

Lecture Notes in Computer Science 6788
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Danny Weyns Marie-Pierre Gleizes (Eds.)

Agent-Oriented
Software
Engineering XI
11th International Workshop, AOSE 2010
Toronto, Canada, May 10-11, 2010
Revised Selected Papers

13

Volume Editors

Danny Weyns
Linnæus University
School of Computer Science, Physics and Mathematics
Hus B 3009, 35195 Växjö, Sweden
E-mail: danny.weyns@lnu.se

Marie-Pierre Gleizes
Université Paul Sabatier
Institut de Recherche en Informatique de Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France
E-mail: marie-pierre.gleizes@irit.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22635-9 e-ISBN 978-3-642-22636-6
DOI 10.1007/978-3-642-22636-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937819

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Since the mid-1980s, software agents and multi-agent systems have grown into
a very active area of research and also commercial development activity. One of
the limiting factors in industry take-up of agent technology, however, is the lack
of adequate software engineering support and knowledge in this area. The Agent-
Oriented Software Engineering (AOSE) workshop is focused on this problem and
provides a forum for those who study the synergies between software engineering
and agent research.

The concept of an agent as an autonomous system, capable of interacting
with other agents in order to satisfy its design objectives, is a natural one for
software designers. Just as we can understand many systems as being composed
of essentially passive objects, which have state, and upon which we can perform
operations, so we can understand many others as being made up of interact-
ing, autonomous or semi-autonomous agents. This paradigm is especially suited
to complex systems. Software architectures that contain many dynamically in-
teracting components, each with their own thread of control, and engaging in
complex coordination protocols, are typically orders of magnitude more complex
to correctly and efficiently engineer than those that simply compute a function
of some input through a single thread of control, or through a limited set of
strictly synchronized threads of control. Agent-oriented modeling techniques are
especially useful in such applications.

Many current and emerging real-world applications – spanning scenarios as
diverse as business integration, intelligent traffic and transportation, ubiquitous
computing, and sensor networks, just to mention a few examples – have exactly
the above characteristics. As a consequence, agent-oriented software engineer-
ing has become an important area: both as a design-modeling means, and as
an interface to platforms which include specialized infrastructure support for
programming in terms of semi-autonomous interacting processes. The particular
focus of this 11th edition of the workshop was on how to bridge the gap between
AOSE and conventional software engineering.

The papers in this volume include both selected and thoroughly revised pa-
pers from the AOSE 2010 workshop and invited papers. The papers cover a
broad range of topics related to software engineering of agent-based systems,
with particular attention for integration of concepts and techniques from multi-
agent systems with conventional engineering approaches on the one hand, and
the integration of agent-oriented software engineering and methodologies with
conventional engineering processes on the other hand. We hope that the papers
of this volume stimulate further research in agent-oriented software engineering
and its integration with conventional software engineering.

VI Preface

We are grateful to the AAMAS 2010 organizers for hosting AOSE. We thank
the PC members for their critical review work. Finally, we thank the Springer
staff for supporting the publication of this volume.

April 27, 2011 Danny Weyns
Marie-Pierre Gleizes

Organization

AOSE 2010 was organized in conjunction with the 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), Toronto, Canada,
May 10, 2010.

Program Co-chairs

Danny Weyns Linnaeus University, Sweden
Marie-Pierre Gleizes Université Paul Sabatier, France

Program Committee

Carole Bernon University of Toulouse III, France
Juan Antonio Botia Blaya Universidad de Murcia, Spain
Yuriy Brun University of Washington, USA
Massimo Cossentino ICAR-CNR, Italy
Scott DeLoach Kansas State University, USA
Virginia Dignum Delft University of Technology,

The Netherlands
Ruben Fuentes Universidad Complutense de Madrid, Spain
Alessandro Garcia PUC Rio, Brazil
Aditya Ghose University of Wollongong, Australia
Holger Giese Hasso Plattner Institute Postdam, Germany
Paolo Giorgini University of Trento, Italy
Adriana Giret Technical University of Valencia, Spain
Jorge J. Gómez Sanz Universidad Complutense de Madrid, Spain
Laszlo Gulyas AITIA International Inc., Hungary
Brian Henderson-Sellers University of Technology, Australia
Vincent Hilaire Belfort-Montbeliard Technology University,

France
Tom Holvoet Katholieke Universiteit Leuven, Belgium
Vicente Julian Inglada Universidad Politecnica de Valencia, Spain
Jeffrey Kephart IBM T.J. Watson Research Center, USA
Mark Klein Software Engineering Institute,

Carnegie Mellon, USA
Joao Leite Universidade Nova de Lisboa, Portugal
Juergen Lind Iteratec, Germany
Viviana Mascardi Università di Genova, Italy
Philippe Mathieu University of Lille, France
Frédéric Migeon Paul Sabatier University, France
Simon Miles King’s College London, UK

VIII Organization

Haralambos Mouratidis University of East London, UK
Flavio Oquendo Université de Bretagne-Sud, France
Michal Pechoucek Czech Technical University in Prague,

Czech Republic
Gauthier Picard ENS Mines, Saint-Etienne, France
Anna Perini Fondazione Bruno Kessler, Italy
Alessandro Ricci Università di Bologna, Italy
Fariba Sadri Imperial College, UK
Valeria Seidita University of Palermo, Italy
Onn Shehory Haifa University, Israel
H. Van Dyke Parunak TechTeam Government Solutions, USA
Michael Winikoff University of Otago, New Zealand
Eric Yu University of Toronto, Canada
Michael Zapf Universität Kassel, Germany

Website

http://www.irit.fr/AOSE2010/index.html

Table of Contents

Engineering Methods

Principles for Value-Sensitive Agent-Oriented Software Engineering 1
Christian Detweiler, Koen Hindriks, and Catholijn Jonker

Analyzing Contract Robustness through a Model of Commitments 17
Amit K. Chopra, Nir Oren, Sanjay Modgil, Nirmit Desai,
Simon Miles, Michael Luck, and Munindar P. Singh

A Case for New Directions in Agent-Oriented Software Engineering 37
Ingrid Nunes, Donald Cowan, Elder Cirilo, and
Carlos J.P. de Lucena

Requirements Engineering and Testing

Engaging Stakeholders with Agent-Oriented Requirements Modelling . . . 62
Tim Miller, Sonja Pedell, Leon Sterling, and Bin Lu

Towards Requirement Analysis Pattern for Learning Agents 79
Shiva Vafadar and Ahmad Abdollahzadeh Barfourosh

Test Coverage Criteria for Agent Interaction Testing 91
Tim Miller, Lin Padgham, and John Thangarajah

Model-Driven Approaches

Using ASEME Methodology for Model-Driven Agent Systems
Development . 106

Nikolaos Spanoudakis and Pavlos Moraitis

Towards the Automatic Derivation of Malaca Agents Using MDE 128
Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes

ForMAAD: Towards a Model Driven Approach for Agent Based
Application Design . 148

Zeineb Graja, Amira Regayeg, and Ahmed Hadj Kacem

Software Architecture and Middleware

An Architectural Perspective on Multiagent Societies 165
Juan Manuel Serrano and Sergio Saugar

X Table of Contents

A Methodology for Developing an Agent Systems Reference
Architecture . 177

Duc N. Nguyen, Kyle Usbeck, William M. Mongan,
Christopher T. Cannon, Robert N. Lass, Jeff Salvage,
William C. Regli, Israel Mayk, and Todd Urness

A Middleware Model in Alloy for Supply Chain-Wide Agent
Interactions . 189

Robrecht Haesevoets, Danny Weyns, Mario Henrique Cruz Torres,
Alexander Helleboogh, Tom Holvoet, and Wouter Joosen

A Delegation-Based Architecture for Collaborative Robotics 205
Patrick Doherty, Fredrik Heintz, and David Landén

Author Index . 249

Principles for Value-Sensitive Agent-Oriented

Software Engineering

Christian Detweiler, Koen Hindriks, and Catholijn Jonker

Man-Machine Interaction Group, Delft University of Technology
{c.a.detweiler,k.v.hindriks,c.m.jonker}@tudelft.nl

http://mmi.tudelft.nl

Abstract. As software plays an increasingly important role in people’s
lives, the impact it has on their values frequently becomes apparent.
Many software design methods address “soft issues”, but very few ad-
dress values explicitly. We present six principles that design methods
should meet in order to properly deal with values. One area in which
adherence to stakeholder values is important, is Agent-Oriented Soft-
ware Engineering (AOSE). The Tropos AOSE method, with its concept
of soft-goal, comes close to meeting our principles, but does not address
values explicitly. Value-Sensitive Design is a methodology that does ex-
plicitly address value issues, but it offers little guidance in operationaliz-
ing them. We discuss a case study in which we attempt to capture values
in Tropos’ soft-goals after eliciting them using Value-Sensitive Design.
Subsequently, we discuss to what extent Tropos adheres to our princi-
ples. Finally, we propose the introduction of values as a first-class entity
in Tropos in order to meet our aims of dealing with values.

Keywords: Values, Value-Sensitive Design, Requirements Engineering,
Non-Functional Requirements, Tropos.

1 Introduction

In 2009, the designers of the social networking website Facebook introduced a
number of changes to the website. Due to these changes, users were no longer
able to choose with whom they shared the list of people (their “friends”) they
were connected to on the website. Anyone logged in to Facebook could now see
to whom any member of the website was connected. Further, Facebook decided
users’ profile pictures and the pages they “like”1 were now publicly accessible
information. That is, information users shared on the website regarding their
interests would now be available to the Internet at large.

Facebook (partially) violated two values by introducing these changes. The
changes violated users’ value of autonomy by giving them diminished control
over how their information is shared. Furthermore, the fact that certain personal
information was now public impacted users’ privacy. The violation of these values
1 Web pages on Facebook about topics, people, places, books, etc. that people

can“like”.

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://mmi.tudelft.nl

2 C. Detweiler, K. Hindriks, and C. Jonker

led to user outrage and criticism by organizations such as Electronic Frontier
Foundation [1]. Facebook responded that it tried to uphold the value of openness
shared by their target audience [2].

This conflict of values and the way it became clear exemplifies the problem
we seek to address in this paper. Designers necessarily impart social and moral
values in making choices in the design of information systems [3]. That is, design-
ers’ values, such as openness, are “put into” software artifacts, albeit implicitly.
Once a system has been put into use, it affects its stakeholders by supporting
or hindering their values to various degrees. This ultimately affects the accept-
ability of information systems. Often, these values and value issues only become
explicit after the software has been put into use, at which point the damage
has been done. Therefore, we plead for dealing with values explicitly by treating
them as separate “first-class entities” throughout the design process in software
design methods.

This problem holds for software engineering in general, but is especially rel-
evant in agent-oriented software engineering (AOSE), where we design agent-
based systems. These systems are autonomous, reactive, pro-active, and have
social ability [4]. Moreover, they act on stakeholders’ behalf, so it is important
that they meet stakeholders’ requirements. Values can be considered require-
ments in that they are stakeholder needs that systems should uphold. The issue
of meeting requirements is part of one of the areas of AOSE research identified
in [5]. Weyns et al. conclude that we have to extend our research into goal-
oriented design, verification and validation in order for agent-oriented software
engineering to be adopted in industry. In particular, we should be able to provide
guarantees with respect to stakeholder requirements.

In as far as design methodologies explicitly take values into account in the
design process, it is in the form of non-functional requirements [6] or similar
constructs. However, designers run the risk of leaving the impact values have
on design implicit by representing values as non-functional requirements. Meth-
ods such as Quality Attribute Workshops and its notion of scenarios [7] and
Attribute-Driven Design [8] deal with non-functional requirements formally, and
have been applied to AOSE by Weyns [9]. However, AOSE methods typically
neglect non-functional requirements. Values should be included explicitly as en-
tities in themselves in order to be properly considered and to have an identifiable
and justifiable effect on the design.

AOSE methodologies such as Tropos do focus on stakeholders’ requirements
(in the form of goals) throughout the design process, but do not explicitly take
values into account. To address values in Tropos, they have to be represented
as (soft)goals. Many important characteristics of values are lost in representing
values as goals. Value-Sensitive Design [10] (VSD) provides a comprehensive
framework for eliciting values, but provides little to make these values concrete.
In this paper we propose to address this issue by combining elements of VSD
with Tropos. This should form an AOSE approach that meets our aim of making
the influence of values on the design explicit during all design phases.

Principles for Value-Sensitive AOSE 3

This paper is organized as follows. In section 2 we briefly discuss the concept of
values and discuss six value-related principles design methods should adhere to.
We then discuss some common ways of dealing with such issues in requirements
engineering. Then, in section 3 we discuss a case study to discover to which extent
values can be dealt with in Tropos. In section 4, we analyze to what extent Tropos
adheres to our principles and discuss important differences between values and
the soft-goals we use to include values in Tropos, and propose introducing a
value entity in Tropos. We draw conclusions and suggest directions for future
work in section 5.

2 Values in Existing Software Engineering Methods

This section discusses to what extent values are already taken into account in
existing software engineering approaches with an emphasis on agent-oriented
software engineering methods, and in particular Tropos. Before this discussion,
we present an overview of the concept of values and discuss the role of values in
relation to the stakeholders and designers in the design of multi-agent systems.
Finally, we provide a short introduction of the Value Sensitive Design method
and discuss why VSD is not an answer in itself.

2.1 Values

The introduction describes a real world case of stakeholders’ values (i.e., privacy,
autonomy and openness) being hindered or supported by technology. Other val-
ues implicated in system design include human welfare, ownership and property,
freedom from bias, and trust [10]. The general notions of norms and values are
known to us all; norms and values are instilled into all of us during our childhood
by our parents and social surroundings and continue to be throughout our lives.

Values are abstract (e.g., [11,12]), motivational constructs that apply across
contexts and time [11]. They convey what is good (e.g., [13,14]) and important
to us (e.g., [11,10]). For example, privacy was something good and important for
users in the Facebook case. As a result, they were outraged when their privacy
was not respected. They would have reacted similarly if another website, person
or institution had failed to respect their privacy, as values hold across situations.
As Hodges and Baron argue, values are convictions that some things ought to
be and others not [15]. To make the concept of a value more precise it can be
differentiated from similar concepts, such as laws, rules, goals, norms, standards,
and so on (e.g., [12,13,16,14,17]).

Values have a special status due to their importance to their holders (vio-
lation of values is seen as deplorable or morally wrong) and the expectations
they generate regarding the behavior of the holder and of others. Values create
preference for behavior or action that supports them, which gives them a nor-
mative character. As Miceli and Castelfranchi point out regarding the normative
character of values, “if something is good, it should be pursued” [13, p. 181]. For
example, “honesty” is a value which gives rise to a norm “be honest”. Moreover,

4 C. Detweiler, K. Hindriks, and C. Jonker

if something is good, it should not only be pursued by the holder of the value;
it should be pursued by others as well. However, others do not always hold the
same values. This normative character of values is a ground for conflicts when
people hold different values or different priorities among their values.

Our work is concerned with the design of multi-agent systems and systems
that are expected to have a social impact. Considering that the systems we build
can conflict with the values and norms of the stakeholders of these systems, it is
especially important to explicitly recognize the role values play in design.

Returning to the Facebook example, we can say that the value openness of
Facebook gave rise to a norm of the Facebook team, i.e., “everybody should share
personal information”, which conflicts with the value of privacy of the users. In
retrospect, could we not say that the way out of this conflict lies in considering
the shared value of autonomy, with an associated norm that everybody should
be able to decide for herself? Based on this shared norm we can derive the
more specific norm that everybody has to decide for herself whether to share
information or not. It is a compromise between openness and privacy that is
acceptable to both developers and users of Facebook.

This example illustrates the abstract and normative nature of values. Values
can be instantiated according to the situation at hand. For example, the value
of autonomy is instantiated to insisting on control over how to share personal
information on Facebook. The dormant problem of two conflicting abstract val-
ues (openness and privacy) became acute at the instantiated level. This leveled
approach, working with instantiations, can also be found in the work of Maio
[12]. To discover possible conflicts at an early stage of system development, we
advocate value elicitation at the start of the project to make people consciously
aware of their values; this will reduce costs, effort, and frustration. Proynova et
al. make a similar plea [18], focusing mainly on elicitation.

We recognize that, though conflicts between moral values are not dealt with
as such in the approaches described here, many mainstream software engineer-
ing methods do deal with conflicts of a similar form. Certain design decisions
may hinder one value while achieving another. Conflicts with this structure are
dealt with in mainstream software engineering methods in the form of tradeoffs
between quality requirements (see, for example, [9]).

In our opinion the process of value elicitation at the start of a design process
should answer the following questions. Which people’s values can be impacted
by the system under design and which people’s values can impact the design
of the system? In our view, this question is essential for the design of system
and its answer is both obvious as well as treacherous by its obviousness. The
answer to the first part of the question is the stakeholders, and the answer to the
second part is the stakeholders and the designers/developers. The last addition,
that of the designers, is easy to overlook, as the designers might unconsciously
assume that their values are shared by the stakeholders. The Facebook example
is illustrative of this point. We conclude that to avoid the negative consequences
of violating values and to promote the support of values as much as possible,
the following principles should be satisfied by design methods.

Principles for Value-Sensitive AOSE 5

1. The values of all stakeholders including designers/developers should be
elicited in as far as relevant for the system under design.

2. Stakeholder values should be addressed during all phases of the design pro-
cess.

3. Conflicts between values of the designers and those of the stakeholders need
to be discussed with those who issued the order for the system.

4. To account for the relevant values, to the relevant values need to be instan-
tiated explicitly throughout the design process.

5. Design decisions can and need to be justified and evaluated in terms of
explicit (instantiations of) stakeholders’ values.

6. Conflicts between values need to be made clear and addressed in cooperation
with the stakeholders.

These principles are used in the next section to discuss how existing requirement
engineering methods as part of design methods deal with values.

2.2 Requirements and Values

Requirements engineering is one of the first steps in the larger process of software
development. It is the process of identifying stakeholders and their needs, and
documenting these in a form that can be analyzed, communicated, and subse-
quently implemented [19]. Broadly speaking, there are two types of requirements:
functional requirements and non-functional requirements [6]. The former are re-
quirements that define a function of the system, or something that a system will
do. The latter define not what a system will do, but how it will do it. Require-
ments engineering has attention for “soft issues” such as politics and people’s
values, although dealing with soft issues is problematic as there is little guidance
on how to do so [20]. Concepts used to specify soft issues include non-functional
requirements, quality attributes, soft constraints, and soft-goals.

Though there is no consensus in the requirements engineering community as
to exactly what non-functional requirements are [21], broadly speaking a non-
functional requirement is “a software requirement that describes not what the
software will do, but how the software will do it” [6, p. 6]. Non-functional require-
ments are often refered to as “-ities” or “-ilities” [22]. Examples of non-functional
requirements include usability, maintainability, adaptability, efficiency, and flex-
ibility.

The concept of non-functional requirement appears to be broad enough to
cover values. In fact, some values, namely security and privacy (as a feature
of security), have been dealt with in an extension of the Tropos method [23].
However, not all non-functional requirements are values. Non-functional require-
ments such as maintainability or portability, while important, are conceptually
far removed from the moral good worth pursuing that values such as autonomy,
trust, and justice point to. The examples of non-functional requirements given
here are closely related to the envisioned system, whereas the examples of val-
ues are more closely related to humans, culture, or society. Furthermore, as far
as we know, no specific guidelines exist for dealing with moral values in design
methods that use the concept of non-functional requirements.

6 C. Detweiler, K. Hindriks, and C. Jonker

The related concept of quality attribute can be defined as “[a] feature or char-
acteristic that affects an item’s quality” where quality is understood as “[t]he
degree to which a system, component, or process meets specified requirements”
or “[t]he degree to which a system, component, or process meets customer or
user needs or expectations” [24, p. 60]. As with non-functional requirements,
this term is so general that it provides no guidelines for dealing with values
specifically.

Soft constraints are requirements for dealing with over-constrained problems,
as well as for dealing with uncertainty, vagueness or imprecision [25]. As stated
in [25]: “They can be seen as a preferential constraint whose satisfaction is
not required, but preferred.” Treating soft constraints as “preferred but not
required” disqualifies soft constraints as the way to model values as the moral
wrongness of violating a value is lost. Nonetheless, we can try dealing with values
as soft constraints. Soft constraints are to be elicited during the requirements
engineering process, however, if values are not specifically addressed chances are
that no values will be made explicit (principle 1). Soft constraints of stakeholders
are typically taken into account, and that way principle 2 can be said to hold in
as far as principle 1 is upheld. Principle 3 is not treated using values. Principles
4, and 5 are treated accepting that values are part of the whole set of soft
constraints. Principle 6 is not dealt with as such.

Soft-goals, as used in e.g., Tropos [26], are requirements that are not clearly
defined and do not have clear criteria for satisfaction, drawing on the notion
of satisficing instead [27]. They are a form of non-functional requirements that
refer explicitly to goals, an important concept in agent technology.

As we are particularly interested in agent-oriented software engineering [28]
we focus on Tropos and its soft-goals. Treating values as soft-goals, we can
summarize that principles 1, 2, 4, and 5 are treated to some extent in Tropos,
but principles 3 and 6 are in no way part of the Tropos method. With respect
to principle 1, indirect stakeholders are not taken into account, although the
method could be easily adapted to cover this. Principle 2 is covered in the sense
that soft-goals can play a role during all phases of the design. Principle 5 is
covered in the sense that decisions are related to soft-goals, but not in as far as
one soft-goal is weighed more heavily than another to make a choice.

Section 3 describes our effort to see how far we can get with modeling values
as soft-goals in Tropos and will explain our conclusions regarding the principles.

Before focusing on Tropos and the possibilities soft-goals offer to include values
in the design, we would like to mention one more approach that might be useful
with respect to values.

2.3 Value-Sensitive Design

VSD “is a theoretically grounded approach to the design of technology that
account for human values in a principled and comprehensive manner throughout
the design process” [29]. In VSD, emphasis is given to supporting moral values
or values with ethical import, such as human welfare, ownership of property,
privacy, and freedom from bias [10].

Principles for Value-Sensitive AOSE 7

VSD provides an iterative and integrative three-part methodology consisting
of conceptual, empirical, and technical investigations. Conceptual investigations
focus on discovering affected stakeholders, their values, and analyzing these val-
ues and tensions between them [30]. The first step is to perform a stakeholder
analysis to identify direct and indirect stakeholders, which are the people who
interact directly with the technology, and those who are impacted by the tech-
nology without interacting with it, respectively.

For each group of stakeholders, potential harms and benefits are identified.
The list of harms and benefits can be used to map harms and benefits onto
associated values, especially human values with ethical import.

Once these key values have been identified, a conceptual investigation
of the values is conducted supported by (philosophical) literature, resulting
in clear definitions of those values. Potential value conflicts, which can con-
strain the design space, are examined. Stakeholders are involved if conflict-
ing values hinder one another in the design, such as accountability versus
privacy.

Conceptual investigations need to be informed by empirical investigations of
the technology’s context. VSD does not prescribe a specific method for this stage,
stating that ”the entire range of quantitative and qualitative methods used in
social science research is potentially applicable” [10]. Friedman and colleagues do
suggest that semi-structured interviews of stakeholders can be a useful method
to understand stakeholders’ judgments about a context of use, an existing tech-
nology, or a proposed design.

Technical investigations focus on the properties and mechanisms of existing
technologies that support or hinder human values. Alternatively, technical inves-
tigation can consist of designing a system to support identified human values.
Though technical investigations of the first form and empirical investigations
seem similar, technical investigations focus on the technology itself, and not on
the individuals affected by it, as empirical investigation does. During this stage,
it can be helpful to make explicit how design trade-offs map onto value conflicts
and affect different groups of stakeholders.

It could be argued that, individually, the steps taken in VSD are common
sense. Common sense as they may be, these steps are rarely taken together in
a structured manner. As a result values are often neglected in design and ad-
dressed after the fact, as cases of privacy issues with social networking websites,
bias in search engines, and intellectual property issues with file-sharing software
illustrate. VSD offers a structured approach to addressing values.

The strengths of VSD lie in its focus on direct and indirect stakeholders, how
they are or will be affected by the technology, and what values are implicated.
The focus on a broad range of stakeholders, along with the identification of
potential value conflicts and the aim to deal with values throughout design,
suggest that VSD adheres to our six principles. However, VSD would benefit
from means to not just elicit values, but actually incorporate them in design
and eventually implement them.

8 C. Detweiler, K. Hindriks, and C. Jonker

3 Case Study: Values in Tropos

To discover to which extent values can be dealt with in Tropos in adherence
to the six principles of Section 2.1 we performed a case study. The chosen case
study is that of designing a conference management system with an emphasis
on the values involved. We picked this case study as it was used in [28] to
illustrate the use of three agent-oriented software engineering methods, including
Tropos, and was based on an earlier case study presented in [31]. Furthermore,
conference management systems are at the core of the peer-reviewing established
by researchers to protect the quality of research. The decisions made during
peer-reviewing have a high impact on researchers. Therefore, the design of such a
system must be done in such a way that the norms and values of the stakeholders
are respected as much as possible.2

The rest of this section is organized as follows. We first identify Tropos, we
then describe the general purpose of conference management systems and iden-
tify the stakeholders, after which we inject the process of value elicitation for use
later on. We then proceed with the remaining value-related steps in the Tropos
method with an emphasis on how values are addressed in these steps.

The Tropos software development methodology supports the agent-
oriented paradigm and the associated concepts of actors, plans and goals through-
out the software development process [26], [28], [32]. Its main value-related steps
are stakeholder identification, goal identification, and goal decomposition.

The general purpose of a conference management system depends
on the stakeholders involved and vice versa. Tropos identifies stakeholders early
in the design process, in the Early Requirements phase. The main stakeholders
involved are a paper authors, paper reviewers, program chairs, and publisher of
the proceedings [31]. To this we add the general public / government and the
researcher as indirect stakeholders. We assume that the fundamental choice for
blind peer reviewing has already been made in the organization of the confer-
ence. The general purpose is to support paper submission, bidding for papers for
review, distribution of papers to reviewers, collection of reports, supporting pro-
gram committee meetings, communication of results, and submission of camera
ready versions of papers. All these aspects are subservient to the underlying con-
cern of publishing high quality research only and blocking substandard research
reports. The general purpose and the underlying concern already implicitly refer
to a number of values.

Value elicitation was performed with each stakeholder group and ourselves
as system designers. We used semi-structured interviews as suggested in the
2 Note that the design of a conference management system in terms of the roles in-

volved is primarily determined by the organization structure of the conference. In
this case we chose for a conference management system that adheres to that of
smaller conferences or workshops and ignored the more recent use of a Senior Pro-
gramme Committee as is used in the AAMAS conference. It would be good practice
to design the organization structure of the conference before designing the conference
management system. However, for our purpose of showing how to deal with values,
it is enough to start with some conference organization structure.

Principles for Value-Sensitive AOSE 9

VSD method of [10]. In the interviews we explained the intention of designing
a conference management system and described the basic activities it would
support. We asked stakeholders to identify potential harms and benefits of such
a system, and together with them identified the values underlying these harms
and benefits. It is important to note that most interviewees had experience with
existing systems and due to that it is likely they were reflecting on the systems
they were familiar with. Also, most interviewees had experience with multiple
stakeholder roles, making it difficult to rule out that they projected values they
hold in one role to another role.

The authors mention anonymity of reviewers and conflicts of interests as po-
tential harms and anonymity of authors as a benefit. They stated that anonymity
removes context, which makes it difficult to assess reviewers’ expertise and dam-
ages the quality of the discussion. Also, it allows reviewers to “ride their hobby
horse”, posing a threat to their objectivity. On the other hand anonymity of au-
thors removes hierarchical considerations, leading to judgments based on quality
and not on academic position. This is a potential benefit. The authors warned for
conflict of interests arising from users occupying multiple roles within the same
system. This could lead to reviewers who are also authors seeing the ranking of
their own paper or reviewers reviewing papers of friends. The authors concluded
that the harms are based on their values of transparency, fairness, and account-
ability, while the benefits are based on their values of fairness and privacy and
would improve the quality of publications.

Reviewers mentioned anonymity of reviewers as a benefit. It also allows re-
viewers to be as critical as (they feel) they need to be. Together, we concluded
that the underlying values are privacy and quality of publications. PC chairs con-
sidered reuse of the system across conferences to be a potential benefit, which
contributes to the trustworthiness of the system. Trust is the underlying value
here. A potential harm that one PC Chair identified was the potential for bias
in seeing authors’ names. This could lead to bias based on gender and ethnicity.

Publishers benefit from the peer review process the system supports. By pub-
lishing high-quality research and barring substandard research, the reputation of
the publication and that of the publisher potentially increase, as do sales. This
supports publishers’ values of quality, profit and trust.

Researchers in general consider it a potential harm that poor quality research
is disseminated. Poor quality research is damaging to the reputation of the re-
search community with the general public and with government. Also, if re-
searchers’ own work is disseminated and of poor quality, it is damaging to their
reputation with peers. Both senses of reputation, and the related value of scien-
tific integrity, are values held by researchers.

The general public and government see the publication of high quality research
and the barring of sub-standard level publications as potential benefits. These
ultimately support the value of knowledge.

As system designers in this case, we discovered that we were influenced by
our identification with the roles of author, reviewer, and PC chair, and as such
shared many of the values of those stakeholders groups.

10 C. Detweiler, K. Hindriks, and C. Jonker

All stakeholders identified use of the conference management system for mul-
tiple conferences as a benefit. Reuse enhances the trustworthiness of the system
and the process it supports. Also, the record of interactions with the system
supports transparency and accountability.

In summary, we can see a range of values at stake here, among which poten-
tial or real conflicts exist, for example between transparency and privacy. This
example conflict leads to opposing views on whether the system should provide
anonymity. A compromise between such values must be found, that is, a feature
that supports both or at least hinders neither.

Stakeholders’ goals are identified next, and for every goal the developer
decides whether the actor itself can achieve it or whether it needs to be delegated
to another actor. Goals represent strategic interests of actors. A distinction can
be made between (hard) goals and soft-goals. Hard goals have clear criteria for
satisfaction. Soft-goals do not have clear criteria for satisfaction, drawing on the
notion of satisficing instead [27].

The only option that Tropos has for representing the values identified in the
previous stage are soft-goals. Due to space limitations, we will only discuss how
the potential harm/benefit of anonymity, the potential harm of conflicts of in-
terest and the underlying values at stake could be addressed in Tropos. Tropos
actors are written in italicized bold. Goals and soft-goals are written in bold.

Authors saw the anonymity of reviewers as a potential harm as it prevents
them from assessing the expertise of the reviewer. So, we could say the Author
has a goal, know reviewer identity, which contributes positively to the val-
ues of transparency and accountability. The know author identity goal is
why-linked to a goal dependency between the Author and the PC Chair , dis-
close reviewer identity. We will discuss how this conflicts with Reviewers’
goals shortly.

Authors saw their own anonymity as a potential benefit. So, we introduce
the goal anonymity from reviewers. This goal contributes positively to the
Author ’s values of privacy and fairness, which we represent as soft-goals. The
goal is why-linked to the goal dependency protect author anonymity between
the Author and the PC Chair .

Authors also saw conflicts of interest as a potential harm. So, the Author
actor depends on the PC Chair to avoid conflicts of interest. This goal
contributes positively to the value of fairness, represented as a soft-goal. How-
ever, since avoid conflicts of interest is a goal dependency and hence becomes
the PC Chair ’s goal, the only option we have to link it to the Author ’s value
of fairness in Tropos is the why-link.

Reviewers saw anonymity as a potential benefit. Therefore, we say that the
Reviewer actor has a goal dependency, protect reviewer anonymity, on
the PC Chair actor. This contributes positively to the Reviewer ’s values of
scientific integrity and privacy, represented as soft-goals. Since the protect
reviewer anonymity is a goal dependency, the only option we have to indicate
the link between it and the values it contributes to is the why-link. However, the
why-link is also a type of dependency, and only one link can be constructed for a

Principles for Value-Sensitive AOSE 11

Fig. 1. Early requirements model of conference management system in Tropos with
values as represented as softgoals

dependency. So, we have to define an intermediate goal, reviewer anonymity,
which contributes positively to scientific integrity and privacy and is why-
linked to protect reviewer anonymity.

Reviewers’ goal protect reviewer anonymity obviously conflicts with au-
thors’ goal to know reviewer identity. Reviewers’ value of privacy conflicts
with authors’ value of transparency here.

We attempted to model values in Tropos as soft-goals in order to meet the
aims expressed in our six principles. However, there are a number of issues with
this that we will discuss in the next section.

4 Discussion

4.1 Six Principles

We will now discuss the results of the case study described in section 3 in light
of the six principles described in section 2.

The first principle states that the values of all stakeholders and designers or
developers should be elicited as far as relevant to the system under design. While
stakeholders are considered in Tropos, the group of stakeholders considered is
limited to actors that will eventually use the system in some way. Indirect stake-
holders, such as the general public in the case study above, are not considered,
though they may be affected by the (output of the) system. Also, designers and
developers are not considered in Tropos.

The second principle states that stakeholder values should be addressed
throughout the design process. As the case study demonstrates, if we represent

12 C. Detweiler, K. Hindriks, and C. Jonker

values as soft-goals in Tropos, then they can be said to be addressed throughout
the design process. However, as we discuss below, values are not (soft) goals.

The third principle states that conflicts between the values of the designers and
those of the stakeholders need to be discussed with those who issued the order
for the system. Since Tropos does not consider the designers as such, conflicts
between their values and those of the stakeholders do not become apparent.

The fourth principle states that values have to be instantiated explicitly
throughout the design process. If we represent values as soft-goals, we can say
that values are instantiated throughout the design process through the process of
goal decomposition. However, there are problems with treating values as goals,
which we discuss below.

The fifth principle is that design decisions need to be justified and evaluated
in terms of explicit instantiations of stakeholders’ values. We can say that goals
and decompositions of goals into lower-level goals are design decisions. By draw-
ing contribution links between these goals and soft-goals representing values, we
can in a sense evaluate and justify these design decisions by seeing which design
option (alternative subgoal) contributes best to the soft-goal (value) in question.
It should be noted that the extent to which contribution can be expressed is lim-
ited. The metrics + and ++ indicate partial and sufficient positive contribution,
respectively, and the metrics − and −− indicate partial and sufficient negative
contribution, respectively [26].

The sixth principle states that conflicts between values need to be made clear
and addressed in cooperation with the stakeholders. In Tropos, the only links
between (soft) goals are varieties of decomposition links, namely AND or OR
decompositions, means-end links, or contribution links. Also, only one link can
exist between these (soft) goals. That is, we cannot have a goal 1 contribute to
a goal 2, and have that goal 2 contribute to goal 1. Therefore, we cannot express
conflict between (equally abstract) values as such, for example openness and
privacy. We could define a higher level soft-goal (value) and say that one lower-
level soft-goal contributes positively to it, while another contributes negatively.
These soft-goals would then be in conflict, in terms of how they contribute to
the higher-level soft-goal, but this is not an option for intrinsic values (or ends)
in conflict.

In summary, we can say that the first, fifth and sixth are satisfied to some
extent; the second and fourth are satisfied if we consider values to be goals; the
third cannot be said to be satisfied. However, this is the very reason why Tropos
does not adhere to our principles. To adhere to the principles we would have to
represent values as soft-goals, but values should not be treated as soft-goals.

4.2 Differences between Values and Goals

Values are not the same thing as goals. Miceli and Castelfranchi provide a useful
distinction between these concepts. “Values are not goals, they are assumptions
(more precisely, evaluations). A value is a judgment, though very general and
vague. It says of something that it is good or bad. A goal is a regulatory state
in someone’s mind” [13, p.179]. They illustrate a further important feature of

Principles for Value-Sensitive AOSE 13

values in discussing the difference between values and norms: “Values in fact
offer grounds for, or give rise to norms. Hence the normative’ facet of values:
If something is good, it should be pursued” [13, p. 181]. If we represent values
as soft-goals, the evaluative aspect (“X is good”) and the normative aspect
(“X should be pursued”) are lost. Represented as a soft-goal, a value becomes
something that can be satisficed (i.e., sufficiently satisfied). Not achieving a goal
is not morally wrong as such. Violating a value is seen as morally wrong. This
distinction is important. Not taking these aspects into account could lead to
problems once the design has been implemented and put into practice, as we
saw in the example of Facebook.

4.3 Dealing with Values in Tropos

Considering the issues with representing values as soft-goals, we propose some
additions to the Tropos approach. First of all, in line with our first principle,
we propose that the notion of stakeholder in Tropos be extended beyond those
groups that delegate their goals to a system to all who will be affected by the
system (i.e., direct and indirect stakeholders) and those who shape the system.
These groups of stakeholders need to be approached as a source of requirements
(values and otherwise) early in the requirements engineering process.

Second, since values should not be represented as goals, we propose the addi-
tion of a first-class value entity to Tropos. Since values are held by stakeholders,
the value entity needs to be connected to the stakeholders that hold it. As we
discussed above, values are general and abstract evaluations. They are concep-
tions of what is good and are important to their holder. We need to be able to
indicate the goodness and importance of each value to its holder in some way,
so we can prioritize values and assess the importance of addressing each one.
Further, since what is good should be pursued, values can give rise to goals and
norms. Hence, we need to be able to represent links between values and the
norms and goals they generate. Norms should also be represented, but this is
beyond the scope of this paper. Values eventually need to be implemented in
some way. Antunes and Coelho’s Belief, Values, Goals (BVG) architecture uses
values as central motivational mechanisms in their agents’ minds [33]. We see
this as even more of a motivation to address values early on in design. Also, de-
signers could make use of such an architecture to implement the values elicited
and represented during the requirements phase.

Third, values and their instantiations can conflict. The conflict between Face-
book’s value of openness and users’ value of privacy is a case in point. We need to
be able to identify such conflicts in order to deal with them early on. To this end,
we propose the addition of a conflict relationship between entities, specifically
values, in Tropos.

Including indirect stakeholders as a source of (value) requirements, treating
values as separate entities in models, explicitly representing conflicts between
values, and dealing with values throughout design, as implementing our proposals
will allow us to do, will provide us with an approach that adheres to the six
principles described in section 2.1.

14 C. Detweiler, K. Hindriks, and C. Jonker

5 Conclusions

In summary, software impacts human values. In light of this fact and the special
status values have, we proposed six principles designers should adhere to. Some
requirements and software engineering concepts seem similar to values. However,
there are some important differences between values and these concepts. VSD is
a methodology that aims to account for (moral) values in design. VSD is a useful
methodology for eliciting and defining stakeholders’ values. However, VSD as-is
does not provide a means for implementing such values. This makes it difficult
to assess the extent to which values are incorporated in actual designs.

In our case study in we attempted to capture values in Tropos soft-goals and
showed that Tropos as-is cannot fully handle our six principles. We argued that
Tropos’ soft-goals are fundamentally different from human values as described
here. Representing values as soft-goals does not make values sufficiently explicit.

To address these problems, we propose complementing Tropos with a separate,
first-class entity to capture values. This entity will allow the designer to explicitly
represent values throughout the design process, and to make values concrete
enough to operationalize them and to expose and address conflicts between them.

Future work should address the issue of representing values. Also, future work
should deal with representing and addressing value conflicts, as these are an
important source of many of the issues with values in design. To this end, a
formal framework of values is needed. Further, the issue of dealing with different
stakeholders’ views on specific values should be addressed.

Acknowledgments. We would like to thank Danny Weyns, Marie-Pierre
Gleizes, and the participants of the AOSE 2010 workshop for the suggestions
they gave during a fruitful discussion there. Also, we would like to thank the
anonymous reviewers for their helpful comments.

References

1. Bankston, K.: Facebook’s new privacy changes: The good, the bad, and the ugly
(2009)

2. Kirkpatrick, M.: Facebook’s zuckerberg says the age of privacy is over (2010)
3. Friedman, B.: Human Values and the Design of Computer Technology. Cambridge

University Press, CSLI, New York, Stanford, CA (1997)
4. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: the state

of the art. In: Agent Oriented Software Engineering III, pp. 55–82. Springer,
Heidelberg (2001)

5. Weyns, D., Parunak, H., Shehory, O.: The future of software engineering and multi-
agent systems. International Journal of Agent-Oriented Software Engineering 3(4)
(2009)

6. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in soft-
ware engineering (2000)

7. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., WeinStock, C., Wood, W.:
Quality attribute workshops (qaw) (cmu/sei-2003-tr-016). Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2003)

Principles for Value-Sensitive AOSE 15

8. Wojcik, R.: Attribute-driven design (add), version 2.0 cmu/sei-2006-tr-023. Techni-
cal report, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,
PA (2006)

9. Weyns, D.: Architecture-Based Design of Multi-Agent Systems. Springer, New York
(2010)

10. Friedman, B., Kahn, P., Borning, A.: Value sensitive design and information sys-
tems. In: Human-Computer Interaction and Management Information Systems:
Foundations, pp. 348–372. ME Sharpe, New York (2006)

11. Bardi, A., Schwartz, S.: Values and behavior: Strength and structure of relations.
Personality and Social Psychology Bulletin 29(10), 1207 (2003)

12. Maio, G.R.: Mental representations of social values. Advances in Experimental
Social Psychology 42, 1–43 (2010)

13. Miceli, M., Castelfranchi, C.: A cognitive approach to values. Journal for the The-
ory of Social Behaviour 19(2), 169–193 (1989)

14. Schroeder, M.: Value theory. In: Zalta, E.N., ed.: The Stanford Encyclopedia of
Philosophy. Fall 2008 edn. (2008)

15. Hodges, B.H., Baron, R.M.: Values as constraints on affordances - perceiving and
acting properly. Journal for the Theory of Social Behaviour 22(3), 263–294 (1992)

16. Rokeach, M.: Beliefs, attitudes and values: A theory of organization and change
(1968)

17. Spates, J.: The sociology of values. Annual Review of Sociology 9(1), 27–49 (1983)
18. Proynova, R., Paech, B., Wicht, A., Wetter, T.: Use of personal values in require-

ments engineering–a research preview. Requirements Engineering: Foundation for
Software Quality, 17–22 (2010)

19. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap, pp. 35–46.
ACM, New York (2000)

20. Thew, S., Sutcliffe, A.: Investigating the role of’soft issues’ in the re process. In:
16th IEEE International Requirements Engineering, RE 2008, pp. 63–66 (2008)

21. Glinz, M.: On non-functional requirements. In: 15th IEEE International Conference
on Requirements Engineering, RE 2007, pp. 21–26. IEEE, Los Alamitos (2007)

22. Chung, L., do Prado Leite, J.: On non-functional requirements in software en-
gineering. In: Conceptual Modeling: Foundations and Applications, pp. 363–379
(2009)

23. Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285–309 (2007)

24. Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990
(1990)

25. Bartak, R.: Modelling soft constraints: a survey. Neural Network World 12(5),
421–432 (2002)

26. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

27. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on Re-
quirements Engineering, RE 1997, pp. 226–235 (1997)

28. DeLoach, S., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three aose
toolkits to develop a sample design. International Journal of Agent-Oriented Soft-
ware Engineering 3(4), 416–476 (2009)

16 C. Detweiler, K. Hindriks, and C. Jonker

29. Friedman, B., Kahn, P., Borning, A.: Value sensitive design: Theory and methods.
University of Washington Technical Report (2002)

30. Miller, J., Friedman, B., Jancke, G.: Value tensions in design: the value sensitive
design, development, and appropriation of a corporation’s groupware system, pp.
281–290. ACM, New York (2007)

31. Ciancarini, P., Nierstrasz, O., Tolksdorf, R.: A case study in coordination. In:
Conference Management on the Internet (1998)

32. Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development
methodology: processes, models and diagrams. LNCS, pp. 162–173 (2003)

33. Antunes, L., Coelho, H.: Redesigning the agents’ decision machinery. Affective
Interactions, 121–137 (2000)

Analyzing Contract Robustness
through a Model of Commitments

Amit K. Chopra1, Nir Oren2, Sanjay Modgil3, Nirmit Desai4,
Simon Miles3, Michael Luck3, and Munindar P. Singh5

1 University of Trento
chopra@disi.unitn.it

2 University of Aberdeen
n.oren@abdn.ac.uk
3 King’s College London

{sanjay.modgil,simon.miles,michael.luck}@kcl.ac.uk
4 IBM Research – India

nirmit.desai@in.ibm.com
5 North Carolina State University

singh@ncsu.edu

Abstract. We address one of the challenges in developing solutions based on
multiagent systems for the problems of cross-organizational business processes
and commerce generally. Specifically, we study how to gather and analyze re-
quirements embodied within business contracts using the abstractions from mul-
tiagent systems.

Commerce is driven by business contracts. Each party to a business contract
must be assured that the contract is robust, in the sense that it fulfills its goals
and avoids undesirable outcomes. However, real-life business contracts tend to
be complex and unamenable both to manual scrutiny and domain-independent
scientific methods, making it difficult to provide automated support for determin-
ing or improving their robustness. As a result, establishing a contract is nontrivial
and adds significantly to the transaction costs of conducting business. If the adop-
tion of multiagent systems approaches in supporting business interactions is to be
viable, we need to develop appropriate techniques to enable tools to reason about
contracts in relation to their robustness.

To this end, we propose a powerful approach to assessing the robustness of
contracts, and make two main contributions. First, we demonstrate a novel con-
ceptual model for contracts that is based on commitments. Second, we offer a
methodology for (i) creating commitment-based models of contracts from textual
descriptions, and (ii) evaluating the contract models for robustness. We validate
these contributions via a study of real-world contracts.

1 Introduction

When agent-oriented software engineering (AOSE) first emerged, it developed a rich
panoply of concepts, abstractions, and techniques based on the notion of agents and
allied notions such as roles, protocols, organizations, and commitments. These notions
address the inherently interactive nature of multiagent system and provide the key basis

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 17–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 A.K. Chopra et al.

both for developing business applications that involve autonomous and heterogeneous
participants and for distinguishing AOSE as a technical discipline from the rest of soft-
ware engineering. The applications that AOSE is geared to addressing include cross-
organizational business processes and commerce in general. These have clearly gained
social importance in the last decade or so since AOSE has been practiced. The needs
that they bring up, especially of flexible modeling and enactment, and of managing
complexity continue to speak to the importance of AOSE as a discipline.

However, as both traditional software engineering and AOSE have grown, it has
become more and more important to bridge the gap between the two. In some cases,
researchers have sought to use the tools and techniques of traditional software engi-
neering to enhance AOSE, including efforts in programming tools and methodologies
and in formal methods. Examples of the former include several works such as those sur-
veyed by Nunes et al. [14], and examples of the latter include works by Meneguzzi et al.
[13] and Telang and Singh [19,20]. In other cases, researchers have sought to formalize
concepts that originate in AOSE in ways that might influence traditional software en-
gineering. Examples of this are works by Bordini et al. [2,3] and by Weyns et al. [21].
The above works demonstrate the expanding overlaps between agent-oriented and tra-
ditional software engineering. However, they also demonstrate an interesting limitation
in that generally the forays of AOSE into traditional practice so far take place in the
later stages of design and development: either in the formalization of system specifica-
tions or in the development of executable or nearly executable software artifacts and in
their verification and validation.

The present work addresses one of the least understood and hence riskiest phases of
the software engineering life cycle, namely, the determination and analysis of system
requirements in the first place. Not only is the requirements phase the riskiest, it is
also one where (for problems involving commerce, in particular) multiagent systems
concepts can apply naturally and potentially facilitate the later phases.

Another novelty of the present work is that it takes what one might understand as a
hybrid approach. It adopts the idea of commitments from AOSE as its key organizing
principle and uses it to present a generalized model of business contracts in terms of
a variety of commitments. This model sustains both (1) a methodology for identifying
various types of commitments from traditional text-based contracts and (2) an approach
for assessing the robustness of such contracts from the perspective of any of the parties
involved. In other words, the present work seeks to incorporate AOSE concepts into the
heart of traditional software engineering practice, seeking neither to replace traditional
practice with AOSE concepts and technique nor merely to place AOSE concepts in a
thin veneer on top while leaving the rest unchanged.

A business contract specifies the terms under which the contracting parties exchange
services. In this context, a contract is robust for a party if it satisfies that party’s goals
and preferences even in the face of unexpected circumstances. In general, practical
contracts can be quite complex, usually because each party inserts clauses to protect
its own individual interests. The question of whether such a contract is robust is an
important one that is not trivial to answer. In fact, the robustness of a contract may be
assessed in different ways. For example, whereas a contract may specify that a particular
service will be provided, it need not specify how the specified service will be provided,

Analyzing Contract Robustness through a Model of Commitments 19

leaving open the possibility that the method may be inappropriate in the eyes of some
party. Alternatively, a contract may specify exactly what and how a service should be
provided, but make no provision for rectifying problems when the service fails to be
delivered due to accident or malice.

Two aspects of the complexity of contracts makes ensuring robustness difficult.
First, traditional contracts are not explicitly structured according to a suitable high-
level model. Second, the free text form of today’s contracts complicates analyzing their
content in any automated way. Multiagent systems offer promising solutions to help
manage business relationships and enact business processes; however, without first as-
sessing the robustness of contracts, agents cannot be relied upon to adopt or execute
contracts of real significance.

In this paper, we provide an approach to modeling contracts specifically in order to
address the problem of unambiguously analyzing their robustness. We treat a contract
as a set of interrelated commitments among those parties, that is, the agents, who have
signed it. These commitments play differing, interconnected roles in the overall con-
tract and support analysis to determine potential threats to the robustness of the given
contract. For example, robustness is enhanced when a commitment to provide a service
occurs with a concomitant commitment to resolve problems in cases where that service
could not be delivered.

We make the following contributions.

– We provide a structured commitment-based model for expressing contracts. The
structure of the model captures relationships among the commitments in the con-
tract.

– We outline a methodology which helps contract designers in two ways. One, it helps
identify the various kinds of commitments that occur in textual contracts and helps
create structured commitment-based contract models. Two, it specifies rules that
can be applied to the models in order to determine the robustness of the underlying
contracts.

We motivate our approach using examples from a real services contract between
Advanced Semiconductor Engineering (ASE) and Motorola.1 The contract is for the
assembly and testing of semiconductor chips, and the provisioning of related services.
To save space, we describe only its relevant snippets. The preamble identifies the parties
and their motivations for entering into the contract, as the following snippet shows.

Preamble: MANUFACTURING SERVICES AGREEMENT... WHEREAS,
Motorola and ASE desire to establish a strategic supplier relationship in which
ASE will utilize the capacity at its final semiconductor manufacturing oper-
ation and facilities of ASE Korea located at Paju, Korea (the “PAJU FACIL-
ITY”) on a priority basis to perform the assembly, test, and associated services
on certain semiconductor products for Motorola.

The contract includes distinct sections, each grouping clauses that impose interre-
lated demands on the contracting parties. ASE will use its facility in Korea to assemble

1 http://contracts.onecle.com/ase/motorola.mfg-korea.1999.07.03.
shtml

http://contracts.onecle.com/ase/motorola.mfg-korea.1999.07.03.shtml
http://contracts.onecle.com/ase/motorola.mfg-korea.1999.07.03.shtml

20 A.K. Chopra et al.

and test semiconductor products (the contract products) for Motorola. Motorola will
provide the requisite specifications and equipment to enable ASE to carry out its task.
Motorola will also provide monthly forecasts to aid ASE in capacity planning. Motorola
will place purchase orders with ASE for the contract products, upon which ASE will
ship the products to destinations specified by Motorola. ASE will then invoice Motorola
for payment according to the prices agreed upon in the contract. Clauses in the contract
also cover concerns such as insurance, indemnity, liability, and so on.

We validate our approach against another real contract, which we introduce later.
This paper is meant to be expository in that it outlines the conceptual underpinnings

of contact robustness and presents compelling examples to motivate these concepts as
well as to validate them. However, the formalization of the commitment-based model
of contracts, the robustness rules, and properties thereof are defered to future work.

The rest of the paper is organized as follows. Section 2 describes our structured,
commitment-oriented model of contracts. Section 3 outlines our methodology for trans-
lating free text contracts into our model. Section 4 introduces the definition of contract
robustness and specifies the rules for determining robustness. Section 5 provides an
evaluation using a second case study, and Section 6 discusses related work. Section 7
concludes with discussion of future directions for research.

2 A Commitment-Based Model for Contracts

In this section, we first give the relevant background on commitments and then describe
our commitment-based model for contracts.

2.1 Background: Commitments

The expression C(DEBTOR, CREDITOR, CONTEXT, antecedent, consequent) means that
the debtor commits to the creditor for bringing about the consequent provided the an-
tecedent holds. In contractual terms, a commitment represents a proposed business ex-
change: the antecedent and consequent represent the considerations of the creditor and
debtor, respectively.

Importantly, a commitment arises within a context, which captures the legal, social,
or community setting in which the commitment is enforced. A subtle feature of our
approach is that here the context can correspond to either a real-life institution or orga-
nization, such as eBay or the European Union or the famous fish market of Blanes [16].
A context is an active entity and can be modeled as an agent in its own right: a con-
text in this sense imposes regulations on the participants, and it might penalize or eject
noncompliant participants. The context itself may or may not have any consideration in
the business exchange; its primary function is regulation. Often, the context plays the
role of an arbiter in disputes. Within a contractual setting, the context typically consists
of the legal framework under which the contract is signed, together with the domain
ontology and the contract document itself. In other words, given a certain legal system,
an understanding of the world, and a contract (all of which make up the context), cer-
tain commitments between the contracting parties arise and are manipulated in a natural
manner.

Analyzing Contract Robustness through a Model of Commitments 21

More specifically, a contract is a set of commitments, each of which has the same
context. As an example, an ordering process may involve two commitments: c1 =
C(SELLER, BUYER, ORG, pay, shipGoods) and c2 = C(BUYER, SELLER, ORG, buy-
Goods, pay). Here we use ORG as the context within whose scope the contract takes
place. The first commitment requires the seller to ship the goods to the buyer once pay-
ment has been made, whereas the second commits the buyer to pay for goods it has
purchased. Notice that the BUYER and the SELLER may themselves be organizations,
each with its own internal structure.

A key benefit of the commitments representation is that commitments can be ma-
nipulated in a perspicuous and principled manner, thus yielding the flexibility needed
in automated contractual interactions. A commitment may be created. When its an-
tecedent holds, it is detached meaning that it reduces to a commitment to bring about
the consequent unconditionally. When its consequent holds, it is discharged—this could
even happen before the commitment is detached. The creditor may assign a commit-
ment to another agent. Conversely, a debtor may delegate a commitment to another
agent. A debtor may cancel a commitment and a creditor may release the debtor from
the commitment.

Note that the debtor and creditor of a commitment need not be its direct performer
or beneficiary [17]. Often, each party would play a role in a participating organization,
and would represent the interest of the organization for the purposes of the commitment.
For example, a manufacturer may commit to repairing some piece of machinery for a
factory, but the repairer may be a subcontractor of the manufacturer.

2.2 Enhanced Commitment Structure

From our examination of real-life contracts, we observe that the commitments occurring
within them exhibit a particular structure.

At the heart of this structure is the idea of a service. A service is the creation of some
product by a process under the assumed circumstances, as shown in Figure 1. The
product is what an agent actually wants, whereas the process is the means by which the
product is brought about. The product may be an artifact or an activity taking place or
something holding true about the world. Significantly, it is often the case that a product
can be evaluated by its consumer whereas the process is usually hidden. The assumed
circumstances constitute normal, expected operation: a contract sets up expectations
about what each party will do and does so assuming the rest of the world works in a
particular way. Considering these assumed circumstances enables us also to consider
what should happen when they do not hold in some situations.

We view contracts as inherently symmetric among the parties. Thus each party po-
tentially provides one or more services to the others. A service commitment is, then, a
commitment whose debtor plays a role in which it provides a service to the creditor of
the commitment. A service commitment states what is to be produced by the service
and under what assumed circumstances, without further describing the product or pro-
cess. In terms of the overall structure of a commitment described in Section 2.1, the
service product is the consequent of the commitment.

22 A.K. Chopra et al.

Product

Quality
constraints

Implementation
constraints

Process

Service

Fig. 1. Control flow for the reasoning process

A contract contains a set of service commitments. For each service, there are then a
number of other constraints and commitments that are meaningful when understood in
context of the service.

– Quality constraints, with regard to a service, are restrictions on the debtor to ensure
that the service product is of a minimum acceptable quality.

– Implementation constraints, with regard to a service, are restrictions on the debtor
to ensure that the process used for production meets certain requirements.

– A contingency commitment, with regard to a service, is a commitment on the debtor
or a third party to provide an alternative service when the assumed circumstances
do not hold (and stated contingency circumstances hold instead).

– A resolution commitment, with regard to a service, is a commitment on the debtor
or a third party to provide an alternative service when the service commitment is
violated.

– An audit commitment, with regard to a service, is a commitment on the debtor or a
third party to perform an audit of the service, the product of which is the record of
the service having been conducted.

Using the above enhanced structure, we model a contract as a set of such com-
mitments. The structure for documenting a commitment C is shown in Table 1. As
explained in Section 2.1, each contract has a CREDITOR and a DEBTOR agent. The
antecedent is divided into an Activation condition, which states what triggers the com-
mitment to apply, and Assumed circumstances, which states what is assumed to hold
when the commitment applies. Both must be true for the commitment to apply, but they
are dealt with in different ways. If the Activation condition does not hold at some time,
then the commitment simply does not apply at that time. Conversely, if the Activation
condition holds but the Assumed circumstances do not, then the Contingency commit-
ment applies instead (if one is given).

The consequent is similarly divided into parts: for the consequent to be true, the
Product must have been produced such that the Quality properties hold true of the
service product and the Implementation properties hold true of the service process.

Each commitment C additionally has related commitments. A Resolution commit-
ment is applicable when the original commitment C is violated, that is, the antecedent
of the resolution commitment is the violation of the original commitment. An Audit

Analyzing Contract Robustness through a Model of Commitments 23

Table 1. Enhanced commitment structure

Enhanced commitment
Reference An identifier to refer to the commitment
Creditor The beneficiary of the service
Debtor The party responsible for providing the service

Antecedent
Activation Under what circumstances this commitment applies
Assumed Circumstances assumed in providing service

Consequent
Product The product of the service
Quality The properties that should hold for the product
Implementation The properties that should have held for the service process

Related
Contingency A commitment regarding what should be done when the assumed circumstances

do not hold (referred to by identifier)
Resolution A commitment regarding what should be done when this commitment is violated

(referred to by identifier)
Audit A commitment to produce data about how this service is performed (referred to

by identifier)

commitment is applicable whenever commitment C’s process is enacted (and thus has
as antecedent the same or a more general antecedent than C) and produces documenta-
tion regarding the service process.

A contract, then, is a set of enhanced commitments, EC(CREDITOR, DEBTOR, ac-
tivation, assumed, product, quality, implementation), together with functions that map
from enhanced commitments to resolution, contingency, and audit commitments (each
of which themselves is an enhanced commitment).

3 Modeling Contracts

Our proposed methodology has two phases: first, it involves mapping the contract text
to the commitments model introduced in Table 1; and, second, it involves applying rules
to this mapping to check for robustness.

The first phase of our methodology consists of a number of steps, with each step
identifying certain artifacts within the contract, and verifying whether these artifacts
meet some prerequisites to ensure the contract is correct and robust in basic ways. For
example, verifying might mean ensuring that no commitment has the same creditor as
debtor, and that it is clear when the contract begins and ceases to have force. In the next
section (Section 4), we introduce the more rigorous robustness rules, which may not
hold even for apparently well-drafted contracts.

Our methodology consists of the following steps. For each step, we give the number
of the section in this paper in which that step is explained.

1. Identify the critical entities involved in the commitments (Section 3.1)
(a) Identify the contracting parties (Section 3.1)

24 A.K. Chopra et al.

(b) Identify each contracting party’s goals (Section 3.1)
(c) Identify domain concepts (Section 3.1)
(d) Identify contract scope (Section 3.1)

2. Map the above entities into the commitment model (Section 3.2)
(a) Model services, processes, and products (Section 3.2)
(b) Model commitments regarding services (Section 3.2)

3. Check the robustness of the commitments (Section 4)
(a) Check that the contract meets each party’s goals (Section 4.1)
(b) Check that it is well specified how services should be provided and how to

handle circumstances in which the services are not provided as specified (Sec-
tion 4.2)

(c) Check that the contract does not place conflicting demands on the parties (Sec-
tion 4.3)

We illustrate the methodology via clauses selected from the ASE-Motorola contract,
especially an abbreviated form of Clause 11.

Clause 11: ASE shall ship the Contract Products to the destinations identified
by Motorola. Motorola shall acknowledge to ASE the receipt of each shipment
of Contract Products, stating the quantity and type of, and any damages existing
at delivery to, such Contract Products within [X days] of receipt at Motorola’s
ultimate destination . . . ASE shall certify to Motorola with each shipment that
the Contract Products contained therein have successfully passed applicable
testing and meet all specifications . . . If Motorola rejects any Contract Prod-
ucts, Motorola and ASE shall confer to determine the reason for the rejection.
ASE shall immediately exercise commercially reasonable efforts to develop
and implement a corrective action plan for any errors, including manufacturing
errors or defects, identified in its systems.

3.1 Entity Identification

It is crucial to identify the various artifacts referred to in the contract. These artifacts
may then be used within commitments in some structured or unstructured manner. In
the former case, rules may be created identifying how they may, or should, be used in
order to lead to a robust contract. The following entities are of interest.

Contracting Parties. A contracting party named by the contract is an entity whose
commitments and responsibilities are described by the contract, and who is a signatory
to the contract. In Clause 11, ASE and Motorola are the contracting parties.

A contract may identify specific roles within a contracting party, when it is an orga-
nization. For example, ASE is committed to providing Motorola Employees with office
facilities according to Clause 5 (not shown). Other roles mentioned in the contract in-
clude those of a coordinator and the ASE account team, which then includes additional
roles such as manager and executive.

Contract Goals. Business parties adopt a contract if it is conducive to achieving
their goals—if the contract is robust, then these goals will be achieved. The preamble

Analyzing Contract Robustness through a Model of Commitments 25

specifies the overarching goal; here, this is the successful production and delivery of
semiconductor products from ASE to Motorola. This leads to other identifiable subgoals
regarding high-level concepts such as the goal of having ASE deliver the product in a
timely manner, the defect rate falling below some threshold, and so on. As we discuss
below, each of these goals must be satisfied by some combination of commitments
specified in the contract.

Domain Concepts. Contracts specify what the contracting parties are committed to
do within some domain, specifying the relevant states of domain artifacts and how to
manipulate them. Domain concepts in Clause 11 include products, rejection, receipt,
destination, damage, among others. Although it is beyond the scope of this paper, we
assume a suitable ontology for each domain.

Scoping. A robust contract should specify when it is in effect, and when it expires, for
example, via a termination clause that specifies the conditions under which the contract
ends. Clause 3 (not shown) within the Motorola-ASE contract states that the contract is
effective from the signing date, and is in force for five years. It also provides alternative
ways of terminating the contract early. A prerequisite of robustness is clarity of the
scope.

Prerequisite 1. A robust contract specifies the conditions when the contract begins and
ends.

3.2 Mapping to Commitment Model

Once we have identified the critical entities, we map them into our commitment-based
model.

Services, Processes, and Products. Clearly, it is necessary to identify the services
to which the contractual commitments apply. For each service, its product—that is,
its desired outcome—must also be identified. Each service is expressed, or sometimes
implied, in contract clauses using the identified domain concepts, and each party’s goals
are expressed in terms of the services.

The Preamble in our example contract describes the primary services under consid-
eration, as follows: “the assembly, test and associated services on high quality semi-
conductor products in volume.” This hints at a service whose product is assembled
semiconductor products and a service whose product is tested semiconductor prod-
ucts. Later clauses identify other “associated” services. For example, Clause 11 includes
“ASE shall ship the Contract Products to the destinations identified by Motorola,” the
product of which is the delivery of goods, and goes on to make statements about how
this service should be provided.

Service Commitments. Because we view a contract as an aggregation of the com-
mitments it imposes upon the contracting parties, determining whether a contract is
robust involves identifying the commitments found in the contract. The remainder of
the methodology focuses on these commitments, and the relationships between them.

26 A.K. Chopra et al.

Each service identified in the contract has a corresponding commitment, with one
identified party as debtor, and another as creditor. It is a prerequisite for robust execution
that any commitment must have some contracting party (and sometimes a specific role
within it) as the commitment’s debtor and creditor, implying the following rule.

Prerequisite 2. A robust contract must ensure that every commitment within the con-
tract will have a contracting party as a debtor and a creditor.

For the primary shipment service referred to in Clause 11, the creditor is Motorola and
the debtor is ASE. Further, a valid commitment must have distinct parties as debtor and
creditor.

Prerequisite 3. The same entity may not be named a debtor and a creditor within a
single commitment.

Finally, the given contract must translate unambiguously to our model, and so the fol-
lowing prerequisite applies.

Prerequisite 4. A commitment must only refer to concepts that have been defined within
the domain ontology.

Example. We apply the above to the initial modeling of Clause 11. Table 2 expresses
the commitment to perform the primary service of the clause, that is, shipment of prod-
ucts to specified destinations. This commitment is given an identifier, C11-Shipment,
and refers to three other commitments extracted from the clause: C11-Rejection,
C11-Receipt, and C11-Quality. For brevity, we omit the models for the latter two au-
dit commitments; those refer to Motorola’s commitment to provide a timely receipt for

Table 2. Service commitment for shipping

Commitment for shipment service
Reference C11-Shipment
Creditor Motorola
Debtor ASE

Antecedent
Activation When products ready to ship
Assumed

Consequent
Product Products arrived at specified Motorola site
Quality No damage to products
Implementation Perform applicable tests to certify products

Related
Contingency
Resolution C11-Rejection
Audit C11-Receipt
Audit C11-Quality

Analyzing Contract Robustness through a Model of Commitments 27

Table 3. Commitment to rectify problems (rejected products)

Commitment for acting in case of rejection
Reference C11-Rejection
Creditor Motorola
Debtor ASE

Antecedent
Activation Motorola rejects delivered products
Assumed Within X days of delivery

Consequent
Product Corrective plan of action developed and implemented by ASE
Quality
Implementation

Related
Contingency
Resolution
Audit

products received, and ASE’s commitment to provide a statement of quality, respec-
tively. The resolution commitment, C11-Rejection, is invoked when the service product
is not achieved, the commitment to quality (no damage) is violated, or the commitment
to implementation (tests performed) is not fulfilled.

Table 3 shows the model for C11-Rejection. Here, the service performed is the cor-
rection of the cause of rejection. No further commitment is involved, as the clause does
not specify what should be done to audit the commitment or in contingency situations.

4 Robustness of a Contract

The robustness of a contract depends on how its commitments relate to the goals of
the contracting parties. Definition 1 relates each of a party’s goals to commitments in
the contract. It says that the fulfillment of a subset of commitments—in any manner—
must lead to the satisfaction of the goal, that is, the goal must be supported. The set of
commitments leading to fulfillment of the goals may represent either the normal way to
fulfill the goals where all services are delivered successfully, or a compensating way to
fulfill the goals where some commitments are violated but compensating commitments
are fulfilled.

Definition 1. A contracting party’s goal is supported by a contract if and only if the
fulfillment of the subset of contract commitments, in which the party is the creditor,
entails the goal.

Given the above definition, we can then define what it would mean for a contract to be
robust for a contracting party.

Definition 2. A contract is robust for a contracting party if all of the contract party’s
goals are supported by the contract. A contract is robust overall if it is robust for all its
contracting parties.

28 A.K. Chopra et al.

In order to specify how to assess robustness, we must define what it means for (1) a
contracting party’s goals be entailed by the contract and (2) a commitment to compen-
sate the failure of another commitment. Both of the above relate to the different types
of behavior a contractual commitment can address. Therefore, it is important to model
the kinds of commitments depending on the purpose they serve in the contract. Below,
we enhance our basic commitment model to include the specification of commitments
based on their purpose.

Given the model of contracts in the preceding section, we now specify rules for
determining the robustness of contracts expressed in that model. We divide such rules
into the following main categories:

1. those that determine whether the contract contains the content required by each
party;

2. those that determine whether each contract commitment is handled robustly; and
3. those that apply to consistency between commitments.

4.1 Necessity Robustness Rules

A robust contract must ensure that each contracting party’s goals are satisfied when the
contract executes correctly. The consequent of a service commitment may be used to
capture the creditor’s goals (when the commitment’s antecedent holds). Therefore, the
desired outcome of a contract may be captured by some subset of the contract’s service
commitments. A robust contract must thus satisfy the following rule.

Robustness Rule 1. Each goal expected to be satisfied by the contracting parties should
be (a necessary implication of) the consequent of a service commitment.

Applying this rule to our example, the commitments shown in Tables 2 and 3 are judged
robust with regard to this rule: on the former’s completion, Motorola will have the com-
ponents it desires; on the latter’s completion, any problems will have been appropriately
addressed.

4.2 Coverage Robustness Rules

A service commitment can often be fulfilled in multiple ways, and not all are of equal
value to the contracting parties. In order to be robust, the contract must ensure that a
commitment is met appropriately.

Robustness Rule 2. Each service commitment must have corresponding quality con-
straints that specify what it means for the service product to achieve an adequate stan-
dard.

Table 2 shows a simple statement of the quality required of the product: no damage
should have occurred. In the commitment in Table 3, no quality constraints are given.
Whereas this omission may be deemed appropriate by the contracting parties, the above
rule highlights the fact that the contract is less robust if Motorola places no criterion on
what an acceptable corrective plan can be.

Whereas the quality constraints concern the service product, we may also apply cri-
teria for judging the process by which the service is conducted, leading to the following
rule.

Analyzing Contract Robustness through a Model of Commitments 29

Robustness Rule 3. If a service commitment may be met in a number of ways, a proper
subset of which capture the creditor’s goals, then the service commitment should have
corresponding implementation constraints that specify what it means for the service
commitment to have been achieved in a satisfactory manner.

Table 2 shows a commitment by ASE to apply tests for damage and to ensure specifi-
cations are met prior to delivery (and therefore part of the service process). In contrast,
Table 3 gives no implementation commitment. The above rule highlights the fact that
the contract is less robust if Motorola places no criterion on what process is accept-
able in developing a corrective plan, for example, the factors that ASE should take into
account.

The fulfillment of service commitments and quality constraints is usually publicly
observable. For example, whether ASE has manufactured the semiconductor chips up
to the requisite standard is verifiable by Motorola once Motorola has received the chips.
However, implementation constraints restrict the internal processes a contract party em-
ploys; compliance with such commitments is not visible outside the company. For ex-
ample, Motorola cannot ascertain from outside ASE whether ASE has met the ISO 9000
standards in manufacturing the chips. Hence, implementation constraints call for audit
commitments.

Robustness Rule 4. Each service’s implementation constraints must have a correspond-
ing audit commitment that ensures that the satisfaction or violation of the constraints
is detected.

If a commitment has been violated (for example, if the product is not available, or if
quality or implementation constraints haven’t been followed), then the creditors’ goals
may not be achieved. In order to be robust, therefore, the creditor in the commitment
requires that some compensating commitment comes into force.

Robustness Rule 5. Each commitment must have a corresponding resolution commit-
ment that ensures that the violation of the former commitment results in a suitable
sanction on the debtor.

Table 2 shows two commitments to ensure correct auditing by both parties involved. It
is only by auditing that any violations of the implementation constraints are detected.
There is also a resolution commitment, to specify what should be done when the prod-
uct or process is inadequate according to the quality and implementation constraints.
Table 3 shows no audit or resolution commitments are given. The above rules highlight
the fact that the contract is less robust if there is no record of ASE having produced and
implemented such a corrective plan, or what action to take if ASE fails to produce such
a plan.

Further, for the debtors of a contract commitment, the contract is robust only if it
adequately accounts for exceptional circumstances, beyond those assumed in normal
operation. We ensure the robustness of the contracts in relation to these aspects, with
the following rule.

Robustness Rule 6. Each commitment may have corresponding contingency commit-
ments that ensure that, in each exceptional circumstance envisaged, the violation of the
former commitment does not result in an inappropriate sanction on the debtor.

30 A.K. Chopra et al.

Table 2 shows no contingency commitments because the contract fails to specify as-
sumed circumstances. The absence of assumptions should draw the modelers’ attention,
but may merely indicate that there is no contingency to consider. Table 3 also states no
contingency commitment, but does have assumed circumstances. The above rule high-
lights the fact that the contract is less robust if it is not specified what should be done if
Motorola only rejects a product long after (more than X days) it has been delivered.

It might seem that, if applied recursively, the above rules could lead to an infinitely
large contract; for example, each commitment requires another commitment for reso-
lution. However, our use of the context of a contract—as in a business contract within
a wider legal system—provides a natural solution. Not all of the associated commit-
ments mentioned in the rules above need to be in the contract document itself; many
may be present in the wider context. Ultimately, the audit, resolution, or contingencies
of contextual commitments may be captured via general approaches, such as “file a
lawsuit.”

4.3 Consistency Robustness Rules

The above rules consider the requirements of robustness on each commitment. The
robustness of a contract as a whole depends in addition on whether its commitments are
realizable.

It should always be clear to a contracting party what to do to fulfill the contract, even
in the case of multiple failures. Further, if success in one commitment prevents success
in another, then the contract cannot be robust. A particular example of this is where
two commitments require the same party in the same system state to do two conflicting
things. A robust contract does not have such conflicts between its commitments, and
the following rule expresses this constraint.

Robustness Rule 7. For any given contracting party and applicable system state, by
performing an action necessary to avoid violating one commitment, the action should
not violate any otherwise nonviolated commitment.

Taken together, the rules specified above provide us with a means of ensuring that a
contract is robust at the point of specification. The full set of rules is summarized in
Table 4, indicating which aspects of the contract each rule applies to.

5 Evaluation

We used the Motorola-ASE contract as primary inspiration for our approach to model-
ing and assessing contract robustness (along with our prior experience with case studies
as part of electronic contracting projects). To evaluate our proposed approach, we took
an entirely independent contract and applied our methodology to it. Figure 2 shows an
excerpt from a short contract2 between a juggling society and an event organizer. We
now show how our methodology applies to determine whether this contract is robust.

2 http://users.ox.ac.uk/˜juggsoc/contract.shtml

http://users.ox.ac.uk/~juggsoc/contract.shtml

Analyzing Contract Robustness through a Model of Commitments 31

Table 4. Contract rules

Rule Target
PREREQUISITE 1 Scope of contract
PREREQUISITES 2 & 3 Services and contracting parties
PREREQUISITE 4 Well-defined contract
ROBUSTNESS RULE 1 Product
ROBUSTNESS RULE 2 Quality constraints
ROBUSTNESS RULE 3 Implementation constraints
ROBUSTNESS RULE 4 Audit commitments
ROBUSTNESS RULE 5 Resolution commitments
ROBUSTNESS RULE 6 Contingency commitments

Table 5. Domain concepts for the Juggler contract, grouped according to the commitments that
they most closely relate to

Service performance, breaks, guests, venue, equipment
Contingency deposit, damage, injury, guarding, poor weather, cancellation
Implementation alcohol consumption, cloakroom, performance area, indoors, height,

outside
Resolution compensation, liability, refund

5.1 Entity Identification

The two contracting parties involved in this contract are the JUGGLING CLUB (UJC),
and the CANTERBURY CENTRE DINNER (CCD). Additional roles include PERFORMER

and JUGGLER. As we see below, this contract obeys Prerequisites 2 and 3.
The CCD’s goal from the contract is to obtain performers for their dinner. The UJC’s

goal is to get paid.
Apart from temporal concepts (relating to dates and times), and general concepts

such as money, we may identify the domain concepts listed in Table 5. Since only these
concepts are referred to within the contract, Prerequisite 4 is satisfied.

The contract initiates as soon as it is signed and it is implied that it expires at the end
of the performance. Note that the lack of an explicit expiration condition suggests one
problem with the robustness of the contract. One may envision a situation where some
equipment is damaged, and a disagreement arises as to whether this damage falls under
the contract or not (for example, when the jugglers and guests are on their way home
from the dinner). Thus, Prerequisite 1 is not satisfied within this contract.

5.2 Mapping to Commitment Model

We now map clauses from the contract to the commitment model. Clauses 3 to 7 imply
a service to be provided: the provision of jugglers and equipment by UJC, modeled in
Table 6. UJC is the debtor, CCD is the creditor and the eventual product of the service is
that the jugglers perform at the event. Implementation constraints are specified: that the
jugglers remain sober (Clause 12). Where the service cannot be provided due to poor
weather conditions (assumed circumstances not holding, Clause 11) or the performance

32 A.K. Chopra et al.

Contract For: Canterbury Centre Dinner 2003 (“CCD”),
Friday 6 June 2003, 24 High Street, Canterbury.

This agreement is entered into between the University Juggling Club (“UJC”) and
the Canterbury Center Dinner 2003 on the following terms:

1. Service Provider: University Juggling Club.
2. Employer: Canterbury Center Dinner.
3. To be provided by UJC: Performers: J Woods (juggler); one other juggler; all

equipment necessary for performance.
4. To be provided by CCD: Cloakroom.
5. Venue address: 24 High Street, Canterbury.
6. CCD understands that performances are restricted in venues with ceilings of

insufficient height. The ideal height is 5 meters. Outside performances are re-
stricted in rain or strong winds.

7. Date of Performance: Friday 6 June 2003, starting at 6:30PM.
8. Duration of Performance: 1.5 hours. Short (less than one minute) breaks are

part of the performance.
9. Fee: £30 per juggler + £10 expenses + £90 insurance (total £160).

10. If UJC is forced to cancel, all monies (including £90 deposit) will be refunded
in full. If the Employer cancels with at least 24 hours notice, UJC will retain
£90 and return any other monies.

11. Should poor weather mean that the Event takes place indoors, UJC will refund
£10 expenses.

12. Performers will not consume any alcohol until after completion of services as
agreed.

13. CCD will be responsible for compensation to UJC for damage to equipment
caused by those attending the Event unless damage is caused when (if) Per-
formers have left equipment unguarded.

14. UJC will be liable for any injury sustained by a guest at the Event if such
injury results from provision of services as agreed upon in this contract unless
the Event fails to provide a suitable area for performance.

Fig. 2. An extract from a contract to provide juggling services

is canceled by UJC (violation of commitment under assumed circumstances, Clause 10),
contingency and resolution commitments apply, respectively. Clause 9 is a commitment
for a separate payment-for-juggling service, and so is not modeled here.

5.3 Assessing Robustness

Having identified the commitments, we may check whether they meet the appropriate
robustness rules. Clearly, each desired outcome of the contract meets the commitments
specified in Clauses 3, 4, 7, 8 and 9, as a performance will take place, and UJC will be
paid. Thus, Rule 1 is satisfied.

According to Rule 2, each service commitment must have associated quality con-
straints. Whereas one assessment of quality is given for the service in Table 6, and so

Analyzing Contract Robustness through a Model of Commitments 33

Table 6. Service commitment: provide jugglers, equipment (the numbers refer to clauses in the
textual description)

Commitment for providing resources
Reference C-ProvisionOfResources
Creditor CCD (2)
Debtor UJC (1)

Antecedent
Activation Agreement to contract
Assumed Venue is indoor and of adequate height or outdoor and there is no rain or strong

winds (6)
Consequent

Product C-JugglerPerform (3,4,5,7)
Quality C-PerformanceFor1.5Hours (8)
Implementation C-JugglersWillNotConsumeAlcohol (12)

Related
Contingency C-PoorWeather (11)
Contingency C-Cancellation (10)
Resolution C-CompensationResponsibility (13)
Resolution C-Injury-Liability (14)

the clause can be judged somewhat robust, other quality measures may also be consid-
ered (for example, specifying how capable the juggler should be).

UJC agrees to implementation constraints: that the jugglers do not consume alcohol
while performing. Note that although there is no corresponding audit commitment, this
is only because the contracted performance is slated to happen in a public venue and
CCD would easily be able to detect noncompliance on part of the juggler. Thus Rule 4 is
satisfied. The parties may consider additional implementation constraints, for example
if there are any stipulations that should be made about how the product is reached, such
as whether the organizers are given prior warning about when the jugglers will arrive.

There are some commitments for contingency and resolution in Table 6. Therefore,
there is some robustness in this regard according to Rules 5 and 6. However, the contract
can be even more robust if consideration is made of the other ways in which the assumed
circumstances may not come about or the service is not provided. For example, the
assumed circumstances are a conjunction of criteria and the contract does not say how
to handle jugglers arriving at a venue with too low a ceiling. Similarly, the quality
constraints require jugglers to remain sober, but there is no means of redress specified
if this commitment is violated.

The juggling contract’s inability to deal with such unexpected situations, together
with its vagueness, means that it lacks robustness in several ways, and that in unexpected
situations, disagreements between the parties may occur that the contract may be unable
to resolve.

6 Related Work

Tropos is one of the leading AOSE methodologies with a substantial emphasis on
early-stage requirements [4]. Tropos is centered on the notion of goals (along with

34 A.K. Chopra et al.

dependencies among goals), and generally works best where the system-to-be is built
to accommodate the goals of the stakeholders, modeled as actors. Tropos does not nat-
urally apply to cross-organizational settings, where there is no unique system-to-be
but rather one per stakeholder and where often the challenge is to specify the interac-
tion protocol or rules of encounter rather than a complete implementation of a system.
Mallya and Singh [12] relate protocols with Tropos using dependencies as bases for
inducing protocols. Telang and Singh [18] have sought to incorporate commitments
into Tropos as first-class modeling concepts. However, the existing works on Tropos
have a general bias toward greenfield system designs whereas the approach we propose
above begins from existing contracts and thus potentially can apply when a functioning
(though potentially inadequately functioning) cross-organizational system is already in
place.

Much work has been done on using automated contracts within computer science,
and particularly within the area of multiagent systems. It is possible to categorize this
work based on the contract life cycle. Our work in this paper concerns itself with the first
stage of the contract life cycle, namely contract drafting. In this phase, themes such as
the precise language used to represent the contract are important, as well as challenges
such as contract negotiation (for example, as studied by Carbogim and Robertson [5])
and contract validation. Once a contract is drafted, it comes into effect, and further
challenges such as contract monitoring and enforcement become important, but are not
further discussed here. Daskalopulu et al. [7] describe logic-based tools for this end.

Our use of commitments to model contracts represent a significant departure from
existing works on modeling contracts. Both contracts and commitments are social con-
structs in that they are both grounded in communication among the participants. By
contrast, constructs such as business rules and obligations (as studied in deontic logic)
are not social. Many contract languages that have been proposed, including those by
Abrahams and Bacon [1], Grosof and Poon [11], and Governatori [10]. However, none
of them represent contracts as a set of commitments as we do.

We do not study how a contract comes into being, concentrating instead only on
whether it is robust or not. Thus, our work falls into the area of contract validation.
However, most work on contract validation concerns itself with either ensuring that
contract clauses are consistent, for example, by Daskalopulu [6], or ensuring that a
sound legal basis exists, for example, by Gisler et al. [9]. The notion of robustness adds
to, rather than replaces these concerns.

The only other large-scale analysis of contractual requirements that we are aware of
is the work of Daskalopulu et al. [6], who investigate how to support large engineering
contracts. However, their work was focused on identifying language requirements for
such contracts, not on a software engineering methodology as here.

The work of Desai et al. [8] is relevant in this regard. Desai et al. study contracts
from the perspective of utility theory as a basis for determining from the perspective of
a contracting party whether a particular contract is safe (never produces negative utility)
or beneficial (produces positive utility) for it. It would be useful to incorporate Desai
et al.’s representation and reasoning approach into our methodology, although a prac-
tical challenge that such economic approaches face is determining the relevant utilities
and probabilities in domains of sufficient complexity to be practically valuable.

Analyzing Contract Robustness through a Model of Commitments 35

7 Conclusions and Directions

In this paper, we have sought to develop a model, a methodology, and heuristic rules by
which we can capture and analyze requirements from business contracts as a potential
basis for developing robust multiagent implementations of software systems in open
environments.

We identified the notion of robustness as critical to a contract. Informally, a robust
contract is one that meets the contracting parties’ goals for the contract, and handles
unexpected situations gracefully. We proposed a methodology for determining whether
a contract is robust, and evaluated portions of this methodology on portions of two real
contracts. Our approach models contracts such that their robustness is assessed in a
structured manner. However, many open questions remain.

First, it would be interesting to map the notions of robustness into an existing contract
language, such as the one proposed by Oren et al. [15], and to automate the rules for
robustness, creating an algorithm that may identify whether a contract is robust or not.
It would also be useful to study a large number of additional contracts, and see whether
our rules for robustness are exhaustive, or should be altered in some way. Further, it
may be possible to identify additional commonly occurring classes of commitments,
together with associated robustness rules.

The notion of robustness becomes increasingly important as agents autonomously
negotiate and create contracts between themselves. By creating a robust contract, able
to state what should occur in all situations (within the context of the contract), an agent’s
cognitive load is reduced, as it does not need to reason about whether the contract was
adhered to or not. Further, robust contracts minimize the situations in which humans
need to intervene in order to handle agent disagreements. While many open problems
remain, this paper provides an initial approach to identifying and creating robust con-
tracts.

Acknowledgments. Amit Chopra was supported by a Marie Curie Trentino award.

References

1. Abrahams, A.S., Bacon, J.M.: A software implementation of Kimbrough’s disquotation the-
ory for representing and enforcing electronic commerce contracts. Group Decision and Ne-
gotiation 11(6), 487–524 (2002)

2. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Programming:
Languages, Platforms and Applications, Multiagent Systems, Artificial Societies, and Simu-
lated Organizations, vol. 15. Springer, Heidelberg (2005)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons, Chichester (2007)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

5. Carbogim, D., Robertson, D.: Contract-based negotiation via argumentation (a preliminary
report). In: Proceedings of the Workshop on Multi-Agent Systems in Logic Programming:
Theory, Application, and Issues (MAS) held at the International Conference on Logic Pro-
gramming (ICLP), Las Cruces, New Mexico (1999)

36 A.K. Chopra et al.

6. Daskalopulu, A.: Logic-based tools for legal contract drafting: Prospects and problems. In:
Proceedings of the First Logic Symposium, pp. 213–222. University of Cyprus Press (1997)

7. Daskalopulu, A., Dimitrakos, T., Maibaum, T.: Evidence-based electronic contract perfor-
mance monitoring. Group Decision and Negotiation 11(6), 469–485 (2002)

8. Desai, N., Narendra, N.C., Singh, M.P.: Checking correctness of business contracts via com-
mitments. In: Proceedings of the 7th International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pp. 787–794. IFAAMAS, Columbia (2008)

9. Gisler, M., Stanoevska-Slabeva, K., Greunz, M.: Legal aspects of electronic contracts.
In: Proceedings of the CAiSE Workshop on Infrastructure for Dynamic Business-to-
Business Service Outsourcing (IDSO), Stockholm. CEUR Workshop Proceedings, vol. 30,
CEUR-WS.org (2000)

10. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

11. Grosof, B., Poon, T.C.: SweetDeal: Representing agent contracts with exceptions using se-
mantic web rules, ontologies, and process descriptions. International Journal of Electronic
Commerce 8(4), 61–98 (2004)

12. Mallya, A.U., Singh, M.P.: Incorporating commitment protocols into Tropos. In: Müller, J.P.,
Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 69–80. Springer, Heidelberg (2006)

13. Meneguzzi, F., Miles, S., Holt, C., Luck, M., Oren, N., Faci, N., Kollingbaum, M.: Elec-
tronic contracting in aircraft aftercare: A case study. In: Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems, pp. 63–70 (2008)

14. Nunes, I., Cirillo, E., de Lucena, C.J.P., Sudeikat, J., Hahn, C., Gomez-Sanz, J.J.: A survey on
the implementation of agent oriented specifications. In: Gomez-Sanz, J.J. (ed.) AOSE 2009.
LNCS, vol. 6038, pp. 169–179. Springer, Heidelberg (2011)

15. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards
a formalisation of electronic contracting environments. In: Proceedings of the International
Workshop on Coordination, Organization, Institutions and Norms in Agent Systems (COIN)
held at AAAI, Chicago, pp. 61–68 (2008)

16. Rodrı́guez-Aguilar, J.A., Martı́n, F.J., Noriega, P., Garcia, P., Sierra, C.: Towards a test-bed
for trading agents in electronic auction markets. AI Communications 11(1), 5–19 (1998)

17. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

18. Telang, P.R., Singh, M.P.: Enhancing Tropos with commitments. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 417–435. Springer, Heidelberg (2009)

19. Telang, P.R., Singh, M.P.: Abstracting and applying business modeling patterns from Roset-
taNet. In: Proceedings of the 8th International Conference on Service-Oriented Computing
(ICSOC), pp. 426–440. ACM, San Francisco (2010)

20. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business models:
An agent-oriented approach. IEEE Transactions on Services Computing 4 (in press, 2011)

21. Weyns, D., Haesevoets, R., Helleboogh, A.: The MACODO organization model for context-
driven dynamic agent organizations. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS) 5(4), 16:1–16:29 (2010)

A Case for New Directions

in Agent-Oriented Software Engineering

Ingrid Nunes1,2, Donald Cowan3, Elder Cirilo1, and Carlos J.P. de Lucena1

1 PUC-Rio, Department of Informatics, LES - Rio de Janeiro, Brazil
{ionunes,ecirilo,lucena}@inf.puc-rio.br

2 King’s College London, Strand, London, WC2R 2LS, United Kingdom
3 University of Waterloo, David R. Cheriton School of Computer Science - Waterloo,

N2L 3G1, Canada
dcowan@uwaterloo.ca

Abstract. The state-of-the-art of Agent-oriented Software Engineering
(AOSE) is insufficiently reflected in the state-of-practice in developing
complex distributed systems. This paper discusses software engineering
(SE) areas that have not been widely addressed in the context of AOSE,
leading to a lack of mechanisms that support the development of Multi-
agent Systems (MASs) based on traditional SE principles, such as mod-
ularity, reusability and maintainability. This discussion is based on an
exploratory study of the development of a family of buyer agents follow-
ing the belief-desire-intention model and using a Software Product Line
architecture. Based on the discussion presented in this paper, we hope
to encourage the AOSE community to address particular SE issues on
the development of MAS that have not yet been (widely) considered.

Keywords: agent-oriented software engineering, multi-agent systems,
software reuse, software product lines, software architectures.

1 Introduction

Multi-agent Systems (MASs) synthesize contributions from different areas, in-
cluding artificial intelligence, software engineering (SE) and distributed comput-
ing. In the context of SE, MASs are viewed as a paradigm, whose main idea is
to decompose complex and distributed systems into autonomous, pro-active and
reactive agents with social ability. Such properties are particularly appropriate in
the development of modern software systems, which tend to be open, distributed
and situated in dynamic environments. However, the state-of-the-art of Agent-
oriented Software Engineering (AOSE) is rarely seen in the state-of-practice in
developing complex distributed systems [1]. One of the reasons for this is the
poor connection between agent research and mainstream SE. While the SE com-
munity cares about modularity, stability, reusability and maintainability when
developing applications, the MAS community has shown little research effort in
building systems following these SE principles.

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 37–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

38 I. Nunes et al.

AOSE has emerged as a means of investigating SE issues related to the de-
velopment of MAS. In the last few years, there appears to be a significant ef-
fort devoted to agent-oriented methodologies, processes and modeling languages.
This can be seen, for instance, by analyzing the post-proceedings of the AOSE
workshop (2000 to 2008), and verifying that there are a total of 154 papers of
which 88 (more than 50%) are related to modeling approaches. It is important to
address these kinds of approaches, but as a consequence other important issues
have received little attention in the context of MAS development. In this paper
we identify and discuss some of these issues, based on a case study that involves
Software Product Lines (SPLs) of agents.

In previous work [2], we have proposed building customized service-oriented
agents using a SPL approach. SPL [3] aims at systematically deriving families of
applications based on a reusable infrastructure with the intention of achieving
both reduced costs and reduced time-to-market. This work has evolved from pre-
vious research [4], which aimed at documenting and modeling multi-agent SPLs
with a focus on coarse-grained variability. Current research that aims at integrat-
ing MASs and SPLs has not dealt with fine-grained variability, i.e. variability
within an agent architecture, such as optional and alternative beliefs, goals and
plans. Fine-grained variability is essential when extracting features from legacy
applications. Furthermore, some existing SPLs could benefit from fine-grained
variability to reduce code replication or improve readability [5].

Given that an SPL architecture must address variability within a domain, it
is essential to adopt techniques to modularize variable portions of the architec-
ture, thus enabling the reuse of these assets in different product configurations.
This modularization is particularly challenging when dealing with fine-grained
variability. It is important to rely on implementation techniques that support
modular configuration of the variable parts. Otherwise, the stability of an agent
SPL architecture will naturally decay over time and this instability will be per-
petuated through all future generations of product architectures. During the
development of our case study of [2], we have identified several issues in the
state-of-the-art AOSE to allow building modularized agent SPL architectures
with reusable assets.

The focus of this paper is to report and discuss lessons learned during the de-
velopment of our case study, mainly related to the lack of techniques that support
building agent architectures that take SE principles into account. We present an
exploratory study of the development of a family of software agents, in which
we aim at adopting appropriate techniques to build agents using reusable assets.
The main objective of this study is to explore how parts of an agent architecture
can be modularized and be made sufficiently generic for reuse. In particular,
our study focuses on agents that follow the BDI architecture [6], which is widely
used for developing cognitive agents. In addition, we focus on web-based systems
with some components that are software agents. Many software systems are not
operating in isolation, but are in a distributed and dynamic environment like
the web, where new problems such as trust and coordination between compo-
nents become important. Even though MASs have characteristics that may be

A Case for New Directions in AOSE 39

appropriate to solve these problems, alternative technologies such as service-
oriented computing (SOC) are being chosen, because of a lack of reusable agent
assets [7]. Based on our case study, we discuss issues that arose during its de-
velopment, which are: modularization techniques of different variability types,
architecture models, generative programming and large scale software reuse. In
addition, we also discuss the relevance and the need for empirical studies involv-
ing MASs. With the discussion presented in this paper, we aim at encouraging
the AOSE community to address particular SE issues on the development of
MAS that have not yet been (widely) considered.

The paper is organized as follows. Section 2 presents a background on SPLs.
Section 3 describes our case study, the family of buyer agents. Section 4 discusses
problems identified during the development of our study, followed by Section 5,
which provides further considerations on SE research areas not widely explored
in the context of MASs. Section 6 concludes the paper.

2 Background: Software Product Lines

The Software Product Line (SPL) approach is a new trend in the context of
software reuse that provides a systematic method for integrating the design and
implementation of several closely related systems. The term family of programs
was first introduced by Parnas in [8], defining it as a set of programs with so
many common properties that it is an advantage to study these common proper-
ties before analyzing individual members. The concept of SPL is similar to this
definition: “a set of software intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed
way [3].”A feature is a system property that is relevant to some stakeholder
and is used to capture common aspects of the software or discriminate among
products in a product line [9]. The features are organized into a coherent model
referred to as a feature model (originally proposed in [10]), which specifies the
features of a product line as a tree, indicating mandatory, optional and alterna-
tive features. Mandatory features are part of the SPL core and are present in all
products derived from it. Optional features are present just in some members
of the SPL and alternative features are the ones that vary from one member to
another. Features are essential abstractions that both customers and developers
understand.

The main aim of Software Product Line Engineering (SPLE) is to analyze
the common and variable features of applications from a specific domain, and to
develop a reusable infrastructure that supports the software development. Vari-
ability management is the major unique product-line discipline that must be
established within non-product-line organizations. It is responsible for system-
atically managing the scope itself, and ensuring its traceability with genericity
of product line artifacts. There are several motivations for the adoption of a
SPL approach, the three main ones being the reduction of development costs,
enhancement of quality and reduction of time-to-market. The costs are reduced

40 I. Nunes et al.

by reusing artifacts to derive products from the SPL. This is the same reason
for a reduced time-to-market. The enhancement of quality is achieved by re-
viewing and testing the SPL artifacts in many products. However, although the
development of reusable artifacts requires an up-front investment and a higher
time-to-market in the initial phases of the SPL development, but this extra effort
is usually regained after the third derived product [11].

To enable SPLE, a well-accepted convention is to divide the engineering pro-
cess into two different processes: domain engineering and application engineering.
Domain Engineering is the process in SPLE in which the common and variable
aspects of the SPL are defined and realized. It is responsible for scoping the SPL,
and ensuring that the core assets have the variability that is needed to support
the desired scope of products. Domain engineering approaches aim at collecting,
organizing, and storing past experience in building systems or parts of systems
in a particular domain in the form of reusable assets, as well as providing an
adequate means for reusing these assets when building new systems [9]. Appli-
cation Engineering, in turn, is the process of SPLE in which applications of the
SPL are built by reusing domain artifacts and exploiting the SPL variability. It
takes the common assets of the SPL and uses them to create products. Domain
engineering and application engineering can be called engineering-for-reuse and
engineering-with-reuse, respectively.

2.1 Existing Agent-Based Product Line Approaches

Recent approaches have focused on the integration of SPLs and MASs [4,12,13],
which has been called Multi-agent Systems Product Lines (MAS-PLs). In [12]
an approach is proposed to build the core architecture of a MAS-PL based
on the composition of role models. However, the approach deals with model
composition and not implementation composition. Therefore, it is not clear how
reusable implementation assets can be combined to form customized products.
There are two other approaches proposed in the context of MAS-PLs, which are
an extensible agent-oriented requirements specification template for distributed
systems that supports safe reuse [13], and a domain engineering process for
MAS-PLs [4]. But both approaches deal only with coarse-grained variability,
such as optional and alternative agents, roles and capabilities, i.e. self-contained
software entities. This is also the case in [14], in which empirical studies of MAS-
PL implementation techniques were performed. Therefore, there are still many
challenges in the integration of MAS and SPL, and more generically supporting
large scale software reuse.

3 The Buyer Agent Family Case Study

As described in the introduction, our exploratory study consists of the develop-
ment of a family of agents in the domain of electronic commerce. This family is
composed of buyer agents referred to as buyer agent SPL in the remainder of
the paper. The idea is to develop an agent architecture that supports domain

A Case for New Directions in AOSE 41

variability. When a user makes a request to buy a product with a specific config-
uration, a customized buyer agent is derived from this architecture according to
the configuration and it buys, or tries to buy, the requested product. A configu-
ration is a selection of a valid set of features. For instance, in a car product line,
there may be two variable features: optional air conditioning and the alternative
between a manual or automatic transmission. In this case, a configuration could
be air conditioning and automatic transmission.

In this section, we describe our case study. As buyer agents are situated in
an environment composed of other agents, first we present a macro-level view of
this MAS, named e-Marketplace (Section 3.1). Next, we detail the buyer agent
architecture (Section 3.2) and the implementation techniques to support the
variability (Section 3.3). Finally, we describe how customized buyer agents are
derived from this architecture (Section 3.4).

3.1 E-Marketplace Overview

The domain of electronic commerce is a typical application domain of MASs, as
some commercial decision-making can be delegated to agents. Our exploratory
study focuses on the internal structure of a customizable buyer agent that enters
into the MAS and interacts with other agents to achieve its goals. In this section,
we present the MAS to which this buyer agent belongs, which captures the typical
characteristics of virtual electronic commerce environments and was built to
support the development and execution of this customizable buyer agent.

The e-Marketplace MAS is composed of four main organizations. The e-
Marketplace organization contains buyers and sellers that interact in order for a
seller to sell a product to a buyer. In the Payment Services organization, there
are two agents, the PayPal and CreditCardCompany, which provide the neces-
sary services for paying for a product. The Geographic Services organization is
composed of the Map agent that calculates the distance between two locations. It
is used by the buyer agent to find stores that are near the buyer. The fourth or-
ganization is the Ipagent. This organization is composed of agents of the Ipagent
system. The system structure is based on the Web-MAS architectural pattern
[15] that has the aim of integrating agents into web-based systems. This architec-
tural pattern is an extension of the layered pattern [16] typically structured with
three layers for web systems: (i) presentation – responsible for processing web
requests and generating dynamic pages; (ii) business – responsible for executing
business processes and handling business rules; and (iii) data – responsible for
the data persistence. The User agent acts on behalf of users, and is composed
of services provided for them, including the buy service, which is responsible for
deriving customized Buyer agents. These organizations and layers are presented
in Figure 1, which depicts the overall structure of the e-Marketplace MAS.

Our focus is not to address the development of the entire MAS. Organiza-
tions representing stores and other companies are already deployed in the system
and ready to interact and provide services to other agents. This existing MAS

42 I. Nunes et al.

Fig. 1. E-Marketplace MAS

provides an ontology giving a formal representation for a set of concepts, which
includes the messages exchanged by agents within the domain and protocols
related to the exchange of messages.

3.2 Buyer Agent SPL Architecture

The buyer agent represents a user in the e-Marketplace organization. Given that
users are individuals, their preferences should be part of the buyer agent so this
agent can act appropriately on their behalf. Thus, we have analyzed the domain
related to buying products and we have identified the variable aspects of this
domain, and the goals and subgoals of the buyer agent SPL. These points of
variability (variable features) are taken into account while designing and im-
plementing the agent SPL architecture making it possible to derive customized
buyer agents based on a configuration provided by the user.

It is important to highlight that the issue we are addressing is not only pre-
senting customized behavior, which in simple cases can be achieved by making
settings (i.e. customizing data) in software systems. Our goal is to investigate
changes in software agent structures, and therefore parts that can be changed
must be modularized so they can be (un)plugged from the agent architecture.
One could say that in our exploratory study it is not necessary to derive specific
agents to present customized behavior, and introducing parameters, i.e. chang-
ing “data,” into the architecture is enough. This is not a good solution because
these parameters are control variables, which is a program variable that is used
to regulate the flow of control of the program. They introduce a control coupling
in the system and, if we are dealing with large scale software, it is hard to under-
stand and maintain the code. This is the principle of separation of concerns [17]
in architectures and modularizing them as much as possible, and as introduced
in Section 2 it is essential to manage variability in SPLs. We agree that this
case study is not sufficiently large enough to illustrate adequately the problem

A Case for New Directions in AOSE 43

of introducing control variables and the need for adopting more sophisticated
techniques to handle variability, but it provides the necessary variable features
that create scenarios to be modularized, which is our main interest.

One of the most popular agent architectures is based on the belief-desire-
intention (BDI) model [18], which is inspired by human reasoning. The BDI
architecture [6] states that an agent has a set of beliefs, desires and intentions.
Desires are the goals that the agent wants to achieve. When an agent is commit-
ted to achieve a desire, this goal is an intention, which is typically associated with
a plan defining a course of action necessary to achieve the desire. All this reason-
ing process is based on the agent’s view of the world, which are its beliefs. The
buyer agent SPL was structured using this architecture, as the agents are proac-
tive and have goals. In addition, this architecture has been thoroughly analyzed,
and implemented on several agent platforms. Based on these considerations, we
designed our agents based on the concepts of goals, beliefs and plans.

The variable features with their alternatives that we identified and considered
in the buyer agent SPL are: (i) Payment Type, with alternatives: Credit Card,
Pay Pal and Pay upon Pick up; (ii) Shipping Type with alternatives: Ground
Shipping and Pick up at Store; and (iii) Store Selection Strategy, with alterna-
tives: cheaper and faster. In addition, constraints were defined in order to allow
only the selection of valid sets of features, e.g. the Pay upon Pick up feature can
only be selected if the Pick up at Store feature is also selected.

In order to build an agent that supports these variable features, we adopted
techniques since the beginning of development (the analysis phase), in which we
identified the goals and subgoals of the buyer agent, which are depicted at the
top of Figure 2. A set of subgoals must be achieved in order to reach the parent
goal. As domain variability was also considered, we decomposed goals in such a
way that leaf subgoals are only related to one alternative feature. For instance,
the goal Verify If Product in Stock can be achieved either by a set of actions
that verifies the online stock of a seller (Consult Online Stock plan), in the case
where “Ground Shipping” is chosen, or by achieving two subgoals (Find Near
Stores and Check Store Stock) to verify the stock of a store of the seller, in the
case where “Pick up at Store” is chosen. A (sub)goal may be optional, meaning
that it will be part of the agent only if the feature related to the goal is selected
for the agent being derived, such as the Execute PayPal Transaction goal.

The plans for the buyer agent that achieve its goals are shown at the bottom
of Figure 2. Note that some goals can be achieved by different plans that support
the different alternative features. Based on a buyer agent configuration, the plans
related to the selected features will be chosen to be part of the derived agent. The
complete agent architecture design and implementation is presented in Figure 3.

In Figure 3, we represent the buyer agent using the structure of our tar-
get agent platform, Jadex.1 The buyer agent (stereotyped with �agent�) is
composed of capabilities (stereotyped with �capability�), which support the
modularization of a set of BDI concepts according to a chosen criterion such as
cohesion. The capabilities aggregate beliefs, goals and plans, and the latter also

1 http://jadex-agents.informatik.uni-hamburg.de/

http://jadex-agents.informatik.uni-hamburg.de/

44 I. Nunes et al.

Fig. 2. Buyer Agent SPL – Goals and Plans

have an implemented body (stereotyped with �plan�). It can be seen that
plans match the ones identified in the analysis phase and presented in Figure 2.
Colors in Figure 3 indicate where the variability is present in the buyer agent
architecture, each color is associated with one feature.

3.3 Techniques for Supporting Variability

Modularization is one essential property of software development, because it
promotes benefits such as reusability and maintainability. In the context of SPLs,
it is even more important, as it must be possible to (un)plug features from
the SPL architecture to customize products. This customization can occur at
different binding time in the software development, depending on the techniques
adopted to support variability. For instance, at design time, design patterns
can be used to modularize variable features in coarse-grained entities so each
can be more easily (un)plugged from the code. At compilation time, conditional
compilation can be adopted.

In order to support the variability of the buyer agent SPL, we have adopted
different modularization techniques, which involve different phases of the soft-
ware development process (analysis, design and implementation). Some of these
modularization approaches are related to the agent platform used to implement
our SPL. As stated previously, the buyer agent SPL was implemented with the
Jadex agent platform, which is an implementation of the BDI architecture. Jadex
supports programming software agents in XML and the Java programming lan-
guage. An agent is defined in an XML file, named Agent Definition File (ADF),
which specifies the agent’s beliefs, goals and plans. An ADF can also contain
the definition of other concepts that help with the agent implementation such
as messages that can be sent and received. Although plans are declared in the
ADF, their body is implemented in Java classes, which extend the Plan class of
the platform.

A Case for New Directions in AOSE 45

Fig. 3. Buyer Agent SPL Architecture and its Variabilities

Next, we describe the four variability techniques adopted in our exploratory
study. The binding time of the first three is during the SPL analysis and de-
sign, and the last is performed at compilation time. We aimed to modularize
all variable parts of the buyer agent SPL using design techniques, which can be
used with any BDI platform. However, even though some entities are modular-
ized in design models (such as a plan), as Jadex requires the plan declaration
inside an ADF file, we had to use conditional compilation to manage this type
of variability.

Goal Decomposition and Plan Modularization. The variability modular-
ization starts in the analysis phase, while identifying goals and decomposing
them into subgoals. When this decomposition is performed, some goals may
be alternatives or optional, such as the Find Near Stores and Check Store
Stock, which are related to the Ground Shipping feature. In addition, plans
are modularized in such a way that each of them is either mandatory or
corresponds to one single feature. The goal decomposition helps with this
modularization because the finer-grained the goals, the more specific the
plans.

Plan Parametrization. Passing parameters to plans allows reusing them in
different contexts. The goal Verify Payment Acceptance could be achieved
by three different plans, each corresponding to one payment type. However,
the only difference in these plans would be a parameter passed in a message.
Therefore, we adopted the technique of passing parameters to plans to reuse
the same plan for the different payment types where there were three different

46 I. Nunes et al.

parameters. It is important to notice that this technique was used at the
design level, but we were able to implement plans in this way because Jadex
supports plan parametrization.

Capabilities. A capability [19] is essentially a set of plans, a fragment of the
knowledge base that is manipulated by those plans and a specification of
the interface to the capability. This concept is implemented by JACK and
Jadex agent platforms. Capabilities have been introduced into some MASs
as a SE mechanism to support modularity and reusability while still allowing
meta-level reasoning. We used the capability concept in order to encapsu-
late beliefs, goals and plans related to a certain concern, such as searching
stores. Therefore, we have modularized related concepts into a component,
the capability, which can be easily (un)plugged from the agent and reused
in other agents.

Conditional Compilation. The last implementation technique we adopted is
conditional compilation. The buyer agent SPL architecture has optional and
alternative parts that were not modularized in specific code assets, mainly
because all beliefs, goals and plans must be declared in ADFs. For instance,
even though the Pay goal is achieved by three different plans, i.e. Java classes,
the plan must be declared in the ADF. Therefore, the three different plans
are declared in the ADF with tags surrounding them indicating the feature
related to this XML code fragment. With this information, it is possible to
remove the fragments that are related to unselected features before compiling
the code. This technique is also adopted in Java class files. When a goal is
decomposed into subgoals, a plan is created to dispatch the set of subgoals,
but some of these subgoals may be optional. In this case, tags surrounding
the dispatch of the subgoal are introduced in the code in order to make
conditional compilation possible.

3.4 Automatically Deriving Buyer Agents

Customized instances of buyer agents are automatically and dynamically derived
from the buyer agent SPL during the execution of the Ipagent web-system. This
process differs from the traditional application engineering process of SPLE be-
cause it is typically performed statically, but essentially the process is the same:
a set of features is selected to be part of the customized product, and appropriate
software assets are selected and customized to be combined and form the desired
product. This task becomes more complicated without modularizing features,
and additional techniques, such as conditional compilation that was adopted in
our exploratory study, are required. Tools, e.g. pure::variants2 and GenArch,3

support the product derivation process of product lines, but because we needed
to perform product derivation dynamically, we have developed a mechanism to
support the process, which is described next.

When users want to buy a certain product, they must configure, through the
web interface of the system, a buy request by choosing the alternatives of the SPL
2 http://www.pure-systems.com
3 http://www.inf.puc-rio.br/~ecirilo/genarch/

http://www.pure-systems.com
http://www.inf.puc-rio.br/~ecirilo/genarch/

A Case for New Directions in AOSE 47

Fig. 4. Buyer Agent Derivation process

features and the desired product. This selection must respect the constraints that
define valid sets of features. After doing that, the Environment agent detects
that this business operation was executed, and propagates it to the User agent.
This agent is responsible for deriving the customized Buyer agent and starting
it. Figure 4 depicts the process performed by the User agent in order to derive
Buyer agents. We now describe this process.

The first step of the derivation process is to produce customized source code.
Three inputs are necessary for this task: (i) configuration knowledge – it is part
of the User agent’s belief base and stores the knowledge of which code assets
are related to which features; (ii) “markup” code – the tags described in the last
section indicate which code fragments are related to which features; and (iii)
the user configuration – the set of selected features. With these inputs, the User
agent first loads code assets that have been selected based on the configuration
knowledge and the user configuration, then removes the code fragments related
to the unselected features and finally saves the customized source code. The code
is then compiled and the Buyer agent is started. When the derived Buyer agent
is operational, it sends a message to the User agent indicating its operational
status. The User agent then requests the Buyer agent to buy the product that
the user wants. After finishing buying the product or realizing that the purchase
is not possible, the Buyer agent informs the user about the success or lack of
success while pursuing the buy request, and then dies.

4 Discussion

In this section, we present and discuss issues identified while developing the buyer
agent SPL. In order to build our study, we adopted techniques that support
domain variability, and as a consequence, we had to design and implement the
SPL architecture, in such a way that variable parts are modularized and SPL
assets can be reused to derive different buyer agent configurations. The issues are
related mainly to the following: modularization of different types of variability
(Section 4.1), representation of MAS architectures (Section 4.2), and large scale
software reuse (Section 4.3).

48 I. Nunes et al.

4.1 Intra-agent Modularization

Each agent of a MAS may be classified in two different ways [20]: (i) internally
as a software system with its own purpose (intra-agent viewpoint); and (ii) ex-
ternally as part of a society interacting with other individuals (inter-agent view-
point). Figure 1 shows the inter-agent view of our study, presenting the agents
and organizations that are part of the MAS and how they interact. Figures 2
and 3 depict the internal structure of the buyer agent SPL. In this section, we
discuss modularization techniques for MAS architectures, mainly related to an
intra-agent viewpoint.

A modularized software architecture is one that has been decomposed into
a set of modules that are cohesive and loosely coupled. From an inter-agent
viewpoint, agents have a lower coupling than objects, which is achieved by a
higher degree of encapsulation. A main difference between an agent and an
object [21] is that the former encapsulates not only data (its state), but also the
behavior selection process and when such behaviors are necessary. In addition,
agents are not aware of method signatures that must be known to be invoked, but
have to understand message exchange protocols. Nevertheless, the principles of
low coupling and high cohesion of an agent’s internal architecture have received
little attention from the research community.

In our study, we focus on exploring fine-grained variable structures of the
intra-agent viewpoint and not coarse-grained structures. The latter involves self-
contained software entities, such as agents and capabilities, and the first refers
to entities that are part of coarser-grained ones, e.g. beliefs, goals and plans.
Variability on these structures means that they are optional or alternative across
different products. While developing the buyer agent SPL, we have identified the
following variable structures:

– Capabilities: we used the capability concept provided by Jadex to aggregate
beliefs, goals and plans that are related to a specific concern, such as search
stores and buy product. Another capability that could be part of the buyer
agent SPL is a negotiation capability, which would aggregate concepts to
provide means for the agent to negotiate prices with sellers. Thus, capabilities
can be optional or alternative in an agent SPL architecture.

– Beliefs: An agent’s beliefs, in the BDI architecture, influences the two activ-
ities of practical reasoning: (i) deliberation – the activity of deciding what
goals the agent wants to achieve; and (ii) means-ends reasoning – the activity
of deciding how to achieve these goals. Therefore, a belief must be part of
the agent knowledge base if it participates in at least one of these activities.
In our study, the knowledge about the product store varies according to the
shipping type and the choose store strategy. If the product is to be shipped
and the strategy is to choose the cheaper store, the agent must know the
sellers that have the product in online stock, while if the user is to pick the
product up at a store and the strategy is to choose the nearer store, the agent
must know the different stores that have the product in stock and their lo-
cation. Consequently, the beliefs of an agent may also vary.

A Case for New Directions in AOSE 49

– Goals: As our study illustrates, subgoals for achieving a goal may be different
when dealing with different features. An example is the Verify If Product in
Stock goal, which can be achieved either by a plan or decomposed into two
subgoals. Therefore, there are two optional subgoals. In the buyer agent SPL
there are no alternative goals, however it is also a possible point of variation,
given that alternative goals are optional goals with the restriction that they
are mutually exclusive or have a specific cardinality.

– Plans: In the same way that a goal may be decomposed into different sets of
subgoals, the goal can be achieved by different plans. Thus, these different
plans are alternative descriptions. In addition, there are optional plans – if
a goal is optional, the plan that achieves the goal is also optional.

– Plan parameters: As discussed in Section 3.3, we used the plan parametriza-
tion provided by Jadex. In the Check Payment Acceptance plan, there are
alternative parameters that are given as input to a plan. Thus, Jadex allowed
us to reuse the actions of the plan to implement three different features.

Figure 3 shows how these variable structures are present in the buyer agent
SPL. We have adopted UML notation with stereotypes to represent agents, be-
liefs, goals, plans and capabilities. Each color in the figure represents a different
feature and the white color indicates that the element (or fragment of an ele-
ment) is present in all agent configurations, i.e. they are part of the SPL core. It
should be noticed that each plan can be related to only one feature because, by
means of goal decomposition, we have made plans very specific. However, other
variability types are tangled and spread throughout the capabilities.

Most agent architectures are generic structures and domain independent. This
is the case of the one we adopted, the BDI architecture, which provides modu-
larization in terms of three mental attitudes – beliefs, goals and plans. However,
other concerns (e.g. a system requirements) typically are associated with and
implemented by a subset of an agent’s beliefs, goals and plans, and the architec-
ture lacks mechanisms to modularize these other concerns. We refer to a concern
as anything that might be interesting to modularize in the architecture.

This situation happens in agents with more than one responsibility, i.e. agents
that have goals related to different purposes. The concepts related to each of
them will be mixed into the agent architecture, leading to code that is harder
to understand and maintain. In our case study, for instance, if the Buyer agent
were a User agent with different services, e.g. buy product and search the web,
the beliefs, goals and plans associated with both services would be part of the
agent, and there is no way of telling which service requires a certain belief.
This scenario is also illustrated in Figure 3. In addition, each capability, concept
introduced by the JACK platform and used in our study where all goals, beliefs
and plans associated with buying a product are encapsulated into a capability,
is associated with a set of plans that are related to different features (each color
represents a different feature). However, some of these plans are related to the
same feature, but this semantic relationship among them is not represented in
the buyer agent SPL.

50 I. Nunes et al.

Moreover, with goal decomposition and plan modularization features of the
buyer agent SPL could be modularized into single plans. This can be seen in
Figure 3, in which all plans have only one color. However, given that all beliefs,
goals and plans are part of an agent (or capability), and must be defined into
ADFs, the code related to features are tangled and spread throughout the ADFs.
Even though conditional compilation solved the problem of managing variable
structures, this technique is not a good practice because it leads to code and
configuration knowledge that is hard to understand and maintain. Conditional
compilation increases the complexity of the code, because a developer has to
understand the logic of conditional compilation tags, as well as the logic that is
already present in the code. The configuration knowledge, i.e. the relationship
between features and implementation elements, is buried in the code and there
is no way of discovering the impact of a feature on the SPL architecture.

An alternative solution to this problem is an extensive use of the capability
concept. In our case study, the Buy capability aggregates the concepts needed for
buying a product and can be reused in other agents that need to buy a product in
the e-Marketplace MAS. New capabilities could be created to encapsulate com-
ponents related to specific features. Figure 5 illustrates this scenario generically.
On the left side, we can see an agent modularized into three different mental atti-
tudes, which have two different concerns that have an orthogonal decomposition.
On the right side the use of capabilities to modularize such concerns is shown.

However, even though conditional compilation has the presented drawbacks,
we have adopted this technique because, using capabilities, each variable part is
modularized into a separate capability. Nevertheless, this technique would sig-
nificantly increase the number of components of the agent’s architecture thus in-
creasing its complexity and the difficulty of understanding and management [22].

Consequently, we claim that there is a need to explore existing techniques
or proposing new ones to provide mechanisms that allow the modularization
of agent architectures, thus increasing the reusability and maintainability of
systems. One example is the use of Aspect-oriented Programming (AOP) to
modularize agent architectures [23]. AOP has been investigated in the context
of SE as a technique to modularize cross-cutting concerns.

Fig. 5. Modularization by means of capabilities

A Case for New Directions in AOSE 51

Fig. 6. Abstract Factory Design Pattern

Besides AOP, several other approaches in SE have been proposed to improve
software architectures, following principles such as information hiding, encapsu-
lation, reusability, maintainability, high cohesion and low coupling. An example
of an approach that could be applied in the buyer agent SPL is the use of a de-
sign pattern, namely the Abstract Factory [24]. The intent of this pattern is to
provide an interface for creating families of related or dependent objects without
specifying their concrete classes. In our SPL, we have alternative sets of plans
for achieving a given set of goals. Alternative plans have the same interface as
specified by the pre- and post-conditions. This is exactly the problem that the
Abstract Factory pattern solves where our goal is to instantiate a family of plans
according to a selected feature. By means of the Abstract Factory pattern it is
possible to show the semantic relationship between plans and features explicitly.
Figure 6 shows this idea of applying the Abstract Factory pattern to show the se-
mantic relationship between plans and features explicitly. In addition, this helps
to manage the variable structure because using an abstract factory in the client
code allows an interchange of concrete factories without impacting the client
code. In addition, the inclusion of a new feature, i.e. a new payment method,
would be easier because it only requires a new concrete factory and its associated
plans. In this buyer SPL example, there are only two plans associated with the
factories, but the pattern would bring more benefits if there were more plans.

MASs are inspired by different aspects of human nature, such as organiza-
tional and cognitive functions, which support promising approaches to develop-
ing systems with capabilities such as reasoning and learning. But several agent
architectures and other AOSE approaches have addressed particular challenging
MAS problems, such as openness, proactive behavior and reasoning, and have
looked at “traditional” SE in a disconnected way. With the example described
previously, we aim to show that AOSE could learn from research work that
has been done in state-of-the-art SE to design and implement better software
architectures.

52 I. Nunes et al.

4.2 Architectural Models

The definition of the software architecture is a crucial step in the realization
of large scale software systems. The architecture provides a well conceived un-
derstanding of the large scale structures of the future system, and provides a
means for predicting problems that may arise during the early stages of software
development. Moreover, it is the software architecture that addresses quality at-
tributes defined in the system requirements, such as availability, modifiability
and other “ilities.” Designing high quality architectures with properties such as
modularity, and stability, are essential to reduce the impact of the software evo-
lution. Otherwise, software architectures may degenerate over time, making their
maintenance a nightmare, resulting in the need for refactoring, which increases
costs.

The software architecture of a computing system is the structure of the system,
which comprise software components, the externally visible properties of those
components, and the relationships among them [25]. According to Szyperski
et al. [26], a software component is a unit of composition with contractually
specified interfaces and explicit context dependencies. An interface is a set of
named operations that can be invoked by clients. Context dependencies are
specifications of what the deployment environment needs to provide, such that
components can function.

Agents are software components with some different properties. As opposed
to “typical” components that are defined by provided and required named op-
erations, agents are characterized by their behavior, mainly because of the pro-
active property of agents. From an external point of view, agents are defined
by: (i) goals that they are willing to achieve; (ii) goals they may achieve for
other agents; and (iii) goals they need other agents to achieve for them. In addi-
tion, protocols that regulate agent communication have an important role in the
architecture, being seen as connectors among agent components. In this sense,
using an agent-based approach can be seen as an architectural style.

Because of the limited expression of architecture models for MASs, architec-
tures of agent-based applications are typically expressed by ad hoc notations
(e.g. using specific symbols for agents and stereotypes in arrows to indicate a
communication) or lack of information if common models are used. This can be
seen in Figure 1, in which we used a typical UML diagram to show the archi-
tecture of the e-Marketplace MAS. No further information is provided in these
models, such as described in the previous paragraph. As a consequence, all pow-
erful agent abstractions to model complex domains disappear owing to a lack of
appropriate architectural models.

Therefore, we identify a need for languages to represent agent components at
an architectural level. Weyns [27] provided an important step in this direction by
considering the environment as a first-class entity in agent architectures – besides
providing a reference architecture for a specific class of MAS. Furthermore, Ar-
chitecture Description Languagess (ADLs) are a recent approach for expressing
software architectures. They describe systems in a formal way as a collection of
components that interact with each other using connectors. Nevertheless, ADLs

A Case for New Directions in AOSE 53

have received little attention in agent-oriented research. A potential first step
to exploit ADLs in the context of MASs is to verify if proposed ADLs, such as
ACME,4 are able to express agent components.

4.3 Large Scale Software Reuse

Software reuse has been practiced since the development of computational sys-
tems began. It is the process of building software systems using existing software
assets. These assets can be any artifact of software development, such as analy-
sis/design models, objects and software components. The main benefits offered
by reusing software are higher quality and reliability in a relatively short time.
These factors reduce the costs of software development and maintenance. The
computer industry has demonstrated that software reuse generates a significant
return on investment by reducing cost, time, and effort while increasing the
quality, productivity, and maintainability of software systems throughout the
software life cycle.

The first initiatives on exploiting software reuse in MASs were the proposals
of pattern reuse [28]. These existing approaches mainly focus either on protocol
definitions or overall organizational structures [29], which leaves a gap between
the textual description of the pattern and its implementation. This final step
is highly dependent on the experience of the designer. Therefore, even though
these approaches provide a solid basis for improving MAS development from a
SE perspective, pattern reuse can be exploited in other directions. For instance,
pattern reuse can provide structures for recurring design problems of MAS appli-
cations (similar to object-oriented (OO) design patterns). Similarly architectural
patterns may also provide for reuse of general structures for MAS architectures
that have been successfully adopted in existing systems.

Even though there are these approaches for reuse in MASs, most of MAS
approaches do not adopt extensive reuse practices [30], and in particular SPLs,
which are explored in our case study and were introduced in Section 2.1. As
SPLs imply variability management, the exploratory study presented in this
paper explores different levels of granularity in variability, e.g. belief and plan
parameters, and is concerned with adopting new strategies to improve the agent
architecture not just strategies using available platforms. We have adopted reuse
techniques at different phases in the software development process, and some of
these techniques are:

Goal reuse. Plenty of MAS approaches adopt the goal concept. Some of them
associate agents with a list of goals and others represent goals as a tree,
meaning that children of a goal are the subgoals that must be achieved in
order to realize the goal. This relationship is represented in Figure 2. How-
ever, subgoals may be necessary to achieve more than one goal. Therefore,
goals have an n:n relationship, and not 1:n as expressed in a tree structure.
One methodology that models this n:n relationship is Tropos [31], which is
based on the i* framework. In addition, Tropos models are powerful in the

4 http://www.cs.cmu.edu/~acme/

http://www.cs.cmu.edu/~acme/

54 I. Nunes et al.

sense that they provide lots of information, such as goals and plans that are
part of an actor (agent) and relationships among goals and plans, which are
aspects typically not captured by other existing agent-oriented models.
Nevertheless, despite these advantages, Tropos has some limitations. We be-
lieve it has scalability issues, because each concept in a Tropos model is
represented by a node and each node may have several arrows connecting
it to other nodes, and as a consequence these models may become unread-
able in complex system scenarios. Moreover, when a single model provides
so much information, it may also compromise its readability and manage-
ment. One solution for this problem is to define modules of the system in
separate models, and provide different system views, which capture different
aspects of the system (or a product line). We aimed to address these issues
in our informal models presented in Figures 2 and 3, however we are aware
that Tropos models are able to capture many other aspects, such as agent
organizations and relationships among agents.

Capabilities. Capabilities are a mechanism that enables the modularization
and reuse of a specific agent behavior. They are basically composed of the
same concepts as agents, i.e. beliefs, goals and plans, however they must be
incorporated into an agent in order to be part of a MAS. This concept was
introduced by the JACK platform, but only a few approaches adopted capa-
bilities as a first-class element. In MAS methodologies that do not present
the capability concept, the only way of modularizing related concepts is to
associate them with two or more different agents. Nevertheless, it may not
be a good solution for two reasons: (i) semantically, the concepts must be
part of the same agent. For instance, if in a MAS an agent A represents a
person and this person plays the role of a mother and a teacher, agent A must
aggregate the concepts related to both roles; and (ii) one must not forget
that MASs are multi-threaded systems, and each agent has its own thread
of execution. Therefore, creating new agents in the system for modularity
reasons may cause unnecessary overhead.

Plan parameterization. Jadex allows inputs to plans and this provides for the
instantiation of plans in different contexts. This idea can also be considered in
human behavior, because people usually have a pre-defined course of actions
to accomplish some goals (plans) that are instantiated according to a context.
For instance, when going to the movies, a plan can be buy the ticket, enter
the theatre, and watch the movie. In this situation, the input parameters
may be the cinema and the film. Even though plan parameterization is a
mechanism that can be adopted at the implementation level, few MAS design
approaches provide such parametrization. In Figure 3, we represent the plan
parameter as a class attribute.

These techniques used at the implementation level are supported by some
agent platforms, in our case Jadex, however they cannot be expressed in design
models of current MAS methodologies and modeling languages. Therefore, there
is a lack of mechanisms to design reusable elements.

A Case for New Directions in AOSE 55

Finally, as agents are software components, it is interesting to think about
agent repositories, or catalogs of agents for reuse. To produce a repository struc-
ture, it is essential to define agent metadata such as goals and protocols. This
metadata provides the necessary information to reuse an agent. This need for
metadata is consistent with the idea of exposing the agent “interface” (i.e. ex-
ternal behavior) in architecture models.

5 Further Considerations

In addition to the previously presented issues that are lessons learned from our
exploratory study, we discuss in this section two important relevant SE areas,
generative approaches (Section 5.1) and empirical studies (Section 5.2), that
have not been widely explored in the context of MAS. We present a qualitative
argument why these areas are relevant in AOSE and how research on it can
improve the development of MAS. These arguments arose from our experience
while developing different MASs and MAS-PLs [2,4,15,32].

5.1 Generative Approaches

High-level agent abstractions are based on human models and organizations.
The vocabulary provided by these abstractions matches the proactive and au-
tonomous behavior present in modern software systems. As a consequence, in
the development of such systems, agents can facilitate communication between
analysts and stakeholders, since they can speak a similar language [32]. More-
over, one major advantage of agent abstractions is that they are present in both
analysis and design phases, thus reducing the gap between analysis and design.
In contrast consider using OO approaches to model and design complex and
distributed systems with agent-like properties. The analysts typically have to
understand the domain by interacting with the stakeholders, and then model
this domain using use cases and other analysis models, which are then used to
produce a design model that uses classes, and objects.

On the other hand, the gap between design and implementation can be in-
creased by the use of an agent-oriented approach. The first common option for
implementing MASs is by the means of general purpose programming languages
(typically OO). Consequently design models have to be translated to the abstrac-
tions provided by the programming language. The second option is implementing
MASs with the aid of agent platforms, which usually either provide an applica-
tion program interface (API) (e.g. JADE and Jadex) or a specific language that
is translated to a general purpose language (e.g. Jason and JACK). In this case,
the gap is reduced, but there is no assurance that the abstractions used at the
design level are maintained by the implementation platform. Intuitively it seems
better to choose a platform that provides abstractions that match with the ones
used at the design phase. However this is not always the case because of other
aspects that have to be taken into account such as runtime performance and
integration with other technologies.

When it is the case that the chosen design approach is based on concepts
that do not have counterparts in the implementation platform, the effort spent

56 I. Nunes et al.

developing good design models, using principles such as modularity and reusabil-
ity, may not be worthwhile, because these principles may not be reflected in
the code. This gap between design and implementation models makes code un-
derstanding harder because elements in the implementation do not correspond
directly to elements in the design. Consequently, it also makes it difficult to
maintain and evolve the code, and creates the need for traceability models that
show how design elements are implemented in the code.

In the past few years, the AOSE community has been proposing approaches
that take advantage of Model-driven Development (MDD) and Model-driven
Architectures (MDA) in order to bridge the gap between the design and
implementation of MASs [33]. In a nutshell, the MDA approach defines sys-
tem functionality using a platform-independent model (PIM) and appropriate
domain-specific language. Then, given a platform definition model (PDM) corre-
sponding to a specific platform, the PIM is translated to one or more platform-
specific models (PSMs) that computers can run. Therefore, models designed
with abstractions defined in a meta-model of a specific methodology can be
automatically translated to a model that describes the same system in terms
of platform-specific abstractions. The AOSE literature has shown substantial
advances in use of MDA for generating code for MAS based on design mod-
els. However most of the work was devoted in creating translation of models of
existing methodologies to specific platforms. Models are used to abstract lower-
level details, and most of the models of existing MAS approaches contain all
the information needed to generate code (programming in a graphical manner).
Recent studies about MDD5 have shown that this approach tends to be success-
ful when the domain is specific enough, thus allowing the creation of high-level
models where code is generated in combination with domain-specific knowledge.
As MAS research addresses different classes of systems, such as electronic com-
merce applications and automated guided vehicles, it is interesting to look into
more specific model-driven approaches. In our case study, for instance, we have
created a set of assets that allows the creation of a family of agents of a specific
domain, related to electronic commerce. When a user chooses a configuration for
an agent, a specific instance of the code is generated based on a very high-level
specification.

Another promising solution for the gap problem is the use of Generative
Programming (GP) techniques, which have been barely explored for MAS. GP
is about designing and implementing software modules which can be customized
and combined to generate specialized and highly optimized systems fulfilling spe-
cific requirements [9]. Instead of focusing on the development of specific systems
from scratch, GP focuses on designing and implementing reusable software for
generating these systems. Consequently, the scope of GP is families of systems
and not single systems. MASs can be seen as a family of systems, which shares
several common features such as communication, reasoning, learning and mobil-
ity, and GP techniques are a potential solution for automating the related code
generation.

5 Information available at: http://www.comp.lancs.ac.uk/~eamde/

http://www.comp.lancs.ac.uk/~eamde/

A Case for New Directions in AOSE 57

5.2 Empirical Studies

Experimentation has gained popularity in the context of SE in order to evaluate
new approaches and compare existing ones. Empirical SE provides techniques
to evaluate if proposed approaches bring the benefits they say they provide.
Experimentation provides a systematic, disciplined, quantifiable, and controlled
way to evaluate new theories and has been used in many fields such as physics,
medicine and manufacturing. However, this idea started to be explored in the SE
field, in the 70s. According to Basili [34], like other disciplines, SE requires the
same high-level approach for evolving the knowledge of the discipline: the cycle
of model building, experimentation and teaming, since we cannot rely solely on
observation followed by logical thought. It involves an experimental component
in order to test or disprove theories, to explore new domains. Therefore, there
must be experiments with proposed methodologies to see how and when they
really work, to understand their limits and how to improve them. However this
approach of evaluation and validation has been barely explored in the context
of AOSE. Only few empirical studies have been performed on agent-oriented
systems, such as reported in [14]. Therefore, there is little evidence of the real
benefits of agent-oriented approaches.

MASs are essentially inspired by different aspects of human nature, such as
organizational and cognitive functions. Since MAS has been exploited as a new
SE paradigm, there have been several research proposals but they rely on quali-
tative arguments that state the benefits of using an agent-oriented approach [35]
rather than on experimental evidence. As an area matures this type of evidence
is important to assess the real advantages of the approaches being proposed. A
growing level of maturity can be seen in the AOP community as a large number
of experiments have been performed to asses aspect-oriented approaches to iden-
tify situations in which aspects are an appropriate technique to solve a problem.
Not only the benefits of aspects are identified but also the scenarios in which
these benefits appear and the limitations of the approach. As a consequence,
aspects are progressively being adopted in scenarios where they bring proven
advantages, such as in transaction management and logging and in widely used
frameworks.6

Several agent-oriented methodologies, languages and processes are proposed
with the aim of representing the different aspects of MASs, including commu-
nication and coordination. However, the number of approaches (see Figure 7)
makes the decision of choosing one of them to develop a MAS very difficult. In
addition, their validation is usually performed by means of a set of case stud-
ies, showing that the methodology is expressive enough to model them. Recent
research work [36] analyzed most of these approaches and proposed a generic
metamodel for MAS development. Even though this research is a huge step
for dealing with the large number of MAS methodologies, there is still little
evidence how these approaches can improve software development in terms of
quality, costs and time-to-market, as they are usually evaluated with a single
and typically not industrial-size case studies.
6 http://www.springsource.org/

http://www.springsource.org/

58 I. Nunes et al.

Fig. 7. Evolution of Agent-oriented Methodologies [37]

Because of the lack of empirical studies in the context of AOSE, we be-
lieve in doing experiments in SE to show real evidence of the advantages of
agent-oriented approaches compared to other approaches such as OO. Moreover,
experiments can provide quantitative comparative studies of agent-oriented
methodologies.

Finally, empirical studies typically involve measuring case studies with met-
rics. There are several metrics adopted for evaluating different aspects of software
systems, including their architectures. The AOP community has proposed new
concern-driven metrics [38] in order to assess better the use of aspect-oriented
techniques for modularizing crosscutting concerns. As there are only a few empir-
ical studies performed in AOSE, it has not been investigated if existing metrics
are appropriate to evaluate MAS architectures. Therefore, research should be
performed on verifying existing metrics to determine if they are enough to mea-
sure MAS properties. As far as we know, only recent research has addressed a
metrics suite for evaluation of agent-oriented architectures [39].

6 Conclusion

MASs aim at developing complex, distributed systems in terms of high-level ab-
stractions in order to reduce the gap between the problem and solution spaces.
The adoption of human-inspired abstractions, such as autonomous agents, men-
tal attitudes, organizations and roles, helps in understanding and modeling com-
plex problems owing to the reduced gap between these abstractions and real
world situations. This fact also facilitates the communication between developers

A Case for New Directions in AOSE 59

and stakeholders, who are able to communicate in a common language. In addi-
tion, multi-agent research has also contributed to reasoning, learning and other
models, which become powerful tools for developing intelligent systems.

However, it is essential to rely on principles and guidelines to develop large
scale software systems in a disciplined manner, which provides a solid basis for
the success of large scale software projects. In this context, SE is the application
of a systematic, disciplined, quantifiable approach to the development, opera-
tion, and maintenance of software. AOSE aims at adopting these techniques and
mechanisms in the development of MASs, as well as tailoring them and propos-
ing new ones that address particular aspects of MASs and related architectures.
Nevertheless, promising SE techniques have not yet been (widely) explored. As
a consequence, we claim that AOSE can profit from existing research in state-
of-the-art SE to analyze, design and implement high-quality software systems,
which are easier to manage, evolve and maintain.

In this paper, we presented an exploratory study of the development of a
family of buyer agents following the BDI model and using a SPL architecture.
This architecture allows the derivation of customized agents from an existing
MAS which is configured according to a user specification. Within the buyer
agent SPL, we have explored different levels of granularity in variability, includ-
ing capabilities and fine-grained variable structures, such as beliefs, goals, plans
and plan parameters. Based on our study, we presented and discussed important
issues mainly related to the lack of techniques, both at the design and imple-
mentation levels, to develop MASs based on traditional SE principles, such as
modularity, reusability and maintainability. These issues were categorized in five
different research areas: modularization, software architectures, reuse, generative
programming and empirical studies.

Finally, although the AOSE community provides qualitative arguments for the
appropriateness of agent abstractions to model systems with autonomous and
proactive characteristics, these models will not likely be adopted in industry
if we do not show that they promote reduced time-to-market, lower costs and
higher quality. Therefore, it is essential to address these issues quantitatively in
order to promote industrial exploitation of the agent technology.

References

1. Weyns, D., Parunak, H.V.D., Shehory, O.: The future of software engineering and
multi-agent systems (editorial, special issue). IJAOSE 3(4), 369–377 (2009)

2. Nunes, I., Lucena, C.J., Cowan, D., Alencar, P.: Building service-oriented user
agents using a software product line approach. In: Edwards, S.H., Kulczycki, G.
(eds.) ICSR 2009. LNCS, vol. 5791, pp. 236–245. Springer, Heidelberg (2009)

3. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

4. Nunes, I., Lucena, C.: On the development of multi-agent systems product lines:
A domain engineering process. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008.
LNCS, vol. 5386, pp. 109–120. Springer, Heidelberg (2009)

5. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
ICSE 2008, pp. 311–320. ACM, USA (2008)

60 I. Nunes et al.

6. Rao, A., Georgeff, M.: BDI-agents: from theory to practice. In: ICMAS 1995 (1995)
7. Brazier, F.M.T., Kephart, J.O., Parunak, H.V.D., Huhns, M.N.: Agents and

service-oriented computing for autonomic computing: A research agenda. IEEE
Internet Computing 13(3), 82–87 (2009)

8. Parnas, D.L.: On the design and development of program families. IEEE Trans.
Software Eng. 2(1), 1–9 (1976)

9. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

10. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson: Feature-oriented domain anal-
ysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software En-
gineering Institute, Carnegie-Mellon University (November 1990)

11. Pohl, K., Bckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, New York (2005)

12. Pena, J., Hinchey, M.G., Ruiz-Corts, A., Trinidad, P.: Building the core architec-
ture of a multiagent system product line: with an example from a future nasa
mission. In: Padgham, L., Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS,
vol. 4405, pp. 208–224. Springer, Heidelberg (2007)

13. Dehlinger, J., Lutz, R.R.: Supporting requirements reuse in multi-agent system
product line design and evolution. In: ICSM, pp. 207–216 (2008)

14. Nunes, C., Kulesza, U., Sant’Anna, C., Nunes, I., Garcia, A., Lucena, C.: Assess-
ment of the design modularity and stability of multi-agent system product lines.
J. UCS 15(11), 2254–2283 (2009)

15. Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., de Lucena, C.J.: Extending web-based
applications to incorporate autonomous behavior. In: WebMedia 2008 (2008)

16. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York (1996)

17. Dijkstra, E.W.: EWD 447: On the role of scientific thought. Selected Writings on
Computing: A Personal Perspective, 60–66 (1982)

18. Bratman, M.E.: Intention, Plans, and Practical Reason. Cambridge, MA (1987)
19. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring bdi agents in

functional clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp.
277–289. Springer, Heidelberg (2000)

20. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.: Agent-oriented soft-
ware engineering for internet applications (2001)

21. Odell, J.: Objects and agents compared. Journal of Object Technology (JOT) 1(1),
41–53 (2002)

22. Figueiredo, E., et al.: Evolving software product lines with aspects: an empirical
study on design stability. In: ICSE 2008, pp. 261–270 (2008)

23. Garcia, A., Lucena, C.: Taming heterogeneous agent architectures. Commun.
ACM 51(5), 75–81 (2008)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading (1995)

25. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., Boston (1998)

26. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

27. Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., Joosen, W.: The macodo
middleware for context-driven dynamic agent organizations. ACM Trans. Auton.
Adapt. Syst. 5, 3:1–3:28 (2010)

A Case for New Directions in AOSE 61

28. Lind, J.: Patterns in agent-oriented software engineering. In: Giunchiglia, F., Odell,
J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 47–58. Springer, Heidelberg
(2003)

29. Gonzalez-Palacios, J., Luck, M.: A framework for patterns in gaia: A case-study
with organisations. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 174–188. Springer, Heidelberg (2005)

30. Girardi, R.: Reuse in agent-based application development. In: SELMAS 2002
(2002)

31. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. JAAMAS 8(3), 203–236 (2004)

32. Nunes, I., Choren, R., Nunes, C., Fábri, B., Silva, F., Carvalho, G., de Lucena,
C.J.P.: Supporting prenatal care in the public healthcare system in a newly indus-
trialized country. In: 9th International Conference on Autonomous Agents and Mul-
tiagent Systems: Industry Track, AAMAS 2010, pp. 1723–1730. IFAAMS (2010)

33. Fischer, K., Hahn, C., Madrigal-Mora, C.: Agent-oriented software engineering: a
model-driven approach. IJAOSE 1(3/4), 334–369 (2007)

34. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineer-
ing. IEEE Trans. Softw. Eng. 12(7), 733–743 (1986)

35. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational Abstractions for
the Analysis and Design of Multi-agent Systems, pp. 235–251. Springer, Heidelberg
(2001)

36. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J.,
Pavon, J., Gonzalez-Perez, C.: Faml: A generic metamodel for mas development.
IEEE Transactions on Software Engineering 99(RapidPosts), 841–863 (2009)

37. Argente, E., Garcia, M.E., Giret, A., Esparcia, S., Criado, N., Julian, V., Botti,
V.: Vom: a service-oriented open mas meta-model (2009),
http://www.agreement-technologies.eu/wp-content/uploads/2009/12/

cost-wg3-argente1.pdf

38. Sant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.: On the modularity of soft-
ware architectures: A concern-driven measurement framework. In: Oquendo, F.
(ed.) ECSA 2007. LNCS, vol. 4758, pp. 207–224. Springer, Heidelberg (2007)

39. Garćıa-Magarino, I., Massimo, C., Valeria, S.: A metrics suite for evaluating agent-
oriented architectures. In: SAC 2010: Proceedings of the 2010 ACM Symposium
on Applied Computing, pp. 912–919. ACM, New York (2010)

http://www.agreement-technologies.eu/wp-content/uploads/2009/12/cost-wg3-argente1.pdf
http://www.agreement-technologies.eu/wp-content/uploads/2009/12/cost-wg3-argente1.pdf

Engaging Stakeholders with Agent-Oriented

Requirements Modelling

Tim Miller1, Sonja Pedell2, Leon Sterling1, and Bin Lu1

1 Department of Computer Science and Software Engineering
2 Department of Information Systems,

University of Melbourne, Parkville, 3010, VIC, Australia

Abstract. One advantage of using the agent paradigm for software engi-
neering is that the concepts used for high-level modelling, such as roles,
goals, organisations, and interactions, are accessible to many different
stakeholders. Existing research demonstrates that including the stake-
holders in the modelling of systems for as long as possible improves the
quality of the development and final system because inconsistencies and
incorrect behaviour are more likely to be detected early in the devel-
opment process. In this paper, we propose three changes to the typical
requirements engineering process found in AOSE methodologies, with the
aim of including stakeholders over the requirements engineering process,
effectively using stakeholders as modellers. These changes are: withhold-
ing design commitment, delaying the definition of the system boundary,
and delaying the stakeholder “sign-off” of the requirements specification.
We discuss our application of these changes to a project with an indus-
try partner, and present anecdotal evidence to suggest that these changes
can be effective in maintaining stakeholder involvement.

1 Introduction

In software engineering, product and project stakeholders are a valuable resource
for eliciting and validating requirements. Stakeholders are especially important
for socio-technical systems, in which the interaction between people and technical
systems can form behaviour outside of the control of the technology itself.

The agent paradigm recognises that most stakeholders are non-technical, so
by using concepts such as roles and goals, which are palatable for most people,
stakeholders can provide feedback on models early in the development process.
As a result, artifacts in agent-oriented software engineering play a somewhat dif-
ferent role to other types of artifacts. As well as documenting the requirements
engineers’ understanding of the domain, which requirements specifications typi-
cally do, they can also be used to encourage rich discussion between stakeholders,
including requirements engineers.

Many requirements engineering processes, including those in agent-oriented
software engineering methodologies, aim to define the interface and product fea-
tures, and to precisely specify and validate these as early as possible in the
development lifecycle. Our view is that, while making these decisions early has

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 62–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Engaging Stakeholders with Agent-Oriented Requirements Modelling 63

benefits, premature commitment to certain solutions and definitions may dis-
courage stakeholders that do not agree with or understand these decisions from
participating in conversations with system developers. We advocate involving
stakeholders in the development process for as long as possible, to continue
engaging them in rich conversations that can help understand and define the
system.

For engineering socio-technical systems, we propose small changes in the typ-
ical requirements engineering process found in software engineering (including
AOSE) methodologies, with the aim of promoting conversation between stake-
holders. The changes are based on results from existing research, which is dis-
cussed in Section 3. The proposed changes are:

1. Withholding design commitment by allowing inconsistencies and ambigui-
ties early in the requirements engineering process. This allows different view-
points of stakeholders to be represented, encouraging them into conversations
for longer than they otherwise may. We are not the first authors to take this
stance. For example, Easterbrook and Nuseibeh [7] discuss a framework with
the purpose of allowing and dealing with different stakeholders’ viewpoints.
Paay et al. [19] suggest that withholding design commitment encouraged
conversations between different stakeholders.

2. Delaying the definition of the system boundary. By defining the system
boundary early in the process, some solutions may be eliminated before
they can be discussed by the stakeholders, even though they may be more
suitable than the remaining solutions.

3. Delaying the “sign-off” of requirements (or the end of the requirements engi-
neering process) until the high-level agent design. That is, the requirements
are considered only complete once we identify which agents are to be built
and what their behaviour is to be. This is related to the second point, as it
also helps to define the system boundary.

It is our view that these changes can be used in any agent-oriented develop-
ment methodology, and are useful for breaking down barriers between stakehold-
ers and software engineers, especially for social-technical systems. In Section 4,
we present the application of these changes to an industry case study, and discuss
the advantages and disadvantages that resulted from these changes. The goals
of the paper are to present these processes to researchers and practitioners in
agent-oriented software engineering in order to promote discussion and receive
feedback on these ideas.

2 Agent-Oriented Requirements Engineering

With the agent paradigm increasingly becoming a popular and successful way
for modelling complex systems [18], methodologies for agent-oriented software
engineering have become an important research field. Several such methodologies
have been proposed, such as Tropos [3], Prometheus [20], Gaia [30], INGENIAS
[21], and ROADMAP [13].

64 T. Miller et al.

The typical requirements engineering process in these methodologies involves
the following steps1:

1. elicit requirements from the stakeholders on the project;
2. derive scenarios that specify typical usage of the system;
3. define the system boundary;
4. define the environment;
5. derive a goal model outlining the major goals of the system;
6. define the role descriptors for the roles that will help to achieve the system

goals;
7. define the interaction model, which specifies how roles in the system will

interact; and
8. iterate over steps 1-7 with stakeholders until a shared understanding of the

system is reached.

Although agent methodologies do not discuss requirements sign off, they define
the software requirements specification (SRS) as the combination of the system
boundary, goal models, role, and interaction models. From this, we infer that the
major stakeholders would sign off on these documents after step 8. This would
form the basis of a contract for the system development to proceed.

Variations of these steps are possible; for example, the Gaia methodology
defines preliminary version of the role and interaction models as requirements,
and more detailed definitions as architectural design; and Prometheus defines
interaction models as architectural design.

From this point in the development process, agent-oriented methodologies
typically treat subsequent tasks as design-level, so stakeholder input would not
be required. The tasks include defining the agent types in the system, which
agent types will play which roles, the activities that the agents will perform
(these activities will both fulfill the agent’s role and the goals related to that
role), and implementing and testing the agents.

2.1 Modelling with Roles and Goals

The work in this paper builds mainly on the work of Sterling and Taveter [23].
Their work has focused on how to make high-level agent-oriented models palat-
able to non-technical stakeholders. This is achieved using role and goal models
with a straightforward and minimal syntax and semantics.

Goal models are useful at early stages of requirements analysis to arrive at
a shared understanding [12, 14]; and the agent metaphor is useful as it is able
to represent human behaviour. Agents can take on roles associated with goals.
These goals include quality attributes that are represented in a high-level pic-
torial view used to inform and gather input from stakeholders. For example, a
role may contribute to achieving the goal “Release pressure”, with the quality
goal “Safely”. We include such quality goals as part of the design discussion and
1 Some methodologies do not strictly follow this process, but this is a good approxi-

mation of all methodologies.

Engaging Stakeholders with Agent-Oriented Requirements Modelling 65

maintain them as high-level concepts while eliciting the requirements for a sys-
tem. For this purpose the AOSE goal models have to be simple yet meaningful
enough to represent the goals of social interactions.

Figure 1 shows the syntax employed by Sterling and Taveter, which we have
used in our work. Goals are represented as parallelograms, quality goals are
clouds, and roles are stick figures. These constructs can be connected using
arcs, which indicate relationships between them. Figure 1 shows a high-level
role and goal model from our industry project of an aircraft turnaround simu-
lator. This system simulates the process of multiple aircraft landing at a single
airport, allowing one to experiment with resource allocation. The goal Aircraft
Turnaround is the highest-level goal, and the sub-goals below this contribute to
fulfill the higher-level goal. The quality goal Efficient specifies that goal Aircraft
Turnaround must be satisfied with the quality attribute Efficient. The roles play
some part in bringing about the goal Aircraft Turnaround.

It is important here to note that the semantics described above is a complete
definition of Sterling and Taveter’s goal models, leaving space for interpreta-
tion of the model. This helps to engage stakeholders who have no experience
in agent modelling, and encourages round-table discussion between stakeholders
and requirements engineers.

Goals are based on motives, and describe an intended
state of the environment. Goals can consist of sub-goals.

Quality goals are non-functional (or quality) goals. These
are sometimes referred to as soft goals.

Roles are some capacities or positions that facilitate the
achievement of goals. Roles are played by agents, which
can be humans or artificial.

Fig. 1. An excerpt for the high-level goal on the aircraft turnaround project

66 T. Miller et al.

3 Changing the Agent-Oriented Requirement
Engineering Process

The changes presented in this paper are based on existing research in software en-
gineering and interaction design, however, it is our view that the agent paradigm
offers certain unique capabilities to the requirements engineering process that
other paradigms to not. In this section, we motivate and justify our reasons for
modifying the requirements engineering process, link this to existing literature
that provides evidence to confirm our hypothesis, and discuss why the agent
paradigm is particularly suited to these changes.

At first sight, delaying clear definitions seems antithetical or uncommon to the
routines of software engineering, which is typically a structured process aimed
at removing ambiguity and deriving clear definitions as early as possible in the
development process. However, a body of literature that looks at software engi-
neering from a social science perspective recognises that models and other doc-
umentation in software engineering have been used as a way to think through
problems, to reach agreements, and to elaborate the needs of stakeholders in a
different way than simply feeding into a formal process of modelling for system
design [4, 16, 22]. For example, a goal and role model serves a different purpose
for a designer than for a domain expert.

3.1 Withholding Design Commitment

The first change to the requirements engineering process is to withhold the
commitment of system designs. By this, we mean holding off any particularly
functional details of the system that fulfill the user requirements. At the early
stages of requirements elicitation, we may not be able to clarify social concepts
sufficiently to resolve uncertainty. For example, in a business domain, roles such
as manager, researcher, and team leader can be well defined. However, in a social
domain, roles may not be so straightforward to define. Consider trying to define
the role of a grandparent, and the goals that role may want to achieve. As a
result, we advocate that the social goals related to these concepts should be
modelled ambiguously, even to the point where formal documents are written.

Quality requirements at the early stages of elicitation tend to be imprecise,
subjective, idealistic and context-specific, as discussed by Jureta and Faulkner
[14]. Garcia and Medinilla [9] describe high-level quality goals as a specific form
of uncertainty that can be used as a descriptive complexity reduction mechanism
and to model and discuss uncertainties in the environment. In our requirements
elicitation process, we seek complexity reduction without losing the richness of
the concepts themselves. Instead of eliminating uncertainty early in the process,
we embrace it and withhold design commitment, at least until there is clarity
and understanding between stakeholders of what it may mean to disambiguate
[10].

High-level goals associated with activities can act as a point of reference for
discussing the usefulness of design alternatives to achieve these goals instead
of a decomposition into single requirements. The multi-agent paradigm offers

Engaging Stakeholders with Agent-Oriented Requirements Modelling 67

benefits over other paradigms because the concepts used in modelling, such as
roles, goals, and interactions, are part of every day language. Real organisations
consist of roles, and specific people fill these roles each day, including stakeholders
in a software engineering project. As such, stakeholders are familiar with these
concepts, and are comfortable talking about them.

3.2 Delaying the Definition of the System Boundary

In many software engineering processes, the system boundary is defined before
requirements analysis takes place. Often, this is one of the first agreements made
between clients and software engineers.

Gause and Weinberg [11] found that natural subconscious disambiguation
is one of the most common sources of requirements failure. In this situation,
unrecognized or unconsciously assumed, incorrect meaning finds its way into
the specification [2]. The problem is compounded by the fact that not only do
software engineers consciously try to resolve uncertainty early in the process,
before its impact on design is completely understood, they may also do this
subconsciously. More importantly, checking the absence of requirements once
we have a formal specification document is likely to be more difficult, because
these documents are typically highly technical, and there less accessible to the
stakeholders [15].

Once the boundaries of a system are defined, the focus of attention is within
these boundaries; solutions beyond this boundary are no longer considered. Such
a restriction discounts solutions that may be more suitable, and is more likely to
result in some stakeholders losing interest in the project if their desired solution
falls outside of these boundaries.

This does not imply that one should not be thinking about the system bound-
ary. Specifically, all stakeholders should be aware of any other systems that may
be used as part of the solution to the domain problem.

The multi-agent paradigm is well suited for such models, because high-level
role and goal models can be discussed and modified without defining the system
boundary, while still allowing all stakeholders to come to a shared agreement of
what the entire socio-technical system will comprise.

3.3 Delaying the “Sign-off” of Requirements

The sign-off of the SRS often forms part of a contractual agreement between
clients and developers. The SRS defines the external interfaces to a software
system and provides a complete description of the extended behaviour of the
software.

In the process of software engineering, the sign-off of a requirements speci-
fication is generally performed before any high-level design takes place. If left
until after design commences, developers may unnecessarily waste time on design
tasks, only to find the requirements have changed.

In the multi-agent domain, we advocate delaying the sign-off of the SRS by
stakeholders until as late as possible before it impacts architectural design. This

68 T. Miller et al.

allows discussions to continue between stakeholders for a longer period. Further-
more, it also helps stakeholders to understand the proposed behaviour of the
system, because role and goal models define motivation, not behaviour.

3.4 Discussion

The first two changes proposed in this section are not new in the social domain.
Our work is consistent with results from researchers cited in the previous sec-
tions. As far as the authors are aware, the third change, delaying the sign-off,
has not been investigated before.

While we present these three proposed changes as being separate changes, they
are in fact, closely related. By not defining the system boundary, we are in fact
withholding design commitment. Similarly, by not signing off on the SRS early,
we are leaving open design decisions, thereby withholding design commitment.

These changes are presented separately because we view them as different
tasks. Withholding design commitment is a general approach in which we do not
take design decisions too early, but in general, the requirements elicitation pro-
cess will run in the same order. However, the definition of the system boundary
is a specific task that we aim to put later in the requirements engineering pro-
cess. Typically, defining the system boundary is one of the first tasks performed
in requirements engineering, and this is suitable for most business applications.
However, for socio-technical systems, we see that a benefit in delaying the defi-
nition of the system boundary until after we fully understand the behaviour of
the entire socio-technical system, including humans and external systems, not
just the software system being built.

These changes will clearly have a legal impact, because the requirements may
be signed off later in the project. For projects in which requirements must be
complete before a contract can be formalised, this will delay the contract signing.
The trade off is that, at the end of the requirements, the stakeholders have a
clearer shared understanding of the final outcome. Overall, this should result
in shorter project durations. In fact, a better shared understanding is likley to
make contract negotiations more efficient.

In practice, the legal issue has not been a problem for our industry partner,
because arriving at a shared understanding is more difficult than negotiating the
contract.

4 Experience

In this section, we present our experience on a project involving an industry
partner. We discuss how the changes were achieved in an industry project, what
effect they had on the project, and how other stakeholders responded to them.

4.1 The Project

The project is a joint project between the University of Melbourne and Jeppesen,
a company that specialises in aeronautical services. The goal of the project is to

Engaging Stakeholders with Agent-Oriented Requirements Modelling 69

construct simulation software for air traffic management using the agent paradigm
as the modelling tool. The particular project on which we applied the modified
requirements engineering process was a simulation of aircraft turnaround. This
system simulates the process of multiple aircraft landing at a single airport, and
how resources (including staff) could be allocated to efficiently turn around the
aircraft, including re-stocking supplies, as well as cleaning, repairing, and main-
taining the aircraft.

The major stakeholders of the project were our research team and a group of
software engineers at Jeppesen who had no significant exposure to agent-oriented
modelling in the past.

Figure 1 (in Section 2) shows part of the high-level role-goal model for the
aircraft turnaround project. In this figure, the high-level goal of turning around
the aircraft is achieved by the four subgoals of preparing for arrival, servicing
the aircraft, maintaining the aircraft, and preparing for departure. The roles of
Airline Staff and Airport Staff in this figure are in fact aggregate roles; that is,
they are sets of roles, such as aircraft maintenance engineers, cleaners, and airline
crew, which are described in lower-level role-goal models. The Manager role is
responsible for overseeing the entire turnaround and re-allocating resources if
there is a delay in turning around one aircraft.

4.2 Withholding Design Commitment

The requirements elicitation proceeded by our group being given an overview of
the aircraft turnaround process, including the staff involved, and constructing a
high-level goal and role model that represented our understanding of the system.
These diagrams were improved and refined over a series of six round-table meet-
ings with the stakeholders, in which the role and goal models were distributed
to each stakeholder before a meeting, and were then used as shared artifacts to
guide conversations. Over the course of these meetings, other models including
the interaction models, environment models, and agent types were progressively
introduced as we gained further understanding of the system.

Withholding design commitment was achieved by basing conversations be-
tween stakeholders on the role-goal models and using the role-goal models as
a facilitator to open up the discussion. In this regard, the goal models took a
similar role as the guiding rules described by Tjong et al. [24], whose aim is to
detect uncertainties in order to trigger questions to be asked of the client.

The role and goal models were helpful in triggering communication about
the specific challenges of the domain, and for identifying missing parts of the
system. For example, one stakeholder commented from a single glance at the
high-level goal model that air traffic controllers play a role in aircraft turnaround,
and this induced discussion about how the system should handle new traffic
entering the airport. In subsequent iterations, the air traffic controller role was
deemed unnecessary for the system and was dropped, but changes related to this
remained.

Our experience indicates that having models evolve over time lead to a clearer
solution, as early concerns regarding concepts such as resources were delayed

70 T. Miller et al.

without jumping to a pre-conceived solutions. Later in the development process,
successive versions of the models were used as a reminder to the design decisions
that were made. This gave the research team something to fall back on when
discussions started to get too complex for some stakeholders or drifting off from
original high-level goals. The example of the air traffic controller role illustrates
this, in which the models were updated to reflect this role, but even after its
removal, parts of the model related to it remained. This is consistent with the
findings described by MacLean and Bellotti [16].

Our industry partners are comfortable with the role and goal models, although
this is perhaps to be expected as they are software engineers. However, Paay
et al. [19] have used role and goal models as shared artifacts in the social-technical
domain with non-technical stakeholders such as ethnographers to similar effect.

4.3 Including Agent Types as an SRS

We delay the system boundary definition and the SRS sign-off using the same
technique: by leaving both until the high-level design.

The major divergence we take from the typical AOSE methodology is to
include the agent types, including the activities they perform, as part of the SRS.
As discussed in Section 2, methodologies typically use roles, goal, and interaction
models as requirements, while agent types are part of the architectural design.

In this project, the SRS consisted of the role and goal models, the interaction
models, the environment model, and the agent types. Combining the environ-
ment model and the agent types defines the functionality of the system, while
the role and goal models help to motivate this functionality. For this particular
simulation system, there was a one-to-one mapping between roles and agents.

Figure 2 shows part of the agent type specification for the Engineer agent,
which is responsible for performing routine and non-routine maintenance on the
aircraft. The agent type specification includes which activities the agent will
undertake in order to fulfil its responsibilities.

Signing-off on the SRS. We believe that roles, goals, and interactions do not
provide sufficient detail to define system behaviour. While role and goal models
specify the goals that the system will achieve, and the roles (and their respon-
sibilities) that will help to achieve them, they do not define functionality; that
is, how the system will behave to achieve these goals. For example, the model in
Figure 1 specifies the goals that need to be achieved to turnaround the aircraft.
Role descriptors for the three roles in this figure outline the responsibilities to
ensure the turnaround goals are achieved. However, this does not define which
activities will be performed to achieve the goals. In some cases, one can extrap-
olate the activities from the responsibilities and goals, but this is not always the
case.

Our approach of including the environment model and agent types, including
activity descriptions and their effect on the environment, specifies the behaviour
of the system. From Figure 2, one can see that activity descriptors are similar

Engaging Stakeholders with Agent-Oriented Requirements Modelling 71

Name: Engineer

Description: Play the role of Engineer by performing routine and non-routine
aircraft maintenance.

Activities:
Activity name: Routine maintenance

Trigger: Informed by ground staff of the aircraft
ID of the aircraft that is ready for
maintenance

Precondition: Wheel chocks of the aircraft ID are in
position

Tasks: 1. Perform the routine maintenance on
the specified aircraft
2. Inform Pilot of the aircraft ID, and
that routine maintenance is complete on
the aircraft

Postcondition: Aircraft with the specified ID is safe to fly

Activity name: Non-routine maintenance

. . .

Environment 1. Aircraft
considerations: 2. Aircraft information

3. Flight schedule
4. Aircraft gate number
5. Staff schedule

Fig. 2. Agent type specification for the Engineer agent

to the functional requirements that one would find in a non-agent-based SRS,
and it is at this point that the major stakeholders will be able to sign-off on the
models.

Figure 3 presents a possible template for an agent-based SRS, based on
Wiegers’ SRS template [26]. Using a template leads to requirements being pre-
sented in a consistent manner across different projects, however, we acknowledge
the need to be flexible with specifications depending on the system.

Our template differs from Wiegers’ template mainly by emphasising the im-
portance of motivations (using role and goal models) and the environment, which
are central to the agent paradigm. Wiegers considers both the purpose of the
system and the environment, but these are secondary in the SRS. In addition,
the functional requirements section from Wiegers’ template is replaced by agent
types, which define the behaviour.

A sign off is an agreement that overall goals are important, and that the
defined system will achieve these goals. In our project, all stakeholders came to
a solution that all were satisfied with. We see this as a benefit in itself.

Furthermore, the stakeholders commented that the behaviour of the system
was clearer when the agent types were included, even though the mapping from
roles to agents was one-to-one. This is perhaps partly due to the similarity

72 T. Miller et al.

Title information

Revision history

Table of contents

1 Introduction

1.1 Purpose
1.2 Intended audience
1.3 Project scope
1.4 Definitions, acronyms, and abbrevi-

ations
1.5 References

2 Product Description

2.1 High-level level motivation model
2.2 User classes
2.3 Product features
2.4 Design constraints
2.5 Assumptions

3 Goal models and motivational sce-
narios

3.1 Motivational scenarios
3.2 Goal models

4 Role and organisational models

4.1 Organisational model(s)
4.2 Role 1
4.3 Role 2

etc . . .

5 Domain/Environment model

5.1 Physical environment
5.2 Virtual Environment
5.3 Environment perspective
5.4 Overall interaction

6 Agents types and interaction
models

6.1 Interaction models
6.2 Agent type 1
6.3 Agent type 2

etc . . .

7 Scenarios

7.1 Scenario 1
7.2 Scenario 2

etc . . .

8 External interfaces

8.1 User interfaces
8.2 Hardware interfaces
8.3 Software interfaces

9 Endorsement

9.1 Sign-off

Fig. 3. A software requirements specification template using Sterling and Taveter’s
models [23]

between activities and functional requirements, but the stakeholders commented
that this was due to the fact that they were able to make a clear judgement as
to whether the behaviour fulfilled their expectations. In our view, this justifies
the decision to include the agent types in the SRS.

Defining the System Boundary. Including agent types in an SRS has a
second effect: it completely defines the system boundary. Role and goal models
define the entire socio-technical system, with no commitment to which roles will
be played by which agents. As Cheng and Atlee [5] discuss, integrated systems
pose problems in defining the system boundary, which can be solved by assigning
responsibilities to different parts of the system, including the software system
being constructed, human operators/users, and external systems. Our notion

Engaging Stakeholders with Agent-Oriented Requirements Modelling 73

of a system boundary is exactly this: by describing the responsibilities of roles
in the entire system, we can define the system boundary by specifying which
agents will fulfil which roles, whether these agents are software agents, humans,
or external systems.

For example, consider the organisation model in Figure 4, which describes the
relationships between the roles in the system. A possible mapping between roles
and agents is one in which software agents play all of the relevant roles, making
the system a complete simulator of the turnaround process. Alternatively, we
can define another system boundary in which the Manager role is played by a
human, and thus the dotted arrows in Figure 4 define the interactions between
the user and the software. One can see that assigning one role to a human instead
of an agent changes the system and its interface greatly. In the first instance,
the system is a complete simulation of the aircraft turnaround process. In the
second instance, the result is an interactive system in which managers are able
to assess different resource allocation mechanisms.

In this project, the system boundary was left undefined for most of the re-
quirements elicitation process. The stakeholders were comfortable with the lack
of a system boundary, and this was not explicitly mentioned to them during
the requirements elicitation. However, as software engineers themselves, they
did not see any great benefit for this project, because they felt only one system
boundary was sensible. However, they also did not find that it was detrimental
to the project. We did not find that delaying the definition of the system bound-
ary had any adverse effects on the progression of the system, although this was
not a controlled experiment. In addition, we found that conversations about the
system, including details about roles and goals, continued after the agent types
had been assigned, due to the system functionality becoming clearer.

To our group, the benefits of not defining a system boundary are illustrated
by the project. The system was intended to be a simulation of the air traffic
turnaround domain, with all roles, including those in Figure 1, being played by
software agents (the first boundary in the previous paragraph). One discussion
that took place late in the requirements elicitation process indicated that there
may have been scope for the system boundary to be changed to the second
boundary, in which the Manager role is partly played by a human. Had the
system boundary been defined at the start of the requirements elicitation, this
discussion may not have taken place.

5 Related Work

Guizzardi and Pereni [12] have also recognised the importance of stakeholder
involvement. Like us, they consider the goals of all stakeholders, and the inter-
dependencies between these goals, as an initial step in understanding require-
ments. Yu [27–29] advocates the agent-oriented paradigm as a tool for helping
to establish the why of a system, which helps stakeholders to understand the

74 T. Miller et al.

Roles, as described in Figure 1.

The controls relationship, in which one role delegates re-
sponsibilities to another.

The isPeer relationship, in which either role can delegate
responsibilities to the other.

The dotted arrow represents a relationship between a hu-
man role and a role played by the software system.

Fig. 4. The organisational model for the ATS system

problem at hand. Similar to us, Yu uses high-level motivation models, in this
case, specified in i∗, to share understanding between stakeholders. The i∗ models
contain significantly more information than our motivation models, including
concepts such as activities, resources, and dependencies between all of these. We
explicitly aim to reduce the number of concepts and the amount of syntax to
keep models simple. Yu offers no specific techniques for engaging stakeholders,
as the focus of the work appears to be on the tools and notations for recording
motivations.

Engaging Stakeholders with Agent-Oriented Requirements Modelling 75

We are not the first authors to identify that high-level conceptual models in
agent methodologies are not sufficient to define behaviour. Ferber et al. [8] iden-
tify two approaches for specifying behaviour of a multi-agent system. The first
approach resembles that of specifying individual requirements of a system, with
the addition of nominating the agent that is undertaking each task, thus speci-
fying an observer’s view of system behaviour. The second approach involves as-
signing behaviour to role instances, and specifying behaviour from the viewpoint
of the individual instance. Interactions between roles are specified as behaviour
similar to protocol specifications. This approach is closer to our approach than
the first approach, however, we feel that the intermediate representation between
roles and agents is unnecessary.

The KAOS methodology [6] defines the behaviour of systems using agent/action
definitions. These are similar to our agent types, in that they define the agent and
the actions that the agent can perform. When applying the KAOS methodology
to an example of a meeting schedule, van Lamsweerde et al. [25] comment that the
last stages of the goal elaboration process, in which goals are refined an analysed,
“were performed in parallel with the agent/action identification and goal opera-
tionalisation”. This provides further evidence that committing to some agent or
activity design is necessary to define behaviour.

The Prometheus methodology [20], like KAOS, does not consider roles as part
of the elicitation, modelling, or specification process. Similar to us, they identify
that functionality must be considered to define behaviour. A Prometheus specifi-
cation contains the system goals, but with no indication of the roles that achieve
them. Functionalities, which are natural language descriptions of behaviour, are
used to define the system behaviour.

The agent paradigm has been applied in many industry systems. Munroe et al.
[18] and Belecheanu et al. [1] describe several applications of agent technology
in industry, and discuss key issues that agent proponents face to have their
approaches accepted widely into industry.

Maiden et al. [17] is the most closely related work to ours of which the authors
are aware. They use several different methodologies and notations, including
the agent-oriented i∗ methodology, to capture the requirements of an air-traffic
control system. The purpose of uses different notations and methodologies is to
capture the differing viewpoints of the stakeholders within the project. Maiden
et al. do not offer any particular methods for engaging stakeholders, however,
using different approaches has a positive side effect of being able to cross-validate
the different models against each other.

Iterative and incremental lifecycle models are used to achieve similar goals to
our approach: shared understanding between stakeholders. Our project used an
iterative elicitation process, in which the models were refined and more detail
added in each iteration. The hierarchical structure of the motivation models are
particularly well suited to such a process, as earlier iterations focus on the high-
level goals, and the goal hierarchy is expanded in subsequent iterations. The use
of aggregate roles, discussed in Section 4.1 has similar benefits, as role models
are added and refined in later iterations.

76 T. Miller et al.

This approach also fits within an iterative/incremental lifecycle model for the
overall project. The hierarchical nature of the models would allow partial deter-
mination of the system behaviour, which could be designed, implemented, and
tested, before continuing with modelling in the next iteration. Such a process
would be likely to increase the shared understanding due to the concrete feed-
back of a system implementation, however, this would be complementary to our
approach: within each iteration, our approach would be applied.

6 Conclusions and Related Work

AOSE models are useful as a shared artifact for communication between stake-
holders and software engineers. We find that using the agent-oriented models of
Sterling and Taveter [23] as part of requirements elicitation allows meaningful
conversations between all stakeholders about abstract concepts, with goals as the
catalyst. The role of the goal models is not simply to lead to the development of
a system, but also as a way to think through problems and to reach agreements.
By making these accessible to all stakeholders, and by keeping stakeholders in-
volved in discussions as long as possible in the requirements elicitation process,
we aim to increase the quality of requirements specifications.

In this paper, we proposed three changes to the typically AOSE requirements
engineering process that we believe help to engage stakeholders: 1) withholding
design commitment; 2) delaying the definition of the system boundary; and 3)
delaying the sign-off of the SRS to be as late as possible without affecting system
development.

Our experience with an industry partner suggests that not committing to a
specific design solution early in the requirements elicitation gave the team an
opportunity to further explore and understand the specific challenges related to
the high-level goals of the socio-technical system.

We propose delaying the definition of the system boundary and the signing-off
of the requirements by including the agent types as part of the SRS. As far as
we know, we are the first authors to consider this, rather than including these as
part of the architectural or detailed design. By defining which agents will play
which roles, we define the behaviour of the system, and implicitly define the
system boundary. The experience with our industry partner indicates that this
decision is justified.

Our approach is particularly valuable in projects that contain a diverse group
of stakeholders. The lightweight notation and the focus on input from all stake-
holders encourages participation. In projects where stakeholder background is
diverse, this participation is a necessity if all stakeholders are expected to under-
stand parts of the varying domains that are relevant to the system. In projects
where stakeholder background is uniform, the process and models can still be
used to arrive at a shared understanding about the system, but the advantages
are likely to be less when compared to projects with diverse stakeholders.

Engaging Stakeholders with Agent-Oriented Requirements Modelling 77

References

1. Belecheanu, R.A., Munroe, S., Luck, M., Payne, T., Miller, T., McBurney, P.,
Pěchouček, M.: Commercial applications of agents: Lessons, experiences and chal-
lenges. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1555–1561. ACM Press, New York (2006)

2. Berry, D., Kamsties, E., Krieger, M.: From contract drafting to software specifica-
tion: Linguistic sources of ambiguity - a handbook version 1.0 (2000)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

4. Button, G., Sharrock, W.: Occasioned practices in the work of software engineers.
In: Jirotka, M., Goguen, J. (eds.) Requirements Engineering: Social and Technical
Issues, pp. 217–240. Academic Press, London (1994)

5. Cheng, B., Atlee, J.M.: Research directions in requirements engineering. In: Briand,
L., Wolf, A. (eds.) Proceedings of the International Conference on Software Engi-
neering, pp. 285–303 (2007)

6. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

7. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
Software Engineering Journal 11(1), 31–43 (1995)

8. Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., Treur, J.: Organization
models and behavioural requirements specification for multi-agent systems. In:
Demazeau, Y., Garijo, F. (eds.) Proceedings of the 10th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, Multi-Agent System Or-
ganisations, pp. 1–19 (2001)

9. Garcia, A., Medinilla, N.: The ambiguity criterion in software design. In: Interna-
tional Workshop on Living with Uncertainties. ACM, New York (2007)

10. Gause, D.: User driven design – the luxury that has become a necessity, a workshop
in full life-cycle requirements management. In: ICRE 2000, Tutorial T7 (2000)

11. Gause, D., Weinberg, G.: Exploring Requirements: Quality Before Design. Dorset
House Publishing Co., Inc., New York (1989)

12. Guizzardi, R., Perini, A.: Analyzing requirements of knowledge management sys-
tems with the support of agent organizations. Journal of the Brazilian Computer
Society (JBCS)-Special Issue on Agents Organizations 11(1), 51–62 (2005)

13. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia methodology
for complex open systems. In: Proceedings of the First Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pp. 3–10. ACM Press, New York (2002)

14. Jureta, I., Faulkner, S.: Clarifying goal models. In: Grundy, J., Hartmann, S.,
Laender, A., Maciaszek, L., Roddick, J. (eds.) ER (Tutorials, Posters, Panels &
Industrial Contributions). CRPIT, vol. 83, pp. 139–144 (2007)

15. Kamsties, E., Berry, D., Paech, B.: Detecting ambiguities in requirements docu-
ments using inspections. In: Proceedings of the First Workshop on Inspection in
Software Engineering (WISE 2001), pp. 68–80 (2001)

16. MacLean, A., Bellotti, V., Young, R.M.: What rationale is there in design? In:
Diaper, D., Gilmore, D.J., Cockton, G., Shackel, B. (eds.) Proceedings of the 3rd
Int. Conf. on Human-Computer Interaction, pp. 207–212 (1990)

17. Maiden, N., Jones, S., Manning, S., Greenwood, J., Renou, L.: Model-driven re-
quirements engineering: Synchronising models in an air traffic management case
study. In: Persson, A., Stirna, J. (eds.) CAISE 2004. LNCS, vol. 3084, pp. 368–383.
Springer, Heidelberg (2004)

78 T. Miller et al.

18. Munroe, S., Miller, T., Belecheanu, R., Pěchouček, M., McBurney, P., Luck, M.:
Crossing the agent technology chasm: Lessons, experiences and challenges in com-
mercial applications of agents. Knowledge Engineering Review 21(4), 345–392
(2006)

19. Paay, J., Sterling, L., Vetere, F., Howard, S., Boettcher, A.: Engineering the so-
cial: The role of shared artifacts. International Journal of Human-Computer Stud-
ies 67(5), 437–454 (2009)

20. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A practical
guide. John Wiley and Sons, Chichester (2004)

21. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, p. 394. Springer, Heidelberg (2003)

22. Randall, D., Hughes, J., Shapir, D.: Steps toward a partnership: ethnography and
system design. In: Jirotka, M., Goguen, J. (eds.) Requirements Engineering: Social
and Technical Issues, pp. 241–254. Academic Press, London (1994)

23. Sterling, L., Taveter, K.: The Art of Agent-Oriented Modelling. MIT Press, Cam-
bridge (2009)

24. Tjong, S.F., Hartley, M., Berry, D.: Extended disambiguation rules for require-
ments specifications. In: Alves, C., Werneck, V., Marcio Cysneiros, L. (eds.) Pro-
ceedings of Workshop in Requirements Engineering, pp. 97–106 (2007)

25. Van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learnt. In: Proceedings
of the Second IEEE International Symposium on Requirements Engineering, pp.
194–203. IEEE Computer Society, Los Alamitos (1995)

26. Wiegers, K.E.: Software requirements, 2nd edn. Microsoft Press, Redmond (2003)
27. Yu, E.: Modeling organizations for information systems requirements engineering.

In: Proceedings First IEEE International Symposium on Requirements Engineer-
ing, pp. 34–41. IEEE, Los Alamitos (1993)

28. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Re-
quirements Engineering (RE 1997), p. 226. IEEE Computer Society, Los Alamitos
(1997)

29. Yu, E.: Agent-oriented modelling: software versus the world. In: Wooldridge, M.J.,
Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 206–225. Springer,
Heidelberg (2002)

30. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering Methodol-
ogy 12(3), 317–370 (2003)

Towards Requirement Analysis Pattern

for Learning Agents

Shiva Vafadar and Ahmad Abdollahzadeh Barfourosh

Intelligent System Lab,
Computer Engineering and IT Faculty
Amirkabir University of Technology

vafadar@aut.ac.ir, ahmad@ce.aut.ac.ir

http://ceit.aut.ac.ir/ISLab

Abstract. Learning is a capability that can be incorporated into soft-
ware agents to handle the complexity of dynamic and unexpected situa-
tions, exploiting available artificial intelligence (AI) techniques. Despite
design techniques for learning agents have been discussed in agent ori-
ented software engineering literature, how to identify and analyze the
requirements for learning agents is still poorly addressed. In this pa-
per, we introduce a pattern for requirement analysis of learning agents.
This analysis pattern contains a group of related, generic meta-classes
of learning and their relations in a domain neutral manner which can be
described as elements of conceptual modeling of learning requirement of
agents. The applicability of the pattern has been investigated through
the development of a book trading case study.

Keywords: Agent Oriented Software Engineering (AOSE), Analysis Pat-
terns, Requirements Analysis, Learning.

1 Introduction

Today software systems are used in more complex application domains which
demand for software systems with autonomic properties [8]. This complexity of-
ten arises from open networked and heterogeneous environments with dynamic
and unpredictable scenarios in which software is expected to operate. Enriching
software systems with the capability of improving while operating can benefit
from available artificial intelligence (AI), and agent oriented software engineer-
ing aims at providing methods to support developing systems with this property
[22]. One of the capabilities which can help intelligent software agents to per-
form more appropriately in dynamic and volatile situations is learning. An agent
being considered as intelligent is, among other things such as autonomy and so-
cialability, usually expected to be able to learn [19]. We entitle this expected
feature, learning requirement of the agent.

Every expected feature of the system to be built should pass through a com-
plete development process from requirements to test activities. Machine learning
techniques for agent based systems have been proposed [16],[17] and issues in

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 79–90, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://ceit.aut.ac.ir/ISLab

80 S. Vafadar and A. Abdollahzadeh Barfourosh

designing software agents with learning capabilities have been discussed [15],
[9] but techniques for requirement analysis of an agent’s learning is still poorly
addressed. To overcome this shortage, we focus our research on requirement
analysis as the starting point.

Requirements analysis addresses the identification and specification of the
functional and non-functional (or quality) characteristics expected for the sys-
tem to be developed, and analyze them in terms of ways to operationalize them.
Therefore, requirements analysis activities encompass the problem domain as
well as the solution domain, with the aim to provide effective information for
the system design. More specifically, first activities of requirements analysis are
focused on the problem domain analysis and the elicitation of expected features
of the system-to-be, but late requirements analysis activities focus on a deeper
understanding of these system features, thus providing information for architec-
tural and design concerns in terms of available candidate. The latter tries to
provide required information for moving smoothly from requirements to high
level design of the system. Taking the perspective of a requirements engineer
who may not be expert in AI techniques, we believe that providing methods for
supporting analysis of learning as one of the expected capabilities for the agent
would be beneficial.

Based on this view, in this paper we present a pattern based approach for
analyzing agent’s learning capability. A main novelty of this work is its focus on
the late analysis phase of the development of learning agents in order to provide
deeper understanding of this feature, which abstracts from the approach learn-
ing, is realized in design and implementation. More precisely, we use AI literature
as resources from which to extract generic concepts and issues of learning and
their relationships, we represent these concepts and their relationships by us-
ing domain modeling techniques (linguistic analysis technique [1]), and organize
them in the form of analysis pattern. Analysis patterns are a group of related,
meta-classes and their relations which present issues of conceptual modeling for
analyzing requirements [5] [6] in a domain-neutral manner. Analysis patterns are
particularly useful for conceptual modeling because they provide abstractions of
situations that occur frequently, allowing developers to reuse chunks of prior
knowledge in new situations.

In order to evaluate the pattern we use a case study (which is a book trading
system) and apply the pattern on it. By comparing the results of applying the
pattern on the case study with required information for design and implementa-
tion of learner agent during software development, we can assess the applicability
of our pattern on developed application.

The remainder of this paper is organized as following. Section 2 introduces
software analysis patterns and their role on software development. It also de-
scribes related works of this research. In Section 3, we present analysis pattern
for learning agents and introduce its participants. Section 4, introduces book
trading system which is used as our case study. This section also discusses pre-
liminary results of applying the pattern on the case study. In sections 5 and 6,
respectively, we discuss the results, explain our further works and conclude.

Towards Requirement Analysis Pattern for Learning Agents 81

2 Background and Related Work

2.1 Software Analysis Patterns

A well-accepted approach for sharing software engineering experiences to the
wider community of software developers is through the use of software patterns.
However, software patterns have been introduced by design patterns but they
have spread in other fields of software development such as requirements [21],
analysis [5] [6] and architecture [4] as well.

An analysis pattern is a group of related, generic objects (meta-classes) and
expected interactions defined in a domain-neutral manner [5] [6]. Analysis pat-
terns resemble the notion of chunks of formalized knowledge that are at a higher
level of abstraction than individual classes. Identification of analysis patterns
involves the creation of domain-independent abstractions [4] because these ab-
stractions represent frequently. These experiences are introduced to the software
engineering community as strategies and patterns for analyzing software sys-
tems [5].

Various analysis patterns have been introduced in literature. In order to reuse
these patterns for analyzing software systems, three generic reuse steps of re-
trieval, adaptation, and integration are suggested [14]. By following these steps,
software analyst should identify potentially useful patterns in application do-
main by retrieving them among repository of patterns. Then s/he should adapt
the pattern to the domain of interest by instantiating meta-classes. Integrating
various patterns of the application domain is the final step which will lead to
application conceptual model.

2.2 Related Work

It was obvious to generalize from object-oriented patterns to agent-oriented ones.
A comprehensive view on agent-oriented patterns has been presented in [13].
According to this categorization, various patterns have been introduced for dif-
ferent phases of agent-oriented software development. Patterns at analysis phase
usually deal with organizational and interactional properties of agent-based sys-
tems. Instances of these patterns are Structure-in-5, Pyramid [11], Mediator [18]
and social patterns [7]. Our analysis pattern for learning agents can be classified
in this category of patterns though it is not in organizational or interactional
sub-category. As we concentrate on analyzing AI characteristics of an agent, we
believe that this classification should be extended by adding a new sub-category
which deals with intelligence properties of agents.

According to [13], patterns of internal architecture design are categorized to
structural, interactional and strategic. Strategic patterns focus on design of spe-
cific notions of agency such as autonomy, reactivity and proactivity. Reactive
agent, deliberative agent [10] and learning design pattern [15] [9] are examples
of this category’s patterns. However, these patterns deals with intelligence char-
acteristics of agents but their focus is on design concerns such as designing several
algorithms of machine learning for the agent. They present main software classes

82 S. Vafadar and A. Abdollahzadeh Barfourosh

(and required attributes and methods) and their interaction to improve reuse
and maintainability of the design [15]. Another method presented to improve
the quality of design (with respect to transparency, reusability, code replication
and etc.) considers learning as an aspect in agent architecture [9]. The differ-
ence between these researches and our work is the difference between design and
analysis patterns. While design patterns represent a group of software objects,
their attributes and methods to improve reusability and maintenance of software
design, analysis patterns deal with types (not implementation classes) for gener-
ating conceptual model of application. Our focus is on analysis phase which tries
to understand learning characteristic in application domain and provide required
information for design phase. By using our analysis pattern, analyst produces a
conceptual model which specifies learning in the problem domain. Designer uses
this model for producing software class diagram by applying learning design
patterns (to have a higher-quality design artifact) or by following conventional
design methods.

Our work is also related to the other researches that focus on analyzing agents
requirements associated with AI techniques such as reasoning [2] and auton-
omy [20]. Similarity between our works is trying to find software engineering
approaches for analyzing AI requirements of agents. However, they present a
semi-formal language for reasoning and autonomy of agents while we follow a
pattern based approach for analyzing learning capability.

3 Analysis Pattern for Learning Agent

The analysis pattern for learning agents is a pattern that is used in late require-
ment analysis. It is supposed that during early requirements analysis, require-
ments engineer identifies that customer needs an intelligent agent that learns
while acting. To have a deeper understanding of required learning capability,
s/he should analyze it and generate a conceptual model of the learner agent. Soft-
ware analyst can uses our pattern as a guideline to generate conceptual model
of the learning agent of the application domain. The goal is moving smoothly
from requirements to high level design.

To use this pattern, the first parts of the pattern description (context, problem
and forces) are used to identify its applicability in the application domain. If
there are agents in the system that are mapped with the context and forces of
the pattern, the learning pattern is a good candidate to apply. After retrieving
the pattern, it should be adapted in the application domain. For adaptation,
conceptual classes of the pattern should be instantiated by recognizing related
concepts in the application domain. In the following, we describe the pattern by
using the template suggested in [12] for analysis patterns of agent based systems.

Name: Learning Pattern
Classification: Analysis
Problem: How should an agent be analyzed to specify its learning capability?

Towards Requirement Analysis Pattern for Learning Agents 83

Context: An agent-based system which in a role needs to improve its perfor-
mance while executing its tasks and getting experience. This role needs learning
capability in order to carry out one or more tasks or achieving a goal.
Domain of Application: the pattern is general. It can be used in different
application domains.
Forces:

– Performing the task(s) or achieving the goal(s) is not possible without learn-
ing or learning makes it possible in higher quality or less time.

– Agent’s knowledge (which can be related to the process of doing the task
or primitive knowledge or rules) is not complete and it can be improved by
getting experience.

– The agent can perform some tasks in order to get some experience or there
is adequate training data which help the agent to improve its behavior.

– The agent can receive feedback from the environment after doing the task.

Solution: To solve the mentioned problem, we suggest using the following model
for analysis learning requirement. As figure 1 shows, there are 13 participants
in the suggested model. In the following, we explain these meta-classes.

– Agent: Indicates the agent which its learning requirement is analyzed.
– Goal: Indicates the goal(s) that the agent is responsible for. Identifying the

goal(s) of the agent is the first step of analyzing activity. Since agents are
goal-oriented entities, the goals an agent tries to achieve plays vital role in
agent analysis. Learning is a technique that can help the agent to achieve
its goals. Therefore, the kind of the learning is expected from the agent is
influenced by the goal(s) it is responsible for.

– Task: Specifies the tasks that the agent can perform. We can specify the
tasks the agent can perform and then identify which of them needs improve-
ment by incorporating learning. At the other hand, we may know that to

Fig. 1. Analysis Pattern for Learning Agents

84 S. Vafadar and A. Abdollahzadeh Barfourosh

achieve its goals or improve its behavior agent must have learning capabil-
ity. Therefore, we should recognize that what kind of tasks the agent should
be able to perform to learn (such as the tasks required for exploration and
experience generation). Both approaches are necessary for determining the
required tasks.

– PerformanceMeasure: embodies the criterion for success of an agent’s
behavior for achieving its goal. An agent has learning capability if its perfor-
mance improves during performing the tasks. This improvement is measured
by performance measure. Therefore, performance measure is a factor for eval-
uating learning capability of agent and it has an important role for defining
learning goal.

– LearningGoal: Denotes improvement in agent’s performance measure which
is expected by incorporating learning. It also specifies in which duration this
improvement is expected. It affects on learning elements of the agent because
the amount of improvement defines which parts of the agent should improve
their behavior to attain learning goal. It is affected by many meta-classes
such as agent goal, its performance measure, input data and its quality, feed-
back is available for the agent, tasks the agent can perform, prior knowledge
and its quality. For example if the input data is not adequate or its quality
is low, requirements engineer may decide extend duration which agent can
achieve its learning goal.

– LearningSubject: is the subject which agent learns about.
– LearningElement: Defines issues that agent should learn to achieve learn-

ing goal. On the other hand, it defines learning goal in more details with
respect to the subjects agent can have learning on such as: State which is
mapping from conditions on the current state to the actions, Environment
which is relevant properties of the world from percept sequence, Mapping-
information which is information about the way world evolves, results of
possible actions the agent can take on the environment, Utility which is
information indicating the desirability of the world state and action

– Feedback: Defines the type of the feedback is received by the agent which
can be supervised, unsupervised or reinforcement. The feedback is one of the
major issues that affect on selecting appropriate leaning algorithm during
design. Therefore, during analysis we should specify what type of feedback
is obtained for agent in application domain.

– Knowledge: Defines the agent’s knowledge. It contains the knowledge the
agent has prior to start his actions. This knowledge is defined according to
the tasks the agent should perform, The knowledge that the agent expected
to achieve during performing the tasks and the knowledge is required to
achieve learning goal.

– Environment: Defines the environment the agent is acting on and all of
its participants. Environment is an important factor in analyzing agent.
How well an agent can behave depends on the nature of the environment.
Therefore, the environment that the agent is situated in directly affects
the appropriate design for the agent. In this model, environment meta-class
models the external world from the agent’s perspective. The properties of the

Towards Requirement Analysis Pattern for Learning Agents 85

environment from agent’s point of view such as fully observable vs. partially
observable, deterministic vs. stochastic, episodic vs. sequential, static vs. con-
tinuous, single agent vs. multi-agent should be defined during analysis. These
characteristics also influence learning algorithms which are selected during
design. On the other hand, environment is also an intermediate medium that
provides all the data that the agent learns from. Identifying these proper-
ties, functions and constraints of the environment during analysis provides
adequate information for understanding constraints on the learning.

– Data: Defines the raw data that is received from environment (and all its
participants) and is used as learning input. Therefore, it has a vital role in
learning process. Amount of data and its quality has an important role for
deciding about learning algorithm and it is an important criterion which
affects our expectation from learning. Information which is related to data
helps requirements engineer to decide about trade offs between duration and
quality of learning. Test Data and Training Data are different types of data
that should be considered during analysis.

– LearningMeasure: Defines the measure for evaluating learning capability
of the agent. It can be described by criterion such as preciseness and speed.

– LearningLevel: Describes level of the learning we expect from the agent
which can have a wide range from remembering the information to knowledge
based inductive learning.

Resulting Context:

– Using learning pattern for modeling learning capability of the agent consid-
ers concepts of the learning in the conceptual model of the learning agent.
Therefore, it generates a more complete model of these agents

– Pattern focuses on learning concepts. Consequently, using this pattern for
analyzing an agent does not produce a complete, comprehensive model for
agents. Therefore, this pattern should be used after analyzing the role in
order to add concepts which are related to the learning.

– Using learning analysis pattern generates a model with more conceptual
classes. This may increase the complexity of the model because of increasing
the number of meta-classes in the model.

Related Patterns: The output of the pattern is a conceptual model that is
the input of the design activity. There are two patterns that are directly re-
lated to the design of learning agents. 1- The learning design pattern [15]: The
intent of this pattern is to add machine learning algorithms to an object ori-
ented design. It introduces knowledge representation, algorithm, performance
evaluation and training example generator classes as the elements of machine
learning to the design. 2- The learning aspect pattern[9] : This pattern presents
an aspect-oriented solution to make agent components easier to maintain and
reuse. This pattern contains a learning aspect which extends the agent classes
to introduce the learning protocol. It also has two crosscutting interface which
are InformatioGathering and LeanringKnowledge.

86 S. Vafadar and A. Abdollahzadeh Barfourosh

4 Case Study: Book Trading System

In order to investigate applicability of our pattern, we apply it on a case study. In
this section, we define a Book Trading System (BTS) and present the results of
applying the pattern on learner agent of the system. As this is the first iteration
of our evaluation activity, we deliberately select a simple case study. Our system
is an extension on Book Trading examples that comes with JADE 3.1. We modify
the scenario as it includes some agents that sell books and other agents which
buy them on behalf of their users. Buyer’s goal is purchasing the cheapest book
while seller’s goal is to achieve the highest profit. In this case, we also consider
learning as an expected capability for the seller agent. Seller should explore
various prices for each book and try to find best price which increases its profit.

4.1 Developing the Case Study

First, we develop our case study using existing methods for developing agent
based systems. The aim of this step is to generate artifacts of software develop-
ment process that are related to the learning capability. Our focus is on analysis,
therefore we use Tropos methodology [3] because of its emphasize on require-
ments analysis. We also implemented the system by using JADE framework. In
this way, we modified and extended book trading example by adding required
objects and methods. Figure 2 shows an instance of the analysis artifacts of
the system. It is the goal model of the Book Trading System which illustrates
stakeholders’ goal analysis. As the figure shows, the seller uses the system to
achieve the goal; finding eBuyers. The system helps seller to propose the books
and find the best selling price for each book which has the positive contribution
on his/her softgoal (increase the profit). The buyer uses the system in order to
find eSellers and compare their prices which helps him/her to pay lowest price
as his/her softgoal.

Fig. 2. Goal Diagram for BTS’s Stakeholders

Towards Requirement Analysis Pattern for Learning Agents 87

4.2 Applying Analysis Pattern on the Case Study

Using an analysis pattern for modeling a system contains three main steps;
retrieval, adaptation, and integration. In our case study, in retrieval step, we
choose learning pattern for seller agent because it is expected to be able to learn.
For adaptation, we instantiate conceptual classes of the pattern by recognizing
related concepts in the application domain. For example, in this case study Agent
meta-class is instantiated to Seller because it is the learning agent of the system
and LearningSubject is Book. Similarly, all related meta-classes are instantiated.
Figure 3 shows seller agent conceptual model which is the result of applying the
pattern.

To evaluate the applicability of our pattern, we investigate how it can be re-
alized during design and implementation. To achieve this goal, we compared the
artifacts of analysis, design and implementation in our case study. The con-
ceptual model of the seller agent has been considered as the output of the
analysis activity via using the analysis pattern. It was compared with imple-
mentation model which contains agents, classes, attributes and methods in the
developed system in JADE. The results show that, Agent, Task, Environment,
Input, PerformanceMeasure and Knowledge are the meta-classes of the model
which there are design and implementation elements for them. These concepts
have been highlighted as yellow meta-classes in figure 3. While Goal, Learning-
Goal, LearningElement and LearningMeasure are meta-classes which are used
for understanding the domain of the application and they are not instantiated as
a design or implementation element. These classes are related to non-functional
properties of learning and provide important information for designer that can
help him/her for selecting appropriate algorithm for learner agent. They are also
important for designing test cases of the agent and therefore can be useful for
testers as other stakeholders of the analysis artifacts. These concepts have been
shown as white meta-classes in figure 3.

Fig. 3. Seller’s Conceptual Model in Book Trading System

88 S. Vafadar and A. Abdollahzadeh Barfourosh

5 Discussion

This first experience on using our pattern for analyzing learning capability of
agents shows that using it during analysis helps us to produce conceptual model
of learner agent easier and specify domain information that is related to the learn-
ing capabilities of the agents. Some of the classes of derived conceptual model are
converted to the software agents, classes, attributes or methods while the others
are used to understand the application domain and provide required information
for making decisions about suitable learning algorithms for the agent. By having
this pattern, software analyst is provided by a guideline, which describes main
issues of learning and their relations. Using this guideline helps analyst to easily
recognize related issues of learning in the problem domain and document them.
Following this approach can save time and effort for requirements analysis. This
issue becomes more important when we take into account that software analyst
may not be an expert in learning. Therefore, s/he may ignore some information
that is important for learner agent designers. Using analysis pattern for learner
agent helps requirement analyst to overcome this shortage and provide required
information for designer.

Although our results provide some evidences about the applicability of our
pattern in agent based systems, they also point out limitations in our research,
which we consider as part of our future work agenda to improve the pattern. We
discuss them briefly here below:

1. Using the same group of subjects for developing the case study and applying
the pattern on it may affect the evolution results related to applicability of
the pattern. To improve evaluation process and omit this side effect, devel-
oping the case study and applying the pattern on it should be performed by
different subjects.

2. It is assumed that the pattern will be used by software analysts who may
not have adequate knowledge about learning and other AI techniques. The
evaluation of the pattern by the authors of this work (who are working on
learning and are familiar with its concepts) may affect evaluation results. In-
volving software analysts who are dealing with conventional software systems
should be considered in future work.

3. We evaluated our pattern according to its applicability on the case study.
This confirms our pattern but it does not help us to discover pattern’s weak-
nesses. We can extend our evaluation method and criteria by adding other
factors such as coverage of the concepts. For example we may compare the
results of applying the pattern on the case study with the results of us-
ing other techniques for domain modeling (e.g. use cases) and find out the
weaknesses and shortages.

4. Our pattern is not limited or binded to any specific methodology. In this pa-
per, we used Tropos as a sample methodology to develop our case study. We
selected Tropos’ requirements analysis methods and produced goal-oriented
requirements models that include agents’ goals and task that fit seamlessly
to the corresponding pattern’s elements. This suggests that our pattern may

Towards Requirement Analysis Pattern for Learning Agents 89

be used as a supplementary document for analyzing learner agents modeled
by any methodology. We also may consider extending Tropos (and other
methodologies) to cover all the concepts of the pattern as further work.

5. Currently, our pattern is general. To have a more detailed pattern, we take
into account decomposing the proposed pattern to some sub-patterns which
makes it more comprehensive and complete. For example, we should extend
environment meta-class and describe main important issues of environment
that should be considered during analysis of learning.

6. We intentionally selected a simple case study for evaluating our pattern in
the first iteration. More complex case studies in various domains in further
iterations will help to evaluate the pattern when it tackles more complex
learning problems.

6 Conclusion

In this paper, we introduced analysis pattern for learning capability of software
agents that can be used by software requirements analysts. This pattern is de-
fined in the terms of domain neutral meta-classes (and their relations) that can
be identified as elements of conceptual modeling for analyzing and understand-
ing the learning requirements of agents. According to this pattern, for analyzing
the learning capability of an agent goals, tasks, learning goal, environment, data
and feedback, knowledge, learning elements, learning measure and learning level
should be considered. Conceptual models of learner agents in various domains
can be constructed by applying the pattern on the application domain. In this
way, these meta-models are instantiated and their instances in the domain are
recognized. By using this pattern, the required information for understanding
the learning requirement is provided during analysis phase. This will help the
software analysts who are not expert in AI or learning to provide required infor-
mation for designer to decide about learning algorithm and methods according
to the application domain constraints. Preliminary evaluation of the pattern has
been illustrated and we identified a set of suggestion for improving it.

Acknowledgments. The authors would like to thank Anna Perini for her time
and comments on the earlier versions of this paper. This research is partially
supported by ITRC.

References

1. Abbott, R.: Program Design by Informal English Descriptions. J. Communications
of the ACM 26(11) (1983)

2. Bosse, T., Jonker, C.M., Treur, J.: Requirements Analysis of an Agent’s Reason-
ing Capability. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-
Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C.
(eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 48–63. Springer, Heidelberg (2005)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
an agent-oriented software development methodology. J. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

90 S. Vafadar and A. Abdollahzadeh Barfourosh

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented System Architecture. A System of Patterns, vol. 1, pp. 325–343. Wiley,
Chichester (1996)

5. Coad, P., North, D., Mayfield, M.: Object Models: Strategies, Patterns, and Ap-
plications. Prentice Hall, Upper Saddle River (1995)

6. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading
(1997)

7. Fuentes, R., Gómez-Sanz, J.J., Pavón, J.: Requirements Elicitation for Agent-
Based Applications. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS,
vol. 3950, pp. 40–53. Springer, Heidelberg (2006)

8. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. J. IBM
Systems 42(1), 5–18 (2003)

9. Garcia, A.F., Kulesza, U., Sardinha, J.A.R.P., Milidi, R.L., Lucena, C.J.P.: The
Learning Aspect Pattern. In: 11th Conference on Pattern Languages of Programs,
PLoP 2004 (2004)

10. Kendall, E.A., Murali Krishna, P.V., Pathak, C.V., Suresh, C.V.: Patterns of intel-
ligent and mobile agents. In: 2nd International Conference on Autonomous Agents,
pp. 92–99 (1998)

11. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-Agent Architectures as Organiza-
tional Structures. Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

12. Oluyomi, A., Karunasekera, S., Sterling, L.: Description templates for agent-
oriented patterns. J. Systems and Software 81(1), 20–36 (2008)

13. Oluyomi, A., Karunasekera, S., Sterling, L.: A Comprehensive View of Agent Ori-
ented Patterns. Autonoumous Agents and Multi Agent Systems 15, 337–377 (2007)

14. Purao, S., Storey, V.C., Han, T.: Improving Analysis Pattern Reuse in Conceptual
Design: Augmenting Automated Processes with Supervised Learning. J. Informa-
tion System Research 14(3), 269–290 (2003)

15. Sardinha, J.A.R.P., Garcia, A.F., Milidi, R.L., Lucena, C.J.P.: The Agent Learning
Pattern. In: 4th Latin American Conference on Pattern Languages of Program-
ming, SugarLoaf, PLoP 2004, Fortaleza, Brazil (2004)

16. Shoham, Y., Powers, R., Grenager, T.: Multi-agent reinforcement learning: a crit-
ical survey, Technical Report, Stanford University (2003)

17. van den Herik, H., Hennes, D., Kaisers, M., Tuyls, K., Verbeeck, K.: Multi-
agent learning dynamics: A survey. In: Klusch, M., Hindriks, K.V., Papazoglou,
M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 36–56. Springer,
Heidelberg (2007)

18. Weiss, M.: Patterns for motivating an agent-based approach, conceptual modelling
for novel application domains (AOIS@ER). In: Jeusfeld, M.A., Pastor, Ó. (eds.)
ER Workshops 2003. LNCS, vol. 2814, pp. 229–240. Springer, Heidelberg (2003)

19. Weiss, G.: Multiagent Systems: a Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, Cambridge (1996)

20. Weiss, G., Fischer, F., Nickles, M., Rovatsos, M.: Operational modelling of agent
autonomy: theoretical aspects and a formal language. In: Müller, J.P., Zambonelli,
F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 1–15. Springer, Heidelberg (2006)

21. Withall, S.: Introduction to Software Requirements Patterns, 1st edn. Microsoft
Press, Redmond (2007)

22. Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. J. Autonomous Agents and Multi-Agent Systems 9(3), 253–
283 (2004)

Test Coverage Criteria

for Agent Interaction Testing

Tim Miller1, Lin Padgham2, and John Thangarajah2

1 Department of Computer Science and Software Engineering, University of
Melbourne, Australia

tmiller@unimelb.edu.au
2 Department of Computer Science, RMIT University, Melbourne, Australia

{lin.padgham,johnt}@rmit.edu.au

Abstract. By the very definition of complex systems, complex behaviour
emerges from the interactions between the individual parts. This emer-
gent behaviour may be difficult or impossible to predict by analysing the
parts. As a result, systematic and thorough testing of the interactions
of complex systems, including multi-agent systems, is an important part
of the verification and validation process. This paper defines two sets of
test coverage criteria for multi-agent interaction testing. The first uses
only the protocol specification, while the second considers also the plans
that generate and receive the messages in the protocol. We describe how
an existing debugging agent can be used as a test oracle for assessing
correctness of a test, and how the Petri Net representation of the de-
bugging agent can be annotated to support test coverage measurements.
This work both specifies, and shows how to measure, the degree of thor-
oughness of a set of test cases. It also provides a basis for the future
specification of test case input, designed to provide good coverage.

1 Introduction

Like other types of complex systems, the overall behaviour of multi-agent systems
emerges from the interaction of their parts. Often, this emergent behaviour is dif-
ficult or even impossible to identify without running the system. This increased
complexity makes verification and validation of these systems a non-trivial task.
Furthermore, the fact that the behaviour cannot be accurately predicted implies
that manual test case generation is unlikely to test the more complex behaviour.
Automated test generation offers one solution to help with this problem.

Previous work on testing multi-agent systems [2,3,13,16,21,24] has contri-
buted to testing frameworks and automated test case generation. However, none
have explicitly focused on testing interactions, the source of complexity in many
systems. In many multi-agent methodologies, such as Prometheus, Tropos and
OMaSE [4], interactions are captured via interaction protocols in design
diagrams.

Our focus in this paper is on using protocol specifications, as well as infor-
mation about how the interacting agents use these specifications, to define and

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 91–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

92 T. Miller, L. Padgham, and J. Thangarajah

measure systematic interaction testing. We also describe how correctness can
be determined using the debugging agent of Poutakidis et al. [19]. Section 2
defines two sets of test coverage criteria for interaction testing, the first using
only the protocol specification, and the second including information about the
plans involved in receiving and sending messages for a particular protocol. Sec-
tion 3 describes the use of Poutakidis et al.’s “debugging agent” as a test oracle
for determining whether a set of interacting agents is correctly following a valid
protocol. Modifications to this debugging agent are made to automatically mea-
sure how well a test set achieves the coverage criteria. We finish with a discussion
of relationships to previous work and a comment on future work.

2 Test Coverage Criteria

To measure the quality of a set of test cases, a criterion is necessary. Standard
control-flow and data-flow criteria [14] that are defined for imperative program-
ming languages are based on program statements and predicates, so are not
directly applicable to agent interaction. However, many of the underlying ideas
are valid. In this section, we define two sets of criteria based on the control-flow
of interactions. This control-flow is extracted from the design models. The first
set is based on the ordering of messages, which we obtain from protocol specifi-
cations. We refer to these as protocol-based criteria. The second set also considers
the plans that send and receive the messages in protocols. We refer to these as
plan-based criteria. We describe and compare each of these.

These criteria are demonstrated on an example. Figure 1 shows an AUML2
interaction diagram [9] of the FIPA Query Protocol specification [7]. In this ex-
ample, the initiator agent can query whether some information is true (query-if),
or query information about an identified object (query-ref). The participant can
refuse or agree to this query. If the participant agrees, then it will inform the
initiator of the response, or report a failure.

2.1 Protocol-Based Coverage Criteria

Based on protocols specified in a standard protocol language such as AUML2
interaction diagrams, it is possible to construct a protocol graph that shows all
possible orderings of messages1. Figure 2 shows the protocol graph corresponding
to the FIPA Query Interaction Protocol [7].

The conversation IDs annotated to each message identify six conversations
that have happened using this protocol, in which a conversation is a possible
chaining of messages.

Criterion Definition. Our coverage criteria are based on graph traversal of
the protocol graph. For protocol coverage, we define three criteria:

1 Our coverage criteria are then based on these orderings. We are not concerned with
the content of messages, nor the time at which they are sent, only the relative
ordering.

Test Coverage Criteria for Agent Interaction Testing 93

Initiator Participant

query-if

query-ref

alt

refuse

agree

failure

inform

alt

alt

FIPA query protocol

Fig. 1. An AUML2 interaction diagram of the FIPA Query Interaction Protocol

Message coverage. Every message in the protocol must be sent at least once.
Pairwise message coverage. For every message, start node, and end node in

the protocol, all directly proceeding messages/nodes must be executed after
the first message/node at least once; that is, we must test every case in which
one message can be followed by another.

Message path coverage. Every possible interaction sequence permitted by
the protocol must be executed at least once.

These three criteria correspond to node, arc, and path coverage of a graph.
Figure 2 contains a minimal set of conversations that, if fully executed, achieve
these criteria on the protocol graph.

Achieving path coverage is sometimes not possible as a protocol may be de-
fined as an infinitely iterative or recursive structure, leading to an infinite number
of paths. Workarounds include achieving only non-cyclical path coverage, or us-
ing heuristics such as the 0-1-many rule, which specifies that we test only three
of these paths: paths containing 0 loops, 1 loop, and more than one loop.

Coverage Measures. Spillner [20] defines coverage measures for integration
testing criteria. Coverage measures are defined as “the ratio between the test
cases [inputs] required for satisfying the criteria and those of these which have
been executed”. These measures can be applied to test sets to determine how
complete they are for a particular program.

94 T. Miller, L. Padgham, and J. Thangarajah

Init iator

Participant

query-ref

refuse

query-if

agree

inform failure

{ 1 , 2 , 3 }

{1 ,2 ,4 ,5 }

{ 1 , 4 }

{ 4 , 5 , 6 }

{ 3 , 6 }

{ 2 , 5 }

M
message M starts the

M
message M terminates

M N
sequence of M followed

{ # , # } conversation identif ier

R message scope for role R

Criter ion Conversat ions

Message

Pairwise Message

Message Path

1, 2, and 6

1, 2, 3, 4, and 6

1-6

protocol

protocol

by N

Fig. 2. A protocol graph for the FIPA Query interaction protocol specified, and the
conversations required to achieve coverage criteria

The interaction coverage measures (IC) for our three protocol-based criteria
are defined as follows:

ICprotocol message = #messages sent at least once
#totalmessages in protocol

ICpairwise message = #arcs executed
#total arcs in protocol

ICmessage path = #paths executed
#total message paths in protocol

As an example, in Figure 2 the set of conversations 1, 2, and 6 achieves 100% for
protocol message coverage (6 messages that are all executed), 82% for pairwise
message coverage (11 arcs, 9 arcs covered), and 50% for message path coverage
(6 different paths, 3 paths covered).

Protocol-based coverage criteria are intuitively useful for interaction testing
because they are strictly related to the interactions that can occur between
the agents. However, purely message-based criteria do not consider the internal
structure of the agents. For example, an agent may be able to send or receive the
same message in many different plans. Consequently, we develop an additional
set of coverage criteria that take into account the plans of the agents, and the
relationship of messages to these plans.

2.2 Plan-Based Coverage Criteria

We extract from the design artifacts, the information to build a plan graph
for each protocol, of the kind shown in Figure 3. This graph represents the
relationship between plans and messages for a particular protocol.

Plan graphs are built by extracting as nodes, those plans that send or receive
any message in the protocol, and the messages themselves. In addition to the
obvious send/receive links between plans and messages, we add a link between
any two plans in the graph, which are connected by a chain (or multiple chains)

Test Coverage Criteria for Agent Interaction Testing 95

query-if

query-ref

agree

P3 Q2

Q1P1

refuse

Init iator Participant

inform

P4 Q3

Q4

P2

failure

P5

P6

{ 3 }
{ 3 }

{ 3 }

{ 3 }
{ 3 }

{1a ,1b ,2a ,2b}

{ 1 a , 2 a }

{ 1 b , 2 b }

{ 2 a , 2 b }

{ 1 a , 1 b }

Plan P initiates protocol

Final plan in protocol

P

Plan P sends

message M

M

Plan P receives

message M

P M

P Q

Super arc from

plan P to plan Q

P

P

{1a,1b ,2a ,2b}

{1a ,1b ,2a ,2b} {1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

Fig. 3. A plan graph for the FIPA Query interaction protocol specified

of triggering links. We will call such links between plans super-arcs as they
represent an entire plan structure. Figure 4 shows the internals of the super-arc
between plan nodes Q3 and Q4 in Figure 3.

From Figure 3, one can see that the participant always agrees to a query-if
request and always refuses a query-ref; so while the agents may follow the proto-
col, they do not use all parts of it. We also note that plans can send more than
one message or receive more than one message, for example, plan Q4 sends both
inform and failure.

Unlike other branches in the graph, the branch at Q3 is not a choice. Instead
Q3 sends the message agree, and then triggers the plan Q4. For the purpose of
test criteria, it is not necessary to model whether this is a choice or the ability
to do more than one action because we need only measure whether the message
was sent.

Criterion Definition. We define a set of coverage criteria using plan graphs,
in a similar way to those we defined on the protocol graph. We note how these
correspond to criteria in standard (non-agent-oriented) integration testing [20].

Message coverage. Every message in the plan graph is sent at least once.
The analogous case in standard integration testing is ensuring that each
method/function in the target component’s interface is executed at least
once.

96 T. Miller, L. Padgham, and J. Thangarajah

agree

QB

inform

Q3

Q4

QA

{ 1 a , 2 a } { 1 b , 2 b }

{1a ,1b ,2a ,2b}

P Q Plan P triggers plan Q

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

P M Plan P sends message M

Criterion Conversations
Message 1(a or b), 2(a or b), and 3
Plan 1a, 1b, and 3
Plan arc 1a, 2b, and 3
Pairwise internal path 1a, 1b, 2a, 2b, and 3
Plan path 1a, 1b, 2a, 2b, and 3

Fig. 4. Internal plan structure between plans Q3 and Q4 for the graph from Figure 3,
and the conversations required to achieve coverage criteria for the entire protocol

Plan coverage. Every plan that sends or receives a message in the protocol
is executed at least once. The analogous case in integration testing is en-
suring that each method in the program that calls a method in the target
component’s interface is executed.

Plan arc coverage. Every occurrence of a message being sent by a plan and
every occurrence of a plan being triggered (by a message, an event (a start
node), or another plan) is executed at least once. This is different from plan
coverage because a plan may be able to send more than one message (e.g.
plan Q4 sending inform and failure in Figure 3). The analogous case in
integration testing is ensuring that every call made to every method in the
target component’s interface is tested.

Pairwise internal path coverage. Every possible path, including paths in
super arcs, between two pairwise messages, or between a first/last mes-
sage in a protocol and its corresponding start/end node is executed at least
once. This ensures that all paths that could be used to produce a particular
message in the protocol, are tested. The analogous case in integration test-
ing is ensuring that every path between two method calls from the target
component’s interface is executed. Note that pairwise messages cannot be
determined from the plan graph, but must be determined from the proto-
col specification or protocol graph. For example, in Figure 3, one cannot
determine that agree is sent directly before inform.

Plan path coverage. Every possible path through the structure induced by
expanding super-arcs within the plan graph is executed at least once. The
analogous case in integration testing is ensuring that every possible sequence
of calls to every method in the target component’s interface is tested. Even
without the expansion of super-arcs this differs from message path coverage
defined on the protocol graph, in that it addresses the case where the same
message may be sent from, or received by, two different plans. (e.g. plan P4
and P5 receiving agree in Figure 3).

Test Coverage Criteria for Agent Interaction Testing 97

Again, some of the above criteria correspond to graph coverage criteria. Mes-
sage and plan coverage combined correspond to node coverage. Plan arc coverage,
and plan path coverage correspond to arc, and path coverage respectively. Pair-
wise internal path coverage corresponds to path coverage between plan nodes
within a super arc, combined with arc coverage on the other arcs of the graph.

To illustrate, Figure 4 contains a minimal test sets that, when fully executed,
achieve each criteria, using the plan graph from Figures 3 and 4.

Coverage Measures. We define coverage measures for these criteria in the
same way as the protocol-based criteria: the ratio of executed nodes/arc/paths
to the total number of nodes/arc/paths.

For example, in Figures 3 and 4, the set of conversations 1a, 2b, and 3 achieves
100% coverage for message coverage (6/6), plan coverage (10/10), and plan arc
coverage (19/19), 85% for pairwise internal path coverage (11/13), and 55.5%
for plan path coverage (5/7).

2.3 Comparison of Coverage Criteria

To compare these criteria, we are interested in any subsumption relationships
between them. Test criterion A subsumes test criterion B if and only if any test
set that achieves 100% coverage on criterion A also achieves 100% coverage on
criterion B.

Message

(protocol graph)

Message

(plan graph)

Pairwise message

Message path

Plan

Plan arc

Pairwise internal path

Plan path

Fig. 5. The subsumes relation between the protocol-based and plan-based coverage

Figure 5 shows the subsumption relationship between our criteria. We know
from graph theory that path coverage subsumes arc coverage, and arc coverage
subsumes node coverage. This directly gives us the subsumption relation between
the different protocol graph criteria (message path subsumes pairwise message,
and pairwise message subsumes message).

In the plan graph, plan path subsumes plan arc, and plan arc subsumes mes-
sage/plan coverage, directly from graph theory. Although neither message nor
plan coverage are equivalent to node coverage, both are subsumed by it. Plan

98 T. Miller, L. Padgham, and J. Thangarajah

coverage does not subsume message coverage, because plans can send and re-
ceive multiple messages. For example, plan coverage of Figure 3 can be achieved
by executing plans Q4 and P6 once each, which means either inform or failure
will not be sent. There is also an additional coverage metric, pairwise internal
path coverage, which sits between plan path coverage and plan arc coverage.
The argument for this is straightforward: by definition it subsumes arc coverage,
and if every path, including every path internal to a super arc, is executed, then
every arc plus all super-arc paths must also be executed.

To compare the criteria for the two different types of graph, we make the
assumption that all criteria are feasible. For example, in plan message coverage,
we assume that the participating agents are programmed such that every mes-
sage in a protocol is able to be sent by these agents. Otherwise, 100% coverage
is not achievable. It is not uncommon for this assumption to be false, partic-
ularly when pre-existing protocols are used. For example, a developer using a
third-party protocol may choose not to use some messages defined in a protocol.

If this assumption is relaxed, the result is simply that there is no subsumption
relation between any of the criteria2. With this assumption of feasibility we can es-
tablish some relationships between the criteria based on the two different graphs.
Firstly, we note that the two types of message coverage are equivalent. That is,
they both require test cases that send every message in the protocol. The next re-
lation is that pairwise internal path coverage subsumes pairwise message coverage.
Pairwise internal path coverage is defined as executing all paths (including super
arcs) between all pairwise messages, therefore, it trivially subsumes pairwise mes-
sage coverage. Finally, we have that plan path coverage subsumes message path
coverage. With our assumption of feasibility, this subsumption relation holds be-
cause if there is a path defined by the protocol, there must be a path in the plan
graph that executes it. If all paths through the plan graph are executed, then this
implies all paths in the protocol graph must also be executed.

We argue that the combination of message path coverage and pairwise inter-
nal path coverage is a minimum testing level to aim for in rigorous interaction
testing. It tests the various plan combinations that may be used in moving from
receipt of a message, to the production of the next message in the protocol, and
also tests every possible conversation. Although there is some amount of expo-
nential growth, this is likely to be substantially more limited than that required
for testing all paths in the plan graph.

3 Measuring Correctness and Coverage Using a
Debugging Agent

The model-based measure of correct behaviour of agent interaction is primarily
whether the agents follow the specified interaction protocols. While the coverage
2 This can be demonstrated by the examples in Figures 2 and 3: the agents are pro-

grammed such that the sequence 〈query-ref → agree〉 is infeasible, therefore, pair-
wise message coverage is not achievable on the protocol graph, but pairwise internal
path coverage is achievable on the plan graph.

Test Coverage Criteria for Agent Interaction Testing 99

measures we have defined can tell us how thoroughly a given set of test cases ac-
tually exercises the program under test, we require some way of knowing whether
the agents interact as specified. To establish this we use the work of Poutakidis
et al. [19] on debugging agent interactions. The monitor that is used in that
work for detecting bugs, can equally well be used as a test oracle.

The IEEE Standard Glossary of Software Engineering Terminology [10] de-
fines a test oracle as: “any means of determining whether a system or compo-
nent’s behaviour is consistent with its specification.”

In Poutakidis et al.’s work, the agent platform is modified so that the debug-
ging agent receives copies of all messages sent within the system. This debugging
agent then raises an alert if a sent message does not follow one of the specified
protocols, or if a protocol does not reach a specified end state. These are the two
possible errors that can arise with respect to the agent interactions.

We use the infrastructure of Poutakidis et al. to collect information regard-
ing our protocol graph interaction coverage criteria. This information can be
collected by an independent observer. For the plan-graph coverage criteria, in-
formation must be known about the inner details of the participants. In current
work, we are adapting Zhang et al.’s automated unit test framework [24] to
measure plan-graph coverage criteria.

3.1 Petri-Net Representation for Protocols

Poutakidis et al. systematically translate AUML protocol specifications into
Petri Nets, and executing these as agents interact, are able to ascertain whether
the interaction is following a specified protocol.

A Petri Net is a bipartite graph containing two types of nodes: places and
transitions. Places are represented with circles, and transitions are represented
with rectangles (see Figure 6). Arcs connect transitions to places. The execution
semantics of Petri Nets specifies that tokens can be located at places. A transition
can be fired if all incoming places contain a token and the outgoing place is empty;
when the transition fires, a token is placed at all outgoing places.

Poutakidis et al. define Petri Nets with two kinds of places: state places and
message places. State places represent the state prior to a given message being
received, or end states. When a Petri Net instance is initialised by the debugger,
it has a token placed on its relevant message and state places. At each cycle
all Petri Net instances are fired to completion, and then retained until the next
cycle, when a token is added to the message place in the relevant Petri Nets.
Poutakidis et al. define mappings from protocols to Petri Nets to model the
possible protocol executions.

Figure 6(a) shows the Petri Net for the FIPA query protocol. When a query-if
message arrives, this is identified as a start message for this protocol, and a
new Petri Net instance is created. A token is placed in the query-if message
place, and the corresponding state place. The Petri Net is then executed allowing
the transition to fire producing a token on the outgoing state-place, P, as in
Figure 6(b). The Petri Net is now in a state where, when a token is placed
on either the agree or refuse message place, it can fire the relevant transition,
producing a token in either R or T.

100 T. Miller, L. Padgham, and J. Thangarajah

query-if query-ref

agree refuse

{ 1 , 2 } { 6 }

{ 6 }{ 1 , 2 }

{ 1 } { 2 }

inform failure

P Q

R S

T U

V W X Y

(a)

query-if query-ref

agree refuse

{ 1 , 2 } { 6 }

{ 6 }{ 1 , 2 }

{ 1 } { 2 }

inform failure

Q

R S

T U

V W X Y

(b)

Fig. 6. An example of a Petri Net transformation

The debugging agent contains a copy of every protocol (and its corresponding
Petri Net) used in the system. Each conversation held between a set of agents
must contain a conversation ID to allow placement of a message into the correct
Petri Net instance as there may be concurrent conversations. This requirement
is supported by the FIPA standard for agent communication [6].

Each time the debugging agent receives a copy of a message, it first confirms
whether the conversation ID corresponds to a current conversation. If not, it
creates a Petri Net for all protocols that contain the received message as their
initial message, initialises these appropriately, (as in Figure 6(a)). This is neces-
sary because it has no way of knowing which protocol the sending agent is using
if more than one protocol has that message as the initial message. The agent
maintains a set of Petri Net instances for each conversation, until it becomes
clear by a process of elimination, which protocol is being used.

If the message corresponds to an existing conversation, the debugging agent
places the message in the appropriate message-place of all the Petri Nets in
the set for the conversation. Those that do not have an appropriate place, or
where the message place does not enable a transition, are removed from the
set, because it is evident the conversation is not following this protocol. If the
set becomes empty, then this indicates a fault: the agents are not following any
known protocol. For example, if the Petri Net is in the state shown in Figure 6(b),
and the debugging agent received the message agree, then this transition could
fire. Alternatively, if the message was refuse, the transition could not fire because
there would be no token at Q. This indicates a fault.

The process continues until the conversation is deemed to have terminated.
If there are tokens remaining in any non-terminal places, this indicates a fault,
because the conversation did not follow the protocol to completion.

Test Coverage Criteria for Agent Interaction Testing 101

3.2 Measuring Coverage Using Petri Nets

We adapt Poutakidis et al.’s debugging agent to measure the coverage corre-
sponding to the protocol-based criteria defined in Section 2. First, we modify
the oracle such that, when a transition is fired, the transition is annotated with
the conversation ID, such as in Figure 6(a).This records all of the conversations
that take place using a particular protocol. In this example, conversations 1, 2,
and 6 from Figure 2 have been executed, and the appropriate transitions have
been annotated.

To measure message coverage, we analyse each message place in the Petri
Net and determine if at least one of its outgoing transitions has been fired (is
annotated). If so, the message has been sent. We can then use the coverage
measure definition from Section 2.1 to measure coverage.

To measure pairwise message coverage, we analyse each place in the Petri Net
that represents an intermediate state; that is, all non-message-places between
two transitions. If the incoming transition and at least one outgoing transition
share at least one conversation ID, then this pair was executed. For example,
the place P contains one incoming transition and two outgoing transitions. The
incoming arc and the left outgoing transition both contain the conversation IDs
1 and 2, so this pair was executed in sequence. To show this is valid, we note that
the unfolding rules specified by Poutakidis et al. [19] result in a graph such that
any two places are linked by at most one path. As a result, each intermediate
place in a Petri Net must have at least one input and one output transition, and
all pairwise messages in a protocol are connected by exactly one such message
place in the Petri Net representation. If the incoming and outgoing message place
share a conversation ID, then the pair of messages must have been executed.

Finally, to measure message path coverage, we take each terminal place, and
determine if the incoming transition to that place was fired; that is, contains at
least one conversation ID. To demonstrate validity of this, we again note that
Poutakidis et al.’s unfolding rules result in a graph such that any two places are
linked by at most one path. Therefore, the final transition is unique to a path,
so if this transition has been fired, the entire path must have been executed.

3.3 Measuring Coverage for Concurrent Conversations

To monitor multiple conversations over a single protocol, Poutakidis et al. create
multiple instances of the same Petri Net. Using a single instance is not suitable
because, upon testing to see if a message is valid, the Petri Net may be in a
configuration such that the message is valid for another conversation, but not the
current one. Creating multiple instances of a Petri Net is suitable for monitoring
interactions, however, to measure coverage, the coverage information is spread
over multiple Petri Nets for a single protocol.

One solution is to collate all information from all Petri Nets after a test suite
has been executed. However, this is somewhat inefficient and cumbersome.

102 T. Miller, L. Padgham, and J. Thangarajah

A more elegant solution is to adapt Poutakidis et al.’s solution to use coloured
Petri Nets [11]. Coloured Petri Nets extend Petri Nets by (among other things)
allowing tokens to carry a value. A transition can be fired only if all incoming
places contain a token with the same shared value.

To handle concurrent conversations, each protocol corresponds to a single
Petri Net in the test oracle. Rather than creating multiple copies for multiple
conversations, tokens are given values corresponding to the conversation ID. Us-
ing this, the test oracle receives a message containing a conversation ID, and can
determine at which place the correct token resides. From here, it can determine
whether the message is valid.

Taking this approach, tokens remain at the terminal places after conversations
have terminated. Therefore, measuring path coverage is as simple as counting
the number of terminal places that contain at least one token, and dividing this
by the total number of terminal places.

4 Related Work

Test coverage criteria are typically used on the code level, with criteria specifying
that a set of test cases must achieve complete coverage of program statements or
of all branches in a program [15], or of all methods/functions that call another
module in a program [20]. Such criteria are applicable to testing multi-agent
systems, however, they do not test interactions specifically, which is the aim of
the work in this paper.

Model-based coverage criteria also exist [23]. These typically require the cover-
age of transitions in a semi-formal finite-state automata model, or of propositions
or functions in a formal state machine model. Modelling the interactions within
a system and using these model-based criteria would be sufficient to test agent
interactions, however, we aim to leverage off the existing models in the system.
AUML interaction diagrams are one of the most common forms of interaction
models.

There has been recent work on automating test case generation in multi-agent
systems, such as the Unit test framework of Zhang et al. [24] already mentioned
in this work, and the eCAT system associated with Tropos [16,17,18]. eCAT is
a testing tool that automates test case generation and execution. There are 4
test generation techniques employed in eCAT: goal-oriented, which is manual
test generation using goal diagrams; ontology-based, where test cases are derived
automatically from the specification of the agent interaction ontology; random,
where values for test cases are randomly generated; and evolutionary mutation,
where genetic algorithms generate test cases measured by the quality goals of
the system. Our approach to testing correctness, and measuring thoroughness
could complement any of these test case generation techniques.

Low et al. [13] consider test coverage criteria for BDI agents. They derive
two types of control-flow graphs: one with nodes representing plans and arcs
representing messages or other events that trigger plans; and one with nodes
representing statements within plans and arcs representing control-flow between

Test Coverage Criteria for Agent Interaction Testing 103

statements (a standard control-flow graph). Several coverage criteria are defined,
based on node, arc, and path coverage, as well as some based on the success or
failure of executing statements and plans. However, Low et al.’s work builds
graphs over the entire program, and thus does not facilitate the modular and
focused testing based on specific interaction protocols.

Low et al.’s coverage criteria relate to ours. Their plan graph is similar to our
plan graph, except that they consider plans that are not related to interaction.
As a result, their coverage criteria subsume ours; for example, their plan path
coverage subsumes our plan path coverage. However, their criteria do not con-
sider pairwise messages, as they do not focus on interaction protocols. Low et al.
do not define specific coverage measures or how to calculate them, nor do they
discuss test oracles.

We are not the first authors to consider the use of Petri Nets for testing. We
discuss some of the most closely-related work.

Kissoum and Sahnoun [12] use Petri-Nets for testing agent interactions spec-
ified in AUML. Similar to our oracle approach, an AUML interaction diagram
is converted into a Petri Net, although the method of conversion is different.
All paths in the Petri Net are extracted and used as test cases. Kissoum and
Sahnoun do not discuss how the sequences are used to determine the necessary
input or how they can be used as an oracle. Instead, they provide a high-level
overview of the framework.

Braberman et al. [1] propose test coverage criteria for real-time systems. In
their method, real-time system behaviour, including timing constraints, are spec-
ified using a formal notation known as SA/SD-RT [8]. This is translated in a
high-level Petri Net, which is simulated to obtain a timed reachabilility tree. From
this, simulation can be used to generate abstract test cases. Braberman et al.
leave the method for generating the final tests case and the oracle problem as
future work.

Tjell [22] discuss the use of Petri Nets for monitoring the test outputs of a
small car radio program. The system behaviour is modelled using Petri Nets, and
all traces of the model are calculated. Traces of the program are collected during
its execution, and the traces are checked to ensure that they are in the traces
of the model. Expanding all traces of the model can result in a prohibitively
large set, which is why our oracle reacts passively to the system behaviour by
executing the Petri Nets on the fly.

Desel et al. [5] present a technique for generating simulation traces for checking
properties of a Petri Net. As a side effect of this technique, they propose that this
can be used to generate test data for a program that implements the Petri Net.
In their technique, the system behaviour is modelled as a Petri Net, with places
representing propositions about the system, and transitions represent actions. A
cause-effect net is extracted from the graph, which is a binary relation between
all actions that cause the system to change state, and is represented using a
restricted form of Petri Net. From this, test cases are generated by simulating
the cause-effect net to determine the inputs (causes) and outputs (effects).

104 T. Miller, L. Padgham, and J. Thangarajah

5 Discussion and Conclusion

Due to the complex emergent behaviour that results from agents interacting
with each other, testing these interactions is an important part of the verification
and validation process. The fact that emergent behaviour in complex systems
is often difficult or impossible to identify without running these systems implies
that using human test engineers to generate test cases manually is not sufficient,
and automated test case generation techniques are required.

Whether test cases are generated automatically or manually, it is important
to have a measure of the quality of the set of test cases. This paper has pro-
vided criteria by which to measure this, showing the subsumption relationships
between these criteria, and discussing which we would practically aim for. We
suggest that testing all paths through the protocol, combined with all plan paths
between two messages achieves a high level of coverage, and is likely to be more
feasible than plan path coverage, which subsumes both of these criteria. This
paper has also shown how to collect these measurements as part of the testing
process. We consider that these coverage definitions provide a sound basis for
guiding test case generation where test cases are designed to give good coverage.

The work in this paper is one step towards a larger goal: model-based au-
tomated testing for multi-agent systems. Future work will define methods for
automatically deriving test cases from design artifacts. With respect to interac-
tion testing, we will attempt to automatically generate complete test suites that
achieve message path coverage combined with pairwise internal path coverage,
using design documents as the models.

References

1. Braberman, V., Felder, M., Marre, M.: Testing timing behavior of real-time soft-
ware. In: International Software Quality Week (1997)

2. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-Agent Systems Im-
plementation and Testing. In: The Fourth International Symposium: From Agent
Theory to Agent Implementation, April 14-16 (2004)

3. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: Proc. of the 2006 Intl. Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, pp. 83–90 (2006)

4. DeLoach, S., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three AOSE
toolkits to develop a sample design. International Journal of Agent-Oriented Soft-
ware Engineering 3(4), 416–476 (2009)

5. Desel, J., Oberweis, A., Zimmer, T., Zimmermann, G.: Validation of information
system models: Petri Nets and test case generation. In: IEEE International Confer-
ence on Systems, Man, and Cybernetics, vol. 4, pp. 3401–3406. IEEE, Los Alamitos
(2002)

6. FIPA. FIPA ACL message structure specification. Standard SC00061G, Founda-
tion for Intelligent Physical Agents (December 2002)

7. FIPA. FIPA query interaction protocol specification. Standard SC00027H, Foun-
dation for Intelligent Physical Agents (December 2003)

8. Hatley, D.J., Pirbhai, I.A.: Strategies for real-time system specification. Dorset
House, New York (1988)

Test Coverage Criteria for Agent Interaction Testing 105

9. Huget, M., Odell, J.: Representing agent interaction protocols with Agent UML.
In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp.
16–30. Springer, Heidelberg (2005)

10. IEEE. IEEE standard glossary of software engineering terminology. Technical Re-
port 610.12-1990, Institute of Electrical and Electronic Engineers (1990)

11. Jensen, K.: Coloured Petri Nets. Springer, Heidelberg (1997)
12. Kissoum, Y., Sahnoun, Z.: A recursive colored Petri Nets semantics for AUML as

base of test case generation. In: IEEE/ACS International Conference on Computer
Systems and Applications, pp. 785–792. IEEE, Los Alamitos (2008)

13. Low, C., Chen, T.Y., Ronnquist, R.: Automated test case generation for BDI
agents. Autonomous Agents and Multi-Agent Systems 2(4), 311–332 (1999)

14. Myers, G.J.: The Art of Software Testing. Wiley, New York (1979)
15. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of Software Testing,

2nd edn. Wiley, Chichester (2004)
16. Nguyen, C., Perini, A., Tonella, P.: Automated continuous testing of multi-agent

systems. In: Fifth European Workshop on Multi-Agent Systems, Hammamet,
Tunisia (December 2007)

17. Nguyen, C., Perini, A., Tonella, P.: eCAT: a tool for automating test case generation
and execution in testing multi-agent systems (demo paper). In: Proceedings of
AAMAS 2008, Estoril, Portugal, pp. 1669–1670 (2008)

18. Nguyen, C., Perini, A., Tonella, P.: Ontology-based test generation for multi-agent
systems. In: Proceedings of AAMAS 2008, pp. 1315–1320 (2008)

19. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using
design artifacts: The case of interaction protocols. In: Alonso, E., Kudenko, D.,
Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, pp.
960–967. Springer, Heidelberg (2003)

20. Spillner, A.: Test criteria and coverage measures for software integration testing.
Software Quality Journal 4(4), 275–286 (1995)

21. Tiryaki, A., Öztuna, S., Dikenelli, O., Cenk Erdur, R.: SUNIT: A unit testing
framework for test driven development of multi-agent systems. In: Padgham, L.,
Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173.
Springer, Heidelberg (2007)

22. Tjell, S.: Model-based testing of a reactive system with coloured Petri Nets. Pro-
ceedings of INFORMATIK 94, 274–281 (2006)

23. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, San Francisco (2007)

24. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent sys-
tems. In: 2nd International Working Conference on Evaluation of Novel Approaches
to Software Engineering, Spain, pp. 10–18 (July 2007)

Using ASEME Methodology

for Model-Driven Agent Systems Development

Nikolaos Spanoudakis1 and Pavlos Moraitis2

1 Technical University of Crete, Dept. of Sciences,
University Campus, 73100 Chania, Greece

nikos@science.tuc.gr
2 Laboratory of Informatics Paris Descartes (LIPADE), Paris Descartes University,

45 rue des Saints-Pères, 75270 Paris Cedex 06, France
pavlos@mi.parisdescartes.fr

Abstract. This paper shows how an AOSE methodology, the Agent
Systems Engineering Methodology (ASEME), uses state of the art tech-
nologies from the Model-Driven Engineering (MDE) domain. We present
the Agent Modeling Language (AMOLA) metamodels and the model
transformation tools that we developed and discuss our choices. More-
over, the way that non-functional requirements are used throughout the
software development lifecycle is discussed and presented with two real-
world case studies. Finally, we compare ASEME with a set of existing
AOSE methodologies.

1 Introduction

During the last years, there has been a growth of interest in the potential of agent
technology in the context of software engineering. A new trend in the Agent
Oriented Software Engineering (AOSE) field is that of converging towards the
Model-Driven Engineering (MDE) paradigm. Thus, a lot of well known AOSE
methodologies propose methods and tools for automating models transforma-
tions, such as Tropos [23] and INGENIAS [7], but this is done only for some of
the software development phases.

This paper aims to show for the first time how the principles of MDE can
be used throughout all the software development phases and how the AOSE
community can use three different types of transformations in order to produce
new models based on previous models. This approach has been used by the
Agent Systems Engineering Methodology (ASEME)1 [26], [28] and shows how
an agent-based system can be incrementally modeled by gradually adding more
information at each development phase using the appropriate type of model.

ASEME offers some unique characteristics regarding the used MDE approach.
It covers all the classic software development phases (from requirements to
implementation) and the transition of one phase to another is done through
1 From the ASEME web site the interested reader can download the tools and meta-

models used in this paper, URL: http://www.amcl.tuc.gr/aseme

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 106–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.amcl.tuc.gr/aseme

Using ASEME Methodology for Model-Driven Agent Systems Development 107

model transformations. It employs three transformation types, i.e. model to
model (M2M), text to model (T2M) and model to text (M2T). Thus, the ana-
lysts/engineers and developers just enrich the models of each phase with infor-
mation, gradually leading to implementation. Moreover, the design phase model
of ASEME is a statechart [10], a modeling paradigm well known to engineers,
which can be implemented using a variety of programming languages or an
agent-oriented platform.

Another important aspect of ASEME is the support of documentation of
non-functional requirements even from the requirements analysis phase. These
are propagated in the analysis phase where they are used for taking manage-
rial decisions and selecting the technologies that will be used for design and
development.

This paper presents the ASEME process showing the models transforma-
tions between the different development phases. The models that are used by
ASEME are defined by the Agent Modeling Language (AMOLA, a first version
is presented in [28]). Moreover, it emphasizes on the handling of non-functional
requirements by ASEME. The next paragraph provides a background on meta-
modeling and models transformation followed by the definition of the AMOLA
metamodels in section two. The ASEME MDE process is presented in sec-
tion three discussing the used transformation tools. Section four presents how
ASEME tackles the issue of non-functional requirements. In section five we eval-
uate ASEME using empirical results through the development of two real world
systems. Related work is discussed in section six and the paper is concluded in
section seven.

1.1 Metamodeling and Models Transformation

Model Driven Engineering (MDE) relies heavily on model transformation [25].
Model transformation is the process of transforming a model to another model.
The requirements for achieving the transformation are the existence of metamod-
els of the models in question and a transformation language in which to write
the rules for transforming the elements of one metamodel to those of another
metamodel. The MDE approach has been argued to contribute to non-functional
requirements capture, such as portability, interoperability and reusability [15].

In the software engineering domain a model is an abstraction of a software
system (or part of it) and a metamodel is another abstraction, defining the
properties of the model itself. However, even a metamodel is itself a model. In
the context of model engineering there is yet another level of abstraction, the
metametamodel, which is defined as a model that conforms to itself [13].

There are four types of model transformation techniques [16]:

– Model to Model (M2M) transformation. This kind of transformation is
used for transforming a type of graphical model to another type of graphical
model. A M2M transformation is based on the source and target metamodels
and defines the transformations of elements of the source model to elements
of the target model.

108 N. Spanoudakis and P. Moraitis

– Text to Model (T2M)transformation. This kind of transformation is used
for transforming a textual representation to a graphical model. The textual
representation must adhere to a language syntax definition usually using
BNF. The graphical model must have a metamodel. Then, a transformation
of the text to a graphical model can be defined.

– Model to Text (M2T) transformations. Such transformations are used
for transforming a visual representation to code (code is text). Again, the
syntax of the target language must be defined along with the metamodel of
the graphical model.

– Text to Text (T2T) transformations. Such transformations are used for
transforming a textual representation to another textual representation. This
is usually the case when a program written for a specific programming lan-
guage is transformed to a program in another programming language (e.g.
a compiler).

In the heart of the model transformation procedure is the Eclipse Model-
ing Framework (EMF, [3]). Ecore is EMF’s model of a model (metamodel). It
functions as a metametamodel and it is used for constructing metamodels. It
defines that a model is composed of instances of the EClass type, which can
have attributes (instances of the EAttribute type) or reference other EClass in-
stances (through the EReference type). Finally, EAttributes can be of various
EDataType instances (such are integers, strings, real numbers, etc). EMF allows
to extend existing models via inheritance, using the ESuperType relationship for
extending an existing EClass.

A similar technology, the Meta-Object Facility (MOF), is an OMG standard
[19] for representing metamodels and manipulating them. MOF is older than
EMF and it influenced its design. However, the EMF meta-model is simpler
than the MOF meta-model in terms of its concepts, properties and containment
structure, thus, the mapping of EMF’s concepts into MOF’s concepts is relatively
straightforward and is mostly 1-to-1 translations [8]. EMF is also used today by
a large open source community becoming a de facto standard in MDE.

2 The AMOLA Metamodels

In this section we present the metamodels used in the ASEME MDE process.
Using these metamodels we can derive graphical tools for defining the models
and tools for automating the models tranformations.

2.1 The System Actor Goal Model (SAG)

The SAG model is a subset of the Actor model of the Tropos ecore model [31].
Tropos is, on one hand, one of the very few AOSE methodologies that deal with
requirements analysis, and, on the other hand it borrows successful practices
from the general software engineering discipline. This is why we have been in-
spired by Tropos. The reason for not using the Tropos diagrams as they are is

Using ASEME Methodology for Model-Driven Agent Systems Development 109

Fig. 1. The AMOLA SAG (a) and SUC (b) metamodels

that they provide more concepts than the ones used by AMOLA as they are also
used for system analysis. However, as we will show later, AMOLA defines more
well-suited diagrams for system analysis.

Thus, the AMOLA System Actors Goals diagram is the one that appears in
Figure 1(a) employing the Actor and Goal concepts. The actor references his
goals using the EReference my goal, while the Goal references a unique depender
and zero or more dependees. The reader should notice the choice to add the
requirements EAttribute of Goal. Through this attribute, each goal is related to
functional and non-functional requirements, which are documented in plain text
form.

2.2 The System Use Cases Model (SUC)

In the analysis phase, the analyst needs to start capturing the functionality
behind the system under development. In order to do that he needs to start
thinking not in terms of goal but in terms of what will the system need to do
and who are the involved actors in each activity. The use case diagram helps
to visualize the system including its interaction with external entities, be they
humans or other systems. It is well-known by software engineers as it is part of
the Unified Modeling Language (UML).

In AMOLA no new elements are needed other than those proposed by UML,
however, the semantics change. Firstly, the actor “enters” the system and as-
sumes a role. Agents are modeled as roles, either within the system box (for the
agents that are to be developed) or outside the system box (for existing agents
in the environment). Human actors are represented as roles outside the system
box (like in traditional UML use case diagrams). This approach aims to show
the concept that we are modeling artificial agents interacting with other artifi-
cial agents or human agents. Secondly, the different use cases must be directly
related to at least one artificial agent role.

110 N. Spanoudakis and P. Moraitis

The SUC metamodel containing the concepts used by AMOLA is presented
in Figure 1(b). The concept UseCase has been defined that can include and be
included by other UseCase concepts. It interacts with one or more roles, which
can be Human roles (HumanRole) or Agent roles (SystemRole).

2.3 The System Roles Model (SRM)

An important concept in AOSE is the role. An agent is assumed to undertake
one or many roles in his lifetime. The role is associated with activities and this
is one of the main differences with traditional software engineering, the fact that
the activity is no longer associated with the system, but, rather, with the role.
Moreover, after defining the capabilities of the agents and decomposing them to
simple activities in the SUC model we need to define the dynamic composition
of these activities by each role so that he achieves his goals. Thus, we defined the
SRM model based on the Gaia Role model [34]. Gaia defines the liveness formula
operators that allow the composition of formulas depicting the role’s dynamic
behavior. However, we needed to change the role model of Gaia in order to
accommodate the integration in an agent’s role the incorporation of complex
agent interaction protocols (within which an agent can assume more than one
roles even at the same time), a weakness of the Gaia methodology. The AMOLA
SRM metamodel is presented in Figure 2(a). The SRM metamodel defines the
concept Role that references the concepts:

– Activity, that refers to a simple activity with two attributes, name (its name)
and functionality (the description of what this activity does)

– Capability that refers to groups of activities (to which it refers) achieving a
high level goal, and,

– Protocol. The protocol attributes name and participant refer to the relevant
items in the Agent Interactions Protocol (AIP) model. This model is not
detailed here-in. It is used for identifying the roles that participate in a
protocol, their activities within the protocol and the rules for engaging (for
more details consult [29]).

The Role concept also has the name and liveness attributes (the first is the
role name and the second its liveness formula). The reader should note the func-
tionality attribute of the Activity concept which is used to associate the activity
to a generic functionality. For example, the “get weather information” activity
can be related to the “web service invocation” functionality (see [27], [28]).

2.4 The Intra-Agent Control Model (IAC)

In order to represent system designs, AMOLA is based on statecharts, a well-
known and general language and does not make any assumptions on the on-
tology, communication model, reasoning processes or the mental attitudes (e.g.
belief-desire-intentions) of the agents, giving this freedom to the designer. Other
methodologies impose (like Prometheus or INGENIAS [11]), or strongly imply

Using ASEME Methodology for Model-Driven Agent Systems Development 111

Fig. 2. The AMOLA SRM (a) and IAC (b) metamodels

(like Tropos [11]) the agent mental models. Of course, there are some developers
who want to have all these things ready for them, but there are others who
want to use different agent paradigms according to their expertise. For example,
one can use AMOLA for defining Belief-Desire-Intentions based agents, while
another for defining procedural agents [26].

The inspiration for defining the IAC metamodel mainly came from the UML
statechart definition. Aiming to define the statechart using the AMOLA defini-
tion of statechart [30], the IAC metamodel differs significantly from the UML
statechart. However, a UML statechart can be transformed to an IAC state-
chart, although some elements would be difficult to define (UML does not cater
for transition expressions and association of variables to nodes and uses state-
charts to define a single object’s behaviour). Thus, the IAC metamodel, which
is presented in Figure 2(b), defines a Model concept that has nodes, transitions
and variables EReferences. Note that it also has a name EAttribute. The latter
is used to define the namespace of the IAC model. The namespace should follow
the Java or C# package namespace format. The nodes contain the following
attributes:

– name. The name of the node,
– type. The type of the node, corresponding to the type of state in a statechart,

typically one of AND, OR, BASIC, START, END (see [10]),
– label. The node’s label, and
– activity. The activity related to the node.

112 N. Spanoudakis and P. Moraitis

Nodes also refer to variables. The Variable EClass has the attributes name and
type (e.g. the variable with name “count” has type “integer”). The next concept
defined in this metamodel is that of Transition, which has four attributes:

– name, usually in the form <source node label> TO <target node label>
– TE, the transition expression. This expression contains the conditions and

events that make the transition possible. Through the transition expressions
(TEs) the modeler defines the control information in the IAC. TEs can use
concepts from an ontology as variables. Moreover, the receipt or transmis-
sion of an inter-agent message can be used (in the case of agent interaction
protocols). For the formal definition of the TE and some examples see [26]
or [29].

– source, the source node, and,
– target, the target node.

3 The ASEME Model-Driven Process and Tools

ASEME is described in detail in [26]. It is a complete process incorporating
all the traditional software engineering methodology phases, however, using the
SPEM 2.0 process metamodel [21] it can be modified to provide an agile process.
Figure 3, a screenshot from the EPF2 modelling tool, shows on the left side the
ASEME method library and its various properties. From top to bottom the most
important are the:

– Work Product Kinds, we have defined two product kinds, models (graphical
models, e.g. SAG, SUC, etc) and text (textual representation, e.g. a computer
program).

– Role sets, where the different human actors implicated in the software de-
velopment process are identified.

– Tools, the various tools used in the process, in this case the transformation
tools.

– Processes, can be delivery processes, which provide the project manager with
an initial project template, showing the project milestones with the work
products to be delivered and needed resources, or capability patterns that
allow project managers to use one or more method libraries to compose
their project-specific process.

In Figure 3, the reader can see two defined capability patterns, the first named
ASEME and containing the six software development phases, and a more com-
pact one, the ASEME MDE process where the model-driven development process
for a single agent system is depicted. This process shows the nine tasks needed
for developing an agent-based system:

1. Edit SAG model. The business consultant of the software development firm
identifies the actors involved in the system to be along with their goals.

2 The Eclipse Process Framework (EPF) aims at producing a customizable software
process engineering framework. URL: http://www.eclipse.org/epf/

http://www.eclipse.org/epf/

Using ASEME Methodology for Model-Driven Agent Systems Development 113

Fig. 3. The ASEME MDE Process

2. SAG2SUC. An automated task, as the reader can see in the figure this task
has only a mandatory input model (SAG) and an output model (SUC). It
creates an initial SUC model based on the previously created SAG model.

3. Refine Use Cases. The analyst works on the SUC model and refines the
general use cases using the include relationship. He/she also identifies which
actors will be implemented defining them as human or artificial agent actors.
The overall system design is enriched by identifying the tasks that have to
be carried out by the actors.

4. SUC2SRM. An automated task, it has only a mandatory input model (SUC)
and an output model (SRM). It creates an initial SRM model based on the
previously created SUC model.

5. Refine the SRM model. The analyst works on the SRM model by defining the
liveness formulas that will describe the dynamic compilation of the previously
identified tasks.

6. SRM2IAC. An automated task, it has only a mandatory input model (SRM)
and an output model (IAC). It creates multiple initial IAC models based on
the previously created SRM model, one for each role.

7. Refine the IAC model. The designer works on each IAC model by defining
the conditions and/or events that will enable the transitions from one task
to the other.

114 N. Spanoudakis and P. Moraitis

8. IAC2JADE. An automated task, it has only a mandatory input model (IAC)
and an output model (Java JADE3 Agent and Behaviours code). It creates
a JADE Agent class and multiple JADE Behaviour classes for each IAC
model.

9. Write SimpleBehaviour action methods. The programmer writes code only
for the JADE SimpleBehaviour class descendants’action methods.

The following paragraphs discuss the employed transformations automation
tools that are used in the presented ASEME MDE process.

3.1 The ASEME M2M Transformation Tools (SAG2SUC and
SUC2SRM)

The Atlas Transformation Language (ATL) [14] was used for model to model
(M2M) transformations. Another alternative to ATL would be the Query-View
Transformation (QVT) language [20], however, ATL was better documented on
the internet with a user guide and examples, while the only resource located for
QVT was a presentation. Therefore, and as the requirements of both languages
(ATL and QVT) are the same the decision was to choose the better documented
one. Such transformations are the SAG2SUC and SUC2SRM.

The ATL rules for the SAG2SUC transformation are presented in Figure 4. At
the top of the right window, the IN and OUT metamodels are defined followed
by rules that have an input model concept instance and one or more output con-
cept model instances. The first rule (Goal2UseCase) takes as input a SAG Goal
concept and creates a SUC UseCase concept copying its properties. The ATL
is declarative and has catered for the cases that a concept references another.
The depender and dependee references of a SAG Goal are both transformed to
participator references of the SUC UseCase. The ATL engine searches the rules
to find one that transforms the types of the EReference (i.e. the SAG Actor
concepts to a SUC Role). It finds the second rule (Actor2Role) and fires it, thus
creating the EReference type objects and completing the first rule firing. At the
left hand side of Figure 4 the reader can see the files relevant to this transfor-
mation: a) the SAG.ecore and SUC.ecore metamodel files, b) the SAG2SUC.atl
rules file, c) the SAGModel.xmi file containing the SAG model in XML format
and d) the SUCModelInitial.xmi file containing the automatically derived initial
SUC model.

3.2 The ASEME T2M Transformation Tool (SRM2IAC)

The trick in text to model transformations is to define the meta-model of the
text to be transformed. This can be done in the form of an EBNF syntax (for
languages with a grammar) or through string manipulation. Efftinge and Völter
[6] presented the xtext framework in the context of the Eclipse Modeling Project

3 The Java Agent Development Environment (JADE) is an open source framework
that adheres to the FIPA standards, URL: http://jade.tilab.com

http://jade.tilab.com

Using ASEME Methodology for Model-Driven Agent Systems Development 115

Fig. 4. The eclipse ATL project for the SAG2SUC and the SUC2SRM M2M transfor-
mations

(EMP4). According to their work, an xText grammar is a collection of rules. Each
rule is described using sequences of tokens. Tokens either reference another rule
or one of the built-in tokens (e.g. STRING, ID, LINE, INT). A rule results in
a meta type, the tokens used in the rule are mapped to properties of that type.
xText is used to automatically derive the meta model from the grammar. Then
a textual representation of a model following this grammar can be parsed and
the meta-model is automatically generated.

Rose et al. [24] described an implementation of the Human-Usable Textual
Notation (HUTN) specification of OMG [18] using Epsilon, which is a suite of
tools for MDE. OMG created HUTN aiming to offer three main benefits to MDE:
a) a generic specification that can provide a concrete HUTN language for any
model, b) the HUTN languages to be fully automated both for production and
parsing, and, c) the HUTN languages to conform to human-usability criteria. The
HUTN implementation automates the transformation process by eliminating
the need for a grammar specification by auto defining it accepting as input
the relevant EMF meta-model. This is the main reason for choosing HUTN for
ASEME.

4 The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling,
and standards implementations, URL: http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

116 N. Spanoudakis and P. Moraitis

A T2M transformation is used for transforming a liveness formula to a state-
chart (IAC model). We first use an iterative algorithm (see [30]) that creates the
HUTN model, which is then automatically transformed to an IAC model. The
usage of the HUTN technology also helped a lot in debugging the algorithm as
the output was in human-readable format.

3.3 The ASEME M2T Transformation Tool (IAC2JADE)

The last transformation type used in the ASEME process is M2T. The platform
independent IAC model must be transformed to a platform dependent one and
to executable code.

We used the Xpand language offered by the Eclipse. Another commonly used
M2T transformation language (in EMP) is the Java Emitter Templates (JET).
JET uses JSP-like templates, thus it is easy to learn for developers familiar with
this technology.

The advantages of Xpand are the fact that it is source model independent,
which means that any of the EMP parsers can be used for common software
models such as MOF or EMF. Its vocabulary is limited allowing for a quick
learning curve while the integration with Xtend allows for handling complex
requirements. Then, EMP allows for defining workflows that allow the modeler
to parse the model multiple times, possibly with different goals.

In ASEME, the developer uses the IAC2JADE tool that automatically gener-
ates the message receiving and sending behaviours and the composite behaviours
that coordinate the execution of simple behaviours. Thus, the user just needs to
program the action methods of simple behaviours.

4 Non-functional Requirements in ASEME

Throughout this section, and aiming to present the way that ASEME handles
non-functional requirements, some parts of the requirements and system analysis
of two real-world agent-based systems are presented.

4.1 A Real World Case Study: The ASK-IT Project

In this first case study, the requirements were to develop a system that allows
a user to access a variety of location-based services supported by a brokering
system. The system should learn the habits of the user and support him while on
the move. It should connect to an OSGi5 service for getting the user’s coordinates
using a GPS device. It should also handle dangerous situations for the user by
reading a heart rate sensor (again an OSGi service) and call for help. A non-
functional requirement for the system is to execute on any mobile device with

5 The OSGi (Open Services Gateway initiative) Alliance is a worldwide consortium of
technology innovators that advances a proven and mature process to assure interop-
erability of applications and services based on its component integration platform,
URL: http://www.osgi.org

http://www.osgi.org

Using ASEME Methodology for Model-Driven Agent Systems Development 117

the OSGi service architecture. The broker has access to a variety of existing web
services but should also provide added value services. For more details about the
real-world system, which will be referred to as ASK-IT for the remainder of this
document, the reader can refer to [17].

A subset of the SAG model capturing the ASK-IT system requirements is
presented in Figure 5. This model was created after identifying the stakeholders
relevant to this project [26]. Such were the:

– User : The user is a mobility impaired person that wants to get infomobility
services tailored to his needs (e.g. find the nearest toilet that is accessible
according to his type of impairment). This user is assumed to wander in the
environment having access to the internet and wherever possible access to
local area networks using technologies like Wi-Fi. He also has constant access
to devices and services that are on his person and move around with him.
Such can be a GPS device. He also needs assistance in handling dangerous
situations (e.g. if he has a heart attack).

– Broker : This is the ASK-IT B2C (Business to Consumer) Operator. He is
interested in aggregating services offered by diverse service providers either
globally or locally. Whenever a user makes a request he matches the request
to his repository of available services and selects the most relevant one to
request on behalf of the user.

– Added Value Service Providers : These service providers can provide a simple
service or they can introduce new added value services through the aggre-
gation of one or more simple services accessed through the broker. A simple
service provider offers map information for a specific city. An added value
service provider offers map information for any city including the capability
to add points of interest offered by many independent providers.

The stakeholders are modeled as actors. A stakeholder, who is assisted by
a software, introduces a new actor, usually named as personal assistant. Thus,

Fig. 5. The SAG model for the ASK-IT project

118 N. Spanoudakis and P. Moraitis

in Figure 5, the above three stakeholders are represented by four actors, the
user, his personal assistant, the broker and the added value service provider.
The user needs to get location based services and for that he is dependent to his
personal assistant. The latter has three individual goals, to adequately service his
user, to learn his/her habits and to autonomously handle a dangerous situation.
The personal assistant depends on the broker (BR) for getting services. The
broker represents a network operator or portal stakeholder who acts as a service
aggregator and offers the services to its users. Its goals include the maintenance of
a service repository, finding the best service for a user and accessing several web
services offered by third parties. Moreover, he depends for getting added-value
services to the “Added-value service provider” (AVSP), who provides specialized
services for users with special needs or capabilities. For example, an organization
of mobility impaired persons maintains a repository of accessible streets and
buildings and can provide trip planning services to such persons. For offering
their service they depend on the broker themselves in order to get maps or
public transport routing options.

The requirements per goal (RPG) is a simple model aiming to associate SAG
goals to requirements presented in plain text mode. For adding the goal require-
ments the engineer should add the answers to the following questions:

– Why does the actor have this goal and why does he depend to another for
it (this is the most important question and its answer is usually the goal’s
name)

– What is the outcome of achieving the goal (identify related resources)
– How is he expected to achieve this goal (identify the task to be performed

for reaching this goal)
– When is this goal valid (identify timing requirements)

The requirements per goal are documented in the requirements EAttribute of
the Goal concept of the SRM model, see Figure 2(a). A non-functional require-
ment for the personal assistant’s service user goal is to be executed on a mobile
device. Another is that it should reply to a user request within 10 seconds (see
Table 1).

The SUC model presented in Figure 6 is part of the use cases for ASK-IT.
Actually, it is a part focusing in the personal assistant (PA) role. The reader
should notice at this point that the general use cases correspond to the goals of

Table 1. A portion of the Requirements Per Goal (RPG) model for the Personal
Assistant Actor in ASK-IT project

Using ASEME Methodology for Model-Driven Agent Systems Development 119

Fig. 6. A portion of the SUC model of the ASK-IT project

the requirements analysis phase. It is also important to note that at this phase
the task of the system modeler is not to identify goals and dependencies between
actors, like in the SAG, but to analyze the behavior of the system in order to
achieve specific tasks. However, at the highest level of abstraction these tasks
correspond to the system goals. The difference is that the know-how related to
this phase is not that of the business modeler or the business consultant, it is
that of the systems engineer or analyst.

A portion of the SRM for the personal assistant (PA) is presented in Figure 7.
In his liveness model, the root formula states that he executes forever the “service
user” capability in parallel with the “handle dangerous situation” capability.
Each of these capabilities is detailed in the following two formulas whose left
hand side terms are named after them. Other capabilities are further detailed in
following formulas.

Fig. 7. A portion of the SRM model of the Personal Assistant role of the ASK-IT
project

120 N. Spanoudakis and P. Moraitis

Fig. 8. Functionality Table for the personal assistant role of the ASK-IT project

The Functionality Table (FT) is where the analyst associates each activity
participating in the liveness formulas of the SRM to the technology or tool (func-
tionality) that it will use (see an example of FT in Figure 8 for the capabilities of
the PA). The communicate capability includes the “send message” and “receive
message” activities and is shared by all agents as proposed by FIPA6. This is
the point where the analyst proposes the use of a platform for instantiation,
e.g., in our example, JADE. This strategic choice also defines the programming
language that will be used, in this case Java.

Returning to the ASK-IT example, the non-functional requirement for the PA
to execute on any mobile device running OSGi services reveals that such a device
must at least support the Java Mobile Information Device Profile (MIDP), which
offers a specific record for storing data. Therefore, the activities that want to
store or read data from a file must use the MIDP record technology.

The functionality table is defined in the SRM model adding a “functional-
ity” property to each activity. However, a decision maker would prefer to see
this information in a tabular format (like in Figure 8) in order to gain a quick
understanding about the technologies involved in developing each agent.
6 The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer Society

standards organization that promotes agent-based technology and the interoperabil-
ity of its standards with other technologies, URL: http://www.fipa.org

http://www.fipa.org

Using ASEME Methodology for Model-Driven Agent Systems Development 121

4.2 A Real World Case Study: The Market-Miner Project

In the Market-Miner project [27], we developed an autonomous product pricing
agent situated in a firm monitoring for changes of the prices of competitors along
with changes in firm policies and deciding on the prices of the products on the
self.

During the analysis phase we identified the actors and the use cases related
to our agent system. We documented these findings using the ASEME System
Use Cases (SUC) model (see Figure 9). For our system, the system actor is
the Market-miner Product Pricing Agent (or MIPA), while the external actors
that participate in the system’s environment are the user, external systems of
competitors, weather report systems (as the weather forecast influences product
demand, like in the case of umbrellas) and municipality systems (as local events
like concerts, sports, etc, also influence consumer demand).

Having defined the involved actors we started identifying general use cases
(like interact with user) and then we elaborated them in more specific ones (like
present information to the user and update firm policy) using the � include �
relation. After refining the use cases, the SUC model was transformed to the
System Roles Model (SRM), see Figure 10(a).

Fig. 9. An extract from the MIPA System SUC Model

122 N. Spanoudakis and P. Moraitis

Fig. 10. MIPA Role Model (a) and the Functionality Table (b)

The next step was to associate each activity to a functionality, i.e. the tech-
nology that would be used for its implementation. In Figure 10(b) the reader
can observe the capabilities, the activities that they decompose to and the func-
tionality associated with each activity. The choice of these technologies is greatly
influenced by non-functional requirements. For example the system will need to
connect on diverse firm databases. Thus, the JDBC7 technology was selected, as
it is database provider independent. Moreover, the different information chan-
nels that are currently used depend on the same functionality, i.e. a web service
invocation. Thus, in the future, new information channels such as a financial
channel where from to get relevant news, such as a financial crisis, can be inte-
grated in the system using the same functionality. In this way, this model allows
for the easy extensibility of the system (another usually desired non-functional
requirement).

5 ASEME Evaluation

For evaluating our work we used two case studies on the development of two real-
world systems. The first, a module of the ASK-IT project [17], included program-
ming for semantic service matching and interfaces to other modules that were
based on OSGi, a service oriented architecture. The ontology was developed using
7 The Java Database Connectivity (JDBC) is a standard for database-independent

connectivity between the Java programming language and a wide range of databases
providing a call-level API for SQL-based database access, URL: http://java.sun.
com/javase/technologies/database/

http://java.sun.com/javase/technologies/database/
http://java.sun.com/javase/technologies/database/

Using ASEME Methodology for Model-Driven Agent Systems Development 123

the Protégé8 ontology editor and its beangenerator add-on, which generates java
files representing an ontology that can be used with the JADE environment. The
second is the Market-Miner project [27], where we used Prolog for implementing
the decision making capability of the agent. Again, we used the Protégé editor
for creating the ontology.

These projects used different implementation platforms, the first the JADE
platform, while the second a Java CASE (Computer-Aided Software Engineer-
ing) tool, IBM Rational Rhapsody (URL: http://www.ibm.com). For the latter
it was needed to transform the SRM model to an IAC model manually (as
Rhapsody does not offer an import tool for statechart models) using the process
defined in [30].

Table 2 shows a quick comparison of ASEME with existing AOSE method-
ologies. It has been inspired by a similar table in [32] from which we use some
criteria (rows). The first row shows the levels of abstraction supported by the
methodologies. Only ASEME maintains three levels of abstraction throughout
the software development phases. Some do not support abstraction at all, while
others do a phase-based abstraction (e.g. define agent interactions and roles
in the analysis phase and focus in the specific agent development in the design
phase). The next row shows the MDE support for the different software develop-
ment phases. ASEME supports all the phases, many methodologies support some
phases and INGENIAS allows the modeler to define his own transformations. The
third row shows if a methodology covers all the software development phases,
i.e. requirements analysis, system analysis, design, implementation, verification
and optimization. The forth row shows what kind of agents each methodology
supports and the fifth row indicates which methodologies define an intra-agent
control model that allows an agent to coordinate his capabilities, thus support-
ing a modular development approach. The sixth row shows that ASEME is the
only methodology to use a uniform representation of inter-agent protocols and
the intra-agent control allowing for an easy integration of protocols in an agent
specification. In Table 2 “n/a” means not applicable.

The last two rows are related to the non-functional requirements capture ca-
pability of the methodologies. Only three of the reviewed methodologies address
this issue as the seventh row suggests. In Tropos, NFRs are either operationalized
(also in MaSE) or are transformed to operational rules in the Late Requirement
Analysis phase. Finally, only in ASEME they are used for selecting implemen-
tation technologies and tools in the analysis phase while in Tropos they are
used for offering alternatives of implementations (also in the form of redundant
sub-systems).

6 Related Work

A number of works in AOSE have introduced concepts and ideas from the model-
driven engineering domain. Most of them just introduce an MDE technique for
8 Protégé is a free, open source ontology editor and knowledge-base framework, URL:
http://protege.stanford.edu

http://protege.stanford.edu

124 N. Spanoudakis and P. Moraitis

Table 2. ASEME compared with existing AOSE methodologies

transforming one of their models to another in one phase, e.g. from a Tropos
plan decomposition diagram to a UML activity diagram in [23] and from a BDI
(Belief-Desire-Intention) representation in XML format to JACK platform code
in [12]. Almost all AOSE methodologies define a single, usually huge metamodel
covering all the requirements, analysis and design phases [1].

Other works aim to create a single meta-model that can be used by different
AOSE methodologies in a specific phase, like in [9], where the authors defined
a meta-model (PIM4Agents) that can be used to model MAS in the PIM level
of MDA, and in [1], where the authors try to envisage a unifying MAS meta-
model. Finally, a more recent work [7] presents an algorithm to generate model
transformations by-example that allows the engineer to define himself the trans-
formations that he wants to apply to models complying with the INGENIAS
metamodel.

ASEME furthers the state of the art by being the first AOSE methodology to
propose a model-driven approach covering all the development phases. Thus, the
developer only at the requirements analysis phase starts a model from scratch
(SAG). All the other models are launched through a transformation that initial-
izes them. Then, the developer adds the new information related to the specific
model.

Regarding the use of non-functional requirements (NFRs), Tropos [2] provides
a means for documenting them in the requirements analysis phase as soft goals.
Then, Tropos uses them in two ways. The first is to evaluate identified tasks as
helping or restricting the soft-goals. The second is to identify tasks that pursue
the soft-goals (in which case soft goals become functional requirements).

Another approach is that proposed by Danny Weyns [33]. In his work, the
author addresses the issue of NFRs by selecting appropriate architectures that

Using ASEME Methodology for Model-Driven Agent Systems Development 125

each addresses a family of NFRs. For example, he proposes that selecting an
agent-based approach to software development contributes to the NFRs open-
ness, adaptability and scalability. Moreover, additional NFRs are modeled in
quality attribute scenarios. These consist of three parts, a) stimulus: an event
occuring in the system, b) environment : the environment conditions at the time
of the stimulus occurence, and, c) response: the activity to be executed when
the stimulus arrives.

In ASEME the way to cater for NFRs has been influenced by the work of
Pérez et al. [22], who believe that non-functional requirements need a way to
influence the way to implement a system or task, and this is what ASEME
uniquely achieves compared to the other AOSE methodologies. In ASEME we
do not define specific situations as NFRs, we allow quality requirements to be
inserted in each goal requirements in the SAG model. Thus, they influence all
analysis phase decisions including the technology selection for achieving the goal.
Moreover, ASEME could allow for the catering of quality attribute scenarios if
they are defined as agent interaction protocols (which define preconditions and
results along with the different interested actors activities).

7 Conclusion

In the previous sections, we presented the formal definition of the AMOLA
metamodels, which have been inspired by previous works but are original in
the way that they uniquely extend those works and insert new semantics, thus
assisting the ASEME process. We also presented the models transformations
that occur in the different phases of ASEME.

The platform independent model of ASEME, i.e. the IAC, is a statechart
which can be transformed to a platform specific model in C++ or Java (using
commercial CASE tools) or in the JADE agent platform. This is another original-
ity of ASEME, it is the first AOSE methodology to provide a PIM model that
is compatible with existing software tools (i.e. the statechart) giving multiple
platform choices to the developers.

The models used are common in the software engineering community, which
means that any engineer can quickly adapt to the ASEME process. Model trans-
formations are automated throughout the software development process.

Moreover, ASEME documents quality or non-functional requirements at the
requirements analysis phase and allows these to influence the architectural deci-
sions of the analyst(s) when selecting technologies (e.g. reasoning, communica-
tion, etc) for realising system tasks. The possiblity of the ASEME IAC model
to be transformed to a process model allows for simulating the analysis model
even before design and validate the system functional and several non-functional
requirements including scalability and robustness.

ASEME has been successfully used for the development of two real world sys-
tems ([17], [27]) and is currently used for development of a robotic system [4].
Moreover, we are working on automating the transformation of the IAC model
to a process model as there are a number of existing tools in the market that
perform system simulation, verification and optimization on such models. In [5]

126 N. Spanoudakis and P. Moraitis

we proposed transformation templates for doing this transformation manually
and performed simulations that showed that the ASK-IT system could deliver
the service to the end user in 10 seconds (thus achieving a non-functional re-
quirement, see Table 1).

Acknowledgements. We thank the reviewers of the AOSE workshop for their
valuable, constructive comments. We also thank the European Union and the
Ambient Assisted Living (AAL) Joint Programme (HERA Project, AAL-45061)
for partially funding and for supporting this work.

References

1. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl-
edge Eng. Review 20(2), 99–116 (2005)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

3. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education, London (2003)

4. Chatzilaris, E., Kyranou, I., Orfanoudakis, E., Paraschos, A., Vazaios, E.,
Spanoudakis, N., Vlassis, N., Lagoudakis, M.G.: Kouretes 2010 spl team descrip-
tion paper. In: RoboCup 2010 Team Description Papers, Singapore (2010)

5. Delias, P., Spanoudakis, N.: Simulating multi-agent system designs using business
process modeling. In: Proceedings of the 8th European Workshop on Multi-Agent
Systems (EUMAS 2010), Paris, France, December 16-17 (2010)

6. Efftinge, S., Völter, M.: oaw xtext: A framework for textual dsls. In: Eclipse Summit
2006 Workshop: Eclipse Modeling Symposium (2006), http://www.eclipsecon.

org/summiteurope2006/
7. Garćıa-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes,

M.P., Gómez-Sanz, J.J.: A tool for generating model transformations by-example
in multi-agent systems. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J.
(eds.) 7th International Conference on Practical Applications of Agents and Multi-
Agent Systems (PAAMS 2009), Salamanca, Spain, March 25-27. Advances in Soft
Computing, vol. 55, pp. 70–79. Springer, Heidelberg (2009)

8. Gerber, A., Raymond, K.: Mof to emf: there and back again. In: Burke, M.G. (ed.)
Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology eXchange,
Anaheim, CA, USA, pp. 60–64. ACM, New York (2003)

9. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Autonomous Agents and Multi-Agent Systems 18(2), 239–266
(2009)

10. Harel, D., Kugler, H.: The rhapsody semantics of statecharts (or, on the exe-
cutable core of the uml) - preliminary version. In: Ehrig, H., Damm, W., Desel,
J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004.
LNCS, vol. 3147, pp. 325–354. Springer, Heidelberg (2004)

11. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies. Idea Group
Pub., USA (2005)

12. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based
development framework for agents. Comput. Syst. Sci. Eng. 20(4) (2005)

13. Jouault, F., Bézivin, J.: Km3: A dsl for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

http://www.eclipsecon.org/summiteurope2006/
http://www.eclipsecon.org/summiteurope2006/

Using ASEME Methodology for Model-Driven Agent Systems Development 127

14. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

16. Langlois, B., elena Jitia, C., Jouenne, E.: Dsl classification. In: 7th OOPSLA Work-
shop on Domain-Specific Modeling (2007)

17. Moraitis, P., Spanoudakis, N.I.: Argumentation-based agent interaction in an
ambient-intelligence context. IEEE Intelligent Systems 22(6), 84–93 (2007)

18. OMG: Human-Usable Textual Notation V1.0 (2004)
19. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006), http://

www.omg.org/cgi-bin/doc?formal/2006-01-01

20. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
Version 1.0 (2008), http://www.omg.org/spec/QVT/1.0/PDF/

21. OMG: Software and Systems Process Engineering Meta-Model Specification, ver-
sion 2.0 (2008)

22. Pérez, F.J., Laguna, M.A., González-Carvajal, Y.C., González-Baixauli, B.: Re-
quirements variability support through mdatm and graph transformation. Electr.
Notes Theor. Comput. Sci. 152, 161–173 (2006)

23. Perini, A., Susi, A.: Automating model transformations in agent-oriented mod-
elling. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp.
167–178. Springer, Heidelberg (2006)

24. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing models with the
human-usable textual notation. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer, Heidelberg (2008)

25. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20(5), 42–45 (2003)

26. Spanoudakis, N.: The Agent Systems Engineering Methodology (ASEME). Ph.D.
thesis, Paris Descartes University (2009)

27. Spanoudakis, N., Moraitis, P.: Engineering an agent-based system for product pric-
ing automation. Engineering Intelligent Systems for Electrical Engineering and
Communications 17(2-3), 139–151 (2009)

28. Spanoudakis, N.I., Moraitis, P.: The agent modeling language (amola). In: Dochev,
D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 32–
44. Springer, Heidelberg (2008)

29. Spanoudakis, N.I., Moraitis, P.: An agent modeling language implementing pro-
tocols through capabilities. In: Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT 2008), Sydney, NSW,
Australia, December 9-12, pp. 578–582. IEEE, Los Alamitos (2008)

30. Spanoudakis, N.I., Moraitis, P.: Gaia agents implementation through models trans-
formation. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009.
LNCS, vol. 5925, pp. 127–142. Springer, Heidelberg (2009)

31. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its
use. Informatica (Slovenia) 29(4), 401–408 (2005)

32. Tran, Q., Low, G.: Comparison of ten agent-oriented methodologies. In: Agent-
oriented methodologies [11]

33. Weyns, D.: Architecture-Based Design of Multi-Agent Systems, 1st edn. Springer
Publishing Company, Heidelberg (2010) (incorporated)

34. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/QVT/1.0/PDF/

Towards the Automatic Derivation

of Malaca Agents Using MDE�

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes

E.T.S.I. Informatica, Universidad de Malaga
{ayala,pinilla,lff}@lcc.uma.es

http://caosd.lcc.uma.es

Abstract. The automatic transformation of software agent designs into
implementations for different agent platforms is currently a key issue in
the MAS development process. Recently several approaches have been
proposed using model driven development concepts to specify generic
agent metamodels and/or define a set of transformation rules from the
design phase for different agent implementation platforms. However, all
these approaches propose different sets of transformation rules for each
target agent platform, thereby making the integration of new agent plat-
forms more difficult. In this paper we propose transforming PIM4Agents,
a generic agent metamodel used at the design phase, into Malaca, an
agent specific platform-neutral metamodel for agents. With only one set
of transformations it is possible to specify platform-neutral agents and
to generate a partial implementation in Malaca, which can be executed
on top of different FIPA compliant platforms.

Keywords: Agent Oriented Software Engineering, Model driven engi-
neering, Malaca, PIM4Agents, Code generation.

1 Introduction

In order to make agent-based computing a widely accepted paradigm for the
emerging application areas, advanced development processes of software engi-
neering should be adopted. This process must be supported by agent develop-
ment tools that alleviate the complexity of programming with agent platforms
by providing facilities to express domain concepts at a higher level of abstraction.

Model-Driven Engineering (MDE) [1] is an approach for Software Develop-
ment that promotes the use of models and metamodels to formally represent
domain concepts. One important contribution of MDE is that a software system
is obtained through the transformation of different metamodels defined at dif-
ferent abstraction layers. These transformations, defined by means of a model
transformation language, allow deriving a PSM (Platform-Specific Metamodel)
from a PIM (Platform-Independent Metamodel). The application of MDE ideas
can bring important benefits to the development of Multi-Agent Systems (MAS)
� This work has been supported by the Spanish Ministry Project RAP TIN2008-01942

and the regional project FamWare P09-TIC-5231.

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 128–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://caosd.lcc.uma.es

Towards the Automatic Derivation of Malaca Agents Using MDE 129

as shown in [10,21,8,20]. With MDE it is possible to specify a MAS in a platform-
independent model, focusing on the domain model, and later transform it auto-
matically to different design or implementation models, bridging the traditional
gap between design and implementation.

One recent and notable effort in this direction is [2]. This work proposes a
PIM for MAS (PIM4Agents) and a set of vertical transformations from this
metamodel to different agent platform models, concretely JADE [3] and JACK
[4]. However, this work has some drawbacks that we will address in this paper.
Although PIM4Agents can be used in theory to derive PSMs for any agent plat-
form, in practice the DSL4MAS Development Environment (DDE) tool [5] pro-
vided by the authors only supports the transformation to JADE and JACK. This
means that other platforms which have emerged recently such as Andromeda [6],
or different versions of JADE (e.g. LEAP, Android) are not currently covered
by this proposal. But, what is the cost of including a new agent plaform in this
proposal? It requires the definition of a new set of transformation rules, from
PIM4Agents into the metamodel of the new agent plaform, and from the new
agent platform metamodel into code. This is a very complex task, sometimes
impossible to perform properly in this and in other approaches [25] due to: (i)
the metamodel of the target agent platform must be available, which is not al-
ways the case; (ii) sometimes the target metamodel is not specified completely,
and some mappings to the target metamodel are made in an ad-hoc manner;
(iii) this task also requires some expertise in a transformation language; and (iv)
also the transformations from the target platform metamodel to code have to be
implemented, requiring in depth knowledge of the target agent implementation
framework.

In order to bridge the gap from design to implementation, we previously
defined a set of transformations from different agent methodologies to Malaca,
an agent model able to be executed in different agent plaforms [7]. Although
Malaca can be used as an agent model at the detailed design phase, its model
is also a PSM. Nevertheless, we had a similar problem to [2], since we had to
define different transformation rules to go from different design models (e.g.
Tropos) to Malaca. As a solution in [8] we proposed defining a generic agent
metamodel modelling the most common elements covered by the existing agent-
methodologies. In this direction, and instead of defining a new MAS metamodel,
we studied the feasibility of using one of the approaches proposed recently [2,9].
Finally we decided to use PIM4Agents since this metamodel meets the following
requirements: (i) it is possible to represent concepts from different agent types
(e.g. BDI, reactive agents), (ii) it is easy to specify MAS for different domains;
(ii) the DDE tool helps to specify different views of MAS.

Therefore, as a solution for the automatic derivation of MAS to different
agent platforms, in this paper we propose transforming specifications from PIM-
4Agents to Malaca. With Malaca the automatic derivation of MAS is greatly
simplified, since Malaca is platform neutral, so no transformation from Malaca
to different agent platforms is required. This is possible since Malaca separates

130 I. Ayala, M. Amor, and L. Fuentes

the distribution of messages through different transport services in a distribu-
tion aspect (implemented as a plug-in), following the aspect-oriented principles
(AOSD1). With this approach we obtain the benefits of using a generic plat-
form independent metamodel to specify the design of a MAS at a high level of
abstraction, and by executing the set of transformation rules presented in this
paper, it is possible to automatically generate a partial implementation of the
agents conforming to the Malaca metamodel. These agents could be executed in
several agent platforms simply by selecting the appropriate distribution aspect
(e.g. JADE). So, the incorporation of new agent platforms to this proposal has a
lower cost since instead of requiring the specification of metamodels and coding
a new set of transformations rules, only the implementation of a new distribution
aspect is needed.

The structure of this paper is as follows. Section 2 provides a brief overview
of MDE, and it introduces PIM4Agents and Malaca metamodels. Section 3 de-
scribes our main contribution, by showing the transformation rules implemented
in ATL to transform agents from the PIM4Agents metamodel to Malaca and we
illustrate how to use them with an example. Section 4 outlines some of the pro-
blems and limitations of our approach. Finally, Section 5 provides related work
and Section 6 draws some conclusions.

2 Background

In this section we introduce the concept of MDE and the two agents’ metamodels
used in our approach, the PIM4Agents and Malaca metamodels (MalacaMM).

2.1 Model Driven Engineering

Model-Driven Engineering (MDE) [10,1] is an approach for Software Develop-
ment where models are no longer simple mediums for describing software systems
or facilitating inter-team communication. Models are now first class citizens of
the software development process, and even the code is managed as a model.
Using MDE, a software system is obtained through the definition of different
models at different abstraction layers.

The best known MDE initiative is the OMG initiative Model-Driven Archi-
tecture (MDA) [1]. MDA is an approach to MDE based on the use of models,
specified as conforming to the OMG standards. A model is often presented as
a combination of drawings and text (the text may be in a modelling language
or in natural language). Regarding a set of models, MDA sets down how those
models are prepared, and the relationships between them. In MDA, a platform is
a set of subsystems and technologies that provides a set of functionality through
interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality pro-
vided by the platform is implemented. MDA distinguishes between platform-
independent models (PIM) and platform-specific models (PSM). Models of a

1 Aspect-Oriented Software Development, http://aosd.net/

http://aosd.net/

Towards the Automatic Derivation of Malaca Agents Using MDE 131

certain abstraction layer are derived from models of the upper abstraction layer,
by means of model transformations. A model transformation specifies how an
output model is constructed based on the elements of an input model. Model
transformations expressed in a well-defined model transformation language [11]
can be compiled and executed, automating the process of constructing a target
model given a source model. Thus, using model transformations a detailed de-
sign model can be automatically constructed from an architectural design model,
for instance. A model transformation encapsulates, somehow, the knowledge of
how elements of a modelling approach are transformed into elements of another
modelling approach.

An MDE approach usually combines the following [12]:

– Domain Specific Modelling Languages (DSMLs) which are used to formalize
the system in a particular domain (e.g. avionics mission computing, online
financial services, etc.). DSMLs are described using metamodels, which de-
fine the relationships between concepts in a domain. Developers use DSMLs
to build applications using elements of the type system captured by meta-
models and express design intent declaratively rather than imperatively.

– Transformation engines and generators that analyse certain aspects of
models and then synthesizes various types of artifacts, such as source code,
simulation inputs, XML deployment descriptions, or alternative model rep-
resentations. The ability to synthesize artifacts from models helps ensure the
consistency between application implementations and analysis information
associated with functional and QoS requirements captured by models.

One of the most popular transformation engines is ATL (ATLAS Transforma-
tion Language) [13]. This is a hybrid model transformation language that allows
both declarative and imperative constructs to be used in transformation defi-
nitions. In the field of Model-Driven Engineering (MDE), ATL provides ways
to produce a set of target models from a set of source models using different
kinds of rules differing in the way they are triggered (standard rules, lazy rules
and unique lazy rules). Developed on top of the Eclipse platform, the ATL In-
tegrated Environment (IDE) [14] provides a number of standard development
tools (syntax highlighting, debugger, etc.) that aim to ease development of ATL
transformations, including also a library of ATL transformations.

2.2 PIM4Agents

Domain Specific Modelling Language for MultiAgent System (DSML4MAS)
[2] is an approach that tries to fill the gap between agent methodologies and
agent-based development tools by using MDE principles. This approach pro-
vides PIM4Agents, which is a PIM for MAS, and a tool (DDE) [5] that provides
a graphical modeling framework to design MAS. The PIM4Agents metamodel
tries to include concepts that are present in most agent architectures and it is
an approach for agent modeling standardization. It has several views that are
focus on a specific aspect of multiagent systems:

132 I. Ayala, M. Amor, and L. Fuentes

– Multiagent view includes main building block of a MAS (agents, interactions,
...)

– Agent view describes the agent by means of its capabilities and roles.
– Behavioural view describes how plans are composed by complex control

structures and simple atomic tasks.
– Organization view defines how agents cooperate within the MAS. This view

has a sub-view named Collaboration view.
– Role view covers agent roles.
– Interaction view describes the agent interaction using protocols.
– Environment view contains the set of resources that an agent or organization

can use, create or share

Moreover, with the DDE Tool, it is possible to edit a different diagram for
each view. Since we are interested in deriving agent designs we will focus on the
Agent and the Interaction views.

Fig. 1. PIM4Agengs metamodel reflecting the agent view in UML

Figure 1 shows the metamodel of the agent view. In PIM4Agents, an agent is
an autonomous entity capable of acting in the environment and can access a set
of resources (information, knowledge or ontologies). PIM4Agents agents can also
perform some domain roles derived from their Collaboration with other agents
and they can be members of an Organization. Collaboration and Organization
are two related concepts, the former defines the social structure of Agent ele-
ments whilst the latter defines which agents can take part in it. On the one hand,
Collaboration can bind DomainRoles to Protocol Actor. On the other hand, an
Organization is a special kind of Collaboration that also has the same character-
istics of an Agent (it can perform DomainRole and has Capability). Agents can
also perform a set of Behaviors, which can be separated into a set of internal
processes represented by Plan elements. A Plan is composed by a set of Flow
and Activity. The concepts StructuredActivity and Task are specializations of
an Activity. The StructuredActivity focuses on complex control structures like

Towards the Automatic Derivation of Malaca Agents Using MDE 133

Sequence, Loop, Split, etc., and Task focuses on atomic activities like sending
or receiving a message. Also the InternalTask element is used to define agent
internal code.

In the interaction view metamodel (figure 2) the main component is the Pro-
tocol, which refers to a set of Actor elements that interacts with it and to a set of
MessageFlows that specifies how the exchange of messages is performed. On the
one hand, an Actor has a set of activeStates, which corresponds to MessageFlow.
The Actor can again refer to a set of Actors as sub-actors, meaning that the set
of agents performing the super-actor is split into the sub-actors. In general, the
sub-actors are determined at design time, but filled with the particular instances
that perform this kind of Role at run-time (an example of Actor and Subactor is
depicted in figure 8). On the other hand, a MessageScope defines the Messages
and the order in which these arrive. In particular, this means that Messages are
connected via a None, Parallel, Loop, Sequence, XOR, and OR operator. Fur-
thermore, the MessageFlow refers to a TimeOut that specifies the latest point in
time a Message should be sent. Beside the Messages that can be sent, the Mes-
sageFlow may also refer to Protocols that are initiated at some specific point in
time in the parent Protocol in order to execute nested Protocols.

Fig. 2. Partial PIM4Agents metamodel reflecting the interaction view in UML

2.3 Malaca

Most existing agent architectures focus on the type of agent (BDI, reactive, ...),
but do not provide direct support for handling and reusing properties and func-
tionality separately. This approach results in agent design and implementations
being quite complex, brittle and difficult to understand, maintain, and reuse in
practice. The main feature of the internal architecture of a Malaca [7] agent is
that it represents separately application-specific functions from extra-functional
agent properties. This separation improves the internal modularization of the

134 I. Ayala, M. Amor, and L. Fuentes

agent architecture, which is based on the composition of components and as-
pects, and contributes to enhance the adaptation, reuse and maintenance of the
software agent. The Malaca agent model is used from the detailed design phase
right through to implementation. At the detailed design stage two XML-based
domain-specific languages (MaDL and ProtDL) are used to design the internal
architecture of each agent of the system and its interaction [7].

MaDL metamodel which is partially given in figure 3, presents the concepts
and constructs available in MaDL to describe an agent architecture. The Agent-
Description provides a description of the agent architecture by means of the
agent functionality (the actions that an agent is able to perform described by
means of components) and the agent interaction (how the agent communicates
with other agents). The agent functionality is provided by reusable software
components, which offer the set of core services implementing the application-
dependent functionality. The agent interaction is supported by Representation,
Distribution and Coordination aspects. One extra benefit of Malaca is that it is
possible to add new aspects extending the Aspect element of the Malaca meta-
model. The AspectWeaving element describes the aspect composition with base
components, using aspect composition rules (AspectCompositionRule element is
composed of a ordered list of ApplyAspect elements).

Fig. 3. Partial view of the MaDL metamodel in UML

The way the agent interacts is described at the architectural level by a set of
aspects. Each aspect covers a different property of agent communication. Based
on the FIPA [15] communication model, three issues are considered essential for
an effective communication: the use of an interaction protocol, a common lan-
guage representation format for the ACL and a MTS (Message Transport Ser-
vice) to distribute messages. In Malaca, each one is supplied by different aspects
(coordination, representation and distribution) decoupling these interaction is-
sues. Specifically, the distribution aspect copes with the use of MTS, facilitating
the use of different agent platforms just by plugging in the agent architecture
the aspect implementing a specific platform. Any interaction protocol supported
by the agent is controlled by a coordination aspect (class Coordination). This
aspect uses a description of the interaction protocol in ProtDL to coordinate
message interchange with the agent internal behaviour. The description of this
aspect also indicates the role played by the agent.

Towards the Automatic Derivation of Malaca Agents Using MDE 135

The UML class diagram in figure 4 depicts the metamodel of a protocol de-
scription in ProtDL (ProtDLMM), which includes a description of the ACL
messages interchanged during the interaction and a description of the internal
behavior of each participant role (RoleDescription element). A finite state ma-
chine (FSM) is used to represent each participant role. Each FSM is represented
by a set of state transition rules enclosed by the FiniteStateMachine class and
each rule is defined in a StateTransitionRule class. The transition from a state to
another carries out the execution of the agent functionality (defined in the State-
TransitionRule by the attribute executeTransition). The TransitionDescription
class encloses the description of the set of agent actions that are invoked during
protocol execution using a Process model (figure 4). A TransitionDescription
carries out the description a ProcessComponent, which can be either a single (or
atomic) action, or a composite process composed of a set of processes related by
a typical control construct.

Fig. 4. Partial view of ProtDL metamodel in UML

3 From PIM4Agents to Malaca

MDE ideas and techniques enhance AOSE enabling reuse at the domain level.
The DSML4MAS approach applies MDE and using PIM4Agents as a PIM pro-
vides a set of mapping functions to transform PIM4Agents model to JACK and
JADE (see figure 5). However, one of the problems in this approach is found
when trying to implement the MAS for an agent platform different from these.
This decision requires expert knowledge to derive the appropriate mappings to
the new agent platform. To solve this problem, we propose a mapping from
PIM4Agents to Malaca, an agent architecture that can be executed on top of
any agent platform using the appropriate plug-in. An overview of our approach
can be seen in figure 5 (right side).

136 I. Ayala, M. Amor, and L. Fuentes

Fig. 5. The overall picture: From PIM4Agents metamodel to Jade and Jack (left side)
and from PIM4Agents metamodel to Malaca metamodel (right side)

With this approach we obtain the benefits of using a general platform inde-
pendent metamodel to specify the design of a MAS, and transform it (using the
set of transformation rules presented in this paper) automatically into a set of
Malaca agents in accordance with Malaca. The benefit of using Malaca as PSM
is twofold: The incorporation of new agent platforms (i.e. PSMs) to this proposal
has a lower cost since instead of requiring the specification of PSM metamodels
and coding a new set of transformations rules, only the implementation of a new
plug-in is needed; and the implementation of a MAS for different agent platforms
does not require transforming and implementing it for each platform, instead,
it just involves selecting and using the appropriate agent platform plug-in for
each Malaca agent. This plug-in receives the incoming messages and delivers
outgoing messages to an agent platform, hiding platform specific dependencies.
The development of this plug-in consists of implementing a high-level interface
MTSAdapter to send and receive messages.

3.1 Transformation Rules

Malaca defines a metamodel in two parts: the specification of the agent ar-
chitecture (figure 3); and the specification of interaction protocols (figure 4),
in MaDL and ProtDL languages respectively. The following sections summarize
main mappings between PIM4Agents concepts and MaDL and ProtDL concepts.
This section introduces this transformation process, which requires several ATL
mapping rules.

The mapping rules included do not constitute an exhaustive list. We have
only included those that help to comprehend the most relevant model mappings
required for the use case scenario. Each mapping rule consists of (i) a head
that defines which concepts from the source metamodel are mapped to which
concepts of the target metamodel and (ii) a body that defines how attribute

Towards the Automatic Derivation of Malaca Agents Using MDE 137

information of the target metamodel is derived. Some mapping rules are applied
automatically (simple ATL rules), while the application of other rules depends
on the previous application of other mapping rules or must be invoked by other
rules (ATL lazy rules).

Rules for MaDL

MaDL Rule 1.
Head: PIM4Agents!Agent → MaDL!AgentDescription
Body: Each Agent from PIM4Agents is mapped to an AgentDescrip-
tion in MaDL with the same associated interactions. By default,
Representation is mapped to ACL and Distribution is mapped to
JADE.

This rule maps an PIM4Agents!Agent to an AgentDescription in MaDL. Distri-
bution and Coordination are mapped by default to JADE and ACL respectively,
but Coordination is mapped using PIM4Agents!Protocol associated to the Agent
and AspectWeaving is mapped using MaDL Rule 5 (MR5). To derive Functio-
nality element the MR3 is used.

MaDL Rule 2.

Head: PIM4Agents!AgentInstance → MaDL!AgentDescription
Body: Each AgentInstance from PIM4Agents is mapped to an Agent-
Description in MaDL with the same associated interactions and the
same identifier at runtime. By default, Representation is mapped to
ACL and Distribution is mapped to JADE.

This rule is very similar to MR1 and it is only applied for the deployment
diagram specified with the DDE Tool. With this diagram, transformation rules
can derive agents’ names and how many agents are used at runtime. An Agent-
Description element is derived for each AgentInstance present in the deployment
diagram, with the same identifier.

MaDL Rule 3.

Head: PIM4Agents!DomainRole → MaDL!Coordination
Body: Each DomainRole that is associated to a Protocol is mapped
to Coordination element in MaDL.

If a DomainRole is associated to a Protocol in PIM4Agents (means of a Col-
laboration element), then a Coordination element in MaDL is derived.

MaDL Rule 4.

Head: PIM4Agents!InternalTask → MaDL!ComponentDescription
Body: Each InternalTask from PIM4Agents is mapped to an Com-
ponentDescription in MaDL.

This rule maps a PIM4Agents!InternalTask to a ComponentDescription in MaDL
which is a set of identifiers that makes possible to identify the component at the
deployment phase in order to assign it a concrete implementation.

138 I. Ayala, M. Amor, and L. Fuentes

MaDL Rule 5.
Head: PIM4Agents!Agent → MaDL!AspectCompositionRule
Body: For each Agent in PIM4Agent an AspectCompositionRule is
derived for RECVMSG InterceptionPoint.

This rule derives a AspectCompositionRule element for the RECVMSG Inter-
ceptionPoint. By default, the aspects applied when a message is received are
Representation and Coordination for each PIM4Agents!Protocol associated to
the Agent entity. Likewise, similar rules are defined for the SENDMSG Intercep-
tionPoint.

MaDL Rule 6.
Head: PIM4Agents!DomainRole → MaDL!ApplyAspect
Body: For each DomainRole in PIM4Agent an ApplyAspect is de-
rived for RECVMSG InterceptionPoint.

To specify the applied aspects in the AspectCompositionRule MR6-like rules
are defined. This rule is for Coordination aspect but there are other rules for
Representation and Distribution.

Rules for ProtDL

ProtDL Rule 1.
Head: PIM4Agents!Protocol → ProtDL!Protocol
Body: Each Protocol from PIM4Agents is mapped to a Protocol in
Malaca.

This rule maps a PIM4Agents!Protocol to a Protocol in Malaca with the same
ID, interchanged messages and actors.

ProtDL Rule 2.
Head: PIM4Agents!Actor → ProtDL!RoleDescription
Body: Each Actor is mapped to a RoleDescription associated to a
specific Protocol.

Each Actor in the PIM4Agents!Protocol is mapped to a RoleDescription in
ProtDL!Protocol. The RoleDescription has the same ID as the Actor. The Ac-
tor activeStates (figure 2) are mapped to the states of the RoleDescription’s
FiniteStateMachine.

ProtDL Rule 3.
Head: PIM4Agents!MessageFlow, PIM4Agents!MessageFlow →
ProtDL!StateTransitionRule
Body: From two MessageFlow this rule creates a StateTransition-
Rule that begins in the first MessageFlow and ends in the second
one.

This rule is linked to PR2 and it is used to derive the StateTransitionRule of
a FiniteStateMachine. The occurrence of two consecutive MessageFlows (for a
given Protocol and Actor) is mapped to a StateTransitionRule. The first Mes-
sageFlow is mapped to the current state while the second one is mapped to the
next state.

Towards the Automatic Derivation of Malaca Agents Using MDE 139

ProtDL Rule 4.

Head: PIM4Agents!MessageFlow, PIM4Agents!MessageFlow →
ProtDL!TransitionDescription
Body: From two MessageFlow this rule creates a TransitionDescrip-
tion that begins in the first MessageFlow and ends in the second
one.

This rule is linked to PR2 and it is very similar to PR3. The occurrence of
two consecutive MessageFlows is mapped to a TransitionDescription which des-
cribes a message sending.

ProtDL Rule 5.

Head: PIM4Agents!Plan,String → ProtDL!RoleDescription
Body: Creates a RoleDescription from a Plan and a String that is
the name for the Role.

This lazy rule maps a Plan (associated to a given Actor or Agent denoted by
the String that is passed as an argument) to RoleDescription, identified with
the same String. During its application, PR5 needs a special function (helper)
to ignore ReceiveMessage Activity (Malaca does not consider it as a Process but
as a MESSAGE InputType for a StateTranstionRule). Then the PR9 is applied.

ProtDL Rule 6.

Head: PIM4Agents!Activity, PIM4Agents!Activity →
ProtDL!StateTransitionRule
Body: From two Activity this rule creates a StateTransitionRule that
begins in the first Activity and ends in the second one.

This rule is very similar to PR4 but it considers Activities instead of Message-
Flows to generate StateTransitionRule(s) of the FiniteStateMachine.

ProtDL Rule 7.

Head: PIM4Agents!Activity, PIM4Agents!Activity →
ProtDL!TransitionDescription
Body: From two Activity this rule creates a TransitionDescription
that begins in the first Activity and ends in the second one.

This rule maps an Activity (or a StructuredActivity) to a TransitionDescription.
The description of the TransitionDescription is derived from the application of
the following rules.

ProtDL Rule 8.

Head: PIM4Agents!InternalTask → ProtDL!ProcessComponent
Body: Each InternalTask is mapped to a ProccesComponent that
have an AtomicProcess whose type is DoActionType.

The rule maps a PIM4Agents InternalTask of to a ProtDL DoActionType atomic
process.

140 I. Ayala, M. Amor, and L. Fuentes

ProtDL Rule 9.

Head: PIM4Agents!Split → ProtDL!ProcessComponent
Body: Each Split is mapped to a ProccesComponent that have a
CompositeProcess whose type is SplitType.

Each PIM4Agents StructuredActivity is mapped to a ProtDL CompositeProcess.
As an example, this rule maps Split to a ProccessComponent with a Composite-
Process that is a Split. PR8 is used to map the BasicTasks of the StructuredAc-
tivity.

ProtDL Rule 10.

Head: PIM4Agents!Protocol, PIM4Agents!Organization →
ProtDL!Protocol
Body: Each Protocol which is from an Organization is mapped to a
Protocol.

This rule maps each PIM4Agents Protocol within an Organization to a ProtDL
Protocol. The application of this rule generates a Protocol which includes a
RoleDescription which corresponds to a set of actions describing the behaviour
of the agent during the interaction. If there is no PIM4Agents Plan associated
to the protocol, then just the message interchanged is described (PR3).

3.2 Use Case Scenario

To illustrate the MDE process, the Conference Management System (CMS) case
study will be used. Conference program committee (PC) sends a call for papers,
when this is received by the authors they decide wether to submit a paper or
not. If an author submits his paper for the conference, PC assigns a submission
number to it and informs the author of this. This case study was used and
evaluated in our previous paper [16] and it was also used in the PIM4Agents
work [2]. The design of the CMS system has been derived from the DDE tool
using a tutorial [17]. The full example consists of 7 diagrams but for simplicity we
will only consider the diagrams shown in figures from 6 to 9, which corresponds
to a multiagent system, a collaboration, a protocol and a plan.

Fig. 6. PIM4Agents Multi-Agent system diagram in the DDE Tool

Towards the Automatic Derivation of Malaca Agents Using MDE 141

Figure 6 shows the MAS diagram of the CMS system in the DDE Tool. The
representation of the agents, organizations and roles is straightforward in the
PIM4Agents model. In order that agents are able to interact, they must be mem-
bers of an Organization. Agents involved in paper submission process (Researcher
and SeniorResearcher) are members of thePaperSubmissionOrganization. This
Organization has two roles; to model authors and program committee members.

Fig. 7. PIM4Agents collaboration diagram in the DDE Tool

Figure 7 shows the collaboration diagram of the MAS in DDE Tool. This
diagram links an Organization DomainRole (ResponderRole and RequesterRole)
to Protocol Actor elements (Responder and Requester) by means of ActorBinding
elements (ResponderAB and RequesterAB).

Figure 8 shows the protocol diagram of the PaperSubmission protocol, which
covers the interaction between the Requester and Responder actors in the sub-
mission phase. Requester sends a Request that can be answered by Responder
with a Propose or a Refuse message.

Figure 9 depicts the plan HandleCFP, which is executed by the Responder
when it receives a Request, and it decides whether to submit a paper or to
send a refuse message and relax. At run-time, the Requester is performed by
Researcher, while the SeniorResearcher act as Responder.

Figure 10 presents a partial result of the application of rules MR1, MR3,MR4,
MR5 and MR6 to the Researcher agent, because a deployment diagram is not
made, MR2 is not applied. MR1 take the information from MAS diagram (figure
6) and generates the basic structure of the Researcher AgentDescription. This
rule calls to lazy rule MR5 to get AspectCompositionRule for RECVMSG In-
terceptionPoint and this last rule calls to MR6-like rules to derive ApplyAspect
elements. After the application of the MR1, MR3 and MR4 are applied: MR3

142 I. Ayala, M. Amor, and L. Fuentes

Fig. 8. PIM4Agents protocol diagram of the paper submission protocol in the DDE
Tool

Fig. 9. PIM4Agents plan diagram for the HandleCFP plan in the DDE Tool

takes AAMASAuthor DomainRole from MAS diagram and it generates a Coor-
dination element from PaperSubmission Protocol (Protocol and DomainRole are
linked means of related organization diagram); MR4 is applied to HandleCFP
(figure 9) InternalTask elements to get ComponentDescription elements.

Figure 11 presents a partial result of the application of rules PR10, PR5, PR6
and PR7 (in this order) to the Responder actor in the PaperSubmission protocol.
After the application of the rule PR10 to the protocol diagram of figure 8 and
the collaboration diagram in figure 7, the rule PR5 is applied to the HandleCFP
plan (figure 9) and generates a ProtDL RoleDescription for the role Responder.
Rules PR6 and PR7 are also applied to the HandleCFP plan to derive the states
and StateTransitionRules of the FiniteStateMachine of the Responder.

Towards the Automatic Derivation of Malaca Agents Using MDE 143

Fig. 10. Partial MaDL AgentDescription of the Researcher agent in XMI format from
EMF editor

Fig. 11. Partial ProtDL RoleDescription of the Responder role in PaperSubmission
protocol in XMI format (right side) from EMF and equivalent state transition diagram
(left side)

4 Discussion

This section shows some comparative results between the code generated with
the DDE tool and the configuration files generated by our approach, for the CMS
case study. Although we have defined a systematic mapping from PIM4Agents

144 I. Ayala, M. Amor, and L. Fuentes

to Malaca, it is not possible to generate a complete ProtDL and MaDL specifi-
cations since: (i) DDE neither supports the specification of important message
details (at least a rough description), nor significant protocol design features;
and (ii) PIM4Agents metamodel does not support the event-driven composi-
tion mechanism, which Malaca uses to model agent reactions to external events.
In addition, some concepts related to the MAS social organization cannot be
mapped to Malaca (such as the Organization concept), because Malaca is fo-
cused on the specification and configuration of the agents internal architecture.
We are studying the possibility of extending the Malaca metamodel with so-
cial organization concepts, in order to express and validate that a set of agents
belongs to the same organization. For example, in PIM4Agents organization con-
cepts define which agents can collaborate, what protocols they can use and it
defines resources and capabilities for each member. This is very useful to de-
fine large MAS because agents belonging to the same organization usually share
large amount of resources and have common capabilities. On the other hand,
the FAML metamodel[18] has other interesting concepts, for example rules for
agents membership of an organization (policy) or system goals, these are use-
ful for modeling the collaboration for BDI (Belief-Desire-Intention) agents, that
have more complex social interactions.

Hence, some abstractions of PIM4Agents could not be mapped in Malaca;
and some concepts present in Malaca could not be generated from the PIM4-
Agents metamodel. Then, the generated MaDL and ProtDL descriptions have
to be completed by the developer (using the Malaca editor [7]) before executing
the agents.This also happens in the implementations generated by the DDE tool
(applying transformations to JADE and JACK as target implementation agent
platforms). For the case study, which comprises the design of one protocol and
two plans, the DDE tool generates 80 Java classes (for the JADE implementa-
tion). The generated classes provide the agent structure and interaction, and the
developer has to add the application specific functionality. Comparing both ap-
proaches, we consider that completing the Java classes generated with the DDE
tool is more error prone than using the Malaca Agent Development (MAD) tool
to complete the configuration of the Malaca agents. Whereas in the DDE ap-
proach the developer has to deal with 80 classes, in the Malaca approach they
only has to complete a single configuration file with the MaDL/ProtDL specifi-
cation, with the aid of the MAD tool.

However, the code generated with DDE is not optimized. For example, in JADE
several template classes encapsulating FIPA protocols are provided, but the DDE
generator does not consider these templates in the code generation. Malaca offers
similar template files for FIPA protocols, and the configuration files generated
are optimized using these templates. As a result, it is possible to reuse protocol
specifications in several case studies, avoiding the generation of code for the same
protocol once again. It is also possible to reuse some protocol information, such
as the ontology used, or the message content, for similar case studies, but in DDE
this is not possible. Hence, completing protocol implementation classes, scattered
across several classes, requires greater effort in the DDE approach.

Towards the Automatic Derivation of Malaca Agents Using MDE 145

5 Related Work

The code generation is not a new issue and it has been approached by agent
methodologies, using MDE or not, to bridge the gap between design and im-
plementation. One of the first AOSE approaches that includes code generation
was MaSE [19] that supports a complete tool-aided life cycle process from early
requirements to code generation. Moreover, in some of them, such as Tropos
[20] and INGENIAS [21], the life-cycle is an MDE process, but this is done
only for some of the software development phases. Otherwise, ASEME [22] uses
the principles of MDE throughout all the software development phases (from
requirements to implementation). MDE is also looked at in [6], which applies
MDE for mobile agents. It takes Agent-π, a metamodel for mobile devices, as
PIM and provides transformations to two mobile-specific PSMs, Andromeda and
JADE-Leap. Although the intention of these approaches was to cover the imple-
mentation phase, they have the same disadvantages as those mentioned for the
PIM4Agents approach: (i) a different transformation is needed for every PSM;
and (ii) the implementation of agents in JADE and other OO agent architec-
tures is difficult to maintain and reuse. The problem is that normally the agent
internal architecture consists of a collection of highly-coupled objects, making
it difficult to extend. Since different agent concerns such as the agent domain-
specific functionality are not very well modularized, every time the agent needs to
be upgraded, the developer must inspect the implementation code, then change
and re-compile it. An additional disadvantage of these approaches is that they
use their own agent metamodel (and not a generic one) in the design phase.

In addition to this, there are agent methodologies that use metamodels to
bring support to their processes but not for code generation. Aalaadin [23] spe-
cifies one of the first developed metamodels for MAS and it is focused on social
aspects. Another methodology that focus on social aspects and defines a meta-
model is Gaia [24], which also defines a specific mapping to JADE as PSM [25],
but it is not an automatic process. ADELFE [26] and PASSI [27] are other
methodologies that have metamodels.

Metamodels are also used to achieve a standard representation for MAS. The
first attempt in this trend was the Unified MAS Metamodel proposal [28], which
merged the metamodels of ADELFE, Gaia and PASSI. Recently, using the same
method, FAML [18] metamodel was developed. Another approach is the Generic
Metamodel, which proposes a basic metamodel that allows the generation of
systems in different agent platforms.

6 Conclusion

This paper presents an MDE approach to developing MAS using the PIM4Agents
metamodel as PIM and Malaca as PSM, focusing on the external and internal
coordination of agents. Following an MDE approach we have defined mapping
rules to generate a set of MaDL/ProtDL files. From these, implementation details
are added and can be used to deploy and execute Malaca agents.

146 I. Ayala, M. Amor, and L. Fuentes

Our main contribution is the usage of platform neutral agent metamodels
in MDE process. In other approaches to extend a proposal, i.e. to add a new
target platform to the process, the following has to be done: (i) developing
two new sets of model transformations (M2M and M2T) and (ii) finding or
developing a new metamodel for the target platform, according to the case. In
contrast, using platform neutral agent metamodels as Malaca, we only have to
develop an appropriate distribution aspect to add a new target platform to the
proposal. Moreover, if we compare our process with the PIM4Agent process, we
conclude that in our approach the generated implementation is more optimized
and easier to modify and extend. In addition, with MAD Tool it is possible to
reuse protocols specifications and other information, but this cannot be done
with DDE Tool.

PIM4Agents seems a very attractive and powerful metamodel. However, our
approach also has many unresolved issues, since some PIM4Agents concepts
cannot be mapped to Malaca, and vice versa. Therefore it is not possible to
represent some PIM4Agent concepts, such as organizations, which are lost in
the generation process. Likewise, some Malaca concepts, such as event driven
processes, cannot been properly represented using the PIM4Agents design model.
In order to deal with these limitations, we are working on both sides extending
PIM4Agents and Malaca metamodels. Moreover, we are currently integrating the
mapping rules presented in this paper in MAD tool to enhance the automated
development.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture-Practice and Promise. Addison-Wesley Professional, Reading (2003)

2. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Auton. Agent Multi-Agent Syst. 18, 239–266 (2009)

3. Bellifemine, F., Rimassa, G., Poggi, A.: JADE - A FIPA-compliant Agent Frame-
work. In: Proc. of PAAM 1999 (1999)

4. Busetta, P., et al.: JACK Intelligent Agents - Components for IntelligentAgents in
Java. Tech. Rep. Agent Oriented Software (1998)

5. Warwas, S., Hahn, C.: The DSML4MAS Development Environment. In: Proc.
AAMAS 2009, pp. 1379–1380 (2009)

6. Agüero, J., Rebollo, M., Carrascosa, C., Julin, V.: Agent Design Using Model
Driven Development. In: PAAMS 2009. AISC, vol. 55, pp. 60–69 (2009)

7. Amor, M., Fuentes, L.: Malaca: A component and aspect-oriented agent architec-
ture. Information and Software Technology 51, 1052–1065 (2009)

8. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the gap Between Agent-Oriented
Design and Implementation Using MDA. In: Odell, J.J., Giorgini, P., Müller, J.P.
(eds.) AOSE 2004. LNCS, vol. 3382, pp. 93–108. Springer, Heidelberg (2005)

9. Beydoun, G., et al.: Synthesis of a generic mas metamodel. In: Garcia, A., Choren,
R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005.
LNCS, vol. 3914, pp. 1–5. Springer, Heidelberg (2006)

10. Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Auton. Agent Multi-Agent Syst. 9, 253–283 (2004)

Towards the Automatic Derivation of Malaca Agents Using MDE 147

11. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

12. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter 39(2), 25 (2006), http://dx.doi.org/10.1109/MC.2006.58

13. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. ATL, http://www.eclipse.org/m2m/atl/
15. FIPA, http://www.fipa.org/
16. Amor, M., Fuentes, L., Valenzuela, J.: Separating learning as an aspect in Malaca

agents. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA
2008. LNCS (LNAI), vol. 4953, pp. 505–515. Springer, Heidelberg (2008)

17. DDE tool, http://sourceforge.net/apps/trac/dsml4mas/wiki
18. Beydoun, G., et al.: FAML: A Generic Metamodel for MAS Development. IEEE

Transactions on Software Engineering 99, 841–863 (2009)
19. DeLoach, S.A., Wood, M.: Developing Multiagent Systems with agentTool. In:

Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, p.
46. Springer, Heidelberg (2001)

20. Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use. Informat-
ica 29, 401–408 (2005)

21. Pavón, J., Gómez-Sanz, J., Fuentes, R.: Model driven development of multi-agent
systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 284–298. Springer, Heidelberg (2006)

22. Spanoudakis, N., Moraitis, P.: Using ASEME Methodology for Model-driven Agent
Systems Development. In: Weyns, D., Gleifes, M.-P. (eds.) AOSE 2010. LNCS,
vol. 6788, pp. 106–127. Springer, Heidelberg (2011)

23. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multiagent systems. In: Proceedings of the Third International Conference
on Multi–Agent Systems (ICMAS 1998), pp. 128–135 (1998)

24. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software Engineering and Methodol-
ogy 12(3), 417–470 (1998)

25. Moraitis, P., Spanoudakis, N.I.: The Gaia2Jade process for multi-agent systems
development. Applied Artificial Intelligence 20(2-4), 251–273 (2006)

26. Picard, G., Gleizes, M.P.: The ADELFE methodology. In: Methodologies and Soft-
ware Engineering for Agent Systems, The Agent–Oriented Software Engineering
Handbook. Kluwer Academic Publishers, Dordrecht (2004)

27. Cossentino, M.: From requirements to code with the PASSI methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent–Oriented Methodologies. Idea
Group Inc., Hershey (2005)

28. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A study of
some multi–agent meta–models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

http://dx.doi.org/10.1109/MC.2006.58
http://www.eclipse.org/m2m/atl/
http://www.fipa.org/
http://sourceforge.net/apps/trac/dsml4mas/wiki

ForMAAD: Towards a Model Driven Approach

for Agent Based Application Design

Zeineb Graja, Amira Regayeg, and Ahmed Hadj Kacem

ReDCAD Laboratory
Faculty of Economics and Management

University of Sfax, Tunisia
zeineb.graja@acm.org,

{amira.regayeg,ahmed.hadjkacem}@fsegs.rnu.tn

Abstract. Current trends in multi-agent systems development show a
move towards adopting the Model Driven Architecture (MDA) approach
to improve the development process and the quality of the agent-based
software. Our work has two main contributions. First, it presents a refor-
mulation of the ForMAAD methodology in terms of the MDA paradigm
by using the AML language. Second, it proposes a translation of each
model to a formal language, TemporalZ that integrates linear temporal logic
to the Z notation, in order to guarantee a formal verification of the mod-
els. Furthermore, we make extensions to the StarUML tool to support the
proposed models and use the transition rules. Our work is illustrated by
developing an agent-based solution for the air traffic control problem.

Keywords: MDA, AML language, formal methods, refinement,
verification.

1 Introduction

Current trends in Multi-Agent Systems (MAS) development show a move to-
wards adopting the MDA approach to improve the development process and
the quality of the agent-based software ([4], [5], [6], [7]). The basic motivation
of MDA is that it allows improvement of an application development process.
In fact, MDA suggests to use model transformation techniques to generate au-
tomatically PSM (Platform Specific Model) from PIM (Platform Independent
Model). But most of the MDA methodologies are based on semi-formal notations
and, hence, they don’t enable formal reasoning about developed specifications.
On the other hand, formal methods have gained a large acceptance in the MAS
development thanks to their great power to express rigorously the concepts re-
lated to agents and multi-agent systems ([1], [2], [12]). The main advantage of
formal methods is that they offer the possibility of carrying out reasoning for
verification and validation purposes.

The aim of our work is the integration of formal techniques and MDA princi-
pals in one methodology for the development of MAS in order to take advantage
of both of them. Thus, we propose a reformulation of ForMAAD methodology,
based on a formal framework and dedicated for the design of multi-agent systems

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 148–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ForMAAD: Towards a Model Driven Approach 149

application. The goal is to enrich ForMAAD with a foreground design based on
a semi-formal language and allowing the use of the MDA transformation tech-
niques to automatically generate an executable code. For this purpose, we have
adopt the Agent Modeling Language (AML) ([8], [9]) as the formalism for the
models representing steps of the ForMAAD methodology.

In order to guarantee a formal verification of the design models, we propose to
translate the AML models of the foreground design to a background design which
uses a formal language TemporalZ [10] that integrates linear temporal logic into
the Z notation. The background design, enables us to use formal verification tools
supporting raw Z notation, such as Z/EVES [11], for verification purposes. Such
tools allow us to perform syntax, type and domain checking of our specification
and to reason about correctness by proving several properties. This background
design is described in [12] and [13] allowing a formal verified specification of an
agent based application.

This paper is structured as follows. Section 2 is dedicated to the description
of related work. Section 3 presents a fragment of the AML meta-model. Section
4 describes the models proposed to cover the different phases of the ForMAAD
approach. The translation rules are presented in section 5. Tools developed to
support the use of the foreground design are described in section 6. Section 7
concludes the paper and outlines perspectives to our work.

2 Related Work

Related work describe two aspects for the development of Multi-Agent Systems
(MAS). The first one is related to the application of the Model Driven Archi-
tecture (MDA) approach in some MAS design methodologies. The second one is
about use of formal frameworks in MAS design.

2.1 MAS Design and MDA

In [7], the ADELFE methodology is extended by adding a model driven imple-
mentation phase using model transformation, domain specific modeling language
(which are AMAS −ML used at design time and μADL allowing the description
of the agent micro-architecture) and code generation. This phase is composed of
several transformation steps. The first one allows the micro-architecture extrac-
tion in a μADL model from the AMAS −ML model. The second step consists in
generating code skeletons for micro-components that will be filled up by the java
developer by adding the necessary micro-components services. The last trans-
formation permits the behavioral code skeleton generation from the behavioral
rules expressed in the design phase with AMAS − ML.

The Tropos methodology is also based on the use of MDA principals through-
out its process. In [6], transformations of plan decomposition into a UML activity
diagram are defined according to the Tropos modeling language meta-model and
the UML meta-model. Tropos allows code generation for the JADE platform us-
ing transformation techniques compliant with MDA’s Query/View/Transformat-
ions requirements.

150 Z. Graja, A. Regayeg, and A.H. Kacem

INGENIAS [4] is both a methodology and a set of tools for the development of
MAS. Based on the results coming from MESSAGE , INGENIAS provides more
complete and consistent meta-models and allows automatic code generation for
different implementation languages and agent platforms.

These works show that the MDA approach contributes greatly to facilitate the
MAS development and specially the code generation. But most of the method-
ologies using the MDA approach are based on semi-formal notations and, hence,
they don’t enable formal reasoning about developed specifications. At another
hand, formal techniques contribute greatly to verification of MAS design. In the
next subsection, we overview some formal frameworks for MAS development.

2.2 MAS Design and Formal Techniques

A very eminent work in the formalization of agent and multi-agent systems is
that of Luck and d’Invero [1]. They provide formal definitions of a four-tiered
hierarchy of entities which compose an agent-based system. They mainly consider
static properties of agents and entirely ignore behavioral properties. These latter
are dealt with in DESIRE using temporal logic. DESIRE [3] is a specification
and design framework which supports agents based on recursive composition of
interconnected tasks. The interaction and coordination among agents is specified
as an interchange of information and control dependencies.

The ForMAAD methodology ([12], [13], [14]) is based on two principals. The
first one indicates the use of a formal specification language covering individ-
ual (static and behavioral) aspects of agents (e.g., knowledge, goal and role)
as well as collective aspects of a multi-agent application (e.g. collective behav-
iors and organization structure). This language integrates linear temporal logic
into the Z notation and is called TemporalZ. The second principal emphasis a
formal methodology based on stepwise refinements to generate, step by step,
individual agent behaviors starting from an abstract specification of a common
goal. ForMAAD proposes also guidelines that help the designer to define a co-
operation strategy for achieving the given common goal, to set an appropriate
organization structure, then to identify the needed communication actions and
finally to derive the intended agent behaviors. In order to guarantee the correct-
ness of the designed specification, ForMAAD proposes, for each refinement step,
an appropriate proof obligation ensuring that the refined specification preserves
the properties of the application to develop.

Recently, a work on context driven dynamic agent organization is advanced in
[2]. In this work, a formal specification in Z is given for an organization model for
context driven dynamic agent organizations called MACODO . This specification
consists of two main parts. The first part models state in a MACODO system by
various sets and schemas. The second part models the behavior of a MACODO
system by means of functions and operation schemas.

Whereas most of the cited works focus on a special aspect of MAS (MACODO
on organizations, DESIRE on behavioral properties, Luck and d’Invero on static
properties), the ForMAAD methodology consider both static and behavioral
aspects as well as individual and organizational ones. But this methodology

ForMAAD: Towards a Model Driven Approach 151

suffers from the lack of an implementation phase for code generation. The idea
is to couple ForMAAD with the MDA approach.

Based on the ForMAAD methodology, our work aims to take advantage of
the formal aspects (coming from ForMAAD) and the MDA aspect for the de-
velopment of MAS by combining them together.Thus, we propose a methodol-
ogy with two levels. The first one is called foreground design and is dedicated
for designers familiar with semi-formal languages. It allows MAS design through
models expressed with the Agent Modeling Language (AML) based on the AML
meta-model described in the next section. The second level is called background
design and is intended for formal verification purposes. The term background de-
sign come from the fact that this level will be hidden to the designer and will
run in background. We define also transformation rules to allow passage between
these two levels. The background design being described in a previous work ([12]),
this paper focuses on describing the foreground design and bridges between them.

3 AML Meta-model

The Agent Modeling Language (AML) ([8], [9]) is a semi-formal visual modeling
language for specifying, modeling and documenting systems that incorporate
features drawn from multi-agent systems theory. It is specified as an exten-
sion to UML 2.0 in accordance with major OMG modeling frameworks (MDA,
MOF, UML, and OCL). The current version of AML offers support for the ab-
straction of architectural and behavioral concepts associated with multi-agent
systems, i.e. ontologies, MAS entities, social aspects, behavior abstraction and
decomposition, communicative interactions, services, observations and effecting
interactions, mental aspects used for modeling mental attitudes of entities, MAS
deployment and agent mobility [8].

The AML meta-model is structured as packages according to the various
aspects of MAS abstractions: mental package, architecture package, behaviors
package, etc. In the reminder of this section, we will present, as an example, a
fragment of the architecture package and the mental one.

The architecture package defines the meta-classes used to model architectural
aspects of MAS, such as entities (agents, environment, resources), social aspect,
ontologies, etc. Fig. 1 is a fragment of the AML meta-model extracted from
the architecture package. The meta-class EntityType is an abstract specialized
Type. It is a superclass to all AML modeling elements which represent types
of entities of a multi-agent system. The meta-class AgentType is a specialized
AutonomousEntityType modeling a type of agents which means entities capable
of autonomous behavior and have a mental state. EnvironmentType meta-class
is a specialized AutonomousEntityType used to model types of environments,
i.e. logical or physical surroundings of entities which provide conditions under
which the entities exist and function. The meta-class OrganizationUnitType is
a specialized EnvironmentType used to model types of organization units, i.e.
types of social environments or their parts. An organization unit can contain
coherent autonomous entity playing roles, having sets of goals and interaction
with each other.

152 Z. Graja, A. Regayeg, and A.H. Kacem

The mental package defines the meta-classes used to model mental aspects of
MAS, i.e. mental attitudes of autonomous entities, which represent their believes
and goals. It defines also meta-classes which can be used to model problem
decomposition and complex problems, in particular representing intentionality
in use case models and goal-based requirements modeling. Fig. 2 is a fragment
of the mental package. We can distinguish two types of goals with the AML
meta-model; when the goal holder can decide if his goal is achieved successfully,
it’s a Decidable Goal , otherwise it’s an Undecidable Goal . A Contribution is a
mental relationship that can model goal’s decomposition.

Fig. 1. An excerpt of the architecture
package [8]

Fig. 2. An excerpt of the mental package
[8]

4 ForMAAD: Towards a Model Oriented Approach for
MAS Design

The ForMAAD approach is based on two main phases. The first one is a spec-
ification phase in which the user requirements are described. The second one is
a design phase in which a detailed specification is derived based on a succession
of refinements of collective (inter-agents) and individual (intra-agent) behaviors.
In this section, we will review the ForMAAD steps and associate to them the
corresponding models.

4.1 Specification Phase

In this phase, we specify the requirements which correspond, for a society of
agents, to a common objective that must be achieved by these agents and the
environment in which the agents evolve. This phase is captured by the require-
ment specification model in which, each entity is modeled by a class, a society of
agent is modeled by an organization unit type, the environment is modeled by
an environment unit type and an objective is modeled by a decidable goal. The

ForMAAD: Towards a Model Driven Approach 153

common objective of an agent organization is expressed through a constraint
associated to this organization. Here we deal only with functional requirements.
Dealing with quality requirements such as robustness, availability or performance
is not yet supported by our methodology.

As an example, the requirement specification diagram in the air traffic control
application is illustrated by the Fig. 3. The class System models the agents’s envi-
ronment which is composed of an organization of planes (called Planes). This or-
ganization contains at least two planes and must achieve the goal SolveConflict .
The note attached to the class Planes is a constraint that corresponds to the
objective of the organization Planes which consists in solving each potential
conflict situation between two planes.

4.2 Design Phase

The ForMAAD design process follows seven refinement steps. The first step
defines a cooperation strategy for achieving the common objective. It consists
in decomposing the common objective into a set of sub-goals, called local goals.
The definition of an organization structure is performed into two steps. First,
we identify the roles by grouping local goals; then, we relate them with suitable
relationships. Simultaneously, we assign roles to agents. The relationships be-
tween roles are translated at the agent level into organization links. Based on
these links, we identify the needed collective behavior. Finally, we have to define
an appropriate individual behavior for each agent. These steps will be given in
details in the following sections.

Fig. 3. A requirement specification model example

154 Z. Graja, A. Regayeg, and A.H. Kacem

Cooperation Strategy Definition. This step consists in a decomposition of
the common objective into local goals. In the foreground design, the cooperation
strategy is defined onto two levels: the first one allows the description of the
objective types and the decomposition relations between them using a class
diagram; the second allows the instantiation of the objective classes using an
object diagram. In the context of the air traffic application, the Fig. 4 shows that
the objective solveConflict is decomposed into two goals; detectConflict which
corresponds to the detection of a conflict between two planes and resConflict
which corresponds to the detected conflict resolution. This decomposition is
modeled by a contribution relationship from the AML language.

Fig. 4. A cooperation strategy definition model example: class level (a) and instance
level (b)

Organization Structure Definition. The organization structure is depicted
by the organization structure definition model composed of three diagrams: the
role identification diagram, the organization structure diagram and the prece-
dence order graph.

– Role identification diagram: this diagram describes the main roles needed
to achieve the local goals. It is derived automatically from the cooperation
strategy definition model by grouping local goals, instantiated from the same
class, together. For example, the negoWith1 and negoWith2 goals (Fig. 4)
are instances from the same goal class NegoWith. Thus, they are grouped to
form the role Negotiator (Fig. 5).

ForMAAD: Towards a Model Driven Approach 155

Fig. 5. An organization structure diagram example

– Organization structure diagram: this diagram is created by instantiating the
roles identified in the previous diagram and creating the organization rela-
tions between them. In practice, we will identify common attribute values of
the local goals of different roles. A common attribute between two roles indi-
cates an organizational relation between them. As an example, the solConf
local goal and the negoWith1 local goal have two common attribute values
pl1 and pl2. Thus, an organization relationship between the solver role and
the negotiator role will be created (Fig. 5). Given the set of roles and the
set of relations between them, we will identify necessary agents and assign
the retained roles to them. Given the set of agents and their corresponding
roles, we can generate automatically the organization links between agents.
In fact, each organizational relation between two roles leads to an organiza-
tional link between the agents having these roles. Fig. 5 shows an example of
a complete organization structure diagram. It depicts three roles: detector ,
negotiator and solver with respective types Detector , Negotiator and Solver ,
two agents: pl1 and pl2, three organizational relations: rorg1, rorg2 and rorg3
and three organizational links: ol1, ol2 and ol3.

– Precedence order graph: this activity diagram models the precedence order
between local goals and serves to facilitate the identification of the necessary
agents.

4.3 Collective Behavior Definition

The collective behavior of the agents is defined according to their organizational
links. In fact, an organizational link established between two agents leads to a
sequence diagram describing the messages exchanged between them. In the air
traffic control application, the collective behavior definition model (Fig. 6) de-
scribes the negotiation protocol between two planes. The two notes attached
to the lifelines in Fig. 6 are temporal constraints written in Latex format.

156 Z. Graja, A. Regayeg, and A.H. Kacem

Fig. 6. A sequence diagram modeling the negotiation protocol

As an example, the constraint attached to the Pl1 lifeline states that when the
plane Pl1 sends a solution proposition to the plane Pl2, Pl2 will eventually
evaluate the proposed solution.

4.4 Individual Behavior Definition

The individual behavior definition model describes, with an activity diagram,
the behavior of each type of agent. The agent actions and the sent messages are
described with more details by a class diagram. Fig. 7 details some agent actions
as behavior fragments. The agent type Plane has three behavior fragments which
are Perform, Perceive and Evaluate. The behavior fragment Perform, as an
example, contains one action which is performSolution.

5 Translation to TemporalZ

In order to verify some properties in our models, we propose to use formal
verification techniques. The formal verification is applied after each step of the
design methodology and is composed of two parts. The first part allows one
to translate automatically the models to the TemporalZ formal language. The

ForMAAD: Towards a Model Driven Approach 157

Fig. 7. An individual behavior definition model example

second one consists in verifying some theorems. The TemporalZ formal language
was presented in [10] and is the result of the integration of the temporal operators
into Z schemas. Thanks to this integration, we can express both structural as
well as behavioral aspect of a MAS.

5.1 Translation of the Requirement Specification Model

This translation is done by mapping each class C into a Z schema called C
whose declarative part contains the attributes of the class C and the predicative
part contains the constraints related to that class.

In the case of the air traffic control, the Position class will lead to the Position
schema, the Plane class will lead to the Plane schema describing a plane and
the Planes class will lead to the Planes schema representing an organization of
planes.

Position
x : N

y : N

x > 0
y > 0

Plane
speed : N

alt : N

route : Route
pos : Position
corr : Corridor

Planes
PL : FPlane

5.2 Translation of the Cooperation Strategy Definition Model

As depicted in Fig. 8, the translation of the cooperation strategy definition model
to TemporalZ completes the specification of type Formula [12] with the atomic
formulas (local goals) and leads to the Implementation0 schema.

158 Z. Graja, A. Regayeg, and A.H. Kacem

Fig. 8. Translation of the cooperation strategy definition model

Implementation0 schema includes System schema and contains declaration of
variable L having the type F Formula (L is the set of the local goals) and the
goals decomposition.

In addition, we generate the CoopStrategy theorem which guarantees that
the common objective can be derived from the local goals (these concepts are
described in [12]).

The translation of the cooperation strategy definition model of Fig. 4 leads
to the following Formula type and Implementation0 schema:

Formula ::=
... | detectConflict〈〈Plane × Plane〉〉
| solConf 〈〈Plane × Plane〉〉
| negoWith1〈〈Plane × Plane〉〉
| negoWith2〈〈Plane × Plane〉〉

Implementation0
System
L : F Formula

L = {detectConflict(av1, av2),
negoWith1(init , part), ...}
Eval(solveConflict(av1, av2)) = T
⇔ Eval(detectConflict(av1, av2)) = T
∧ Eval(resConflict(av1, av2)) = T
...

5.3 Translation of the Organization Structure Definition Model

As seen in the last section, the construction of the organization structure defi-
nition model requires four steps. After each step, we have to translate the cor-
responding part of the obtained model in order to prove the adequate theorem.

– Translation of the roles instances: this translation is done after the identifi-
cation and the instantiation of roles. As depicted in Fig. 9, it leads to the
generation of Implementation1 schema. Implementation1 schema describes
the roles in terms of their local goals. It includes the System schema and
contains the declaration of variable R typed F Role representing the system

ForMAAD: Towards a Model Driven Approach 159

Fig. 9. Translation of the roles instances

set of roles. Moreover, this translation allows the generation of Completeness
theorem stating that each local goal belongs to a role, and the roles cover
all local goals [12].

– Translation of the organization relations between roles: this translation is
done after the creation of the organization relation between roles. As de-
picted in Fig. 10, it allows the generation of the Implementation2 schema
describing the organizational relations in term of their participant roles.
Implementation2 schema includes the System schema and contains the dec-
laration of the variable Rorg typed F OrgRelationship representing the set of
organizational relations. We can also generate the RoleParticipant theorem
verifying that the organizational relation participants cover the set of roles.

Fig. 10. Translation of the organization relations between roles

– Translation of the play links: this translation is done after the role assignment
step. As depicted in Fig. 11, it leads to the generation of the Implementation3
schema describing the roles of each agent.
The RoleAssignement theorem is also generated in order to verify that each
role was assigned at least to one agent.

– Translation of the organization link between agents: this translation is de-
picted in Fig. 12 and is done after dressing the complete organization struc-
ture definition model. It allows the generation of the Implementation4
schema. Implementation4 schema describes the organizational links between

160 Z. Graja, A. Regayeg, and A.H. Kacem

Fig. 11. Translation of the play links

agents. It includes the System schema and contains the declaration of the
variable organizationLink typed F OrganizationLink representing the orga-
nizational links set.
The Instantiation1 and Instantiation2 theorems are also generated stating
that every organizational link instantiates an organizational relationship and
that every organizational relationship is instantiated by an organizational
link.

Fig. 12. Translation of the organization link between agents

5.4 Translation of the Collective and Individual Behavior Definition
Model

The translation of these models to TemporalZ is done according to the following
rules:

– Translation of the messages payloads: a message payload allows the descrip-
tion of a message exchanged between agents. It is characterized by a perfor-
mative representing the message name and a list of attributes representing
the transmitted objects. As depicted in Fig. 13, the translation of the mes-
sages payloads leads to the creation of a new type called Message whose
values are the messages payloads performatives.

– Translation of the behavior fragments: the behavior fragments describe the
actions performed by an agent. Each behavior fragment is characterized by

ForMAAD: Towards a Model Driven Approach 161

Fig. 13. Translation of the messages payloads

Fig. 14. Translation of the behavior fragments

a name and the set of actions. The behavior fragments lead to the definition
of a new type called Action whose values are the actions existing in these
behavior fragments. This translation is illustrated by Fig. 14.
The translation of the individual behavior definition model of Fig. 7 leads
to the following definitions of Message and Action type.

Message ::= propose〈〈Solution〉〉 | accept〈〈Solution〉〉 |
reject〈〈Solution〉〉 | counterProposition〈〈Solution〉〉

Action ::= send〈〈Plane × Plane × Message〉〉 |
receive〈〈Plane × Plane × Message〉〉 |
perceive | performSolution〈〈Solution〉〉 | evaluateSolution〈〈Solution〉〉

– Translation of temporal constraints: this translation concerns the tempo-
ral constraints attached to the lifelines in the collective behavior definition
model. It consists in inserting these constraints into the Implementation6
schema. Applying this translation to the model of Fig. 6, we obtain the
following Implementation6 schema:

Implementation6
Implementation5

Eval(Now(send(pl1, pl2, propose(solution)))) = T
⇒ Eval(Eventually(Now(evaluateSolution(sol)))) = T
...

We also generate the VerifSpec theorem verifying that the obtained specifi-
cation allows the achievement of the initial common objective.

162 Z. Graja, A. Regayeg, and A.H. Kacem

6 ForMAAD Tools

StarUML 1 is a UML modeling framework supporting the MDA approach. This
framework is characterized by its flexibility and its functionality extensibility.
Thus, StarUML allows adding new functions in order to satisfy the user’s re-
quirements.

In order to be adapted to the ForMAAD approach, we propose to extend
StarUML by (1) the insertion of a new approach in the approach part of StarUML
called ForMAAD approach that integrates the presented models and that can be
selected when launching StarUML ; (2) the extension of the UML profile part
by creating a new profile called ForMAAD that is a part of the AML profile
allowing the modification of the tool palette content for each diagram of the
ForMAAD approach; the addition of some JScript scripts allowing the autom-
atization of the model generation; (3) the addition of the Add − In COM object
developed under the NetBeans environment and allowing the transformation of
the generated models into LaTeX; and (4) the insertion of a new panel called
ForMAAD (Fig. 15) integrating some commands assisting the user to move
from one ForMAAD’s step to another and translating the resulting models
into TemporalZ.

Fig. 15. ForMAAD menu

The generation of a LaTeX file from the ForMAAD models follows two steps.
The first step allows the creation of a UMLXMI file using the transformation tool
1 http://staruml/sourceforge.net

http://staruml/sourceforge.net

ForMAAD: Towards a Model Driven Approach 163

Fig. 16. The proof of the VerifSpec theorem

proposed by StarUML. The second step, consists on the application of a set of
transformations of the UMLXMI file in order to generate the LaTeX file. These
transformations implement the translation rules presented in the previous section
using some XSLT (eXtensible Styles Language Transformation) programs. Thus,
the LaTeX file presenting a formal specification of the designed application, can
be imported by the Z/EVES tool in order to prove the necessary theorems and
to guarantee the requirement satisfaction.

Figure 16 shows the VerifSpec theorem in the case of the air traffic control.
This theorem guarantees that the proposed solution satisfies the initial require-
ments. It is proven using the Z/EVES tool.

7 Conclusion

In this paper, we proposed a reformulation of the ForMAAD methodology in
terms of the MDA paradigm. Our main contribution consists in providing a set of
methodological hints which guide the design process and stressing the correctness
of the obtained design with respect to the requirements specification. Thus,
we defined two ground designs: in the foreground design, we present a model
oriented representation using AML and in the background design, we propose
the translation of each model of the foreground design into a formal language
called TemporalZ ([10]) that consists in the introduction of a temporal operators
in the Z schemas enabled us to make use of Z supporting tools, like Z/EVES
[11], for syntax and type checking, as well as reasoning about the correctness of
refinement steps.

As an example, we cited the air traffic control problem that allowed an illus-
tration of the proposed method. Indeed, we designed a decentralized agent-based
solution for conflict control in air traffic. The solution models a plane as an au-
tonomous agent able to detect potential conflicts. The effective resolution of a
conflict is the result of a negotiation process between planes.

The presented design process is supported by extending the StarUML tool
in order to define a ForMAAD profile and to integrate the proposed approach
with the five models. In this tool, we implemented the necessary rules allowing
the transition into TemporalZ and the generation of the required theorems in
order to be proved with the Z/EVES tool.

164 Z. Graja, A. Regayeg, and A.H. Kacem

It is necessary to point out that these results, though original and promising,
constitute a first step in the development process of MAS. Thus, our perspective
consists in the pursuit of the proposed process in order to define a complete
model oriented approach allowing the code generation of the designed system
starting from the verified abstract specifications generated by ForMAAD.

References

1. Luck, M., d’Inverno, M.: A conceptual framework for agent definition and devel-
opment. The Computer Journal 44(1), 1–20 (2001)

2. Weyns, D., Haesevoets, R., Helleboogh, A.: The MACODO organization model
for context-driven dynamic agent organizations. ACM Transaction on Au-
tonomous and Adaptive Systems (2010), http://www.cs.kuleuven.be/~danny/

papers/2010TAAS-model.pdf

3. Brasier, M.T., Jonker, M., Treur, J.: Principals of compositional multi-agent sys-
tem development. In: Proceedings of the 15th IFIP World Computer Congress,
WCC 1998, Conference on Information Technology and Knowledge Systems,
IT&KNOWS 1998, Vienna and Budapest, pp. 347–360 (1998)

4. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools.
In: Agent-Oriented Methodologies, pp. 236–276. Idea Group Publishing, USA
(2005)

5. Jarraya, T., Guessoum, Z.: Towards a Model Driven Process for Multi-Agent
System. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.)
CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 256–265. Springer, Heidelberg (2007)

6. Perini, A., Susi, A.: Automating model transformations in agent-oriented mod-
elling. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp.
167–178. Springer, Heidelberg (2006)

7. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Model Driven Engineer-
ing for Designing Adaptive Multi-Agent Systems. In: Artikis, A., O’Hare, G.M.P.,
Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 318–332.
Springer, Heidelberg (2008)

8. Cervenka, R., Trencansky, I.: Agent Modeling Language: Language Specification.
Version 0.9. Technical Report, Whitestein Technologies (2004)

9. Trencansky, I., Cervenka, R.: Agent Modeling Language (AML): A Comprehensive
Approach to Modeling MAS. Informatica 29(4), 391–400 (2005)

10. Regayeg, A., Hadj-Kacem, A., Jmaiel, M.: Specification and Verification of Multi-
Agent Applications using Temporal Z. In: 2004 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2004), September 20-24, 2004,
pp. 260–266. IEEE Computer Society, Beijing (2004)

11. Meisels, I., Saaltink, M.: The Z/EVES 2.0 Reference Manual. Technical Report
TR–99–5493–03e, ORA, Canada (1999)

12. Hadj-Kacem, A., Regayeg, A., Jmaiel, M.: ForMAAD: A Formal Method for Agent-
Based Application Design. Journal of Web Intelligence and Agent Systems 5(4),
216–334 (2007)

13. Regayeg, A.: Approche Formelle de Développement de Systèmes Multi-Agents: de
la Spécification à la Conception. PhD thesis (2009)

14. Regayeg, A., Kallel, S., Hadj-Kacem, A., Jmaiel, M.: ForMAAD Method: An Ex-
perimental Design for Air Traffic Control. International Transactions on Systems
Science and Applications 1(4), 327–334 (2006)

http://www.cs.kuleuven.be/~danny/papers/2010TAAS-model.pdf
http://www.cs.kuleuven.be/~danny/papers/2010TAAS-model.pdf

An Architectural Perspective
on Multiagent Societies�

Juan Manuel Serrano and Sergio Saugar

University Rey Juan Carlos
Madrid, Spain

{juanmanuel.serrano,sergio.saugar}@urjc.es

Abstract. This paper attempts to provide an architectural foundation
to multiagent societies through a systematic application of the notion of
software connector. It shows that multiagent societies can be explained
as a Component & Connector architectural style, made up of high-level
connectors defined in terms of common normative, communicative and
organizational abstractions. This is expected to yield a better alignment
of agent technology with mainstream software engineering practice and
conventional architectural styles. Moreover, we show that connectors are
a powerful metaphor for the design of organizational and communicative
abstractions. Last, the paper challenges a common architectural assump-
tion, namely the application-independence of software connectors.

1 Introduction

Multiagent societies are particular types of distributed systems made up of a col-
lection of autonomous and heterogeneous components, so-called agents, which
are situated in an open social environment that mediates their interactions and
provide them with access to different types of resources. Arguably, the most
salient and distinctive feature of multiagent societies is represented by the so-
cial environment, which plays a role akin to the one played by middleware in
mainstream software engineering [18]. Unlike conventional, object-oriented (e.g.
CORBA) or messaging (e.g. AMQP) middleware, however, the social environ-
ment stands as a first-class design abstraction for application developers [20].
Thus, the development of a multiagent society does not only encompass the de-
sign of software components, but in large part the design of its environment. This
latter part particularly accrues to open systems, where the precise specification
of component interconnections is vital to guarantee successful interoperation of
a dynamic population of autonomous and heterogeneous components [14].

Software architecture is a mature software engineering discipline [2] that also
places significant importance to the separation of concerns between interaction
and computation. In fact, component interactions are embodied in first-class ab-
stractions, namely software connectors [6]. These software elements feature on a
� Research sponsored by the Spanish Ministry of Science and Innovation, project

TIN2009-14562-C05-05.

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 165–176, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

166 J.M. Serrano and S. Saugar

par with software components in the foundational definitions of software architec-
ture [8,13] and are crucial in the satisfaction of software qualities of the system.
Moreover, the definition of architectural styles largely builds upon the types of
connectors supported by those styles. Although multiagent systems have already
been approached from an architectural perspective [16,14], the notion of software
connector has not been exploited as fully as possible. This paper attempts to
alleviate this omission by providing a connector-based account of social environ-
ments. Moreover, it also introduces an UML profile for the design of social con-
nector types which make up the social environment of particular applications.

This architectural approach to multiagent societies rivals other organizational
metamodels such as MOISE+ [5], which alternatively builds upon coordination
artifacts [7] as a foundational metaphor. Software connectors, however, are ex-
pected to yield a better alignment of agent technology with mainstream soft-
ware engineering practice and conventional architectural styles. Moreover, we
will show that connectors are a powerful design metaphor for the definition of
new kinds of organizational abstractions. Last, we also expect to bring some
benefits to software architecture research by considering the complex types of
connectors that occur in multiagent systems.

The paper is structured as follows. Section 2 introduces the major notions of
software architecture which pertain to this research, mainly architectural views,
connectors and middleware. Sections 3 and 4 propose a collection of social con-
nectors for multiagent societies and briefly sketches the major features of an
UML profile to customize social connectors for particular applications. Finally,
we conclude with a discussion on related and future work.

2 Software Architectural Concepts

According to the viewtype catalogue proposed in [1], a software system can be
described from the perspectives defined by the modular and component & con-
nector (C&C) viewtypes. Modular structures focus on the implementation units
of the system and their relationships (functional dependencies, inheritance, part-
of relations, etc.). C&C structures describe the structure of the system from a
runtime perspective, thus focusing on the units of execution (components) and
interaction (connectors). For each each viewtype, architectural styles can be de-
fined which further refine the types of elements and relationships identified by
the viewtype. In general, styles of the C&C viewtype such as client-server, pipe-
and-filter, publish-subscribe, etc., identify different types of components and con-
nectors, and hence characterise different kinds of computational models. Thus,
they provide a useful framework for analysing new computational paradigms
(e.g. multiagent societies), and comparing its features with other styles.

The definition of a new C&C style encompasses the identification of the cor-
responding types of components and connectors, as well as possible constraints
in their configuration (or topology). Component types characterise particular
classes of processing units or data stores, which communicate with the environ-
ment through specific points of interaction called ports (or simply, interfaces [1]).

An Architectural Perspective on Multiagent Societies 167

For instance, filters are components which receive data from its input port, and
deliver them through the output port after a transformation process. Connectors,
on the other hand, are computational elements which mediate the interactions
among components. According to the taxonomy of connectors proposed in [6],
connectors provide services that belong to at least one of four different categories:
communication, coordination, conversion and facilitation. The first two kinds of
services essentially consists of the transmission of data and control, respectively,
among the participating components. Conversion services allow to transform
the interaction required by one participant to that provided by another. Last,
facilitation connectors facilitate and streamline component interaction through
different mechanisms (e.g. security, persistence, transactions, etc.).

The definition of a new type of connector requires identifying which services
its instances will provide and how they are realized. For instance, both event
channels and procedure calls provide communication and coordination services,
although through different means. A connector type is also characterised by the
different types of roles which can be played by components participating in the
interaction. For instance, filters interacting through a pipe can play the reader
or writer roles. Last, a new connector type has to specify its protocol, i.e. the
rules that govern the initiation and finishing of the interaction, the behaviour of
its participants, etc.

A particular class of connectors, particularly relevant for the purpose of this
paper, is represented by middleware infrastructures. Indeed, the primary goal
of middleware is to mediate interactions among distributed components. From
a connector perspective, middleware infrastructures are composite connectors
made up from different subconnectors which are offered to distributed compo-
nents as basic interaction mechanisms. For instance, CORBA-based middleware
offers several variants of method calls: synchronous, deferred synchronous, one-
way requests, etc. Besides the basic control and data transfer services provided
by atomic connectors, middleware also offers a number of facilitation and conver-
sion services. Last, being connectors, middleware infrastructures are also char-
acterised by a number of roles. For instance, in object-oriented middleware, the
major role played by interacting components is that of object. Thus, a CORBA
software component (e.g. programmed in Prolog) is not an object due to certain
intrinsic properties that it possesses, but because it is attached to an ORB to
provide the services specified by its IDL specification. Therefore, in a distributed
setting objects are essentially roles, not components.

3 C&C Architecture of Multiagent Societies

Multiagent societies are distributed systems made up of a collection of
autonomous, heterogeneous, situated and social components called agents. Au-
tonomy means that agents exert full control on their runtime state and be-
haviour [15]. Heterogeneity amounts to independence of design, which does not
only encompass implementation matters (e.g. programming language of choice)
but also decision making policies [14]. Situatedness refer to the environment
where agents are deployed, which plays a role akin to the role of middleware in

168 J.M. Serrano and S. Saugar

traditional software engineering [18]. Last, sociability calls for a particular kind
of middleware, namely social middleware (e.g. AMELI [3]), which represents the
responsible infrastructure for managing the institutional state of the society.

Since multiagent societies are distributed systems, the C&C perspective leads
us to explicate the nature of these kinds of systems in terms of the types of com-
ponents and connectors supported by social middleware and the roles played
by software components interacting through them. Figure 1 shows a schematic
C&C view of the proposed structure for multiagent societies. According to this
figure, components interacting through a social middleware can play two kinds of
roles: Agents and Resources; moreover, four types of connectors are postulated:
SpeechActs, Observations, Invocations and SocialInteractions. The following sub-
sections describe the common structure and dynamics of these social connectors
and middleware roles.

Fig. 1. Schematic C&C view of multiagent societies

3.1 Social Components

Agent. In accordance with section 2, a component is an agent if, and only if, it
is attached to a social middleware as player of some agent role. The expression
“agent component” is used to denote the component which plays some agent role
within the society. Agent roles are represented in figure 1 as stick figures; thus,
the only agent components are c2, c3 and c4. Agent roles are characterised by a
given purpose, viz. a public goal that they purport to achieve, and hold an event
mailbox which stores any notification addressed to them by the environment.

An Architectural Perspective on Multiagent Societies 169

The port (i.e. interface) implemented by agent components to interact with the
social middleware includes the external actions attempt and retrieve. The former
one allows the agent component to act within the society (as described in section
3.2), whereas the latter one allows the component to retrieve the events stored
in its agent mailbox.

This role-based notion of agenthood impacts the standard attributes of auton-
omy and heterogeneity in two major ways. First, autonomy has to be regarded
as a relative, rather than absolute property of agent components. In essence, this
means that autonomy of agents is preserved only in their interactions through
the social middleware. If the software component is approached through other
mechanisms (e.g. from its user interface), the component may not be regarded
as autonomous. Second, a complete decoupling of agent components and the
social middleware is facilitated, thus enhancing autonomy. In fact, the social
middleware infrastructure does not need to keep track of the agent component
population; it just manages their social identity (i.e. the roles they play)1. Also,
multiple components may access the same agent role, from different locations.
Hence, modifiability and deployment flexibility (i.e. mobility) of agent compo-
nents is also enhanced.

Resource. The agent environment is commonly regarded not only as the medium
for agent-to-agent interaction, but also as a layer which mediates the access of
agents to resources of different kinds [20]. Accordingly, resources represent the
second type of role which a software component may play within a social middle-
ware. Figure 1 shows two resource roles, depicted through triangle icons, played
by components c1 and c5. Unlike agents, resources are non-autonomous, and
provide different computational or informational (e.g. virtualization [18]) ser-
vices to the multiagent society where they are attached. Like agents, resources
are heterogeneous and its deployment may be decoupled from the social middle-
ware, e.g. a resource may be fulfilled by a web service deployed in an arbitrary
location. Unlike agents, however, the middleware infrastructure needs to know
the precise location of the resource component (e.g. to enact one of the provided
services upon invocation of another resource or agent).

3.2 Social Connectors

The sociability of agents commonly refers to the use of high-level normative
(permissions, commitments, empowerment, etc.), organizational (institutions,
groups, teams, etc.) and communicative (speech acts, dialogue games, conver-
sations, etc.) abstractions in the coordination of agent components. In essence,
these abstractions do not concern the components of the system but rather the
interactions (i.e. connectors) in which components engage through the social
middleware. We show in the following paragraphs how the chosen social connec-
tors are shaped out of these abstractions, in accordance with the general model
of connector described in section 3. Table 1 summarizes the major features of
each kind of connector.
1 In contrast, CORBA-based middleware and most agent-based middleware (e.g.

JADE) are tightly coupled with their registered components.

170 J.M. Serrano and S. Saugar

Table 1. Summary of social connector features

Social Services Roles Protocol
Connector Commu-

nication
Coordi-
nation

Facilita-
tion

Social-
Interaction

X X Agent/Resource Initiation & Finish-
ing & Purpose &
Monitoring rules

SpeechAct X X Speaker/Listener Empowerment &
Permission & Syn-
chronization rules

Invocation X X Caller/Callee
Observation X Observer/Observee

SocialInteraction. Social connectors of this type represent social processes of
different kinds and scales (e.g. conversations, teams, groups, organizations, etc.).
Social interactions can be decomposed into lower-level subinteractions, so that
the whole interaction space of the multiagent society is structured in terms of a
tree of social interactions. The root of this tree represents the multiagent society
itself, and the leafs atomic interaction mechanisms (speech acts, invocations and
observations) or social interactions which are not further decomposed. Thus, this
type of connector essentially provide a facilitation service, namely structuring
the atomic interactions of components through the middleware.

Every component which attaches to the social middleware (either as agent or
resource), does it so within the context of a given social interaction. Thus, agents
and resources represent the two types of roles of this type of social connector. In
figure 1, roles of social interaction i1 are represented by agent a4 and resource r1.
Besides the social interaction hierarchy, the topology of the multiagent society
also consists of role-playing agent hierarchies. These run-time structures repre-
sent the decomposition of the agent activity according to the different contexts
in which it participates. Thus, the activity of agent a4 within the context of
social interactions i2 and i3 is represented by agents a41 and a42, respectively.

The protocol of a particular type of social interaction specifies the rules which
govern the initiation and finishing of interactions of that type, as well as the
purposes of its member agent roles. Also, the social interaction protocol includes
monitoring rules which specify the subscriptions of agents to events of the social
environment. In this way, social interactions also serve a communication pur-
pose. Finally, the protocol may include constraints on the decomposition of the
interaction into lower-level subinteractions, and the role-playing hierarchies of
its member agents.

SpeechAct. Agent communication is commonly conceptualised in terms of speech
acts, i.e. actions performed in saying something. For instance, requesting or
promising someone to do something, informing someone that something holds,
etc. The successful performance of these particular actions results in the com-
munication of some mental attitude (intentions and beliefs, respectively), so
that speech acts connectors may serve a communication purpose. Also, the

An Architectural Perspective on Multiagent Societies 171

performance of other types of speech acts, such as declarations, may creates
new institutional facts so that speech acts may also serve a facilitation purpose.
For instance, the speech acts SetUp and Close allow agents to declare the initi-
ation and finishing, respectively, of a social interaction. These speech acts thus
provide an alternative mechanism to the initiation and finishing rules of social
interactions protocols.

The agents interacting through speech acts may play two kinds of roles:
speaker and listener. The initiation of speech acts is governed by empowerment
rules. In particular, a speech act is created when some component attempts its
empowered agent to say something. If the agent is not empowered, the speech
act will not be created and the institutional state will not be affected at all. Once
the speech act is created, the empowered agent becomes its speaker. Figure 1
shows agent a41 saying something to agents a2 and a3. Note that the speaker
role of speech acts is not played directly by software components, but by agent
roles. Agents and resources, so-called top roles, are the only roles of the social
middleware directly played by components.

Immediately after its creation, permission rules govern the execution of the
speech act. If permission is granted, institutional facts are brought about (in
case of declarations) and addressees are notified through their corresponding
mailboxes, etc. If permission is not granted, then the speech act is prohibited
and its execution canceled. Last, it may also happen that the rules of the society
allow to infer neither than the action is permitted nor prohibited. In this case,
the speech act is left pending for execution [11].

Once addressees are notified, they may become listeners of the speech act if
the speaker initiated the speech act in a synchronous mode. By listening, agents
acknowledge the receipt of the message. An asynchronous speech act finishes
as soon as permission is granted; a synchronous one requires every addressee to
listen to it; moreover, a synchronous speech act blocks the behaviour of the agent
(role) until it is finished. Of course, the agent component itself is only blocked
as far as its activity within the multiagent society is concerned. Figure 1 shows
that agents a2 and a3 has listened to the speech act.

Invocation. This type of connector allows agents and resources to access the
services provided by other environmental resources. For instance, a clock re-
source may provide an alarm service. The invocation of a service commonly
needs to specify certain information, such as the time and date for the alarm
service. Thus, invocation connectors provide both coordination and communica-
tion services. Similarly to speech acts, they can be initiated in a synchronous or
asynchronous mode, and its life-cycle (i.e. initiation and execution) is governed
by empowerment and permission rules. The agent or resource which initiates
the invocation acts as caller. Invocations are finished as soon as the resource
providing the service, i.e. the callee, fulfills the service or signals some problem.
Figure 1 shows agent a4 requesting some service provided by resource r1.

Observation. This type of interaction allows agents to observe a given social en-
tity (namely, another agent, resource, social interaction, speech act, etc.), subject

172 J.M. Serrano and S. Saugar

to the agent being empowered to see that entity and permission for execution is
granted. Thus, it is a pure communication connector. Two roles characterise this
interaction mechanism: the observer agent and the social entity being observed.
For instance, figure 1 shows agent a2 observing a social interaction. The observer
may specify a particular attribute of the social entity being observed. In that
case, the observer agent is just notified of the value held by that attribute; other-
wise, the connector notifies the agent about the whole state of the social entity.
In any case, the notification is deliver to the mailbox of the observer agent.

4 UML Profile for Social Connectors Types

Taking into account section 3, programming the social environment amounts to
declaring the types of social connectors which implement the functional require-
ments of the application domain – as far as interaction is concerned. For instance,
ProgramCommittee, Submission, ReviewingTeam, etc., are common social inter-
action types of a conference management application; Submit a paper and Notify
its acceptance or rejection are among its characteristic speech act types; last, Ob-
serveReview is a common type of observation which is characterised by specific
empowerment and permission rules (e.g. permission is granted to authors dur-
ing the rebuttal stage)2. Note that some social connector types may be largely
generic and, hence, reusable across many applications. For instance, the design
of the reviewing team may profit from customizing a generic DiscussionGroup
social interaction type.

The definition of social connector types requires a metamodel which identifies
the programmable features of social interaction, speech act, observation and in-
vocation connectors. These features can be classified according to the different
dimensions of software connectors: services, roles, subconnectors and protocol
rules (e.g. life-cycle rules). The next subsection briefly describes a light-weight
implementation of this metamodel in terms of an UML Profile. Due to lack of
space, we only deal with social interaction types. This version of the metamodel
actually represents a visual and informal surface syntax of the metamodel pre-
sented in [12], where the C+ action language is used as the formal underlying
technique. The UML profile is illustrated in figure 2, which shows a partial spec-
ification of the social interaction space for a conference management application.
Note that this UML diagram actually represent a modular view of the applica-
tion, in contrast with the C&C view shown in figure 1.

4.1 Social Interaction Types

As figure 2 shows, social interaction types are defined by stereotyped use cases.
This is in accordance with the UML standard [4, cap. 16], which defines use cases
2 These types can be regarded as specialisations of the corresponding generic types

introduced in section 3. Thus, the social interaction type Program Committee is an
specialisation of the generic social interaction type SocialInteraction; the speech act
type Submit is an specialisation of the generic speech act type SpeechAct, etc.

An Architectural Perspective on Multiagent Societies 173

Fig. 2. Social interaction types of the conference management application

as types of behaviour or functionality that the system offers to its users. Indeed,
social interaction types can be regarded as units of functionality offered by the
social middleware (the system) to its external software components (the users).
The stereotypes and tagged values which specialise the use case metamodel for
representing social interaction types are introduced in the next paragraphs.

Subinteractions. The definition of a new type of social interaction may include
a number of constraints on the types of subinteractions in which its activity is
decomposed, and the social interaction context to which it belongs. For instance,
submissions can only take place within the context of a program committee, and
its only subinteraction can be a reviewing team. Neither the extend nor the in-
clude relationships of the use case metamodel are good candidates for representing
these constraints. Hence, these alternatives are discharged in favor of the ad-hoc
stereotypes «context» and «sub» which are applied at the corresponding ends of
a generic association between the corresponding use cases. The cardinality at the
«sub» end indicates the number of possible instances of that type.

Connector Roles. Another constraint which may be part of the definition of a
social interaction type concerns its types of member agents and environmental
resources. For instance, only two agents may be members of a submission: the
submitter and a submittee, and only one resource is part of its environment: the
paper to be submitted. As figure 2 shows, types of agents are represented as
stereotyped UML actors. The representation of resource types is also carried out

174 J.M. Serrano and S. Saugar

through actors, although in this case a distinguishing icon is attached to the
stereotype. This decision is consistent with the UML metamodel which defines
actors as roles played by external entities in its interaction with the system.
Agent and resource actors are associated to social interaction use cases through
general associations whose actor end is stereotyped with the labels «member»
and «env», respectively.

The specification of a type of agent may constrain the kinds of agents which
can play roles of that type, as well as the types of roles which instances of that
type may play. These constraints on the role-playing hierarchy of agents is not
supported by the actor metamodel, so new stereotypes «role» and «player» are
introduced for general association ends. Moreover, the specification of an agent
type may also identify the particular purpose shared by agents of that type. For
instance, submitters purport to get their papers accepted for publication. The
tag purpose of the «AgentType» stereotype represents this feature.

Protocol Rules. Commonly the initiation and finishing rules of social interactions
are specified by their particular type. These features are represented in UML with
the class stereotypes «initiate» and «finish». These stereotypes specialise the
«rule» stereotype which provide several multi-valued, string tags for representing
rule bodies: when, if, iff, etc. For instance, figure 2 shows that reviewing teams
are automatically initiated when the stage of the submission interaction changes
to submitted. It also specifies that a submission is automatically finished when
the paper is rejected or the submitter abandons the submission.

5 Discussion

Any kind of software can be described from a C&C perspective, and multiagent
societies ought to be no exception. This paper has shown that it is indeed possible
to explicate social middleware and their interaction mechanisms in reference to a
C&C architectural style made up from high-level connector types, i.e. connectors
which somehow refer to common normative, communicative and organizational
abstractions. In so doing, this paper complements other architectural approaches
to multiagent systems [17,19], which alternatively favour reference architectures,
patterns and low-level connectors over high-level architectural styles.

The proposed architectural view on multiagent societies postulates four kinds
of connectors, social interactions, speech acts, invocations and observations, which
are specified in terms of their types of services, roles and protocol rules – as any
type of software connector is specified. First, this ensures alignment with the
common engineering practice in defining architectural styles and connector types
[1,6], and facilitates comparison with conventional connectors. For instance, the
atomic social connectors differ from common message passing, data access and
procedure call connectors in the rules which govern their life-cycle, viz. em-
powerment and permission rules, the social interaction context within which
they are executed, etc. Second, significant features of the resulting interaction
mechanisms directly derive from the application of a connector perspective to
these abstractions, thus showing connectors as a powerful design metaphor. In
particular, the synchronization and possibility of pending executions of speech

An Architectural Perspective on Multiagent Societies 175

acts are only possible because speech acts are not considered as low-level tran-
sient messages, i.e. events, but connectors, i.e. stateful entities. Similarly, the ac-
companying role-based notion of agenthood comes directly from a connector-based
approach to social middleware. These features alone set our approach apart from
other organizational metamodels, such as AMELI, MOISE, Madkit, etc.

These four kinds of connectors were identified in accordance with the target
application domain of the architectural style, and three major design principles:
generality, expressiveness and simplicity. First, multiagent societies represent a
software paradigm which is aimed at the development of social applications, i.e.
applications which are designed to support the activity of a group of people
within a given social context. Now, in any social context people may say things
to each other, manipulate resources of the environment, and see what happens.
Hence, speech acts, invocations and observations can be regarded as general-
purpose connectors, not tied to any particular subdomain. We can not dispense
with any of them either, since that would negatively affect expressiveness. Re-
garding this later principle, it is also clearly needed some mechanism which allows
structuring the activity of people. Social interactions provide a general and sim-
ple mechanism for this purpose. Last, simplicity comes into play to avoid the
unnecessary proliferation of structuring abstractions (e.g. conversations, groups,
organizations, institutions, teams, etc.).

This paper has also sketched a social connector metamodel which allows de-
signers to define the particular types of social interactions, speech acts, etc.,
which actually specialise the generic architectural style according to the require-
ments of the social application domain. This part of the paper is important for
two major reasons: first, it gives an architectural reading of the expression “the
agent environment as a first-class design abstraction” [20]; second, it challenges
the common view in the software architecture community which regards connec-
tors as application-independent architectural elements [6]. This paper has also
shown how the UML use case metamodel can be customised to account for a
light-weight version of this social connector metamodel.

The work reported in this paper represents a first step towards the architec-
tural foundation of Speech, an interaction-oriented language for programming
social applications3. The runtime semantics [10,11] and type system [12] of the
language provide further details on the social connector semantics and meta-
model introduced in this paper. Concerning implementation matters, we are
currently working in the mapping between the proposed architectural style and
REST, which will result in a Web-based social middleware infrastructure for the
Speech language [9].

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison Wesley, Reading (2003)

2. Clements, P.C., Shaw, M.: "the golden age of software architecture" revisited. IEEE
Software 26(4), 70–72 (2009)

3 http://www.speechlang.org

http://www.speechlang.org

176 J.M. Serrano and S. Saugar

3. Esteva, M., Rosell, B., Rodríguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Kudenko, D., Kazakov, D., Alonso,
E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, pp. 236–243. Springer, Heidelberg
(2005)

4. Object Management Group. OMG Unified Modeling LanguageTM (OMG UML),
Superstructure. Version 2.2. OMG (2009)

5. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent sys-
tems using the moise+ model: Programming issues at the system and agent levels.
IJAOSE 1(3/4), 370–395 (2007)

6. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: ICSE, pp. 178–187. ACM Press, New York (2000)

7. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent
systems. JAAMAS 17(3), 432–456 (2008)

8. Perry, D., Wolf, A.: Foundations for the study of software architecture. ACM SIG-
SOFT Software Engineering Notes 17(4), 40–52 (1992)

9. Saugar, S., Serrano, J.M.: A web-based virtual machine for developing computa-
tional societies. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS
(LNAI), vol. 5180, pp. 162–176. Springer, Heidelberg (2008)

10. Serrano, J.M., Saugar, S.: Run-time semantics of a language for programming
social processes. In: Fisher, M., Sadri, F., Thielscher, M. (eds.) CLIMA IX. LNCS
(LNAI), vol. 5405, pp. 37–56. Springer, Heidelberg (2009)

11. Serrano, J.M., Saugar, S.: Dealing with incomplete normative states. In: Padget,
J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A.
(eds.) COIN@AAMAS 2009. LNCS (LNAI), vol. 6069. Springer, Heidelberg (2010)

12. Serrano, J.M., Saugar, S.: Programming social middleware through social interac-
tion types. In: Dastani, M., El Fallah Segrouchni, A., Leite, J., Torroni, P. (eds.)
LADS 2009. LNCS (LNAI), vol. 6039. Springer, Heidelberg (2010)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Englewood Cliffs (1996)

14. Singh, M.P., Chopra, A.K.: Programming multiagent systems without program-
ming agents. In: Proc. of the AAMAS ProMAS Workshop (2009)

15. Singh, M.P., Huhns, M.N.: Service-Oriented Computing. Semantics, Processes,
Agents. John Wiley & Sons, Ltd., Chichester (2005)

16. Weyns, D.: Special issue on multiagent systems and software architecture.
IJAOSE 2(1) (2008)

17. Weyns, D.: A pattern language for multi-agent systems. In: WICSA/ECSA 2009,
pp. 191–200. IEEE, Los Alamitos (2009)

18. Weyns, D., Helleboogh, A., Holvoet, T., Schumacher, M.: The agent environment in
multi-agent systems: A middleware perspective. Multiagent and Grid Systems 5(1),
93–108 (2009)

19. Weyns, D., Holvoet, T.: A reference architecture for situated multiagent systems.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS
(LNAI), vol. 4389, pp. 1–40. Springer, Heidelberg (2007)

20. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. JAAMAS 14(1), 5–30 (2007)

A Methodology for Developing
an Agent Systems Reference Architecture

Duc N. Nguyen1, Kyle Usbeck1, William M. Mongan1, Christopher T. Cannon1,
Robert N. Lass1, Jeff Salvage1, William C. Regli1, Israel Mayk2, and Todd Urness2

1 Applied Communications and Information Networking Institute, Drexel University
{dn53,kfu22,wmm24,ctc82,urlass,jks29,regli}@drexel.edu

2 Communications-Electronics Research, Development and Engineering Center, US Army

Abstract. The slow adoption of agent-oriented methodologies as a paradigm
for developing industry systems is due in part to their lack of integration and
general-purpose use. There exists a need to define common patterns, relationships
between components, and structural qualities that a reference architecture for
agent-based systems would solve. However, there is little, if any, consensus on
how to create a reference architecture for agent-based systems. This paper presents
a methodology for developing a reference architecture that documents agent-
based systems from different system viewpoints. Rather than the traditional ap-
proach of studying existing systems, the documentation methodology relies on
forensic software analysis of agent frameworks (i.e., APIs and libraries for con-
structing agent systems). We demonstrate the methodology by describing the pro-
cess used to create the Agent System Reference Architecture.

1 Introduction

Using agent-based approaches for constructing large complex distributed systems can
provide advantages over traditional methods [5]. Unfortunately, industry has been slow
to adopt this agent-oriented paradigm. One reason for this slow adoption is the lack of
integration and general-purpose technologies [13]. Standards bodies such as the Foun-
dation for Intelligent Physical Agents (FIPA)1 are leading efforts to standardize pro-
tocols and formats of an agent-based system. However, there is a need to construct
a reference architecture that defines the relationships between standardized terms and
concepts of an agent-based system. Furthermore, such an architecture would give a set
of architectural blueprints and best practices to aid in developing new agent frameworks
and systems. To this end, a reference architecture for agent-based systems would speed
other standardization efforts and adoption as a viable systems engineering perspective.

This paper describes a documentation methodology for creating the Agent Systems
Reference Architecture (ASRA) for agent frameworks. Rather than studying agent sys-
tems across unrelated application domains, this work studies the agent frameworks used
to construct software systems composed of agents. The ASRA builds upon the Agent
Systems Reference Model (ASRM) [11] by identifying and documenting the interac-
tions between ASRM functional concepts typically found in an agent system.

1 http://www.fipa.org

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 177–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.fipa.org

178 D.N. Nguyen et al.

Our approach to creating the ASRA for agent frameworks combines static and dy-
namic software analysis tools with a regimented documenting process 4+1 View
Model [6] to existing agent framework implementations creating five architectural
views. The process for creating the ASRA is as follows:

1. For every ASRM functional concept, the ASRM definiton of each functional con-
cept comprises the Scenario view of the 4+1 Model.

2. For each agent framework implementation under analysis, implement a basic ap-
plication that exercises the functional concept. Execute this application within an
application profiler to generate runtime data to build the Process view.

3. Perform static analysis on the source code of the agent system functional concept
to build the Implementation view.

4. Finally, abstract the package decompositions into the Logical view.

The main contribution of this paper is a novel methodology for creating reference
architectures for a class of systems based on a domain reference model. Previous ap-
proaches rely on studying classes of existing systems and constructing reference archi-
tecture documents. Moreover, we believe this methodology is general enough to apply
to other software system domains.

The rest of this paper is organized as follows: Section 2 defines the terms archi-
tecture, reference architecture in the context of agent systems and agent frameworks.
Section 2.2 describes the Agent Systems Reference Model and its basis for creating
the ASRA. Section 3 provides a description of the 4+1 Model and how it will be ap-
plied to agent frameworks followed by an application of the process to create a portion
of the ASRA in Section 4. Section 5 provides a summary of related efforts in refer-
ence architectures for agent-based systems. Finally, we conclude with related efforts
and a roadmap of this continuing work for developing a reference architecture for agent
systems.

2 Background

This section defines a reference model and a reference architecture. We use these defi-
nitions to further define a reference architecture for agent systems.

2.1 What Is a Reference Model and Architecture?

A reference model describes the abstract functional elements of a system. A refer-
ence model does not impose specific design decisions. APIs, protocols, encodings, and
other standards are not included within a reference model, but can be use concurrently.
A reference model does not explicitly define an architecture, but rather can drive the
implementation of multiple architectures. The novelty of a reference model is that it
provides a common ontology, innovative and practical system engineering techniques,
and software development guidance [11].

A software architecture is an abstract representation of a software system. It is com-
posed of structures and components of the system, their properties, and the relation-
ships between them [2]. A reference architecture has many definitions, but the most
commonly used in the software engineering literature is that a reference architecture

A Methodology for Developing an Agent Systems Reference Architecture 179

consists of standardized diagrams (e.g., UML, ADL, etc.) that describe the architecture
from different viewpoints to cover the concerns of the stakeholders of a system. These
standardized diagrams are used to abstract the implementation details of a system and
illustrate the relationships between the components of a system [14].

2.2 A Reference Model for Agent Systems

The basis for the ASRA is the Agent Systems Reference Model (ASRM) [11]. The
ASRM provides a model for software systems composed of agents. It establishes terms,
concepts, and definitions required to compare agent systems.

Effector
Interface

Sensor
Interface

Agent
Reasoner

Agent Framework(s)

Platform(s)

Host(s)

Environment

In
fra

st
ru

ct
ur

e

n-to-1

Agent
System

n-to-1

n-to-1

Agent

n-to-1

Fig. 1. Anatomy of an agent and its role in an
agent system

The ASRM defines an intelligent
agent—or simply agent—as situated
computational processes that embody
one or more of the following quali-
ties: autonomy, proactivity, interactiv-
ity, continuous, sociality, and/or mobility.
The ASRM also formalizes concepts
and layers of organization in an agent-
based system. The layers (shown in
Figure 1) are: agents, frameworks,
platforms, hosts, and environments. An
agent-based system is the set of frame-
works, the agents that execute in them,
the platform (other software) that sup-
ports them and the hosts (hardware) upon
which they execute.

The ASRM describes an agent system
as a set of abstract functional concepts

that support overall system execution. The functional concepts represent the complex
interactions between software and hardware located at different layers of the agent sys-
tem. The functional concepts are as follows:

– Agent Administration facilitates and enables command and control of agents and
allocates resources to those agents as needed.

– Security and Survivability prevents execution of undesirable actions within an
agent system while allowing execution of desirable actions.

– Mobility facilitates and enables the migration of agents among framework in-
stances (typically, but not necessarily, on different hosts)

– Conflict Management facilitates and enables the management of interdependen-
cies between agents activities and decisions.

– Messaging facilitates and enables information and data transfer among agents in
the system.

– Logging facilitates and enables information about events to be recorded occurring
during system execution for subsequent inspection.

– Directory Services facilitates and enables the locating and accessing of shared
resources.

180 D.N. Nguyen et al.

The functional concepts are necessary in developing the ASRA as they are the start-
ing point for the analysis process.

2.3 The Agent Systems Reference Architecture

The Agent Systems Reference Architecture (ASRA) is an elaboration of the ASRM. It
establishes relationships between the ASRM functional concepts in agent frameworks
and defines patterns for these concepts. The ASRA does not address implementation
specifics but rather describes possible interactions between functional concepts. A ref-
erence architecture for agent systems can be defined from the standpoint of the indi-
vidual agent functionality, the agent framework, the group and agent societies, or the
system-to-system interaction viewpoints. In this work, we focus on the agent frame-
works because the functional concepts defined in the ASRM are largely implemented
in these frameworks.

3 Serial Approach to Constructing the ASRA

We construct the ASRA by applying reverse engineering methods on sample applica-
tions built using existing open source agent frameworks. We systematically build mul-
tiple view models by analyzing popular agent framework implementations: JADE2,
Cougaar3 and AGLOBE4. These agent frameworks were chosen for analysis because
of their popularity in the agent system community and the availability of their source
code and documentation.

Agent systems have a broad definition and have many applicable domains, studying
a particular fielded system or class of systems may not cover all the architectural vari-
ations of a reference architecture. Therefore, we study agent frameworks rather than
fielded systems or specific domains. This approach avoids the endless debate of the ex-
act definition of an agent and intelligence and simply addresses the systems composed
of agents.

Adapting the Rational/4+1 View Model. The Rational/4+1 View Model [6,7] creates
different architectural descriptions, or views, of software systems for different interested
parties (e.g. system developers, business-persons, customers). Each view identifies and
describes the relationships between components and concepts. Interested parties will
view these relationships with different weights and significance. The views in the 4+1
Model are as follows:

– The Logical View describes the static structural layout of the software system from
the perspective of a software developer.

– The Process View describes the runtime behavior of the system, including concur-
rency relationships and ordered tasks carried out by components of the system from
the perspective of a workflow designer or manager.

2 http://jade.tilab.com
3 http://www.cougaar.org
4 http://agents.felk.cvut.cz/aglobe

http://jade.tilab.com
http://www.cougaar.org
http://agents.felk.cvut.cz/aglobe

A Methodology for Developing an Agent Systems Reference Architecture 181

– The Implementation View describes the package layout of the system from the
perspective of the system architect.

– Deployment View describes the hardware-software configurations at a platform-
level as viewed by system administrators or deployment teams.

– Scenario View is the “+1” view that spans the other four views. This crosscutting
view is composed of narrative use cases to provide an executive level view of the
architecture.

The ASRA is documented using the Scenario, Process, Logical, and Implementa-
tion Views. Each ASRM functional concept is documented with these four views to
cover the needs of agent system architects, developers, agent framework designers, and
system users. The ASRA does not present the Deployment view because this view ad-
dresses the needs for system administrators and deployment teams.

The Serial Approach. The goal of the serial approach is to produce overlapping se-
ries of documents and diagrams detailing many views of a system from different per-
spectives. We document the most abstract views first and augment each with software
analysis data and domain knowledge to create the next view. We mine for software ar-
chitecture data by performing static and dynamic analysis of multi-agent frameworks
[10].

For each functional concept defined in the ASRM apply the following process:

1. Construct the Scenario View for a functional concept. The scenario view consists
of functional concept definitions from the ASRM including possible interactions
with other functional concepts. The scenario view for each functional concept con-
sists of UML use-case diagrams and/or descriptions depicting the use, role, and
functionality of the concept.

2. Construct the Process View from the Scenario View. We implement a snippet of
code exercising the functional concept for each agent framework. Execute this snip-
pet of code and use the dynamic runtime analysis framework, Enterprise Java Pro-
filer (EJP)5, to generate trace data. With this trace data, construct a UML process
diagram to illustrate a concrete architecture for the functional concept for a partic-
ular agent framework. After constructing process diagrams for each agent frame-
work, create a new process diagram from the common features across the agent
framework implementations while documenting differences as points of variation.
This abstract architecture for the functional concept and the points for variation
comprise the Process View.

3. Construct the Implementation View using the static analysis tools, BAT [4] to iden-
tify data flow and package/class dependencies of each functional concept. We use
these software tools on the agent frameworks and code snippets from Step 2. Fo-
cusing on the code snippets allows us to bypass extraneous information such as
dead code and common library dependencies. We construct a UML component di-
agram for each agent framework. Components represent the modules and packages
and connectors represent interdependencies. Next we construct an abstract architec-
tural package representation by identifying similar packages and modules from the
concrete architectures. Different packages are documented as points of variabilion.

5 http://ejp.sourceforge.net

http://ejp.sourceforge.net

182 D.N. Nguyen et al.

4. Construct the Logical View using the Bunch clustering system [9] and the static
analysis data from the previous step. The Logical View consists of UML pack-
age diagrams of a functional concept. This abstract architectural representation of
a functional concept is created from the concrete architectural views of the agent
frameworks. The clustered data, represented as a graph, illustrates interdependen-
cies between components (edges) and modules (nodes) within the agent framework
implementation. Highly connected modules indicate components and subsystems
within an agent framework implementation. UML package diagrams depict the the
concrete logical architecture of each agent framework implementation where pack-
ages are the modules and the connectors are interdependencies. Packages within
other packages represent interdependencies that do not travel outside the enclosing
package. From the concrete logical architectures of the agent framworks, we create
an abstraction noting similarities and differences. The differences are documented
as points of variation.

The result yields the agent systems reference architecture consisting of four docu-
ments for each ASRM functional concept.

4 Application of the Serial Approach

To demonstrate the serial approach, we step through the documentation process for
the mobility functional concept by analyzing agent framework implementations: Jade,
AGLOBE, and Cougaar.

4.1 The Scenario View for Agent Mobility

The Scenario View of the ASRA, based on the 4+1 View Model, contains scenarios and
use cases of a system’s architecturally significant behavior.

Mobility Definition. Mobility is the process by which an agent migrates from one
executing platform instance to another. The functional concept use cases (ellipses) are
depicted in a UML use-case diagram (Fig. 2). The move agent (moving an agent from
one container to another) and the clone agent (making a copy of an agent in another
container) use cases are invoked by the container (represented by an actor). Note, this
figure also illustrates interactions between the Agent Administration and Directory Ser-
vices functional concepts. For example, the clone agent use case uses the create agent,
modify agent state use case.

4.2 The Process View for Agent Mobility

The Process view documents the runtime behavior of a functional concept based on a
code snippets for each agent framework. Executing EJP on code snippets yield runtime
traces. The runtime trace illustrates the percentage of time spent in methods during ex-
ecution. The runtime trace (Fig. 3(a)) shows a temporal view of the mobility functional
concept and illustrates the invocation points of the agent mobility functional concept.
From the runtime trace, we create a UML activity diagram (Fig. 3(b)).

A Methodology for Developing an Agent Systems Reference Architecture 183

Fig. 2. The Mobility functional concept use case diagram and the interactions with the Agent
Administration and Directory Services functional concept

Mobility Process View Patterns. We repeat this process for AGLOBE and Cougaar
to construct similar Process diagrams. Comparing the diagrams, two patterns for agent
mobility emerge. Jade and AGLOBE exhibit Serialization mobility (Fig. 3(c)) in which
an agent’s execution is paused, converted into a transferable form, transmitted to a target
platform, converted into an executable form, and resuming agent’s execution. Cougaar
exhibits shared-object mobility in which agents are shared between platform containers
and the agent’s state is synchronized across platforms during execution. Agent mobility
is achieved by changing the shared state to the new platform location.

4.3 The Implementation View for Agent Mobility

The Implementation view is the static view of the agent system derived through static
code analysis tools and temporal data from the process view. UML component diagrams
depict the high-level components of a functional concept and their interactions with
other components and functional concepts.

Mobility Implementation View Patterns. The two patterns for Mobility from the
Implementation view (Fig. 4): serialization mobility and ticketing mobility.

Jade and AGLOBE mobility follow a serialization mobility pattern (Fig. 4(a)). The
Platform Discovery component uses Directory Services to find the destination platform.
The Agent Encapsulation component creates a representation of the mobile agent for
transport. The Messaging component delivers the mobile agent to the destination plat-
form. Finally, the Agent Extraction component receives the mobile agent, loads it in the
platform, and resumes its execution.

Cougaar mobility follows a ticketing system pattern (Fig. 4(b)). The Platform Dis-
covery component uses the Directory Services component to find the destination plat-
form. A Mobility Factory component generates a ticket ID to identify the destination

184 D.N. Nguyen et al.

(a) Runtime Trace for Jade Mobility.

(b) Activity Diagram for Jade Mobility.

(c) Mobility Process View: Serialization Pattern.

Fig. 3. Jade Mobility runtime trace and resulting concrete architecture Process view diagram.
Comparing architecture diagrams for each agent framework leads to an abstract architecture for
the mobility functional concept.

A Methodology for Developing an Agent Systems Reference Architecture 185

(a) UML Component di-
agram for serialization
mobility

(b) UML Component diagram for ticketing mobility

Fig. 4. Implementation View: Two Patterns for Mobility

(a) Serialization paradigm: The migra-
tion component depends on the agent
execution manager and serialization
components of the agent controller com-
ponent and the messaging component.

(b) Shared Object paradigm: The mi-
gration component depends on the di-
rectory services component, the agent
controller component, and the messag-
ing component.

Fig. 5. The Logical View: two paradigms for Mobility

platform of the mobile agent. Finally, the Mobile Agent component uses messaging
functional concept to publish the ticket to the other hosts.

4.4 The Logical View for Agent Mobility

The Logical Views express the high level packages and interacting components existing
in an agent system. The Logical View is constructed by observing the clustered runtime
data generated from EJP and BAT and organizing the major objects into packages. This
organization is represented with UML package diagrams.

186 D.N. Nguyen et al.

Mobility Logical View Patterns. The Logical view for Mobility depicts two patterns:
Serialization Mobility and Shared Object Mobility.

Jade and AGLOBE follow the serialization pattern in which the agent is converted
to a transferable form before migrating the agent to its destination. The Mobility func-
tionality (Fig. 5(a)) depends on the agent administration to pause and start the agent and
messaging components to transmit the agent.

Cougaar follows the shared object mobility pattern in which the agent representation
is shared among platforms. Agent mobility involves synchronizing the state of the agent
then halting the agent on the source platform and initializing and executing the agent
on the target instance. Shared object mobility (Fig. 5(b)) depends on the agent adminis-
tration component for halting and initializing the agents, the messaging component for
synchronizing the state, and directory services for finding the target platform.

5 Related Work

In developing the methodology for creating the ASRA, we studied two related areas
of research: approaches and methodologies for creating a reference architecture, and
reference architecture related to agent-based systems.

The multiple view presentation for the ASRA is adopted from the ISO/IEEE1471 [1]
recommendation for architecture documentation. Another example of presenting a
reference architecture in multiple views is the Reference Architecture Foundation for
Service Oriented Architectures (RAF-SOA) [8] from the OASIS foundation. The RAF-
SOA presents a reference architecture for SOA systems. Moreover, similar to the ASRA,
the RAF-SOA is based on the definitions, layered OASIS reference model for service
oriented architectures.

The process for creating a reference architecture for systems in a regimented manner
is often addressed through analyzing existing and deployed systems. The Product Line
Software Engineering, Domain-Specific Software Architecture (PuLSE-DSSA) [3] is
a process for creating reference architectures in an iterative fashion. PuLSE-DSSA
still depends on instantiated architectures. Architecture Structure Description Language
(ASDL) also depends on existing systems to find commonalities to abstract a reference
architecture. This process is does not directly aid in constructing new agent frameworks.

Reference architectures for agent-based systems has been studied to a limited extent.
The FIPA Abstract Architecture Specification6 discusses agent system architecture in an
effort to promote interoperability and reusability. FIPA provides a generic view on agent
systems and describes how specific functionality should interact. FIPA provides low-
level details such as mechanisms for how agents perform service look-ups. The ASRA
also focuses on identifying architectural paradigms and patterns in agent frameworks
but focuses on the higher level, implementation-agnostic interactions.

Weyns and Holvoet [12] developed a Reference Architecture for Situated Multia-
gent Systems. This reference architecture focuses on the agent operating in an appli-
cation environment. This architecture was developed through an interative process of
analysis and validation studying different agent-based systems. In their reference archi-
tecture, the authors constructed multiple documents from different views: the module

6 http://www.fipa.org/specs/fipa00001

A Methodology for Developing an Agent Systems Reference Architecture 187

decomposition, the shared data, and the communicating processes views. This refer-
ence architecture approach focuses on the agent in the environment whereas the ASRA
address the infrastructure of the environment.

6 Conclusion and Future Work

The Agent Systems Reference Architecture (ASRA) is an ongoing effort to create a
reference architecture for agent-based systems. The primary contribution of this work is
the serial process for creating a reference architecture for an agent systems. This process
begins with functional concepts defined by the ASRM and serially applies dynamic and
static software analysis of agent framework implementations. The resulting architecture
is a set of architectural views depicting relationships and structural qualities among
instantiated functional components.

In future work, we will apply this process on the rest of the ASRM functional con-
cepts to present a full architecture for agent frameworks. Moreover, we intend to extend
this process to include a Deployment view of agent systems. The Deployment view
presents the architecture of an agent system as it would be situated in the physical en-
vironment. Addressing how conceptual components of an agent system is beneficial to
agent system architects, developers, and system integrators in identifying real-world is-
sues in system engineering. Furthermore, we intend to address the paradigms of how
agent systems interoperate with external systems (e.g. agents integrated with web ser-
vices).

References

1. ANSI/IEEE. Recommended practice for architectural description of software-intensive sys-
tems (2009), http://www.iso-architecture.org/ieee-1471

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley Pro-
fessional, Reading (2003)

3. DeBaud, J.-M., Flege, O., Knauber, P.: PuLSE-DSSA – a method for the development of soft-
ware reference architectures. In: ISAW 1998: Proceedings of the Third International Work-
shop on Software Architecture, pp. 25–28. ACM Press, New York (1998)

4. Eichberg, M.: BAT2XML: XML-based java bytecode representation. Electronic Notes in
Theoretical Computer Science 141(1), 93–107 (2005); Proceedings of the First Workshop on
Bytecode Semantics, Verification, Analysis and Transformation (Bytecode 2005)

5. Jennings, N.R.: An agent-based approach for building complex software systems. Commun.
ACM 44(4), 35–41 (2001)

6. Kruchten, P.: Architectural blueprints—The “4+1” view model of software architecture.
IEEE Software 12(6), 42–50 (1995)

7. Kruchten, P.: The rational unified process: an introduction, 3rd edn. Addison-Wesley Long-
man Publishing Co., Inc., Amsterdam (2003)

8. Laskey, K., Estefan, J.A., McCabe, F.G., Thornton, D.: Reference architecture founda-
tion for service oriented architecture. Technical report, OASIS (2009), http://docs.

oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html

9. Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: A clustering tool for the
recovery and maintenance of software system structures (August 1999)

http://www.iso-architecture.org/ieee-1471
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html

188 D.N. Nguyen et al.

10. Mongan, W.M., Dugan, C.J., Lass, R.N., Hight, A.K., Salvage, J., Regli, W.C., Modi, P.J.:
Dynamic analysis of agent frameworks in support of a multiagent systems reference model.
In: IADIS International Conference Intelligent Systems and Agents (2007)

11. Regli, W.C., Mayk, I., Dugan, C.J., Kopena, J.B., Lass, R.N., Modi, P.J., Mongan, W.M.,
Salvage, J.K., Sultanik, E.A.: Development and specification of a reference model for agent-
based systems. IEEE Trans. On Systems, Man, and Cybernetics, Part C 39(5), 572–596
(2009)

12. Weyns, D., Holvoet, T.: A reference architecture for situated multiagent systems. In: Weyns,
D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp.
1–40. Springer, Heidelberg (2007)

13. Weyns, D., Parunak, H.V.D., Shehory, O.: The future of software engineering and multi-
agent systems. Special Issue on Future of Software Engineering and Multi-Agent Systems,
International Journal of Agent-Oriented Software Engineering, IJAOSE (2008)

14. Zhou, Y., Chen, Y., Lu, H.: UML-based systems integration modeling technique for the
design and development of intelligent transportation management system. In: Proceedings
of the 2004 IEEE International Conference on Systems, Man and Cybernetics. IEEE, The
Hague (2004)

A Middleware Model in Alloy

for Supply Chain-Wide Agent Interactions

Robrecht Haesevoets, Danny Weyns, Mario Henrique Cruz Torres,
Alexander Helleboogh, Tom Holvoet, and Wouter Joosen

Distrinet, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
robrecht.haesevoets@cs.kuleuven.be

Abstract. To support the complex coordination activities involved in
supply chain management, more and more companies have autonomous
software agents acting on their behalf. Due to confidentiality concerns,
such as hiding sensitive information from competitors, agents typically
only have a local view on the supply chain. In many situations, however,
companies would like to expand the view of their agents to share valuable
information such as transportation tracking and service delays. Non of
the participating companies, however, has enough knowledge or authority
to realize such interactions in a controlled manner.

In this paper, we present an organization middleware that offers a col-
laboration platform and enables agents to interact across the boundary
of local interactions. Policies and laws enable companies to define the
scope of interactions of their agents and the restrictions on their exposed
information. Using Alloy, we formally define the relation between the
interactions offered by the middleware, the exposed information and the
provided policies and laws. This allows us to guarantee a number proper-
ties which are of particular interest to companies using the middleware.

Keywords: Organisations and institutions; Social and organizational
structure; Verification of MAS.

1 Introduction

In today’s competitive and globalized market, streamlined collaborations be-
tween business entities are a necessity. In the DiCoMas project1, a joint research
effort with academic and industrial partners, we have been studying the use of
agents for managing collaborations between business entities in the domain of
supply chain management. A key objective of this project is to improve integra-
tion and collaboration among supply chain partners.

Due to company-specific restrictions, such as hiding sensitive data from com-
petitors or having clients exchange pricing info with subcontractors, companies
typically only allow their agents to participate in local supply chain interac-
tions [14]. As a result, agents only have a local view on the supply chain. Nev-
ertheless, in many situations companies would like to extend the view of their
1 DiCoMas: Distributed Collaboration using Multi-agent System Architectures:
http://distrinet.cs.kuleuven.be/projects/dicomas/index.html

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 189–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://distrinet.cs.kuleuven.be/projects/dicomas/index.html

190 R. Haesevoets et al.

Fig. 1. A visual representation of the organization model

agents and allow them to participate in supply chain-wide interactions in a con-
trolled manner. Examples are tracking containers throughout the supply chain
or monitoring problems such as delays outside the local view of agents.

A typical way to structure such interactions between agents is by means of
roles and organizations [9,1]. In previous work [17], we have presented an or-
ganization model for collaborative multi-agent systems. Although the model is
relatively simple, it is powerful enough to model controlled supply chain-wide
interactions. A subset of the model is shown in Fig. 1. The core abstractions of
the model are organization, role, and capability. Organizations, defined as a set
of roles, specify the boundaries in which controlled interactions can take place. A
role represents a concrete participation in the organization. It defines the agents
that have access to the organization, and it defines the capabilities these agents
have in the organization. Each capability represents a concrete interaction ability
relative to another role in the organization.

Realizing organizations and managing their dynamics in a heterogeneous and
distributed supply chain setting is a very complex task, for which none of the
participating companies has enough authority or knowledge. Additionally, com-
panies want guarantees before exposing confidential information or allowing their
agents to collaborate with external parties.

To address these challenges we present an organization middleware approach.
The middleware offers organizations and roles as a set of reusable programming
abstractions to application developers. At run-time, the middleware realizes a
collaboration platform. Agents provide the middleware with local information on
the supply chain, and in return, the middleware offers managed organizations
that enable agents to engage in supply-wide interactions in a controlled way.
Companies can specify interaction laws to define the desired scope of interactions
for their agents and a set of policies to restrict the information they expose, in
order to deal with confidentiality concerns. These laws and policies will then be
enforced by the middleware.

The use of organizational abstractions together with a middleware has a num-
ber of key benefits: (1) it allows to represent and structure supply chain-wide in-
teractions at a high-level of abstraction; (2) it allows to separate the management
of dynamic supply chain-wide interactions, performed by the middleware, from
the actual functionality, provided by agents participating in the interactions;
(3) it allows to accurately restrict the interactions between agents according to
provided policies in terms of capabilities.

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 191

The contributions of this paper are:

1. We motivate and specify a set of concrete requirements for supply chain-wide
interactions in the domain of logistics for supply chain management.

2. We present a formal model in the Alloy specification language [8] of an orga-
nization middleware supporting supply chain-wide interactions. The model
formally defines the relation between supply chain-wide interactions enabled
by the organizations offered by the middleware and the local supply chain
information exposed by the agents and the provided policies.

3. We assert a number of relevant properties offering companies formal guar-
antees in terms of confidentiality using the model and the Alloy Analyzer.

Overview of this paper. Section 2 introduces a running example together with
a set of requirements for supply chain-wide interactions. The organization mid-
dleware is presented in Sect. 3 and illustrated in the running example. Section 4
presents the middleware model in Alloy and shows how the Alloy Analyzer can
be used to assert a number of properties. Finally, related work is discussed in
Sect. 5, and Sect. 6 concludes and reflects on future work.

2 Logistics in Supply Chain Management

In the domain of supply chain management, companies usually outsource their
logistic activities to one or more specialized third-party logistics providers (3PL).
To integrate and streamline the operations of different 3PLs, an extra level of
outsourcing can be introduced, called fourth-party logistics providers (4PL).
Figure 2 shows an example of a hierarchical outsourcing structure in a supply
chain, used as a running example in this paper. In the example, several com-
panies collaborate to realize the logistic needs of company 0. Company 0 has
an outsourcing contract with company 1, which as acts as a 4PL and integrates
the services of two 3PLs, company 2 and 3. Company 2, in turn, has two addi-
tional subcontractors, company 4 and 5. In the example, company 3 is currently
carrying a container of company 0, and company 4 and 5 are expecting a delay.

Due to confidentiality concerns, companies only allow their agents to partic-
ipate in local interactions corresponding to active outsourcing contracts. As a
result, agents only have a local view on the supply chain. Typical supply chain
flows, such as information and services, are propagated through the supply chain

Fig. 2. Supply chain collaborations

192 R. Haesevoets et al.

based on local interactions. In the DiCoMas project, we aim to enhance the in-
tegration and collaboration of the supply chain partners to improve information
sharing and responsiveness. To realize this, agents acting on behalf of companies
need extended views on the supply chain and have to interact across the supply
chain in a controlled way. We give a number of concrete stakeholder require-
ments that motivate the need for supply chain-wide interactions. For clarity, the
requirements are explained in the context of the running example.

Collaborative Planning. To create a planning in correspondence with the
individual goals of each stakeholder, company 1 wants to use a collaborative
planning approach. This requires agents of both clients, such as company 0, and
subcontractors, such as company 2 and 3, to participate in coordinated planning
and negotiation activities, while company 1 maintains a supervising position and
can enforce the necessary restrictions on the involved interactions.

Traceability. Company 0 wants to track the location and status of its containers
throughout the supply chain. Instead of having to contact its service provider,
company 1, who in turn has to contact other service providers, company 2 or
3, and so on, company 0 requires it agents to directly interact with the agents
of the current carriers of its containers, increasing responsiveness and reducing
overhead. Using policies, intermediate companies such as company 1 should be
able to restrict the information that can be exposed to company 0.

Improved Responsiveness in Case of Problems. As a 4PL, Company 1
wants its agents to be directly informed by agents managing third-party resources
when serious problems occur, such as delays or decommitment. This enables
company 1 to anticipate future problems at a supply chain-wide level and offer
its clients a higher quality of service. Intermediate companies should be able to
restrict the information exposed by their subcontractors.

3 The Organization Middleware

The previous section introduced a number of stakeholder requirements that un-
derpin the need for supply chain-wide interactions. Such interactions can be
modeled and coordinated using organizational abstractions we introduced in [17].
In this section we present an organization middleware that offers such organi-
zations and roles as a set of reusable programming abstractions to application
developers. At runtime, the middleware provides a collaboration platform and
takes the responsibility of managing organizations and their dynamics, for which
non of the partners in a supply chain has enough authority or knowledge.

Figure 3 gives a high-level overview of the approach. To participate, agents of
supply chain companies have to provide the middleware with context information
and a set of interaction laws. In return, the middleware offers agents a broader
view on the supply chain and support for supply chain-wide interactions, while
taking the responsibility of managing the interactions and their dynamics. Using
a middleware allows us to separate the management of the organizations from
the agents, who can now focus on realizing the functionality in organizations.

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 193

Fig. 3. High-level overview of the approach

Internally the middleware can be realized using different technologies including
agents. Agents using the middleware have to conform to certain communication
standards, which are outside the scope of the current model.

In the remainder of this section we first explain the notions of context and
interaction laws in more detail. We then show how context and laws can be used
by the middleware to offer organizations that enable controlled supply chain-
wide interactions in the running example.

3.1 Context Information and Interaction Laws

Agents have to provide the middleware with local information on the supply
chain, consisting of context and interaction laws. The completeness of the con-
text depends on the amount of information exposed by the agents on behalf
of the companies. Context includes information on companies, their dynamic
properties, such as containers currently carried or expected delays, the current
outsourcing contracts between companies, and a set of flow policies. Flow policies
define the allowed supply chain flows between agents of particular companies. We
currently consider two types of flows: information flow and service flow. These
allow companies to specify which information exchange and which concrete ser-
vice provision can take place between which specific companies. Flow policies are
specified at the level of outsourcing contracts as allowed flows within outsourcing
contracts as well as between different contracts. An example is shown in Fig. 4,
illustrating how flow policies of different companies create a graph-like structure
defining the allowed information and service flows at a supply chain-wide level.

Interaction laws allow companies to define in a declarative way the desired
scope of the supply chain-wide interactions for their agents. In particular, an
interaction law specifies a desired set of interaction partners whose agents should
be allowed to participate in the interaction, such as “all providers of a company”
or “all companies carrying a specific container”, as well as the supply chain flows
the interaction should enable between these partners.

3.2 Realizing Supply Chain-Wide Interactions

The middleware uses the interaction laws together with the current context to
provide a set of organizations supporting the desired supply chain-wide interac-
tions. Each organizations enables a set of interactions, defined by the capabilities
of its role and each capability enables a specific supply chain flow toward an-
other role in the organization in correspondence with the current flow policies.
As context or laws change, the middleware adapts the organizations accordingly.

194 R. Haesevoets et al.

Fig. 4. Context consisting of flow policies and outsourcing contracts

Fig. 5. Examples of organizations and roles realizing supply chain-wide interactions

Figure 5 illustrates a set of organizations realizing the requirements for supply
chain-wide interactions introduced in Sect. 2 for the running example. Organi-
zation 1 illustrates collaborative planning, enabling the agents of client 0 to
exchange planning information with the agents of subcontractors 2 and 3. Role
capabilities, compliant with the flow policies, show that company 1, as a 4PL,
remains in a supervising position, ensuring clients have no capabilities to make
any direct service requests to subcontractors. Organization 2 shows the tracking
of a container throughout the supply chain, enabling the agents of company 0 to
interact with the carrier of their container, the agents of company 3. Improved
responsiveness is exemplified by organization 3, allowing agents of company 1
to interact with the agents of company 4, which is expecting a delay. Because
company 2 wants to hide its internal outsourcing strategy, it does not allow any
flows between company 5 and other parties, as illustrated in Fig. 4. As a result,
company 5 is excluded from organization 3, although it is also expecting a delay.

4 Middleware Model in Alloy

In this section we give a formal model of the middleware abstractions using the
Alloy specification language. Alloy [8] is a structural modeling language based

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 195

on first-order logic for expressing complex structural constraints and behavior in
software systems. The Alloy Analyzer2 is a constraint solver, supporting auto-
matic simulation and checking of Alloy models within a specific scope. Simulation
consists of finding instances satisfying a specification, while checking consists of
finding counter examples violating certain assumptions about a model. The Al-
loy analysis is based on the notion of small scope hypothesis [8], assuming that
assertions checked within a well-chosen scope will also hold for larger scopes.
However, with a well-chosen scope and model, it can even be possible to do a
complete analysis for a specific setting.

The purpose of our formal model in Alloy is threefold: (1) present a rigorous
specification of the main concepts of the organization middleware; (2) formally
define which supply chain-wide interactions the middleware can and should pro-
vide, given the context and a set of interaction laws; (3) show how this model can
be used together with the Alloy analyzer to guarantee a number of properties in
terms of confidentiality constraints.

4.1 Middleware Model

The middleware model is shown in Spec. 1. Some parts of the model are omitted,
but can be found in Appendix A. An executable version of the model is also
available for download3. Every concepts is represented by signature. In Alloy, a
signature introduces a new set of atoms in the universe (univ) of the model (the
universal set univ contains all atoms of the model).

Context Information. Context information consists of information on com-
panies, their dynamic properties and their flow policies. We start by defining the
signatures Company and Contract to represent companies and their outsourcing
contracts. Company has one field, named properties, mapping each company to
a set of properties, defined by the signature Property. Contract has three fields,
two disjunct companies representing the client and provider in the contract, and
a field flows mapping each contract to the set of supply chain flows that are
allowed to take place within the contract. Supply chain flows are defined by the
signature Flow. Subtypes Info and Service represent some of the typical supply
chain flows, but more expressive subtypes can be introduced.

On line 11 the signature context defines the context of the middleware as a set
of companies, contracts and flow policies. Flow policies are defined on line 144

as ternary relations which specify the allowed flows between different contracts.
For example, Info->c1->c2 represents a flow policy allowing information to
flow from contract c1 to contract c2. A signature fact on line 165 introduces an
additional constraint to ensure companies can only define flow policies between
2 Alloy Analyzer 4 - http://alloy.mit.edu/alloy4/
3 http://people.cs.kuleuven.be/~robrecht.haesevoets/AOSE2010/
4 The field flowPolicies can refer to multiple flow policies. The Alloy syntax does not

require the set keyword for relations.
5 The box join a[b] is the equivalent of the relational join b.a. The + sign represents

the union of two sets while the & sign represents the intersection.

http://alloy.mit.edu/alloy4/
http://people.cs.kuleuven.be/~robrecht.haesevoets/AOSE2010/

196 R. Haesevoets et al.

Specification 1. Middleware Model (partial)
1 sig Company{

2 properties:set Property

3 }

4 sig Contract{

5 disj client,provider:Company,

6 flows:set Flow

7 }

8 sig Property{}

9 abstract sig Flow{}

10 one sig Info,Service extends Flow{}

11 sig Context{

12 companies:set Company,

13 contracts:set Contract,

14 flowPolicies:Flow->contracts->contracts

15 }{

16 all c1,c2:Contract | c1->c2 in flowPolicies[univ] implies

17 some c1.(client+provider) & c2.(client+provider)

18 }

19 fun allowedFlows[context:Context]:Flow->Company->Company{

20 {flow:Flow,com1,com2:Company | some c1,c2:context.contracts |

21 flow in c1.flows & c2.flows and

22 com1+com2 in (c1+c2).(client+provider) and

23 c2 in c1.*(flows.flow<:context.flowPolicies[flow]:>flows.flow)}

24 }

25 sig Law{

26 scope:Flow->Company->Company

27 }

28 fun propertyBasedSelection[p:Property, vp:Company, context:Context]:set Company{

29 {c:Company | p in c.properties and Info->c->vp in allowedFlows[context]}

30 }

31 sig Role{

32 company:Company,

33 capabilities:Role->Flow

34 }

35 sig Organization{

36 roles:set Role

37 }

38 fun enabledFlows[org:Organization]:Flow->Company->Company{

39 {flow:Flow,com1,com2:Company | some r1,r2:org.roles |

40 r1.company = com1 and r2.company = com2 and r2->flow in r1.capabilities}

41 }

42 sig MiddlewareModel{

43 context:Context,

44 laws:set Law,

45 orgs:set Organization

46 }{

47 enabledFlows[orgs] = laws.scope & allowedFlows[context]

48 }

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 197

their own contracts. We also define a help function allowedFlows on line 196

which returns the supply chain flows that are allowed between companies by the
contracts and flow policies in the given context.

Example: Specification 2 shows an example of context corresponding to the
setting shown in Fig. 4. There are six companies and five contracts between
these companies. All contracts allow information and service flows. Company2
is carrying a container of Company0 and both Company4 and Company5 are
expecting a delay. The context also specifies a set of flow policies that allow
information to flow between Contract01 and Contract12, Contract01 and Con-
tract13, Contract12 and Contract13, and Contract13 and Contract34.

Specification 2. An example of context specified in the middleware model
1

2 ...

3 one sig Context1 extends Context{

4 }{

5 companies = Company0 + Company1 + Company2 + Company3 + Company4 +

6 Company5

7 contracts = Contract01 + Contract12 + Contract13 + Contract34 +

8 Contract35

9 Contract01.client = Company0 and Contract01.provider = Company1

10 Contract12.client = Company1 and Contract12.provider = Company2

11 ...

12 Contract01.flows = Info + Service

13 Contract12.flows = Info + Service

14 ...

15 Company2.properties = CarryingContainerOfCompany0

16 Company4.properties = ExpectingDelay

17 Company5.properties = ExpectingDelay

18 flowPolicies = Info->Contract01->Contract12 +

19 Info->Contract12->Contract01 +

20 Info->Contract01->Contract13 +

21 Info->Contract13->Contract01 +

22 Info->Contract13->Contract34 +

23 Info->Contract34->Contract13

24 }

Interaction Laws. Interaction laws are represented by the signature Law on
line 25. The field scope specifies the desired scope of interaction, as the set of
supply chain-wide flows the interaction should enable between companies. To
represent a meaningful scope of interaction, functions can be used which use the

6 The set comprehension {a: A | constraint} returns all elements of A satisfying the
given constraint. *a represents the reflexive transitive closure. <: and :> represent
the domain and range restriction of a relation.

198 R. Haesevoets et al.

current context as input. An example is the property-based selection function
on line 28, which returns all companies having a given property p and that are
visible from the given viewpoint vp.

Example: Specification 3 shows an example of three laws, corresponding to
the organizations shown in Fig. 5. Law1 specifies an interaction scope between
Company0, Company1, Company2 and Company3. Law2 uses the property-
based selection function to specify an interaction scope between Company0 and
the companies carrying its containers. Law3 specifies an interaction scope be-
tween Company1 and the companies expecting a delay.

Specification 3 . An example of interaction laws specified in the middleware
model
1 ...

2 one sig Law1 extends Law{

3 }{

4 scope = (Info+Service)->Company0->Company1 +

5 (Info+Service)->Company1->Company0 +

6 Info->Company0->Company2 +

7 ...

8 }

9 one sig Law2 extends Law{

10 }{

11 scope = Info->propertyBasedSelection[CarryingContainer,

12 Company0,

13 Context1]->Company0 +

14 ...

15 }

16 one sig Law1 extends Law{

17 }{

18 scope = Info->propertyBasedSelection[ExpectingDelay,

19 Company1,

20 Context1]->Company1 +

21 ...

22 }

Roles and Organizations. Roles and organizations are defined on lines 31
and 35. Each role has a field company, mapping the role to the company whose
agents are allowed to play the role, and a field capabilities, representing the
capabilities of the role in terms of supply chain flows allowed toward other roles
in the organization. Organizations contain the field roles representing the current
roles of the organization. We also define a help function enabledFlows which
returns the flows between companies that are enabled by a given organization.

Example: Specification 4 shows a specification of the organizations in Fig. 5.
Each role has a company and a set of capabilities. For example, Role1 is played
by Company1 and has capabilities for information and service flow with Role2,
and capabilities for information flow with Role3 and Role4.

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 199

Specification 4. An example of organizations in the middleware model
1 one sig Role1 extends Role{

2 }{

3 company = Company0

4 capabilities = Role2->(Info+Service) +

5 (Role3+Role4)->Info

6 }

7 ...

8 one sig Org1 extends Organization{

9 }{

10 roles = Role1 + Role2 + Role3 + Role4

11 }

12 one sig Org2 extends Organization{

13 }{

14 roles = Role5 + Role6

15 }

16 one sig Org3 extends Organization{

17 }{

18 roles = Role7 + Role8

19 }

20

Middleware Model. The state of the middleware is represented by the sig-
nature MiddlewareModel on line 42. This state is defined as the current context
and interaction laws, and the organizations offered by the middleware. A signa-
ture fact on line 47 uses the two help functions, we defined earlier, to specify the
relation between the organizations offered by the middleware and the current
context and interaction laws. The fact specifies that organizations offered by
the middleware should enable those, and only those, supply chain flows between
companies that are both defined by the scope of the interaction laws and allowed
within the current context and its flow policies.

Example: Specification 5 the specification of a middleware model with the
context and laws we specified in the previous examples. The application of the
laws to the context results in a set of organizations (Org1 + Org2 + Org3),
which were illustrated in the previous example.

Specification 5. An example of a specific middleware model
1 one sig MiddlewareModel1 extends MiddlewareModel{

2 }{

3 context = Context1

4 laws = Law1 + Law2 + Law3

5 }

200 R. Haesevoets et al.

4.2 Asserting Properties

Using the Alloy Analyzer, we can check a number of useful properties of our
model. We focus on two relevant properties: (1) asserting that the middle-
ware only offers organizations compliant with the current context; (2) assert-
ing that companies can put forward a number of confidentiality constraints, by
restricting the supply chain flows in the outsourcing hierarchy. The Alloy spec-
ification of these properties is shown in Spec. 67. Both properties have been
checked by the Alloy analyzer within a scope of 6 atoms for each type. Although
this scope is limited, it covers more than all the possibilities in our running
example.

The first property states that companies always need some direct or indirect
contractual link, known to the middleware, before their agents can participate
in any supply chain-wide interaction. The second property states that a com-
pany (com3) can restrict all supply chain-wide interactions between any two
companies (com1 and com2) that do not have a direct or indirect contrac-
tual link with each other independent from the restricting company (com3).
This property ensures, for example, that 3PLs, such as company 2 in Fig. 4,
can restrict the information their subcontractors can expose, such as company
4 and 5. In the example, company 2 allows company 4 to expose information
in supply chain-wide interactions, but restricts this for company 5. As a re-
sult, the agents of company 1 can participate in an interaction with the agents
of company 4, expecting a delay, but not with the agents of company 5, also
expecting a delay.

Specification 6. Properties
1 check property1{

2 all mw:MiddlewareModel, disj com1,com2:Company |

3 !contractPath[com1,com2,mw.context] implies

4 no role1,role2:mw.orgs.roles | role1.company = com1 and

5 role2.company = com2 and role2 in role1.capabilities.univ

6 } for 6

7 check property2{

8 all mw:MiddlewareModel, disj com1,com2,com3:Company |

9 !indepContractPath[com1,com2,com3,mw.context] and

10 (all c1,c2:(client+provider).com3 |

11 no Flow->c1->c2 & mw.context.flowPolicies) implies

12 no r1,r2:mw.orgs.roles | some r2->Flow & r1.capabilities

13 and r1.company = com1 and r2.company = com2

14 } for 6

7 contractPath[com1,com2,context] returns true if a path from com1 to com2
exists in the contractual structure of the given context. indepContract-
Path[com1,com2,com3,context] returns true if a path exists independent from com3.

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 201

5 Related Work

The approach presented in this paper intersects with several domains of related
work. We focus on a number of representative approaches for business to busi-
ness (B2B) integration in supply chain management, roles and organizations,
organization middleware and formal methods for organizations in multi-agent
systems.

B2B Integration in Supply Chain Management. Several approaches have
been proposed to address the integration of business processes in supply chain
management. Preist et al. [13] recognize the problems of setting up interactions
between agents of different supply chain partners, and propose a Web service
architecture providing automated B2B integration. Stefansson [15] stresses the
importance of automated information sharing in supply chains, but also states
the lack of scientific research covering the management of information flows
within supply chains. Projects, such as CrossFlow [5], have explored the integra-
tion of business process between outsourcing partners using cross-organizational
workflow management and virtual organizations. In contrast to the work pre-
sented in this paper, these approaches typically focus on the local integration of
business processes, lacking explicit support for setting up and managing supply
chain-wide interactions.

Roles and Organizations. Roles and organizations are generally acknowledged
as valuable abstractions to structure complex interactions [9,1]. Two particular
lines of related research are electronic institutions [4] and Law-Governed Inter-
actions [10]. Both approaches use laws, norms or policies to govern interactions
among agents. Most of the existing approaches, however, put the responsibility
of managing organizations with the agents, such as AGRE [3] and TuCSoN [11].
The organization middleware presented in this paper encapsulates the manage-
ment of organizations as a reusable service. This greatly enhances the portability
of our approach and can reduce the complexity of developing and maintaining the
agents themselves. An interesting approach to support the development of the
organization middleware is the A&A meta-model proposed by Omicini et al. [12].

Organization Middleware. A number of approaches propose middleware-
supported organizations and interactions, such as AMELI [2], S-moise+ and
ORA4MAS [7], and Law-Governed Interactions [10]. However, most other ap-
proaches take an agent-centric perspective in which agents are responsible for
performing the functions in organization and managing life cycle of organiza-
tions. Novelty toward e-institutions and norm-based approaches is two-folded: (1)
Flow policies can specify local restrictions on agent interactions. E-institutions
and norm-based approaches typically use global norms rather than company-
specific and context-aware restrictions. (2) Implementations of norm-based ap-
proaches often rely on central entities enforcing norms, e.g. managers in AMELI
and S-Moise+. Our model could also support decentralized realizations [18].

Formal Methods for Organizations. Formalization is recognized as a founda-
tion for analyzing properties such as structure and stability of organizations [1,16].

202 R. Haesevoets et al.

Most approaches focus on theoretical aspects of organizations, relying on heavy-
weight formal methods. Grossi et al. [6], for example, represent organizations as
multi-graphs. By adding formal semantics to the graphs, different organizational
structures can be compared in terms of performance, flexibility and efficiency.
In this paper, we presented a model in Alloy and focused on the management
of organizations and domain specific concerns, such as confidentiality. Because
Alloy is limited, both in terms of expressiveness and the ability to analyze com-
plex models, alternative approaches such as temporal logic and Petri nets may
be more appropriate to explore run-time issues of organizations or complex in-
teraction protocols.

6 Conclusions and Future Work

We have made the case for using an organization middleware to support supply
chain-wide interactions in the domain of supply chain management. The orga-
nization middleware realizes a collaboration platform and offers organization
and role as reusable abstractions to enhance the integration of different business
processes. Although we applied our approach to a specific case in logistics man-
agement, we have shown how a limited set of organizational abstractions and a
light-weight formal modeling language can be used to offer formal guarantees in
terms of confidentiality constraints, such as the ability of companies to restrict
the interactions between their subcontractors. These guarantees can contribute
in establishing the trust of companies in such a middleware approach.

The organizational abstractions, used by the middleware, have proved pow-
erful enough to structure supply chain-wide interactions at a high-level, and
enable the separation of managing the interactions and their dynamics from
providing the actual functionality provided in the interactions itself. But most
importantly, they allow to accurately restrict the interactions among agents,
according to company-specific confidentiality constraints.

A prototype implementation of the middleware is also available on the web8,
showing a visual representation of the approach within a controlled setting. Us-
ing a web-based GUI, users are able to set up a number of supply chain-wide
interactions and dynamically alter the context, flow policies and laws.

Future work. A number of concerns are not addressed by our current model
such as dealing with incomplete and incorrect information, security and au-
thentication, and explicit support for interaction protocols, such as automated
auctions. Other interesting future directions include a domain specific policy
language and integrating the model into a development process.

Acknowledgement

This research is supported by the Foundation for Scientific Research in Flanders
(FWO-Vlaanderen), the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science Policy, and the Research Fund K.U.Leuven.
8 http://people.cs.kuleuven.be/~robrecht.haesevoets/AOSE2010/

http://people.cs.kuleuven.be/~robrecht.haesevoets/AOSE2010/

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 203

References

1. Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and Dy-
namics of Organizational Models. Information Science Reference (2009)

2. Esteva, M., Rosell, B., Rodriguez-Aguilar, J., Arcos, J.: Ameli: An Agent-Based
Middleware for Electronic Institutions. In: AAMAS 2004, pp. 236–243. IEEE Com-
puter Society, Washington, DC (2004)

3. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating environments with organiza-
tions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 48–56. Springer, Heidelberg (2005)

4. Garcia-Camino, A., Noriega, P., Rodrguez-Aguilar, J.: Implementing norms in elec-
tronic institutions. In: AAMAS 2005, pp. 667–673. ACM Press, New York (2005)

5. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: Cross-organizational
workflow management in dynamic virtual enterprises. Computer Systems Science
and Engineering 15(5), 277–290 (2000)

6. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural as-
pects of the evaluation of agent organizations. In: Noriega, P., Vázquez-Salceda,
J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006.
LNCS (LNAI), vol. 4386, pp. 3–18. Springer, Heidelberg (2007)

7. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting Multi-Agent Or-
ganisations with Organisational Artifacts and Agents. Autonomous Agents and
Multi-Agent Systems, 1–32

8. Jackson, D.: Software Abstractions: logic, language, and analysis. The MIT Press,
Cambridge (2006)

9. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 177(2),
277–296 (2000)

10. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogeneous Distributed Systems. ACM TOSEM 9(3) (2000)

11. Omicini, A., Ricci, A.: Reasoning about organisation: Shaping the infrastructure.
AI* IA Notizie 16(2), 7–16 (2003)

12. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A Meta-Model for Multi-
Agent Systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456
(2008)

13. Preist, C., Esplugas-Cuadrado, J., Battle, S., Grimm, S., Williams, S.: Automated
business-to-business integration of a logistics supply chain using semantic web ser-
vices technology. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 987–1001. Springer, Heidelberg (2005)

14. Stadtler, H.: Supply chain management and advanced planning: basics, overview
and challenges. European Journal of Operational Research 163(3), 575–588 (2005)

15. Stefansson, G.: Business-to-business data sharing: A source for integration of sup-
ply chains. International Journal of Production Economics 75(1-2), 135–146 (2002)

16. Van Den Broek, E., Jonker, C., Sharpanskykh, A., Treur, J., Yolum, P.: Formal
modeling and analysis of organizations. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 18–34. Springer,
Heidelberg (2006)

17. Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet: The macodo organization
model for context-driven dynamic agent organzations. ACM Transaction on Au-
tonomous and Adaptive Systems 6(4) (2010)

204 R. Haesevoets et al.

18. Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., Joosen, W.: The
MACODO Middleware for Context-Driven Dynamic Agent Organzations. ACM
Transaction on Autonomous and Adaptive Systems 5(1), 3:1–3:29 (2010)

A Omitted Parts of the Middleware Model

1 fun contractualLinks[context:Context]:Company->Company{

2 {disj com1,com2:Company |

3 some c:context.contracts | com1+com2 in c.(client+provider)}

4 }

5

6 pred contractualPath[com1,com2:Company, context:Context]{

7 com2 in com1.*(contractualLinks[context])

8 }

9

10 pred indepContractualPath[c1,c2,dependence:Company,context:Context]{

11 let indepContractualLinks =

12 (Company-dependence)<:contractualLinks[context]:>(Company-dependence) |

13 c2 in c1.*indepContractualLinks

14 }

A Delegation-Based Architecture
for Collaborative Robotics�

Patrick Doherty, Fredrik Heintz, and David Landén

Linköping University
Dept. of Computer and Information Science

581 83 Linköping, Sweden
{patrick.doherty,fredrik.heintz}@liu.se

Abstract. Collaborative robotic systems have much to gain by leveraging results
from the area of multi-agent systems and in particular agent-oriented software
engineering. Agent-oriented software engineering has much to gain by using col-
laborative robotic systems as a testbed. In this article, we propose and specify a
formally grounded generic collaborative system shell for robotic systems and hu-
man operated ground control systems. Collaboration is formalized in terms of the
concept of delegation and delegation is instantiated as a speech act. Task Spec-
ification Trees are introduced as both a formal and pragmatic characterization
of tasks and tasks are recursively delegated through a delegation process imple-
mented in the collaborative system shell. The delegation speech act is formally
grounded in the implementation using Task Specification Trees, task allocation
via auctions and distributed constraint problem solving. The system is imple-
mented as a prototype on Unmanned Aerial Vehicle systems and a case study
targeting emergency service applications is presented.

1 Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Lab1 at the Depart-
ment of Computer and Information Science, Linköping University, has been involved in
the development of autonomous unmanned aerial vehicles (UAV’s) and associated hard-
ware and software technologies [14–16]. The size of our research platforms range from
the RMAX helicopter system (100kg) [8, 17, 59, 66, 69] developed by Yamaha Motor
Company, to smaller micro-size rotor based systems such as the LinkQuad2 (1kg) and
LinkMAV [28, 60] (500g) in addition to a fixed wing platform, the PingWing [9] (500g).
These UAV platforms are shown in Figure 1.The latter three have been designed and
developed by the Unmanned Aircraft Systems Technologies Lab. All four platforms are
fully autonomous and have been deployed.

� This work is partially supported by grants from the Swedish Research Council (VR) Linnaeus
Center CADICS, VR grant 90385701, the ELLIIT Excellence Center at Linköping-Lund for
Information Technology, NFFP5-The Swedish National Aviation Engineering Research Pro-
gram, and the Center for Industrial Information Technology CENIIT.

1 www.ida.liu.se/divisions/aiics/
2 www.uastech.com

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 205–247, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.ida.liu.se/divisions/aiics/
www.uastech.com

206 P. Doherty, F. Heintz, and D. Landén

Fig. 1. The UASTech RMAX (upper left), PingWing (upper right), LinkQuad (lower left) and
LinkMAV (lower right)

Previous work has focused on the development of robust autonomous systems for
UAV’s which seamlessly integrate control, reactive and deliberative capabilities that
meet the requirements of hard and soft realtime constraints [17, 55]. Additionally, we
have focused on the development and integration of many high-level autonomous capa-
bilities studied in the area of cognitive robotics such as task planners [18, 19], motion
planners [66–68], execution monitors [21], and reasoning systems [20, 23, 54], in addi-
tion to novel middleware frameworks which support such integration [40, 42, 43]. Al-
though research with individual high-level cognitive functionalities is quite advanced,
robust integration of such capabilities in robotic systems which meet real-world con-
straints is less developed but essential to introduction of such robotic systems into so-
ciety in the future. Consequently, our research has focused, not only on such high-level
cognitive functionalities, but also on system integration issues.

More recently, our research efforts have transitioned toward the study of systems
of UAV’s. The accepted terminology for such systems is Unmanned Aircraft Systems
(UAS’s). A UAS may consist of one or more UAV’s (possibly heterogenous) in addi-
tion to one or more ground operator systems (GOP’s). We are interested in applications
where UAV’s are required to collaborate not only with each other but also with diverse
human resources [22, 24, 25, 41, 52]. UAV’s are now becoming technologically ma-
ture enough to be integrated into civil society. Principled interaction between UAV’s
and human resources is an essential component in the future uses of UAV’s in complex

A Delegation-Based Architecture for Collaborative Robotics 207

emergency services or bluelight scenarios. Some specific target UAS scenario examples
are search and rescue missions for inhabitants lost in wilderness regions and assistance
in guiding them to a safe destination; assistance in search at sea scenarios; assistance
in more devastating scenarios such as earthquakes, flooding or forest fires; and environ-
mental monitoring.

As UAV’s become more autonomous, mixed-initiative interaction between human
operators and such systems will be central in mission planning and tasking. By mixed-
initiative, we mean that interaction and negotiation between one or more UAV’s and one
or more humans will take advantage of each of their skills, capacities and knowledge in
developing a mission plan, executing the plan and adapting to contingencies during the
execution of the plan.

In the future, the practical use and acceptance of UAV’s will have to be based on a
verifiable, principled and well-defined interaction foundation between one or more hu-
man operators and one or more autonomous systems. In developing a principled frame-
work for such complex interaction between UAV’s and humans in complex scenarios, a
great many interdependent conceptual and pragmatic issues arise and need clarification
not only theoretically, but also pragmatically in the form of demonstrators. Addition-
ally, an iterative research methodology is essential which combines foundational theory,
systems building and empirical testing in real-world applications from the start.

The complexity of developing deployed architectures for realistic collaborative ac-
tivities among robots that operate in the real world under time and space constraints is
very high. We tackle this complexity by working both abstractly at a formal logical level
and concretely at a systems building level. More importantly, the two approaches are
related to each other by grounding the formal abstractions into actual software imple-
mentations. This guarantees the fidelity of the actual system to the formal specification.
Bridging this conceptual gap robustly is an important area of research and given the
complexity of the systems being built today demands new insights and techniques.

The conceptual basis for the proposed collaboration framework includes a triad of
fundamental, interdependent conceptual issues: delegation, mixed-initiative interaction
and adjustable autonomy (Figure 2). The concept of delegation is particularly important
and in some sense provides a bridge between mixed-initiative interaction and adjustable
autonomy.

Fig. 2. A conceptual triad of concepts

208 P. Doherty, F. Heintz, and D. Landén

Delegation – In any mixed-initiative interaction, humans may request help from
robotic systems and robotic systems may request help from humans. One can abstract
and concisely model such requests as a form of delegation, Delegate(A, B, task,
constraints), where A is the delegating agent, B is the contractor, task is the task
being delegated and consists of a goal and possibly a plan to achieve the goal, and
constraints represents a context in which the request is made and the task should be
carried out. In our framework, delegation is formalized as a speech act and the delega-
tion process invoked can be recursive.

Adjustable Autonomy – In solving tasks in a mixed-initiative setting, the robotic
system involved will have a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should not violate the degree of
autonomy mandated by a human operator unless agreement is made. One can begin
to develop a principled means of adjusting autonomy through the use of the task and
constraint parameters in Delegate(A, B, task, constraints). A task delegated with
only a goal and no plan, with few constraints, allows the robot to use much of its au-
tonomy in solving the task, whereas a task specified as a sequence of actions and many
constraints allows only limited autonomy. It may even be the case that the delegator
does not allow the contractor to recursively delegate.

Mixed-Initiative Interaction – By mixed-initiative, we mean that interaction and
negotiation between a robotic system, such as a UAV and a human, will take advan-
tage of each of their skills, capacities and knowledge in developing a mission plan,
executing the plan and adapting to contingencies during the execution of the plan.
Mixed-initiative interaction involves a very broad set of issues, both theoretical and
pragmatic. One central part of such interaction is the ability of a ground operator (GOP)
to be able to delegate tasks to a UAV, Delegate(GOP, UAV, task, constraints) and
in a symmetric manner, the ability of a UAV to be able to delegate tasks to a GOP,
Delegate(UAV, GOP, task, constraints). Issues pertaining to safety, security, trust,
etc., have to be dealt with in the interaction process and can be formalized as particular
types of constraints associated with a delegated task.

This article is intended to provide a description of a relatively mature iteration of a
principled framework for collaborative robotic systems based on these concepts which
combines both formal theories and specifications with an agent-based software archi-
tecture which is guided by the formal framework. As a test case, the framework and
architecture will be instantiated using a UAS involved in an emergency services ap-
plication. A prototype software system has been implemented and has been used and
tested both in simulation and on UAV systems.

1.1 Outline

In Section 2, we propose and specify a formal logical characterization of delegation in
the form of a speech act. This speech act will be grounded in the software architecture
proposed. In Section 3, an overview of the software architecture used to support col-
laboration via delegation is provided. It is an agent-based, service oriented architecture
consisting of a generic shell that can be integrated with physical robotics systems. In
Section 4, a formal characterization of tasks in the form of Task Specification Trees
is proposed. Task Specification Trees are tightly coupled to the the Delegation speech

A Delegation-Based Architecture for Collaborative Robotics 209

act and to the actual software processes that instantiate the speech act in the software
architecture. In Section 5, the important topic of allocating tasks in a Task Specification
Tree to specific platforms is considered. Additionally, we show how the semantic char-
acterization of Task Specification Trees is grounded in a distributed constraint problem
whose solution drives the actual execution of the tasks in the tree. In Section 6,we turn
our attention to describing the computational process that realizes the speech act on a
robotic platform. In Section 7, we describe how that computational process is pragmat-
ically realized in the software architecture by defining a number of agents, services and
protocols which drive the process. In Section 8, we put the formal and pragmatic as-
pects of the approach together and show how the collaboration framework can be used
in a relatively complex real-life emergency services scenario consisting of a number of
UAV systems. In Section 9, we describe some of the representative related work and in
Section 10 we conclude with a summary and future work.

2 Delegation as a Speech Act

Delegation is central to the conceptual and architectural framework we propose. Conse-
quently, formulating an abstraction of the concept with a formal specification amenable
to pragmatic grounding and implementation in a software system is paramount. As a
starting point, in [5, 31], Falcone & Castelfranchi provide an illuminating, but informal
discussion about delegation as a concept from a social perspective. Their approach to
delegation builds on a BDI model of agents, that is, agents having beliefs, goals, inten-
tions, and plans [6]. However, their specification lacks a formal semantics for the oper-
ators used. Based on intuitions from their work, we have previously provided a formal
characterization of their concept of strong delegation using a communicative speech act
with pre- and post-conditions which update the belief states associated with the delega-
tor and contractor, respectively [25]. In order to formally characterize the operators used
in the definition of the speech act, we use KARO [48] to provide a formal semantics.
The KARO formalism is an amalgam of dynamic logic and epistemic/doxastic logic,
augmented with several additional modal operators in order to deal with the motiva-
tional aspects of agents.

The target for delegation is a task. A dictionary definition of a task is ”a usually as-
signed piece of work often to be finished within a certain time”.3 Assigning a piece of
work to someone by someone is in fact what delegation is about. In computer science,
a piece of work in this context is generally represented as a composite action. There
is also often a purpose to assigning a piece of work to be done. This purpose is gen-
erally represented as a goal, where the intended meaning is that a task is a means of
achieving a goal. We will require both a formal specification of a task at a high-level of
abstraction in addition to a more data-structural specification flexible enough to be used
pragmatically in an implementation.

For the formal specification, the definition provided by Falcone & Castelfranchi will
be used. For the data-structure specification used in the implementation, task specifica-
tion trees (TST’s) will be defined in a Section 4. Falcone & Castelfranchi define a task
as a pair τ = (α, φ) consisting of a goal φ, and a plan α for that goal, or rather, a plan

3 Merriam-Webster free on-line dictionary. m-w.com

m-w.com

210 P. Doherty, F. Heintz, and D. Landén

and the goal associated with that plan. Conceptually, a plan is a composite action. We
extend the definition of a task to a tuple τ = (α, φ, cons), where cons represents ad-
ditional constraints associated with the plan α, such as timing and resource constraints.
At this level of abstraction, the definition of a task is purposely left general but will be
dealt with in explicit detail in the implementation using TST’s and constraints.

From the perspective of adjustable autonomy, the task definition is quite flexible. If
α is a single elementary action with the goal φ implicit and correlated with the post-
condition of the action, the contractor has little flexibility as to how the task will be
achieved. On the other hand, if the goal φ is specified and the plan α is not provided,
then the contractor has a great deal of flexibility in achieving the goal. There are many
variations between these two extremes and these variations capture the different levels
of autonomy and trust exchanged between two agents. These extremes loosely follow
Falcone & Castelfranchi’s notions of closed and open delegation described below.

Using KARO to formalize aspects of Falcone & Castelfranchi ’s work, we consider
a notion of strong delegation represented by a speech act Delegate(A, B, τ) of A dele-
gating a task τ = (α, φ, cons) to B, where α is a possible plan, φ is a goal, and cons
is a set of constraints associated with the plan φ. Strong delegation means that the dele-
gation is explicit, an agent explicitly delegates a task to another agent. It is specified as
follows:

S-Delegate(A, B, τ), where τ = (α, φ, cons)
Preconditions:

(1) GoalA(φ)
(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))
(3) BelA(Dependent(A, B, τ))
(4) BelBCanB(τ)

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)
(2) CommittedB(α) (also written CommittedB(τ))
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntendB(τ))
(5) IntendA(doB(α))
(6) MutualBelAB(”the statements above” ∧ SociallyCommitted(B, A, τ))4

Informally speaking this expresses the following: the preconditions of the delegate
act of A delegating task τ to B are that (1) φ is a goal of delegator A (2) A believes that
B can (is able to) perform the task τ (which implies that A believes that B itself believes
that it can do the task) (3) A believes that with respect to the task τ it is dependent on
B. The speech act S-Delegate is a communication command and can be viewed as a
request for a synchronization (a ”handshake”) between sender and receiver. Of course,
this can only be successful if the receiver also believes it can do the task, which is
expressed by (4).

4 A discussion pertaining to the semantics of all non-KARO modal operators may be found
in [25].

A Delegation-Based Architecture for Collaborative Robotics 211

The postconditions of the strong delegation act mean: (1) B has φ as its goal and
is aware of this (2) it is committed to the task τ (3) B believes that A has the goal φ
(4) B can do the task τ (and hence believes it can do it, and furthermore it holds that
B intends to do the task, which was a separate condition in Falcone & Castelfranchi’s
formalization), (5) A intends that B performs α (so we have formalized the notion
of a goal to have an acheivement in Falcone & Castelfranchi’s informal theory to an
intention to perform a task) and (6) there is a mutual belief between A and B that
all preconditions and other postconditions mentioned hold, as well as that there is a
contract between A and B, i.e. B is socially committed to A to achieve τ for A. In this
situation we will call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obligations to
the partners involved, depending on how the task is specified in the delegation action.
This dimension has to be added in order to consider how the contract affects the au-
tonomy of the agents, in particular the contractor’s autonomy. Falcone & Castelfranchi
discuss the following variants:

– Closed delegation: the task is completely specified and both the goal and the plan
should be adhered to.

– Open delegation: the task is not completely specified, either only the goal has to
be adhered to while the plan may be chosen by the contractor, or the specified plan
contains abstract actions that need further elaboration (a sub-plan) to be dealt with
by the contractor.

In open delegation the contractor may have some freedom in how to perform the
delegated task, and thus it provides a large degree of flexibility in multi-agent planning
and allows for truly distributed planning.

The specification of the delegation act above is based on closed delegation. In case of
open delegation, α in the postconditions can be replaced by an α′, and τ by
τ ′ = (α′, φ, cons′). Note that the fourth clause, CanB(τ ′), now implies that α′ is
indeed believed to be an alternative for achieving φ, since it implies that BelB[α′]φ
(B believes that φ is true after α′ is executed). Of course, in the delegation process, A
must agree that α′, together with constraints cons′, is indeed viable. This would depend
on what degree of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi closely.
One can easily foresee other constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation [7, 11, 27]. It is important to keep
in mind that this formal characterization of delegation is not completely hierarchical.
There is interaction between both the delegators and contractors as to how goals can
best be achieved given the constraints of the agents involved. This is implicit in the
formal characterization of open delegation above, although the process is not made
explicit. This aspect of the process will become much clearer when the implementation
is described.

There are many directions one can take in attempting to close the gap between
this abstract formal specification and grounding it in implementation. One such direc-
tion taken in [25] is to correlate the delegate speech act with plan generation rules in
2APL [10], which is an agent programming language with a formal semantics. In this
article, a different direction is taken which attempts to ground the important aspects of

212 P. Doherty, F. Heintz, and D. Landén

the speech act specification in the actual processes used in our robotic systems. Intu-
itions will become much clearer when the architectural details are provided, but let us
describe the approach informally based on what we have formally specified.

If a UAV system A has a goal φ which it is required to achieve, it first introspects
and determines whether it is capable of achieving φ given its inherent capabilities and
current resources in the context it is in, or will be in, when the goal has to be achieved. It
will do this by accessing its capability specification (assumed) and determine whether
it believes it can achieve φ, either through use of a planning and constraint solving
system (assumed) or a repertoire of stored actions. If not, then the fundamental pre-
conditions in the S-Delegate speech act are the second, BelACanB(τ) and the fourth,
BelBCanB(τ). Agent A must find another agent it believes can achieve the goal φ
implicit in τ . Additionally, B must also believe it can achieve the the goal φ implicit in
τ . Clearly, if A can not achieve φ itself and finds an agent B that it believes can achieve
φ and B believes it can achieve φ, then it is dependent on B to do that (precondi-
tion 3: BelA(Dependent(A, B, α))). Consequently, all preconditions are satisfied and
the delegation can take place.

From a pragmatic perspective, determining (in an efficient manner) whether an agent
B can achieve a task τ (in an efficient) manner, is the fundamental problem that has
to be not only implemented efficiently, but also grounded in some formal sense. The
formal aspect is important because delegation is a recursive process which may involve
many agents, automated planning and reasoning about resources, all in the context of
temporal and spatial constraints. One has to have some means of validating this complex
set of processes relative to a highly abstract formal specification which is convincing
enough to trust that the collaborative system is in fact doing what it is formally intended
to do.

The pragmatic aspects of the software architecture through which we ground the
formal specification include the following:

– An agent layer based on the FIPA Abstract Architecture will be added on top of ex-
isting platform specific legacy systems such as our UAV’s. This agent layer allows
for the realization of the delegation process using speech acts and protocols from
the FIPA Agent Communication Language.

– The formal specification of tasks will be instantiated pragmatically as Task Speci-
fication Trees (TST’s), which provide a versatile data structure for mapping goals
to plans and plans to complex tasks. Additionally, the formal semantics of tasks is
defined in terms of a predicate Can which can be directly grounded above to the
semantics of the S-Delegate speech act and below to a constraint solving system.

– Finding a set of agents who together can achieve a complex task with time, space
and resource constraints through recursive delegation can be defined as a very com-
plex distributed task allocation problem. Explicit representation of time, space and
resource constraints will be used in the delegation process and modeled as a dis-
tributed constraint satisfaction problem (DCSP). This allows us to apply existing
DCSP solvers to check the consistency of partial task assignments in the delegation
process and to formally ground the process. Consequently, the Can predicate used
in the precondition to the S-Delegate speech act is both formally and pragmatically
grounded into the implementation.

A Delegation-Based Architecture for Collaborative Robotics 213

3 Delegation-Based Software Architecture Overview

Before going into details regarding the implementation of the delegation process and
its grounding in the proposed software architecture, we provide an overview of the
architecture itself.

Our RMAX helicopters use a CORBA-based distributed architecture [17]. For our
experimentation with collaborative UAV’s, we view this as a legacy system which pro-
vides sophisticated functionality ranging from control modes to reactive processes, in
addition to deliberative capabilities such as automated planners, GIS systems, con-
straint solvers, etc. Legacy robotic architectures generally lack instantiations of an agent
metaphor although implicitly one often views such systems as agents. Rather than re-
design the legacy system from scratch, the approach we take is to agentify the existing
legacy system in a straightforward manner by adding an additional agent layer which
interfaces to the legacy system. The agent layer for a robotic system consists of one or
more agents which offer specific functionalities or services. These agents can communi-
cate with each other internally and leverage existing legacy system functionality. Agents
from different robotic systems can also communicate with each other if required.

Our collaborative architectural specification is based on the use of the FIPA (Founda-
tion for Intelligent Physical Agents) Abstract Architecture [32]. The FIPA Abstract Ar-
chitecture provides the basic components for the development of a multi-agent system.
Our prototype implementation is based on the FIPA compliant Java Agent Develop-
ment Framework (JADE) [29, 62] which implements the abstract architecture. ”JADE
(Java Agent Development Framework) is a software environment to build agent systems
for the management of networked information resources in compliance with the FIPA
specifications for interoperable multi-agent systems.” [30].

The FIPA Abstract Architecture provides the following fundamental modules:

– An Agent Directory module keeps track of the agents in the system.
– A Directory Facilitator keeps track of the services provided by those agents.
– A Message Transport System module allows agents to communicate using the FIPA

Agent Communication Language (FIPA ACL) [33].

The relevant concepts in the FIPA Abstract Architecture are agents, services and pro-
tocols. All communication between agents is based on exchanging messages which rep-
resent speech acts encoded in an agent communication language (FIPA ACL). Services
provide functional support for agents. There are a number of standard global services
including agent-directory services, message-transport services and a service-directory
service. A protocol is a related set of messages between agents that are logically related
by some interaction pattern.

JADE provides base classes for agents, message transportation, and a behavior model
for describing the content of agent control loops. Using the behavior model, different
agent behaviors can be constructed, such as cyclic, one-shot (executed once), sequen-
tial, and parallel behavior. More complex behaviors can be constructed using the basic
behaviors as building blocks.

From our perspective, each JADE agent has associated with it a set of services. Ser-
vices are accessed through the Directory Facilitator and are generally implemented as

214 P. Doherty, F. Heintz, and D. Landén

behaviors. In our case, the communication language used by agents will be FIPA ACL
which is speech act based. New protocols will be defined in Section 7 to support the
delegation and other processes.

The purpose of the Agent Layer is to provide a common interface for collaboration.
This interface should allow the delegation and task execution processes to be imple-
mented without regard to the actual realization of elementary tasks, capabilities and
resources which are specific to the legacy platforms.

We are currently using four agents in the agent layer:

1. Interface agent - This agent is the clearinghouse for communication. All requests
for delegation and other types of communication pass through this agent. Exter-
nally, it provides the interface to a specific robotic system or ground control station.

2. Delegation agent- The delegation agent coordinates delegation requests to and
from other UAV systems and ground control stations, with the Executor, Resource
and Interface agents. It does this essentially by verifying that the pre-conditions to
a Delegate() request are satisfied.

3. Execution agent - After a task is contracted to a particular UAV or ground station
operator, it must eventually execute that task relative to the constraints associated
with it. The Executor agent coordinates this execution process.

4. Resource agent - The Resource agent determines whether the UAV or ground sta-
tion of which it is part has the resources and ability to actually do a task as a po-
tential contractor. Such a determination may include the invocation of schedulers,
planners and constraint solvers in order to determine this.

Figure 3 provides an overview of an agentified robotic or ground operator system.
The FIPA Abstract Architecture will be extended to support delegation and collabo-

ration by defining an additional set of services and a set of related protocols.The inter-
face agent, resource agent and delegation agent will have an interface service, resource
service and delegation service associated with it, respectively, on each individual robotic
or ground station platform. The executor service is implemented as a non-JADE agent
that understands FIPA protocols and works as a gateway to a platform’s legacy system.
Additionally, three protocols, the Capability-Lookup, Delegation and Auction proto-
cols, will be defined and used to drive the delegation process.

Fig. 3. Overview of an agentified platform or ground control station

A Delegation-Based Architecture for Collaborative Robotics 215

Fig. 4. An overview of the collaborative human robot system

Human operators interacting with robotic systems are treated similarly by extending
the control station or user interface functionality in the same way. In this case, the
control station is the legacy system and an agent layer is added to this. The result is
a collaborative human robot system consisting of a number of human operators and
robotic platforms each having both a legact system and an agent layer as shown in
Figure 4.

The reason for using the FIPA Abstract Architecture and JADE is pragmatic. The
focus of our research is not to develop new agent middleware, but to develop a formally
grounded generic collaborative system shell for robotic systems. Our formal character-
ization of the Delegate() operator is as a speech act. We also use speech acts as an agent
communication language and JADE provides a straightforward means for integrating
the FIPA ACL language which supports speech acts with our existing systems.

Further details as to how the delegation and related processes will be implemented
based on additional services and protocols will be described in Section 7. Before doing
this, the processes themselves will be specified in Section 6. We begin by providing a
formal characterization of Tasks in the form of Task Specification Trees.

4 Task Specification Trees

Both the declarative and procedural representation and semantics of tasks are central to
the delegation process. The relation between the two representations is also essential if
one has the goal of formally grounding the delegation process in the system implemen-
tation. A task was previously defined abstractly as a tuple (α, φ, cons) consisting of a
composite action α, a goal φ and a set of constraints cons, associated with α . In this
section, we introduce a formal task specification language which allows us to represent
tasks as Task Specification Trees (TST’s). The task specification trees map directly to
procedural representations in our proposed system implementation.

For our purposes, the task representation must be highly flexible, sharable, dynami-
cally extendible, and distributed in nature. Tasks need to be delegated at varying levels
of abstraction and also expanded and modified because parts of complex tasks can be
recursively delegated to different robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable. Additionally, a task structure is

216 P. Doherty, F. Heintz, and D. Landén

a form of compromise between an explicit plan in a plan library at one end of the spec-
trum and a plan generated through an automated planner [51] at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

The flexibility allows for the use of both central and distributed planning, and also to
move along the scale between these two extremes. At one extreme, the operator plans
everything, creating a central plan, while at the other extreme the agents are delegated
goals and generate parts of the distributed plan themselves. Sometimes neither com-
pletely centralized nor completely distributed planning is appropriate. In those cases
the operator would like to retain some control of how the work is done while leaving
the details to the agents. Task Specification Trees provide a formalism that captures the
scale from one extreme to the next. This allows the operator to specify the task at the
point which fits the current mission and environment.

The task specification formalism should allow for the specification of various types
of task compositions, including sequential and concurrent, in addition to more general
constructs such as loops and conditionals. The task specification should also provide a
clear separation between tasks and platform specific details for handling the tasks. The
specification should focus on what should be done and hide the details about how it
could be done by different platforms.

In the general case, A TST is a declarative representation of a complex multi-agent
task. In the architecture realizing the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task that should be performed.
There are six types of nodes: sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes which require some form of
expansion or planning to generate a plan for achieving the goal.

Each node has a node interface containing a set of parameters, called node parame-
ters, that can be specified for the node. The node interface always contains a platform
assignment parameter and parameters for the start and end times of the task, usually
denoted P , TS and TE , respectively. These parameters can be part of the constraints as-
sociated with the node called node constraints. A TST also has tree constraints, express-
ing precedence and organizational relations between the nodes in the TST. Together the
constraints form a constraint network covering the TST. In fact, the node parameters
function as constraint variables in a constraint network, and setting the value of a node
parameter constrains not only the network, but implicitly, the degree of autonomy of an
agent.

4.1 TST Syntax

The syntax of a TST specification has the following BNF:

SPEC ::= TST
TST ::= NAME (’(’ VARS ’)’)? ’=’ (with VARS)? TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS

A Delegation-Based Architecture for Collaborative Robotics 217

TASK ::= ACTION | GOAL | (NAME ’=’)? NAME (’(’ ARGS ’)’)? |
while COND TST | if COND then TST else TST |
sequence TSTS | concurrent TSTS

VAR ::= <variable name> | <variable name> ’.’ <variable name>
VARS ::= VAR | VAR ’,’ VARS
CONSTRAINT ::= <constraint>
CONS ::= CONSTRAINT | CONSTRAINT and CONS
ARG ::= VAR | VALUE
ARGS ::= ARG | ARG ’,’ ARGS
VALUE ::= <value>
NAME ::= <node name>
COND ::= <ACL query>
GOAL ::= <goal statement>
ACTION ::= <elementary action>

Where

– <ACL query> is a FIPA ACL query message requesting the value of a boolean
expression.

– <elementary action> is an elementary action name(p0, ..., pN), where p0, ..., pN

are parameters.
– <goal statement> is a goal name(p0, ..., pN), where p0, ..., pN are parameters.

The TST clause in the BNF introduces the main recursive pattern in the specification
language. The right hand side of the equality provides the general pattern of providing
a variable context for a task (using with) and a set of constraints (using where) which
may include the variables previously introduced.

Example. Consider a small scenario where the mission is to first scan AreaA and AreaB,
and then fly to Dest4 (Figure 5). A TST describing this mission is shown in Figure 6.

Fig. 5. Example mission of first scanning AreaA and AreaB, and then fly to Dest4

218 P. Doherty, F. Heintz, and D. Landén

Fig. 6. A TST for the mission in Figure 5

Nodes N0 and N1 are composite action nodes, sequential and concurrent, respectively.
Nodes N2, N3 and N4 are elementary action nodes. Each node specifies a task and has
a node interface containing node parameters and a platform assignment variable. In this
case only temporal parameters are shown representing the respective intervals a task
should be completed in.

In the TST depicted in Figure 6. The nodes N0 to N4 have the task names τ0 to τ4

associated with them respectively. This TST contains two composite actions, sequence
(τ0) and concurrent (τ1) and three elementary actions scan (τ2, τ3) and flyto (τ4). The
resulting TST specification is:

τ0(TS0 ,TE0) =
with TS1 , TE1, TS4 , TE4 sequence
τ1(TS1 ,TE1) =

with TS2 , TE2 , TS3, TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3 ,TE3) = scan(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)

where consτ0

consτ0 = {TS0 ≤ TS1 ∧ TS1 ≤ TE1 ∧ TE1 ≤ TS4 ∧ TS4 ≤ TE4 ∧ TE4 ≤ TE0}
consτ1 = {TS1 ≤ TS2 ∧ TS2 ≤ TE2 ∧ TE2 ≤ TE1 ∧ TS1 ≤ TS3 ∧ TS3 ≤ TE3 ∧ TE3 ≤
TE1}

4.2 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific and
node-specific constraints which together are intended to represent the context in which
a task should be executed in order to meet the task’s intrinsic requirements, in addition
to contingent requirements demanded by a particular mission. The leaf nodes of a TST
represent elementary actions used in the definition of the composite action the TST rep-
resents and the non-leaf nodes essentially represent control structures for the ordering
and execution of the elementary actions. The semantic meaning of non-leaf nodes is

A Delegation-Based Architecture for Collaborative Robotics 219

essentially application independent, whereas the semantic meaning of the leaf nodes
are highly domain dependent. They represent the specific actions or processes that an
agent will in fact execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided or generated to achieve a
specific set of goals, and if the delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be characterized in terms of whether
an agent believes it can successfully execute the task associated with the node in a
given context represented by constraints, given its capabilities and resources. This can
only be a belief because the task will be executed in the future and even under the
best of conditions, real-world contingencies may arise which prevent the agent from
successfully completing the task. The semantics of a TST will be the aggregation of the
semantics for each individual node in the tree.

The formal semantics for TST nodes will be given in terms of the logical predicate
Can() which we have used previously in the formal definition of the S-Delegate speech
act, although in this case, we will add additional arguments. This is not a coincidence
since our goal is to ground the formal specification of the S-Delegate speech act into
the implementation in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate described in Sec-
tion 2, the logical predicate CanX(τ) is used to state that an agent X has the capabilities
and resources to achieve task τ .

An important precondition for the successful application of the speech act is that
the delegator (A) believes in the contractor’s (B) ability to achieve the task τ , (2):
BelACanB(τ). Additionally, an important result of the successful application of the
speech act is that the contractor actually has the capabilities and resources to achieve
the task τ , (4): CanB(τ). In order to directly couple the semantic characterization of
the S-Delegate speech act to the semantic characterization of TST’s, we will assume
that a task τ = (α, φ, cons) in the speech act characterization corresponds to a TST.
Additionally, the TST semantics will be characterized in terms of a Can predicate with
additional parameters to incorporate constraints explicitly.

In this case, the Can predicate is extended to include as arguments a list [p1, . . . , pk]
denoting all node parameters in the node interface together with other parameters pro-
vided in the (with VARS) construct5 and an argument for an additional constraint set
cons provided in the (where CONS) construct.6 Observe that cons can be formed in-
crementally and may in fact contain constraints inherited or passed to it through a re-
cursive delegation process. The formula Can(B, τ, [ts, te, . . .], cons)7 then asserts that
an agent B has the capabilities and resources for achieving task τ if cons, which also

5 For reasons of clarity, we only list the node parameters for the start and end times for a task,
[ts, te, . . .], in this article.

6 For pedagogical expediency, we can assume that there is a constraint language which is reified
in the logic and is used in the CONS constructs.

7 Note that we originally defined τ = (α, φ, cons) as a tuple consisting of a plan, a goal and a
set of constraints for reasons of abstraction when defining the delegation speech act. Since we
now want to explicitly use cons as an argument to the Can predicate in the implementation,
we revert to defining τ = (α, φ) as a pair instead, where the constraints cons are lifted up as
an argument to Can.

220 P. Doherty, F. Heintz, and D. Landén

contains node constraints for τ , is consistent. The temporal variables ts and te associ-
ated with the task τ are part of the node interface which may also contain other variables
which are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification, will now be
equivalent to the successful solution of a constraint problem in the formal logical sense.
The constraint problem in fact provides the formal semantics for a TST. Constraints
associated with a TST are derived from a reduction process associated with the Can()
predicate for each node in the TST. The generation and solution of constraints will
occur on-line during the delegation process. Let us provide some more specific details.
In particular, we will show the very tight coupling between the TST’s and their logical
semantics.

The basic structure of a Task Specification Tree is:

TST ::= NAME (’(’ VARS1 ’)’)? ’=’ (with VARS2)? TASK (where CONS)?

where VARS1 denotes node parameters, VARS2 denotes additional variables used in the
constraint context for a TST node, and CONS denotes the constraints associated with a
TST node. Additionally, TASK denotes the specific type of TST node. In specifying a
logical semantics for a TST node, we would like to map these arguments directly over
to arguments of the predicate Can(). Informally, an abstraction of the mapping is

Can(agent1, TASK, V ARS1 ∪ V ARS2, CONS) (1)

The idea is that for any fully allocated TST, the meaning of each allocated TST node
in the tree is the meaning of the associated Can() predicate instantiated with the TST
specific parameters and constraints. The meaning of the instantiated CAN() predicate
can then be associated with an equivalent constraint satisfaction problem (CSP) which
turns out to be true or false dependent upon whether that CSP can be satisfied or not.
The meaning of the fully allocated TST is then the aggregation of the meanings of each
individual TST node associated with the TST, in other words, a conjunction of CSP’s.

One would also like to capture the meaning of partial TST’s. The idea is that as
the delegation process unfolds, a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number of fully expanded and allo-
cated nodes in addition to other nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by providing meaning for an unal-
located TST node in terms of both a Can() predicate and a Delegate() predicate:

∃agent2 Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (2)

Either agent1 can achieve a task, or (exclusively) it can find an agent, agent2, to which
the task can be delegated. In fact, it may need to find one or more agents if the task to
be delegated is a composite action.

Given the S-Delegate(agent1, agent2, TASK) speech act semantics, we know
that if delegation is successful then as one of the postconditions of the speech act,
agent2 can in fact achieve TASK (assuming no additional contingencies):

Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (3)

→ Can(agent2, TASK, V ARS1 ∪ V ARS2, CONS)

A Delegation-Based Architecture for Collaborative Robotics 221

Consequently, during the computational process associated with delegation, as the
TST expands through delegation where previously unallocated nodes become allocated,
each instance of the Delegate() predicate associated with an unallocated node is re-
placed with an instance of the Can() predicate. This recursive process preserves the
meaning of a TST as a conjunction of instances of the Can() predicate which in turn
are compiled into a (interdependent) set of CSPs and which are checked for satisfaction
using distributed constraint solving algorithms.

Sequence Node

– In a sequence node, the child nodes should be executed in sequence (from left to
right) during the execution time of the sequence node.

– Can(B, S(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1[(Can(B, αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))]
∧ consistent(cons)8

– cons = {ts ≤ t1 ∧ (
∧n

i=1 t2i−1 < t2i)∧ (
∧n−1

i=1 t2i ≤ t2i+1)∧ t2n ≤ te} ∪ cons′9

Concurrent Node

– In a concurrent node each child node should be executed during the time interval
of the concurrent node.

– Can(B, C(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1[(Can(B, αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))]
∧ consistent(cons)

– cons = {
∧n

i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′

Selector Node

– Compared to a sequence or concurrent node, only one of the selector node’s chil-
dren will be executed, which one is determined by a test condition in the selector
node. The child node should be executed during the time interval of the selector
node. A selector node is used to postpone a choice which can not be known when
the TST is specified. When expanded at runtime, the net result can be any of the
legal node types.

Loop Node

– A loop node will add a child node for each iteration the loop condition allows. In
this way the loop node works as a sequence node but with an increasing number
of child nodes which are dynamically added. Loop nodes are similar to selector
nodes, they describe additions to the TST that can not be known when the TST is
specified. When expanded at runtime, the net result is a sequence node.

8 The predicate consistent() has the standard logical meaning and checking for consistency
would be done through a call to a constraint solver which is part of the architecture.

9 In addition to the temporal constraints, other constraints may be passed recursively during the
delegation process. cons′ represents these constraints.

222 P. Doherty, F. Heintz, and D. Landén

Goal

– A goal node is a leaf node which can not be directly executed. Instead it has to be
expanded by using an automated planner or related planning functionality. After
expansion, a TST branch representing the generated plan is added to the original
TST.

– Can(B, Goal(φ), [ts, te, . . .], cons) ↔
∃α (GenerateP lan(B, α, φ, [ts, te, . . .], cons) ∧ Can(B, α, [ts, te, . . .], cons))
∧ consistent(cons)

Observe that the agent B can generate a partial or complete plan α and then further
delegate execution or completion of the plan recursively via the Can() statement in the
second conjunct.

Elementary Action Node

– An elementary action node specifies a domain-dependent action. An elementary
action node is a leaf node.

– Can(B, τ, [ts, te, . . .], cons) ↔
Capabilities(B, τ, [ts, te, . . .], cons) ∧ Resources(B, τ, [ts, te, . . .], cons)
∧ consistent(cons)

There are two parts to the definition of Can for an elementary action node. These
are defined in terms of a platform specification which is assumed to exist for each
agent potentially involved in a collaborative mission. The platform specification has
two components.

The first, specified by the predicate Capabilities(B, τ, [ts, te], cons) is intended to
characterize all static capabilities associated with platform B that are required as ca-
pabilities for the successful execution of τ . These will include a list of tasks and/or
services the platform is capable of carrying out. If platform B has the necessary static
capabilities for executing task τ in the interval [ts, te] with constraints cons, then this
predicate will be true.

The second, specified by the predicate Resources(B, τ, [ts, te], cons) are intended
to characterize dynamic resources such as fuel and battery power, which are consum-
able, or cameras and other sensors which are borrowable. Since resources generally
vary through time, the semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource constraint
predicates, one per task. The parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task. For example, assume there
is a task flyto(dest, speed). The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate is defined as a conjunction
of constraints, in the logical sense. The general pattern for this conjunction is:

te = ts + F, C1, ..., CN , where
• F is a function of the resource constraint parameters and possibly local re-

source variables and
• C1, . . . , CN is a possibly empty set of additional constraints related to the re-

source model associated with the task.

A Delegation-Based Architecture for Collaborative Robotics 223

Example. As an example, consider the task flyto(dest, speed) with the correspond-
ing resource constraint predicate flyto(ts, te, dest, speed). The constraint model asso-
ciated with the task for a particular platform P1 might be:

te = ts + distance(pos(ts ,P1),dest)
speed ∧ (SpeedMin ≤ speed ≤ SpeedMax)

Depending on the platform, this constraint model may be different for the same task.
In that sense, it is platform dependent.

5 Allocating Tasks in a TST to Platforms

Given a TST representing a complex task, an important problem is to find a set of plat-
forms that can execute these tasks according to the TST specification. The problem is
to allocate tasks to platforms and assign values to parameters such that each task can be
carried out by its assigned platform and all the constraints of the TST are satisfied.

For a platform to be able to carry out a task, it must have the capabilities and the
resources required for the task as described in the previous section. A platform that can
be assigned a task in a TST is called a candidate and a set of candidates is a candi-
date group. The capabilities of a platform are fixed while the available resources will
vary depending on its commitments, including the tasks it has already been allocated.
These commitments are generally represented in the constraint stores and schedulers
of the platforms in question. The resources and the commitments are modeled with
constraints. Resources are represented by variables and commitments by constraints.
These constraints are local to the platform and different platforms may have different
constraints for the same action. Figure 7 shows the constraints for the scan action for
platform P1.

When a platform is assigned an action node in a TST, the constraints associated
with that action are instantiated and added to the constraint store of the platform. The
platform constraints defined in the constraint model for the task are connected to the
constraint problem defined by the TST via the node parameters in the node interface for
the action node. Figure 8 shows the constraint network after allocating node N2 from
the TST in Figure 6 (on page 218) to platform P1.

Fig. 7. The parameterized platform constraints for the scan action. The red/dark variables repre-
sent node parameters in the node interface. The gray variables represent local variables associated
with the platform P1’s constraint model for the scan action. These are connected through depen-
dencies.

224 P. Doherty, F. Heintz, and D. Landén

Fig. 8. The combined constraint problem after allocating node N2 to platform P1

Fig. 9. The parameter constraints of platform P1 when allocated node N2 and N4

A platform can be allocated to more than one node. This may introduce implicit
dependencies between actions since each allocation adds constraints to the constraint
store of the platform. For example, there could be a shared resource that both actions
use. Figure 9 shows the constraint network of platform P1 after it has been allocated
nodes N2 and N4 from the example TST. In this example the position of the platform
is implicitly shared since the first action will change the location of the platform.

A complete allocation is an allocation which allocates every node in a TST to a plat-
form. A completely allocated TST defines a constraint problem that represents all the

A Delegation-Based Architecture for Collaborative Robotics 225

constraints for this particular allocation of the TST. As the constraints are distributed
among the platforms it is in effect a distributed constraint problem. If a consistent so-
lution for this constraint problem is found then a valid allocation has been found and
verified. Each such solution can be seen as a potential execution schedule of the TST.
The consistency of an allocation can be checked by a distributed constraint satisfaction
problem (DCSP) solver such as the Asynchronous Weak Commitment Search (AWCS)
algorithm [70] or ADOPT [56].

Example. The constraint problem for a TST is derived by recursively reducing the Can
predicate statements associated with each task node with formally equivalent expres-
sions, beginning with the top-node τ0 until the logical statements reduce to a constraint
network. Below, we show the reduction of the TST from Figure 6 (on page 218) when
there are three platforms, P0, P1 and P2, with the appropriate capabilities. P0 has been
delegated the composite actions τ0 and τ1. P0 has recursively delegated parts of these
tasks to P1 (τ2 and τ4) and P2(τ3).

Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(α1, α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4(Can(P0, α1, [ts1 , te1], consP0)

∨ ∃a1Delegate(P0, a1, α1, [ts1 , te1], consP0))
∧ (Can(P0, α4, [ts4 , te4], consP0)

∨ ∃a2Delegate(P0, a2, α4, [ts4 , te4], consP0))

Let’s continue with a reduction of the 1st element in the sequence α1 (the 1st conjunct
in the previous formula on the right-hand side of the biconditional):

Can(P0, α1, [ts1 , te1], consP0)
∨ ∃a1(Delegate(P0, a1, α1, [ts1 , te1], consP0))

Since P0 has been allocated α1, the 2nd disjunct is false.

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3 ((Can(P0, α2, [ts2 , te2], consP0) ∨
∃a1 Delegate(P0, a1, α2, [ts2 , te2], consP0)) ∧
(Can(P0, α3, [ts3 , te3], consP0) ∨
∃a2 Delegate(P0, a2, α3, [ts3 , te3], consP0)))

The node constraints for τ0 and τ1 are then added to P0’s constraint store. What remains
to be done is a reduction of tasks τ2 and τ4 associated with P1 and τ3 associated with
P2. We can assume that P1 has been delegated α2 and P2 has been delegated α3 as
specified. Consequently, we can reduce to

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3 (Can(P1, α2, [ts2 , te2], consP0) ∧
Can(P2, α3, [ts3 , te3], consP0))

226 P. Doherty, F. Heintz, and D. Landén

Since P0 has recursively delegated α4 to P1 (the 2nd conjunct in the original formula
on the right-hand side of the biconditional) we can complete the reduction and end up
with the following:

Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(C(α2, α3), α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4

∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2], consP1) ∧ Can(P2, α3, [ts3 , te3], consP2)
∧ Can(P1, α4, [ts4 , te4], consP1)

These remaining tasks are elementary actions and consequently the definitions of
Can for these action nodes are platform dependent. When a platform is assigned to
an elementary action node a local constraint problem is created on the platform and
then connected to the global constraint problem through the node parameters of the as-
signed node’s node interface. In this case, the node parameters only include temporal
constraints and these are coupled to the internal constraint variables associated with the
elementary actions. The completely allocated and reduced TST is shown in Figure 10.
The reduction of Can for an elementary action node contains no further Can pred-
icates, since an elementary action only depends on the platform itself. All remaining
Can predicates in the recursion are replaced with constraint sub-networks associated
with specific platforms as shown in Figure 10.

In summary, the delegation process, if successful, provides a TST that is both valid
and completely allocated. During this process, a network of distributed constraints is

Fig. 10. The completely allocated and reduced TST showing the interaction between the TST
constraints and the platform dependent constraints

A Delegation-Based Architecture for Collaborative Robotics 227

generated which if solved, guarantees the validity of the multi-agent solution to the
original problem, provided that additional contingencies do not arise when the TST is
actually executed in a distributed manner by the different agents involved in the collab-
orative solution. This approach is intended to ground the original formal specification
of the S-Delegate speech act with the actual processes of delegation used in the im-
plementation. Although the process is pragmatic in the sense that it is a computational
process, it in effect strongly grounds this process formally, due to the reduction of the
collaboration to a distributed constraint network which is in effect a formal representa-
tion. This results in real-world grounding of the semantics of the Delegation speech act
via the Can predicate.

6 The Delegation Process

Now that the S-Delegate speech act, the Task Specification Tree representation, and the
formal relation between them has been considered, we turn our attention to describing
the computational process that realizes the speech act in a robotic platform.

According to the semantics of the Delegate(A,B,τ = (α, φ)) speech act the delegator
A must have φ as a goal, believe that there is an agent B that is able to achieve τ , and
believe that it is dependent on B for the achievement of τ via action α. In the following,
we assume that the agent A already has φ as a goal and that it is dependent on some
other agent to achieve the task. Consequently, the main issue is to find an agent B that
is able to achieve the task τ .

This could be done in at least two ways. Agent A could have a knowledge base en-
coding all its knowledge about what other agents can and can not do and then reason
about which agents could achieve τ . This would be very similar to a centralized form
of multi-agent planning since the assumption is that τ is a complex task. This is prob-
lematic because it would be difficult to keep such a knowledge base up-to-date and it
would be quite complex given the heterogeneous nature of the platforms involved. Ad-
ditionally, the pool of platforms accessible for any given mission at a given time is not
known since platforms come and go.

As an alternative, the process of finding agents to achieve tasks will be done in a
more distributed manner through communication among agents and an assumption that
elementary actions are platform dependent and the details of such actions are not re-
quired in finding appropriate agents to achieve the tasks at hand.

The following process takes as input a complex task represented as a TST. The TST
is intended to describe a complex mission. The process will find an appropriate agent
or set of agents capable of achieving the mission possibly through the use of recursive
delegation. If the allocation of agents in the TST is approved by the delegators recur-
sively, then the mission can then be executed. Note that the mission schedule will be
distributed among the group of agents that have been allocated tasks and the mission
may not necessarily start immediately. This will depend on the temporal constraints
used in the TST specification. But commitments to the mission will have been made
in the form of constraints in the constraint stores and schedulers of the individual plat-
forms. Note also, that the original TST given as input does not have to be completely
specified. It may contain goal nodes which require expansion of the TST with additional
nodes.

228 P. Doherty, F. Heintz, and D. Landén

The process is as follows:

1. Allocate the complex task through an iterative and recursive process which finds
a platform to whom the task can be delegated to. This process expands goals into
tasks, assigns platforms to tasks, and assigns values to task parameters. The input
is a TST and the output is a fully expanded, assigned and parameterized TST.

2. Approve the mission or request the next consistent instantiation. Repeat 1 until
approved or no more instantiations.

3. If no approved instantiated mission is found then fail.
4. Otherwise, execute the approved mission until finished or until constraints associ-

ated with the mission are violated during execution. While executing the mission,
constraints are monitored and their parameterization might be changed to avoid
violations on the fly.

5. If constraints are violated and can not be locally repaired goto 1 and begin a recur-
sive repair process.

The first step of the process corresponds to finding a set of platforms that satisfy
the preconditions of the S-Delegate speech act for all delegations in the TST. The ap-
proval corresponds to actually executing the speech act where the postconditions are
implicitly represented in the constraint stores and schedulers of the platforms. During
the execution step, the contractors are committed to the constraints agreed upon during
the approval of the tasks. They do have limited autonomy during execution in the form
of being able to modify internal parameters associated with the tasks as long as they do
not violate those constraints externally agreed upon in the delegation process.

6.1 An Algorithm for Allocating Complex Tasks Specified by TSTs

The most important part of the Delegation Process is to find a platform that satisfies
the preconditions of the S-Delegate speech act. This is equivalent to finding a platform
which is able to achieve the task either itself of through recursive delegation. This can
be viewed as a task allocation problem where each task in the TST should be allocated
to an agent.

Multi-robot task allocation (MRTA) is an important problem in the multi-agent com-
munity [38, 39, 53, 63, 71, 72]. It deals with the complexities involved in taking a
description of a set of tasks and deciding which of the available robots should do what.
Often the problem also involves maximizing some utility function or minimizing a cost
function. Important aspects of the problem are what types of tasks and robots can be
described, what type of optimization is being done, and how computationally expensive
the allocation is.

This section presents a heuristic search algorithm for allocating a fully expanded
TST to a set of platforms. A successful allocation allocates each node to a platform
and assigns values to parameters such that each task can be carried out by its assigned
platform and all the constraints of the TST are satisfied. During the allocation, temporal
variables will be instantiated resulting in a schedule for executing the TST.

The algorithm starts with an empty allocation and extends it one node at a time
in a depth-first order over the TST. To extend the allocation, the algorithm takes the
current allocation, finds a consistent allocation of the next node, and then recursively

A Delegation-Based Architecture for Collaborative Robotics 229

allocates the rest of the TST. Since a partial allocation corresponds to a distributed con-
straint satisfaction problem, a DCSP solver is used to check whether the constraints are
consistent. If all possible allocations of the next node violate the constraints, then the
algorithm uses backtracking with backjumping to find the next allocation.

The algorithm is both sound and complete. It is sound since the consistency of the
corresponding constraint problem is verified in each step and it is complete since every
possible allocation is eventually tested. Since the algorithm is recursive the search can
be distributed among multiple platforms.

To improve the search, a heuristic function is used to determine the order platforms
are tested. The heuristic function is constructed by auctioning out the node to all plat-
forms with the required capabilities. The bid is the marginal cost for the platform to
accept the task relative to the current partial allocation. The cost could for example be
the total time required to execute all tasks allocated to the platform.

To increase the efficiency of the backtracking, the algorithm uses backjumping to
find the latest partial allocation which has a consistent allocation of the current node.
This preserves the soundness as only partial allocations that are guaranteed to violate
the constraints are skipped.

AllocateTST. The AllocateTST algorithm takes a TST rooted in the node N as input
and finds a valid allocation of the TST if possible. To check whether a node N can be al-
located to a specific platform P the TryAllocateTST algorithm is used. It tries to allocate
the top node N to P and then tries to recursively find an allocation of the sub-TSTs.

AllocateTST(Node N)

1. Find the set of candidates C for N .
2. Run an auction for N among the candidates in C and order C according to the bids.
3. For each candidate c in the ordered set C:

(a) If TryAllocateTST(c, N) then return success.
4. Return failure.

TryAllocateTST(Platform P, Node N)

1. AllocateTST P to N .
2. If the allocation is inconsistent then undo the allocation and return false.
3. For each sub-TST n of N do

(a) If AllocateTST(n) fails then undo the allocation and do a backjump.
4. An allocation has been found, return true.

Node Auctions. Broadcasting for candidates for a node N only returns platforms with
the required capabilities for the node. There is no information about the usefulness or
cost of allocating the node to the candidate. Blindly testing candidates for a node is an
obvious source of inefficiency. Instead, the node is auctioned out to the candidates. Each
bidding platform bids its marginal cost for executing the node. I.e., taking into account
all previous tasks the platform has been allocated, how much more would it cost the
platform to take on the extra task. The cost could for example be the total time needed

230 P. Doherty, F. Heintz, and D. Landén

to complete all tasks. To be efficient, it is important that the cost can be computed by
the platform locally. We are currently only evaluating the cost of the current node, not
the sub-TST rooted in the node. This leaves room for interesting extensions. Low bids
are favorable and the candidates are sorted according to their bids. The bids are used as
a heuristic function that increases the chance of finding a suitable platform early in the
search.

7 Extending the FIPA Abstract Architecture for Delegation

In Section 3, we provided an overview of the software architecture being used to support
the delegation-based collaborative system. It consists of an agent layer added to a legacy
system. There are four agents in this layer with particular responsibilities, the Interface
Agent, the Resource Agent, the Delegation Agent and the Executor Agent. In previous
sections, we described the delegation process which includes recursive delegation, the
generation of TSTs, allocation of tasks in TST’s to agents, and the use of distributed
constraint solving in order to guarantee the validity of an allocation and solution of a
TST. This complex set of processes will be implemented in the software architecture
by extending the FIPA Abstract Architecture with a number of application dependent
services and protocols:

– We will define a Interface Service, Resource Service, Delegation Service and Ex-
ecutor Service, associated with each Interface, Resource, Delegation, and Executor
Agent, respectively, on each platform. These services are local to agents and not
global.

– We will also define three interaction protocols, the Capability Lookup Protocol,
Auction Protocol, and Delegation Protocol. These protocols will be used by the
agents to guide the interaction between them as the delegation process unfolds.

7.1 Services

To implement the Delegation Process the Directory Facilitator and four new services
are needed. The Delegation Service is responsible for coordinating delegations. The
Delegation Service uses the Interface Service to communicate with other platforms,
the Directory Facilitator to find platforms with appropriate capabilities, the Resource
Service to keep track of local resources and the Executor Service to execute tasks using
the legacy system.

Directory Facilitator. The Directory Facilitator (DF) is part of the FIPA Abstract Ar-
chitecture. It provides a registry over services where a service name is associated with
an agent providing that service. In the collaborative architecture the DF is used to keep
track of the capabilities of platforms. Every platform should register the names of the
tasks that it has the capability to achieve. This provides a mechanism to find all plat-
forms that have the appropriate capabilities for a particular task. To check that a plat-
form also has the necessary resources a more elaborate procedure is needed which is
provided by the Resource Service. The Directory Facilitator also implements the Capa-
bility Lookup protocol described below.

A Delegation-Based Architecture for Collaborative Robotics 231

The Interface Service. The Interface Service, implemented by an Interface Agent,
is a clearinghouse for communication. All requests for delegation and other types of
communication pass through this service. Externally, it provides the interface to a spe-
cific robotic system. The Interface Service does not implement any protocols, rather it
forwards approved messages to the right internal service.

The Resource Service. The Resource Service, implemented by a Resource Agent, is
responsible for keeping track of the local resources of a platform. It determines whether
the platform has the resources to achieve a particular task with a particular set of con-
straints. It also keeps track of the bookings of resources that are required by the tasks the
platform has committed to. When a resource is booked a booking constraint is added to
the local constraint store. During the execution of a complex task the Resource Service
is responsible for monitoring the resource constraints of the task and detecting viola-
tions as soon as possible. Since resources are modeled using constraints this reasoning
is mainly a constraint satisfaction problem (CSP) which is solved using local solvers
that are part of the service.

In the prototype implementation, constraints are expressed in ESSENCE’ which is a
sub-set of the ESSENCE high-level language for specifying constraint problems [35].
The idea behind ESSENCE is to provide a high-level, solver independent, language
which can be translated or compiled into solver specific languages. This opens up the
possibility for different platforms to use different local solvers. We use the transla-
tor Tailor [37] which can compile ESSENCE’ problems into either Minion [36] or
ECLiPSe [65]. We currently use Minion as the local CSP solver. The Resource Ser-
vice implements the Auction protocol described below.

The Delegation Service. The Delegation Service, implemented by a Delegation Agent,
coordinates delegation requests to and from the platform using the Executor, Resource
and Interface Services. It does this by implementing the Delegation Process described
in Section 6. The Delegation Service implements the Delegation Protocol described
below.

The Executor Service. The Executor Service, implemented by a Executor Agent, is
responsible for executing tasks using the legacy system on the platform. In the simplest
case this corresponds to calling a single function in the legacy system while in more
complicated cases the Executor Service might have to call local planners to generate a
local plan to achieve a task with a particular set of constraints.

7.2 Protocols

This section describes the three main protocols used in the collaboration framework:
the Capability Lookup Protocol, the Auction Protocol, and the Delegation Protocol. An
overview of the agents involved in the protocols is shown in Figure 11.

The Capability Lookup Protocol. The Capability Lookup Protocol is based on the
FIPA Request Protocol. This protocol is used to find all platforms that have the

232 P. Doherty, F. Heintz, and D. Landén

Fig. 11. An overview of the agents involved in the Auction (A), Capability Lookup (C), and
Delegation (D) protocols

capabilities for a certain task. The content of the request message is the name of the task.
The reply is an inform message with the platforms that have the capabilities required
for the task.

The Auction Protocol. The Auction Protocol is based on the FIPA Request Protocol.
The protocol is used to request bids for tasks from platforms. The bid should reflect
the cost for the platform to accept the task and is calculated by an auction strategy. An
auction strategy could for instance be the marginal cost strategy where the bid is the
marginal cost (in time) for a platform to take on the task. The content of the request
message is the task that is being auctioned out. If the platform makes a bid, then the
reply is an inform message containing the task and the bid. Otherwise, a refuse mes-
sage is returned. One reason for not making a bid could be that the platform lacks the
capabilities or resources for the task.

The Delegation Protocol. The Delegation Protocol, which is an extension of the FIPA
Contract Net protocol [34, 61], implements the Delegation Process described in Sec-
tion 6. The Delegation Protocol, like the Contract Net Protocol, has two phases, each
containing the sending and receiving of a message. The first phase allocates platforms
to tasks satisfying the preconditions of the S-Delegate speech act and the second phase
executes the task satisfying the postconditions of the S-Delegate speech act.

In the first phase a call-for-proposal message is sent from the delegator, and a pro-
pose or refuse message is returned by the potential contractor. The content is a declar-
ative representation of the task in the form of a TST and a set of constraints. When a
potential contractor receives a call-for-proposal message, an instance of the Delegation
Protocol is started. When the first phase is completed, if successful, the preconditions
for the S-Delegate speech act are satisfied and all the sub-tasks in the TST have been
allocated to platforms such that all the constraints are satisfied.

A Delegation-Based Architecture for Collaborative Robotics 233

Fig. 12. An overview of the Delegation Protocol

In the second phase an accept-proposal is sent from the delegator to the contractor.
This starts the execution of the task. If the execution is successful, then the contractor
returns an inform message otherwise a failure message. Such failure messages will
invoke repair processes that will not be described in this article.

An overview of the steps in the Delegate Protocol is shown in Figure 12. When a
Delegation Agent receives a call-for-proposal message with a TST the platform be-
comes a potential contractor. To check if the platform can accept the delegation it first
updates that part of the its constraint network representing all the constraints related to
the TST. This is done by instantiating the platform specific resource constraints for the
action associated with the top node of the TST. If the resulting constraint problem is in-
consistent, then a refuse message is returned to the delegator. Otherwise, the resources
required for the node are booked through the Resource Service and the sub-tasks of the
TST are recursively delegated. When a platform books its resources, it places commit-
ments in the form of constraints in its constraint stores and schedulers which reserve
resources and schedule activities relative to the temporal constraints which are part of
the TST solution.

For each sub-task of the TST the Delegation Protocol goes through the steps shown
in Figure 13. First, it will use the Capability Lookup Protocol to find all the platforms
that have the capabilities, but not necessarily the resources, to achieve the task. Then
it will use the Auction Protocol to request bids from these platforms in parallel. The
bids are used to decide the order in which the platforms are tried. The platform with the
lowest bid, i.e. the lowest cost, will be allocated the task first. If that allocation fails,
then the platform with the next lowest bid will be allocated the task. Allocating a task
to a platform involves sending a call-for-proposal message with the task to the plat-
form. This will trigger the Delegation Protocol on that platform. If an allocation fails,
then backtracking starts. If backtracking has tested all the choices, then the potential
contractor returns a refuse message to the delegator.

If all sub-tasks can either be allocated to the platform or delegated to some other
platform, then a propose message with the allocated TST is returned to the delegator.

234 P. Doherty, F. Heintz, and D. Landén

Fig. 13. An overview of the recursive delegation of sub-tasks part of the Delegation Protocol

8 A Collaborative UAS Case Study

On December 26, 2004, a devastating earthquake of high magnitude occurred off the
west coast of Sumatra. This resulted in a tsunami which hit the coasts of India, Sri
Lanka, Thailand, Indonesia, and many other islands. Both the earthquake and the
tsunami caused great devastation. During the initial stages of the catastrophe, there was
a great deal of confusion and chaos in setting into motion rescue operations in such wide
geographic areas. The problem was exacerbated by a shortage of manpower, supplies,
and machinery. The highest priorities in the initial stages of the disaster were searching
for survivors in many isolated areas where road systems had become inaccessible and
providing relief in the form of delivery of food, water, and medical supplies. Similar
real-life scenarios have occurred more recently in China and Haiti where devastating
earthquakes have caused tremendous material and human damage.

Let us assume that one has access to a fleet of autonomous unmanned helicopter sys-
tems with ground operation facilities. How could such a resource be used in the real-life
scenario described?

A prerequisite for the successful operation would be the existence of a multi-agent
software infrastructure for assisting emergency services. At the very least, one would
require the system to allow mixed-initiative interaction with multiple platforms and
ground operators in a robust, safe, and dependable manner. As far as the individual
platforms are concerned, one would require a number of different capabilities, not

A Delegation-Based Architecture for Collaborative Robotics 235

necessarily shared by each individual platform, but by the fleet in total. These capa-
bilities would include: the ability to scan and search for salient entities such as injured
humans, building structures, or vehicles; the ability to monitor or survey these salient
points of interest and continually collect and communicate information back to ground
operators and other platforms to keep them situationally aware of current conditions;
and the ability to deliver supplies or resources to these salient points of interest if
required. For example, identified injured persons should immediately receive a relief
package containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume there are two separate
legs or parts to the emergency relief scenario in the context sketched previously.

Leg I. In the first part of the scenario, it is essential that for specific geographic areas,
the unmanned aircraft platforms cooperatively scan large regions in an attempt
to identify injured persons. The result of such a cooperative scan would be a
saliency map pinpointing potential victims and their geographical coordinates
and associating sensory output such as high resolution photos and thermal im-
ages with the potential victims. The saliency map could then be used directly
by emergency services or passed on to other unmanned aircrafts as a basis for
additional tasks.

Leg II. In the second part of the scenario, the saliency map from Leg I would be used
for generating and executing a plan for the UAS to deliver relief packages to the
injured. This should also be done in a cooperative manner.

We will now consider a particular instance of the emergency services assistance sce-
nario. In this instance there is a UAS consisting of two platforms (P1 and P2) and an
operator (OP1). In the first part of the scenario the UAS is given the task of searching
two areas for victims. The main capability required by the platforms is to fly a search
pattern scanning for people. In this scenario, both platforms have this capability. It is
implemented by looking for salient features in the fused video streams from color and
thermal cameras [59]. In the second part the UAS is given the task to deliver boxes with
food and medical supplies to the identified victims. To transport a box it can either be
carried directly by an unmanned aircraft or it can be loaded onto a carrier which is then
transported to a key position from where the boxes are distributed to their final loca-
tions. In this scenario, both platforms have the capability to transport a single box while
only platform P1 has the capability to transport a carrier. Both platforms also have the
capabilities to coordinate sequential and concurrent tasks.

8.1 Leg I: The Victim Search Case Study

The victim search case study covers the first part of the emergency services assistance
scenario. In this particular scenario, see Figure 5 on page 217, the UAS should first scan
AreaA and AreaB for survivors, and then fly to Dest4 to be ready to load emergency
supplies. The TST for this mission is shown in Figure 6 on page 218.

To carry out the mission, the operator needs to delegate the TST to one of the plat-
forms. This is done by invoking the Delegation Protocol in the operator ground station.

236 P. Doherty, F. Heintz, and D. Landén

Fig. 14. The schedule after assigning node N0 to P1

Fig. 15. The schedule after assigning node N1 to P1

The protocol will find a platform that can achieve the complex task and then give the
operator the option to approve the choice. If the choice is approved, then the mission
will be carried out.

The Delegation Agent of OP1 starts the process of finding a platform that can
achieve the TST by finding all platforms that have the capabilities for the top node
N0, which is both platforms. It then auctions out N0 to both platforms to find the best
initial choice. In this case, the marginal cost is the same for both platforms, so the first
platform, P1, is chosen. The Delegation Agent of OP1 then sends a call-for-proposal
message with the TST to the winner, P1. This invokes the Delegation Protocol on P1.

P1 is now responsible for N0 and for recursively delegating the nodes in the TST
that it is not able to do itself. See Figure 14 for the schedule. The allocation algorithm
traverses the TST in depth-first order. P1 will first find a platform for node N1. When
the entire sub-TST rooted in N1 is allocated then it will find an allocation for node
N4. Node N1 is a composite action node which has the same marginal cost for all plat-
forms. P1 therefore allocates N1 to itself. The extended schedule is shown in Figure 15.
The constraints from nodes N0–N1 are added to the constraint network of P1. The net-
work is consistent because the composite action nodes describe a schedule without any
restrictions.

Platform P1 should now allocate the elementary action nodes N2 and N3. A capabil-
ity lookup operation followed by an auction of node N2 determines the candidates P1

and P2. A call-for-proposal message containing N2 is sent to platform P2.
P2 receives the call-for-proposal message, loads and instantiates the platform’s re-

source constraint for the scan action. The constraint network is connected to the con-
straint network of the TST. The network is then checked for consistency. Since the
network is consistent, node N2 is now allocated to platform P2. P2 returns a propose
message to P1. The constraint network now involves both platforms. Figure 16 shows
the schedule.

Continuing with node N3, platform P1 searches for candidates for the node. The
capability lookup and auctioning determines platform P1 as a better choice than P2

for the second scan node. P1 delegates the node to itself since the extended constraint
network is consistent. Figure 17 shows the extended schedule.

A Delegation-Based Architecture for Collaborative Robotics 237

Fig. 16. The schedule after assigning node N2 to P2

Fig. 17. The schedule after assigning node N3 to P1

Fig. 18. The schedule after assigning node N4 to P2, which is the complete schedule

The remaining node, N4 is delegated to platform P2. The entire TST is now allo-
cated. The complete schedule is shown in Figure 18.

The operator approves the allocation and starts the mission. An accept-proposal mes-
sage is sent to P1. P1 recursively traverses the TST marking the nodes as ready for ex-
ecution in depth-first order. Nodes allocated to another platform are marked by sending
a accept-proposal to the platform. P1 therefore sends accept-proposal messages to P2

for node N2 and N4. The execution starts and the platforms scans the area creating the
saliency map shown in Figure 19.

8.2 Leg II: The Supply Delivery Case Study

The supply delivery case study covers the second part of the emergency services assis-
tance scenario. One approach to solving this type of logistics problems is to use a task
planner to generate a sequence of actions that will transport each box to its destina-
tion. Each action must then be executed by a platform. We have previously shown how
to generate pre-allocated plans and monitor their execution [21, 51]. In this paper we
show how a plan without explicit allocations expressed as a TST can be cooperatively
allocated to a set of unmanned aircraft platforms which where not known at the time of
planning.

238 P. Doherty, F. Heintz, and D. Landén

Fig. 19. The disaster area with platforms P1–P3, survivors S1–S5, and operators OP1 and OP2

In this particular scenario, shown in Figure 19, five survivors (S1–S5) are found in
Leg I, and there are two platforms (P1–P2) and one carrier available. At the same time
another operator OP2 is performing a mission with the platforms P3 and P4 north of
the area in Figure 19. P3 is currently idle and OP1 is therefore allowed to borrow it if
necessary.

To start Leg II, the operator creates a TST, for example using a planner, that will
achieve the goal of distributing relief packages to all survivor locations in the saliency
map. The resulting TST is shown in Figure 20. The TST contains a sub-TST (N1–
N12) for loading a carrier with four boxes (N2–N6), delivering the carrier (N7), and
unloading the packages from the carrier and delivering them to the survivors (N8–N12).
A package must also be delivered to the survivor in the right uppermost part of the
region, far away from where most of the survivors were found (N13). The delivery
of packages can be done concurrently to save time, while the loading, moving, and
unloading of the carrier is a sequential operation.

To delegate the TST, the Delegation Agent of OP1 searches for a platform that can
achieve the TST. It starts by finding all platforms that have the capabilities for the top
node N0, which is both platforms. It then auctions out N0 to both platforms to find the
best initial choice. In this case, the marginal cost is the same for both platforms and
the first platform, P1 is chosen. The Delegation Agent of OP1 then sends a call-for-
proposal message with the TST to the winner, P1. This invokes the Delegation Protocol
on P1.

P1 is now responsible for N0 and for recursively delegating the nodes in the TST
that it is not able to do itself. The allocation algorithm traverses the TST in depth-first
order. P1 will first find a platform for node N1. When the entire sub-TST rooted in N1

is allocated then it will find an allocation for node N13. Nodes N1 and N2 are composite
action nodes which have the same marginal cost for all platforms. P1 therefore allocates

A Delegation-Based Architecture for Collaborative Robotics 239

Fig. 20. The TST for the supply delivery case study

N1 and N2 to itself. The constraints from nodes N0–N2 are added to the constraint
network of P1. The network is consistent because the composite action nodes describe
a schedule without any restrictions.

Below node N2 are four elementary action nodes. Since P1 is responsible for N2,
it tries to allocate them one at the time. For elementary action nodes, the choice of
platform is the key to a successful allocation. This is because of each platform’s unique
state, constraint model for the action, and available resources. The candidates for node
N3 are platforms P1 and P2. P1 is closest to the package depot and therefore gives the
best bid for the node. P1 is allocated to N3. For node N4, platform P1 is still the best
choice, and it is allocated to N4. Given the new position of P1 after being allocated N3

and N4, P2 is now closest to the depot resulting in the lowest bid and is allocated to N5

and N6. The schedule initially defined by nodes N0–N2 is now also constrained by how
long it takes for P1 and P2 to carry out action nodes N3–N6. The constraint network is
distributed among platforms P1 and P2.

The next node to allocate for P1 is node N7, the carrier delivery node. P1 is the only
platform that has the capabilities for the fly carrier task and is allocated the node. Con-
tinuing with nodes N8–N12, the platform with the lowest bid for each node is platform
P1, since it is in the area after delivering the carrier. P1, is therefore allocated all the
nodes N8–N12.

The final node, N13, is allocated to platform P2 and the allocation is complete. The
resulting schedule is shown in Figure 21.

The only non-local information used by P1 was the capabilities of the available plat-
forms which was gathered through a broadcast. Everything else is local. The bids are
made by each platform based on local information and the consistency of the constraint
network is checked through distributed constraint satisfaction techniques.

The total mission time is 58 minutes, which is much longer than the operator ex-
pected. Since the constraint problem defined by the allocation of the TST is distributed

240 P. Doherty, F. Heintz, and D. Landén

Fig. 21. The complete schedule when using two platforms and no deadline

Fig. 22. The resulting schedule after adding the new time constraint

between the platforms, it is possible for the operator to modify the constraint problem
by adding more constraints, and in this way modify the resulting task allocation. The
operator puts a time constraint on the mission, restricting the total time to 30 minutes.

To re-allocate the TST with the added constraint, operator OP1 sends a reject-
proposal to platform P1. The added time constraint makes the current allocation incon-
sistent. The last allocated node must therefore be re-allocated. However, no platform for
N13 can make the allocation consistent, not even the unused platform P3. Backtracking
starts. Platform P1 is in charge, since it is responsible for allocating node N13. The
N1 sub-network is disconnected. Trying different platforms for node N13, P1 discovers
that N13 can be allocated to P2. P1 sends a backjump-search message to the platform
in charge of the sub-TST with top-node N1, which happens to be P1. When receiv-
ing the message, P1 continues the search for the backjump point. Since removing all
constraints due to the allocation of node N1 and its children made the problem consis-
tent, the backjump point is in the sub-TST rooted in N1. Removing the allocations for
sub-tree N8 does not make the problem consistent so further backjumping is necessary.
Notice that with a single consistency check the algorithm could deduce that no possible
allocation of N8 and its children can lead to a consistent allocation of N13. Removing
the allocation for node N7 does not make a difference either. However, removing the
allocations for the sub-TST N2 makes the problem consistent. When finding an allo-
cation of N13 after removing the constraints from N6 the allocation process continues
from N6 and tries the next platform for the node, P1.

When the allocation reaches node N11 it is discovered that since P1 has taken on
nodes N3–N8, there is not enough time left for P1 to unload the last two packages from

A Delegation-Based Architecture for Collaborative Robotics 241

the carrier. Instead P3, even though it makes a higher bid for N11–N12, is allocated to
both nodes. Finally platform P2 is allocated to node N13. It turns out that since platform
P2 helped P1 loading the carrier, it has not enough time to deliver the final package. In-
stead, a new backjump point search starts, finding node N5. The search continues from
N5. This time, nodes N3–N9 are allocated to platform P1, platform P3 is allocated to
node N10–N12, and platform P2 is allocated to node N13. The allocation is consistent.
The resulting schedule is shown in Figure 22. The allocation algorithm finishes on plat-
form P1, by sending a propose message back to the operator. The operator inspects the
allocation and approves it, thereby confirming the delegation and starting the execution
of the mission.

9 Related Work

Due to the multi-disciplinary nature of the work considered here, there is a vast amount
of related work too numerous to mention. In addition to the work referenced in the
article, we instead consider a number of representative references from the areas of
autonomy, cooperative multi-robot systems, task allocation from a robotic perspective,
and auctions.

The concept of autonomy has a long and active history in multi-agent systems [44,
47]. One early driving force was space missions that focused on the problem of inter-
action with autonomous agents and the adjustability of this autonomy [4, 26]. Later,
Hexmoor and McLaughlan argue that reasoning about autonomy is an integral compo-
nent of collaboration among computational units [45]. Hexmoor also argues that trust
is essential for autonomy [46]. According to his definition, the autonomy of an agent A
with respect to a task t is the degree of self-determination the agent possesses to per-
form the task. This is similar to the view on autonomy in our approach, where the level
of autonomy for an agent is dependent on the strictness of the constraints on the tasks
that are delegated to the agent.

Cooperative multi-robot systems have a long history in robotics, multi-agent systems
and AI in general. One early study presented a generic scheme based on a distributed
plan merging process [2], where robots share plans and coordinates their own plans
to produce coordinated plans. In our approach, coordination is achieved by finding so-
lutions to a distributed constraint problem representing the complex task, rather than
by sharing and merging plans. Another early work is ALLIANCE [57], which is a
behavior-based framework for instantaneous task assignment of loosely coupled sub-
tasks with ordering dependencies. Each agent decides on its own what tasks to do based
on its observations of the world and the other agents. Compared to our approach, this
is a more reactive approach which does not consider what will happen in the future.
M+ [3] integrates mission planning, task refinement and cooperative task allocation. It
uses a task allocation protocol based on the Contract Net protocol with explicit, pre-
defined capabilities and task costs. A major difference to our approach is that in M+
there is no temporally extended allocation. Instead, robots make incremental choices
of tasks to perform from the set of executable tasks, which are tasks whose prereq-
uisite tasks are achieved or underway. The M+CTA framework [1] is an extension of

242 P. Doherty, F. Heintz, and D. Landén

M+, where a mission is decomposed into a partially ordered set of high-level tasks.
Each task is defined as a set of goals to be achieved. The plan is distributed to each
robot and task allocation is done incrementally like in M+. When a robot is allocated
a task, it creates an individual plan for achieving the task’s goals independently of the
other agents. After the planning step, robots negotiate with each other to adapt their
plans in the multi-robot context. Like most negotiation-based approaches, M+CTA first
allocates the tasks and then negotiates to handle coordination. This is different from
our approach which finds a valid allocation of all the tasks before committing to the
allocation. ASyMTRe [58], uses a reconfigurable schema abstraction for collaborative
task execution providing sensor sharing among robots, where connections among the
schemas are dynamically formed at runtime. The properties of inputs and outputs of
each schema is defined and by determining a valid information flow through a com-
bination of schemas within, and across, robot team members a coalition for solving a
particular task can be formed. Like ALLIANCE, this is basically a reactive approach
which considers the current task, rather than a set of related tasks as in our approach.
Other Contract-Net and auction-based systems similar to those described above are
COMETS [53], MURDOCH system [39], Hoplites [49] and TAEMS [12].

Many task allocation algorithms are, as mentioned above, auction-based [13, 39,
49, 63, 71, 72]. There, tasks are auctioned out and allocated to the agent that makes
the best bid. Bids are determined by a utility function. The auction concept decentral-
izes the task allocation process which is very useful especially in multi-robot systems,
where centralized solutions are impractical. For tasks that have unrelated utilities, this
approach has been very successful. The reason is that unrelated utilities guarantees that
each task can be treated as an independent entity, and can be auctioned out without
affecting other parts of the allocation. This means that a robot does not have to take
other tasks into consideration when making a bid. More advanced auction protocols
have been developed to handle dependencies between tasks. These are constructed to
deal with complementarities. Examples are sequential single item auctions [50] and
combinatorial auctions [64]. These auctions typically handle that different combina-
tions of tasks have different bids, which can be compared to our model where different
sets of allocations result in different restrictions to the constraint network between the
platforms.

The sequential single item (SSI) auction [50] is of special interest since it is similar to
our approach. In SSI auctions, like our task allocation approach, tasks are auctioned out
in sequence, one at a time to make sure the new task fits with the previous allocations.
The difference is what happens when there is no agent that can accept the next task.
In SSI auctions common strategies are to return a task in exchange for the new task or
to start exchanging tasks with other agents. This is basically a greedy approach which
is incomplete. Our approach on the other hand uses backtracking which is a complete
search procedure. Normally SSI auctions are applied to problems where it is easy to
find a solution but it is hard to find a good solution. When allocating the tasks in a TST
it is often hard to find any solution and SSI auctions are therefore not appropriate.

Combinatorial auctions deal with complementarities by bidding on bundles contain-
ing multiple items. Each bidder places bids on all the bundles that are of interest, which
could be exponentially many. The auctioneer must then select the best set of bids, called

A Delegation-Based Architecture for Collaborative Robotics 243

the winner determination problem, which is NP-hard [64]. Since all agents have to bid
on all bundles, in our case tasks, they could accept in one round it means that even
in the best case there is a very high computational cost involved in using combinatorial
auctions. Another weakness is that they do not easily lend themselves to a recursive pro-
cess where tasks are recursively decomposed and allocated. Our approach, on the other
hand, is suitable for recursive allocation and by using heuristic search will try the most
likely allocations first which should result in much better average case performance.

10 Conclusions

Collaborative robotic systems have much to gain by leveraging results from the area
of multi-agent systems and in particular agent-oriented software engineering. Agent-
oriented software engineering has much to gain by using collaborative robotic systems
as a testbed. We have proposed and specified a formally grounded generic collaborative
system shell for robotic systems and human operated ground control systems. The soft-
ware engineering approach is based on the FIPA Abstract Architecture and uses JADE
to implement the system shell. The system shell is generic in the sense that it can be
integrated with legacy robotic systems using a limited set of assumptions. Collabora-
tion is formalized in terms of the concept of delegation and delegation is instantiated
as a speech act. The formal characterization of the Speech act has a BDI flavor and
KARO, which is an amalgam of dynamic logic and epistemic/doxastic logic, is used in
the formal characterization. Tasks are central to the delegation process. Consequently, a
flexible, specification language for tasks is introduced in the form of Task Specification
Trees. Task Specification Trees provide a formal bridge between the abstract character-
ization of delegation as a speech act and its implementation in the collaborative system
shell. Using this idea, the semantics of both delegation and tasks is grounded in the
implementation in the form of a distributed constraint problem which when solved re-
sults in the allocation of tasks and resources to agents. We show the potential of this
approach by targeting a real-life scenario consisting of UAV’s and human resources in
an emergency services application. The results described here should be considered a
mature iteration of many ideas both formal and pragmatic which will continue to be
pursued in additional iterations as future work.

References

1. Alami, R., Botelho, S.C.: Plan-based multi-robot cooperation. In: Advances in Plan-Based
Control of Robotic Agents (2001)

2. Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multirobot planning activities
and plans execution. In: Proc. ECAI (1998)

3. Botelho, S., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task
allocation and achievement. In: Proc. ICRA (1999)

4. Bradshaw, J., Sierhuis, M., Acquisti, A., Gawdiak, Y., Jeffers, R., Suri, N., Greaves, M.: Ad-
justable autonomy and teamwork for the personal satellite assistant. In: Proc. IJCAI Work-
shop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents (2001)

5. Castelfranchi, C., Falcone, R.: Toward a theory of delegation for agent-based systems.
Robotics and Autonomous Systems 24, 141–157 (1998)

244 P. Doherty, F. Heintz, and D. Landén

6. Cohen, P., Levesque, H.: Intention is choice with commitment. Artificial Intelligence 42(3),
213–261 (1990)

7. Cohen, P., Levesque, H.: Teamwork. Nous, Special Issue on Cognitive Science and AI 25(4),
487–512 (1991)

8. Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-
referenced information. EURASIP Journal of Advances in Signal Processing (2009)

9. Conte, G., Hempel, M., Rudol, P., Lundström, D., Duranti, S., Wzorek, M., Doherty, P.:
High accuracy ground target geo-location using autonomous micro aerial vehicle platforms.
In: Proceedings of the AIAA 2008 Guidance, Navigation, and Control Conference (2008)

10. Dastani, M., Meyer, J.J.C.: A practical agent programming language. In: Dastani, M., Hin-
driks, K.V., Sterling, M.P.P.,, L. (eds.) Proc. of the AAMAS 2007 Workshop on Programming
Multi-Agent Systems (ProMAS 2007), pp. 72–87 (2007)

11. Davis, E., Morgenstern, L.: A first-order theory of communication and multi-agent plans.
Journal Logic and Computation 15(5), 701–749 (2005)

12. Decker, K.: TAEMS: A framework for environment centered analysis and design of co-
ordination mechanisms. In: Foundations of Distributed Artificial Intelligence. Wiley Inter-
Science, Chichester (1996)

13. Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and
analysis. Proc. of IEEE 94(1), 1257–1270 (2006)

14. Doherty, P.: Advanced research with autonomous unmanned aerial vehicles. In: Proceedings
on the 9th International Conference on Principles of Knowledge Representation and Reason-
ing (2004), extended abstract for plenary talk

15. Doherty, P.: Knowledge representation and unmanned aerial vehicles. In: Proceedings of the
IEEE Conference on Intelligent Agent Technolology, IAT 2005 (2005)

16. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wik-
lund, J.: The WITAS unmanned aerial vehicle project. In: Proceedings of the 14th European
Conference on Artificial Intelligence, pp. 747–755 (2000)

17. Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed archi-
tecture for intelligent unmanned aerial vehicle experimentation. In: Proceedings of the 7th
International Symposium on Distributed Autonomous Robotic Systems (2004)

18. Doherty, P., Kvarnström, J.: TALplanner: A temporal logic based forward chaining planner.
Annals of Mathematics and Artificial Intelligence 30, 119–169 (2001)

19. Doherty, P., Kvarnström, J.: TALplanner: A temporal logic based planner. Artificial Intelli-
gence Magazine (Fall Issue 2001)

20. Doherty, P., Kvarnström, J.: Temporal action logics. In: Lifschitz, V., van Harmelen, F.,
Porter, F. (eds.) The Handbook of Knowledge Representation, ch. 18, pp. 709–757. Else-
vier, Amsterdam (2008)

21. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution mon-
itoring framework for unmanned aircraft systems. Journal of Automated Agents and Multi-
Agent Systems 19(3), 332–377 (2009)

22. Doherty, P., Landén, D., Heintz, F.: A distributed task specification language for mixed-
initiative delegation. In: Proceedings of the 13th International Conference on Principles and
Practice of Multi-Agent Systems, PRIMA (2010)

23. Doherty, P., Łukaszewicz, W., Szałas, A.: Approximative query techniques for agents with
heterogenous ontologies and perceptual capabilities. In: Proceedings on the 7th International
Conference on Information Fusion (2004)

24. Doherty, P., Łukaszewicz, W., Szałas, A.: Communication between agents with heteroge-
neous perceptual capabilities. Journal of Information Fusion 8(1), 56–69 (2007)

25. Doherty, P., Meyer, J.-J.C.: Towards a delegation framework for aerial robotic mission sce-
narios. In: Proceedings of the 11th International Workshop on Cooperative Information
Agents (2007)

A Delegation-Based Architecture for Collaborative Robotics 245

26. Dorais, G., Bonasso, R., Kortenkamp, D., Pell, B., Schreckenghost, D.: Adjustable autonomy
for human-centered autonomous systems on mars. In: Proc. Mars Society Conference (1998)

27. Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems. Wiley, Chichester
(2010)

28. Duranti, S., Conte, G., Lundström, D., Rudol, P., Wzorek, M., Doherty, P.: LinkMAV, a
prototype rotary wing micro aerial vehicle. In: Proceedings of the 17th IFAC Symposium on
Automatic Control in Aerospace (2007)

29. Bellifemine, F., Greenwood, G.C.: Developing Multi-Agent Systems with JADE. John Wiley
and Sons, Ltd., Chichester (2007)

30. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE – a Java agent development frame-
work. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A. (eds.) Multi-Agent Program-
ming - Languages, Platforms and Applications. Springer, Heidelberg (2005)

31. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: The theory of
adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics–Part A:
Systems and Humans 31(5), 406–418 (2001)

32. Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Specification,
http://www.fipa.org

33. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library Specification,
http://www.fipa.org

34. Foundation for Intelligent Physical Agents: FIPA Contract Net Interaction Protocol Specifi-
cation, http://www.fipa.org

35. Frisch, A., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The Design of ESSENCE:
A Constraint Language for Specifying Combinatorial Problems. In: IJCAI, pp. 80–87 (2007)

36. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: Proceedings
of ECAI 2006, Riva del Garda, pp. 98–102 (2006)

37. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with essence’ and minion. In: Proceedings of the 7th International Conference on Ab-
straction, Reformulation, and Approximation (SARA 2007), pp. 184–199 (2007)

38. Gerkey, B.: On multi-robot task allocation. Ph.D. thesis (2003)
39. Gerkey, B., Mataric, M.: Sold!: Auction methods for multi-robot coordination. IEEE Trans-

actions on Robotics and Automation (2001)
40. Heintz, F., Doherty, P.: DyKnow: A knowledge processing middleware framework and its

relation to the JDL fusion model. Journal of Intelligent and Fuzzy Systems 17(4) (2006)
41. Heintz, F., Doherty, P.: DyKnow federations: Distributing and merging information among

UAVs. In: Eleventh International Conference on Information Fusion, FUSION 2008 (2008)
42. Heintz, F., Kvarnström, J., Doherty, P.: A stream-based hierarchical anchoring framework.

In: Proceedings of the International Conference on Intelligent Robots and Systems, IROS
(2009)

43. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: DyKnow - stream-
based middleware for knowledge processing. Journal of Advanced Engineering Informat-
ics 24(1), 14–25 (2010)

44. Hexmoor, H., Kortenkamp, D.: Autonomy control software. An Introductory Article and
Special Issue of Journal of Experimental and Theoretical Artificial Intelligence (2000)

45. Hexmoor, H., McLaughlan, B.: Computationally adjustable autonomy. Journal of Scalable
Computing: Practive and Experience 8(1), 41–48 (2007)

46. Hexmoor, H., Rahimi, S., Chandran, R.: Delegations guided by trust and autonomy. Web
Intelligence and Agent Systems 6(2), 137–155 (2008)

47. Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.): Agent Autonomy. Springer, Heidelberg
(2003)

http://www.fipa.org
http://www.fipa.org
http://www.fipa.org

246 P. Doherty, F. Heintz, and D. Landén

48. van der Hoek, W., van Linder, B., Meyer, J.-J.C.: An integrated modal approach to rational
agents. In: Wooldridge, M., Rao, A. (eds.) Foundations of Foundations of Rational Agency.
Applied Logic Series, vol. 14. An Integrated Modal Approach to Rational Agents (1998)

49. Kaldra, N., Ferguson, D., Stentz, A.: Hoplites: A market-based framework for planned tight
coordination in multirobot teams. In: Proc. ICRA (2005)

50. Koenig, S., Keskinocak, P., Tovey, C.: Progress on agent coordination with cooperative auc-
tions. In: Proc. AAAI (2010)

51. Kvarnström, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings
of the International Conference on Control, Automation, Robotics and Vision, ICARCV
(2010)

52. Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative delegation:
A UAV case study (early innovation). In: Proceedings of the 13th International Conference
on Principles and Practice of Multi-Agent Systems, PRIMA (2010)

53. Lemaire, T., Alami, R., Lacroix, S.: A distributed tasks allocation scheme in multi-uav con-
text. In: Proc. ICRA (2004)

54. Magnusson, M., Landen, D., Doherty, P.: Planning, executing, and monitoring communica-
tion in a logic-based multi-agent system. In: 18th European Conference on Artificial Intelli-
gence, ECAI 2008 (2008)

55. Merz, T., Rudol, P., Wzorek, M.: Control System Framework for Autonomous Robots Based
on Extended State Machines. In: Proceedings of the International Conference on Autonomic
and Autonomous Systems (2006)

56. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint
optimization with quality guarantees. AI 161 (2006)

57. Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Trans.
Robot. Automat. 14(2), 220–240 (1998)

58. Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution syn-
thesis. Proceeding of the IEEE, Special Issue on Multi-Robot Systems (2006)

59. Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and res-
cue missions using color and thermal imagery. In: Proc. of the IEEE Aerospace Conference
(2008)

60. Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servo-
ing for cooperative indoor exploration. In: Proceedings of the IEEE Aerospace Conference
(2008)

61. Smith, R.: The contract net protocol. IEEE Transactions on Computers C-29(12) (1980)
62. Telecom Italia Lab: The Java Agent Development Framework (JADE),

http://jade.tilab.com
63. Viguria, A., Maza, I., Ollero, A.: Distributed service-based cooperation in aerial/ground

robot teams applied to fire detection and extinguishing missions. Advanced Robotics 24,
1–23 (2010)

64. de Vries, S., Vohra, R.: Combinatorial auctions: A survey. Journal on Computing 15(3), 284–
309 (2003)

65. Wallace, M.G., Schimpf, J., Novello, S.: A Platform for Constraint Logic Programming. ICL
System Journal 12(1), 159–200 (1997)

66. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning
to control – a navigation framework for an unmanned aerial vehicle. In: Proceedings of the
21st Bristol International Conference on UAV Systems (2006)

67. Wzorek, M., Doherty, P.: Reconfigurable path planning for an autonomous unmanned aerial
vehicle. In: Proceedings of the 16th International Conference on Automated Planning and
Scheduling, pp. 438–441 (2006)

http://jade.tilab.com

A Delegation-Based Architecture for Collaborative Robotics 247

68. Wzorek, M., Kvarnström, J., Doherty, P.: Choosing path replanning strategies for unmanned
aircraft systems. In: Proceedings of the International Conference on Automated Planning and
Scheduling, ICAPS (2010)

69. Wzorek, M., Landen, D., Doherty, P.: GSM technology as a communication media for an
autonomous unmanned aerial vehicle. In: Proceedings of the 21st Bristol International Con-
ference on UAV Systems (2006)

70. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint sat-
isfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976. Springer,
Heidelberg (1995)

71. Zlot, R.: An auction-based approach to complex task allocation for multirobot teams. Ph.D.
thesis (2006)

72. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: Proc. ICRA (2005)

Author Index

Abdollahzadeh Barfourosh, Ahmad 79
Amor, Mercedes 128
Ayala, Inmaculada 128

Cannon, Christopher T. 177
Chopra, Amit K. 17
Cirilo, Elder 37
Cowan, Donald 37
Cruz Torres, Mario Henrique 189

Desai, Nirmit 17
Detweiler, Christian 1
Doherty, Patrick 205

Fuentes, Lidia 128

Graja, Zeineb 148

Haesevoets, Robrecht 189
Heintz, Fredrik 205
Helleboogh, Alexander 189
Hindriks, Koen 1
Holvoet, Tom 189

Jonker, Catholijn 1
Joosen, Wouter 189

Kacem, Ahmed Hadj 148

Landén, David 205
Lass, Robert N. 177
Lu, Bin 62
Lucena, Carlos J.P. de 37
Luck, Michael 17

Mayk, Israel 177
Miles, Simon 17
Miller, Tim 62, 91
Modgil, Sanjay 17
Mongan, William M. 177
Moraitis, Pavlos 106

Nguyen, Duc N. 177
Nunes, Ingrid 37

Oren, Nir 17

Padgham, Lin 91
Pedell, Sonja 62

Regayeg, Amira 148
Regli, William C. 177

Salvage, Jeff 177
Saugar, Sergio 165
Serrano, Juan Manuel 165
Singh, Munindar P. 17
Spanoudakis, Nikolaos 106
Sterling, Leon 62

Thangarajah, John 91

Urness, Todd 177
Usbeck, Kyle 177

Vafadar, Shiva 79

Weyns, Danny 189

	Title
	Preface
	Organization
	Table of Contents
	Engineering Methods
	Principles for Value-Sensitive Agent-Oriented Software Engineering
	Introduction
	Values in Existing Software Engineering Methods
	Values
	Requirements and Values
	Value-Sensitive Design

	Case Study: Values in Tropos
	Discussion
	Six Principles
	Differences between Values and Goals
	Dealing with Values in Tropos

	Conclusions
	References

	Analyzing Contract Robustness through a Model of Commitments
	Introduction
	A Commitment-Based Model for Contracts
	Background: Commitments
	Enhanced Commitment Structure

	Modeling Contracts
	Entity Identification
	Mapping to Commitment Model

	Robustness of a Contract
	Necessity Robustness Rules
	Coverage Robustness Rules
	Consistency Robustness Rules

	Evaluation
	Entity Identification
	Mapping to Commitment Model
	Assessing Robustness

	Related Work
	Conclusions and Directions
	References

	A Case for New Directions in Agent-Oriented Software Engineering
	Introduction
	Background: Software Product Lines
	Existing Agent-Based Product Line Approaches

	The Buyer Agent Family Case Study
	E-Marketplace Overview
	Buyer Agent SPL Architecture
	Techniques for Supporting Variability
	Automatically Deriving Buyer Agents

	Discussion
	Intra-agent Modularization
	Architectural Models
	Large Scale Software Reuse

	Further Considerations
	Generative Approaches
	Empirical Studies

	Conclusion
	References

	Requirements Engineering and Testing
	Engaging Stakeholders with Agent-Oriented Requirements Modelling
	Introduction
	Agent-Oriented Requirements Engineering
	Modelling with Roles and Goals

	Changing the Agent-Oriented Requirement Engineering Process
	Withholding Design Commitment
	Delaying the Definition of the System Boundary
	Delaying the ``Sign-off'' of Requirements
	Discussion

	Experience
	The Project
	Withholding Design Commitment
	Including Agent Types as an SRS

	Related Work
	Conclusions and Related Work
	References

	Towards Requirement Analysis Pattern for Learning Agents
	Introduction
	Background and Related Work
	Software Analysis Patterns
	Related Work

	Analysis Pattern for Learning Agent
	Case Study: Book Trading System
	Developing the Case Study
	Applying Analysis Pattern on the Case Study

	Discussion
	Conclusion
	References

	Test Coverage Criteria for Agent Interaction Testing
	Introduction
	Test Coverage Criteria
	Protocol-Based Coverage Criteria
	Plan-Based Coverage Criteria
	Comparison of Coverage Criteria

	Measuring Correctness and Coverage Using a Debugging Agent
	Petri-Net Representation for Protocols
	Measuring Coverage Using Petri Nets
	Measuring Coverage for Concurrent Conversations

	Related Work
	Discussion and Conclusion
	References

	Model-Driven Approaches
	Using ASEME Methodology for Model-Driven Agent Systems Development
	Introduction
	Metamodeling and Models Transformation

	The AMOLA Metamodels
	The System Actor Goal Model (SAG)
	The System Use Cases Model (SUC)
	The System Roles Model (SRM)
	The Intra-Agent Control Model (IAC)

	The ASEME Model-Driven Process and Tools
	The ASEME M2M Transformation Tools (SAG2SUC and SUC2SRM)
	The ASEME T2M Transformation Tool (SRM2IAC)
	The ASEME M2T Transformation Tool (IAC2JADE)

	Non-functional Requirements in ASEME
	A Real World Case Study: The ASK-IT Project
	A Real World Case Study: The Market-Miner Project

	ASEME Evaluation
	Related Work
	Conclusion
	References

	Towards the Automatic Derivation of Malaca Agents Using MDE
	Introduction
	Background
	Model Driven Engineering
	PIM4Agents
	Malaca

	From PIM4Agents to Malaca
	Transformation Rules
	Use Case Scenario

	Discussion
	Related Work
	Conclusion
	References

	$ForMAAD$: Towards a Model Driven Approach for Agent Based Application Design
	Introduction
	Related Work
	MAS Design and MDA
	MAS Design and Formal Techniques

	AML Meta-model
	ForMAAD: Towards a Model Oriented Approach for MAS Design
	Specification Phase
	Design Phase
	Cooperation Strategy Definition.
	Organization Structure Definition.

	Collective Behavior Definition
	Individual Behavior Definition

	Translation to TemporalZ
	Translation of the Requirement Specification Model
	Translation of the Cooperation Strategy Definition Model
	Translation of the Organization Structure Definition Model
	Translation of the Collective and Individual Behavior Definition Model

	ForMAAD Tools
	Conclusion
	References

	Software Architecture and Middleware
	An Architectural Perspective on Multiagent Societies
	Introduction
	Software Architectural Concepts
	C&C Architecture of Multiagent Societies
	Social Components
	Social Connectors

	UML Profile for Social Connectors Types
	Social Interaction Types

	Discussion
	References

	A Methodology for Developing an Agent Systems Reference Architecture
	Introduction
	Background
	What Is a Reference Model and Architecture?
	A Reference Model for Agent Systems
	The Agent Systems Reference Architecture

	Serial Approach to Constructing the ASRA
	Application of the Serial Approach
	The Scenario View for Agent Mobility
	The Process View for Agent Mobility
	The Implementation View for Agent Mobility
	The Logical View for Agent Mobility

	Related Work
	Conclusion and Future Work
	References

	A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions
	Introduction
	Logistics in Supply Chain Management
	The Organization Middleware
	Context Information and Interaction Laws
	Realizing Supply Chain-Wide Interactions

	Middleware Model in Alloy
	Middleware Model
	Asserting Properties

	Related Work
	Conclusions and Future Work
	References

	A Delegation-Based Architecture for Collaborative Robotics
	Introduction
	Outline

	Delegation as a Speech Act
	Delegation-Based Software Architecture Overview
	Task Specification Trees
	TST Syntax
	TST Semantics

	Allocating Tasks in a TST to Platforms
	The Delegation Process
	An Algorithm for Allocating Complex Tasks Specified by TSTs

	Extending the FIPA Abstract Architecture for Delegation
	Services
	Protocols

	A Collaborative UAS Case Study
	Leg I: The Victim Search Case Study
	Leg II: The Supply Delivery Case Study

	Related Work
	Conclusions
	References

	Author Index

