feature of the subclass must also be accessible from the location of the reference. 

6.3   The CHANGE DECLARED TYPE Refactoring 

Using more general types in the declarations of variables is considered good practice, 
since it means depending on fewer features, thereby increasing decoupling (the Inter-
face Segregation Principle [16]). However, generalizing the declared type of a vari-
able is constrained by the use of that variable (which features are being accessed on 
it), and also, via assignment compatibility, by the type of the other variables it gets 
assigned to (whose types are constrained accordingly). Specializing a declared type is 
constrained similarly, the differences being that assignments propagate type change 
inthe opposite direction and that the use of the type need not be checked: if the  
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program to be refactored is free of catcalls, features defined by a supertype that are 
available to clients are also available — to the same clients — from its subtypes. 

The situation is more complicated, however, when the parameter types of redefin-
ing or redefined (the Eiffel terms for overriding and overridden) routines (methods) 
are to be changed: since Eiffel allows covariant redefinition of all parameters, a pa-
rameter type of a redefined routine may be generalized, and a parameter type of a 
redefining routine may be specialized, by a refactoring. However, since covariant 
redefinition may lead to catcalls (here the call of a routine with a parameter that may 
not be accepted by a redefining routine in a subclass, threatening static subtyping), 
care must be taken that no CHANGE DECLARED TYPE refactoring introduces a catcall. 

Changing a declared type is different from the previous refactorings in that it 
changes static binding of references to features, which could affect the meaning of a 
program. However, in Eiffel (unlike in Java for instance) the binding changes that 
may be caused by a change of declared type depend on the type of the features’ tar-
gets (aka receivers) alone (recall that Eiffel has no overloading). Since in Eiffel (again 
unlike in Java), all feature accesses (including field accesses) are dynamically dis-
patched, a change of receiver or parameter type never leads to a change of dynamic 
binding, so that except for creating new objects (instantiation; see below), maintaining 
(static) type correctness is enough to preserve binding. 

The following short sample program illustrates some of the challenges posed by 
the CHANGE DECLARED TYPE refactoring in Eiffel: 

class A end 
class B inherit A feature n do end end 
deferred class C feature m(b1 : B) deferred end end  
class D inherit C redefine m end feature m(b2 : B) do b2.n end end 
class CLIENT feature m local d:D; b3:B do create(b3); d.m(b3) end end 

Here, type changes are constrained as follows: 
• b1 : B can be generalized to b1 : A, and d : D can be generalized to d : C, but not 

both at the same time, since this would make d.m(b3) in class CLIENT a catcall 
statically  (cf. Footnote 3); 

• b2 : B cannot be generalized to b2 : A since A does not define feature n; and  
• b3 : B cannot be generalized to b3 : A since this would require either generalizing 

b2 or both d and b1, where both alternatives, as we have just seen, are prohibited.  
As for specialization,  
• b1 : B cannot be specialized without specializing b2 with it; 
• b2 : B cannot be specialized without specializing b3 with it; and 
• b3 : B can be specialized to b3 : D, but not to b3 : C, since this would make the in-

stantiation create(b3) illegal (instantiation of a deferred type). 
The definitions necessary for the CHANGE DECLARED TYPE refactoring are shown 

in Figure 6. They are explained as follows: 
• Assignment is the usual subtyping constraint covering assignment compatibility: it 

requires that the type of the right-hand side of the assignment is a subtype of the 
type of the left-hand side. 

• Feature-defined constrains the type of the receiver (called target in Eiffel parlance) 
of a feature access to descendants of the root definition of that feature (called its 
seed; including the seed itself). Thus, the access is constrained to bind to a version 
([6 §8.16.8]) of the feature (where versions are defined as having the same seed).  
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language Eiffel 
kinds
 DeclaredEntity <: ENTITY {id} 
 Variable <: DeclaredEntity {type, location} 
 Feature <: Variable 
 Formal <: Variable 
 Reference <: REFERENCE {id, type, location} 
 Class <: DeclaredEntity 
properties
 id : Identifier 
 type : Type 
 location : Type 
domains Type = [Class] oordered by inherits
queries
 assignment(Reference, Reference) "2nd Reference is assigned to the 1st" 
 binds(Reference, DeclaredEntity) "Reference binds to DeclaredEntity" 
 target(Reference, Reference) "2nd Reference is the target (receiver) of 1st" 
 seed(Feature, Feature) "2nd Feature is seed (root definition) of 1st Feature" 
 defines(Class, Feature) "Feature is defined, redefined, or renamed in Class" 
 actual(Reference, Reference, Index) "1st Ref. is actual of 2nd Ref. at Index" 
 formal(Formal, Feature, Index) "Formal is formal of Feature at Index" 
 redefines(Feature, Feature) "2nd Feature redefines 1st" 
 create(Reference) "object of Reference's type is created and assigned to it" 
 current(Reference) "Reference is Current" 
  result(Reference, Feature) "Reference is Result of query Feature" 
 like(Variable, Variable) "1st Variable declared to have the type of 2nd" 
 inherits(Class, Class) "1st Class inherits from 2nd" 

ruleset Typing ffor Eiffel 
rules
 assignment 
   ffor all l, r : Reference iif assignment(l, r) tthen r.type <= l.type 
 feature-defined 

for all r, t : Reference  f, s : Feature 
if binds(r, f)  target(r, t)  seed(f, s) 
then t.type <= s.location 

 version-binding 
for all r, t : Reference  f1, f2, s : Feature  c : Class 
if binds(r, f1)  target(r, t)  seed(f1, s)  seed(f2, s)  defines(c, f2) 
then t.type = [c] iimplies (r.id = f2.id aand r.type = f2.type) 

 accessible-feature 
for all r, t : Reference  f1, f2, s : Feature  c : Class 
if binds(r, f1)  target(r, t)  seed(f1, s)  seed(f2, s)  defines(c, f2) 
then t.type = [c] iimplies

         eexists c' : Class ([c'] iin f2.accessibility aand r.location <= [c']) 
 routine-call 

for all r,t,a : Reference  r1,r2,s : Feature  c : Class  f : Formal  i:Index 
if binds(r, r1)  target(r, t)  seed(r1, s)  seed(r2, s)  defines(c, r2) 

           actual(a, r, i)  formal(f, r2, i) 
then t.type = [c] iimplies a.type <= f.type 

 instantiation 
for all r : Reference iif create(r) tthen r.type = oold r.type 

 covariant-feature-redefinition 
for all f1, f2 : Feature iif redefines(f2, f1) tthen f2.type <= f1.type 

 covariant-parameter-redefinition 
for all r1, r2 : Feature  f1, f2 : Formal  i : Index 
if redefines(r2, r1)  formal(f1, r1, i)  formal(f2, r2, i) 
then f2.type <= f1.type 

 no-catcalls 
for all r : Reference  r1, r2 : Feature  f1, f2 : Formal  i : Index 
if   binds(r, f1)  redefines(r2, r1)  formal(f1, r1, i)  formal(f2, r2,i) 

   tthen f2.type = f1.type 
 type-of-Current 

for all r : Reference iif current(r) tthen r.type = r.location 
 type-of-Result 

for all r : Reference  f : Feature iif result(r, f) tthen r.type = f.type 
 anchored-type 

for all v1, v2 : Variable iif like(v1, v2) tthen v1.type = v2.type 

refactoring ChangeDeclaredType ffor Eiffel uuses Typing 
forced changes type oof Variable
allowed changes type oof Variable, type oof Reference, id oof Reference

 

Fig. 6. REFACOLA modules for the CHANGE DECLARED TYPE refactoring 
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• Version-binding constrains the identifier and type of a reference to equal those of 
the version of the feature the reference binds to, which depends on the type of the 
target. Since this type may be changed by the refactoring, this rule compiles a table 
of conditional constraints (one constraint per version of the feature) of which only 
one will be active per solution (which one depending on the value of t.type). 

• Accessible-feature makes sure that a feature accessed from a changed receiver type 
is still accessible; it works analogously to version-binding (see below for a discus-
sion). 

• Routine-call constrains the types of the actual parameters of a routine call to sub-
types of their corresponding formal parameter types (analogously to the assignment 
rule). The variable i of type Index is implicitly constrained to the number of pa-
rameters of the routine. 

• Since in Eiffel the class that is instantiated depends on the type of the variable 
used in the instantiation, and since replacing an object with one of a different class 
potentially affects behaviour, the instantiation rule prevents the change of declared 
type of variables used in instantiations. This rule could be relaxed to allow changes 
to subtypes, if existing contracts guaranteed behavioural subtyping; however, a 
refactoring tool has no way of checking such contracts. Also, this would require 
that the class defining the subtype is not deferred (abstract; but note how, if the 
refactoring definition is extended to include the Deferring ruleset of Figure 2, it 
could set deferred to false, if no deferred feature of the class prevents this). 

• Covariant-feature-redefinition and covariant-parameter-redefinition constrain all 
types involved in a feature redefinition (in Eiffel, this includes fields) to subtypes. 

• No-catcalls requires that redefinition of a referenced routine (method) leaves pa-
rameter types unchanged. 

• Type-of-Current and type-of-Result constrain the types of the special references rep-
resenting the current instance (this in Java et al.) and the return value of a function. 

• Anchored-type constrains an anchored type to equal the type it is anchored to [6 
§8.11.17]. 

Note that one half of the version-binding rule constrains the identifiers of a reference 
and the feature that is being referenced, and thus really belongs to the Naming ruleset 
of Figure 4. In fact, ignoring the type constraints generated by version-binding, it is a 
generalization of the binding rule of the Naming ruleset, namely one that takes the vari-
ability of the type of the reference’s target into account (which could be ignored for 
RENAME FEATURE, since this does not change types). Indeed, as can easily be seen, if 
t.type is constant, which of the if-parts t.type = [c] of the conditional constraints gen-
erated by version-binding will be satisfied is already known when the rule is applied 
(namely for that application for which [c] equals the current type of the target) — for 
all that are not (all but a single one), the constraint can be dropped, since it does not 
constrain the solution (a conditional constraint with a false precedent is always satis-
fied). Version-binding of Figure 6 thus collapses to the (unconditional) binding rule of 
Figure 4. Note that the ChangeDeclaredType definition allows the change of identifiers 
of references; this enables the refactoring in cases in which different versions of a 
feature have different names (so that references must be updated). 
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Identifiers are not the only “foreign” property to be handled by CHANGE DE-

CLARED TYPE — by changing the type of a target, a reference using that target may 
re-bind to a version of the feature that is inaccessible for the client holding the refer-
ence. While accessibility would be covered by the accessible-feature rule of the Ex-
porting ruleset of Figure 5, this rule, like binding of the Naming ruleset, assumes that 
the (static) binding of a reference to a feature is not changed by a refactoring, which is 
not the case for CHANGE DECLARED TYPE. Instead, the accessible-feature rule of the 
Exporting ruleset (Figure 5) must be generalized to that of Typing (Figure 6) which, 
analogously to the version-binding rule, introduces a table of constraints. 

6.4   Combining Several Refactorings into One 

While for maximum applicability both identifiers and accessibilities must be handled 
by CHANGE DECLARED TYPE, changing them is not part of the primary refactoring 
intent. On the other hand, RENAME FEATURE, CHANGE ACCESSIBILITY, and CHANGE 

DECLARED TYPE are naturally combined into a single CHANGE FEATURE DECLARA-

TION refactoring allowing the intended change of identifier, accessibility, and one or 
more parameter types of a routine, all in one step. For this to work correctly, the effect 
of one constituent refactoring must be immediately visible by the others, which is 
achieved by letting the constraints generated by each ruleset share those constraint 
variables that represent same properties of same program elements. Also, a property 
assumed as variable in one ruleset must not be assumed as constant in another (cf. the 
above adaptations necessitated by changeability of declared type). Both is achieved 
by merging the language definitions (cf. Section 5.1) underlying the different ruleset 
and refactoring definitions into one. 

Generally, combining the specifications of different elementary refactorings can 
increase the applicability of each individual refactoring, if the refactoring is allowed 
to make additional changes controlled by the other refactoring specifications. For in-
stance, given the program 

class A feature {ANY} f do end end 
class B inherit A export {C} f end end 
class C feature g local a : A; b : B do create b; a := b; a.f end end 

using the ruleset of CHANGE ACCESSIBILITY alone it is not possible to change accessi-
bility of the field A.f to {NONE}. By combining the rulesets of CHANGE ACCESSIBILITY 
and CHANGE DECLARED TYPE, however, this presents no problem: since the rules of 
the Typing ruleset (including the adapted accessible-feature rule) allow it that the de-
clared type of the local a in class C is changed to B, and since there are no calls of f on 
a supertype of A in this program that could trigger Exporting rule no-catcalls on A.f, the 
refactoring can be performed (and the constraint solver finds the solution). However, 
changing the declared type of a local such as a in the above example is normally not 
associated with a CHANGE ACCESSIBILITY refactoring (or a CHANGE FEATURE DEC-

LARATION refactoring for that matter); in practice, such a generalized refactoring, 
which blurs the boundaries between individual refactorings, would require some  
advanced interaction facilities with the user (who might not understand why the  
program is refactored the way it is), including an explanation component such as [13]. 
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7   Experimental Results 

To demonstrate the adequacy of REFACOLA and the above refactoring specifications, 
and also to measure the efficacy of our GenerateConstraints algorithm, we have  
systematically (i.e., in batch mode) applied each refactoring to all suitable program 
elements (as specified in the refactoring definitions) of several Eiffel programs. The 
programs and indicators of their size are listed in Table 1; all programs are taken from 
the Gobo Eiffel Tools and Libraries [10], and are subsystems of EiffelStudio [7]. 

The refactorings were applied as follows. RENAME FEATURE was applied to all fea-
ture definitions with “other” as the target name. This name is frequently used in the 
benchmark programs (160 times), thus causing a fair number of name conflicts. 
CHANGE ACCESSIBILITY was also applied to all feature definitions, with target NONE 
(corresponding to private). CHANGE DECLARED TYPE was applied to features whose 
declared type was defined in the same project; targets were all immediate supertypes 
of the type, if in the same project. 

The results of applying the individual refactorings to all programs of Table 1 are 
shown in Table 2. The numbers were obtained making a couple of restrictions: 

• Since renaming is largely constrained by inequality constraints and since the refac-
toring definition of Figure 4 restricts the domains for identifiers a refactoring may 
change to two elements (the old and a fresh name), the solution space of renaming 
is of the order O(2n) (where n the number of features potentially having a name 
conflict), which is a problem for finding the best solutions if n is large. Therefore, 
we extended the GenerateConstraints algorithm of Figure 1 with an early evalua-
tion step, pruning constraint generation for constraints known to be always satis-
fied, which is inherently the case for constraints of the kind e1.id != e2.id, if the 
domains of e1.id and e2.id are disjoint by construction (cf. Figure 4). 

• Because of a limitation of our used constraint solver (Cream [28]), which does not 
support set-valued domains, we changed the domain of the accessibility property to 
[Class], and adapted the constraint rules accordingly. That this presents no threat to 
the validity of our results can be seen by observing that only 8 (amounting to 
1.2%) of all explicit exports in our sample projects listed more than one class. 

• The times for generating the constraint system include querying, but not creating 
or searching the AST (which was first transformed to a database representation). 

The results of Table 2 are interpreted as follows. RENAME FEATURE to “other” was of 
course always possible (since the domain of each identifier contained a fresh name; 
see the refactoring definition in Figure 4); that it is also extremely fast is due to the  
 

Table 1. Sample programs and their sizes 

Program SLOC Classes Features Program SLOC Classes Features 
Gobo Argument 2293 13 158 Gobo Pattern 240 6 11 
Gobo Kernel 22913 143 1201 Gobo Regexp 8339 29 378 
Gobo Lexical 22139 264 1168 Gobo String 73785 118 2270 
Gobo Math 5233 13 331 Gobo Time 5664 34 369 
Gobo Parse 18496 69 824 Gobo Utility 7710 46 543 
    total 166812 735 7253 
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Table 2. Results of applying the generated refactorings to the programs of Table 1 

REF. AP.$ METRIC AVG MIN ¼ Q MED ¾ Q MAX

# of Constr. Variables 8 1 2 3 5 1002 
# of Generated Constr. 378 1 67 137 583 2115 
# of Generab. Constr.† 1232598 145331 483937 922843 2387543 2387543 
Reduction by (log10) 3.7 2.4 3.3 3.6 4.2 5.7 
Time Generating [ms]§ 336 .5 125 328 484 984 R
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Time Solving [ms] 2 .5 .5 .5 .5 234
# of Constr. Variables 7 1 1 1 6 100 
# of Generated Constr. 26 1 3 5 23 1002 
# of Generable Constr. 30781 398 15926 28701 55089 55089 
Reduction by (log10) 3.4 1.2 2.8 3.6 4.3 4.7 
Time Generating [ms] 1 .5 .5 .5 .5 219C
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Time Solving [ms] 54 .5 .5 .5 .5 19656
# of Constr. Variables 9 1 3 4 8 892 
# of Generated Constr. 9 1 2 3 7 1016 
# of Generable Constr. 90150 823 14494 121763 121763 121763 
Reduction by (log10) 4.2 1.1 3.7 4.4 4.6 5.1 
Time Generating [ms] 897 .5 16 31 62 33296 C
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Time Solving [ms] 93 .5 .5 15 31 15609 
$ applicability: ratio of how often the refactoring could be executed to the number of opportunities for ap-

plication
† that is, generated without using the GenerateConstraints algorithm of Figure 1 (cf. Section  4.2) 
§ time measured on a contemporary laptop (2GHz Intel Centrino Duo with 2GB RAM, running Windows 7 

operating system)  

early evaluation, which reduces the search space dramatically (generating only 8 con-
straint variables on average). Without it, searching for a best solution (with a mini-
mum number of renamings; cf. Section 6.1) the solver timed out after 5 seconds in 
more than half of all cases. Note that the search for a best solution de facto fell prey to 
early evaluation, causing that no constraint variables are generated for identifier prop-
erties that need not change. 

CHANGE ACCESSIBILITY to NONE was possible in 79% of all applications of the 
refactoring. This number may seem surprisingly high, but is explained by the fact that 
the sample programs are libraries that are not necessarily clients of themselves (so 
that many features are never referenced; note that this also explains the small numbers 
of generated constraints). The relatively long maximum solving time of almost 20 s 
was taken by an unsolvable CSP with 118 constraints; overall, however, there were 
only 13 applications (all unsolvable) for which the solver required more than 5 s. If 
the generated CSP was solvable, it had precisely one solution; this follows from the 
refactoring specification (cf. Figure 5). 

CHANGE DECLARED TYPE to a supertype was possible in 34% of all cases, indicat-
ing that there is opportunity for generalization in the samples (and that having the 
refactoring at one’s disposal is indeed worthwhile). Compared to the other refactor-
ings, times for generating are long; this due to the relatively high number and com-
plexity of the involved constraint rules (Figure 6). Still, total time remains within  
reasonable bounds most of the times (less than 1 s on average, only 5% of all  
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applications take longer than 5 s), and even the longest times (34 s for generating and 
solving) are tolerable. The number of generated solutions is 1.2 on average, peaking 
at 512; however, in only 3% of all applications, there were more than two solutions. 

Across all three refactorings, the number of constraints generated using the Gener-
ateConstraints algorithm of Figure 1 is dramatically smaller (between 1 and almost 6 
orders of magnitude) than what would have been generated without it. Measuring the 
concomitant reduction in the number of solutions was of course infeasible (due to the 
exponential size of the solution space) and therefore cannot be reported on here. 

To show that the combination of different refactorings can increase applicability of 
a standard refactoring as suggested in Section 6.4, we have applied CHANGE ACCES-

SIBILITY, extended with the rulesets of RENAME FEATURE and CHANGE DECLARED 

TYPE and allowing it to change identifiers and types also, to the sample programs of 
Table 1 (again with target accessibility NONE). This enabled the refactoring in an addi-
tional 71 cases, increasing its applicability by 2%. 

8   Conclusion 

We have argued that for refactoring tools for a given programming language to be 
correct, they need to incorporate relevant parts of the language’s specification. Gener-
alizing prior work on constraint-based refactoring, which has modelled the typing 
[30] or accessibility [26] rules of Java using constraints, we have devised a refactor-
ing constraint language that, together with accompanying compiler and framework, 
allows us to generate refactoring tools directly from specifications that mirror the syn-
tactic and semantic rules of the language. By applying generated refactoring tools for 
the Eiffel programming language to a number of sample programs, we have shown 
that, despite the generality and declarative nature of our approach, the tools are usable 
in practice. Another result is that by the combination of the constraint rules underly-
ing different refactorings (representing different aspects of a programming language), 
we can increase applicability of each individual refactoring. 
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Abstract. While object diagrams (ODs) are widely used as a means to
document object-oriented systems, they are expressively weak, as they
are limited to describe specific possible snapshots of the system at hand.
In this paper we introduce modal object diagrams (MODs), which extend
the classical OD language with positive/negative and example/invariant
modalities. The extended language allows the designer to specify not only
positive example models but also negative examples, ones that the sys-
tem should not allow, positive invariants, ones that all system’s snapshots
should include, and negative invariants, ones that no system snapshot is
allowed to include. Moreover, as a primary application of the extended
language we provide a formal verification technique that decides whether
a given class diagram satisfies (i.e., models) a multi-modal object dia-
grams specification. In case of a negative answer, the technique outputs
relevant counterexample object models, as applicable. The verification is
based on a reduction to Alloy. The ideas are implemented in a prototype
Eclipse plug-in. Examples show the usefulness of the extended language
in specifying structural requirements of object-oriented systems in an
intuitive yet expressive way.

“. . . in the real world there are only objects.
Classes exist only in our minds.”, Nierstrasz [24]

1 Introduction

The language of object diagrams (ODs) is part of the UML standard and is
supported by many academic and commercial software modeling tools (see,
e.g., [7,14,23,26,32]). The semantics of an object diagram is simple: an object
diagram describes a possible instantiation of the system under development –
a single object model – a snapshot of the system’s structure made of concrete
object instances and the relations between them. However, while ODs are useful
and intuitive means to present example instances of object-oriented systems in
formal and semi-formal contexts, their expressive power is rather weak, and they
have no additional usages beyond these simple presentations.
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In this paper we introduce modal object diagrams (MODs), which extend the
classical object diagram language with positive/negative and example/invariant
modalities. The extended language allows to mark an object model not only as a
positive example, describing a snapshot that the system should allow, but also as
a negative example, which the system should not allow, as a positive invariant,
which must be part of every snapshot of the system, or as a negative invariant,
which must not be part of any snapshot of the system. Thus, the language
supports the definition of very simple and intuitive yet expressively powerful
specifications for the structure of the system to be; multi-modal specifications
made of positive and negative examples and invariants. The syntax and semantics
of modal object diagrams is formally defined in Sect. 3.

Moreover, as a primary application of the extended language, we consider a
setup where a set of modal object diagrams is used as a specification that the
system’s class diagram (CD) should meet. The syntax of CDs is made of classes
and the relationships between them, including inheritance and various associa-
tions. The semantics of CDs is given in terms of sets of objects and the relations
between them. Thus, to support this application, we provide a formal verification
technique that checks whether a CD – as a model of a system’s structure de-
fined by engineers – indeed satisfies (i.e., models) a multi-modal object diagrams
specification. Given a CD and a multi-modal object diagram specification, the
technique checks whether all positive examples in the specification are included
in the CD’s semantics, whether all negative examples are not included in the
CD’s semantics, whether all positive invariants are part of every object model
in the CD’s semantics, and whether all negative invariants are not part of any
object model in the CD’s semantics. In case of a negative answer, the technique
outputs relevant counterexample object models, as applicable.

The verification technique is based on a transformation to Alloy [15]. Unlike
previous works that consider the use of Alloy for the analysis of CDs (e.g., [1,30]),
the input for our transformation consists not only of a CD but also of an OD
(or a set of ODs). Moreover, the transformation itself is different, as it follows
a pragmatic approach: we are not suggesting a meta-model level framework for
general transformations but instead focus on solving the concrete engineering
problem we have at hand. The verification technique is described in Sect. 4.

In order to test and evaluate our work we have implemented and integrated it
into a prototype Eclipse plug-in. The plug-in allows the engineer to edit MODs
and CDs, and to verify a selected multi-modal MOD specification against a
selected CD. Indeed, all examples shown in this paper have been verified by our
plug-in. We describe the plug-in and the results of our experiments in Sect. 5.

The introduction of MODs and the associated verification technique suggest
a stepwise design methodology. In early stages in the design process, MODs will
most often be used by domain experts or system analysts, to describe possible
snapshots of a system; in doing so, designers stipulate that the system should
at least be able to exhibit the positive examples shown in the MODs. As the
process matures, knowledge will become available about structures that should
not be possible, so the initial set of positive example MODs could be refined with
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negative examples. Finally, in later stages, the analysts will be confident enough
to define positive and negative invariant MODs. The verification technique we
provide would aid the engineers in checking that their design indeed meets the
concrete requirements defined by the MODs. We discuss this design process
further in Sect. 7.4.

Object-oriented design constraints, similar to MOD specifications, can also
be defined using the Object Constraint Language (OCL) [25]. Thus, one may
consider using OCL instead of MOD or defining some combination of the two.
We discuss the relation between OCL and MOD in Sect. 7.3.

The paper is organized as follows. The next section presents motivating ex-
amples for the use of multi-modal object diagram specifications. Sect. 3 formally
defines the MOD language. Sect. 4 describes the verification problem and the
technique to solve it. Sect. 5 presents our prototype implementation. Two exten-
sions to the MOD language are discussed in Sect. 6. A discussion of limitations
and advantages, a comparison with OCL, the use of MOD in the design process,
and future work directions are presented in Sect. 7. Sect. 8 discusses related work
and Sect. 9 concludes.

2 Examples

We start off with simple examples for multi-modal object diagram specifications,
as they may be used during the design phase of a system. The examples are
described semi-formally. The required formal definitions are given in Sect. 3.

2.1 Example I

Fig. 1 shows a specification MS 1 made of five MODs, prepared by a business
analyst for a transportation services company. The specification includes three
positive examples and two negative examples. mod1.1 describes a car with a
driver. mod1.2 describes a car with two drivers. mod1.3 describes a bus with a
driver who has a manager. mod1.1, mod1.2, and mod1.3 are all positive examples.
mod1.4 describes a negative example: a driver and a bus, not connected. Finally,
mod1.5 describes another negative example: a lone driver.

Given the specification MS 1, which was provided by the business analyst, the
system’s engineers have designed the class diagram cd1 shown in Fig. 2. Note
that the engineers have suggested to generalize Car and Bus using an abstract
super class Vehicle. As this example is small, it is easy to see that cd1 |= MS1.
The engineers have used our plug-in to verify this.

2.2 Example II

Following further investigation of the company’s structure, the business analyst
prepared a revised MOD specification MS 2, as shown in Fig. 3. The revised spec-
ification is made of four new MODs: a positive invariant, two negative invariants,
and a positive example.
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Fig. 1. The multi-modal MOD specification MS1

Fig. 2. cd1, a class diagram prepared for the specification MS1

mod2.1 describes a positive invariant: every object model of the system must
include at least one driver. mod2.2 describes a negative invariant: no object
model of the system should include two managers. mod2.3 describes another
negative invariant: a driver driving a bus, a car, and a sports car. Finally, mod2.4
describes a positive example: a manager managing an employee and a driver.

Given the MS 2 specification, the system’s engineers have designed the CD
cd2 shown in Fig. 4. In the new CD, the engineers added a class Employee,
and defined Driver and Manager to be its sub classes. They also set the class
Manager to be a singleton, to support the negative invariant defined in mod2.2.

Unfortunately though, using our plug-in the engineers have found that cd2 �|=
MS2. First, cd2 requires that every driver will drive at least one vehicle, but
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Fig. 3. The multi-modal MOD specification MS2

Fig. 4. cd2, a class diagram prepared for the specification MS2. Note, however, that
cd2 �|= MS2.

the driver in the positive example mod2.4 does not drive a vehicle. Second, cd2

allows an object model consisting of a single manager that manages an employee
that is not a driver. This contradicts the positive invariant mod2.1 (the related
counterexample model was suggested by our plug-in). In addition, cd2 �|= MS1.
For example, mod1.1 shows a driver without a manager as a positive example,
but according to cd2 all object models should have exactly one manager (the
same holds for mod1.2 ). Hence, the engineers should fix their CD or consult
with the analyst on whether indeed a manager is required or not in every positive
object model, and whether drivers should indeed drive at least one vehicle.

As the analysis progresses, the business analyst continues to learn about the
system at hand and to provide the engineers with additional MODs. The en-
gineers continue to design CDs that should meet the requirements set by the



286 S. Maoz, J.O. Ringert, and B. Rumpe

analyst and use our plug-in to check those CDs against the MODs that the
analyst provides.

The next section presents the required formal definitions for modal object
diagrams. We return to the above examples in the latter parts of the paper.

3 Modal Object Diagrams

We give an overview of the CD and OD languages used in our work, and continue
with formal definitions of MODs and the relation cd |= MS between a class
diagram cd and a multi-modal object diagram specification MS.

3.1 Class Diagrams and Object Diagrams

As a concrete CD language we use the class diagrams of UML/P [27], a con-
ceptually refined and simplified variant of UML designed for low-level design
and implementation. Our semantics of CDs is based on [3,4,8] and is given in
terms of sets of objects and relationships between these objects. More formally,
the semantics is defined using three parts: a precise definition of the syntactic
domain, i.e., the syntax of the modeling language CD and its context conditions
(we use MontiCore [18,23] for this); a semantic domain - for us, a subset of
the System Model (see [3,4]) OM, consisting of all finite object models; and a
mapping sem : CD → P(OM), which relates each syntactically well-formed CD
to a set of constructs in the semantic domain OM. For a thorough and formal
account of the semantics see [4].

For example, the semantics of cd1 shown in Fig. 2 includes all object models
where all drivers drive one or two vehicles, all vehicles are driven by zero or more
drivers, there are no vehicles that are not cars or buses but there may be cars
and buses, every driver has zero or more managers, and every manager manages
at least one driver. Note that the empty object model, which is an object model
with no objects at all, is in the semantics of cd1. In addition, note that the
semantics of cd1 consists of an infinite number of object models.

As another example, the semantics of cd2 shown in Fig. 4 includes all object
models where all drivers drive one or two vehicles, all vehicles are driven by zero
or more drivers, there are no vehicles that are not cars, buses, or sports cars,
but there may be cars and buses and sports cars, every employee has zero or
more managers, every driver is an employee, every manager is an employee, every
manager manages at least one employee, and there is exactly one manager. The
empty object model is not in the semantics of cd2 because every object model in
the semantics of cd2 must include exactly one manager. Also, as in the semantics
of cd1, the semantics of cd2 consists of an infinite number of object models.

Note that we use a complete interpretation for CDs (see [27] ch. 3.4), roughly
meaning that ‘whatever is not in the CD, should indeed not be present in the
object model’. In particular, we assume that the list of attributes of each class is
complete, e.g., a driver object with an address and a salary is not considered
as part of the semantics of a Driver class with an address only. Also, the list
of classes in the CD is considered complete, in the sense that its object models
cannot include objects of classes not explicitly mentioned in the CD.
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Also note that object names may be used in the OD for convenience, but
they have no semantic meaning, i.e., the object name is not interpreted as an
attribute name. Thus, e.g., an object sara:Driver has the same semantics as an
object dan:Driver or an unnamed object :Driver.

The CD language constructs we support include generalization (inheritance),
interface implementation, abstract and singleton classes, class attributes, uni-
and bi-directional associations with multiplicities, enumerations, aggregation,
and composition.

A note about notation: object diagrams refer to concrete syntactical expres-
sions and object models refer to elements in the semantic domain. Still, the
mapping from the abstract syntax to the semantic domain is in this case one-to-
one, so we use OD and OM interchangeably. For example in the definition below
we write ∀pe ∈ MS.PE : pe ∈ sem(cd), although MS.PE is a set of (modal)
object diagrams while sem(cd) is a set of object models. A more strict (yet
inconvenient) notation should use sem(pe) ∈ sem(cd).

3.2 Defining Modal Object Diagrams

We are now ready to present modal object diagrams, multi-modal object diagram
specifications, and their relation to class diagrams.

Definition 1 (modal object diagram (MOD)). A modal object diagram
is a structure mod = 〈od, p, q〉 where od ∈ OD is an object diagram, p ∈
{positive, negative}, and q ∈ {example, invariant}.
Syntactically, we use stereotypes to denote the positive/negative and exam-
ple/invariant modalities. Alternative syntactic means may be suggested, e.g.,
the use of dashed-line boxes in example MODs vs. solid-line boxes in invariant
MODs.

Definition 2 (multi-modal object diagram specification). A multi-modal
object diagram specification is a set of MODs. Given a specification MS, the set
of positive example MODs in MS is denoted MS.PE, the set of negative example
MODs in MS is denoted MS.NE, the set of positive invariant MODs in MS is
denoted MS.PI, and the set of negative invariant MODs in MS is denoted MS.NI.
Any of these sets may be empty.

We define the satisfaction relation between a CD and a multi-modal object
diagram specification. Below we use om1 ⊆ om2 to note that all objects and
links appearing in om1 appear also in om2.

Definition 3 (cd |= MS). A class diagram cd satisfies a multi-modal object
diagram specification MS, denoted cd |= MS, iff

1. ∀pe ∈ MS.PE : pe ∈ sem(cd);
2. ∀ne ∈ MS.NE : ne /∈ sem(cd);
3. ∀pi ∈ MS.PI, ∀om ∈ sem(cd) : pi ⊆ om;
4. ∀ni ∈ MS.NI, ∀om ∈ sem(cd) : ni �⊆ om.
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Note that the definition above uses a complete, rather than a partial, interpre-
tation of positive example MODs. That is, it considers each OD to describe
a complete object model rather than a partial one. We discuss an alternative
partial semantics variant in Sect. 6.1.

Finally, since our verification technique, as described in the next section, is
based on a transformation to Alloy [15], we need a bounded variant of the sat-
isfaction relation. Below we use |om| to note the maximal number of objects
per class in om (objects of subclasses are counted also as objects of their super
classes). Note that a bound needs to be applied only to invariants, because for
example MODs, the MOD itself determines the size of the problem.

Definition 4 (cd |=k MS). A class diagram cd satisfies a multi-modal object
diagram specification MS modulo a bound k > 0, denoted cd |=k MS, iff

1. ∀pe ∈ MS.PE : pe ∈ sem(cd);
2. ∀ne ∈ MS.NE : ne /∈ sem(cd);
3. ∀pi ∈ MS.PI, ∀om ∈ sem(cd) s.t. |om| ≤ k : pi ⊆ om;
4. ∀ni ∈ MS.NI, ∀om ∈ sem(cd) s.t. |om| ≤ k : ni �⊆ om.

4 Verifying a CD against an MOD Specification

4.1 Problem Definition

The verification problem definition is as follows: given a multi-modal object
diagram specification MS, a class diagram cd, and a bound k, check whether
cd |=k MS. Moreover, in case of a negative answer, provide relevant counterex-
ample object models, as applicable for the negative and positive invariants at
hand: for each unsatisfied pi ∈ MS.PI, provide om ∈ sem(cd) s.t. pi �⊆ om; for
each unsatisfied ni ∈ MS.NI, provide om ∈ sem(cd) s.t. ni ⊆ om.

Our solution is based on a transformation to Alloy [15].

4.2 A Brief Overview of Alloy

Alloy is a textual modeling language based on relational first-order logic. An
Alloy module consists of a number of signature declarations, fields, facts and
predicates. The basic entities in Alloy are atoms. Each signature denotes a set of
atoms. Each field belongs to a signature and represents a relation between two or
more signatures. Such relations are interpreted as sets of tuples of atoms. Facts
are statements that define constraints on the elements of the module. Predicates
are parametrized constraints, which can be included in other predicates or facts.

Alloy Analyzer is a fully automated constraint solver for Alloy modules. The
analysis is achieved by an automated translation of the module into a Boolean
expression, which is analyzed by SAT solvers embedded within the Analyzer.
The analysis is based on an exhaustive search for instances of the module. The
search space is bounded by a user-specified scope, a positive integer that limits
the number of atoms for each signature in an instance of the system that the
solver analyzes.
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The Analyzer checks for the validity of user-specified assertions. If an instance
that violates the assertion is found within the scope, the assertion is not valid.
If no instance is found, the assertion might be invalid in a larger scope. Used in
the opposite way, one can look for instances of user-specified predicates. If the
predicate is satisfiable within the given scope, the Analyzer finds an instance
that proves it. If not, the predicate may be satisfiable in a larger scope. Sect. 7
discusses the advantages and limitations of using Alloy for our problem.

4.3 Solution by Transformation to Alloy

The transformation consists of three parts: handling the CD, handling each of
the MODs, and generating of Alloy run commands. The complete transformation
details are given in [19]. Here we give an overview of the transformation, using
generated Alloy code taken from some of the examples shown earlier in Sect. 2.

Handling the CD. The input CD is transformed into a set of Alloy signa-
tures, functions, and facts. Each class is transformed into an Alloy signature of
a corresponding name, with fields defined according to the associations given in
the CD. Alloy functions are defined in order to specify sets of objects of specific
concrete classes, taking into account the information about inheritance hierar-
chy defined in the CD. Finally, Alloy facts are defined to express the types and
multiplicities involved in the associations defined in the CD.

For example, the generated Alloy signatures, functions, and facts for the class
diagram cd2 of Fig. 4, are shown in Listings 1.1, 1.2, and 1.3.

Listings 1.1 shows the Alloy signatures for all the classes defined in the
CD, with fields defined according to their associations. For example, see the
managedBy field defined in line 2 for the signature Employee. The keyword
extends is used to model class inheritance (see, e.g., lines 13-15, where the three
sub classes of Vehicle are defined). Alloy’s one keyword is used to model the
singleton requirement specified by the singleton stereotype in the CD (see line
7). Finally, Alloy’s abstract keyword is used to model the abstract requirement
specified by the abstract keyword in the CD (see line 10).

Listings 1.2 shows the Alloy functions that specify sets of objects of concrete
classes. Each function specifies a single set consisting of all objects of its corre-
sponding class only, that is, without objects of its sub classes. For example, in
line 1, the function EmployeeOnly is defined as the set consisting of all employees
that are not drivers or managers.

Listings 1.3 shows the types and multiplicities of the associations defined in
cd2. The VehicleIsAbstract fact specifies that the set VehicleOnly includes
no elements. The symmetry of the bi-directional association between Driver
and Vehicle is specified by requiring that the restriction of Driver to the field
drives (as a relation) is the inverse of the restriction of Vehicle to the field
drivenBy. Note that by definition this applies to all the sub classes of Vehicle
too. The multiplicity constraints of the association between Driver and Vehicle
are specified by limiting the size of the relevant sets referenced by the corre-
sponding signatures’ fields. The last two facts specify the symmetry and the
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1 sig Employee {

2 managedBy : set Manager

3 }

4 sig Driver extends Employee {

5 drives: set Vehicle

6 }

7 one sig Manager extends Employee {

8 manages: set Employee

9 }

10 abstract sig Vehicle {

11 drivenBy : set Driver

12 }

13 sig Car extends Vehicle { }

14 sig Bus extends Vehicle { }

15 sig SportsCar extends Vehicle { }

Listing 1.1. Generated Alloy signatures for cd2

1 fun EmployeeOnly : set univ {Employee -( Driver + Manager)}

2 fun DriverOnly : set univ {Driver}

3 fun ManagerOnly : set univ {Manager}

4 fun VehicleOnly : set univ {Vehicle -(Car+Bus+SportsCar )}

5 fun CarOnly: set univ {Car}

6 fun BusOnly: set univ {Bus}

7 fun SportsCarOnly : set univ {SportsCar }

Listing 1.2. Generated Alloy functions for cd2

multiplicities constraints for the association between Employee and Manager in
a similar way.

Handling Each of the MODs. Each input MOD is transformed into a pred-
icate. The predicate consists of a conjunction of a number of parts. First, all
objects in the diagram are listed (anonymous objects are given a random unique
name). Second, the concrete types and number of occurrences is specified, mak-
ing sure that super classes are not handled as sub classes. Finally, the links
between the objects are specified using field assignments.

Listing 1.4 shows the generated predicate for the positive example MOD
mod2.4 of Fig. 3. Lines 3-4 list the names of the objects and their types by
declaring corresponding variables. Lines 6-7 specify the concrete classes these
objects belong to. Line 8 defines the number of objects of each class (e.g., if
there were two or more managers, as in mod2.2, this would include the state-
ment # {sara, rachel} == 2, to make sure that each variable references a
distinct object). Line 10 specifies that the universe of objects for Alloy is exactly
the set of objects listed in the MOD (this statement is omitted for invariant
MODs, see below). Finally, lines 13-16 specify the concrete associations between
the objects.
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1 fact VehicleIsAbstract { # VehicleOnly == 0 }

2 fact Asso_Driver_drives_drivenBy_Vehicle_symmetry {

3 Driver <: drives = ~(( Vehicle <: drivenBy ))

4 }

5 fact Asso_Driver_drivenBy_drives_Vehicle_Mult {

6 all var: Driver | # var.drives >= 1 && # var.drives <= 2

7 all var: Vehicle | # var.drivenBy >= 0

8 }

9 fact Asso_Employee_managedBy_manages_Manager_symmetry {

10 Employee <: managedBy = ~(( Manager <: manages ))

11 }

12 fact Asso_Employee_manages_managedBy_Manager_Mult {

13 all var: Employee | # var.managedBy >= 0

14 all var: Manager | # var.manages >= 1

15 }

Listing 1.3. Generated Alloy facts for cd2.

1 pred checkFull {

2 // all objects in our OD

3 some adam: Employee | some jacob: Driver |

4 some sara: Manager |

5 // make sure a superclass is not handled as a subclass

6 adam in EmployeeOnly and jacob in DriverOnly

7 and sara in ManagerOnly

8 and # {adam} == 1 and # {jacob} == 1 and # {sara} == 1

9 // define universe

10 and univ = {adam + jacob + sara + Int}

11

12 // links between them

13 and sara.manages = {jacob + adam}

14 and jacob.managedBy = {sara}

15 and adam.managedBy = {sara}

16 and jacob.drives = none

17 }

Listing 1.4. Generated predicate for the positive example mod2.4. If this was an
invariant (positive or negative), the predicate would have been named checkPart and
the conjunct defining the universe (line 10) would have been omitted.

The difference between example MODs and invariant MODs (whether positive
or negative) is manifested in the transformation as follows. For example MODs,
the predicate includes an additional conjunct, which defines the universe for
Alloy as exactly the set of objects listed in the diagram. For invariant MODs,
in contrast, this conjunct is not added, as the universe for Alloy is allowed to
include more objects.

As described above, Listing 1.4 shows the generated predicate for the posi-
tive example MOD mod2.4 of Fig. 3. If the MOD was not an example but an
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1 run checkFull for 6 but exactly 1 Driver ,

2 exactly 3 Employee , exactly 1 Manager

Listing 1.5. Generated Alloy run command for the positive example mod2.4

invariant MOD (positive or negative), the generated predicate would have been
named checkPart instead of checkFull and would not have included the con-
junct defining the universe. Lines 13-16 would also have changed, to reflect that
additional links may exist.

Generating Run Commands for Alloy. Finally, we generate a set of run
commands for Alloy, each corresponding to one of the MODs in the specification.

For positive or negative example MODs, the run command simply runs the
corresponding generated predicate with exact per-class scopes taken from the
MOD itself (the computation of the per-class scope takes super classes into
consideration too). As an example, the run command for the positive example
MOD mod2.4 is given in Listing 1.5. The same run command is used to check for
a negative example; the only difference between negative and positive examples
is in the interpretation of the result that is provided by Alloy.

Checking for a positive invariant is done by asserting the generated checkPart
predicate. That is, the generated command checks an Alloy assertion named
checkInvariant, which includes the checkPart predicate. The scope for this
check cannot be taken from the input MOD and is defined by the user. As an
example, the check command for a positive invariant MOD, with a user-defined
scope of 6, is given in Listing 1.6. Checking for a negative invariant is done using
the checkPart predicate, with a user-defined scope.

5 Implementation and Evaluation

In order to test and evaluate the MOD language and the verification technique
we have implemented a prototype Eclipse plug-in that allows the engineer to
edit MODs and CDs and to verify a selected CD against an MOD specification.
The prototype implementation, examples, and related materials are available
from [22].

The plug-in includes a textual editor for MODs and CDs. The editor was
generated using MontiCore [23] grammars (including a parser, syntax highlight-
ing, outline view etc.), and the addition of the modalities to the ODs is done

1 assert checkInvariant {

2 checkPart

3 }

4

5 check checkInvariant for 6

Listing 1.6. Generated Alloy assert statement and check command for a positive
invariant MOD, with a user defined scope of 6
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using stereotypes. When the user selects a number of MODs and a CD, she
can execute the verification. The transformation to Alloy is implemented using
templates written in FreeMarker [9] and the execution of the generated module
run commands is done using Alloy’s APIs (the analysis is fully automated so
the engineer does not need to see the generated Alloy code). Several parameters
may be selected, e.g., the SAT solver and the scope that Alloy will use in the
analysis.

The results of the verification process are shown in a hierarchical table (an
Eclipse view), displaying which MODs are modeled by the CD and which ones
are not. When the engineer clicks the name of an invariant MOD that is not
modeled by the selected CD, if any, the plug-in displays a relevant generated
counterexample OD in the main editor pane of the IDE.

5.1 Example Results

We have used the plug-in to examine several MOD specifications and related
class diagrams, including the examples shown in Sect. 2. Fig. 5 shows a screen
capture of the eclipse IDE, displaying several CD and MOD files on the explorer
view on the left (files with extensions .cd and .od), the summary results of a
verification process at the bottom of the screen, and a generated counterexample
OD in the main view (an outline of the OD is shown on the right).

Specifically, the figure shows the results of verifying cd2 against the four MODs
of the multi-modal specification MS 2 (shown earlier in figures 4 and 3). As
expected, the results table shows two failures and two passes. Indeed, cd2 �|=
{mod2.1} and cd2 �|= {mod2.4}. The counterexample shown in the main view
relates to the positive invariant mod2.1 : it shows an object diagram that consists
of an employee, a manager, and two cars, where the manager manages herself
and the other employee. This object model is in the semantics of cd2 but it does
not include a driver. Thus, it proves that the positive invariant mod2.1 is not
satisfied by cd2.

As the example shows, the counterexample found by Alloy is not necessar-
ily the smallest possible counterexample (within the user-specified scope). This
points to a limitation in our technique. In the future, it may be worthwhile to
develop a technique that produces minimal counterexamples according to some
minimality criteria (e.g., number of classes, total number of objects, etc.).

5.2 Performance Results

Table 1 shows performance results from our experiments. Experiments were done
using Alloy version 4.1.10 with SAT4J [28], on a regular laptop computer, Intel
Dual Core CPU, 2.8 GHz, with 4 GB RAM, running Windows Vista. The CDs
and MODs are the ones presented in Sect. 2.

For each CD and MOD, the table shows whether the verification passed or
failed (i.e., whether the CD satisfies the MOD or not), some details on the SAT
formula that Alloy generated (number of variables etc.), and the total time it
took to run the verification (constructing the formula + solving it), in millisec-
onds. The column titled Scope reports on the scope used in the verification:
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Fig. 5. A screen capture from Eclipse, displaying several CD and MOD files on the
explorer view on the left (files with extensions .cd and .od), the summary results of
a verification process at the bottom of the screen, and a generated counterexample
OD in the main view (an outline of the OD is shown on the right). Specifically, the
figure shows the results of verifying cd2 against the four MODs of the multi-modal
specification MS2, with two failures and two passes. The counterexample relates to the
verification of the positive invariant mod2.1.

as explained in Sect. 4.3, for invariants MODs we use a user-defined scope; for
example MODs, specific per-class scopes are taken from the MOD itself.

Interestingly, for some of the MODs, the generated Alloy formula was empty
(had zero variables). That is, for these MODs, Alloy was able to determine
the result without using the SAT solver. This happens when the generated Alloy
module is very simple, e.g., when the checkPart predicate includes an immediate
violation (contradiction) of one of the facts.

The verification of example MODs is, in general, simpler and faster, as it
takes per-class scopes from the MOD at hand and its solution space is relatively
small. The verification of invariant MODs, in contrast, is more complicated, and
its solution space and performance depends on the user defined scope.

The performance results in Table 1 show that for relatively small models,
MOD/CD verification runs very fast. However, we do have other examples, not
shown here, where MOD verification uses many more variables and clauses and
takes much more time to compute. Given these results, in the future, we plan to
develop heuristics to improve the scalability of invariant MOD verification, using,
e.g., abstraction / refinement techniques, decomposition for early detection of
independent sub models, etc. See the short discussions in sections 7.1 and 7.2.
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Table 1. Results from experimenting with the verification of example MODs and CDs

CD MOD Modalities Scope Result Vars/primary vars/clauses Time (ms)

cd1 mod1.1 PE by OD pass 141 / 19 / 209 20 + 7
cd1 mod1.2 PE by OD pass 371 / 34 / 581 18 + 8
cd1 mod1.3 PE by OD pass 37 / 7 / 57 5 + 5
cd1 mod1.4 NE by OD pass 132 / 19 / 192 6 + 0
cd1 mod1.5 NE by OD pass 276 / 36 / 449 6 + 1

cd2 mod2.1 PI 8 fail 2107 / 166 / 4360 17 + 10
cd2 mod2.2 NI 8 pass 0 / 0 / 0 7 + 0
cd2 mod2.3 NI 8 pass 2794 / 197 / 5867 17 + 7
cd2 mod2.4 PE by OD fail 263 / 36 / 466 4 + 0

cd2 mod1.1 PE by OD fail 0 / 0 / 0 5 + 0
cd2 mod1.2 PE by OD fail 0 / 0 / 0 3 + 0
cd2 mod1.3 PE by OD pass 49 / 9 / 71 4 + 11
cd2 mod1.4 NE by OD pass 0 / 0 / 0 2 + 0
cd2 mod1.5 NE by OD pass 0 / 0 / 0 4 + 0

6 Extensions

We present and discuss two extensions to the basic MOD language, inspired
by [27]: partial vs. complete positive examples and parametrized ODs.

6.1 Partial vs. Complete Positive Examples

We distinguish between partial and complete positive examples. Roughly, a par-
tial positive example object diagram specifies an object model that should be
extensible to a positive example object model.

Recall the examples discussed in Sect. 2. There, we saw that cd2 �|= MS1

because the positive examples mod1.1 and mod1.2 did not include a manager.
Using the distinction between partial and complete positive examples, the ana-
lyst can specify that these MODs are partial positive examples and not complete
ones. Doing so will make cd2 satisfy MS 1.

Syntactically, we specify that an OD is partial using a stereotype partial.
The semantics for partial positive examples is formally defined as follows:

Definition 5 (cd |= ppe). Given a class diagram cd and a partial positive exam-
ple object diagram ppe = 〈od, partial, positive, example〉, we say that cd satisfies
ppe, denoted cd |= ppe, iff ∃od′ ∈ sem(cd) s.t. od ⊆ od′.

Updating Definitions 2, 3, and 4 from Sect. 3 to include partial positive examples
is straightforward. The combination of partial with modalities other than posi-
tive examples is considered syntactically incorrect and its semantics is undefined
(since invariant MODs already have a partial interpretation).

Note that the verification technique we described in Sect. 4 already sup-
ports MOD specifications with partial positive examples. Specifically, recall the
checkPart predicate, which we use in the computation of invariants within an
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assert statement. Running this predicate without an assert provides the required
verification for partial positive examples.

6.2 Parametrized Object Diagrams

We extend the classical object diagram language with parameters, which may be
used for attribute values or for object types. For example, instead of assigning a
specific value to an attribute, the designer may assign it a parameter, and then
define the set or range of values this parameter may take. Multiple parameters
may be used in a single object diagram and the same parameter may appear
more than once in a diagram. The semantics of parametric object diagrams is a
natural extension of the classical semantics: it consists of the set of object models
obtained by creating a set of non-parametric copies of the diagram, where in each
copy different (combination of) values are assigned to the parameters.

For example, to specify that a driver’s experience level can be either novice,
regular, or expert, only a single (positive example) object diagram needs to be
drawn, showing a driver whose experience attribute equals the OD parameter
level, and level ∈ {novice, regular, expert}. Thus, the parametric extension
allows the designer to create succinct object diagram specifications.

The combination of parametric object diagrams and modal object diagrams
yields a powerful specification language. We give an example below.

Fig. 6 shows an MOD specification MS 3, made of three parametric MODs.
mod3.1 is a negative invariant: it specifies that a driver cannot have an age lower
than 16 (more formally, that any object model of the system should not include a
driver whose age is between 1 and 15). mod3.2 is a positive example: it specifies
that a driver can drive a car, a sports car, or a bus (more formally, that a driver
driving a car, a driver driving a sports car, and a driver driving a bus, are all
positive examples of object models of the system). Finally, mod3.3 is a negative
example: it specifies that a driver who has novice or regular level of experience,
is not allowed to drive a sports car that has medium or high engine power.

The verification technique we presented can be extended to support the para-
metric extension. The corresponding CDs may need to be enhanced with OCL
constraints, which may get rather complicated, so the analysts and engineers
should agree on the level of detail they want the specification and CDs to use.

7 Discussion and Future Work

We discuss advanced topics related to our work, its advantages and limitations,
and related future work directions. These include a discussion of complexity and
performance, the bounded scope limitation, the relationship between MOD and
OCL, the use of MOD in the design process, and the problem of synthesizing a
CD from an MOD specification.

7.1 Complexity and Performance

The transformation of the CD and MODs to Alloy is linear in the size of the input
diagrams. It requires only a constant number of iterations over the diagrams’
syntax and the construction of constant number of linear size ‘symbol tables’.
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Fig. 6. The multi-modal parametrized MOD specification MS3

Fig. 7. A class diagram for the parametrized MOD specification MS3

The computation by Alloy using a SAT solver, may be exponential in the size
of the input diagrams. For example MODs, the solution space is relatively small
and depends on the number of objects defined in the OD. In the case of invariant
MODs, the solution space depends on the user-defined scope k. Although the
two problems are rather different, we use a unified approach that solves both.

As discussed in Sect. 5, experience shows that our technique works very fast
for relatively small models. Indeed, most works dealing with reasoning about
CDs use rather small CDs in their experiments (see, e.g., [31,33]). Still, as future
work, to make MOD verification practical for real-world projects, it would be
necessary to develop heuristics that may accelerate the performance of Alloy in
verifying larger MODs, experiment with the different SAT solvers supported by
Alloy, or define a direct translation into SAT (as was suggested in [31]).
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7.2 The Bounded Scope Limitation

The verification of positive and negative example object diagrams is sound and
complete. The required scopes are taken from the example object diagrams them-
selves and so the answer is not only sound but complete.

The verification of positive and negative invariant object diagrams is however
bounded by the user-defined scope. Specifically, it may be the case that for some
cd and MS, cd �|= MS but cd |=k MS for some given k. A simple concrete example
is as follows. Consider a CD cda consisting of two classes, C1 and C2, and an
association of multiplicity of exactly 1 to 5 between C1 and C2. Assume a a
negative invariant object diagram ni consisting of two instances of C1 and no
instances of C2. Clearly, cda �|= {ni} but cda |=k {ni} for any k < 10.

The bounded version cd |=k MS is thus indeed strictly weaker than the general
version cd |= MS. Our use of Alloy is sound and complete for the bounded version
but is neither sound nor complete for the general version.

To conclude, the use of Alloy, and consequently the encoding of our verifi-
cation problem as an instance of SAT, carries the significant price of bounded
analysis. Nevertheless, we adapt the small scope hypothesis of [15] to our do-
main, and suggest that in many cases, although the models involved may be
large, counterexamples for their unsatisfaction could be rather small.

As future work, heuristics may be developed to make automatic or semi-
automatic informed guesses about suitable scopes that could reduce given prob-
lems into equivalent smaller ones where lower scopes are ‘good enough’, or to
identify cases where one could automatically prove that a higher scope will not
change the analysis results.

7.3 MOD and OCL

The Object Constraint Language (OCL) [25] is a declarative language for de-
scribing rules that apply to Unified Modeling Language (UML) models (and,
more generally, to any Meta-Object Facility (MOF) meta-model). OCL is based
on first-order predicate logic. As MODs specify constraints on object-oriented
models too, discussing the relationship between MOD and OCL is worthwhile.

OCL is interpreted in the context of a UML diagram and is limited to speci-
fying invariants, i.e., constraints that hold for all its instantiations. Thus, given
that a CD context is provided, invariant MODs, positive and negative, can be
specified using OCL. Moreover, negative example MODs can also be specified
in OCL, by specifying a negative invariant that constrain also the set of all in-
stances (the universe) to the set of existing instances listed in the MOD. Positive
example MODs cannot be specified in OCL.

As a small example, recall mod2.2, which shows a negative invariant MOD.
This MOD is semantically equivalent to the OCL code shown in Fig. 8 (to edit the
OCL code that we show we used the Dresden OCL Eclipse plug-in [6]). If mod2.2
was a negative example, the OCL code in Fig. 8 should have been extended, to
specify, inside the outermost negative clause, that the total number of managers
is two. Furthermore, every other class from the CD should be listed, to specify
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package cd01

context Manager

inv inv01: not

(Manager.allInstances()->

exists( sara:Manager | Manager.allInstances()->

exists( rachel:Manager |

-- the two objects are distinct

not(sara=rachel) and

-- objects are of the specified types

-- and not of any of their sub types

sara.oclIsTypeOf(Manager) and

rachel.oclIsTypeOf(Manager) and

-- sara and rachel do not manage anyone

sara.manages.asSet()->size()=0 and

rachel.manages.asSet()->size()=0 and

-- sara and rachel not managed by anyone

sara.managedBy.asSet()->size()=0 and

rachel.managedBy.asSet()->size()=0

)

)

)

endpackage

Fig. 8. An OCL representation of MOD mod2.2 from Fig. 3

that the size of its instances set is zero. For comparison purposes, Fig. 9 shows
the textual representation of MOD mod2.2 in our object diagram language (the
language grammar is defined in MontiCore [18,23]).

These examples demonstrate that although it is impossible to specify positive
example MODs in OCL, it is formally possible to specify invariant and negative
example MODs using OCL. Yet, it is clearly very inconvenient, because manual
writing of such OCL statements is obviously technically difficult and error prone.
Thus, we chose to introduce MODs due to their readable and succinct representa-
tion, which makes them usable and attractive, using either textual or visual con-
crete syntax, not only for software engineers but also for non-SE specialists such as
business analysts or other domain experts. On top of classical ODs, MODs make
the notion of modality explicit; they integrate the intuitive concrete representa-
tion of the OD language with a limited set of predefined natural modalities.

Finally, as OCL is much richer than MOD in the kinds of invariants it can
specify in the context of a given diagram, it may be interesting to follow [27]
and define a combination of OD (MOD) and OCL. We discuss this combination
in the related work section.

7.4 Using MODs in the Design Process

Just like classical ODs, MODs are simple and intuitive to define, since the
addition of modalities does not change the basic syntax and semantics of
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package test.examples;

<<negative, invariant>> objectdiagram TwoManagers {

sara : Manager;

rachel : Manager;

}

Fig. 9. The textual representation of MOD mod2.2 from Fig. 3, as used in our work

describing a single concrete instance. In particular, ODs are much simpler than
CDs, as they do not show inheritance and interface implementation relations.
Moreover, CDs are made of abstract entities – classes – which do not ‘exist’
in the ‘real world’. As Oscar Nierstrasz puts it, “Classes exist only in our
minds” [24]. ODs, in contrast, are made of concrete entities – objects – which
indeed ‘exist’, both in the real world and in the systems we build, when they
run.

The introduction of the MOD language suggests a stepwise design method-
ology. In early stages in the design process, MODs will most often be used by
domain experts and analysts to describe possible snapshots of a system. In doing
so, they would stipulate that the system should at least be able to exhibit the
examples shown in the MODs. That is, only positive example MODs will be used
in the early stages of the design process. As the process matures, knowledge will
become available about structures that should not be possible, so the initial set
of positive example MODs could be refined with negative examples. Finally, in
later stages, analysts will be confident enough to define positive and negative
invariant MODs.

The MOD language and this design process are inspired by an analogous de-
sign process for behavioral specifications. There, domain experts may provide
positive example execution traces, which the system should allow, negative ex-
ample traces, which the system should not allow, invariant traces, which all
system executions should include, and negative invariant traces, which no ex-
ecution that allows them can be extended to an accepted one. Then, software
engineers are responsible for designing a state-machine that will satisfy these
multi-modal trace requirements, and model-checking techniques can be used to
verify them. Such concrete multi-modal traces can be specified, e.g., using live
sequence charts (LSC) [5,12] (see the related work section).

To conclude, we believe that the MOD language can be used not only by
software engineers but also by domain experts and analysts, in particular during
early requirements phases of object-oriented systems. Moreover, the language
supports a stepwise design methodology and can serve as a rich and formal
means of communication between the domain experts and the software engi-
neers responsible for the system’s design. The verification technique we provide
would aid the engineers in checking that their design indeed meets the concrete
requirements set by the MODs defined by the domain experts.
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7.5 Synthesis and Unsatisfiable Cores

The most important future research we consider relates to a synthesis problem:
given an MOD specification MS, find cd such that cd |= MS, if any. That is,
we aim to develop an algorithm that takes as input a set of multi-modal object
diagrams, made of positive and negative examples as well as positive and neg-
ative invariants, and outputs a CD that satisfies it (or reports that such a CD
does not exist!). Note that for a classical set of ODs without modalities, each
specifying a positive example, this problem is trivial, but for a multi-modal set
it is much harder (and interesting). Also note that in many cases, there will
be many possible solutions to the synthesis problem; we may be interested in
synthesizing a satisfying CD that is minimal with regard to some cost function
(e.g., depth or breadth of inheritance tree).

In the case where a satisfying CD cannot be synthesized, we will be interested
in the related problem of finding an unsatisfiable core: a minimal subset of the
MOD specification that has no satisfying CD (note that there may be more
than one unsatisfiable core). The computation of an unsatisfiable core is a well
known problem for SAT solvers. Unsatisfiable cores are essential means for the
debugging of MOD specifications.

We hope to present the results of this research on synthesis and unsatisfiable
cores for MOD specifications in a future paper.

8 Related Work

We discuss related work in adding modalities to existing modeling languages, in
specifying constraints on ODs and combining them and OCL, in using Alloy for
the analysis of class diagrams, and in other analysis problems related to class
diagrams.

The idea that system models should include not only positive examples but
also negative examples and positive and negative invariants is not new. This
idea has been presented and investigated before in the context of behavioral
models, in particular in scenario-based specifications. For example, the language
of live sequence charts (LSC) [5,12] extends classical message sequence charts
(MSC) with universal and existential modalities, allowing to specify scenarios
that must happen, scenarios that may happen, and scenarios that should never
happen. In other variants of MSC [34], negative scenarios are used as a means for
requirements elicitation and refinement. As in the case of MODs, the addition
of modalities to the modeling language at hand, in this case, message sequence
charts, results in a more expressive and useful language. It also comes with a
price, in the form of a computationally expensive analysis (see, e.g., synthesis
from LSC [11,13]). Scenario-based specifications notwithstanding, we are not
aware of any other study that investigates the addition of modalities in the
context of structural system models, as we do with the introduction of modal
object diagrams in the present paper.

Constraint diagrams [17] are a visual notation for specifying invariant con-
straints on object-oriented models, which can be viewed as a generalization of
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instance (object) diagrams, partly inspired by Venn diagrams. One may con-
sider constraint diagrams to be similar to MODs, as both express constraints
on object-oriented models. However, the two languages are fundamentally dif-
ferent. Constraint diagrams have their own visual notation while MODs only
extend existing visual or textual notation with stereotypes. The invariants of
constraint diagrams can be compared to the invariants of OCL (see Sect. 7.3 for
a discussion on the relationship between OCL and MOD). To the best of our
knowledge, based on [17], constraint diagrams cannot specify examples and have
no explicit support for negation.

An integration of object diagrams and OCL for the specification of object-
oriented systems is part of the definition of UML/P (see [27] ch. 5.3). This
work proposes the embedding of object diagrams into OCL to, e.g., define the
context of invariants, describe pre- and post-conditions, or specify relations be-
tween object diagrams (e.g., implication). Furthermore, elements like attributes
and association links in object diagrams can be accessed from within the OCL/P
syntax, relating the ODs to a system state. The semantics of logical conjunctives
like &&, ||, implies, etc. between ODs are informally given in [27]. Thus, the
modalities of MOD can be expressed as an OCL/P predicate referencing UML/P
ODs. Moreover, the other direction, of embedding OCL expressions into object
diagrams, is defined too. For example, the language permits the definition of
OCL/P variables inside object diagrams, e.g., to enable parametrized ODs, sim-
ilar to the extension mentioned in Sect. 6.2. Our work is to a great extent inspired
by these ideas. The UML/P language of [27] is far more expressive than MOD,
however, it has no supporting reasoning mechanism and implementation. MOD
can be viewed as a variant of UML/P ODs and their combination with OCL.

Some previous works consider the use of Alloy for the analysis of CDs (see,
e.g., [1,30]). These works focus on the formal definition of the transformation of a
single CD to an Alloy module at the level of a meta-model and on its implemen-
tation using a transformation language. Possible applications of the use of Alloy
to analyze a given CD are not discussed in depth in these works. In contrast,
the input for our transformation consists not only of a class diagram but also of
an object diagram (or a set of object diagrams). Moreover, the transformation
itself is different, as it follows a pragmatic approach: we are not suggesting a
meta-model level framework for general transformations but instead focus on
solving the concrete verification problem we have at hand. Defining and imple-
menting our transformation using QVT or other transformation language such
as ATL [16] is possible, but is outside the focus of our work.

A different use of Alloy is considered in [29], where the authors present a meta-
model directed model completion feature, in the context of code completion
support in editors of domain-specific modeling languages. Although the setup
and motivation are very different than ours, this work is somewhat similar to
our work, specifically in the way predicates are used to define partial models.

Some previous works consider various analysis problems related to CDs (see,
e.g., [2,10,21,31,33]). These include the finite satisfiability problem, the consis-
tency of UML models (with or without OCL constraints), the identification
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of implicit consequences etc. Some of these use a direct translation into SAT
and provide experimental performance results [31]. Others use Description Logic
(DL) as their underlying formalism [33]. Some works include no implementation
but present theoretical results about the decidability and complexity of the prob-
lems at hand. In contrast, we introduce a modal extension to the OD language
and consider the problem of verifying that a given CD models a multi-modal
specification. We provide a solution, in a bounded scope, using a reduction to
an Alloy module and its analysis with a SAT solver.

Finally, in another paper in this conference [20] we have defined CDDiff, a se-
mantic differencing operator for CDs (used for semantic model comparison in the
context of model evolution), and have implemented it using a translation to Alloy.
However, the translation we use for CDDiff is very different than the one we use
here. The input for CDDiff consists of two CDs and its output is an OD that rep-
resents an OM that is in the semantics of the first CD and not in the semantics of
the second. The input for MOD verification is a CD and an OD. While in CDDiff,
each of the two input CDs is represented using a predicate, here we use the input
CD as a base and the input OD induces a predicate that constrains it.

9 Conclusion

We introduced modal object diagrams, as an expressive extension to the classical
object diagrams language. Moreover, we have presented a verification technique
that can be used to verify, in a bounded scope, whether a given class diagram
satisfies a multi-modal object diagram specification. We discussed a stepwise
design process, where domain experts and analysts provide MODs while software
engineers are responsible for designing class diagrams that satisfy them. The
extended language and the verification technique are fully implemented in a
prototype Eclipse plug-in.

The tradeoff of formality and expressiveness vs. intuitiveness and ease of use is
a major challenge in modeling languages design. We believe that MOD addresses
this tradeoff well: it is expressive enough to be valuable in specifying structural
requirements of object-oriented systems, yet it is also intuitive and simple enough
to be attractive to engineers.

Finally, we considered the advantages and limitations of our work. As dis-
cussed in Sect. 7, future work includes the development of heuristics to improve
the performance of our verification technique and allow it to scale, the embedding
of a subset of OCL inside the MOD language in order to extend its expressive
power, performing case studies that will evaluate the use of MOD in the design
of real-world systems, and the investigation of the problem of synthesizing a CD
from a multi-modal object diagram specification.
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Abstract. Object-oriented frameworks can make parallel programming
easier by providing generic parallel algorithms such as map, reduce, or
pipeline and letting the user fill in the details with sequential code. How-
ever, such frameworks can produce incorrect behavior if they are not
carefully used, e.g., if a user-supplied function performs an unsynchro-
nized access to a global variable. We develop novel techniques that can
prevent such errors. Building on a language (Deterministic Parallel Java,
or DPJ) with an expressive region-based type and effect system, we show
how to write a framework API that enables sound reasoning about the
effects of unknown user-supplied methods. We also describe novel ex-
tensions to DPJ that enable generic types and effects while retaining
soundness. We present a formal semantics and soundness properties for
the language. Finally, we describe an evaluation showing that our tech-
nique can express three parallel frameworks and three realistic parallel
algorithms using those frameworks.

1 Introduction

The emergence of commodity multicore systems is driving parallel programming
into the mainstream, posing new productivity, correctness, and performance
challenges for programmers who are used to writing sequential code. One way to
alleviate these challenges is to use object-oriented frameworks. The framework
writer provides most of the code for parallel construction and manipulation of
generic data structures; for generic parallel algorithms such as map, reduce, or
scan; or for generic parallel coordination patterns such as pipelines. The user
fills in the missing pieces with code that is applied in parallel by the framework.
Examples include the algorithm templates in Intel’s Threading Building Blocks
(TBB) [28] and Java’s ParallelArray [1]. Such frameworks are usually easier to
reason about than general parallel programming because the user only has to
write sequential code, letting the framework orchestrate the parallelism.
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However, state-of-the-art frameworks give no guarantee of noninterference of
effect, and this a serious deficiency in terms of correctness and program un-
derstanding. For example, ParallelArray’s apply method applies an arbitrary
user-specified function to each element of the array. If that operation performs
an unsynchronized update to a global, then a race will result. It would be much
better if (1) the framework developer could write an API expressing a contract
(for example, the function provided to apply has no potentially interfering ef-
fects on shared state); and (2) the compiler could check that the contract is
met by all code supplied by the user to the framework. While several tools
and techniques exist that support writing and checking assertions at interface
boundaries [20, 25, 35], these ideas have not yet been applied to enforce parallel
noninterference. Doing so poses several challenges:

1. Maintaining disjointness. Useful parallel frameworks need to support parallel
updates on contained objects. For example, we would like a ParallelArray
of distinct objects, where the user can define a method that updates an ele-
ment, and ask the framework to apply it to each distinct object in parallel.
To do this safely, the framework must ensure that the objects are really dis-
tinct; otherwise the same object could be updated in two parallel iterations,
causing a race. For a language like Java with reference aliasing, disjointness
of reference is a nontrivial property.

2. Constraining the effects of user-supplied methods. For a parallel update traver-
sal over the objects in a framework, disjointness of reference is necessary but
not sufficient to ensure noninterference. The framework must also ensure
that the effects of the user-supplied methods do not interfere, for example
by updating a global variable, or by following a link from one contained
object to another.

3. Making the types and effects generic. Because different uses of the framework
need user-supplied methods with different effects, the framework should con-
strain the effects of user-supplied methods as little as possible while retaining
soundness. For example, one use of apply may write into each object only,
while another may read shared data and write into each object. The frame-
work should also be generic in the type of the contained objects. These
requirements pose challenges when the framework author needs information
about the type of the contained objects and the effect of user-supplied meth-
ods in order to provide a noninterference guarantee.

4. Writing the framework implementation. The framework author must en-
sure that the internal framework implementation guarantees safe parallelism,
given that the API is enforced. For example, the framework implementation
must ensure that any parallel loop inside the framework iterates exactly once
over each contained object.

Notice that the first three challenges are about defining a framework API that
enables sound reasoning about uses of the framework, while the fourth challenge
is about writing a framework implementation.

In this work we primarily address the first three challenges, i.e., we show how
to write a framework API so that the framework author can reason soundly
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about interference of effect in arbitrary instantiations of the framework, with
unknown user-supplied methods and generic type bindings. We build on Deter-
ministic Parallel Java (DPJ) [6, 7], which expresses effects in terms of regions
that partition the heap. Regions provide an intuitive and flexible way to express
and check effects.

As to the fourth challenge, we state the properties (type preservation, effect
preservation, and noninterference) that a correct framework must satisfy. In
many cases DPJ can verify those properties. In some cases, however, the DPJ
effect system may be insufficiently expressive to guarantee disjointness of effect.
Here the framework author is free to use a different strategy, such as program
logic [14, 15], testing, or model checking, to verify disjointness. Such checking is
completely hidden from the user of the framework, so that the user gets a strong
guarantee: if the program type checks, then there is no interference.

Our contributions are the following:

1. We show how to write a framework API using DPJ as described in [6] so that
the framework implementer has all the information necessary to guarantee
disjointness of reference and sound effects for user-supplied methods.

2. We show how to extend DPJ to add generic effects and generic types, mak-
ing the frameworks more general and useful. For the effects, we add effect
variables, together with effect constraints to enforce disjointness of effect.
For generic types, we introduce type region parameters, a form of type con-
structor, to guarantee disjointness and soundness of effect, without knowing
the exact type bound to type variables.

3. We sketch the formal semantics of a core subset of the extended language
and formally state the soundness results. The full semantics and proofs are
stated in the first author’s Ph.D. thesis [5].

4. We state the requirements for a correct framework implementation, such that
if these requirements hold, then noninterference is guaranteed for the entire
program. We also show how to use a combination of the DPJ type system
and external reasoning to check the requirements informally. We leave as
future work the formal verification of the requirements.

To evaluate our techniques, we used them to write three parallel frameworks
(Parallel Array, Parallel Tree, and Pipeline) and three applications using those
frameworks. We found that the techniques are expressive enough to capture
realistic parallel algorithms. We also found that the extra annotations required
by the system are fairly simple for framework users and, while more complicated
for framework writers, are not unduly burdensome.

2 Background

DPJ. We begin with a brief introduction to DPJ [6]. DPJ uses regions to specify
access to the heap: every class field and array cell lies in a single region, and
distinct regions represent disjoint collections of memory locations. A region can
be a declared name r, or a colon-separated list of names, such as r1:r2:r3, called
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1 public class Node<region R> {
2 int data in R;
3 Node<*> next in R;
4 public Node(int data, Node<R> next) pure { this.data = data; this.next = next; }
5 }

Fig. 1. Node class that will serve as a running example

a region path list (RPL). RPLs give rise to a natural nesting structure: one RPL
is “under” another if the second is a prefix of the first. For example, r1:r2 is
under r1. Nesting is useful for expressing effects (i.e., what regions are read and
written by a particular program statement). The set of all regions under an RPL
R is denoted R:*.

Figure 1 defines a simple list node class that we will also use in subsequent
sections. The class has one region parameter R. Fields data and next are both
placed in region R. When class Node is instantiated into a type, both fields will be
in the region given as the argument to R in the type. The effect of the constructor
is declared pure (no effect), because in DPJ an object is not visible to the rest of
the program until the constructor returns, so constructors do not have to report
their effects on the constructed object. In general, a method must summarize its
effects; if there is no effect summary, the default is “writes the whole heap.”

Figure 2 shows a simple container class, NodePair, that stores a pair of list
nodes. Line 2 declares region names First and Second. Lines 3–4 instantiate
Node types using these names. Line 12 reads field first, located in region First
(line 3). It also writes the data field of first, which is located in region R (line
2 of Figure 1) after substituting First for R, from the type of first (line 3 of
Figure 2). Thus the effect of the write is writes First. Writes cover reads in
DPJ, so the whole effect of line 12 may be summarized as writes First, as
shown. The same reasoning gives the effect writes Second shown in line 13.
Because First and Second are distinct names, the compiler can conclude that
the updates in lines 12 and 13 are disjoint. With these features, together with
additional features for arrays, divide and conquer parallelism, and commutative
operations, DPJ can express important patterns of parallelism [6].

1 class NodePair {
2 region First, Second;
3 Node<First> first in First;
4 Node<Second> second in Second;
5 NodePair(Node<First> first,
6 Node<Second> second) pure {
7 this.first = first;
8 this.second = second;
9 }

10 void updateNodes(int fd, int sd) {
11 cobegin {
12 first.data = fd; // writes First
13 second.data = sd; // writes Second
14 }
15 }
16 }

Fig. 2. Using region parameters to distin-
guish object instances

data

next

data

next

Fig. 3. A potential race caused by
cross links. A race can occur if a task
operating on the left-hand reference
follows the dashed arrow to access the
right-hand object.
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Difficulties with Region-Based Systems. Region-based effect systems can
be quite expressive, and they are a natural choice for writing safe object-oriented
frameworks. However, existing systems impose significant limitations. As we will
see, by shifting some of the burden of guaranteeing noninterference from the type
system to the framework, we can overcome some of these limitations.

One limitation is that to guarantee soundness we have to prohibit swapping
of first and second in the example:

void swap() {
Node<First> tmp = first;
first = second; // Illegal: Can’t assign Node<Second> to Node<First>
second = tmp; // Illegal: Can’t assign Node<First> to Node<Second>

}

If we could do such an assignment, then we could have multiple references with
conflicting types pointing to the same data, and we would no longer be able to
draw sound conclusions about effects.

For this reason, DPJ and other region-based systems [23, 9] use wildcard
types. For example, in lines 3–4 of Figure 2, we could have written both types
Node<*>, where * stands in for any region. Now the swapping shown above is
sound. However, we have lost the ability to distinguish writes to first.data
and second.data using the type system, because now all we know is that the
writes are to *. So in this case, the state of the art in region-based type systems
forces us to choose: either we can prove that two references don’t alias, or we can
swap the two references, but not both. Notice, however, that (1) regions First
and Second are distinct coming into the constructor (line 5); and (2) the swap
operation preserves the distinctness of First and Second in the dynamic types
of first and second. So in fact it is possible both to allow the swap and to
prove disjointness, although the type system can’t do both.

In fact, the situation is worse than this. As shown in Figure 3, a NodePair
holding distinct list nodes can have cross links. The effect system must ensure
that when following the references to access the objects in parallel, cross links
are never followed to update the same object. Further, we probably don’t want
to encode the write to data into the framework implementation, as shown in
lines 12–13. Instead, as discussed in the introduction, we would like to express
the operation abstractly and let the user supply the specific operation. We must
constrain the effects of the user-supplied method so that for any user-supplied
method, this kind of interference cannot happen. Finally, we don’t really want
a NodePair class; instead, we want a Pair<T>, where T is a generic type.

3 Safe, Reusable Parallel Frameworks

We now show how to address the challenges discussed above to write safe,
reusable parallel frameworks. First we show how to write a container API that
supports sound reasoning about effects for a container specialized to list nodes.
Second, we show how to extend the effect system to make the container API
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generic. Third, we address the problem of writing a correct framework imple-
mentation. Although most of this section focuses on the container example, the
work is not specific to containers. In the next section, we formalize the tech-
niques in general terms, without specifically considering disjoint containers. In
Section 5 we use the techniques to write a framework for pipeline parallelism.

3.1 A List Node Container

In this section, we show how to use the DPJ effect system as previously de-
scribed [6] to write a container API that stores Node objects and allows safe
parallel updates to the stored objects. The API generalizes the trivial NodePair
class from the previous section into an arbitrary container. The container im-
plementation is not specified; it could be any container (set, list, tree, etc.). The
point is that we will be able to write an API for a container that (1) holds list
nodes, which may have cross links between them, as shown in Figure 3; and (2)
allows update operations on the nodes to be done safely in parallel, despite the
presence of the cross links. We will extend the example further to a more generic
(and more useful) container in later sections. Writing the list node container API
presents two problems: maintaining disjointness and reasoning about effects.

Maintaining Disjointness. To enable parallel update traversals over the con-
tained nodes, we wish the container to have the following two properties. First,
at runtime, every node element ei stored in the container either is null or points
to an object with a region Ri in its type. Second, for any i �= j, if ei and ej are
both non-null, then Ri and Rj are disjoint (i.e., Ri and Rj refer to nonintersect-
ing sets of regions). In general, we call a container “disjoint” if it satisfies both
properties for its elements ei. Note that the NodePair container from Section 2
satisfies this definition. Disjointness ensures that parallel tasks that update the
regions of different elements are noninterfering.

To enforce disjointness, we use the following strategy: (1) every container
starts empty and so is trivially disjoint; and (2) every operation provided by the
disjoint container API is disjointness-preserving (takes a disjoint container to
another disjoint container). By a simple induction, we can then conclude that
the container is disjoint throughout its lifetime. The hard part is guaranteeing
property (2). In some cases, this problem may be reduced entirely to the problem
of writing a correct framework implementation (Section 3.3). Examples include

1 public interface NodeContainer<region RN,RC | RN:* # RC> {
2 /* One linear container from another */
3 public NodeContainer(NodeContainer<RN,RC> c) writes RC;
4

5 /* Controlled creation of contents */
6 public NodeContainer(NodeFactory fact, int size) writes RC;
7 public interface NodeFactory { public <region R>Node<R> create(int i) pure; }
8

9 /* Parallel operation on all elements */
10 public void performOnAll(Operation op) reads RC writes RN:*;
11 public interface Operation { public <region R>void operateOn(Node<R> elt) writes R; }
12 }

Fig. 4. Framework API for a disjoint list node container
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1 /* Implement factory interface */
2 public class MyFactory implements NodeContainer.NodeFactory {
3 public <region R>Node<R> create(int i) { return new Node<R>(i, null); }
4 }
5 /* Declare region names A and B */
6 region A, B;
7 /* Use factory to make NodeContainer<A,B> with 10 elements */
8 NodeContainer<A,B> c = new NodeArray<A,B>(new MyFactory(), 10);

Fig. 5. Use of the NodeFactory API from Figure 4

tree rebalancing and array shuffling operations that modify only the internal
structure of the container. In other cases, the framework implementation may
need to cooperate with user-provided code. An example is putting things into a
container: the user must have some control over objects placed in the container,
but the framework must support sound reasoning about disjointness.

We have explored the following two strategies for controlling disjointness:
building one disjoint container from another and controlled creation of contained
objects. Figure 4 shows an API for a list node container that illustrates these
strategies. There are two region parameters, RN for the nodes of the container and
RC for the container itself. In line 1, we use a region parameter constraint [6, 9]
to require that for any instantiation of NodeContainer that binds R1 to RN and
R2 to RC, R1:* and R2 are disjoint. This ensures that reading the container to
traverse the elements does not interfere with updating the contained objects.

Building one disjoint container from another. Line 3 of Figure 4 illustrates this
strategy: it says that given an object of type NodeContainer<RN,RC> we can
create another one. An example is creating a tree from an array or set. An
important special case in DPJ is creating a disjoint container from an index-
parameterized array [6], which supports parallel update traversals but does not
support reshuffling of elements. (This is exactly the problem discussed in Sec-
tion 2, just with array cells rather than fields.) A disjoint container created
from an index-parameterized array supports disjointness-preserving operations,
including shuffling, by doing them internally within the framework.

Controlled creation of contained objects. Lines 6–7 of Figure 4 illustrate this
strategy, for an interface to NodeContainer that could be implemented in differ-
ent ways (array, tree, etc). The container implementation does the actual object
creation, but the user specifies the number of objects to create and provides
a factory method that creates the ith object. For example, a use could look as
shown in Figure 5, assuming a class NodeArray that implements NodeContainer.

The important thing here is that the factory method must really create a new
object and not, for example, just fetch some object reference from the heap and
store it into the container over and over. The framework author can enforce this
requirement by judicious use of a method region parameter.1 In line 7 of Figure 4,
the return type of the factory method is written in terms of a parameter R that is
in scope only in that method. Further, no reference assignable to type Node<R>

1 Method region parameters are not claimed as new in this work; the contribution
here is to use them for safe factory methods.
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enters the method. Therefore, the only way a Node<R> can escape the method is
if it is created inside the method. The effect of this strategy is to hide the actual
regions Ri in the types of the created objects from the user code: to create a new
object in Ri, the framework binds Ri to R and calls the user’s factory method.
The factory method doesn’t know what Ri is, except that it is bound to R. On
the other hand, the framework doesn’t know what the factory method is, except
that when called with R = Ri it creates a new Node<Ri>.
Reasoning about Effects. Lines 10–11 of Figure 4 show the part of the API
that allows the user to define a method and then pass that method into the
container to be applied in parallel to all contained objects. For example, given
reference c of type NodeContainer<A,B>, the user could do this:

public class MyOperation implements NodeContainer.Operation {
public <region R>void operateOn(Node<R> elt) writes R { ++elt.data; }

}
c.performOnAll(new MyOperation());

This code increments the data field of each of the objects stored in c in parallel.

Effect of operateOn. In the definition of the abstract operateOn method in
the Operation interface (line 11 of Figure 4), we again use a method region
parameter R. We write the type of the formal parameter elt as Node<R>, and we
specify the effect as writes R. This causes two things to happen. First, the DPJ
type system requires that any user-supplied method implementing operateOn
must have a declared effect that is a subeffect of writes R. That means all
the effects represented by E2 are also represented by E1. For example, reads R
is allowed, but reading or writing some other region is not.2 In particular, if
MyOperation had contained the statement ++elt.next.data, the effect would
be writes *, which is not a subeffect of writes R, and the compiler would
catch the error. Thus, the effect annotations prohibit using cross links to cause
a race, as shown in Figure 3. Second, the API techniques discussed above ensure
that the regions in the contained elements are disjoint. Together, these two
facts guarantee that the effects of different parallel tasks operating on different
elements are noninterfering.

Effect of performOnAll. In Figure 4, we have written the effect of performOnAll
as reads RC writes RN:*. This is correct if, for a particular implementation of
the interface, (1) each element i has type Node<Ri>, where Ri is under RN; and
(2) the implementation of performOnAll reads the container and applies the
user’s operateOn method to the elements. As discussed further in Section 3.3,
the framework writer is responsible for ensuring that both facts are true. Further,
if the framework internals are written in DPJ, then DPJ can verify these facts.

3.2 Getting More Flexibility

We now show how to generalize the list node container to a generic container.
This requires some extensions to the DPJ effect system.
Generic Effects. In the previous API, the effects of operateOn are overly
restricted. For instance, what if the user wants operateOn to read some region
2 The relevant rules for subeffects are given formally in the next section.



314 R.L. Bocchino Jr and V.S. Adve

1 public interface Operation<effect E> {
2 public <region R>void operateOn(Node<R> elt) writes R effect E;
3 }
4

5 public <effect E | effect E # reads RC writes RN:* effect E>
6 void performOnAll(Operation<effect E> op) reads RC writes RN:* effect E;

Fig. 6. Making the effects of the Operation interface generic

1 public class MyOperation implements NodeContainer.Operation<reads Global> {
2 public <region R>void operateOn(Node<R> elt) reads Global writes R {
3 elt.data = global; // global is in region Global
4 }
5 }
6 c.<reads Global>performOnAll(new MyOperation());

Fig. 7. Use of the API from Figure 6

R′ disjoint from R:*, where R is the region bound to RN in the instantiation of
the framework interface? That is safe and should be allowed. Yet it is disallowed
by the effect specification writes R in the API.

To address this problem, we use effect polymorphism [24]. As shown in Fig-
ure 6, we give the Operation interface an effect parameter E that becomes bound
to an actual effect (for example, Operation<reads r>) when the interface is
instantiated into a type. To make this strategy work, we need to solve two prob-
lems: (1) constraining the effect arguments to ensure noninterference; and (2)
ensuring soundness of subtyping.

Constraining the effect arguments. The framework cannot let the effect variable
E become bound to an arbitrary effect in the user’s code, because that would
re-introduce a user-supplied method with unregulated effects. Instead, we use an
effect constraint that restricts the effect of the user-supplied method, as shown
in Figure 6. We give the Operation interface (line 1) an effect variable E. We also
give the performOnAll method (lines 5–6) a constrained method effect parame-
ter E. After the parameter declaration is a constraint specifying that the effect
bound to E must be noninterfering with reads RC writes RN:* effect E. This
constraint ensures that the supplied effect will not interfere with any of (1) the
effect reads RC of reading fields of the container; (2) the effect writes RN:* of
updating the nodes; or (3) itself. The last constraint implies that either E is a
read-only effect, or it is an update operation such as an atomic set insert that
commutes with itself [6]. As an example, Figure 7 shows a user-supplied method
that puts all the Node objects in region A and reads region Global to initialize
all the objects with the same global value.

Soundness of subtyping. Once we add class effect parameters, we need a rule for
deciding if C<E1> is a subtype of C<E2>, where E1 and E2 are effects. We could
require that E1 and E2 be identical effects. However, this is more restrictive than
necessary. While that alone might be acceptable, it turns out this approach is
also not sound if done in the obvious way, as discussed in Section 4.5. Instead,
we let E1 be a subeffect of E2. For example, E1 could be writes r1 and E2

could be writes r1, r2.
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This approach introduces a subtle requirement for preserving consistency of
types. For example, consider the following snippet:

class C<effect E> { C<effect E> f; }
C<writes r> x = new C<pure>();

By the subtyping rule stated above, this code is legal. But then what is the static
type of x.f? The obvious answer is C<writes r> (substituting writes r from
the type of x for E in the declaration of f), but this is incorrect. For in that
case, a reference of type C<writes r> could be legally assigned to x.f. But the
dynamic type of x.f is C<pure>, and writes r is not a subeffect of pure, so the
assignment violates type preservation.

The solution we adopt to make the static type of x.f C<effect E′>, where
E′ is a fresh effect parameter (called a capture parameter). The tricky thing here
is that all nonempty effects must be captured when substituted for an effect pa-
rameter in a type. This is because all nonempty effects are essentially wildcards:
the runtime effect could be equal to the static effect, or it could be empty (or
possibly something else, e.g., reads R instead of writes R, or reads R1 instead
of reads R1, R2). Our solution follows in the same vein as generic wildcards [10]
(which stand in for several types) and DPJ’s partially-specified RPLs [5] (which
stand in for several RPLs).

Generic Types. It is also too restrictive to make the class specialized to list
nodes. Instead, we want a class DisjointContainer<type T, region RC> with
a generic type T. Notice, however, that the region argument to the Node type is
essential to writing the API. For example, in writing the NodeFactory interface
of Figure 4), we used a method-local parameter R in the return type of create.
If we just replaced that type with an ordinary type variable T, then we would
not be able to write the node factory pattern at all. A similar issue occurs in
writing the effect of performOnAll.

To solve this problem, we use a type constructor [3, 26] that takes a region
argument. A type variable can be declared T<region R>, where R declares a
fresh parameter. We call R a type region parameter. When a type T becomes
bound to a type variable T, T must have at least one region argument, and R
represents the first region argument. We write uses of the variable T as T<r>,
where r is a valid region in scope. T<r> represents the same type with the region
in its first argument position replaced by r. Notice that according to this rule the
parameter R is a valid region, and T<R> represents the unmodified type provided
as the argument to the variable. For convenience, a bare use of T is allowed,
and this is equivalent to T<R>. Our language also supports multiple type region
parameters for a variable T; this straightforward extension is discussed in [5].

Final Container API. Figure 8 shows the final disjoint container API. Line
1 declares an interface DisjointContainer with one type parameter T and one
region parameter Cont. The type parameter has one region parameter Elt that
names the first region argument of the type bound to T. In line 8, we write T<R>
to require that the return type of create have the method region parameter R
as its first region argument. In line 12, the region Elt is available to write the



316 R.L. Bocchino Jr and V.S. Adve

1 public interface DisjointContainer<type T<region Elt>, region RC | Elt:* # RC> {
2

3 public DisjointContainer(DisjointContainer<T,RC> cont) writes RC;
4

5 public <effect E # writes RC effect E>
6 DisjointContainer(Factory<T, effect E> fact, int size) writes RC effect E;
7 public interface Factory<type T<region Elt>, effect E> {
8 public <region R>T<R> create(int i) effect E;
9 }

10

11 public <effect E # reads RC writes Elt:* effect E>
12 void performOnAll(Operation<T,effect E> op) reads RC writes Elt:* effect E;
13 public interface Operation<type T<region Elt>, effect E> {
14 public <region R>void operateOn(T<R> elt) writes R effect E;
15 }
16 }

Fig. 8. API for a disjoint container with generic types and effects

1 public class MyOperation implements
2 DisjointContainer.Operation<Node<A>,pure> {
3 public <region R>void operateOn(Node<R> elt) writes R { ++elt.data; }
4 }
5 c.performOnAll(new MyOperation());

Fig. 9. Use of the API from Figure 8

effects of performOnAll. We do the same thing for the type parameter of the
Operation interface, in line 13.

Figure 9 shows an example implementation of operateOn, assuming c has
type DisjointContainer<Node<A>,B>. The effect argument in line 2 is pure,
because no effect is needed for this implementation of operateOn, except for
writes R, which is already given by the interface (line 14 of Figure 8). The
effect of the call to performOnAll in line 5 is reads B writes A:*.

3.3 Writing the Framework Implementation

We now address the problem of writing a correct framework implementation. The
framework must ensure three properties: type preservation, effect preservation,
and noninterference of effect. The key point is that the API design discussed in
the previous sections provides all the information needed to reason soundly about
these three properties, even in the presence of unknown user-supplied methods.
Further, the framework author can write the framework in DPJ, thereby using
DPJ to check some or all of these properties. However, so long as the properties
hold for all user-visible types and effects, the framework author may use internal
operations, such as swapping references with disjoint regions, that DPJ alone
cannot prove correct.

Type Preservation. Type preservation means that the static types of variables
agree with the dynamic types of the references they store. If the framework
is written in DPJ, then this property will be checked “for free,” unless the
framework does an assignment (using a cast) that violates the typing rules.
Such type casts produce a warning, but the code compiles and runs.
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The DPJ subtyping rules are flexible, so we anticipate that unsound assign-
ments will rarely be needed in practice. A more likely case is that casts are
used to interface with non-DPJ code. For example, pre-Java 5 code implement-
ing a container might represent the container elements as references to Object
and require that they be cast back to their actual type when removed from the
container. For Java code written with generics, such casts should be rare.

Effect Preservation. Effect preservation means that the static effects of state-
ments correctly summarize their dynamic effects. Again, DPJ guarantees this
property, so long as (1) type preservation holds; and (2) every method sum-
mary covers the effects of the method body. In DPJ, one can always write a
correct method summary (writes * is always correct), and in fact an incorrect
summary causes a compile-time error. So property (2) will hold if property (1)
does. If the framework calls into non-DPJ code, then the framework writer must
manually ensure that effect preservation holds for the calling code.

Noninterference of Effect. Noninterference means there are no conflicting
memory accesses between parallel tasks. While DPJ can establish noninterfer-
ence in many cases, in some cases it may not be able to, as in the swap example
discussed in Section 2. In such cases, the framework author can write code that
causes DPJ to produce an interference warning, and use a different technique
to show noninterference. As an example, Figure 10 shows an implementation
of DisjointContainer as a DPJArrayList, which is a Java ArrayList anno-
tated with region information. In line 4, the type argument to DPJArrayList is
Elt:*, i.e., the type does not specify which cell of the array is in which region,
so reshuffling the array is supported. The performOnAll method uses the DPJ
foreach construct (line 8) to iterate in parallel over the elements. We also add
a swap method, similar to the method discussed in Section 2, for swapping array
elements.

1 public class DisjointArray<type T<region Elt>, region RC | Elt:* # RC>
2 implements DisjointContainer<T,RC> {
3 /* Internal array representation */
4 private DPJArrayList<T<Elt:*>,RC> elts in RC;
5 /* Implementation of performOnAll */
6 public <effect E | reads RC writes Elt:* effect E>
7 void performOnAll(Operation<T,effect E> op) reads RC writes Elt:* effect E {
8 foreach (int i in 0, elts.size()) { op.operateOn(elts.get(i)); }
9 }

10 /* Swap elements at idx1 and idx2 */
11 public void swap(int idx1, int idx2) writes RC {
12 T<Elt:*> tmp = elts.get(idx1); elts.add(idx1, elts.get(idx2)); elts.add(idx2, tmp);
13 }
14 }

Fig. 10. Array implementation of a disjoint container (partial)

To show noninterference, it suffices to establish two things for the foreach
construct in line 8: (1) for distinct values i, the region in the dynamic type of
elts.get(i) is distinct; and (2) i attains distinct values i on distinct iterations.
The first statement follows from the inductive argument we made in Section 2:
to change the shape of the array, we either have to use an inherited creation



318 R.L. Bocchino Jr and V.S. Adve

method, which preserves disjointness as discussed in Section 3.1, or do a swap,
which also preserves disjointness, as can be seen from the implementation in line
11. The second statement follows from the semantics of foreach in DPJ.

4 Formal Elements

In this section we formalize the ideas developed in the previous section. We use
a sequential core language, which suffices to establish type preservation, effect
preservation, and noninterference of effect. As discussed in Section 3.3, a frame-
work designer can use these properties to provide deterministic parallelism or
other guarantees for correct framework uses. We give a syntax, static semantics,
and dynamic semantics for the core language. Then we state the key soundness
results, and sketch the proofs. More detail, including proofs, can be found in [5].

4.1 Syntax

Programs P ::= R∗ I∗ C∗ e
Region Names R ::= region r

Interfaces I ::= interface I<τ<ρ>, ρ, η # E> { S∗ }
Classes C ::= class C<τ<ρ>, ρ> implements I<T, R, E> { F∗ M∗ }

Method Signatures S ::= <ρ, η # E>T m(T x) E
Fields F ::= T f in R

Methods M ::= S { e }
RPLs R ::= r | ρ | R:r | R:*
Types T ::= I<T, R, E> | C<T, R> | τ<R> | Null
Effects E ::= ∅ | reads R | writes R | η | E ∪ E

Expressions e ::= this.f | this.f=e | e.<R,E>m(e) | v | new T | null
Variables v ::= this | x

Fig. 11. Syntax of the core language. r, I , τ , ρ, η, C, f , m, and x are identifiers

Figure 11 gives the syntax for the core language. A program P consists of
region name declarations, interface definitions, class definitions, and an expres-
sion to evaluate. An interface I consists of an interface name I, the interface
parameters, and zero or more method signatures. There is one type parameter
τ , one region parameter ρ, and one constrained effect parameter η # E. The
type parameter τ has a region parameter ρ that captures the region argument
of the type bound to it. A method signature S specifies a region parameter, a
constrained effect parameter, a return type, a method name m, a typed formal
parameter x, and an effect.

A class C consists of a class name C, the class parameters, the interface type
being implemented, and the fields and methods of the class. For simplicity we
omit class effect parameters; their treatment is identical to interface effect pa-
rameters. A field F specifies a type, a field name f , and an RPL. A method
specifies a signature and an expression to evaluate. A region path list (RPL) R
is a named region r, a region parameter ρ, or an RPL qualified by appending :r
or :*, where * stands in for any chain of names. A type T instantiates a named
interface with a type, region, and effect; or it instantiates a named class with a
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type and region; or it instantiates a type parameter with a region; or it is Null.
Null is the type of a null reference. It also functions as a base-case type for
type parameter arguments (every other type has its own argument). An effect
E is a possibly empty union of read effects, write effects, and effect parameters.
An expression e is a field access, field assignment, method invocation, variable,
object creation, or null reference. A variable v is this or a method parameter x.

4.2 Static Semantics

Environment. We define the static semantics with respect to a static environment
Γ , defined as follows:

Γ ::= ∅ | (v, T ) | τ | ρ | η | η # E | Γ ∪ Γ

(v, T ) means that variable v has type T ; τ , ρ, or η means that the parameter is
in scope; and η # E means that the effect bound to η constrained not to interfere
with effect E.

Translation mapping φT . We define a mapping φT for translating a type, region,
or effect defined in an interface I or class C to its use as a member of a type T
instantiating I or C (the instantiating type, which must be a class or interface
type). It is the context translation described in [5,6], plus effect parameters and
type region parameters. Figure 12 gives the key formal rules for interface types;
the rules for class types are similar. Note that when the instantiating type has

φT (T ′) φT (I<T ′, R, E>) = I<φT (T ′), φT (R), φT (E)>
φI<T,R,E>(τ<R

′>) = I<T, φI<T,R,E>(R
′), E>

φT (R)
φI<T,R,E>(ρ(I)) = R

φI<T,R,E>(ρτ (I)) = rgn(T ) if T �= Null, else R

φT (E)
φT (reads R) = reads φT (R) φI<T,R,E>(η(I)) = E

φT (writes R) = writes φT (R) φT (E ∪ E′) = φT (E) ∪ φT (E′)

Fig. 12. The translation mapping φT for interface types (selected rules). ρτ (T ) ρ(T ),
and η(T ) are the type region parameter, region parameter, and effect parameter of the
interface that T instantiates. rgn(T ) is the region argument of T .

a type argument of Null, we treat ρτ as an alias for ρ. That is because in this
simple language, Null is the only type with no parameters. In the full language,
we support classes and interfaces with no type region parameter (or no type
parameter at all), and we disallow bindings of types lacking a region argument
to a type parameter with a region parameter.

Program elements. Figure 13 gives the judgments and rules for typing top-level
program elements. Method checks that the method body is well-typed, and that
its type and effect agree with the return type and effect specified in the method
signature. If a signature with name m also appears in the interface implemented
by the enclosing class, then Implement checks that the types and effects in the
method signature agree with the corresponding types and effects in the signature
of the implemented interface.
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	 P
Program

∀I.(	 I) ∀C.(	 C) ∅ 	 e : T, E
	 R∗ I∗ C∗ e

	 I
Interface

Γ = τ ∪ ρτ ∪ ρ ∪ η ∪ η # E Γ 	 E ∀S.(Γ 	 S)
	 interface I<τ<ρτ >, ρ, η # E> { S∗ }

	 C
Class

Γ = τ ∪ ρτ ∪ ρ ∪ (this, C<τ<ρτ >, ρ>) Γ 	 I<T, R, E>
∀F.(Γ 	 F ) ∀M.(Γ, I<T, R, E> 	 M)

	 class C<τ<ρτ>, ρ> implements I<T, R, E> { F∗ M∗ }
Γ 	 F

Field

Γ 	 T Γ 	 R
Γ 	 T f in R

Γ 	 S
Signature

Γ ′ = Γ ∪ ρ ∪ η ∪ η # E Γ ′ 	 T Γ ′ 	 T ′ Γ ′ 	 E Γ ′ 	 E′

Γ 	 <ρ, η # E>T m(T ′ x) E′

Γ, T 	 M

Method

S = <ρ, η # E>T m(T ′ x) E′ Γ 	 S
Γ ′ = Γ ∪ ρ ∪ η ∪ η # E ∪ (x, T ′) Γ ′ 	 e : Te, Ee Γ ′ 	 Te � T Γ ′ 	 Ee ⊆ E′

m ∈ Dom(S(I)) ⇒ Γ, I<T ′′, R, E> 	 S � S(I)(m)
Γ, I<T ′′, R, E′′> 	 S { e }

Γ, T 	 S � S
′

Implement

σ = [ρ2 ← ρ1][η2 ← η1] Γ 	 σ(φT (E2)) ⊆ E1
Γ 	 T1 � σ(φT (T2)) Γ 	 σ(φT (T ′

2)) � T ′
1 Γ 	 E′

1 ⊆ σ(φT (E′
2))

Γ, T 	 <ρ1, η1 # E1>T1 m(T ′
1 x) E′

1 � <ρ2, η2 # E2>T2 m(T ′
2 x′) E′

2

Fig. 13. Typing of program elements. S(I)(m) is the signature S named m in the
definition of I .

Γ 	 R ⊆ R′
Include-Refl

Γ 	 R ⊆ R

Include-Trans

Γ 	 R ⊆ R′ Γ 	 R′ ⊆ R′′

Γ 	 R ⊆ R′′

Include-Rec

Γ 	 R ⊆ R′:*
Γ 	 R:r ⊆ R′:*

Include-Pref

Γ 	 R ⊆ R:*

Γ 	 R # R′
Disjoint-Names

r �= r′

Γ 	 r:*# r′:*

Disjoint-Include

Γ 	 R ⊆ R′ Γ 	 R′′ ⊆ R′′′ Γ 	 R′ # R′′′

Γ 	 R # R′′

Fig. 14. Inclusion and disjointness of RPLs

RPLs. Figure 14 gives the rules for inclusion and disjointness of RPLs. We use a
relevant subset of the rules described in [6]. R is included in R′ if R and R′ are
lexically identical, or if R′ = R′′ :*, and R′′ is a prefix of R. For example, r:*:r′

is included in r:*. Two RPLs are disjoint if they both start with different names
r, or if each is included in another RPL, such that the two including RPLs are
disjoint. As in [6], inclusion and disjointness of RPLs correspond to inclusion
and disjointness of the sets of regions (chains of names r) represented by the
RPLs.

Types. Figure 15 gives the rules for checking types. Type-Interface checks the
disjointness requirement for the effect argument to an interface type. Γ � T � T ′

means that T is a subtype of T ′, and Γ � T ⊆ T ′ means that T and T ′ are the
same type, except that the region and effect arguments are related by inclusion.
The inclusion relation ⊆ implies subtyping (rule Subtype-Include), but not
vice versa. Note that it would not be sound to put Γ � T � T ′ in the condition
of Include-Interface or Include-Class, for the same reason that it is not
sound to treat C<C′> as a subtype of C<Object> in ordinary Java [17]. It is
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Γ 	 T

Type-Interface

interface I<τ<ρτ >, ρ, η # E′> { S∗ } ∈ P
Γ 	 T Γ 	 R Γ 	 E Γ 	 E # φI<T,R,E>(E

′)
Γ 	 I<T, R, E>

Type-Class

defined(C)
Γ 	 T Γ 	 R
Γ 	 C<T, R>

Type-Param

τ ∈ Γ Γ 	 R
Γ 	 τ<R>

Γ 	 T � T ′
Subtype-Include

Γ 	 T ⊆ T ′

Γ 	 T � T ′

Subtype-Implement

class C<τ<ρτ >, ρ> implements I<T, R, E> { F∗ M∗ } ∈ P
Γ 	 C<T ′, R′> � φC<T ′,R′>(I<T, R, E>)

Γ 	 T ⊆ T ′
Include-Interface

Γ 	 T ⊆ T ′

Γ 	 R ⊆ R′ Γ 	 E ⊆ E′

Γ 	 I<T, R, E> ⊆ I<T ′, R′, E′>

Include-Class

Γ 	 T ⊆ T ′ Γ 	 R ⊆ R′

Γ 	 C<T, R> ⊆ C<T ′, R′>

Include-Param

Γ 	 R ⊆ R′

Γ 	 τ<R> ⊆ τ<R′>

Fig. 15. Types (selected rules). defined(C) means that class C is defined in the program.

sound, however, to make inclusion a condition of subtyping, because we capture
regions and effects as discussed below.

Γ 	 E ⊆ E
′

SE-Empty

Γ 	 ∅ ⊆ E

SE-Reads

Γ 	 R ⊆ R′

Γ 	 reads R ⊆ reads R′

SE-Writes

Γ 	 R ⊆ R′

Γ 	 writes R ⊆ writes R′

SE-Reads-Writes

Γ 	 R ⊆ R′

Γ 	 reads R ⊆ writes R′

SE-Union-1

Γ 	 E ⊆ E′

Γ 	 E ⊆ E′ ∪ E′′

SE-Union-2

Γ 	 E′ ⊆ E Γ 	 E′′ ⊆ E
Γ 	 E′ ∪ E′′ ⊆ E

Γ 	 E # E′
NI-Empty

Γ 	 ∅# E

NI-Reads

Γ 	 reads R # reads R′

NI-Writes

Γ 	 R # R′

Γ 	 writes R # writes R′

NI-Union

Γ 	 E # E′′ Γ 	 E′ # E′′

Γ 	 E ∪ E′ # E′′

NI-Param

η # E ∈ Γ
Γ 	 η # E

NI-Include

Γ 	 E # E′ Γ 	 E′′ ⊆ E Γ 	 E′′′ ⊆ E′

Γ 	 E′′ # E′′′

Fig. 16. Subeffects and disjoint effects

Effects. Figure 16 gives the relevant rules for subeffects and noninterfering effects.
For subeffects, reads effects on R cover reads of R′ if R includes R, and write
effects on R cover both reads and writes of R′. For noninterfering effects, read
effects are always noninterfering, writes effects are noninterfering if the regions
are disjoint, and parametric effects are disjoint if disjointness is specified in a
constraint.

Expressions. Figure 17 gives the rules for typing expressions. Invoke translates
types and effects in the method signature by (1) substituting for the method re-
gion and effect arguments; and (2) applying the translation mapping φT defined
above. Here T is the type of the dispatch expression, after capturing its region
and effect arguments. As discussed in Section 3.2, we must capture all partially
specified RPLs and all effects. We capture an RPL or effect by replacing it with
a fresh parameter, and adding the parameter to the environment. We do this
for the RPL and effect arguments of T , and recursively for the type argument
of T . The formal rules for this procedure are straightforward and are stated in
full in [5].
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Γ 	 e : T, E

Access

(this, C<τ<ρτ>, ρ>) ∈ Γ
F(C)(f) = T f in R

Γ 	 this.f : T, reads R

Assign

(this, C<τ<ρτ >, ρ>) ∈ Γ Γ 	 e : T, E
F(C)(f) = T ′ f in R Γ 	 T � T ′

Γ 	 this.f=e : T, E ∪ writes R

Variable

(v, T ) ∈ Γ
Γ 	 v : T, ∅

Invoke

Γ 	 e1 : T1, E1 Γ 	 e2 : T2, E2
S(T1)(m) = <ρ, η # E3>T3 m(T4 x) E4 σ = [ρ ← R][η ← E5]

Γ 	 E5 # σ(φT1(E3)) Γ 	 capt(T1) = (Tc, Γc) Γc 	 T2 � σ(φTc (T4))
Γ 	 e1.<R, E5>m(e2) : σ(φT1(T3)), E1 ∪ E2 ∪ σ(φT1(E4))

New

Γ 	 C<T, R>

Γ 	 new C<T, R> : C<T, R>, ∅

Null

Γ 	 null : Null, ∅

Fig. 17. Expressions. F(C)(f) means field f declared in class C. S(T ) means S(I)
or S(C), corresponding to the interface or class named in T . Γ � capt(T ) = (T ′, Γ ′)
means that capturing type T in environment Γ yields type T ′ and environment Γ ′.

4.3 Dynamic Semantics

(e, Σ, H) → (o, H′, E)

Dyn-Access

(this, o) ∈ Σ H(o) = (O, C<T, R>)
F(C)(f) = T ′ f in R′

(this.f, Σ, H) → (O(f), H, reads φΣ,H (R′))

Dyn-Assign

(e, Σ, H) → (o, H′, E) (this, o′) ∈ Σ
H′(o′) = (O, C<T, R>) F(C)(m) = T ′ f in R′

(this.f=e, Σ, H) → (o, H′[o′ �→ (O[f �→ o], C<T, R>)], E ∪ writes φΣ,H (R′))

Dyn-Invoke

(e1, Σ, H1) → (o1, H2, E2) (e2, Σ, H2) → (o2, H3, E3) H3(o1) = (O, C<T1, R′>)
M(C)(m) = <ρ, η # E4>T2 m(T3 x) E5 { e3 }

Σ′ = (this, o1) ∪ (x, o2) ∪ (ρ, φΣ,H (R)) ∪ (η, φΣ,H (E1)) (e3, Σ′, H3) → (o3, H4, E6)
(e1.<R, E1>m(e2), Σ, H1) → (o3, H4, E2 ∪ E3 ∪ E6)

Dyn-Variable

(z, o) ∈ Σ
(z, Σ, H) → (o, H, ∅)

Dyn-New

o �∈ Dom(H) H′ = H ∪ o �→ (new(C), φΣ,H (C<T, R>))
(new C<T, R>, Σ, H) → (o, H′, ∅)

Fig. 18. Program evaluation. f [a �→ b] denotes the function identical to f everywhere
on its domain, except that it maps a to b. new(C) is the function taking each field of
class C to null. The translation function φΣ,H does the following: (1) it substitutes
actual regions and effects for parameters as specified by the bindings in Σ; (2) if
(this, o) ∈ Σ and (O, T ) ∈ H , it applies φT . M(C)(m) denotes the method named m
in the definition of class C.

We give a large-step semantics for program execution, using the transition rela-
tion (e, Σ, H)→ (o, H ′, E). e is a program expression. The dynamic environment
Σ maps variables v to object references o, region parameters ρ to regions R, and
effect parameters η to effects E:

Σ ::= (v, o) | (ρ, R) | (η, E)

The heap H is a partial function from object references o to pairs (O, C<T, R>),
where O is an object, and C<T, R> is the type of O:

H ::= null | o �→ (O, C<T, R>) | H ∪H



Types, Regions, and Effects for Safe Programming 323

null is a special reference that is in Dom(H) but does not map to an object.
Attempting to access a field of null causes execution to fail. An object O is a
mapping from field names f to object references o:

O ::= ∅ | f �→ o | O ∪O

The effect E collects the effect of the evaluation. A program evaluates to reference
o with heap H and effect E if its main expression is e and (e, null, ∅)→ (o, H, E),
according to the rules shown in Figure 18. The rules describe a standard seman-
tics for an object-oriented language, except that we bind actual regions and
effects to method parameters in rule Invoke, and we accumulate the effects of
every expression evaluation.

4.4 Valid Execution State

To state the soundness results, we need to define valid heaps, environments, and
execution states.

	 H
Heap

H 	 H
	 H

H 	 H′
Heap-Null

H 	 null

Heap-Object

H 	 (O, T )
H 	 o �→ (O, T )

Heap-Union

H 	 H′ H 	 H′′

H 	 H′ ∪ H′′

H 	 o : T
Type-Object

o �→ (O, T ) ∈ H
H 	 o : T

Type-Null

H 	 null : Null

H 	 (O, T )

Object

∅ 	 C<T, R>

∀(f ∈ Dom(F(C))).(F(C)(f) = T ′ f in R′ ∧ H 	 O(f) : T ′′ ∧ ∅ 	 T ′′ � φC<T,R>(T
′))

H 	 (O, C<T, R>)

Fig. 19. Well-typed heaps

Heaps. Figure 19 gives the rules for typing heaps. A heap is valid if its elements
are valid. An object-type pair (O, T ) is valid if (1) T is a valid type; and (2) for
every field f in F(C), O(f) is defined, and its type is a subtype of the static
type of f , after translation via φT . At runtime we check types in the empty
environment, because all parameters have been substituted away.

Environments. A static environment is valid (� Γ ) if it binds variables to valid
types, and if the effects named in the constraints are valid. A dynamic envi-
ronment is valid (H � Σ) if it binds variables to valid object references and
parameters to valid regions and effects. We omit the formal rules for valid envi-
ronments, but they are straightforward and are stated in full in [5].

Execution state. Figure 20 gives the rules for a valid execution state (e, Σ, H),
with respect to the environment Γ that typed e in the static semantics. The
rules state that H , Σ, and Γ are valid; e is well typed in Γ ; and Σ instantiates
Γ (H � Σ � Γ ). That means the types of the variable bindings in Σ and Γ
match, and the bindings in Σ obey the disjointness constraints specified by Γ .
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Γ 	 (e, Σ, H) : T, E

State

	 Γ 	 H H 	 Σ
H 	 Σ � Γ Γ 	 e : T, E

Γ 	 (e, Σ, H) : T, E

H 	 Σ � Γ
Instantiate

Σ, H 	 Σ � Γ
H 	 Σ � Γ

Σ, H 	 Σ′ � Γ
Inst-Var

H 	 o : T ∅ 	 T � φΣ,H(T ′)
Σ, H 	 (z, o) � (z, T ′)

Inst-Constraint

∅ 	 φΣ,H (η)# φΣ,H (E)
Σ, H 	 ∅ � η # E

Fig. 20. Valid execution state (selected rules)

4.5 Soundness Results

Preservation of type and effect. The first soundness result states that the static
types and effects computed according to Figure 17 approximate the dynamic
types and effects produced by execution according to Figure 18. More precisely,
if we evaluate e to o starting in a valid execution state, then the resulting heap
is valid; o is well typed, and its type is a subtype of the static type of e; and the
resulting effect is valid and a subeffect of the static effect of e.

Theorem 1 (Preservation of type and effect). If � P and Γ � (e, Σ, H) :
Ts, Es and (e, Σ, H) → (o, H ′, E), then (a) � H ′; (b) H ′ � o : T ; (c) ∅ � T �
φΣ,H′(Ts); (d) ∅ � E; and (e) ∅ � E ⊆ φΣ,H′(Es).

The proof, stated in full in [5], is by induction on the structure of e, showing
the result for each of the rules given in Figure 18. For all rules but Invoke, the
result follows straightforwardly from the assumptions and the induction hypoth-
esis. For Invoke, we must show two facts: first, that the dynamic environment in
which the method body is executed instantiates the static environment in which
we typed the method; and second, that the preservation properties are preserved
when we translate back to the environment in which we typed the method invo-
cation. Both facts are proved by keeping careful track of the substitutions that
occur in translating from one static environment to another, and in translating
from static to dynamic environments.

Here it helps the proof that C<E> is a subtype of C<E′> if E is a subeffect of
E′, as discussed in Section 3.2. If we required E = E′ in the subtype judgment,
then we would not be able to conclude that T a subtype of T ′ implies φT (T ′′)
a subtype of φT ′ (T ′′). In that case, to ensure sound subtyping for method invo-
cations, we would need to introduce some ad-hoc restrictions on the use of type
region parameters in effects.

Noninterference. The second soundness result states that the static noninterfer-
ence judgment for expressions is sound: if two expressions have statically nonin-
terfering effects, then the execution of the two expressions is noninterfering at
runtime.

Theorem 2 (Noninterference). If � P and Γ � (e, Σ, H) : Ts, Es and Γ �
(e′, Σ, H ′) : T ′

s, E
′
s and Γ � Es # E′

s and (e, Σ, H)→ (o, H ′, E) and (e′, Σ, H ′) →
(o′, H ′′, E′), then there are no conflicting memory operations in the evaluations
of e and e′.
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“Conflicting accesses” means a pair of operations on the same memory location,
one or both of which is a write. Again the proof is stated in full in [5]. Theorem 1
says that the static effects contain the dynamic effects, so it suffices to show that
conflicting accesses produce interfering effects. But this is straightforward from
(1) the way that the rules in Figure 18 record effects; and (2) the definition of
noninterfering effects in Figure 16.

5 Evaluation

We have evaluated the techniques discussed above with two goals in mind. First,
can we use the techniques to write realistic frameworks and user programs? Do
any additional issues arise in real frameworks or user code? Second, what is the
complexity and annotation overhead of using the techniques to write framework
APIs and client code?

We extended the DPJ compiler [6, 7] to support the new language features
discussed in Sections 3 and 4. Then we studied how to (1) use our techniques to
write generic array, tree, and pipeline frameworks; and (2) use the frameworks
to write three parallel codes: a Monte Carlo simulation algorithm, a Barnes-
Hut n-body computation using a tree to partition physical space, and radix sort
expressed as a pipeline. We chose these three algorithms because they exemplify
different styles of parallelism.

5.1 DPJ Frameworks

Array. We wrote a framework DPJDisjointArray with an API similar to a
subset of Java’s ParallelArray [1]. Our API supports creating an array, mapping
one array to another with a user-supplied element mapping function, and reduc-
ing the array to a single element with a user-supplied binary reduction method
(i.e., that reduces two elements into one). For the array creation and mapping
interfaces, we used exactly the techniques discussed in Section 3. For the reduc-
tion operation, we had to solve the following problem: the user-supplied binary
reduction method might violate disjointness by, e.g., storing one of its argument
objects into a field of the other. To prevent that, we parameterized each of the
arguments with a separate method region parameter, as follows:

public interface Reducer<type T<region R>, effect E> {
public <region R1,R2>T<R1> op(T<R1> a, T<R2> b) writes R1,R2 effect E;

}

Tree. We wrote a framework DPJDisjointTree that provides a tree with a
user-specified branching factor. The tree stores a data object of generic type T
in each node. The API supports building a tree by inserting bodies from the root
and doing a recursive parallel postorder traversal over the tree. The build method
takes a user-supplied index function that computes which of the children of a
particular node to follow next when inserting an object in the subtree rooted
at that node. The postorder visitor takes a user-supplied visit method. The
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input to the method (furnished by the framework implementation) consists of
the data object at the current node and an ArrayList of result objects produced
from visiting the children (or null if the current node is a leaf). The output is a
result object for the current node. Again we use two region parameters to ensure
that the visit method preserves disjointness for the data objects.

Pipeline. We implemented a framework DPJPipeline that represents data
flowing through a series of pipeline stages, each of which applies some operation
to the data. Following the Threading Building Blocks (TBB) library [28] and
the StreamIt language [34], we call the operation applied by each stage a filter.
Each data element flows sequentially through the stages, but different stages
can apply their filters to different elements at the same time, creating pipeline
parallelism.

The API provides two interfaces for the user to implement: a filter and a
factory method for creating a filter. Method region parameters on the factory
methods ensure that each filter and each element is a freshly-created object.
The filter interface provides an operation method for the user to override. Using
method region parameters and constrained effect variables, as in the other exam-
ples, the API ensures that the user-defined filter operation is limited to updating
the regions of the data object and the filter state, and doing any noninterfering
effects on other state. In particular, the filter operation may not update data
operated on by a concurrent filter, or a different filter.

5.2 Client Code

Monte Carlo Simulation. We studied the Monte Carlo simulation benchmark
from the Java Grande suite [30]. The computation contains three parallelizable
loops: the first one creates task objects, the second one iterates over the objects to
compute a return rate for each one, and the third one reduces the return rates
into a cumulative average. We parallelized all three loops using DPJDisjoint-
Array. The first two loops were straightforward to parallelize with the mapping
operation. For the third loop, we wrote a binary reduction method that takes two
objects produced by the second stage, reads the accumulated sum from both,
adds them, stores the result in the first one, and returns it. We could also have
created a new object and returned it, but that would be less efficient.

Barnes-Hut Center of Mass. Next we studied the Barnes-Hut n-body simu-
lation [29], which uses an octree (eight-ary tree) to represent three-dimensional
space hierarchically, storing the bodies in the leaves. We focused on the center-
of-mass computation, which traverses the tree recursively in parallel and, for
each node, computes and stores the center of mass of the subtree rooted at that
node. It would be straightforward to parallelize the force computation using the
same array-based techniques that we used for Monte Carlo.

We wrote a program that builds a tree and performs a center of mass compu-
tation for a binary tree computation in one-dimensional space. That simplified
the computation, while retaining the algorithm structure. To do this, we instan-
tiated DPJDisjointTreewith a Node class that has subclasses Cell for the inner
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node data and Body for the leaf data, similarly to the original and SPLASH ver-
sions [29]. Then, studying the original algorithm, we put the logic for creating
the tree into the user-supplied index function and the logic for computing and
storing the center of mass into the user-supplied visit function.

Radix Sort. We wrote a pipelined version of radix sort that is directly modeled
after the StreamIt RadixSort benchmark [34]. The first stage produces a stream
of arrays to sort, and the successive stages each sort the arrays on a different
radix, with the radix recorded in the Filter object as final variable (so reading
it produces no effect). Each sort stage also stores two temporary arrays as per-
sistent mutable data in the filter region (such that accessing the arrays produces
an effect on the filter region). When an array enters a sort stage, the filter for
that stage adds each array element to one of the temporary arrays, depending
on whether the element has a 0 or 1 at the bit position corresponding to the
radix for that filter. The filter then copies all the 0 elements followed by all the
1 elements back into the original array, and passes it to the next stage.

5.3 Discussion of Evaluation Results

Expressivity. We were able to use the techniques discussed in Section 3 to write
realistic parallel frameworks, with no significant additional challenges. Getting
the region and effect annotations correct for the APIs did require some careful
thought. However, all the APIs have a similar pattern; once we mastered that
pattern, writing the APIs was straightforward.

Table 1 summarizes the effect annotation counts for the framework code. The
leftmost data column shows the annotated over the total source lines of code
(SLOC), counted with sloccount. From the left, the other columns show the
number of class (including interface) definitions, class region and effect param-
eters, class region and effect constraints, region and effect arguments to types,
method definitions, method effect summaries, method region and effect param-
eters, method region and effect constraints, and region and effect arguments to
methods. For arguments to class types, the denominator is the total number of
types appearing in the program; and for arguments to methods, the denomina-
tor is the total number of method invocations. As expected, the annotations are
nontrivial; this is simply a cost of the safety guarantee we provide. We believe
that production frameworks would have a higher ratio of internal to API code
than our simple frameworks do, so the relative annotation overhead would be
lower in practice. Further, some type and effect annotations could be inferred.
In particular [36] shows how to infer method effect summaries for DPJ as de-
scribed in [6]; this approach could be extended to inferring arguments to region
and effect parameters in types and method invocations.

Table 1. Annotation counts for the framework code

Classes Methods
SLOC Defs Params Constr. Args Defs Summ. Params Constr. Args

Array 41/97 12 21 0 10/88 20 11 7 4 1/21
Tree 61/169 11 19 0 32/100 18 16 6 2 4/42
Pipeline 35/112 8 9 1 14/44 19 18 2 0 2/28
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Table 2. Annotation counts for the client code

Classes Methods
SLOC Defs Params Constr. Args Defs Summ. Params Constr. Args

Monte Carlo 236/1389 21 10 0 90/492 195 136 8 0 3/350
Spatial Tree 55/172 6 5 0 42/90 10 7 4 0 3/45
Radix Sort 31/102 6 3 0 36/46 11 6 4 0 0/13

Framework Client Experience. Table 2 shows the annotation counts for the
client code, with the same layout as Table 1. Overall, the annotation burden is
less than for the framework code. As in [6], most of the annotations are method
effect summaries and region arguments to types. In the client codes, the argu-
ments to effect variables were simple: either pure or one or two read effects. As
expected, there were no effect constraints in the client code. Again, type and
effect inference [36] could reduce the annotation burden.

It is also instructive to compare the client experience to DPJ as presented
in [6,7]. In [6], we wrote Monte Carlo using an index-parameterized array for the
first two loops; for the third loop, we encapsulated the reduction sum in a method
implemented with locks and declared that method commutative. This is not
attractive because it puts the burden of writing low-level synchronization code on
the application developer. To write the Barnes-Hut center of mass computation
using the techniques shown in [6], each tree node would need a distinct type.
Because the destination node of a body is not known at the time the body is
originally created, we would have to recopy the bodies on insertion into the tree;
this is similar to the swapping example discussed in Section 2. This approach
works, but it adds overhead. For pipelined radix sort, we could write this program
using the features presented in [7] for safe nondeterminism, but we would need
to use low-level synchronization techniques in the client program, and we would
not get the framework encapsulation or any determinism guarantee.

Overall, the advantages of the framework approach are (1) simplifying the DPJ
types exposed to the client, by avoiding index parameterized arrays or recursive
types; (2) eliminating low-level code for common patterns such as reductions;
(3) supporting operations such as reshuffling that the type system prohibits;
and (4) extending the language with more flexible parallel control idioms. On
the other hand, the non-framework DPJ code is closer in structure to the original
sequential program. This last point is not specific to our work, but is a general
issue with frameworks.

6 Related Work

Effects. The seminal work on types and effects for concurrency is FX [19, 24],
which adds a region-based type and effect system to a Scheme-like, implicitly
parallel language. Later work added effects to object-oriented languages [18,21].
DPJ [6,7] builds upon this work to provide an expressive type and effect system
for deterministic-by-default parallelism. None of this work teaches how to write
a framework API for safe parallelism using disjoint data structures. Nor does it
support mechanisms such as effect constraints and type region parameters that
are necessary for generic frameworks.
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Several sophisticated effect systems are based on object ownership [9,12,22,23].
There are many variants, all unified by the idea that objects define groupings of
data on the heap (which we call regions). DPJ is similar in that it uses regions to
group data on the heap, but it is different in that a region is specified by an RPL,
which is primarily a sequence of declared names like A:B:C. DPJ as described
in [6] incorporates a notion of ownership by allowing an object to appear first in
an RPL (as in o:A:B:C). Though useful for some parallel patterns, this form is
not used in the present work. Ownership domains [2, 31] provide an alternative
way to combine declared names with owner objects.

Linear Types. Linear types [37] allow in-place updates while preserving the
semantic guarantees of pure functional programming. However, linear types pro-
hibit reference aliasing, making many common patterns of imperative program-
ming awkward or impossible.

Several researchers have worked to make linear types less restrictive while
maintaining meaningful guarantees. Fähndrich and DeLine [16] introduced adop-
tion and focus to create aliases of a linear reference with a limited lifetime. Clarke
and Wrigstad [13] have observed that external uniqueness — the property that
every object has at most one reference to it located outside its containing data
structure — can express important patterns. Boyland and others [8, 33] have
used fractional permissions to enforce linearity of write references, while allow-
ing sharing of read-only references.

Our idea of disjoint data structures is related to these mechanisms, but also
different from all of them. Our insight is that for parallel traversals over the
elements of a data structure, all we care about is whether the elements have dif-
ferent regions in their types. This implies that the elements are distinct objects,
but it does not preclude aliasing with other references in the program. DPJ’s
indexed parameterized arrays [6] provide disjoint regions, but they do so by mak-
ing the regions explicit in user code, thereby preventing reference swapping as
discussed in Section 2.

Enforcing API Contracts. The Eiffel language [35] introduced design by con-
tract, which uses preconditions and postconditions to specify interaction between
classes. Spec# [4] and the Java Modeling Language (JML) [20] provide ways to
write design-by-contract specifications for C# and Java; the specifications can
be checked with a combination of static verification and online checking.

Design-by-contract ideas have been applied to concurrent programming lan-
guages. Meyer’s Systematic Concurrent Object-Oriented Programming (SCOOP)
concurrent programming model [25] is based on Eiffel. The Fortress programming
language [32] provides a way to write assertions at interface boundaries that can
be checked at runtime. X10 [11] has a sophisticated dependent type system that
can specify and check interface assertions, also supported with runtime check-
ing. None of this work addresses parallel noninterference or safe frameworks for
shared memory parallelism.
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Separation Logic. Recent work on separation logic (SL) [14, 15] shows how
to specify abstractions such as barriers, locks, and sets and verify separately
that (1) programs using the abstractions are correct and (2) the abstractions
are correctly implemented. While similar in spirit to ours, this work does not
consider the abstractions we have studied, including data structures containing
references to disjoint mutable objects, frameworks with internal parallelism, and
frameworks applying methods with unknown effects. The technical mechanisms
are also very different (SL-based program verification vs. types and effects).
Compared to SL, our effect system is better integrated with the language, eas-
ier to use, and amenable to lightweight checking; however, it is probably also
less powerful. More complex logics such as SL could be used to prove that a
framework implementation satisfies the properties stated in Section 3.3.

Type Constructors. Type constructors are well known in functional languages
like Haskell. Recently type constructors have been applied to object-oriented
languages [3, 26]. Standard type constructors have no notion of region param-
eters or effects. Further, we exploit the fact that a parametric type implic-
itly provides a type constructor: in our language one can define a class
List<type T<region R>> and use T either as the type T bound to the type
argument of List, or as the type constructor that results from ignoring the
binding to the first region parameter in T . This can be viewed as syntactic sugar
for a more standard approach, where one would specify the region R as a sep-
arate class parameter. Ownership Generic Java [27] uses a similar approach in
specifying type bounds, but it does not have any notion of effects or support
type constructors.

7 Conclusion

We have shown how to use an effect system with polymorphic effects and type
constructors to write a generic framework API that enables sound reasoning
about its uses. The framework internals can be checked once, and then the
compiler can guarantee noninterference for any user program written using the
framework. As future work, we would like to explore ways to formally verify
properties of the framework implementation that DPJ cannot prove.
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Abstract. Object ownership is useful for many applications, including
program verification, thread synchronization, and memory management.
However, the annotation overhead of ownership type systems hampers
their widespread application. This paper addresses this issue by pre-
senting a tunable static type inference for Generic Universe Types. In
contrast to classical type systems, ownership types have no single most
general typing. Our inference chooses among the legal typings via heuris-
tics. Our inference is tunable: users can indicate a preference for certain
typings by adjusting the heuristics or by supplying partial annotations
for the program. We present how the constraints of Generic Universe
Types can be encoded as a boolean satisfiability (SAT) problem and
how a weighted Max-SAT solver finds a correct Universe typing that op-
timizes the weights. We implemented the static inference tool, applied
our inference tool to four real-world applications, and inferred interesting
ownership structures.

1 Introduction

Aliasing— multiple references to the same object— makes it hard to build com-
plex object structures correctly and to guarantee invariants about their behav-
ior. For example, mutation of an object through one reference can be observed
through other references. This leads to problems in many areas of software engi-
neering, including program verification, concurrent programming, and memory
management.

Object ownership [10] structures the heap hierarchically to control aliasing
and access between objects. Ownership type systems express properties of the
heap topology, for instance whether two instances of a list may share node ob-
jects. Such information is needed to show the correctness of a coarse-grained
locking strategy, where the lock of the list protects the state of all its nodes
[6]. Ownership type systems also enforce encapsulation, for instance, by forcing
all modifications of an object to be initiated by its owner. Such guarantees are
useful to maintain invariants that relate the state of multiple objects [33]. To
obtain these benefits, ownership type systems require considerable annotation
overhead, which is a significant burden for software engineers.
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Helping software engineers to transition from un-annotated programs to code
that uses an ownership type system is crucial to facilitate the adoption of own-
ership type systems. Standard techniques for static type inference [12] are not
applicable. First, there is no need to check for the existence of a correct typing; a
flat ownership structure gives a trivial typing. Second, there is no notion of a best
or most general ownership typing. In realistic implementations, there are many
possible typings and corresponding ownership structures, and the preferred one
depends on the intent of the programmer. Ownership inference needs to support
the developer in finding desirable structures by suggesting possible structures
and allowing the programmer to guide the inference.

This paper presents static inference for Generic Universe Types [14,13], a
lightweight ownership type system designed to enable program verification [32].
Our static inference builds a constraint system that is solved by a SAT solver.
An important virtue of our approach is that the static inference is tunable; the
SAT solver can be provided with weights that express the preference for certain
solutions. These weights can be determined by general heuristics (for instance,
to prefer deep ownership for fields and general typings for method signatures),
by partial annotations, through a runtime analysis, or through interaction with
the programmer.

The main contributions of this paper are:

Static Inference: an encoding of the Generic Universe Types rules into a con-
straint system that can be solved efficiently by a SAT solver to find possible
annotations.

Tunable Inference: use of heuristics and programmer interaction to indicate
which among many legal solutions is preferable; this approach is implemented
by use of a weighted Max-SAT solver.

Evaluation: an implementation of our inference scheme on top of the OpenJDK
compiler, and an illustration of its effectiveness on real programs.

This paper is organized as follows. Sec. 2 gives background on Generic Universe
Types. Sec. 3 overviews the inference system using examples. Sec. 4 formalizes
the static inference, consisting of the core programming language, the constraint
generation rules, the weighting heuristics, and the encoding as a weighted SAT
problem. Sec. 5 describes our implementation and our experience with it. Finally,
Sec. 6 discusses related work, and Sec. 7 concludes.

2 Background on Generic Universe Types

Generic Universe Types (GUT) [14,13] is an ownership type system that allows
programmers to describe and enforce hierarchical heap topologies and optionally
enforces the owner-as-modifier encapsulation discipline based on the topology.
GUT is integrated into the tool suite of the Java Modeling Language (JML) [23].



Tunable Static Inference for Generic Universe Types 335

public class Person {

���� Person spouse;

��� Account savings;

��� List<���� Person> friends;

int assets() {

��� Account a = spouse.savings;

return savings.balance + a.balance;

}

}

(a) Example program. (b) Ownership modifier
type hierarchy.

Fig. 1. (a) A simple example of Generic Universe Types. A Person object owns its
savings account and has the same owner as its spouse. It also owns a List of Person
objects, each of which is its peer. (b) The type hierarchy of the ownership modifiers;
see Sec. 2 for an explanation.

Ownership Topology. GUT organizes the heap hierarchically into contexts and
restricts modifications across context boundaries. As in most other ownership
systems, each object has at most one owner object. The ownership relation is
acyclic. A context is the set of objects sharing an owner.

In GUT, a programmer expresses the ownership topology by writing one of
three ownership modifiers on each reference type. An ownership modifier ex-
presses ownership relative to the current receiver object this.

���� expresses that the referenced object is in the same context as the current
object this. For example, in Fig. 1a, a Person p has the same owner as
p.spouse.

��� expresses that the referenced object is owned by the current object. For
example, in Fig. 1a, a Person p is the owner of p.savings.

��� gives no static information about the relationship of the two objects.

In addition, the formalization uses two internal ownership modifiers, which are
not part of the surface syntax:

��	
 expresses that the two objects have a relationship, but that relationship
is not expressible as peer or rep. For example, in Fig. 1a, spouse.savings
is a “nephew” of this; GUT cannot express this relationship, so it gives
spouse.savings the ownership modifier lost.

	��� is used only for the current receiver object this.

Fig. 1b gives the type hierarchy. A self-modified type is a subtype of the cor-
responding peer type because self denotes the this object, which is obviously
a peer of this. Types with self, rep, and peer modifiers are subtypes of the
corresponding type with a lost modifier because lost conveys less ownership
information. Similarly, an any-modified type is a supertype of all other versions.

The example in Fig. 1a also illustrates the use of ownership modifiers with
generic types. Field friends has type rep List<peer Person>, which expresses
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that the List object is owned by the Person object containing the field, whereas
the elements stored in the list are peers of that object. Note that the ownership
modifier of a type argument is interpreted relative to the client that instantiates
the generic type (here, the Person object), not the object of the generic type.

Compound expressions: viewpoint adaptation and lost. The modifier of a com-
pound expression is determined by combining the ownership modifiers of its
components. For example, consider a field access tony.spouse, where tony is
of type rep Person. This expression traverses first a rep reference and then a
peer reference, so its modifier is the result of adapting tony’s spouse modifier
from the viewpoint of tony (where it is peer) to the viewpoint of this. Here,
this adaptation yields rep because the resulting object has the same owner as
tony, which is this.

In some cases, this viewpoint adaptation leads to a loss of static ownership
information. For example, the expression spouse.savings traverses first a peer
and then a rep field, so the resulting object has a specific relationship to this,
but the relationship cannot be expressed in the type system. GUT uses a special
ownership modifier lost to express this. Two different expressions of lost type
might stand for different unknown relationships, so it would be illegal to assign
one lost expression to another one. GUT remains sound by prohibiting the lost
type on the left-hand side of an assignment. This explains why GUT introduces
lost rather than reusing any to stand for an unknown relationship: it would be
too restrictive to forbid all assignments to left-hand-sides of type any.

Formally, viewpoint adaptation is a function � that takes two ownership modi-
fiers and yields the adapted modifier. (1) peer � peer = peer; (2) rep � peer =
rep; (3) u � any = any; (4) self � u = u; and (5) for all other combinations the
result is lost. In Fig. 1a, the modifier of spouse.savings is peer � rep = lost.
Since lost Person is a subtype of any Person, the expression may be assigned
to variable a.

In addition to field accesses, viewpoint adaptation also occurs for parameter
passing, result passing, and type variable bound checks.

Encapsulation. Generic Universe Types enforce that programs adhere to the
heap topology described by the ownership modifiers. In addition, they optionally
enforce an encapsulation scheme called the owner-as-modifier discipline [15]: an
object o may be referenced by any other object, but reference chains that do
not pass through o’s owner must not be used to modify o. This allows owner
objects to control state changes of owned objects and thus maintain invariants.
For instance, a Person object can enforce the invariant savings.balance≥ 0
because the owner-as-modifier discipline prevents aliases to the Account object
savings from modifying its balance field. Therefore, it is sufficient to check
that each method of the Person object maintains the invariant.

The owner-as-modifier discipline is enforced by forbidding field updates and
non-pure (side-effecting) method calls through a lost or any reference. For in-
stance, the call spouse.savings.withdraw(1000) is rejected by the type sys-
tem because the viewpoint-adapted modifier of the receiver, spouse.savings, is
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Fig. 2. Overview of the inference approach. See Sec. 3 for a detailed discussion.

lost. A lost or any reference can still be used for field accesses and to call pure
(side-effect-free) methods. For instance, method assets in Fig. 1a may read the
balance field via the any reference a.

Because the default modifier is peer1, an un-annotated Java program is a
legally-typed program in GUT. This typing describes a flat ownership struc-
ture —no object is owned by any other object— and so it imposes no constraints
on, nor guarantees about, the program’s operation. Therefore, inference is needed
to automatically produce annotations that express a deeper ownership structure.

3 Inference Approach and Example

Given a Java program as input, which may be partially annotated with ownership
modifiers, the static inference determines a legal GUT typing. Fig. 3 shows an
example input program and four inferred typings. Fig. 2 overviews the process.
Sec. 3.1 discusses the type inference process (the dotted rectangle of Fig. 2),
which is the focus of this paper. Sec. 3.2 explains how a user can iteratively use
our toolset (the rest of Fig. 2).

3.1 Inference Approach

Type inference has three main steps: creating constraint variables, creating con-
straints over those variables, and solving the constraints to infer a typing.

The inference first creates a constraint variable for each possible occurrence
of an ownership modifier or of viewpoint adaptation in the source code. Recall
that GUT allows ownership modifiers for all reference types. Primitive types and
type variable declarations/uses do not take ownership modifiers, and therefore
no constraint variables are created for them. However, the upper bound of a
type variable takes ownership modifiers. In the example in Fig. 3, a total of 14
constraint variables are introduced: α1–α11 correspond to the locations where
ownership annotations may appear in the source code and α12–α14 are constraint
1 There are a few exceptions. For instance, subtypes of Throwable have the any mod-

ifier by default to allow the propagation of exceptions across ownership contexts.
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class Person {

Person1 spouse;

Account2 savings;

List3<Person4>12 friends;

void marry(Person5 p) {

spouse = p;

}

void befriend(Person6 p) {

friends.add(p);

}

int assets() {

Account7 a = spouse.savings13;

return savings.balance + a.balance;

}

void demo() {

Person8 o1 = new Person9();

Person10 o2 = new Person11();

this.marry(o1);

o1.befriend(o2)14;
}

}

Solution α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

no weights peer peer peer peer peer peer peer peer peer peer peer any peer peer

default any rep rep any any any any rep rep rep rep any lost any

alternative rep rep rep peer rep peer any rep rep rep rep any lost rep

manual peer rep rep any peer any any peer peer rep rep any lost any

Fig. 3. An example un-annotated program and typings. Our algorithm creates con-
straint variables α1–α11 corresponding to locations 1–11 of type uses, and creates
α12–α14 corresponding to the viewpoint adaptations induced by the expressions at
locations 12–14. The figure also shows four inference solutions that are inferred by our
tool, depending on the heuristics used and whether the programmer provides a partial
annotation. In the last solution, the italic peer modifier for α1 was manually added to
the source code before inferring the solution.

variables for viewpoint adaptation. For example, a constraint variable α1 is in-
troduced for the ownership modifier in the spouse field type, and constraint
variable α9 is introduced for the ownership modifier in the new expression. One
generic type contains multiple constraint variables corresponding to the main
and type argument modifiers; for the type of field friends, α3 is introduced for
the main modifier and α4 is introduced for the type argument. Viewpoint adap-
tation introduces additional constraint variables, for example, α12 represents the
result of adapting the declared upper bound of the type variable of class List
(assumed to be any Object) from the point-of-view of friends to this.

The inference generates constraints over the constraint variables by travers-
ing the AST. These constraints correspond one-to-one to the type rules of GUT
[13]. Additional, weighted, breakable constraints express preferences regarding
the solution, obtained by applying a heuristic. For Fig. 3, the tool generates
a total of 35 constraints. For example, the assignment spouse = p results in
a subtype constraint between constraint variables α5 and α1. Constraints are
also generated to connect the constraint variables involved in viewpoint adapta-
tion. For example, the field access spouse.savings has to adapt the declared
type of field savings from the point-of-view of spouse to this. To model the
result of this adaptation, the additional constraint variable α13 was introduced.
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The constraintα1 � α2 = α13 is generated to encode the dependency between
the involved variables. The assignment to local variable a then induces a subtype
constraint between α13 and α7.

The constraints are translated into a weighted SAT formula. A weighted Max-
SAT solver [5] finds a solution that satisfies all of the type system constraints and
the breakable constraints resulting in the maximum weight. The SAT solution
is translated into a typing for the program: a concrete ownership modifier for
each constraint variable in the program. Any such typing is guaranteed to be
correct, as all type rules are encoded as mandatory constraints; our experiments
also confirm this.

3.2 Iterative Usage

As explained in the introduction, the best typing in an ownership type system
depends on the programmer’s intent and how the annotations will be used by
downstream tools. Therefore, we expect the inference tool to be used iteratively.

Using the inference without heuristics results in the first solution presented
in Fig. 3: all modifiers are assigned peer, except for α12 which is the result of
adapting the declared any upper bound. This flat assignment is usually not the
desired solution.

By using our tool’s built-in heuristics (see Sec. 4.3), we get the second result in
Fig. 3. This heuristic prefers a deep ownership structure and broadly applicable
methods. For example, this heuristic prefers α5 and α6 to be any, making the
methods callable with arbitrary arguments, even though this solution requires
α1 and α4 to be any, reducing the encapsulation guarantees of these fields. α2

and α3 are inferred to be rep, as they are not dependent on parameter types.
If the inferred annotations do not reflect the programmer’s design intent, the

programmer can improve the result in three ways: customize the heuristics, man-
ually add annotations, or fix defects in the source code.

(1) The programmer may customize the heuristics to encourage certain re-
sults. For instance, the programmer might select heuristics that favor general
types for a library in order to make the library as widely applicable as possible.
By contrast, when the whole program is available, the programmer might select
heuristics that favor restrictive modifiers to facilitate subsequent use of the own-
ership information, for instance by a program verifier. In our example, the third
solution was inferred using a heuristic that prefers rep as annotation for fields
and has no other weights. Note how in this solution α4 is inferred to be peer. A
rep solution is not possible in this location, as it would result in α6 to be rep,
which would make the call o1.befriend(o2) impossible. On the other hand, α5

was inferred to be rep; this was possible, because the only call of marry is on a
this receiver. Calls of marry with a receiver other than this are impossible in
this solution. This changed heuristic provides stronger encapsulation, but limits
the future use of fields and methods. In Sec. 4.3 we will discuss weighting in
more detail.

(2) The programmer can write ownership modifiers in the input program.
The inference system always respects such annotations, even if the program text
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would have permitted another solution. In our example, the fourth solution is the
result of manually adding a peer annotation to field spouse, fixing constraint
variable α1 to peer. Using our default heuristics again, this would result in the
parameter to marry also becoming peer. Also the type of o1 needs to be inferred
to be peer in order for this and o1 to be peers in the call of marry.

(3) The programmer might fix defects in the source code. One variety of
defect is programmer-written type annotations that are incompatible with one
another or with usage by the source code. The inference system points out such
errors (currently by providing no inference result; improved error messages are
future work). In our example, assume the programmer manually adds a peer
annotation to field spouse and a rep annotation to parameter p of method
marry; no assignment to the remaining constraint variables could resolve the
mismatch of modifiers in the assignment spouse = p.

A more subtle defect is one that prevents inference of the programmer’s in-
tended ownership structure, even though the system outputs some legal typing
of the program. For example, suppose that a programmer designed a layered
system in which lower layers do not call non-pure methods of higher layers. A
violation of this property would cause the inference to produce a flatter-than-
desired ownership structure. The programmer could correct the source code so
that it implements the design.

Once the programmer is satisfied with the results, our tool inserts the owner-
ship modifiers into the source code to improve the documentation of the code,
to encourage that the heap topology and encapsulation are considered during
program maintenance, and to make them available to downstream tools such
as a program verifier. The GUT type checker can be used to ensure that the
annotations remain consistent.

4 Tunable Static Inference

This section formalizes our inference approach. Sec. 4.1 presents a core calculus
for a Java-like programming language, which is used by the rest of the formalism.
Sec. 4.2 gives syntax-directed type inference rules: each programming language
construct gives rise to a set of constraint variables and to a set of constraints over
the variables. We introduce a constraint variable for each location in the source
program where a concrete ownership modifier may be written and for each ex-
pression that requires viewpoint adaptation. Any solution to the constraints is a
legal assignment of a concrete ownership modifier to each source location. Sec. 4.3
describes how to add additional constraints that express preferences among the
possible solutions. Finally, Sec. 4.4 shows how to encode all the constraints as a
weighted SAT problem, and to transform a weighted Max-SAT solver’s output
into a set of concrete ownership modifiers for the program.

4.1 Programming Language

Fig. 4 summarizes the syntax of the language and the naming conventions.
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P ::= Cls

Cls ::= class Cid〈TP〉 extends C〈T 〉 { fd md } C ::= Cid | Object
TP ::= X extends N fd ::= T f ;

md ::= p 〈TP〉 Tr m(T pid) { e } p ::= pure | impure
e ::= null | x | new N() | e.f | e0.f :=e1 | T ::= N | X

e0.〈T 〉m(e) | (N) e N ::= u C〈T 〉
u ::= α | peer | rep | any | lost | self x ::= pid | this

pid parameter identifier f field identifier
m method identifier Cid class identifier
α constraint variable identifier X type variable identifier

Fig. 4. Syntax of our programming language. A sequence of A elements is denoted as A.
The surface syntax (written by the programmer) does not include ownership modifiers
α, lost, or self, and allows omitting ownership modifiers. The only difference from
previous formalizations of GUT [13] is the addition of constraint variables α as a
placeholder for a concrete ownership modifier.

A program P consists of a sequence of class declarations; P is implicitly avail-
able in all judgments. A class declaration Cls names the class and its superclass,
along with their type parameters and type arguments, respectively, and gives
field and method declarations. A field declaration is a simple pair of a type and
an identifier. A method declaration consists of the method purity, method type
parameters if any, return type, method name, formal parameter declarations,
and an expression for the method body. An expression e can be the null literal,
a method parameter access, object creation, field read, field update, method call,
or cast.

A type T is either a non-variable type N or a type variable X . A non-variable
type N consists of an ownership modifier u and a possibly-parameterized class
C. The definition of the ownership modifiers is the only deviation from previous
formalizations of GUT. Ownership or Universe modifiers u include the concrete
ownership modifiers peer, rep, any, lost, and self, as well as constraint vari-
ables α. Constraint variables α are used as placeholders for the concrete owner-
ship modifiers that the system will infer. The surface syntax does not include α,
lost, or self and allows omitting ownership modifiers; constraint variables are
introduced for all omitted ownership modifiers.

4.2 Building the Constraints

This section introduces constraint variables (Sec. 4.2.1), the kinds of constraints
(Sec. 4.2.2), and the syntax-directed rules that build the constraints (Sec. 4.2.3).

4.2.1 Constraint Variables
A constraint variable represents the ownership modifier for the occurrence of a
reference type or a particular expression.

For each position where a concrete ownership modifier may occur in the solu-
tion — that is, for each use of a type — our tool introduces a constraint variable
α that represents the ownership modifier for that position. Our inference will
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later assign one of the concrete ownership modifier rep, peer, or any to each
of these constraint variables. The tool also introduces a constraint variable for
each expression that induces viewpoint adaptation; these will be assigned to rep,
peer, any, or lost. self is used only as the type of the this literal and never
inferred.

To infer the ownership modifiers for the program of Fig. 3, our tool would
introduce a constraint variable for each numbered location.

If the programmer has partially annotated the program, then the generated
constraints use the programmer-written modifier instead of creating a constraint
variable.

4.2.2 Constraints
The inference rules (Sec. 4.2.3) create five kinds of constraints over the ownership
modifiers, in particular, over the constraint variables.

Subtype (u1 <: u2): A subtype constraint enforces that u1 will be assigned an
ownership modifier that is a subtype of the ownership modifier assigned to
u2. Subtype constraints are used for assignments and for pseudo-assignments
(parameter passing, result passing, type variable bound checks).

Adaptation (u1 � u2 = α3): An adaptation constraint ensures that the view-
point adaptation of variable u2 from the viewpoint expressed by u1 results
in α3.

Equality (u1 = u2): An equality constraint ensures that two modifiers are the
same. They are used to handle method overriding and type argument sub-
typing, which are both invariant.

Inequality (u1 �= u2): An inequality constraint ensures that two modifiers dif-
fer. For example, the type system forbids the lost modifier on the left-hand
side of an assignment. The type system also forbids the any modifier for the
receiver of field updates, if the owner-as-modifier discipline is enforced.

Comparable (u1 <:> u2): A comparable constraint expresses that two owner-
ship modifiers are not incompatible, that is, one could be a subtype of the
other. These constraints are used for casts.

Fig. 6 in Sec. 4.2.3 defines helper judgments that lift these constraints from
ownership modifiers to types.

4.2.3 Constraint generation
Our system takes as input a program and creates a set Σ of the kinds of constraints
defined in Sec. 4.2.2. The constraints in Σ are satisfied by any correct GUT typ-
ing for the program. The constraints correspond to the type rules [13] expressed
abstractly over the ownership modifiers.

Fig. 5 contains the rules for extracting constraints from a program. It defines
judgments over class, field, and method declarations, as well as over expressions.
Our inference is a type-based analysis [36] that runs only on valid Java programs.
Therefore, our rules do not encode all Java type rules, but give only constraints
for the additional checks for Generic Universe Types. To simplify the notation,
the rules use helper judgments and functions that lift constraints from single
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ownership modifiers to types; they are defined in Figs. 6 and explained after the
discussion of the main judgments.

An environment Γ maps type variables of the enclosing class and method to
their upper bounds and variables to their types. We use the notation Γ (X) and
Γ (x) to look-up the upper bound of a type variable and the type of a variable,
respectively. Helper function env (defined in Fig. 6) defines the environment
necessary for checking class and method declarations.

We now discuss the rules of Fig. 5.
The constraints for a class, field, method parameter, and method declaration

consist of the constraints for their components. The well-formedness of types
is ensured using the well-formed type (OK) judgment defined in Fig. 6. For a
method declaration, note that the environment is extended with the method type
variables and the method parameters. Function overriding requires that, if the
current method is overriding a method in a superclass, the parameter and return
types are consistent. The resulting constraint set Σ2 defines equality constraints
between the types in the current method signature and a directly overridden
method signature. For space reasons, we do not show the formal definition of
overriding; it follows directly from the GUT formalization [13].

Finally, there are eight judgments for expressions, which are also mostly stan-
dard. We discuss casts immediately below. For an object creation expression the
main ownership modifier has to be different from lost and any to ensure that
either peer or rep is inferred, giving the new object a specific location in the
ownership topology. Helper functions fType and mType, discussed below, yield
the field type, respectively the method signature, after viewpoint adaptation,
and additional constraints that encode the necessary adaptations of modifiers.
To ensure soundness of the inferred results, lost has to be forbidden for all types
involved in pseudo-assignments: the adapted field type, and the adapted method
parameter types and method type variable bounds. These constraints ensure that
modifications are only possible if the ownership is known statically. The rules
for a field update and for an impure method call generate additional constraints
only when the owner-as-modifier discipline is enforced: the main modifier of the
receiver expression has to be different from lost and any to ensure that the
owner of the modified object is statically known.

The Γ � N <:> T0 : Σc clause of the cast rule requires explanation. Recall
that a cast is a type loophole that indicates that the program’s behavior is beyond
the reasoning capabilities of the type system. If the un-annotated input program
contains a cast, then the corresponding runtime check might fail at run time.
Generic Universe Types also support casts: downcasts that specialize ownership
information (that is, casts from any to peer or rep) and require a runtime
check. Our inference never inserts a new cast; to do so would defeat the purpose
of static ownership type checking. However, the inference is permitted to choose
arbitrary2 ownership modifiers at existing casts, and therefore an existing cast
might fail either because of the base language check, or because of the ownership

2 Actually, the choice is not arbitrary. The <:> constraint requires the two types are
comparable —otherwise, the cast is guaranteed to fail.
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Environment: Γ = {X �→ N ; x �→ T}

Class declaration: � Cls : Σ env(Cid ,TP) = Γ Γ � fd : Σf Γ � md : Σm

Γ � self C〈T 〉, bounds(TP) OK : Σt

Σ = Σf ∪ Σm ∪ Σt

� class Cid〈TP〉 extends C〈T 〉 { fd md } : Σ

Field and method parameter declaration: Γ � T f : Σ , Γ � T pid : Σ

Γ � T OK : Σ
Γ � T f : Σ

Γ � T OK : Σ
Γ � T pid : Σ

Method declaration: Γ � md : Σ env(Γ,TP , T pid) = Γ ′ Γ ′ � T pid : Σ0

Γ ′ � e : T, Σ1 overriding(Γ ′, m) = Σ2

Γ ′ � bounds(TP), Tr OK : Σ3

Γ ′ � T <: Tr : Σ4

Γ � p 〈TP〉 Tr m(T pid) { e } :
⋃i=4

i=0 Σi

Expressions: Γ � e : T, Σ

Γ � e : T0 : Σ0

Γ � T0 <: T : Σ1

Γ � e : T, Σ0 ∪ Σ1 Γ � null : T, ∅ Γ � x : Γ (x), ∅

Γ � e0 : T0, Σ0

Γ � N OK : Σt

Γ � N <:> T0 : Σc

Σ = Σ0 ∪ Σt ∪ Σc

Γ � (N) e0 : N, Σ

Γ � N OK : Σ0

Σ1 = {om(N) �= {lost, any}}
Γ � new N() : N, Σ0 ∪ Σ1

Γ � e0 : N0, Σ0 Γ � e1 : T1, Σ1

fType(N0, f) = T2, Σ2 Γ � T1 <: T2 : Σ3

Σ4 = {lost �∈ T2}
Σ5 = { om(N0) �= {lost, any} }

Γ � e0.f :=e1 : T2,
⋃i=5

i=0 Σi

Γ � e : N0, Σ0

fType(N0, f) = T, Σ1

Γ � e.f : T, Σ0 ∪ Σ1

Γ � e0 : N0, Σ0 Γ � ea : Ta, Σ1

mType(N0, m,T ) = p 〈TP〉 Tr m(Tp pid), Σ2

Γ � Ta <: Tp : Σ3

Σ4 = {lost �∈ (Tp, bounds(TP))}
Γ � T OK : Σ5 Γ � T <: bounds(TP) : Σ6

p = impure ⇒ Σ7 = { om(N0) �= {lost, any} }
p = pure ⇒ Σ7 = ∅

Γ � e0.〈T 〉m(ea) : Tr,
⋃i=7

i=0 Σi

Fig. 5. Constraint generation rules. Helper judgments and functions are defined in
Figs. 6. The generated constraint set Σ encodes all constraints that need to be fulfilled
to give a valid GUT program. The two framed constraints only need to be generated
if the owner-as-modifier discipline should be enforced.
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check. For instance, if the inferred modifier of variables x and o are peer and
any, respectively, then the constraint for the expression x = (Person) o infers
peer as ownership modifier for the cast to make the assignment type-correct. Our
choice is a natural extension of the base language behavior. An alternative would
be for the static inference to choose modifiers in such a way as to guarantee that
the runtime ownership check at each cast succeeds. This can be accomplished by
simply changing “<:>” to “=”. Subsumption of the expression type could then
still be used to cast to a supertype, which is guaranteed to succeed.

Helper judgments and functions. Fig. 6 defines additional judgments and func-
tions that support the main ones of Fig. 5.

Function om gives the main ownership modifier for a non-variable type. Func-
tion bounds gives the upper bound types from type parameter declarations. We
compact the notation to compare one ownership modifier against a set of own-
ership modifiers and to ensure that an ownership modifier does not appear in a
type. Function env defines the environment depending on the surrounding class
and method declarations.

For space reasons, we omit showing how each judgment is also lifted to se-
quences of elements by applying the judgment to the individual elements and
combining the results.

Viewpoint adaptation is lifted from single modifiers (defined in Sec. 4.2.2) to
types using two judgments: (1) adapting a type from an ownership modifier and
(2) adapting a type from the viewpoint of a non-variable type. A type is adapted
from the viewpoint of an ownership modifier to this, giving an adapted type and
a constraint set. There are two cases. No constraint is generated to adapt type
variables X , as they do not need to be adapted. The constraints to adapt a non-
variable type u′ C〈T 〉 from viewpoint u consist of the constraint for combining
u with the main modifier u′, resulting in a fresh constraint variable α, and
recursively adapting the type arguments. A type is adapted from the viewpoint
of a non-variable type to this, by first adapting the type using the main modifier
u and then substituting the type arguments T for the type variables X. Function
typeVars gives the type variables defined by a class. The notation T [T/X ]
is used to substitute type arguments T for occurrences of type variables X
in T .

The subtyping judgment between two types determines a constraint set that
has to hold in order for the two types to be subtypes. The most interesting
subtyping rule is the second one, which derives a subtyping relationship from
a subclassing relationship by adapting the type arguments from the superclass
to the particular subtype instantiation. The subclassing relationship � is the
reflexive and transitive closure of the extends relationship of the classes; it is
defined over instantiated classes C〈T 〉, as defined in GUT [13].

Fig. 6 does not show the lifted versions of equality and comparable constraints.
The equality constraint is lifted to types by simple recursion. A comparable con-
straint is applied to two non-variable types by first going to a common super-
class and then generating a comparable constraint for the two main modifiers
and equality constraints for the type arguments.
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Notation:
om(u C〈T 〉) ≡ u (u �= {u1, u2, . . .}) ≡ (u �= u1, u �= u2, . . . )

bounds(X extends N) ≡ N (u �∈ u′ C〈T 〉) ≡ (u �= u′ ∧ u �∈ T )

Environment definitions:

env(Cid, X extends N) = {X �→ N ; this �→ self Cid〈X〉}
env({Xc �→ Nc; x �→ T}, X extends N, Tp pid)={Xc �→ Nc, X �→ N ; x �→ T , pid �→ Tp}

Ownership modifier - type adaptation: u � T = T ′ : Σ

u � X = X : ∅
Σ0 = {u � u′ = α} fresh(α) u � T = T ′ : Σ1

u � u′ C〈T 〉 = α C〈T ′〉 : Σ0 ∪ Σ1

Type - type adaptation: Γ � N � T = T ′ : Σ

u � T = T1 : Σ
T1

[
T/X

]
= T ′ typeVars(C) = X

u C〈T 〉 � T = T ′ : Σ

Subtyping: Γ � T <: T ′ : Σ

Σ = {u <: u′,T = T
′}

Γ � u C〈T 〉 <: u′ C〈T ′〉 : Σ

C〈X〉 � C′〈T1〉
u C〈T 〉 � T1 = T ′, Σ

Γ � u C〈T 〉 <: u C′〈T ′〉 : Σ

Γ � X <: X : ∅ Γ � X <: Γ (X) : ∅

Γ � T <: T1 : Σ1

Γ � T1 <: T ′ : Σ2

Γ � T <: T ′ : Σ1 ∪ Σ2

Well-formed type: Γ � T OK : Σ

Γ � T OK : Σ0

typeBounds(u C〈T 〉) = T ′, Σ1 Γ � T <: T ′ : Σ2

Γ � u C〈T 〉 OK :
⋃i=2

i=0 Σi

X ∈ Γ

Γ � X OK : ∅
Adaptation of a field type: fType(N, f) = T, Σ

fType(u C〈T 〉, f) = T ′, Σ where fType(C, f) = T

u C〈T 〉 � T = T ′ : Σ

Adaptation of a method signature: mType(N, m,T ) = p TP Tr m(Tp pid), Σ

mType(N, m, T ′) = p 〈X extends N ′〉 T ′
r m(T ′

p pid), Σb ∪ Σr ∪ Σp

where N = u C〈T 〉
mType(C, m) = p 〈X extends Nb〉 Tr m(Tp pid)

N � Nb = N0 : Σb N � Tr = Tr0 : Σr N � Tp = Tp0 : Σp

N0[T ′/X] = N ′ Tr0[T ′/X ] = T ′
r Tp0[T ′/X ] = T ′

p

Adaptation of type bounds: typeBounds(N) = N ′, Σ

typeBounds(u C〈T 〉) = N ′, Σ where class C 〈X extends N〉 . . . ∈ P

u C〈T 〉 � N = N ′, Σ

Look-up of class type variables: typeVars(N) = X

typeVars(u C〈T 〉) = X where class C〈X extends N〉 . . . ∈ P

Fig. 6. Helper judgments and functions for the constraint generation rules of Fig. 5
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The well-formed type (OK) judgment defines when a type T is well-formed
in an environment Γ giving the constraints Σ. We omit judgments for well-
formedness of environments, which are basically just well-formedness for all in-
volved types.

The overloaded helper functions fType, mType, and typeBounds are defined
as follows. Function fType(C, f) yields the declared field type of field f in class
C or a superclass of C. It yields only a type, but no constraints. The overloaded
function fType(N, f) (taking a non-variable type rather than a class as first
argument) determines the type of field f adapted from viewpoint N to this. It
results in an adapted field type and constraints on the constraint variables of
the viewpoint and the constraint variables for the declared type.

Function mType(C, m) yields the declared method signature of method m in
class C or a superclass of C. The overloaded function mType(N, m,T ) deter-
mines the method signature of method m adapted from viewpoint N to this
and substituting method type arguments for their type variables. It results in
an adapted method signature and constraints on the constraint variables of the
viewpoint and the constraint variables for the declared parameter, return, and
type variable bound types, respectively.

Function typeBounds(u C〈T 〉) yields the upper bounds of the type variables of
class C adapted from the non-variable type u C〈T 〉 to this and a set of constraints.

4.3 Heuristic Choice of a Solution

For a given set of constraints, the solver may return any satisfying assignment.
For completely un-annotated programs, these solutions include the trivial one
that assigns peer to all variables. It is typically not the desired solution because
it corresponds to a completely flat ownership structure.

When choosing among many possibilities to assign ownership modifiers, a
human programmer is influenced by a variety of design considerations.

– A deeper ownership structure gives better encapsulation, so it is generally
preferable, but it limits sharing.

– The types in method signatures influence what clients may call the method,
so it is preferable for method parameters to have the any modifier.

– Other heuristics are possible; for instance, a verification tool based on own-
ership, such as Spec# [24], has different needs for invariants and pre-/post-
conditions.

To reflect these design considerations, we attach weights to some constraints. All
constraints of the type system are mandatory. For each constraint variable, we
use the position of the variable in the AST to encode a preference for a particular
solution by adding an additional breakable, weighted equality constraint.
For variables α that appear in . . . :

– . . . field types, the weight for α = rep is 80.
– . . . parameter types, the weight for α = any is 150.
– . . . return types, the weight for α = rep is 30.
– . . . class and method type variable bounds, the weight for α = any is 200.
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This pre-defined heuristic prefers solutions with deep ownership structures and
generally applicable methods. A user may adapt these weights, either globally or
for individual variables. In the example from Fig. 3, the “alternative” solution
was generated using 100 as weight for rep for variables that appear in field types
and using no other weights. As discussed previously, this alternative weighting
results in stronger encapsulation at the cost of the applicability of the methods.
In the rest of this paper we will use the pre-defined heuristics; examining the
effect of alternative weights is interesting future work.

Weights can also be used to handle other guidance, from a user or tool, more
flexibly. Suppose that a user has partially annotated a program. The annotations
are encoded as mandatory equality constraints. If the partial annotations lead to
unsatisfiable constraints, the tool could—after consulting the developer—convert
them from mandatory into breakable constraints. This would give the inference
tool the flexibility to override annotations when necessary. The programmer
would then inspect what annotations needed to be changed.

4.4 Encoding for a SAT Solver

Once the constraint system Σ is generated, it needs to be solved. We encode Σ
as a weighted Max-SAT problem and use an existing solver [5] for three reasons.
First, Generic Universe Types allow only a fixed number of ownership modifiers;
thus, constraints can easily be encoded as boolean formulas. Second, the weights
allow us to encode heuristics that direct the SAT solver to produce good solutions.
Third, reusing a solver allows us to benefit from all the optimizations that went
into existing solvers.

This section explains how to encode the constraints Σ as boolean formulas.
These formulas are then converted to conjunctive normal form, which is the
input format of the SAT solver. The SAT solver either returns an assignment
of booleans that satisfies the formula or notifies the user that the formula is
unsatisfiable. The assignment of booleans corresponds to ownership modifiers
for the variables that satisfy all constraints.

We finally turn all the formulas into the CNF format used by the Max-SAT
evaluation benchmarks [27]. This format is supported by different SAT solvers,
and our implementation supports changing the solver.

Encoding of constraint variables. Four boolean variables βpeer
i , βrep

i , βany
i , and

βlost
i represent each ownership variable αi from the constraints. The encoding

expresses that exactly one of these four booleans is assigned true:

(βpeer ∨ βrep ∨ βany ∨ βlost) ∧ ¬(βpeer ∧ βrep) ∧ ¬(βpeer ∧ βany) ∧
¬(βpeer ∧ βlost) ∧ ¬(βrep ∧ βany) ∧ ¬(βrep ∧ βlost) ∧ ¬(βlost ∧ βany)

For every variable that will be inserted into the program, lost is forbidden and
the encoding of the variable is accordingly simplified.

An alternative encoding would use only two booleans to encode the four pos-
sibilities. Such an encoding would have fewer variables, but more complicated
clauses to encode constraints. Our encoding can be solved more efficiently [17].
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Constraint Encoding

α1 <: α2
(βany

1 ⇒ βany
2 ) ∧ (βpeer

2 ⇒ βpeer
1 ) ∧

(βrep
2 ⇒ βrep

1 ) ∧ (βlost
1 ⇒ (βlost

2 ∨ βany
2 ))

α1 � α2 = α3

(βpeer
1 ∧ βpeer

2 ⇒ βpeer
3 ) ∧ (βrep

1 ∧ βpeer
2 ⇒ βrep

3 ) ∧
(βany

2 ⇒ βany
3 ) ∧ (βlost

2 ⇒ βlost
3 ) ∧ (βany
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Fig. 7. For each kind of constraint (see Sec. 4.2.2), the formula that encodes it. Each
constraint variable αi is encoded by four boolean variables βrep

i , βpeer
i , βany

i , and βlost
i .

Encoding of constraints. Fig. 7 defines the encoding of the constraints from
the constraint set Σ into formulas over the boolean variables and follows the
definitions given in Sec. 2.

We use simpler encodings when the constraint is between a variable and a
concrete ownership modifier. For example, the equality constraint αi = peer is
encoded by the formula βpeer

i .

Encoding of weights. We use the weighting feature of a weighted Max-SAT solver
to encode the weights of Sec. 4.3.

For each mandatory constraint we use the maximum weight, which the SAT
solver treats as infinity; this enforces that all the type rules are fulfilled. For each
breakable constraint we use the determined weight.

5 Implementation and Experience

This section describes the implementation (Sec. 5.1), our experience with it
(Sec. 5.2), and possible future work (Sec. 5.3).

The implementation, experimental setup, and results are publicly available3.

5.1 Implementation

The static inference is implemented on top of the Checker Framework [37], which
is a pluggable type checking framework built on top of the JSR 308 branch of
the OpenJDK compiler [16]. By building our inference tool on the OpenJDK
compiler, the tool supports full Java. The implementation of many language
features is significantly simplified by the Checker Framework, which provides an
abstraction of a basic type checker. The annotations inferred by the tool are
stored in the input format of the Annotation File Utilities (AFU), which can

3 http://www.cs.washington.edu/homes/wmdietl/inference/

http://www.cs.washington.edu/homes/wmdietl/inference/
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Benchmark SLOC Constraint Size CNF Size Timing (seconds)
vars constraints vars clauses topol. encap.

topol. encap. topol. encap. gen solve gen solve

1. zip 2611 455 2411 2949 4656 13639 14063 4.5 1.1 4.5 1.1
2. javad 1846 364 2571 3113 4988 14989 15333 3.5 1.0 3.6 1.0
3. jdepend 2460 824 4868 6024 9752 28110 29176 5.1 1.4 5.8 1.5
4. classycle 4658 1548 8726 10242 17756 53062 54380 6.0 1.8 6.2 2.0

Fig. 8. Size and timing results. SLOC gives the number of non-blank, non-comment
lines as determined by the sclc tool. The constraint size columns give the number of
constraint variables and constraints in the program. The CNF size gives the number of
boolean variables and clauses in the CNF encoding. Finally, the timing columns give
the time for generating (gen) and solving (solve) the constraints. We executed each
run three times and report the median. The number of constraints and clauses and the
timing is further sub-divided into whether annotations for only the topology or also for
enforcing the encapsulation discipline should be inferred. This choice does not affect
the number of constraint variables or boolean variables.

automatically insert the inferred annotations into the source code. The AFU
format also facilitates the comparison of multiple runs of the inference tool. We
separately implemented a Generic Universe Types checker that handles Java
programs with GUT annotations.

The inference implementation consists of around 4400 non-comment, non-
blank lines of Scala code. The biggest development effort was spent on intro-
ducing unique constraint variables and mapping them to AFU output positions.
Constraint generation reuses a lot of the existing Checker Framework infrastruc-
ture.

Our tool is modular and only generates constraints for the part of the program
that is supplied as input. For the remainder of the program, in particular for the
JDK libraries, the tool currently uses the default modifier peer. The Checker
Framework supports a library annotation mechanism and we plan to use this
feature to provide a version of the JDK that is annotated with Generic Universe
Types.

5.2 Experience

We applied the tool to four real-world, open source tools developed by exter-
nal developers. Fig. 8 presents size and timing information and Fig. 9 presents
statistics of the inferred annotations.

The four subjects are: (1) OpenJDK’s implementation of the zip and gzip
compression algorithms, taken from OpenJDK 7 build 138, (2) javad4, a Java
class file disassembler, (3) JDepend5, a quality metrics tool, and (4) Classycle6,
a Java class dependency analyzer.
4 http://www.bearcave.com/software/java/javad/, downloaded in December 2010.
5 http://www.clarkware.com/software/JDepend.html, version 2.9.1.
6 http://classycle.sourceforge.net/, version 1.3.3.

http://www.bearcave.com/software/java/javad/
http://www.clarkware.com/software/JDepend.html
http://classycle.sourceforge.net/
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Benchmark Topology Encapsulation
peer rep any % rep % any peer rep any % rep % any

1. zip 306 81 68 18% 15% 322 93 40 20% 9%
2. javad 185 87 92 24% 25% 279 55 30 15% 8%
3. jdepend 529 175 120 21% 15% 600 160 64 19% 8%
4. classycle 1132 193 223 13% 14% 1165 188 195 12% 13%

Fig. 9. Number of inferred annotations, separated into inferring only the topology and
also inferring the owner-as-modifier encapsulation discipline

For each subject, we inferred a solution for the ownership topology and a
solution that also enforces the owner-as-modifier encapsulation discipline. For
this we manually added around 300 purity annotations to the four projects; in
the future we plan to integrate an automated purity analysis.

We evaluated three qualities of our tool implementation:

1. correctness of the inferred annotations,
2. usefulness of the inferred annotations, and
3. scalability with respect to performance.

Correctness. We inserted the inferred annotations into the source code and ran
the GUT type checker on these programs. In each case, the type checker verified
the correctness of the inference results.

The inference and type checker are independent implementations which are
separately implemented on top of the Checker Framework. Each is based on the
proved formalization of GUT [13].

The most notable limitation is related to raw types and local inner classes. Our
tool soundly infers an ownership modifier for the missing type arguments, but the
external annotation tool we use—the Annotation File Utilities—does not support
adding new type arguments to a raw type; code that uses raw types might not
compile. We manually added such annotations in our case studies. Additionally,
local inner classes are not correctly identified by the AFU annotation tool and
fail to insert; we did not encounter this problem in our case studies.

Usefulness. We manually examined the inference results and believe they accu-
rately reflect the ownership properties of the original programs. The relatively
large number of peer annotations in Fig. 9, indicating a flat inferred ownership
structure, is expected. We ran the inference tools on un-modified programs and
did not attempt to improve the structure of the programs. The programs were
probably written with an intuitive sense of the desired ownership, but with no
tools to help the programmer achieve that goal. Another limitation that causes a
flat ownership structure is using the peer default modifier for libraries. Method
parameters and upper bounds of type variables that were defaulted to peer
force structures to be flatter than desired. It will be interesting future work to
allow changing both the structure of the programs and improving the library
annotations. Considering this, 10–20% inferred rep annotations is promising.
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The number of any annotations consistently decreases when enforcing the
owner-as-modifier discipline. It is interesting to observe that the number of rep
references increased or decreased, depending on the application. Our explanation
for this is that modifications that can be performed with an any receiver without
enforcing an encapsulation discipline need to use a peer or rep receiver when
an encapsulation discipline is enforced.

Performance. Parsing the Java files took the bulk of the inference time. Encoding
the constraints into CNF, waiting for the SAT solver, and decoding the results
used only around a quarter of the total time.

To experiment with scalability we applied the inference tool to JabRef7, a
bibliography management tool consisting of around 74000 SLOC. The inference
generated 24402 variables and 248858 constraints, which were then translated to
521152 boolean variables and 1606319 CNF clauses. Generation of the constraint
system took a total of 41 seconds and solving the system took a total of 66
seconds, of which 42 seconds were spent in the SAT solver. Unfortunately, the
Annotation File Utilities crash when inserting the annotations, so we cannot use
the GUT type checker to verify the results.

The used hardware was a desktop machine with two CPUs, each a 4 core
Intel Xeon E5405 CPU at 2.00 GHz running Fedora 13 Linux 32 bit and us-
ing OpenJDK 7 build 138. The total main memory available is 8 GB, but the
Java heap space is limited to 1 GB. The maximum observed pre-GC memory
consumption during constraint generation for our four case studies was around
160MB; when run on JabRef, the maximum pre-GC consumption was 510 MB.
All our software is single threaded.

5.3 Future Work

Usability. We have shown initial results that our tool scales and produces correct
results, but this is not enough: it must also be usable by and useful to real
programmers. We plan to perform case studies and experiments to evaluate the
quality of the inferred typings, to investigate what ownership structures occur
in real programs, and to see how our tool is used in practice.

At the moment, the tool provides no information about an unsatisfied con-
straint system. We plan to exploit the ability of Max-SAT solvers to return a
partially-fulfilling assignment, to direct the programmer towards conflicts in the
system.

Other ownership systems. We expect that our inference approach can be adapted
to other ownership type systems.

First, we plan to extend our inference to support ownership transfer [11,34],
which requires inference of the uniqueness of variables and coping with dynamic
changes of ownership information.

Second, we plan to investigate how our approach can be adapted to ownership-
parametric type systems [3,10,39]. We are confident that by combining static
7 http://jabref.sourceforge.net, version 2.6.

http://jabref.sourceforge.net
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and runtime inference, we can effectively determine the minimum number of
ownership parameters required to type a class.

Third, we plan to explore how we can infer ownership annotations for more
complex topologies such as ownership domains [2] or multiple ownership [8].

Performance. Our inference tool seems to be fast enough for its expected use
case. We have made no attempt to optimize performance, so there are many
opportunities to speed up the tool, if performance becomes a problem.

Integration into an IDE would give access to the internal AST. This would
cut the cost of the AST generation and allow for immediate interaction with the
developer.

The SAT solver is invoked as a separate process and the input CNF is written
to a file and the output from the solver needs to be parsed and interpreted.
The advantage of this design is that we can use an arbitrary Max-SAT solver
that supports the Max-SAT evaluation format [27]. We currently use the Sat4j
solver [5] and plan to experiment with tighter integration, cutting out the file
generation and parsing overheads.

6 Related Work

We discuss related work on ownership inference and on other inference.
SafeJava [6,7] provides intra-procedural ownership type inference for local

variables to reduce the annotation overhead. Agarwal and Stoller [1] describe
a runtime technique that infers further annotations. In contrast, we provide a
static analysis that infers all necessary annotations in a program.

AliasJava [3] combines ownership and aliasing. It uses a constraint system to
infer alias annotations. A key difference to our work is that the inference for
AliasJava needs to introduce ownership parameters for classes, whereas GUT
expresses ownership via ownership modifiers. The inference for AliasJava poten-
tially results in classes with many more ownership parameters than what would
have been used by a programmer. The system does not support partial annota-
tions to fix the number of ownership parameters. In contrast, GUT allows one to
associate ownership modifiers with type arguments for existing type parameters,
but the inference never needs to introduce additional type parameters.

The box model [38] separates the program into module interfaces and imple-
mentations. Ownership annotations are still required for the module interface,
but are automatically inferred for the implementations.

Pedigree types [25] present an intricate ownership type system similar to Uni-
verse types with polymorphic type inference for annotations. It builds a con-
straint system that is reduced to a set of linear equations. The inference does
not help with finding good ownership structures, but only helps propagate ex-
isting annotations. We believe that our approach to type inference is easier to
understand and better supports the programmer in finding the desired ownership
structure. Our approach also handles generic types.
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Milanova [28] presented a static inference of ownership annotations, then to-
gether with Vitek extended the work to the owner-as-dominator system [29,30].
Their tool constructs a static approximation to the object graph via an alias
analysis and then computes dominators to obtain candidates for owners. Mi-
lanova et al.’s work differs from ours in five major aspects. (1) They do not
use one of the extant ownership type systems, nor do they formally define the
meaning of the inferred annotations. This makes it difficult to compare the preci-
sion of the tools. Moreover, the correctness of the inferred annotations can only
be checked manually. Our work is based on the formalization of GUT, which
has been proved sound, and we used the GUT type checker to confirm the cor-
rectness of the inferred annotations. (2) Their tool infers only annotations for
field declarations and new expressions, whereas we infer all annotations required
by Generic Universe Types. For example, for the zip/gzip programs, their tool
outputs 81 annotations whereas ours outputs 455. (3) Milanova et al. use a
whole-program pointer analysis, whereas our approach is modular and thus ap-
plicable to libraries and single classes. (4) Even though Milanova et al.’s analysis
is asymptotically faster (O(n2) versus the NP-completeness of SAT), our tool
seems to outperform theirs in practice. For example, their tool took 27 and 28
seconds to analyze the gzip and zip programs, respectively, whereas ours took
only 5.6 seconds for both programs together (for comparison, their experiments
were performed on a MacBook Pro with unspecified CPU). (5) Milanova et al.’s
analysis does not handle generics, whereas ours does.

Ma and Foster [26] present a static analysis that combines an intraprocedural
points-to analysis and an interprocedural predicate inference to infer uniqueness
and ownership properties. Their system uses a strict definition of ownership and
found less than 2% of parameters to be owned; it also does not map the results
to a type system.

Kacheck/J [20] infers package-level encapsulation properties. The system ex-
tracts a set of boolean constraints from a bytecode program. These constraints
encode that a class is not confined (that is, its objects may be accessed out-
side the package that contains the class), that a method is not anynomous
(that is, it potentially assigns this to a non-confined type), and implications
between these properties. The constraint system is a set of ground Horn clauses,
which is solved in linear time. The solution indicates which classes are confined.
Kacheck/J and our system share the goal of inferring encapsulation properties
via constraint solving, but differ in three important aspects. (1) For confined
types, there is a best solution, namely the one with the largest set of confined
types, whereas our system uses weights and a Max-SAT solver to compute desir-
able solutions. (2) Confined types support a non-hierarchical topology of static
contexts, whereas GUT offers hierarchies of contexts that can be created dy-
namically. The enforcement of an encapsulation policy is optional in our system.
(3) Confined types do not support generics, but our inference does.

Moelius and Souter’s static analysis for ownership types resulted in a large
number of ownership parameters [31].
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Baker [4] observes that Hindley-Milner type inference uses distinct datatype
nodes to represent disjoint runtime values. Therefore, the information computed
by this inference can be used to infer aliasing information. O’Callahan and Jack-
son’s Lackwit tool [35] uses this idea to compute aliasing information for C
programs. Lackwit associates a tag with each type constructor in a program and
then uses Hindley-Milner type inference to compute equalities between these
tags. Variables whose types have different tags cannot be aliases. The alias in-
formation computed by Lackwit is useful for various software engineering tasks,
but not sufficient to infer ownership. In particular, Lackwit cannot distinguish
several instances of the same data structure, for instance, to infer whether the
nodes of two list instances may be shared. Guo et al. [21] show how to perform
a similar analysis dynamically, increasing precision.

General type qualifier inference [9,19] infers any solution that satisfies all
constraints, which is not useful for ownership types, where a trivial solution
always exists.

Transitioning from a non-generic to a generic program [22] also deals with
an under-constrained type inference problem that uses heuristics to determine a
good solution.

The system whose implementation is most similar to ours is a type inference
system against races [18]. It builds a constraint system, uses a SAT solver to
find solutions, and exploits a Max-SAT encoding to produce good error reports,
in cases where the constraint system is unsatisfiable. However, they are not con-
cerned with finding an optimal structure for their system, since any valid locking
strategy is acceptable. We use the weighting mechanism to find a desirable own-
ership structure among satisfiable solutions.

7 Conclusion

We presented a novel approach to static ownership inference. To the best of our
knowledge, each of the following points is unique to our system. (1) Our system
accommodates preferences among multiple legal typings; the preferences can
come from sources such as heuristics and partial annotations. (2) It uses a Max-
SAT solver to encode programmer preferences and produce a desirable inference
result. (3) Our system infers ownership types for an existing, formally-defined
type system that supports generic types. (4) It infers complete ownership type
annotations for realistic programs. (5) The system supports either only inferring
an ownership topology, or also enforcing the owner-as-modifier encapsulation
discipline. (6) Its results are both correct, as verified by a type checker, and
desirable, as verified by manual inspection.
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22. Kieżun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing
Java classes. In: ICSE, pp. 437–446 (2007)

http://www.sat4j.org/
http://types.cs.washington.edu/jsr308/


Tunable Static Inference for Generic Universe Types 357

23. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML reference manual (2008),
http://www.jmlspecs.org/

24. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Vetta, A.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

25. Liu, Y.D., Smith, S.: Pedigree types. In: IWACO (2008)
26. Ma, K., Foster, J.S.: Inferring aliasing and encapsulation properties for Java. In:

OOPSLA, pp. 423–440 (2007)
27. Max-SAT evaluation input and output format (February 2010),

http://www.maxsat.udl.cat/10/requirements/

28. Milanova, A.: Static inference of Universe types. In: IWACO (2008)
29. Milanova, A., Liu, Y.: Practical static ownership inference. Technical Report

RPI/DCS-09-04, Rensselaer Polytechnic Institute (March 2010)
30. Milanova, A., Vitek, J.: Static dominance inference. In: Bishop, J., Vallecillo, A.

(eds.) TOOLS 2011. LNCS, vol. 6705, pp. 211–227. Springer, Heidelberg (2011)
31. Moelius, S.E., Souter, A.L.: An object ownership inference algorithm and its ap-

plication. In: Mid-Atlantic Student Workshop on Programming Languages and
Systems (2004)

32. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

33. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Science of Computer Programming 62, 253–286 (2006)

34. Müller, P., Rudich, A.: Ownership transfer in Universe Types. In: OOPSLA, pp.
461–478 (2007)

35. O’Callahan, R., Jackson, D.: Lackwit: A program understanding tool based on type
inference. In: ICSE, pp. 338–348 (1997)

36. Palsberg, J.: Type-based analysis and applications. In: PASTE, pp. 20–27 (2001)
37. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-

gable types for Java. In: ISSTA, pp. 201–212 (2008)
38. Poetzsch-Heffter, A., Geilmann, K., Schäfer, J.: Infering ownership types for en-
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Verifying Multi-object Invariants with

Relationships
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ETH Zurich

Abstract. Relationships capture the interplay between classes in
object-oriented programs, and various extensions of object-oriented
programming languages allow the programmer to explicitly express re-
lationships. This paper discusses how relationships facilitate the verifi-
cation of multi-object invariants. We develop a visible states verification
technique for Rumer, a relationship-based programming language, and
demonstrate our technique on the Composite pattern. The verification
technique leverages the “Matryoshka Principle” embodied in the Rumer
language: relationships impose a stratification of classes and relationships
(with corresponding restrictions on writes to fields, the expression of in-
variants, and method invocations). The Matryoshka Principle guarantees
the absence of transitive call-backs and restores a visible states semantics
for multi-object invariants. As a consequence, the modular verification
of multi-object invariants is possible.

1 Introduction

Invariants provide a foundation for verifying programs [1], and various object-
oriented programming and specification languages [2–4] have adopted invariants
for objects. An object invariant captures the properties of an object that the
object exhibits in its consistent states. Object invariants are central to a wealth
of object-oriented verification techniques [5–12]. A key issue for any practical
verification technique for an object-oriented language is the ability to modularly
verify a program so that modules (i.e., classes) can be verified independently
from each other.

Modular verification is straightforward as long as an object invariant con-
strains only the state of the current object and provided that an object’s fields
can be written to only by the object’s own methods. Unfortunately, single-object
invariants rarely express the constraints of real-world software, which typically
asks for multi-object invariants. A multi-object invariant relates several objects
and constrains not only the state of the current object but also the state(s) of
the object(s) it refers to. The reasoning about a multi-object invariant, however,
is no longer modular. For instance, if there are aliases to the referenced objects,
the referenced objects may be altered in ways compromising the invariant.

Multi-object invariants compromise also the adoption of a visible states se-
mantics for invariants. A visible states verification technique [9] requires an ob-
ject to meet its invariant in the initial and final states of method executions

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 358–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(i.e., the visible states) but allows an object to temporarily break its invariant
during the execution of a method. A visible states semantics for invariants fa-
cilitates data type induction [1, 13, 14] as a proof technique: each method may
assume that the invariant holds in the method’s initial state, provided that each
method ensures that the invariant holds in the method’s final state. To facilitate
data type induction, a verification technique needs to guard re-entrant method
invocations (call-backs). A call-back occurs if a method, executing on an ob-
ject o, invokes a method n() either directly or transitively (by further method
invocations) on the original object o. Since n() is invoked in a state when o’s
invariant may be temporarily broken, n() should not be allowed to assume o’s
invariant in its initial state. Data type induction can be restored by imposing
additional obligations on the caller of a method. Namely, a calling method m() is
required to re-establish the invariants of those objects O that are vulnerable to
m()’s execution, provided that the objects O are possible receivers of the direct
or transitive method invocation n(). This obligation can be easily implemented
for single-object invariants by requiring a method to re-establish its receiver’s
invariant before invoking a method. However, imposing the same obligation for
multi-object invariants is (i) generally infeasible since the transitive receivers
of method invocations are statically unknown, and also (ii) too limiting since
a method of an invariant-declaring class may need to invoke methods on the
objects related by the invariant to re-establish the invariant.

Existing techniques [5–12] for verifying multi-object invariants differ in how
they address the challenges mentioned above as well as in the range of verification
problems they can handle. Given the challenges that real-world, object-oriented
programs pose for invariant-based verification, it has been questioned whether
the object invariant is the correct foundation for verifying object-oriented
programs [15]. In this paper, we demonstrate that an object-oriented program-
ming language with explicit support for relationships enjoys properties that facil-
itate the verification of real-world programs with invariants. Relationship-based
programming languages [16–24] complement object-oriented programming lan-
guages with the programming language abstraction of a relationship to capture
the interplay between objects. We introduce a visible states verification tech-
nique for Rumer, a simple relationship-based programming language developed
to explore relationships [20]. The verification technique leverages the partic-
ular modularization properties of the Rumer language that we summarize as
the “Matryoshka Principle”. The principle relies on a stratification of classes
and relationships and stipulates restrictions on writes to fields, the expres-
sion of invariants, and method invocations. It translates into a stratification of
invariants and guarantees the absence of transitive call-backs and, as a conse-
quence, restores a visible states semantics for invariants. To facilitate modu-
lar reasoning about shared state, the verification technique leverages member
interposition [20, 25] and extent ownership, two orthogonal language fea-
tures supported in Rumer. We demonstrate our verification technique on the
Composite pattern.
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2 Running Example

The Composite pattern has been suggested recently as a verification chal-
lenge [12, 26] and served as the “Challenge Problem” for the 7th Interna-
tional Workshop on Specification and Verification of Component-Based Systems
(SAVCBS). Figure 1(a) shows the class diagram of the Composite pattern. As in-
dicated by the UML aggregation, the pattern “composes objects into tree struc-
tures to represent part-whole hierarchies and lets clients treat leaf objects and
composite objects uniformly” [27]. Figure 1(b) shows a slightly modified version
of the Composite pattern implementation presented in [26]. In accordance with
the UML class diagram, the implementation distinguishes the classes Component
and Composite and represents the UML aggregation by means of a parent ref-
erence and a children collection in Component and Composite, respectively.
The implementation further establishes a field total (line 3 in Fig. 1(b)) which
indicates the total number of children components that can be reached from a
component.

operation()

Component

operation()

Leaf

operation()
add(Component)
remove(Component)

Composite

(a)

1 class Component {
2 protected Composite parent;
3 protected int total = 0;
4 }
5

6 class Composite extends Component {
7 private Collection<Component> children;
8

9 public Composite() {
10 children = new Vector<Component>();
11 }
12

13 public void addComponent(Component c) {
14 children.add(c);
15 c.parent = this;
16 addToTotal(c.total + 1);
17 }
18

19 private void addToTotal(int incr) {
20 total = total + incr;
21 if (parent != null) {
22 parent.addToTotal(incr);
23 }
24 }
25 }

(b)

Fig. 1. Object-oriented implementation of the Composite pattern. (a) UML class di-
agram of the Composite pattern. (b) Implementation of the Composite pattern in a
Java-like language as suggested in [26].

The Composite pattern gives raise to a number of interesting invariants. The
SAVCBS 2008 challenge problem, in particular, stipulates the invariant that
the value of a component object’s total field must be equal to the number of
children components contained within the sub-tree rooted at the component ob-
ject. This invariant is an instance of a multi-object invariant since it is violated
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by any addition or removal of a component to or from a composite’s sub-tree.
Method addComponent() accounts for this violation and triggers a bottom-up
traversal of the composite tree to update the total field of a composite and of all
its parent composites. The actual update is achieved by the recursive method
addToTotal(). Once this method terminates, the invariant of the composite on
which addComponent() is invoked as well as the invariants of all its transitive
parent composites will be re-established. However, for the duration of the re-
cursive invocations of addToTotal(), those invariants are broken. Since these
invocations (re-)enter inconsistent objects, method addToTotal() cannot as-
sume that the invariant of its current receiver object holds in the initial state of
the method.

The verification of the Composite pattern is challenging since it features a
multi-object invariant and disallows an naive adoption of a visible states se-
mantics. This restriction rules out, for instance, the Classical Technique [9] for
verifying the Composite pattern since it can neither accommodate multi-object
invariants nor re-entrant method invocations. A number of proposals to ad-
dress the challenges of verifying the Composite pattern have been suggested.
Verification techniques based on ownership [5, 7, 9] allow the specification and
verification of the Composite pattern by leveraging the heap topology enforced
by ownership types. However, an ownership-based specification of the Compos-
ite pattern prevents direct modifications of a composite’s components. Other
proposals typically employ a relaxed visible states semantics for invariants. Sum-
mers and Drossopoulou [12], for instance, introduce Considerate Reasoning, a
verification technique that is based on a visible states semantics for invariants
but allows distinguished invariants to be broken in the initial states of method
executions provided that the methods re-establish the invariant in the final state.
In addition, techniques have been presented that do not employ a visible states
semantics for invariants. Bierhoff and Aldrich [28], for instance, leverage type-
state-based permissions to verify a simpler invariant for binary Composite tree
structures and Jacobs et al. [29] leverage separation logic to verify the SAVCBS
invariant also for binary Composite tree structures.

In this paper, we show how first-class relationships allow for a precise specifi-
cation of the Composite pattern. Our specification captures not only the SAVCBS
invariant regarding a composite’s total field but also gives a precise definition
of a composite’s tree properties. Using higher-level programming language ab-
stractions and their stratification, we can encapsulate the multi-object invariant
of the Composite pattern in a relationship and restore a visible state semantics
for invariants.

3 First-Class Relationships

This section introduces the specification of the Composite pattern in Rumer
and discusses the language features that are important for modular program
verification. Rumer is a relationship-based programming language with Design-
by-Contract-style [2] assertions. To gain practical experience with first-class re-
lationships, we designed and implemented a prototype compiler that supports
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the features shown in this paper and offers run-time checking of Design-by-
Contract-style assertions. The Rumer compiler has been the basis for various
student projects at ETH Zurich.

3.1 Language Principles

This section provides an overview of Rumer’s basic language features. In the
subsequent sections, we introduce each language feature in turn, based on the
Rumer implementation of the Composite pattern shown in Fig. 2. The assertion
language of Rumer is covered in Sect. 3.2.

Programmer-Definable Types. Figure 2 shows the implementation of the
Composite pattern in Rumer. The program consists of three type declarations:
the entity declaration Component and the relationship declarations Parent and
Composite. An entity abstracts the state and behavior that a number of ob-
jects have in common. A relationship abstracts the state and behavior that a
number of related objects have in common. Both language abstractions can be
instantiated; we use the terms entity instance or object to denote instances of
type entity and the term relationship instance to denote instances of type re-
lationship. An entity resembles a class in a pure object-oriented language as it
can define fields and methods. The existence of first-class relationships, however,
fundamentally changes the position an entity takes in a relationship-based pro-
gramming language. Using the abstraction of a relationship, a programmer can
factor out the description of how objects relate into a relationship, rendering the
need to establish references in an entity unnecessary. In Rumer, we build on this
observation and prohibit the declaration of references in entities, requiring the
declaration of how abstractions and their instances relate to happen exclusively
in relationships. This language requirement results in a stratification of entities
and relationships as only relationships know about their participating entities,
but not vice versa. In Sect. 4 we discuss the benefits of the resulting stratification
for program verification.

Simple Relationship Declaration. Relationships declare the types of in-
stances they relate in their participants clause. For example, relationship
Parent relates entity instances of type Component (line 3 in Fig. 2). Rumer al-
lows programmers to associate an identifier with each type declaration in a par-
ticipants clause to denote the role an instance of the type plays in the relationship.
In case of relationship Parent, we use the role names child and parent to rep-
resent the hierarchical structure of the Composite pattern. Figure 3(a) provides a
graphical illustration of a snapshot of a Rumer program heap comprising Parent

relationship instances. The figure represents entity instances as dark gray circles
and relationship instances as light gray ellipses. The heap snapshot consists of six
Component entity instances and five Parent relationship instances. Each Parent

relationship instance has a Component entity instance as child participant and a
Component entity instance as parent participant. As indicated by the arrows in
the figure, the role identifiers child and parent denote references from a Parent
relationship instance to its participating Component objects.
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1 entity Component {...}
2

3 relationship Parent participants (Component child, Component parent) {
4 int >parent total; // interposed instance f ie ld
5

6 extent void append(Component c, Component p) {
7 these.add(new Parent(c, p));
8 foreach (x isElementOf these.transitiveClosure().select(c_p:
9 c_p.child == c).parent)

10 { x.total = x.total + 1; }
11 }}
12

13 // A Composite relationship instance owns i ts tree Parent extent
14 relationship Composite participants (Component root, owned Extent<Parent>tree) {
15

16 extent void createComposite(Component c)
17 { these.add(new Composite(c, new owned Extent<Parent>())); }
18

19 void appendComponent(Component c, Component p)
20 { this.tree.append(c, p);}
21

22 void appendSubComposite(query Set<Parent> c, Component p) {
23 foreach (c_p isElementOf c.select(x: x.parent == p)) {
24 this.appendComponent(c_p.child, c_p.parent);
25 this.appendSubComposite(c.select(x: x.child isElementOf
26 c.transitiveClosure().select(y: y.parent == c_p.child).child),
27 c_p.child);
28 }}
29

30 void appendComposite(Composite c, Component p) {
31 this.appendComponent(c.root, p);
32 this.appendSubComposite(c.tree, c.root);
33 }}

Fig. 2. Relationship-based implementation of the Composite pattern in Rumer

Member Interposition. Relationships (like entities) can declare instance
members (i.e., instance fields and instance methods). For example, relationship
Parent declares an instance field total (line 4 in Fig. 2). Unlike entity in-
stance members, relationship instance members can either be associated with
the relationship instance or with one of the relationship’s participant instances.
The latter is achieved using the Rumer language mechanism member interposi-
tion [20, 25]. Member interposition allows a participant instance of a relation-
ship instance to be “decorated” with additional fields and methods. Interposed
relationship members are declared using the ’>’ sign, which precedes the role
identifier of the participant into which the member is interposed. In the exam-
ple, the field total is interposed into the Component entity instance that acts
as a parent in a Parent relationship instance. The field total is conceptually
equivalent to the total field of the SAVCBS 2008 challenge problem (line 3 in
Fig. 1(b)) as it allows a parent component to store the number of all children
components it is directly or indirectly related to. In Fig. 3(a), the interposed re-
lationship instance field total is displayed in the light gray arc that is attached
to the Component entity instance to which the relationship instance refers by
the parent reference. A non-interposed relationship instance field, on the other
hand, would be displayed in the light gray ellipse representing the relationship
instance. Like non-interposed relationship instance fields, interposed relationship
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Fig. 3. (a) Schematic illustration of the Rumer program heap for the Parent relation-
ship declared in Fig. 2. (b) Legend for Fig. 3(a) and Fig. 4.

instance fields are fully encapsulated in the relationship that declares the field.
As a result, interposed relationship instance fields are only accessible from in-
stances of the declaring relationship but not from the participant instances into
which the fields are interposed.

Nested Relationship Declaration and Extent Ownership. The decla-
ration of the relationship Composite illustrates that relationships can have
other relationships as participants. A Composite relationship instance relates
a Component entity instance to an extent of the Parent relationship. Every
Rumer entity or relationship declaration T has a corresponding extent type
Extent〈T〉. An instance of an entity or relationship extent comprises a set of
entity or relationship instances, respectively. Extents are explicitly instanti-
ated as well as populated and depopulated with instances by the programmer.
For example, a Parent extent is instantiated on line 17 in Fig. 2 (new owned

Extent<Parent>()) and populated by invoking the built-in add() method on
lines 7 and 17 in Fig. 2. The keyword owned in the participants clause estab-
lishes ownership of a Composite instance of the participating Parent extent. The
ownership declaration requires the Parent extent to be instantiated and popu-
lated within the relationship and not to escape the relationship. As a result, the
Composite instance becomes the unique owner of its associated Parent extent.

Figure 4 shows an extended version of the Rumer heap snapshot shown in
Fig. 3 and displays all instances of the types declared in Fig. 2. The fig-
ure represents extents by rectangular boxes. The heap snapshot consists of
one Composite extent, two Parent extents, and one Component extent. Each
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extent comprises a number of instances. For example, the Composite extent
comprises two Composite relationship instances, and the Component extent
comprises four Component entity instances. Component instances can partici-
pate in the Composite relationship as well as in the Parent relationship. To keep
the graphical layout well-arranged, Fig. 4 uses “shadow” instances. A shadow
instance is depicted by a dotted circle and is a graphical copy of an actual in-
stance to which it is connected by a dotted line. Each Composite relationship
instance relates a Component entity instance to a Parent extent. The former is
referred to by the role identifier root and the latter by the role identifier tree.
In a relationship-based implementation a Composite is thus represented by a
tuple that consists of a root component and a set of hierarchically structured
components that represent the tree rooted at the root component. The tree

of a composite may denote the empty set (if the composite only consists of one
(leaf) component). The dotted line between a composite’s root component and
the component at the top of the composite’s tree Parent extent indicate that
the two components are indeed the same. The two dotted lines converging in
the third Component instance in the Component extent illustrate that Parent

instances of different extents can share Component instances. The sharing of
Component instances among different Parent extents does not compromise the
ownership declared for Composite. The ownership only encompasses a Parent

extent but not the participating Component entity instances. This property
distinguishes extent ownership from “traditional” ownership established by own-
ership types [30, 31] and Universe Types [5, 32] and distinguishes the Rumer Com-
posite implementation from one based on the ownership technique [5, 9].

Instance and Extent Members. To populate and depopulate their extents,
entities and relationships declare extent methods. An extent method has an
implicit target, which denotes the extent on which the method is called. The
keyword these refers to the implicit target extent. Extent methods are dis-
tinguished by the extent keyword, which precedes the method’s return type
declaration. The Composite pattern implementation in Fig. 2 declares the re-
lationship extent methods append() and createComposite(). The methods
appendComponent(), appendSubComposite(), and appendComposite() are
non-interposed relationship instance methods. In addition to extent methods,
Rumer supports the declaration of extent fields (not used in Fig. 2). An extent
field denotes the state of a whole extent, as opposed to an instance field, which
denotes the state of an individual entity or relationship instance comprised in
an extent.

Queries. Rumer provides query expressions (similar to LINQ heap queries [33])
to allow access to the instances contained in an extent. For example, method
append() declares a query expression on line 8 (see Fig. 2) that makes use of
the built-in query operators transitiveClosure() and select(). A query ex-
pression evaluates to a set that is constructed by invoking a query operator on a
target extent or set. Whereas extents are explicitly instantiated and populated by
programmers, sets can only be generated by querying extents or sets. In the ex-
ample, the transitiveClosure() operator is invoked on the receiver extent of
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Fig. 4. Schematic illustration of the Rumer program heap for the implementation of
the Composite pattern in Fig. 2 (see legend in Fig. 3(b))

the method append() and the select() operator is invoked on the set returned
by the transitiveClosure() operator. The keyword these refers to the cur-
rent receiver extent of an extent method invocation. The transitiveClosure()
operator returns the transitive closure of its target set and the select() opera-
tor returns the subset of its target set that contains all the elements that satisfy
the specified selection criterion. Like LINQ queries, the select() operator lever-
ages lambda expressions to specify its selection criterion (i.e., c p: c p.child

== c). As opposed to LINQ queries, Rumer queries are side-effect free. Side-effect
freedom guarantees that the target sets of query operators are not altered in
the course of the query evaluation and that query expressions become predicates
over their target sets.

Implementation Details. Next we provide a brief overview of the individual
method declarations in Fig. 2. These explanations are helpful to understand the
details of the Composite pattern implementation in Rumer, however, are not a
prerequisite to understanding the remainder of this paper. The impatient reader
may continue with Sect. 3.2 and refer to this section as needed.

The extent method append() of relationship Parent appends the argument
component c as child of the argument component p. To this end, the method
instantiates a new Parent relationship instance with references to the compo-
nents c and p and adds the new instance to the receiver extent of the method
(line 7). The method add() is a language built-in method that adds the argu-
ment instance to the extent on which the method is invoked. The loop on line 8
increments the total field of all transitive parent components of the child com-
ponent c. The loop header declaration uses built-in query operators, as discussed
in the previous section.
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The extent method createComposite() of relationship Composite instanti-
ates a new Composite relationship instance and adds it to the current receiver
extent of the method. The new instance has the component c as a root partic-
ipant and an empty Parent extent as a tree participant.

The instance method appendComponent() of relationship Composite invokes
the extent method append() with the argument components c and p on the
current receiver relationship instance’s tree extent. As a result, the component
c is appended as a child of the component p in the composite’s tree extent.

The instance method appendSubComposite() of relationship Composite ap-
pends the sub-composite denoted by the query expression c to the target compos-
ite as a child of component p. The method is implemented recursively to append
the sub-composite in a depth-first traversal fashion. In each recursive invocation,
one child component of the sub-composite is appended to its corresponding par-
ent component in the target composite’s tree extent. Recursion stops whenever
the sub-composite c denotes the empty set. This is the case whenever a leaf
component has been inserted in the preceding recursive invocation.

The instance method appendComposite() of relationship Composite ap-
pends the composite c to the target composite as a child of component p. The
method first appends the root component of composite c to the target compos-
ite as a child of p and then invokes the method appendSubComposite() on the
target composite to append the sub-composite rooted at c’s root component as
a child of the previously inserted root component.

3.2 Assertion Language

The Rumer assertion language includes method preconditions and postconditions,
assert statements, and invariants. Assertions can range over all abstractions
available in the Rumer programming language. Invariants, in particular, can be
declared both for type instances and type extents, giving rise to the following
four invariant categories1:

– Entity instance invariant: Property that must hold for each entity in-
stance of the entity that declares the invariant.

– Entity extent invariant: Property that must hold for each extent instance
of the entity that declares the invariant.

– Relationship instance invariant: Property that must hold for each rela-
tionship instance of the relationship that declares the invariant.

– Relationship extent invariant: Property that must hold for each extent
instance of the relationship that declares the invariant.

Figure 5 lists the invariant declarations for the Composite pattern implemen-
tation in Fig. 2. The declaration consists of a relationship extent invariant for
relationship Parent (line 3) and a relationship instance invariant for relationship
Composite (line 12). Extent invariants are distinguished from instance invari-
ants by the keyword extent. All invariant declarations in Fig. 5 adhere to the
admissibility criteria defined in Sect. 4.2.
1 These invariant categories refine the categories introduced in earlier work [20]
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1 relationship Parent participants (Component child, Component parent) {
2 ... // See Fig . 2
3 extent invariant
4 these.isPartialFunction() &&
5 these.transitiveClosure().isIrreflexive() &&
6 forAll(p isElementOf these.parent: p.total ==
7 these.transitiveClosure().select(c_p: c_p.parent == p).count());
8 }
9

10 relationship Composite participants (Component root, owned Extent<Parent>tree) {
11 ... // See Fig . 2
12 invariant
13 !(this.root isElementOf this.tree.child) &&
14 (!this.tree.isEmpty() => this.root isElementOf this.tree.parent) &&
15 this.tree.child == this.tree.transitiveClosure().select(c_p: c_p.parent ==
16 this.root).child;
17 }

Fig. 5. Invariant declarations for the Composite program in Fig. 2. See method pre-
conditions and postconditions in Appendix A.

The extent invariant of relationship Parent leverages Rumer queries (see
Sect. 3.1) and guarantees the following properties: (i) that every child com-
ponent is related to at most one parent component (line 4), (ii) that the graph
described by the Parent relationship is acyclic (line 5), and (iii) that the value of
a parent component’s total field is equal to the number of children components
to which the parent component is transitively related (line 6). Property (iii)
satisfies the invariant of the SAVCBS 2008 challenge problem regarding a com-
posite’s total field. Properties (i) and (ii) guarantee that the graph described
by a Parent extent forms a forest of trees.

The instance invariant of relationship Composite restricts a composite’s
Parent extent from a forest of trees to a tree by enforcing the following proper-
ties: (i) that a composite’s root component never appears as a child component
in the graph described by the Parent extent (line 13), (ii) that a composite’s
root component appears as a parent component in the graph described by the
Parent extent unless the graph is empty (line 14), and (iii) that a compos-
ite’s root component is the parent component of all children components of the
graph described by the Parent extent (line 15). These properties guarantee that
a composite has a unique root and that a composite’s root component is the
same as the one at the top of a composite’s tree. The heap snapshot shown in
Fig. 4 represents a valid instantiation of the Composite pattern specification of
Fig. 2 and Fig. 5. The shown Composite instances have unique roots and form
trees. Note that the fact that different composites may share components (as
indicated by the third shadow component in the Component extent) does not
compromise the extent invariant of Parent. An extent invariant must hold for
each extent instance but not for the union of all extent instances.

To guarantee the invariants declared in Fig. 5, the methods of the Compos-
ite pattern implementation (see Fig. 2) define preconditions and postconditions.
The complete list of preconditions and postconditions for all methods is given
in Appendix A. In the following, we highlight those preconditions and postcon-
ditions that are particularly interesting.
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By appending the argument component c as child of the argument component
p, method append() of relationship Parent may compromise the extent invari-
ant of Parent. To prevent introducing cycles and relating a child component to
several parent components, the method establishes the following precondition:
c != p && !(c isElementOf these.child union these.parent)

Furthermore, the method updates the total field of all transitive parent com-
ponents of the child component c and thus ensures the following postcondition:
forAll(x isElementOf these.transitiveClosure().select(c_p: c_p.child == c).parent:

x.total == old(x.total) + 1)

Method appendComposite() of relationship Composite appends the argument
composite c to the target composite as a child of the argument component
p. To prevent introducing cycles in the altered target composite, the method
establishes the following precondition:
p != c.root && !(p isElementOf c.tree.child union c.tree.parent) &&
(this.tree.isEmpty() => p == this.root) &&
(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&
!(c.root isElementOf this.tree.child union this.tree.parent) &&
((this.tree.child union this.tree.parent) intersection
(c.tree.child union c.tree.parent)).isEmpty();

The above precondition would prevent us from appending the left compos-
ite instance of Fig. 4 to the right composite instance, or vice versa, since the
last conjunct of the precondition could not be satisfied. The instance method
appendComposite() invokes the instance method appendSubComposite() of
relationship Composite for the actual insertion of the sub-tree rooted at c’s root
component. To guarantee that the sub-tree c passed as argument indeed forms
a tree with the root component p, method appendSubComposite() establishes
the following precondition:
!(p isElementOf c.child) &&
(!c.isEmpty() => p isElementOf c.parent) &&
(c.child == c.transitiveClosure().select(c_p: c_p.parent == p).child) &&

The above precondition is equivalent to a composite’s invariant. The postcondi-
tion of appendSubComposite()
this.tree == old(this.tree) union c;

precisely captures the “invariant” of the recursive implementation of the method
that inserts the sub-tree c in a depth-first traversal fashion.

4 The Matryoshka Principle

The modularization discipline embodied in the Rumer programming language fol-
lows the “Matryoshka Principle”. We use the metaphor of the Russian nesting
dolls to refer to the inherent stratification of programming language abstractions
in Rumer. Based on this stratification, the principle defines admissibility crite-
ria that stipulate restrictions on writes to locations, invariant declarations, and
method invocations. We first introduce the stratification of the programming
language abstractions. Then, we discuss the admissibility criteria.
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4.1 Stratification

Figure 6 provides a schematic illustration of how programming language abstrac-
tions are stratified in Rumer. The figure shows an extended version of the Com-
posite heap snapshot shown in Fig. 4 and depicts each programmer-defined type
of the Composite program in addition to the extents and entity and relationship
instances shown in Fig. 4. The stratification of the Rumer language abstractions
is determined by the participants clauses of relationship declarations. Since
only relationships can refer to their participants, but the participants not to
their relationship, the participants clauses give rise to a strict partial order
between relationships and participants. Figure 6 represents the resulting ordering
of relationships and participants by placing relationships (relatively) above their
participants. As indicated by the vertical arrows, the ordering makes a relation-
ship become an upper layer of its participants, and conversely, the participants
become a lower layer of their relationships.

Composite
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root tree

childparent

root tree root tree

parent
child child

parent child
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Fig. 6. Schematic illustration of the stratification of Rumer language abstractions
(based on Fig. 4)

4.2 Admissibility Criteria

The admissibility criteria rely on the stratification of language abstractions
shown in Fig. 6. The criteria stipulate restrictions that define (i) which meth-
ods are allowed to write to which locations, (ii) which invariants are allowed to
depend on which locations, and (iii) on which instances a currently executing
method can invoke another method.

In Rumer, a location can be an instance field, an extent field, or a whole
extent. Table 1 lists all possible Rumer locations and indicates for each location
by what program statement it can be written to. The admissibility criteria are
formulated relative to the set of locations that can be reached by an instance.
This set of locations is determined by the participants clauses of relationship
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declarations which indicate which other instances a particular instance may
reach. The general direction of “reachability” between instances conforms to
the ordering of relationships and participants indicated by the arrows in Fig. 6.
This ordering allows a relationship extent to reach itself and any of its partic-
ipating extents and allows a relationship instance to reach itself and any of its
participating instances. Orthogonal to the direction of reachability determined
by participants clauses, an extent can reach any of the instances it comprises
by formulating an appropriate query expression.

Table 1. Rumer locations and program statements that can write to them

Location Write

Entity

instance field Assignment to field.

extent field Assignment to field.

extent Invocation of add() or remove() on extent.

Relationship

interposed instance field Assignment to field.

non-interposed
instance field Assignment to field.

extent field Assignment to field.

extent Invocation of add() or remove() on extent.

Admissible Writes. To allow for modular verification, the Matryoshka Prin-
ciple requires that a method writes only to a location that is reachable from
the current receiver and that is declared by the same type as the method. This
requirement guarantees that all Rumer locations are encapsulated in the types
that declare the locations.

The assignment to the interposed instance field total of relationship Parent

on line 10 in Fig. 2, for example, is admissible since x refers to a parent compo-
nent of a Parent relationship instance residing in these and since the assignment
occurs in a method declared by the same relationship (i.e., Parent) as the field
total. The admissibility of the assignment also relies on the fact that interposed
instance fields are treated as fields of the relationship instance even though they
describe properties of relationship participants. In previous work [25], we have
shown how member interposition facilitates modular reasoning over shared state
at the example of the Observer pattern. The invocations of the built-in method
add() on line 7 and line 17 in Fig. 2 represent admissible writes as well since
they write to the current receiver extent and since they occur in extent methods
of the types that declare the current receiver extent.

Admissible Invariants. To allow for modular verification, the Matryoshka
Principle requires that an invariant depends only on those locations (a) that are
encapsulated in the type that declares the invariant, or alternatively, on those
locations (b) that are declared by a type that is owned by the type that declares
the invariant.

Both invariant declarations in Fig. 5 are admissible. The relationship extent
invariant of Parent depends on the current receiver Parent extent as well as
on Parent’s interposed relationship instance field total. These locations are
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encapsulated by the relationship Parent. The relationship instance invariant of
Composite is admissible due to a Composite’s instance ownership of its Parent
extent.

Admissible Method Invocations. To allow for a visible states semantics
and inductive reasoning, a verification technique must either be guaranteed that
call-backs do not occur or be in the position to statically identify those invo-
cations that may result in a call-back. Prohibiting call-backs in general is not
feasible since it would also prevent direct call-backs. A direct call-back occurs
if an executing method invokes a method on the same receiver instance as the
one of the executing method. Recursive method invocations are special instances
of direct call-backs. Prohibiting recursive method invocations would be too lim-
iting a restriction. Moreover, direct call-backs can be statically identified and
guarded with the proof obligation to re-establish the invariant of the current
receiver instance before the call. Transitive call-backs, on the other hand, can-
not be statically determined but can only be over-approximated. A transitive
call-back occurs if an executing method invokes a method on a different receiver
instance as the one of the executing method and if the invoked method or any of
the methods it transitively invokes calls back into the original receiver instance.
In a pure object-oriented setting, call-backs are essential for re-establishing a
multi-object invariant. In a relationship-based language, however, multi-object
invariants can be expressed at the right level of abstraction, relieving the need
of a call-back to re-establish a multi-object invariant.

To guarantee a visible states semantics for invariants, the Matryoshka Princi-
ple requires that a currently executing method can only invoke a method (a) on
the same receiver instance as the currently executing method or (b) on a receiver
instance that is of a lower type than the declaring type of the currently execut-
ing method. These requirements guarantee that method invocations are either
recursive, propagate downwards, or are dispatched over an instance contained
in an extent. As a result, transitive call-backs are prevented and a visible state
semantics for invariants can be maintained.

All method invocations occurring in the Composite pattern implementation in
Fig. 2 are admissible since they either constitute direct call-backs or invocations
on a receiver instance that resides in a lower stratification layer or in the extent
of the calling method.

5 Verification Technique

This section introduces the visible states verification technique for Rumer. Sec-
tion 5.1 briefly introduces the unified framework for visible states verification
techniques [34], which we use for presenting our technique. Section 5.2 details
the proof obligations of our technique. We proved our verification technique to
be sound in [35].
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5.1 Background

To describe our verification technique, we use the unified framework2 for vis-
ible states verification techniques introduced by Drossopoulou et al. [34]. The
framework captures a verification technique in terms of seven parameters. These
parameters are:

X invariants expected to hold in initial and final states of a method execution
(i.e., visible states).

V invariants vulnerable to a method execution, i.e., which may be broken while
the method executes.

B invariants that must be proven to hold before a method call.

E invariants that must be proven to hold in the final state (i.e., at the end) of
a method execution.

U permitted receivers of field updates.

D invariants that may depend on a given heap location (and indirectly locations
on which an invariant may depend).

C permitted receivers of method calls.

Figure 7 illustrates the meaning of the framework parameters for the method
appendComponent() on line 19 in Fig. 2. As demonstrated by the figure, X can
be assumed to hold in the initial and final states of method appendComponent().
In between these visible states only X \V can be assumed to hold since some in-
variants may be temporarily broken by the execution of the method. For field up-
dates and method calls, the receiver instances must be checked to be in U and C,
respectively. For example, before the invocation of method append() on the re-
ceiver this.tree it must be checked that the instance referred to by this.tree

is in C. In the pre-state of a method call (i.e., append()), B must be proven, and
in the final state of the method execution (i.e., appendComponent()), E must
be proven. For assignments (not shown in Fig. 7), lastly, it must be checked that
at most the invariants in D are influenced.

void appendComponent(Component c,Component p) {

  this.tree.append(c, p);

}

assume X

X \ V
holds

check this.tree in C
prove B

prove E
assume X

Fig. 7. Illustration of the verification technique framework parameters (based on [34])

2 The framework has been introduced to capture visible states verification techniques
for object invariants and to prove their soundness. Like Summers et al. [36], we use
the framework for illustration purposes only.
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5.2 Proof Obligations

Our verification technique for Rumer is a visible states verification technique [9].
It supports the complete assertion language discussed in Sect. 3.2. The technique
is modular and allows entities and relationships to be verified independently from
each other.

In this section, we describe our verification technique in terms of the seven
parameters of the unified framework introduced previously. Since the parameters
U, D, and C are defined by the admissibility criteria introduced in Sect. 4.2, this
section defines only the remaining parameters X, V, B, and E. We refer to the
parameters X, V, B, and E as the invariant parameters since they specify sets
of invariants, and to the parameters U, D, and C as the admissibility parameters
since they are captured by the admissibility criteria of the Matryoshka Princi-
ple. The verification technique determines the invariant parameters for all kinds
of programmer-definable methods (i.e., entity instance method, entity extent
method, interposed relationship instance method, non-interposed relationship
instance method, and relationship extent method) as well as for constructors
and the non-pure built-in methods add() and remove() (see Sect. 3.1). Built-in
query operators (see Sect. 3.1) do not need to be considered by the verification
technique since they are side-effect free.

Table 2 and Table 3 specify the invariant parameters for programmer-
definable methods. Although there are variations between the invariant
parameters for the different kinds of methods, there is a general schema that
can be observed: The invariant parameters V and X are determined by the
admissibility parameters U (“Admissible Writes”) and D (“Admissible Invari-
ants”) and by the stratification of the programming language abstractions,
respectively. The admissibility parameter U guarantees that only the locations
of the current receiver of a method can be written to. This admissibility
parameter guarantees in turn that, while a method executes, at most the
locations to which the method is allowed to write can change. The set of
“vulnerable” locations indirectly determines the set of invariants V that are
vulnerable to a method: it is the set of invariants that may depend on those
locations that may change during the execution of a method. The set of
locations that an invariant may depend on is determined by the admissibility
parameter D. This set of locations is different for an invariant that is based on
ownership compared to an invariant that is not based on ownership. In case of
an ownership-based invariant, the set of locations that an invariant is allowed to
depend on includes the locations of those lower-level types for which ownership
is declared. In case of an invariant that is not based on ownership, the set of
locations that an invariant is allowed to depend on includes only the locations
of the invariant declaring type. The set of invariants X that are expected to
hold in the visible states of a method, on the other hand, is determined by
the parameter V and the stratification of the Rumer programming language.
Irrespective of whether ownership is declared, a method can always expect
all invariants of lower-level types to hold in its visible states. If the declaring type
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Table 2. Invariant parameters X, V, B, and E for entity instance method, entity extent
methods, interposed relationship instance methods, and relationship extent methods

Method Parameter

Entity instance X : Entity instance invariant of current receiver. Invariants of all types for
which the entity is not a transitive participant.

V : Entity instance invariant of current receiver. Entity extent invariant
of current receiver’s extent. Ownership-based invariants of upper-level
types.

B : Entity instance invariant of current receiver if direct call-back.

E : Entity instance invariant of current receiver. Preservation of entity extent
invariant of current receiver’s extent.

Entity extent X : All instance and extent invariants of the entity. Invariants of all types for
which the entity is not a transitive participant.

V : Entity instance invariants of all instances in current receiver extent. En-
tity extent invariant of current receiver extent. Ownership-based invari-
ants of upper-level types.

B : Entity instance invariants of all instances in current receiver extent and
entity extent invariant of current receiver extent if direct call-back. Entity
instance invariant of callee if entity instance method is called.

E : Entity instance invariants of all instances in current receiver extent. En-
tity extent invariant of current receiver extent.

Interposed rela-
tionship instance

X : Invariants of all types for which the relationship is not a transitive par-
ticipant.

V : Relationship instance invariants of all relationship instances that have
current receiver as participant. Relationship extent invariant of current
receiver’s extent. Ownership-based invariants of upper-level types.

B : -

E : Preservation of relationship instance invariants of all relationship in-
stances that have current receiver as participant. Preservation of rela-
tionship extent invariant of current receiver’s extent.

Relationship
extent

X : All instance and extent invariants of the relationship. Invariants of all
types for which the relationship is not a transitive participant.

V : Relationship instance invariants of all instances in current receiver extent.
Relationship extent invariant of current receiver extent. Ownership-based
invariants of upper-level types.

B : Relationship instance invariants of all instances in current receiver ex-
tent and relationship extent invariant of current receiver extent if direct
call-back. Relationship instance invariant of callee if relationship instance
method is called.

E : Relationship instance invariants of all instances in current receiver extent.
Relationship extent invariant of current receiver extent.

of a method is owned by an upper-level type, the execution of the method may
compromise any ownership-based invariant of the owning type. However, if the
declaring type of a method is not owned by an upper-level type, the execution
of the method can only compromise invariants of its declaring type.

We illustrate the verification technique based on the Rumer implementation of
the Composite pattern (see Fig. 2 and Fig. 5). Method append() of relationship
Parent is a relationship extent method. According to Table 2, the parameter V

for a relationship extent method comprises the relationship instance invariants of
all relationship instances in the current receiver extent as well as the relationship
extent invariant of the current receiver extent. Since relationship Parent only
declares an extent invariant, the parameter V for method append() comprises
the relationship extent invariant declared on line 3 in Fig. 5. This is also the
invariant that the method must prove to hold in the final state of the method
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Table 3. Invariant parameters X, V, B, and E for non-interposed relationship instance
methods

Invariant Parameter

Benign X : Relationship instance invariant of current receiver. Invariants of all types for which
the relationship is not a transitive participant.

V : Relationship instance invariant of current receiver. Relationship extent invariant of
current receiver’s extent. Ownership-based invariants of upper-level types.

B : Relationship instance invariant of current receiver if direct call-back.

E : Relationship instance invariant of current receiver. Preservation of relationship ex-
tent invariant of current receiver’s extent.

Malign X : Relationship instance invariant of current receiver. Invariants of all types for which
the relationship is not a transitive participant.

V : Relationship instance invariants of all relationship instances that have current re-
ceiver’s participant(s) as participant(s). Relationship extent invariant of current
receiver’s extent. Ownership-based invariants of upper-level types.

B : Relationship instance invariant of current receiver if direct call-back.

E : Relationship instance invariant of current receiver. Preservation of relationship in-
stance invariants of all relationship instances that have current receiver’s partic-
ipant(s) as participant(s). Preservation of relationship extent invariant of current
receiver’s extent.

(parameter E). Given the preconditions of the method (see Appendix A) and
the fact that the method updates the total field appropriately, the method is
able to prove the invariant. To sustain a visible states semantics, Table 2 fur-
ther requires that any method invocations on the current receiver extent are
guarded with the proof obligation to re-establish the relationship extent invari-
ant before the invocation. Method append() invokes the built-in add() method
on line 7. The built-in methods add() and remove() (not shown in Tables 2
and 3) are treated differently than user-defined methods. Since no call-backs can
result from built-in methods, callers do not have to re-establish their invariants
before invoking a built-in method. As a result, method append() can invoke
method add() without re-establishing its relationship extent invariant. As indi-
cated by Table 2, method append() can expect the following invariants to hold
in its visible states (parameter X): all instance invariants and extent invariants
of Component instances and Component extents, respectively, as well as all in-
stance invariants and extent invariants of Parent instances and Parent extents,
respectively. However, append() cannot expect the invariants of its upper-level
type Composite to hold in its visible states.

Relationship Composite declares an extent method as well as non-interposed
instance methods. The reasoning regarding the verification of the extent method
is analogous to the one employed for method append() of relationship Parent.
We highlight the important aspects of verifying non-interposed relationship in-
stance methods. The invariant parameters for non-interposed relationship in-
stance methods are defined in Table 3. The table distinguishes two kinds of
non-interposed relationship instance methods: malign versus bening. The differ-
entiation is due to the occurrence of interposed relationship instance fields in a
relationship instance invariant declaration. A relationship instance invariant may
relate interposed fields to non-interposed fields or relate interposed fields of dif-
ferent participants (category “malign” in Table 3). Alternatively, a relationship
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instance invariant may only depend on non-interposed fields (category “benign”
in Table 3). The relationship instance invariant of relationship Composite is
a benign invariant since there are no interposed fields declared by the rela-
tionship. The set of vulnerable invariants V for an non-interposed relationship
instance method of Composite consists only of Composite’ instance invariant.
If Composite declared an extent invariant, that invariant would be vulnerable
as well as the invariant may depend on instance fields. In its final state, a non-
interposed relationship instance method must prove that the instance invariant
of its current receiver holds and that it preserves the relationship extent invariant
of its current receiver’s extent. The proof obligation of “invariant preservation”
has been introduced in the context of object and class invariants in [11] and
[36], respectively. It represents a weaker proof obligation as it does not require a
method to assert that an invariant holds but to show that it does not break the
invariant (provided that it held initially). Both for entity instance methods and
relationship instance methods our verification technique requires the method to
prove preservation of the extent invariant. This proof obligation accounts for the
fact that an instance method may break an extent invariant, but may not be in
the position to re-establish that invariant. If an instance method cannot show
to preserve an extent invariant, its corresponding code must be captured in an
extent method.

The invariant parameters for malign non-interposed relationship instance
methods account for the fact that modifications of interposed relationship in-
stance fields may compromise not only the invariant of the current receiver
instance but also the invariants of all those relationship instances that have
participants in common with the current receiver instance. This can be the case
whenever an invariant relates an interposed relationship instance field with an
interposed relationship instance field of another participant or relates an inter-
posed relationship instance field with a non-interposed relationship instance field.
The invariant parameters for such malign invariants are slightly different. Most
importantly, their set of vulnerable invariants V contains also the invariants of
all the relationship instances that have participants in common with the current
receiver instance. These invariants are also the ones that must be shown to be
preserved in the final state of the non-interposed relationship instance method.

6 Discussion and Related Work

Our work builds on the visible states verification techniques developed for object
invariants [5, 9, 11, 12] and introduces a verification technique for a relationship-
based language that supports invariants for entities and relationships both at the
instance and the extent level. The ownership technique [5, 9] is the visible states
verification technique for object invariants that is most closely related to our
work. Our verification technique resembles the ownership technique in two as-
pects: (i) it leverages heap stratification to prevent transitive call-backs and (ii)
it facilitates modular reasoning about multi-object invariants. However, whereas
the ownership technique is only composed of a single “ingredient” (i.e., Universe
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Types [5, 32]), our verification technique unifies three orthogonal “ingredients”
that can be combined in multiple ways. This customization of ingredients allows
a programmer to “trade” imposed restrictions and supported guarantees.

The basic ingredient of our verification technique is the Matryoshka Principle.
It enforces a stratification of language abstractions and guarantees the absence
of transitive call-backs. As opposed to the ownership technique, the absence of
transitive call-backs does not come at the price of a single ownership restriction!
In a Rumer program conforming to the Matryoshka Principle, a participant of a
relationship may be a participant of several relationships.

The Matryoshka Principle can be overlaid with member interposition to facil-
itate the modular verification of multi-object invariants. Similarly to the own-
ership technique, member interposition mitigates the adverse affect of aliases to
shared state, but in a less restrictive way. As opposed to the ownership tech-
nique, member interposition does not prevent an instance from participating in
other relationships but only prevents the interposed field from being accessi-
ble outside the relationship. Member interposition entails furthermore a slightly
different semantics in terms of proof obligations than the ownership technique:
Whereas ownership allows the declaration of invariant-compromising methods
in owned objects as long as the owner does not invoke these methods, mem-
ber interposition prevents the declaration of a method in a relationship that
compromises the relationship invariant.

The Matryoshka Principle can also be overlaid with extent ownership to facili-
tate the modular verification of multi-object invariants. Extent ownership allows
an owning type to impose an invariant on the owned extent. Similarly to the
ownership technique, extent ownership enforces single ownership of the owned
extent. However, as opposed to the ownership technique, extent ownership only
encompasses an extent but not any (transitive) participant instances. As a result,
those (transitive) participant instances can be modified by an arbitrary instance,
including the extent owner. Extent ownership is thus more “lightweight” than
“traditional” ownership since it relies on the Matryoshka Principle to prevent
transitive call-backs.

The Matryoshka Principle can finally be overlaid both with member interpo-
sition and extent ownership. This setup was chosen for the Composite pattern. In
the Rumer implementation of the Composite pattern, member interposition facil-
itates the verification of the Parent invariant, which includes the SAVCBS 2008
challenge problem invariant regarding a composite’s total field. The implemen-
tation leverages extent ownership, on the other hand, to verify the Composite

invariant, which imposes a tree structure on a composite’s parent extent.
A number of techniques address the issue of object-oriented program verifi-

cation in the presence of shared mutable state by leveraging heap partitioning.
Parkinson and Bierman [15, 37, 38] introduce the ideas of separation logic [39]
to Java. An alternative expression of separation is used in works on dynamic
frames [40–42] where pure methods or ghost fields denote a set of locations. As-
sertions on the disjointness of such dynamic frames then facilitates heap-local
reasoning. Parkinson’s and Bierman’s abstract predicates bear resemblance with
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the invariants of our work. Similarly to a relationship invariant, an abstract
predicate imposes consistency conditions on the object structures in the heap.
However, abstract predicates do not entail an invariant semantics. This offers
some flexibility to the programmer who does not need to adhere to a discipline,
but sacrifices data type induction.

More distantly related is also the work on relationship-based programming
languages [16–24]. For a summary of other approaches to relationship-based pro-
gramming we refer to an earlier paper [20]. However, Rumer differs importantly
from other relationship-based programming languages by its inherent stratifica-
tion and by its support for Design-by-Contract-style assertions and invariants.

7 Conclusions

The verification of object-oriented programs remains a research issue. In this
paper we discuss how relationships facilitate the verification of programs with
multi-object invariants. Relationships impose a stratification of programming
abstractions and consequently allow for local reasoning about multi-object in-
variants so that a modular verification of multi-object invariants is possible. The
key concepts that allow for such local reasoning are (i) “member interposition”
— properties (or fields) of a relationship participant that belong logically to
the participant yet are encapsulated in the relationship instance, (ii) “extent
ownership” — lightweight ownership of a relationship instance of its participant
extent, and (iii) the Matryoshka Principle.

The“Matryoshka Principle” exploits the stratification layers of a program’s
abstractions and defines admissibility criteria for writes to locations, invariant
declarations, and method invocations. Programs that obey this principle can be
verified using the simple approach outlined here. The programming language
Rumer, which we use for illustration in this paper, adheres to this principle by
design. However, the principle is not tied to this particular programming lan-
guage. Programs in other programming languages can incorporate the principle
as well (and could then be verified using this approach), but the responsibility
to make the program obey the principle would fall either upon a programmer or
some program development tool.

This paper reports on the benefits of including relationships in a programming
language for program verification — as interest in tools and techniques to verify
programs increases, we expect the idea of “relationships” as a way to express
the interplay between objects to deserve serious consideration in mainstream
programming languages.
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A Pre- and Postconditions for Composite Specification

Below table indicates, for every method declared in Fig. 2, its preconditions and
postconditions.

Precondition of Parent.append():

c != null && p != null && c != p &&

!(c isElementOf these.child union these.parent) &&

(!these.isEmpty() => p isElementOf these.child union these.parent);

Postcondition of Parent.append():

these.count() == old(these.count()) + 1 &&

these.select(c_p: c_p.child == c).count() == 1 &&

forAll(x isElementOf these.select(c_p: c_p.child == c): x.parent == p) &&

forAll(x isElementOf these.transitiveClosure().select(c_p: c_p.child == c).parent:

x.total == old(x.total) + 1);

Precondition of Composite.createComposite():

c != null;

Postcondition of Composite.createComposite():

these.count() == old(these.count()) + 1 &&

thereExists(x isElementOf these: x.root == c && x.tree.isEmpty());

Precondition of Composite.appendComponent():

c != null && p != null && c != p &&

(this.tree.isEmpty() => this.root == p) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent &&

!(c isElementOf this.tree.child union this.tree.parent));

Postcondition of Composite.appendComponent():

this.tree.count() == old(this.tree.count()) + 1 &&

this.tree.select(c_p: c_p.child == c).count() == 1 &&

forAll(x isElementOf this.tree.select(c_p: c_p.child == c): x.parent == p);

Precondition of Composite.appendSubComposite():

p != null && !(p isElementOf c.child) &&

(!c.isEmpty() => p isElementOf c.parent) &&

(c.child == c.transitiveClosure().select(c_p: c_p.parent == p).child) &&

(this.tree.isEmpty() => this.root == p) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&

(c.child intersection (this.tree.child union this.tree.parent)).isEmpty();

Postcondition of Composite.appendSubComposite():

this.tree.count() == old(this.tree.count()) + c.count() &&

this.tree == old(this.tree) union c;

Precondition of Composite.appendComposite():

c != null && p != null &&

p != c.root && !(p isElementOf c.tree.child union c.tree.parent) &&

(this.tree.isEmpty() => p == this.root) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&

!(c.root isElementOf this.tree.child union this.tree.parent) &&

(!c.tree.isEmpty() =>

((this.tree.child union this.tree.parent) intersection (c.tree.child union c.tree.parent)).isEmpty();

Postcondition of Composite.appendComposite():

this.tree.count() == old(this.tree.count()) + 1 + c.tree.count() &&

this.tree == old(this.tree) union {(c.root, p)} union c.tree;
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Abstract. Large applications often suffer from excessive memory
consumption. The nature of these heaps, their scale and complex inter-
connections, makes it difficult to find the low hanging fruit. Techniques
relying on dominance or allocation tracking fail to account for sharing,
and overwhelm users with small details. More fundamentally, a program-
mer still needs to know whether high levels of consumption are too high.

We present a solution that discovers a small set of high-impact mem-
ory problems, by detecting patterns within a heap. Patterns are expressed
over a novel ContainerOrContained relation, which overcomes challenges
of reuse, delegation, sharing; it induces equivalence classes of objects,
based on how they participate in a hierarchy of data structures. We
present results on 34 applications, and case studies for nine of these. We
demonstrate that eleven patterns cover most memory problems, and that
users need inspect only a small number of pattern occurrences to reap
large benefits.

Keywords: memory footprint, memory bloat, pattern detection, tools.

1 Introduction

In Java, applications can easily consume excessive amounts of memory [13]. We
commonly see deployed server applications consume many gigabytes of Java heap
to support only a few thousand users. Increasingly, as hardware budgets tighten,
memory per core decreases, it becomes necessary to judge the appropriateness
of this level of memory consumption. This is an unfortunate burden on most
developers and testers, to whom memory consumption is a big black box.

We have spent the past two years working with system test teams that sup-
port a family of large Java applications. These teams perform extensive tests of
applications, driving high amounts of load against them. While running these
tests, they look at gross measures, such as maximum memory footprint. They
may have a gut feeling that the number is high, but have little intuition about
whether easy steps will have any measurable impact on memory consumption.
Sizing numbers alone, whether memory consumption of the process, of the heap,
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Fig. 1. The fraction of the heap that is overhead, including JVM object headers, point-
ers used to implement delegation, and null pointer slots, is often surprisingly high

and even of the size of individual data structures [3,18,10], are not sufficient.
The test teams need a quick evaluation of whether deeper code inspections will
be a worthwhile investment of time.

If size alone does not indicate appropriateness or ease of remediation, then
perhaps measures of overhead can. Prior work infers an overhead measure, by
distinguishing the actual data of a data structure from the implementation costs
necessary for storing it in a Java heap [13]. Overheads come from Java Virtual
Machine (JVM) object headers, null pointers, and various overheads associated
with collections, such as the $Entry objects in a linked structure. Fig. 1 shows
this breakdown, of actual data versus overhead, for 34 heap snapshots from
34 real, deployed applications. The figure is typically quite high, with most
snapshots devoting 50% or more of their heap to implementation overheads.

Unfortunately, when presented with this figure, even on a per-structure basis,
these testing teams were left with only a modified form of their original dilemma.
Instead of wondering how large is too large, they now asked how much overhead is
too much. To a development team, if a memory footprint problem is complicated
to fix, or if the fix is difficult to maintain, it is of little value. Depending on the
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nature of the overhead, a data structure may be easy to tune, or it may just be
something the team has to live with. There are, after all, deadlines to be met.

An Approach Based on Memory Patterns. We have found that common
design mistakes are made, across a wide range of Java applications. For example,
it is common for developers to use the default constructors when allocating
collections: new ArrayList(). If the code only stores a few items in these lists,
we consider this to be an occurrence of a sparse collection pattern; only a few of
the allocated pointers are used, thus the overhead comes from the empty slots.
Hashmaps are often nested, and, if the inner maps are very small, this is an
occurrence of the nested small collection pattern. These sound straightforward,
and that was our goal: find problems that are easily understood, and easily fixed.
Even if we miss large swaths of overhead, at least we are catching the easy stuff.

We discovered that this approach, when based on the right set of patterns,
reliably explains a majority of overheads across a wide diversity of applications.

Detecting and Summarizing Pattern Occurrences. The challenges of this
work came in two parts. First was the cataloging process. This involved a year
of combing over data from many hundreds of real applications, to find the im-
portant patterns. The second challenge lay in the detection and reporting of
pattern occurrences in complex heaps. Existing abstractions and analyses are
insufficient to detect many of the common patterns. Knowing that items stored
in a collection suffer from a high amount of delegation (a design that is actively
encouraged [8]), with its attendant header and pointer overheads, requires know-
ing the boundaries of those items. Where would a scan of the graph of objects
start, and where would it stop, in order to know that these items are highly
delegated, and hence report the cost of this occurrence?

The choice of aggregation is crucial for detecting and reporting problems. Our
approach is motivated by two properties prevalent in large-scale Java programs.
First, multiple instances participate in larger cohesive units, due to the high
degree of delegation common in the implementations of containers and user-
defined entities. All of the objects in such a highly delegated design are grouped
under a single occurrence of a larger pattern. We show how an aggregation
by the role objects play in a data structure can ensure that we detect these
larger patterns. Objects are either part of collection infrastructure, or part of
the implementation details of contained items (entities or nested collections).

Furthermore, framework- and user-defined structures are frequently reused in
multiple contexts. Frameworks themselves employ other frameworks, leading to
deeply layered designs. Existing approaches aggregate by allocation context [7,16],
or by only one hop of points-to context [2,18,3]. To generate meaningful reports,
aggregation by deep context is important, in order to distinguish different uses
(or misuses) of the same building blocks. The analysis cannot report millions of
similar pattern occurrences, for example, one for each of the inner maps in a nest
of hashmaps. In these cases, the context necessary to properly cluster can be in
the dozens of levels of pointers.
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The contributions of this paper are the following:

– Eleven commonly occurring patterns of memory misuse. Table 1 presents a
histogram of the percentage of overhead explained by the eleven patterns,
over 34 heap snapshots.

– The ContainerOrContained Model , a single abstraction that can be used
both to detect occurrences of these patterns, and aggregate these occurrences
into concise summaries based on the data structure context in which they
occur. The abstraction defines the roles that data types play in the collection
and non-collection implementation details of the application’s data models.

– An analysis framework for detecting and aggregating pattern occurrences,
and encodings of the patterns as client analyses.

– A tool that implements this framework, and evaluations of its output on nine
heaps. This tool is in initial use by system test teams within IBM.

– A characterization study of footprint problems in 34 heaps. The study shows,
for example, that our set of patterns suffice to explain much of the overhead
in heaps, and that a tool user typically need only inspect a small number of
pattern occurrences to reap large benefits.

Fig. 2 summarizes our approach. We acquire a heap snapshot from a running
Java application. From this snapshot, we compute the ContainerOrContained
Model. We have encoded the patterns as clients of a common graph traversal
algorithm. The traversal of a chosen data structure computes the count and over-
head of each pattern occurrence, aggregated by its context within the structure.

2 The Memory Patterns

We have found that eleven patterns of memory inefficiency explain the majority
of overhead in Java applications. The patterns can be divided into two main
groups: problems with collections, and problems with the data model of con-
tained items. The goal of this section is to introduce the patterns. In the next
sections, we introduce a set of data structure abstractions and an algorithm
for detecting and aggregating the occurrences of these patterns in a given data
structure.

All of these patterns are common, and lead to high amounts of overhead.
Table 2 names the eleven patterns. We use a short identifier for each, e.g. P1

Table 1. The analysis presented in this paper discovers easy to fix problems that
quite often result in big gains. These numbers cover the heap snapshots in Fig. 1. The
overhead is computed as described in Sect. 3.4.

overhead explained # applications

0–30% 0
30–40% 4
40–60% 9
60–80% 7
80–100% 14
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(a) A heap snapshot (b) A ContainerOrContained Model instance for one
data structure

(c) We present eleven mem-
ory pattern client analyses.

(d) The analyses scan for
occurrences of the patterns;
e.g. P1 occurred 3 times.

Fig. 2. From the raw concrete input, a heap snapshot from a Java application, we
compute a set of abstract representations. We compute one abstract form, called the
ContainerOrContained Model, per data structure in the heap snapshot. The client
analyses scan each data structure for problematic memory patterns, making use this
abstract form.

stands for the pattern of empty collections. Table 3 shows that these patterns do
indeed occur frequently across our sample heap snapshots, often multiple times
per snapshot. Sect. 5 gives detailed findings of our detection algorithm.

2.1 Patterns P1–P3: Empty, Fixed, Small Collections

Each of these patterns has the general nature of a large number of collections
with only a few entries. This situation leads to a high amount of overhead due
to a lack of amortization of the fixed costs of a collection. The fixed costs of
a HashSet in the Java standard library, which includes multiple Java objects
and many field slots, is around 100 bytes (on a 32-bit JVM). This sounds like
an inconsequential number, but if that set contains only a few entries, then the
relative contribution of that fixed overhead to the total heap consumption is
high. The fixed cost of a ConcurrentHashMap in Java is 1600 bytes!

Two important special cases have very different remedies from the general case
of small collections. The first is the fixed-size small collections pattern, where
all the instances of such collections contain always the same constant number
of entries. These may benefit from using array structures, rather than a general
purpose collection. The second is the empty collections pattern; occurrences of
these could be lazily allocated.

2.2 Pattern P4: Sparsely Populated Collections

Collections that have an array-based implementation risk being sparsely pop-
ulated. Fig. 3 shows an ArrayList that was instantiated with its default size,
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Table 2. The eleven memory patterns

memory pattern identifier

Empty collections P1
Fixed-size collections P2
Small collections P3
Sparsely populated collections P4
Small primitive arrays P5
Boxed scalar collections P6
Wrapped collections P7
Highly delegated structures P8
Nested Collections P9
Sparse references P10
Primitive array wrappers P11

typically 10 or 12 entries, but that currently contains only two Strings. Unlike
the first three patterns, this pattern affects both a large number of small (sparse)
collections, and a single large (sparse) collection. The causes of a poorly popu-
lated collections are either: 1) the initial capacity of the collection is too high,
or 2) the collection is not trimmed-to-fit following the removal of many items,
or 3) the growth policy is too aggressive.

2.3 Pattern P5: Small Primitive Arrays

It is common for data structures to have many small primitive arrays dangling
at the leaves of the structure. Most commonly, these primitive arrays contain
string data. Rather than storing all the characters once, in a single large array,
the application stores each separate string in a separate String object, each of
which has its own small primitive character array. The result is often that the
overhead due to the header of the primitive character array (12 bytes, plus 4
bytes to store the array size) often dwarfs the overall cost of the data structure.
If this data is intended to be long-lived, then it is relatively easy to fix this
problem. Java Strings already support this substring optimization.

Table 3. Across the 35 snapshots in Fig. 1, the memory patterns occur frequently. The
patterns are also not spurious problems that show up in only one or two applications;
many occur commonly, across applications.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

# pattern occurrences 37 16 45 11 7 19 2 111 5 5 46
# applications 18 12 20 8 6 13 2 29 3 4 19
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Fig. 3. An example of the sparse collection pattern, in this case with eight null slots

2.4 Pattern P6: Boxed Scalar Collections

The Java standard collections, unlike C++ for example, do not support collec-
tions with primitive keys, values, or entries. As a result, primitive data must
be boxed up into wrapper objects that cost more than the data being wrapped.
This generally results in a huge overhead for storing such data.

2.5 Pattern P7: Wrapped Collections

The Java standard library requires the use of wrappers to modify the behavior
of a collections. This includes, for example, making a collection synchronized
or unmodifiable. HashSet is implemented in this way, too: as a wrapper around
HashMap. This is another case of a cost that would be amortized, if the collections
had many entries, but one with a distinct remedy.

2.6 Pattern P8: Highly Delegated Structures

Java data models often require high degrees of delegation. For example, an em-
ployee has attributes, such as a name and email address. In Java, due to its
single-inheritance nature, one is often forced to delegate the attributes to side
objects; for example, the developer may wish to have these two attributes ex-
tend a common ContactInformation base class. The frequent result is a highly
delegated web of objects, and the repeated payment of the object “tax”: the
header, alignment, and pointer costs.

2.7 Pattern P9: Nested Collections

This pattern covers the common case of nested collections. One can use a
HashMap of HashSets to model a map with multiple values per key. Similarly, a
HashMap of ArrayLists can be used to represent a map which requires multiple
objects to implement a key. Fig. 4 portrays a HashMap of HashSet where String
key maps to a set of values, implemented using a HashSet. For this current
paper, we only cover these two important cases of nested collections: HashMaps
with either HashSet or ArrayList keys or values.
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Fig. 4. An example of the HashMap of HashSet collection pattern

2.8 Pattern P10: Sparse References

In addition to high degrees of delegation, non-collection data often suffers from
many null pointers. This pattern is an important special case of pattern P8:
highly delegated structures. A highly delegated design can suffer from overgen-
erality. The data model supports a degree of flexibility, in its ability to contain
extra data in side objects, that is not used in practice.

2.9 Pattern P11: Primitive Array Wrappers

The last non-collection overhead pattern comes from wrappers around primitive
arrays. These include the String and ByteArrayOutputStream objects whose
main goal is to serve as containers for primitive data. This is a cost related to
P5: small primitive arrays, but one that is outside of developer control; hence we
treat it separately. The Java language does not allow primitive arrays to be stored
inline with scalar primitive data.1 We include this pattern for completeness, even
though in practice developers would have trouble implementing an easy fix to
its occurrences. We wanted to include it, so that the characterization of Sect. 6
can motivate language and compiler developers to fix this problem.

3 The ContainerOrContained Abstraction

We introduce a single abstraction that is useful for both detecting occurrences
of memory patterns and aggregating those occurrences in a way that concisely
summarizes the problems in a data structure. We begin by describing the raw
input to the system of this paper, and briefly present the important limitations
of the dominator relation for heap analysis.
1 Java supports neither structural composition nor value types, those features of C and

C# that permit a developer to express that one object is wholly contained within
another. At least it can be done manually, in the case of scalar data. This is simply
not possible for array data.
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3.1 Heap Snapshots and the Object Reference Graph

The system described in this paper operates on snapshots of the Java heap. This
data is readily available from most commercial JVMs. Typically, one sends a
signal to a Java process, at which point the JVM produces a file that contains
the contents of the Java heap. The analysis can be done disconnected from any
test runs, and the generated snapshots can be shared with development teams
at a later date.

A heap snapshot can be considered as a graph of objects and arrays, intercon-
nected in the way that they reference each other. Fig. 2(a) shows a small-scale
picture of how we consider the heap to be a graph. This graph is commonly
referred to as an object reference graph.

3.2 Limitations of the Dominator Relation

Several existing tools [3,18] base their visualizations and analyses on the domi-
nator forest [9], rather than the full graph. This was also our first choice; it has
some enticing qualities. When applied to an object reference graph, the domi-
nator relation indicates unique ownership: the only way to reach the dominated
object is via reference chasing from the dominator.

Unfortunately, the dominator forest is a poor abstraction for memory footprint
analysis, due to the issue of shared ownership. Fig. 5 illustrates a case where two
data structures share ownership of a sub-structure. An analysis that requires
counting the number of items in a collection, such as the linked-list style structure
in Data Structure 1, must count all items, whether or not they are simultaneously
part of other structures. A traversal of the dominator tree of Data Structure 1
will only count two items — the edge leading to the third is not a part of
the dominator forest. In addition to failing to account for paths from multiple
roots, the dominator relation also improperly accounts for diamond structures.

Fig. 5. The dominator forest is unhelpful both for detecting and for sizing memory
problems. No traversal of a dominator tree (e.g. Data Structure 1 or 2) will encounter
shared sub-structures. A collection, even if it dominates none of its constituents, should
still be considered non-empty.
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The dominator relation introduces a fake edge, from the root of the diamond
to the tail. For these reasons, we base our analysis upon traversals of the full
graph.2

3.3 Roles, and the ContainerOrContained Model

The bulk of objects in a data structure takes on one of six roles. These roles
are summarized in Table 4. Consider a common “chained” implementation of a
hashmap, one that uses linked list structures to handle collisions. Instances of
this hashmap, in Java, are stored in more than one object in the runtime heap.
One of these will be the entry point to the collection, e.g. of type HashMap, and
the rest of the objects will implement the details of the linking structure. These
two roles, the Head of Container, and Implementation Details, are common to
most implementations of structures that are intended to contain an indefinite
number of items.

Underneath the chains of this hashmap will be the contained data structures.
These constituent structures have a similar dichotomy of roles: there are the
Head of Contained structures, and, for each, the implementation details of that
contained structure. Consider the example from earlier (Sect. 2.6): an Employee
data structure that has been implemented to delegate some of its functionality
to other data types, such as PhoneNumber and EmailAddress. That these latter
two pieces of information have been encoded as data types and hence (in Java)
manifested as objects at runtime, is an implementation detail of the Employee
data structure. Another role comes at the interface between the container’s im-
plementation details and the head of the contained items. For example, in a
chained hashmap, the “entry” objects (HashMap$Entry in the Java standard
collections library) will serve the role as this Container-Contained Transition
objects. This role is crucial to correctly detect some of the patterns (shown in
Sect. 4). The final important role, Points to Primitive Array, corresponds to
those objects that serve as wrappers around primitive arrays.

We introduce the ContainerOrContained abstraction, that assigns each ob-
ject in a data structure to at least one of these six roles. Objects not stored
in a collection are unlikely to be the source of memory problems, and hence
do not receive a role in this model. Given an object that is at the root of
a data structure, we show how to compute that structure’s ContainerOrCon-
tained model.3 First, data types that form linking structures, such as the “entry”
objects in a chained hashmap, are identified by looking for cycles in a points-
to graph over types (a simple technique first described in [10]). Any instances
of these types are assigned the Transitionary role, and objects they reference
are assigned the Head of Contained role. Any arrays of references that don’t
point to a Transitionary object are themselves Transitionary; any objects these

2 Many tools, including the authors’ previous work, made a switch over to using the
dominator relation. The demos for one [3] even claim it as their “secret sauce”.

3 In the case that there is a connected component at the root of the data structure,
choose any object from that cycle.
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arrays point to are Heads of Contained structures. Finally, objects that point to
arrays of references or recursive types are Heads of Containers. Note that it is
possible for an object to serve multiple roles, simultaneously. A HashMap inside
a HashMap is both Head of Container and Head of Contained. A String key
is both Head of Contained, and it Points to a Primitive Array. The remaining
objects are either the Implementation Details of a collection, or of the contained
items.

Table 4. In the ContainerOrContained abstraction, objects serve these roles

Role Examples

Head Of Container HashMap, Vector
Head Of Contained keys and values of maps
Container-Contained Transition HashMap$Entry

Points to Primitive Array String

Collection Impl. Details HashMap$Entry[]
Contained Impl. Details everything else

3.4 How Roles Imply Per-Object and Total Overhead

The ContainerOrContained model defines a role for each object in a data struc-
ture. Given this mapping, from object to role, we show that one can compute the
total overhead in that data structure; previous work [13] introduced this concept,
and here we show a novel, much simpler way, to approximate total overhead us-
ing only a ContainerOrContained model that doesn’t rely on dominance. The
goal of this paper is to explain as much of that total overhead as possible, with
a small number of pattern occurrences.

Definition 1 (Per-object Overhead, Total Overhead). Let G be an object
reference graph and D ⊆ G be a data structure of G. The total overhead of D is
the sum of the per-object overhead of each object in D. The per-object overhead
of an object depends on its role:

– Entirely overhead: if its role is Head of Container, Transitionary, or Col-
lection Implementation Detail, then the portion is 100%.

– Headers and pointers: if its role is Head of Contained or Contained Im-
plementation Detail, then the portion includes only the JVM headers, align-
ment, and pointer costs.

– Headers, pointers, and primitive fields: if its role is Points to Primitive
Array, we also include primitive fields, under the assumption that many
primitive array wrappers need to store bookkeeping fields, such as offsets,
lengths, capacities, and cached hashcodes, that are not actual data.
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(a) A data structure (b) ContainerOrCon-
tained DAG

Fig. 6. A data structure, and its corresponding ContainerOrContained DAG

3.5 Regions, and the ContainerOrContained DAG

For every data structure, and the ContainerOrContained model over its con-
stituent types, there is a corresponding directed acyclic graph (DAG) that sum-
marizes the structure’s contents [13]. Informally, the ContainerOrContained DAG
is one that collapses nodes in an object reference graph according to the role they
play and the context in which they are situated. Fig. 6 shows an example data
structure and the corresponding ContainerOrContained DAG. Observe how this
structure has a two-level nesting of collections: the outer collection has a link-
ing structure, and the inner map has an array structure. Sandwiched between
the two collections is a contained item that delegates to two sub-objects; one
of the sub-objects contains the inner array-based collection. The ContainerOr-
Contained DAG collapses this structure down to a, in this case, tree with three
nodes. In general, this summarized form will be a DAG, in the case of diamond
structures.

We define the ContainerOrContained DAG according to an equivalence re-
lation of object reference graph nodes. We present a novel definition and con-
struction algorithm that shows how this DAG is directly inferrable from the
ContainerOrContained model, without reliance on dominance. First, the nodes
of a DAG are regions, which represent one of the two primary roles:

Definition 2 (Head of Region). Let G be an object reference graph and C be
a ContainerOrContained model of the types of G. We say that a node n ∈ G is
a Head of Region if the role of n under C is either Head of Container or the
Head of Contained.

From this, the equivalence relation is defined as follows:

Definition 3 (ContainerOrContained Equivalence). Let G be an object
reference graph, D ⊆ G be a data structure in G with back edges pruned, and C
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be the ContainerOrContained model for the types of G. Two nodes n1, n2 ∈ D
are equivalent under C if either 1) n1 is a head of region and n2 is not and there
is no intervening head of region n3 between n1 and n2 (or vice versa for n1 and
n2); or 2) neither n1 nor n2 is a head of region, but they lie under an n3 that
is a head of region, with no intervening head of region n4 that is on either the
path from n1 to n3 or from n2 to n3; or 3) n1 and n2 have the same role under
C and the parents of n1 are equivalent to the parents of n2.

4 Detecting Pattern Occurrences, and Aggregating Them
by Context

We describe an algorithm that, parameterized by the details of a pattern, scans
for occurrences of that pattern in a given data structure.4 We initially coded
each pattern as its own set of code, but eventually came to realize that each
pattern differed in only three ways:

– The start and stop criteria. The boundaries of an occurrence, the details of
which vary from pattern to pattern, but can always be expressed in terms of
roles. For example, whether a HashMap instance is an occurrence of the empty
collection pattern depends on the objects seen in a traversal of the subgraph
bounded on top (as one traverses from the roots of the data structure being
scanned) by a Head of Container, and bounded on the bottom by the Heads
of Contained items.

– The accounting metrics. Each pattern differs in what it needs to count, as
the scan proceeds. The empty collection pattern counts the number of Heads
of Contained. The sparse references pattern counts a pair of numbers: the
number of valid references, and the number of null slots.

– The match criterion. The empty collections pattern matches that HashMap
if the number of Heads of Contained objects encountered is zero.

Observe that the empty collections pattern cannot count the number of Tran-
sitionary objects, (HashMap$Entry in this case), for two important reasons: 1)
because some collections use these Transitionary objects as sentinels; and 2)
sharing may result in two Transitionary objects referencing a single Head of
Contained object.

Each match of a pattern would, without any aggregation, result in one pat-
tern occurrence. This would result in needlessly complicated voluminous reports.
Instead, as the algorithm traverses the data structure, it detects which Con-
tainerOrContained region it is current in. Any occurrences of a pattern while the
traversal is in a particular region are aggregated into that region. The output
is a set of encountered regions, each with a set of occurrences. Each occurrence
will be sized according to the accounting metrics of the pattern. Fig. 7 gives
Java-like pseudocode for the algorithm.
4 A set of patterns can be scanned for simultaneously. The description in this section

can be generalized straightforwardly to handle this.
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For example, a scan for occurrences of the empty collections pattern would
count the total overhead of the collection’s Implementation Details, matches if
the number of Heads of Contained is zero, and upon a match accumulate that
overhead into the ContainerOrContained region in which the empty collection
is situated.

4.1 Client Analyses

Each pattern is detected by a client analysis of the general algorithm of Fig. 7.
In this paper, we chose three patterns that were illustrative of the interesting
variations from client to client. Sect. 5 then describes an implementation, in
which all eleven clients have been implemented.

P3: Small Collections. This client is activated at a Head of Container and
deactivated at a Head of Contained. The client counts the per-object overhead
of the collection’s Implementation Details and the number of Head of Contained
encountered. The accounting operation plays an important role in the pattern
detection. In the case of a map, unless done careful, the client would double
count the key and the value (recall that the Transitionary element points to
a key and a value). We do so by deactivating the accounting when a Head Of
Contained is reached. The scanning is reactivated at the traversal in postorder of
the Transitionary object. A collection instance, e.g. one instance of a HashMap,
matches the pattern if it contains, in the current implementation, at most nine
entries.

P4: Sparsely Populated Collections. The scope of a sparsely populated
collection is from a Head of Container element up to the next Head of Container
or Head of Contained element. The pattern counts the number of null slots
and its corresponding overhead and the number of non-null slots. The pattern
matches the collection when the number of null slots is greater than the number
of non-null slots.

P5: Small Primitive Arrays. The boundary of a small primitive array pattern
occurrence is a Points to Primitive Array elements as start condition and the
traversal stops when the primitive array is reached. The client counts the per-
object overhead of the primitive array and the size of actual primitive data. A
match happens when the amount of data is small, compared to the overhead.

Table 5 presents the time to detect5 all the eleven pattern categories in the
heap snapshots from Fig. 1. While computation time is sometimes less than 2
minutes for heaps with tens of million of objects (e.g. Applications S8 and S9,
with 57 and 34 million of objects respectively), there are also extreme cases where
the computation time is high. Currently we are working on a few optimization
possibilities to address the slow analysis time.

5 Using Sun’s Linux JVM 1.6.0 13 64-Bit with -server flag, on a 2.66GHz Intel(R)
Core(TM)2 Quad CPU.
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interface Pattern {
boolean start(Role role);
boolean stop(Role role);
boolean match(Accounting accounting);
Accounting makeAccounting();

interface Accounting {
void accountFor(GraphNode node,

Role roleOfNode);
int overhead();

}
}

interface PatternOccurrence {
void incrOverhead(int bytes)
void incrCount();

}

interface Region extends Map<Pattern,
PatternOccurrence> {}

interface ContainerOrContainedModel {
Role role(GraphNode node);
Region equivClass(GraphNode node);

enum Role { ... }; // see Table 4
}

Set<PatternOccurrences>
computePatternOccurrences(Pattern
pattern, Graph dataStructure,
ContainerOrContainedModel CoC) {

Set<PatternOccurrences> occurrences; //
the output

dataStructure.dfsTraverse(new GraphData.
Visitor() {

Stack<Accounting> accountingStack;
boolean active;

void preorder(GraphNode node) {

Role role = CoC.role(node)
if (pattern.stop(role) {

if (!patternStack.isEmpty()) {
accountingStack.top().

accountFor(node, role
);

active = false;
}

} else if (pattern.start(role)) {
active = true;
patternStack.push(pattern.

makeAccounting());
}
if (active) {

accountingStack.top().
accountFor(node, role)

}
}
void postorder(GraphNode node) {

if (pattern.start(node)) {
region = regionStack.pop();
if (pattern.match(

accountingStack.pop()) {
Region region = CoC.

equivClass(node);
PatternOccurrence occ =

region.get(pattern);
occ.incrCount();
occ.incrOverhead(

accountingState.
overhead());

occurrences.add(occ);
}

} else if (pattern.stop(node)) {
active = true;

}
}

});
return occurrences;

}

Fig. 7. The algorithm that, given a pattern and a data structure, produces a set of
aggregated pattern occurrences

5 Experiences with Our Tool

We have implemented the algorithm described in Sect. 4 and the eleven pat-
terns in a tool that analyzes a heap snapshot for problematic uses of memory.
It is in initial use by system test teams within IBM. The tool presents a list
of the pattern occurrences, ranked by the amount of overhead they explain,
and grouped by ContainerOrContained region. We have an initial visualization
tool, under development, that will present these figures on a picture of the Con-
tainerOrContained DAG. In this section, we walk through uses of the tool on
nine of the heap snapshots from Fig. 1, to give a qualitative feeling of the value of
the analysis, and to demonstrate the kinds of problems that routinely show up in
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Table 5. The number of objects and computation time to detect all the patterns in
the heap snapshots from Fig. 1.

# objects time # objects time # objects time
[million] [minutes] [million] [minutes] [million] [minutes]

S32 102 12.56 S27 14 1.59 S11 3.76 0.13
S4 58 114.37 S13 13 100.63 S25 3.09 7.98
S8 57 1.96 S18 12 3.71 S34 2.03 0.64
S3 50 13.59 S6 11 7.25 S24 1.82 8.78
S16 49 5.68 S1 11 1.52 S5 1.73 0.14
S17 37 19.8 S21 10 22.12 S29 1.41 0.73
S2 37 8.2 S23 8.29 6.06 S12 1.41 0.51
S26 36 9.75 S7 7.77 45.86 S30 1.37 3.14
S14 34 275.62 S15 5.83 77.21 S22 1.14 1.49
S9 34 1.27 S28 5.26 0.91 S20 0.62 1.27
S19 30 12.36 S33 4.36 2.84
S10 26 2.21 S31 4.29 73.62

real applications. Each of these is a real application, not a benchmark. Some are
servers, and some are client applications.6

Table 6 provides a high level overview of footprint problems detected by the
tool system. Each row of the table is a row of the output of the tool: the region
in which the problem occurs, the problematic pattern, and the overhead that
would be saved by fixing that pattern. The next section shows that the number
of rows that user must inspect is typically low; in the worst case of the snapshots
we document, the user must inspect 20 rows.

For the purposes of this section, we have selected some example pattern oc-
currences that would be particularly easy to fix. In a few cases, you will see that
this may not cover a very large fraction of the total overhead; these are the cases
where it would be necessary to fix a dozen, rather than a handful of occurrences.
Still, even in these cases, fixing a few lines of code can reduce memory footprint
by almost 100MB — not bad for a few minutes’ work. We now step through
some of these cases in more detail.

Application S7. This application has a heap size of 652MB of which 517MB
is overhead. The application suffers from three easy to fix problems in three
collections. As shown in the S7 rows of Table 6, these belong to the sparse,
small, and fixed-size collection patterns. One of the collections, a HashMap suffers
simultaneously from both the sparse (P4) and the small (P3) collection patterns.
The small collections are likely to be sparse, too. The tool has split out the costs
of these two separate problems, so that the user can gauge the benefit of tackling
these problems, one at a time: these two problems explain 92MB and 73MB of
overhead, respectively.

The tool also specifies the remedies available for each pattern. For example,
the small sparse HashMaps can be remedied by passing an appropriate number to
the constructor. In addition to reporting the occurrence’s overhead (as shown in
each row of Table 6), the tool (not shown) also reports the occurrence count, and
6 Their names are, unfortunately, confidential.
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Table 6. Each row, a pattern occurrence, was selected as a case that would be easy
for the developers to fix. As Sect. 6 shows, the developer needn’t ever fix more than 20
separate problems (and often far fewer than that) to address overhead issues.

Heap Size
Total

Overhead(TO) Region Pattern
Occurrence
Overhead

Total Overhead
Explained

[Size] [% of TO]

S7 652MB 517MB
HashMap

P4: sparse collections 92MB

206MB 40
P3: small collections 73MB

HashMap P3: small collections 19MB
HashMap P2: fixed-size collections 22MB

S15 1.4GB 971MB

HashSet P1: empty collections 50MB

85MB 9
LinkedList P1: empty collections 6.9MB
ArrayList P1: empty collections 6.9MB

sPropContainer P6: boxed scalar collections 21MB

S3 2.61GB 2.26GB

HashMap P6: boxed scalar collections 306MB

1.1GB 49

SparseNode P8: highly delegated 19MB
HashMap P6: boxed scalar collections 267MB

SparseNode P8: highly delegated 25MB
UnmodifiableMap P7: wrapped collections 108MB

ConcurrentHashMap P1: empty collections 99MB

S8 1.28GB 1GB
TreeMap P6: boxed scalar collections 742MB

806MB 79
TreeMap P6: boxed scalar collections 64MB

S32 9GB 4GB

ArrayList P4: sparse collections 736MB

861MB 21
ObjArray P4: sparse collections 72MB

RedirectHashMap P4: sparse collections 34MB
ArrayList P3: small collections 19MB

S27 506MB 307MB
HashSet P1: empty collections 16MB

22MB 7
HttpRequestMI P3: small collections 6.02MB

S17 1.872GB 1.21GB
ArrayList P4: sparse collections 53MB

84MB 7BigDecimal P10: sparse references 18MB
Date P10: sparse references 13MB

S29 832MB 452MB
Vector

P3: small collections 107MB
143MB 32P4: sparse collections 21MB

Vector P1: empty collections 15MB

S4 2.87GB 2.47GB HashMap P9: nested collections 422MB 422MB 17

a distribution of the sizes of the collection instances that map to that pattern
occurrence. This data can be helpful in choosing a solution. For example, if 90%
of the HashMaps that map to that occurrence have only 6 entries, then this, plus
a small amount of slop, is a good figure to pass to the HashMap constructor. For
now, the tool gives these numbers, and a set of known general solutions to the
pattern of each occurrence. Though this arithmetic work necessary to gauge the
right solution, is straightforward, we feel that it is something the tool should do.
Work is in progress to do this arithmetic automatically.

Application S3. The application uses 362MB on actual data and 2.26GB on
overhead. This application suffers from several boxed scalar collection pattern
occurrences in HashMaps, accounting for 573MB of overhead. There are easy to
use, off the shelf solutions to this problem, including those from the Apache
Commons [1] and GNU Trove [5] libraries.
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The tool also finds a large occurrence of a wrapped collections pattern. This
region is headed by a collection of type Collections$UnmodifiableMap; in the
Java standard libraries, this is a type that wraps around a given Map, changing
its accessibility characteristics. The tool (not shown) reveals an occurrence count
of 2,030,732 that accounts for 108MB of overhead. The trivial solution to this
problem is to avoid, at deployment time, the use of the unmodifiable wrapper.

Application S8. The application consumes 1.28GB, of which 1GB is overhead.
As with Application S3, the main contributors to the overhead are occurrences
of boxed scalar collection pattern. In this case, the guilty collections are two
TreeMaps; one is especially problematic, being responsible for 742MB of over-
head. Upon consultation with the developers, we learned that this application
does not need the sorted property of the map until the map is fully populated. A
solution that stores the map as parallel arrays of the primitive data, and sorts at
the end would eliminate this overhead entirely — thus saving 1GB of memory.

Application S32. This application has a memory footprint of 9GB, of which
4GB is overhead. The main findings belong to the sparse collection pattern. The
largest occurrence is an ArrayList region that consumes 1.43GB (not shown),
and 736MB of these lists are used by empty array slots.

Application S4. The application spends 407MB on actual data and 2.47GB
on overhead. The tool’s main finding is a Hash Map of ArrayList pattern which
accounts for 422MB of overhead. In this case, the single outer map had many
inner, but relatively small, lists. Though not small enough to fire the small
collections pattern, this case fires the nested collections pattern. In general for
this pattern, if the outer collection has a significant larger number of elements
than the inner collection, the memory overhead may be reduced by switching
the order of collection’s nesting. The benefit comes as a consequence of greatly
reducing the total number of collection instances.

6 Validation and Characterization

The detection of costly memory patterns provides support for understanding
how a particular system uses (or misuses) its memory. In this section we look
at the results of our analysis across a range of real-world applications, with two
goals in mind. First, we aim to validate that the approach, along with the partic-
ular patterns, produces effective results. Second, we employ the analysis to shed
light on how Java programmers introduce inefficiencies in their implementations.
This characterization can help the community better determine what sort of ad-
ditional tools, optimizations, or language features might lead to more efficient
memory usage. There are three broad questions we would like to assess: 1) Do
the patterns we have identified explain a significant amount of the overhead?
2) How often do these patterns occur in applications? and 3) Do the patterns
provide the best candidates for memory footprint reduction? To achieve this we
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introduce a set of metrics, and apply them on a set of fifteen real-world appli-
cations. In summary, applying the metrics on the application set shows that the
memory patterns we detect do indeed explain large sources of overhead in each
application.

In Fig. 1 we present examples of applications with large footprint overhead.
For our study, we select from these the fifteen applications which make the least
efficient use of memory, applications where more than 50% of the heap is over-
head. Note that in the reporting of results, we are careful to distinguish between a
pattern category, such as Empty Collections, and a pattern occurrence, an instan-
tiation of a pattern category at a particular context. In all of the computations
of overhead explained by the tool, we consider only pattern occurrences which
account for at least 1% of the application overhead. We choose this threshold
so that we report and ask the user to remediate only nontrivial issues. We do
not want to burden the user with lots of insignificant findings (i.e. of just a few
bytes or kilobytes). To ensure meaningful comparisons, the computation of to-
tal overhead in the heap is based on traversing the entire heap and tabulating
lower-level overheads like object header costs, as described in 3.4 (i.e. it is not
dependent on pattern detection). Thus it includes all sources of overhead, from
trivial and nontrivial cases alike.

6.1 How Much of the Overhead Do the Patterns Explain?

An important measure of the effectiveness of the analysis approach, and of the
particular patterns we have identified, is whether they explain a significant por-
tion of the memory overhead. We introduce an overhead coverage metric to
quantify this.

Definition 4. Overhead coverage measures the percentage of total memory over-
head explained by the memory patterns detected.

Table 1 gives a summary of the coverage across all the heaps we analyzed (not
just the subset of fifteen with high overhead). In almost half of the heaps the tool
is able to explain more than 80% of the overhead. Fig. 8 gives a more detailed
look at the fifteen highest overhead heaps. The third bar shows us the percentage
of overhead explained by 100% of the discovered pattern occurrences.

The remaining, unaccounted for overhead can be useful as well in helping us
identify important missing patterns. In continuing work we are looking at the
unexplained part of the heap, and are identifying which portion is the result
of detecting trivial occurrences of known patterns, and which are new patterns
that need to be encoded.

6.2 How Many Contexts Does a User Need to Look at?

We would like to assess if an application which contains memory inefficiencies
has its problems scattered around the entire application or if the main sources of
overhead are located in just a few contexts. As one validation of the usefulness
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of the pattern detection tool, this can tell us whether a user can examine a man-
ageable number of reported contexts and have a significant impact on memory
footprint. From the tool perspective, the metric provides understanding into the
depth of the patterns occurrences that need to be reported in order for the tool
to be useful. This result is also useful from a characterization standpoint, since
it can suggest whether problems are better addressed by automated optimiza-
tions (e.g. if they are diffuse) rather than by tools (e.g. if they are concentrated).
The tool reports pattern occurrences ordered by the amount of overhead they
explain. We would like to know how significant a part of the memory overhead is
explained by the first reported findings. To achieve this we introduce the Pattern
occurrence concentration metric.

Definition 5. Pattern occurrence concentration shows the percentage of the
heap overhead which is explained by the top N% of the memory pattern occur-
rences detected.

Fig. 8 presents the results of the pattern occurrence concentration metric ap-
plied to the experimental set of applications. The figure reveals the percentage
of the heap overhead which is explained by N% of the top memory pattern oc-
currences detected, where N is 10%, 40% and 100%. We see that on average
more than 25% of the overhead is explained by the top 10% of the findings. In
particular Application 8 has almost 70% of the overhead explained by the top
10% of pattern occurrences. This 70% of overhead is uncovered by one single
pattern occurrence, as seen in Fig. 8(b). This means that the user has to apply
only one fix to greatly reduce the application’s overhead footprint. Having a
single context explain the bulk of the overhead is not typical; usually there are
multiple contexts that need to be addressed. From the results we can also see
that increasing the percentage of pattern occurrences from 40% to 100% does
not provide a significant increment in the total overhead explained, compared
to the number of patterns needed to explain that difference. This means that
the applications have a few important memory issues and the rest are smaller
findings. For instance, in the case of Application 4 the top 40% and 100% of
occurrences explain 50% and 70% of the overhead respectively. 12 pattern oc-
currences are required to uncover that additional 20% of overhead. Thus we can
conclude that the main contributors to the memory overhead are exposed by a
few top occurrences.

6.3 How Many Different Types of Problems Exist in a Single Heap?

The previous metric offers quantitative information about how much of the heap
overhead is explained by the top pattern occurrences. Next, we want to iden-
tify whether an application suffers from a wide range of memory issues or if it
contains only a few types of problems. Moreover, as in the previous metric, we
would like to understand how many pattern categories are needed to account for
a significant portion of the overhead in a given heap.
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(b) Number of pattern occurrences in the top N%

Fig. 8. Occurrence Concentration

Definition 6. Pattern category concentration is the percentage of the heap over-
head which is explained by the pattern categories represented in the top N% of
memory pattern occurrences detected.

Fig. 9(a) and Fig. 9(b) depicts the category concentration results using the top
10% and 40% of findings respectively. The results show that there are always
only a few categories of memory issues responsible for most of the overhead. Ap-
plication 8 exhibit one type of memory inefficiency and most of the applications
have two or three major contributors to the memory overhead. If we compare the
pattern categories reported in both cases, for N=10% and N=40%, we note that
there are no major new types of problems detected by increasing the number
of pattern occurrences, even when more overhead is explained. Table 7 gives a
numerical summary of the data. We can see that usually a system suffers from
a small number of types of memory inefficiency, for N=40% there are 3 different
issues. We can also observe that the same issue is seen in several different points
in the application. This may be a consequence of the degree of reuse common
in framework-based applications, or of developers coding with a similar style in
multiple places in the code.
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Fig. 9. Category Concentration

6.4 How often Do the Pattern Categories Appear across
Applications?

We have seen that the top findings reveal the main categories of memory inef-
ficiencies usage in a given application. The next question is how often are the
same patterns seen across different applications? Does a small number of pattern
categories explain the bulk of the overhead in most applications, or is there more
variety among applications? To study this across multiple systems we introduce
a pairwise similarity metric.

Definition 7. Pattern category similarity measures the degree to which two ap-
plications contain the same pattern categories. The similarity metric reports the
ratio of the number of pattern categories common to both applications to the total
number of pattern categories detected in the two applications:

CS =
2|PC1

⋂
PC2|

|PC1|+ |PC2|
where PC is the set of pattern categories detected in the applications 1 and 2.

The value of pattern category similarity metric belongs to [0, 1]. A value of 1
means that the same pattern categories have been detected in both applications.
The lower the value of the similarity metric the greater the range of problems
identified across two applications.

Fig. 10 reports the similarity metric, computed pairwise for the heaps in our
experimental set. The darker the gray shade, the more common the problems
detected between the two applications. To understand how a given heap com-
pares to each of the other heaps, look at both the row and column labeled with
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Table 7. Number of pattern categories represented in the top 10% and the top 40%
of pattern occurrences

# categories
min median max

top 10% of occurrences 1 1 2
top 40% of occurrences 1 3 5

Fig. 10. Pattern category similarity. The darker the gray shade, the more common are
the pattern categories found in the two applications.

the given heap (i.e. an L-shaped region of cells). There is no single application
that presents completely different pattern categories compared with all the other
applications, though application 8 is the least similar to the others. Eleven ap-
plications out of fifteen contain half of the categories in common with at least 9
applications (i.e. CS≥0.5). From the results we conclude that the same memory
problems are frequently seen across multiple applications.

6.5 Additional Sources of Inefficiency

The current work addresses patterns of memory usage that have a high represen-
tational overhead, using a definition of overhead based on infrastructure costs
such as object headers and collection implementations. Developers also intro-
duce inefficiencies in the way they represent the data proper. For example, in
our experience we have seen many applications with large amounts of duplicate
immutable data, scalar data such as enumerated types that are represented in
text form, or classes carrying the cost of unused fields from overly general base
classes. In future work we would like to address these inefficiencies by encoding
data patterns into the same framework. Much of the existing analysis approach
can be easily extended to support recognition of these patterns.
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7 Related Work

We discuss related work in two main categories.
Patterns. One other recent work has adopted a similar approach to memory
footprint issues with a focus on collections [16]. That paper presents a solution
based on a language for specifying queries of heap structure. We have found that
their language, and the system as a whole, is insufficient for expressing important
patterns. They hard-code collection types, and do not treat any issues outside
the scope of those collections; e.g. there is no discussion of delegation or sparse
references for the items stored within collections. Their aggregation is based
on allocation context of individual objects, with, in some cases, a hard-coded
“k” of context in order to cope with the implementation details of the common
collection classes.

Memory Tools. Many tools put an emphasis on detecting memory leaks
[12,7,17,14], rather than footprint. Several tools place an emphasis on domi-
nance [3,18,10], and a great many tools [2,7,3,18,17,16] use the raw data types
of the program as the basis for aggregation and reporting. Some works focus
on the visualization side of memory analysis. They attempt, through cleverly
designed views, to allow the human to make sense of the heap [2,6], or JVM-
level behaviors [15]. These are indispensable tools for experts, but our experience
shows these to be of less value among the rest of the development teams.

8 Conclusions

In Java, it is difficult to implement a data model with only a single data type.
The language’s lack of support for composition and unions forces us to delegate
functionality to side objects. The sometimes perverse focus on reuseability and
pluggability in our frameworks [11] encourages us to to favor delegation over
subclassing [4,8]. For these reasons, classes are a low level manifestation of intent.
In Java, even the most basic of data types, the string, requires two types of
objects and delegation: a String pointing to a character array.

There is a wide modeling gap between what programmers intend to repre-
sent, and the ways that the language and runtime encourage or force them to
store this information. As a consequence, most Java heaps suffer from excessive
implementation overhead. We have shown that it is possible to identify a small
set of semantic reasons for the majority of these overheads in Java heaps. In
the future, we would like to explore this modeling gap more thoroughly. It is
possible that a more rigorous study of the gap will yield opportunities close it,
for important common cases. Why must we use collections explicitly, to express
concerns that are so highly stylized: relationships, long-lived repositories, and
transient views?
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Abstract. Most Java programmers would agree that Java is a language
that promotes a philosophy of “create and go forth”. By design, tem-
porary objects are meant to be created on the heap, possibly used and
then abandoned to be collected by the garbage collector. Excessive gen-
eration of temporary objects is termed “object churn” and is a form of
software bloat that often leads to performance and memory problems.
To mitigate this problem, many compiler optimizations aim at identi-
fying objects that may be allocated on the stack. However, most such
optimizations miss large opportunities for memory reuse when dealing
with objects inside loops or when dealing with container objects.

In this paper, we describe a novel algorithm that detects bloat caused
by the creation of temporary container and String objects within a loop.
Our analysis determines which objects created within a loop can be
reused. Then we describe a source-to-source transformation that effi-
ciently reuses such objects. Empirical evaluation indicates that our so-
lution can reduce upto 40% of temporary object allocations in large
programs, resulting in a performance improvement that can be as high
as a 20% reduction in the run time, specifically when a program has a
high churn rate or when the program is memory intensive and needs to
run the GC often.

1 Introduction

There are many forms of software bloat [1,2]. The creation (and deletion) of
many temporary objects in Java programs is known as temporary object churn;
this is the form of software bloat that we address in this paper. As illustrated by
Jack Shirazi [3], creating too many temporary objects results in higher garbage
collection overhead, object construction costs and higher memory system stress
resulting in an increase in processing time and memory consumption. At the
end of the chapter on object creation in his book, Shirazi gives a long list of
performance improvement strategies of which we reproduce a few here:

– Reduce the number of temporary objects being used, especially in loops.
– Avoid creating temporary objects within frequently called methods.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 408–432, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Reuse, Recycle to De-bloat Software 409

class Klass {
Hashtable ftab;
void foo(int num, Hashtable tab) {

5 HashSet seen = new HashSet();
6 Stack work = new Stack();
7 Vector heap = new Vector();
8 doSomething(work, num);
9 while ( !work.isEmpty() ) {

10 Object w = work.pop();
11 if ( seen.contains(w) )

continue;
12 seen.add(w);
13 heap.add(w);

}
Integer inum = new Integer(num);

14 if ( init() ) {
15 ftab.put(inum, heap);

}
else {

16 tab.put(inum, heap);
}

}

void bar(int num) {
32 Hashtable tab = new Hashtable();
33 for ( int n=0; n<num; n+=10 ) {
37 foo(n, tab);

}
43 dumpTabContent(tab);

}

void driver() {
44 for ( int num=0; num<100; num+=5 ) {
45 bar(num);

}
}

}

(a) sample code

class Klass {
Hashtable ftab;
void foo(int num, Hashtable tab) {

5 HashSet seen = REUSE.REUSE_01();
6 Stack work = REUSE.REUSE_02();
7 Vector heap = new Vector();
8 doSomething(work, num);
9 while ( !work.isEmpty() ) {

10 Object w = work.pop();
11 if ( seen.contains(w) )

continue;
12 seen.add(w);
13 heap.add(w);

}
Integer inum = new Integer(num);

14 if ( init() ) {
15 ftab.put(inum, heap);

}
else {

16 tab.put(inum, heap);
}

}

void bar(int num) {
32 Hashtable tab = new Hashtable();
33 for ( int n=0; n<num; n+=10 ) {
37 foo(n, tab);

}
43 dumpTabContent(tab);

}
}
class REUSE {

52 static HashSet hs_01 = new HashSet();
53 HashSet REUSE_01() {
54 hs_01.clear(); return hs_01;

}
57 static Stack st_02 = new Stack();
58 Stack REUSE_02() {
59 st_02.clear(); return st_02;

}
}

(b) Code reused

Fig. 1. Sample code

– Reuse objects where possible.
– Empty collection objects before reusing them. (Do not shrink them unless

they are very large.)

However, this is easier said than done, especially for Java programmers who have
grown up with the luxury of creating and discarding temporary objects, on the
assumption that the discards would be efficiently garbage collected. Consider,
for example, a typical piece of Java code as shown in Figure 1(a):

In this program, foo() calls doSomething() which loads several objects into a
stack work. Then foo() picks up each element in the stack, checks for and discards
any duplicates using seen and loads the unique objects into heap. At the end,
based on some condition, heap is stored into either the field variable this.ftab
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or into the Hashtable tab1 passed in as a parameter2 The method bar() calls
foo() iteratively and then dumps the contents of tab while the method driver()

calls bar() iteratively.
Herewe observe that foo() is called from inside a loop.Hence HashSetseen, Stack

work and Vector heap will be created once for every iteration of the loop. Also, it is
intuitively clear that seen and work can be reused, but heap may not be reusable.

– Consider Stack work: it is created locally and is not accessible outside foo()—
that is, it does not escape foo(). It may be reused as shown in Figure 1(b).
Note, however, that the enclosing loop is in a different method than the ob-
jects being reused and thus requires interprocedural analysis. Nevertheless,
work is reusable within the innermost enclosing loop and hence is termed a
“Level 1” reusable object.

– Consider Vector heap: it is created locally but it is accessible outside foo()—
that is, it escapes foo().
• Consider the case when it escapes via tab: heap does not escape the

method bar, but it does “escape” the loop inside bar. Going further
back up the call flow graph, we find that bar is called from within a loop.
Since heap does not escape from this loop, it is potentially reusable. In
this case, heap is not reusable within the innermost enclosing loop, but it
is reusable within the next enclosing loop and hence is termed a “Level
2” reusable object.

• When it escapes via ftab: ftab is accessible outside bar and driver and
hence so is heap. Therefore, heap is not reusable along this path.

When we reused seen and work as shown in Figure 1(b), we observed a 9%
reduction in execution time (on a dual core Intel(R) Core(TM)2 Duo system
with 2GB RAM running Java Hotspot(TM) Server VM on Linux).

Thus we see that objects may be reused within the immediately enclosing loop or
ahigher level loop.Thesameobjectmaybe reusablealongonepathbutnotanother.
Similarly, the same object may be reusable at different levels along different paths.
Besides these, there are many issues related to this kind of code transformation:

1. How do we determine automatically which variable can be reused and which
one cannot be

2. Which data structures do we target and how do we know how to “clear” the
structure before reuse

3. How do we determine when to perform the allocation and the “clear”. In the
example, we have given a trivial solution which does not always work

4. Where do we insert the reuse code so that it does not become an overhead
in itself

1 For ease of exposition we model a hashtable as directly containing the key and
value fields e.g., tab.value instead of containing the fields only indirectly e.g.,
tab.bucket[i].element[j].value.

2 This code was modified from Xylem code (refer Section 5), the only modification
being the addition of ftab and the corresponding lines of code at lines 14 and 15 to
highlight that an object may be reusable along one path but not another.
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Although, in principle, it is possible to reuse any data structure, in our im-
plementation, we address only certain Collection classes—specifically HashSet,

Vector, Stack, PriorityQueue, LinkedList, ArrayList and TreeMap. This makes
it easy to clear the objects using the clear() method from the Collection class.
We also reuse memory in Strings (here we are referring to the reuse of the un-
derlying arrays and not reuse of the string representation by string interning).
This is far more complex and the details are given in Section 4.

Contributions. In this paper we give a novel algorithm for automatically finding
sources of software bloat and then we give a solution to transform the code to
reduce the bloat. The main contributions are:

– An algorithm that can detect objects created within a loop and determine
whether an object created within a loop can be reused at the end of each
iteration. In the case of nested loops, the algorithm will tell us the innermost
enclosing loop in which the object can be reused.

– A solution that can automatically transform the source code to reuse the
object such as to mitigate the effects of software bloat.

– An implementation that validates our claims and shows that we can get upto
40% reduction in bytes of temporary objects generated and 20% improve-
ment in speed of execution.

Organization. We start off with some definitions and a description of escape
analysis used in this paper in Section 2. In Section 3 we explain how to find
safe reusable allocations and in Section 4 we give an algorithm that achieves
the reuse through a source-to-source transformation. In Section 5 we report the
empirical justification for using our analysis, Section 6 positions our work with
respect to related work and we conclude in Section 7.

2 Preliminaries

The control-flow graph (CFG) for a method M contains nodes that represent
statements in M and edges that represent potential flow of control among the
statements.

We define here some terms used in the paper.

Definition 1. Dominator: A node Si dominates a node Sj iff Si �= Sj and Si

is on every path from Entry to Sj.

Definition 2. Postdominator: A node Sj postdominates a node Si iff Si �= Sj

and Sj is on every path from Si to Exit.

Definition 3. Control dependence: A node Sj postdominates a branch of a pred-
icate Si iff Sj is the successor of Si in that branch or Sj postdominates the
successor of Si in that branch.

A node Sj is control dependent on a predicate Si iff Sj postdominates a branch
of Si but Sj does not postdominate Si. A node can be directly control dependent
on itself. Note that a node with only one successor can never be the source of a
control dependence edge.
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Definition 4. Backedge: A backedge in the CFG is an edge where the destina-
tion of the edge dominates the source of the edge.

Definition 5. Data Dependence: A node Sj is data dependent on a node Si, if
Si defines some variable x, Sj uses the variable x, and there exists a path from
Si to Sj without intervening definitions of x.

Definition 6. Loop Carried Data Dependence: A node Sj is data dependent on
a node Si, if Si defines some variable x, Sj uses the variable x, and there exists
a path from Si to Sj without intervening definitions of x and the path contains
a backedge.

Escape Analysis. To locate reuse possibilities, we use escape analysis which is a
method for determining the dynamic scope of pointers. After constructing the
control-flow graph of each method, our solution uses flow- and context-sensitive
pointer analysis and escape analysis3. The escape analysis computes the escape-
in and escape-out sets for each method.

– The formal-in set for a method M contains the set of formal parameters.
The implicit this parameter (in non-static methods) is also a formal-in.

– The formal-out set for a non-void method M contains a single parameter R,
the designated return value. The formal-out set is empty for a void method.

– The escape-in set for a method M contains direct and indirect fields of the
formal parameters of M that are used, before possibly being defined, in M .
These represent the upwards-exposed uses in M .

– The escape-out set for M contains direct or indirect fields of the formal
parameters of M and the return value of M that are defined in M .

– At each Call site c that calls method M , the algorithm uses the escape-in
and escape-out information, to compute the actual-in and actual-out sets,
where

– we generate an actual-in for each formal-in and each escape-in and
– we generate an actual-out for each formal-out and escape-out in M .

The algorithm associates escape-in and formal-in sets with the Entry node of
the CFG, and escape-out and formal-out sets with the Exit node of the CFG;
likewise, the actual-in and actual-out sets are associated with call sites.

In the example shown in Figure 2, num (node 2) and tab (node 3) are formal-
in parameters in the method foo as is the this parameter although it is not
shown explicitly in the figure. this.ftab (node 4) is an escape-in parameter
where ftab is a field of the formal-in parameter this. There is no formal-out
parameter as both the functions are void functions, but this.ftab.key (node
20) and this.ftab.value (node 21) are escape-out parameters generated from
3 A context-sensitive analysis propagates states along interprocedural paths that con-

sist of valid call–return sequences only—the path contains no pair of call and return
that denotes control returning from a method to a call site other than the one that
invoked it. A flow-sensitive analysis, on the other hand, takes into account the order
of statements in a program.
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heap = new Vector()

while (!work.isEmpty())

work = new Stack()
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if (seen.contains(w))

Escapein: this.ftab

seen = new HashSet()

Formalin: tab

Formalin: num

doSomething(work, num)

Actualin: tab

invoke foo

Formalin: num

tab = new Hashtable()

while(n < num)

Actualout: this.ftab.value

Actualout: tab.value

Escapeout: tab.key

Entry: void foo

w = work.pop()

tab.value = heap

tab.key = inumftab.key = inum

Actualin: n

n = 0

Entry: void bar

seen.add(w)

heap.add(w)

if ( init() )

Actualout: this.ftab.key

Actualout: tab.key

Escapeout: tab.value

Escapeout: this.ftab.value

Escapeout: this.ftab.key 43

44

24EXIT

Fig. 2. Escape Analysis

the put method of the Hashtable. Similarly, tab.key (node 22) and tab.value

(node 23) are escape-out parameters since they are fields of the formal-in tab.
In method bar at the call site for foo (node 37) we have generated actual-ins

and actual-outs and mapped them appropriately to the formal-in and escape-out
parameters in the called function.

3 Finding Potential Sources of Bloat

In this section, we describe how to locate object allocation sites within loops that
can be reused. Our analysis first identifies whether an allocation site is within
a loop. This allocation site can be converted into a reuse site on the condition
that
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1. it does not have a loop carried dependence
2. it is not accessed outside the loop. To determine whether it is local to an

enclosing loop, we need to check if it escapes the scope of the loop.

3.1 The Problem with Loop Carried Data Dependence

Consider the following piece of Java code

Vector vprev = new Vector();

while ( cond ) {

vsucc = new Vector();

process(vsucc);

if ( vsucc.size() <= vprev.size() ) {

}

vprev = vsucc;

}

Here there is a loop carried dependence from vsucc to vprev. So if we reset
and reuse vsucc inside the loop, then after the first iteration vsucc and vprev
will always point to the same Vector, which is not correct.

Knowing that vsucc can be reused after N cycles, it is possible to design reuse
as follows:

Vector tmp[] = new Vector()[N];

for (int j=0; j<N; j++) {

tmp[j] = new Vector();

}

Vector vprev = new Vector();

int i=0;

while ( cond ) {

tmp[i].clear();

vsucc = tmp[i];

i++;

if ( i == N ) {

i = 0;

}

process(vsucc);

if ( vsucc.size() <= vprev.size() ) {

}

vprev = vsucc;

}

Finding loop carried dependence is relatively simple. However, it is not always
possible to determine statically after how many cycles vsucc would be reusable,
as shown in the example below.

Vector vprev = new Vector();

while ( cond ) {

vsucc = new Vector();

process(vsucc);

if ( vsucc.size() >= vprev.size() ) {
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vprev = vsucc;

...

}

}

Hence, we conservatively ignore reuse when there is a loop carried data de-
pendence.

3.2 The Basic Algorithm

The preliminary analysis consists of the following steps

– We compute flow and context sensitive data and control dependence, wherein
the data dependence includes points-to and escape analysis described in the
previous section. Each data dependence that is a loop carried dependence is
flagged appropriately.

– We determine which conditionals in the Java bytecode are loop conditionals.
We define a loop header as the destination of an edge in the CFG such that
the node at the destination of the edge dominates the node at the source of
the edge.

– We find all allocation sites in the code. For each allocation site Snew we com-
pute the transitive closure of control dependencies. This process is performed
interprocedurally. If Snew is not directly or transitively control dependent on
a loop header, then we can discard it as being uninteresting from the point
of reuse.

Computing transitive closure of control dependencies. Intra-procedurally speak-
ing, every node is eventually control dependent on the ENTRY node of the
method. The ENTRY node is inter-procedurally control dependent on the CALL
node from where the method is invoked. The transitive closure thus includes all
nodes that the CALL node is control dependent upon.

In Figure 2, HashSet seen = new HashSet() is control dependent on the EN-
TRY node void foo(). The ENTRY node is inter-procedurally control depen-
dent on the CALL node foo(n, tab) in the method bar(). The CALL node is
control dependent on the for conditional n<num. Hence, the allocation seen =

new HashSet() is inter-procedurally and transitively control dependent on a loop
header.

Removing Unnecessary Loop Header Dependencies. Note that a node that is
control dependent on a loop header is not necessarily within the loop. However,
we are only interested in finding allocations that are within a loop and hence
need to perform additional computation.

All nodes within the loop are directly or transitively control dependent on
the loop header. However there may be nodes outside the loop that are also
control dependent on the loop header. This happens when there is a return from
within the loop or when there is an exception flow edge from within the loop.
Since we are interested only in nodes within a loop, we need to filter out these
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Algorithm 1. Locating reusable allocations within a loop
1: INPUT: Snew

2: φesc ← new Collection()
3: φreg ← new Collection()
4: computeForwardSlice({Snew}, φesc, φreg)
5: NCD ← controlDepPred(Snew)
6: while NCD �= null do
7: if NCD is a loop header then
8: level++
9: if φesc = {} and contains(NCD , φreg) and noLoopDD(φreg) then

10: OUTPUT(level, Snew)
11: end if
12: else if NCD is an Entry node then
13: for all Ninvoke a call site of Entry do
14: newset ← map(Ninvoke, φesc)
15: φesc ← new Collection()
16: φreg ← new Collection()
17: computeForwardSlice(newset, φesc, φreg)
18: end for
19: else
20: reached the top of the call graph
21: report and exit
22: end if
23: NCD ← controlDepPred(NCD)
24: end while
25:
26: computeForwardSlice(newset, φesc, φreg) {
27: while !newset.empty() do
28: N ← newset.removeLast()
29: for all Ndd such that Ndd is data dependent on N do
30: if Ndd is a formal-out or an escape-out then
31: φesc ← φesc ∪ Ndd

32: else
33: φreg ← φreg ∪ Ndd

34: end if
35: end for
36: end while
37: }

external-to-the-loop nodes. We do this by simply checking if there is a path from
the node to the loop header that ends with a back edge.

Having found an allocation site that lies within a loop, we perform the algo-
rithm given in Figure 1.

The algorithm takes as input Snew, the allocation site v = new Collection(),
where Collection is one of the classes mentioned in Section 1. It then computes
the forward slice for Snew as explained at lines 27–36. The forward slice consists
of the transitive closure of all def-use sets starting with the definition at Snew.
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The nodes in the slice are separated into two bags, one called the “Escape” bag
φesc that contains any formal-outs or escape-outs in the slice and the other bag
φreg that contains all other nodes.

Next we track backward along the control dependence edges.

– If we come to a loop conditional we check if φesc is empty and every node
in φreg lies within the loop and does not have a loop carried dependence.
If yes, then we have found the closest enclosing loop inside which Snew

can be reused—along this particular path. We record this path and stop
traversing the control flow graph any further for this path. For all other
loop conditionals or branch conditionals, continue climbing up the control
dependence graph.

– If we come to the Entry node of a method SM , then for each invocation site,
Scall, we map each node in the φesc set to the corresponding actual-out

nodes. The old φesc and φreg sets are discarded and fresh sets are computed
as the union of the forward slices of the actual-out nodes at the given invo-
cation site. Then the analysis continues up the control dependence graph,

– If we come to the top of the call flow graph, we conclude that Snew may not
be reusable along this path.

An illustrative example. Consider the example in Figure 2.

1. We determine that the conditional nodes n < num (node 34) in bar and
!work.isEmpty() (node 9) in foo are loop headers.

2. Consider the statement seen = new HashSet() (node 5) in method foo in
Figure 1. It is an allocation site for the Collection class HashSet. This node
is control dependent only on the entry node void foo (node 1). This node
is call dependent on the invoke foo node (node 37) which in turn is control
dependent on the loop header n < num. Hence the allocation statement is
interprocedurally called from inside a loop and has potential to be reused.

3. The forward slice is computed as φreg = { seen.contains(w), seen.add(w) }
and φesc is empty as none of the nodes are formal-outs or escape-outs.

4. Now we traverse the control dependence path. At the entry node there is
nothing to be mapped to the invoke foo site as φesc is empty. We discard the
current φ sets and enter the method bar with empty sets. Next the invoke foo

is control dependent on the loop header n < num. Here the requisite conditions
are trivially true. Hence the allocation may be converted to reuse.

If we consider the allocation site heap = new Vector(), it has four escape-outs
in its φesc; these map into actual-out nodes in the calling function bar. These
actual-out statements are inside the loop but their forward slice contains nodes
that are outside the scope of the loop. Two of these escape out of bar as well as
its caller Driver(). Hence, this node is correctly not marked for reuse.

3.3 Multiple Control Dependence Paths

The basic analysis algorithm described above records the closest enclosing loop
along a control dependence path where reuse may be implemented safetly, if at
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all. Since there may be multiple paths to an allocation site, several situations
may arise:

1. The site is not reusable along any control dependence path
2. The site is reusable along some control dependence paths, but not reusable

along other control dependence paths.
3. The site is reusable along all its control dependence paths, but the closest

enclosing loop where reuse can be implemented is not the same for all control
dependence paths

4. The site is reusable inside the same closest enclosing loop along all its control
dependence paths

One could take a conservative approach where only Case 4 is assumed to be safe
for reuse conversion. However, this tends to miss several sites with potentially
large churn (as we observe experimentally). A second approach is to introduce
extra code to perform runtime tracking of the conditions for safe reuse in all
situations. While this can enable more opportunities for reuse, it can become
fairly complicated and invasive. For example, in the worst case, this might in-
volve interprocedurally tracking path history along every branch leading to an
allocation site from enclosing loops located several call levels away.

Instead, we use a simpler scheme that achieves greater precision than the
conservative analysis but only exploits runtime state that needs to be introduced
anyway for implementing object reuse.

Let us define the height h of a loop L along a control dependence path from
an allocation site as the number of enclosing loop headers along that path upto
and including L. Then, the reuse level k for an allocation site along a particular
control dependence path is defined as the height of the closest enclosing loop
where the site is reusable for that path. This means that object reuse state for
that allocation site must be maintained across iterations of all the inner loops
upto height k − 1, and can only be reset across iterations of the loop at height
k or above. As long as this condition can be met across all control dependence
paths for the site without conflict, the object can be safetly converted for reuse
along certain paths (where it is found to reusable) without affecting correctness
along its other control dependence paths. This logic can be extended to address
not just Case 3, but Case 2 as well, since a path that does not support reuse
can be treated as a path with a very high reuse level. In other words, at some
outer loop level we can setup one control flow path to reuse and the another to
not reuse, provided the two paths do not intersect within the same outer loop
iteration.

Illustration: Consider the following variation of example in Figure 2, without
lines 14-15, so that the allocation to heap no longer escapes directly via ftab.
Now, suppose we add a couple of routines as follows:

void barPersist(int num) {
for (int n=0; n<num; n+=10) {

foo(n, ftab);
}

}
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void driverPersist() {
for (int num=0; num<100; num+=5) {

barPersist(num);
}

}
void mainDriver() {

if (init()) {
driverPersist()

} else {
driver();

}
}

The allocation site heap = new Vector() in foo() is reusable at level k =
2, the loop in driver() that calls bar(), along one control dependence path,
but is not reusable along another path that goes through driverPersist() and
barPersist(). In this case, we notice that there is no conflict between these two
cases as the corresponding loops do not intersect.

Now, let us say the routines driverPersist() and mainDriver() were removed
and instead, the routine driver() modified as follows:

void driver() {
for (int num=0; num<100; num+=5) {

if (init()) {
barPersist(num);

} else {
bar(num);

}
}

}

This time, the outer loop is common to the two paths, which indicates a
potential conflict.

We perform an analysis of the loop sharing structure across control depen-
dence paths to eliminate such potential conflicts.

Figure 3 illustrates some examples of loop header sharing across control de-
pendence paths starting from two distinct nodes P and Q respectively. The loop
header nodes are numbered according to the height of the loop with respect to
the allocation site. In (a) the loops are embedded along both paths, hence there
is a conflict if a reuse site in the the inner loop is not reusable along either
P or Q. In (b), the loops are disjoint and both inner loops invoke the method
containing the reuse site. In this case, for reuse level k = 2 and above, the the
k − 1 loop of one path never falls inside the other. Hence if the site is reusable
at level 2 (or higher) along paths from P, then, even if it is not reusable from
Q, our transformation can be set up to safely exploit object reuse along the
former. In (c), the innermost loop is shared, but the outer loops are disjoint.
Thus a reuse transformation upto level 2 would be unsafe unless both paths
share the same reuse level. However, if the site is reusable at level 3 or higher
along one path, then, even if it isn’t reusable along the other, our transformation
can be set up safely to exploit object reuse at the appropriate level along that
path.
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Fig. 3. Loop header sharing for multiple control dependence paths

4 Object Reuse, Recycle Transformations

In the previous section we described an approach for finding allocation sites
that are candidates for object reuse and the closest enclosing loops where they
can be safely reused. Now we discuss our automated code transformations for
implementing object reuse.

Object reuse optimizations may involve object memory reuse or object con-
tent reuse. The former recycles the memory and structural representation state
of objects of the same type, instead of allocating fresh objects each time. The
latter reuses at least some part of the actual object content (a form of memo-
ization/caching) to save repeated content construction costs4 Our static anal-
ysis based detection technique mainly identifies the first kind of opportunities,
hence this forms the focus of our implementation. Our code transformations can,
however, be used to support the second category of reuse as well, with slight
modifications5.

4.1 Basic Reuse-Recycle Algorithm

The static analysis phase reports the safe reuse level and the corresponding loops
for each allocation site identified for reuse (hereafter referred to briefly as a reuse
site). We use this information to implement a basic reuse/recycle algorithm for
these reuse sites.

The simple reuse transformation illustrated in the introduction is efficient
but does not work in many situations. The allocation has been moved to a
static initializer where constructor parameters that are specified at the allocation
site may not be available. The conversion is only applicable for level 1 reuse,
i.e. for objects allocated in an inner loop which can be recycled at the next

4 Object canonicalization is an extreme example of content reuse; object pooling in-
volves memory and sometimes partial content reuse.

5 e.g. steps like clearing the object or simulating effects of a constructor may be skipped
when reusing object content, thus simplifying the implementation.
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iteration of this loop. In this case, it suffices to allocate a single reusable slot for
an allocation site, e.g. the variable REUSE.st 01 for Stack work. However, when
allocated objects need to be preserved across iterations of an inner loop, and can
only be recycled at a subsequent iteration of an outer loop, multiple reusable
slots must be maintained for the same allocation site. This happens for a level k
reuse with k > 1, (where k is the height of the closest enclosing loop at which the
object can be reused), e.g. k = 2 for Vector heap when foo() is invoked via bar().
In this case, static initialization cannot be used as the number of distinct slots
required (minimum outstanding allocations) may not be known until the inner
loop completes its first iteration sequence. It could even change dynamically.
The number of inner loop iterations and hence reuse slots maintained for Vector
heap varies with the loop upper bound num, e.g. when num = 50, 10 reuse slots
are used. We note that this also means that the number of reuse slots created
must be bounded to avoid causing memory overhead due to a blowup in the
number of inner loop iterations.

Therefore in our generalized implementation (Algorithm 2), the allocation
statement is not moved, but instead, tracked during the first iteration of the level
k loop by creating reuse slots as needed and initializing them with the result of
the allocations in inner loop iterations (lines 9-12). Note that Reusevar.numslots
is statically initialized to zero. It is incremented (line 10) each time a reuse
slot is created for this site, using Reusevar.addslot() (line 11). The objects from
these slots are then reused sequentially (lines 16-17) during subsequent iterations
of the level k loop. If the inner loop iterations exceed the number of available
reuse slots Reusevar.numslots (e.g. due to a varying loop bound), then additional
slots are created as required (upto a maximum allowed capacity) (lines 9-12).
If the maximum capacity of reuse slots is exceeded for a given allocation site,
then allocations required beyond the capacity simply fall back to a non-reusable
mode (lines 13-14).

This approach has the downside of an extra check in every inner loop iteration
to distinguish the first iteration6 of the level k loop from iterations which reuse
previous allocations. The overhead may be optimized using loop peeling and
specialization for common scenarios (like level 1 reuse for collection objects which
do not require a constructor parameter).

To enable an existing object to be recycled instead of issuing a fresh allocation,
some type specific steps need to be executed to re-initialize the object for reuse.
In general, this may require simulating (a part of) its constructor functionality.
We focus on reusing collection objects and strings.

4.2 Reusing Collections

Preparing a collection object for reuse is particularly simple. Most collections
provide a clear() method to reset a collection to zero entries while keeping the
capacity of the collection intact. The larger the collection being reused, the
greater the benefit as it saves a large portion of object construction costs.

6 And checks for dynamic expansion of slots.
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Algorithm 2. General level K reuse transformation
1: while condition K do
2: processing for Kth loop
3: slot ← 0; maxslots ← MAXSLOTS {ADDED TO ENABLE REUSE}
4: while condition K − 1 do
5: processing loops for K − 2 to 2
6: while condition 1 do
7: processing for inner loop
8: BEGIN: Transformed allocation statement {TO ENABLE REUSE}
9: if Reusevar.numslots ≤ slot < maxslots then

10: Reusevar.numslots ← Reusevar.numslots + 1
11: Reusevar.addslot() ← new TY PE(params)
12: end if
13: if Reusevar.numslots ≤ slot then
14: var ← new TY PE(params)
15: else
16: var ← Reusevar.getslot(slot)
17: slot ← slot + 1
18: end if
19: END : transformed allocation statement {TO ENABLE REUSE}
20: some more processing for inner loop
21: end while
22: some more processing for loops for K − 2 to 2
23: end while
24: some more processing for Kth loop
25: end while

4.3 Reusing Strings

Recycling String objects requires simulating a part of its constructor functionality
to re-populate the underlying character array with new content. Since a String ob-
ject is an immutable data structure, this can be implemented efficiently only with
special extension support from the class library or the JVM. For our experimental
evaluation, we use reflection to access/clear/overwrite the array as required. This
incurs a performance penalty, which is mitigated to some extent by caching the
reflection results when the object is first allocated to avoid the overhead on every
iteration. Therefore our results provide a conservative estimate of performance
gain that can be attained through object reuse in this case.

4.4 Implementation Details

We used a source to source transformation approach to evaluate the feasibility
of our automated object reuse/recycle conversion. Simplicity and clarity were
our primary motivation for choosing this approach, e.g. ability to perform a
visual inspection of the changes in source code after transformation. The con-
version may also be implemented using byte-code manipulation and JVM level
optimizations as discussed later.
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The inputs required for the transformation are the output of the static analysis
stage, and the source files of the application to convert.

Figure 4 illustrates our running example before and after automatic reuse
conversion. The transformations are performed in a single-pass over source. This
is a slightly modified version of our running example from previous sections,
without the ftab field. As heap no longer escapes via ftab, it is now reusable at
level 2 (i.e. the loop starting at lineno 38 in driver()).

class Klass {
void foo(int num, Hashtable tab) {

14: HashSet seen = new HashSet();

15: Stack work = new Stack();

16: Vector heap = new Vector();

doSomething(work, num);
while ( !work.isEmpty() ) {

Object w = work.pop();
if ( seen.contains(w) )

continue;
seen.add(w);
heap.add(w);

}
Integer inum = new Integer(num);
tab.put(inum, heap);

}

void bar(int num) {
Hashtable tab = new Hashtable();

31: for ( int n=0; n<num; n+=10 ) {
foo(n, tab);

}
dumpTabContent(tab);

}

void driver() {
38: for ( int num=100; num > 0; num-=5 ) {

bar(num);
}

}
}

(a) Before transformation

class Klass {
void foo(int num, Hashtable tab) {

14: HashSet seen = REUSE.ReuseHashSet_14();

15: Stack work = REUSE.ReuseStack_15();

16: Vector heap = REUSE.ReuseVector_16();

doSomething(work, num);
while ( !work.isEmpty() ) {

Object w = work.pop();
if ( seen.contains(w) )
continue;

seen.add(w);
heap.add(w);

}
Integer inum = new Integer(num);
tab.put(inum, heap);

}

void bar(int num) {
Hashtable tab = new Hashtable();

31: REUSE.idxVector_16 = 0;
REUSE.maxVector_16 = MAX_SLOTS;
for ( int n=0; n<num; n+=10 ) {

foo(n, tab);
}
dumpTabContent(tab);

}

void driver() {
38: for ( int num=100; num > 0; num-=5 ) {

bar(num);
}

}
}

(b) After transformation

At each listed allocation site to convert for reuse (lines 14,15,16), we replace
the call to new with a call to an allocation site specific reuse method which
performs allocation tracking and reuse. At the statement preceding a listed allo-
cation site’s level k − 1 loop header, we insert code to reset the reuse slot index
for the allocation site and specify the maximum slots that may be created. Line
31 is the level 1 loop header corresponding to the level 2 reusable allocation of
heap (idxVector 16 is the corresponding reuse slot index).

A reuse context area and allocation site specific reuse methods are generated
by the transformation. The reuse context fields maintain state corresponding
to every allocation site that is converted for reuse. Stack 15 maintains a ref-
erence to the level 1 reusable allocation for work. The reuse methods encap-
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public class REUSE{
static HashSet HashSet_14;
public static HashSet ReuseHashSet_14() {

if (HashSet_14 != null) {
REUSEUtil.clearHashSet(HashSet_14);

} else {
HashSet_14 = new HashSet();

}
return HashSet_14;

}

static Stack Stack_15;
public static Stack ReuseStack_15() {

if (Stack_15 != null) {
REUSEUtil.clearStack(Stack_15);

} else {
Stack_15 = new Stack();

}
return Stack_15;

}
...

}

static int idxVector_16;
static ArrayList<Vector> Slot_Vector_16 =

new ArrayList<Vector>();
static Vector Vector_16;
public static Vector ReuseVector_16() {

if (idxVector_16 < Slot_Vector_16.size()) {
Vector_16 =
Slot_Vector_16.get(idxVector_16++);

REUSEUtil.clearVector(Vector_16);
} else {

Vector_16 = new Vector();
if (idxVector_16 < maxVector_16) {

Slot_Vector_16.add(Vector_16);
idxVector_16++;

}
}
return Vector_16;

}

Fig. 4. Code transformation example

sulate allocation tracking and reuse logic specific to these allocation sites, e.g.
ReuseVector 16() uses Slot Vector 16 to keep track of the reuse slots for the
allocation of heap at line 16. The size of the arraylist Slot Vector 16 thus cor-
responds to Reusevar.numslots in Algorithm 2. For level 1 reuse, as in the case
of seen and work, there is a single reuse slot which is accessed directly from
HashSet 14 and Stack 15 respectively. Before returning the reusable reference,
these methods invoke a type-specific utility method to enable reuse for that
object (clearHashSet() for seen, clearStack for work and clearVector for heap).

Reuse context entries are typically stored in a thread local reuse context
area. For single-threaded programs like the above example, we maintain a global
reuse context, to avoid the overhead of thread local context accesses in the
interprocedural case.

4.5 Dynamic Analysis Guided Filtering of Candidate Reuse Sites

A purely static analysis based detection scheme has insufficient information to
prioritize allocation sites to convert based on an estimate of expected savings.
We complement it with a dynamic analysis that profiles allocation sites with
high object churn to guide the selection of statically identified candidate reuse
sites that are worth converting. We then apply our object reuse transformation
for those reuse sites.

The dynamic analysis phase takes as input the reuse sites reported by static
analysis and the output of an allocation profiler that captures the volume of
allocated and live vs freed bytes generated at each allocation site under a typical
run of the program. It then generates statistics about the proportion of churn
generated by reuse sites which use collections or strings, and selects the top sites
with significant contribution to overall volume of temporary objects generated.
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4.6 Discussion

Alternatives to full source to source transformation. Instead of using
a pure source to source transformation approach, object reuse transformations
could also be implemented using byte code manipulation and JVM level opti-
mizations. A JVM can avoid costs of reflection and thread local accesses that we
incur and optimize the overhead of the check required in each iteration to distin-
guish first time allocation and reuse iterations. It can also enable profile guided
object reuse conversion to be applied at runtime for the reusable allocation sites
that exhibit the potential for highest savings.

Extending the technique to non-collection objects. The technique may be
generalized further to any object type that is designed to support a special reuse
interface with a type specific reuse method. This method provides an alternative
to the constructor that is called to clear a previous instance of the object or
re-populate it with new content. Such an approach can also be used to enable
partial content reuse by implementing the reuse method to selectively preserve
the content of some fields of the object.

5 Empirical Evaluation

We apply our analysis to a few large applications, the SPECjbb2005 benchmark
and the DaCapo benchmarks [4] lusearch, ps, pmd, antlr. We also apply it to
Xylem [5], a proprietary tool that has been built to statically detect null deref-
erences in Java. In this paper we analyze only a subset of Xylem. Table 1 lists a
brief description of the benchmarks used. The freed memory was measured from
the garbage collection (GC) logs saved during execution of the applications and
represents the total bytes freed over all GC cycles.

We apply the static analysis to all these applications, and use our dynamic
analysis to select the applications and candidate reuse sites to convert from
the safe reuse sites found. As shown in Table 3, SPECjbb2005, xylem and
lucene indicate the greatest potential for savings from object reuse for collections
(including Strings and arrays). Hence we apply our automatic transformation to
these applications and report the results in Table 4.

The following section presents our experimental results and analysis.

Table 1. Benchmarks analysed

Application Description Freed Memory
(Object Churn)

SPECjbb2005 Server-side Java Benchmark 8 KB/txn

xylem Proprietary tool to detect null references 1203MB

DaCapo lusearch A text search tool 4913 MB

DaCapo pmd A source code analyzer for Java 1178 MB

DaCapo ps A postscript interpreter 2366 MB

DaCapo antlr A parser generator and translator generator 884 MB
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Table 2. Reuse site detection statistics

SPECjbb xylem lusearch pmd ps antlr

functions analysed 864 1679 2614 5587 1022 2486

statements analysed 864 33924 69688 126312 19078 100359

total analysis time 23s 33s 55s 8m 15s 20s 3m 16s

prelim analysis time 18s 25s 41s 3m 41s 16s 2m 29s

Results SPECjbb xylem lucene pmd ps antlr

no. of alloc sites 1014 1853 1549 2252 1013 2712

no. of alloc sites in loops 784 1456 776 1076 146 1852

no. of (safe) reuse sites found 251 400 688 577 77 375

no. of collection reuse sites 84 220 266 125 12 97

no. of string reuse sites 27 0 9 4 2 51

no. of sites reusable only 273 148 657 507 67 401
along some paths

pure level 1 reuse sites 90 274 197 166 28 79

pure level 2 reuse sites 4 3 2 0 0 0

min level 1 reuse 280 416 766 640 93 477

min level 2 reuse 15 6 9 1 0 2

5.1 Reuse Site Detection Statistics (static analysis)

Table 2 summarizes the results of from the static analysis phase to find safe
reuse sites and the closest enclosing loop where they may be reused. We notice
that most opportunities exist at level 1 or level 2 reuse, and that a significant
number of sites are only reusable along some paths and not others. Less than
half of the safe reuse sites found are reusable at a single level along all paths.
Except for ps, most benchmarks have a significant number of collection or string
reuse sites.

Discussion: Analysis Time and Scalability. Table 2 also reports the times
for analysis, and how much of that is spent on the preliminary analysis. We
rely on an underlying context-sensitive flow analysis. This is, in general, slow,
however, with suitable engineering, it can be reasonably scalable. Our analysis
is built on top of a basic slicer which we have previously run on programs that
are larger than 450,000 lines of code and the preliminary analysis took less than
10 minutes as reported in [5].

The additional analysis that we apply does an all-path exploration to deter-
mine the reusability of an object. This is clearly an exponential algorithm. pmd,
at a little over 126K bytecode instructions analyzed, took 8 minutes and 15 sec-
onds to analyze, of which the preliminary analysis took 3 minutes and 41 seconds.
Here again, we use standard engineering tactics to contain the exponential state
space exploration. If, for a given object, the analysis takes too long (currently
curtailed at 30 seconds), we abort analysis of the object and conservatively mark
it as not reusable.
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Table 3. Reuse site object churn statistics

SPECjbb xylem lusearch pmd ps antlr

%churn at (safe) reuse sites 54% 18.4% 77.5% 16.4% 6% 14.6%

%churn at collection 46.6% 16.5% 63% 5% 3.7% 4.25%
(and string) reuse sites

%churn at sites reusable 6.8% 3.28% 77.2% 15.9% 6% 14%
only along some paths

no of reuse sites with 7 3 22 9 5 12
more than 1% churn

no of collection reuse sites 5 2 8 1 2 1
with more than 1% churn

%churn at top 3 reuse sites 48% 16% 46% 10% 5.8% 5.8%

Distribution SPECjbb xylem lucene pmd ps antlr
of reuse levels

%churn at level 1 reuse sites 81% 99.98 36% 87.2% 50% 84%

%churn at level 2 reuse sites 18% 0.02 64% 12.4% 50% 16%

Distribution SPECjbb xylem lucene pmd ps antlr
of reuse levels
for collections

%churn at level 1 reuse sites 89% 99.98% 25% 42.8% 100% 99.3%

%churn at level 2 reuse sites 11% 0.02% 75% 57.2% 0% 0.7%

5.2 Reuse Site Object Churn Statistics (dynamic analysis)

Table 3 captures some of the statistics gathered during the dynamic analysis
phase based on simple allocation profiling to identify reuse sites that generate
more temporary objects.

We observe that in many cases, a few potentially reusable sites cause a percep-
tible amount of object churn, particularly in SPECjbb2005, lucene and xylem.
The results also reflect the importance of being able to handle reuse sites which
are safely reusable along some paths but not others. In some benchmarks, e.g.
lusearch, the sites that are the top contributors to temporary objects bloat are
of this nature.

5.3 Performance Impact Statistics

Object reuse conversion was applied only to the reuse sites that are indicated by
dynamic analysis to have a major contribution to object churn. The performance
comparisons between the original and converted application are presented in
Table 4.

In general, the performance impact of reducing object allocations depends on
the workload, choice of JVM used and both JVM and system parameters. For
example, the JVM heap size, the garbage collection algorithm, system memory
bandwidth characteristics (esp. on multi-core systems [6]) and workload specific
tuning can affect results of comparisons. However, in our evaluation we focus on
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Table 4. Performance impact statistics: The percentages are baselined against the
correponding results for the original benchmark without object reuse conversion; for
example 100% reduction in temporary objects generated would mean that all object al-
locations were eliminated, 100% improvement in throughput would mean that through-
put doubled.

SMALL INPUT SIZE SPECjbb xylem lucene

No. of objects reused 24/txn 144851 232881

No. of element allocations reused 1920/txn - 125750

% Reduction in temporary objects generated 41 22 24

% improvement in execution time or throughput 7.9 16.4 6.6

LARGE INPUT SIZE SPECjbb xylem lucene

No. of objects reused 21/txn 342651 448787

No. of element allocations reused 1723/txn - 250739

% Reduction in temporary objects generated 41 27 24

% improvement in execution time or throughput 21.6 19.9 6.2

the effectiveness of our technique rather than characterization of the degree of
performance improvement expected from reducing object churn under different
conditions. Hence we directly use default configurations instead of explicitly
varying/tuning JVM and system parameters.

System Configuration. Our performance measurements were taken on a dual core
Intel(R) Core(TM)2 Duo T7500, 2.2 GHz with 2GB RAM running Linux, Java
HotSpot(TM) Server VM (build 14.3-b01, mixed mode). For the SPECjbb2005
measurements, we used an 8-core Intel server (Intel(R) Xeon(R) X5460, 3.16
GHz) with 16GB RAM, running Linux, Java HotSpot(TM) Server VM (build
1.6.0-b105, mixed mode).

JVM settings. For Xylem, we used a heap size of 1.6GB. We used out-of-the-box
configuration parameters for the other benchmarks. In the case of SPECjbb2005,
the heap size specified in the default benchmark properties file was 256MB. For
the DaCapo benchmarks, the default heap size was as determined by the JVM.
In all cases, the default garbage collection policy was determined by the specified
JVM.

Since the execution time impact of reducing object creation can be highly
dependent on the JVM and system parameters, we also measure other metrics
like the percentage reduction in bytes of temporary objects used estimated from
garbage collection statistics and relative scaling with larger input sizes. This
enables us to evaluate whether our transformation is efficient enough to exploit
potential for performance gains where opportunities exist.

We observe 20-40% reduction in object churn with our transformation. The
execution time improvements range between 6-20%.

In SPECjbb2005, a single heavy allocation site dominates the reuse counts.
Despite the fact that this is a string object and there are overheads due to
reflection and accessing thread local context, we see significant benefits from
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object reuse automation. These improvements appear to be consistent with those
reported for a manual implementation of object reuse by researchers of [6]; their
results were for a well-tuned setup (large heap, GC tuning)7.

We note that execution time improvements do not uniformly reflect the per-
centage reduction in objects. As observed by previous researchers [7,6,8] the re-
lationship between percentage reduction in objects and performance is complex
and depends on many factors ranging from workload and program characteris-
tics, object construction costs, JVM tuning and hardware/system characteristics.

6 Related Work

Object churn analysis, impact and solutions. Many compiler and runtime opti-
mizations like escape analysis [9,10,11,12], escape detection and improvements
in memory management and garbage collection techniques [13] have been devel-
oped to reduce the overheads of allocating and reclaiming temporary objects.
As part of their work on escape analysis, Blanchet [10] consider the problem of
stack size limitations in using stack allocation for loop objects and implement
a simple liveness check to enable reuse of stack allocated space in loops. Their
solution however does not consider higher levels of reuse in nested loops. They
also rely on the use of inlining in case the loop header and allocation site are not
within the same method, which is not practical in framework based applications
where the allocation may lie several levels deep in the call chain from the closest
enclosing loop.

Shankar et al [7] found that even a sophisticated escape analysis implementa-
tion in a high performance production JVM typically eliminates less than 10%
of allocations in component based applications. They experimented with the use
of aggressive guided inlining of regions with high object churn to enable the
JIT to detect more opportunities for stack allocation of objects. In contrast to
their approach we use static analysis approach to perform source code trans-
formations for object reuse, which enables us to detect additional opportunities
without incurring a runtime overhead.

Performance understanding techniques have been proposed [14,15] for guid-
ing programmers in eliminating excess temporaries that cannot be automatically
detected by runtime optimizers. For example Buytaert et al [15] identify loca-
tions where code refactoring can be applied to reduce object creations. While
their goal is similar to ours, they do not propose automated transformations.
Their detection scheme uses dynamic traces unlike our static analysis approach
where the dynamic analysis phase is only used to estimate potential benefits
from the conversion.

Other approaches that help reduce the impact of excess temporary objects
include advancements in memory management techniques for ensuring faster
7 [6] Also reports results of experiments conducted across a whole range of JVM set-

tings (heap size, GC policies) to show that performance degradation from excessive
object allocation in this case is not a mere artifact of GC algorithm or JVM param-
eters.
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reclamation or reuse of temporary objects, e.g taking better advantage of allo-
cation phases in the application [16], or combining the benefits of explicit ob-
ject release [17,18,8] with garbage collection or scoped batch reclamation. Our
technique is complementary to these efforts as it avoids the creation of objects
wherever possible.

Zhao et al [6] analysed the implications of object allocation on scalability and
performance. They proposed the notion of an allocation wall that limits multi-core
scalability programs that perform high volumes of temporary objects. For their
experimentation they perform manual code modifications to implement a form of
object pooling for objects that are allocated very frequently and showed signifi-
cant benefits for SPECjbb and SPECjvm derby. In their paper they observe that
the process of manually converting an application for object reuse is time consum-
ing and hence impractical for application developers to use. Our work succeeds in
efficiently automating such optimizations for collection objects and strings.

Analysis and measurement of software bloat. Mitchell, Sevitsky and Srinivasan
[19] define metrics based on modeling runtime information flow to classify and
characterize the nature and volume of data transformations executed, though
these measures have not been automated till date. The notion of data structure
health signatures proposed by Mitchell and Sevitsky [20] has been used very
effectively in characterization and automated measurement [21] of Java memory
bloat in long lived heap objects. This is a relative measure of total memory bytes
consumed by actual data vs associated representational memory overhead. For
some categories of bloat, including the problem of temporary objects bloat which
we address in this paper, an explicit model may not always be available for dis-
tinguishing overhead from necessary data or activity. Researchers have therefore
used different measures of excesses like excessive volumes of temporary objects,
data copies and heavy object creation costs to recognize the presence of bloat.
For example, Xu et al use an instrumented JVM to summarize chains of runtime
data copies [22] and an abstract thin dynamic slicing technique to identify data
structures with high cost-benefit ratios [23]. Most approaches for detecting bloat
have employed dynamic analysis. [24] applies a static analysis scheme to detect
inefficient uses of container objects, particularly for underpopulated and over-
populated containers. All of these techniques are focused on aiding the process
of reducing bloat, however, they are intended for interpretation by experts, not
as fully automated solutions to de-bloat software like ours.

Dufour et al [14] apply blended static and dynamic analysis techniques to run-
time traces for characterizing the usage of temporaries. Their results show that
a significant number of temporary objects may be used several call levels away
from their allocation site, which makes them particularly difficult to optimize.
This motivates the need for techniques like ours.

7 Conclusion and Future Work

We presented an analysis technique to automatically detect and convert oppor-
tunities for object reuse in Java programs where there is significant potential
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for benefit from reuse. This is a challenging problem because an object may be
reusable in loops that may be several levels above it in the callgraph. Further,
as our empirical results show, very often objects may be reusable only along
certain paths and not others. In this situation a conservative analysis can miss
most opportunities for reuse. We are able to improve precision in such situations
by checking whether the conditions required for the correctness of our runtime
transformation are met in the event these paths share the same loop header.
Our results show that this solution can detect such opportunities in real large
programs and reduce the generation of temporary objects significantly.

Further improvements in scalability and precision of our solution can be at-
tained by incorporating feedback from our dynamic analysis to focus static anal-
ysis on the allocations sites that are likely to yield most benefits. Other future
work includes extending the applicability of our automated transformation to
other types of objects and using a combination of byte code manipulation and
JVM level optimizations to improve the performance of the transformed code.
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Abstract. We have identified a large class of Java errors that are caused
by method calls becoming trivial since their formal and actual argument
types are unrelated. A classical example is a call to the equals method on
a String object with an Integer argument, which always returns false, but
similar situations occur for many other methods in common frameworks.
Typically, the programmer has provided the wrong arguments and meant
for the call to have a non-trivial effect. We give a thorough analysis of
the bug patterns found through our experiments which show that such
errors are not only frequent in development code but also persist in pro-
duction code. We formalize the notion of relatedness between actual and
formal types and capture this in an extension of the Java 1.6 type sys-
tem. The resulting compiler, which is fully implemented and backwards
compatible, performs a static analysis that is modular and efficient.

Keywords: Java 1.6, dead code, bug finding, type checking.

1 Introduction

Certain method calls in Java are legal according to the type rules but are most
likely errors, since the types of the actual and formal arguments are actually
unrelated. A classical example is a call to the equals method on a String object
with an Integer argument. The call is legal, since the formal argument type of
the method is Object, but the result will always be false. It is unlikely that the
programmer intended to perform this trivial call, and from a software engineering
perspective it should be flagged by the compiler.

We have identified a large class of similar errors that are caused by unrelated
types inducing unintended trivial calls. These situations are invisible to the com-
piler and often do not cause runtime errors either. Instead, the calls silently fail
to perform a desired effect and thus degrade either the efficiency or the pre-
cision of the computation. A completely disastrous example involves dynamic
programming, where the table lookup always fails because the get method in a
Map is called with the wrong type of argument and thus always returns null.
This will bypass the whole optimization and instead of the intended polynomial
speed-up leave the implementation with an exponential complexity.

Our experiments show that such errors are common in code during develop-
ment and even persist in production code like OpenJDK, Apache and Eclipse. We
have performed a thorough analysis of the bug patterns which often
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involve long and confusing dot sequences, like a.b.c.d, where the programmer gets
lost in the class hierarchy, or makes failed attempts to use the type checker for
refactoring.

We extend the Java type system with a notion of related types expressed
through annotations which allow the programmer of a library to annotate meth-
ods with requirements for relatedness of formal and actual argument. For in-
stance give the equals method on String the signature equals(~String) to declare
that the method has only a trivial effect if called with an argument that is not a
String instance. Invocations of such methods are then checked to ensure that the
argument could be of the intended type. Note that client code need not change
for this to work. The annotations added to the library code will alone enforce
the added checks.

Our type system is not conventional. Normally type systems are conservative
but ours is permissive. A conservative type system would ensure that there are
no such trivial call sites by disallowing all call sites where the formal and actual
types are potentially unrelated. Such an approach would break existing code in
that it would render otherwise valid code invalid. In contrast, our type system
ensures backward compatibility by only disallowing call sites when we are sure
that the formal and actual types are unrelated. We therefore do not provide any
guarantees that all trivial calls are disallowed but as our experiments show all
the disallowed calls do cause errors.

Since the annotations are built into the type system the judgements are based
on an open-world assumption. This is in contrast to the tool FindBugs, which
detects some of the bugs we are interested in, but which works in a closed-world
assumption and where the frameworks that are considered are hardwired by tool
developers.

The rest of this article is structured as follows: In Section 2 we define the
targeted class of errors and in Section 3 we discuss related work. In Section 4
we formally define relatedness, in Section 5 we introduce the related type and
in Section 6 we give the formal rules for integrating related types into Java.
In Section 7 we present our experiments with related types. In Appendix A we
present in detail some of the errors from our experiments.

2 Unintended Dead Code

A class of errors in Java can be categorized as unintended dead code bugs. In this
section we explore such common errors and give a precise definition of the error
class.

The equals method on the topmost Java class Object has the signature boolean
equals(Object) so the following is valid Java:

void m(String str, Integer num) {
if (str.equals(num)) {

// dead code
}

}
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The JavaDoc [16] for equals on String states that the “result is true . . . only if
the argument is not null and is a String object . . . ”. Since the argument num is
either null or an Integer object, and thus not a String object, the invocation will
always return false and the body of the if-statement will never be executed. It
is dead code.

Not only the equals method is subject to unintended dead code bugs. Several
methods in the Java collection framework exhibit similar problems. For instance
calling the boolean contains(Object) method on a Collection〈E〉 instance can give
a similar situation where the call always returns false1:

boolean m(List〈String〉 list, Integer num) {
return list.contains(num);

}
These errors cannot be caught within the current Java type system nor through
the introduction of a self-reference type like in [3,23]. Consider these variables:

String aString; Number aNumber; Integer anInteger;
List〈?〉 someList; ArrayList〈Integer〉 intList; LinkedList〈Integer〉 intLinkedList;

For these variables, the following expressions should type check as follows:

anInteger.equals(aNumber); // should be type correct
aString.equals(aNumber); // should fail
intList.equals(intLinkedList); // should be type correct
someList.contains(aString); // should be type correct
intList.contains(aNumber); // should be type correct
intList.contains(aString); // should fail

For the typing of equals and contains we have the following options

class Object〈E〉 { interface List〈E〉 {
boolean equals1(Object e); boolean contains1(Object e);
boolean equals2(Self e); boolean contains2(E e);

} }
where equals2 is typed using the self-reference type, Self, which is not part of the
current Java type system. None of the above gives the wanted behaviour since
we would have the following results:

anInteger.equals2(aNumber); // type error: Number �<: Integer
aString.equals1(aNumber); // type correct
intList.equals2(intLinkedList); // type error: LinkedList〈Integer〉 �<:ArrayList〈Integer〉
someList.contains2(aString); // type error: String �<: capture-of-?
intList.contains2(aNumber); // type error: Number �<: Integer
intList.contains1(aString); // type correct

Even though this class of errors is related to the static type of the arguments
it is not the usual kind of typing errors. The program breaks at neither compile-
time nor runtime. On the contrary, implementations of such methods as equals

1 Except in the special case where list contains a null element and num is null; an
intention which the static types of list and num do not express.
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and contains should always handle the case when the given object is of an “un-
related” type. Such errors are hard to discover since we need to observe their
undesired effects at runtime. Often we need to find the error cause through de-
bugging only to observe that the compiler has call site information that enables
us to detect the error: For instance in the invocation str.equals(num) the com-
piler knows the static type of str to be String and of num to be Integer, and we
know that a String can never be equal to an Integer.

We observe that many such call sites are trivial call sites defined as follows.

Definition 1 (Trivial Call Site). We define a trivial call site as a method
invocation for which all runtime calls have no side effects and returns the same
fixed value, if any, as a consequence of the relation between the static types of
the arguments and the receiver. In this definition we regard throwing a fixed
exception, checked or not, as returning a fixed value.

A trivial call site is thus the cause of an unintended dead code bug in that it
renders the method invocation itself or the handling of its return value obsolete.

Much like the rule for reference equality in Java [12, §15.21.3] our new typing
does not provide additional type safety properties but instead disallows usage
that is most likely erroneous. For instance in this method

boolean m(String s, Integer i) {
return s == i; // illegal

}

the expression s == i is illegal and this is neither because the expression would
result in a runtime error nor that the result will always be false2 but because,
given the static types of the operands, the equality test is most likely unintended.

In the same way our type system performs an approximation of trivial call
sites in order to disallow calls that most likely cause unintended dead code bugs.
On the assumption that all methods annotated with related types are in fact
trivial on unrelated argument types we thus state the following conjecture for
our extended type system:

Conjecture 1. All call sites that are disallowed through the use of related types
are trivial in all possible environments and are therefore most likely the cause
of an unintended dead code bug.

3 Related Work

In the FindBugs [22] analysis tool two so-called detectors look for similar unin-
tended dead code bugs. The EC detector checks the correctness of equals calls
which includes checking for “relatedness” between the receiver and argument
types. The notion of relatedness is not formalized but resembles relatedness as
defined in this article in that it looks for relations not only at the type level,
for instance between Integer and String, but also at the type argument level, for
2 Both values could be null.
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instance between List〈Integer〉 and List〈String〉. A key difference is that FindBugs
uses a closed world assumption thus giving only warnings when no two types
proving the relation were found. Our related types operate under an open world
assumption, giving errors when types are unrelated and providing warnings when
types are only semi-related.

The GC detector in FindBugs checks for the use of “appropriate” types in
calls to the generic collection classes. An “appropriate” type is not formalized
but seems close to the relatedness of the EC detector. The lack of a formalized
notion of relatedness seems to be the reason why we found two warnings with
related types not found by FindBugs (See Section 7 and A.3). In these cases,
calls to collection classes were made with unrelated arguments that would have
been detected if the EC rules for relatedness were used.

The main difference though between FindBugs and our approach is that Find-
Bugs is hardwired to specific methods in the standard Java API whereas related
types can be used whenever the programmer sees fit. There are for instance sev-
eral other collection frameworks [9,27,2,7] that could benefit from an improved
handling of argument relatedness. With related types the programmers are given
the tools to improve their own code instead of having to rely on an external anal-
ysis tool to be updated to their benefit.

Several tools exist for detecting dead code [25,8,13,10,11,19]. None of these
base their detection on the semantics of individual call sites and they are there-
fore unable to detect unintended dead code bugs.

In the Java language extension MultiJava [6] the binary method problem
[21,4] involving equals is addressed through multiple dispatch. MultiJava changes
the semantics of dispatch to invoke the most precise method given the runtime
argument types whereas we disallow the existing invocations that are trivial.

4 Relatedness

4.1 Related vs. Unrelated

Unintended dead code bugs arise because we invoke methods with ‘unrelated’
types making the call sites trivial. But what do we mean by ‘unrelated’? A
clear example is that String and Integer are ‘unrelated’ since they have only the
runtime value null in common but (un)relatedness can be more complicated, as
shown by this generic pair type:

class Pair〈X,Y〉 { X first; Y second; }

What values can an expression of static type Pair〈String,Number〉 evaluate to at
runtime? If the expression is not null we know that it must be an instance of a
subclass of Pair. Furthermore we know that the fields first and second must be
either null or a String object and an instance of a subclass of Number, respec-
tively. We see that subtyping not only at the top level but deeply through the
type arguments characterize the possible runtime values and that null occurs as
a possible value at all levels.
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Comparing Pair〈String,Number〉 to Pair〈Object,Integer〉 we see a possible com-
mon value in that first could be a String instance and second an Integer instance
and for this reason we will say that the two types are related. On the other
hand comparing Pair〈String,Number〉 to Pair〈Integer,String〉 we see that only if
first and second are null can the two types hold the same instance. When this is
the case we say that the two types have only trivial values in common.

That null is a possible common value does not provide any useful information
about the relation between two types. We are interested in whether or not two
types intend to hold the same runtime values. This is not something new to Java.
Consider these methods:

boolean m1(String s, Integer i) { return s == i; /* invalid */ }
boolean m2(List〈String〉 ls, List〈Integer〉 li) { return ls.equals(li); }

The test for equality in m1 is rejected in Java because String is not a subtype
of Integer or vice versa; even though both expressions could be null. In the same
spirit we regard the lists in m2 as being of unrelated types since they can only
exhibit equality through trivial values, i.e. by containing the same number of
mere null elements. This choice is also confirmed by our experiments, described
in Section 7, in which we have not encountered any need for such a trivial
relatedness.

In the following sections we formalize the notion of relatedness through two
relations on reference types, relatedness and value subtyping. The first relation
defines when to reference types are related and the second is a stricter relation
that defines the relation between the related types described in Section 5.

For the formalization and throughout this paper we use the formal definition
for Java types given by the grammar3 in Figure 1. We let T, S, and U range
of reference types, C, D, and E range over class/interface names, and A and B
range over argument types.

In the formalization of these relations we need three auxiliary functions:

1. The nm(T) function collects the class/interface names of the types that T
extends. For instance nm(Collection〈String〉) = {Collection, Iterable, Object}.

2. The bd(C〈A〉) function takes a class/interface type C〈A〉 and returns the
same class/interface type in which the type arguments have been replaced
by their reference bounds defined as follows: For ? super T the reference
bound is T. For ? extends T the reference bound is T&U where U is the
bound of the type variable that ? extends T replaces. For a related type ~T,
presented in Section 5, the reference bound is T, and for all other types
T, bd(T) is the identity function. This means that we for instance have
bd(Map〈? extends Number,? super String〉) = Map〈Number,String〉.

3. The sa(D, C〈A〉) function computes the list of type arguments of the D super
type of C〈A〉. For instance sa(Comparable, Integer) = [Integer] since Integer
implements Comparable〈Integer〉.

3 We use the barred notation, T, for a list or set of elements T1, . . . , Tn for some n ≥ 0.



440 J. Winther and M.I. Schwartzbach

Types τ ::= N normal type
| ⊥ null type

Normal Types N ::= π primitive type
| T reference type

Reference Types T ::= C〈A〉 class/interface type
| N[] array type
| V type variable
| T&T intersection type

Argument Types A ::= T reference type
| ? extends T wildcard extends
| ? super T wildcard super

Fig. 1. Grammar for Java Types

4.2 Relatedness

Two reference types, T and S, are deemed related if there exists a non-trivial
runtime value that can be viewed as an instance of both T and S. The relatedness
relation is of the form Δ � T ∼ S where Δ is a type environment containing the
bounds of the type variables. The relation is defined through the inference rules
shown in Figure 2. For brevity, the symmetric versions of the asymmetric rules
have been omitted.

The rules R-ArrBase, R-ArrPrim, and R-ArrRef define the relatedness for
array types. The latter defers the relatedness of non-primitive array types to
their base types, and likewise the rule R-TypeVar defers the relatedness of type
variables to their bounds.

The rule R-ClsInt defines the relatedness for class/interface and intersection
types. The rule has 3 premises. First, the first two lines in the premise define
that there must be a most specific class declaration between the two types.
For instance the most specific class declaration between Number and Integer is
Integer whereas Number and AbstractCollection〈E〉 have no most specific class
declaration as they are both classes but neither is a subclass of the other. All
interfaces have a most specific class declaration, namely Object.

Secondly, the third line in the premise defines that if one of the two types
is final then it must be a subdeclaration of all declarations. Note that this is
not the same as requiring that the final type must be a subtype of the other
type. For instance, the class final class NumList implements List〈Number〉 { . . . }
is related to List〈Integer〉 even though NumList is not a subtype of List〈Integer〉.
This is because a NumList instance might contain only Integer elements and they
therefore have a common runtime value.

Thirdly, the fourth line defines that for all common supertypes of the two
class/interface types the bounded type arguments must be related. For
instance List〈Number〉 and Set〈Integer〉 are subtypes of Collection〈Number〉 and
Collection〈Integer〉, respectively, and are related because Number and Integer are
related. Similarly Set〈String〉 and Set〈Integer〉 are not related since String and
Integer are not related.
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T ∈ {Object, Cloneable, Serializable}
Δ � τ [] ∼ T

(R-ArrBase)

Δ � π[] ∼ π[] (R-ArrPrim)

Δ � T ∼ S

Δ � T[] ∼ S[]
(R-ArrRef)

Δ(V) = U Δ � U ∼ S

Δ � V ∼ S
(R-TypeVar)

C1 = classOf (T) C2 = classOf (S)
i ∈ {1, 2}. nm(Ci) ⊇ nm(C1) ∪ nm(C2)

C final ∈ nm(T) ∪ nm(S) ⇒ ∀C′ ∈ D. C′ ∈ nm(C)

∀C ∈ nm(T) ∩ nm(S). T′ = sa(C, bd(T)), S′ = sa(C, bd(S)). ∀i. Δ � T′
i ∼ S′

i

Δ � T ∼ S
(R-ClsInt)

classOf (T) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C if T = class C〈A〉
Object if T = interface C〈A〉
Ci if T = S&U, C1 = classOf (S), C2 = classOf (U),

and nm(Ci) ⊇ nm(C1) ∪ nm(C2)

Fig. 2. Rules for relatedness, Δ � T ∼ S

Determining relatedness between two types is inherently cyclic. Since the last
rule, R-ClsInt, recursively requires the relation on the bounded type arguments,
the result is self-dependent on self-bounded type variables. For instance, checking
Δ � Enum〈X〉 ∼ Enum〈Y〉 with Δ(X) = Enum〈X〉 and Δ(Y) = Enum〈Y〉, the
R-ClsInt rule requires Δ � X ∼ Y which in turn, through R-TypeVar, requires
Δ � Enum〈X〉 ∼ Enum〈Y〉. This cyclic dependency is easily resolved by adding
cycle detection to the algorithm and coinductively assuming the relation when
a cycle is detected.

The ∼ relation is symmetric but not transitive. The top type Object is related
to all types, so we have Integer ∼ Object and Object ∼ String but Integer � String
since Integer and String have no common most specific class declaration.

4.3 Value Subtype

A type T is a value subtype of S is there exist expressions of static type S
which evaluate to values of type T. This relation is a strict superset of ordinary
subtyping on non-null reference types.

The value subtype relation is of the form Δ � T ⊂: S where Δ is a type
environment containing the bounds of the type variables. The inference rules
are shown in Figure 3.

The VS-ArrBase, VS-ArrPrim, and VS-ArrRef rules define value subtyping
like ordinary subtyping, with VS-ArrRef deferring value subtyping covariantly
to the array base types.
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S ∈ {Object, Cloneable, Serializable}
Δ � τ [] ⊂: S

(VS-ArrBase)

Δ � π[] ⊂: π[] (VS-ArrPrim)

Δ � T ⊂: S

Δ � T[] ⊂: S[]
(VS-ArrRef)

Δ(V) = U Δ � T ⊂: U

Δ � T ⊂: V
(VS-TypeVarR)

Δ(V) = U Δ � U ⊂: S

Δ � V ⊂: S
(VS-TypeVarL)

nm(T) ⊇ nm(S)

∀E ∈ nm(S). T′ = sa(E, bd(T)), S′ = sa(E, bd(S)). ∀i. Δ � T′
i ⊂: S′

i

Δ � T ⊂: S
(VS-ClsInt)

Fig. 3. Rules for value subtyping, Δ � T ⊂: S

For type variables the rules VS-TypeVarL and VS-TypeVarR define the value
subtype relation to be deferred to the type variable bounds. Consider a type
variable X with bound Number. X can hold the same values as Number and X
is therefore a value subtype of any type of which Number is a value subtype.
Likewise any type which is a value subtype of Number is a value subtype of X.

The last rule, VS-ClsInt, defines value subtyping for two class/interface or
intersection types, T and S. Here we have two requirements. The first line in
the premise defines that the type declarations of T must extend the type dec-
larations of S. For instance nm(List〈Integer〉) ⊇ nm(Collection〈? super Number〉)
because List extends Collection. The second line in the premise defines that for
all common super type declarations of T and S, all type argument bounds of
the corresponding supertypes must be pair-wise related under the value sub-
type relation. For instance Collection is a common super type declaration of
List〈Integer〉 and Collection〈? super Number〉 with super types Collection〈Integer〉
and Collection〈? super Number〉, respectively. The bounds of the type arguments,
here Integer and Number respectively, are required to be related by value subtyp-
ing, which they indeed are. This yields List〈Integer〉 ⊂: Collection〈? super Number〉
which expresses that Collection〈? super Number〉 can hold a list of elements all
being Integer instances.

Just like relatedness, determining value subtyping between two reference types
is inherently cyclic. Again the cyclicity is resolved coinductively by assuming
value subtyping on self-dependency. Unlike the subtype relation in Java, we
know the value subtyping relation to be decidable. The left and right terms are
never swapped which implies decidability, cf. [17, Section 5.1].

As one might expect, the value subtype relation is transitive as stated by the
following theorem:
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Theorem 1 (Value Subtype Transitivity). For all types T, S, U and envi-
ronments Δ, if Δ � T ⊂: S and Δ � S ⊂: U then Δ � T ⊂: U.

Proof. By induction in the structure of T and S.

4.4 Relatedness and Value Subtyping

The value subtyping relation is a subset of relatedness and thus value subtyping
implies relatedness. Although relatedness is not transitive in itself, we have the
weaker property of transitivity through the value subtype relation as stated in
the following theorem.

Theorem 2 (Weak Transitivity). For all types T, S, U and environments Δ.
If Δ � T ∼ S and Δ � S ⊂: U then Δ � T ∼ U.

Proof. By induction in the structure of S.

Note that this transitivity is directional: If T is a value subtype of S and S and
U are related, then T and U might not be related: FutureRunnable〈String〉 ⊂:
Runnable and Runnable ∼ FutureRunnable〈Integer〉 but FutureRunnable〈String〉 �

FutureRunnable〈Integer〉 due to their unrelated type arguments String and Integer.
Theorem 2 defines the way relatedness can be composed and several type rules

described in Section 6 are based on this property.

5 Type Annotations

5.1 The Related Type

To incorporate the notion of relatedness into Java we extend the set of reference
types [12, §4.3], here called original reference types, with the related type ~T 
U
for every original reference type T and U. The grammar for Java types in Figure 1
is therefore extended to include related types by replacing reference types with
the grammar shown in Figure 4. For a related type ~T
U, we call T the intended
type of ~T 
 U and U the bound of ~T 
U. The bound is described in Section 5.4
and if omitted we take the bound to be Object. For instance ~String is the type
“related to String” with intended type String and implicit bound Object.

A related type can be used anywhere a type variable can be used, except in
the throws clause of a constructor/method declaration. Declaring that a method

Reference Types T ::= T0 original reference type
| ~T0 � T0 related type

Original Reference Types T0 ::= C〈A〉 class/interface type
| N[] array type
| V type variable
| T&T intersection type

Fig. 4. Grammar for Reference Types with Related Types
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throws a type related to T would be the same as declaring that it throws Throw-
able as we have no other certain knowledge about what might be thrown.

The most interesting usage of a related type is as an argument type. By
declaring a method with signature m(~String) we state that the invocation is
trivial if called with a type not “related to String”. In other words the intended
argument type is String. Note that it is up to the implementer not to declare
an intended type that is too strict since no checks are made to ensure that the
method implementation is actually trivial on unrelated argument types.

What is checked is that no call sites are trivial, i.e. that the argument types
have possible non-trivial values at runtime. For instance the method m(~String)
will be applicable only if the argument type is related to the intended argument
type String, that is if the argument could be a String instance.

5.2 Examples of Use

The related type annotation can be used for instance to improve the signature
of equals on String to boolean equals(~String). As mentioned earlier, the JavaDoc
implies this contract on the argument type; that it is intended to be a String
instance. Similarly equals on Integer can be refined to boolean equals(~Integer),
on Long to boolean equals(~Long) and so forth.

Also many interfaces redeclare equals to refine the intended argument type:
Collection〈E〉 implicitly refines its intended argument type to Collection〈E〉, List〈E〉
states that equals must return “true . . . only if the specified object is also a
list. . . ” and similarly for the Set〈E〉 and Map〈K,V〉 interfaces. All equals signa-
tures can therefore be improved by refining the argument types to ~Collection〈E〉,
~List〈E〉, ~Set〈E〉 and ~Map〈K,V〉, respectively.

In the Java collections framework we find several methods other than equals
that are trivial on unrelated arguments. For instance contains and containsAll
on Collection〈E〉 could be refined to use ~E and Collection〈? extends ~E〉, respec-
tively. Similarly for remove, removeAll and retainAll on Collection〈E〉, indexOf
and lastIndexOf on List〈E〉, and containsKey, containsValue, get and remove on
Map〈K,V〉.

It is not only in the Java Standard Library that we can make use of related
types. There are several collection frameworks like Javolution [9], fastutil[27],
Joda Primitives[7], and the Google Collections Library[2] for which the use of
related types would improve the precision of the interfaces.

For instance the Google Collections Library contains a multimap interface
com.google.common.collect.Multimap〈K,V〉 with methods

boolean containsEntry(Object key, Object value);
boolean containsKey(Object key);
boolean containsValue(Object value);
boolean remove(Object key, Object value);
Collection〈V〉 removeAll(Object key);
. . .

for which the use of type ~K for all key arguments and ~V for all value arguments
would be appropriate.
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5.3 Related Types and Variance

The use of a related type ~T as a type argument should not be confused with
the use of wildcards. For instance List〈~Number〉 is a list of elements that are
assumed to be of a type related to Number. We can add values of a static type
related to Number to the list but we cannot add a value of an unrelated type such
as for instance a String object. Note that we only assume but do not guarantee
that elements are of a type related to Number. We could for instance hold a String
instance in an expression of static type Serializable and therefore be allowed to
add it to the list.

For this reason, unlike wildcards, we have no variance on related types.
List〈Integer〉 is not a subtype of List〈~Number〉 as this will allow contamina-
tion of the list elements [15,26]. Using wildcards, we do however have that both
List〈Integer〉 and List〈Object〉 are subtypes of List〈? extends ~Number〉. As de-
fined in Section 6 we have that since both Integer and Object are related to
Number these are subtypes of ~Number; it makes sense to assume that the ele-
ments of such lists could be Number instances.

5.4 Bounds on Related Types

In the previous examples the related types replace the argument type Object but
related types can have other upper bounds. Consider this example:

class A〈X extends Number〉 {
X getX() { . . . }
long m(A〈~Long〉 n) { return n.getX().longValue(); }

}

Here, the type variable X is declared with the bound Number. This means that
in the method m we should at least know that getX() returns a Number instance,
if not null. This implies that the related type ~Long must carry the upper bound
Number, here implicitly given by the bound of X.

Since the related types must always implicitly carry bounds we can extend
the expressiveness of the formalism by allowing for explicit bounds without ad-
ditional complexity. Using the syntax ~T extends S we can declare a related type
to have the intended type T and upper bound S.

A use case for related types with bounds is the definition of an additional
equivalence relation on a type subset. For instance defining a method equalsRaw
method on a type hierarchy could yield the following interfaces:

interface Type {
boolean equalsRaw(Type other);

}
class ArrayType implements Type {

boolean equalsRaw(~ArrayType extends Type other) { . . . }
}
class ClassType implements Type {

boolean equalsRaw(~ClassType extends Type other) { . . . }
}
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Here Type declares its equalsRaw method to take an argument of type Type but
the subtypes ArrayType and ClassType refine their intended arguments to be
related to their respective types but with a bound of type Type. This can be
generalized to larger scenarios.

6 Type Rules

In this section we formally define the rules that enable us to integrate related
types into the Java type system.

Wellformedness. The wellformedness of a related type ~T 
 U is defined by the
WF-Related in Figure 5. The only requirement is that the bound, U, is related
to the intended type, T. This ensures that the type has a non-trivial value set.
For instance, the type ~String 
 Integer is badly formed since no non-null value
can both subtype Integer and be related to String.

Type Erasure. The type erasure [14][12, §4.6] of a type T is used for compatibility
with pre-generic versions of Java and the encoding of .class files. We define the
type erasure of a related type ~T
U to be the type erasure of U. This means that
for instance the refinement of boolean equals(~String) on String will have the same
method descriptor [18, §4.3.3] as the original method boolean equals(Object),
namely4 (Ljava/lang/Object;)Z. In context of the example in Section 5.4 this
means that the method descriptor for the equalsRaw methods on Type, ArrayType
and ClassType are all the same, namely (LType;)Z. This definition thus ensures
the requirement for binary compatibility as defined in [12, §13.2].

Intersection. The definition of intersection of two types, T and S, denoted T&S,
found in [12, §4.9] is extended to include related types by the rules in Figure 6
where T&S =Δ U defines the intersection of T and S under type environment Δ
to be U. The intersection of types occur in Java during capture [12, §5.1.10] and
during type inference [12, §15.12.2.7].

We have two rules that define the intersection on related types. The first rule,
I-Reference, computes the intersection of an original reference type, S, and a
related type, ~T 
 U. The resulting type is a new related type, ~T 
 (U&S), with
the same intended type as ~T 
 U but with the new bound U&S. For instance
in the example in Section 5.4 the intersection of Number and ~Long 
 Object is
~Long 
 Number.

The second rule, I-Related, defines the intersection between two related
types. This is defined as a new related type whose intended type is the intersec-
tion of the intended types and whose bound is the intersection of the bounds.

Subtyping. Related types are integrated into the Java subtype relation through
the extension shown in Figure 7. The subtyping judgement is of the form Δ �
T <: S, concluding that under the type environment Δ, the type T is a subtype
of S. Subtyping must preserve the existing preservation and progress properties
of the type system [14,5]. Because of the override rules described later in this
section we cannot always rely on the relatedness information of a related type.

4 The notation for method descriptors as used within .class files, defined in [18].
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Δ � T ∼ U

Δ � ~T � U ok
(WF-Related)

Fig. 5. Rules for wellformedness

Δ � T ∼ S

(~T � U)&S =Δ ~T � (U&S)
(I-Reference)

(~T � U1)&(~S � U2)
=Δ ~(T&S) � (U1&U2)

(I-Related)

Fig. 6. Rules for intersection

Δ � U <: S

Δ � ~T � U <: S
(S-Base)

Δ � T <: U Δ � T ∼ S
Δ � T �⊂: S ∧ Δ � S �⊂: T ⇒ Warning

Δ � T <: ~S � U
(S-Related)

Δ � U1 <: U2 Δ � T ⊂: S

Δ � ~T � U1 <: ~S � U2

(S-Subtype)

Fig. 7. Subtyping rules for related types, Δ � T <: S

Δ � T �: T (AR-Refl) Δ � ~T � U �: U (AR-Base)

Δ � T ∼ S S �= T ⇒ Δ � S �⊂: T

Δ � ~T � U �: ~S � U
(AR-Related)

Fig. 8. Argument type replacability rules, Δ � T �: S

Therefore we have no other certain knowledge about the runtime value of an
expression of static type ~T 
 U than it must be a U instance, if not null. The
only rule relating a related type to an original reference type is therefore S-Base,
subsuming ~T 
 U under U.

The second rule, S-Related, incorporates the notion of relatedness. An orig-
inal reference type, T, is a subtype of ~S 
 U if T is a subtype of U and if T is
related to S. If T is not a value subtype of S or vice versa, we say that T and S
are semi-related. For instance this is the case for Serializable and Cloneable; none
is a value subtype of the other but they may still have common value subtypes,
like for instance java.util.BitSet. If T and S are only semi-related a warning is is-
sued during type checking. As shown in Section 7, semi-related types sometimes,
but not always, indicate underlying errors and we therefore choose to generate
warnings instead of errors in these cases.

Theorem 2 gives us that relatedness extends through the value subtype re-
lation, that is, if T and S are related and S is a value subtype of U , then T
and U are related. The third rule, S-Subtype, uses this property to provide a
subtype relation between related types provided that the bound of ~T 
 U1 is
also a subtype of the bound of ~S 
 U2.
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Override Rules. We define a set of rules for argument type replacability which
are shown in Figure 8. The rules are of the form Δ � T �: S where Δ is a
type variable environment and T, S are types. The judgement T �: S states that
argument type T can replace S when overriding.

The first rule, AR-Refl, define all original reference types to be invariant in
overriding. Because of method overloading in Java [12, §8.4.9], it is not possible to
use contravariant argument types when overriding. Such a method would have a
different signature and would therefore no longer override the inherited method.
The definition of override-equivalent signatures in Java [12, §8.4.2] leaves room
for mixing raw and generic types but we omit this in AR-Refl for brevity.

The second rule, AR-Base, allows a related type, ~T
U, to replace its bound,
U. This is possible because the type erasure of ~T 
 U is U, thus ensuring binary
compatibility between the replacing and replaced methods.

The third rule, AR-Related, provides a sanity check for replacement between
related types, namely that they must not contradict each other. If the two in-
tended argument types are not related then no value type will subtype both,
i.e. what is intended for the one argument type is unintended for the other, and
vice versa. Such a replacement is therefore prohibited. Additionally, we require
that T is not a strict value supertype of S. The weak transitivity of Theorem 2
enables us to obtain the aforementioned unrelatedness indirectly. For instance
replacing ~String with ~Object and then again with ~Integer creates a contra-
diction between the first and the third intended argument type. This additional
requirement is thus a sanity check that makes it more difficult, though not im-
possible, to make contradicting replacements. To ensure binary compatibility
we furthermore require the two related types to have the same bound. Since
this rule allows for a replacement of for instance ~Serializable to ~Cloneable for
which relatedness of one does not imply relatedness of the other we can not rely
on relatedness in the subtyping rule S-Related.

As mentioned in Section 5.2, many types redeclare the equals method indicat-
ing that the intended argument type is a refinement of the intended argument
type of the overridden method. The argument type replacability enables such
a refinement. For instance on String we can use this replacability to replace
the argument type of equals from Object to ~String in correspondence with the
JavaDoc and the semantics of its implementation.

We can also gradually refine the argument. For instance java.util.Calendar sim-
ilarly states “The result is true . . . only if the argument is a Calendar object. . . ”,
which in turn is further refined by “The result is true . . . only if the argu-
ment is a GregorianCalendar object. . . ” as stated in the JavaDoc for the subclass
java.util.GregorianCalendar. Using the replacability both classes can replace the
argument types according to these specifications.

In the collection framework the replacability enables us to refine the equals
method between interfaces, e.g. from equals(~Collection〈E〉) on Collection〈E〉 to
equals(~Set〈E〉) on Set〈E〉 and even between interfaces and classes when refining
the equals method to equals(~Set〈E〉) on HashSet〈E〉, TreeSet〈E〉, and so forth.
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7 Experiments

We have implemented a full-scale Java 1.6 compiler which fully integrates re-
lated types into the type system. To test the added typing rules in a real world
environment, the signatures of several methods in the standard library have
been updated to use related types. A summary of the updated type annota-
tions is shown in Table 1 where the notation ∀M〈K,V〉 <: Map〈K,V〉 indicates
that the given method signatures have been updated for all subtypes M〈K,V〉
of Map〈K,V〉. The table also includes a ‘#hits’ column in which the number of
errors found in our experiments is shown for each annotation?.

Table 1. Updated type annotations

Host Method #hits

∀M〈K,V〉 <: Map〈K,V〉 boolean equals(~Map〈K,V〉) 0
boolean containsKey(~K) 5
boolean containsValue(~V) 2
V get(~K) 20
V remove(~K) 0

∀L〈E〉 <: List〈E〉 boolean equals(~List〈E〉) 4
int indexOf(~E) 0
int lastIndexOf(~E) 0

∀S〈E〉 <: Set〈E〉 boolean equals(~Set〈E〉) 0

∀C〈E〉 <: Collection〈E〉 boolean equals(~Collection〈E〉) 0
boolean contains(~E) 8
boolean containsAll(Collection〈? extends ~E〉) 0
boolean remove(~E) 1
boolean removeAll(Collection〈? extends ~E〉) 0
boolean retainAll(Collection〈? extends ~E〉) 0

∀T boolean equals(~T) 42

Two different kinds of code have been tested. Work-in-progress code is tested
to investigate the relation between immature code and unintended dead code
bugs. The expectation is that these errors occur frequently while code is being
written and that they are not easily detected after they have been introduced.
Production code is tested to investigate how unintended dead code bugs persist
in mature code. The expectation is that errors persist especially if they just have
a degrading but not fatal consequence on the application.

We have categorized the errors found during our experiments by cause and
effect. We have identified 3 different error causes shown in Table 2 and 8 effect
categories shown in Table 3. Examples of some of these error causes and effects
can be found in Appendix A.
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Table 2. Error Causes

Conceptual Identity
The intended and actual argument types are conceptually identical but type-
wise unrelated. For instance a Token class is (often) conceptually identical to
the String that it holds. The correct implementation (often) only needs a single
call to a getter-method or field access to obtain the String value.

Off-by-One
Similarly to Conceptual Identity, the correct implementation only needs a sin-
gle call or field access to obtain the intended value. Here there is no other con-
ceptual relation between the actual and intended argument types. This error
is common a result of asymmetric dotted sequences, like a.b.c.d.equals(a.b.c).

Conceptual Mismatch
The use of the actual argument type reveals a misunderstanding of its re-
lation to the intended type. There is no direct link between the two types.
For instance, testing for equality between a type declaration and a method
declaration.

7.1 Work-in-Progress Code Tests

To test work-in-progress code we have run our compiler on 102 compilers writ-
ten as part of the undergraduate compiler course [24] at Aarhus University. Two
versions of the compilers have been compiled. ‘Preliminary’ consists of the pre-
liminary source files handed in during the half year course and ’Final’ consists of
the updated source files handed in for the final deadline. The ’Final’ code thus
contains corrections of the ‘Preliminary’ code as well as features implemented
after the preliminary hand-in deadlines. The compilers are built on a common
skeleton provided at the beginning of the course and include generated files for
the lexer/parser. The code written by the students themselves is therefore only
one seventh of the total code base. The test results are shown in Table 4.

We found 65 errors and no warnings in the two versions of the 102 compilers
and none of the errors were false positives, that is, all trivial call sites caused
unintended dead code bugs. The compiler code involves intensive map lookups
and AST navigation with long dotted sequences like

id.getAncestor(PTypeDecl.class).getName().getText().equals(id.getText())

We therefore expect many errors, and compared to the production code tests,
described in Section 7.2, we find relatively many: 65 errors in 1662 KLOC vs. 14
errors in ≈ 4300 KLOC. Contrary to our expectations, though, the number of
errors didn’t decrease over time. As shown in Table 4(a), the number of errors
is nearly constant between the preliminary and final hand-ins.

To investigate this further we have looked at the cause and effect of the errors
correlated with their persistence. Errors found in both Preliminary and Final
are considered “persistent”, whereas errors found only in Preliminary or Final
are “removed” or “introduced”, respectively. What the ‘Total’ row of Table 4(b)
shows is quite interesting: 15 errors are persistent throughout the preliminary
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Table 3. Error Effects

Prevent Correctness
An error which makes the implementation incorrect. The effect of the incorrect
implementation is not restricted to a singular domain as is the case for the
remaining effect categories.

Prevent Optimization
An error which preserves the correctness of the program but makes the imple-
mentation less efficient or precise.

Prevent Cycle Detection
An error which prevents the intended detection of a cyclic structure, possibly
resulting in infinite loops or stack overflow.

Prevent Error Detection
An error which prevents the application from detecting an actual error state.

False Error Detection
An error which makes the application wrongfully detect an error state.

Unused Code
An error residing in code which is never run by the current implementation.

Unintended Dead Code
An error residing in code which is dead due to another unintended dead code
bug.

Null Pointer
An error which causes a NullPointerException in the following code. For instance
the unchecked use of the returned value of a trivial call to Map.get(~K).

and final versions, 18 errors have been removed before the final version, and 17
errors are introduced in the final version. In other words, it seems to be just as
likely that an error is never found, as it is found and removed, or (re-)introduced
during development.

As shown in Table 4(b) the simple error causes, Conceptual Identity and Off-
by-One, account for half of the errors, but it is more interesting that Conceptual
Mismatch account for the other half. The compilers are written while the stu-
dents learn the concepts behind compilers, and the large number of conceptual
mismatches shows just this; the lack of understanding of the concepts behind
the code leads to the mixing of unrelated types. Another interesting observation
regarding Conceptual Mismatch is the large number of removed and introduced
errors, indicating that the students try to fix the errors, but lack the conceptual
insight for doing so correctly.

The error effects shown in Table 4(c) are mainly prevention of application cor-
rectness with a few errors related to error detection in some form. Only a single
error prevent optimization which, in relation to the findings in the production
code shown in Section 7.2, can be explained by the code being work-in-progress:
This is the students initial implementation so the focus is on functionality and
correctness not on performance and precision.
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Table 4. Work-in-progress code experimental results

(a) Results Total KLOC Student KLOC Errors Warnings

Preliminary 6154 723 33 0
Final 6369 939 32 0

Total 12523 1662 65 0

(b) Error causes Persistent Removed Introduced Total

Conceptual Identity 7 6 2 14
Off-by-One 3 3 4 11
Conceptual Mismatch 5 9 11 25

Total 15 18 17 50

(c) Error effects Persistent Removed Introduced Total

Prevent Correctness 12 10 6 28
Prevent Optimization 1 1
Prevent Cycle Detection 6 6
Prevent Error Detection 4 1 5
False Error Detection 1 1
Unused Code 1 1 2
Unintended Dead Code 1 1 2
Null Pointer 3 2 5

7.2 Production Code Tests

To test production code we have run our compiler on several versions of Open-
JDK6 [20] and parts of the Eclipse [11] and Apache [1] projects. Since these
projects are mature we do not expect many errors but as shown in Table 5 some
errors are found.

Eight different builds of OpenJDK6 from build 05 of February 2008 to build
20 of June 2010 were tested, each consisting of approximately 2600 KLOC each.
Through our annotations we found 6 errors and 4 warnings. Of these, none are
false positives and 2 are new to FindBugs. All six errors and two of the warnings
are persistent through all 8 builds. The last two warnings, those not found by
FindBugs, are introduced in build 17 through an inconsistent introduction of
new features (see Section A.3).

In the parts of Eclipse and Apache that were tested, 5 errors and 2 warnings
are found. None of the five errors are false positives but the two warnings are. One
of the warnings is a test case testing for false on a call to equals, i.e. the triviality
was intended. The other warning is a case of testing objects of two seemingly
unrelated interfaces for equality. Inspection of the implementing classes for these
two interfaces reveals a single class which implements both interfaces, confirming
our choice to make a distinction between errors and warnings in the S-Related

subtyping rule in Figure 7.
Inspecting the identified error causes in Table 5(b), we see that most errors are

either Conceptual Identity or Off-by-One which stem from simple deviations be-
tween the intended and actual code. As one might expect, Conceptual Mismatch
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Table 5. Production code experimental results

(a) Results KLOC Errors Warnings

OpenJDK6 (build 05-20) ≈ 2600 6 4
Apache projects 960 2 1
Eclipse IDE 710 3 1

(b) Error causes Errors Warnings

Conceptual Identity 5 1
Off-by-One 5 3
Conceptual Mismatch 1 0

(c) Error effects Errors Warnings

Prevent Correctness 3.5 1.5
Prevent Optimization 4.5 1.5
Prevent Error Detection 1 0
Unused Code 2 0
Unintended Dead Code 0 1

is more rare, indicating that the implementers have a deeper understanding of
the concepts behind the code.

The identified error effects in Table 5(c) show a relatively large number of
Prevent Optimization compared to the work-in-progress code. These errors are
harder to detect since the implementation provides a correct result but only of
an inferior quality, either as a less precise result, longer execution time or larger
memory usage. It is therefore not surprising that such errors persist even in
mature code, as is the case here.

8 Conclusion

We have shown that Java’s type system can be extended to capture a formal
notion of relatedness among types and thus detect unintended dead code bugs.
The required annotation burden is quite light and seems to capture invariants
that are often already informally expressed in JavaDoc comments. For a full
evaluation of the benefits of related types, though, we still need to do experiments
to show to which extent this extended type system can reduce the time spent
on debugging by flagging these errors at the time they are made.

Currently we do not check whether a method declared to be trivial on unre-
lated input is actually trivial. Future work lies in developing an analysis that
will enable us to ensure this intended correlation.

The precision of our analysis seems good, but could actually be improved by
an asymmetric version of relatedness. For instance expecting List〈Integer〉 it is
valid to provide an instance of class NumList extends List〈Number〉 { . . . }, since
it could contain only Integer elements. On the other hand, expecting a NumList
it makes no sense to provide a List〈Integer〉 since it can never at runtime hold a
NumList instance.



454 J. Winther and M.I. Schwartzbach

The method override rules are often used to emulate a self reference type,
like MyType in LOOJ [3] or This in FGJstc[23]. In an extension of our type
system including such a self reference type, Self, we could for instance express
the signature of equals more directly as equals(~Self) and thus only explicitly
refine the argument in cases like equals(~List〈E〉) on ArrayList〈E〉.
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A Error Examples

In this section we present in detail a few of the errors found, taken from both
the work-in-progress and production code and chosen to exemplify some of the
different causes and effects of the unintended dead code bugs that our approach
can detect.

A.1 Conceptual Identity: Lookup

A common error found in the code from the compilation course is shown below.
In these compilers we use environment maps to provide lookup functionality for
type members. For instance, each type declaration holds a field environment,
mapping field names to field declarations. The keys are strings but from the
AST the identifiers are provided through a TIdentifier token class. Conceptually
the TIdentifier is the string that it holds, but implementation-wise it is not equal
to the string. At the indicated line below, the field environment is checked for
containment of the unrelated identifier id, thus preventing the correctness of the
lookup method. Later in the same line we have another error in the attempt to
return the mapped field declaration. This second error never occurs at runtime as
a consequence of the first error; an effect we categorize as Unintended Dead Code
in Table 3. The code id should in both cases correctly have read id.getText().

public class PTypeDecl extends Node {
public Map〈String,AFieldDecl〉 field env = . . .

}
public class Disambiguation extends DepthFirstAdapter

public Node lookupName(TIdentifier id) {
PTypeDecl decl = findNode(id, PTypeDecl.class); . . .
if (decl.field env.containsKey(id)) return decl.field env.get(id); . . .

} . . .
}

A.2 Conceptual Identity: Build Hierarchy

An example of an unintended dead code bug with a more subtle effect is shown in
the code below. The code is from a compiler phase where the class hierarchy must
be computed for each class. The students have wisely chosen to compute this
hierarchy only once for each class, instead of the näıve approach of computing the
hierarchy repeatedly. For this, they have chosen to store all previously computed
class hierarchies in the classHierarchy map, using the name of the class as key.
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public final class AClassTypeDecl extends PTypeDecl {
public TIdentifier getName() { . . . } . . .

}
public class HierarchyCheck extends DepthFirstAdapter {

public static Map〈String,LinkedList〈AClassTypeDecl〉〉 classHierarchy = . . .
public static void buildHierarchy(AClassTypeDecl class decl) {

if ((classHierarchy.get(class decl.getName()) == null)) {
. . . // build hierarchy for class decl

}
} . . .

}

At the indicated line in the code, this map is checked to see whether the class
hierarchy has already been computed for the given class decl or if it should be
computed now. Unfortunately, the class decl.getName() call returns the unre-
lated TIdentifier holding the name of the class, making this call-site trivial. As
a consequence, the class hierarchy is computed repeatedly, and the intended op-
timization is therefore prevented. This error is, as one might expect, persistent.
The implementation produces the correct result, so there is no obvious runtime
behavior to flag the error. The code class decl.getName() should correctly have
read class decl.getName().getText().

A.3 Off-by-One: ModelChannelMixer vs. SoftChannelMixerContainer

In OpenJDK6 build 17 the class com.sun.media.sound.SoftMainMixer was refac-
tored. Internal ModelChannelMixer objects are no longer stored directly but in-
stead through an inner class SoftChannelMixerContainer which additionally holds
buffer information for the mixer. This update is inconsistent in that not all refer-
ences to ModelChannelMixer objects are correctly updated to an access through
the mixer field of SoftChannelMixerContainer.

public class SoftMainMixer {
private class SoftChannelMixerContainer { ModelChannelMixer mixer; . . . }
private Set〈ModelChannelMixer〉 stoppedMixers = null;
protected void processAudioBuffers() { . . .

SoftChannelMixerContainer[] act registeredMixers; . . .
for (SoftChannelMixerContainer cmixer : act registeredMixers) { . . .

if (stoppedMixers.contains(cmixer)) {
stoppedMixers.remove(cmixer);
cmixer.mixer.stop();

} . . .
} . . .

} . . .
}

At the indicated lines in the code above we have two Off-by-One dead code
bugs, both generating warnings through the use of related types. In the first line
the stoppedMixers set is checked for containment of the unrelated cmixer object
and in the second line there is an attempt to remove the unrelated object from
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the set. The effect of the error in the first line is that stopped mixers are never
disposed but it is not clear whether this prevents correctness of the implemen-
tation or (just) prevents optimization, i.e. the freeing of system resources. The
error in the second line is another example of the error effect Unintended Dead
Code. Both error lines should correctly have used cmixer.mixer instead of cmixer.

The correct use of cmixer.mixer in the line following the errors indicates that
the refactoring was performed by letting the type checker flag all uses of mixer
objects that needed update, thus leaving the two error lines unaltered. The use
of related types would have aided in such an approach to refactoring.

A.4 Off-by-One: Win32ShellFolder2

An interesting Off-by-One error was found in sun.awt.shell.Win32ShellFolder2 of
OpenJDK6. The use of this is subject to an “inner class capture”: The intended
target of this, at the indicated line, is clearly the enclosing Win32ShellFolder2
object, but since the code has been nested within an anonymous ComTask〈File[]〉
class, this instead points to the inner class, preventing the correctness of the
implementation in that the enclosing folder object is never recognized as the
desktop folder. The code this should correctly have read Win32ShellFolder2.this.

final class Win32ShellFolder2 extends ShellFolder {
public File[] listFiles(final boolean includeHiddenFiles) { . . .

return new ComTask〈File[]〉() {
public File[] call() throws Exception { . . .

Win32ShellFolder2 desktop = . . .
if (this.equals(desktop) && . . . ) . . .

}
}.execute();

} . . .
}

A.5 Conceptual Mismatch: ProjectDescription

An example of a Conceptual Mismatch error is found in the ProjectDescription
class in the org.eclipse.core.internal.resources package in Eclipse. Here the class
java.net.URI is tested against the Eclipse-specific interface IPath at the indicated
line in the code below. The conceptual mismatch is that whereas IPath may be
conceptually close to URI it is not a URI (nor does it even have a URI). The
effect of this error is that the method always returns true and thus prevents the
optimization this method was intended for.

import java.net.URI; . . .
public class ProjectDescription extends . . . {

protected URI location = null;
public boolean hasPrivateChanges(ProjectDescription description) { . . .

IPath otherLocation = description.getLocation(); . . .
return !location.equals(otherLocation);

} . . .
}
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A.6 Conceptual Mismatch: Argument Types

Another case of a Conceptual Mismatch is found in the compiler code. Here, the
formals of a set of constructors are checked against the invocation arguments in
order to find the matching constructor. Using related types, a significant misun-
derstanding of the concepts behind the code is revealed through the unintended
dead code bug found at the indicated line. Two List〈PLocalDecl〉 and List〈PExp〉
objects are compared, that is, a list of local declarations and a list of expres-
sions, and since PLocalDecl and PExp are unrelated, so are these lists. What
should have been compared is the type of the local declarations, found through
local decl.getType() and the type of the expressions, found through exp.type. The
effect of the error is prevention of correctness in that only invocations with zero
arguments are linked and for all other constructor invocations the targeted con-
structor is reported as not found.

public final class AConstructorDecl extends PDecl {
List〈PLocalDecl〉 getFormals() { . . . } . . .

}
public class TypeChecking extends DepthFirstAdapter {
public void inASuperStm(ASuperStm stm) { . . .
for (PDecl member : superDecl.getMembers()) { . . .
if (member instanceof AConstructorDecl) {
if (((AConstructorDecl)member).getFormals().equals(stm.getArgs()))

{
stm.constructor decl = (AConstructorDecl)member; . . .

}
}

}
} . . .

}
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Abstract. Typestate reflects how the legal operations on imperative
objects can change at runtime as their internal state changes. A typestate
checker can statically ensure, for instance, that an object method is only
called when the object is in a state for which the operation is well-
defined. Prior work has shown how modular typestate checking can be
achieved thanks to access permissions and state guarantees. However,
static typestate checking is still too rigid for some applications.

This paper formalizes a nominal object-oriented language with mu-
table state that integrates typestate change and typestate checking as
primitive concepts. In addition to augmenting the types of object refer-
ences with access permissions and state guarantees, the language extends
the notion of gradual typing to account for typestate: gradual types-
tate checking seamlessly combines static and dynamic checking by auto-
matically inserting runtime checks into programs. A novel flow-sensitive
permission-based type system allows programmers to write safe code
even when the static type checker can only partly verify it.

1 Introduction

This paper investigates an approach to increasing the expressiveness and flexibil-
ity of object-oriented languages as a means to improve the reliability of software.
By introducing typestate directly into the language and extending its type sys-
tem with support for gradual typing, useful abstractions can be implemented
directly, stronger program properties can be enforced statically, and when nec-
essary dynamic checks can be introduced seamlessly.

An object’s type specifies the methods that can be called on it. In most pro-
gramming languages, this type is constant throughout the object’s lifetime, but
in practice, the methods that it makes sense to call on an object change as its
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runtime state changes (e.g., an open file cannot be opened again). These con-
straints typically lie outside the reach of standard type systems, and unintended
uses of objects result, at best, in runtime exceptions.

More broadly, types generally denote properties that hold without change,
and in mainstream type systems, they fail to account for how changes to mu-
table state can affect the properties of an object. To address this shortcoming,
Strom and Yemini [26] introduced the notion of typestate as an extension of
the traditional notion of type. Typestate reflects how the legal operations on
imperative objects can change at runtime as their internal state changes.

The seminal work on typestate [26] focused primarily on whether variables
were properly initialized, and presented a static typestate checker. A typestate
checker must account for the flow of data and control in a program to ensure
that objects are used in accordance with their state at any given point in a com-
putation. Since that original work, typestate has been used to codify and check
more sophisticated state-dependent properties of object-oriented programs. It
has been used, for instance, to verify object invariants on .NET [10], to ver-
ify that Java programs adhere to object protocols [12, 5, 7], and to check that
groups of objects collaborate with each other according to an interaction speci-
fication [20].

Most imperative languages cannot express typestates directly: rather, types-
tates are encoded through a disciplined use of member variables. For instance,
consider a typical object-oriented file abstraction. A closed file may have a null
value in its file descriptor field. Accordingly, the close method of the file object
first checks if the file descriptor is null, in which case it throws an exception to
signal that the file is already closed. Such typestate encodings hinder program
comprehension and correctness. Comprehension is hampered because the pro-
tocols underlying the typestate properties, which reflect a programmer’s intent,
are at best described in the documentation of the code. Also, typestate encod-
ings cannot guarantee by construction that a program does not perform illegal
operations. Checking typestate encodings can be done through a whole-program
analysis (e.g. [12]), or with a modular checker based on additional program an-
notations (e.g. [4]). In either case, the lack of integration with the programming
language hinders adoption by programmers.

To overcome the shortcomings of typestate encodings, a typestate-oriented
programming (TSOP) language directly supports expressing them [2]. For
instance, in a class-based language that supports dynamically changing an
object’s class (like Smalltalk and its become statement), typestates can be rep-
resented as classes and be dynamically updated: objects can have typestate-
dependent interfaces, behaviors, and representations. Protocol violations in a
dynamically-typed TSOP language however result in “method not found” errors.
To avoid such errors, it is crucial to regain the guarantees provided by static type
checking. Static typestate checking is challenging, especially in the presence of
aliasing. Some approaches sacrifice modularity and rely on whole program anal-
yses [12, 20, 7]; others retain modularity at the expense of sophisticated type
systems, typically based on linear logic [27] and requiring many annotations.
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One kind of annotations is access permissions, which specify certain aliasing
patterns [8, 10, 4]. Unfortunately, these systems cannot always verify safe code,
due to the conservative assumptions they must make. Advanced techniques like
fractional permissions [8] increase the expressiveness of a type system, within
limits, but increase its complexity.

Many practical languages already provide a simple feature for overcoming the
limitations of their type systems: dynamic coercions. Although these coercions
(a.k.a. casts) may fail at runtime, they are often necessary in specific scenarios
where the static machinery is insufficient. Runtime assertions related to type-
states are not supported by any modular approach we know of; one primary
objective of this work is to support them.

In addition, once dynamic coercions on typestates are available, they can be
used to ease the transition from dynamically- to statically-typed code. We there-
fore extend gradual typing [25, 24] to account for typestates: we make typestate
annotations optional, check as much as possible statically, and automatically
insert runtime checks into programs where needed. This allows programmers to
gradually annotate their code and get progressively more support from the type
checker, while still being able to safely run a partially-annotated program.

The primary contribution of this work is Gradual Featherweight Typestate
(GFT), a core calculus for typestate-oriented programming inspired by Feath-
erweight Java [17], which supports dynamic permission checking and gradual
typing. The proposed language addresses the most important issues of current
typestate checkers. GFT directly integrates typestate as a first-class language
concept. Its analysis is modular and safe without imposing complex notions like
fractional permissions onto programmers. It also supports recovery of precise
typing using dynamically-checked assertions and supports the gradual addition
of type annotations to a program.

Section 2 introduces the key elements of typestate-oriented programming with
access permissions and state guarantees. Section 3 describes the static subset of
GFT, and Section 4 presents the extensions for dynamic permission checking and
gradual typing. The semantics are presented using a type-safe internal language
(Section 5) to which GFT translates (Section 6). The soundness proof is available
in a companion technical report [28]. Section 7 concludes. A translator for the
source language, type checker for the internal language, and executable runtime
semantics are available at:
http://www.cs.cmu.edu/˜rxg/gft.html.

2 Typestate-Oriented Programming

In order to avoid conditionals on flag fields or other indirect mechanisms like the
State pattern [13], typestate-oriented programming proposes to extend object-
oriented programming with an explicit notion of state (from here on we use state
to mean typestate). In TSOP, objects are modeled not just in terms of classes,
but in terms of changing states. Each state may have its own representation and
methods, which may transition the object to new states.
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Fig. 1. (a) Hierarchy of files states. (b) Access permissions.

To illustrate this concept in practice, consider a familiar example. A file object
has methods such as open, close and read. However, these methods cannot be
called at just any time. A file can only be read after it has been opened; even if
open, if we have reached the end-of-file, then reading is not available anymore;
an open file cannot be opened again, etc. Figure 1a depicts a model of the
file example in terms of states, using distinct classes in a subclass hierarchy to
represent them. File is an abstract state; a file object is either in the OpenFile
or ClosedFile state. Note that the path field is present in both states, but that
the file desc field, which refers to the low-level operating system resource, is
only present in the OpenFile state. Any OpenFile can be closed; however, it is
only possible to read from an open file if the end-of-file has not been reached.
Therefore, the OpenFile state has two refining substates, AtEOF and NotEOF.

State change. A TSOP language supports a state change operation, denoted
here by <-. For instance, the close method in OpenFile can be defined as:

void close() { this <- ClosedFile(this.path); }

The expression form e <- S(...) transitions the object described by e into the
state S; the arguments are used to initialize the fields of the object. In other
words, <- behaves like a constructor, but updates the object in-place.

Declaring state changes. A statically-typed TSOP language must track state
changes in order to reject programs that invoke methods on objects in inappro-
priate states. Consider the following:

OpenFile f = ...; f.close(); f.close();

The type of f before the first call to close is OpenFile. However, the second call
to close should be rejected by a typechecker. One way to do so is to analyze the
body of the close method to deduce that it updates the state of its argument to
ClosedFile. However, this approach sacrifices modularity. Therefore, a method’s
signature should specify the output state of its arguments as well as that of
its receiver. The calculi in this paper specify the state changes of methods by
annotating each argument with its input and output state, separated by the >>
symbol. The input and output states of the receiver object are placed in square
brackets after the normal argument list, e.g.:

void close() [OpenFile >> ClosedFile] {...}
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Access permissions. In a language with aliasing, tracking state changes is a
subtle process. For instance, consider the following (where F, OF and CF are
abbreviations for File, OpenFile and ClosedFile, respectively):

void m(OF >> CF f,OF >> OF g) {f.close(); print(g.file_desc.pos);}

Because of possible aliasing, f and g may refer to the same object. In that case,
the method body of m must not be well-typed, as g may refer to a closed file by
the time it needs to access its (potentially non-existent) file desc field.

To track state changes in the presence of aliasing, Bierhoff and Aldrich have
proposed access permissions [4, 5]. An access permission specifies whether a
given reference to an object can be used to change its state or not, as well as
the access permissions that other aliases to the same object might have. In this
work we consider three kinds of access permissions (Figure 1b): full, shared and
pure. We say a reference has write access if it has the ability to change the state
of an object. full and shared have write access, where full implies exclusive write
access.

One fix for the m method is to require that f and g have exclusive write
access to an OF in order to ensure that they are not aliases, and therefore that
f.close() cannot affect g’s referent.

void m(full OF >> full CF f, full OF >> full OF g){ ... }

State guarantees. Requiring g to have exclusive write access seems like overkill
here. Only a pure permission is required to read the field file desc. But we
must still ensure that the two parameters are not aliases.

For more flexible reasoning in the presence of aliasing, access permissions
are augmented with state guarantees (proposed by Bierhoff and Aldrich [4] but
formalized and proven sound for the first time here). A state guarantee puts
an upper bound on the state change that may be performed by a reference
with write access: it can only transition an object to some subclass of the state
guarantee. A type specification then has the form k(D) C where k is the access
permission, D is the state guarantee, and C is the current state of the object. A
permission, k(D), is the access permission coupled with the state guarantee1.

Consider:

full(Object) NotEOF x = new NotEOF(...);
pure(OF) OF y = x;
x.read();
print(y.file_desc.pos);

While x.read() may change the state of the file by transitioning it to AtEOF, it
cannot invalidate the open file assumption held by y.

State guarantees improve modular reasoning about typestates substantially.
For instance, they recover the ability to express something similar to an ordinary
object-oriented type: shared(C) C allows an object to be updated but guaran-
tees that it will always obey the interface C. Also, it turns out that we can use

1 When it is clear from the context, we sometimes say ’permission’ when we really
mean ’access permission’.
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state guarantees to express an alternative solution to the previous example: re-
strict g to the pure access permission it requires, but add a state guarantee of
OF to ensure that no other reference can transition the object to ClosedFile:

void m(full(F) OF >> full(F) CF f,
pure(OF) OF >> pure(OF) OF g){ ... }

In this case, we can still statically enforce that f and g are not aliases by carefully
choosing exactly how references to objects can be created. In this way, we can
allow the programmer more flexibility than always demanding exclusive access
to objects.

Permission flows. Permissions are split between all aliases and carefully re-
stricted to ensure safety. This includes aliases in local variables, as well as in
object fields. Consider the following snippet:

class FileContainer{ shared(OF) OF file; }

full(Object) OF x = new OF(...);
pure(OF) OF y = x;
full(Object) FileContainer z = new FileContainer(x);

After construction of the OF, the reference x has no aliases, so it is safe to give it
full permission with an unrestricted update capability (Object state guarantee).
Then, a local alias y is created, capturing a pure permission with OF guarantee.
After this point, any state change done through x must respect this guarantee.
Therefore, the permission of x must be downgraded to full(OF). Finally, a
container object is created, passing x as argument to the constructor. The field
of z captures a shared(OF) permission. The permission of x is downgraded
again, this time to shared(OF). At this point, there are three aliases to the
same file object: x and z.file both hold a shared(OF) permission, and y holds
a pure(OF). All aliases must be consistent, in that a state update through one
alias must not break the invariants of other references.

Temporarily holding permissions In general, as the program executes, permis-
sions to variables get split and are strictly weakened. There are many ways to
refine the static type system in order to increase expressiveness, such as paramet-
ric polymorphism, fractional permissions and borrowing [8, 9]. Here we consider
one such refinement: a mechanism that can temporarily hold some permissions
to a reference while a sub-computation is performed. Consider the following:

void printPath(pure(F) F >> pure(F) F);

full(Object) OF x = new OF(...);
printPath(x);
x.close();

This program is ill-typed due to the downgrading of permissions. In order to
invoke printPath, the permission to x is downgraded from full(Object) OF to
pure(F) F. Therefore, close, which requires a full(F) OF, cannot be called,
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although the call to close is safe: printPath requires a read-only alias to its
argument, and there are no other writeable aliases to x. This is an unfortunate
limitation due to the conservative nature of the type system.

A workaround is to introduce a temporary alias to x with only a pure permis-
sion, and use that alias to invoke printPath. This is however cumbersome and
does not allow for permissions to be merged back later on. In order to properly
support this pattern, we introduce a novel expression, hold, which reserves a
permission to a variable for use within a lexical scope, and then merges that
permission with that of the variable at the end of the scope. For instance:

full(Object) OF x = new OF(...);
hold[x:full(F) OF] { printPath(x); }
x.close();

Dynamic asserts. As sophisticated as the type system might be (supporting hold,
borrowing, etc.), it is still necessarily conservative and therefore loses precision.
Dynamic checks, like runtime casts, are often useful to recover such precision.
For instance, consider the following extension of the FileContainer snippet seen
previously in which both y and z are updated to release their aliases to x.
...
y = new OF(...);
z <- Object();
assert<full(F) OF> x;
x.close();

Assuming close requires a full(F) permission to its receiver, the type system
is unable to determine that x can be closed, even though it is safe to do so (x
is once again the sole reference to the object). A dynamic assert allows this
permission to be recovered. Like casts, dynamic asserts may fail at runtime.
Gradual typing. A statically typed TSOP program requires more annotations
than a comparable OO program. This may be prohibitively burdensome for a
programmer, especially during the initial stages of development. For this reason,
we develop a gradually typed calculus that supports a dynamic type Dyn. Precise
type annotations can then be omitted from an early draft of a program as in the
following code:
Dyn f = ...; f.read();

A runtime check will verify that f refers to an object that has a read method2.
Assume that read is annotated with a receiver type full(OF) NotEOF. In this
case, we must ensure that we have an adequate permission to the receiver. Thus,
a further runtime check will verify that f refers to an object that is currently in
the NotEOF state, that no aliases have write access, and that all aliases have a
state guarantee that is a superstate of OF. The last two conditions ensure that
invariants of aliases to f cannot be broken. Gradual typing thus enables dynam-
ically and statically-typed parts of a program to coexist without compromising
safety.

2 Note that Dyn is different from Object; if f had type Object the typechecker would
check for a method read in Object, and would raise an error.
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Putting it all together. Listing 1 exhibits the above capabilities in a small log-
ging example that generalizes to other shared resources3. The OpenFileLogger
(OFL) state holds a reference to a file object (OF) and presents a log method for
logging messages to it. When logging is complete, the close method acquires
all permissions to the file by swapping in a sentinel value (with :=:, explained in
the next section), closes the file, and transitions the logger to the FileLogger
(FL) state, which has no file handle. The client code declares and uses two log-
ging interfaces, staticLog and dynamicLog. They are somewhat contrived, but
are meant to represent APIs that utilize a file logger but do not store it. After
creating logger (line 17), the file reference no longer has enough permission
to close the file, so calls to logger.log are safe. Line 19 holds a shared per-
mission to logger during a dynamically-typed method call. By line 22, logger
only has shared permission, though no other aliases exist. After asserting back
full permission, logger can close the file log.

1 class FileLogger { /∗ Logging�related Data and Methods ∗/ }
2 class OpenFileLogger : FileLogger {
3 full(OF) OF file;
4

5 Void log(string s)[shared(OFL) OFL >> shared(OFL) OFL] {...}
6 Void close()[full(FL) OFL >> full(FL) FL] {
7 full(OF) fileT = (this.file :=: new File(”/dev/null”));
8 fileT.close();
9 this <� FileLogger();

10 }
11 }
12 // Client Code
13 Void staticLog(shared(OFL) logger >> shared(OFL) logger) { logger.log(”in staticLog”); }
14 Dyn dynamicLog(Dyn logger) { logger.log(”in dynamicLog”); }
15

16 full(OF) OF file = new OF(...);
17 full(OFL) OFL logger = new OFL(file);
18

19 hold[logger:shared(OFL) OFL]{ dynamicLog(logger); }
20 staticLog(logger);
21

22 assert<full(FL) OFL>(logger);
23 logger.close();

Listing 1. Sample Typestate-Oriented code

3 Static Featherweight Typestate

We present a formal model for a language with integrated support for gradual
typestate. The language is inspired by Featherweight Java (FJ) [17], so we call it
Gradual Featherweight Typestate (GFT). Gradually-typed languages are typi-
cally presented as two distinct languages: a fully static language and its gradual
extension. We only describe the gradual language; this section focuses on its
static aspects. Sections 4 and beyond present the extensions for gradual typing.
Garcia et al. [14] formalizes a fully static variant of GFT, called Featherweight
Typestate. The static subset of the language is novel in its own right: it is the

3 A practical language would provide means to abbreviate our type annotations.
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x, this � IdentifierNames

m � MethodNames

f � FieldNames

C,D, E, Object � ClassNames

PG ::= �CL, e� (programs)

CL ::= class C extends D � F M � (classes)
F ::= T f (fields)

M ::= T m�T � T x	 
T � T � � return e; � (methods)
T ::= P C � Void (types)
P ::= k�D	 (permissions)
k ::= full � shared � pure (access permissions)
e ::= x � let x : T = e in e � let x = e in e � new C�x	 (expressions)

� x.f � x.m�x	 � x.f :=: x � x � C�x	

Δ ::= x : T (type contexts)

Fig. 2. Gradual Featherweight Typestate: Syntax (static subset)

first formalization of a nominal TSOP language, with support for representing
typestates as classes, modular typestate-checking and state guarantees, and an
algorithmic flow-sensitive type system specification.

3.1 Syntax

Figure 2 presents GFT’s syntax. Smallcaps (e.g. FieldNames) indicate syntactic
categories, italics (e.g. C) indicate metavariables, and sans serif (e.g. Object)
indicates particular elements of a category. Overbars (e.g. A) indicate possibly
empty sequences (e.g. A1, ..., An). GFT assumes a number of primitive notions,
such as identifiers (including this) and method, field, and class names (including
Object). A GFT program PG is a list of class declarations CL paired with an
expression e. Class definitions are standard, except that a GFT class does not
have an explicit constructor: instead, it has an implicit constructor that assigns
an initial value to each field. Fields F and methods M are standard. Each method
parameter is annotated with its input and output types, and the method itself
carries an annotation (in square brackets) for the receiver object. We use helper
functions like fields, method, etc., whose definitions are omitted for brevity.

Types in GFT extend the Java notion of class names as types. As explained in
Section 2, the type of a GFT object reference has two components, its permission
and its class (or state). The permission can be broken down further into its access
permission k and state guarantee D. We write these object reference types in
the form k�D� C. The Void type classifies expressions executed purely for their
effects. No source-level values have the Void type.

To simplify the description of the type system, expressions in GFT are re-
stricted to A-normal form [22], so let expressions explicitly sequence all complex
operations (we write e1; e2 as shorthand). An optional type ascription provides
fine-grained control over how permissions are distributed to the bound variable
(Section 3.3).
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k � k�k Access Permission Splitting

k � pure�k full � full�pure

k � � full, shared �

k � shared�shared

P � P Compatible Permissions

E �: D

k	E
 � pure	D


P1 � P2

P2 � P1

shared	D
 � shared	D


�i, j : i � j.Pi � Pj

P compatible

P : P Subpermission

k1 � k2

k1	D
 : k2	D


E �: D

pure	E
 : pure	D


D �: E

full	E
 : full	D


P1 : P2 P2 : P3

P1 : P3

P � P �P Permission Splitting

k1	D1
 : k2	D2
 k1 � k2�k3

D3 = D1
�

: D2

k1	D1
 � k2	D2
�k3	D3


T � T �T Type Splitting

P1 � P2�P3 C1 �: C2

P1 C1 � P2 C2�P3 C1

Void � Void�Void

T �: T Subtyping

T1 � T2

T1 �: T2

T  T Max. Residual

T1 � T1�T2

T1  T2

� : T � T Type Demotion

	shared	D
 C
� = shared	D
 D
	pure	D
 C
� = pure	D
 D

T� = T otherwise

A type T � k	D
 C is well-formed iff C �: D

Fig. 3. Permission and Type Management Relations

Apart from method invocation, field reference and object creation (all stan-
dard), GFT includes the update operation x0 � C�x1� in support of typestate.
It replaces the value of x0 with the new object of class C, which may not be
the same as x0’s current class. Also non-standard is the swapping assignment
x0.f :=: x1. It assigns the value of x1 to the field f and returns the old value as
its result. The need for this expression is detailed in Section 3.3.

3.2 Managing Permissions

Before we present typing judgments for GFT, we must explain how permissions
are treated. Permissions to an object are a resource that is split among the vari-
ables and fields that reference it. Figure 3 presents several auxiliary judgments
that specify how permissions may be safely split, and their relation to typing.

First, access permission splitting k1 � k2�k3 describes how given a k1 permis-
sion, permission k2 can be acquired, leaving behind k3 as the residual. When we
are only concerned that a permission k2 can be split from a permission k1 (i.e.
the residual permission is irrelevant), we write k1 � k2. For instance, given any
permission k, full � k and k � k.

Permissions partially determine what operations are possible, as well as when
an object can be safely bound to an identifier. The restrictions on permissions
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are formalized as a partial order on permissions, analogous to subtyping. The
notation P1 �: P2 says that P1 is a subpermission of P2, which means that a
reference with P1 permission may be used wherever an object reference with P2

permission is needed. As expected, the subpermission relation is reflexive and
transitive. Splitting an access permission produces a lesser (or identical) permis-
sion. The rules that mention pure and full capture how state guarantees affect
the strength of permissions. Pure permissions covary with their state guarantee
because a pure reference with a superclass state guarantee assumes less reading
capability. Full permissions contravary with their state guarantee because a full
reference with a subclass state guarantee assumes less writing capability (it can
update to fewer possible states).

Permission splitting extends access permission splitting by accounting for
state guarantees. First, if k1�D1� �: k2�D2�, splitting is safe. The question then
is to determine the proper residual permission k3�D3�. The k3 residual is ob-
tained by splitting k2 from k1. The resulting state guarantee D3 is the greatest
lower bound of D1 and D2 in the subclass hierarchy, denoted D1

�

: D2
4.

Permission splitting in turn extends to type splitting T � T �T , taking sub-
classes into account for object references; the Void type can be arbitrarily split.
We use type splitting to define the notion of subtyping T �: T used in GFT. As
with base permission splitting, we write P1 � P2 or T1 � T2 to express that P2

or T2 can be split from P1 or T1 respectively.
The maximum residual relation T1 � T2 specializes type splitting for the case

where all the permissions to an object are acquired. The result type T2 is what
is leftover; for instance, full�D� C � pure�D� C and shared�D� C � shared�D� C.

The compatible permissions relation P1 � P2 says that two distinct refer-
ences to the same object, one with permissions P1 and the other with P2 can
soundly coexist at runtime. For instance, shared�C� � shared�C�, and full�C� �
pure�Object�. This notion is used to define the relation P compatible: that the
outstanding permissions P of references to a particular object can all coexist.

Finally, we defer the discussion of type demotion to the end of Section 3.3.

3.3 Static Semantics

Armed with the permission management relations, we now discuss the salient fea-
tures of the static semantics of GFT: flow-sensitive, deterministic typing through
bidirectional type checking.

Flow-sensitive typing As with FJ, the GFT type system relies upon type contexts
Δ. Whereas Γ is the standard metavariable for type contexts, we use a different
metavariable Δ to emphasize that the typing contexts are not merely lexical: they
are linear [16]. In GFT’s type system, the types of identifiers are flow-sensitive
in the sense that they vary over the course of a program. In part this reflects how
the permissions to a particular object may be partitioned and shared between
references as computation proceeds, but it also reflects how update operations
may change the class of an object during execution.

4 k1�D1	 �: k2�D2	 implies that D1 and D2 are related by subclassing
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The GFT typing judgments are quaternary relations roughly of the form Δ1 �
e : T 	 Δ2: given the typing assumptions Δ1, the expression e can be assigned
the type T and produces typing assumptions Δ2 as its output. The assumptions
in question are the types of each reference. Threading typing contexts through
the typing judgment captures the flow-sensitivity of type assumptions.

Deterministic type checking The type system specification must be elaborated to
both ensure determinism of our type system and also retain flexibility. Consider
a candidate typing judgment for variable references.

T1 � T2�T3

Δ, x : T1 � x : T2 	 Δ, x : T3

It states that if x is assumed to have type T1, and T1 can be split into T2 and
T3, then the expression x can be typed at T2. Because T2 may not be unique, a
source program may be well-typed according to multiple derivations, with each
derivation representing a different split of permissions between this particular
variable reference and later references to x. Nondeterminism is incompatible
with dynamic permission assertions5: a system could succeed sometimes and fail
other times if permissions could flow more than one way for the same code.

Rather than requiring type annotations for all variable references, we use bidi-
rectional typing [21] to define a deterministic type system in which annotations
are used only to tune how permissions are split.

The type system is structured as two mutually recursive judgments. The type
synthesis judgment Δ1 � e 
 T 	 Δ2 conceptually analyzes the expression e
in the context Δ1 and synthesizes a type T for it; the type T is an output of
the judgment, along with the output context Δ2. The type checking judgment
Δ1 � e � T 	 Δ2 checks that the expression e under the type context Δ1

can be given the type T . The type T is an input to the judgment, and the only
output is the context Δ2.

Typing rules Figure 4 presents some of the typing rules for GFT expressions6. A
variable reference is typed differently depending on whether its type is synthe-
sized or checked. The synthesis rule (ctx
) yields maximal permissions to the
referenced object. Its output context associates the maximum residual permis-
sions to the variable. In contrast, the checking rule (ctx�) just ensures that the
desired type can be split from the starting type, and leaves the corresponding
residual in the output context.

Each of the typing rules for let represents both a checking and synthesis rule.
Replacing the � with � or 
 gives the checking or synthesis rule, respectively.
The (let�) and (letT�) rules differ only in how the bound expression is typed.
When the bound variable has a type ascription, x : T1, the expression e1 is
checked against that type. If there is no type ascription, e1’s type is synthesized.

5 Determinism is not important for the fully static case: Featherweight Typestate
uses non-deterministic typing rules [14].

6 As with FJ, well-typing is extended to apply to whole programs. The details are
covered in the technical report [28].
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(ctx�)
T1  T2

Δ, x : T1 � x � T1 � Δ, x : T2
(ctx�)

T1 � T2�T3

Δ, x : T1 � x � T2 � Δ, x : T3

(ê�)
Δ � ê � T2 � Δ1 T2 �: T1

Δ � ê � T1 � Δ1

(let�)
Δ � e1 � T1 � Δ1 Δ1, x : T1 � e2 � T2 � Δ2, x : T

Δ � let x = e1 in e2 � T2 � Δ2

(letT�)
Δ � e1 � T1 � Δ1 Δ1, x : T1 � e2 � T2 � Δ2, x : T

Δ � let x : T1 = e1 in e2 � T2 � Δ2

(update�)

fields	C2
 = T2 f Δ � x2 � T2 � Δ�, x1 : k	D
 C

k � � full, shared � C2 �: D

Δ � x1 � C2	x2
 � Void � Δ��, x1 : k	D
 C2

(ref�)
T2 f � fields	C1
 T2  T �

2

Δ, x : P1 C1 � x.f � T �
2 � Δ, x : P1 C1

(swap�)

T2 f � fields	C1


Δ, x1 : P1 C1 � x2 � T2 � Δ�

Δ, x1 : P1 C1 � x1.f :=: x2 � T2 � Δ�

Fig. 4. Select Expression Typing Rules

The typing rules for let and variable references combine to determine how
permissions transfer between references. When a variable reference is bound to
another variable, the new variable by default acquires maximal permissions to
the referenced object; A type annotation on the let-bound variable can tune
how permissions are transferred to a binding. For instance, assume x has type
full�D� C and consider the two expressions:

(1) let y = x in e
(2) let y : shared�D� C = x in e

In expression (1) y has full�D� C type and x has pure�D� C type in e, but in
expression (2) both x and y have shared�D� C type.

Type checking is treated uniformly for all other expressions. The (ê �) rule
schematically expresses checking for those expressions, which we indicate with
ê. For all of them, type checking can be characterized simply in terms of type
synthesis: an expression checks at type T1 if its type synthesizes to some subtype
T2 of T1. The rest of the expressions in the language only require type synthesis
rules (see Section 6).

A variable reference can only perform an update if it has write access. The
arguments to the constructor—which can include the reference being updated—
are type checked at the target class’s field types. We use the shorthand notation
Δ � x � T 	 Δ� to stand for iteratively checking the arguments:

Δ = Δ0 � x0 � T0 	 Δ1; . . . ; Δn � xn � Tn 	 Δn�1 = Δ�.

The target class of the update must respect the updated reference’s state guar-
antee, taking into account any uses of that reference in the construction of the
new object. The update operation is performed solely for its effect on the heap,
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so the type of the overall expression is Void. The output type of the updated
object reflects its new class.

Type demotion. Update operations can alter the state of any number of vari-
able references. To retain soundness in the face of these operations, it is some-
times necessary to discard previously known information in case it has been
invalidated. In these cases, an object reference’s class must revert to its state
guarantee, which is a trusted state after an update. The type demotion function
T (Figure 3) expresses this restricting of assumptions. Note that full references
need not be demoted since no other reference could have changed their states.
We write Δ for the compatible extension of demotion to typing contexts.

The synthesis rule for the update operation in Figure 4 makes use of type
demotion: type assumptions from the input context are demoted in the output
context to ensure that any aliases to the updated object retain a conservative
approximation of the object’s current class7.

Note that type demotion does not imply any runtime overhead: it is a purely
static process. Furthermore, types of class fields have the restriction that they
must be invariant under demotion (i.e. T = T ). Since the types of fields do not
change as a program runs, they must not be invalidated by update operations.
This restriction ensures that field types remain compatible with other aliases to
their objects. Also, as a result only local variable types need ever be demoted.

Field Operations. As was mentioned in Section 3.1, two operations operate di-
rectly on the an object field: field reference and swapping assignment. Their type
synthesis rules appear in Figure 4. Field reference operations do not relinquish
any of the permissions held by a field, so the result type is determined by taking
the maximal residual T �

2 of the field type T2. This operation does not affect the
permissions of the object reference used to access the field.

Swap operations cause an object to relinquish all permissions to a field and
replace it with a new reference. The swap expression has two purposes. The first
is to reassign a field value in the heap. The second is to return the old field value
as the result of the expression. If a field has shared or pure permissions to an
object, then field reference can yield the same amount of permission; however, if
a field has full permission to an object, only swapping can yield a full permission.

3.4 Holding Permissions

The static fragment of GFT described above captures the essence of a TSOP
language, but the design can be usefully extended. For instance, Section 2 in-
troduced the hold expression hold�x : T ��e�, which captures the amount of x’s
permissions denoted by T for the duration of the computation e. When e com-
pletes, these permissions are merged back into x.

e ::= ... � hold�x : T ��e�

7 The language could retains more precise types by demoting only objects with types
related to the updated object. For simplicity of presentation, we demote uniformly.
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The hold expression is a useful but orthogonal addition to the type system. A
practical TSOP language would build hold’s capabilities directly into the method
invocation mechanism so as to preserve permissions wherever possible. For sim-
plicity and exposition, we express holding as a distinct feature.

T �T � T Type merging

P = P1

�

: P2

C = C1

�

: C2

P1 C1�P2 C2 � P C

(hold�)

T1 � T2�T3 T2 �T
�
3 � T �

1

Δ, x : T3 � e 
 T 	 Δ�, x : T �
3

Δ, x : T1 � hold�x : T2��e� 
 T 	 Δ�, x : T �
1

The typing rule for hold depends on a notion of type merging T �T � T ,
which captures how two separate permissions to an object may be combined.
Type merging is defined in terms of the

�

: and
�

: relations, where
�

: is the
analogue of

�

: for subpermissions. For example, if we know that variable x has
both type full�C� C and pure�Object� C, then we can merge those types, and
safely conclude that x can be typed at full�C� C.

For space reasons, the rest of the technical development of hold (e.g. trans-
lation and dynamic semantics) is omitted, but the details can be found in the
technical report [28].

4 Gradual Featherweight Typestate

The previous section presents the essence of GFT: an FJ-like calculus where
classes model states, with an update operation to dynamically change the state
of objects; types encode states as well as permissions and state guarantees, and
the type system is both flow-sensitive and deterministic. Even if features like
hold increase the expressiveness of the type system, there are still cases where
it is necessary to resort to dynamic assertions about typestates. This section
presents the support for such assertions, as well as gradual typing.

Type assertions GFT supports an assert expression for explicitly changing the
type assumptions of a variable.

e ::= � � � � assert�T ��x�

Its type synthesis rule is as follows.

(assert)
Δ, x : T1 � assert�T2��x� 
 Void 	 Δ, x : T2

Assert is like a cast, but instead of returning a value of the given type it changes
the type of the target variable8. When T1 �: T2, the assert is statically safe;
otherwise, a runtime check is required (see Section 6).

8 In fact, assertions are strictly more powerful than casts: casts can be implemented
using assertions.
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T � T �T Type Splitting

T � Dyn�T

T �:
� T Consistent Subtyping

T1 �: T2

T1
�:
� T2

T � Dyn

Dyn �:
� T

Fig. 5. Hybrid Permission Management Relations

(ctxd �)
T � Dyn

Δ, x : Dyn � x � T � Δ, x : Dyn

(updated �)
fields	C2
 = T2 f Δ � x2 � T2 � Δ�, x1 : Dyn

Δ � x1 � C2	x2
 � Void � Δ��, x1 : Dyn

Fig. 6. Select Dynamic Typing Rules

Gradual typing To support gradual typing, GFT provides a type for dynamically
checked values.

T ::= � � � � Dyn

The type system treats the Dyn type with greater leniency: type checks on Dyn
objects are deferred to runtime.

To account for these dynamic features, Figure 5 presents several adjustments
to the type system from the last section. First, type splitting is extended to
account for Dyn. In particular, any reference can split off a Dyn without affecting
its original type or permissions. Type consistency is extended analogously.

Following Siek and Taha [24], consistent subtyping T �:
� T extends subtyping

to support using Dyn-typed values wherever another type is expected and vice-
versa. Consistent subtyping explicitly states that Dyn �:

� T , but also T �:
� Dyn

because type splitting now forces T �: Dyn. In accordance, the �ê �� type
checking rule from the last section now uses �:

� in place of �:.
Figure 6 presents some extra typing rules that are needed to account for uses

of Dyn-typed references. The (ctxd �) rule says that a Dyn-typed variable can
be checked at any type. Note that x : Dyn can be synthesized and checked at Dyn
by the (ctx
) and (ctx�) rules respectively. The (updated 
) rule accounts
for updating a dynamically typed variable. The type system checks that the
arguments to the constructor are suitable, but the checks on the target of the
update are deferred to runtime (see Section 6).

5 Internal Language

GFT’s semantics are defined by type-directed translation to GFTIL, an internal
language that makes the details of dynamic permission management explicit.

5.1 Syntax

GFTIL is structured much like GFT but elaborates several concepts (Figure 7).
First, the internal language introduces explicitly dynamic variants ed of some
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o � ObjectRefs

l � IndirectRefs

s ::= x � l (simple exprs)
b ::= x � l � o (bare expr)
e ::= es � ed (expressions)

es ::= b � void � s
T � T �T � � new C�s	 (static exprs)
� let x = e in e � release
T ��s	 � s.f � s.m�s	
� s.f :=: s � s � C�s	 � assert�T � T ��s	

ed ::= s.df � s.dm�s	 � s.f :=:d s (dynamic exprs)
� s �d C�s	 � assertd�T � T ��s	

Δ ::= b : T (type context)

Fig. 7. Internal Language Syntax

operations from the source language. Static variants are ensured to be safe by the
type system; dynamic variants require runtime checks. Second, many expressions
in the language carry explicit type information. This information is used to
dynamically account for the flow of permissions as the program runs. These type
annotations play a role in both the type system and the dynamic semantics.

Finally, GFTIL adds several constructs that only occur at runtime. Object
references and indirect references point to runtime objects9. GFTIL is also in
A-normal form, though at runtime the arguments to expressions are generalized
to simple expressions s: variable names or indirect references. Reference expres-
sions come in two forms. A bare reference b signifies a variable or reference that
is never used again. In contrast, a splitting reference s�T � T �T � explicitly spec-
ifies the starting type, result type, and the residual type of the reference. The
release�T ��s� expression explicitly releases a reference and its permissions, after
which it can no longer be used.

5.2 Static Semantics

Because of GFTIL’s explicit form, its typing judgment Δ � e : T 	 Δ does not
need to be bidirectional. Furthermore, its typing rules use the same permission
and type management relations as the source language. GFTIL’s typing rules
explicitly and strictly encode permission flow by checking the input context Δ
to force their arguments s to have exactly the type required. GFTIL’s dynamic
semantics uses this encoding to track permissions.

Figure 8 presents some of GFTIL’s typing rules. For space reasons, we only
present the rules for invoke, update and assert, together with their dynamically-
typed variants. The (invoke) rule matches a method’s arguments exactly against
the method signature. Each argument’s output type is dictated by the method’s
output states. The (update) rule almost mirrors GFT’s update rule except that
its argument types must exactly match the class field specifications. The (assert)

9 Object references correspond to heap pointers; indirect references are an artifact
that facilitates the type safety proof (see Section 5.4).



476 R. Wolff et al.

(invoke)
mdecl	m, C1
 = Tr m	T2 � T �

2
�P1 C1 � T �
1�

Δ, s1 : P1 C1, s2 : T2 � s1.m	s2
 : Tr � Δ�, s1 : T �
1, s2 : T �

2

(invoked)
Δ, s1 : Dyn, s2 : Dyn � s1.dm	s2
 : Dyn � Δ�, s1 : Dyn, s2 : Dyn

(update)
k � � full, shared � C2 �: D fields	C2
 = T f

Δ, s1 : k	D
 C1, s2 : T � s1 � C2	s2
 : Void � Δ�, s1 : k	D
 C2

(updated)
fields	C2
 = T f

Δ, s1 : Dyn, s2 : T � s1 �d C2	s2
 : Void � Δ�, s1 : Dyn

(assert)
T1 � T2

Δ, s : T1 � assert�T1 � T2�	s
 : Void � Δ, s : T2

(assertd)
T1 �� T2

Δ, s : T1 � assertd�T1 � T2�	s
 : Void � Δ, s : T2

Fig. 8. Select Internal Language Typing Rules

rule is the safe subset of GFT’s rule, though GFTIL’s assert is explicitly anno-
tated with its argument’s source type. The dynamic variants of these expressions
enforce very little statically: the (updated) rule only checks that the arguments
match the constructor, and the (assertd) rule applies when the destination type
cannot be split from the source type.

5.3 Dynamic Semantics

GFTIL’s dynamic semantics, presented in Figure 9, requires several additional
syntactic notions, defined below:

C�o	 P � Objects

v ::= void � o (values)
μ � ObjectRefs � Objects (stores)
ρ � IndirectRefs � Values (environments)
E ::= � � let x = E in e (evaluation contexts)

Expressions in the language evaluate to values, including void and object ref-
erences o. Stores μ associate object references to objects. The novelty of GFTIL
is that an object in the store C�o� is annotated with the set of outstanding
permissions for references to that object, P .

In addition to the store, the dynamic semantics uses a second heap, which
we call the environment ρ, that mediates between variable references and the
object store. In the source language, two variables could refer to the same ob-
ject in the store, but each can have different permissions to that object. The
environment tracks these differences at runtime. It maps indirect references l
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μ, ρ, e � μ, ρ, e Dynamic Semantics

(invoke)

μ	ρ	l1

 = C	o
 P

method	m, C
 = Tr m	Tx � T �
x x
 �Tt � T �

t� � return e; �

μ, ρ, l1.m	l2
 � μ, ρ, �l1, l2�this, x�e

(invoked)
μ	ρ	l1

 = C	o
 P mdecl	m, C
 = Tr m	Tx � T �

x
 �Tt � T �
t�  Tx  = l2  

μ, ρ, l1.dm	l2
 � μ, ρ, assertd�Dyn � Tt�	l1
; assertd�Dyn � Tx�	l2
;

let ret = l1.m	l2
 in assert�T �
t � Dyn�	l1
;

assert�T �
x � Dyn�	l2
; assert�Tr � Dyn�	ret
;

ret

(update)
μ	ρ	l1

 = C	o
 P fields	C
 = T f μ� = μ�ρ	l1
 !� C�	ρ	l2

 P � � o : T

μ, ρ, l1 � C�	l2
 � μ�, ρ, void

(updated)
μ	ρ	l1

 = C	of 
 P Dg =

�
: � D  k	D
 � P � C� �: Dg

μ, ρ, l1 �d C�	l2
 � μ, ρ, assertd�Dyn � shared	Dg
 C�	l1
;

l1 � C�	l2
;
assert�shared	Dg
 C� � Dyn�	l1


(assert)
μ� = μ � ρ	l
 : T � ρ	l
 : T �

μ, ρ, assert�T � T ��	l
 � μ�, ρ, void
(assertdv)

ρ	l
 = void

μ, ρ, assertd�Dyn � Void�	l
 � μ, ρ, void

(assertdo)
ρ	l
 = o μ� = μ � o : T � o : P � C� μ�	o
 = C	of
 P C �: C� P compatible

μ, ρ, assertd�T � P � C��	l
 � μ�, ρ, void

Fig. 9. Select Internal Language Dynamic Semantics Rules

to values v. The dynamic semantics of GFTIL is defined as transitions between
store/environment/expression triples10.

Figure 9 presents some select dynamic semantics rules of GFTIL. Certain
rules use two helper functions for tracking permissions in the heap, whose defi-
nitions are straightforward and as such omitted for brevity. Permission addition
� augments the permission set for a particular object in the heap. Conversely,
permission subtraction � removes a permission from the set of tracked permis-
sions for an object. The (invoke) rule is standard. The (update) rule looks up the
object references for the target reference and the arguments to the class construc-
tor, replaces the store object for the target reference with the newly constructed
object, and releases the permissions held by the fields of the old object. The
(assert) rule uses permission addition and subtraction to track permissions, and
returns void. Rules for dynamic operators, like (invoked) and (updated), dynam-
ically assert the necessary permissions (using assertd), defer to the corresponding
static operation, and then release the acquired permission (using assert). Finally,
the (assertd) rule confirms dynamically that its type assertion is safe.

10 The environment serves a purely formal purpose: it supports the proof of type
safety by keeping precise track of the outstanding permissions associated with
different references to objects at runtime, and is not needed in a practical imple-
mentation.
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Helper Functions

objTypes	μ, Δ, ρ, o
 = �T  o : T � types	μ, Δ, ρ
, T � Dyn�

types	μ, Δ, ρ
 = fieldTypes	μ
 �� envTypes	Δ, ρ
 �� ctxTypes	Δ


fieldTypes	μ
 =
o��dom�μ�

�oi : Ti  μ	o�
 = C	o
 P, fields	C
 = T f�

envTypes	Δ, ρ
 = �o : T  ρ	l
 = o, l : T � Δ�

ctxTypes	Δ
 = �o : T  o : T � Δ�

μ, Δ, ρ � o ok Reference Consistency

μ	o
 = C	o�
 P
∣∣∣o�

∣∣∣ = |fields	C
|
objTypes	μ, Δ, ρ, o
 = k	E
 D

C �: D k	E
 compatible

k	E
 = P

μ, Δ, ρ � o ok

μ, Δ, ρ ok Global Consistency

ran	ρ
 " dom	μ
 # � void �

dom	Δ
 " dom	ρ
 # dom	μ


� l  	l : Void
 � Δ � " � l  ρ	l
 = void �

� l  	l : k	D
 C
 � Δ � " � l  ρ	l
 = o �

μ, Δ, ρ � dom	μ
 ok

μ, Δ, ρ ok

Fig. 10. Permission-Consistency Relations

5.4 Type safety

GFTIL’s type safety proof must account for the outstanding permissions for
each object o and verify that they are mutually compatible. Figure 10 presents
the definitions used for this. The fieldTypes , ctxTypes , and envTypes functions
accumulate outstanding type information for objects in the store from the fields
of objects, the type context, and the environment respectively. The objTypes
function selects just the permission-carrying types for a particular object refer-
ence o. These definitions use square brackets to express list comprehensions, and
�� to express list concatenation.

The objTypes function is used to define reference consistency, the judgment
that an object in the store and all references to it are sensible. A consistent
object reference points to an object that has the proper number of fields, and all
references to it are well-formed, mutually compatible, and tracked in the store.

Reference consistency is used in turn to define global consistency, which es-
tablishes the mutual compatibility of a store-environment-context triple. Global
consistency implies that every object reference in the store satisfies reference
consistency, that every reference in the type context is accounted for in the store
and environment, and that Void and object-typed indirect references ultimately
point to void values and object references respectively11. Note that global consis-
tency and permission tracking take into account even objects that are no longer
reachable in the program. To recover permissions, a program must explicitly
release the fields of an object before it becomes unreachable.

These concepts contribute to the statement (and proof) of type safety.

Theorem 1 (Progress). If e is a closed expression, μ, Δ, ρ ok, and
Δ � e : T 	 Δ�, then only one of the following holds:

11 Dyn references may point to either Void or object references.
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(invoke�)

mdecl	m, C1
 = T m	Tx � T �
x
�Tt � T �

t�

coerce	x1, P1 C1
�:
� Tt
 = eT

1 coerce	x2, T2
�:
� Tx
 = eT

2

Δ, x1 : P1 C1, x2 : T2 � x1.m	x2
 � T � eT
1 ; eT

2 ; x1.m	x2
 � Δ�, x1 : T �
t, x2 : T �

x

(invoked �)
coerce	x2, T2

�:
� Dyn
 = eT

2

Δ, x1 : Dyn, x2 : T2 � x1.m	x2
 � Dyn � eT
2 ; x1.dm	x2
 � Δ�, x1 : Dyn, x2 : Dyn

(ê �)
Δ � ê � T1 � eT

1 � Δ� coerce	ret, T1
�:
� T2
 = eT

2

Δ � ê � T2 � let ret = eT
1 in eT

2 ; ret � Δ�

(update�)

fields	C2
 = T2 f Δ � x2 � T2 � eT
2 � Δ�, x1 : k	D
 C

k � �full, shared� C2 �: D

Δ � x1 � C2	x2
 � Void � let x�2 = eT
2 in x1 � C2	x�2
 � Δ��, x1 : k	D
 C2

(updated �)
fields	C2
 = T2 f Δ � x2 � T2 � eT

2 � Δ�, x1 : Dyn

Δ � x1 � C2	x2
 � Void � let x�2 = eT
2 in x1 �d C2	x�2
 � Δ��, x1 : Dyn

(assert�)
T � T �

Δ, x : T � assert�T ��	x
 � Void � assert�T � T ��	x
 � Δ, x : T �

(assertd �)
T �� T �

Δ, x : T � assert�T ��	x
 � Void � assertd�T � T ��	x
 � Δ, x : T �

Fig. 11. Select Translation Rules from GFT to GFTIL

– e is a value;
– μ, ρ, e � μ�, ρ�, e� for some μ�, ρ�, e�;
– e = E�ed� and μ, ρ, e is stuck.

The last case of the progress theorem holds when a program is stuck on a
failed dynamically checked expression. All statically checked expressions make
progress.

Theorem 2 (Preservation). If Δ � e : T 	 Δ�, and μ, Δ, ρ ok, and
μ, ρ, e � μ�, ρ�, e�, then Δ$ � e� : T 	 Δ� and μ�, Δ$, ρ� ok for some Δ$.

6 Source to Target Translation

The dynamic semantics of GFT are defined by augmenting its type system to
generate GFTIL expressions. The type checking and synthesis judgments be-
come Δ � e1 � T � eT

2 	 Δ� and Δ � e1 
 T � eT
2 	 Δ� respectively,

where e1 is a GFT expression and eT
2 is its corresponding GFTIL expression.

Figure 11 presents some of these rules. We use the T superscript to disambiguate
GFTIL expressions as needed. Several rules use the coerce partial function, which
translates consistent subtyping assertions T �:

� T into variable assertions:

coerce�x, T1
�:
� T2� = assert�T1 � T2��x� if T1 �: T2

coerce�x, Dyn �:
� T � = assertd�Dyn � T ��x� if T � Dyn
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Most of the translations are straightforward, and follow similar patterns. For
instance, the (update
) rule, which applies when the target of the update is
statically typed, let-binds all of the arguments to the object constructor so as
to extract the exact permissions that it needs before calling GFTIL’s static up-
date. The (updated 
) rule, in contrast, applies when the target of the update is
dynamically typed. It translates to a dynamic update operation �d, but is oth-
erwise the same. Operations on dynamically typed objects translate to dynamic
operations. Other rules like (assert
) simply use the typing rule to ascertain
the intended type annotations for the corresponding GFTIL expression.

As intended, the translation rules preserve well-typing:

Theorem 3 (Translation Soundness).
If Δ � e � T � eT 	 Δ� then Δ � eT : T 	 Δ�.

This theorem extends straightforwardly to whole programs.

7 Discussion

Related Work. A lot of research has been done on typestates since they were
first introduced by Strom and Yemini [26]. Most typestate analyses are whole-
program analyses, which makes them very flexible in handling aliasing. Ap-
proaches based on abstract interpretation (e.g. [12]) rely on a global alias analysis
and generally assume that the protocol implementation is correct and only verify
client conformance. Naeem and Lhoták [20] developed an analysis for checking
typestate properties over multiple interacting objects. These global analyses typ-
ically run on the complete code base, only once a system is fully implemented,
and are time consuming.

Fugue [10] was the first modular typestate verification system for object-
oriented software. It tracks objects as “not aliased” or “maybe aliased”; only
“not aliased” objects can change state. Bierhoff and Aldrich [4] extended this
approach by supporting more expressive method specifications based on linear
logic [16]. They introduce the notion of access permissions in order to allow state
changes even in the presence of aliasing. They also use fractions, first proposed
by Boyland [8], to support patterns like borrowing and adoption [9]. The Plural
tool supports modular typestate checking with access permissions for Java. It
has been used in a number of practical studies [5]. Although Plural introduced
state guarantees, this paper provides their first formalization.

Recent work on distributed session types [15] provides essentially the same
expressiveness as Plural, but with protocols expressed in the structural setting
of a process algebra instead of the setting of nominal typestates. It considers
communication over distributed channels as well as object protocols, but does
not allow aliasing for objects with protocols.

The above approaches do not address typestate-oriented programming, as
they are not integrating typestates within the programming model, but rather
overlay static typestate analysis on top of an existing language. TSOP has been
recently proposed by Aldrich et al. [2]; its defining characteristic is supporting
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run-time changes to the representation of objects in the dynamic semantics and
type system. The programming language Plaid12 is the first language to integrate
typestates in the core programming model. Saini et al. [23] recently developed
the first core calculus for a TSOP language; their language is object-based and
relies on structural types. Gradual Featherweight Typestate builds on this work
but adapts it to a class-based, nominal approach with shared permissions and
state guarantees for reasoning about typestate in the presence of aliasing. Earlier
work related to TSOP includes the Fickle system [11], which can change the class
of an object at runtime, but has limited ability to reason about the states of an
object’s fields.

This work also builds upon existing techniques for partial typing, like hybrid
typing [18] and gradual typing [25, 24, 6]. Gradual Featherweight Typestate is
a considerable advance in this sense, by showing how to gradually check flow-
sensitive resources in a modular fashion. Recently, Bodden [7] presented a hybrid
approach to typestate checking. A static typestate analysis is performed to avoid
unnecessary instrumentation of programs for monitoring typestates at runtime.
While the hybrid perspective is shared with this work, the proposed analysis is
global.

Ahmed et al. [1] define a core functional programming language that supports
strong updates, i.e. changing the type of an object in a reference cell. Similarly
to our approach, it uses linear typing. They present two languages, L3, and
extended L3. L3 allows aliasing, but only has exclusive access, through a capa-
bility: only one reference can read/write to an object. In contrast, full, shared
and pure permissions allow for more varied aliasing patterns. Extended L3 allows
recovering a capability, but the programmer must provide a proof that no other
capabilities exist to the reference cell.

Future Work. Gradual Featherweight Typestate is at the core of the Plaid lan-
guage design project at CMU. We are integrating other access permissions from
Bierhoff and Aldrich [4]. Most importantly, we are exploring ways to extend the
power of the static type system in order to avoid resorting to dynamic asserts.
An example of such an extension is permission borrowing [9], which, if specified
in method signatures, avoids having to dynamically reassert permissions after
“lending” them to a sub-computation. The language we present here already
includes one such refinement, namely hold, used to hold some permissions to
a reference while a sub-computation is performed. Importantly, it remains an
outstanding research question if the cost of dynamic permission checking can
be amortized over the number of permission checks. As it now stands, enabling
dynamic permission checking mandates a fully-instrumented runtime semantics
to keep track of permissions. In Plaid, we intend to address this with reference
counting. Standard optimization techniques like deferred increments [3] and up-
date coalescing [19] will be applied. We believe these techniques will reduce
reference count overhead to a small percentage of runtime, as it does for garbage
collection, and will study this empirically in future. The formalism presented

12 Under development at CMU: http://plaid-lang.org
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here establishes a baseline from which to explore this capability and develop
new models for permission tracking.

Conclusion. Gradual Featherweight Typestate (GFT) is a nominal core calcu-
lus for typestate-oriented programming. By introducing typestate directly into
the language and extending its type system with support for gradual typing,
state abstractions can be implemented directly, stronger program properties can
be enforced statically, and when necessary dynamic checks can be introduced
seamlessly. In particular GFT supports a rich set of access permissions together
with state guarantees for substantial reasoning about typestate in the presence
of aliasing. This work paves the way for further gradual approaches by showing
how to modularly and gradually check flow-sensitive resources.

Acknowledgments. We thank the members of the Plaid research group at
Carnegie Mellon University, especially Darpan Saini and Nels Beckman, as well
as the anonymous reviewers, for feedback on this work.
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Abstract. Taking advantage of recent advances in automated theorem proving,
we present a new method for determining whether database transactions pre-
serve integrity constraints. We consider check constraints and referential-integrity
constraints—extracted from SQL table declarations—and application-level in-
variants expressed as formulas of first-order logic. Our motivation is to use static
analysis of database transactions at development time, to catch bugs early, or
during deployment, to allow only integrity-preserving stored procedures to be
accepted. We work in the setting of a functional multi-tier language, where func-
tional code is compiled to SQL that queries and updates a relational database.
We use refinement types to track constraints on data and the underlying database.
Our analysis uses a refinement-type checker, which relies on recent highly ef-
ficient SMT algorithms to check proof obligations. Our method is based on a
list-processing semantics for an SQL fragment within the functional language,
and is illustrated by a series of examples.

1 Introduction

This paper makes a case for the idea that database integrity should be maintained by
static verification of transactional code, rather than by relying on checks at run time.
We describe an implementation of this idea for relational databases, where schemas
are defined using SQL table descriptions, and updates are written in a functional query
language compiled to SQL. Our method relies on a semantics of SQL tables (including
constraints) using refinement types, and a semantics of SQL queries in terms of list pro-
cessing. We describe a series of database schemas, the implementation of transactions
in the .NET language F#, and the successful verification of these transactions using the
refinement-type checker Stateful F7. Like several recent tools, Stateful F7 relies in part
on pushing verification conditions to external SMT solvers, provers whose effective-
ness has recently improved at a remarkable rate. Our aim is to initiate the application of
modern verification tools for functional languages to the problem of statically-verified
database transactions, and to provide some evidence that the idea is at last becoming
practical.

1.1 Background: Database Integrity Constraints

SQL table descriptions may include various sorts of constraints, as well as structural
information such as base types for columns.

A check constraint is an assertion concerning the data within each row of a table,
expressed as a Boolean expression.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 484–509, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A primary key constraint requires that a particular subset, the primary key, of the
columns in each row of the table identifies the row uniquely within the table. A key
consisting of multiple column labels is called a composite key. A uniqueness constraint
is similar to a primary key constraint but based on a single column.

A foreign key constraint requires that a particular subset, a foreign key, of the columns
in each row of the table refers uniquely to a row in the same or another table. Satisfac-
tion of primary key and foreign key constraints is known as referential integrity.

To illustrate these constraints by example consider a table recording marriages be-
tween persons, represented by integer IDs. A key idea is that the marriage of A and B is
encoded by including both the tuples (A,B) and (B,A) in the table.

An Example Table with Integrity Constraints: Marriage

create table [Marriage](
[Spouse1] [int] not null unique,
[Spouse2] [int] not null,

constraint [PK Marriage] primary key ([Spouse1],[Spouse2]),
constraint [FK Marriage] foreign key ([Spouse2], [Spouse1])

references [Marriage] ([Spouse1], [Spouse2]),
constraint [CK Marriage] check (not([Spouse1] = [Spouse2])))

The two columns Spouse1 and Spouse2 in the Marriage table store non-null integers.
Database integrity in this example amounts to three constraints: marriage is monog-
amous (you cannot be in two marriages), symmetric (if you marry someone they are
married to you), and irreflexive (you cannot marry yourself).

– The uniqueness constraint on the column Spouse1 asserts that nobody is Spouse1 in
two different marriages, hence enforcing monogamy.

– The primary key constraint PK Marriage in conjunction with the self-referential
foreign key constraint FK Marriage asserts that whenever row (A,B) exists in the
table, so does the row (B,A), hence enforcing symmetry.

– The check constraint CK Marriage asks that nobody is married to themselves, hence
enforcing irreflexivity.

A buggy transaction on this table may violate its constraints. The sorts of bugs we aim
to detect include the following: (1) insertion of null in Spouse1 or Spouse1 (violating
the not null type annotation); (2) inserting (A,C) when (A,B) already exists (violating
the uniqueness constraint); (3) inserting (A,B) but omitting to insert (B,A) (violating
the foreign key constraint); and (4) inserting (A,A) (violating the check constraint). We
aim to eliminate such integrity violations by static analysis.

1.2 Background: Multi-tier Functional Programming

We consider the common situation where database updates are not written directly in
SQL, but instead are generated from a separate programming language via some object-
relational mapping. In particular, we consider database transactions expressed in the
functional language F# [28], but compiled to SQL for efficient execution in the rela-
tional backend. This is an instance of multi-tier functional programming, where a single
functional program is split across tiers including the web server and the database.
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Our mapping is based on three ideas:

(1) We model SQL table definitions as F# types: the whole database is a record type db

consisting of named tables, where each table is a list of records, corresponding to
the rows of the table.

(2) We provide the user with standard functions for create, read, update, and delete op-
erations on each table. We also allow user-supplied custom SQL stored procedures,
and provide F# functions to call these procedures. Both standard and custom func-
tions are implemented as SQL queries, and can be thought of as imperative actions
on a global state of type db.

(3) Users write a transaction as an F# function that interacts with the database by call-
ing a sequence of standard SQL functions and custom stored procedures.

To illustrate point (1), we model our example table definition with the following F#
types, where the whole database db is a record with a single field holding the marriages
table, which itself is a list of rows.

type marriage row = { m Spouse1:int; m Spouse2:int; }
type db = { marriages: marriage row list; }
A row (A,B) is represented by the record:

{ m Spouse1=A; m Spouse2=B; }
The marriage of A and B is represented by the list:

[{ m Spouse1=A; m Spouse2=B }; { m Spouse1=B; m Spouse2=A }]

Regarding point (2), we have (among others) the following standard queries as F#
functions:

– hasKeyMarriage (A,B) computes whether a row with primary key (A,B) exists in
the marriages table.

– deleteMarriage (A,B) deletes the row with primary key (A,B) from the marriages
table, if it exists.

We have no user-supplied custom SQL queries for the marriages example, but show
such queries in some of our later examples.

Actual transactions (point (3) above) are written as functional code. The following
example of a user-written transaction is to dissolve a marriage. Given two spouses A
and B, we have to check whether the rows (A,B) and (B,A) exist in the database and
remove them both.

An Example Transaction: Divorce

let divorce ref (A,B) =
if hasKeyMarriage(A, B) then

deleteMarriage(A, B);
deleteMarriage(B, A);
Some(true)

else Some(false)
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The body of the function is an expression returning a value of type bool option.

– Some true means there was a marriage successfully removed, and we commit;
– Some false means there was no marriage to remove, and we commit;
– None would mean that the transaction failed and any updates are to be rolled back

(a return value not illustrated by this code).

The code above takes care to check that a marriage between A and B already exists be-
fore attempting to delete it, and also to remove both (A,B) and (B,A). Instead, careless
code might remove (A,B) but not (B,A). Assuming that the foreign key constraint on the
marriage table is checked dynamically, such code would lead to an unexpected failure
of the transaction. If dynamic checks are not enabled (for instance since the underlying
database engine does not support deferred consistency checking) running invalid code
would lead to data corruption, perhaps for a considerable duration. Our aim is to de-
tect such failures statically, by verifying the user written code with a refinement-type
checker.

1.3 Databases and Refinement Types

The values of a refinement type x:T{C} are the values x of type T such that the formula
C holds. (Since the formulaC may contain values, refinement types are a particular form
of dependent type.) A range of refinement-type checkers has recently been developed
for functional languages, including DML [31], SAGE [14], F7 [4], DSolve [24], Fine
[27], and Dminor [6], most of which depend on SMT solvers [23].

A central idea in this paper is that refinement types can represent database integrity
constraints, and SQL table constraints, in particular. For example, the following types
represent our marriage table.

SQL Table Definitions as Refinement Types:

type marriage row = { m Spouse1:int; m Spouse2:int }
type marriage row ref = m:marriage row {CK Marriage(m)}
type marriage table ref = marriages:marriage row ref list
{ PKtable Marriage(marriages) ∧Unique Marriage Spouse1(marriages) }

type State = { marriage:marriage table ref }
type State ref = s:State {FK Constraints(s)}

The refinement types use predicate symbols explained informally below. We give for-
mal details later on.

– CK Marriage(m) means the record m satisfies the check constraint [CK Marriage].
– PKtable Marriage(marriages) means the list of records marriages satisfies the primary

key constraint with label [PK Marriage].
– Unique Marriage Spouse1(marriages) means marriages satisfies the uniqueness con-

straint on column [Spouse1].
– FK Constraints(s) means the database s satisfies the foreign key constraint with label

[FK Marriage].
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1.4 Transactions and the Refined State Monad

The state monad is a programming idiom for embedding imperative actions within func-
tional programs [29]. Pure functions of type State→ T ∗ State represent computations
that interact with a global state; they map an input state to a result paired with an output
state. The refined state monad [13,20,8] [(s0)C0]x:T [(s1)C1] is the enrichment of the
state monad with refinement types as follows:

[(s0)C0]x:T [(s1)C1] � s0:State{C0}→ x:T ∗ s1:State{C1}
The formula C0 is a precondition on input state s0, while the formula C1 is a postcondi-
tion on the result x and output state s1.

A new idea in the paper is to represent SQL queries and transactions as computations
in a refined state monad, with the refinement type State being a record with a field
for each table in the database, as above. For example, the function divorce ref has the
following type, where the result of the function is a computation in the refined state
monad.

val divorce ref: (int×int)→
{(s) FK Constraints(s)} r:bool option {(t) r �=None⇒FK Constraints(t)}

The return type states that if the function is called in a state s satisfying the foreign key
constraints, and it terminates, then it returns a value r of type bool option. Moreover,
if r�=None, then the state t after the computation terminates satisfies the foreign key
constraints. The type reflects that the code performs sufficient dynamic checks that it
never causes a dynamic failure, and that it returns None whenever it leaves the database
in an inconsistent state. The case of the function returning None is caught by a trans-
action wrapper (not shown here) which then aborts the transaction, rolling back the
database to its initial state.

By checking with refinement types, we aim to catch buggy code that terminates with
Some b, intending to commit and return b, but that does not in fact re-establish the
database invariants. In particular, we would catch code that removes say (A,B) but not
(B,A), as it does not re-establish the foreign key constraint FK Constraints(t).

1.5 An Architecture for Verified Database Transactions

We verify a series of example user transactions, according to the diagram below. Each
example starts from a database schema in SQL. From the schema our tool generates re-
finement types to model the database, and also a functional programming interface for
a set of pre-packaged stored procedures in SQL (for actions such as querying and delet-
ing items by key, exemplified by the functions lookupMarriage etc mentioned above).
Against this interface, the user writes transactional code (exemplified by the function
divorce ref mentioned above) in F#, which is invoked from their application. We verify
the code of the user transactions using the typechecker Stateful F7 [8], which imple-
ments the refined state monad on top of the typechecker F7 [4]. Additionally, not shown
in the diagram, in some examples the schema may also include queries written directly
as custom SQL stored procedures; we can also verify these queries by mapping SQL
into F#.
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Our examples are as follows.

(1) Marriages (see above and Section 3).
We have a single table Marriage(Spouse1,Spouse2) with integrity expressed us-
ing SQL table constraints. We describe verifiable transactions to create and delete
marriages.

(2) Order processing (see Section 4).
We have tables Orders(OrderID,CustomerID,Name,Address) and Details(OrderID,
ProductID,UnitPrice,Quantity) with integrity expressed using primary key, foreign
key, and check constraints. We show that an addOrder function, which creates an
order with a single detail row, respects all these constraints.

(3) Heap data structure (see Section 5).
We have a table Heap(HeapID,Parent,Content) where each row represents a node
in a heap data structure. SQL constraints do not suffice to specify the integrity
invariant of this data structure, so we add user-defined constraints written in first-
order logic. We verify that integrity is preserved by recursive functions to push
and pop elements, which make use of user-defined stored procedures getRoot and
getMinChild.

1.6 Contributions of the Paper

Our main contribution is to interpret SQL table descriptions as refinement types, and
database updates as functional programs in the refined state monad, so as to verify, by
refinement-type checking, that updates preserve database integrity. Hence, verification
of the F# and SQL source code proceeds by sending a series of verification conditions
in first-order logic to an automatic theorem prover.

Our source code is in the .NET language F#, but our method could be recast for other
functional multi-tier languages, such as Links [11], HOP [25], or FLAPJAX [17], and
also for object-oriented programming models such as LINQ [19]. We use the type-
checker Stateful F7, but we expect our approach to queries and transactions would
easily adapt to related verifiers for functional code with state such as Why [13] or
YNOT [20], and indeed to verifiers for imperative code, such as those using Boogie [2].

The idea of static verification of database transactions goes back to the 1970s, to
work on computing the weakest precondition needed for a transaction to
succeed [16,9,26,5]. Theorem proving technology has improved considerably since the
idea of static verification of database transactions was first mooted, and an implication
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of our work is that the idea is at last becoming practical. Moreover, the success of lan-
guages with functional features such as F#, Scala [21], and indeed recent versions of
C# with closures, is compelling evidence for the significance of functional program-
ming as an object-oriented technology. Hence, our work lays a foundation for statically
verifiable database access from mainstream object-oriented platforms.

A technical report includes additional details [1].

2 A Tool to Model SQL with Refinement Types

This section fleshes out the architecture diagram of our system.
Section 2.1 describes the details of the SQL schemas input by our system, including

both the data definition part defining the structure of tables, and also the data manipu-
lation part of queries invoked from stored procedures.

Section 2.2 details how our tool generates data types and a database interface from
a schema. The database interface consists of a set of F# functions with types, including
preconditions and postconditions, specified in the syntax of Stateful F7. When generat-
ing the database interface, our tool automatically includes functions to access a set of
standard queries, as well as functions to access any custom stored procedures included
in the schema.

Section 2.3 gives a symbolic reference implementation for the generated database
interface. The symbolic implementation relies on list processing in a similar fashion
to Peyton Jones and Wadler [22] and serves as a formal semantics for the interface.
We trust, but do not formally verify, that the behaviour of the symbolic implementation
corresponds to its interface, as well as to our concrete implementation which works by
sending queries to an actual SQL database.

Finally, Section 2.4 extends our schema syntax with the ability to write integrity
constraints directly as first-order predicates.

2.1 SQL Schemas: Tables and Stored Procedures

Let c range over constants, x over variables and f ,g over table column names. Then,
boolean expressions and value expressions occurring within SQL queries are defined by
the syntax below. Value expressions include (boolean, integer, and string) constants, bi-
nary operations, variables and table field names. Boolean expressions include equations
between value expressions, comparisons, conjunction, disjunction, and negation.

Values and Expressions

B ::= E = E | E E | B∨B | B∧B | ¬B Boolean expression
 ::= < |<= |> |>= Comparison operator
E ::= E⊕E | c | x | f Value expression
⊕ ::= + | − | ∗ | / Binary operator

A table declaration defines a table t, and gives a name fi and type Ti to each of its
columns. To indicate uniqueness constraints, each column has a tag ui, either unique or
empty. SQL supports several data types; in this work, we only consider Boolean, Int and
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String data types which are defined as their counterparts in F#. We may interpret more
complex types using appropriate encodings and refinements of the three basic types. We
assume that each table has exactly one primary key, which may be composite, exactly
one check constraint, and no multiple foreign key references to the same table. (SQL
syntax allows multiple check constraints, but these may be conjoined to produce a single
check constraint).

Data Definition

DT ::= Table declaration
table t (ui fi : Ti)i∈1..n, name and fields
primary key g, primary key
check B, check constraint
κ1, . . . ,κm foreign keys

κ ::= foreign key f references t(g)
T ::= Boolean | Int | String Type

The syntax of supported SQL queries includes those necessary for selecting, inserting
and deleting rows from a table. Let t denote an SQL table name and let f be a shorthand
for f1, . . . , fn (all the columns of the table) and g be a shorthand for g1, . . . ,gm (denoting
some of the fi).

Data Manipulation

Q ::= QS | QI | QD |QU Query
QS ::= Select query

select [top 1] g selector
from t source
where B criterion
[order by f {asc | desc}] ordering

QI ::= Insert query
insert into t target table
( f1, . . . , fn) table fields
values (E1, . . . ,En) field values

QD ::= Delete query
delete from t target table
where B criterion

QU ::= Update query
update t set target table
(g1, . . . ,gm) = table fields
(E1, . . . ,Em) field values
where B criterion

A QS query filters all the rows of a table t, based on a boolean criterion B, and projects
the selected fields g. The result of a select query is a table of rows matching the crite-
rion. We consider only select queries that contain top 1 if and only if they contain an
order by clause. In this case, the resulting table is ordered in either ascending or de-
scending order based on the single field f , and the first element of the table is returned
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as the result. A QI query adds a row consisting of the values E1, . . . ,En in table t. In
insert into t ( f1, . . . , fn) values (E1, . . . ,En), we expect each Ei to be either a variable or
a constant. The result of a QI query is a number indicating the count of successful inser-
tions. A QD query removes from table t all the rows matching the boolean criterion B.
Again, the result is a number indicating the count of successful deletions. Finally, a QU
query modifies fields g to contain values E for all rows of table t that match the boolean
condition B.

The SQL schema syntax includes constructs for databases, tables, procedures, and
constraints. A schema is a named tuple of declarations. A declaration can be either a
procedure or a table. A procedure abstracts a query Q by giving a name h and making it
depend on parameters a1, . . . ,an. We assume that in a procedure declaration, the query
Q only contains variables from a.

SQL Schema

S ::= schema s(DT i∈1..n
i ,DP j∈1..m

j ) Schema
DP ::= procedure h (ai : Ti)i∈1..nQ Procedure declaration

In subsequent sections, we adopt a convenient syntax for advanced queries and assume
standard encodings of these syntactic forms in terms of the core query syntax. For
example, multi-row insertion is defined in terms of multiple single-row insertions and
the star (*) syntax in QS queries corresponds to explicitly naming all the columns in the
table, in order of their appearance in the table declaration.

2.2 Generating Types and Database Interfaces from Schemas

Our tool maps an SQL schema S to a Stateful F7 module [[S]] by assembling a series of
type definitions, predicate definitions, and function signatures. This section describes
each of the components in turn.

Translation from S in SQL to [[S]] in Stateful F7:

Let [[S]] be the Stateful F7 module obtained from schema S by concatenating the type
and function definitions displayed below: (S1) types from schema declarations; (S2)
refinement formulas from constraints; (S3) signatures of standard functions; (S4)
signatures of custom functions.

First, in (S1) we fix a type for table declarations and the global type State of the refined
state monad used by Stateful F7. Second, in (S2) we define logical axioms which cor-
respond to the database constraints. Third, we give types to queries and procedures that
manipulate the global state. As discussed earlier, expressions get computation types of
the form [(s0)C0]x:T [(s1)C1]. Finally, in (S3) and (S4) we give signatures of standard
API functions and custom procedures for manipulating the global state. We use val f : T

to give a type to a function in the API.
Below, we assume a fixed schema s defined by S. For every table t in s, assume

the definition table t (ui fi : Ti)i∈1..n,primary key g,check B,κ1, . . . ,κl . Given table t, the
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translation algorithm works as follows. We generate the type t key as a tuple of the
corresponding types of the primary key fields and let Tf, the type of field f, be given by
Ti when f = fi. For each row in the table we create an unrefined record type t row with
the labels corresponding to the column names from the table definition. To associate a
check constraint with each table row, we refine the row type with the formula CK t(row)
(defined below) and create the refinement type t row ref. Values of this type represent
rows in the table t for which the check constraint holds. The table t itself is modelled as a
list of refined rows (t table). Finally, we refine the table type by associating the primary
key constraint formula PKtable t(tab) (defined below in (S2)) with it. Values of this
type represent tables for which the primary key constraint holds. Basic types translate
directly to their equivalents in Stateful F7. We deal with not null and null constraints by
declaring nullable types as option types.

We can now proceed to the definition of the type corresponding to the database (for a
single schema). Without loss of generality, assume that the tables t1, . . . ,tn belong to the
fixed schema s. The database type is a record of refined tables. In the refined state type,
the refinement asserts that values of this type will satisfy the foreign key constraints
on the database. The normal state type does not have this refinement, denoting that
top-level constraints may temporarily be invalidated. A valid transaction may assume
that the foreign key constraints hold, and must enforce them on exit, but may internally
temporarily violate the constraints.

(S1) Types from Table Declarations

type t key = Tg1× ... ×Tgm
type t row = {f1:T1; ...; f n:Tn}
type t row ref = row:t row {CK t(row)}
type t table ref = tab:t row ref list {PKtable t(tab) ∧∧

ui=unique Unique t fi(tab)}
type State = { (t i : ti table ref) i∈1..n }

We now define logical predicates corresponding to SQL table constraints. We assume
a translation L[[·]]r from SQL boolean and value expressions to logical formulas and
terms; the translation is homomorphic except for the base case L[[ f ]]r � r. f .

– CK t(row) means the check constraint of table t holds of the tuple row.
– PK t(r,k) means the primary key of row r of table t is k.
– PKtable t(tab) means the contents tab of table t satisfies its primary key constraint.
– Unique t f(tab) means the contents tab of table t satisfies the uniqueness constraint

for field f.
– FK t u(tab1,tab2) means the contents tab1 of table t satisfies the foreign key con-

straint with reference to the contents tab2 of table u.
– FK Constraints(db) means all foreign key constraints in the database db are satisfied.

In the table below, the Stateful F7 keyword assume introduces a universally quantified
axiom to define each new predicate symbol.
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(S2) Refinement Formulas from Constraints

assume ∀row. CK t(row)⇔L[[B]]row
assume ∀row,x . PK t(row,(x ))⇔∧

i xi = row.gi
assume ∀tab. PKtable t(tab)⇔∀row1, row2.

(Mem(row1,tab) ∧Mem(row2,tab) ∧PK t(row1,(row2.g1, . . . , row2.gm)))⇒ row1 = row2
assume ∀tab. Unique t f(tab)⇔∀row1, row2.

(Mem(row1,tab) ∧Mem(row2,tab) ∧ row1.f = row2.f)⇒ row1 = row2
assume ∀tab1,tab2. FK t u(tab1,tab2)⇔∀x. Mem(x,tab1)⇒ (∃ y. Mem(y,tab2) ∧∧

i x. fi = y.gi)
if ∃κi = foreign key f1 . . . fm references u(g1 . . .gm)

assume ∀s. FK Constraints(s)⇔∧
t,u FK t u(s.t, s.u)

(A limitation of our semantics for uniqueness constraints and primary keys is that they
allow duplicate copies of the same row; the limitation could be lifted by more elaborate
semantics but we leave this for future work).

Now that we have translated SQL data declarations, we may proceed to the query
and data manipulation languages. The variable s in the translation represents the entire
database record, and therefore the expression s.t projects the table t over which the
query is performed. A simple select query does not modify the state, and returns a list
whose elements are exactly the rows in the table matching the select condition. We
write Tg for the tuple T1 ×... ×Tn where Ti is the type of field gi and n = |g|. A select
top 1 query also does not modify the state, and returns a list which is either empty or
contains one element from the table that matches the select criterion and is less than (or
greater than, not shown) any other such element. An insert query may only be called
if inserting the row does not invalidate any table constraints, and the new table after
running the query is the old table with the inserted row prepended to it. A delete query
modifies the corresponding table to contain only those rows not matching the query
condition. An update query also modifies the table to contain exactly those rows that do
not match the where clause, or the updated version of the rows that do.

Types of SQL Queries

T[[select g from t where B ]]�
[(s)] l:Tg list [(s’) s=s’ ∧ (∀ x. Mem(x,l)⇔∃r. L[[B]]r ∧r.g = x.g ∧Mem(r, s.t) )]

T[[select top 1 g from t where B order by f asc ]]�
[(s)] l:Tg list [(s’) s=s’ ∧ ((l = [] ∧ (∀r. Mem(r,s.t)⇒¬L[[B]]r)) ∨

(∃x. L[[B]]x ∧Mem(x,s.t) ∧ l = [{g = x.g}] ∧ (∀r. L[[B]]r ∧Mem(r,s.t)⇒ r.f >= x.f)))]
T[[insert into t ( f1, . . . , fn) values (E1, . . . ,En) ]]�

[(s) PKtable t({ f = L[[E]]r}::(s.t))] unit [(s’) s’= {s with t = { f = E}::(s.t) }]
T[[delete from t where B ]]�

[(s)] int [(s’) ∃t’. s’= {s with t = t’} ∧ (∀r. Mem(r,t’)⇔L[[¬B]]r ∧Mem(r,s.t))]
T[[update t set g = E where B ]]�

[(s)] int [(s’) ∃t’. s’= {s’ with t = t’} ∧ (∀x. Mem(x,t’)⇔ (Mem(x,s.t) ∧¬L[[B]]r) ∨
(∃r.Mem(r,s.t) ∧L[[B]]r ∧x= {r with g = L[[E]]r}))]
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The standard API defines functions that look up the existence of keys inside a table,
generate fresh keys for a table, checks that an unrefined row satisfies the constraints,
inserts a refined row in a table, deletes a row from a table, and updates a row in a table.
The function fresh t is only defined when the primary key is non-composite, that is, the
constraint contains a single field f , and indeed is an integer. The lookup t function takes
a numeric key and returns true if it exists inside the table; the fresh t function generates
a new key that does not exist inside the table; the check t function takes an unrefined
row and makes sure that all the check constraints are satisfied for it; the insert t function
takes a refined row to be inserted in a table and starting from a state that satisfies all
the primary key and foreign key constraints performs the insertion; the delete t function
takes a key for a table and removes the associated row from the table.

(S3) Signatures of Standard Functions

PKfresh t(tab, (x )) � ∀r. Mem(r, tab)⇒∨
i(xi �= r.gi)

PKexists t(tab, (x )) � ∃r. Mem(r, tab) ∧∧
i(xi = r.gi)

val hasKey t: k:t key→
[(s) True] b:bool [(s’) s=s’ ∧ (b=false⇒PKfresh t(s.t,k)) ∧ (b=true⇒PKexists t(s.t,k))]

val lookup t: k:t key→
[(s) True] o:t row ref option [(s’) s=s’ ∧ (o=None⇒PKfresh t(s.t,k)) ∧

(∀r. o=Some(r)⇒Mem(r,s.t) ∧PK t(r,k))]
val fresh t: unit→ [(s) True] k:t key [(s’) s=s’ ∧PKfresh t(s.t,k)]
val check t: r:t row→ [(s) True] b:bool [(s’) s=s’ ∧ (b=true⇒CK t(r))]
val insert t: r:t row ref→ [(s) True] b:bool [(s’) (b=false⇒s=s’) ∧

(b=true⇒s’= {s with t = r::(s.t) })]
val update t: r:t row ref→ [(s) True] b:bool [(s’) (b=false⇒s=s’) ∧

(b=true⇒∃t’. s’= {s with t = t’} ∧
(∀x. Mem(x,t’)⇔ (Mem(x,s.t) ∧¬x.g = r.g) ∨ (x=r ∧∃y.Mem(y,s.t) ∧y.g = r.g))]

val delete t: k:t key→ [(s) True] unit [(s’) (b=false⇒s=s’) ∧
(b=true⇒∃t’. s’= {s with t = t’} ∧ (∀x. Mem(x,t’)⇔ (Mem(x,s.t) ∧¬x.g = r.g))]

To complete the four parts of the definition of [[S]], each custom stored procedure ex-
plicitly listed in the schema S is translated to a function signature as follows.

(S4) Signatures of Custom Functions

[[procedure h (ai : Ti)i∈1..n Q ]]�
val h : a1 : T[[T1 ]]→ . . .→an : T[[Tn ]]→T[[Q ]]

2.3 Reference Implementation of Database Interface

The dynamic semantics for the subset of SQL that we consider follows Peyton Jones
and Wadler [22]. In the following, we assume standard map and filter functions on lists,
and also functions max and min that select the maximum and minimum of a list of
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orderable values. As a convention, we use f for the full tuple of columns, and g for a
subset of the columns. The translation F[[·]]r, from SQL boolean and value expressions
to F# expressions is homomorphic except for the base case F[[ f ]]r � r. f .

Semantics of SQL Queries

[[select g from t where B]] �
let s = get() in map (fun f → g)(filter (fun r→ F[[B]]r) (s.t))

[[select top 1 g from t where B order by f asc]] �
match [[select f from t where B]] with []→ [] | xs→
let m = max(xs) in [hd([[select g from t where ( f = m)∧B]])]

[[insert into t ( f1, . . . , fn) values (E1, . . . ,En)]] �
let s = get() in set {s with t = { f1 = E1, . . . , fn = En} :: (s.t)}

[[delete from t where B]] �
let s = get() in set {s with t = [[select ∗ from t where ¬B]]}

[[update t set g = E where B]] �
let s = get() in
let t1 = [[select ∗ from t where ¬B]] in
let tB = [[select ∗ from t where B]] in

let t2 = map (fun r→{r with F[[g]]r = F[[E]]r}) tB in
set {s with t = t1@t2}

To translate a simple QS query, we first obtain the current database and project the table
t we are interested in. We then filter every row r using the translation of the boolean
condition B. Finally, we map a projection function, which selects the required subset of
columns g, onto the filtered result. The translation of a QS query with top and order by
first narrows the result set using the boolean criterion B. If no rows match the criterion,
we simply return the empty list. If multiple rows match the criterion, we find the maxi-
mum value of the field f within any row and store that to a temporary variable m. We,
finally, use a simple QS query to find all the rows that satisfy B for which the field f
has the value m and return the head of the list. The translation of a QI query involves
getting the current database value, and immediately writing it back with the new row
being prepended to the existing table. The translation of a QD query follows a similar
pattern; we get the current database and immediately write back a table consisting of all
the rows that do not match the boolean condition. The translation of a QU query first
saves the initial state, as well as the rows of table t that do not match the criterion B. We
then extract the rows that match the criterion B, and map the update over them. Finally,
the modified state is written back.

Here is the semantics for the API in F#, with appeal to our semantics of SQL in F#.
Below we write pk(t) for the non-empty tuple of field names making up the primary
key of table t, and we write ck(t) for the check constraint of table t.
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Semantics of API Functions

let hasKey t k = [[select ∗ from t where pk(t)=k]] �= []
let lookup t k =

match [[select ∗ from t where pk(t)=k]] with
| [r]→Some r
| →None

let fresh t () =
genKey t [[select top 1 pk(t) from t where true order by pk(t) asc]]

let check t r = F[[ck(t)]]r
let insert t r = let nrows = [[insert into t (f1,...,fn) values (r.f1,...,r.fn)]] in 1 == nrows
let delete t k = let nrows = [[delete from t where pk(t)=k]] in ()
let update t k r = (delete t k; insert t r)

The user code is written in F# and can be executed symbolically against the reference
implementation of the database access API above. The same user code is typechecked
against the F7 interface and linked against the concrete implementation of the API
functions that use a relational database.

2.4 Extension with Application Constraints

We extend the SQL table syntax from Section 2.1 in order to allow user-specified in-
variants, written in first-order logic. We also replace the definition of refined tables, and
the definition of the global database constraint FK Constraints as follows.

User Constraints

κ ::= · · · | p p is a unary predicate symbol
D ::= · · · | p p is a unary predicate symbol

type t table ref = tab:t table{PKtable t(tab) ∧∧
i=1...k pt

i (tab)}
assume ∀db. FK Constraints(db)⇔ ∧

t,u FK t u(s.t, s.u)∧ ∧
i pD

i

User constraints p(x), where x will be instantiated either by a table or the entire database,
are defined by a user-specified first order logic formula Cp that can contain boolean ex-
pressions, quantifiers, and other axiomatized predicates. When defining these formulas,
care must be taken to avoid introducing inconsistencies—any program satisfies an in-
consistent specification. To help with this, F7 can work in a debug mode which attempts
to prove false every time an axiom or a refined value is introduced.

3 Completing the Marriages Example

Our goal is to type-check application code that accesses the database and to ensure that
it respects the database constraints. To achieve this we need a model of the database,



498 I.G. Baltopoulos, J. Borgström and A.D. Gordon

the tables and the constraints inside the host language of the application. Based on the
rules from section 2.2 we translate the Marriages table declaration from section 1.1 and
generate the appropriate F7 data types with refinements. We now give the complete
translation of the marriage example.

3.1 Database Schema

We here repeat the definition of the refined data types corresponding to the marriage
table and its rows.

Marriage Data Types

type marriage row = { m Spouse1:int; m Spouse2:int }
type marriage row ref = m:marriage row {CK Marriage(m)}
type marriage table ref = marriages:marriage row ref list
{ PKtable Marriage(marriages) ∧Unique Marriage Spouse1(marriages) }

type State = { marriage:marriage table ref }
type State ref = s:State {FK Constraints(s)}

The check constraint, primary key constraint, uniqueness constraint and foreign key
constraint are defined below as first-order logical formulas, using the keyword assume.
We define two auxiliary predicates: PK Marriage(m, k) states that the primary key of
row m is k, and FK Constraints(s) states that all foreign key constraints (of which there
is only one) are satisfied for the database s. The predicate Mem(r,t) checks if row r is
present in table t.

SQL Constraints as Formulas

assume ∀x,y. CK Marriage((x, y))⇔x �=y
assume ∀m,k. PK Marriage(m, k)⇔k = (m.m Spouse1, m.m Spouse2)
assume ∀xs. PKtable Marriage(xs)⇔

∀x,m. Mem(x, xs) ∧Mem(m, xs) ∧PK Marriage(x, (m.m Spouse1, m.m Spouse2))
⇒x = m

assume ∀l. Unique Marriage Spouse1(l)⇔
∀x,y. Mem(x, l) ∧Mem(y, l) ∧x.m Spouse1 = y.m Spouse1⇒x = y

assume ∀d. FK Constraints(d)⇔FK Marriages Marriages(d.marriages, d.marriages)
assume ∀marriages’, marriages. FK Marriages Marriages(marriages, marriages’)⇔

∀x. Mem(x, marriages’)⇒
∃u. Mem(u, marriages) ∧PK Marriage(u, (x.m Spouse2, x.m Spouse1))

3.2 Access Function API

From the database schema, our tool also generates data manipulation functions which
carry preconditions and postconditions corresponding to the database constraints on



Maintaining Database Integrity with Refinement Types 499

their arguments. We generate two implementations of these functions: one that works
on the abstract model, and one that works on the actual SQL server database via
ADO.Net.

The following code fragment contains the type signatures of the automatically gen-
erated functions for the marriage example.

Specification of API Functions

val checkMarriage: r:marriage row→ [(s)] b:bool [(s’)(s = s’ ∧b = true⇒CK Marriage(r))]
val hasKeyMarriage :

k:(int ×int)→ [(s)] b:bool [(s’)( s = s’ ∧
b = false⇒PK Marriages Fresh(s.marriages, k) ∧
b = true⇒PK Marriages Exists(s.marriages, k))]

val deleteMarriage :
k:(int ×int)→ [(s) PK Marriages Exists(s.marriages, k)] unit [(s’)

ContainsiffNotPKMarriage(s, s’, k)]
val insertMarriage :

r:marriage row ref→ [(s)] b:bool [(s’)(
b = true⇒s’.marriages = r :: s.marriages ∧
b = false⇒s = s’)]

assume (∀s,t,k. (ContainsiffNotPKMarriage(s, t, k)⇔
(∀x. (Mem(x, t.marriages)⇔ (Mem(x, s.marriages) ∧not PK Marriage(x, k))))))

assume (∀marriages,spouse1,spouse2. (PK Marriages Fresh(marriages, (spouse1, spouse2))
⇔ (∀x. (Mem(x, marriages)⇒ (spouse1 �=x.m Spouse1 ∨spouse2 �=x.m Spouse2)))))

assume (∀marriages,spouse1,spouse2. (PK Marriages Exists(marriages, (spouse1, spouse2))
⇔ (∃x. ((Mem(x, marriages) ∧spouse1 = x.m Spouse1) ∧spouse2 = x.m Spouse2))))

3.3 User-Written Transactions

In addition to the divorce transaction seen in section 1, the user also writes a transaction
to marry two people. Note that the foreign key constraint (symmetry) is temporarily in-
validated between the two row insertions. The verification will ensure that it is properly
reestablished at the end of the transaction.

Marriage Transaction

let marry ref (A,B) =
if hasKeyMarriage(A,B) then Some(false)
else if A=B then Some(false)
else

insertMarriage {m Spouse1=A; m Spouse2=B};
insertMarriage {m Spouse1=B; m Spouse2=A};
Some(true)

let marry m = doTransact marry ref m
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The final line above defines a transaction marry by calling the transaction wrapper
doTransact, which ensures that transactions that may violate database integrity are rolled
back. The marriage transaction, wrapped and unwrapped, and the transaction wrapper,
have the following types.

Wrapping Transactions

type α transaction = [(s) FK Constraints(s)] r:α [(t) FK Constraints(t)]
type α preTransact =

[(s) FK Constraints(s)] r: α option
[(t) r �=None⇒FK Constraints(t)]

val marry ref: int×int→bool preTransact
val doTransact: (α →β preTransact)→α→ (β option) transaction

A transaction returning type α is a computation, which if run in a state satisfying the
foreign key constraints, if it terminates, returns a value of type α in a state that satisfies
the foreign key constraints. Similarly, a pre-transaction returning type α is a computa-
tion, which if run in a state satisfying the foreign key constraints, and terminating with a
return value of type α option different from None, preserves the foreign key constraints.
To go from a pre-transaction, e.g., marry ref to a transaction, e.g., marry, we use the
function doTransact which rolls back the pre-transaction if it returns None.

We verify that the user code above has the types given above by refinement type
checking; in particular, we get that the functions marry and toTransact divorce ref pre-
serve database integrity.

4 Example: A Simple E-Commerce Application

In this section, we illustrate our approach in the context of a typical e-commerce web
shopping cart. A user can add products to their cart, update the number of products or
remove items from their order. Each operation must leave the database in a consistent
state satisfying all database contraints. An operation either successfully completes the
database transaction, leaving the database in a new state, or it aborts the transaction
and rolls back all the intermediate modifications, leaving the database in its original
state.

We store the shopping cart state across two database tables. The first one (Orders)
holds order information like customer name and shipping address, while the second
one (Details) stores specific details about orders, like the codes of the chosen products,
their quantities, and their price. A row in the Details table represents a unique product
in an order. The column OrderID is used to associate each order with multiple detail
rows.

The following SQL fragment shows the two tables, with their constraints.
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SQL Schema

create table [Orders](
[OrderID] [int] not null,
[CustomerID] [nchar](8) null,
[ShipName] [nvarchar](40) null,
[ShipAddress] [nvarchar](60) null,

constraint [PK Orders] primary key ([OrderID])
)
create table [Details](

[OrderID] [int] not null,
[ProductID] [int] not null,
[UnitPrice] [money] not null,
[Quantity] [smallint] not null,

constraint [PK Details] primary key ([OrderID], [ProductID]),
constraint [FK Details Orders] foreign key([OrderID])

references [Orders] ([OrderID]),
constraint [CK Quantity] check (([Quantity]>(0))),
constraint [CK UnitPrice] check (([UnitPrice]>=(0))))

The primary key is the compound key created from the OrderID and the ProductID

fields. To ensure referential integrity, we add the constraint that for every row in the
Details table, the value of the OrderID field must exist in a row of the Orders table. For
data integrity, we ask that for each row in the table, the Quantity is positive and the
UnitPrice is non-negative.

E-Commerce Data Types (partial)

type State = { orders : orders ref; details : details ref}
type State ref=d:State{ FK Constraints(d) }
assume ∀d. FK Constraints(d)⇔FK Details Orders(d.details, d.orders)
assume ∀ds, os.FK Details Orders(ds, os)⇔
∀x. Mem(x,ds)⇒∃u.Mem(u,os) ∧PK Orders(u,x.d OrderID)

Given the types corresponding to table definitions (omitted), we represent a database
as a record whose labels correspond to the table names. The label types are the refined
table types orders ref and details ref. A refined state State ref, is a database for which the
foreign key constraint between the tables holds. The foreign key predicate definition
says that for every row x of the details table, there exists a row u in the orders table,
such that the primary key of u is equal to the d OrderID field of x.

We verify the user defined pre-transaction addOrder below.
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E-Commerce Transaction

let addOrder ref ord =
let (customerID, shipName, shipAddress, productID, unitPrice, quantity) = ord in
let oid = freshOrders () in
let orders : orders row =
{o OrderID = oid; o CustomerID = Some(customerID);
o ShipName = Some(shipName); o ShipAddress = Some(shipAddress)} in

let details : details row =
{d OrderID = oid; d ProductID = productID;
d UnitPrice = unitPrice; d Quantity = quantity} in

let rowChecks = checkDetails details in
if rowChecks then let r = insertDetails details in

if r then let r’ = insertOrders orders in
if r’ then Some(true)
else None

else None
else None

let addOrder ord = doTransact addOrder ref ord

In addOrder ref, since the detail is inserted before the order row, the database passes
through a state in which the foreign key constraint is violated. (This code would fail
needlessly in some systems, such as SQL Server.) The function addOrder uses the li-
brary function doTransact to wrap addOrder ref with the necessary transaction handling
code; type-checking ensures that the transaction is rolled back when necessary to avoid
violation of integrity constraints.

5 Example: A Heap-Ordered Tree

This example shows the use of more advanced features of our system, such as user-
defined predicates and custom stored procedures. We use a database table to store a
heap-ordered tree, where the child nodes store pointers to their parent but not vice versa.
We show how to define and typecheck for adding and removing nodes of the heap.

Heap SQL Specification

create table [Heap](
[HeapID] [int] identity (1,1) not null,
[Parent] [int] not null,
[Content] [int] not null,

constraint
[PK Heap] primary key CLUSTERED ([HeapID] asc),

constraint
[FK Heap] foreign key ([Parent]) references [Heap] ([HeapID]),

/×−−− UserConstraint TR isHeap ×/
/×−−− UserConstraint TR uniqueRoot ×/)
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We add two named application-level invariants (Section 2.4) to the heap table.

– TR isHeap states that the value stored at every node is greater than that at its parent;
– TR uniqueRoot states that any two root nodes are equal.

The first-order formulas expressing the application-level invariant predicates are defined
in terms of an auxiliary predicate TR isRoot. This predicate denotes that a given node
is the root of a tree, which is defined as the node being its own parent.

User Constraints

assume ∀d. TR isHeap(d)⇔ (∀x,y. (Mem(x, d) ∧Mem(y,d) ∧
x.h Parent = y.h HeapID)⇒x.h Content >= y.h Content)

assume ∀d. TR uniqueRoot(d)⇔
(∀x,y. (TR isRoot(x,d) ∧TR isRoot(y,d))⇒x = y )

assume ∀x,d. TR isRoot(x,d)⇔Mem(x, d) ∧x.h Parent = x.h HeapID

We also define two stored procedures: getRoot returns a root node of the tree, while
getMinChild returns the smallest child of a given node.

Custom Stored Procedures

create procedure getRoot as
select top 1 ∗ from Heap
where HeapID = Parent order by Content asc

create procedure getMinChild @rootID [int] as
select top 1 ∗ from Heap
where (Parent = @rootID and HeapID �=@rootID)
order by Content asc

The form of these stored procedures is very similar, so we detail the translation of only
getRoot. Its postcondition is defined as follows. The function can return two different
values: the empty list or a list containing one element. If the function returns the empty
list, we learn that there is no root element. If one element was returned, the predicate
GetRootResult states that it satisfies the where clause, and is from the table, and the
predicate GetRootIsMin states that the returned element is the one with the least value
of the elements in the table satisfying the where clause.

getRoot

val getRoot : unit→ [(s)] l:heap row list
[(s’) s = s’ ∧GetRootResult(l,s) ∧
((l = [] ∧GetRootNotFound(s)) ∨ (∃x. l = [x]))]

assume ∀s,x. GetRootNotFound(s) ∧Mem(x,s.heaps)⇒
not (x.h Parent = x.h HeapID)

assume ∀s,l,x. (GetRootResult(l,s) ∧ (l = [x]))⇒
(x.h HeapID = x.h Parent) ∧Mem(x, s.heaps) ∧
PK Heaps Exists(s.heaps,x.h HeapID) ∧GetRootIsMin(x,s)

assume ∀x,s,r. (GetRootIsMin(x,s) ∧ r.h HeapID = r.h Parent
∧Mem(r, s.heaps))⇒x.h Content >= r.h Content
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In this setting, we define two operations. We can insert a node into the tree, using
the function pushAt int, which adds a node with a given value as a child to the nearest
ancestor of a given node that has a value less than the value to insert. With pop int we
can pop the smallest node off the table, causing its smallest child to bubble up the tree,
recursively. This recursive procedure is called rebalanceHeap.

Specifications of User Functions

val pushAt int: int×int→bool preTransact
val pop int: unit→ int preTransact
val rebalanceHeap: i:int→

[(s) FK Constraints(s) ∧PK Heaps Exists(s.heaps,i) ]
unit [(t) FK Constraints(t) ]

To push an element, we compare it to the root. If it is smaller, it becomes the new root
value, otherwise we store it as a child of the root.

Pushing an Element Onto the Heap

let rec pushAt int (i,v) =
let node = lookupHeap i in
let newID = freshHeap () in
match node with
| None→None
| (Some(nodeRow))→

let {h Content=c ; h HeapID=id; h Parent=par} = nodeRow in
if v > c then

let r = {h Content = v ; h HeapID = newID; h Parent = id} in
if insertHeap r then Some(true) else None

else
if hasKeyHeap id then

if hasKeyHeap par then
if id = par then

let nodeRow’ = {h Content=v; h HeapID=id; h Parent=par} in
if updateHeap id nodeRow’ then

let r = {h Content=c; h HeapID=newID; h Parent=id} in
if insertHeap r then Some(true) else None

else None
else pushAt int (id,v)

else None
else None

When popping the root, we use rebalanceHeap to let a chain of minimal children “bubble
up” one step.
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Popping the Root of the Heap

let rec rebalanceHeap id =
let minM = getMinChild(id) in match minM with
| []→ let res = deleteHeap id in res
| [minRow]→match minRow with
| {h Content=mc; h HeapID=mid; h Parent=mpar}→

if hasKeyHeap mid then
let r = lookupHeap id in match r with
| None→ ()
| (Some(u))→match u with
| {h Content=rc ; h HeapID=rid; h Parent=rpar}→

let v = {h Content = mc; h HeapID = id ; h Parent = rpar} in
updateHeap id v;
let res = rebalanceHeap mid in res

else ()

let pop int () =
let root = getRoot() in match root with
| []→None
| [rootRow]→match rootRow with
| {h Content = c; h HeapID = id; h Parent = par}→

(rebalanceHeap id; Some(c))

To verify this more complex example, we needed to add three axioms to the context of
the SMT solver. The first axiom states that when updating a row, without changing its
primary key, then the same primary keys are present in the database table as before. The
second axiom states that if the foreign key constraints hold, and the primary and foreign
key fields are unchanged by a single-row update, then the foreign key constraints are
not violated. The third axiom states that if a row has no children, then it can be deleted
without violating the foreign key constraint.

Axioms

assume ∀h,h’,k,v,x. UpdateHeap(h’,h,k,v) ∧PK Heaps Exists(h,x)⇒PK Heaps Exists(h’,x)
assume ∀h1,h2,x,y. FK Heaps Heaps(h1,h1) ∧Replace(h2,h1,x,y) ∧x.h Parent = y.h Parent

∧x.h HeapID = y.h HeapID⇒FK Heaps Heaps(h2,h2)
assume ∀s,k,s’. FK Constraints(s) ∧GetMinChildNotFound(k,s) ∧DeletedHeap(s,s’,k)⇒

FK Constraints(s’)

Given these axioms, we verify that transactions that add values to or pop values from
the tree do not violate the database integrity, including the application-level constraints.

6 Software Architecture and Evaluation

Our implementation consists of a compiler from an SQL schema to a Stateful F7 database
interface implementing the translation in Section 2.2, and from an SQL schema to a
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Table 1. Lines of user supplied and generated code, and verification information

User supplied Generated Verification
transactions schema data types db interface queries time

Marriages 38 10 38 48 20 20.890s
E-Commerce 41 23 54 74 16 9.183s
Heap 111 30 54 85 76 80.385s

symbolic implementation of the database in F# implementing the dynamic semantics of
Section 2.3. We use the Stateful F7 typechecker to verify the user supplied transactions
against the generated interface. Additionally we provide a concrete implementation of
the database interface against SQL Server. The core compiler (without Stateful F7) con-
sists of about 3500 lines of F# code split between the SQL parser, the translation rules,
and the implementation of the database interface.

We evaluate our approach experimentally by verifying all the examples of this paper;
Table 1 summarizes our results. For each example it gives: a) the total number of lines
of user supplied code (including the F# transaction code and user-defined predicates,
and the SQL schema declaration), b) the number of lines of the automatically generated
data types and database interface, and c) the verification information consisting of the
number of proof obligations passed to Z3 and the actual verification time. Constraints
that affect individual rows or tables like check, and primary key constraints, unsurpris-
ingly add little time to the verification process. This explains the small verification time
of the E-Commerce example, despite having more tables and check constraints than the
other examples. On the other hand uniqueness, foreign key constraints, and arbitrary
user constraints require disproportionately more time to verify.

We express constraints in first-order logic with a theory of uninterpreted function
symbols and linear arithmetic. The main challenge when working with first-order solver
like Z3 is quantifier instantiation. In certain examples like heap, we found that Z3 was
unable to prove the automatically generated predicates. As a result and to assist Z3
with its proof obligations, our compiler implements some additional intermediate pred-
icates. In particular, for universally quantified formulas, we gave predicate names to
quantified subformulas such that superfluous instantiations might be avoided. For exis-
tentially quantified formulas, Z3 sometimes has problems constructing the appropriate
witness, and we instead were forced to add an axiom that referred to predicates that
abstracted quantified subformulas. One contributing factor to this problem was that F7
communicates with the SMT solver Z3 using the Simplify format, while the more ad-
vanced SMT-Lib format would permit us to add sorting of logical variables, patterns to
guide quantifier instantiation, and access to the array theory implemented in Z3 for a
more efficient modelling of tables as arrays indexed by the primary key.

Given that our objective is to statically verify that transactional code contains enough
checks to preserve the database invariants, we found that applying our approach inter-
actively as we developed the transactional code helped us implement an exhaustive
set of checks and made for a pleasant programming experience. Still, our approach
leads to verbose code which, when verified, explicitly handles any possible transaction
outcome.
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7 Related Work

The idea of applying program verification to database updates goes back to pioneer-
ing work [16,9] advocating the use of Hoare logic or weakest preconditions to verify
transactions.

Sheard and Stemple [26] describe a system for verifying database transactions in
a dialect of ADA to ensure that if they are run atomically then they obey database
constraints. The system uses higher order logic and an adaptation of the automated
techniques of Boyer and Moore.

In the setting of object-oriented databases, Benzaken and Doucet [5] propose that
the checking procedures invoked by triggers be automatically generated from high-level
constraints, well-typed boolean expressions.

Benedikt, Griffin, and Libkin [3] consider the integrity maintenance problem, and
study some theoretical properties of the weakest preconditions for a database trans-
action to succeed, where transactions and queries are specified directly in first-order
logic and extensions. Wadler [30] describes a related practical system, Pdiff, for compil-
ing transactions against a large database used to configure the Lucent 5ESS telephone
switch. Consistency constraints on a database with nearly a thousand tables are ex-
pressed in C. Transactions in a functional language are input to Pdiff, which computes
the weakest precondition which must hold to ensure the transaction preserves database
integrity.

To the best of our knowledge, our approach to the problem is the first to be driven by
concrete SQL table descriptions, or to be based on an interpretation of SQL queries as
list processing and SQL constraints as refinement types, or to rely on SMT solvers.

A recent tool [12] analyzes ADO.NET applications (that is, C# programs that gen-
erate SQL commands using the ADO.NET libraries) for SQL injection, performance,
and integrity vulnerabilities. The only integrity constraints they consider are check con-
straints (for instance, that a price is greater than zero); they do not consider primary key
and foreign key constraints.

Malecha and others [18] use the Coq system to build a fully verified implementation
of an in-memory SQL database, which parses SQL concrete syntax into syntax trees,
maps to relational algebra, runs an optimizer and eventually a query. Their main concern
is to verify the series of optimization steps needed for efficient execution. In contrast,
our concern is with bugs in user transactions rather than in the database implementation.
Still, our work in F# is not fully verified or certified, so for higher assurance it could be
valuable to port our techniques to this system.

Ur/Web [10] is a web programming language with a rich dependent type system. Like
our work, Ur/Web has a dependently typed embedding of SQL tables, and can detect
typing errors in embedded queries. On the other hand, static checking that transactions
preserve integrity is not an objective of the design; Ur/Web programs may result in
a “fatal application error if the command fails, for instance, because a data integrity
constraint is violated” (online manual, November 2010).

Refinement-type checkers with state are closely related to systems for Extended
Static Checking such as ESC Java [15] and its descendants [2]. To the best of our knowl-
edge, these systems have not previously been applied to verification of transactions, but
we expect it would be possible.
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8 Conclusion

We built a tool for SQL databases to allow transactions to be written in a functional lan-
guage, and to be verified using an SMT-based refinement-type checker. On the basis of
our implementation experience, we conclude that it is feasible to use static verification
to tell whether transactions maintain database integrity.

In the future, we are interested to consider an alternative architecture in which our
static analysis of queries is implemented in the style of proof-carrying code on the SQL
server itself. Another potential line of work is to model database state within separa-
tion logic, and to appeal to its tools for reasoning about updates. Finally, it would be
interesting to apply our techniques in the setting of software transactional memory, for
example, on top of recent work on semantics for STM Haskell [7].
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13. Filliâtre, J.-C.: Proof of imperative programs in type theory. In: Altenkirch, T., Naraschewski,
W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 78–92. Springer, Heidelberg (1999)

14. Flanagan, C.: Hybrid type checking. In: ACM Symposium on Principles of Programming
Languages (POPL 2006), pp. 245–256 (2006)

15. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Programming Language Design and Implementation (PLDI),
pp. 234–245 (2002)

16. Gardarin, G., Melkanoff, M.A.: Proving consistency of database transactions. In: Fifth Inter-
national Conference on Very Large Data Bases, pp. 291–298. IEEE, Los Alamitos (1979)

17. Krishnamurthi, S., Hopkins, P.W., Mccarthy, J., Graunke, P.T., Pettyjohn, G., Felleisen, M.:
Implementation and use of the PLT scheme web server. Journal of Higher-Order and Sym-
bolic Computing (HOSC) 20(4), 431–460 (2007)

18. Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: Principles of Programming Languages (POPL), pp. 237–248. ACM,
New York (2010)

19. Meijer, E., Beckman, B., Bierman, G.M.: LINQ: reconciling object, relations and XML in
the.NET framework. In: SIGMOD Conference, p. 706. ACM, New York (2006)

20. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: dependent
types for imperative programs. In: International Conference on Functional Programming
(ICFP 2008), pp. 229–240. ACM, New York (2008)

21. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N.,
Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala programming language.
Technical Report IC/2004/64, EPFL (2004)

22. Peyton Jones, S., Wadler, P.: Comprehensive comprehensions. In: Haskell 2007, pp. 61–72.
ACM, New York (2007)

23. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2 (2006)
24. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: Programming Language Design and

Implementation (PLDI), pp. 159–169. ACM, New York (2008)
25. Serrano, M., Gallesio, E., Loitsch, F.: Hop: a language for programming the web 2.0. In:

Object-oriented programming systems, languages, and applications (OOPSLA 2006), pp.
975–985. ACM, New York (2006)

26. Sheard, T., Stemple, D.: Automatic verification of database transaction safety. ACM Trans-
actions on Database Systems 14(3), 322–368 (1989)

27. Swamy, N., Chen, J., Chugh, R.: Enforcing stateful authorization and information flow poli-
cies in FINE. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 529–549. Springer,
Heidelberg (2010)

28. Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)
29. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science 2, 461–

493 (1992)
30. Wadler, P.: Functional programming: An angry half-dozen. In: Cluet, S., Hull, R. (eds.)

DBPL 1997. LNCS, vol. 1369, pp. 25–34. Springer, Heidelberg (1998)
31. Xi, H.: Dependent ML: An approach to practical programming with dependent types. Journal

of Functional Programming 17(2), 215–286 (2007)



Frequency Estimation of Virtual Call Targets

for Object-Oriented Programs

Cheng Zhang1, Hao Xu2,�, Sai Zhang3, Jianjun Zhao1,2, and Yuting Chen2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
2 School of Software, Shanghai Jiao Tong University

{cheng.zhang.stap,steven xu,zhao-jj,chenyt}@sjtu.edu.cn
3 Computer Science & Engineering Department, University of Washington

szhang@cs.washington.edu

Abstract. The information of execution frequencies of virtual call tar-
gets is valuable for program analyses and optimizations of object-oriented
programs. However, to obtain this information, most of the existing ap-
proaches rely on dynamic profiling. They usually require running the
programs with representative workloads, which are often absent in prac-
tice. Additionally, some kinds of programs are very sensitive to run-time
disturbance, thus are generally not suitable for dynamic profiling. There-
fore, a technique which can statically estimate the execution frequencies
of virtual call targets will be very useful.

In this paper we propose an evidence-based approach to frequency es-
timation of virtual call targets. By applying machine learning algorithms
on the data collected from a group of selected programs, our approach
builds an estimation model to capture the relations between static fea-
tures and run-time program behaviors. Then, for a new program, the
approach estimates the relative frequency for each virtual call target by
applying the model to the static features of the program. Once the model
has been built, the estimation step is purely static, thus does not suf-
fer the shortcomings of existing dynamic techniques. We have performed
a number of experiments on real-world large-scale programs to evaluate
our approach. The results show that our approach can estimate frequency
distributions which are much more informative than the commonly used
uniform distribution.

1 Introduction

Most of the object-oriented programming languages provide the virtual call
mechanism to support polymorphism. While enhancing the modularity and ex-
tensibility in both design and implementation, virtual calls also complicate the
static call graphs by adding extra branches at the call sites. As a result, call
graph-based program analyses and optimizations may become less effective. In
addition, virtual calls may cause significant performance overhead, because the
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exact callees must be determined at run-time by selecting them from all the
candidates based on the receiving objects (this process is often called dynamic
binding). Therefore, it is important to resolve virtual calls at compile time or to
obtain information about the execution frequencies of the targets (i.e., callees)
for the unresolved virtual calls.

An empirical study [16] has shown that the distribution of execution frequen-
cies of virtual call targets is highly peaked, that is, a small number of methods
are frequently called in most of the run-time virtual calls. Thus it is rewarding to
find the most frequently executed targets. Various dynamic profiling techniques
are developed to explore the frequency distribution or relative frequencies of vir-
tual call targets. Some of them [12] [16] [19] [14] [21] achieve high accuracy with
relatively low overhead. However, in order to generate useful profiles, most of
the dynamic techniques require driving programs with representative workloads,
which are often absent, especially for newly developed programs. Moreover, dy-
namic techniques are usually intrusive in that they have to instrument programs
to collect information, whereas some kinds of programs (e.g., multi-thread pro-
grams) may be extremely sensitive to run-time disturbance. In these cases, a
static technique with acceptable accuracy could be a preferable alternative.

In this paper, we propose Festival, an evidence-based approach to f requency
estimation of virtual call targets. The underlying assumption of Festival is that
developers’ design intentions, which cause the imbalance of usage of different vir-
tual call targets, can be revealed by examining a group of static program-based
features. Festival consists of two phases: 1) model building and 2) estimation. In
the model building phase, Festival selects a set of existing programs with repre-
sentative workloads, extracts some static features, and runs the programs to get
the dynamic profiles for their virtual call targets. Based on the collected data,
Festival uses machine learning algorithms to discover the relationship between
the execution frequencies and the static features. The relationship is represented
as an artificial neural network. As a prerequisite for model building, we assume
that the programs and their representative workloads are available. This as-
sumption is reasonable, because there exist numerous object-oriented programs,
which have been used in practice for years. The accumulated workloads for such
programs are probably representative. In the estimation phase, for a new pro-
gram, Festival extracts the same set of features from it and uses the model to
estimate the relative frequencies of the virtual call targets in the program. It is
worth noting that, once the model has been built, the estimation phase is purely
static. We have implemented a prototype of Festival and performed a set of ex-
periments on the DaCapo benchmark suite [7]. The experimental results show
that the estimated frequency distributions are significantly more informative
than the uniform distribution which is commonly used in static analyses.

The main contributions of this work can be summarized as:

1. Festival, the first evidence-based approach we are aware of to estimate fre-
quencies of virtual call targets for object-oriented programs. It can be a good
complement to existing dynamic techniques. As will be discussed in Section
3, a variety of client applications may benefit from our approach.
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2. An evaluation conducted to validate the effectiveness of our Festival ap-
proach. It consists of a comprehensive group of experiments, which show the
estimation performance of Festival from various aspects.

The rest of this paper is organized as follows. Section 2 uses an example to give
a first impression of the static features. Section 3 discusses a number of potential
applications of our Festival approach. Section 4 describes the technical details
of the approach. Section 5 shows the experimental results. Section 6 compares
Festival with related work and Section 7 concludes the paper and describes our
future work.

2 Motivating Example

In this section we use a real-world example to illustrate some of the features
used in our approach. The features are program-based and easy to extract using
static analysis. Nevertheless, we believe that they are related to the run-time
execution frequency of virtual call targets.

The code segments shown in Figure 1 are excerpted from ANTLR (version
2.7.2) [1], a parser generator written in Java. From the code, we can see that
class BlockContext contains three fields and three methods, while its subclass
TreeBlockContexthas only one field and one method, addAlternativeElement,
which overrides the implementation provided by BlockContext. The virtual call
of interest is at line 6. The method context (whose definition is omitted for
brevity) has a return type BlockContext. Thus the virtual call has two possible
targets: one is the method addAlternativeElement defined in BlockContext
and the other is the one defined in TreeBlockContext. By running ANTLR
using the workload provided in DaCapo benchmark (version 2006-10-MR), we
obtained the dynamic profiles of these two targets and found that the execution
frequency of the method defined in BlockContext is about ten times higher than
that of the method defined in TreeBlockContext. But what if we cannot run
the program, say, because the workload is unavailable? Can we make a good
guess at the relative frequencies of these two targets?

If we analyze the program source code, some informative evidences can be dis-
covered. First, TreeBlockContext is a subclass of BlockContext. As a general
rule of object-oriented design, the subclass (i.e., TreeBlockContext) is a special-
ized version of the superclass (i.e., BlockContext). Second, because the method
addAlternativeElementhas a concrete implementation in BlockContext rather
than being abstract, it is probably designed to provide common functionalities,
while the method in TreeBlockContext is designed for special cases. Third, if
we explore the calling relations between relevant methods, we will find that the
method defined in TreeBlockContext calls its super implementation (the call is
at line 36 in Figure 1). It indicates that TreeBlockContext delegates a part of its
responsibility to its superclass. At last, there are three fields and three methods
defined in class BlockContext, while class TreeBlockContext has only one field
and one method. The fact that BlockContext has higher complexity may also
show its relative importance. Based on these evidences we are likely to consider
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1 public class MakeGrammar
2 extends DefineGrammarSymbols {
3 protected void addElementToCurrentAlt (
4 Alternat iveElement e ) {
5 . . .
6 context ( ) . addAlternat iveElement ( e ) ; }
7 }
8

9 class BlockContext {
10 Alte rnat iv eBlock b lock ;
11 int altNum ;
12 BlockEndElement blockEnd ;
13

14 public void addAlternat iveElement (
15 Alternat iveElement e ) {
16 cu r r en tA l t ( ) . addElement ( e ) ;
17 }
18

19 public Al t e rna t i v e cur r entA l t ( ) { . . . }
20 public Alternat iveElement
21 currentElement ( ) { . . . }
22 }
23

24 class TreeBlockContext
25 extends BlockContext {
26 protected boolean
27 nextElementIsRoot = true ;
28

29 public void addAlternat iveElement (
30 Alternat iveElement e ) {
31 TreeElement t r e e =(TreeElement ) b lock ;
32 i f ( nextElementIsRoot) {
33 t r e e . root=(GrammarAtom) e ;
34 nextElementIsRoot = fa l se ;
35 } else {
36 super . addAlternat iveElement ( e ) ;
37 }
38 }
39 }

Fig. 1. Code segments from ANTLR 2.7.2

the method in BlockContext as the major one, and thus correctly predict a
higher frequency for it.

The example presents the intuition that design intentions can be revealed by
analyzing static features. This strongly motivates us to use such kind of features
to estimate relative frequencies of virtual call targets. However, it is still challeng-
ing to tell how a specific feature may indicate the frequencies. Moreover, when
there is a large amount of feature data extracted (especially for large programs),
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different features may lead to contradictory judgements in some cases. Conse-
quently, the problem of how to make optimized estimations based on such kind
of features motivates us to leverage the power of machine learning techniques,
which are devised to discover useful knowledge from data.

3 Potential Applications

Various techniques dependent on frequency information of virtual call targets
may benefit from Festival. On one hand, traditional profile-guided techniques
can use the estimated profiles when dynamic profiles are unavailable. It makes
them applicable in more situations. On the other hand, static techniques may
achieve better performance by using more accurate information.

Program optimizations usually use dynamic profiles to help make economic
optimization decisions. Nevertheless, when dynamic profiling is inappropriate,
Festival can be a good substitution. Sometimes it may be integrated into the
optimization process more conveniently than dynamic profilers. For instance, as
shown in Figure 2, when performing the class test-based optimization [16], the
compiler can insert a test for the dominant class (i.e., the class which defines
the most frequently executed target method) and statically determine the target
method in the successful branch. Since the test is mostly successful at run-time,
the overhead of dynamic binding can be reduced. If Festival is used to identify
the dominant class, this optimization can be performed without running the
program.

Before opt imizat ion :
TypeA a = . . . ;
a . method ( ) ;

After op t imizat ion :
TypeA a = . . . ;
i f ( a instanceof DominantSubtypeOfA ){

( ( DominantSubtypeOfA) a ) . method ( ) ;
} else {

a . method ( ) ;
}

Fig. 2. An example of code optimization

Another application of Festival may be the probabilistic program analyses.
Besides computing the must or may behaviors of programs, probabilistic pro-
gram analyses [5][18] also show the likelihood of each may behavior’s occurrence.
For example, the probabilistic points-to analysis [18] assigns a frequency distri-
bution to each points-to set indicating which memory locations are more likely
to be the target of the pointer. Since the existing work focuses on C language,
it performs analysis based on control-flow graphs which do not involve virtual
calls. If the work is extended to handle object-oriented languages (e.g., Java),
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it can use Festival, at the beginning of its analysis, to allocate probabilities to
virtual call targets instead of assuming a uniform frequency distribution.

For static bug finding tools (e.g., Findbugs [17]), high false positive rate is a
major obstacle to their applications. Thus alert ranking methods are introduced
to reduce the effort for finding real warnings. Some methods (e.g., [9]) rank alerts
in terms of the execution likelihood of program elements. They calculate the
likelihood by propagating probabilities along the edges of control-flow graphs.
Using the frequency information of virtual call targets, the propagation may be
more accurate when it has to branch at virtual call sites. Then better results of
alert ranking may be obtained.

In summary Festival can be useful to call graph-based analyses and optimiza-
tions that deal with object-oriented programs. While the frequency estimation
only needs static features of programs, a model must be built beforehand. In the
next section, we will describe the technical details.

training
program s
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preproc ess ing
s tatic  call g rap h s feature
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(b) the es tim ation phase of Fes tival

Fig. 3. The architecture of Festival which consists of two phases. In the first phase,
static features and dynamic profiles are used to build the estimation model. In the sec-
ond phase, only static features are extracted from new programs to perform frequency
estimation. The shaded elements stand for the steps or entities involved in both phases.

4 Approach

Figure 3 shows the architecture of Festival, which consists of two phases: a) model
building and b) estimation. At the beginning of the model building phase, a set of
selected programs are preprocessed to construct their static call graphs. Then a
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group of static features are extracted based on the call graphs and the programs’
source code. Meanwhile dynamic profiling is performed to get dynamic profiles
for these programs. In the end of this phase, the estimation model is built based
on the static features and dynamic profiles using machine learning algorithms.
Once the model has been built, it will be repeatedly used afterwards. In the
estimation phase, static features are extracted, in the same way, from the new
programs which are not used in model building. Then the relative frequencies
for virtual call targets are estimated by applying the estimation model to the
features.

4.1 Preprocessing

The purpose of the preprocessing step is to construct precise static call graphs
for feature extraction. In this step, we use the points-to analysis provided by the
Spark framework [20] to compute the types of objects that may be referenced
by each variable. Based on the type information of the receiver variable, the set
of possible targets for each virtual call can be computed more precisely than
traditional algorithms used for call graph construction (e.g., CHA [13]). As a
result, a number of single-target virtual calls are resolved before the subsequent
steps. The preprocessing step enables our approach to focus on real multi-target
virtual calls1 in order to handle large-scale programs. Hereafter the term “virtual
call” means multi-target virtual calls, unless we explicitly state that a virtual
call is single-target.

4.2 Static Feature Set

A static feature can be viewed as a specific measure used to capture one charac-
teristic of a virtual call target. Thus different targets may have different values
for the same feature. We use 14 static features (as shown in Table 1) to charac-
terize virtual call targets from various aspects, including type hierarchy, calling
relation, naming style, program complexity, etc.

Type hierarchy features. Features 1 to 5 are designed to represent information
about the type hierarchy of the classes in which the target methods are defined.
Hereafter we call such a class as a target class and all the target classes of a
virtual call comprise the target class set (of that virtual call). For a specific
virtual call site, the receiver variable has its explicit type (we call it the called
type) and each target class must be either the called type itself or a subtype of
the called type. Figure 4 shows the class diagram of an example for illustrating
the five features related to type hierarchy. As shown in the figure, A is an interface
which has three implementers B, C, and D. Class D extends class C and class C
implements interface F which has no inheritance relationship with interface A.
In addition, classes B, C, and D all have their own implementations of method m.
Suppose that at a call site the method m is called on a variable of type A. In this
case, the called type is A and the target class set is TC(A) = {B, C, D}.
1 Since the problem of points-to analysis is undecidable in general, some real single-

target virtual calls may still be regarded as multi-target.
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Table 1. Static features used in Festival

Number Feature Name Feature Description

1 Type Distance the number of levels of subtyping from the
called type to the target class

2 Subclass in TC the number of subclasses of the target class
in the target class set

3 Superclass in TC the number of superclasses of the target class
in the target class set

4 Subtree Size the number of subclasses of the target class
in the whole program

5 Number of Ancestors the number of supertypes of the target class
in the whole program (except for library types)

6 Does Call Super whether the target method calls its super
implementation (yes or no)

7 Number of Callers the number of methods which call the target method

8 Package Depth the depth of the package of the target class
9 Name Similarity the number of classes whose names are similar to

that of the target class

10 Number of Methods the number of methods defined in the target class
11 Number of Fields the number of fields defined in the target class

12 Is Abstract whether the target class is abstract (yes or no)
13 Is Anonymous whether the target class is anonymous (yes or no)
14 Access Modifier the access modifier of the target class

(public, protected, private, default)

Feature 1 (type distance) measures the distance between a target class and the
called type, that is, it records the number of edges on the path between the corre-
sponding nodes on the class diagram. If there is more than one path, the shortest
path will be used for this feature. In the example, the feature value of both B and
C is 1, while that of D is 2. A possible heuristic may be that the target method
whose class has shorter distance to the called type will have higher execution fre-
quency, since the target class is more general and likely to be designed for handling
common cases. Features 2 (subclass in TC) and 3 (superclass in TC) encode the
inheritance relations among the target classes in the same target class set. For
example, C has the values 1 and 0 for feature 2 and feature 3, respectively, because
C is the superclass of D which also belongs to TC(A) and C has no superclass in
TC(A). Meanwhile, as there is no subclass or superclass of B in TC(A), B has the
value 0 for both of the features. Sometimes target classes are “parallel” to each
other, that is, there are no inheritance relations between them, such as B and C.
Thus, for each target class, we use features 4 (subtree size) and 5 (number of ances-
tors) to count the numbers of its subclasses and supertypes in the whole program
so that the relative importance of the “parallel” target classes can be character-
ized. In the example, the values of features 4 and 5 for B are 0 and 1, while they are
1 and 2 for C. Note that library types (e.g., java.lang.Object) are not counted
in these two features.
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Fig. 4. An example class diagram

Call graph features. Similar to type hierarchy, calling relations may also pro-
vide hints to design intentions. Thus two of the features are based on call graph.
Feature 6 (does call super) shows whether the target method calls the imple-
mentation of the superclass. If the target method just overrides its super imple-
mentation, it is not so perceivable which of the implementations is designed to
take more responsibility. On the contrary, as discussed in Section 2, if the target
method calls its super implementation, it is very likely that it delegates a part or
all of its job to the callee. As a result, the super implementation may have much
higher execution frequency. The other call graph feature, feature 7 (number of
callers), tries to indicate the target method’s popularity in the scope of the whole
program. The intuition is that the more callers a target method has, the more
popular it is. High popularity means high probability for the method to be a
central part of the program, which may result in high execution frequency of the
method in run-time virtual calls. Note that feature 7 counts in all the methods
that explicitly call the virtual call target. In other words, its value is equal to
the number of incoming edges of the virtual call target in the static call graph.
Among these call graph edges, some represent resolved (single-target) virtual
calls, while others represent unresolved (multi-target) virtual calls. In general,
we focus on the latter, that is, we record (during dynamic profiling) and estimate
execution frequencies only at the unresolved call sites. However, in feature 7, we
take into account both resolved and unresolved virtual calls to a target method
in order to characterize its popularity.

Naming style features. In practice several naming conventions are used to
organize program elements in terms of their functionalities. A typical example
is the name space mechanism provided in various programming languages. In
Java, where name spaces are specified by package names, the depth of pack-
age may indicate the specialty of functionality of the classes in the package.
Therefore, feature 8 (package depth) is designed to represent this characteristic.
From another viewpoint on naming style, feature 9 (name similarity) counts the
number of classes whose names are similar to that of the target class. If some
classes have similar names, they may collaborate with each other to accomplish
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the same task. The more classes involved, the more important the task may be.
Again the relative importance can be used to estimate execution frequencies.
When computing the value of feature 9 for a given target class, we find similar
class names in the following steps:

1. Find the longest common suffix of the names of the classes in the target class
set.

2. Identify the special prefix for the given target class by removing the longest
common suffix from its name.

3. Within the whole program, the class names that begin with the special prefix
are considered as similar to the name of the target class.

Suppose, for a specific virtual call, there are two target classes WalkingAction
and DrivingAction. Then the longest common suffix is “Action” and the special
prefix is “Walking” for WalkingAction. Therefore, the number of classes (all
over the program) whose names begin with “Walking” is recorded as the value
of feature 9 for the target method defined in WalkingAction. Note that library
classes are not taken into consideration during the computation, because their
names usually do not indicate the design of application classes.

Complexity features. In some cases, program complexity metrics can be used
to represent the importance of a program element. Currently we use two simple
metrics, features 10 (number of methods) and 11 (number of fields), to measure
the complexity of the target classes, because these two features are easy to
extract and have satisfactory predictive power. It is worth noting that we do
not add complexity of inner classes or anonymous classes to their outer classes,
because we believe they are less coherent to the outer classes than the member
methods and fields. We have also tried other common metrics (e.g., line of code),
but found them less indicative. In our future work, we are planning to investigate
some more complex metrics, such as the depth of nesting loops and the number
of program paths.

Other features. Features 12 (is abstract), 13 (is anonymous), and 14 (access
modifier) are mainly about surface properties of the target class. These features
are used to capture design intentions from aspects other than the aforementioned
ones. For example, a class is defined as abstract (instead of an interface) probably
means that it provides some method implementations that will be reused by its
subclasses. Thus feature 12 may be useful when we investigate the frequencies
of the implemented methods.

In general the static features are selected to represent evidences which are
supposed to be indicative of execution frequencies. A variety of heuristics may be
proposed based on these features. Nevertheless, counterexamples may be found
against each heuristic by checking the dynamic profiles, and there may also
be contradictions between indications of different features. Thus we use machine
learning techniques to analyze the feature data and discover relatively consistent
knowledge in order to make efficient frequency estimation.



520 C. Zhang et al.

4.3 Estimation Model

We formulate the frequency estimation problem as a supervised classification
problem [24] in machine learning. The task of classification is to determine which
category (usually called class) an instance belongs to, based on some observable
features of the instance and a model representing the existing knowledge. A
classification problem is said to be supervised when the model is trained (i.e.,
built) using instances (called training instances) whose classes have already been
specified. A typical example of supervised classification is to predict the weather
condition (sunny, cloudy, or rainy) of a specific day based on some measures
(temperature, humidity, etc.) of that day and a forecast model derived from
historical weather record. In Festival, we build a model to classify each virtual
call target as frequent or infrequent and use the predicted probability of being
frequent as the estimated frequency.

In essence a model is a parameterized function, which represents the relations
between its input and output. In Festival, for a specific virtual call target, the
input of the estimation model is the values of the target’s static features, and the
output is the estimated frequency for the target. Therefore, the estimation model
of Festival correlates static features with actual frequencies, providing a way to
estimate unknown frequencies of new targets on the basis of the targets’ static
features. A key assumption of Festival is that the relations between static features
and dynamic behaviors of virtual calls are stable across different programs. In
other words, we can build a model based on some programs and use it to estimate
frequencies for others.

In order to build the estimation model, we first select a set of programs (called
training programs) and extract their values for the static features described in
Section 4.2. Then we instrument the training programs at each virtual call site
and run them with their representative workloads. The run-time execution count
of each target is recorded during the execution.2 Since the workloads are repre-
sentative, the execution counts can be used as the real execution frequencies of
the targets. When both static features and dynamic profiles have been obtained
for training programs, we are ready to build the model.

During model building, each virtual call target corresponds to an instance
which is represented as a vector < f1, f2, f3, ..., f14, c >, where fi is the value of
the ith feature and c is the recorded execution count. We have to process the
instance data to make them fit for our approach. Because targets from different
virtual calls are used together for model training, their feature values should be
measured relatively within each virtual call. Thus we normalize the feature values
within all the targets of the same virtual call. For example, if the values of feature
1 for three targets (of a specific virtual call) are fx

1 , fy
1 , and fz

1 , then they will
be normalized as fx

1
max{fx

1 ,fy
1 ,fz

1 } , fy
1

max{fx
1 ,fy

1 ,fz
1 } , and fz

1
max{fx

1 ,fy
1 ,fz

1 } , respectively.
Moreover, to specify the class of each instance, we order the targets of each

2 More specifically, what we record is the number of times a method becomes the
actual target of its corresponding virtual call, rather than the total number of times
a method is called.
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Fig. 5. The multilayer perceptron used in frequency estimation. Each input fi corre-
sponds to a static feature of a virtual call target and the output f(x) is used as the
estimated frequency of the target.

virtual call with respect to their execution counts in a descending order. Then
we assign class 1 (means “frequent”) to the top 20% targets and class 0 (means
“infrequent”) to the others. When a virtual call has less than 10 targets, we assign
class 1 to the top one target and class 0 to the others. After the data processing,
the instances are transformed into the form < f

′
1, f

′
2, f

′
3, ..., f

′
14, L >, where L ∈

{1, 0} and f
′
i is the normalized value of fi. Then we use the processed instances

to train a multilayer perceptron [24], which will be used as our estimation model.
A multilayer perceptron is a kind of artificial neural network which is illus-

trated in Figure 5. In the multilayer perceptron, the output of a node i in the
hidden layer is described by

f(xi) =
1

1 + e−xi

where xi is the weighted sum of its inputs, that is, xi = wi0+wi1f1+wi2f2+ ...+
winfn. Using the same function, the final output f(x) is computed by taking the
outputs of the hidden nodes as its inputs (i.e., x = w0+w1f(x1)+w2f(x2)+ ...+
wkf(xk)). The final output represents the probability for an instance to be of a
certain class (e.g., class 1). During model training the weights are so computed
that the total squared error of the output is minimized. The squared error of a
single instance i is described by

errori =
1
2
(Li − f(x)i)2

where Li is the class of i and f(x)i is the model’s output for i. If there are totally
N instances used in model training, then the total squared error is ΣN

i=1errori.
When the weights have been established, the model training is finished.
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During frequency estimation, a new target, whose frequency is to be estimated,
is viewed as a new instance whose class is unknown. Thus we encode it as a
feature vector < f

′
1, f

′
2, f

′
3, ..., f

′
14 > and feed the vector as the input to the

multilayer perceptron. In the end, the outputted probability is considered as the
estimated frequency of the target.

5 Evaluation

To evaluate our Festival approach, we have implemented a prototype on the ba-
sis of the Soot framework [4] and the Weka toolkit [24]. Soot is used to construct
static call graphs3 and extract static features, while Weka is used for machine
learning. We have performed a set of experiments on the implementation proto-
type. Through the experiments we try to answer the following research questions:

– RQ1: What is the estimation performance of Festival?
– RQ2: Is Festival applicable to various programs?
– RQ3: What is the predictive power of each feature?

5.1 Experimental Design

Subject programs. In the experiments we use 11 programs from the DaCapo
benchmark suite (version 9.12-bach) as the subject programs, because DaCapo
provides comprehensive workloads for each program. Moreover, as the bench-
mark suite is originally designed for Java runtime and compiler research (es-
pecially for performance research), we believe the workloads are representative.
Table 2 shows the basic characteristics of the subject programs. The column
#M shows the number of methods that are included in the static call graph of
each program, and the column #VC shows the number of virtual calls that have
multiple targets as identified by the points-to analysis. From the columns LOC
and Description, we can see that the subject programs are medium-to-large real-
world programs used in various application domains. Thus they are quite suitable
for our study on the research questions, especially RQ2. Note that we have not
selected three programs (namely jython, tradebeans, and tradesoap) from Da-
Capo. Because tradebeans and tradesoap involve too much multi-threading, it
is difficult for us to obtain their representative dynamic profiles. As for jython,
we failed to finish the instrumentation (for dynamic profiling) within tens of
hours. Although these three programs have been left out in the experiments,
we believe that the selected 11 subject programs are sufficient to validate our
Festival approach. Moreover, the lack of dynamic profiles does not indicate that
these programs cannot be estimated by Festival. It just prevents us from using
the programs for model training and evaluating Festival’s performance on them.

Model training scheme. In the experiments, multilayer perceptron is used as
the machine learning model in a way which is described in Section 4.3. During
3 The aforementioned Spark framework is a building block of Soot. We use Soot 2.4.0

together with TamiFlex [8] to build call graphs that include method calls via reflection.
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Table 2. Subject programs from DaCapo-9.12-bach (LOC is measured using cloc [2]
version 1.51)

Name Description LOC #M #VC

avrora simulation and analysis tool 68864 2439 34

batik SVG toolkit 171484 5365 321

eclipse non-gui part of Eclipse IDE 887336 18632 3007

fop PDF file generator 96087 5503 682

h2 in-memory database 78124 3902 250

luindex text indexing 36099 1546 107

lusearch text searching 41153 1201 70

pmd code analyzer 49610 4741 110

sunflow rendering system 21960 1096 27

tomcat web application server 158658 11554 4417

xalan XSTL processor 172300 4366 547

Table 3. Numbers of virtual calls categorized by target number

Name 2 3 4 5 6 ∼ 10 �10 >10

avrora 10 3 3 0 3 19 4

batik 52 40 3 5 7 107 12

eclipse 626 128 121 73 119 1067 380

fop 60 10 3 3 4 80 26

h2 10 4 3 15 13 45 42

luindex 31 5 5 0 1 42 0

lusearch 16 6 0 1 0 23 0

pmd 46 1 1 1 3 52 2

sunflow 11 5 4 0 0 20 0

tomcat 2309 59 17 32 62 2479 75

xalan 25 16 0 2 15 58 20

total 3196 277 160 132 227 3992 561

model training, we take the leave-one-out strategy. That is, while evaluating
the performance of Festival on one specific subject program, we use the other
ten subject programs as training programs. In this way, the virtual call targets,
whose frequencies are estimated by the model, are never used to train that model.

Another special strategy we take for model training is to use the data only
from the virtual calls whose numbers of targets are less than or equal to 10. It
is mainly due to the fact that virtual calls with too many targets may affect the
training data drastically, whereas the current static features can hardly repre-
sent the information embedded in such kind of virtual calls (This limitation of
Festival will be discussed in Section 5.6). Nevertheless, as shown in Table 3, most
virtual calls in the subject programs have relatively small numbers of targets4.
4 Table 3 shows only the virtual calls that are executed during dynamic profiling, thus

the total number of virtual calls is smaller than that shown in Table 2.
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Therefore, our model training scheme takes into account the vast majority of
the cases. Note that we obtained similar experimental results when we limited
the number of targets to 5 and 15.

Platform and runtime. The experiments have been conducted on a Linux
server, which has a 2.33GHz quad-core CPU and 16GB main memory. We use
IBM J9 VM for feature extraction and Sun HotSpot VM for dynamic profiling.
Although DaCapo provides workloads of different sizes, including small, default,
large, and huge, we only use the large workloads for dynamic profiling. Because
huge workloads are not available for most benchmarks, and small and default
workloads are generally less representative than large ones5. Table 4 shows the
runtime of each step in Festival, including preprocessing (PRE), feature extrac-
tion (FE), instrumentation (INS), execution (EXE), model training (MT), and
frequency estimation (EST). We can see that the time cost is reasonable even
for large-scale programs.

Table 4. Runtime of each step in Festival (EST is measured by second and others use
the format of h:mm:ss)

Name PRE FE INS EXE MT EST

avrora 1:27 1:27 0:35 8:00 0:36 0.18

batik 8:21 8:22 6:46 0:09 0:34 0.16

eclipse 14:41 12:05 3:50:47 5:33 0:24 0.56

fop 14:12 14:16 12:07 0:04 0:36 0.11

h2 2:21 2:11 8:21 1:47 0:35 0.15

luindex 1:31 1:31 0:28 0:08 0:34 0.09

lusearch 1:20 1:20 0:21 0:54 0:35 0.06

pmd 2:18 2:15 2:54 0:21 0:34 0.11

sunflow 4:19 4:22 0:27 29:17 0:36 0.08

tomcat 15:35 15:32 1:19:25 0:24 0:17 0.71

xalan 2:13 2:15 3:16 4:23 0:33 0.09

5.2 Rank Correlation Analysis

In this experiment, we evaluate the agreement between the estimated and real
frequency distributions. Specifically, for each virtual call, we first rank its targets
according to their estimated frequencies and dynamic profiles, respectively. Then
we measure the correlation between these two ranks by computing their Kendall
tau distance [3]. Conceptually Kendall tau distance represents the similarity be-
tween two ordered lists by counting the number of swaps needed to reorder one
list into the same order with the other. The normalized value of Kendall tau
distance lies in the interval [0, 1], where low distance value indicates high agree-
ment. The average normalized value of Kendall tau distance between a list and
its random permutation is 0.5. Because in this experiment random permutation
corresponds to the uniform frequency distribution, we use 0.5 as the baseline.
5 Since fop and luindex do not have large workloads, we use default ones instead.
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Fig. 6. Kendall tau distance between estimated and real distributions

Figure 6 shows the average normalized Kendall tau distance for virtual calls in
each subject program as well as the overall average distance. Except for avrora,
all the subject programs have a distance less than 0.5 and the overall average dis-
tance is 0.33. It indicates that the estimated frequency distributions can reflect
the real distributions much better than the uniform distribution. By inspecting
the relevant data of avrora, we found that some static features that can charac-
terize avrora well (i.e., package depth and name similarity) have relatively low
predictive power in the estimation model trained using the other subject pro-
grams. It might be due to the different design styles between avrora and other
subject programs.

5.3 Top Target Prediction

According to the study by Grove et al. [16], one or two “hottest” targets usually
take up most of the execution count of a virtual call. Therefore, it is meaningful
to evaluate Festival’s ability to predict the top targets. As the virtual calls that
we study have at most 10 targets, we focus on the top one target of each virtual
call. The measure is straightforward: for a specific virtual call, if the estimated top
target actually has the largest execution count in the dynamic profile, we score the
prediction as 1; otherwise the score is 0. Figures 7 and 8 show the average scores
of top target prediction based on Festival and the uniform distribution, where
the scores are categorized by the number of targets and the subject program,
respectively.

As shown in Figure 7, we get a mixed result in top target prediction: for some
target numbers, Festival significantly outperforms uniform estimation, whereas
it has much worse performance for others. It is difficult for Festival to constantly
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Fig. 7. Average scores of top target prediction categorized by number of targets

predict the top one target, especially when the number of targets is relatively
large. However, as shown in Table 3, over 80% of the virtual calls (used for
evaluation) have two targets. Therefore, the average score of 0.87 for two-target
virtual calls can be viewed as more important than the other scores.

Figure 8 shows Festival’s performance for top target prediction from another
point of view. When the scores are averaged within each subject program, Festi-
val mostly outperforms uniform estimation. To be more detailed, for each subject
program, the average scores of Festival and uniform estimation are calculated by
Stotal

Nvc
and 1

Atgt
, respectively, where Stotal stands for the total score of all virtual

calls, Nvc stands for the number of virtual calls, and Atgt stands for the average
number of targets for each virtual call. Conceptually, Stotal

Nvc
represents the likeli-

hood for Festival to score 1 for each virtual call, and 1
Atgt

represents the likelihood
to randomly predict the top target of a virtual call. Therefore, it is reasonable
to compare them with each other. As for avrora, Festival does not perform well,
which is probably due to the same reason as discussed in Section 5.2.

5.4 Weight Matching Analysis

Besides the order of virtual call targets, the quantity of the estimated frequency
may also be useful in some quantitative analyses. In this experiment, we use
weight matching score [23] to measure the estimation performance of Festival in
this aspect. For example, Table 5 shows five virtual call targets, along with their
(normalized) estimated and real profiles. The two target lists are ordered by the
estimated and real profiles, respectively.

In computing the weight matching score, a cut-off n is specified at first.
Then we calculate the sum of real profile values for the top n targets in the
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estimated list as well as the sum for the top n in the real list (noted as Sume

and Sumr, respectively). The weight matching score is the ratio Sume/Sumr.
The perfect estimation has a score of 1, and the closer to 1, the better the
estimation is. In the example, for n = 2, the weight matching score is 0.85/0.95.

Table 5. An example for computing weight matching score

Estimated Target Real Target

0.50 A 0.80 A
0.20 B 0.15 C
0.10 C 0.05 B
0.10 D 0.00 D
0.10 E 0.00 E

In this experiment, we calculate the scores with the cut-off n = 1. As shown
in Figure 9, the average weight matching score of Festival is about 59%. For the
subject programs, the top target averagely takes up 91% of the execution count
in terms of the dynamic profiles. Thus Festival assigns more than a half (i.e.,
54%) of the execution count to the estimated top target in average.

5.5 Predictive Power Analysis

This experiment is designed for investigating the relative predictive power of each
static feature. To this end, we first build the estimation model based on each
single feature instead of the whole feature set. Then we compute the Kendall tau
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distance, in the same way as the first experiment, to measure the performance
of the model, which in turn represents the predictive power of the feature.

Figure 10 shows the results, in which we use the normalized reciprocal of the
Kendall tau distance to represent the predictive power. Thus the features that
have larger values are more predictive than the others. In the experiment, the
most predictive two features are both call graph-based, while the five features
based on type hierarchy are seemingly less useful. However, as discussed in Sec-
tion 2, feature 6 is closely related to features 2 and 3. Thus the correlations
between call graph and type hierarchy may have large impact on the estima-
tion. Similar to those based on type hierarchy, the complexity-based features
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have moderate predictive power. In contrast, the surface features of target class
generally have the lowest power. They might be too simple to capture sufficient
design intentions. For naming style features, the depth of package is more infor-
mative than the name similarity. However, by analyzing the source code, we have
found that the latter may become more predictive, if we have a better algorithm
for computing name similarity. We are planning to improve this feature in our
future work.

5.6 Discussion

The first three experiments have evaluated the estimation performance of Festi-
val with respect to different measures. The experimental results give satisfactory
answers to the research questions RQ1 and RQ2. In addition, the analysis based
on the fourth experiment presents an answer to RQ3. In summary, Festival can
indeed provide useful information of execution frequency for virtual call targets.

Currently Festival has a limitation that it cannot provide useful estimation
for virtual calls that have too many targets. A typical case is the visitor design
pattern [15], which usually involves complex type hierarchies. For example, the
eclipse JDT compiler API uses visitor pattern to process AST. Consequently,
the class ASTNode has more than 90 subclasses, most of which have implemented
the accept method. It is really difficult to estimate frequencies for so many im-
plementations of the accept method. Another difficulty may stem from the fact
that such kind of type hierarchies usually indicate complicated design intentions
that can hardly be captured by our current static features.

5.7 Threats to Validity

One threat to the validity of the experiments is that we evaluate the accuracy
of our approach by comparing the estimated frequencies with dynamic profiles.
If the workloads are not representative, the comparison may lead to skewed
results. To alleviate this problem, we choose subject programs from the DaCapo
benchmark suite. Another threat is overfitting which means the machine learning
model fits too well to the training data and has poor predictive performance
on unseen test data. In the experiments we always leave out the program to be
estimated and train the model using all the other programs. We believe this kind
of cross-validation can avoid the threat of overfitting. Finally, the static features
we use may not comprehensive enough to capture all the valuable information.
In fact we have studied over 20 features and selected the most informative 14 of
them to build the estimation model.

6 Related Work

Machine learning is a powerful tool for predicting program behaviors. Calder et
al. [11] proposed a branch prediction technique using decision trees and neural
nets and coined the term evidence-based static prediction or ESP. Our approach
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has a similar architecture to their work. However, while their technique tackles
the problem of branch prediction for C and Fortran programs, our work investi-
gates the frequency estimation of virtual call targets which are specific to object-
oriented programs. Furthermore, the static features used in their approach are
mostly based on characteristics of instructions and control flows. In contrast,
Festival focuses on features at higher levels, since it tries to reveal design in-
tentions. Buse and Weimer [10] recently introduced a machine learning-based
approach to estimation of execution frequency for program paths. Inspired by
this work, we choose our static features to capture design intentions. Different
from Festival, their approach is focused on program paths rather than virtual
calls. Moreover, their main idea is to perform estimation based on state change
patterns. It is different from our idea, which is mainly about the specialty and
popularity of target methods and classes.

Dynamic profile-guided techniques are widely used to predict program behav-
iors to support code optimizations. Grove et al. [16] developed the call chain
profile model to describe profile information at various granularities. In their
work, they have performed a detailed study on the predictability of receiver
class distributions which shows that the distributions are strongly peaked and
stable across both inputs and program versions. Although taking a different
prediction approach, our work is largely motivated by the results of the study.
Virtual method calls and switch statements are usually implemented by indirect
jumps at the instruction level. Li and John [21] explored the control flow trans-
fer behaviors of Java runtime systems. Besides other observations, they found
that most of the dynamic indirect branches are multi-target virtual calls and a
few target addresses have very high frequencies, which confirms the results of
the study by Grove et al. Other dynamic techniques [14] [19] have been pro-
posed to improve the prediction accuracy and reduce the misprediction penalty
for indirect branches. Compared with these dynamic techniques, Festival is rel-
atively lightweight in that it only requires surface level instrumentation and
program-based features. No instruction level manipulation or hardware exten-
sion is needed. In addition, the estimation phase of Festival is purely static and
does not rely on representative workloads.

Besides dynamic profiling, static techniques have also been proposed to es-
timate frequencies of various program elements. Wall [23] conducted a com-
prehensive study on how well real (dynamic) and estimated (static) profiles
can predict program behaviors. Based on the study, Wall argued that real pro-
files are usually better than estimated profiles. However, he also warned about
the representativeness of real profiles. Focusing on non-loop two-way branches,
Ball and Larus [6] proposed several heuristics to perform program-based branch
prediction for programs written in C and Fortran. Based on these heuristics,
Wu and Larus [25] designed a group of algorithms to statically calculate the
relative frequencies of program elements. They use Dempster-Shafer technique
to combine basic heuristics into stronger predictors. To address the similar is-
sue, Wagner et al. [22] independently developed a static estimation technique.
They used Markov model to perform inter-procedural estimations. Similar to our
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approach, these static approaches aim at the problems which are not amenable
to dynamic techniques. Therefore, their motivations also greatly motivate our
work. However, we focus on virtual calls in object-oriented programs that have
not been studied by the existing work.

7 Conclusions and Future Work

In this paper we have described the Festival approach to frequency estimation
for virtual call targets in object-oriented programs. Using static feature data and
dynamic profiles of selected programs, we train a multilayer perceptron model
and use it to perform estimation for new programs. The evaluation shows that
Festival can provide estimations which are much more accurate than estimations
based on the uniform frequency distribution. It means that the approach can be
useful to a number of applications.

In our future work, we are planning to investigate more static features from
other aspects (e.g., control-flow graph structure) and figure out how to combine
probabilistic points-to analysis with Festival in order to make them benefit from
each other.
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Abstract. Code profilers are used to identify execution bottlenecks and
understand the cause of a slowdown. Execution sampling is a monitoring
technique commonly employed by code profilers because of its low im-
pact on execution. Regularly sampling the execution of an application es-
timates the amount of time the interpreter, hardware or software, spent
in each method execution time. Nevertheless, this execution time esti-
mation is highly sensitive to the execution environment, making it non
reproductive, non-deterministic and not comparable across platforms.

On our platform, we have observed that the number of messages sent
per second remains within tight (±7%) bounds across a basket of 16 ap-
plications. Using principally the Pharo platform for experimentation, we
show that such a proxy is stable, reproducible over multiple executions,
profiles are comparable, even when obtained in different execution con-
texts. We have produced Compteur, a new code profiler that does not
suffer from execution sampling limitations and have used it to extend
the SUnit testing framework for execution comparison.

1 Introduction

Software execution profiling is an important activity to identify execution bot-
tlenecks. Most programming environments come with one or more powerful code
execution profilers.

Profiling the execution of a program is delicate and difficult. The main reason
is that introspecting the execution has a cost, itself hardly predictable. This
situation is commonly referred to the Heisenberg effect1. Profiling an application
is essentially a compromise between the accuracy of the obtained result and the
perturbation generated by the introspection.

Execution profiling is commonly achieved via several mechanisms, often com-
plementary: simulation [26], application instrumentation, and periodically sam-
pling the execution, typically the method call stack. Sampling the execution is
favored by many code profilers since it has a low overhead and it is accurate
for a long application execution. Execution sampling assume that the number of

1 “Observation that the very act of becoming a player changes the game being played.”,
http://www.businessdictionary.com/definition/Heisenberg-effect.html
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samples for a method is proportional to the time spent in the method. Profilers
uses execution sampling to estimate the amount of time an interpreter, the CPU
or a virtual machine, has spent in each method of the program.

Nevertheless, execution sampling is highly sensitive to garbage collection,
thread scheduling and characteristics of the virtual machine, making it non-
deterministic (e.g., the same execution, profiled twice, does not generally give
two identical profiles) and tied to the execution platform (e.g., two profiles of the
same execution realized on two different virtual machines or operating systems
cannot be meaningfully related to each other). As a consequence, the method
execution time estimate is highly variable across multiple executions and closely
dependent on the execution environment.

Pharo2 is an emerging object-oriented programming languages that is very
close to Smalltalk, is syntactically simple, has a minimal core and with few but
strong principles. In Pharo, sending a message (also termed “invoking a method”
or “calling a method”) is the primitive syntactic construction from which all
computations are expressed. Class and method creation, loops, and conditional
branches are all realized via sending messages. As coined by Ungar et al. when
referring to Smalltalk, “the pure object-orientation of the language implies a
huge number of messages which are often time-consuming in conventional imple-
mentations [23]”. The results presented in this paper were obtained with Pharo.

This paper argues that counting message sends has strong benefits over es-
timating the method execution time from execution sampling in Pharo. Since
Pharo realizes a computation almost exclusively by sending messages, it is natu-
ral to evaluate whether counting messages can be used as a proxy for estimating
the application execution time.

The three research questions addressed in this paper are:

– A - Is the number of sent messages related to the average execution time over
multiple executions?

– B - Is the number of sent messages more stable than the execution time over
multiple executions?

– C - Is the number of sent messages as useful as the execution time to identify
an execution bottleneck?

This paper answers these three questions positively after careful and extended
measurements in different execution settings. We show that counting the number
of sent messages is an accurate proxy for estimating the execution time of an
application and of an individual method.

Naturally, the execution time of a piece of code is not solely related to the
number of invoked methods. Garbage collection, use of primitives offered by the
virtual machine, and native calls are likely to contribute to the execution time.
However, for all the applications we have considered in our experiments, these
factors represent a minor perturbation. The number of method invocations is
highly correlated with the average execution time for 10 successive executions
(correlation of 0.99 when considering the application execution and 0.97 when
2 http://www.pharo-project.org

http://www.pharo-project.org
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considering individual methods). Moreover, counting messages is more stable
over multiple executions, with a variability ranging from 0.06% to 2.47%. The
execution time estimated from execution sampling has a variability ranging up
to 46.99% (!). For our application setting, we show that measuring the number
of sent messages is about 22 times more stable than the measured execution
time. The main innovations and contributions of this paper are as follows:

– the limitations of execution sampling are identified (Section 2)
– for a number of selected applications, we show empirically that the number of

message sends is a more stable criterion for profiling than execution sampling
for each application (Section 3) and individual method (Section 4)

– we describe a general model for evaluating the stability and precision of
profiles over multiple executions (Section 4.4)

– we propose an extension of the xUnit framework to compare execution based
on the Compteur profiler (Section 5)

Subsequently, key implementation points are presented (Section 6). Reflections
and lessons learnt are given next (Section 7). We then review the related work
(Section 8) before concluding (Section 9).

2 Profiling Based on Execution Sampling

Profiling is the recording and analysis of which pieces of code are run, and how
frequently, during a program’s execution. Profiling is often considered essential
when one wants to understand the dynamics of a program’s execution. A profiler
has to be carefully designed to provide a satisfactory balance between accuracy
and overhead.

However execution sampling approximates the time spent in an application’s
methods by periodically stopping a program and recording the collection of
methods being executed. Such a profiling technique has little impact on the over-
all execution. Almost all mainstream profilers (JProfiler3, YourKit4, xprof [12],
hprof5) use execution sampling. Execution sampling comes with a number of
serious issues. As we will see, some of these issues have already been pointed out
by other researchers. Nevertheless we have chosen to list them in this section for
the sake of completeness, and because we will address them in the forthcoming
sections.

This section is presented from the point of view of the Pharo programming
language.

Dependency on the executing environment. Execution sampling is highly sensi-
tive to the executing environment. As one may expect, running other threads
or OS processes while profiling is likely to consume resources including CPU
and memory which could invalidate the measurements. Most operating systems
3 http://www.ej-technologies.com
4 http://www.yourkit.com
5 http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

http://www.ej-technologies.com
http://www.yourkit.com
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
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use the multilevel feedback queue algorithm to schedule threads [15]. The algo-
rithm determines the nature of a process and gives preferences to short and
input/output processes. The thread scheduling disciplines offered by operating
systems and/or virtual machines makes thread scheduling a source of measure-
ment perturbation that cannot reliably be predicted. One of the reasons is that
no enforcement is made to consistently execute a task in a delimited amount of
time: writing a simple email makes concurrently executing programs execute a
few CPU cycles longer.

Execution sampling traditionally requires virtual machine support6 or an ad-
vanced reflective mechanism. In Pharo, execution sampling is realized via a
thread running at a high priority that regularly introspects the method call
stack of the thread that is running the application. Scheduling new threads, or
varying the activity of existing threads (e.g., a refresh made by the user inter-
face thread), is a source of perturbation when measuring execution time since
a smaller share of the total profiled execution time is granted to the thread of
interest.

Garbage collection is another significant source of perturbation since the pro-
filed application process shares the memory and the garbage with other processes.
A memory scan (necessary when scavenging unused objects) suspends the com-
putation, but adds to the application execution time. Garbage collection occurs
when memory is in short supply and is hence not exactly correlated with any
particular execution sequence.

These problems are not Pharo-specific. They are found in several common
execution platforms, as mentioned by Mytkowicz et al. [21,22]. There are nu-
merous other sources of measurement bias, for example the relation between the
sampling period and the period of thread scheduling [21]. Randomly collecting
sampling has been proved to be effective in reducing some of the problems related
to execution sampling [21], however, it does not address the non-determinism and
the lack of portability.

Non-determinism. Regularly sampling the execution of an application is so sen-
sitive to the executing environment that it makes the profiling non-deterministic.
Profiling the very same piece of code twice does not produce exactly the same
profile. Consider the Pharo expression 30000 factorial. On an Apple MacBook Pro
2.26Ghz, evaluating this expression takes between 3 803 and 3 869 ms (ranges
obtained after 10 executions). The difference may be partially explained due
to the variation of the garbage collection activity. Computing the factorial of
30 000 triggers between 800 and 1000 incremental garbage collections in Pharo.
The point we are making is not that the implementation of the factorial func-
tion requires a garbage collector, but that a single piece of code may induce
significant variation in memory activity.

A common way to reduce the proportion of random perturbations is to ensure
that the code to be profiled takes a long execution time. By doing so, the effect of
the garbage collector is minimized. Long profiling periods are relatively accurate,

6 e.g., http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html

http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html
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however, it makes code profiling an activity that may not be practiced as often
as a programmer would like.

Lack of portability. Profiles based on execution sampling are not reusable across
different runtime execution platforms [6], virtual machines and CPUs. A profile re-
alized on a platform A cannot be easily related to a similar profile realized on a plat-
form B. For example, the first version of the Mondrian visualization engine [18]
was released in 2005 for Visualworks Smalltalk7. In 2008 Mondrian development
was moved to Pharo. Since its beginning Mondrian has been constantly profiled to
meet scalability and performance requirements. However, because of (i) the lan-
guage change from Visualworks to Pharo, (ii) the constant evolution of Pharo and
(iii) the continuous evolution of the physical machine and the Pharo virtual ma-
chine, profiles cannot meaningfully be related to each other.

Shared resources. In addition to the general issues mentioned above, a particular
profiler implementation comes with its own limitations.

Memory is a persistent global shared resource. Executions that were com-
pleted before beginning the profiling may leave the memory in such a state that
the application is prone to excessive garbage collection. In Pharo, the program-
ming environment uses the same memory heap that is used to run applications.
Previous programming activity may therefore impact it.

MessageTally, the standard profiler of Pharo, constructs a profile sharing the
same memory space as the running application, which is a favorable condition
for the Heisenberg effect. The longer the application execution takes, the more
objects are created by MessageTally to model the call graph and store runtime
information, thus exercising additional pressure on the memory manager.

3 Counting Messages as a Proxy for Execution Time

Almost all computation in Smalltalk, and thus in Pharo, is realized via sending
messages. Operations like conditional branching and arithmetic are essentially
realized via sending messages.

In such an environment, it seems possible that CPU time is likely to be related
to the number of messages sent.

3.1 Execution Time and Number of Message Sends

Determining whether the number of messages sent during the execution of an ex-
pression is related to the time taken for the expression to execute is a bit trickier
than it appears. Execution time measurements are hardly predictable. As with
any statistical measurement, the correlation between two variables is realized
by bounding the error margin in the measurement. The relation is established
if this margin is “small enough”. Determining a relation between two data sets
requires a number of statistical tools [16]. We will follow the traditional steps of
constructing a regression model.
7 http://www.cincomsmalltalk.com/main/products/visualworks/

http://www.cincomsmalltalk.com/main/products/visualworks/
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Intuitively, we expect the number of messages sent during the execution of
an expression to increase with an increase of the execution time: the longer an
expression takes to execute, the more messages are sent. We will later discuss
native calls and other interactions with the operating system. This subsection
answers research question A.

Measurements. From the Pharo ecosystem8 we selected 16 Pharo applications.
We selected these applications based on their coverage of Pharo. Appendix A
lists the applications and gives the rationale for choosing them. The experiment
was conducted on a MacBook Pro 2.26 GHz Intel Core 2 Duo with OSX 10.6.4
and 2GB 1067 MHz DDR3 using the SqueakVM Host 64/32 Version 5.7b3 (this
execution context is designated as c in the following sections).

Our measurements, used to relate the number of sent messages the execution
time, have to be based on representative application executions, close to what
programmers are experiencing. Running unit tests is convenient in our setting
since unit tests are likely to represent common usage and execution scenarios [17].
We execute the unit tests associated with each of the 16 applications. None of
the tests we used in this paper manipulates randomly generated data or makes
use of non-deterministic data input. The execution time and the number of
message sends are measured for each test suite execution. As an illustration of
the message-send metric we are interested in, consider the following code (which
is a simplified version of a test from Moose, a platform for software analysis):

ModelTest>> testRootModel
self assert: MooseModel new mooseID > 0

Behavior>> new
ˆ self basicNew initialize

Behavior>> basicNew
<primitive: 70>

Object>> initialize
ˆ self

MooseElement>> mooseID
ˆ mooseID

The test testRootModel sends 6 messages. The messages assert:, new, mooseID

and > are directly sent by testRootModel. The message new sends basicNew and
initialize. The total number of messages sent by testRootModel is 115. The message
assert:, which belongs to the SUnit framework, does some checks on the argument
and the method initialize is redefined in the class MooseElement.

The number of messages can easily skyrocket. Running the tests associated
with the Pharo collection library [10] takes slightly more than 32 seconds. The
test execution sends more than 334 million messages.

Linear regression. A scatter plot is drawn from our measurements (Figure 1).
Each of the applications we have profiled is represented by a point (execution
time, number of message sends) and is denoted with a cross in the scatter plot.
The measurements execution time and number of message sends are the average
8 Principally available from http://www.squeaksource.com

http://www.squeaksource.com
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Fig. 1. Linear regression for the 16 Pharo applications

of 10 successive executions. These values form an almost straight line with a
statistical correlation of 0.99. The correlation is a general statistical relationship
between two random variables and observed data values : a value of 1 means the
data forms a perfect straight line. This line, commonly called regression line,
may be deduced from these values.

The general equation of a regression line is ŷ = a+bx where a is constant term;
b is the line slope; x is the independent variable; y is the dependent variable; ŷ
the predicted value of y for a given value of x. The independent variable is the
execution time and the dependent variable is the number of message sends. We
also put an additional constraint on the constant term: an execution time of 0
means that no message has been sent.

Using the material provided in Appendix A, we estimate the sample regression
line on our machine to be ŷ = 9 335.55 x, meaning that in the average, the virtual
machine sends 9.3 million of messages per second. The line is drawn in Figure 1.

We designate the average message rate (number of message sends per unit of
time) as MRΓ,c where Γ is the set of the applications we profile and c the context
in which the experiment has been realized. c captures all the variables that the
measurements depends on (e.g., computer, RAM, method cache implementation,
temperature of the room).

We now have established the relation between the number of message sends
and the execution time. We are not done yet however: only an approximation
has been determined. The MRΓ,c value has been computed from an arbitrary set
of applications. If we had chosen a different set of applications, say Γ ′, MRΓ ′,c
would have probably be slightly different from MRΓ,c. MRΓ,c is said to be a
random variable, and it possesses a probability distribution. Assuming that the
applications we have chosen are representative of the all possible applications
available in Pharo, the real value of MRA,c, where A is the set of all Pharo
applications, rests in an interval that is calculated according to how confident
we want to be in our findings.
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The standard deviation of error tells us how widely the errors are spread
around the regression line. This value is essential to estimate the confidence
interval that includes MRA,c. Appendix A details how the standard deviations (se

and sb) are computed. We have the standard deviation of error se = 16 448 897.
The confidence interval is [MRΓ,c − t sb;MRΓ,c + t sb] where sb = 350.84 is
the standard deviation of MRΓ,c and t is a value obtained from the standard t
distribution table based on the confidence (1 − α) we want to have, with 1 (=
100%) being the most confident.

For a 95% confidence interval, we have α = 0.05 and therefore t = 2.145
according to the standard t distribution, which may be found in any statistical
text book. As a result, the confidence interval is [8 582, 10 089], which means
that there is a probability of 95% that the real value MRA,c is within the interval.

The linear regression model enables the prediction of the average execution
time from the number of sent messages. Consider GitFS, an implementation
of Git in Pharo. The tests of GitFS send 28 096 569 messages. According
to the regression model, this corresponds to a period of time (28 096 569 −
418 253)/9 335.55 = 2 965. GitFS’ tests actually run in 2 928 milliseconds,
which is included in the time interval [2 743, 3 225].

3.2 Method Invocation

One of the problems message counting is addressing is the poor stability and
prediction of execution sampling. This section compares the stability of the ex-
ecution time with the stability of number of sent messages, which answers the
research question B.

Hash values. Before we further elaborate on the precision of message counting,
it is relevant to remark that executing the same code expression multiple times
may not always send the same number of messages. For example, adding an
element to a set does not always send the same number of messages. Consider
the following code excerpt:

| s |
s := Set new.
Compteur numberOfCallsIn: [ 1000 timesRepeat: [ s add: Object new ] ]

Line 2 creates a new set. Line 3 invokes our library by sending the message
numberOfCallsIn: which takes a block as parameter (a block is equivalent to a
lambda expression in Scheme and Lisp and an anonymous inner class in Java).
Line 4 creates 1000 entries in the set. The hash values of the key objects are
used for the internal indexing of the set. The virtual machine generates the hash
values and they cannot be predicted since they are based on a pseudo random
number generator9. Each execution of this piece of code gives a different value
(e.g., 54 383, 55 997, 56 165) since the computation needed to add an object
9 In Cog, the jitted virtual machine, the hash is derived from the memory allocation

pointer. The non-jitted VM produces a new hash value from a formula taking as
input the previous generated hash value.
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into a table depends on the object hash value pseudo-randomly provided by the
virtual machine.

Even though the way hash values are assigned to objects is indeed a source
of non-determinism, as we will subsequently see, it has a low impact on our
measurement: for the applications we have profiled, the number of message invo-
cations varies significantly less than the execution time. Interactively acquiring
data from the user, the filesystem or the network may also be another source of
variation for the number of message sends.

Coefficient of variation. Each execution of the same piece of code results in a
different execution time and a different number of messages sent. We will now
assess whether the number of sent messages is a more stable metric than the
execution time over multiple executions. For each of the 16 applications we exe-
cuted its tests 10 times and calculated the standard deviation of execution time
(sTimeTaken) and number of sent messages (smessages). To be able to compare
these two standard deviations, we use the coefficient of variation, defined as the
ratio of the standard deviation to the mean, resulting in ctime and cmessages,
respectively. Appendix A gives our measurement and details how the variation
is computed.

For the 16 applications we considered, our result shows that the stability of
the execution time (the ctime column) varies significantly from one application
to another. For example, the applications ProfStef, Glamour and Magritte are
relatively constant in their execution time. The variation may even be below
1% for ProfStef. However, execution time significantly changes at each run for
a number of the applications. The execution time of XMLParser, DSM and
PetitParser varies from 25% to 46%. The execution time of PetitParser may
vary by 46% from one run to another. The reason for this is not completely
clear. Private discussion with the author of PetitParser revealed the cause of
this variation to be the intensive use of short methods on streams. These short
methods, such as peek to fetch one character from a stream and next to move
the stream position by one, have an execution time close to the elementary
operations performed by the virtual machine to lookup the message in method
cache10.

In contrast to execution time, message counting is a much more stable metric
since its variation is usually below 1%. The greatest variation we have measured
are with Mondrian and Moose. This is not surprising since these two applications
intensively use non-deterministic data structures like sets and dictionaries to
store their model.

The average values of the normalized standard deviation of execution time
ctime and cmessages are 13.95 and 0.61, respectively. For the experimental set
up we have used, we have found that over multiple executions of the same piece
of code, measuring the number of sent messages is 22.86 (13.95 / 0.61) times
more stable than measuring the execution time.
10 The reason why fast messages cause the execution time to vary so much is not

completely clear to us. We cannot reproduce this on micro-benchmarks. Additional
analyses are required. We have left this as future work.
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3.3 Effect of the Execution Context

We repeated the experiment on two additional execution platforms: on the Mac-
Book Pro using the Cog virtual machine (which supports Just-In-Time compi-
lation (JIT)) and a Linux Gentoo (2.6.34-gentoo-r6 running on an Intel Xeon
CPU 3.06GHz GenuineIntel) using a non-jitted virtual machine.

On the Cog virtual machine we have MRΓ,c′ = 58 384.75, with a 95% confi-
dence interval [55 325, 64 123]. On this platform, the ratio between ctime and
cmessages is 18.98. This is lower than what we obtained on the non-jitted virtual
machine. The reason stems from the multiple method compilations, each being
a resource-consuming process on its own.

On the standard virtual machine running on Linux we obtained MRΓ,c′′ =
12 412.34, with a 95% confidence interval of [9 615, 14 121]. The ratio between
ctime and cmessages is 22.34, which corresponds to the ratio we have measured
on the MacBook Pro without the JIT-ing VM.

3.4 Tracking Optimizations

We identified a number of execution bottlenecks in the Mondrian visualization
engine in our previous work [5]. We removed the bottlenecks by adding a “memo-
ization” mechanism which is a common technique applied to methods free of side
effects to avoid unnecessary recalculations. Memoizing the method MOGraphEle-

ment>> bounds improved Mondrian performance by 43%. Another memoization
of MOGraphElement>> absoluteBounds resulted in a speedup of 45% (for the UI
thread this time). Comparing the number of message sends with and without
the optimization gives performance increases in the same range: the number of
messages sent with the bounds optimization is 42% less than the non-optimized
version and 44% for the absoluteBounds optimization.

We have sequentially measured the logic thread then the UI thread. After
having sampled the execution of the logic thread we had to restart the virtual
machine to use the same initial state of the memory and the method cache. There
was no need to restart the virtual machine between the two measurements when
counting messages. No major conclusion can be drawn from this experiment.
However, it emphasizes an important practical point.

3.5 Cost of Counting Messages

Counting the number of executed send bytecode instructions is cheap. We mea-
sure the execution time of each of the 16 applications with and without the
presence of message counting. Table 3 reports our results. Each measurement is
the average of 5 executions. The overhead is computed as overhead = (time on
modified VM – time on normal VM) / time on normal VM * 100.

The cost of message counting is almost insignificant. The execution time varia-
tion ranges from 0% to 0.02%. These results are not surprising actually. Message
counting is simple to implement within the virtual machine; at each send byte-
code a global variable is incremented. This is a cheap operation compared to the
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complex machinery to lookup method implementation, interpret the bytecode,
and to manage the memory. The execution time variation we have measured on
a non-jitted virtual machine is of the same range on Cog.

4 Counting Messages to Identify Execution Bottlenecks

CPU profilers aim at identifying methods that consume a large share of the ex-
ecution time. These methods are likely to be considered for improvement and
optimization, aiming at reducing the total program execution time. This sec-
tion considers counting message as a means of finding runtime bottlenecks, and
answers research question C.

4.1 A Method as an Execution Bottleneck

A method is commonly referred as an execution bottleneck when it is perceived
as taking a “lot of time”, or more time that it should. The intuition on which we
will elaborate is that if a method is slow then it is likely to be sending (directly
and indirectly) “too many” messages.

Sending “too many” messages may not be the only source of slow down. An
excessive use of memory and numerous invocations of the primitives offered by
the virtual machine are likely to play a role in the time taken for a program
to execute. A program that intensively uses files or the network may spend a
significant amount of time executing the corresponding primitives. In Pharo,
executing a primitive suspends the program execution and resumes it once the
primitive has completed. Consider a program that sends few messages but makes
a great use of primitives: the program can take a long time to execute with
few sent messages. However, we have not detected such occurrence in all the
applications we studied. As we will see in the coming sections, in spite of the
perturbation that may be introduced by primitive executions, still make message
counting more advantageous than execution sampling for all the applications we
have considered.

4.2 Method Invocations Per Method

Counting the number of messages sent by a particular method is an essential
step to compare execution sampling with message counting.

Counting the number of sent messages for each method requires associating
with each method the number of messages it sends at each execution. Most code
instrumentation libraries and tools, including most aspect-oriented programming
ones, easily meet this requirement. The instrumentation we consider for each
method of the application to be profiled is done as follows.

CompteurMethod>> run: methodName with: listOfArguments in: receiver
| oldNumberOfCalls v |
oldNumberOfCalls := self getNumberOfCalls.
v := originalMethod valueWithReceiver: receiver arguments: listOfArguments.
numberOfCalls := (self getNumberOfCalls - oldNumberOfCalls) + numberOfCalls - 5.
ˆ v
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Compteur is the implementation of our message-based code profiler for Pharo.
An instance of the class CompteurMethod is associated with each method of the
application to be profiled. CompteurMethod acts as a method wrapper by intercept-
ing each method invocation. At each method invocation, the method run:with:in:

is executed to increase the variable numberOfEmittedCalls defined in the Comp-

teurMethod instance. The number of executions of a method is associated with
the method itself. Note that we do not instrument the whole system, but just the
application we are interested in profiling. The method getNumberOfCalls uses a
primitive operation defined in the virtual machine to obtain the current number
of message sends.

The instrumentation itself sends 5 messages: valueWithReceiver:arguments:, with-

Args:executeMethod: and the second getNumberOfCalls, plus 2 messages sent by
valueWithReceiver:arguments:, not presented here. We therefore need to subtract 5
from the number of calls.

4.3 Method Execution Time and Number of Message Sends

The total execution time of an individual method is correlated with the number of
messages that are directly and indirectly sent by the method. In this section, we
focus on a single application, Mondrian. Other applications enjoy the correlation.

Figure 2 plots the methods of the Mondrian application according to their
execution time in milliseconds with the number of sent messages. Note that we
consider the total execution time and the total number of message sends for
each method, counting the closure of all of the methods that it invokes. This
means that if a method is invoked 100 times for which each execution takes 2
ms and sends 5 messages, then the method is plotted as the point (200, 500).
The graph shows that the time taken by the computation that is initiated by
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Fig. 2. Linear regression for the methods of Mondrian.
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sending a message is almost constant: the execution time of a method is directly
proportional to the number of messages that it sends.

As with application execution (Section 3.1), the regression model indicates
that the large majority of (execution time, number of message sends) plots form
a straight line (Figure 2), confirmed by a correlation of 0.97.

The equation of the regression line is ŷ = 31 811.38 x. Figure 2 gives this line.
We see that the slope of the regression line is about 3.4 greater than the slope we
found when we studied application executions (Section 3.1). The reason stems
from the cumulative effect of nested message sends. To get a feeling why this
happens, consider the following two methods:

MOGraphElement>> bounds
| basicBounds |
boundsCache ifNotNil: [ ˆ boundsCache ].
self shapeBoundsAt: self shape ifPresent: [ :b |ˆ boundsCache := b ].
...

MONode>> startPoint
ˆ self bounds bottomCenter

The method bounds sends 239 direct and indirect messages. The method start-

Point sends 2 direct messages. But since it invokes bounds and bottomCenter (which
sends 27 messages), in total, startPoint sends 2 + 27 + 239 = 268 messages.

4.4 Stability of Message Counting

To assess the stability of message counting over execution sampling we will com-
pare a list of profiles made with message counting and execution sampling. The
idea is to numerically assess the variability of the method ranking against mul-
tiple profiles of the same code execution. We will then characterize a stable set
of profiles with a constant method ranking.

Stability of profiles. We have profiled Mondrian 20 times: 10 using execution
sampling and 10 using message counting. Each profile is obtained by running
the unit tests and provides a ranking of the methods. Methods are ranked in
order of “computational cost”. To save space, Table 1 gives only an excerpt of
our measurements: the first 9 methods (names have been shortened to m1...m9)
are ranked for 5 profiles. The method ranked first is the one that has the greatest
share of the CPU execution time; the method ranked last is the one that has
consumed the least CPU. The 5 profiles are obtained with MessageTally. As
stated earlier (Section 2), due to the high sensitivity of the environment, not all
the rankings are the same. Quantifying the variation of the method ranking for
a set of profiles is the topic of this section.

For each method, we compute the standard deviation of the ranking (ses)
to estimate ranking variability. We have ses(m) = 0 if the method m is always
ranked the same across the profiles. The greater ses is, the greater the variability
of the ranking.
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Table 1. Ranking of the first 9 methods of Mondrian for 5 profiles (execution sampling)

m1 m2 m3 m4 m5 m6 m7 m8 m9

Profile 1 1 2 3 4 5 6 7 8 9
Profile 2 1 2 3 4 6 5 10 12 7
Profile 3 1 2 3 4 6 5 10 12 7
Profile 4 1 2 3 4 5 6 9 7 13
Profile 5 1 2 3 5 6 4 9 12 7
Average 1 2 3 4.1 5.4 5.5 8.9 10.4 8.2

Stand. Dev.
ses 0.000 0.000 0.000 0.316 0.516 0.707 1.197 1.955 1.989

The stability of a set of profiles depends on the variability of the method
ranking. However, not all methods deserve to be considered in the same way.
We use the discounted cumulated gain [13] to weight the ranking. The point of
a weight is that the lower the ranked position of a method, the less valuable
it is for the user, because the less likely it is that the user will ever consider
the method as being slow. A discounting function is needed which progressively
reduces the method score as its position in the ranking increases. We weight a
method ranked n as w(n) = 1/ln (n+1). We define the instability for the first n
methods of the set of profiles P as ψn(P ) =

∑n
i=1 ses(i) ∗ w(n), the sum of the

weighted standard deviations. According to the excerpt given in Table 1, we have
ψ9(P ) = 0 1

ln(1+1)
+ ... + 0.316 1

ln(4+1)
+0.516 1

ln(5+1)
+ ... + 1.989 1

ln(9+1)
= 3.177.

A perfectly stable set of profiles P has the value ψ(P ) = 0.

Experimental setting. We have profiled each application γ 20 times in the exe-
cution context c. We have γ ∈ Γ , where Γ is the list of applications given in
Appendix A. 10 of these profiles were obtained using the standard execution
sampling. We refer to these 10 profiles as Pγ,c. As mentioned earlier, the ex-
ecution context in which the applications are profiled is c. The 10 remaining
profiles were obtained using message counting, referred as Qγ,c. We have chosen
to consider the same number of methods for each application since not all the
applications have the same code size. As previously described, we ran the unit
tests to produce the profiles.

Poor stability of execution sampling. The method ranking against the execution
time is not constant: each new profile gives a slightly different method ranking.
For example, for 8 of the 10 profiles of PPetitParser,c, the method ranked 5th in
terms of execution time is PPPredicateTest>> testHex. However, in the 2 remaining
profiles, this method is ranked 35 and 36 (!). After an examination of the tests
to make sure they do not randomly generate data, we speculate that this odd
ranking is due to a mixture of the problems highlighted at the beginning of
this article (Section 2). This kind of variability in the method ranking is hardly
avoidable, even though we took great care to garbage collect the memory and
release unwanted object references between each profile.
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We define ψ10(Pγ,c) over the first 10 methods given by a set of profiles P for
an application γ realized in an execution context c. To give a reference point,
we artificially build a random data set R on which we can compare ψ of the
applications we profile: we randomly generate 10 random rankings. For our ran-
dom set of profiles, we have ψ10(R) = 173 and ψ10(PPetitParser,c) = 11. All the
remaining ψ10 range from 3 to 5.

The greatest instability of the set of profiles we obtained is for PetitParser.
PetitParser makes heavy uses of stream and string processing, which perturbs
MessageTally, the standard execution sampling profiler of Pharo, for the same
reasons mentioned in Section 3.2 (use of short methods).

Perfect stability of message counting. The profiles obtained with message count-
ing have a ψ of 0 for each of the applications we have profiled. This means
that the 10 profiles we made for each application do not show a variation in
the method ranking according to the number of sent messages. Even though we
have seen that the number of method invocations varies slightly (Section 4.2),
the data we collected from this experiment show that this does not impact the
method ranking. Profiling multiple times always ranks the methods identically.

The stability execution sampling does not equal that of message counting. The
stability of message counting is clearly superior to that of execution sampling.

4.5 Cost of the Instrumentation

Determining the number of sent messages for each method requires complete in-
strumentation of the application to be profiled. This instrumentation introduces
an overhead. The cost of the instrumentation depends on the infrastructure used
for code transformation. We used the Spy framework [4]. To evaluate our imple-
mentation, we performed two set of measurements. For each application, we ran
its associated unit tests twice, with and without the instrumentation. Table 4
presents our results.

Running the unit tests while counting message sends for each method has an
overhead that ranges from 2% to 2 524%. This overhead includes the time taken
to actually instrument and uninstrument the application. When the unit test
takes a short time to execute, then the instrumentation may have a high cost.
The worst cases are with XMLParser and AST. AST’s unit tests take 37 ms to
execute. They take 971 ms with the instrumentation, representing an overhead
of 2 524%. The AST package is composed of 76 classes and 1 246 methods.
XMLParser’s unit tests take 36 ms to execute. The package is composed of 47
classes and 785 methods. Since XMLParser is smaller than AST, the overhead
of the instrumentation is also smaller.

Figure 3 represents the ratio of the overhead to the test execution time. The
left hand-side presents this ratio with a linear scale. The right-hand side gives
the same data, with a logarithmic scale for the overhead. Each cross is a pair
(execution time, overhead), representing an application. Figure 3 shows a general
trend: the longer the unit tests take to execute, the smaller the instrumentation
overhead. Above an execution time of approximately 5 seconds, determining
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the number of message sends per method has an overhead of less than 100%,
which represents twice the execution time of the unit tests. In practice, this is
acceptable in most of the situations we have experienced.

DSM has an overhead of 2.4%, the smallest overhead we measured. The reason
for this low overhead is that most of the logic used by the DSM package is
actually implemented in Famix, a different package. When DSM is the only
package instrumented, the overhead is low since most of the work happens in a
different package, itself uninstrumented.

Note that the execution time of the tests and the cost of the instrumentation
are unrelated. This is because the execution time of the tests depends on how
much logic is executed to complete tests, and not on how much of that execution
is attributable to the execution package.

5 Contrasting Execution Sampling with Message
Counting

We revisit the issues encountered with execution sampling that we previously
enumerated (Section 2) and contrast them with the message counting technique
described above.

No need for sampling. Message counting provides an exact measurement of a par-
ticular execution. The measurement is solely obtained by counting the number
of message sends. Message counting therefore does not depend on thread sup-
port or advanced reflective facilities (e.g., MessageTally heavily relies on threads
and runtime call stack introspection) or sophisticated support of the virtual ma-
chine (e.g., the JVM offers a large protocol for profiling agents). As described in
Section 6, adapting a non-jitted virtual machine to count send instructions may
require adding a few dozen lines of code.
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Execution environment. Message counting is not influenced by the thread schedul-
ing or memory management. The benefit is that we are able to compare profiles
obtained from different execution environments. For the applications we have
considered, sending messages is correlated with the average execution time. As
we have shown, this means that the average execution time can be easily approx-
imated from the number of messages.

Stable measurements. Measurements obtained from message counting are signif-
icantly more stable than those obtained from execution sampling. Even though
the exact number of message sends may vary over multiple executions (partly
due to the hash values given by the virtual machine), the metric is stable and
reproducible in practice.

Profiling time. Contrary to execution sampling, message counting is well adapted
to short profiles since an exact value is always returned. One compelling applica-
tion of this property is asserting upper bounds on message counts when writing
tests. We have produced an extension of unit test that offers a new kind of
assertion: assertIs:fasterThan: to compare the number of messages sent.

We have written a number of tests that define time execution invariant. One
example for Mondrian is (the difference between the two executions is shown in
bold):

MondrianSpeedTest>> testLayout2
| view1 view2 |
”All the subclasses of Collection”
view1 := MOViewRenderer new.
view1 nodes: (Collection allSubclasses).
view1 edgesFrom: #superclass.
view1 treeLayout.

”Collection and all its subclasses”
view2 := MOViewRenderer new.
view2 nodes: (Collection withAllSubclasses).
view2 edgesFrom: #superclass.
view2 treeLayout.

self assertIs: [ view1 root applyLayout ] fasterThan: [ view2 root applyLayout ]

The code above says that computing the layout of a tree of n nodes is faster than
with n + 1 nodes. The difference between these two expressions is just the mes-
sage sent to Collection. Being able to write a test for short execution time is a nice
application of message counting. As far as we are aware, none of the mainstream
testing frameworks is able to define assertions to compare execution times.

6 Implementation

Compteur is an implementation of the message-counting mechanism for Pharo.
It comprises a new virtual machine and a profiler based on the Spy profiling
framework [4].
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The modification made in the virtual machine is lightweight: a global variable
initialized to 0 is incremented each time a send bytecode is interpreted. In the
non-jitted Pharo virtual machine, the increment is realized in the part of the
bytecode dispatch switch dedicated to interpret message sending. In the jitted
Cog virtual machine, the preamble of the method translated in machine code by
the JIT compiler realizes the increment.

The maximum value of a small integer in Pharo is 230 (∼ 1.073 ∗ 109). Over
this value, an integer is represented as an instance of the LargeInteger class, which
is slow to manipulate within the virtual machine. The current Pharo virtual
machine (5.7beta3) executes approximately 12 M message sends per second on
micro benchmarks11. This means that the range of the Pharo integer values may
be exhausted after 90 seconds (1 073 / 12).

Using a 64 bit integer is not an option since Pharo is designed to run on 32
bit machines. We therefore use two small integers to encode the number of sent
messages. The maximum number of messages that can be counted in this way is
∼ 1.152 ∗ 1018. Even at full interpretation speed, this value is not reached after
2 million hours.

The global message counter is made accessible within our profiler written in
Pharo via primitives. The counter is reset via a dedicated primitive.

The instrumentation is realized by wrapping methods to intercept incoming
messages [4].

To obtain the number of message sends per method, the application has to
be instrumented to capture the value of the global counter before and after
executing the method, as illustrated in Section 4.2. Using the Aspect-Oriented-
Programming terminology, such instrumentation is easily realized with around
or before and after advice.

7 Discussion

The design of our approach is the result of a careful consideration of various
points.

Modifying the virtual machine. Even though the modification we made in the
virtual machine is relatively lightweight, we are not particularly enthusiastic
about producing a new virtual machine since the Pharo community is not par-
ticularly keen on changing the virtual machine. People are often reluctant to use
non-standard tools, even if the benefits are strong and apparent.

We have not found a satisfactory alternative. As an initial attempt, before we
implemented the work presented in this paper, we made a profiler that counted
only the messages sent by the application, and not by dependent libraries and the
runtime. The application was instrumented by code modification and the virtual
machine was left unmodified. We discovered that the information we gathered was
insufficient to demonstrate the properties presented in this paper. As soon as the
execution flow leaves the application, no information is recorded until it returns

11 Result of the standard 0 tinyBenchmarks micro benchmark.
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to the application. Since it cannot be accurately predicted how long the execu-
tion flow will spend outside the application, we could not establish a correlation
between the number of messages sent by the application and execution time.

Instrumentation. Our approach requires instrumentation of the application to
be profiled: only the methods defined in the application we wish to improve need
to be instrumented.

Instrumenting the complete system has not proven to be particularly useful
or possible in our situation: (i) if an execution slowdown is experienced, there
is no need to look for its cause outside the application we are actually consid-
ering; (ii) instrumenting the whole system has a significant runtime cost; (iii)
this easily leads to meta-circularity issues since our profiler shares the runtime
with the profiled application. Even if recent advances in instrumentation scoping
are adopted [24], this increases the complexity of the implementation without a
clear benefit. Efficiently handling metacircularity is necessary to profile the pro-
filer itself. However, since the implementation of Compteur is not particularly
complex, we have not felt the need to do so.

Special messages. For optimization purposes, not all messages are sent in Pharo.
Depending on the name of the message being sent, the Pharo compiler may
decide to transform the message send into a particular sequence of bytecode
instructions. Consider the message ifTrue:ifFalse: with literal two block arguments.
For example, the expression (1 < 2) ifTrue: [ ’Everything is okay’] ifFalse: [ ’Something

is wrong’ ] is translated into the sequence:

76 pushConstant: 1
77 pushConstant: 2
B2 send: <
99 jumpFalse: 27
21 pushConstant: ’Everything is okay’
90 jumpTo: 28
20 pushConstant: ’Something is wrong’
87 pop
78 returnSelf

Beside ifTrue:ifFalse:, there are other 17 control flow instructions treated as “spe-
cial messages” by the Pharo compiler. In the Pharo virtual machine, a jump byte-
code is faster than a send. In the whole Pharo library, approximately 62% of all
message sends contained in the source code are translated into send bytecode in-
structions. The correlation we established between execution time and message
sends is strong, even if 38% of message sends are not translated into send bytecode
instructions. We obtained these figures by comparing for each method in Pharo the
abstract syntax tree of the source code and the generated bytecode instructions.

The case of primitives. The execution time of a method may have little relation
to the number of messages sent. This could happen if the method intensively uses
primitives, or if the program had to wait for a keystroke. The profile of such a pro-
gram then depends on how long the user has waited before pressing a key. We rea-
sonably assume that this is not what happens in practice: we chose unit tests as
the execution reference, which is a realistic approximation of a program execution.
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Particularities of Pharo. Pharo’s compiler is rather simplistic, not designed for
producing optimized bytecode. It does not offer additional optimization than a
mere bytecode generation pattern based on the name (e.g., ifTrue:ifFalse:, timesRe-

peat:), as previously mentioned. Pharo memory layout is based on a generational
and compacting mark and sweep. Virtual memory file mapping is supported and
the virtual machine has the ability to grow and shrink the memory space.

Are our results applicable to other dynamic languages? At first glance, Jython12,
JRuby13, Groovy14 enjoy the same nice properties as Pharo: the computation is
solely realized via sending messages. It is therefore tempting to extrapolate our
results to these languages. However, the Java Virtual Machine, which is the exe-
cution platform of these languages, has a radically different execution model. For
example, the JVM has native threads which have an impact on the memory man-
agement. Pharo has “green threads”: the scheduler is implemented in Pharo itself.
Most implementations of the JVM garbage collector have many more generations
than the one of Pharo: Pharo supports only 2 generations (young and old) whereas
the HotSpot Java VM has 5 memory pools. Last but not least, the heavy optimiza-
tion of the JVM just-in-time compiler has the potential to completely invalidate
our finding. Testing whether our results are applicable to other “pure OO” lan-
guages implies further analysis and measurements.

8 Related Work

The work presented in this paper is not the first attempt at finding an alternative
to execution sampling. However we are not aware of any work which studied the
number of message sends.

Bytecode instruction counting. Camesi et al. [6] pioneered the field by inves-
tigating the use of bytecode instruction counting as an estimate of real CPU
consumption. For all the platforms they have considered, there is an application-
specific ratio of bytecode instructions per unit of CPU time. Such a bytecode
ratio can be used as a basis for translating a bytecode instruction value into the
corresponding CPU consumption.

Out results are similar. We have also identified a message ratio, however this
ratio is attached to a particular execution platform, and not to an application.

Dynamic bytecode instrumentation. Instrumentation-based profiling has a high
cost. However, such overhead can be reduced by instrumenting only the sub-
set of the application where a bottleneck is known to be. Dmitriev [8] proposes
that for a given set of arbitrary “root” methods, instrumentation applies to the
call subgraph of the roots only. Dmitriev observed that this approach generally
works much better for large applications, than for small benchmarks. The reason
is that additional code and data become negligible once the size of the profiled

12 http://www.jython.org
13 http://jruby.codehaus.org
14 http://groovy.codehaus.org

http://www.jython.org
http://jruby.codehaus.org
http://groovy.codehaus.org
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application goes above a certain threshold. Message counting has similar prop-
erties. Only a subset of the system needs to be instrumented. However, message
counting behaves perfectly well for small benchmarks.

Hardware Performance Counters. Most modern processors have complex mi-
croarchitectures that dynamically schedule instructions. These processors are
difficult to understand and model accurately. For that purpose, they provide
hardware performance counters [1]. For example, Sun’s UltraSPARC processors
count events such as instructions executed, cycles expended and many more.

With message counting we exploit the same kind of information, but obtained
from the Pharo virtual machine.

Optimizing Smalltalk. The popularity of Smalltalk during the 80’s has led to
numerous works that directly tackled the slow execution of Smalltalk programs.
Sophisticated mechanisms on mapping bytecode to instruction machine [23,25],
improved compiled methods and cache contexts [19], manipulating method dic-
tionaries [3] and adding type declaration and inference [2,14] have been produced.

9 Conclusion

A code profiler provides high-level snapshots of a program execution. These snap-
shots are often the only way to identify and understand the cause of a slow
execution. Whereas execution sampling is a widely used technique among code
profilers to monitor execution at a low cost, it brings its own limitations, including
non-determinism and inability to relate profiles obtained from different platforms.

We propose counting method invocations as a more advantageous profiling
technique for Pharo. We have shown that having method invocation as the exclu-
sive computational unit in Pharo makes it possible to correlate message sending
and average execution time with stability, both for applications as a whole and
for individual methods.

We believe that code profiling has not received the attention it deserves: exe-
cution sampling uses stack frame identifiers, which essentially ignore the nature
of object-oriented programming. In general, code profilers profile object-oriented
applications pretty much the same way that they would profile applications writ-
ten in C. We hope the work presented in this paper will stimulate further research
of the field to give more importance to objects than to low-level implementation
considerations.
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A Linear Regression Material

This section contains the relevant data and theoretical tools to construct the
regression linear model described in Section 3.1 and Section 4.3.

Measurements. Table 2 lists 16 Pharo applications. Each of these applications
covers a particular aspect of the Pharo library and runtime. Collections is an in-
tensively used library to model collections. Mondrian, Glamour and DSM make
an intensive use of graphical primitives and algorithms. Nile is a stream library
based on Traits [9]. Moose is a software analysis platform which deals with
large models and files. Mondrian and Moose heavily employ hash tables as inter-
nal representation of their models. SmallDude, PetitParser, XMLParser heavily
manipulate character strings. Magritte and Famix are meta-models. ProfStef in-
tensively makes use of reflection. Network uses primitive in the virtual machine.
ShoutTest and AST heavily parse and manipulate abstract syntax trees. Arki is
an extension of Moose that performs queries over large models.

These applications cover the features of Pharo that are intensively used by
the Pharo communities: most of the applications are either part of the standard
Pharo runtime or are among the 20 most downloaded applications. Not all the set
of primitives offered by the virtual machines are covered by the applications. For
example, none of them makes use of sound. We are not aware of any application
that intensively uses Pharo’s musical support.

For each of these applications, we report the mean execution time over 10
trials to run its corresponding unit tests (time taken (ms)) and the num-
ber of sent messages (# sent messages). These reported results are averages
over 10 runs. For each of these two measurements, we compute the standard
deviations (smessages and sTimeTaken, not reported here) and normalize it
yielding ctime = sTimeTaken ∗ 100/TimeTaken and cmessages = smessages ∗
100/messages. These applications were run on a virtual machine modified to
support our message counting mechanism.
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Table 2. Applications considered in our experiment (second and third columns are
average over 10 runs)

Application time taken (ms) # sent messages ctime% cmessages%

Collections 32 317 334 359 691 16.67 1.05
Mondrian 33 719 292 140 717 5.54 1.44
Nile 29 264 236 817 521 7.24 0.22
Moose 25 021 210 384 157 24.56 2.47
SmallDude 13 942 150 301 007 23.93 0.99
Glamour 10 216 94 604 363 3.77 0.14
Magritte 2 485 37 979 149 2.08 0.85
PetitParser 1 642 31 574 383 46.99 0.52
Famix 1 014 6 385 091 18.30 0.06
DSM 4 012 5 954 759 25.71 0.17
ProfStef 247 3 381 429 0.77 0.10
Network 128 2 340 805 6.06 0.44
AST 37 677 439 1.26 0.46
XMLParser 36 675 205 32.94 0.46
Arki 30 609 633 1.44 0.35
ShoutTests 19 282 313 5.98 0.11

Average 13.95 0.61

The source code of each of these applications is available online on Squeak-
Source.

Estimating the sample regression line. For sake of completeness and providing
easy-to-reproduce results, we provide the necessary statistical material. Comple-
mentary information may be easily obtained from standard statistical books [11].

For the least squares regression line ŷ = a+b x, we have the following formulas
for estimating a sample regression line:

b =
SSxy

SSxx
a = y − b x

where y and x are the average of all y values and x values, respectively. The y
variable corresponds to the # sent messages column and x to time taken
(ms) in the table given above.

SSxy =
∑

xy − (
∑

x)(
∑

y)
n

SSxx =
∑

x2 − (
∑

x)2

n

where n is number of samples (i.e., 16, the number of applications we have
profiled). SS stands for “sum of squares.” The standard deviation of error for
the sample data is obtained from:

se =

√∑
SSyy − b SSxy

n− 2
where SSyy =

∑
y2 − (

∑
y)2

n

In the above formula, n−2 represent the degrees of freedom for the regression
model. Finally, the standard deviation of b is obtained with sb = se√

SSxx
.
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Table 3. Cost of the Virtual Machine Modification

Application Normal VM (ms) Compteur (ms) overhead (%)

Collections 32 317 32 323 0.02
Mondrian 33 719 33 720 0
Nile 29 264 29 267 0.01
Moose 25 021 25 023 0.01
SmallDude 13 942 13 944 0.01
Glamour 10 216 10 218 0.02
Magritte 2 485 2 485 0
PetitParser 1 642 1 642 0
Famix 1 014 1 015 0.1
DSM 4 012 4 013 0.02
ProfStef 247 247 0
Network 128 128 0
AST 37 38 2.7
XMLParser 36 36 0
Arki 30 30 0
ShoutTests 19 19 0

Table 4. Cost of the Application Instrumentation

Application No inst (ms) Inst. (ms) overhead (%)

Collections 32317 33590 3.94
Mondrian 33719 36983 9.68
Nile 29264 36387 24.34
Moose 25021 26652 6.52
SmallDude 13942 24467 75.49
Glamour 10216 12976 27.02
Magritte 2485 4361 75.51
PetitParser 1642 2102 28.01
Famix 1014 3327 228.07
DSM 4012 4108 2.40
ProfStef 247 562 127.47
Network 128 875 583.87
AST 37 971 2524.00
XMLParser 36 559 1452.78
Arki 30 236 685.71
ShoutTests 19 40 111.76
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Abstract. Back-in-time debuggers offer an interactive exploration in-
terface to execution traces. However, maintaining a good level of inter-
activity with large execution traces is challenging. Current approaches
either maintain execution traces in memory, which limits scalability, or
perform exhaustive on-disk indexing, which is not efficient enough.

We present a novel scalable disk-based approach that supports effi-
cient capture, indexing, and interactive navigation of arbitrarily large ex-
ecution traces. In particular, our approach provides strong guarantees in
terms of query processing time, ensuring an interactive debugging expe-
rience. The execution trace is divided into bounded-size execution blocks
about which summary information is indexed. Blocks themselves are dis-
carded, and retrieved as needed through partial deterministic replay. For
querying, the index provides coarse answers at the level of execution
blocks, which are then replayed to find the exact answer. Benchmarks
on a prototype for Java show that the system is fast in practice, and
outperforms existing back-in-time debuggers.

1 Introduction

Execution traces are a valuable aid in program understanding and debugging.
Most research is centered on the capture of execution traces for offline automatic
analysis [7,17,20]. However, there has been a recent surge of interest in interactive
trace analysis through back-in-time, or omniscient, debuggers [5,8,9,10,11,12,13].
Such debuggers allow forward and backward stepping and can directly answer
questions such as “why does variable x have value y at this point in time?”, thus
greatly facilitating the analysis of causality relationships in programs.

The navigation operations provided by back-in-time debuggers are based on a
small set of conceptually very simple queries. To achieve interactive navigation,
those queries must execute extremely quickly, regardless of the size of the execu-
tion trace. It is therefore necessary to build and use indexes, otherwise queries
would require scanning arbitrarily large portions of the execution trace. Inter-
active navigation in large execution traces requires an efficient indexing scheme
tailored to the core set of back-in-time debugging queries:
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Bidirectional stepping. These queries are similar to the usual stepping op-
erations provided by traditional debuggers, with the added benefit of being
able to perform them both forward and backward in time. Step into opera-
tions are very simple, as they consist in navigating to the next or previous
event in the trace. Step over and step out operations, on the other hand, are
more complex, as they require to skip all the events that occurred inside a
method call. As the number of events to skip is potentially huge, it is not
efficient to just perform a linear scan of the trace.

Memory inspection. Back-in-time debuggers support the inspection of the
values of memory locations (such as object fields and local variables) at any
point in time. To retrieve the value of a location at a particular point in time,
the query to process consists in determining the last write operation to that
location before the currently observed point. Again, as the last write can
have happened much before the current observation point, it is not efficient
to linearly scan the trace.

Causality links. Back-in-time debuggers support navigating via causality links,
e.g. by instantly jumping to the point in time where a memory location was
assigned its currently observed value. The corresponding query is actually
the same as the one used to perform memory inspection: the last write op-
eration to the location gives both the written value and the point in time at
which it was written.

Interactive navigation in large execution traces is challenging: memory-based ap-
proaches allow fast navigation, but do not scale past a few hundred megabytes
of trace data and therefore must discard older data [8,11]. To handle larger
traces without losing information, a disk-based solution is mandatory [13], but
this typically reduces the efficiency of the system. In addition, most back-in-time
debuggers rely on directly capturing exhaustive executions traces [5,8,11,13]. Un-
fortunately, this incurs a significant runtime overhead on the debugged program,
which is problematic for two reasons: (a) it makes the system less practical to
use because of long execution times, and (b) the probe effect can perturb the
execution enough that the behaviors to examine do not occur.

An alternative technique to avoid capturing exhaustive traces that alleviates
the above issues is deterministic replay [1,3,15,16,19]. It consists in capturing
only a minimal trace of non-deterministic events during the initial execution of a
program. The minimal trace can then be deterministically replayed to obtain the
exhaustive trace without affecting the execution of the debugged program. This
is much cheaper than capturing an exhaustive trace, and thus greatly reduces the
probe effect. Non-deterministic events are typically related to external inputs and
system calls. However, another source of non-determinism is thread scheduling,
something that is not properly supported in several deterministic replay systems.

Some deterministic replay systems support restarting the replay in the middle
of the trace through snapshots that capture the state of the program at given
points in time [15,16]. However these snapshots are heavyweight because they
represent the full state of the heap. These snapshots can be produced efficiently
by combining process forks and OS-level copy-on-write mechanisms, but they are
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not easily serializable to disk. Therefore, snapshots remain in memory and older
ones must be discarded, limiting the scalability or precision of the approach.

Contributions. This paper presents a novel scalable disk-based approach that
supports efficient capture and interactive navigation of arbitrarily large execu-
tion traces. This approach relies on dividing the execution trace into bounded-
size execution blocks, about which summary information is efficiently indexed.
Execution blocks themselves are not stored on disk; rather, we support partial
deterministic replay: the ability to quickly start replaying arbitrary execution
blocks as needed. For querying, summarized indexes provide coarse answers at
the level of execution blocks, which are then replayed and scanned to find the
exact answer. More precisely:

– We describe the general approach and its instantiation as a new Java back-
in-time debugging engine called STIQ, for Summarized Trace Indexing and
Querying (Section 2). The approach is based on capturing non-deterministic
events during the execution of the debugged program, followed by an initial
replay phase during which snapshots are taken and indexes are constructed.

– We present an efficient deterministic replay system for Java (Section 3). This
system supports partial deterministic replay through lightweight snapshots
that are both fast to obtain and easy to serialize. We explain how these
lightweight snapshots make it unnecessary to capture the heap.

– We propose indexing techniques for both control flow and memory accesses.
The techniques leverage a recent succinct data structure [14] for efficient
control flow indexing (Section 4), as well as the principle of temporal locality
of memory accesses to reduce the amount of information to index (Section 5).

– We demonstrate through benchmarks that the approach enables a highly
interactive back-in-time debugging experience (Section 6). Specifically, the
proposed technique allows very fast index construction and query processing.
Index construction takes 4 to 25 times the original, non-captured program
execution time on realistic workloads. Query processing requires O(log n)
disk accesses and O(1) CPU time for traces of arbitrary size n, and never
exceeds a few hundred milliseconds in practice. We are not aware of any back-
in-time debugging system that provides either such efficient index building,
or such strong guarantees in query response time.

Finally, Section 7 discusses related work and Section 8 concludes.

2 Summarized Trace Indexing and Querying

Interactive back-in-time debugging requires that queries are processed fast
enough to give the user a feeling of immediacy. For large execution trace, this
mandates the use of indexing techniques: otherwise, arbitrarily large portions
of the trace would have to be linearly scanned for each query. The system de-
scribed in this paper, dubbed STIQ, provides an indexing scheme that is fast to
build and yet processes queries very efficiently. The key insight is to divide the



Summarized Trace Indexing and Querying 561

execution trace into bounded-size execution blocks and to index only summa-
rized information about each block; queries are then processed in two phases:
the indexes first provide a coarse-grained answer at the level of execution blocks
in O(log n) time, and the relevant execution block is then scanned to find the
exact answer in O(1) time (as the size of blocks is bounded).

This section gives an overview of the complete process, whose steps are de-
tailed in subsequent sections, and presents the overall system architecture.

2.1 Process Overview

The STIQ process consists of four phases: trace capture, initial replay, summa-
rized indexing, and querying.

Trace capture. The debugged program is transparently instrumented so that
whenever a non-deterministic operation (such as a system call or a memory
read) is executed, its outcome is recorded into a minimal execution trace
that is stored on disk. The trace is interspersed with regular synchronization
points that give a rough timestamping of events, so that an approximate
ordering of events of different threads can be obtained so as to resolve race
conditions.

Initial replay. Although the minimal trace produced by the capture phase is
sufficient to deterministically replay the debugged program, it is not directly
useful for our indexing process: it contains memory read events, whereas
the memory writes are those that must be indexed. An initial replay is
thus performed to obtain a semi-exhaustive trace consisting of memory write
events and cursory method call information (only the fact that a method is
entered/exited is needed). This is achieved by feeding the minimal trace to
a replayer that re-executes the original program, but with non-deterministic
operations replaced by stubs that read the recorded outcome from the trace.
The program is also instrumented so that it generates the needed semi-
exhaustive trace. Additionally, when a synchronization point is encountered,
a lightweight snapshot is generated so that replay can be restarted from
that point later on. Snapshots thus define the boundaries of individually
replayable execution blocks.

Summarized indexing. The semi-exhaustive trace produced in the initial re-
play is not stored but rather consumed on the fly by an indexer that effi-
ciently builds the indexes. The indexer summarizes the information of each
execution block, as depicted in Figure 1. For method entry and exit events,
the indexer builds a control flow tree and represents it as a Range Min Max
Tree (RMM Tree) [14], a state-of-the-art succinct data structure that allows
very fast navigation operations. Auxiliary structures map the beginning of
execution blocks to positions in the RMM Tree. Together, these structures
allow efficient stepping operations while using only slightly more than one
bit per event. For memory writes, the indexer coalesces all the writes to a
given location that occur within an execution block into a single index entry.
In practice, this reduces the number of entries to index by 95%: because of
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Fig. 1. Summarized indexing process

the principle of temporal locality, if a memory location is accessed at some
point in time, it is very likely that it will be accessed again in the near future,
i.e. in the same execution block. Finally, snapshots are simply stored in an
on-disk dictionary structure.

Querying. The indexes constructed in the previous step can determine the ex-
ecution block that contains the answer to a given query very quickly: they
only require O(log n) disk accesses and O(1) CPU time (with very favor-
able hidden constants—in practice they take 1-10ms). Once the execution
block has been determined, the corresponding snapshot is retrieved (again
in O(log n) disk accesses) and the block is replayed and then scanned to find
the exact event of interest inO(1) CPU time (as the size of execution blocks
is bounded and thus does not depend on the size of the trace). In practice,
queries take a dozen milliseconds on average, and never take more than a
few hundred milliseconds (see Sect. 6).

2.2 System Architecture

Our system uses an out-of-process database to store and index the execution
trace. The overall architecture is depicted below:

It consists of three elements:

1. The debuggee, which is the Java VM that executes the program to debug. It
contains a special native agent that intercepts class loading so that classes
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are instrumented prior to execution (either by sending their bytecode to
an out-of-process instrumenter, or by looking them up in a class cache if
they have already been instrumented in a previous session). When executed,
instrumented code emits events that are sent to the debugger core.

2. The debugger core, which consists in (a) an instrumenter that receives the
original classes from the debuggee and inserts the event emission code before
sending the modified classes back to the debuggee, (b) a structure database
that records information about the classes, methods and fields of the de-
bugged program, (c) a trace database that stores and indexes the events
emitted by the debugged program, and (d) a query manager that uses the
database indexes to quickly answer queries.

3. The client, which is the user interface of the debugger. It presents the user
with views over the debugging session and controls to interactively navigate
in the execution trace using back-in-time debugging metaphors: stepping
backward and forward, navigating runtime data dependencies, etc.

3 Trace Capture and Partial Deterministic Replay

This section describes the key features of our deterministic replay system. Many
implementation details are omitted or only glossed over. Section 3.1 describes
how the trace is captured: which events are captured, how we avoid having to
simulate the heap, and how memory locations are identified. It also describes the
scoping abilities of our system. Section 3.2 discusses the replayer, and Section 3.3
details how and when snapshots are taken.

3.1 Capture

Trace capture is achieved by transforming the original program through bytecode
instrumentation so that non-deterministic events are serialized and stored when
the program is executed.

Non-deterministic events. Non-deterministic operations are those whose out-
come can vary from one program execution to another, and thus must be recorded
so as to enable deterministic replay. These operations are:

– Native operations. The outcome of native operations such as disk or network
reads cannot be predicted. In addition, as discussed later in this section, our
system supports user-defined scoping. Out-of-scope methods are considered
non-deterministic.

– Heap memory reads. Thread scheduling can affect the order in which memory
write operations are executed, and as scheduling is outside the control of the
debugged program, the contents of memory is non deterministic.1

1 In the case of Java, only the contents of heap memory is non-deterministic, as the
virtual machine does not allow concurrent access to stack memory.
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Dealing with memory non-determinism. A strategy to deal with the non-
determinism of memory reads due to multi-threading consists in recording the
order in which threads are scheduled, and forcing the same order during re-
play [3]. This is of limited usefulness with multicore architectures, however, as
in this case concurrency occurs at the hardware level. Another strategy, which
we use in our system, consists in recording the value obtained by every memory
read [1].

Avoiding heap simulation. Although capturing memory reads is enough to
allow a fully accurate replay, it still requires to simulate the state of the whole
heap during replay because some control-flow-altering operations (polymorphic
method dispatch and instanceof) rely on the content of the heap, as the type
of objects must be known. The simulated heap would occupy as much memory
as the heap of the original program.

Fortunately, it is possible to completely avoid simulating the heap by recording
the outcome of the above control-flow-altering operations, even though they are
deterministic. This has a very small impact on the trace capture overhead, but
drastically reduces the memory requirements of the system, thus freeing valuable
memory for the indexing process. Moreover, as the heap is not needed anymore
for replay, the only information needed to start replaying at arbitrary execution
block boundaries can be represented in lightweight snapshots that only contain
the values of the local variables of the current stack frame and the identifier of
the current method. Such snapshots are cheap to obtain and take up very little
space.

Identification of memory locations. The reconstitution of program state at
arbitrary points in time requires the indexing of memory locations; it is therefore
necessary to be able to uniquely identify each memory location. Two distinct
types of locations must be considered: heap locations (object fields and array
slots), and stack locations (local variables).

For heap locations, we regard both objects and arrays as structures that con-
tain a fixed number of slots. Structures are assigned a unique id at creation time,
and the id of a particular location within a structure is obtained by adding the
index of the slot to the id of the structure. For objects, the index of the accessed
slot is determined statically (each field of a given class can be assigned an index
statically). For arrays, the index of the accessed slot is explicitly specified at
runtime. To ensure the uniqueness of memory location ids, the sequence that is
used to give a new structure its unique id is incremented by the number of slots
of the structure.

In Java, the ideal way to store the id of structures would be to add a field to
the Object class. However, adding fields to certain core classes such as Object,
String or array classes is problematic in most Java implementations (e.g.doing
so makes the HotSpot JVM crash). To solve this issue, we add the id field to all
non-problematic subclasses of Object, and we use a global weak identity hash
map for the problematic classes; this unfortunately incurs a significant runtime
overhead (as shown in Sect. 6).
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For stack locations, we use a compound id consisting of the id of the current
thread, the current call stack depth, and the index of the variable within the
stack frame. This scheme does not uniquely identify each location, because local
variables in subsequent invocations of different methods by the same thread at
the same depth will share the same id. However, this is not a problem because
the temporal boundaries of method invocations are known. We come back to
this issue in Section 5.3.

Scoping. In many cases some parts of the debugged program might be trusted
to be free of bugs (for instance, the JDK classes in the case of Java), or the
bug can be known to manifest only under certain runtime conditions [13]. Trace
scoping reduces the runtime overhead on the debugged program, the size of the
execution trace, and the indexing and querying cost, by limiting the set of events
that are captured. Static scoping consists in limiting capture to a set of classes,
while dynamic scoping consists in activating or deactivating capture dynamically
at runtime. Our system currently supports only static scoping; dynamic scoping
would however be relatively easy to add.

The user configures the static scope by specifying a set of classes or packages
to include or exclude from the trace. We define the set of out-of-scope methods
as all the regular bytecode-based methods that belong to out-of-scope classes,
as well as all native methods.

By definition, the execution of out-of-scope code cannot be replayed. It is
therefore necessary to capture additional information at the runtime boundaries
between in-scope and out-of-scope code. In particular, the return values of out-of-
scope methods called by in-scope methods, as well as the arguments of in-scope
methods called by out-of-scope code must be captured.

Unfortunately, because of polymorphism it is not possible to statically deter-
mine whether a particular call site will result in the execution of an in-scope or
of an out-of-scope method; similarly, it is not possible to determine if a given
method will be called by in-scope or out-of-scope code. Therefore, in the trace
capture phase we instrument the envelope (ie. entry and exit) of all out-of-scope
methods in order to maintain a thread-local scope stack of booleans that indi-
cates whether the thread is currently executing in-scope or out-of-scope code.
Whenever the execution of an in-scope method starts, the top of the stack is
checked to decide if method arguments must be captured; similarly, whenever
an out-of-scope method exits, the top of the stack is checked to decide if the
return value should be captured.

3.2 Initial Replay

The main task of the replayer is to inject the recorded outcomes of non-
deterministic operations into the replayed program. To that end, we transform
the program through bytecode instrumentation so that non-deterministic oper-
ations are replaced by proxies that read their outcome from the trace.

As explained above, the heap is never explicitly reconstituted; therefore, the
replayer never needs to instantiate any class of the original program: instances
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are instead represented by a generic ObjectId class that is simply a container for
the identifier of the object2. All the non-static in-scope methods of the program
are replaced by static ones that take an additional ObjectId parameter that
represents the target of the method.

On the other hand, as out-of-scope methods do not record any information in
the trace (except the envelope as explained above), they all behave exactly in the
same way as far the replayer is concerned: a black box that consumes parameters
and generates a return value. Therefore the original out-of-scope methods are
not used at all in the replayer, and are collectively replaced by a single, generic
method provided by the replayer infrastructure.

3.3 Snapshots

Snapshots define the boundaries of execution blocks. Recall that snapshots are
taken during the initial complete replay of the program, and not during capture,
so as to reduce the runtime overhead of capture as much as possible. We now
describe how and when snapshots are taken.

Snapshot probes. The ability to take a snapshot at a given program point
requires the insertion of a piece of code, called a snapshot probe, that performs
the following tasks:

1. Check if a snapshot is actually requested at this moment, by reading a
thread-local flag (detailed below).

2. Store the necessary information in the snapshot: identification of the snap-
shot probe, current position in the minimal execution trace, and the values
of local variables and operand stack slots.

Recalling that the heap is not reconstituted during replay, the information men-
tioned above is sufficient for replaying the current method and all the meth-
ods called from there, recursively. It is not sufficient, however, to return to the
caller of the current method: the stack frame of the caller is not recorded in the
snapshot. This problem is addressed by always inserting snapshot probes after
method calls, and forcing the creation of a snapshot at those probes if a snap-
shot was taken during the execution of the method. Thus, although the partial
replay cannot directly continue after the current method returns, there is always
another snapshot at the right point in the caller method so that another partial
replay can be started right where the previous one finished.

Snapshot intervals. The size of execution blocks must be chosen considering
a tradeoff between indexing efficiency and querying efficiency:

– Larger blocks make it possible to coalesce more object accesses into one index
entry, thus increasing indexing throughput.

– Shorter blocks can be replayed faster and thus queries can be answered faster.
2 We use a container instead of a scalar because the actual value of the id is mutable

in the case of instantiations, but this is beyond the scope of this paper.
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It is important to take into account the involved magnitudes:

– Indexing is performed on the fly during the initial complete replay, and pre-
emptively considers all of the objects that exist during the execution of the
program: all object accesses in the trace incur an indexing cost. Therefore,
small variations in indexing throughput can noticeably affect the global ef-
ficiency of the system.

– Queries deal with individual objects and are performed by a human being,
who cannot differentiate between a one microsecond or a one millisecond
response time. Therefore, important variations in querying efficiency can go
largely unnoticed up to a certain point.

The time interval between snapshots define the maximum size of execution
blocks3. This interval is configurable by the user, controlling the tradeoff be-
tween indexing efficiency and query response time.

Probe density. Probes should be inserted densely enough in the program so
that a snapshot can be taken quickly once it is requested. However, snapshot
probes are costly both in code size and in speed (because of the runtime check)
so it is preferable to limit their number. As we must insert snapshot probes after
every method call anyway (as explained above), the density is usually already
sufficient with just those probes. Nevertheless, it is possible for the program to
contain a loop with no method calls at all, like a complex calculation on a large
array; in this case, an additional probe would be needed inside the loop. For
the sake of simplicity, and because this kind of program is rather infrequent, we
currently do not insert these additional probes.

4 Indexing of Control Flow

We now turn to the indexing techniques. This section describes the indexing of
control flow, and Section 5 describes the indexing of memory accesses. While
step into queries simply consist in moving to the next/previous event in the
execution trace, efficiently executing step over and step out queries requires an
index: otherwise it would be necessary to linearly scan the execution trace to
skip the events that occurred within the control flow of the stepped over call, or
between the current event and the beginning of the current method.

The control flow can be represented as a tree whose nodes correspond to
method calls. Stepping operations then simply correspond to moving from a
node to its next/previous sibling (for step over), or to its parent (for step out).
We store the control flow tree using a Range Min-Max Tree (RMM Tree) [14],
a recent succinct data structure that is disk-friendly, fast to build and supports
fast navigation operations. Auxiliary data structures maintain a correspondence
between execution blocks and their initial node in the control flow tree so that
3 We also set a minimum size for execution blocks, so that a thread that spends most

of its time sleeping does not generate plenty of useless snapshots.
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Fig. 2. A tree and its balanced parentheses representation

the block corresponding to a given node can be determined during queries. This
approach uses only slightly more than 1 bit per method call or return event,
while requiring only a few milliseconds to answer arbitrary stepping queries,
making them seem instantaneous to the user.

This section first briefly describes the RMM Tree structure and then explains
our control flow indexing and querying mechanism.

4.1 Range Min-Max Tree

A succinct data structure is one that stores objects using space close to the
information-theoretic lower bound, and at the same time supports fast queries
on the stored objects. In the case of a tree4 with n nodes, the lower bound is
2n − Θ(log n) bits [14]. A classical way to represent trees using 2n bits is the
balanced parentheses sequence (see Figure 2): each node is represented by a pair
of matched parentheses that enclose the representation of its children. A node
in the tree is identified by the position of the corresponding opening (or closing)
parenthesis.

Although such a structure is compact (as only one bit is needed for each
parenthesis), it does not allow per se to quickly answer queries like finding the
next sibling, previous sibling or parent of a given node. The RMM Tree [14] adds
an indexing layer on top of the balanced parentheses representation that incurs
very little space overhead while allowing extremely fast querying. In theory, the
RMM Tree supports queries in constant time O(c2) with a data structure using
2n+O(n/ logc n) bits, for any constant c > 0. In practice, we trade the constant
time for logarithmic time with a very big base.

The essential idea of the RMM Tree is to compute a running sum of the bits
that represent the parentheses sequence: opening parentheses increment the sum
by 1, and closing parentheses decrement the sum by 1. For each fixed-size block
of parentheses, a summary indicating the minimum and maximum value that the
sum takes within the block is stored separately. Fixed-size blocks of summaries
are then recursively summarized (the minimum and maximum of a whole block
of summaries are separately stored at a higher level). This results in a tree
structure of height H in which the leaves are the bits that represent the balanced
parentheses sequence, and the nodes contain the minimum and maximum value
of the running sum in their subtree. Subtle observations about the relationship
between the running sum and the primitive tree navigation operations make it
possible to guarantee that queries can be answered by accessing at most 2H
blocks (going up to the root and then down to the correct leaf) [14].

4 Specifically, ordinal trees, where a node can have any number of ordered children.
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Algorithm 1. Find return event.
Finds the return event corresponding to the call event denoted by (t, b, i).
1: function FindReturn(t, b, i)
2: tree ← getCFlowTree(t)
3: pcall ← eventToPosition(t, b, i)
4: pret ← tree.getClose(pcall)
5: (tret, bret, iret) ← positionToEvent(t, pret)
6: return (t, bret, iret) � By construction t = tret

7: end function

Algorithm 2. Event to position.
Returns the RMM Tree position corresponding to the given event reference.
1: function EventToPosition(t, b, i)
2: (tree, map) ← getCFlowIndex(t)
3: p ← map.getPos(b)
4: block ← getBlock(t, b)
5: for k in 1, i do
6: if block[k] is a call or return event then
7: p ← p + 1
8: end if
9: end for
10: return p
11: end function

In practice, blocks correspond to disk pages (usually 4KB). The summary
information to store for each block (minimum and maximum values plus some
ancillary data) occupies only 10 bytes. As a consequence the tree is quite flat:
for instance, an RMM Tree of height 4 can store up to

⌊
4096
10

⌋3 · 4096 · 8 $
2 · 1012 bits in its leaves and occupies around 4096 ·∑3

i=0

⌊
4096
10

⌋i $ 280GB, thus
requiring roughly 2.005 bits per original tree node (slightly more than 1 bit per
parenthesis).

4.2 Indexing and Querying

The indexing process for control flow is straightforward: each execution thread
has its own RMM Tree that stores all the method call (resp. return) events as
one opening (resp. closing) parenthesis as they occur. Also, execution blocks
are identified by a thread-local block id, equal to the timestamp of the initial
snapshot of the block. Blocks ids are unique within a thread, but not globally.
Whenever a new execution block starts, a pair (block id, current RMM position)
is stored in a bidirectional map, which makes it possible to either retrieve the
block id given a RMM position, or the RMM position given a block id. More
precisely, this bidirectional map consists of two BTrees, one where the block ids
are the keys and the RMM positions are the values, and another one with the
opposite relationship. As BTrees use binary search for keys, the keys used for
lookup do not need to be exact values. We take advantage of this feature when
looking up a block id given a position: there is usually no record for the exact
position, but we can instead return the id of the block that contains this position.
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Algorithm 3. Position to event.
Returns the event reference corresponding to the given RMM Tree position.
1: function PositionToEvent(t,p)
2: (tree, map) ← getCFlowIndex(t)
3: b ← map.getBlockId(p)
4: p0 ← map.getPos(b) � p0 is the position of the RMMTree corresponding to the beginning

of block b
5: block ← getBlock(t, b)
6: i ← 1
7: while p0 < p do
8: if block[i] is call or return event then
9: p0 ← p0 + 1
10: end if
11: i ← i + 1
12: end while
13: return (t, b, i)
14: end function

To perform a step over operation5, it is necessary to determine the return
event corresponding to the call event that is being stepped over. The result
of the step over operation is simply the event following the return event. The
findReturn function (Algorithm 1) is thus the basis of the step over operation.

Events are identified by a (t, b, i) tuple where t is the thread id, b is the block
id, and i is the index of the event within the block. The algorithm consists of
three steps: (a) determining the position of the bit (or opening parenthesis) of
the RMM Tree that corresponds to the given method call event, (b) determin-
ing the corresponding closing parenthesis, that corresponds to the return event,
and finally (c) translating the RMM Tree position back to an event reference.
Translating back and forth between event references and RMM Tree positions is
implemented in the subroutines specified in Algorithms 2 and 3.

The algorithms use the following auxiliary procedures:

– getBlock(t, b) replays block b of thread t and returns the exhaustive list of
events for that block.

– getCF lowIndex(t) returns the RMM Tree and bidirectional map corre-
sponding to thread t; getCF lowTree(t) returns only the RMM Tree. These
are constant-time operations.

There are three components to the cost of the algorithm:

– The replaying of the initial and final execution blocks (although the initial
execution block is usually available in a cache, as it corresponds to the events
the user was currently observing). These operations take a time proportional
to the size of the blocks, which is a constant that can be tuned by the user.

– The obtention of block ids and positions through the bidirectional map.6
These operations are BTree lookups that require O(log n) disk accesses.

– The navigation to the closing parenthesis in the RMM Tree. This operation
also requires O(log n) disk accesses.

5 We describe forward step over; backward step over and step out are similar.
6 In Algorithm 3, lines 3 and 4 are actually a single operation, as the binary search for

the given position gives both the registered position and the corresponding block id.
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In practice, arbitrary stepping queries only take a dozen milliseconds on average,
and never take more than a few hundred milliseconds, allowing highly interactive
stepping (see Sect. 6).

5 Indexing of Memory Accesses

Two of the essential features of back-in-time debuggers are the ability to inspect
the state of memory locations at any point in time, and the ability to instantly
navigate to the event that assigned its value to a location. Both features rely on
the same basic query: finding the last write to the location that occurred before
a reference event (the point of observation). The write event indicates both the
value that was written and the moment it was written7.

The key to being able to answer such queries efficiently is to have a separate
index for each memory location; if a single index is shared between several loca-
tions, a linear scan of the index (which can take a time proportional to the size
of the trace) is necessary. This said, constructing an exhaustive index of all write
accesses for each location is prohibitively costly [13]. Instead, we index only a
summary of the write accesses: we coalesce all accesses to a given location that
occur within an execution block to a single index entry. We thereby exploit the
principle of temporal locality: if a given location is accessed at a point in time it
is very likely to be accessed again in the near future, i.e. in the same execution
block. In practice, this approach allows us to discard around 95% of memory
accesses. This compression ratio, along with the pipelined index construction
process described later, makes it possible to maintain a separate index for each
memory location.

To answer queries, the index is used to determine, in logarithmic time, the
execution block that contains the access of interest; the block is then replayed
and linearly scanned to retrieve the exact event. As block size is bounded, this
linear scan does not depend on the size of the trace, and is very fast in practice,
as will be shown in Sect. 6.

In the following we first present the general structure of the index and the
way it is queried, before explaining how to build it efficiently using a multicore-
friendly pipelined process. This section deals mostly with heap memory locations
(object fields and array slots). The capture system assigns a unique identifier to
each heap location, as explained in Sect. 3.1. We explain how stack locations
(local variables) are handled in Sect. 5.3.

5.1 Index Structure and Querying

Memory inspection queries consist in finding the last write to a given location
that occurred before a certain reference event. As explained above, there is one
7 Although to simplify the presentation we consider a single result for memory in-

spection queries, there is actually a set of write events that might have written the
current value of the location at the time the reference event occurred. The reason
the query produces a set and not a single event is that the resolution of data races
is limited by the accuracy of the timestamping of events.



572 G. Pothier and É. Tanter

Algorithm 4. Memory location reconstitution.
1: function GetLastWrite(loc, (t, b, i))
2: index ← getLocationIndex(loc)
3: (b2, threads) ← index.getAtOrBefore(b)
4: for t2 in threads do
5: block ← getBlock(t2, b2)
6: if b2 = b and t2 = t then
7: limit ← i − 1
8: else
9: limit ← length(block)
10: end if
11: for k in limit, 1 do
12: if block[k] is write to loc then
13: yield (t2, b2, k)
14: break
15: end if
16: end for
17: end for
18: end function

individual index for each memory location. As there are many such location
indexes, there is also a master index used to retrieve particular location indexes.

The process of answering a query is sketched in Algorithm 4. It consists of
three main steps:

1. Retrieve the index for the particular location using the master index (line 2).
This is implemented as a BTree lookup, and thus requires O(log n) disk
accesses.

2. Within the location index, search the execution block(s) that occurred at
the same time or just before the block b, which contains the reference event
(line 3). This search can produce as many blocks as there are threads writing
to the location in the same time span as block b. As we explain later, there are
different implementation of the location indexes, according to the number of
entries in the index, but in the worst case the search requires O(log n) disk
accesses.

3. Replay the blocks of the previous step to find the last write(s) to the in-
spected location. Although there can be any number of blocks to replay,
the size of blocks decreases with the number of concurrent threads. This
is because blocks are delimited by elapsed time (see Sect. 3.3): the more
threads execute concurrently at a given time, the less events there are in the
corresponding blocks.8 The time required to replay those blocks is therefore
bounded and does not depend on the size of the trace.

As shown in Sect. 6, such queries in practice only take two dozen milliseconds
on average, and never more than a few hundred milliseconds, allowing very fast
reconstitution of memory locations.

5.2 Pipelined Index Construction

The previous section showed that it is possible to query the memory locations
index in logarithmic time. We now show that the index can also be efficiently
8 Modulo the number of available CPU cores, but this is also a constant.
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built. As explained in Sect. 2, an initial replay of the minimal trace is performed
so as to obtain a semi-exhaustive execution trace that contains memory writes
events. The semi-exhaustive trace is consumed on the fly by the indexer.

The indexing process is divided into 5 pipelined stages (see Fig. 3), and can
thus take advantage of multicore systems, as the different stages can run in par-
allel (although the CPU utilization is not evenly distributed between all stages).
The first three stages operate in main memory, while the latter two deal with
storing data on disk. By conveniently ordering the data, the first stages help
reduce the amount of disk seeks needed at the later stages.

Summarizing. This stage (Fig. 3a) is instantiated for each thread of the debugged
program. It scans incoming execution blocks, and for each memory write, it adds
the identifier of the written location to a hash set. Using a set is key to our
indexing approach, ensuring that each written location appears only once per
execution block. Once an execution block is finished, the set is transformed into
a (t, b, a) tuple where t and b are the thread and block id, and a is a sorted array
of the location identifiers that have been written to within the block. The tuple
is then passed on to the next stage.

Because execution blocks are relatively small in practice, all the operation of
this stage can be performed in memory.

Reordering. During trace capture, events are stored in thread-local buffers before
being stored in the minimal trace. Busy threads emit many events, so they
quickly fill their event buffers, while threads that spend a lot of time waiting
might take a long time to fill a single buffer. It is therefore possible that execution
blocks of different threads are stored in the trace out of order. The later stages
of the pipeline can cope with this situation, but at the cost of a significant loss of
throughput. The goal of the reordering stage (Fig. 3b) is thus to avoid as much
as possible the costly reordering by downstream stages.

Fig. 3. The five stages of the indexing pipeline
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This stage accumulates the tuples in a buffer, and when their total size exceeds
a certain threshold (32 MB in practice), they are sorted by block id, and the
oldest ones (the oldest 60% in practice) are passed on to the next stage in a
bundle for processing. The remaining ones stay in the buffer and will be sorted
again, along with newer ones and possible late comers, in the next round. The
aforementioned threshold size is chosen to be small enough so that the data sets
of this stage and the following one can fit in main memory, but large enough to
impede most out-of-order blocks from going through.

Inversion. This stage (Fig. 3c) receives bundles of (t, b, a) tuples and operates
in two phases:

1. Each (t, b, a) tuple is expanded into a list of (t, b, l) tuples, one for each
memory location l ∈ a. The threshold size chosen in the previous stage has
to be small enough that the expanded tuples of this stage can fit in main
memory.

2. The concatenated list of all the (t, b, l) tuples is then sorted by location id l,
then by block id b and finally by thread id t.

As a consequence of the sorting, the tuples produced in this stage are grouped
by location, which reduces the amount of disk seeks needed to build the on-disk
index in the following stages. Additionally, having the tuples within each group
sorted by block id and thread id enables the use of compact encodings, thus
reducing the size of the indexes, as explained below.

Allocation. For each location group in the tuple list produced by the previous
stage, an entry is allocated in the master index (or retrieved, if it already existed).
An entry is simply a pointer that references the page where the individual index
corresponding to the location is stored. The tuple list of the previous stage is
passed on to the next stage, along with a list of allocated entries, so that the
next stage can perform the actual storage of the tuples of each group without
having to access the master index anymore.

Storage. This final stage performs the actual storage of (t, b) tuples in the in-
dividual indexes corresponding to each location l. According to the number of
tuples to store in each index, three different index formats are used:

– Because most objects are short lived and therefore are accessed in only one
execution block, most indexes (around 80%) contain a single tuple. We store
these indexes in shared pages, which we call singles pages. Thanks to the
ordering performed in the previous stage and the use of gamma codes9 to
store the difference between successive tuple components, a 4KB singles page
contains around 800 indexes on average.

9 Gamma codes [4] represent an integers x in (roughly) 2 log2 x bits. Small numbers
are thus encoded in very few bits.



Summarized Trace Indexing and Querying 575

– For indexes that contain more than one tuple but less than the number of
tuples that can fit in half a disk page, we use another type of shared pages,
which we call n-shared pages, with n ∈ {2m} for m ∈ [1..7]. In these pages,
space is evenly distributed between n indexes.

– For bigger indexes, we use BTrees where keys are block ids and values are
thread ids. Again, we use gamma codes to store the tuples in these trees.

As indexes are built on the fly, we do not know beforehand what the size of
each index will be. Indexes thus migrate from singles page to n-shared pages to
BTrees as more tuples are added.

5.3 Local Variables

Having a separate index for each memory location implies that each location
can be uniquely identified. As explained in Section 3.1, our trace capture system
assigns a unique id to each each heap location (object fields and array items),
but this uniqueness constraint is relaxed for stack locations (local variables).
Stack locations are assigned a compound id that is made of the thread id, the
local variable index, and the call stack depth. This entails that there cannot be a
separate index for each stack location, as the stack frames of subsequent method
executions at the same level will share some local variable indexes. However,
queries can still be processed efficiently: we already know the temporal bound-
aries during which particular stack locations exist (these boundaries are defined
by method entry and exit, which are indexed). To process a stack location in-
spection query, we query the corresponding index as if it was not shared. If the
answer is outside the temporal boundaries of the current method invocation, it
means there is no write to the variable before the reference event.

6 Benchmarks

In this section we present the experimental results we obtained with our STIQ
system, and we compare them with those obtained with TOD [12,13], our previ-
ous disk-based back-in-time debugger for Java, which to the best of our knowl-
edge still represents the state of the art up to now. (We compare to other re-
lated systems in Section 7.) All the benchmarks were performed on a Quad-core
2.40GHz Xeon X3220 machine with 4GB RAM and two 160GB SCSI hard drives
in a RAID-0 configuration, running the x86_64 Linux 2.6.24 kernel. We used
the Sun HotSpot 1.6.0_22 32 bits JVM in server mode for both the debuggee
program and the indexing server.

We used the avrora and lusearch benchmarks of the DaCapo v9.12 benchmark
suite [2], as well as a toy benchmark called burntest that stresses STIQ capture
and indexing by performing almost only method calls and field accesses (it con-
sists in repeatedly navigating a large in-memory tree). For DaCapo benchmarks,
we use the small dataset size, and force two driver threads. For both STIQ and
TOD, the JDK classes were configured to be out of scope.
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We first present global results (capture overhead, indexing speed and query ef-
ficiency) that show the competitiveness of our approach. We then give a detailed
accounting of the time and space resources needed for individual features.

6.1 Global Results

Table 1 shows the impact of trace capture on the debugged program. It varies
between 10x and 30x for STIQ and between 22x and 176x for TOD10. The
overhead of STIQ is much lower than that of TOD, as well as that of other
back-in-time debuggers: the Omniscient Debugger [8] has an overhead of around
120x, while Chronicle (discussed in Sect. 7) reports a 300x overhead. Also, STIQ
has an overhead comparable with other deterministic replay systems like Nir-
vana [1], which reports a 5x-17x overhead. Nirvana however is only concerned
about deterministic replay, not trace indexing.

Table 1. Runtime overhead of trace capture

Workload t0
STIQ TOD

tSTIQ oSTIQ tTOD oTOD

avrora 5.5s 163s 30x 968s 176x
lusearch 7s 69s 10x 157s 22x
burntest 5.2s 65s 12x 427s 82x

t0: original execution time without trace capture
tT OD , tSTIQ: execution time with trace capture

ox: runtime overhead (tx/t0)

With respect to trace capture, even though the numbers are comparatively
favorable to STIQ, the capture overhead still remains high; further effort is
necessary in this regard.

Table 2. Replay and indexing time (and ratio to original execution time)

Workload STIQ TOD
replay indexing total

avrora 95s (17x) 46s (8.4x) 141s (25x) 152min (1664x)
lusearch 19s (2.7x) 13s (1.8x) 32s (4.5x) 16min (138x)
burntest 39s (7.5x) 375s (72x) 414s (80x) 52min (606x)

Table 2 indicates the time needed to index the captured traces. For the Da-
Capo benchmarks, STIQ actually uses less time to perform the initial replay and
build the indexes than to capture the trace. For burntest on the other hand, the
10 This shows that the published worst-case runtime overhead of 80x for TOD [13] was

not actually the worst case.
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Table 3. Space usage

Workload STIQ TOD
trace index trace index

avrora 5GB 0.27GB 35GB 65GB
lusearch 1.1GB 0.16GB 6.2GB 11.3GB
burntest 1.5GB 2.7GB 20GB 39.4GB

Table 4. Average (and maximum) query response time

Workload STIQ TOD
stepping memory stepping memory

avrora <1ms (0.24s) 19ms (0.5s) 12ms (6.8s) 41s (96min)
lusearch <1ms (0.37s) 27ms (0.48s) 5.2ms (1.6s) 1.9s (4min)
burntest 6.9ms (0.65s) 8.6ms (0.17s) 17ms (0.74s) 3.4s (17min)

indexing is very slow, as that workload consists only in method calls and field
accesses, with no extra deterministic computation in between. STIQ is (at least)
one order of magnitude faster than TOD to build the indexes.

Table 3 shows the size of the captured execution traces, as well as the size of
the created indexes. STIQ traces are much smaller than those of TOD, showing
the benefit of using a deterministic replay system versus exhaustive trace capture.
It is notable that for the DaCapo benchmarks, STIQ produces indexes that are
much smaller than the trace itself; for burntest the index is almost twice as big
as the trace, again because burntest is all about method calls and field accesses,
which are the two kinds of events that are indexed. Also worthwhile to note is
the fact that TOD indexes are always bigger than the already bulky traces.

Table 4 shows the query response time of STIQ and TOD. For stepping
queries, we divide each thread of the execution trace into 100 equal intervals
and starting at the beginning of each interval we alternately perform step over
and step out operations until the root of the control flow is reached. As we get
closer to the control flow root, step over operations must skip a greater number
of events. For memory inspection queries, we first realize a (non-timed) pass that
collects the locations to inspect: we divide each thread into 20 equal intervals
and start scanning the trace at the beginning of each interval, collecting accessed
locations until 20 distinct locations are found. After the collection phase, we once
again divide each thread into 20 equal interval and inspect the content of each
location at the beginning of each interval.

The experimental results clearly show the benefit of our approach. STIQ
queries are guaranteed to take O(log n) disk accesses and O(1) CPU time; in
practice they never reach the one second mark, and take only a dozen millisec-
onds on average. In contrast, some TOD queries can take an extremely long
time, completely ruining the interactivity of the debugging session11.

11 Note that the average query times for TOD are high in great part because of a few
extremely long outliers; many queries still execute in a few dozen milliseconds.
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Table 5. Cost of capture features as percentage of total capture time

Workload object ids map field reads
avrora 9.5% 66%

lusearch 17% 53%
burntest 41% 47%

Table 6. Size of the different indexes as percentage of total index size

Workload control flow memory locs snapshots strings
avrora 56% 28% 14% 0.6%

lusearch 14% 71% 11% 4%
burntest 1.3% 97% 0.8% 0.7%

Overall, we consider our approach successful. Capture overhead, indexing
times and trace sizes are all significantly better than TOD. In addition, STIQ
really shines at query processing, always guaranteeing interactive-compatible re-
sponse times. We are not aware of any system that gives such strong guarantees
on query process times.

6.2 Cost of Individual Features

This section gives a detailed accounting of the cost of the different features of STIQ
for both capture and indexing. This is useful to pinpoint optimization targets.

Table 5 shows the cost of two important features used at capture time. As
mentioned in Sect. 3.1, we must resort to a global map to store the ids of the
instances of certain problematic classes. This has a non-negligible cost, that could
be avoided if the JVM was modified to allow additional fields to be added to
the Object class. The non-determinism of memory caused by thread scheduling
requires the capture of the values of each memory read. This represents about
half the capture time.

Table 6 show how the index size is distributed among the different indexes12.
The distribution varies widely from a workload to another, but it is worthwhile
to note that our lightweight snapshots use comparatively very little space.

7 Related Work

We now discuss related work in the areas of back-in-time debugging, determin-
istic replay, and analysis of captured execution traces.

Back-in-time debugging. TOD [12,13] is our previous attempt at a scal-
able disk-based back-in-time debugger for Java. It uses a specialized distributed
12 The strings index stores the values of the strings used in the program. As it is not

directly used for queries and has very limited impact in general, we did not mention
it elsewhere in this paper.
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database to speed up indexing and querying. It is based on exhaustive trace cap-
ture and exhaustive indexing of events. As a consequence, its runtime overhead
is higher than STIQ (up to 176x vs. up to 30x), and it is very resource hungry
(traces are up to 13x larger than STIQ, and indexes up to 177x larger). More-
over, many queries in TOD involve a conjunction on several indexes, requiring
a linear scan that can take a long time in some cases (more than a minute). In
contrast, our system guarantees O(log n) disk accesses and O(1) CPU time for
all queries, in practice not exceeding a few hundred milliseconds.

Amber/Chronicle13 by Robert O’Callahan is a back-in-time debugger for na-
tive Linux programs that is designed to deal with large execution traces. As
TOD, it relies on exhaustive trace capture, and it creates an on-disk index of
the execution trace. It performs compression of both trace and index data. It
is interesting to note that for indexing memory accesses it uses the principle of
spatial locality: contiguous instructions that access contiguous memory locations
produce a single event. However it does not create an individual index for each
memory location, and thus suffers from the same limitation as TOD: it is possi-
ble that a large number of entries have to be scanned before finding the correct
one. The runtime overhead of trace capture (300x) is also much higher that what
we achieve with STIQ.

The Omniscient Debugger [8] and Unstuck [5] are tools for Java and Smalltalk
respectively that store the execution trace in RAM, in the same process as the
debugged program. Because the amount of available storage is limited, they
resort to discarding the oldest events to make room for the new ones. Lienhard et
al. [11] discard the events that relate to objects that have been garbage collected.
In both cases, discarding events can limit the usefulness of the approach, as bugs
can have occurred much before the symptoms appear, or in the context of objects
that are no longer in use.

The Whyline [6] is a debugging system for Java that provides richer queries
than most back-in-time debuggers: it lets the user select questions about why
some behavior did or did not occur. These questions are automatically generated
based on a combination of static and dynamic analysis, and can deal not only
with the internal state of the program (memory locations, control flow), but also
with its textual and graphical output, down to individual pixels. Although the
Whyline can analyze relatively large execution traces (e.g. 35 million events),
its scalability is limited by the fact that the analysis is performed in memory.
ZStep [9] is an early back-in-time debugger for Lisp that does not claim great
scalability, but instead explores the user interaction aspect of back-in-time de-
bugging. It can also relate graphical output to the event that produced it.

Deterministic replay. Flashback [16] and Jockey [15] are deterministic replay
systems for native Linux programs. Flashback relies on a modified kernel while

13 Although there are no formal publications about this open-source tool, Am-
ber/Chronicle is a serious endeavor that has been successfully used to debug the
Firefox web browser. Information can be found on this page: http://weblogs.
mozillazine.org/roc/archives/2006/12/more_about_ambe.html.

http://weblogs.mozillazine.org/roc/archives/2006/12/more_about_ambe.html
http://weblogs.mozillazine.org/roc/archives/2006/12/more_about_ambe.html
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Jockey relies on program instrumentation. They both take periodic snapshots
of the state of the debugged process and record the interactions between the
program and its environment. Snapshots are based on a fork of the process and
take advantage of the copy-on-write mechanism of the kernel to avoid having to
explicitly copy the entire address space. However, the fact that snapshots have
to stay in memory make it necessary to discard older ones. Both systems have a
runtime overhead lower than ours (2x-4x for Flashback, up to 30% for Jockey),
but they do not properly handle multithreaded programs. Nirvana [1] is a deter-
ministic replay system for native programs that properly supports multithreaded
programs. Like our own system, it records the results of memory reads to ac-
count for scheduling-induced non determinism. Its runtime overhead is between
5x and 17x, which is slightly better than what we achieve with STIQ.

DejaVu [3] is a deterministic replay system for Java based on modifications of
the JVM. It supports multithreaded programs and has a rather low runtime over-
head (usually less than 100%), but the JVM used does not have a JIT compiler
and thus only runs in interpreted mode, which has very different performance
characteristics compared to production JVMs.

Retrace [19] is a deterministic replay system for uniprocessor VMWare virtual
machines. It has an extremely low runtime overhead (around 5%) and produces
very compact traces. Such a low runtime overhead is possible because the recorded
system is the entire (virtual) machine, and therefore the amount of interaction
with the environment is limited to mostly IO operations; in particular, thread
scheduling and the associated non-determinism on memory locations need not be
captured, as the scheduling itself is a deterministic part of the recorded system.

Capture and analysis of execution traces. Capture of execution trace for
automatic offline analysis is a well studied topic. Zhang et al. [20] present several
lossless compression techniques used to record whole execution traces of native
programs. These compression algorithms support direct navigation in the com-
pressed traces. Tallam et al. [17] show that it is possible to extend control flow
traces to indirectly capture runtime data dependencies. Xin et al. [18] present a
technique to efficiently capture control flow at a level of granularity finer than
procedure calls, and provide a numbering scheme of executed statements useful
to correlate several executions of the same program. Using the above techniques,
relatively complex queries (e.g. calculating dynamic slices or matching instruc-
tion flows in different versions of the same program) can be executed in seconds
or minutes instead of the hours or days it would take using a naive approach. In
contrast, with our system, simple queries specific to the typical tasks of back-in-
time debugging can be executed in at most a few hundred milliseconds instead
of the seconds or minutes it would take without indexing.

8 Conclusion

This paper presented STIQ, a scalable back-in-time debugging approach based
on summarized execution trace indexing and querying that favorably compares



Summarized Trace Indexing and Querying 581

with previous approaches on three essential levels: trace capture overhead, in-
dexing speed and query response time. In particular, it leverages deterministic
replay for a lower runtime overhead, and indexes only summarized information
about bounded-size execution blocks for fast indexing and querying. Importantly,
it guarantees that all queries only require O(log n) disk accesses and O(1) CPU
time; in practice they never reach the one second mark, and take only a dozen
milliseconds on average. Such efficient querying is key to providing an interactive
debugging experience; we are not aware of any back-in-time debugging system
that provides such strong guarantees.

In this paper we only presented the core queries of back-in-time debuggers
(stepping, memory inspection and causality links). However our indexing scheme
could easily support other useful queries, such as finding the events that occur on
a particular source code line, or the history of objects beyond the history of their
individual fields (e.g. when objects are passed around as method arguments).

An interesting property of our approach is that the indexing and querying
scheme is independent from the technique used for trace capture and replay. The
only requirement is that it must be able to obtain (a) memory write and method
entry/exit events for index construction (in this paper these are obtained through
an initial replay that generates a semi-exhaustive trace), and (b) exhaustive
event lists of arbitrary execution blocks for processing queries (in this paper this
is achieved by taking lightweight snapshots that permit to replay such blocks).
Although this work provides both the capture and the indexing mechanism,
we feel that the capture is still too slow to be really practical. It is our hope
that this work will encourage the building of improved capture mechanisms that
can be plugged into our indexing system so as to obtain a practical back-in-
time debugger. It would be particularly interesting to assess how an extremely
efficient capture system such as Retrace [19] could be used for this purpose.
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Abstract. C++ Exceptions provide a useful way for dealing with ab-
normal program behavior, but often lead to irregular interprocedural
control flow that complicates compiler optimizations and static analy-
sis. In this paper, we present an interprocedural exception analysis and
transformation framework for C++ that captures the control-flow in-
duced by exceptions and transforms it into an exception-free program
that is amenable for precise static analysis. Control-flow induced by ex-
ceptions is captured in a modular interprocedural exception control-flow
graph (IECFG). The IECFG is further refined using a novel interproce-
dural dataflow analysis algorithm based on a compact representation for
a set of types called the Signed-TypeSet domain. The results of the inter-
procedural analysis are used by a lowering transformation to generate an
exception-free C++ program. The lowering transformations do not af-
fect the precision and accuracy of any subsequent program analysis. Our
framework handles all the features of synchronous C++ exception han-
dling and all exception sub-typing rules from the C++0x standard. We
demonstrate two applications of our framework: (a) automatic inference
of exception specifications for C++ functions for documentation, and (b)
checking the “no-throw” and “no-leak” exception-safety properties.

1 Introduction

Exceptions are an important error handling aspect of many programming lan-
guages, especially object-oriented languages such as C++ and Java. Exceptions
are often used to indicate unusual error conditions during the execution of an
application (resource exhaustion, for instance) and provide a way to transfer
control to special-purpose exception handling code. The exception handling code
deals with the unusual circumstance and either terminates the program or re-
turns control to the non-exceptional part of the program, if possible. Therefore,
exceptions introduce additional, and often complex, interprocedural control flow
into the program, in addition to the standard non-exceptional control flow.

The interprocedural control flow introduced by exceptions necessitate global
reasoning over whole program scope, which naturally increases the potential
for bugs. Stroustrup developed the notion of exception safety guarantees for
components [18]. Informally, exception safety means that a component exhibits
reasonable behavior when an exception is raised. The term “reasonable” includes

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 583–608, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



584 P. Prabhu et al.

all the usual expectations for error-handling: resources should not be leaked, and
that the program should remain in a well-defined state so that execution can
continue. Stroustrup introduced various degrees of exception safety guarantees
that can be expected from components:

– No leak guarantee: If an exception is raised, no resources such as memory
are leaked.

– Basic guarantee: In addition to the no leak guarantee, the basic invari-
ants of components (for example, properties that preserve data structure
integrity) are maintained.

– Strong guarantee: In addition to the basic guarantee, this requires that
an operation either succeeds or has no effect, if an exception is raised.

– No throw guarantee: In addition to the basic guarantee, this requires that
an operation is guaranteed not to raise an exception.

However, it is very difficult to ensure such exception-safety properties, because
developers may overlook exceptional control-flow hidden behind multiple levels
of abstraction. For instance, in a code block containing local objects as well as
exceptions, programmers have to reason about non-local returns induced by ex-
ceptions, and at the same time understand the effects of the implicit calls to
the destructors of local objects along the exception path correctly. Unlike Java,
all C++ exceptions are unchecked, and library developers are not required to
annotate interfaces with exception specifications. Furthermore, dynamic excep-
tion specifications (anything other than noexcept specification) are deprecated
in the latest C++0x draft standard [17]. Consequently, developers increasingly
rely on documentation to discern throwable exceptions from a function interface
(more so in the absence of source code), which makes it hard to reason about
programs that use library functions that throw exceptions. Therefore, a tool that
automatically models the behavior of exceptions precisely would be useful.

Existing Approaches to C++ Exceptions. Program analysis techniques, both
static and dynamic, are often applied in the context of program optimization, au-
tomatic parallelization, program verification, and bug finding. These techniques
rely heavily on both intraprocedural and interprocedural control flow graph in-
formation, which are utilized to compute relevant information as needed (e.g.,
dependence analysis or program slicing). However, existing compiler frameworks
for C++ (for example g++, clang/LLVM [10]) do not build precise models
for exceptions. Specifically, they only analyze exceptional control flow within a
locally declared trycatch statement, and do not perform either an intraprocedu-
ral or interprocedural analysis. Therefore, they make conservative assumptions
about interprocedural control flow, which causes their models to include paths
between throw statements and catch blocks that are infeasible at runtime. An
alternative approach is to use such frameworks to generate a semantically equiv-
alent C program from the given C++ program and use the lowered C code for
further analysis. However, the code generated by these tools use custom data
structures and involves calls into opaque runtimes, which need to be modeled
conservatively in static analysis algorithms, resulting in further loss in precision.
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Our Approach. In this paper, we present an interprocedural exception analy-
sis and transformation framework for C++ that (1) captures the control-flow
induced by exceptions precisely, and (2) transforms the given C++ into an
exception-free program that is amenable for precise static analysis. We sum-
marize our contributions below:

– We propose a modular abstraction for capturing the interprocedural control
flow induced by exceptions in C++, called the interprocedural exception con-
trol flow graph (IECFG). The IECFG is constructed through a sequence of
steps, with each step refining it. The modular design of IECFG is motivated
by the need to model implicit calls to destructors during stack unwinding,
when an exception is thrown. The modularity of IECFG is also important
in practice, for permitting re-use in presence of separate compilation units.

– We design and implement an interprocedural exception analysis algorithm
to model the set of C++ exceptions that reach catch statements in the pro-
gram using the Signed-TypeSet domain, which represents a set of program
types compactly. Our analysis is formulated in conjunction with the con-
struction of the IECFG. A unique feature of our framework is the capability
to safely terminate the IECFG construction at certain well-defined points
during interprocedural propagation, thereby, allowing clients, such as opti-
mizing compilers or program analysis, to trade-off speed over precision.

– We present a lowering algorithm that uses the results of our exception anal-
ysis to generate an exception-free C++ program. Unlike standard compilers,
our algorithm does not use non-local jumps or calls into any opaque C++
runtime systems. Absence of an external runtime and non-local jumps en-
ables existing static analyses and verification tools to work soundly over C++
programs with exceptions, without needing to model them explicitly within
their framework. While the IECFG construction is modular in the sense
of allowing separate compilation units, the lowering algorithm to generate
exception-free code is not modular. It requires a global view of all source
code under analysis so that all known possible targets of virtual function
calls can be determined.

– We present the results of using our interprocedural exception analysis and
transformation framework on a set of C++ programs. We compute the excep-
tion specifications for functions and check the related “no throw” guarantee.
We also check the “no leak” exception-safety property.

Example. Consider the C++ program shown in Fig. 1. The program has three
functions, of which get() allocates a File object and attempts to read a line
from File by calling readLine(). If the file does not exist, readLine() throws
an IOException that is handled in the get() function. Otherwise, a call is made
to read() which throws an EOFException if the end of the file is reached, which
is handled in readLine(). An exception modeling framework has to abstract
the interprocedural control flow due to exceptions correctly, and also take into
account the implicit calls made to destructors during stack unwinding, when an
exception propagates out of a function (e.g., destruction of str in read() when
EOFException is thrown).
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string File::read() {
string str(__line);
if (EOF)

throw EOFException();
return str;

}

void get () {
string s;
try {
File *file = new File("l.txt");
file->readLine();
delete file;

}
catch (IOException& ie) {
cout<< "IO-Failure";

}
return;

}

class EOFException { ... };
class IOException { ... };

string File::readLine() {
string s;
try {
if (invalidFile)
throw IOException();

s = read();
return s;

}
catch (EOFException& e) {
return string("");

}
}

Fig. 1. Running Example

There are two bugs worth noting in this example, both of which have to
do with exceptions: (1) violation of “no leak” guarantee, the file object gets
leaked along the exception path from readLine() to the catch block in get(),
and (2) violation of “no throw” guarantee, a potential std::bad alloc exception
thrown by new is not caught in get(). Our exception analysis and transformation
framework enables checking these properties easily. �

Comparison with Java Exception Analysis. Several analysis approaches for mod-
eling Java exceptions have been proposed in the recent past. Most approaches [3,
8, 9] compute an interprocedural exception control flow graph as we do. There
have been some attempts to analyze the “no leak” exception-safety guarantee
for Java programs also [11]. However, there are a number of major differences
between exception handling in Java and C++, which require different design
decisions in comparison to Java-based exception analysis techniques:

1. In C++, when an exception propagates out of a function, destructors are in-
voked on all stack-allocated objects between the occurrence of the exception
and the catch handler in a process called stack unwinding. Stack unwinding in
C++ is a major difference compared to Java, and raises various performance
issues, along with complicating the modeling of exceptional control-flow.

2. C++ destructors can call functions which throw exceptions internally, lead-
ing to a scenario where multiple exceptions are live during stack unwinding.
Unlike implicitly invoked destructors, Java provides “finalizers”, that are
invoked non-deterministically by the garbage collector. Although the use of
“finally” blocks in Java can result in multiple live exceptions, these blocks are
created and controlled explicitly by the programmer, and therefore, multiple
live exceptions in Java are apparent from the code itself.

3. The exception subtyping rules for Java are limited to only parent-child rela-
tionships within the class hierarchy. Besides, all exception classes trace their
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lineage to a single ancestor, the Exception class. In contrast, C++ exception
subtyping rules are richer and include those concerning multiple inheritance,
reference types, pointers, and few other explicit type-conversion rules among
functions as well as arrays.

4. The exception specification and checking mechanism in Java is much stronger
than in C++. In particular, Java has a “checked exception” category of ex-
ceptions, which explicitly requires programmers to either catch exceptions
thrown within a function, or declare them as part of the interface. C++
has no concept of checked exceptions, and the dynamic exception speci-
fications are deprecated in the latest C++0x standards draft. Exception
specifications in C++ may not even be accurate, which results in a call to
std::unexpected() function, which may be redefined by an application.

5. C++ provides an exception probing API while Java does not. It provides a
means to conditionally execute code depending on whether there is an out-
standing live exception by calling std::uncaught exception(). This can be
used to decide whether or not to throw exceptions out of a destructor. C++
also allows users to specify abnormal exception termination behavior by pro-
viding custom handlers for std::terminate() or std::unexpected().

6. Java exceptions are handled based on runtime types, whereas in C++ static
type information is used to decide which catch handler is invoked. Therefore,
pointer analysis is required in Java to improve the accuracy of matching
throw statements with catch blocks. For C++, we can avoid a heavy duty
pointer analysis for exceptions. (However, call graph construction in C++
can be improved with the results of a pointer analysis on function pointers
and virtual function calls.)

2 Preliminaries

We first describe the abstract syntax of a simplified intermediate language (IL)
for C++ used within our framework. The language is based on CIL [14], with
additional constructs for object-oriented features. Fig. 2 shows the subset of
the actual IL that is relevant for the exception analysis and transformation
framework. Types within our IL include the primitive ones (int, float, void) as
well as user defined classes (cl), derived types (pointer, reference and array),
function types, and can additionally be qualified (const, volatile, restrict). Each
class type can inherit from a set of classes, and has a set of fields and member
functions, some of which may be virtual. Visibility of the class members and the
inherited classes is controlled by an access specifier.

A program is a set of globals. A global is either a type or a function. A func-
tion has a signature and a body, which is a block of statements. Statements
include instructions, regular control flow statements (loop, if, trycatch), irregu-
lar control flow statements causing either local (goto, break, continue) or global
(throw, return) alterations. An instruction is one of the following: an assignment,
an allocation operator, a deallocation operator, a global function call, or a mem-
ber function call. Expressions could involve binary operators, unary operators,
pointer dereferences or indirections, reference indirections, and cast operations.
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Constant c ∈ Constant
Identifiers id ∈ Identifier
Labels l ∈ Label
Access a ::= private | protected | public
Qualifier cv ::= const | volatile | restrict

Class cl ::= class id : a t {a t fi; a virtual? m}
Type t ::= id | t ∗ | t & | t [e] | t → t | void | int | float | cv t
Variable v ::= id
Lvalue lv ::= lh e
Lhost lh ::= v | ∗ e
Program p ::= g
Global g ::= t id | f

Function f ::= t id (t id) = b
Block b ::= {s}
Statement s ::= i | return e? | goto l | break | continue |

if e b1 b2 | loop b | throw e? | trycatch b h
Handler h ::= (t v) b | (...) b
Instruction i ::= call id ef e | mbrcall id ethis ef e | e := e | v := new e | delete e
Cast cast ::= staticcast | dyncast | constcast | reintcast
Expression e ::= c | lv | unop e | e binop e | cast t e | &lv | lv&

Fig. 2. Abstract Syntax of the Simplified IL for C++

C++ Exceptions. C++ exceptions are synchronous. Asynchronous exceptions,
which in Java are raised due to internal errors in the virtual machine, are catego-
rized as program errors in C++ and are not handled by the exception constructs
of C++. Synchronous exceptions, in contrast, are expected to be handled by the
programmer and are only thrown by certain statements in the program, such as
(a) throw statement, which throws a fresh exception or rethrows a caught ex-
ception, (b) function call, which transitively throws exceptions uncaught within
its body or its callees, (c) new operator, which can throw a std::bad alloc
exception, and (d) dynamic cast, which can throw a std::bad cast exception.

Exception Handling and Subtyping rules for C++. Exceptions in C++
are caught using exception handlers, defined as part of the trycatch statement.
Each trycatch statement has a single try block followed by a sequence of exception
(catch) handlers. An exception object thrown from within the try block is caught
by the first handler whose declared exception type matches the thrown exception
type according to the C++ exception subtyping rules. If no match is found for a
thrown object amongst the handlers, control flows either to an enclosing trycatch
statement or out of the function to the caller.

The exception subtyping rules for C++ as defined in the final C++0x draft
standard [17] are shown in Fig. 3. The type of a thrown exception is given by
tT and the type declared in the exception handler is given by tC in each rule. A
handler is a match for an exception, if any of the following conditions hold:

– The handler’s declared type is the same as the type of the exception, even
when ignoring the const-volatile qualifiers (Rules EQ and CVQUAL).

– The handler’s declared type is an unambiguous public base class of the ex-
ception type. Arrays are treated as pointers and functions returning a type
are treated as pointers to function returning the same type (Rules SUBCL,
ARR, FPTR and CVQUAL).

– The handler’s declared type is a reference to the exception type (Rule REF).
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tT = t tC = t

tT ≤ tC

[EQ]
tT = cv t tC = t

tT ≤ tC

[CVQUAL]

tT = t1 tC = t2 t1 ∈ sub(t2)

tT ≤ tC

[SUBCL]
tT = t1 tC = t2[] t1 ≤ t2∗

tT ≤ tC

[ARR]

tT = t1 tC = ( → t2) t1 ≤ ( → t2)∗
tT ≤ tC

[FPTR]
tT = t tC = t&

tT ≤ tC

[REF]

tT = t1 ∗ tC = t2 ∗ t1∗ ≤conv t2∗
tT ≤ tC

[PTR]
tT = std : : nullptr t tC = t∗

tT ≤ tC

[NULLPTR]

tT = t1 ∗ tC = void∗
tT ≤ tC

[VOID]

Fig. 3. Exception Subtyping Rules

– The handler’s declared type is a pointer into which the exception type, which
also is a pointer, can be converted using C++ pointer conversion rules (Rule
PTR).

– The two remaining rules concern generic pointers modeled by void ∗ and
std::nullptr t [17] (Rules NULLPTR and VOID).

3 Signed-TypeSet Domain

In this section, we present a novel abstract domain for compactly representing
a set of program types, which we call the Signed-TypeSet domain.

Definition 1. The Signed-TypeSet domain Γ is defined as: Γ = {(s, Tprog) |
s ∈ {+,−}, Tprog ⊆ {t | t is a program exception type} }
The semantics of a positive set of exception types is the standard one, while
a negative set of exception types represents “every exception type other than
those in the set”. For instance (+, {IOException}) represents the IOException
program type alone, while (−, {IOException, EOFException}) represents any
exception type other than IOException and EOFException. Exceptions thrown
by unknown library calls are modeled concisely as (−, {}). For external library
calls, a special unknown exception type tunknown is introduced explicitly only at
the point when the lowering transformation is to be done.

We use a signed domain in our framework, rather than a domain of only
positive set of program types to make the IECFG computation modular. Its use
is especially beneficial in the presence of unknown library calls and deprecated
use of dynamic exception specifications in C++. A negated set of types succinctly
captures the unknown exceptions that could potentially be thrown by opaque
library calls that are not caught. We would also like to incrementally integrate
the results of exception analysis from separately compiled functions whenever
available, while at the same time maintaining a safely analyzable exception result
at all intermediate points. Therefore, our exception dataflow analysis begins with
an over-approximation of the set of all exception types that could be raised by a
throwable statement, and refines the set via interprocedural propagation. This
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Algorithm 1: union (∪Γ )
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (−, Tc) where Tc = {t | t ∈ Ta ∧ t ∈ Tb};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (−, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (−, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
9

Algorithm 2: intersection (∩Γ )
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (−, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (+, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t ∈ Ta};
9

Algorithm 3: set difference (−Γ )
Input: τa ∈ Γ, τb ∈ Γ
Output: τc ∈ Γ

1 case τa = (−, Ta) ∧ τb = (−, Tb)
2 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t �∈ Ta};
3 case τa = (−, Ta) ∧ τb = (+, Tb)
4 τc = (−, Tc) where Tc = {t | t ∈ Ta ∨ t ∈ Tb};
5 case τa = (+, Ta) ∧ τb = (−, Tb)
6 τc = (+, Tc) where Tc = {t | t ∈ Tb ∧ t ∈ Ta};
7 case τa = (+, Ta) ∧ τb = (+, Tb)
8 τc = (+, Tc) where Tc = {t | t ∈ Ta ∧ t �∈ Tb};
9

Algorithm 4: equals (=Γ )
Input: τa ∈ Γ, τb ∈ Γ
Output: bool

1 case (τa = (−, Ta) ∧ τb = (−, Tb)) ∨
(τa = (+, Ta) ∧ τb = (+, Tb))

2 if (Ta ⊆ Tb) ∧ (Tb ⊆ Ta) then
3 true
4 end
5 else
6 false
7 end

8 case default
9 false

10

Fig. 4. Operations on the Signed-TypeSet domain

deliberate design decision allows clients to terminate the analysis at any point
during the analysis and safely use the refined IECFG structure at that point for
other analyses.

We define set operations on Γ , that are as efficient as the set operations on
normal sets. These operations (shown in Fig. 4) mimic the normal set union,
intersection, difference, and equality operations. Given two elements τa and τb

from Γ , these operations result in another element τc in Γ . All the operations
perform a case analysis on the signs of the two elements, and perform normal
set operations on the constituent set of program types. The operations are fairly
straightforward, and in their full generality need to take into account the excep-
tion subtyping rules described earlier. For the sake of conceptual simplicity, we
assume that the set of exception types arising at the catch blocks have already
been expanded to contain all possible “exception subtypes” in the program,
before doing the specific set operations. However, in our implementation, we
perform these operations without doing full expansion and correctly account for
exception subtypes on demand.

4 Intraprocedural Exception Control Flow Graph

An intraprocedural exception control flow graph is defined as follows:

Definition 2. An intraprocedural exception control flow graph (ECFG) for a func-
tion f, denoted by Gintraf

is a tuple 〈N, Ereg, Eexcep, Eexceps, Ec, ns, ne, nexcepe〉
with Signed-TypeSet domain Γ , where
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– N is the set of nodes in the graph, consisting of the following distinct subsets:
N = Nreg ∪Nc ∪Ncret ∪Necret ∪Nthrow ∪Ncatch ∪ {ns, ne, nexcepe}

where
• Nreg is the set of regular nodes.
• Nc is the set of call nodes.
• Ncret is the set of call-return nodes.
• Necret is the set of exceptional-call-return nodes.
• Nthrow is txhe set of throw, new, or dynamic cast nodes.
• Ncatch is the set of header nodes of catch blocks.
• ns, ne, nexcepe are unique start, exit and exceptional-exit nodes.

– Ereg is the set of regular control flow edges: Ereg ⊆ (Nreg∪Ncret∪Ncatch)×N
– Eexcep is the set of intraprocedural exception control flow edges:

Eexcep ⊆ ((Necret ∪Nthrow)× (Ncatch ∪ {nexcepe})× Γ )
– Eexceps is the set of exception-call-summary edges:

Eexceps ⊆ (Nc ×Necret × Γ )
– Ec is the set of normal call-summary edges:

Ec ⊆ Nc ×Ncret

Example (ECFG structure). The ECFGs for the functions in our running
example are shown in Fig. 5. Consider the ECFG for the get() function. In
addition to the start (s-get) and exit (e-get) nodes present in regular CFGs,
the ECFG has a new exceptional-exit (exe-get) node. Control flows through
an exceptional-exit node, every time an exception propagates out of a func-
tion. Each call instruction is represented by three nodes: in addition to the call
node (c-readLine) and call-return node (cr-readLine) present in regular CFGs,
the ECFG has a new exceptional-call-return node (ecr-readLine) through which
control flows when the callee terminates with an exception. The ECFG has two
additional exception-related nodes: throw node, one for every potential throwing
statement, and catch-header node, one for every catch block in the code.

There are three kinds of edges in a ECFG: (a) normal control-flow edge (solid
lines) as in any CFG, (b) normal call-summary edges (long-dashed lines) between
call and call-return nodes, and (c) exception edges (short-dashed lines) which can
either be a summary edge (between call and exceptional-call-return nodes) or a
normal exception edge (for intraprocedural exceptions). Every exception edge is
annotated with an element from the Signed-TypeSet domain Γ . The exception
annotations represent the dataflow facts used in our interprocedural exception
analysis, as described in Sect. 5. �

ECFG Construction. The algorithm to construct the ECFG of a program
performs a post-order traversal on the abstract syntax tree (AST) of the C++
code, creating a set of ECFG nodes and edges as it visits each AST node. Each
visit method returns a triple 〈Nb, Ne, Nunres〉, where Nb and Ne represent the
set of nodes corresponding to start and normal exit of the ECFG “region” cor-
responding to the current AST node. Nunres represents the set of nodes in an
ECFG region that has some unresolved incoming or outgoing edges, which are
resolved by an ancestor’s visitor. For instance, a throw node that is not enclosed
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Fig. 5. Intraprocedural Exception Control Flow Graphs for the Program in Fig. 1

within a trycatch block is resolved at the root (function declaration), by creating
an exception edge to the exceptional-exit node. Alg. 5 shows the visit routine
for a trycatch statement.

The VisitTryCatchStmt routine for trycatch statements works as follows: it
first constructs the ECFG nodes and edges for the try block and all the catch
handlers, by visiting them recursively (Lines 1-4). It then divides the exception-
related ECFG nodes in the try block into two sets: (a) the throw nodes1, and
(b) the exceptional-call-return nodes (Lines 5-7). For the throw nodes, a match
is sought in the sequence of handlers by applying the C++ exception subtyping
rules described earlier. As soon as the first match is found, an exception edge
is created from the throw node to the catch header node, annotated with the
appropriate exception information from the Signed-TypeSet domain (Lines 8-
18). For the throw nodes, this information is always a positive set with a singleton
exception type, which is the type of the throw expression.

For an exceptional-call-return node necret, a map ECRΓ is used during the
search for an exception-type match amongst the handlers. ECRΓ maps an
exceptional-call-return node to an element from the Signed-TypeSet domain.
Initially, ECRΓ holds “all exception types” ((−, {})), which represents the most
conservative assumption as far as possible exceptions thrown from a call are
concerned, for all exceptional-call-return nodes. Every time a catch block is en-
countered and a possible match occurs, ECRΓ (necret) is incrementally updated
to hold the “remaining exception types” that could be thrown from this call
(using the difference operator −Γ ). The final value of ECRΓ (necret) is used to
annotate the edge between the necret and the exceptional-exit node of the func-
tion. At every match with a catch header node, an exception edge is created from

1 In C++ programs, new and dynamic cast operators may also throw bad alloc and
bad cast exceptions, respectively. For sake of clarity, Alg. 5 only considers throw.
Our implementation deals with new and dynamic cast operators properly.
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Algorithm 5: VisitTryCatchStmt
Input: s: A trycatch statement where s = b1 (h1, h2, ..., hk)
Output: Nb × Ne × Nunres

1 let (Nb1 , Ne1 , Nunres1 ) = V isitBlock(b1); // Creates ECFG region for a block

2 foreach hi do
3 let (Nbhi

, Nehi
, Nunreshi

) = V isitHandler(hi) // Creates ECFG region for a handler

4 end
5 let Sthrow = {n | n ∈ Nunresl

∧ ir(n) = throw};
6 let Secret = {n | n ∈ Nunresl

∧ ir(n) = call ∧ n ∈ Necret};
7 let Srest = Nunres1 − (Sthrow ∪ Secret);

8 foreach nth ∈ Sthrow do
9 for i=1 to k do

10 eTcatch
= (+, {t}) where hi = (t v) b;

11 tcatch = t where hi = (t v) b;
12 ncatchi

= n where (n ∈ Nbhi
) ∧ (ir(n) = catch);

13 τthrow = (+, {t′}) where (ir(nth) = throw e) ∧ (Tprog(e) = t′);
14 if t′ ≤ tcatch then
15 Eexcep = Eexcep ∪ {(nth, ncatchi

, τthrow)};
16 Ndone = Ndone ∪ {nth};

continue: foreach outer loop
17 end

18 end

19 end
20 foreach necret ∈ Secret do
21 for i=1 to k do
22 τcatch = (+, {t}) where hi = (t v) b;
23 τecret = ECRΓ (necret);
24 τintersect = τecret

T

Γ τcatch;
25 τremain = τecret −Γ τcatch;
26 ECRΓ (necret) = τremain;
27 Eexcep = Eexcep ∪ {(necret, ncatchi

, τintersect)};
28 end

29 end
30 Nreg = Nreg ∪ {njoin};
31 Ereg = Ereg ∪ {(n, njoin) | n ∈ Ne1} ∪{(n, njoin) | ∃ i such that n ∈ Nehi

};
32 Nb = Nb1 ; Ne = {njoin}; Nunres = (∪1≤i≤kNunreshi

∪ Nunres1 ) − Ndone;

Fig. 6. VisitTryCatch routine for ECFG construction

the exceptional-call-return node to the catch header, annotated with appropriate
exception information (Lines 20-28). The VisitTryCatchStmt routine creates a
header node (ntry) and a join (njoin) node, in addition to those created by its
children (Lines 30-32).

The handling of the exceptional-call-return node illustrates one distinguishing
feature of our approach, as compared to other exception analysis algorithms
proposed for Java: the dataflow facts are initialized with an over-approximation,
which can be refined using the exception information from the catch-header
node. Our choice of the Signed-TypeSet domain, which allows a negative set of
exception types, not only permits modeling of unknown library calls within the
same framework, but also permits a safe termination of our analysis at any point
after the construction of the intraprocedural exception flow graphs.

Figs. 7, 8, and 9 show the Visit routines for the remaining IL constructs. The
VisitBlock routine is straightforward, recursively visiting each child statement
and then creating edges between corresponding nodes. The VisitStmt routine
creates ECFG nodes and edges differently based on the type of AST node. For if
and loop statements, it creates ECFG regions with appropriate join and header
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Algorithm 6: VisitBlock
Input: b: Block where b = s1, s2, ..., sn

Output: Nb × Ne × Nunres

1 for i = 1 to n do
2 let (Nbi

, Nei
, Nunresi

) = V isitStmt(si);

3 end
4 Ereg = Ereg ∪ {(n1, n2) | ∀i · 1 ≤ i<n · (n1 ∈ Nei

∧ n2 ∈ Nbi+1 )};
5 Nb = Nb1 ; Ne = Nen ; Nunres = ∪1≤i≤nNunresi

;

Algorithm 7: VisitStmt
Input: s: Statement
Output: Nb × Ne × Nunres

1 switch typeOf(s) do
2 case instr ∈ {call, mbrcall}
3 V isitCallInstr(i);
4 case instr �∈ {call, mbrcall}
5 Nreg = Nreg ∪ {ni}; Nb = Ne = {ni}; Nunres = {}
6 case break | continue | goto | return
7 Nreg = Nreg ∪ {ns}; Nb = Nunres = {ns}; Ne = {};
8 case if e b1 b2
9 let (Nb1 , Ne1 , Nunres1 ) = V isitBlock(b1);

10 let (Nb2 , Ne2 , Nunres2 ) = V isitBlock(b2);

11 Nreg = Nreg ∪ {nife , njoin};
12 Ereg = Ereg ∪ {(nife , nb1 ) | nb1 ∈ Nb1} ∪ {(nife , nb2 ) | nb2 ∈ Nb2}
13 ∪{(ne1 , njoin) | ne1 ∈ Ne1} ∪ {(ne2 , njoin) | ne2 ∈ Ne2};
14 Nb = {nife}; Ne = {njoin}; Nunres = Nunres1 ∪ Nunres2 ;

15 case loop bl

16 let (Nbl
, Nel

, Nunresl
) = V isitBlock(bl);

17 let Scontinue = {n | n ∈ Nunresl
∧ ir(n) = continue};

18 let Sbreak = {n | n ∈ Nunresl
∧ ir(n) = break};

19 Ereg = Ereg ∪ {(nc, nlhead
) | nc ∈ Scontinue} ∪ {(nb, nlexit

) | nb ∈ Sbreak} ;

20 Nreg = Nreg ∪ {nlhead
, nlexit

};
21 Nb = {nlhead

}; Ne = {nlexit
}; Nunres = Ns1 − (Scontinue ∪ Sbreak);

22 case throw | new | dynamic cast
23 V isitThrowingStmt(s);
24 case trycatch
25 V isitTryCatchStmt(s);
26

27 endsw

Fig. 7. VisitBlock and VisitStmt routines for ECFG Construction

nodes (Lines 8-21), while for some of the non-exception unstructured control
flow statements like break, goto, it creates unresolved nodes (Lines 6-7), which
are patched later on by their parents.

The VisitCallInstr routine creates three nodes and two edges for a call in-
struction. The three nodes are a call node nci , a call-return node (necreti) and
an exceptional-call-return node (necreti). The two edges are a summary edge con-
necting nci with necreti , and an exceptional-summary edge connecting nci with
necreti . The exceptional-summary edge is annotated with the most approximate
element (−, {}), which represents any exception type. The exception return node
necreti is unresolved since its targets are determined by the enclosing trycatch
statements or by the exceptional-exit-node at function scope.

The VisitThrowingStmt routine creates an unresolved node for the throw
statement, while the VisitHandler routine creates a header node correspond-
ing to the catch block, and connects it to the nodes created for the statements
within the block. The VisitFunction routine is the main driver for creating the
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Algorithm 8: VisitCallInstr
Input: i: A call/mbrcall Instruction
Output: Nb × Ne × Nunres

1 Nc = Nc ∪ {nci
} ; Ncret = Ncret ∪ {ncreti

} ; Necret = Necret ∪ {necreti
} ;

2 let τe = (−, {}) ;
3 Ec = Ec ∪ {(nci

, ncreti
)} ; Eexcep = Eexcep ∪ {(nci

, necreti
, τe)};

4 Nb = {nci
}; Ne = {ncreti

}; Nunres = {necreti
} ;

Algorithm 9: VisitThrowingStmt
Input: s: A throw/new/dynamic cast statement
Output: Nb × Ne × Nunres

1 Nthrow = Nthrow ∪ {ns};
2 Nb = Nunres = {ns}; Ne = {} ;

Fig. 8. VisitCallInstr and VisitThrowingStmt routines for ECFG construction

ECFG for a function. Once the ECFG region for the function body is created,
this routine connects the return nodes to the normal exit nodes and throw nodes
to the exceptional-exit node. It finally resolves the unmatched exceptional-call-
return nodes by connecting them to the exceptional-exit node, annotated with
appropriate exception type annotation.

Example. In Fig. 5, the ECFG for get() has an exceptional-call-return node
for readLine(). The algorithm creates an exception edge from this node to
a catch header that handles IOException exceptions and annotates the edge
with (+, {IOException}). The algorithm then creates an exception edge to the
exceptional-exit node of get() annotated with (−, {IOException}), which is
meant to read “If readLine() throws any exception other than IOException,
control is transferred to the exceptional exit node of get()”. �

5 Interprocedural Exception Analysis

Once the intraprocedural graphs have been constructed, they are connected to-
gether to form an interprocedural exception control flow graph, which is defined
as follows:

Definition 3 An interprocedural exception graph (IECFG) is defined by the tu-
ple IG = 〈Ns, Ne, Nexcepe, Ginter〉, where Ns, Ne, Nexcepe are the set of start, exit
and exceptional-exit nodes of the constituent ECFGs, respectively, and Ginter is
the union of set of intraprocedural graphs of the functions in the program.

IECFG Construction. Alg. 12 (BuildInterECFG) shows the algorithm for
constructing the interprocedural graph from the intraprocedural graphs. Ini-
tially, the interprocedural graph consists of the union of all the intraprocedural
graphs, constructed independently, as described in Sect. 4. In the next step, the
call graph is consulted to determine the call targets for each call site. At each
call site, three edges are added: (a) a call edge from call node to start node of
the target’s intraprocedural graph, (b) a call-return edge from the normal exit
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Algorithm 10: VisitHandler
Input: h: A handler where h = (t v) b1
Output: Nb × Ne × Nunres

1 let (Nb1 , Ne1 , Nunres1 ) = V isitBlock(b1);

2 Ncatch = {nh}; Ereg = Ereg ∪ {(nh, ns) | ns ∈ Nb1};
3 Nb = {nh}; Ne = Ne1 ; Nunres = Nunres1 ;

Algorithm 11: VisitFunction
Input: f : Function where f = t id (t id)
Output: Gintraf

= <ns, ne, nexcepe, N, E>

1 let (Nb1 , Ne1 , Nunres1 ) = V isitBlock(b1);

2 Ereg = Ereg ∪ {(nsf
, n) | n ∈ Nb1} ∪ {(n, nef

) | n ∈ Ne1} ;

3 foreach n ∈ Sexit where Sexit = {n | n ∈ Nunres1 ∧ ir(n) = return} do
4 Ereg = Ereg ∪ {(n, nef

)};
5 end
6 foreach n ∈ Sthrow where Sthrow = {n | n ∈ Nunres1 ∧ ir(n) = throw} do
7 Eexcep = Eexcep ∪ {(n, nexcepef

, Tprog(ir(n)))};
8 end
9 foreach n ∈ Sgoto where Sgoto = {n | n ∈ Nunres1 ∧ ir(n) = goto} do

10 Ereg = Ereg ∪ {(n, ntgt) | ntgt ∈ Node(Label(ir(n)))};
11 end
12 for n ∈ Necret do
13 τecret = ECRΓ (necret);
14 Eexcep = Eexcep ∪ {(n, nexcepef

, τecret)}
15 end
16 return <nbf

, nef
, nexcepef

, N, E>

Fig. 9. VisitHandler and VisitFunction routines for ECFG construction

node of the target’s intraprocedural graph to the call-return node of the func-
tion call, and (c) an exception edge from the exceptional-exit node of the target’s
intraprocedural graph to the exceptional-call-return node in the graph. The ex-
ception edge is annotated with the union (

⋃
Γ ) of the exception information on

incoming exception edges of the exceptional-exit node, which serves as the initial
dataflow fact for the interprocedural exception analysis. Finally, the summary
edges connecting the call node with the call-return and exceptional-call-return
nodes are removed.

Interprocedural Exception Analysis. Given that the IECFG construction
algorithm initially gives a safe overapproximation of the interprocedural excep-
tion flow, the goal of the interprocedural analysis is to refine the dataflow facts
on the exception edges as precisely as possible. Alg. 13 shows the interproce-
dural exception analysis algorithm. A single top-down propagation pass on the
call graph will not model exceptions precisely in the presence of recursive func-
tions. Therefore, we need to perform a dataflow analysis. Our analysis operates
only on the exceptional-exit and exceptional-call-return nodes, and their incom-
ing and outgoing edges. The abstract domain is the Signed-TypeSet domain as
defined in Sect. 3. The analysis is implemented using a worklist Wlist, which ini-
tially has the set of exceptional-exit and exceptional-call-return nodes in reverse
topological order on the CGSCC , the directed acyclic graph of strong connected
components formed from the call graph. Each iteration of the algorithm removes
a node from Wlist, applies a transfer function, updates its outgoing exception
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Algorithm 12. BuildInterECFG

Input: p: Program
Output: IG = <Ns, Ne, Nexcepe, Ginter>
Ginter = ∪f ∈ pGintraf

;1

foreach calltriple (ncall, ncret, ncexcepret) do2
F = CallTargets(ir(ncall));3
for f in F do4

let Gintraf
= <nsf

, nef
, nexef

, Nf , Ef >;5

let Ec = Ec ∪ {(ncall, nsf
), (nef

, ncret)};6

let τexit =
⋃

Γep∈prede(nexef
)

excepEΓ (ep);
7

Eexcep = Eexcep ∪ {(nexef
, ncexcepret, τexit)};8

end9
Ec = Ec − {(ncall, ncret)};10
Eexcep = Eexcep − {(ncall, nexcepcret)};11

end12

edges with the new dataflow facts and adds the successors nodes to Wlist, if the
data flow information has changed. The algorithm is continued until the Wlist is
empty, at which point the algorithm terminates with a fixed point. Termination
of the algorithm is guaranteed due to the fact that the set of exceptions is finite.

A map excepNΓ defines the most recent dataflow information, an element
from the Signed-TypeSet domain, corresponding to each exceptional-exit or
exceptional-call-return node. Another map excepEΓ is used to hold the excep-
tion annotation on each exception edge. It is initialized to the union (

⋃
Γ ) of

the exception information on the incoming edges for each node, and is updated
every time the result of

⋃
Γ changes. The transfer functions for the exceptional-

exit and exceptional-call-return nodes differ in how they update the exception
annotation on the outgoing edges, once

⋃
Γ is computed:

– For an exceptional-exit node, each outgoing edge’s exception annotation is
replaced by the newly computed information at the exit node. This operation
reflects the refined set of all of possible (uncaught) exception types that could
be thrown from a function, represented in the Signed-TypeSet domain (Lines
8-12 in Alg. 13).

– For an exceptional-call-return node, each outgoing edge’s old exception an-
notation, is replaced by an intersection (

⋂
Γ ) of the old exception annotation

with the new exception information available at the node. The intersection
operation serves to narrow the set of exception types that was previously
assumed for a function call, and hence, iteratively increases the precision of
the interprocedural exception flow graph (Lines 13-19 in Alg. 13).

Uncaught Exceptions. At the end of the analysis, some of the exception edges
in the IECFG will have empty exception annotation, which can be eliminated.
Empty exception annotations are identified in two phases. The first phase can
be done immediately after the analysis, in which those that use a positive sign
((+, {})) can be removed. The second phase removes an empty exception an-
notation that uses a negative sign, and requires conversion of the exception
information from the Signed-TypeSet domain to the domain of positive set of
types. Alg. 14 shows the conversion algorithm, which is done only once, after the
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Algorithm 13. InterProceduralExceptionAnalysis

Input: IG = <Ns, Ne, Nexcepe, Ginter>
Input: IG′ = <Ns, Ne, Nexcepe, Ginter′>
Wlist = Nexcepe ∪ ⋃

f ∈ M Necretf
;1

while Wlist is not empty do2
n ← removeNode(Wlist);3
τnold

= excepNΓ (n) ;4

τnnew =
⋃

Γep∈prede(n)
excepEΓ (ep);

5

if τnold

=Γ τnnew then6

switch typeOf(n) do7
case ExcepExit8

foreach es ∈ succe(n) do9
excepEΓ (es) = τnnew ;10
Wlist = Wlist ∪ {dst(es)};11

end12

case ExcepCallReturn13
foreach es ∈ succe(n) do14

excepEΓ (es) = τnnew

⋂
Γ excepEΓ (es);15

if typeOf(dst(es)) = ExcepExit then16
Wlist = Wlist ∪ {dst(es)};17

end18

end19

20

end21
excepNΓ (n) = τnnew ;22

end23

end24

analysis is performed and also serves as a checker for the “no throw” guarantee.
The algorithm walks the CGSCC in reverse topological order, and at each step,
uses the set of all exception types (positive) that could potentially be thrown
by the transitive callees of a function, to serve as the universal set, from which
to subtract the negated set of exceptions corresponding to the current function.
Whenever a SCC of mutually recursive functions is encountered, the union of
the set of uncaught exception types of each constituent function in the SCC
is used as a sound overapproximation for the subtrahend. The algorithm, pro-
duces a map excepF that gives for each function the set of potentially uncaught
exception types.

Example. Fig. 10 shows the final interprocedural exception control flow graph
for our example. The exception edges: ecr-readLine → exe-get and ecr-read →
exe-readLine are notably missing from the graph. The analysis is able to infer
this after performing the intersection operation, between exception information
on incoming and outgoing edges of ecr-readLine and ecr-read :

(+, {IOException})
⋂

Γ (−, {IOException}) = (+, {}) and

(+, {EOFException})
⋂

Γ (−, {EOFException}) = (+, {}).

However, we see that the program may potentially fail with the uncaught excep-
tion std::bad alloc thrown in get() by the new operator. �
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Algorithm 14. ComputeUncaughtExceptions

Input: IG = <Ns, Ne, Nexcepe, Ginter>
Output: excepF : F �→ Tprog

let Texcep = {};1
for nt ∈ Nthrow do2

excepT (nt) = Tprog(ir(nt)) ;3
Texcep = Texcep

⋃
Tprog(ir(nt))4

end5
for external function f do6

excepF (f) = {tunknown}7
end8
Fl = ReverseTopoOrder(CGSCC);9
while Fl is not empty do10

Fscc = RemoveFront(Fl);11
for f ∈ Fscc do12

excepF (f) =
⋃

excepT (nt) where (nt ∈ Nthrow) ∧ (∃g · g ∈ Fscc ∧ irn(nt) ∈ g)13
end14
for f ∈ Fscc do15

switch excepNΓ (nexcepe) where nexcepe = Nexcepe(f) do16
case (+, TE)17

excepF (f) = TE18
case (−, TE)19

foreach g ∈ TransitiveCallees(f) do20
excepF (f) = excepF (f)

⋃
excepF (g);21

end22
excepF (f) = excepF (f) − TE ;23

24

end25

end26

end27

6 Generating an Exception-Free Program

In this section, we describe our lowering algorithm that translates a given C++
program into a semantically equivalent program without exception-related con-
structs such as throw, catch, etc. The lowering algorithm uses the IECFG to
eliminate exception-related constructs. There are two main distinguishing fea-
tures of our lowering algorithm compared to existing C++ compilers:

– Our approach uses a combination of stack storage and reference parameters
to simulate exceptions without generating additional runtime calls whose
semantics have to be taught to existing static analysis tools.

– Our approach uses the exception target information available in the IECFG,
and therefore, when compared to existing C++ lowering techniques, gener-
ates fewer infeasible edges between throw statements and catch blocks that
are not present in the original program. It also handles insertion of destruc-
tors correctly. The modular design of the IECFG makes it easy to insert the
destructor calls in a single pass.

The main steps of the lowering algorithm are as follows:

1. Creation of Local Exception-Objects and Formal Parameters: Each
function’s (say f ) local variable list is extended with: (1) a “type-id” variable,
and (2) a local exception-object variable for every exception type that can
potentially be thrown within f. The “type-id” variable holds the type of the
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Fig. 10. Interprocedural Exception Control Flow Graph for the program in Fig. 1

thrown exception, and the local exception-object variable holds the thrown
exception object and acts as storage for interprocedural exception handling.
Additional parameters are added to f ’s signature: (1) a reference parameter
for every uncaught exception type that propagates out of the function, and
(2) a reference parameter to hold the “type-id”. These reference parameters
propagate information about uncaught exceptions to a caller. At each call-
site of f, appropriate local exception-objects and the caller’s local type-id are
passed additionally as parameters to f.

2. Lowering throws and catch: Based on the targets of throw statements
in the IECFG, calls to the destructors of appropriate set of local objects are
inserted. The thrown object is assigned to the local exception-object of the
appropriate type and the local type-id variable is set to the thrown type. A
goto is then inserted either to a catch block or to the exceptional-exit node.
At the catch block, the local exception-object is assigned to the argument of
the catch-header.

3. Lowering exceptional-call-return nodes: A switch statement (modeled
using if s in our IL) on the local type id is inserted, with one nested case for
every uncaught exception type in the callee. The target node information
from the IECFG is used to place calls to destructors of appropriate stack-
allocated objects, for each case. Finally, a goto to the target (either a catch
or an exceptional-exit) is inserted.

4. Lowering exception exit node: The local exception-objects and type-
ids are copied into corresponding formal parameters. This serves to copy
the exception objects out of the callee into the caller, which deals with the
uncaught exceptions at its exceptional-call-return node.

The semantics preserving nature of the lowering algorithm can be established
as follows. Our lowering mechanism is based on the observation that exception
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handling preserves functional scoping even though exceptions result in non-local
control flow. This is because the program has to unwind the call stack to invoke
the destructors of local objects that have been constructed in the functions on
the call stack until the exception is caught. Therefore, it largely mirrors the
flow that happens during a regular call return. Our lowering mechanism mimics
this flow by placing the destructor calls before the exceptional return of every
function and passing pending exception objects through the additional reference
parameters that were added by the lowering.

Subtleties introduced by some C++ features are handled as follows:

Throwing Destructors. As per the C++0x standards draft, destructors throw-
ing an exception during stack unwinding result in a call to std::terminate(),
which by default terminates the program. However, the destructor’s callees can
throw exceptions as long as they do not flow out of the destructor. Multiple live
exceptions arising out of this are correctly handled in our lowering algorithm by
the use of (a) local exception objects, which implicitly helps to maintain a stack
of multiple outstanding exceptions, and (b) a global exception flag to detect a
throwing destructor instance and trigger a call to std::terminate().

Virtual Functions throwing different exceptions. Multiple function tar-
gets at a call site, quite common in C++ due to virtual functions, can in general
throw different exception types. Our lowering algorithm prevents ambiguity in
the function signature by generating a uniform interface at the call site, that
uses the union of exception types that can be thrown by each possible target of
a virtual function call.

Catch-all and rethrow. A catch-all clause (catch (...)) does not statically
indicate the type of C++ exception handled by the clause. Rethrow statements
(throw;) do not have a throw expression as an argument. Our lowering algo-
rithm requires type and variable information, which is obtained by using the
exception information from the IECFG. Since the IECFG has an edge to a catch
clause annotated with the type of each possible exception thrown, the catch-all
clause is expanded to a sequence of concrete clauses. Rethrows are handled by
using the exception information from the nearest enclosing catch clause.

Exception Subtyping. The lowering algorithm assumes that the type of thrown
exception is the same as the type of the catch clause, which may not be true
in general due to the exception subtyping rules of C++. This case is handled
by generating super class (w.r.t exception subtyping rules) local and formal ex-
ception objects, and assigning into them, thrown exception objects which are
subclasses of the superclass object.

Example. The lowered code for our running example is shown in Fig. 11 after
performing copy propagation to remove redundant local objects. Fig. 11 also
shows the exception specifications for functions. (The specification has details of
the pending call stacks for each uncaught exception, but is not shown here.) �
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string File::read(EOFException& e1,
ExcepId& id) {

string str(__line);
if (EOF) {

EOFException tmp; e1 = tmp;
id = EXCEP_EOF_EXCEPTION;
~str();
goto EExit_1;

}
return str;

EExit_1: return string();
}

void get (std::bad_cast& e3, ExcepId &id) {
string s; IOException e4;
ExcepId lid = EXCEP_NULL;

File *file = new_alloc("l.txt");
if (file == NULL) {
std::bad_cast tmp;
e3 = tmp; id = EXCEP_BAD_CAST;
goto EExit_2;

}
file->readLine(e4, lid);
switch (lid) {
case EXCEP_IO_EXCEPTION:
goto Catch_L2;
break;

default:
break;

}
delete file;
return;

Catch_L2: {
cout << ’’IO-Failure’’;

}
EExit_2:
}

// EXCEPTION SPECIFICATIONS:
// void get() throw (std::bad_cast);
// string read() throw (EOFException);
// string readLine() throw (IOException);
#define EXCEP_NULL 0
#define EXCEP_BAD_CAST 1
#define EXCEP_IO_EXCEPTION 2
#define EXCEP_EOF_EXCEPTION 3

class EOFException { ... };
class IOException { ... };

string File::readLine(IOException& e2,
ExcepId& id) {

string s; EOFException e1;
ExcepId lid = EXCEP_NULL;

if (invalidFile) {
IOException tmp; e2 = tmp;
id = EXCEP_IO_EXCEPTION;
~s();
goto Exit_2;

}
s = read(e1, lid);
switch (lid) {
case EXCEP_EOF_EXCEPTION:

goto Catch_L1;
break;

default:
break;

}
return s;
Catch_L1: {

EOFException& e = e1;
return string("");

}
Exit_2: return string();
}

Fig. 11. Exception specifications and exception-free program for the running example

Fig. 12. Exception Analysis and Transformation Workflow

7 Implementation and Experiments

We have implemented our exception analysis and transformation algorithms in
an in-house extension of CIL [14], which handles C++ programs. The exception
analysis implementation has about 6,700 lines of OCAML code. Fig. 12 shows
the workflow for analyzing and transforming C++ programs with exceptions.
The given C++ program is initially parsed by our frontend into a simplified
intermediate version of C++ (IR0) similar to the IL shown in Section 2. The
IR0 code is then fed to our interprocedural exception analysis and transforma-
tion framework, which produces lowered C++ code without exceptions. The
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Table 1. Results of interprocedural exception analysis and exception safety checks

Benchmark Simplified ECFG IECFG #Excep #Excep “No throw” “No leak”
LOC Build Build & Edges Edges guarantee check results

Time(s) Analysis before after Coverage (#detected
Time(s) Analysis Analysis (% Functions) /#actual)

multiple-live 479 0.01 0.01 10 6 71 % 0/0
ctor-throw 585 0.02 0.02 33 11 89 % 1/1
recursive 643 0.02 0.03 27 17 64 % 0/0
shared-inherit 667 0.02 0.04 59 27 71 % 1/1
bintree-duplicate 770 0.06 0.05 31 13 91 % 0/1
list-baditerator 784 0.04 0.04 36 17 79 % 0/2
virtual-throw 809 0.02 0.03 39 28 46 % 0/4
nested-try-catch 809 0.03 0.03 33 17 68 % 2/2
loop-break-cont 814 0.04 0.03 33 17 68 % 2/2
nested-rethrow 820 0.04 0.03 35 19 68 % 4/4
new-badalloc 849 0.02 0.03 30 15 76 % 2/2
template 860 0.03 0.04 51 28 67 % 1/1
dyn-cast 872 0.03 0.05 35 16 81 % 1/1
iolib 919 0.01 0.01 9 7 40 % 1/1
delegat-dtor-throw 1305 0.04 0.05 63 62 53 % 0/0
std-uncaught-dtor 1348 0.05 0.07 73 71 58 % 1/1

transformed C++ code is then lowered to C by a module that lowers various
object-oriented features into plain C. The C++-to-C lowering module transforms
features such as inheritance and virtual-function calls without the use of run-
time structures such as virtual-function and virtual-offset tables. Therefore, the
lowered source code is still at a relatively high-level for further static analysis.
The lowered C code is then fed into F-Soft [7], where standard bug detection
and verification tools that work on C are applied.

We have evaluated our exception analysis and transformation algorithms on
a set of C++ programs [13]. The programs test usage of various C++ exception
features in realistic scenarios, some of which are close to standard C++ collec-
tion class usage [21]. We used the results of our analysis to test the “no throw”
guarantee, immediately before lowering, and the results of our transformation
to test the “no leak” guarantee using F-Soft. For the experiments, exceptions
of type tunknown from external library calls were omitted. Tab. 1 shows the re-
sults. The running time for ECFG construction for all programs is low, while
the IECFG construction and analysis is quite comparable, with most of the time
spent in the interprocedural exception analysis. Our interprocedural exception
analysis is able to achieve an average reduction of about 38% in the number
of exception edges, with the IECFG constructed immediately before the inter-
procedural analysis serving as the baseline. On an average, around 66% of the
functions in a program were certified as “no throw”.

The last column shows the results of running F-Soft, specifically a memory
leak detector module, on the lowered programs. 13 of the 16 benchmarks that we
used for these experiments had memory leaks along exception paths, and F-Soft

reported all memory leaks in 10 of the 13 benchmarks. F-Soft failed to find
memory leaks for 3 benchmarks due to timeouts and reported bogus witnesses
only for new-badalloc due to the limitation of our in-house C-lowering. For
these experiments we used a time-bound of 10 minutes for the verification.
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Table 2. Results of interprocedural exception analysis on open-source benchmarks

Open-source Simplified ECFG IECFG #Excep #Excep “No throw”
Benchmark LOC Build Build & Edges Edges guarantee

Time(s) Analysis before after Coverage
Time(s) Analysis Analysis (% Functions)

tinyxml 4884 0.39 1.41 1204 830 74 %
mailutils 8365 0.19 0.36 494 316 78 %
coldet 8422 0.27 0.22 591 20 98 %
id3lib 14070 1.73 4.18 2091 372 93 %

One of the reasons for the timeouts is that the lowering algorithm generates
programs that is atypical of the C source code that F-Soft has previously an-
alyzed, which affects the performance of the model checker. As an example, we
have found that the addition of destructor calls during stack unwinding on excep-
tional edges introduces many additional destructor call sites; in the benchmark
std-uncaught-dtor, there were 31 call sites to a particular class destructor. The
additional destructor calls during stack unwinding yield function call graphs that
are very different from what F-Soft usually encounters. Therefore, additional
heuristics, such as selective function inlining for destructor calls, will likely im-
prove the performance of the model checker on the models generated by the
exception analysis module.

Results on open-source benchmarks. We have also applied the IECFG con-
struction algorithm on a set of open-source benchmarks shown in Tab. 2. The
coldet benchmark is an open source collision detection library used in game pro-
gramming. GNU mailutils is an open source collection of mail utilities, servers,
and clients. TinyXML v2.5.3 is a light-weight XML parser, which is widely used
in open-source and commercial products. The open source library id3lib v3.8.3
is used for reading, writing, and manipulating ID3v1 and ID3v2 tags, which are
the metadata formats for MP3s. Tab. 2 shows the reduction in the number of
exception edges due to our interprocedural analysis. A direct consequence of this
reduction is seen in the “no throw” guarantee numbers, which represent the per-
centage of the total functions in the program, for which we are able to guarantee
that no exceptions will be thrown by them. For coldet, which had the maximum
reduction in the number of edges, the number of functions guaranteed not to
throw is about 98%. We are encouraged by the results of our experiments on the
open source benchmarks. For these benchmarks, the time taken to compute the
IECFG is less than 5s. Therefore, we believe that the analysis will scale to even
larger examples.

Memory leaks in mailutils applications. We also applied the memory-leak
checker module of F-Soft on two applications that use the mailutils library: (1)
iconv, which converts strings from one character encoding to another using the
mailutils library, and (2) murun, which tests the various kinds of streams in the
mailutils library. F-Soft reported one memory leak in iconv and three memory
leaks in murun involving exceptional control flow. The offending code snippet in
iconv is shown in Fig. 13. In the try block, the invocation of the constructor
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FilterIconvStream() for variable cvt may throw an exception. However, when
the exception is handled by the catch block, the memory allocated at the start
of the try block is not deallocated, which results in a memory leak. The leaks
reported in murun also have a similar flavor.

In addition, F-Soft reported a leak in iconv where the memory allocated in
the constructor of class FilterIconvStream is never deallocated. Note that this
leak occurs even when no exceptions are thrown by the application.

...
try {

StdioStream *in = new StdioStream (stdin , 0);
in ->open ();
FilterIconvStream cvt (*in, (string)argv[1], (string)argv[2], 0,

mu_fallback_none );
cvt.open ();
delete in;
...

}
catch (Exception& e) {

cerr << e.method () << ":�" << e.what () << endl;
exit (1);

}

Fig. 13. Memory leak along an exception path in iconv

8 Related Work

Most related work deals with exceptions in Java. Earlier, we discussed many
differences between exceptions in C++ and Java, thus requiring different ap-
proaches. Sinha and Harrold [16] incorporate the control flow effects due to
explicit Java exceptions in an interprocedural control flow graph (ICFG) using a
flow-sensitive type analysis, and discuss their applications to control dependence
analysis and slicing. The ICFG used in their analysis has no exceptional-call-
return node and can have multiple exceptional-exit nodes in a function. In con-
trast, our IECFG is modular and has an exceptional-call-return node for every
function call, which is required for modeling implicit C++ destructor calls. Jo et
al. [8,9,3] construct an exception flow graph for Java, using a set constraint anal-
ysis that is required to iterate to convergence. Gherghina and David [6] present
a specification logic for exceptions for Java-like languages and verify exception-
safety guarantees. Their specification logic does not model destructors along
exception paths because they target Java-like languages, and therefore, cannot
be used for verifying C++ programs. Mao and Lu [12] perform the analysis for
C++, without explicitly modeling destructors. Robillard and Murphy [15] de-
velop an analysis that handles both checked and unchecked exceptions in Java.
In contrast to all these approaches, our analysis based on the Signed-TypeSet
domain can be terminated safely at any point after the IECFGs have been con-
structed, thus permitting sound static analysis on subparts of the IECFG. Given
the prevalence of separate compilation in large systems, a modular approach that
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can be safely terminated at any step is essential for scalability and adoption into
compilers. The Signed-TypeSet domain utilizes a similar idea as was used in the
form of difference sets for class hierarchyanalysis [4].

Weimer and Necula [20] propose an intraprocedural, path-sensitive analysis
for checking typestate specifications along exception paths in Java. Buse and
Weimer [2] propose a similiar symbolic analysis for automatic documentation of
Java exceptions. Bravenboer and Smaragdakis [1] propose a solution for Java,
where pointer analysis and exception analysis problems are framed and solved
in a mutually recursive manner, with each improving the precision of the other.
Fu and Ryder [5] propose a static analysis that computes chains of semanti-
cally related exception flow links, by composing existing exception analyses to
give longer exception paths. Our IECFG construction and exception analysis
for C++, could potentially be enhanced with all of the above techniques to im-
prove the accuracy of our exception model. Li et al. [11], propose a technique to
check the “no leak” guarantee for Java, using a combination of static analysis
and model checking. Similarly, Torlak and Chandra present an interprocedural
static analysis algorithm to detect resource leaks in Java programs [19]. In our
work, we use F-Soft [7] for checking for resource leaks, following our exception
analysis and lowering transformation.

9 Conclusions and Future Work

This paper introduced an interprocedural analysis framework for accurately
modeling C++ exceptions. In this framework, control flow induced by exceptions
is captured in a modular interprocedural exception control flow graph (IECFG).
This graph is refined by a novel dataflow analysis algorithm, which abstracts the
types of exception objects over a domain of signed set of types. Unlike excep-
tion analyses proposed elsewhere for other languages, this analysis can be safely
terminated at well-defined points during interprocedural propagation, thereby
allowing clients to trade-off speed over precision. The paper then presented a
lowering transformation that uses the computed IECFG to generate an excep-
tion free program. This transformation is designed specifically to permit easier
and more precise static analysis on the generated code. Finally, the paper demon-
strated two applications of the framework: (a) automatic inference of exception
specifications for C++ functions and (b) checking the “no throw” and “no leak”
exception safety properties.

In the future, we intend to perform additional experiments on larger bench-
marks. As shown in Sect. 7, the IECFG computation presented here should scale
well for larger benchmarks. Finally, we are investigating to selectively allow con-
ditional exception edges during the IECFG construction. Such conditional excep-
tion edges could be used to model cases involving throwing destructors or other
standard library objects such as coutmore precisely. For example, a throwing de-
structor would be allowed to propagate the fact that std::uncaught exception()
was queried before throwing an exception. This could be used to eliminate spuri-
ous calls to std::terminate()when returning from such destructors. Similarly,
we can annotate other calls, such as uses of coutwith the information that it may
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throw an exception, if the surrounding context had set the relevant information
using the ios::exceptions()method. Such selective guards on exception edges
would not substantially decrease the performance of the analysis but would allow
further reduction of computed exception-catch links.
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Abstract. Infinite loops can make applications unresponsive. Potential
problems include lost work or output, denied access to application func-
tionality, and a lack of responses to urgent events. We present Jolt, a
novel system for dynamically detecting and escaping infinite loops. At
the user’s request, Jolt attaches to an application to monitor its progress.
Specifically, Jolt records the program state at the start of each loop it-
eration. If two consecutive loop iterations produce the same state, Jolt
reports to the user that the application is in an infinite loop. At the user’s
option, Jolt can then transfer control to a statement following the loop,
thereby allowing the application to escape the infinite loop and ideally
continue its productive execution. The immediate goal is to enable the
application to execute long enough to save any pending work, finish any
in-progress computations, or respond to any urgent events.

We evaluated Jolt by applying it to detect and escape eight infinite
loops in five benchmark applications. Jolt was able to detect seven of
the eight infinite loops (the eighth changes the state on every iteration).
We also evaluated the effect of escaping an infinite loop as an alternative
to terminating the application. In all of our benchmark applications,
escaping an infinite loop produced a more useful output than terminating
the application. Finally, we evaluated how well escaping from an infinite
loop approximated the correction that the developers later made to the
application. For two out of our eight loops, escaping the infinite loop
produced the same output as the corrected version of the application.

1 Introduction

From: "Armando Solar-Lezama" <asolar@csail.mit.edu>

To: "Martin Rinard" <rinard@csail.mit.edu>

Subject: Thanks

I was writing a document in Word this morning, and after about an hour of

unsaved work, Word went into an infinite loop that made the application

completely frozen. So, having listened to your talks too many times,I got

my debugger, paused the program, changed the program counter to a point a

few instructions past the end of the loop, and let it keep running from

there. Word went back to working as if nothing had ever happened. I was

able to finish my document, save it, and close Word without problems.

So thanks,

Armando.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 609–633, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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As the above email illustrates, infinite loops can make an application un-
responsive to its users. The potential consequences include loss of work or an
inability to use the application for its intended purpose.

One potential solution (as deployed by Professor Solar-Lezama above) is to
drop the application into a debugger, find the infinite loop, then move the pro-
gram counter past the end of the loop, thereby enabling the application to con-
tinue its productive execution. Unfortunately, not everyone has the technical
skill to use this solution. And even if one does, using the debugger, finding the
loop, and moving the program counter past the end of the loop can be a tedious
and annoying process.

1.1 Automatic Detecting and Escaping Infinite Loops

We present Jolt, a novel system for detecting and (if desired) escaping infinite
loops. If a user suspects that an application may be in an infinite loop, he or she can
instruct Jolt to monitor the execution of the application. Specifically, Jolt records
the program state at the start of each loop iteration. The next time execution
reaches the start of the loop, Jolt compares the current state to the saved state. If
the current and saved states are the same, then the loop has made no progress and
Jolt has detected an infinite loop. At the user’s option, Jolt can escape the loop
(i.e., transfers control to a statement after the loop to enable the application to
continue its execution beyond the loop). The immediate goal of the continued ex-
ecution is to enable the application to save any pending work, finish any pending
computation, or respond to any urgent events. Ideally, escaping the loop would
also enable the application to continue its normal execution indefinitely.

1.2 Evaluation

We evaluated Jolt by applying it to eight infinite loops in five applications (ctags,
grep, indent, look, ping). We attached Jolt to each of these applications while
they were executing on inputs that triggered the infinite loops. Jolt successfully
detected seven of the eight infinite loops; the remaining loop changes the state
on every iteration (Jolt is designed to detect only infinite loops in which the
program state does not change across iterations).

As part of each case study, we used Jolt to exit the infinite loops and observed
the resulting continued execution. In general, the applications are structured to
process multiple input units (such as lines, modules, or records). The infinite
loops occur when one of the input units hits a corner case in the application’s
code. Escaping the loop typically causes some perturbations in the computation
on the current unit. But, by the time the application starts processing the next
unit, it has recovered and is able to process this unit with no problems (unless,
of course, this unit also triggers the infinite loop). The end result is that the
application is often able to produce largely or even fully useful output.

We note that a similar phenomenon is partially responsible for the effec-
tiveness of failure-oblivious computing [28] and SRS crash suppression [22] in
enabling applications to recover from memory errors — because the applications
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tend to have short error propagation distances, errors that occur when processing
one unit tend not to affect the processing of the next unit.

We also compared the output of escaping infinite loops with that of simply
terminating the application at the infinite loop (for example, by hitting Ctrl-C).
Terminating the application, of course, leaves it unable to process subsequent
input units. And in some cases, the application produces no output at all — it is
designed to produce all of its output after it has processed all of the input units.
We found that for all of our applications, escaping the infinite loop produced a
more useful output than terminating the application.

Finally, we acquired versions of the applications that were corrected by their
developers. We then compared the outputs of escaping our infinite loops with
the outputs of these versions of the applications. In two out of our eight infinite
loops, escaping a loop produced an output that is identical to the output of
the fixed version of the application. For the remaining infinite loops, output
degradation was limited to the portion of the output that was generated from
the input unit that caused the infinite loop.

1.3 Contributions

This paper makes the following contributions:

– Detection and Escape: It presents a system, Jolt, for detecting and (if
desired) escaping infinite loops. Our technique uses both static source code
instrumentation and dynamic binary instrumentation. Jolt statically instru-
ments the source of an application with runtime calls that demarcate the
entry, exit, and body of every loop in the control flow graph of each function
in the program.

When instructed by a user, Jolt dynamically attaches to a running in-
stance of the application and inserts instrumentation to record the state at
the start of each loop iteration. As the application executes, Jolt compares
the current state with the state from the previous iteration. If the states are
equal, Jolt has detected an infinite loop. At the user’s option, Jolt can then
escape and continue execution at a statement following the loop.

– Detection Evaluation: It presents empirical results from applying Jolt to
eight loops in five applications. Jolt detects seven of the eight loops (the
remaining loop changes the state on every iteration). It also presents an
evaluation of the performance of our technique; it imposes no more than 8.6%
overhead on our applications when Jolt is not monitoring the application.
And, when monitoring, Jolt detected all infinite loops in less than 1 second.

– Escape Evaluation: It presents empirical results that demonstrate that
for all of our benchmark applications, escaping an infinite loop produces
a more useful output than terminating the application. Moreover, escaping
an infinite loop produces an output that is identical to the output of a
manually fixed version of the application for two out of our eight infinite
loops. In general, continued execution after the loop is successful because
the applications tend to have short error propagation distances.
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In our opinion, our results support the hypothesis that Jolt can provide a
useful alternative to simply terminating the application when it encounters an
infinite loop. We anticipate that Jolt will prove to be useful for interactive appli-
cations in which terminating the application would cause the user to lose work
or leave the user without useful output. More generally, we expect that Jolt may
also enable a wide range of applications to provide useful service even in the pres-
ence of infinite loops that would, in the absence of Jolt, render the application
completely unresponsive.

2 The Jolt System

To provide users with a low-overhead system for infinite loop detection and
escape, we have designed Jolt around two components:

Compiler: Jolt’s compiler enables a developer or user to compile the source code
of his or her application to obtain a binary executable that is amenable to infinite
loop detection. In particular, Jolt’s compiler adds lightweight instrumentation
to the source of the application to identify the boundaries of loops, which can
be difficult to identify accurately from a binary executable [15, 34].

Detector: Jolt’s detector can, at the user’s request, dynamically attach to and
analyze a running instance of an application that the user believes is caught in
an infinite loop (if the application has been compiled with Jolt’s compiler). If the
detector determines that the application is caught in an infinite loop, it presents
the user with the option to escape the loop.

2.1 Example

To illustrate how Jolt compiles and analyzes an application, we present an in-
depth example of applying Jolt to an infinite loop in ctags, one of our benchmark
applications.

Ctags scans program source files to produce an index that maps program
entities (e.g., modules, functions, and variables) to their line numbers within
the source files [1]. Ctags contains multiple modules for parsing and extracting
the index, each of which is specific to a particular programming language. An
integrated development environment can later use such an index file to allow
programmers to quickly navigate to the definitions of modules, functions, and
other program entities by name.

Figure 1 presents a Python code snippet taken from the numpy numerical
matrix manipulation routine library. Ctags was designed to parse this source
code and output an index, which indicates that, e.g., the function get pkgdocs()

begins on Line 1.
This code snippet uses multi-line strings (which are delimited by matched

pairs of triple-quote literals, ’’’ or """, and can span more than one line) on
Lines 3 and 4 to construct the string retstr. The backslash between the two
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1 def get_pkgdocs(self):

2 if symbols:

3 retstr += """\n\nGlobal symbols from subpackages""" \
4 """\n-------------------------------\n""" + \
5 self._format_titles(symbols,’-->’)

Fig. 1. Example Python Code

lines is admissible Python syntax and appears in the original file; in Python
two lines that are separated by a backslash are treated as a single line. As a
consequence, ctags merges the two lines into a single line during its preprocessing
stage. However, when multiple multi-line strings appear on the same line in a
Python source file, ctags version 5.7beta can enter an infinite loop.

2.2 Infinite Loop

Figure 2 presents find triple end(), the function from Ctags’s Python module
that loops infinitely on the code snippet from Figure 1. The function determines
if string, which points to a character buffer containing a single line of text
from a parsed file, closes an already open multi-line string. The parameter which

contains the delimiter that began the multi-line string (either ’’’ or """).
At the beginning of each iteration of the loop, s points to some position in

string and which contains the triple-quote that began the last multi-line string.
Within the loop, if s does not contain a matching triple-quote, then the loop
exits (Line 5). If s does contain a matching triple-quote, then the computation
1) records that the currently opened multi-line string has been closed, by setting
which to NULL on Line 7, and 2) checks if s contains any additional triple-quotes.

If s does not contain an additional triple-quote, then the computation exits
the loop (Line 9). Otherwise, the computation 1) records that a new multi-
line string has been opened (by updating which in find triple string()), and

1 static void find_triple_end(char const *string, char const **which) {

2 char const *s = string;

3 while (1) {

4 s = strstr (string, *which);

5 if (!s) break;

6 s += 3;

7 *which = NULL;

8 s = find_triple_start(s, which);

9 if (!s) break;

10 s += 3;

11 }

12 }

Fig. 2. Source Code for Ctags
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1 #define LOOP_ID 148

2

3 static void find_triple_end(char const *string, char const **which) {

4 char const *s = string;

5

6 jolt_loop_entry(LOOP_ID);

7 while (1) {

8 if (!jolt_loop_body(LOOP_ID)) {

9 goto jolt_escape;

10 }

11 s = strstr (string, *which);

12 if (!s) {

13 jolt_loop_exit(LOOP_ID);

14 break;

15 }

16 s += 3;

17 *which = NULL;

18 s = find_triple_start(s, which);

19 if (!s) {

20 jolt_loop_exit(LOOP_ID);

21 break;

22 }

23 s += 3;

24 }

25 jolt_escape:

26 }

Fig. 3. Instrumented Source Code for Ctags

2) updates s to point to the character after the newly found triple-quote. The
computation then returns to the beginning of the loop to look for a triple-quote
that closes the newly opened multi-line string.

The programmer wrote this loop with the intention that each iteration of
the loop would start at some position in string (given by s) and either exit,
or continue with another iteration that starts at a later position in string. To
establish this, the value of s is incremented by the functions strstr() (Figure 2,
Line 4) and find triple string() (Figure 2, Line 8).

However, in the call to strstr() the developer mistakenly passed string, in-
stead of s, as the starting position for each iteration. As a consequence, every
iteration of the loop starts over at the beginning of string, which can cause an
infinite loop. For example, if the triple-quotes of the first and the second multi-
line string are of the same type (as in Figure 1), then at the beginning of every
loop iteration (except the first), the values of s and which are always the same: s
equals to the starting position of the second multi-line string and which contains
the triple-quote that starts the second multi-line string.
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2.3 Compilation

Figure 3 presents the instrumentation that Jolt’s compiler adds to the source
code of this loop in ctags. For every loop in the application, Jolt identifies and
marks the following:

– Loop ID: Jolt gives each loop in the application a unique identifier (Line 1).
– Loop Entry: At the entry point of the loop, Jolt adds a call to the function

jolt loop entry() to notify Jolt’s runtime that the application has reached
the beginning of a loop (Line 6).

– Loop Exit: At each exit point from the loop, Jolt adds a call to the function
jolt loop exit() immediately before exiting the loop to notify Jolt’s runtime
that the application is about to exit a loop (Lines 13 and 20).

– Loop Body and Loop Escape Edge: Jolt adds a call to the function
jolt loop body() at the start of the loop body to let Jolt control the execu-
tion of the loop (Line 8). If jolt loop body() returns true, then the appli-
cation will execute the body of the loop. If jolt loop body() returns false,
then the application will escape the loop by branching to the block immedi-
ately after the loop, which is marked by the label jolt escape (Line 25). By
default, jolt loop body() returns true if a user has not used Jolt’s detector
to attach to the application.

After instrumenting ctags source code, Jolt uses the LLVM 2.8 compiler infras-
tructure [16] to compile the source code down to an executable (a 32-bit or 64-bit
ELF executable in our current implementation). Though the instrumented exe-
cutable incurs some overhead (Section 6), its semantics are exactly the same as
that of the uninstrumented application — that is, until a user instructs Jolt’s
detector to attach to a running instance of the application.

2.4 Detection

Once the user believes that ctags may be caught in an infinite loop, he or she
can use Jolt’s user interface to scan the list of active system processes and select
the suspect ctags process. When the user selects the process, Jolt’s infinite loop
detector attaches to the running process and begins monitoring its execution.

Conceptually, Jolt records a snapshot of the state of the application at the
beginning of each loop iteration. If ctags is caught in the infinite loop from
Section 2.2, Jolt’s detector will recognize that 1) the application modifies only
the variables s and which, and 2) that these variables have the same values at
the beginning of each loop iteration. Given this observation, Jolt will report to
the user that the application has entered an infinite loop.

2.5 User Interaction

After Jolt detects an infinite loop, it presents the user with the option to escape
the loop. If the user chooses to escape the loop, he or she can place Jolt into one
of two interaction modes:
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– Interactive Mode: After Jolt forces the application to escape the loop, Jolt
detaches from the application. Jolt will not detect any subsequent infinite
loops unless the user again instructs Jolt to attach to the running application.

– Vigilant Mode: After Jolt forces the application to escape the loop, Jolt
stays attached to the application. Jolt will continue to detect and escape
infinite loops without further user interaction. Vigilant mode is useful when
the application encounters an input that repeatedly elicits infinite loops.

It is also possible to support additional modes in which Jolt stays attached, but
asks the user each time it detects an infinite loop before escaping the loop. Or, if
Jolt is unable to detect an infinite loop, a user may, at his or her own discretion,
choose to escape a loop that has been executing for a long time.

2.6 Escaping the Infinite Loop

Terminating ctags during the infinite loop from Section 2.2 would cause the user
to lose some or all of the indexing information for the current file. Moreover,
terminating ctags would leave it unable to process any subsequent files that
could have been passed on the command line. If, instead, a user elects to escape
the loop, then Jolt will force the application to exit the loop by returning false

for the next call to jolt loop body(). As a consequence, ctags will terminate and
produce a well-formed output. This output will include some of the definitions
from the current file and all of the definitions from any subsequent files.

The quality of the output from the current file depends on the position of the
triple-quote that closes the second string. If the triple-quote is on the same line
(such as in Figure 1), then the quotes become unmatched, effectively causing
ctags to treat the remainder of the current file as a multi-line string. On the
other hand, if the triple-quote is on a subsequent line, then ctags will produce
the exact same set of definitions as intended by the developers (which we verified
by inspecting a later, fixed version of the application).

3 Implementation

Our design adopts a hybrid instrumentation approach that uses both static
source code instrumentation and dynamic binary instrumentation. Jolt statically
inserts lightweight instrumentation into the application to monitor the applica-
tion’s control flow. Then, after it has attached to the application, Jolt inserts
heavyweight dynamic binary instrumentation to monitor changes in the appli-
cation’s state. Between these two components, our design balances Jolt’s need
for precise information about the structure of an application with our desire to
minimize overhead on the application when it is not being monitored.

3.1 Static Instrumentor

Jolt’s static instrumentor provides Jolt’s detector with control flow information
that may otherwise be difficult to extract accurately from the compiled binary of
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a program. The static instrumentor inserts function calls that notify the detector
of the entry, body, and exit of each natural loop [21] in the control flow graph
of each function in the program (as we presented in Section 2). Jolt currently
does not instrument potential infinite recursions or unstructured loops that may
occur because of exception handling or gotos that produce unnatural loops.

Jolt’s static instrumentor also selects an escape destination for each loop in
the application. The static instrumentor chooses an escape destination from
one of the normal exit destinations of the loop. In general, a loop may contain
multiple exit destinations (this can occur, for example, if the loop body uses
goto statements to exit the loop). Jolt currently chooses the first loop exit as
identified by LLVM.

It also possible for the loop to contain no exits at all. This can happen, for
example, if the program uses an exception mechanism such as setjmp/longjmp
to exit the loop. In this case Jolt inserts a return block that causes the application
to return out of the current procedure. When Jolt escapes the infinite loop, it
transfers control to this return block. Researchers have demonstrated that simply
returning from a function can be an effective way to work around an error within
its computation [30].

We have implemented the static instrumentor as an LLVM compiler pass that
operates on LLVM bitcode, a language-independent intermediate representation.
Given the instrumented bitcode of an application, we then use LLVM’s native
compiler to generate a binary executable.

3.2 Dynamic Instrumentor

When a user enables Jolt’s infinite loop detection on a running program, Jolt’s
dynamic binary instrumentation component dynamically attaches the running
program and inserts instrumentation code to record the state of the program as it
executes. Jolt’s instrumentation (conceptually) records, at the top of each loop,
a snapshot of the state that the last loop iteration produced. To avoid having to
record the entire live state of the application, Jolt instruments the application
to produce a write trace, which captures the set of registers and addresses that
each loop iteration writes.

Write Trace: Jolt instruments each instruction in the application that modifies
the contents of a register or memory address. For each register or memory ad-
dress that an instruction modifies, the instrumentation code dynamically records
either the identifier of the register or the memory address into the write trace.

Snapshot: At the top of each loop, the inserted Jolt instrumentation uses the
resulting write trace to record a snapshot. This snapshot contains 1) the list of
registers and memory addresses written by the last iteration and 2) the values in
those registers and memory addresses at the end of the last iteration. Jolt records
a snapshot only if it has a complete write trace from the last loop iteration (the
trace may be incomplete if the user attached Jolt to the application sometime
during the iteration).
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Library Routine Abstraction: To record a full write trace of an application,
Jolt must instrument all of the application’s running code, including libraries.
However, some libraries may modify internal state that is unobservable to the
application. For example, some libc routines modify internal counters, (i.e., the
number of bytes written to a file, or the number of memory blocks allocated by
the program), that change after every invocation of the routine. If an application
invokes one of these routines during a loop that is, otherwise, producing the
same state on each iteration, then Jolt will be unable to detect the infinite loop.
However, these counters are often either 1) not exposed to the application, or
2) exposed but not used by the application in a given loop. Therefore, we allow
Jolt to accept a set of library routine abstractions to explicitly specify the set of
observable side-effects of library routines.

A library routine abstraction specifies if the routine modifies observable prop-
erties of its arguments. For example, consider the write routine from libc:

ssize_t write(int filedes, const void *buf, size_t nbyte);

This function does not modify the contents of buf, but it does modify the
current position of the file cursor, which the application can query by calling
ftell(filedes). If during an infinite loop, Jolt does not observe any calls from
the application to ftell(filedes), then Jolt can exclude the side-effects of a call
to write(filedes, ...) from the snapshot.

We have implemented library routine abstractions for the subset of libc library
calls that are invoked by our benchmark programs (e.g., read, write, printf).
We anticipate that library routine abstractions need only be implemented for
libraries that are considered a part of the runtime system of the application
(e.g., allocation, garbage collection, and input/output routines).

Detection: At the beginning of each loop iteration, Jolt’s detector compares the
snapshots of the two previously executed loop iterations. If the two snapshots
are the same — i.e., both snapshots contain the same registers and memory
addresses in their write traces and the recorded values for these registers and
memory addresses in the snapshots are the same — then Jolt reports that it has
detected an infinite loop.

We have implemented the dynamic instrumentor on top of the Pin dynamic
program analysis and instrumentation framework [18]. Our use of Pin enables
the dynamic instrumentor to analyze both Linux and Windows binaries that
have been compiled for the x86, x64, or IA-64 architectures.

4 Empirical Evaluation

We next present a set of case studies that we performed to investigate the con-
sequences of using Jolt to detect and escape infinite loops.
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Table 1. Studied Infinite Loops

Benchmark Version
Reference Bug

Location
Version Report

ctags-fortran 5.5 5.5.1 Ctags-734933 fortran.c, parseProgramUnit, 1931

ctags-python 5.7b (646) 5.7b (668) Ctags-1988027 python.c, find_triple_end, 364

grep-color gnu.utils.bugs grep.c, prline, 579

grep-color-case 2.5 2.5.3 03/21/2002 grep.c, prline, 562

grep-match message 9 grep.c, prline, 532

ping 20100214 20101006 CVE-2010-2529 ping.c, pr_options, 984

look 1.1 (svr 4) - [37] look.c, getword, 172

indent 1.9.1 2.2.10 [37] indent.c, indent, 1350

4.1 Benchmarks

Table 1 presents the loops that we use in our evaluation. The first column (Bench-
mark) presents the name we use to refer to the loop. The second column (Version)
presents the version of the application with the infinite loop. The third column
(Reference Version) presents the version of the application in which the infinite
loop has been corrected. The fourth column (Bug Report) presents the source
of the infinite loop bug report. The fifth column (Location) presents the file, the
function, and the line number of the infinite loop.

We evaluated Jolt on eight loops in five benchmark applications. We selected
applications for which 1) bug reports of infinite loops were available, 2) we could
reproduce the reported infinite loops, and 3) we could qualitatively characterize
the effect of escaping the loop on the application’s output. All of these applica-
tions are commonly used utilities that the user either invokes directly, from the
command line, or as a part of a larger workflow:

– ctags: Scans program source files to produce an index that maps program
entities (e.g., modules, functions, and variables) to their locations within the
source files [1]. We investigate two infinite loops in ctags:
• ctags-fortran: The ctags Fortran module (version 5.5) has an infinite

loop that occurs when processing 1) source code files with variable and
type declarations separated by a semicolon, or 2) syntactically invalid
source files with improperly nested components. In both cases, ctags
enters a mode in which it infinitely loops when it is unable to recognize
certain valid Fortran keywords.

• ctags-python: The ctags Python module (version 5.7 beta, svn commit
646) has an infinite loop that occurs when one multi-line string literal
ends on a line and another multi-line string literal starts on the same
line (as we discussed in Section 2.1).

– grep: Matches regular expressions against lines of text within a single input
file or multiple input files [2]. We investigate three infinite loops in grep
version 2.5. Although all of these loops are distinct, they appear to share a
common origin via a copy/paste/edit development history.
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• grep-color: This infinite loop occurs when grep is configured to display
matching parts of each line in color and is given a regular expression
with zero-length matches.

• grep-color-case: This infinite loop occurs when grep is configured to
display matching parts of each line in color with case-insensitive match-
ing and is given a regular expression with zero-length matches.

• grep-match: This infinite loop occurs when grep is configured to print
only the parts of each line that match the regular expression and is given
a regular expression with zero-length matches.

– ping: Ping client is a computer network utility which checks for the reach-
ability of a remote computer using the Internet Control Message Protocol
(ICMP) echo messages. The infinite loop can occur when processing certain
optional headers (time stamps and trace route records) of the echo reply
message from the remote computer.

– look: Prints all words from a dictionary that have the input word as a
prefix. The infinite loop occurs when look’s binary search computation visits
the last entry in the dictionary file and this last entry is not terminated
by a newline character. We were not able to obtain the reference version of
look, but instead manually fixed the application to produce a correct result
(according to our understanding of its functionality).

– indent: Parses and then formats C and C++ source code according to
a specified style guideline [3]. This infinite loop occurs when 1) the input
contains a C input preprocessor directive on the last line of the input, 2)
this line contains a comment, and 3) there is no end of line character at the
end of this last line.

4.2 Methodology

For each of our benchmark loops, we performed the following tasks:

– Reproduction: We obtained at least one input that elicits the infinite loop,
typically from the bug report. Where appropriate, we constructed more in-
puts that cause the application to loop infinitely.

– Loop Characterization: We identified the conditions under which the infi-
nite loop occurs. This includes distinctive properties of the inputs that elicit
the infinite loop and characteristics of the program state. We also character-
ized the execution behavior (e.g., resource consumption and output) of the
application during the infinite looping.

– Infinite Loop Detection: We first compiled the application with Jolt’s
compiler to produce an instrumented executable. We then ran the executable
on our eliciting inputs to send the application into an infinite loop. Finally, we
dynamically attached Jolt’s detector to the running application to determine
if Jolt could detect the infinite loop.
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– Effects of Escaping Infinite Loop: We characterized the internal behavior
of the application after using Jolt to escape the loop, including the effects of
the escape on the output and the memory safety of the application. We used
manual inspection and testing to ensure that the output of the application
is well-formed, and Valgrind [23], to determine if the continued execution
performed any invalid memory operations (such as out of bounds accesses
or memory leaks).

– Comparison with Termination: One common strategy for dealing with
an application that is in an infinite loop is to simply terminate the applica-
tion. We compared the output that we obtain from terminating the appli-
cation to the output from the version that uses Jolt to escape the infinite
loop. Specifically, we investigated whether using Jolt helped produce a more
useful output than terminating the application.

– Comparison with Manual Fix: We evaluated how well escaping from an
infinite loop approximated the correction that the developers later made to
the application. We obtained a version of the application in which the infinite
loop had been manually corrected. When then compared the output from
escaping the loop to the output from the fixed version of the application.
Specifically, we investigated the extent to which the output produced by
the application after using Jolt matched the output of the manually fixed
application.

4.3 Results

Table 2 summarizes the results of our evaluation of Jolt as a technique for de-
tecting and escaping infinite loops. The first column (Benchmark) presents the
infinite loop name. The second column (Detection) presents whether Jolt success-
fully detected the infinite loop. If an entry in this column contains the symbol �,
detection succeeded; if it contains �, then detection failed — we use the same
notation for positive and negative results in each subsequent column.

The third column (Sanity Check) presents whether escaping the loop main-
tained the memory consistency, as reported by Valgrind. The fourth column
(Comparison with Termination) presents whether using Jolt to escape the infi-
nite loop produces a more useful output than the output that we obtain after
terminating the application. Finally, the fifth column (Comparison with Manual
Fix) presents whether using Jolt to escape the infinite loop produces the same
output as the reference version for every input to the application. If an entry in
this column contains the symbol ��, then the outputs are the same for some, but
not all, inputs.

For infinite loops that Jolt failed to detect, we still present results that de-
scribe the behavior of the application after escaping the loop. We performed
these experiments by modifying Jolt to escape the loop, even though it had not
detected an infinite loop.
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Table 2. Summary Results for Infinite Loops

Benchmark Detection Sanity Check
Comparison With

Termination Manual Fix

ctags-fortran � � � ��
ctags-python � � � ��
grep-color � � � ��
grep-color-case � � � ��
grep-match � � � ��
ping � � � �
look � � � �
indent � � � �

Infinite Loop Detection: Jolt was able to detect seven out of eight infinite
loops in our benchmark applications. For these infinite loops, Jolt identified that
the state of the program remained the same in adjacent loop iterations, and
escaped the loop immediately. Jolt failed to detect the infinite loop in indent
because the state changed on every iteration through the loop. We discuss the
reasons for why Jolt failed to detect this infinite loop in Section 5.2

Sanity Check: For all of our benchmarks the resulting continued execution of
the application exhibited no memory errors.

Comparison with Termination: For all our benchmarks, our evaluation in-
dicates that using Jolt to escape the loop resulted in outputs that contain as
much or more useful information than the outputs obtained by terminating the
application. Terminating the applications after encountering an infinite loop left
the application unable to process subsequent input units (files, lines or requests).
For ctags and indent (when processing multiple input files), grep, ping, and look,
terminating the application produced outputs only up to the point of termina-
tion (and none thereafter). Ctags and indent (when operating on a single input
file with, potentially, multiple lines) are designed to produce their outputs at
the end of the computation. Therefore, terminating the application did not yield
any output at all. As an extreme example, terminating indent while in the in-
finite loop caused it to overwrite the input source code file with an empty file.
Escaping the infinite loop with Jolt, on the other hand, not only helped the
application finish processing the current input, but also enabled it to continue
to successfully process subsequent inputs.

Comparison with Manual Fix: For ping, look and indent, the outputs of the
application for which we applied Jolt, and the outputs of the application with
a manually fixed bug were identical. The computations in these loops finished
processing the entire input before the loop started infinitely looping.

Applying Jolt to infinite loops in ctags and grep helped produce an out-
put containing a part of the output of the manually corrected application. In
Section 2.6 and Section 5.1, we present a more detailed characterization of the
quality of these outputs.
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5 Selected Case Studies

In Section 2, we presented an extended case study of ctags-python that demon-
strated Jolt’s overall approach to infinite loop detection and escape. In this
section we now present two additional case studies that demonstrate the main
characteristics of the infinite loops that we analyzed and the details of our eval-
uation. In particular, these case studies highlight the utility of vigilant mode
(Section 2.5), the utility of library abstraction (Section 3.2), and some of the lim-
itations of the Jolt’s detector. Detailed case studies of the rest of our benchmark
applications available online at http://groups.csail.mit.edu/pac/jolt.

5.1 Grep

Figure 4 presents the source code of the grep-color loop, which colors the part of
the current line matching a regular expression. Grep executes this loop when the
user provides the --color flag on the command line. This loop, along with the
other two infinite loops in grep, occur in the function prline, which is responsible
for presenting the text that matches the regular expression to the user. The other
two infinite loops have the same infinite loop behavior and a similar structure.

1 while ( (match_offset = (*execute) (beg, lim - beg, &match_size, 1))

2 != (size_t) -1)

3 {

4 char const *b = beg + match_offset;

5 /* Avoid matching the empty line at the end of the buffer. */

6 if (b == lim)

7 break;

8 fwrite (beg, sizeof (char), match_offset, stdout);

9 printf ("\33[%sm", grep_color);

10 fwrite (b, sizeof (char), match_size, stdout);

11 fputs ("\33[00m", stdout);

12 beg = b + match_size;

13 }

Fig. 4. Source Code for Grep-color Infinite Loop

Infinite Loop: The computation stores the pointer to the current location on
the line in the variable beg. The function execute() on Line 1 searches for the
next match starting from the position beg. Each time a match on the current
line is found, this pointer is incremented to advance the search, first by adding
the offset to the position of the next match (match offset; Line 4), and then
by adding the size of the match (match size; Line 12). However, when using a
regular expression that matches zero length strings (such as [0-9]*), the variable
match size will have value zero. Consequently, the value of pointer beg will not
increase past the current match and the progress of the loop execution will stop.

http://groups.csail.mit.edu/pac/jolt
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The loop can still output the first non-zero length match at the beginning of
the line, since grep uses a greedy matching strategy (it selects the longest string
that matches the pattern). For example, for the input echo "1 one" | ./grep

"[0-9]*" --color, the output contains a colored number 1, but following loop
iterations do not progress past this point — the string one is never printed. On
the other hand, grep-match will output a single newline character (‘\n’) for each
iteration as it loops after the first match. In the previous example, it will output
a number of newline characters after matching 1.

Infinite Loop Detection: While in the infinite loop, the computation outputs
non-printable characters (which control the text color) to the standard output
stream in every iteration. The printing does not influence the termination of the
loop, but may change internal counters and output buffer pointers within the
standard library, which are not observable by the application, but would prevent
Jolt from detecting the infinite loop. Thus, we apply library routine abstraction,
which we described in Section 3.2 to allow Jolt disregard possible changes of the
internal state of the library routines and enable detecting this infinite loop.

Effects of Escaping Infinite Loop: Applying Jolt to grep when it has en-
tered an infinite looping state escapes the current loop (which also halts printing
newline characters if the loop was doing so). The remainder of the current line is
skipped. If Jolt operates in vigilant mode, grep will not print numerous spurious
newline characters in grep-match case because Jolt escapes the loop after only
two iterations, printing only one additional newline character. If Jolt operates
in interactive mode, grep will print a number of newline characters for each line
before the user instructs Jolt to terminate the loop causing the application to
proceed to the next line.

For grep-color and grep-color-case loops, applying Jolt allows all matching
lines of the input to be displayed. However, on a given line that contains mul-
tiple matches, only the first match will be colored. For example, for the sample
input echo "1 one 1" | grep -E "[0-9]*" --color, grep outputs the desired line
(‘1 one 1’), but only the first “1” is colored. Using the -o command line flag to
print only the matching string, grep outputs only the first match on each line,
followed by newline characters until user invokes Jolt. For example, for the input
echo "1 one 1" | grep "[0-9]*" -o, grep outputs a single line, containing a “1”
(unlike two lines with value “1” that a corrected version of the application gen-
erates). Escaping the loop after printing the first match “1” skips the remainder
of the line, which contains the second match “1”.

Comparison with Termination: Terminating the execution of grep causes it
to not process any line after the first zero-length match (which is effectively any
line of the input). In contrast, using Jolt allows grep to continue searching for
matches on subsequent lines in the input.

Comparison with Manual Fix: The correction that the application develop-
ers applied for the three infinite loops in Version 2.5.3 causes the application to
continue printing the line even after encountering the match of length zero. As
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part of the fix, the developers completely restructured the control flow, and re-
moved the loops in the progress. This version of the application prints correctly
all non-zero matches, and skips zero-length matches.

While in Section 4 we presented the results of our comparison with Version
2.5.3, we also analyzed the correction that the developers of grep implemented
in Version 2.5.1. This fix was in place for three years before the release of 2.5.3.
In this version, the developers added the code if (match size==0) break; before
Line 8 to exit the loop when encountering a zero-length match. The effect of this
manual fix is the same as using Jolt to escape the loop.

5.2 Indent

Figure 5 presents the simplified version of the loop that handles comments that
occur within or on the same line after a preprocessor directive in C programs.

1 while (*buf_ptr != EOL || (in_comment && !had_eof)) {

2

3 if (e_lab >= capacity_lab) e_lab = extend_lab()

4

5 *e_lab = *buf_ptr++;

6 if (buf_ptr >= buf_end) buf_ptr = fill_buffer (&had_eof);

7

8 switch (*e_lab++) {

9 case ’\’:
10 handle_backslash(&e_lab, &buf_ptr, &in_comment); break;

11 case ’/’:

12 handle_slash(&e_lab, &buf_ptr, &in_comment); break;

13 case ’"’:

14 case ’´’:

15 handle_quote(&e_lab, &buf_ptr, &in_comment); break;

16 case ’*’:

17 handle_asterisk(&e_lab, &buf_ptr, &in_comment); break;

18 }

19 }

Fig. 5. Source Code for Indent Infinite Loop

Infinite Loop: The loop reads the text from the input buffer (pointed to
by buf ptr), formats it and appends it to the output buffer (pointed to by
e lab). The function extend lab() on Line 3 increases the size of the output
memory buffer if needed by using a library function realloc(). The function
fill buffer() on Line 6 reads a single line from the input file to the input
buffer. If this function reads past the input file, it writes a single character ‘\0’
to the input buffer and sets the had eof flag. Finally, the loop body recognizes
the comment’s start and end characters, and sets in comment appropriately.

The analysis of the loop condition on Line 1 shows that the loop computation
ends only if 1) the input line contains the newline character and it is not in
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the comment (*buf ptr == EOL && !in comment), or 2) if the input line contains
the newline character and it has reached the end of file (*buf ptr == EOL &&

had eof). The loop condition does not account for the case when loop reads the
entire input file, but the last line does not end with the newline character (the
value of buf ptr in this case is equal to ‘\0’).
Infinite Loop Detection: While in the infinite loop, each iteration appends
a spurious ‘\0’ character to the output buffer, and the capacity of the output
buffer is occasionally increased. Eventually, the output buffer can consume all
application memory and cause the application to crash. Note that this update
of the output buffer is the reason Jolt in its current version cannot detect this
loop as infinite.

Effects of Escaping Infinite Loop: Although Jolt cannot detect the infinite
loop in this application, we manually instructed Jolt to escape the loop to inves-
tigate its effect. After escaping the loop using Jolt, the application terminated
normally, producing a correctly indented output file. Note that this infinite loop
only happens after indent has processed all of the input file; the only remaining
task at this point is to copy the output buffer to a file. Escaping the loop enables
the application to proceed on to correctly execute this task.

Comparison with Termination: Terminating the application when it enters
the infinite loop prevents the application from executing the code to print the
output buffer to the file. Because the default configuration of indent overwrites
the input file, the user is left with an empty input file. Terminating the appli-
cation also causes indent to skip processing any subsequent files. Escaping the
loop, on the other hand, produces the correct output for the file that elicits the
infinite loop, and all remaining files.

Comparison with Manual Fix: The developer fix of the loop in Version
2.2.10 modifies a condition on Line 1 to test has eof flag whether the input file
has reached the end, before checking for the newline character in the input buffer.
Escaping the infinite loop causes the application that used Jolt to produce the
same result as the reference application version.

6 Performance

In this section, we present performance measurements designed to characterize
Jolt’s instrumentation overhead in normal use (Section 6.1) and the time required
for detection of infinite loops in our benchmark applications (Section 6.2). We
performed our performance measurement experiments on an 8-core 3.0GHz Intel
Xeon X5365 with 20GB of RAM running Ubuntu 10.04.

6.1 Instrumentation Overhead

We designed this experiment to measure the overhead of adding instrumenta-
tion code to track the entry, exit, and body of each loop in the application
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(as described in Section 2). We measured the overhead of Jolt’s instrumentation
in normal use by running each application, with and without instrumentation, on
inputs that do not cause infinite loops. In this experiment, infinite loop detection
is never deployed.

Benchmarks: Our benchmark suite consists of the following workloads:
– ctags-fortran: we crafted five workloads by executing ctags version 5.5 with

five different command line configurations on the Fortran language files of
scipy, a suite of scientific libraries for the Python programming language [7].
The source code of these programs totals 81800 lines of code.

– ctags-python: we crafted five workloads by executing ctags version 5.7b
(646) with five different command line configurations on the Python lan-
guage files of numpy, a library of numerical matrix manipulation routines
for Python [6]. The source code of these programs totals 72218 lines of code.

– grep: we crafted five workloads by executing grep version 2.5 with five
different regular expressions on the concatenated C source code of grep,
gstreamer [5], and sed [4]. We crafted regular expressions designed to match
elements within C source code; namely, strings, comments, primitive data
types (e.g., int, long, or double), parenthesized expressions, and assignment
statements. The source code of these programs totals 35801 lines of code.

– ping: we crafted five workloads by executing ping client with different op-
tions, including targeting a remote machine on a local network (the same
machine we used to reproduce the infinite loop), and the local host. We ran
the same server on the remote machine that we used to elicit the infinite
loop. For each ping execution we send multiple requests to the server (in
particular, 100 requests to the remote host and 1,000,000 to the local host),
without delay between the requests.

– look: we crafted five workloads by executing look version 1.1 (svr 4) with
five query words and a corpus of 98569 words from the American English
dictionary supplied with Ubuntu 10.04.

– indent: we crafted five workloads by executing indent version 1.9.1 with five
different indentation styles on the C source code of gstreamer (15608 lines
of code).

Methodology: To evaluate the instrumentation overhead for a single workload,
we first ran the workload five times without measurement to warm the system’s
file cache (and, thus, overestimate the impact of instrumentation by minimiz-
ing I/O time). We then measured the execution time of each workload twenty
times across two configurations: ten times to measure the execution time of the
uninstrumented application and ten times to measure the execution time of the
instrumented application.

To compute the instrumentation overhead (i.e., a slowdown) for a single
workload, we take the median execution time of the ten executions of the in-
strumented application over the median execution time of the ten executions of
the uninstrumented application. We use the median to filter out executions —
both slow and fast — that may be outliers due to performance variations in the
execution environment.



628 M. Carbin et al.

Table 3. Performance Overhead of the Instrumentation

Benchmark Mean Lowest Highest

ctags-fortran 1.073 1.068 1.080

ctags-python 1.052 1.035 1.057

grep 1.025 1.014 1.028

ping 1.016 1.005 1.024

look 1.0 1.0 1.0

indent 1.084 1.082 1.086

Results: Table 3 presents the results of the instrumentation overhead measure-
ment experiments. The first column in Table 3 (Benchmark) presents the name
of the benchmark. The second column (Mean) presents the weighted mean of
the slowdowns over each benchmark’s five workloads. The third column (Low-
est) presents the lowest slowdown that we observed over each benchmark’s five
workloads. The fourth column (Highest) presents the highest slowdown that we
observed over each benchmark’s five workloads.

Jolt’s overhead varies between 0.5% (the lowest observed overhead for ping)
and 8.6% (the highest observed overhead for indent). In our experiments we
found that the overhead imposed by Jolt on look was, in practice, too small to
reliably distinguish it from the noise of the benchmark environment. We also note
that the results for ping depend on the status of the network and the physical
distance between the hosts. While we used short physical distances between the
hosts and no delay between the requests to decrease the network variability and
to account for the worst case, we expect that in a typical use the communication
time will dominate the processing time, making the overhead negligible.

6.2 Infinite Loop Detection

We designed this experiment to evaluate how quickly Jolt can detect an infinite
loop in a running application.

Methodology: To perform this experiment, we ran each infinite loop from our
case studies on an input that elicits an infinite loop and then attached Jolt. We
then allowed Jolt to run for two seconds; if Jolt did not detect the loop within
two seconds, then we classified the loop as undetectable.

For each detected infinite loop in our case studies, we gathered 1) the time
required for Jolt to detect the infinite loop, 2) the footprint, in number of bytes,
of each infinite loop iteration, and 3) the length, in number of instructions, of
each infinite loop. Each of these numbers corresponds to the second, third, and
fourth columns of Table 4, respectively:

– Time: To measure the detection time, we repeatedly (five times) measured
the absolute time that elapsed from the instant when Jolt attached to the
application until the instant when Jolt detected that the loop iterations do
not change the state. We report the median detection time over these trials.
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Table 4. Infinite Loop Detection Statistics for Benchmark Applications

Benchmark Time (s) Footprint (bytes) Length

ctags-fortran 0.319 240 256

ctags-python 0.334 312 992

grep-color 0.585 992 4030

grep-color-case 0.579 992 4036

grep-match 0.490 846 2506

ping 0.287 192 54

look 0.296 300 378

– Footprint: We measured the memory footprint of the infinite loop by record-
ing the number of bytes of the program state that Jolt recorded in the snap-
shot at the beginning of each iteration of the infinite loop. As discussed
in Section 3, Jolt records the value of a register or memory address at the
beginning of the loop only if it was written during the execution of the loop.

– Length: We measured the length of the loop by recording the number of
instructions dynamically executed during one iteration of the loop. Our re-
ported numbers count only user-mode instructions that wrote to a register
or a memory location — this, therefore, excludes instructions executed by
the operating system kernel and nop instructions that do not modify the
state of the application.

Results: Table 4 presents the results of our infinite loop detection experiment.
The times required to detect an infinite loop are all less than 1 second and
the footprint of each infinite loop is less than 1 KB. Given that ping’s infinite
loop, our smallest benchmark loop (by number of instructions), takes Jolt 0.287
seconds to detect, our infinite loop detection technique is predominantly bounded
from below by the time required to initialize the Pin instrumentation framework.

7 Limitations

Jolt currently detects only infinite loops that do not change program state be-
tween iterations. In general, infinite loops can change state between iterations,
or cycle between multiple recurring states. We anticipate that Jolt’s detector
could be extended to eliminate changing state that does not affect a loop’s ter-
mination condition, track multiple states, or use symbolic reasoning to prove
non-termination [14, 35, 9].

Jolt does not consider the effects of multiple threads on the termination of the
application. For example, Jolt may incorrectly report that an application is in an
infinite loop if the application uses ad-hoc synchronization primitives (e.g., spin
loops) [38]. In our evaluation, we only considered single-threaded applications.

Jolt does no further intervention after allowing the application to escape an
infinite loop. In principle, it is possible for an application to escape an infinite
loop and then crash, producing no output. In our evaluation, we inspected the
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source code of our applications to determine that they continue their execution
without crashing, and eventually produce outputs. We anticipate that Jolt could
be extended to use any of a number of program shepherding techniques to help
steer programs around potential errors [28, 13, 24, 30].

8 Related Work

Researchers have previously studied the causes for program failures, including
unresponsiveness, in operating systems, server applications, and web browsers
[20, 17, 32, 25]. In particular, Song et al. identify infinite loops as an important
cause of unresponsiveness in three commonly used server applications and in a
web browser. This paper identifies the causes of eight infinite loops in existing
utility applications. Our evaluation also shows that seven of these loops can be
detected by checking that their state does not change across loop iterations.

(Non-)Termination Analysis: Researchers have previously suggested using
program analysis to identify infinite loops during software development. Gupta et
al. [14] present TNT, a non-termination checker for C programs, which identifies
infinite loops by checking for the presence of recurrent state sets, which are sets
of program states that cause a loop to execute infinitely. TNT uses template-
based constraint satisfaction to identify sets of linear inequalities on program
variables that describe recurrent state sets. Velroyen et al. [35] also propose
a template-based constraint invariant satisfaction approach to identify infinite
loops — though with a different invariant generation technique. Burnim et al.
developed Looper, a tool that uses symbolic execution and Satisfiability Modulo
Theories (SMT) solvers to infer and prove loop non-termination arguments [9].

Each of these approaches could, in principle, be used to attach to a running
instance of a program and detect an infinite loop. And, in fact, developers can
use Looper [9] to break into a debugging mode to prove that a suspect loop is
infinitely looping. While these approaches can identify a larger class of infinite
loops than Jolt — i.e., infinite loops that change state on each iteration — this
power comes at the cost of symbolic execution, SAT solving, or SMT solving.
Jolt, in contrast, attaches to the concrete execution of the program and uses an
inexpensive detection mechanism to identify infinite loops that do not change
state. In addition, Jolt provides users with the option to escape detected infinite
loops and continue the execution of the program.

Researchers have also developed static analysis tools that can be used during
program development to determine statically, when possible, whether each loop
in the program terminates [11, 10, 8, 33]. We view these approaches as comple-
mentary in that it would be possible to incorporate the results of static analysis
into Jolt’s instrumentation decisions. Namely, if it can be proven statically that
a particular loop will terminate, then Jolt need not instrument that loop.

Program Repair: Nguyen and Rinard have previously deployed an infinite
loop escape algorithm that is designed to eliminate infinite loops in programs
that use cyclic memory allocation to eliminate memory leaks [24]. The proposed
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technique records the maximum number of iterations for each loop on training
inputs, and uses these numbers to calculate a bound on the number of iterations
that the loop executes for previously unseen inputs. To the best of our knowledge,
this is the only previously proposed technique for automatically escaping infinite
loops. In comparison to the approach we present in this paper, Nguyen and
Rinard’s technique is completely automated, but may also escape loops that
would otherwise terminate.

Researchers have also investigated techniques for general program repair that
could, in principle, automatically generate fixes for infinite loops [31,27,30,26,
12, 36, 29]. Weimer et al. [37] have used genetic programming to automatically
generate program repairs from snippets of code that already exist in the pro-
gram. In their evaluation, they used their technique to generate fixes for the
infinite loops in look and indent, which we also used in our evaluation. Their
automatically generated fixes eliminated the infinite loops, but at the cost of
some lost functionality of the application. Compared to these fixes, escaping an
infinite loop enables a user to recover the complete outputs of these applications.

Handling Unresponsive Programs: Finally, we note that operating systems
and browsers often contain task management features that allow users to termi-
nate unresponsive or long-running applications or scripts. Mac OS X, for exam-
ple, provides a Force Quit Applications user interface; Windows XP provides
a Windows Task Manager. Web browsers also contain user interface features
that alert users to long-running scripts and offer users the option of terminat-
ing these scripts [19]. However, these facilities usually offer only termination
of a long-running task, while Jolt allows for the potential continued execution
after the long-running loop subcomputation. Extending Jolt to work in these
environments would provide the user with the additional option of detecting
and escaping infinite loops in unresponsive or long-running applications.

9 Conclusion

By making applications unresponsive, infinite loops can cause users to lose work
or fail to obtain desired output. We have implemented and evaluated Jolt, a
system that detects and, if so instructed, escapes infinite loops. Our results show
that Jolt can enable applications to transcend otherwise fatal infinite loops and
continue on to produce useful output. Jolt can therefore provide a useful option
for users who would otherwise simply terminate the computation.
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Abstract. In concurrent programs raising an exception in one thread
does not prevent others from operating on an inconsistent shared state.
Instead, exceptions should ideally be handled in coordination by all the
threads that are affected by their cause.

In this paper, we propose a Java language extension for coordinated
exception handling where a named abox (atomic box) is used to de-
marcate a region of code that must execute atomically and in isolation.
Upon an exception raised inside an abox, threads executing in depen-
dent aboxes, roll back their changes, and execute their recovery handler
in coordination. We provide a dedicated compiler framework, CXH, to
evaluate experimentally our atomic box construct. Our evaluation indi-
cates that, in addition to enabling recovery, an atomic box executes a
reasonably small region of code twice as fast as when using a failbox, the
existing coordination alternative that has no recovery support.

Keywords: error recovery, concurrent programs, failure atomicity.

1 Introduction

Exceptions and exception handling mechanisms are effective means for redi-
recting the control flow of an error-prone sequential program before it executes
on an inconsistent state of the system. This fact has led to extensive studies
on exception handling mechanisms and their being tailored to work well with
sequential programs. At the same time, a recent survey on 32 sequential ap-
plications presents the general picture on the exception handling usage by the
programmers and reports that even though more than 4% of the total source
code is dedicated to it, exception handling is still neglected in most of the cases:
either terminating the program or ignoring the exception [1]. This result shows
that sequential programs are generally developed by using exceptions as a means
to terminate programs in a convenient way and inconsistencies resulting from
exceptional situations are not really treated.

In concurrent programs, however, an exception raised by one thread cannot
prevent other threads from accessing an inconsistent shared state because other
threads may not be aware of the raised exception. Such an exception should
ideally be detected by all the threads that operate on the same shared state
because they can be affected by its cause. Two solutions to the problem can
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be considered: (i) the program should be brought back to a consistent state by
handling the exception, or (ii) all the affected threads (or even the whole appli-
cation) should be terminated to avoid execution on inconsistent shared states.
Since there are no widespread mechanisms that allow any of these solutions, it
is up to programmers to devise a solution for such cases. In other words, com-
pared to sequential programs where treating exceptions is barely considered, for
concurrent programs handling exceptions should be part of the main application
design and development in order not to jeopardize the application correctness.

To illustrate how easily the above inconsistency problem can appear in
ordinary concurrent programs, consider the following code in Figure 1 (in-
spired by a similar example in [2]). The figure presents a naive implementa-
tion of a classifier program where multiple threads concurrently evaluate nodes
from the unclassifiedNodes list, process them, and move them to the tar-
get class using the assignToClass method. Note that we assume that both
the unclassifiedNodes list and the target classes class[N] are shared by all
threads.

1 Class NodeClassifier {
2 int N; // number of classes
3 List unclassifiedNodes;
4 Set class[N];
5 ...
6 public void assignToClass(int srcPos, int targetClass) {
7 synchronized(this) {
8 Node selectedNode = unclassifiedNodes.remove(srcPos);
9 selectedNode.transform();

10 class[targetClass].add(selectedNode);
11 }
12 }
13 }

Fig. 1. A concurrent code that may end up in an inconsistent state if an exception is
raised while the selected node’s representation is being transformed as required by the
target class object in selectedNode.transform()

When an exception is raised on line 9, the system reaches an inconsistent
shared state if the exception is not handled: the selectedNode gets lost as it is
neither in the unclassifiedNodes nor in its target class. For correct execution
of the program, the exception should be handled and this should be performed
before any of the other threads, unaware of the raised exception, access either
the unclassifiedNodes list or the target class, which are inconsistent. Hence,
the handling of the exception should take the existence of concurrent threads
into account.

This example, albeit naive, clearly shows that exception handling becomes a
first class design consideration in development of correct concurrent programs.
And, needless to say, with the mainstream computer hardware becoming multi-
core, concurrent programming is about to become mainstream too. This fact



636 D. Harmanci, V. Gramoli, and P. Felber

highlights the need for solutions that will simplify concurrent programming un-
der exceptional situations.

Recently, Jacobs and Piessens proposed failbox as a mechanism to prevent
the system from running in such an inconsistent state. The key idea is that,
if one thread raises an exception in a failbox, any other thread is prevented
from executing in the same failbox [3]. Instead of letting the system run in an
inconsistent state, a failbox simply halts all concurrent threads accessing the
same failbox. However, failboxes neither revert the system to a consistent state
nor help the programmer recover from the error.

In this paper, we propose an abox-recover construct as a language extension
that supports coordinated exception handling by providing abox and recover
blocks (the keyword abox is derived from “atomic box”). Our abox-recover
construct differs radically from the failbox extension, as it reverts the system to
a consistent state upon exception to enable recovery through coordinated excep-
tion handling. Hence, aboxes do not only propagate the exceptions to concurrent
threads of the system (as failboxes do), but also allow these threads to recover
from this exception in a coordinated manner.

The programmer uses a named abox to demarcate regions of code that
should remain in a consistent state upon exception. The abox guarantees failure
atomicity either by executing all its content or by reverting its modifications.
Failure atomicity allows the programmer to handle exceptions. For example,
by replacing synchronized with abox in Figure 1, the inconsistency problem
can be solved: the abox reverts all its changes including the modification of
unclassifiedNodes. Dependencies between aboxes are indicated using a simple
naming scheme: dependent aboxes (ones that are subject to inconsistencies re-
lated to the same data) are attributed the same name. If an exception is raised
inside an abox, all threads executing in dependent aboxes stop their execution
and rollback their changes. Then, execution continues in a recover block, anal-
ogous to a catch block, by one or all the affected threads as specified by the
programmer. Typically, the recover block aims at correcting the condition that
caused the exception and/or reconfigure the system before redirecting the control
flow, restarting for example the execution of the atomic box. Our abox-recover
construct therefore provides the simplicity of a try-catch, but for coordinated
exception handling in multi-threaded applications.

Contributions. We propose an abox-recover construct as a language ex-
tension for coordinated exception handling. Our abox block uses transactional
memory (TM), a concurrent programming paradigm ensuring that sequences
of memory accesses, transactions, execute atomically [4]. As far as we know,
abox is the first language construct that benefits from memory transactions for
concurrent exception handling.

More specifically, an abox acts like a transaction that either commits (all its
changes take effect in memory), or aborts (all its effects are rolled back). The
main difference between abox and memory transactions lies in the way com-
mit and abort are triggered. In TM, transactions abort only if a detected con-
flict prevents the transaction from being serialized with respect to concurrently
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executing transactions. With coordinated exception handling, an abox is rolled
back also if an exception has been raised inside a dependent abox, which leads
to the execution of the corresponding recover block.

We have implemented a compiler framework for coordinated exception han-
dling, called CXH, that converts aboxes into some form of transactions. Our
CXH compiler framework ensures that all aboxes execute speculatively, making
sure that no exceptions are raised before applying the changes of the correspond-
ing aboxes in the shared memory. More precisely, CXH consists of a dedicated
Java pre-compiler that converts our language extensions into annotated Java
code, which is executed using a TM library thanks to an existing bytecode in-
strumentation agent. The CXH compiler generates code that guarantees that, if
an exception is raised in an abox, each thread executing a dependent abox con-
currently gets notified and rolls back the changes executed in the corresponding
abox. Depending on the associated recover block, the threads perform appro-
priate recovery actions and restart or give up the execution of the abox.

We compare experimentally our abox-recover construct against failboxes,
which only stop threads running in the same failbox without rolling back state
changes. Our results indicate that aboxes that comprise up to few hundreds
memory accesses execute 2× faster than failboxes in normal executions, where
no exceptions are raised, and 15× faster than failboxes to handle exceptions. We
also tested extreme cases where an abox executes thousands of memory accesses,
in which case the cumulated overhead of TM accesses may result in lower perfor-
mance than long failboxes. Besides illustrating that TM is a promising paradigm
for failure atomicity and strong exception safety, our evaluation indicates that
the abox mechanism is efficient compared to similar techniques providing weaker
guarantees.

Roadmap. Section 2 presents the background and related work. Section 3 intro-
duces an example that is used subsequently to illustrate our language constructs.
Section 4 describes the syntax and semantics of the language constructs for co-
ordinated exception handling. Section 5 presents the implementation of coordi-
nated exception handling and our CXH compiler framework. Section 6 compares
the performance we obtained against failboxes and Section 7 concludes.

2 Background and Related Work

Concurrent recovery. Thanks to their ability to rollback and their isolation
from the other parts of the program, atomic transactions have been used for con-
current handling of exceptions since the eighties [5]. Transactions by themselves
have been considered useful only for competitive concurrency where concurrently
executing threads execute separately, unaware of each other, but access common
resources. This type of concurrency is the primary target of our approach.

A classical alternative to avoid inconsistencies in portions of programs gener-
ating competitive concurrency consists in encapsulating the associated code in
transactions. Argus [6], Venari/ML [7] and Transactional Drago [8] map trans-
actions to methods (within which multiple threads can be spawned) and allow
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an exception that cannot be resolved on a local thread to abort the transaction,
passing the exception to the context where the method is called. OMTT [9] allows
existing threads to join a transaction but still propagate exceptions to a context
outside the transaction. In these approaches, exceptions concerning all the com-
peting threads result in the rollback of the transaction and the propagation of
the exception outside the transaction. In contrast, our approach allows threads
to (cooperatively) handle such exceptions, instead of directly propagating the
exception outside of the transaction scope.

The secondary target of our approach is cooperative concurrency that oc-
curs when multiple threads communicate to perform a common task. The main-
stream solution for cooperative concurrency is coordinated atomic (CA) actions
that propose to complement transactions with conversations to provide coordi-
nated error recovery. This approach applies to distributed objects like clients and
databases in a message passing context [10], e.g., the systems surveyed in [11]
whose distributed modules are presented in [12]. In contrast, our approach tar-
gets modern multi-core architectures thus benefiting from shared memory to
coordinate efficiently the recovery among concurrent threads. For example, our
approach shares the concept of guarded isolated regions for multi-party inter-
actions from [13] without requiring a manager to synchronize the distributed
interaction participants. Furthermore, a programmer needs to include a signifi-
cant amount of code to construct the CA action structure in her program using
frameworks specifically designed for this purpose [11,14], whereas in our ap-
proach the programmer can simply relate dependent code regions of an atomic
box using built-in language constructs and their parameters.

A more recent checkpointing abstraction for concurrent ML, called stabiliz-
ers, monitors message receipts and memory updates to help recovering from
errors [15]. Stabilizers can cope with transient errors but do not allow coordi-
nated exception handlers to encompass permanent errors.

Failboxes [3] ensure cooperative detection of exceptions in Java. A thread that
raises an exception while executing the code encapsulated in a failbox sends a
signal to the concurrent threads that are also executing in the same failbox.
Upon reception of this signal an exception is raised so that all threads can ter-
minate, which ensures that no thread keeps running on a possible inconsistent
shared state. Failbox does not provide coordinated exception handling because
the inconsistent state produced by the error cannot be reverted, hence the sys-
tem has no other solutions but stopping. One could use failboxes to stop the
entire concurrent program and restart it manually, however, restarting the pro-
gram from the beginning may not prevent the same exception to occur again. In
contrast, aboxes automatically rollback their changes upon exceptions and let
the programmer define recovery handlers to remedy the cause of an exception
and redirect the control flow.

Transactional memory. Transactional memory (TM) [4] is a concurrent pro-
gramming paradigm that lets the programmer delimit regions of code corre-
sponding to transactions. A TM ensures that each transaction appears to be
executing atomically: either it is aborted and none of its changes are visible
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from the rest of the system, in which case the transaction can be restarted, or
it commits and writes all its changes into the shared memory. The TM infras-
tructure checks whether memory locations have been accessed by concurrent
transactions in such a way that conflicts prevent them from being serialized, i.e.,
from being executed as if they were sequentially ordered one after the other. In
such case, one of the conflicting transactions has to abort.

The inherent isolation of transactions may seem a limitation to achieve high
levels of concurrency with some cooperative programming patterns, such as
producer-consumer interactions that have inter-thread dependencies. Several
contention management policies for TMs have been proposed, however, to al-
leviate this problem and provide progress guarantees [16,17]. Indeed a TM con-
veys a simple rollback mechanism on which one can build coordinated exception
handling. While originally proposed in hardware [18], many software implemen-
tations of TMs have since been proposed [19,20,21,22,23,24,25].

More recently, transactional (atomic) blocks have been suggested as a poten-
tial solution for exception handling. Shinnar et al. [26] proposed a try all block
for C#, which is basically a try block capable of undoing the actions performed
inside the block. Cabral and Marques [27] similarly propose to augment the
try block with transactional semantics (using TM as underlying mechanism)
to allow the retry of a try block when necessary. Other work proposed richer
atomic block constructs that build upon TM and that help with exception han-
dling [28,29,30]. However, all the existing implementations for the above work
focus on sequential executions, hence being unable to cope with coordinated ex-
ception handling. When a thread raises an exception, it can either rollback or
propagate the exception. If the exception is not caught correctly, the thread may
stop and leave the memory in a corrupted state that other threads may access.

3 A Running Example

In this section, we introduce an example code (Figure 2) which we later use to ex-
plain different aspects of atomic boxes. The example represents a multi-threaded
application with a shared task queue taskQueue from which threads get tasks
to process. All threads execute the same code. Once a thread obtains a task, it
first performs pre-computation work (getting necessary inputs and configuring
the task accordingly) in the prepare method. The execution of the task is per-
formed in the execute method of the thread, by calling sequentially the process
and generateOutputmethods of the task. We assume that generateOutput can
add new tasks in the taskQueue.

In what follows, we will mainly focus on the execute method of the thread.
The code of the method is given without any exception handling. The traditional
approach would be to use a try-catch statement enclosing the content of the
execute method. However, when an exception is caught, one cannot easily de-
termine at what point the execution of the method was interrupted and hence,
in general, it is difficult to revert to the state at the beginning of the method.
In such a case the task object could stay in an inconsistent state, possibly even
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1 public void run() {
2 Task task = null;
3 while(true) {
4 synchronized(taskQueue) {
5 task = taskQueue.remove();
6 }
7 if (task == null) break;
8 prepare(task);
9 execute(task);

10 }
11 }
12
13 public void prepare(Task task) {
14 task.getInput();
15 task.configure();
16 }
17
18 // No exception handling
19 public void execute(Task task) {
20 task.process();
21 task.generateOutput();
22 }

Fig. 2. A simple example where multiple threads process tasks from a common task
queue and that would benefit from concurrent exception handling

affecting the state shared with other threads, and it would not be possible to
simply put the task back into the taskQueue for later re-processing. The loss of
a task might require other threads to reconfigure, or to stop execution altogether
for safety or performance reasons: shared state may be inconsistent, incomplete
processing would be worthless. We will see in the next section using this example
how atomic boxes prevent the loss of the task and how they allow us to correct
the cause of the exception and coordinate threads for the program to recover.

4 Syntax and Semantics

Our language extension deals mainly with code blocks that are dependent on
each other in the sense that if a statement in one of the blocks raises an excep-
tion not handled within the block, none of the other code blocks should continue
executing. We call such blocks dependent blocks. An atomic box is a group of de-
pendent code blocks that are dependent and can act together to recover from an
exception that is raised in at least one of the code blocks. In order to express an
atomic box, each dependent code block belonging to an atomic block is enclosed
inside a new Java statement, abox-recover. The fact that abox-recover state-
ments belong to the same atomic box is specified by assigning them the same
name. The name of an atomic box is assigned to an abox-recover statement as
a parameter.
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An atomic box can be descendent of another atomic box, which means that
the atomic box is dependent on the parent atomic box. Relating an atomic box
as a descendant of another atomic box is achieved by assigning a descendant
name in the hierarchical naming space. If associated abox-recover statements
of the same atomic box execute on different threads, these threads are said to
be executing in the same atomic box.

Basically, an abox-recover statement is composed of two consecutive blocks:
the first block is called abox and the second recover. The precise syntax of the
abox-recover statement can be described as follows:

abox [ (”name”, <handlingContext>) ]
{ S }

[ recover(ABoxException <exceptionName>)
{ S’ } ]

where abox and recover are keywords, S and S’ are sequences of statements
(that may include the additional keywords retry and leave introduced by our
language extension), name and <handlingContext> are parameters of the asso-
ciated abox keyword and the <exceptionName> is the parameter of the recover
keyword. Optional parameters and structures are enclosed in square brackets:
abox may have no parameter and the block recover is optional.

An abox encloses a dependent code block of the application, while the recover
block specifies how exceptions not caught in the abox are handled. If an unhan-
dled exception is raised in an abox, we say that the abox fails. An abox-recover
statement provides the convenience of try-catch to a dependent block with the
following notable differences:

– Failure atomicity: An abox of an abox-recover statement can be rolled
back, i.e., either the contents of the abox performs all of its modifications
successfully (thus none of the aboxes that belong to the same atomic box fail
at any point), or the abox acts as if it has not performed any modifications.
The failure atomicity property of the abox is possible because an abox is
executed inside a transaction.

– Dependency-safety: An atomic box ensures dependency safety; i.e., if a state-
ment fails raising an exception, all statements that depend on the failing
statement do not execute. The dependency relation between statements is
established by naming abox-recover statements with a common name (or
with names of descendents). The dependency-safety is ensured by two prop-
erties of abox-recover statement: i) An abox executes in a transaction,
thus its execution is isolated from all dependent code in the system until it
commits. In other words, none of the dependent code blocks see the effects
of each other as long as code blocks do not commit. ii) If an exception is not
handled in an abox it rolls back its changes and recovery actions are taken
only after all the aboxes of an atomic box are rolled back. Thus, in no sit-
uation it is possible for a dependent code block to see partial modifications
of the another dependent block that is in inconsistent state.

– Coordinated exception handling: A try-catch statement offers a recovery
from exception only for the thread on which the exception occurs. The
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abox-recover statement allows the programmer to inform concurrently exe-
cuting threads of an exception raised in one of the threads. Moreover, through
the recover block of the abox-recover statement it is possible to recover
from that exception in a coordinated manner. Note that the coordination is
possible among recover blocks because they do not execute in a transaction.

– Last, an abox and its associated recover block can include try-catch state-
ments to handle exceptions raised in their context.

We distinguish two different modes of operation for an abox-recover statement:
normal mode and failure mode. The normal mode is associated with abox and
the failure mode is associated with the recover block. An abox executes in
normal mode, i.e., an abox executes as long as no exceptions are raised or until
an exception raised inside abox propagates outside of the block. Note that if the
code inside abox raises an exception, and this exception is caught in the block
itself, the abox still executes in normal mode.

When an exception is propagated out of abox boundaries (i.e., when an unhan-
dled exception is raised in the abox), the abox is said to fail and its abox-recover
statement switches to failure mode. The failure model of the abox-recover state-
ment is such that when the block abox fails, its associated atomic box also fails
(because the atomic box acts as a single entity upon an exception). Thus, all the
abox-recover statements associated to the atomic box switch to failure mode
upon the failure of an abox. The failure of an abox also triggers the failure of
the descendent atomic boxes.

In the failure mode all the threads that execute in the atomic box coor-
dinate together. They wait for each other to ensure that all the associated
abox-recover statements switch to failure mode and all the aboxes are rolled
back. Then they perform recovery actions as specified by the abox where the
exception is raised. After the recovery actions are terminated all the threads
decide locally how to redirect their local control flow. There are three options in
redirecting the control flow at the end of recovery: restarting, continuing with
the statement that comes after abox-recover statement, or raising an exception
(i.e., abrupt termination). The first two options are provided through two new
control flow keywords (retry and leave respectively), while raising an exception
is done by the usual throw statement.

In the rest of this section, we detail the constructs for normal and failure
modes, the control flow keywords, and the nesting of atomic boxes. We will also
discuss the semantics of the abox-recover statement under concurrently raised
exceptions.

4.1 Normal Mode Constructs

The only normal mode construct introduced by our language extension is the
abox. An abox encloses a dependent code block of an atomic box. The block
is part of the application code and the fact that it is enclosed in an abox does
not modify its functionality except for exception handling. In other words, as
long as no exception is propagated out of the dependent code block, there is no
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difference in terms of correctness of the application to have the block in an abox
or not. However, inserting the code in an abox increases safety and provides a
means for handling exceptions across multiple threads.

Although the functionality of the code inserted in an abox is not modified, an
abox has different semantics compared to traditional blocks: abox executes as a
transaction. That way, the modifications performed by the code inside the abox
are only guaranteed to be effective if the abox successfully terminates (hence,
if it successfully commits without switching to failure mode). Otherwise none
of the modifications performed in the context of the abox are visible by code
outside the abox. Therefore, the code in an abox executes atomically and in
isolation.

The transactional nature of the abox normal execution does not have effect on
the correctness of enclosed code but has implications on its execution time. As
the transactional execution is provided by an underlying transactional memory
(TM) runtime, it incurs two types of latency overhead: i) data accesses in the
abox are under the control of TM and will be slower than bare data accesses;
ii) in multi-threaded code if different aboxes concurrently perform accesses on
shared data in a way that inconsistencies would occur, an abox may be aborted,
rolled back and restarted, which adds extra latency to its execution.

In its simplest form (i.e., when its optional parameters are omitted) the syntax
for an abox is

abox { S }
where S is a sequences of statements. The statements in S may contain tradi-

tional Java statements as well as the control flow keywords added by our language
extension (see Section 4.3). For the sake of simplicity, in this paper we do not
consider Java statements that perform irrevocable actions (e.g., I/O operation
or system calls) in an abox because most underlying TM implementations do not
support transactional execution for such actions. There exist however practical
solutions to this limitation (e.g., in [31,32]).

The simplest form of an abox is considered as an indication that the block
is the only block in an atomic box, and thus it does not have any dependencies
on other parts of the code. For such abox the exception handling is done locally
without any coordination with any other abox. Hence, this form is suitable
for exception handling in single-threaded applications as well as handling of
exceptions for code blocks of multi-threaded applications that do not have any
implications on other running threads.

As an example of such scenario, assume that an OutOfMemoryError is raised
during the execution of the execute method of Figure 2. If for the running
multi-threaded application, it is known that most of the tasks has small memory
footprint but occasionally some tasks can have large memory footprint (but never
exceeding the heap size allocated by the JVM), it is possible to clean up some
resources or wait for a while before restarting execution. This would solve the
problem as memory is freed when a task with a possibly large footprint finishes
executing. Using the simple form of abox, the code for this solution would be as
in Figure 3 (the syntax for the recover block will be explained shortly). Note
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1 public void execute(Task task) {
2 abox {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Back off (sleep) upon OutOfMemoryError
8 backOff();
9 }

10 // Implicit restart
11 }
12 }

Fig. 3. Local recovery for an OutOfMemoryError using the simple form of abox

that this solution is not possible with either a try-catch block or a failbox since
the state of the task object cannot be rolled back to its initial state.

A programmer can describe an atomic box composed of multiple aboxes by
assigning all of the associated aboxes the same name. The syntax for expressing
an abox of such an atomic box is:

abox(”name”, <handlingContext>) { S }
where the name parameter is a string that associates the abox to the atomic

box it belongs to, and the <handlingContext> parameter is a keyword de-
scribing which recover blocks will execute for performing recovery. Since the
<handlingContext> parameter effects the execution of recover block, details
on this parameter are provided with the description of recover block in Sec-
tion 4.2.

Contrarily to the simplest form of abox, the named form implies that upon
failure of the abox the exception handling should be coordinated across the
atomic box. This form serves mostly in handling exceptions in multi-threaded
applications.

We can slightly change the conditions to the example for which abox provided
a solution in Figure 3 and generate a different scenario. Let us assume that in
the example there are not many solutions for solving the OutOfMemoryError and
the programmer simply wants to stop all the threads when such an exception is
raised. The code that will provide this solution would be as in Figure 4.

Note that all the threads are running the same code. The code in Figure 4
uses the named form of abox. The <handlingContext> parameter is given as
all, which means that when the OutOfMemoryError is raised on one thread, all
the threads running in the atomic box will execute their recover blocks. In the
recover block an exception is raised so that the currently executing thread dies
(since the threads are assumed to be running the code in Figure 2, the exception
will not be caught and each thread will be terminated). This solution is again
not possible with a try-catch statement. Since the objective in this example is
to stop the application, the failbox approach would also work: one could enclose
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1 public void execute(Task task) {
2 abox(”killAll”, all) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, propagate to terminate thread
8 throw e;
9 }

10 }
11 }

Fig. 4. Coordinated termination of a multi-threaded application upon an
OutOfMemoryError. The named form of abox can be used to provide such recovery.

the content of the execute method in an enter block, which would specify that
the code enters a failbox common to all threads.

We can also think about a variant of the above example that cannot be re-
solved using the failbox approach. Let us assume that, as the task object can
configure itself before execution, it is also possible to reconfigure it to perform the
same job using less memory but slower (e.g., by disabling an object pool). In such
a case, the named form of the abox allows us to resolve the problem with the code
in Figure 5 (again only by changing the content of the execute method). This
solution is possible with the named form of abox since the abox-recover state-
ment including the abox provides failure atomicity and coordinated exception
handling. The failure atomicity of the property of the abox-recover statement
allows the modifications of the execution inside the abox to be rolled back, thus
the task object can be reverted to a consistent state where it can be reconfigured.
The coordinated exception handling provided by the abox-recover statement
allows the same behavior to be performed on all threads in a synchronized way
and remedy the problem in a single step.

1 public void execute(Task task) {
2 abox(”reconfigure”, all) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, reconfigure and restart
8 task.reconfigure();
9 }

10 }
11 }

Fig. 5. Coordinated recovery to reconfigure tasks (for decreasing their memory foot-
print) upon OutOfMemoryError
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4.2 Failure Mode Constructs

Since an atomic box corresponds to dependent code blocks, when an abox fails,
its associated atomic box also fails. We call the atomic box that fails upon the
failure of an abox an active atomic box. An active atomic box is defined as the
set of aboxes of the same atomic box that have started executing and that have
not yet started committing. This set is defined as long as at least one thread
executes in the atomic box.

We argue that in terms of failure it is enough to consider an active atomic
box rather than all the statically defined atomic box to ensure dependency-safety
and failure atomicity. Since aboxes that have started committing are guaranteed
not to execute on any inconsistent state that can be generated by the aboxes
of the active atomic box (aboxes execute in isolation), their exclusion does not
harm dependency-safety. Moreover, the consistency of data is ensured as long
as the commit of aboxes that have started committing are allowed to finish
before the aboxes of the active atomic box start performing recovery actions. So
the rollback of an active atomic box does not require aboxes that have already
started committing to rollback. Hence, it is safe to provide failure atomicity only
for an active atomic box.

To have better understanding of the concept of active atomic box consider
the solution proposed in Figure 4. For this solution if we think that the tasks
executed by all of the threads have more or less the same load, the threads will
generally be executing the execute method at about the same time periods.
However, if we think of a scenario where tasks have variable load, this may not be
true. So when the OutOfMemoryError is raised, some threads may be executing
in the content of the abox, while some others may be still committing the abox
in the execute method and some others maybe fetching a new task from the
taskQueue (these threads have not yet entered in an abox). In such a case, the
proposed solution may not stop all the threads since not all may be executing
in the active atomic box when the OutOfMemoryError is raised. However, for
these non-terminated threads the execution continues safely; threads that were
committing while the exception is raised in active atomic box do not have any
more dependence on the aboxes of the atomic box, and threads that have not
yet entered execution in the atomic box may not raise an OutOfMemoryError if
there is enough memory once the threads of the active atomic box get killed.
Even if an OutOfMemoryError is again raised, this will be resolved by the active
atomic box defined at the time of the second exception. Hence, we see that by
applying the failure atomicity and dependency-safety only on the active atomic
box it is also possible to provide safe executions.

The failure of an active atomic box results in the following coordinated be-
havior in the aboxes that constitute the active atomic box:

1. The aboxes that constitute an active atomic box switch to failure mode. This
triggers the coordinated failure behavior of the atomic box.

2. All the aboxes that switch to failure mode automatically rollback. At the
same time all aboxes that have started committing terminate their commit.
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3. All the threads executing in an active atomic box are notified of a special
exception ABoxException (the structure of this exception is explained later).

4. All the threads executing in an active atomic box wait for each other to make
sure that they all rolled back and received the ABoxException notification.
The threads in the active atomic box also wait for threads running an abox
that have already started committing to finish their commit operation (which
may not succeed and trigger an abort).

5. All the aboxes that constitute an active atomic box perform the recovery
actions in the associated recover blocks according to the ABoxException
they receive. Entry in the atomic box is forbidden for any thread during
recovery.

6. All the threads executing in an active atomic box wait for each other to
terminate their recovery actions. Once all recovery actions are terminated
each of the threads executing in the active atomic box decide locally how to
redirect their control after failure.

The ABoxException. The structure of the ABoxException that is notified to
all the threads in the active atomic box is as follows:

public class ABoxException {
Class causeClass;
String message;
Thread source;
String aboxName;
int handlingContext;
// Methods omitted...

}
where the causeClass field stores the class of the exception raised by the

abox that initially failed (initiator abox), the message field is the message of
the original exception, the source field is the reference to the Thread object
executing the initiator abox, aboxName is the name of the failing atomic box and
handlingContext is an integer value that defines which of the corresponding
recover blocks associated to the atomic box will be executed. The value of
the handlingContext corresponds to the <handlingContext> parameter of the
initiator abox (the details for the values of handlingContextare explained below
together with the recover block). Note that the ABoxException stores the class
of the original exception object that initiated the atomic box failure rather than
its reference. This is a deliberate choice since the original exception object can
include references to other objects that are allocated inside the initiator abox
and that will be invalidated by the rollback performed upon the failure of the
atomic box.

The recover block. A recover block encloses recovery actions to be executed
when the abox it is associated to fails. Since the recover block is related to
failure of an atomic box, it is only part of failure mode execution. Note also
that the recover block does not execute in a transactional context; it always
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executes after its corresponding abox rolls back. The decision of whether the
recover block will be executed depends on the handlingContext parameter of
ABoxException sent by the initiator abox. Two values exist for the parameter
handlingContext: local and all. With the local option, only the recover
block of the initiator abox will be executed, other threads will not execute any
recovery action. If the all option is chosen all the threads executing in the
atomic box execute their respective recover blocks.

Whichever of the handlingContext options is chosen, once the recover block
executions are terminated each of the threads executing in the atomic box take
their own control flow decision. If the handlingContext parameter has the value
local, the initiator abox redirects the control flow according the control flow
keyword used in its recover block (for the control flow keywords see Section 4.3).
All the other threads in the atomic box re-execute the abox for which they
perform recovery actions. If the handlingContext parameter has the value all,
each of the threads redirects the control flow according the control flow keyword
used in its respective recover block.

If the recover block of abox-recover statement has been omitted, the thread
executing this abox-recover statement performs no recovery and re-executes
the abox of the abox-recover statement.

The syntax of the recover block can be described as follows:

recover(ABoxException exceptionName) { S }
where the exceptionName is the name of the ABoxException notified to all the

threads upon failure of an atomic box. The exception parameter of the recover
block is expected to be of type ABoxException and providing an exception of
another type will produce a compiler error.

Having analyzed most of the properties of the normal and failure modes, it
would be appropriate to analyze the mechanisms described above in an example.
At this point, we can use another variant of the running example of Figure 2
with an OutOfMemoryError being raised during the execution of the execute
method. Suppose, in this case, that the programmer knows that he is using too
many threads and if the heap allocated by the JVM is not enough, it would be
enough for him to kill only some of the worker threads. This would effectively
handle the exception while keeping the parallelism of thread executions at a
reasonable level. Since the programmer would not know the size of the memory
allocated in advance he can choose to implement the solution in Figure 6 using
the atomic boxes.

The solution shown in Figure 6 is the same as the code in Figure 4 except
that the name of the <handlingContext> parameter is set to local instead
of all. With this change each time an OutOfMemoryError is raised only the
thread raising the exception executes the throw statement and kills itself. This
solution works better than a simple try-catch because with the try-catch
solution multiple threads could have raised the same exception at the same time
and, being unaware of the exceptions raised in other threads, all of these threads
would kill themselves leaving a smaller amount of threads running in the system,
rather than gradually decreasing the amount of concurrency. Gradual decrease is
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1 public void execute(Task task) {
2 abox(”killSome”, local) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, propagate to terminate local thread
8 throw e;
9 }

10 }
11 }

Fig. 6. Coordinated recovery to decrease the memory used by the multi-threaded ap-
plication by killing only some of the threads upon OutOfMemoryError

possible thanks to the coordinated nature of the exception handling: coordination
imposes the threads to abort their aboxes (instead of killing themselves) and
restart execution after the initator abox’s thread is killed. Thanks to the failure
atomicity provided by atomic boxes, this can safely be repeated as many times
as required until the required number of threads are killed.

4.3 Redirecting Control Flow after Recovery

For providing control flow specific to abox-recover statement, we introduce two
new control flow keywords: leave and retry. These keywords are to be used
mainly inside recover blocks but they can also be used with similar semantics
in the aboxes. The only difference of using the keywords in an abox is that they
immediately fail the abox (and respectively also the active atomic box) and
they behave as a recover block that has no other recovery actions but only the
specified keyword. Thus, the existence of these keywords in the abox will just
serve as a shortcut to a case where the atomic block has failed and we execute
only a leave or retry inside the recover block.

If no control flow keyword is provided, upon exit, the recover block implicitly
re-execute the associated active abox. A programmer can also explicitly ask for
re-execution of the associated abox using the retry keyword. In contrast, a
leave keyword will pass the control to the statement following the recover
block. Note that with a leave keyword, the effect of an abox is as if it had never
executed. The reason is that the failure of the abox has caused the rollback of
the modifications performed within.

The use of throw statement inside recover block will quit the recover
block and propagate the exception in the context of the statement following
the recover block. With a throw statement, again the atomic box appears as if
it has never executed. Similarly if an unhandled exception is raised in recovery
action code enclosed in a recover block, the behavior is the same as an explicit
throw statement.

Any already existing control flow keyword (except the throw keyword) that
quits a block (i.e., continue, break and return) does not change semantics
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with our language extension. When used inside an abox (and not used inside
a nested block such as a loop) they imply immediate commit of the tentative
modifications up to the point of occurrence of the keyword and pass the control
to the target destination outside the abox and recover block. If those control
keywords are used inside a recover block, they behave exactly the same way as
in the abox except that, since the abox is rolled back, none of the effects of the
abox are visible (but of course the modifications inside the recover block are
effective).

The use of a throw statement inside the abox raises an exception in the block
as in plain Java. If the exception is handled inside the abox the behavior of the
throw statement is unchanged. However, if the exception is not handled in the
abox, the abox (and the corresponding active atomic box) switches to failure
mode.

4.4 Nesting of Atomic Boxes

The failure of an abox can also trigger the failure of an atomic box other than
the one it belongs to. If the failing atomic box is parent of another atomic box,
when the parent atomic box fails, the child atomic box also fails, thus both the
parent and the child atomic boxes switch to failure mode. In contrast, when a
child atomic box fails, its parent atomic box does not fail, thus the child atomic
box switches to failure mode, while the parent atomic box does not.

The fact that atomic boxes have ascendants or descendants is reflected by a
hierarchical naming of aboxes. The name parameter of an abox can be a string
of the form x.y.z following the naming convention of Java package names.

4.5 Resolution of Concurrently Raised Exceptions

Up to this point we have considered only the case where a single abox initiates
an atomic box failure. If an exception needs to be treated by an abox, this is
most probably because the exception concerns all the threads executing in the
atomic box. So it is not surprising to expect that multiple aboxes raise the same
exception and fail the atomic box. It is also perfectly possible that different
aboxes of the same atomic box, concurrently raise the different exceptions and
cause the atomic box to fail.

The atomic box takes a very simple approach to resolve concurrently raised
exceptions thanks to its failure atomicity property: an atomic box allows only
one exception (the first one to be caught) to be treated in failure mode and
ignores all the concurrently raised exceptions during failure mode.

The atomic box does not consider all the concurrently raised exceptions to-
gether. By handling one exception and removing its cause before re-execution,
one may avoid other concurrent exceptions to occur again. During re-execution,
if the cause of the concurrently raised exceptions are not removed they will again
manifest and fail the atomic box. They will thus be treated during re-execution.

As can be noticed, among other advantages, the atomic box approach brings
an elegant solution to the concurrent exception handling problem thanks to
its failure atomicity property. Actually, the solution presented in Figure 6 is a
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good example illustrating the resolution of concurrently raised exceptions. In
this example, other than the coordinated nature of the exception handling, it is
the simple concurrent exception handling approach taken by atomic boxes that
allows us to kill only as many threads as required.

5 Atomic Boxes Implementation

We have implemented a concurrent exception handling compiler framework,
called CXH, that supports the language constructs proposed in Section 4. The
CXH compiler framework produces bytecode that is executable by any Java vir-
tual machine in a three-step process. First it runs our pre-compiler, TMJava

that converts the extended language into annotated Java code. The annotations
are used to detect, in the bytecode, which parts of the code have the abox se-
mantics. Second our CXH embeds the LSA transactional memory library [24]
that provides wrappers to shared memory accesses. Our aboxes benefit from the
speculative execution of TMs to ensure that no exceptions are raised before ap-
plying any change in the shared memory. Third, CXH uses an existing bytecode
instrumentation framework, Deuce [33], that redirects calls within annotated
methods to transactional wrappers. We describe below these three components
in further detail.

5.1 Language Support for Atomic Boxes

We implemented TMJava, a Java pre-compiler that converts abox-recover
constructs in annotated Java code. This allows us to compile the resulting code
using any Java compiler. TMJava converts each abox into a dedicated method
that is annotated with an @Atomic keyword. More precisely, TMJava analyzes
the code to find the aboxes (abox keyword) inside class methods. Then, for each
such abox it creates a new method whose body is the content of the correspond-
ing abox and replaces the original abox with a call to this new method. The
conversion of an abox a into a method m requires passing some variables to the
produced method m to address the following issues:

1. Variables that belong to the context of the method enclosing the abox a
should also be accessible inside the scope of the produced method m.

2. Variables that belong to the context of the method enclosing the abox a and
that are modified inside a should have their modifications effective outside
the produced method m (as it would be for abox a).

To ensure that variables are still visible inside the produced methods, the vari-
ables whose scope are out of abox context are passed as input parameters to
the corresponding method. For the state of variables to be reflected outside the
scope of the abox, these variables are passed as parameters using arrays (if the
variables are of primitive types). When the method returns, we copy back these
array elements into the corresponding variables.

The resulting annotated Java code can be compiled using any Java compiler.
TMJava is available for download from http://tmware.org/tmjava.

http://tmware.org/tmjava
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5.2 Transactional Memory Wrappers

We use LSA [24], an efficient time-based transactional memory algorithm that
maps each shared memory location with a timestamp. Each transaction of LSA
executes speculatively by buffering its modifications. If a transactions reaches
its end without having aborted, it attempts to commit by applying its modifica-
tions to shared memory. More precisely, when a transaction starts it records the
value of a global time base, implemented as a shared counter. Upon writing a
shared location, the transaction acquires an associated ownership record, buffers
the write into a log, and continues executing subsequent accesses. At the end,
when the transaction tries to commit, it reports all the logged writes in memory
by writing the value, incrementing the global counter, and associating its new
version to all written locations as part of the ownership records. Upon reading
a shared location, it first checks if the location is locked (and aborts if locked),
then compares the version of the location to the counter value it has seen. If
the location has a higher version than this value, this means that a concurrent
transaction has modified the location, indicating a conflict.

The particularity of the LSA algorithm is to allow the transaction to com-
mit despite such a conflict thanks to incremental validation: if all previously
read values are still consistent, i.e., their versions have not changed since they
have been read, the transaction has a valid consistent snapshot and can resume
without aborting.

Our abox leverages memory transactions that execute speculatively on shared
data. The main difference between aboxes and the transactions lies in the fact
that each abox decides whether to abort or commit its changes also depending
on (concurrent) exceptions raised. Before committing, an abox makes sure that
no exception was raised inside the block or by a dependent abox.

5.3 Bytecode Instrumentation

After compilation we obtain a bytecode where annotated methods directly access
the memory. To ensure that these annotated methods, which correspond to the
original aboxes, execute speculatively we have to redirect their memory accesses
to the transactional memory. To that end, we use the Deuce framework [33] to
instrument the annotated method calls at load time. Deuce instruments class
methods annotated with @Atomic such that accesses to shared data inside those
methods are performed transactionally. This bytecode instrumentation redirects
all abox memory accesses to LSA so that each abox executes as a transaction.

6 Evaluation

We compare our abox solution against failbox [3] on an Intel Core2 CPU running
at 2.13GHz. It has 8-way associative L1 caches of 32KB and an 8-way associative
L2 cache of 2MB. For abox we implemented the compiler framework as explained
in Section 5 whereas for failboxes we reused the original code from [3].



Atomic Boxes: Coordinated Exception Handling with Transactional Memory 653

6.1 Producer-Consumer Example

Our first experiments consist of a simple producer-consumer application, where
one thread pushes an item to a shared stack while another pops the topmost item
from the same stack. For the sake of evaluation, the stack push() method raises
an exception if adding the new item to the stack would exceed its capacity.
We evaluated two versions of the same program: one using failbox, the other
using our abox. The execution time of these two versions has been evaluated in
normal cases (where we fill the stack prior to execution such that no exceptions
are raised) and for handling exceptions (where we try to push an item to an
already full stack). Results are averaged over 100 executions.

Table 1. Execution times of abox and failbox (in microseconds) on a multi-threaded
producer-consumer application when no exceptions are raised

min max average

abox 7.27 11.67 8.92

failbox 15.70 34.97 18.58

speedup of abox 1.34 4.81 2.08

Tables 1 and 2 report the minimum, maximum and average execution time in
microseconds, respectively without and with exceptions. On the one hand, we
observe that our solution executes about 2× faster (on average) than failboxes in
normal executions. This is due to a cache effect observed with failbox approach.
Each time a failbox is entered a shared variable is checked to verify whether it
has failed. Since this experiment requires very frequent entries to a failbox by
multiple threads the failbox entries are serialized. Our implementation does not
suffer from this problem since the check for the failure of an abox does not need
to be verified often (an abox is executed in isolation from other code).

On the other hand, our solution performs more than 15× faster (on average)
than failboxes to handle exceptions. We conjecture that it is due to the fact that
failbox approach uses the interrupt mechanism to communicate the exception
on one thread to the other threads. The abox approach communicates over the
shared memory, resulting in a faster notification. It is worth mentioning that
our aboxes permit both push() and pop() methods to recover from exception,
allowing the program to resume, while failbox simply stops the program upon
the first exception raised. Considering this desirable behavior and the observed
overhead, abox clearly represents a promising approach.

6.2 Sorting Examples

Our second experiments rely on two single-threaded sorting applications (quick-
sort and bubble-sort) coded in 3 ways: (i) using plain Java (with no extensions),
(ii) inside failboxes, and (iii) inside abox blocks. The plain Java version is used
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Table 2. Execution times of abox and failbox (in microseconds) on a multi-threaded
producer-consumer application when exceptions are raised

min max average

abox 1.40 2.62 2.22

failbox 32.167 47.23 34.55

speedup of abox 12.28 33.74 15.7
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Fig. 7. Comparison of the overhead produced when starting and terminating an abox

and a failbox (note the logarithmic scales on both axes)

to measure the inherent overhead of failbox and abox versions. The sort is per-
formed inside a function and the application can choose to run either a quick-sort
or a bubble-sort function.

Figures 7 through 9 depict the performance of failbox and abox on quick-sort
(left column) and bubble-sort (right column). Figure 7 compares the execution
overhead due to entering and leaving an abox block or a failbox (we call this be-
gin/end overhead). Figure 8 shows the execution time performance of abox and
failbox executions without the begin/end overhead. Figure 9 depicts the total ex-
ecution time performance of abox and failbox. The execution time performance
depicted in figures 8 and 9 are given as the slowdown with respect to the perfor-
mance of the plain Java version, which does not have any begin/end overhead.
Each point in the graphs corresponds to the average of 10 runs.

The results show that although the failbox approach performs as good as
plain Java inside the failbox, its begin/end overhead is quite high. We attribute
this high overhead of the failbox approach to the memory allocation performed
to generate a new failbox (be it a child or a new failbox) before entering the
failbox. Figure 9 also illustrates that abox blocks perform better than the failbox
approach for input arrays of up to about 1000 elements. This demonstrates that
our abox implementation, although using transactions to sort array elements,
performs well even compared to simpler approaches that do not roll back state
changes.
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7 Conclusion and Future Work

This paper introduces language constructs for concurrent exception handling, a
way to handle exceptions in a concurrent manner for multi-threaded software.

The key novelty is to ensure that any inconsistent state resulting from an
exception cannot be accessed by concurrent threads, thus allowing the program-
mer to define concurrent exception handlers. The alternative failbox [3] language
construct that prevents threads from running on inconsistent states simply stops
all threads. Letting the programmer define concurrent exception handlers allows
us to recover rather than stop. For example, the programmer can remedy the
cause of an exception and retry the concurrent execution.

To experiment with our solution, we have implemented a compiler framework,
CXH, for our language constructs that converts aboxes into code that uses an
underlying software transactional memory runtime. Our preliminary evaluations
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indicate that the overhead of our transactional wrappers is low: when accessing
up to hundreds of elements, aboxes execute twice faster than failboxes.

The fact that the transactional memory overhead does not significantly im-
pact the concurrent exception handling should encourage further research in this
direction. This work could for example benefit from ongoing progress in hardware
and hybrid transactional memory to further reduce overheads, as our current im-
plementation is purely software based. Even though there is a long road before
integrating such language constructs in Java, we believe that exploring transac-
tional memory as a building block for concurrent exception handling will raise
new interesting research challenges and offer new possibilities for programmers.
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Tanter, Éric 459, 558
Taube-Schock, Craig 204

Vitek, Jan 52

Walker, Robert J. 204
Warth, Alessandro 179
Wasylkowski, Andrzej 105



660 Author Index

Wermelinger, Michel 130

Winther, Johnni 434

Witten, Ian H. 204

Wolff, Roger 459

Xu, Hao 510

Yu, Yijun 130

Zaparanuks, Dmitrijs 27
Zeller, Andreas 105
Zhang, Cheng 510
Zhang, Sai 510
Zhao, Jianjun 510


	Title Page
	Preface
	Organization
	Table of Contents
	Keynote 1
	A Co-relational Model of Data for Large Shared Data Banks

	Empirical Studies
	An Empirical Study of Object Protocols in the Wild
	Introduction
	Methodology
	Definitions and Scope
	Experimental Procedure
	Programs Under Analysis
	Risks

	Results
	Protocol Definitions
	Protocol Categories
	Protocol Usage

	Discussion
	Sanity Check
	Widely Used Protocols
	Protocol Categories
	Other Observations
	Future Work

	Related Work
	Conclusion
	References

	The Beauty and the Beast: Separating Design from Algorithm
	Introduction
	Rationale

	Motivation
	Approach
	Overview
	Forest Construction

	Implementation
	Characterization
	Size
	Essence
	Essence by System

	Essence and Design
	Essence and Code Smells
	Essence and Refactorings
	Essence and Design Patterns

	Related Work
	Conceptual Relationship to Existing Metrics
	Empirical Correlation with Existing Metrics

	Discussion
	Usage Scenarios
	Limitations

	Conclusions
	References

	The Eval That Men Do
	Introduction
	The Nature of Eval
	Methodology
	Infrastructure
	Corpus
	Threats to validity

	Usage Metrics
	A Taxonomy of Eval
	Operation Mix
	Scope
	Patterns
	Provenance
	Consistency

	Other Faces of Eval
	Case Studies
	Related Work
	Conclusion
	References
	Patterns
	Performance Impact of Eval
	Local vs. Global Scope


	Mining, Understanding, Recommending
	Using Structure-Based Recommendations to Facilitate Discoverability in APIs
	Introduction
	Motivation
	API Explorer
	API Graph and Recommendation Algorithms
	API Exploration Graph
	Object Construction Algorithm
	Method Recommendation Algorithm
	Relationship Exploration Algorithm
	Code Generation Algorithm
	Design Rationale

	Evaluation
	Case Study Design 
	Results
	Summary
	Threats to validity

	Related work
	Conclusion
	References

	Mining Evolution of Object Usage
	Introduction
	Object Usage Evolution
	Temporal Properties
	Change Properties

	Mining Patterns
	Detecting Evolution Patterns
	Finding Missing Changes

	Evaluation
	Detecting Errors
	Preventing Errors
	Threats to Validity

	Related Work
	Learning Evolution Rules
	Learning from Project History

	Conclusion and Consequences
	References

	Improving the Tokenisation of Identifier Names
	Introduction
	The Identifier Name Tokenisation Problem
	The Composition of Identifier Names
	Tokenising Identifier Names

	Related Work
	Approach
	Oracles
	Tokenising Conventionally Constructed Identifier Names
	Tokenising Identifier Names Containing Digits
	Tokenising Single Case Identifier Names

	Experiments and Results
	INTT
	Comparison with Samurai
	Single Case Identifier Names
	Threats to Validity

	Discussion
	Identifier Names Containing Digits
	Limitations

	Conclusions
	References


	Modularity
	Revisiting Information Hiding: Reflections on Classical and Nonclassical Modularity
	Introduction
	Modularity and Classical Logic
	Information Hiding and Abstraction
	Reductionism and Compositionality
	Idealization
	Monotonicity
	Summary

	Programmers Use Nonclassical Reasoning
	Programmers Use Inductive Reasoning
	Programmers Use Default Reasoning and Occam's Razor
	Programmers Use Negation as Failure and Closed-World Reasoning
	Discussion

	Limits of Information Hiding
	Operational Behavior and Interface Detail
	Large Systems
	Separation of Concerns and the Dominant Decomposition
	Software Evolution
	Information Hiding and Classical Logic

	Programs Are Not Models
	Towards Nonclassical Modularity
	Conclusions
	References

	Worlds: Controlling the Scope of Side Effects
	Introduction
	Approach
	Worlds/JS
	Safety Properties

	Worlds by Example
	Better Support for Exceptions
	Undo for Applications
	Extension Methods in JavaScript

	Property Lookup Semantics
	Property Lookup in JavaScript
	Property Lookup in Worlds/JS

	Implementation
	Data Structures
	The Slot Update Operation: (xi v)w
	The Slot Lookup Operation: (xi)w
	Reads and Writes in the Top-Level World
	The Commit Operation
	Pulling It all Together

	Case Study #1: A Bitmap Editor
	The Implementation of Tree Undo
	Bitmap Representation
	Benchmarking the Bitmap Editor

	Case Study #2: OMeta + Worlds
	Related Work
	Conclusions and Future Work
	References

	Can We Avoid High Coupling?
	Introduction
	Scale-Free Structure and Its Application to Software
	Power-Lawdistributions
	Empirical Findings
	Process Models Leading to Scale-Free Structure

	Model
	Connectivity and Evolvability
	Scale-Free Structure in Overall Connectivity
	Scale-Free Structure in Between-Module Connectivity

	Empirical Study
	Graph-Based Source Code Representation
	Identification of Within-Module and Between-Module Links

	Analysis
	Overall Connectivity
	Between-Module Connectivity

	Discussion
	Threats to Validity
	Near-Constant  for Between-Module Connectivity
	Varieties of Coupling

	Conclusion
	References


	Keynote 2
	Expressiveness, Simplicity, and Users

	Modelling and Refactoring
	CDDiff: Semantic Differencing for Class Diagrams
	Introduction
	Examples
	Example I
	Example II
	Example III

	Preliminaries
	Class Diagrams Language
	A Brief Overview of Alloy

	CDDiff
	Definitions
	Computing cddiffk: Overview
	Computing cddiffk: The Generated Alloy Module

	Implementation and Evaluation
	Browsing Diff Witnesses
	High-Level Evolution Analysis
	Performance

	Extensions: Filtering and Abstraction
	Filtering Diff Witnesses
	Abstraction

	Discussion and Future Directions
	Bounded Analysis and the Small Scope Hypothesis
	Integration With Operation-Based and Syntactic Differencing

	Related Work
	CD Formal Semantics and Analysis
	Model and Program Comparisons

	Conclusion
	References

	A Refactoring Constraint Language and Its Application to Eiffel
	Introduction
	Motivation and Related Work
	A Generalized Framework of Constraint-Based Refactoring
	Program Elements, Kinds, and Properties
	Domains
	Constraints, Constraint Rules, and Constraint-Based Refactoring
	Program Queries and Writing Back Solutions
	Specifying a Refactoring

	Challenges of Constraint-Based Refactoring
	Indirection
	Reducing the Solution Space: Generating the Necessary Constraints Only
	Determining the Best Solution: Soft Constraints
	Defaults and Introductions
	Miscellaneous

	The Refactoring Constraint Language REFACOLA
	The REFACOLA Language and Framework
	Implementation of the Compiler

	Application
	The RENAME Refactorings
	The CHANGE ACCESSIBILITY Refactoring
	The CHANGE DECLARED TYPE Refactoring
	Combining Several Refactorings into One

	Experimental Results
	Conclusion
	References

	Modal Object Diagrams
	Introduction
	Examples
	Example I
	Example II

	Modal Object Diagrams
	Class Diagrams and Object Diagrams
	Defining Modal Object Diagrams

	Verifying a CD against an MOD Specification
	Problem Definition
	A Brief Overview of Alloy
	Solution by Transformation to Alloy

	Implementation and Evaluation
	Example Results
	Performance Results

	Extensions
	Partial vs. Complete Positive Examples
	Parametrized Object Diagrams

	Discussion and Future Work
	Complexity and Performance
	The Bounded Scope Limitation
	MOD and OCL
	Using MODs in the Design Process
	Synthesis and Unsatisfiable Cores

	Related Work
	Conclusion
	References


	Aliasing and Ownership
	Types, Regions, and Effects for Safe Programming with Object-Oriented  Parallel Frameworks
	Introduction
	Background
	Safe, Reusable Parallel Frameworks
	A List Node Container
	Getting More Flexibility
	Writing the Framework Implementation

	Formal Elements
	Syntax
	Static Semantics
	Dynamic Semantics
	Valid Execution State
	Soundness Results

	Evaluation
	DPJ Frameworks
	Client Code
	Discussion of Evaluation Results

	Related Work
	Conclusion
	References

	Tunable Static Inference for Generic Universe Types
	Introduction
	Background on Generic Universe Types
	Inference Approach and Example
	Inference Approach
	Iterative Usage

	Tunable Static Inference
	Programming Language
	Building the Constraints
	Heuristic Choice of a Solution
	Encoding for a SAT Solver

	Implementation and Experience
	Implementation
	Experience
	Future Work

	Related Work
	Conclusion
	References

	Verifying Multi-object Invariants with Relationships
	Introduction
	Running Example
	First-Class Relationships
	Language Principles
	Assertion Language

	The Metapost
	Stratification
	Admissibility Criteria

	Verification Technique
	Background
	Proof Obligations

	Discussion and Related Work
	Conclusions
	References
	Pre- and Postconditions for Composite Specification


	Memory Optimizations
	Patterns of Memory Inefficiency
	Introduction
	The Memory Patterns
	Patterns P1–P3: Empty, Fixed, Small Collections
	Pattern P4: Sparsely Populated Collections
	Pattern P5: Small Primitive Arrays
	Pattern P6: Boxed Scalar Collections
	Pattern P7: Wrapped Collections
	Pattern P8: Highly Delegated Structures
	Pattern P9: Nested Collections
	Pattern P10: Sparse References
	Pattern P11: Primitive Array Wrappers

	The ContainerOrContained Abstraction
	Heap Snapshots and the Object Reference Graph
	Limitations of the Dominator Relation
	Roles, and the ContainerOrContained Model
	How Roles Imply Per-Object and Total Overhead
	Regions, and the ContainerOrContained DAG

	Detecting Pattern Occurrences, and Aggregating Them by Context
	Client Analyses

	Experiences with Our Tool
	Validation and Characterization
	How Much of the Overhead Do the Patterns Explain?
	How Many Contexts Does a User Need to Look at?
	How Many Different Types of Problems Exist in a Single Heap?
	How often Do the Pattern Categories Appear across Applications?
	Additional Sources of Inefficiency

	Related Work
	Conclusions
	References

	Reuse, Recycle to De-bloat Software
	Introduction
	Preliminaries
	Finding Potential Sources of Bloat
	The Problem with Loop Carried Data Dependence
	The Basic Algorithm
	Multiple Control Dependence Paths

	Object Reuse, Recycle Transformations
	Basic Reuse-Recycle Algorithm
	Reusing Collections
	Reusing Strings
	Implementation Details
	Dynamic Analysis Guided Filtering of Candidate Reuse Sites
	Discussion

	Empirical Evaluation
	Reuse Site Detection Statistics (static analysis)
	Reuse Site Object Churn Statistics (dynamic analysis)
	Performance Impact Statistics

	Related Work
	Conclusion and Future Work
	References


	Keynote 3
	A Featherweight Approach to FOOL

	Types
	Related Types
	Introduction
	Unintended Dead Code
	Related Work
	Relatedness
	Related vs. Unrelated
	Relatedness
	Value Subtype
	Relatedness and Value Subtyping

	Type Annotations
	The Related Type
	Examples of Use
	Related Types and Variance
	Bounds on Related Types

	Type Rules
	Experiments
	Work-in-Progress Code Tests
	Production Code Tests

	Conclusion
	References
	Error Examples
	Conceptual Identity: Lookup
	Conceptual Identity: Build Hierarchy
	Off-by-One: ModelChannelMixer vs. SoftChannelMixerContainer
	Off-by-One: Win32ShellFolder2
	Conceptual Mismatch: ProjectDescription
	Conceptual Mismatch: Argument Types


	Gradual Typestate
	Introduction
	Typestate-Oriented Programming
	Static Featherweight Typestate
	Syntax
	Managing Permissions
	Static Semantics
	Holding Permissions

	Gradual Featherweight Typestate
	Internal Language
	Syntax
	Static Semantics
	Dynamic Semantics
	Type safety

	Source to Target Translation
	Discussion
	References

	Maintaining Database Integrity with Refinement Types
	Introduction
	Background: Database Integrity Constraints
	Background: Multi-tier Functional Programming
	Databases and Refinement Types
	Transactions and the Refined State Monad
	An Architecture for Verified Database Transactions
	Contributions of the Paper

	A Tool to Model SQL with Refinement Types
	SQL Schemas: Tables and Stored Procedures
	Generating Types and Database Interfaces from Schemas
	Reference Implementation of Database Interface
	Extension with Application Constraints

	Completing the Marriages Example
	Database Schema
	Access Function API
	User-Written Transactions

	Example: A Simple E-Commerce Application
	Example: A Heap-Ordered Tree
	Software Architecture and Evaluation
	Related Work
	Conclusion
	References


	Runtime and Memory Optimizations
	Frequency Estimation of Virtual Call Targets for Object-Oriented Programs
	Introduction
	Motivating Example
	Potential Applications
	Approach
	Preprocessing
	Static Feature Set
	Estimation Model

	Evaluation
	Experimental Design
	Rank Correlation Analysis
	Top Target Prediction
	Weight Matching Analysis
	Predictive Power Analysis
	Discussion
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

	Counting Messages as a Proxy for Average Execution Time in Pharo
	Introduction
	Profiling Based on Execution Sampling
	Counting Messages as a Proxy for Execution Time
	Execution Time and Number of Message Sends
	Method Invocation
	Effect of the Execution Context
	Tracking Optimizations
	Cost of Counting Messages

	Counting Messages to Identify Execution Bottlenecks
	A Method as an Execution Bottleneck
	Method Invocations Per Method
	Method Execution Time and Number of Message Sends
	Stability of Message Counting
	Cost of the Instrumentation

	Contrasting Execution Sampling with Message Counting
	Implementation
	Discussion
	Related Work
	Conclusion
	References
	Linear Regression Material

	Summarized Trace Indexing and Querying for Scalable Back-in-Time Debugging
	Introduction
	Summarized Trace Indexing and Querying
	Process Overview
	System Architecture

	Trace Capture and Partial Deterministic Replay
	Capture
	Initial Replay
	Snapshots

	Indexing of Control Flow
	Range Min-Max Tree
	Indexing and Querying

	Indexing of Memory Accesses
	Index Structure and Querying
	Pipelined Index Construction
	Local Variables

	Benchmarks
	Global Results
	Cost of Individual Features

	Related Work
	Conclusion
	References


	Exceptions
	Interprocedural Exception Analysis for C++
	Introduction
	Preliminaries
	Signed-TypeSet Domain
	Intraprocedural Exception Control Flow Graph
	Interprocedural Exception Analysis
	Generating an Exception-Free Program
	Implementation and Experiments
	Related Work
	Conclusions and Future Work
	References

	Detecting and Escaping Infinite Loops with Jolt
	Introduction
	Automatic Detecting and Escaping Infinite Loops
	Evaluation
	Contributions

	The Jolt System
	Example
	Infinite Loop
	Compilation
	Detection
	User Interaction
	Escaping the Infinite Loop

	Implementation
	Static Instrumentor
	Dynamic Instrumentor

	Empirical Evaluation
	Benchmarks
	Methodology
	Results

	Selected Case Studies
	Grep
	Indent

	Performance
	Instrumentation Overhead
	Infinite Loop Detection

	Limitations
	Related Work
	Conclusion

	Atomic Boxes: Coordinated Exception Handling with Transactional Memory
	Introduction
	Background and Related Work
	A Running Example
	Syntax and Semantics
	Normal Mode Constructs
	Failure Mode Constructs
	Redirecting Control Flow after Recovery
	Nesting of Atomic Boxes
	Resolution of Concurrently Raised Exceptions

	Atomic Boxes Implementation
	Language Support for Atomic Boxes
	Transactional Memory Wrappers
	Bytecode Instrumentation

	Evaluation
	Producer-Consumer Example
	Sorting Examples

	Conclusion and Future Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




